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Abstract—The nonthermal radiation of a Kerr black hole is considered as the tunneling of particles being pro-
duced through an effective Dirac gap. In the leading semiclassical approximation, this approach is also appli-
cable to bosons. Our semiclassical results for photons and gravitons are consistent with those obtained previ-
ously. For neutrinos, the result of our complete quantum-mechanical calculation is about twice as large as the
previous one. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The amplification of an electromagnetic wave as it
reflects from a rotating black hole, so-called superradi-
ation, was predicted by Zel’dovich [1] and Misner [2].
Subsequently, this effect was studied in detail by Star-
obinsky and Churilov [3] for electromagnetic and grav-
itational waves (see also [4]). It seems obvious enough
that, if the amplification of a wave is possible during its
reflection, then its generation by a rotating black hole is
also possible. Indeed, a direct calculation by Page [5]
has shown that the nonthermal radiation being dis-
cussed does exist not only for bosons, photons, and
gravitons but also for neutrinos. The latter result
appears somewhat puzzling, because there is no super-
radiation for fermions.

Here, we consider these processes from a different
perspective, more specifically, as the tunneling of
quanta being produced through an effective Dirac gap.
Of course, this approach by itself is applicable to fermi-
ons alone. It is clear, however, that the production of
fermions and bosons in the leading semiclassical
approximation is described by the same (to within the
spin statistical weight) relations.

Note that, in their recent paper [6] (it became known
to us after this paper had been written), Calogeracos
and Volovik considered a similar mechanism for
describing the friction experienced by a rotating body
in a superfluid at T = 0: the quantum tunneling of quasi-
particles into the region where their energy in a rotating
frame is negative.

Our semiclassical results for photons and gravitons
are in reasonable qualitative agreement with the calcu-
lation [5]. It would be unreasonable to expect close
quantitative agreement here, because the action inside
the barrier for the most significant partial waves
exceeds unity only slightly, if at all. As for neutrinos,
1063-7761/02/9403- $22.00 © 20453
the imaginary part of the action for them at the total
angular momenta of major importance is appreciably
smaller than unity. Therefore, we performed a complete
numerical quantum-mechanical calculation of the
effect for the spin s = 1/2. Here, our result is about twice
that presented in [5]. Unfortunately, because of the lack
of details in [5], we cannot establish the cause of this
discrepancy.

2. SCALAR FIELD

We begin with a problem that is basically of meth-
odological interest rather than of direct physical inter-
est, with the radiation of scalar massless particles by a
rotating black hole.

We start the semiclassical solution of the problem
with the standard Hamilton–Jacobi equations for the
motion of a massless particle in a Kerr field (see, e.g.,
[7]):

(1)

(2)

Here, Sr(r) and Sθ(θ) are the radial and angular actions,
respectively;

a = J/M is the angular momentum of the black hole, in
units of its mass M; ε is the particle energy; and lz is the
projection of the particle angular momentum onto a
(the speed of light c is assumed to be unity every-
where).
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Fig. 1. The energy gap for (a) l = 1and (b) l = 2. 
As for the constant κ2 of the separation of variables, it
is equal to the particle angular momentum squared l2 in the
spherically symmetric limit a  ∞, or to l(l + 1) in
quantum mechanics (the Planck constant " is also
assumed to be unity everywhere). The influence of the
black-hole rotation, i.e., finite a, on κ2 is taken into
account by using perturbation theory applied to Eq. (2).
The result is [3]

(3)

Here and below, we use the dimensionless variables

Recall that the following substitution should be made in
the semiclassical approximation:

Furthermore, in the exact quantum-mechanical
problem, when reducing the radial wave equation to
canonical form,

additional [compared to the right-hand side of Eq. (1)]
nonclassical terms emerge in the expression for p2(r),
which, strictly speaking, should have been included at
l ≈ 1. However, in what follows, we discard these non-
classical corrections to p2(r), which does not qualita-
tively affect our results.

Figure 1 shows the dependence of the boundaries of
the classically inaccessible region, where the radial
momentum squared p2 is negative, on distance x for var-
ious orbital angular momenta. The gap vanishes on the
horizon [8]. When r  ∞, the boundaries of the clas-
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sically inaccessible region behave as ±(l + 1/2)/r. In
other words, in a sense, the centrifugal term for mass-
less particles acts as the mass squared. Note that, for
l > 1, both branches of the equation p2(r) = 0 fall, while,
at l = 1, one branch near the horizon rises and the other
falls. Thus, the radiation mechanism is tunneling, the
escape of particles from the hatched region to infinity.

Note the analogy between the radiation of charged
particles by a charged black hole and the effect under
discussion. In the former case, the radiation is attribut-
able to Coulomb repulsion, while, in the case consid-
ered here, it is attributable to the repulsive interac-
tion between the particle and black-hole angular
momenta [9].

The action inside the barrier for the radial equa-
tion (1) is

(4)

the integral being taken between two turning points.
For the time being, we restrict ourselves to the case of
an extreme black hole, a = kM. Note that because of the
singular dependence of p on x, the action inside the bar-
rier does not vanish at l > 1 even for the maximum
energy ω = lz/2. It remains all the more finite at l = 1 [cf.
Figs. 1a and 1b].

The repulsive interaction is proportional to the pro-
jection lz of the particle angular momentum and enters
into the tunneling probability in the exponent, while the
barrier depends on the orbital angular momentum l
itself. Therefore, it is clear that particles with lz close to
l will mainly contribute to the effect. Our numerical cal-
culation shows that the contribution of states with lz ≠ l
may be disregarded altogether. In addition, since the
action inside the barrier decreases with increasing
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energy, particles with energy close to the maximum one
mainly contribute to the effect.

Unfortunately, an analytic calculation of the action
inside the barrier cannot be performed to completion
even for an extreme black hole. Therefore, to get a qual-
itative idea of how the effect behaves, we make use of a
simplified expression for κ2:

(5)

[The results of a more accurate numerical calculation
using expression (3) are presented below.] In this
approximation, a simple analytic formula for the action
inside the barrier can be derived for all angular
momenta except l = 1. Let

where δ ! 1; precisely this energy range gives the larg-
est contribution to the radiation. The turning points of
interest, which lie to the right of the horizon, are then

(6)

We now easily find that

(7)

It is easy to see from this expression for the action that
the term l (following l2) in formula (5) is significant
even for large angular momenta: it generates the terms
4/l in formulas (6) and (7), increasing |S | for l @ 1 by

π/ . Accordingly, the transmission coefficient

decreases approximately by a factor of 40. Note that
even the transition in κ2 from l(l + 1) to (l + 1/2)2 appre-
ciably reduces the effect for l comparable to unity; how-
ever, this suppression disappears at large angular
momenta.

It follows from formula (7) that the action inside the
barrier is large; it monotonically increases with l start-
ing from |S | = π at l = 2. As for l = 1, a comparison of
Figs. 1a and 1b shows that the barrier here is wider than
at l = 2 and, accordingly, the action must be larger.
Indeed, our numerical calculation of the action inside
the barrier |S | with κ2 given by formula (3) confirms
these estimates. Its results are presented in Table 1,
where the analytic estimates |San | with formula (5) are
also given for comparison. Incidentally, this compari-
son shows that the approximate analytic formula (5) is
good. The numbers in Table 1 refer to an extreme black
hole and to the maximum energy of the emitted parti-
cles. It is clear, however, that the passage to nonextreme
black holes, lower energies, and larger l only causes the
action inside the barrier to increase. Since the action
here proves to be always larger than unity, it is quite
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reasonable to use the semiclassical approximation
inside the barrier.

Let us now check whether it is applicable to the left
of the barrier. The corresponding condition takes the
usual form

(8)

In other words, the minimum size of the initial wave
packet to the left of the barrier should not exceed the
distance from the horizon to the turning point. Near the
horizon, we may disregard the term related to the cen-
trifugal barrier in the expression for momentum p(x), so
that

It is easy to verify that, for moderately large l, which are
of importance in our case, this expression is compara-
ble to unity and condition (8) is not satisfied. Neverthe-
less, despite this circumstance and the neglect of the
nonclassical corrections to p2(r) mentioned above, the
results of our semiclassical calculation presented below
are qualitatively correct.

Let us turn back to the calculation of the radiation
intensity. The radial current density of free particles in
the energy range dε for r  ∞ is

(9)

Indeed, the initial summation here reduces to integra-
tion over the azimuthal angle of vector l, which gives
2π, and to allowance for the contributions of all projec-
tions lz of the orbital angular momentum. In our cases,
as was already pointed out, it will suffice to take into
account only one of them, lz = l. Using the identity

,

we find that the total flux of free particles for r  ∞ is

(10)

It can be easily seen that the total flux of the emitted
particles in our problem differs from the latter expres-
sion only by the barrier penetration factor. Thus, in our
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Table 1.  The action inside the barrier for scalar particles

l 1 2 3

|S | 3.45 3.15 3.33

|San| 3.14 3.34
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semiclassical approximation, we derive the following
expression for the mass loss by a black hole per unit
time:

(11)

Here, the maximum energy of the emitted quanta is

(12)

where

is the radius of the horizon of a Kerr black hole.
The analogous expression for the loss of angular

momentum is

(13)

The losses of mass and angular momentum by a
black hole numerically calculated for different rotation
parameters α from formulas (11) and (13) are given in
Table 2. Here and below, we present, for spinning par-
ticles, only the results for sufficiently rapid rotation,
α ≈ 1. The point is that as α decreases further, the ther-
mal radiation not only rapidly increases in intensity but
the effect being discussed also decreases even more
rapidly. Since this effect becomes much smaller than
the thermal one for smaller α, there is little sense in
considering it there.

As we see from Table 2, the rate of angular-momen-
tum loss by a black hole is higher, in comparable units,
than its mass loss rate. In fact, this immediately follows
from expression (12). Even from this expression, we
can see that the ratio of the corresponding numbers is
2 : 1 even for the maximum possible energy. The actual
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Table 3.  The action inside the barrier for photons and gravitons

s = 1 s = 2

j 1 2 2 3

|S| 1.84 2.17 1.0 1.7

Table 2.  The losses of mass (in units of 10–3/πM2) and angular
momentum (in units of 10–3 /πM) through the radiation of sca-
lar particles

α |dM/dt| |dJ/dt|

0.999 2.6 6.4

0.9 0.19 0.77
JOURNAL OF EXPERIMENTAL
ratios are even larger. Hence, the following important
conclusion can be drawn: extreme black holes do not
exist. Even if an extreme black hole were formed some-
how, it would immediately become nonextreme during
the radiation.

3. THE RADIATION OF PHOTONS
AND GRAVITONS

We begin our investigation of the radiation of real
particles with an electromagnetic field. A photon has
two modes of different parity: the so-called electric
mode with l = j ± 1 and the magnetic mode with l = j [10].
It follows from duality invariance that the radiation inten-
sities for these two modes are equal. Therefore, it will suf-
fice to restrict our analysis to solving the problem for the
magnetic mode and then double the result.

It can be shown that the situation with gravitational
waves is similar. Again, there are two modes, which, in
view of specific duality, contribute equally to the radia-
tion, with l = j for one of these modes.

Clearly, the radial equation for the mode with l = j
in the semiclassical approximation is the same as that
for the scalar field, but with a different κ2. This can also
be shown based on the so-caller Teukolsky equation
[11] [again, disregarding the nonclassical corrections to
p2(r)]. The eigenvalues of the angular equation for par-
ticles with spin s, which were also obtained here using
perturbation theory, are [3]

(14)

This expression includes the term 1/4, which is needed
for the correct semiclassical description. Note that the
constraint j ≥ s follows from an analysis of the helicity
of a massless particle. Accordingly, j ≥ 1 for a photon
and j ≥ 2 for a graviton. Just as in the scalar case, the
states with the maximum projection of the angular
momentum, jz = j, mainly contribute to the radiation.

Let us first discuss whether the semiclassical
approximation is applicable here. As for the situation to
the left of the barrier, it does not differ qualitatively
from the scalar case. The situation inside the barrier is
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different. As we see from Eq. (14), the presence of spin
causes κ2 and, accordingly, the centrifugal repulsion to
decrease. As a result, the barrier, along with the action
inside it, also decreases. This qualitative result is con-
firmed by our numerical calculation of |S | for photons
and gravitons with the maximum projection of the
angular momentum jz = j and the maximum energy for
an extreme black hole (see Table 3). Thus, one might
expect the accuracy of the semiclassical results to be
lower here than that in the scalar case.

The semiclassical formulas for electromagnetic and
gravitational radiation formally differ from the corre-
sponding scalar formulas (11) and (13) only by the
extra factor 2, which reflects the existence of two
modes. The results of this calculation are presented in
Table 4. For comparison, this table gives (in parenthe-
ses) the results of a complete quantum-mechanical cal-
culation [5], which also takes into account the thermal
radiation.

We see from Table 4 that our semiclassical calcula-
tion agrees with the complete one only qualitatively
even for α = 0.999, when the thermal radiation is neg-
ligible. This is no surprise, considering that the semi-
classical action in the problem under consideration
exceeds unity only slightly, if at all. This explanation is
supported by the fact that, for a photon, where |S | is
appreciably larger (see Table 3), the agreement between
the semiclassical and complete calculations is consider-
ably better.

4. THE RADIATION OF NEUTRINOS

Finally, let us consider the radiation of neutrinos,
massless particles with spin 1/2, by a rotating black
hole. The wave function of a two-component neutrino
can be written as (see, e.g., [5])

(15)

It is important that, in the Kerr metric, the wave equa-
tions for neutrinos also allow for the separation of vari-
ables [11]. The radial equations in dimensionless vari-
ables are

(16)

The corresponding angular equations are
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The same formula (14) holds for κ2 but now, of course,
with s = 1/2. Just as for bosons, in practice, it will suf-
fice to take into account the states with jz = j.

It is essential that, at infinity (for x  ∞) and on
the horizon (for x  1), R1 corresponds to a wave run-
ning to the right, while R2 for x  ∞ and x  1 cor-
responds to a wave running to the left. [For this classi-
fication of solutions, it is convenient to use the so-called
“tortoise” coordinate ξ(x); ξ ≈ x  +∞ for x  ∞
and ξ ≈ ln(x – 1)  –∞ for x  1.] It is quite natural
that the radial current density here is

We are interested in the probability of penetrating
the barrier for the state that appears as an outgoing
wave at infinity. For neutrinos or antineutrinos, this
state has a fixed helicity but has no definite parity.
Meanwhile, the potential barrier in our problem
depends, roughly speaking, on the orbital angular
momentum and, therefore, is much lower for the states
with l = j – 1/2 than it is for the states with l = j + 1/2.
(These states with a given l have a definite parity and
are a superposition of neutrinos and antineutrinos.)
Moreover, at l = j – 1/2 for the small j that mainly con-
tribute to the radiation, the action either has no imagi-
nary part at all or its imaginary part is small, so that our
above approach is inapplicable. Therefore, we will
numerically solve the exact problem of neutrino radia-
tion.

Technically, it is convenient to determine the reflec-
tion coefficient R in the problem of neutrino scattering
off a black hole and then use the obvious relation for the
sought-for transmission coefficient D,

jr R1
2 R2

2.–=

D 1 R.–=

Table 5.  The losses of mass (in units of 10–3/πM2) and angular
momentum (in units of 10–3/πM) through neutrino radiation

α |dM/dt | |dJ/dt |

0.99 4.4 (2.1) 11 (5.65)

0.9 0.7 (1) 2.7 (3.25)

Table 4.  The losses of mass (in units of 10–3/πM2) and angular
momentum (in units of 10–3/πM) through the radiation of
photons and gravitons

s = 1 s = 2

α |dM/dt | |dJ/dt | |dM/dt | |dJ/dt |

0.999 16.5 (9.6) 39 (24) 66 (228) 148 (549)

0.9 0.72 (2.26) 2.8 (8.2) 0.58 (12.9) 2 (48)
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In this case, the expressions for the losses of mass and
angular momentum by a black hole are

(18)

(19)

(20)

The results obtained by numerically solving the system
of radial equations (16) are presented in Table 5. The
results from [5], which include the contribution of
Hawking radiation, are given in parentheses. For a
nearly extreme black hole at α = 0.99, where there is
virtually no thermal radiation, our results are approxi-
mately twice as large as the previous ones.
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Abstract—The general theory of heat and mass transfer maintaining rotation with slightly different velocities
under conditions typical for cores of planets in the solar system is developed for the first time. The analytic solu-
tion is obtained for thermal and diffusion equations without nonlinear terms responsible for the convective
transfer. This spherically symmetric basic solution is applicable when the thermal flux from a planet core is
weaker than or comparable to the adiabatic (radiative) flux. In the general case, by subtracting the basic solu-
tion, we simplified the inhomogeneous system of convective equations to obtain a completely homogeneous
and dimensionless system. The latter system is controlled by two asymptotically small parameters: the Rossby
number e ≤ 10–5, which characterizes the relative value of differential rotation, and the generalized Eckman
number E ≤ 10–12, which characterizes the relative role of viscosity-diffusion effects during rapid rotation. The
principal order of the solution for e  0 and then for   0, for the transfer coefficients close to molec-
ular coefficients, results in the basic flow, which is symmetric with respect to the rotation axis and directed pre-
dominantly along the azimuth. The basic-flow liquid ascends from a solid core along spirals inside an axial cyl-
inder in contact with the equator of the solid core and descends in a narrow layer along the cylinder walls. The
moment of viscous forces in the inner boundary Eckman layer provides a faster rotation of the inner solid core
of terrestrial planets compared to a massive outer mantle due to the growth of the solid core at the expense of a
low-density liquid core. © 2002 MAIK “Nauka/Interperiodica”.

E

1. INTRODUCTION

Phenomena related to planetary magnetism have
been directly observed and used by mankind over sev-
eral tens of centuries. But only paleomagnetism origi-
nated in the middle of the last century allowed us to cal-
culate the history of the geomagnetic field in billions of
years, while cosmic studies performed ten–twenty
years ago provided at last sufficiently detailed informa-
tion on the magnetic fields of most planets of the solar
system and their satellites. The comprehensive observa-
tion data accumulated at present allow one to perform
both direct and comparative analysis of the geomag-
netic field for solving the geodynamo problem.

The first successful three-dimensional numerical
model of the MHD dynamo of the planetary type devel-
oped in 1995 was based on such a simple Boussinesq
approximation that the application of this model to
planets was doubted [1]. For this reason, the same
authors published two years later several particular
solutions of the complete system of geodynamo equa-
tions [2], which was derived earlier in the inelastic
approximation, which is realistic for planet cores [3].
The solution of these extremely involved equations
gave a magnetic field on the planet surface which was
1063-7761/02/9403- $22.00 © 20459
comparable with that obtained by solving the simplified
system.

Since then, various authors who had access to pow-
erful computers in Europe, Japan, and the United States
have proposed many numerical models of the MHD
dynamo, which reconstructed rather conclusively the
morphology, magnitude, and evolution of the magnetic
field observed on Earth’s surface (see [4, 5] and refer-
ences therein). However, all these models used the
Boussinesq approximation, which cannot be used for
the description of the interior of planets [13], and
treated viscosity-diffusion effects assuming the stabil-
ity of numerical schemes. This inevitably leads, and
will lead in the forseeable future, not only to a huge
overstatement (by seven or more orders of magnitude!)
of the transfer coefficients compared to their true plan-
etary values [7] but also to such nonphysical effects as
hyperviscosity.

Therefore, at present the most relevant geodynamo
problems are as follows:

(i) The justified simplification of a complete geody-
namo system of equations;

(ii) the construction of an adequate model of viscos-
ity-diffusion effects;
002 MAIK “Nauka/Interperiodica”
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(iii) the determination of kinematic mechanisms
generating a magnetic field observed on Earth’s surface
in order to narrow the number of acceptable MHD
dynamo models as much as possible.

It is natural to start the study of heat-and-mass trans-
fer in the cores of terrestrial planets by neglecting a
magnetic field. Having solved this problem, we can
analyze whether or not the obtained flow of a conduct-
ing liquid can excite a magnetic field, which gives
simultaneously the answer to the question why Venus
or Mars is not capable of maintaining its own magnetic
field.

The flows themselves are produced by the
Archimedean buoyancy force, which appears predomi-
nantly due to the floating of the excess light impurity
from the boundary with the inner solid core of terres-
trial planets during the growth of the latter. The corre-
sponding convection induced by thermal and composi-
tion effects in a rapidly rotating spherical layer was
never examined. The initial equations for this convec-
tion (see Section 2) were analyzed thirty years ago in
paper [3]. These equations seemed so complicated that
nobody has even tried to study them analytically. More-
over, the only numerical investigation of these equa-
tions known to us [2, 8] deals with the magnetohydro-
dynamic variant, whereas the basic nonmagentic study
was not performed.

We show in Section 3 that initial equations from
Section 2 admit the basic spherically symmetric ana-
lytic solution if we neglect nonlinear terms responsible
for the convective process. By subtracting the basic
solution, we simplify in Section 4 the initial inhomoge-
neous system of convection equations to obtain a com-
pletely homogeneous and dimensionless system. Then,
we show in Section 5 that the nonmagnetic liquid flow
in the principal order is directed along the azimuth and
is concentrated inside the axial cylinder in contact with
the equator of a solid core. The corresponding magnetic
moment of viscous forces in the inner boundary Eck-
man layer provides a faster rotation of the inner solid
core of terrestrial planets compared to the massive
upper mantle because of the solid core growth at the
expense of a low-density liquid core. In Section 6, we
estimate the growth rate of the solid core and the range
of applicability of the spherically symmetric basic solu-
tion found by us, which is a purely diffusion solution.
Finally, Section 7 is devoted to discussion and conclu-
sions.

2. INITIAL EQUATIONS

A spherical liquid layer under study is always in the
state that is close to a hydrostatic equilibrium state that
would be realized in the complete absence of convec-
tion. We assume that this initial state is completely
specified and call it the Reference State (RS). We will
denote all the corresponding initial quantities by a bar.
Convection occurs due to cooling of a planet and float-
JOURNAL OF EXPERIMENTAL
ing of a light impurity in a liquid outer core during the
growth of an inner solid core. The mass fraction of the
light impurity, which we call here the concentration, is
denoted by ξ, and the specific entropy is denoted by S.

The initial RS is an adiabatic, well-mixed state.
Therefore, the RS entropy and concentration depend
only on time, i.e.,

The rest of the RS quantities (the density , general-

ized pressure , temperature , and chemical potential
) depend on the time t and the spherical radius r (r = 0 at

the planet center). Hereafter, the prime denotes a radial
derivative. For example, the radial derivative

is proportional to the gravitational acceleration ;
according to [3],  ≈ 0.6  for the Earth. The gravita-
tional acceleration  in the RS is also related to the adi-
abatic temperature gradient by the expression

where α is the isothermal coefficient of volume expan-
sion and cp is the specific heat at constant pressure.
Inside Earth’s outer core, cp ≈ 8 × 102 J/(kg K) and α ≈
10–5 K–1 [3, 9].

Convection is described by variables without the
bar, which represent the field of perturbations of the

RS; i.e., V,  + p,  + ξ, and  + S are real physical
quantities. Convection in the cores of planets is
described by equations of velocity (1), diffusion (2a), and
heat transfer (2b). These equations were initially derived
for Earth’s core [3] using the above properties of the RS
and the inelastic approximation ∇ ( V) = 0. The latter
approximation represents a simplification of the conti-
nuity equation that is quite admissible for liquid cores
of planets:

(1a)

(1b)

(2a)

(2b)

Here,

∇ S 0, ∇ξ 0.= =

ρ
p T

µ

µ' µ/drd=

g
µ' g

g

T' αTg/cp,=

p ξ S

ρ

∇ ρ V( ) 0,=

κV ∇ 2V DV/Dt 2Ω V×+=

+ ∇ p/ρ( ) T'S µ'ξ+( )1r;+

∇ ρκ ξ∇ξ( ) ρ Dξ /Dt ξ˙+( ),=

∇ ρ TκS∇ S( ) ρT
DS
Dt
------- Ṡ+ 

 =

+
r2q( )'
r2

------------- ρµ'κξ
∂ξ
∂r
------.–

D
Dt
------

t∂
∂ V∇( )+=
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is the substantional derivative, the mean values of ξ and
S are zero, and

is the radial acceleration produced by the Archimedean
force, which determines the convection rate. The out-
flow or a negative heat flow (r2 )'/r2 in Eq. (2b) appears
due to the deviation from the adiabatic value of the spe-
cific radiation heat or conductivity, which is defined as

This outflow is compensated by the cooling term

 < 0, which maintains the RS to a highest extent.
Small thermal terms caused by viscosity in Eq. (2b) are
neglected.

The molecular values of poorly known transfer
coefficients κV, ξ, S (i.e., the viscosity and diffusion coef-
ficients) are of the order of magnitude of the thermal
diffusion coefficient κT. The value of the latter for the
Earth is estimated between 2 × 10–6 and 6 × 10–6 m2/s
[3, 9]. In the case of convection, the transfer coefficients
represent complicated turbulent tensors. All their char-
acteristic values are assumed to be close to κ ≈ 2 m2/s
inside Earth’s core [3].

The long-term behavior of processes of cooling and
mixing in Eqs. (2) are described by the derivatives

The positive value –  ~ 10–15 W/(kg K) for the
Earth is of the order of magnitude of the specific
entropy caused by the thermal conductivity
(r2 )'/r2 .

On the velocity in Eq. (1) near the boundary of a
solid inner core (where r = ri), the condition of attach-
ment V = Vi is imposed. In this case, the velocity Vi ≈
ωirisinθ1ϕ of the core as a solid is mainly caused by the
angular rotation ωi. The condition of attachment is also
imposed on the outer (r = ro) sphere (mantle). The
velocity of the massive mantle is Vo ≈ 0 in our reference
system rotating with a constant angular velocity W =
Ω1z, so that the total inertia moment of the planet is
zero.1

The freezing of the outer core to the inner one results
in the following boundary conditions for Eqs. (2) for
r = ri(t, θ, ϕ):

(3a)

(3b)

1 Hereafter, the indices i and o refer to variables used in inner and
outer layers, respectively.

A T'S– µ'ξ–≡

q

q r( ) cpκTρT' 0.>–=

ρTṠ

Ṡ
dS
dt
------ 0, ξ˙≤ dξ

dt
------ 0.≥= =

Ṡ

q ρT

ρi∆S
∂ri

∂t
------ ρκS

∂S
∂r
------,–=

ρi∆ξ
∂ri

∂t
------ ρκξ

∂ξ
∂r
------.–=
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The slow growth rate of the inner core

depends on the corresponding freezing numbers fS, ξ],
which are approximately equal to fS ≈ 33 and fξ ≈ 70 for
the Earth, according to estimates performed in paper
[3]. The jumps of the entropy and concentration on
passing the boundary are approximately equal to ∆S ≈
190 J/(kg K) and ∆ξ ≈ 0.065. Note that the values of
these quantities reported in paper [9] are approximately
two times lower than the above values.

The concentration flow from the outer core through
the impenetrable boundary with the mantle should be
absent, and the boundary condition for entropy is deter-
mined by the specific thermal flux qS. From here, we
obtain the outer boundary condition for Eqs. (2) for r = ro:

(4a)

(4b)

The nonadiabatic specific thermal flow qo –  is
defined as the difference between the total specific ther-
mal flow qo(t, θ, ϕ) and the flow caused by the thermal

conductivity  = –cpκT  for r = ro, i.e.,  = (ro).
The total thermal flow qo coming from Earth’s core is
not adequately known, and it can be even weaker than
the adiabatic flow caused by the conductivity. There-
fore, even the sign of the mean value qo –  over the
sphere’s surface qS is unknown. For the Earth, the value
of qS ≈ ±10–2 W/m2 [2].

By neglecting nonlinear terms in (2), we can obtain
the general solution of (2), which satisfies the boundary
conditions (3) and (4) for specified parameters. This
solution allows us to rewrite master equations (1) and
(2) in a simple homogeneous form (without terms
caused by sources), by determining the characteristic
values of the inhomogeneous entropy S and concentra-
tion ξ. We will also justify below the neglect of nonlin-
ear terms in (2) in the asymptotic system.

3. SPHERICALLY SYMMETRIC SOLUTION

Sources (1) and (2) can depend only on the spherical
radius r and time t. Therefore, to take their influence
into account, we will find the radially symmetric solu-
tion ξr, Sr for linearized equations (2a) and (2b) from
the equations

(5a)

∂ri

∂t
------ ri

f S

cp

-----∂S
∂t
------ f ξ

∂ξ
∂t
------+ 

 –=

∂ξ
∂r
------ 0,=

TρκS
∂S
∂r
------– qo qo.–=

qo

q ρT' qo q

qo

r2ρκξξ r'( )'

r2ρ
------------------------ ξ̇ r ξ˙+ ,=
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(5b)

Four boundary conditions are imposed on Eqs. (5a) and
(5b) in accordance with conditions (3) and (4):

(6a)

(6b)

Parameters (1)–(6) are assumed constant, i.e.,

with constant values  = ρ,  = T, and κ. The excep-
tions are the radial derivatives of the RS quantities,
which can be adequately estimated using radial linear
dependence:

By using the above simplifications, we can obtain the
solution of (5) in the form

which satisfies the outer boundary conditions (6b).

By assuming that the required solution of (5) can be
represented in the form

we obtain
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These equations substituted into the inner boundary
condition (6a) give the general solution of (5) and (6) in
the form

(7a)

(7b)

where ξo and So are constants, which are determined
from the condition that the mean values of ξr and Sr are
zero and from equations

(7c)

(7d)

To calculate ξ0 and S0, we will use fluid outer core
(FOC) integrals [8]:

(8a)

(8b)

Figure 1 shows the radial distributions of the con-
centration and entropy for the values of parameters
used in numerical calculations in paper [8]. The param-
eters ro = 3.480 × 106 m, ri = 1.222 × 106 m, ρ = 11 ×
103 kg/m3, and ρi = 12.1666 × 103 kg/m3 were taken
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Ṡr Ṡ+
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from the PREM seismic model [10]; cp = 840 J/(kg K),
T = 4800 K, µ'' = 2 × 10–6 s–2, T '' = 2.5 × 10–10 K/m2,
κT = 5 × 10–6 m2/s,  = 4 × 10–2 W/m2, fξ = 70, fS = 33,
∆ξ = 0.065, ∆S = 190 J/(kg K), qS = 1.4 × 10–2 W/m2, κ =

2 m2/s, and  = 5 × 10–20 s–1,  = –1 × 10–16 W/(kg K) [8].
In this case, we obtain So = –4.999 × 10–4 J/(kg K) and
ξo = –2.976 × 10–8. The obtained values of the spheri-
cally symmetric entropy and concentration differ from
the results of the numerical magnetohydrodynamic
simulations [8] by only several times.

The typical values of the gradients of these quanti-
ties in fact coincide with the results obtained in papers
[2, 8] despite the fact that the energy of the magnetic
field in these papers, which we neglected, was several
orders of magnitude greater than the energy of the
velocity field. Therefore, the purely diffusion solution
(7) found by us should determine the sources of not
only nonmagnetic but also MHD convection.

The values of all parameters used in (7) are known
quite accurately, except the diffusion coefficient k, the

mean thermal flow qS, and the time derivatives  and .
The latter are directly related to the comparatively well
known thermal and composition flows in planets. One
of the derivatives can be excluded from the solution by
using the equation of the general energy balance inside
Earth’s outer core in the form presented in Eq. (11) in
paper [5]

(9)

where Mo is the outer core mass, L is the internal heat
released upon freezing, and Mi is the inner core mass.
Following [2, 3, 9] and the PREM model [10], we find
that Mo = 1.9 × 1024 kg and  and  are close to the

values of  and  reported above. The positive quan-
tities Qo and Qi are the total radial thermal flows from
and to the outer core, respectively. The heat inflow Qi

from the inner core and any energy contributions
related to the precession and ebb and flow processes in
the outer core can be neglected in the energy balance
equations because they are considerably smaller than
Qo. In addition, we neglect any energy contributions
produced by the core radioactivity, which are not accu-

rately known at present. The value of  can also be esti-
mated from the growth rate of the inner core as

(10a)

After the substitution of this expression to the energy
balance equation and the replacement of total thermal

qo

ξ˙ Ṡ
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------- ξ
4πri
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flows by specific flows, we obtain the relation between

 and the growth rate of the inner core

(10b)

Thus, by specifying the growth rate  of the inner
core, the transfer coefficient κ, and the thermal flow qS,
we can always obtain from (7)–(10) the purely diffu-
sion and spherically symmetric solutions (ξr, Sr) of lin-
earized equations of heat-and-mass transfer (2), which
satisfy conditions (3) and (4) at the boundaries of liquid
cores of planets.

4. HOMOGENEOUS 
AND ASYMPTOTIC SYSTEMS

By replacing S by S + Sr and ξ by ξ + ξr in (1) and
(2), where Sr(t, r), and ξr(t, r) are spherically symmetric
solutions (7) of Eqs. (5) and (6), and using the parame-
ters from Section 3, we obtain the homogeneous system

(11a)

(11b)

(12a)

(12b)

Here, P is the generalized pressure satisfying the
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Fig. 1. Radial distribution of the spherically symmetric
mass fraction (concentration) ξr of the light component and
the specific entropy Sr for the values of parameters from [5].
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The solutions of the system (11), (12) should satisfy the
boundary conditions

(13a)

(13b)

(14a)

(14b)

(15a)

(15b)

The specified thermal flow q has a nonzero mean value
calculated over the surface of the outer sphere for r = ro.

The characteristic values S* and ξ
*
 of the radially

symmetric solution (7) can reasonably be used as opti-
mal units for measuring the entropy and concentration
of the light impurity. By measuring then the distances
in terms of the inner-core radius ri, the velocity in terms
of the typical differential rotation ri∆Ω , and the time in
terms of 1/∆Ω (i.e., r := rir, t := t/eΩ , V := rieΩV, ξ :=
ξ*ξ, S := S*S), we obtain from the homogeneous sys-
tem (11), (12) the dimensionless asymptotic system

(16a)

(16b)

(17a)

(17b)

(18a)

(18b)

Here, e = ∆Ω/Ω is the main asymptotic parameter (the
Rossby number) characterizing a very small deviation
from an almost “solid-state” rotation in the spherical
layer under study. Small numbers EV, ξ, S can be called
the generalized Eckman numbers because it is reason-
able to use for the viscosity coefficient κV the same
value as for the diffusion coefficient κξ, S upon both
molecular and “turbulent” heat-and-mass transfer. The
rest of the parameters are chosen based on geophysical
considerations:
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(19)

where a is the stratification, h is the thermal floatability,
and R is the Rayleigh number. The asymptotic system
(16), (17) should satisfy the following ten dimension-
less boundary conditions:

(20)

for r = ro/ri,  = 0, and

(21)

for r = 1.
Here, the specified thermal flow q has the nonzero

mean value calculated over the surface of the outer
sphere for r = 1. The modulus of the inner angular rota-
tional velocity ωi is smaller than or of the order of unity,
while its characteristic scale ∆Ω is determined by
Eq. (18a). The values of quantities specified by the
inner boundary conditions and the corresponding char-
acteristic geophysical values are

(22)

The asymptotic parameter e controls convection in
accordance with its definition (18a). Therefore, the
value of e should increase from zero at the beginning of
convection. This allows us to neglect nonlinear terms in
(2), as we did in the previous section and below. Such
neglect can no longer always be justified during convec-
tion because other small parameters EV ~ ES ~ Eξ ! 1 are
also present in (16)–(21). The effects related to these
parameters can be not so substantial as effects caused
by an increase in e. This will require the consideration
of the asymptotic limit over the fixed Eckman number
and then over the Rossby number, which will probably
lead to the known convective solutions (see, for exam-
ple, [11]). By studying below the beginning of convec-
tion in planet cores, we will calculate first the asymp-
totic limit over a small parameter e and then over E.

5. ASYMPTOTIC SOLUTION

We will seek the solution of (16), (17) as the expan-
sion in powers of a small parameter e

(23)
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The entropy S and concentration ξ in the zero order are
identically zero according to the corollary of the Neu-
mann theorem:

(24)

(25)

The equations for the velocity in the zero order

(26)

should satisfy the corresponding boundary conditions
(20), (21), which take the form

(27a)

(27b)

in terms of the differential rotation d(t) and precession
p(t) of the inner solid core in the case of an infinitely
heavy solid mantle. These conditions determine V0 =
V0(EV, d, p, r), as we will show below.

By using the fast rotation (almost nonviscous)
approximation, we obtain

(28)

Outside thin shear (for s ≡ rsinθ = 1) and boundary
(r = 1, r = ro/ri) layers, we have

(29)

The conditions of impenetrability

in Eqs. (29) give the conditions

(30a)

(30b)

(30c)

(30d)

Inside boundary Eckman layers, conditions (30b)
and (30c) remain valid, whereas V00θ ≠ 0 and P00 = 0. In

∇ 2ξ0 0,=

ξ0' r 1= r ro/ri=,( ) 0,=

ξ0 r3d∫ 0=








ξ0 0,=
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– 1θ p ϕ ϕ p–( )sin
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this case, equations for the velocity (26) take the form
(except its geophysical part)

(31a)

(31b)

Equations (31) should satisfy the boundary conditions
(27), while outside the boundary layers we have
V00θ  0 and V00ϕ  (30c).

Thus, the parameter p ~ max(δ, e) in (27b) is a small
parameter, and the flow maintained at d ~ 1 (see below)
(27) is symmetric with respect to the rotation axis in the
principal order. The solution of Eqs. (31) taking into
account (30) gives the initial zero-order profile of the
differential rotation outside (for |η| @ 1) and inside (for
η ~ 1) boundary Eckman layers [12] in the form

(32)

Here,

are the “stretched” variables in the inner and outer
boundary Eckman layers for 1 ≥ r ≥ ro/ri.

Equation (32) determines the inner viscous rota-
tional moment M [13] in dimensional units

(33)

By equating the expression for the increasing angular
momentum to expression (33) at a constant angular
rotational velocity edΩ and density ρi of the inner
sphere, we can write the equation for the inertia
moment I

(34a)

where

(34b)

Taking into account that e is small, we obtain from
(33) and (34) the estimate

(35)

for a higher angular rotational velocity of the inner
sphere relative to the outer sphere. This gives

2V00ϕ θcos– δ2V00θ'' ,=

2V00θ θcos δ2V00ϕ'' .=

ω
V00ϕ

s
----------≡ d 1 e
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× 1
1 e

η– i η icos–( ) 1 s2–4

1 s2–4 1 s2–4 ri
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------------------------------------------------------– ,   s 1, ≤
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0
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for the parameters of terrestrial planets τi ≡ ri/  = 1017 s
(approximately 3 billion years [2, 9]), Ω = 10–4 s–1, typ-
ical e = 10–5 from the previous section, and EV = 10–14 with
the molecular viscosity κV ≈ 10–6 m2/s.

Figure 2 shows the structure of the axially symmet-
ric flow (32) generated due to a faster rotation of the
inner sphere (solid core) relative to the outer mantle.
This faster rotation forms in the liquid outer core the so-
called Taylor column—the liquid volume entrained by
a solid moving in the liquid, when the Coriolis force
and the pressure gradient dominate in the system,
whereas the viscosity effect is small. The surface of the
Taylor column is called a tangential cylinder. The gen-
eratrices of this cylinder are parallel to the rotation axis
and are in contact with the inner core at the equatorial
points. The dynamics of flows inside and outside of the
tangential cylinder strongly differ.

The liquid outside the tangential cylinder is
involved in the solid-state rotation at the velocity of
the mantle, whereas the liquid inside the cylinder
moves at a velocity that is intermediate between the
velocities of the inner core and mantle. The small-
scale flows are concentrated in the boundary Eckman
layer and in a free shear layer, which provides the
return meridional flow and smooths strong gradients
near the tangential cylinder. The structure of this layer
was determined by Stewarson [14, 15]. The velocity
jump is eliminated outside the tangential cylinder in
the Stewarson layer of thickness E1/4. The remaining
shear discontinuity is removed inside the tangential
cylinder in the Stewarson layer of thickness E2/7, while
the discontinuity of the meridional liquid flow is elim-
inated in the layer of thickness E1/3.

ṙi

Fig. 2. Structure of the axially symmetric rotation of the
flow in a spherical layer with the inner radius ri, the outer
radius ro, and the small Eckman number E. The outer angu-
lar rotational velocity Ωo is slightly lower than the inner
velocity Ωi.
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6. ADMISSIBLE DIFFUSION SOLUTIONS

Let us determine the range of the thermal flow qS

and of the growth rates  of the solid core where the
spherically symmetric solution obtained in Section 3 is
applicable. To use the smallest number of not well-

known parameters, we exclude the time derivatives 

and  from Eqs. (7c) and (7d). By using Eqs. (8a) and
(8b) and the boundary condition

(36)

we express the sum

(37)

in terms of the growth rate  of the inner nucleus. By
substituting (37) into (7c) and (7d) and the result
obtained into (36), we derive the equation for determin-
ing  in terms of the known parameters and the thermal
flow qS:

(38)

where D is the denominator from (7d):

The dependence of the growth rate  of the inner
core on the thermal flow qS is shown in Fig. 3. The
growth condition  > 0 is not satisfied if the total ther-
mal flow qo coming from Earth’s core is greater than the
adiabatic flow  caused by the thermal conductivity
(i.e., for qS > 0). In this case, the spherically symmetric
diffusion solution alone is not sufficient, and to provide

ṙi
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the positive growth rate of the core, an additional con-
vection is necessary (which can even be weak).

On the contrary, when the thermal flow is weaker
than the adiabatic flow (i.e., qS < 0), the diffusion solu-
tion can itself (without convection) maintain the differ-
ential rotation (32). In this case, the growth rate of the
inner core increases with increasing modulus |qS | of the
thermal flow. Thus, for the value of qS = –0.01 W/m2

used in paper [2], the growth rate is approximately
0.27 × 10–11 m/s. For comparison, the authors of paper
[9] obtained  ≈ 10–11 m/s. In paper [3], a lower value

 ≈ 0.6 × 10–11 m/s was used, while the numerical
model [2] based on the age of the inner core of approx-
imately 1.3 billion years gives  ≈ 1.3 × 10–11 m/s.

After the substitution of  into (37), the sum fξ  +

(fS/cp)  in Eqs. (7) is already expressed only in terms of
qS and the known quantities. As a result, we can rewrite

(7c) and (7d), by excluding the time derivatives  and

, in the form

(39a)

(39b)

After the substitution of (39a) and (39b) into (7a) and
(7b), two uncertain parameters remain, namely, the
mean thermal flow qS and the diffusion coefficient κ.
The diffusion coefficient is determined with an accu-
racy within several orders of magnitude. Therefore, to
determine the characteristic gradients of entropy and
concentration and their dependences on the thermal
flow, it is convenient to introduce the dimensionless
analogs of gradients of a radially symmetric solution,
from which κ can be excluded by multiplying  and
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ṙi

ṙi
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 by the combinations κρµ'' /  and κρµ'' /cp ,
respectively, i.e.,

(40a)

(40b)

Figures 4a and 4b show the dependences of dimen-
sionless gradients on the thermal flow qS normalized to the
adiabatic flow . The values of the thermal gradient qS

are considered in the range –0.05 W/m2 < qS < 0.08 W/m2,
so that the dimensionless gradient lies in the range
qS/  ∈  (−1.25; 2). The range of values of the thermal
flow qS at which the gradient minima are reached at the
boundary of the inner core includes the range of values of
qS for which the obtained spherically symmetric diffusion
solution is valid. We will calculate below the exact bound-
aries of this region. The growth rate of the inner core
should be positive. This gives the conditions for deter-
mining the range of the thermal flow qS in which the
obtained diffusion solution will satisfy this require-
ment. We obtain from the boundary condition (6a)
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(41b)
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in (41a) is negative, so that the sum  should be
positive. The sign of this sum is determined by the sign
of the factor

because the other factors are positive. Therefore, we
obtain the condition that limits qS from above:

(42a)

Then, we obtain the condition

from (41b). The quantity  on the right-hand side
is positive. By using this condition, the requirement that
entropy should decrease with time (cooling of the inner
core), and expression (39b), we obtain the condition
that limits the thermal flow qS from below:

(42b)
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For the values of parameters in the PREM model

[10] and  = 0.07, and L = 1 × 106 J/kg [5], the upper
limit of the thermal flow, at which the flow can be
described by the diffusion solution alone by neglecting
convection, is qS ≈ –0.0095 W/m2 and the lower limit is
qS ≈ –0.043 W/m2.

7. DISCUSSION AND CONCLUSIONS

The flow of a viscous incompressible liquid between
two concentric spheres rapidly rotating around an axis
at slightly different velocities (see Fig. 2) has been stud-
ied beginning from the middle of the past century [12,
15]. Later, this flow was used to describe both nonmag-
netic [13] and MHD flows [2, 16] in cores of the Earth
and other planets.

However, no mechanism has been proposed so far
for the description of a faster rotation of the inner
sphere (solid core) relative to the outer mantle. Our esti-
mate (35) gives for the first time a quite realistic value of
the angular rotational velocity edΩ ≈ 10–9 s–1 of the solid
core relative to the mantle for the terrestrial parameters
of the growth rate of the core  ≈ 10–11 m/s (see [3, 9] and
Section 6) and molecular viscosity κV ≈ 10–6 m2/s [17].

The corresponding axially symmetric differential
rotation and a weak meridional circulation (see Sec-
tion 5) can be insufficient for excitation of the magnetic
field of a planet, by describing the situation that is sim-
ilar to that existing in the liquid cores of Mars and
Venus. A sufficiently powerful flow should excite first
of all a magnetic field that is strongly asymmetric with
respect to the rotation axis of the planet. If this asym-
metric magnetic field cannot produce a strong asym-
metric flow, the planetary dynamo will remain in the
kinematic regime, as is probably observed for Uranus
and Neptune [18]. In the dynamic regime, which is
more realistic for Earth, Saturn, and Jupiter [5], the
asymmetric MHD flow will produce a magnetic field
that will be predominantly symmetric relative to the
rotation axis. Therefore, a further development of the
approaches proposed in our paper will allow us to solve
the basic problems of the planetary MHD dynamo.

In this paper, we have obtained the following basic
results.

(i) We have described the convection controlling the
composition–thermal effects during the almost solid-
state rotation of a spherical layer in the inelastic
approximation, which is appropriate for liquid cores of
terrestrial planets.

(ii) We have found the analytic spherically symmet-
ric solution of the heat transfer and diffusion equations,
which allows the simplification of these initially inho-
mogeneous equations to make them completely homo-
geneous equations.

(iii) By scaling the floatability equations, the veloc-
ity, and boundary conditions, we have obtained the

ξ

ṙi
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dimensionless system in which the small Rossby and
Eckman numbers characterizing the nonuniformity and
velocity of rotation were used as asymptotic parame-
ters.

(iv) The principal asymptotic order in the Rossby
number and then in the Eckman number gives the solu-
tion determining the flow that is maintained by the dif-
ferential rotation of solid boundaries of a spherical
layer.

(v) The angular momentum in the liquid shell is
redistributed due to the growth of the inner sphere,
resulting in a faster rotation of the inner sphere with
respect to the outer mantle.
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Abstract—It is shown that when approaching the spatial subharmonics generation threshold in fast photore-
fractive crystals (the sillenites, CdTe), a practically unlimited (singular) amplification of the nonlinear photore-
fractive response is possible, which results in a drastic increase in the spatial amplification of weak signals. A
theory of critical spatial amplification is developed. This theory takes into account real attributes of fast photo-
refractive crystals such as the vectorial nature of wave coupling and nonuniform broadening of resonances
owing to light absorption. The theory is applied to the analysis of the observable characteristics of critical
enhancement and to optimization of the conditions of experiments aimed at the detection and investigation of
this phenomenon. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photorefractive nonlinearity, which is inherent in
the majority of photosensitive non-centrosymmetrical
materials, manifests itself in the degenerate (in fre-
quency) interaction of light waves even in the range of
small intensities. The main elements of this nonlinear-
ity are the charge separation under light, the change of
the optical susceptibility owing to the linear electro-
optic effect, and diffraction on the induced variations of
the optical density [1–3]. The rate of spatial amplifica-
tion is determined by the product of the corresponding
electro-optic coefficient and the space-charge field
induced inside the crystal. Often, this rate attains its
maximum already at milliwatt light power. The nonlin-
ear response time is determined by the rate of charge
separation and is usually inversely proportional to the
light intensity.

Unfortunately, photorefractive materials exhibiting
strong spatial amplification (Γ = 101–102 cm–1), such as
LiNbO3 or BaTiO3, are very slow. The response time, tr,
of these materials is of the order of 102 s, which is not
acceptable for many applications and is inconvenient
for experiments. On the other hand, fast photorefractive
materials, such as cubic crystals of the sillenite family
(BSO, BTO, and BGO) and cubic semiconductors
(CdTe, GaAs, and others), possess an insufficiently
strong nonlinearity (Γ < 1 cm–1).

Since a fast response is imperative, considerable
effort has been spent to investigate the photorefractive
properties of cubic crystals and also to enhance their
nonlinearity [2–5]. These efforts resulted in the discov-
ery of a number of fundamental effects related to the
resonance (linear and nonlinear) excitation of low-fre-
quency weakly damped space-charge waves inherent in
1063-7761/02/9403- $22.00 © 0470
fast electrically biased materials [6–8]. If K = k1 – k2 is
the wave vectors of the light waves 1 and 2 and Ω =
ω1 – ω2 is a small frequency detuning between them,
then the condition of the linear resonance between the
driving interference light pattern and the space-charge
field characterized by the wave vector K is Ω = ωK,
where ωK is the eigenfrequency of the space-charge
wave. If K is parallel to the applied electric field E0,
then the simplest model capable of describing the
space-charge waves and applicable (at least) to the sil-
lenites yields the dispersion law [8]

(1)

where ε0 is the static dielectric constant, α is the absorp-
tion coefficient, I0 is the total intensity, and "ω is the
energy of a light quantum. This law is valid within the
region of K and E0 where the frequency ωK is consider-
ably larger than the decay constant γK. Under linear
resonance conditions, the amplitude of the space-
charge field EK increases by a factor of QK ≡ |ωK|/γK

compared to the case Ω = 0. This effect is known as the
DC enhancement of the photorefractive response [2, 4].
A similar enhancement effect occurs in the case of
application of an alternating AC field [3, 9]. In the silleni-
tes, the quality factor QK does not usually exceed 6–8.

Another fundamental effect caused by the presence
of weakly damped space-charge waves is their paramet-
ric excitation, which is often called the generation of
spatial subharmonics [2, 8, 10, 11]. This subharmonic
generation also occurs during two-wave mixing in the
presence of a frequency detuning Ω . The subharmonic

ωK
4π
ε0
------

α I0

"ω
-------- 1

KE0
----------,=
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K/2 possesses the minimum excitation threshold, and
the corresponding parametric resonance condition is

The threshold condition at the resonance point is

where m is the contrast of the light interference pattern;
it varies from 0 to 1 depending on the ratio of the pump
intensities. The excitation of the K/2 subharmonic at
m > mth is soft; i.e., it is not accompanied by the jump
in the amplitude EK/2(m) [12–14].

Recently, it has been shown [15] that the rate Γ of
the exponential spatial amplification of a weak central
light beam (see Fig. 1) has to experience a critical
enhancement

when approaching (from below) the parametric insta-
bility threshold. The physical reason for this singularity
is the fact that the decay constant for the space-charge
wave with the wave vector K/2 goes to zero at the insta-
bility threshold. The mechanism of the critical spatial
amplification of the central beam includes the interfer-
ence (hybridization) of the parametric processes caused
by the optical and material nonlinearities. To our best
knowledge, there are no analogues of this mechanism
among the known nonlinear phenomena. Implementa-
tion of the critical enhancement opens new possibilities
for applications.

Unfortunately, the model considered in [15] is illus-
trative. More precisely, it cannot be used to describe the
effect in question and formulate the conditions for its
experimental detection and investigation. This is due to
several reasons. First, the optical nonlinearity of cubic
crystals is vectorial in nature; i.e., the spatial changes of
the light intensity and polarization cannot be separated
[16, 17]. Second, the space-charge wave eigenfrequen-
cies decrease across the crystal owing to the linear light
absorption (Fig. 1), which leads to the nonuniform
broadening of resonances [18, 19]. Third, optical
effects in cubic crystals are sensitive to orientation of
the vector K (and E0) about the crystallographic axes
[3, 16]. All these important features of the effect under
study were not taken into account in [15].

In this paper, we propose a full-scale theory of the
critical photorefractive enhancement in fast cubic crys-
tals. It incorporates all the above-mentioned attributes
of the optical and material nonlinearities. Our theory
provides the reader with recommendations for the opti-
mization of the effect and describes its main output
characteristics as functions of the experimentally con-
trolled parameters. The theory is based on the results of
the preceding theoretical and experimental studies on
the parametric excitation of the space-charge waves [8,
10, 12–14] and the vectorial wave coupling [17, 19].

Ω 2ωK /2 4ωK .≡=

m mth> 3/QK /2,=

Γ mth m–( ) 1–∝
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The paper is organized as follows. In Section 2, we
introduce the necessary relations of the theory of para-
metric excitation of space-charge waves and the basic
equations of the vectorial coupling of light waves in
cubic crystals. Then, the main approximations are con-
sidered, and equations of the theory of critical enhance-
ment are formulated. In Section 3, we perform a unitary
transformation to new variables which simplifies the
vectorial equation for the amplitude of the central
beam. In Section 4, we discuss the values of the optical
and material parameters of BSO and BTO crystals that
are most promising for experimental studies of the crit-
ical effects and make the necessary estimates of the
parameters entering the theory. In Section 5, the limit-
ing case of thin crystals, which admits a complete ana-
lytical analysis, is considered. This case provides a
basis for understanding many properties of the effect in
question. In Section 6, the results of numerical simula-
tion of the critical enhancement in BSO and BTO crys-
tals are presented. These results are compared with the
predictions of the simplified model. Section 7 com-
prises discussion of the results obtained, recommenda-
tions for experiments, and conclusions.

2. BASIC RELATIONS

A geometric diagram of the critical enhancement is
presented in Fig. 1. The applied field E0 and the funda-
mental grating vector K are parallel to the x axis and
perpendicular to the propagation direction z. The fre-
quency detuning between the pump beams 1 and 2 is Ω ,
and the detuning for the weak central beam 0 is Ω/2.
Below we assume that Ω ≈ 4ωK(z) in the whole crystal,
which means that its thickness d is small compared to
the absorption length α–1. This assumption does not
mean that the effect of the linear absorption on the crit-
ical enhancement is small since the frequency width of

K E0

K/2

K/2

∆k0, ω + Ω/2

k1, ω + Ω

k2, ω
x

y z

Fig. 1. Basic interaction scheme. The wave vectors k1, k2,
and k0 refer to the pump beams and to the weak central
beam being amplified; Ω is the frequency detuning; and ∆ is
the Bragg mismatch.
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the parametric resonance is determined by the damping
constant γK/2, which is small compared to ωK/2 = 2ωK.
However, this restriction allows us to assume that Ω is
substantially greater than ωK; i.e., the direct excitation
of the fundamental grating by the pump beams 1 and 2
is not resonant. For convenience, we set k0 = (k1, 2)z, as
was done in [15]. A small deficit of the wave vector ∆
(the Bragg mismatch) can be easily taken into account
within the approximation of slowly varying amplitudes.

As follows from the geometric diagram, the inten-
sity grating formed by the pump beams 1 and 2 propa-
gates with the same velocity Ω/K as the gratings
induced by the wave pairs (1, 0) and (0, 2). Further-
more, the condition for parametric excitation of the
subharmonic K/2 by the pump beams coincides with
the condition of its linear excitation by the above-men-
tioned wave pairs.

The basic relations consist of coupled equations for
the scalar amplitudes of the space-charge field gratings
and for the vectorial amplitudes of light waves. The
structure of these equations is determined by the prop-
erties of the material and optical nonlinearities. In the
framework of the conventional single-center model of
charge transfer [1, 2], the amplitude of the electric field
on the spatial frequency K/2 and the time frequency
Ω/2 normalized by the magnitude of the applied field E0
and denoted by eK/2 obeys the equation (see [8, 14])

(2)

Here, eK is the amplitude of the fundamental grating
normalized by E0, and a0, 1, 2 are the vectorial ampli-
tudes of the light waves 0, 1, and 2 normalized by the
square root of their total intensity I0. Within the unde-
pleted pump approximation, we have

The structure of the left-hand side of Eq. (2) is typical
of resonance wave phenomena. The first term on the
right-hand side describes the coupling of the grating
K/2 with the fundamental grating; it is responsible for
the parametric excitation of the subharmonic. The sec-
ond and third terms in the parentheses describe the lin-
ear excitation of the subharmonic K/2 by the wave pairs
(0, 2) and (1, 0); the quantities 2  and 2
are simply the values of the contrast of the interference
patterns formed by those pairs. Each of the above con-
tributions to the right-hand side is well known in theory
and is confirmed experimentally.

Since the excitation of the fundamental grating is
not resonant,

∂t γK /2 iωK /2 iΩ/2–+ +[ ] eK /2

=  i ωK /2 2eKeK /2* a0 a2
*⋅– a1 a0

*⋅–( ).

a1
2 a2

2+ 1.=

a0 a2*⋅ a1 a0*⋅

Ω ωK 3ωK  @ γK ,≈–
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its amplitude obeys the simple equation (see [8])

.

It is valid up to the contrast

In steady state, Eq. (2) can be easily solved with
respect to eK/2. Taking into account the fact that γK/2 and
ωK/2 are proportional to I0 ∝  exp(–αz), we write the cor-
responding equation in the form

(3)

where

is the complex resonance factor,

is the dimensionless detuning from the parametric res-
onance, and

is a parameter that describes the proximity to the sub-
harmonic generation threshold. At ξ  1, the subhar-

monic amplitude eK/2  ∞. The quantity  can be
considered as an effective quality factor that takes into
account the spatially dependent detuning from the res-

onance. At δ = 0, we have  = QK/2. The larger , the
bigger the threshold value of the contrast. Clearly, the
minimum threshold value of m corresponding to δ = 0 is

Among the equations for the light wave amplitudes,
the equation for a0 = (a0)x, y is the most important. This
amplitude changes owing to linear and nonlinear
effects. The relevant linear effects are the optical activ-
ity, the optical anisotropy induced by the applied field,
and the Bragg mismatch. The nonlinear processes are
diffraction of the pump waves 1 and 2 from the grating
K/2 (see Fig. 1). All these processes are inertia-free at
the scale of the characteristic nonlinear response time.
As a result, the equation for a0 does not include any
time derivatives and can be written in the form

(4)

Here  = ( , , ) is the standard set of σ matrices
(Pauli matrices) [20]; k = (κ1, ρ, κ3), n = (ν1, 0, ν3), and
ν0 are certain known quantities [17]; and ρ is the rota-

eK a1 a2*/3⋅=

m 2 a1 a2*⋅≡ 1.=

eK /2
iQ̃–

1 ξ2–
--------------=

× a0 a2*⋅ a0* a1⋅ 2i
3
-----Q̃∗ a1 a2*⋅( ) a0 a1*⋅ a0* a2⋅+( )–+ ,

Q̃ QK /2
1– iδ z( )+[ ] 1–

=

δ 1 Ω αz( )/4ωK 0( )exp–=

ξ m Q̃ /3 1<=

Q̃

Q̃ δ

mth 3/QK /2.=

∂z i∆– ik ŝ⋅+( )a0

=  iE0 ν0 n ŝ⋅+( ) eK /2
* a1 eK /2a2+( ).

ŝ σ̂1 σ̂2 σ̂3
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tory power. The absorption coefficient α does not enter
(4) because the light amplitudes are normalized by
I0(z) ∝  exp(–αz). The zero value of the component ν2 is
explained by the fact that the light induced space-
charge grating does not affect the optical activity. The
parameter ν0 describes the isotropic part of the interac-
tion matrix, and the components ν1, 3 describe its aniso-
tropic part that changes the polarization state under dif-
fraction. The use of the σ representation significantly
simplifies the analysis of the vectorial wave coupling
[17, 19].

It is essential that the parameters κ1, 3, ν1, 3, and ν0
can be calculated for any particular optical configura-
tion, i.e., for any orientation of K and E0 with respect to
the crystallographic axes of cubic crystals [17, 21]. In
practical terms, the case K, E0 ⊥  [110], z || [110] is of
prime importance; it is relevant to all known experi-
ments on the subharmonic generation and to most
experiments on two-wave mixing. Restricting our-
selves to this case, we have

where

ζ is the angle between K and [001], n is the refractive
index, r41 is the only nonzero electro-optic coefficient

for the crystals of group 23 (the sillenites) and 2m
(semiconductors), and λ is the light wavelength. The
parameters ν0, 1, 3 generally include not only the electro-
optic but also elasto-optic contributions caused by
piezoelectric deformations [22, 23]. In many important
cases (see also below) the elasto-optic contributions are
either zero or negligibly small. With these contributions
neglected, we have

For experiments, the so-called longitudinal (K ||
E0 || [001]) and transverse (K || E0 || [001]) optical con-
figurations are most important. In both cases, neglect of
the elasto-optic contributions to ν0, 1, 3 is fully justified.
In the longitudinal case, we have

whereas in the transverse geometry

Note that in the transverse configuration, the isotropic
part of the interaction matrix is absent (ν0 = 0), and in
the longitudinal case this part is equal in magnitude to
the anisotropic part. The cases where the isotropic part
of interaction is dominating do not occur in cubic pho-
torefractive crystals. We also note that the opposite

κ1 qE0 ζ , κ3sin 0.5qE0 ζ ,cos–= =

q πn3r41/λ ,=

4

ν0 0.5q ζ , ν1cos q ζ , ν3sin 0.5q ζ .cos–= = =

κ1 0, κ3 qE0/2, ν0– q/2,= = =

ν1 0, ν3 q/2,–= =

κ1 qE0, κ3 0,= =

ν0 ν3 0, ν1 q.= = =
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directions of crystallographic axes (e.g., [001] and

[00 ]) are usually indistinguishable in experiment. The
necessary sign of r41 can be chosen by rotating the sam-
ple by 180° about the propagation axis [110].

The amplitudes of the pump waves a1, 2 that enter
Eq. (4) cannot be treated as constants. They vary as the
waves propagate in the crystal at least owing to the lin-
ear effects (optical activity and the birefringence
induced by the applied field). The influence of the non-
linear effects on a1, 2 can be neglected within a wide
range of the input parameters. The influence of the cen-
tral beam on pump beams is small for a sufficiently
small amplitude a0(0) and the crystal thickness d; the
mutual influence of the pump beams 1 and 2 via diffrac-
tion from the K grating is small because of the nonres-
onant nature of its excitation. Actually, the latter effect
is small for d & 3–4 mm, while the critical enhancement
of the central beam remains very large even for smaller
values of the thickness (see also below). Thus, the
amplitudes a1, 2 obey the linear equation

(5)

The validity of the paraxial approximation, i.e., the pos-
sibility to neglect the components (a1, 2)z, is beyond any
question in our case because the angles between the
propagation directions and the z axis do not exceed sev-
eral degrees inside the crystal. The system of equations
(3)–(5) is sufficient for the description of the critical
enhancement.

3. INTERACTION REPRESENTATION

In order to get rid of the dependence a1, 2(z) and the

linear term k ·  in Eq. (4), it is useful to perform the
unitary transformation

(6)

The transformation to the new variables b0, 1, 2 is similar
to the usage of the interaction representation in quan-
tum mechanics [20]. The new amplitudes of the pump
waves do not depend on z, and they are equal to the cor-
responding input values of the initial amplitudes:

When transforming Eq. (4), one has to use Eq. (3) for
eK/2. For simplicity, we assume that the input polariza-
tions of the pump beams are identical, and the phase of
the central beam is measured from the half-sum of the

1

∂z ik ŝ⋅–( )a1 2, 0.=

ŝ

a0 1 2, , izk ŝ⋅( )b0 1 2, , .exp=

b1 2, z( ) b1 2, 0( ) a1 2, 0( ).= =
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Table

n |r41| |ρ| ε0 q = πn3r41/λ |ρ/q|

BSO 2.6 4.5 × 10–10 cm/V 38.8 deg/mm 56 0.48 (kV)–1 13.8 kV/cm

BTO 2.58 4.75 × 10–10 cm/V 6.5 deg/mm 47 0.4 (kV)–1 2.8 kV/cm
phases of the input pump beams. As a result, the equa-
tion for b0 can be written in the form

(7)

where

is the normalized pump intensity difference at the input,

is the input value of the contrast, e0 is the unit polariza-
tion vector for the pump,

is the parameter describing the proximity to the gener-
ation threshold (now, this parameter depends on the

input value of the contrast), and  and  are the real

and imaginary parts of . The vector h on the right-
hand side of Eq. (7) depends on z:

(8)

where n = k/κ. The appearance of this dependence
comes from the noncommutativity of the operators n · 

and k · . Thus, Eq. (7) includes two sources of the spa-

tial inhomogeneity—the dependence (z), which
occurs owing to the light absorption and corresponds to
the nonuniform broadening of the resonance, and the
dependence h(z), which describes the vectorial charac-
ter of the optical nonlinearity in cubic crystals. To
return to the scalar case considered in [15], it is neces-
sary to set

in Eq. (7) and, in addition, to equate the polarization
vector e0 to an eigenvector of the operator n · .

The main feature of Eq. (7) responsible for the crit-
ical enhancement is the factor (1 – ξ2)–1, which grows
infinitely when approaching the subharmonic genera-
tion threshold. Another interesting feature is a coupling

∂z i∆–( )b0

E0

1 ξ2–
--------------–=

× b0 e0
*⋅( ) Q'˜ W0 iQ''˜– im0 Q̃ ξ+( )[

+ i b0
* e0⋅( ) Q̃ ξ m0Q''˜–( ) ] ν 0 h ŝ⋅+( )e0,

W0 a1 0( ) 2 a2 0( ) 2–=

m0 1 W0
2–=

ξ m0 Q̃ /3=

Q'˜ Q''˜

Q̃

h n 2 κz( )sin
2 n n n n⋅( )–[ ]–=

+ n n 2κz( ),sin×

ŝ
ŝ

Q̃

α 0, Ω 4ωK , ρ 0= = =

ŝ

JOURNAL OF EXPERIMENTAL 
between the amplitudes b0 and . Such a coupling is
typical of parametric wave processes. In our particular
case, this coupling is expected from the geometric dia-
gram in Fig. 1; it exists even when the parametric cou-

pling between eK/2 and  in Eq. (2) is absent. The
neglect of the material nonlinearity in Eq. (7) is equiv-
alent to setting ξ equal to zero.

Note that the use of the amplitudes b instead of a
does not result in any substantial complication of the
calculation of the observable characteristics; indeed,
the unitary transformation does not change the scalar
product of vectors. In particular, we have

and so on.

4. OPTICAL AND MATERIAL PARAMETERS 
FOR BSO AND BTO CRYSTALS

In order to understand the importance of various
contributions and the possible range of variation of the
basic parameters of the theory, we present some data
and numerical estimates for the sillenites BTO and
BSO known from the literature. The simple model of
the charge separation used above is experimentally ver-
ified for these materials. Most experiments on the sub-
harmonic generation have been performed with BSO
crystals at λ = 514 nm. For BTO crystals, the greater
part of experiments dealt with measurements of the
beam coupling characteristics at λ = 633 nm.

The table lists the values of the main parameters for
BSO and BTO crystals, which are free of model
assumptions. They are not much different from each
other except for the rotatory power, which is much
greater for BSO. The ratio ρ/q presented in the table is
interpreted as the field at which the electro-optic contri-
bution to the optical susceptibility becomes comparable
with that of the optical activity. At ρ @ |qE0| and ρ !
|qE0|, the optical eigenmodes are polarized almost cir-
cularly and almost linearly, respectively. Since the
fields typically used in experiments on the subharmonic
generation are in the range 6–8 kV/cm, we conclude
that in BSO crystals we deal with the first case and in
BTO crystals, with the second case. This circumstance
is important for characterization of the critical enhance-
ment.

The dependence of the quality factor QK/2(E0) is
controlled by two material parameters—the trap con-
centration Nt and the mobility–lifetime product for pho-

b0
*

eK /2
*

a0 z( ) 2 b0 z( ) 2, a1 z( ) a2
* z( )⋅ b1 z( ) b2

* z( ),⋅= =
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toelectrons µτ [8]. According to the literature [2, 3], the
concentration Nt for BSO and BTO crystals can be esti-
mated as 1016 cm–3 and 3 × 1016 cm–3, respectively. The
values of µτ in BSO vary in the range 10–7–10–6 cm2/V,
and in BTO crystals in the range 3 × (10–8–10–7) cm2/V.
We choose 3 × 10–7 and 10–7 cm2/V as representative
values of µτ for BSO and BTO, respectively. These val-
ues are far from being extreme.

Figure 2 depicts the contour lines of the quality fac-
tor QK/2 on the K, E0 plane. It also shows the corre-
sponding values of the pump half-angle θp in air. One
sees that the values of the quality factor QK/2 > 3, which
are necessary for the generation of the subharmonic
K/2, are attainable in a wide range of fields and angles.
For BSO, the saturation of QK/2 with an increase in the
applied field occurs somewhat sooner than for BTO; the
optimum angles are also smaller for BSO crystals. At a
fixed E0, the same value of the quality factor occurs for
two different values of K (of the angle θp).

The Bragg mismatch ∆, which is also an important
parameter of our theory, is expressed in terms of θp and

λ as ∆ = π /nλ. Large values of ∆ that impede diffrac-
tion into the central beam must have a negative effect
on the critical enhancement. For this reason, it is prac-
tical to choose the minimum of the values θp mentioned
above. In turn, this value is relatively small in BSO
crystals.

The characteristic length at which the pump waves
substantially change their amplitudes owing to diffrac-
tion from the K grating can be estimated as 2/|qE0|. At
E0 = 7 kV/cm, it is about 6–8 mm for both BTO and
BSO crystals.

For BSO crystals, the absorption coefficient α at the
wavelength 514 nm ranges from 1 to 2.5 cm–1; for BTO,
α ≈ 0.5 cm–1 at λ = 633 nm [3, 24].

5. SPATIALLY UNIFORM MODEL

It has already been mentioned that the necessary
condition for the applicability of Eq. (7) is

It is equivalent to the condition of a small energy
exchange between the pump beams 1 and 2 owing to
diffraction from the fundamental grating. In experi-
ments on the subharmonic generation, this condition is
usually fulfilled for d & 3–4 mm. Furthermore, we
know that Eq. (7) includes two sources of the spatial

inhomogeneity—h(z) and . The characteristic
scales at which the variation of these parameters
becomes substantial can be estimated as ρ–1 and
2/αQK/2. They are about 1–2 mm for BSO and some-
what greater for BTO. If the thickness d is much
smaller than this quantity, we can neglect the effect of

θp
2

qE0 d  ! 1.

Q̃ z( )
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inhomogeneity in Eq. (7) and use the simplified spa-
tially uniform vectorial model in which

are constants. Because of the critical dependence of the
right-hand side of Eq. (7) on ξ, the effect of spatial
amplification remains strong within the simplified
model. Finally, we note that the difference between the
amplitudes a(z) and b(z) is negligibly small in the limit
under consideration.

Assuming the coefficients in the vectorial equation (7)
to be constants, taking the scalar product of this equa-

tion with , and setting (  · a0), (e0 · ) ∝  exp(Γz),
we obtain an eigenvalue problem for the increment Γ.

h n, ωK ωK 0( ),= =

δ
Ω 4ωK–

4ωK

--------------------, Q̃ QK /2
1– iδ+( ) 1–

, ξ m0 Q̃ /3= = =

e0
* e0

* a0
*
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Fig. 2. Contour lines of the quality factor, QK/2(E0) = const,
for BSO (a) and BTO (b) crystals. In the case (a), µτ = 3 ×
10–7 cm2/V and Nt = 1016 cm–3; in the case (b), µτ =

10−7 cm2/V and Nt = 3 × 1016 cm–3. The other material
parameters are listed in the table. The recalculation of the
spatial frequency K/2 to the pump half-angle θp is carried
out for λ = 514 (a) and 633 nm (b).
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This problem has two solutions

(9)

where

(10)

and  = ν0 + n · s0 is the effective coupling constant,
which depends on the polarization of the pump beams
through the Stokes vector s0 [25]. For the linear input
polarization, the components of the Stokes vector are
expressed in terms of the angle ϕ0 between the polariza-
tion plane and the direction of the crystallographic
[001] axis as

For the circular polarization, we have

The spatial dependence of the amplitude projection

a0 =  · a0(z) generally includes two exponential fac-
tors

(11)

where f = f1 – if2. The preexponential factors (11)
depend on the input phase Φ0 = , which is
typical of parametric processes. If one of these factors
goes to zero, then the two-component vector [a0(0),

] is an eigenvector of the actual value of the incre-
ment. If exp[(Γ+ – Γ–)d] @ 1, then the effect of the spa-
tial amplification is related mainly to the first term in
(11) (see also below).

The amplitude a0(z) can be found from Eqs. (7) and
(11) by straightforward integration. It has two compo-
nents, one of which is parallel and the other is perpen-
dicular to the vector (ν0 + n · )e0; only the first com-
ponent experiences spatial amplification. In the general
case, the vectorial amplitude a0(z) changes its direction
during propagation. However, in the important case
when a0(0) || e0 and the pump polarization vector e0 is
an eigenvector of the operator n · , the direction a0(z)
remains unchanged, and the spatial amplification prob-
lem is reduced to the scalar problem. For the longitudi-
nal geometry (K || [001]), this corresponds to the polar-

Γ± f 1 g2 f 2
2– ,±=

f 1

νE0Q'˜ W0

1 ξ2–
----------------------,–=

f 2 ∆
νE0

1 ξ2–
-------------- m0ξ Q̃ Q''˜–( ),–=

g
νE0

1 ξ2–
-------------- m0Q''˜ ξ Q̃–( ),=

ν

s0 2ϕ0sin 0 2ϕ0cos, ,( ).=

s0 0 1± 0, ,( ).=

e0
*

a0
1

2 g2 f 2
2–

------------------------ a0 0( ) f Γ+–( ) iga0* 0( )–[ ] e
Γ+z

{=

– a0 0( ) f Γ––( ) iga0* 0( )–[ ] e
Γ–z

} ,

a0 0( )[ ]arg

a0* 0( )

ŝ

ŝ
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ization angle ϕ0 = 0 or π/2; for the transverse configu-
ration (K ⊥  [001]), we have ϕ0 = ±45° instead.

Consider the properties of the increment Γ, which is
the main characteristic of the spatial amplification, in
more detail. As seen from (9), the values Γ± are real for

g2 ≥ . This case corresponds to Bragg diffraction into
the central beam; it occurs for a sufficiently small mis-
match ∆ and a sufficiently strong parametric coupling.
The latter means that ξ is close to the critical unit value.

At g2 ≤ , we are in the region of off-Bragg diffrac-

tion; here Γ+ = ; i.e., the real parts  coincide.

In the vicinity of the instability threshold, when
ξ  1, Eqs. (10) and (11) become much simpler; one
of the values Γ± tends to infinity, and the other one
remains finite. The singular value of the increment (Γ+)
is positive if  < 0. In this case, which is of major
importance, we have

(12)

The negative sign of the product  can be
achieved either by the interchange of the pump intensi-
ties (the change of sign of W0) or by a 180° rotation of
the crystal about the z axis (the change of the signs of
ν0 and n). The change of the sign of E0 is not desirable
because it leads to the change of the sign of ωK. It is
worth noting that in the vicinity of the singularity the
cases

and

are equivalent. Generally, the second combination is
preferable. In this case, the negative nonlinear correc-
tion of the wave vector length k0 compensates for the
Bragg mismatch ∆ (see Fig. 1). The expression in
square brackets in the denominator of Eq. (12) is sim-
ply the distance to the instability threshold with account
for the detuning δ. At

,

our theory is valid in the entire resonance region,
whereas at m0 > mth the field of applicability is
restricted to the resonance wings

The absolute value of the coupling parameter in (12)
depends on the pump polarization and the optical con-
figuration in question. Since ν2 = 0, the scalar product
n · s0 attains its minimum and maximum when the
pump polarization is linear, i.e., s2 = 0. Accordingly, the

f 2
2

f 2
2

Γ–* Γ±'

νW0E0

Γ+

3E0W0 ν0 n s0⋅+( )

m0 1 δ2QK /2
2+( )1/2

QK /2m0/3–[ ]
---------------------------------------------------------------------------.–≈

νW0E0

νE0 0, W0 0><

νE0 0, W0 0<>

m0 mth< 3/QK /2=

δ QK /2
1– m/mth( )2 1– .>
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maximum and minimum (in terms of polarization) val-
ues of  are  ± . For the longitudinal configu-
ration L, we have

and these values correspond to the polarization angles
ϕ0 = π/2, 0. For the transverse configuration T, we have

i.e., the maximum value  = |q | is the same as for
the longitudinal configuration. This value corresponds
to ϕ0 = ±45°. As for the sign of , it can be optimized
by a 180° rotation of the sample about the propagation
axis z. Finally, we note that under the circular pump
polarization we have n · s0 = 0; this means that Γ+ is
smaller by a factor of two compared to the above max-
imum value for the L geometry and goes to zero in the
T configuration.

In experiment, the main parameters controlling
the critical behavior of Γ are the frequency detuning
Ω and the normalized pump intensity difference W0.
Figures 3a and 3b show the dependences of the real
part of the increment (Ω, W0) plotted on the basis of
Eqs. (9) and (10) for the values of the parameters of
BSO and BTO crystals presented in the table. The val-
ues of µτ and Nt are the same as in Fig. 2:

and the values of ∆ correspond to the dependence
QK/2(E0, K) in Figs. 2a and 2b. The dotted curves show

the dependence of the branch  in the two-valued-
ness region.

As seen from Fig. 3, Γ'(Ω) has two bifurcation
points where the square root in (9) goes to zero. These
points divide the regions of Bragg (the central region)
and off-Bragg diffraction. The values of W0 in Fig. 3a,
which are equal to –0.8, –0.75, and –0.7, correspond to
m0 ≈ 0.6, 0.66, and 0.71, respectively; these values of
m0 are smaller than the minimum threshold contrast
mth = 0.75. Equation (9) holds true in the whole region
of the parametric resonance; the function Γ+(Ω) is char-
acterized here by a clearly pronounced peak whose
amplitude increases with decreasing |W0 |. The values
W0 = –0.65 and −0.6 correspond to m0 = 0.76 and 0.8,
which are above the threshold value mth = 0.75. In this
case, our theory is applicable only for the resonance
wings

The boundaries of the permitted region are marked by
dots on the corresponding branch of Γ–(Ω). As we
approach these boundaries, Γ+  ∞.

ν ν0 n

ν0 n+ q πn3 r41 /λ , ν0 n– 0,= = =

ν0 0, n q ;= =

ν max

ν

Γ±'

E0 7 kV/cm, QK /2 4,= =

∆ 20.7 and 280 cm 1– ;=

Γ–' Ω( )

3δ m0
2 mth

2–( )1/2
.>
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All curves in Fig. 3b (BTO crystals) are plotted for
m0 < mth. In order to realize the Bragg regime, it is nec-
essary to approach the instability threshold very
closely. The nearer this threshold, the more pronounced
the peak Γ+(Ω) in the Bragg region. This feature is
explained by a greater value of ∆; ultimately, it is
caused by the values of the material parameters µτ and
Nt (see also Fig. 2). All other factors being equal, the
values of Γ+ for BTO crystals are smaller than those for
BSO.

Finally, we note that all curves in Fig. 3 correspond
to the most preferable combination of signs

A simultaneous change of the signs of W0 and  results
in a decrease in the increment and shifts the bifurcation

W0 0, νE0 0.><

ν
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Fig. 3. Dependence (Ω, W0) = ReΓ± for BSO (a) and

BTO (b) crystals. In the case (a), µτ = 3 × 10–7 cm2/V, Nt =

1016 cm–3, and ∆ ≈ 20.7 cm–1. In the case (b), µτ =
10−7 cm2 /V, Nt = 3 × 1016 cm–3, and ∆ ≈ 280 cm–1. The
values W0 = –0.8, –0.75, –0.7, –0.65, and –0.6 in (a) corre-
spond to the ratios m0/mth ≈ 0.8, 0.88, 0.95, 1.01, and 1.07,
respectively. In figure (b), the values W0 = –0.7, –0.68,
−0.67, and –0.665 correspond to the ratios m0/mth ≈ 0.95,
0.98, 0.99, and 0.996, respectively.

Γ±'
SICS      Vol. 94      No. 3      2002



478 GORKUNOV et al.
points towards larger values of the increment. In the
vicinity of the singularity, where Γ+ @ , the influ-
ence of the sign choice becomes less important in
accordance with (12).

We now briefly consider the properties of the spatial
amplification described by Eq. (11). It is clear that
within the Bragg region, where Γ+ @ Γ–, the spatial
growth of a0 is described mainly by the exponent
exp(Γ+z). Here, the parameters maximizing Γ+, in par-
ticular, the linear pump polarization specified above,
are preferable. The optimum input polarization of the
central beam is clearly the same as for the pump beams.
In this case, a0(z) does not change its direction, and the
vectorial problem for the critical spatial enhancement
reduces to a scalar one. The only variable parameter
remaining at our disposal is the central beam phase Φ0.
The phase dependence (with a period of π) of the factor
multiplying exp(Γ+z) is of minor importance except for

νE0
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3'3

Fig. 4. Dependence of the amplification factor G on Ω and
W0 in the L geometry for BSO (a) and BTO (b) crystals.
Curves 1, 1'; 2, 2'; 3, 3'; and 4, 4' correspond to W0 = –0.85,
–0.8, –0.75, and –0.7; curves 5 are plotted with the material
nonlinearity neglected for W0 = –0.7. In the case (a), µτ =

3 × 10–7 cm2/V, Nt = 1016 cm–3, θp ≈ 1.2°, and α = 1 cm–1.

In the case (b), µτ = 10–7 cm2/V, Nt = 3 × 1016 cm–3, θp ≈
10°, and α = 0.5 cm–1
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a narrow neighborhood of the point , where this fac-
tor goes to zero. The value of the phase that is undesirable
for the spatial amplification is given by the expression

where Φ1, 2 are the input phases of the pump beams. In

an experiment, Φ0 and  can coincide only inciden-
tally. Note that fluctuations of the input phases can

“smear” the sharp dependence  at Φ0 ≈ .

Within the off-Bragg region, both exponents in (11)
are important for the amplification. The dependence on
the phase Φ0 is very weak here. In the vicinity of the

increment bifurcation points, the function  can

show sharp oscillations, and the dependence 
can become nonmonotonic.

6. NUMERICAL SIMULATION
Beyond the simplified spatially uniform model,

Eq. (7) defies analytical solution, and the main tool for
the analysis is numerical simulation. The effect of the
two factors of spatial inhomogeneity is qualitatively
clear. The spatial dependence δ(z) caused by the light
absorption results in a shift and broadening of the fre-
quency peaks but does not affect the direction of the
vector b0(z). The spatial dependence h(z) caused
mainly by optical activity forces b0(z) to change both in
magnitude and in direction. Both these factors are cer-
tainly negative, and our purpose is to analyze their
influence under the conditions that are typical of exper-
iments with BSO and BTO crystals. The simplified
model provides here a good reference point for compar-
ison.

We choose the factor

as the basic experimental parameter to be considered. It
is merely the amplification factor on a logarithmic
scale. The main variable parameters are Ω and W0. The
material parameters correspond to the table and Fig. 3.

Solid curves in Figs. 4a and 4b show the depen-
dences G(Ω , W0) in the longitudinal geometry for BSO
and BTO crystals at d = 1 mm, E0 = 7 kV/cm, and
QK/2 = 4. The dashed curves correspond to the simpli-
fied model, and two dot-and-dash curves are plotted
with the material nonlinearity neglected (the standard
theory) for W0 = –0.7. All the values of W0 refer to the
case m0 < mth = 0.75.

It is seen that the effects of spatial inhomogeneity
substantially, though not drastically, affect the spatial
amplification at the chosen thickness d. They result
mainly in a shift of the resonance peak to the left.

Φ0
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2Φ0
+ π Φ1 Φ2 g2 f 2

2– / f 2( ),arctan+ + +=
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A greater decrease in the peak values of G(Ω) for BSO
crystals is caused by the larger value of the rotatory
power ρ. Smaller absolute values of the amplification
factor for BTO crystals come from the larger value of
the Bragg mismatch ∆. Specific features in the behavior
of the right wings of the dashed curves in Fig. 4a are
caused by the bifurcation of the function Γ'(Ω), i.e., by
the transition from the Bragg to off-Bragg diffraction
regime. A considerable gain in the amplification factor
owing to the critical effects draws attention. At W0 =
−0.8 (m0/mth ≈ 0.8), this gain is more than three orders
of magnitude for BSO and about two orders of magni-
tude for BTO crystals. As we approach the threshold,
this gain increases.

At d = 1 mm, the behavior of G(Ω, W0) changes only
insignificantly when switching to the transverse geom-
etry if the input polarization angle is optimized (ϕ0 =
±45°). A simultaneous change of signs of W0 and 
does not lead to new effects.

Figures 5a and 5b illustrate the modification of the
spectrum G(Ω) for BSO and BTO crystals with an
increase in the thickness d for the transverse geometry.
For BSO crystals, the increase in d actually does not
lead to the growth of G starting from d = 1 mm. This
feature is fully determined by the effect of optical activ-
ity. For BTO crystals, which are characterized by a
much smaller value of ρ, the situation is quite different.
Here, the increase in d results in a noticeable shift of the
resonance towards lower frequencies (because of light
absorption), but it does not lead to any substantial satu-
ration of the peak value of G(Ω). This is explained by
the suppression of the optical rotation by the applied
electric field [17]. Finally, we note that, in the longitu-
dinal geometry, the negative influence of optical activ-
ity is pronounced somewhat more weakly than in the
transverse geometry. This is due to the presence of the
isotropic part in the interaction matrix (ν0 ≠ 0).

Figure 6 illustrates the influence of optical activity
on the spectrum G(Ω) in BSO crystals for d = 1 mm.
The dashed curve corresponds to the simplified model
(α = ρ = 0), and the solid curves 1–4 are plotted for α =
0, 1, 1.7, and 2.5 cm–1, respectively. The comparison of
the dashed curve with curve 1 shows that optical activ-
ity does not change the shape of the peak; it only
slightly reduces its magnitude. It is seen from curves 1–4
that an increase in α results in a noticeable broadening
of the resonance peak, its shift, and smearing of the fre-
quency peculiarities on the right wing. However, this
increase does not drastically influence the properties of
the critical enhancement.

In addition to the factor G, which describes the
intensity amplification, the variation of the polarization
of the central beam deserves attention. This variation
can be described by the parameter

ν

C01
b0 d( ) b1* d( )⋅
b0 d( ) b1 d( )

---------------------------------
a0 d( ) a1* d( )⋅
a0 d( ) a1 d( )

--------------------------------,= =
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which can be considered as the cosine of the angle
between the complex-valued vectors a0(d) and a1(d).
Computations show that C01 is close to unity for d = 1 mm
and G & 4–5. However, the dependence C01(Ω) under-
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Fig. 5. Dependence of the amplification spectrum G(Ω) on
the crystal thickness in the T geometry for BSO (a) and
BTO (b) crystals. Curves 1–4 correspond to d = 1, 2, 3, and
4 mm, respectively; W0 = –0.8 (m0/mth ≈ 0.8); the other
parameters are the same as in Fig. 4.
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goes a sharp change when passing from the Bragg to
off-Bragg region of the frequency detuning. Discovery
of this feature would directly indicate the increment
bifurcation.

7. DISCUSSION AND CONCLUSIONS

The theory of the critical enhancement of the photo-
refractive response presented in this paper accounts for
the main attributes of possible experiments in cubic
crystals, namely, the vectorial nature of beam coupling,
nonuniform broadening of the resonance, the expected
dependences on the frequency detuning, polarization
and orientation degrees of freedom, and the possibility
of varying the material parameters. This theory enables
us to predict various regularities to be expected and to
form a general pattern of new phenomena. We suppose
that our theory forms a basis for the performance of
specially designed experiments aimed at the discovery
and study of the critical spatial amplification.

It follows from the results obtained that the use of
BSO and BTO crystals thicker than d ≈ 1 cm, which is
typical for photorefractive experiments, is impractical
for the critical enhancement. So thick crystals are not
necessary to obtain the desired large amplification. Fur-
thermore, they are dangerous from the point of view of
generating parasitic and poorly controlled secondary
effects associated, for example, with the energy
exchange between the pump beams. We expect that the
use of crystals with d ≈ 1 mm is necessary for effective
experiments. Such thin samples allow one to reach the
amplification factor of about 103–104, which is suffi-
cient for all practical purposes; to eliminate possible
noncritical side effects; and to make the characteristics
of the major effect controllable and close to optimal. The
use of such samples is still consistent with the application
of the desired electric fields E0 ≈ 7–10 kV/cm. Finally, the
use of thin samples makes it possible to decrease the
transverse size of the crystals, which allows us to
increase the pump intensity and reduce in this way the
nonlinear response time.

It has to be noted that the critical increase in the
increment Γ within the spatially uniform model is lim-
ited by the inequality

This limitation comes from the electrostatic boundary
effects; more precisely, the space-charge field is
reduced when the effective grating thickness Γ–1

becomes comparable with its spacing. Since, in experi-
ments on the subharmonic generation, the grating spac-
ing 2π/K is about 10–30 µm, the limiting values of the
increment are expected to be in the range 102–103 cm–1.
With such large amplification rates (and d ≈ 1 mm), the
effect of pump depletion can be substantial. For practi-
cal purposes, it would be sufficient to reach the incre-
ment magnitude of several dozen inverse centimeters.

Γ  ! 2π/K .
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The theory offers simple recommendations with
respect to how to perform experiments and to identify
the critical enhancement. The initially selected (possi-
bly thick) samples must exhibit the subharmonic gener-
ation. The choice between the longitudinal and trans-
verse geometries is not crucial; however, the optimum
polarizations for these configurations are different. It is
advisable to investigate the spectral dependence of the
amplification factor below the minimum threshold of
the parametric instability, m0 < mth, when the whole
range of the frequency detuning is available for experi-
ment and no spatial subharmonics can arise spontane-
ously. The interchange of the pump beam intensities
has to suppress the effect of critical enhancement. A
sharp attenuation of the central beam intensity when
any of the two pump beams is blocked is direct proof of
the criticality.

The theory developed in this paper corresponds to
the excitation of spatial subharmonics by a DC field. At
the same time, it is known (see [2]) that subharmonics
can be generated under an alternating voltage in the
absence of frequency detuning between the pump
beams (the AC technique). We believe that the AC
method can also be used for the critical enhancement.
Its analysis requires, however, the higher spatial har-
monics (2K, 3K, and so on) to be taken into account
[26].

BGO crystals, which belong to the sillenite family,
and the semiconductor CdTe are also candidates for the
investigation of the critical enhancement, since they
exhibit the subharmonic generation [27, 28]. The
advantage of CdTe crystals is their fast response and the
absence of optical activity. The analysis of the critical
enhancement in these materials presents difficulties
because of the shortage of information on the charge
transfer processes under light. We hope that this infor-
mation will be obtained in the coming years.
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Abstract—The possibility of introducing effective one-dimensional medium parameters in the long-wave
approximation is considered. A layered system was used as a model of one-dimensional medium. The effective
parameters were shown to be functions of sample thickness. Both periodic and random media were studied; the
thicknesses of random samples were assumed to be much smaller than the localization length, which allowed
us to ignore the localization effect. The results are compared with the Rytov solution. The wave vector was
found to tend to the Rytov value as the thickness of the sample increased, whereas the characteristic impedance
had no limit in the long-wave approximation. What is more, the characteristic impedance could differ from the
Rytov value by 100%. The results were obtained by computer simulation of the propagation of electromagnetic
waves in a layered system. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the propagation of waves in a one-
dimensional nonuniform medium traditionally attracts
attention of researchers [1–3]. This is caused by both
comparative simplicity of the problem and its impor-
tance for understanding the physics of processes that
occur during wave propagation in nonuniform media.
In this work, we restrict our consideration to the long-
wave approximation, when the scale of inhomogene-
ities d (period or correlation length) is much smaller
than wavelength λ. For disordered media, we also use
the condition of smallness of system size L compared
with localization length Lloc; this condition excludes
localization effects. For one-dimensional systems in the
long-wave limit, Lloc ~ λ(λ/d) (see [3]), which is much
larger than the wavelength. For this reason, a fairly
large range of L values such that the inequality λ ! L !
Lloc is satisfied exists in the problem under consider-
ation. The last condition means that we can consider
optically thick system and ignore localization effects.

Although exactly solving the problem poses no
computational difficulties, the thing that interests us
under the conditions specified above is often the distri-
bution of fields averaged over a physically infinitesimal
volume rather than the true distribution of fields [4].
Finding these fields is related to the so-called homoge-
nizing problem. This is the determination of the equa-
tions that describe the behavior of averaged fields in
media with given properties (given distributions of per-
mittivity and magnetic permeability) at the microscopic
level and the equations satisfied by true microscopic
fields. Used as microscopic equations are Laplace
equations under static conditions and systems of mate-
rial Maxwell equations for fields varying in time. It is
assumed that averaged fields satisfy the same equations
1063-7761/02/9403- $22.00 © 20482
but with effective material parameters, permittivity εeff
and permeability µeff. A strict proof of the validity of
this assumption and an algorithm for calculating εeff
and µeff only exist for infinite periodic systems in a con-
stant field [5]. They are based on the so-called theory of
G convergence. Central to G-convergence theory is the
fact that the constant field potential obeys the dimen-
sionless Laplace equation. All linear dimensions can
then be measured in d units. As a result, the dependence
of any value on system size L can only manifest itself
as a function of the L/d ratio. The tendency of L/d to
infinity can be achieved either when L tends to infinity
or when d tends to zero. This gives physical meaning to
considering infinitely large systems, that is, systems in
which the strict inequality L @ d is fulfilled.

The homogenizing problem, which usually reduces
to finding εeff and µeff, becomes multiscale for Maxwell
equations. Scales related to the equations themselves,

namely, a set of local wavelengths λ = λ0/ , where
λ0 = 2π/k0 is the wavelength in vacuum and k0 is the
wave number, appear. The transition from a finite to an
infinite system involves certain difficulties in the pres-
ence of many scales [6], which makes the results of
G-convergence theory generally inapplicable. Never-
theless, it is usually assumed [7–9] that, if linear size lavr
of an infinitesimal volume satisfies the inequality

(1)

then averaged fields obey macroscopic Maxwell equa-
tions containing effective material constants. Clearly, if
the strict inequality

(2)

εµ

d  ! lavr ! λ0,

d εmaxµmax ! λ0
002 MAIK “Nauka/Interperiodica”
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is satisfied, as is assumed in this work (“max” labels
maximum local permittivity and permeability values),
we can always select lavr that satisfies (1). This must be
sufficient for introducing effective parameters [7–9].
We show below that the fulfillment of inequality (2) in
a one-dimensional system does not guarantee the exist-
ence of effective material parameters.

The problem of finding the effective parameters of a
one-dimensional periodic medium in a constant field
was solved long ago [10, 11]. For instance, if the field
is directed along layers, εeff = 〈ε〉  by virtue of continuity
of the tangential field component. For variable fields, a
solution for an infinite periodic medium comprising
layers with ε1, µ1 and ε2, µ2 effective parameters was
found by Rytov [12–14]. Works by Rytov became clas-
sic and originated investigations concerned with
homogenizing one-dimensional media of various
natures [14–19].

Let us briefly consider the results obtained by Rytov.
He derived a dispersion equation for the effective wave
number (effective refractive index). For nonmagnetic
ingredients considered in this work, this equation takes
the form

(3)

In addition, Rytov introduced the effective characteris-
tic impedance defined as the ratio Zeff = 〈E〉/〈H〉 (aver-
aging is performed over the period), which allowed the
effective permittivity and permeability to be found.
Note that an effective permeability different from one
appears even with nonmagnetic ingredients. If (2) is
satisfied, it is easy to obtain the following equations for
the effective parameters [14]:

(4)

Note that εeff and µeff are complex values, although ε1
and ε2 are real.1 What is more, one of the εeff and µeff
values has a negative imaginary part depending on the
selection of the first and second layers. This makes it
difficult to assign physical meaning to them.

Negative imaginary susceptibility parts are usually
related to energy generation [6]. The equation for
energy dissipation (generation), however, contains both
susceptibilities, and the negative imaginary part of one
of them can be compensated by the positive imaginary
part of the other (see [20]). To analyze the physical
meaning of each separate susceptibility and identify the

1 Rytov had to restrict consideration to nondissipative systems
because he considered infinite media.

k0neff
Ryt2d( )cos k0 ε1d( ) k0 ε2d( )coscos=

–
1
2
---

ε1

ε2
----

ε2

ε1
----+ 

  k0 ε1d( ) k0 ε2d( ).sinsin

εeff ε〈 〉 1 ik0

d1d2

4 d1 d2+( )
-------------------------

ε2 ε1–

ε〈 〉
---------------+ ,=

µeff 1 ik0

d1d2

4 d1 d2+( )
-------------------------

ε2 ε1–

ε〈 〉
---------------– .=
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negative imaginary part (for definiteness, of µeff) with
radiation amplification, it is necessary to place the sam-
ple into a magnetic field antinode, where the electric
field can be ignored. Such an experiment can only be
performed with a finite system rather than an infinite
system analyzed by Rytov. For this reason, we consid-
ered the problem of a finite system.

The approach suggested by Rytov, which was based
on the use of the Floquet–Bloch theorem, is inapplica-
ble to finite samples, in which translational invariance
is violated. In addition, the characteristic impedance
definition cannot be used, because two waves propagat-
ing in opposite directions and having 〈E〉/〈H〉  ratios of
different signs are excited within a sample under the
action of a plane incident wave. It follows that the ratio
between the mean values of complete fields depends
not only on the local properties of the material but also
on the ratio between the amplitudes of these waves.

In this work, we consider several alternative defini-
tions of effective parameters. Our definitions are first
and foremost based on the experimental procedures
used for measuring effective parameter values. Follow-
ing the MW terminology, these procedures will be
called waveguide and resonator. In conclusion, we con-
sider the approach based on the self-consistent effective
medium method.

2. WAVEGUIDE METHOD 
FOR DETERMINING εeff AND µeff

In this approach, measurements are taken in a
waveguide [21] or in free space [22]. The ε and µ values
are determined from transmission T and reflection R
incident wave coefficients2 [23]. It is assumed that the
sample consists of a uniform material with the refrac-
tive index

(5a)

and characteristic admittance

(5b)

where Z is the characteristic impedance. At normal
plane wave incidence on the sample,

(6)

(7)

2 We consider optically thick samples and therefore do not discuss
the classic short circuit–free running procedure [20], which only
gives reliable results at optical thicknesses of the order of one-
fifth of the wavelength.

n
k
k0
---- εµ= =

Y
ε
µ
---

1
Z
---,= =

Yeff
1 R–( )2 T2–

1 R+( )2 T2–
-------------------------------,=

e
ikeff Nd T 1 1/Zeff+( )

1/Zeff R/Zeff 1 R–+ +
-----------------------------------------------------.=
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In this work, the T and R values were found from the
exact solution to the system of Maxwell equations. If
the x axis is perpendicular to layers, the other axes can
be selected in such a way that the electric and magnetic
field will have one nonzero component each. A com-
plete solution is obtained by sewing together solutions
at layer boundaries. In each layer, the solution is the
sum of two waves, one of which propagates in the pos-
JOURNAL OF EXPERIMENTAL
itive axis x direction and the other propagates in the
opposite direction. Let their amplitudes in the jth layer
be denoted by Aj and Bj We easily find that

(8)

where

A j 1+

B j 1+ 
 
 

M j
A j
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M j
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Assuming the incident wave amplitude to be equal to
unity, we obtain equations for determining R and T val-
ues,

(9)

where M = (MN, MN – 1, …, M1, M0). Using Eqs. (6) and
(7), we determine keff and Yeff, and the calculate

First, consider a periodic system of layers. As concerns
the change in the direction of wave incidence to the oppo-
site, there exist two fundamentally different cases for an
even number of layers (integer number of periods, the sys-
tem is asymmetric) and an odd number of layers (half-
integer number of periods, the system is symmetrical).

2.1. Even Number of Layers

If the number of layers is even, the effective refrac-
tive index neff = keff/k0 (Fig. 1a) tends to the Rytov value

T

0 
 
 

M 1

R 
 
 

,=

µeff

keff

Yeffk0
-------------, εeff

keffYeff

k0
---------------.= =

0.05

0
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0 0.5 1.0 1.5

0.3
δY
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0 0.5 1.0 1.5
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0

L/λeff L/λeff

Fig. 1. Sample thickness dependences of (a) δn = neff – 

and (b) δY = ( ) × 100 for a periodic system

with an even number of layers. Sample thickness is in effec-
tive wavelength λeff =  units. Parameter val-

ues: ε1 = 2, ε2 = 3, and k0d = 0.01. Real and imaginary parts
are shown by solid and dashed curves, respectively.

neff
Ryt

εeff/µeff Yeff
Ryt

–

2π/keff( )
L ∞→
lim
 

as the size of the system increases. Note that, in contrast
to the Rytov solution, the neff value at an arbitrary finite
sample thickness has a nonzero imaginary part. This
cannot be ascribed to numerical experiment errors,
because, first, the neff value in first-order perturbation
theory with respect to k0d is complex for a sample con-
sisting of one period (two layers),

Secondly, the fulfillment of the law of conservation of
energy, |R|2 + |T |2 = 1, was controlled during calcula-
tions. The deviation from one did not exceed 10–14. It
follows that, in reality, there is no absorption or electro-
magnetic wave amplification. Only wave amplitude
beats are observed as a function of sample thickness.
The presence of an imaginary part of neff is compen-
sated by the presence of an imaginary part of Yeff. The
change in the wave propagation direction changes the
sign of the imaginary parts.

The refractive index tends to the Rytov (purely real)
value as sample thickness increases; namely,

where F(x) is a periodic function.3

Admittance Yeff of the system oscillates with a
period of 0.5λeff = π/keff (Fig. 1b). The effective suscep-
tibilities are functions of both neff and Yeff and therefore
show combined behavior. Their behavior tends to peri-
odic with the same period as that characteristic of Yeff
and F(x) as sample thickness tends to infinity. The real
parts of εeff and µeff differ from the solution obtained by
Rytov [14] only in the second order in k0d, whereas the
difference between the imaginary parts of εeff and µeff
and the Rytov values is of the order of k0d.

3 The F function at small ε1 – ε2 values can be approximated by the

equations ReF = sin2( ) and ImF = sin( ).

neff εeffµeff=
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2
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Ryt
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2.2. Odd Number of Layers

When the number of layers is odd, the behavior of
neff almost fully coincides with that predicted by the
Rytov theory. The effective refractive index is a purely
real value and tends to the Rytov value

(Fig. 2a). The square of the effective admittance is also
purely real (although it can take on negative values),4

but, unlike neff, gives periodic spikes of various ampli-
tudes (Fig. 2b). Note that the amplitude of spikes does
not damp as L increases. Spikes are observed when one
more layer is imposed on an almost transparent plate of
thickness λeff/2 comprising an even number of layers.
To qualitatively explain the phenomenon, suppose that
a sample containing an odd number of layers is a two-
layer sample. Let the first layer have permittivity ε1 and
thickness d, and the second layer, permittivity (ε1 +
ε2)/2 (this is close to the Rytov solution) and thickness

Lodd = (N – 1)d. Calculate  for such a two-layer sam-
ple under the conditions

where l is an integer number. This yields

(10)

Close to the transparency region, εeff/µeff behaves as the
ratio

That is, admittance Yeff tends to infinity as L tends to
0.5λeffl. The random finite-amplitude spikes observed
in numerical experiments are related to the incommen-
surability of d and λeff.

As a consequence of such a behavior of Yeff, εeff and
µeff may arbitrarily differ from the solution found by
Rytov (Fig. 3).

2.3. Medium with Absorption

If local energy absorption is possible, the amplitude
of effective admittance spikes observed for samples
with odd numbers of layers decreases as sample thick-
ness increases, and Yeff tends to some value different
from the Rytov solution (Fig. 4).

4 Note that, according to (6), a change in the direction of wave inci-

dence changes  to its complex conjugate. On the other hand,

for a system with an odd number of layers,  should not

change; it follows that  is a purely real value.
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Note that the limiting Yeff value is attained for the
sample thickness at which the sample becomes non-
transparent. According to (6), this value equals the
input admittance. The difference of the latter from the
value obtained by analytic continuation of the Rytov
solution to the region of complex local susceptibilities

0
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0.5
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–0.20

Fig. 2. Sample thickness dependences of (a) δn = neff – 

and (b) δY =  for a periodic system with an

odd number of layers. Parameter values are the same as in
Fig. 1.

neff
Ryt

εeff/µeff Yeff
Ryt

–

0.5

0

–0.5

–1.0

δε
(a)

0 0.5 1.0 1.5

0.5

δµ
(b)

0 0.5 1.0 1.5

0

L/λeff L/λeff

Fig. 3. Sample thickness dependences of (a) εeff –  and

(b) µeff –  for a periodic system with an odd number of

layers. Parameter values are the same as in Fig. 1.
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is evidence of the existence of a transition layer. In this
layer, the solution differs from the Rytov solution, and
the input admittance is formed.

3. RESONATOR METHOD FOR DETERMINING 
εeff AND µeff (EVEN NUMBER OF LAYERS)

In the resonator method for determining ε and µ, an
optically thin sample is placed into a resonator cavity
with a known resonance frequency. Resonance fre-
quency and Q factor measurements are related to the
real and imaginary susceptibility parts, respectively
[22, 4]. The sample is usually placed first into an elec-
tric field antinode and then into a magnetic field antin-
ode, which allows ε and µ to be independently deter-
mined.

Following this scheme, a sample consisting of two
layers was placed into an electric field antinode (into
the center of a one-dimensional resonator) and then on
one of cavity walls (magnetic field antinode). Two res-
onance frequencies were numerically determined. They
were set equal to the resonance frequencies of the cav-
ity with a uniform sample, whence the εeff and µeff
parameters were calculated. The law of the conserva-
tion of energy is satisfied no matter what the position of
the sample in the cavity, and the Q factor therefore
remains infinitely large. For this reason, the imaginary
εeff and µeff parts equal zero. The real parts insignifi-
cantly differ from the static values εeff = 2.5 and µeff = 1
[these are also the real parts of (4)]. For instance, for
ε1 = 3 and ε2 = 2, we have εeff = 2.5092 and µeff = 0.9099
when the sample is placed in the center and at the left
wall and εeff = 2.5076 and µeff = 1.1146 when the sam-
ple is placed in the center and at the right wall.

The problem has an exact solution, and we may
therefore use almost any two sample positions in this
approach. Each pair of positions generates εeff and µeff
values of its own. Exceptions are positions symmetrical
with respect to the cavity center, in which resonance
frequencies for a uniform sample coincide. It is note-

δn
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0.1
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–0.2
1.50.50

δY
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Fig. 5. Sample thickness dependences of (a) δn = neff(L) –

 and (b) δY = Yeff(L) –  for a random system.

Parameter values are the same as in Fig. 1. Real and imagi-
nary parts are plotted as solid and dashed curves, respec-
tively.

neff
Ryt

Yeff
Ryt
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worthy that the frequencies for the sample under study
are then different, which shows that the sample cannot
at all be assigned any effective parameters.

4. EFFECTIVE MEDIUM THEORY METHOD 
FOR DETERMINING EFFECTIVE PARAMETERS

Consider a different method for determining ε and µ.
Let us immerse the sample into a medium with εeff and
µeff. The sample should then be transparent; that is, the
reflection coefficient should equal zero, and the phase
incursion should correspond to the phase incursion for
a uniform substance.

The εeff and µeff parameters determined in this way
do not depend on the direction of wave incidence
because of the universality of the condition of transpar-
ency, although, generally, reflection coefficients depend
on the direction of wave incidence. This can conve-
niently be proved using the M-matrix properties. It fol-
lows from (8) that the determinant of the M matrix of
one uniform layer equals one. As the determinant of the
product of matrices equals the product of the determi-
nants [24], the determinant of the M matrix of an arbi-
trary number of layers also equals one. On the other
hand, the M matrix can be expressed via four values,
namely, the reflection RL and transmission TL coeffi-
cients when the wave is incident on the layer from the
left and the reflection RR and transmission TR coeffi-
cients when the wave is incident on the layer from the
right,

It is easy to see that the determinant of this matrix
equals TL/TR. As detM = 1, we have TL = TR. It follows
that the transparency condition (|T | = 1) is independent
of the direction of wave incidence. Note, however, that
the reflection and transmission coefficients, although
they are equal in magnitude (for nonabsorbing media),
generally have different phases even at the transparency
point. This is the reason why the waveguide method
gives different “right” and “left” effective parameters
for asymmetric samples. The reflection coefficients cal-
culated by the effective medium method are zero. Their
phases therefore do not play any role. This condition
guarantees symmetry of an arbitrary system.

Although the Yeff value is independent of the thick-
ness of a plate containing an even number of layers, it
coincides neither with the Rytov solution nor with the
values obtained by the waveguide or resonator method.
The independence of εeff and µeff on sample thickness is
apparent. It is only observed when the sample is
immersed into a medium with effective parameters.

M
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If the number of layers is odd, Yeff coincides with the
effective admittance calculated from reflection and
transmission coefficients, because RL = RR for a sym-
metrical layer independent of the environment.

5. RANDOM MEDIUM

It has been shown above that a one-dimensional
periodic medium cannot be correctly described in terms
of εeff and µeff. We must consider a random sample to
determine whether or not the periodic dependence of
εeff and µeff is a consequence of medium periodicity.

Let layers with ε1 and ε2 be arranged randomly. The
calculated neff(L) and Yeff (L) values are shown in Fig. 5
as functions of sample thickness. One can see that
neff(L) is a self-averaging function, whereas Yeff (L) is
not. Averaging Yeff (L) and neff(L) over an ensemble
gives the dependences shown in Fig. 6. The dependence
of 〈Yeff〉  on sample thickness bears no resemblance to
the thickness dependence of the admittance of a sepa-
rate realization.

If there is absorption and the thickness of the sample
increases (layers are added) on the side of the passed
wave, Yeff (L) experiences self-averaging. T tends to
zero as the thickness increases, and all information
about the composite is contained only in R. The Yeff (L)
value therefore tends to the input admittance, which
does not coincide with 〈Yeff〉 . This is obvious in the lim-
iting case of strong absorption, because Yeff (L) then
equals the admittance of the first layer. Any averag-
ing over an ensemble causes loss of information
about which layer is the first and which the second.
For this reason, ensemble averages never equal
observed values.

6. CONCLUSION

It follows from the results obtained in this work that
the effective permittivity and permeability can only be
introduced in the description of one-dimensional media
in the quasi-static limit d ! L ! λ, when the static mix-
ing formulas work, for instance, for normal incidence
εeff = 〈ε〉  and µeff = 〈µ〉 . An attempt at taking into account
corrections related to radiation lag on the scale of inho-
mogeneities leads to the impossibility of determining
the material parameters proper, because εeff and µeff
depend on sample thickness L and therefore describe
the sample rather than the material. The deviations of
sample εeff and µeff values from those obtained by Rytov
[3, 4] may amount to hundreds of percent at L = ∞ even
at small k0d values. This is caused by the multiscale
character of Maxwell equations.

The d ! λ condition is insufficient for obtaining a
limit that does not depend on surrounding space prop-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
erties. Such a limit requires the fulfillment of the ine-
quality

(11)

In other words, the transition to an infinite system in the
dynamic case is meaningless. This situation is similar
to that arising in quantum mechanics in solving the
problem of above-the-barrier particle scattering. The
solution to the problem with a rectangular potential
then does not tend to the solution to the problem with a
step potential. As is known, in statics, the solution to the
infinite problem accurate to d/L is also the solution to
the finite problem. Obtaining the solution to the infinite
problem in statics requires that passage to the limit be
generally performed as follows: first, we let λ tend to
infinity, and, next, sample thickness is increased.

The difference in the behavior of a one-dimensional
system at zero and finite frequencies is likely to be
related to a much larger transverse size of the sample
compared with the wavelength, which violates condi-
tion (11) (see the problem of diffraction on an infinite
wire [25]).

Note also the importance of the difference of the
wave number from that predicted by the Rytov theory.
It tends to the Rytov value, but the difference from this
limit is substantial at arbitrary L because
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AND THEIR INTERACTION
Dissociative Recombination of Electrons 
and  Molecular Ions in the Field 
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Abstract—We analyze the low-temperature dissociative recombination reaction e– +   O(1D) + O(3P)
in the field of visible monochromatic laser radiation. The analysis is performed in terms of the multichannel
quantum defect theory using the stationary formalism of the radiative collision matrix. We calculate the depen-
dences of the reaction cross section on the incident electron energy, the external electromagnetic field strength
and frequency, and also the angle between the directions of the electron beam and the electric vector for linearly
polarized radiation. The cross section is shown to increase by several orders of magnitude for a certain choice
of these parameters, suggesting the possible laser stimulation of this reaction. © 2002 MAIK “Nauka/Interpe-
riodica”.
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+
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+

1. INTRODUCTION

The dissociative recombination reaction between
slow electrons e– and molecular ions XY+,

e– + XY+  X + Y*, (1)

plays an important role in the processes that take place
in the Earth’s ionosphere and upper atmosphere and is
the subject of intensive experimental and theoretical
studies [1]. Investigation of this reaction in an external
electromagnetic field is also of great importance both in
the theory of radiative collisions and in developing
laser stimulation methods for elementary processes
involving atoms and molecules [2].

Under the condition (" = me = e = 1)

(2)

(p is the incident electron momentum; f and ωf are the
electromagnetic field amplitude and frequency, respec-
tively), the vibration amplitude of the electron is much
smaller than its wavelength and the external field does
not affect the electron motion; i.e., it has a certain
energy Ee. If the field does not produce any dipole-
allowed transitions in an isolated XY+ ion, then it acts
most effectively on the states formed at an intermediate
stage of the process, because the field action on the
(electron + target) system here is possible only if the
latter has internal structure [3]. For positive molecular
ions, this structure is related to the formation of an
intermediate XY** complex. Under condition (2), the
electromagnetic field effect must show up during the
formation of this complex, when the electron motion is
a multichannel one. Note that the problem of a strong

pf ωf
2–
 ! 1, p 2Ee=
1063-7761/02/9403- $22.00 © 20489
electromagnetic field effect on the intermediate com-
plex differs from conventional nonstationary problems
of the theory of laser interaction with atoms and mole-
cules [4–6]. The difference lies in the fact that the time
when the intermediate complex emerges cannot be
determined (under quantum conditions) and that the
study needs to be carried out in the coupling of closed
channels with continua.

It should be explained what the strong laser radia-
tion is. We have in mind an external field that is weak
compared to the intra-atomic field (e.g., the field
strength for the ground atomic state of hydrogen is fa ≈
5 × 109 V/cm, which corresponds to a radiation inten-
sity of the order of 1017 W/cm2) but strongly couples
intermediate Rydberg states, which are steady (or
quasi-steady) in its absence. In that case, the coupling
coefficients prove to be large and perturbation theory is
inapplicable.

An additional constraint on the external field
strength,

(3)

where D is the transition dipole moment, allows us to
restrict our analysis to the following two types of tran-
sitions when describing reaction (1): a nonradiative
(k = 0) transition and an induced (k = 1) transition with
the radiation of a single photon. The index k denotes the
change in the number of photons in the system.

In this study, we investigate the dissociative recom-

bination reaction between slow electrons and 
molecular ions via direct and resonance nonradiative

fD ! 1,

O2
+
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(k = 0) transitions to the Schumann–Runge (B3 ) con-
tinuum, as well as via free–bound radiative (k = 1) tran-

sitions to the n1pπu ( ) predissociation Rydberg states
under intense visible (23 000 < ωf < 25 000 cm–1)
monochromatic laser radiation:

(4)

Here, nk is the principal quantum number for a given k;
ν is the vibrational quantum number; and l and Λ are
the electron orbital angular momentum and its projec-
tion onto the molecular axis, respectively. The electron
energy is assumed to be low and lie within the range 0 <
Ee < ω, where ω is the ion vibration frequency. There-
fore, we disregard bound–bound dipole-allowed transi-
tions from the intermediate n0lΛg resonance Rydberg

states to the n1pπu ( ) predissociation states, since
their contribution relative to the leading n0pπu series
turns out to be small [7]. We also exclude direct radia-
tive transitions from the n0lΛg states to the Schumann–

Runge continuum and to the low-lying 3pπu ( ) Ryd-
berg state interacting with it, because these are of no
interest in the spectral range under consideration. In
addition, we ignore nonradiative transitions to the dis-
sociative 23Πg state, which correlates with the products
of reaction (4) at infinity, because, according to [8], its
term crosses the ion term near the right turning point of
the vibronic (v  = 3) state and the configuration coupling
here is weak.

We perform our analysis in terms of the multichan-
nel quantum defect theory using the stationary formal-
ism of the radiative collision matrix [3]. The stationary
approach is valid if the laser-pulse duration is much
longer than the time scales of intramolecular transitions
in the intermediate complex. For example, the predisso-
ciation time scales for a highly excited XY** molecule
are of the order of 10–11 s. The intensity of typical tun-
able lasers widely used in various photoprocesses
ranges from 1012 to 1014 W/cm2, the pulse duration is
τ ~ 10–8 s, and the pulse repetition period is ∆τ ~ 10–3 s.
The broadening through saturation and the rotational
broadening here do not exceed 10–1 cm–1, while the Dop-
pler broadening is eliminated in a standard way by
means of light-beam splitting [9]. Since the accuracy of
measuring the energy dependence of the cross sections
for reaction (1) does not exceed ∆E ~ 10–3 eV, the
spread in external-radiation frequency f in the pulse
may be disregarded, assuming the radiation to be
monochromatic.

Taking into account the above constraints, we ana-
lyzed the dependences of the cross section for reaction

Σu
–

Σu
–

e– lΛ( ) O2
+ Π2

g v 0=,( )+

O2
** nk pπu Σu

–( )( ) O2
* B3Σu

–( )[ ]

O P3( ) O D1( ).+

kωf

Σu
–3

Σu
–3
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(4) on the external field frequency and strength, as well
as on the angle between the directions of the electron
beam and the electric field of linearly polarized laser
radiation.

2. AN INTEGRAL VERSION 
OF THE MULTICHANNEL QUANTUM

DEFECT THEORY

Assuming the external electromagnetic field to be
classical (taking the average number of photons to be
large, N0 @ 1), we will describe the interaction of the
XY+ + e– system with this field by a time-periodic
dependence,

(5)

Under condition (2), our analysis can then be per-
formed in terms of the stationary multichannel quan-
tum defect theory, in which the field is taken into
account by introducing quasi-energetic states and
related new channels of motion [3]. The subsequent
analysis is based on information about adiabatic terms
of the intermediate Rydberg complex XY**. We will
also deal with the rotationally adiabatic spectral range,
Bn3 ! 1 (B is the rotational ion constant and n is the
principal quantum number of the Rydberg level), where
the molecular axis during the collision is assumed to be
fixed and the analysis is carried out in the coordinate
system associated with the molecule. We define the
zero Hamiltonian H0 on a Coulomb basis in such a way
that all interactions in the isolated (diabatic) X + Y*
configuration are accurately taken into account. In that
case, in the total Hamiltonian of the system

H = H0 + V,

the operator V is the sum

(6)

where the electrostatic interaction operator

(7)

includes the non-Coulomb part of the interaction with
the ion core Vnc and the configuration interaction VCI (it
relates the e– + XY+ and X + Y* configurations, which
we denote by q and β, respectively). We also require
that the Coulomb (|qk〉) and dissociative (|βk〉) basis
wave functions be normalized on the energy scale as

Here, the total energy E of the system is measured from
the ion ground state. These wave functions are peculiar
in that at distances r of the order of atomic distances
(r ~ 1) from the ion core, they describe a fast electron
and a slow nuclear subsystem; i.e., they are adiabatic.
The functions |βk〉  can be independently calculated in
the Born–Oppenheimer approximation by conventional

u f 2V f ωf t, V fcos
Df
2

-------.= =

V Ve V f ,+=

Ve Vnc VCI+=

qk E( ) qk' E '( )〈 〉 β k E( ) βk' E '( )〈 〉 πδ E E '–( )δkk' .= =
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methods of quantum chemistry. In this case, the matrix

elements  are responsible for vibronic transi-
tions in the e– + XY+ system and are diagonal in k,
〈qk|Ve|βk〉  describe the configuration interaction of the
e– + XY+ and X + Y* states, and the elements of opera-
tor Vf couples the states with k, k' = ±1.

2.1. Basic Equations of the Theory

The multichannel quantum defect theory gives the
following fundamental equation for the radiative multi-
channel scattering T matrix [7]:

(8)

where νv, k = (–2εvk)–1/2 is the effective principal quan-
tum number that corresponds to the electron energy

The operator t describes the electron interaction with
the ion core in an electromagnetic field and satisfies the
integral equation

(9)

where the Green operator G is a smooth function of the
energy E and is represented by contributions of the
Rydberg e– + XY+ states (minus the polar singularities
attributable to the manifestation of discrete level struc-
ture of the Coulomb center) and the dissociative X + Y*
states, i.e.,

(10)

Here, P denotes the principal value of the integral. Note
that the operator G is defined without the interaction V.

Equation (8) admits an algebraic construction of the
unitary scattering S matrix (related to the T operator by
S = I – 2iT), irrespective of how many channels of
motion are taken into account. The elements  and

 with the indices of open channels [where E >
vωv + kωf and the functions cot(πνvk) = –i] describe the
amplitudes of inelastic scattering and the dissociative
recombination reaction (1), respectively. In this case,
the smallness of the configuration coupling in combina-
tion with the parameter a0/  ! 1 (a0 is the zero vibration
amplitude and  is equilibrium distance) allows us to
restrict our analysis to a finite number of vibronic states.

qk〈 |Ve qk'| 〉

T t t qk| 〉 qk〈 | πνv k( )Tcot
v k,
∑+=

– it βk| 〉 βk〈 |T,
β k,
∑

εv k Ee v ωv– kωf .–=

t V VGt,+=

G
1
π
--- P

qk| 〉 qk〈 |
εv k ε–
---------------- εd∫

v k,
∑=

+
1
π
--- P

βk| 〉 βk〈 |
E kωf– εβ–
------------------------------ εβ.d∫

β k,
∑

Tqmqm'

Tqmβm'

Re
+

Re
+
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2.2. Elements of the Reaction t Matrix

The reaction matrix in Eq. (8) is the sum of two
operators that characterize the electrostatic and field
interactions,

(11)

The electrostatic interaction elements are defined as [7]

(12)

where µlΛ is the level diabatic quantum defect (without
the configuration interaction VCI).

To within terms quadratic in Vf, the second term in
Eq. (11) responsible for the effective interaction with
the external field is

(13)

In the linear (in Vf) approximation, the matrix elements
of operator tf are

(14)

where lΛ are the Rydberg states allowed by selection
rules for a radiative transition to the final lβΛβ state of
the system. For the radial parts of the free–bound dipole
transitions specified on the Coulomb basis distorted by
the interaction with the core, we have [10]

(15)

The angular parts of the matrix element (14) in the
coordinate system associated with the molecular axis
are given by

(16)

where YlΛ – Λ'(f/ f) is the spherical function [11].

t te t f .+=

t
v kv k

'
e t

v kv k
'

0( ) 1
π
--- P

Vv kβk

e Vβkv k
'

e

E kωf– εβ–
------------------------------ εβ,d∫

β
∑+=

tv kβk

e Vv kβk

e 1
π
--- P

t
v kv k

'
0( ) V

v k
' βk

e

εv 'k ε–
---------------------- ε,d∫

v '

∑+=

tv kv k''
0( ) χv〈 | πµlΛ( ) χv '| 〉δkk' ,tan–=

t f 1 VeG E( )+[ ] V f V f G E( )V f+[ ]=

× 1 G E( )Ve+[ ] .

tvv '
f lΛ lβΛβ( )

=  
1
2
--- fr lΛ lβΛβ( )S

lΛ lβΛβ,
δv v ' ,

r lΛ lβΛβ( ) 1
π
---Γ 2

3
--- 

  4
3
--- 

 
1/3

ωf
5/3–=

× π ∆µlβΛβ lΛ,
1
6
---+ 

  ,cos

∆µlβΛβ lΛ, µlβΛβ
Re

+( ) µlΛ Re
+( ).–=

SlΛ l'Λ', 4π 2l' 1+( )
3 2l 1+( )

---------------------------=

× l'100 l0( ) l'1Λ'Λ Λ' lΛ–( )Y1 Λ Λ'–,*
f
f
--- 

  ,
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2.3. Partial and Total Cross Sections
for the Dissociative Recombination Reaction

Below, we assume that the XY+ molecular ion is in
its ground vibrational v  = 0 state. Nonradiative transi-
tions with the formation of Rydberg complexes XY**
in the v 0 = 1 and k = 0 states and transitions to the v 1 =
0 and k = 1 states, which are accompanied by the radi-
ation of a field quantum, make the largest contribution
to the reaction. Given that elements (12) and (14) are
small (in the two-channel approximation in vibronic
coupling), the partial amplitudes of these transitions in
the coordinate system associated with the molecular
axis are

(17)

where

The decay rates from the lβΛβ states in (17) appear
as follows:

. (18)

These include the partial rates of self-ionization (γi),
predissociation (γβ), and field decay (γ f ), which can be
expressed in terms of the matrix elements as

The total cross section for the dissociative recombi-
nation reaction for a transition to the dissociative β
channel is

(19)

Here, the vector n specifies the direction of the incident
electron beam relative to the molecular XY axis, θe is
the angle between the vectors n and f, g is the spin fac-
tor, Γ(x) is the gamma function, and 〈…〉  denotes aver-
aging over all possible orientations of the molecule.

Substituting (17) into (19), we rewrite it as the sum

(20)

T00β0

t00β0

e z10 iγ10

f+( ) t10β0

e t1000

e+

z10 iγ10
+

------------------------------------------------------------,=

T00β1

t0001

f lΛ lβΛβ( )t01β1

e lβΛβ( )
z01 iγ01

+
---------------------------------------------------------------------,=

zv k EelΛ( ) πνv k Ee( )( ) tv kv k

e lΛ( )–( ).tan=

γ10
γ10

i γ10

β γ10

f , γ01
+ + γ01

β γ01

f+= =

γv k

i tv k v 1–( )k

e 2
, γv k

β tv kβk

e 2
,= =

γv k

f tv kv k 1–

f lΛ lβΛβ( ) 2
.

lΛ
∑=

σ0β θe( )
8π2

Ee

--------=

× g ile
iδlY lΛ* n( )T00βk

lΛ lβΛβ( )
lΛ
∑

2

,
k 0 1,=

∑

δl Γ l 1 i
p
---–+ 

 

 .arg=

σ0β σ00β0
σ00β1

,+=
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where the first term,

(21)

describes the nonradiative (k = 0) transition and the sec-
ond term,

, (22)

is responsible for the transition accompanied by the
radiation of a field quantum (k = 1). Expression (22)
clearly demonstrates the formation of additional inter-
ference structure in the cross section (20) through the
contribution of the lΛ channels to the field-induced
population of the predissociation n1lβΛβ states.

When we calculate the quantity , it is con-
venient to pass, as in (21), to a coordinate system where
the direction of vector f is preferential. This quantity is
then defined as

(23)

Here, (α, β, γ) is the Wigner generalized spherical
function [11]; θ and ϕ, and θe and ϕe are the spherical
angles that specify the directions of the molecular axis
and the incident electron beam relative to the direction
of vector f, respectively. In this case, the angle-unaver-
aged expressions for the partial cross sections (21) and
(22) depend on θ and on the difference ϕ – ϕe. The cor-
responding averaging is subsequently performed over
them.

The general properties of the cross section (20) can
be established from the form of amplitudes (17). The
energy dependence σ0β(Ee) must have a distinct reso-
nance structure formed by the superposition of two
types of Rydberg series. The first type corresponds to
the lβΛβ series of vibronic resonances of the closed
(v = 1) channel converging to the threshold Ee = ω.
The second type must include a sequence of field-
induced Breit–Wigner resonances from the group of
optically resolved lΛ series converging to the threshold
Ee = ωf. Since ω ! ωf, these resonances are rare and

σ00β0

8π2

Ee

--------g=

× DΛm
*l

0 θ π ϕ–, ,( )Ylm
* θeϕe( )T00β0

lΛ lβΛβ( )
2

m

∑ ,

σ00β1

2π2 f 2

Ee

--------------g
γ̃01

f n f,( )γ01

β

z01
2 lβΛβ( ) γ01

2+
----------------------------------=

γ̃01

f n f,( )

γ̃01

f n f,( ) r lΛ lβΛβ( )
4π 2lβ 1+( )
3 2l 1+( )

----------------------------
lΛ m,
∑=

× lβ100 l0( ) lβ1ΛβΛ Λβ lΛ–( )DΛm
*l

0 θ π ϕ–, ,( )

∫ × Y1 Λβ Λ–, θ 0,( )Ylm
* θe ϕe,( )e

iδl

2

,

m l± l 1–( )± … 1 0.,±, , ,=

DΛm
l
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may be absent altogether in the energy range 0 < Ee < ω
under consideration.

The behavior of the partial and total cross sections
as a function of the external field strength can be
described as follows. At small f, a major factor affecting
the partial cross section (21) for the nonradiative transi-
tion must be the broadening of the resonance lines in
the lβΛβ series, which is significant for Γ f > Γe, where
the natural and field-induced FWHMs are given by

(corresponding to f ≥ 10–4 at. unit). At large field
strengths,  f > 10–2 at. unit, the cross section 
ceases to depend on f and reduces to the expression

which describes the direct transition to the dissociative
continuum (with no involvement of intermediate Ryd-
berg states) in the absence of a field.

Obviously, the dependence of the total cross section
(20) on f is more complex. Thus, at a small field
strength (of the order of 10–4 at. unit or larger), the
height of the field-induced resonance peaks must
increase as f 2. For f ~ 10–3–10–2 at. unit, the cross sec-
tion increases, producing a distinct resonance structure.
The subsequent increase in strength (up to f ~ 10–1 at.
unit) causes a smoothing of the overall pattern and a
broadening of the field-induced resonances against the
background of a slowly changing dependence on f.

It is also easy to find the dependence of the cross
section on the external radiation frequency ωf. Clearly,
it must reach a maximum at a frequency at which the
laser-induced n1lβΛβ (v  = 0) Rydberg states of the
closed channel with the excitation threshold Ee = ωf for
small principal quantum numbers n1 fall within the
electron energy range 0 < Ee < ω of interest.

3. THE WAVE FUNCTIONS AND TERMS
OF THE O2 MOLECULE

The wave functions of intermediate Rydberg states
for the Hamiltonian H0 chosen can be written as

(24)

where ϕ+(x) is the electron wave function of the XY+

ion, {x} is the set of core electron coordinates, R is the
internuclear distance, and |k〉  is the photon part of the

Γ e γi γβ+

πn1
3

---------------, Γ f γ f

πn0
3

--------= =

σ00β0

σ00β0

2π
Ee

------gγ00

β ,=

qk| 〉 π1/2φνkl r( )ϕ+ x( )χv R( )YlΛ
r
r
-- 

  k| 〉 ,=
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total wave function (24). The regular (at zero) radial
Coulomb wave function  at distances

is [10]

(25)

At small l ! |εvk|–1/3 to a first order in the small param-
eter r|εvk|, the quasiclassical phase is

For the nuclear wave functions , we may use
the quasiclassical approximation and the fact that, for a
sufficiently steep dissociative term Uβ(R) near the clas-

sical turning point , where

the Winans–Stueckelberg approximation [12] holds if

a0 @ ω:

(26)

Assuming that only one dissociative β channel exists in
the quantum system under consideration, we have for

the elements  in Eq. (12)

(27)

Here, Vβ(R) is the electron part of the configuration
interaction related to the splitting of the Rydberg lβΛβ
and dissociative β terms by

To estimate the locations of the vibronic n0lβΛβ (v  =
1) and field-induced n1lβΛβ (v  = 0) resonance levels, it
is convenient to use the adiabatic quantum defect [7]

(28)

The shift  is attributable to the second term in
Eq. (27) and is given by the expression

(29)

φνkl

l
1
2
---+ 

  2

 ! r ! Ee
1–

φνkl
2

π2r3
---------- 

  1/4

σl r( ) π l
1
4
---+ 

 – .sin=

σl r( ) 8r( )1/2 1
3
--- 2r3( )1/2 εv k .+=

χβk
R( )

Rk
*

εk E kωf– Uβ Rk
*( ),= =

Uβ'

χβk R( ) Uβ
' R( )

1/2–
δ R Rk* εk( )–( ).=
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e
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e
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0( ) 1

π
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2 R( )χv R( )χv ' R( )

εk Uβ R( )–
------------------------------------------- R.d∫+=

∆nkβ
2Vβ

πnk
3( )1/2

------------------.=

µ̃nklΛ R( ) µnklΛ R( ) ∆µnklΛ R( ).+=

∆µnklΛ

∆µnklΛ R( )

= 
1
π
---

πVβ
2 R( )

Uβ R( ) kωf UnklΛ** R( )–+
-------------------------------------------------------- ,arctan
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in which the Rydberg term is defined as

Near the equilibrium position, R = , this shift
takes the form

(30)

If ε0 + kωf < 0, then the configuration shift is negative
and the corresponding level rises. Otherwise, this level
lowers. The latter takes place for the O2 molecule.

3.1. Potential Curves

We computed the diabatic  valence term and the
ion term using the GAMESS code [13] by the multiref-
erence double configuration interaction (MRD-CI)

UnklΛ** R( ) Ui R( )
1

2 nk µ̃nklΛ R( )–( )2
----------------------------------------.–=

Re
+

∆µnklΛ Re
+( )

1
π
---

πVβ
2 Re

+( )
ε0 kωf+
--------------------- ,arctan=

ε0 Uβ Re
+( ) Ui Re

+( ).–=

Σ3 –
u

0
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U, eV

Fig. 1. Potential curves for the ground  (1), electron-

excited  (2), and ion X2Πg (3) states of the O2 mole-

cule whose energy is counted off from the  state. The

solid lines and triangles represent the results of our calcula-
tions and the data from [18], respectively.

X Σ3 –
g

B Σ3 –
g

X Σ3 –
g
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method [14] with the reference configurations obtained
by the CASSCF (complete active space self-consisted
field) method [15] over the complete valence space
(2σg, 2σu, 3σg, 1πu, 1πg, 3σu) in the single-electron
basis [6s, 3p, 2d, 1f] taken from [16]. The absence of
diffuse Gaussian functions made it possible to obtain
the diabatic valence terms with no admixture of Ryd-

berg states. The  term was computed in the D2h sym-
metry with the wave function averaged over two lower
states. Here, we used 48 reference configurations and
performed the subsequent MRD-CI computation with
1 189 512 CSF (configuration state function) configura-
tions. The corresponding CASSCF wave function of
the ion was computed with averaging over two degen-
erate components of the 2Πg state. The MRD-CI exten-
sion included 1 564 542 CSF configurations. Our com-
puted ion term was slightly underestimated in energy
because of the characteristic features of the MRD-CI
method itself. It had to be displaced upward along the
energy scale, as is usually done (see, e.g., [16]), to
reproduce the experimental ionization potential [17].
Our final results are shown in Fig. 1. The computed
terms agree well with the data from [18], and the direct-
transition energy is ε0 = 0.713 eV. Therefore, we used
the results from [18] for the electron part of the config-
uration interaction Vβ(R).

4. THE CROSS SECTION 

FOR THE e– +  REACTION 
IN AN EXTERNAL ELECTROMAGNETIC FIELD

We computed the cross section for reaction (4) in the
seven-channel approximation [five open (v  = 0) chan-
nels, one closed (v  = 1) channel, and one open dissocia-
tive β channel] using formulas (20)–(23). In the energy
range Ee ≤ 0.6 eV of interest, there are no vibronic
states with v  ≥ 2 and using this approximation is quite

justifiable [19]. We took  = 0.74 [20] for the

diabatic quantum defect of the intermediate pπu( )
series; the derivatives calculated from the data in [21]
are

The corresponding parameters for the entrance chan-
nels sσ, dσ, dπ, and dδ were determined in a similar way.
The Frank–Condon factors appearing in the definition

of the partial predissociation rates were computed

with the Morse vibrational wave functions [22] for the ion
term Ui(R) and with the wave functions (26) for the disso-
ciative term Uβ(R). These terms are shown in Fig. 1.

Σ3 –
u

O2
+

µpπu
Re

+( )

Σ3 –
u

µpπu
' Re

+( ) 0.07, µpπu
'' Re

+( ) 0.02.= =

γv k

β
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4.1. Energy Dependence of the Cross Section

The dependence of the cross section on the incident
electron energy Ee for various field strengths f calcu-
lated with ωf = 24040 cm–1 and θe = π/2 is shown in
Fig. 2. In the absence of any field (f = 0), we observed
the characteristic Fano–Feishbach resonance structure
produced by a nonradiative transition with the popula-

tion of the intermediate n0pπu( , v 0 = 1) Rydberg
series, which decays into the dissociative Schumann–
Runge continuum (1D + 3P). The parentheses (n0, v 0)
and arrows denote the corresponding resonance lines.
The first resonance (with a dip near Ee = 0.03 eV) cor-
responds to the principal quantum number n0 = 9. Here,
the frequency ωf is chosen in such a way that the field-

induced resonances n1pπu( , v 1 = 0) from the
entrance channels of electron motion sσ, dσ, dπ, and dδ
are located near this dip. This value significantly
exceeds the vertical transition energy (see Fig. 1).

As would be expected, the field-induced resonances
clearly show up starting from f  ≥ 10–3 at. unit. They cor-
respond to n1 = 3 and are split through the intense field
interaction. The largest field effect is reached for f ≥
10−2 at. unit. A noticeable field effect is also observed in
the wings of the energy dependence at f ≈ 10–1 at. unit.

4.2. Dependence of the Cross Section 
on Frequency ωf

The frequency dependence of the cross section is
shown in Fig. 3 for three electron energies Ee. It is bell-
shaped with the energy-dependent maximum at

, at which the cross section increases approxi-
mately by two orders of magnitude relative to the charac-
teristic frequencies in the wings of this curve. The field
effect is largest for the electron energy Ee = 0.03 eV at

 = 24040 cm–1. In the energy range 0 < Ee ≤ 0.6 eV

under consideration, the  range lies outside the
interval ∆ωf = 23000–25000 cm–1 and belongs to the
visible spectral range. The latter is of particular impor-
tance in using tunable lasers to measure the cross sec-
tion for reaction (4). The interval ∆ωf does not depend
on the field strength or on the angle θe between the vec-
tors n and f.

Here, the energy dependence of  turns out to be
linear and is determined by the second term in expres-
sion (20), which describes the transition with the radia-
tion of a field quantum (k = 1), from the condition
z01(Ee, lβ, Λβ) = 0. At low energies, Ee ! 1, this depen-
dence can be represented as

(31)

Σ3 –
u

Σ3 –
u

ωf
max Ee( )

ωf
max

ωf
max

ωf
max

ωf
max Ee( ) ωf

max 0( ) Ee,+=
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Fig. 2. Cross section for the reaction  + e–  O(1D) +

O(3P) versus electron energy Ee for the following external-

field strengths: f = 0 (thin line), 5 × 105 (squares), 5 × 106 (cir-
cles), 5 × 107 (heavy line), and 5 × 108 (triangles) V/cm.

O2
+ kωf
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24000

σ0β, cm2
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10–13

10–12

23000 25000
10–15

Fig. 3. Cross section for the reaction  + e– 

O(1D) + O(3P) versus frequency ωf calculated at f = 1.15 ×
108 V/cm and θe = π/2 for three electron energies: Ee =
0.005 (heavy line), 0.015 (thin line), and 0.03 eV
(squares).
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where, according to (30),  is the solution to the
transcendental equation

(32)

and is approximately equal to 0.108.

ωf
max 0( )

ωf
max 0( )

π2

2
-----=

× µn1lβΛβ
Re

+( )
1
π
---

πVβ
2 Re

+( )
ε0 ωf

max 0( )+
-----------------------------arctan+

 
 
 

2–

0.5

0 2 × 108

σ0β,10–13 cm2

f, V/cm

1.0

1.5

2.0

4 × 108

Fig. 4. Cross section for the reaction  + e–  O(1D) +

O(3P) versus external-field strength f.
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Fig. 5. Cross-section ratio σ0β(θe)/σ0β(θe = π/2) versus θe

calculated at Ee = 0.03 eV and ωf = 24040 cm–1 for three

external-field strengths: f = 5 × 108 (1), 5 × 107 (2), and 5 ×
106 (3) V/cm.
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4.3. Dependence of the Cross Section 
on External-Field Strength

The dependence of the cross section on f is shown in
Fig. 4 for the following parameters:

for which the effect is at a maximum and the cross sec-
tion for reaction (4) increases by five orders of magni-
tude (see Fig. 2). The computed curve faithfully repro-
duces the salient features of the field effect on the dis-
sociative recombination reaction: the quadratic
increase in cross section for small f, its peaking at f max =
1.15 × 108 V/cm, and the falloff proportional to 1/f 2 at
large f. Such a situation is typical of the radiative and
collisional processes involving intermediate Rydberg
states [23, 24].

5. ANGULAR DEPENDENCE

The angular dependence of the cross section ratio
σ0β(θe)/σ0β(π/2) computed for three field strengths f at
a fixed incident electron energy, Ee = 0.03 eV, is shown
in Fig. 5. We see that, at small angles θe, the cross sec-
tion slightly rises with external field strength. The max-
imum value does not depend on f and is reached at θe =
π/2 when the electron and light beams are directed at a
small angle to each other. Under these conditions, the
interaction region is extended enough and the field
effect is largest.

The dependence of the relative cross section on the
electron energy Ee shows a similar pattern. The distinc-
tion lies in the behavior of the cross section at small
angles θe, where this dependence is irregular.

6. CONCLUSION

Let us now discuss the most important results of our
study. First, note that the efficiency of the field effect on

the dissociative recombination reaction e– +  
O(1D) + O(3P) is achieved by purposefully creating the
resonance conditions that allow one to populate the
field-induced intermediate n1pπu(v 1 = 0) Rydberg states
with small principal quantum numbers n1 whose pre-
dissociation rate is high enough. In this case, the range
of incident radiation frequencies ωf in which these con-
ditions are realized lies in the visible spectral range, for
which the characteristic induced-transition energies are
much higher than the energy ε0 (see Fig. 1).

An important merit of our theory is its simplicity.
This is achieved by limiting the range of incident elec-
tron energies Ee in which there are no resonances from
far Rydberg series with large vibrational quantum num-
bers (v  ≥ 2). Note also that, for an optimum choice of
the system parameters (ωf, f, and θe), the field effect
enhances reaction (4) by several orders of magnitude,
which may serve as a reliable criterion when carrying

Ee 0.03 eV, ωf
max 24 040 cm 1– , θe π/2,= = =

O2
+
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out the corresponding experiments. It may also well be
that using circular rather than linear light polarization is
most convenient for measurements. This requires a cer-
tain modification of the theory when calculating the
field matrix elements but will not lead to fundamentally
new results.

The problem becomes more difficult when the inci-
dent electron energy Ee increases, which requires incor-
porating a larger number of vibronic states and new
decay channels of the intermediate complex XY** into
the overall scheme. These include, for example, the dis-
sociative 22Πg configuration; the interaction with the
latter necessitates allowance for the coupling between
the sσ and dσ channels of motion [19]. The question
arises as to what the influence of the rotational excita-
tion of the initial  ion on the rate of reaction (4) is.
Its solution requires developing a special procedure for
deciphering the resonance structure of the cross sec-
tion. All these questions need to be theoretically stud-
ied, because increasing the reaction temperature signif-
icantly enhances the experimental capabilities.
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Abstract—The inner characteristics and kinetics of Rydberg atoms (RAs) excited selectively over energy in a
buffer gas are considered using the kinetic equation for a classical distribution function of Rydberg electrons
(REs). The distribution of REs over coordinates and velocities in a moving RA is found in the general case. In
a moving RA, the effect of “blowing off” an electron cloud by a buffer gas is substantial. In this case, however,
the average values of the kinetic and potential energies of REs weakly deviate from those predicted by the virial
theorem. The latent and macroscopic polarizations of the medium caused by the blowing-off effect are pre-
dicted. The macroscopic polarization appears upon velocity-selective excitation of RAs and produces the bias
current, which transforms to a usual electric current when the integrity of the RA is lost due to the blowing-off
effect. The calculated “electron” contribution to the transport frequency of collisions of the RA with buffer gas
atoms proved to be small compared to that from the ion core. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Rydberg states of atoms are currently exten-
sively studied both theoretically and experimentally [1–
7]. It is possible now to excite the Rydberg states of
alkali metal atoms selectively both over energies and
velocities using a variety of experimental methods.
There are conventionally three most important groups
of problems in the study of the Rydberg states of atoms
and molecules that are widely investigated at present.
Great attention has been paid to the study of the change
in the energy and angular momentum of Rydberg atoms
(RAs) in collisions with buffer particles (atoms, ions,
molecules, etc.) [3, 5, 6] upon energy-selective excita-
tion of RAs. The detailed studies of the interaction of
RAs with electromagnetic waves (laser radiation,
microwave radiation in a high-Q resonator) yielded a
number of fundamental results [7, 8]. Finally, recent
investigations of the dynamics of wave packets of
highly excited Rydberg states produced upon excitation
of RAs by ultrashort laser pulses [9, 10] opened up the
possibility for studies in the intermediate field between
quantum and classical mechanics.

In this paper, we study the inner characteristics and
kinetics of a RA selectively excited over energy or
velocity and analyze its collisions buffer particles. It is
known that the movement of Rydberg electrons (REs)
in the hydrogen-like potential of an atomic core can be
described classically with good accuracy. It is impor-
tant in this case that electrically neutral buffer atoms do
not interact with the RA as a whole, REs and the ion
core behaving as independent scattering centers.
1063-7761/02/9403- $22.00 © 20498
Collisions of a RA with thermal buffer gas atoms
have been analyzed for the first time by Fermi [11].
Fermi showed that for some processes characterizing
the RA as a whole the dominant factor is collisions of
REs with buffer atoms, while the interaction of REs
with the ion core can be neglected during collisions.
During a collision with a much heavier buffer atom, the
RE rapidly loses its momentum, whereas its kinetic
energy changes during many collisions (energy diffu-
sion).

In this paper, we will follow the approach that was
first proposed by Pitaevsky [12], who described the
bound and free states of electrons by a single classical
distribution function. This approach proved to be very
efficient for studying characteristics of weakly ionized
plasma. We will use the concept of the RE “gas” from
this approach and introduce a classical distribution
function for this gas, which satisfies the Boltzmann
equation. Unlike the formulation of the problem in
[12], in our case, REs are created not from free elec-
trons but from low-lying energy states upon selective
laser excitation.

Thus, our approach is based on the introduction of
the distribution function of REs over velocities and
coordinates (relative to the atomic core) and of the col-
lision integral for REs and buffer atoms. Using these
functions, we solve the corresponding kinetic equations
for the RE “gas.”

By using the kinetic Boltzmann equation, we found
the distribution function of REs both in the absence of
the directional RA flux and in its presence. The direc-
tional RA flux distorts the spatial distribution of REs
relative to the ion core and the velocity distribution of
002 MAIK “Nauka/Interperiodica”
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REs. We found out that in this case a permanent dipole
moment of the RA appears, which is manifested either
as polarization of the gas or in the latent form (for RA
subensembles with the specified velocity of the direc-
tional movement), or in the explicit macroscopic form
(upon velocity-selective excitation of Rydberg states).
We obtained the relation between the average potential
energy and the average kinetic energy of REs as an ana-
log of the known virial theorem. We also calculated the
contribution of REs to the transport frequency of colli-
sions of RAs with buffer atoms.

2. CLASSICAL REGION FOR RYDBERG 
ELECTRONS AND THE l MIXING

It is well known that the movement of a particle can
be described quasi-classically if its de Broglie wave-
length is much shorter than the characteristic spatial
scale of the problem. For the |n, l 〉 state with the princi-
pal quantum number n and the orbital quantum number
l, the corresponding condition of the classical behavior
in a Coulomb field is well known:

n @ l, l @ 1. (1)

“An accidental” degeneracy in the Coulomb field
results in the independence of the |n, l 〉  state energy of
the quantum number l, and the degeneracy order of the
|n, l 〉  state equals n2.

A sufficiently high excited state of the RE (n * 10)
tends naturally to the classical limit (1). In the simplest
model, we can neglect the difference between the ion-
core potential in which the RE moves and the Coulomb
potential. In this case, the RE state proves to be degen-
erate in l. Collisions with buffer particles efficiently
mix degenerate states with different l (the so-called
l mixing [5, 6]). For this reason, the velocity distribu-
tion of REs tends to the isotropic distribution even at
not very large quantum numbers n.

To take into account the difference between the ion-
core and Coulomb potentials, the l-mixing process
should be analyzed in more detail. The non-Coulomb
interaction of the RE with the ion core results in the
shift of the energy level Enl of the |n, l 〉  state and
removes the “accidental” degeneracy according to the
Rydberg formula

(2)

where R∞ is the Rydberg constant and δl is the quantum
defect depending on l. The quantum defect δl rapidly
decreases with increasing l in the interval l = 0, 1, …, n – 1.
For fixed l, the quantum defect increases with increas-
ing atomic number of the RA (table). In the state with
l = 0 (the s state), the RE has the maximum impact
parameter relative to the nucleus (the so-called pene-
trating orbits), so that the wave functions of the RE and
ion core strongly overlap. For this reason, the s state has
a small quantum defect.

Enl

R∞

2 n δl–( )2
-----------------------,–=
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The energy interval in which the levels with speci-
fied values of n and different l = 0, 1, …, n – 1 for n @ 1
are located is, according to expression (2),

(3)

This interval becomes small relative to the thermal
energy of a buffer particle when n3 > R∞δ0/kBT ≈ 103δ0,
where kB is the Boltzmann constant and T is the temper-
ature (we used room temperature for the estimate).
Based on this estimate and taking into account the data
in the table, we can expect that efficient l mixing can
occur even at n > 10–15. The estimate of the efficiency
of l mixing using the Massey parameter yields approx-
imately the same result.

Therefore, the motion of the RE can be treated as
classical, with a rapid establishment of the isotropic
velocity distribution compared to a slow (diffusion)
process of the energy change.

3. KINETIC EQUATIONS 
FOR “GAS” OF RYDBERG ELECTRONS

The distribution function f(r, v) of REs in the poten-
tial U0(r) obeys the kinetic equation

(4)

where me is the electron mass and S(r, v) is the integral
of collisions between the RE and buffer-gas atoms. The
function f(r, v) is naturally normalized as

(one electron per Rydberg atom). In particular calcula-
tions of the distribution function for the RE, we will use
the Coulomb potential

of the ion core, where e is the electron charge.

∆E
R∞δ0

n3
------------.≈

t∂
∂

f r v,( ) v ∇⋅( ) f r v,( )+

–
1

me

------ ∇ U0 r( )
v∂

∂⋅ 
  f r v,( ) S r v,( ),=

f r v,( ) rd vd∫∫ 1=

U0 r( ) e2

r
----–≡

Limiting (for n @ 1) values of the quantum defect δl [14] for
the states of alkali-metal atoms

|n, 0〉 |n, 1〉 |n, 2〉 |n, 3〉

Li 0.4 0.05 0.002 –0.00008

Na 1.35 0.85 0.015 0.0014

K 2.18 1.71 0.28 0.01

Rb 3.13 2.65 1.347 0.0163

Cs 4.05 3.6 2.47 0.0334
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The collision integral S(r, v) has the following form:

(5)

where the collision frequency νe(v) is related to the ker-
nel A(v |v') of the collision integral by the known
expression

(6)

which follows from the condition of conservation of the

number of particles in elastic collisions ( dv = 0).

Equation (4) has the same form in any reference sys-
tem. We will use two reference systems: the reference
system coupled with the ion core of the RA (to describe
the RE state in the RA) and the laboratory system in
which buffer gas is immobile as a whole and has an
equilibrium velocity distribution and in which the char-
acteristics of the collision integrals are usually simu-
lated and determined. In the first system, we will use
the notation of Eq. (4) for coordinates and velocities of
REs. We denote the RE velocity in the laboratory sys-
tem as w. The distribution function for REs in the labo-

ratory system is , where  = rR + r and rR is the
radius vector of the ion core of the RA in the laboratory
system. For the specified velocity u of RAs in the labo-
ratory system and the spatially uniform distribution of

their concentration, the functions  and f are related by
the expression

The function f(r, v) depends parametrically on u.

We can obtain hydrodynamic equations from kinetic
equation (4) taking into account expression (5). To do
this, we introduce the corresponding hydrodynamic
characteristics of the RE gas: the density f(r) and flux j,
the pressure tensor Pαβ (α, β = x, y, z)], and the internal
frictional force F(r) for electrons

(7)

The continuity equation

(8)

is obtained after integration of the kinetic equation (4)
over velocities taking into account the conservation of
the number of particles. By multiplying Eq. (4) by v

S r v,( ) νe v( ) f r v,( )– A v v'( ) f r v',( ) v',d∫+=

νe v( ) A v' v( ) v',d∫=

S r v,( )∫

f̃ r̃ w,( ) r̃

f̃

f̃ rR r+ u v+,( ) f r v,( ).=

f r( ) f r v,( ) v, jd∫ v f r v,( ) v,d∫= =

Pαβ me v αv β f r v,( ) v, α β,d∫ x y z,, ,= =

F r( ) me vS r v,( ) v.d∫=

t∂
∂

f r( ) div j+ 0=
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and integrating the result, we obtain the equation of the
hydrodynamic Euler equation type

(9)

Consider the general case of the directional move-
ment of the RA at the velocity u. We will use the known
expression (see, for example, [13]) for the frictional
force in the rest system of buffer gas

(10)

where (w) is the transport collision frequency for

electrons and (w', w) is the kernel of the collision
integral for REs in the laboratory system. Taking into
account the invariance of the force relative to inertial
reference systems, we can readily express F(r) in terms
of the distribution function of REs in the reference sys-
tem coupled with the RA:

(11)

Note that u ~  ! , where  and  are the
average (most probable) velocities of the RA in the gas
mixture and of the RE, respectively. Therefore, we can

set (|u + v |) ≈ (v) in integral (11) with good accu-
racy. Thus, we have

(12)

The quantity (v) is a sufficiently smooth function of
the velocity modulus. Therefore, upon excitation of the
RE to the state with the energy En at the stage of the
process when the diffusion of energy was not yet man-

ifested, we can take out (v) from the integral sign in
(12) with the value of v  equal to v n(r), which is speci-
fied by the value En of the total energy of the RE and is
determined by the law of conservation of energy for the
specified point r. As a result, we obtain

(13)

We will solve hydrodynamic equations (8) and (9),
taking into account (13), beginning from the simplest
case of an immobile RA in the reference system cou-
pled with the buffer gas (u = 0). We assume that the
directions of velocities of REs were efficiently mixed in
collisions. From the point of view of Eqs. (8) and (9),
this means the stationary conditions under which the
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pressure tensor can be calculated using the approxima-
tion

(14)

for the distribution function.
In this case, the problem has an obvious spherical

symmetry. The RE velocity v n(r) is related to the total
energy En and the potential energy U0(r) by the expres-
sion

(15)

The frictional force for the RE gas in Eq. (9) vanishes
due to symmetry. The distribution function (14) gives
the following expression for the pressure tensor:

(16)

Under stationary conditions, Eq. (9) takes the form

(17)

It follows from relation (15) that ∇ U0(r) = –me∇ ( /2).
After substituting into (17), this leads to the equation

(18)

with the obvious spherically symmetric solution

(19)

We determined the integration constant C from the nor-
malization condition for the distribution function

the integration region being limited by the classical
condition |En | + U0(r) < 0.

Below, we will use the convenient atomic characteris-
tics [14]: the Rydberg constant R∞ = mee4/"2 = 27.21 eV;
the Bohr radius a0 = "2/mee2 = 5.3 × 10–9 cm; the atomic
frequency unit ν0 = mee4/"3 = 4.13 × 1016 s–1; and the
atomic velocity unit v 0 = e2/" = 2.18 × 108 cm/s.

With the use of these characteristics, the density dis-
tribution of REs in the RA is described by the expres-
sion

(20)

The radius rn determines the classical region for REs
with the specified total energy En. Note that upon nor-
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malization of r to rn, the distribution function f(r) for
REs is universal.

The total distribution function for REs (14) can be
represented in the form

(21)

Figure 1 (curve 1) shows the radial distribution

function f(r) = 4πr2f(r) (  = 1). One can see from

this figure, in particular, that the RE is located far from
the nucleus on average. The mean distance  =

 proves to be equal to

After integration of the total distribution function
(21) over coordinates r, we obtain the distribution of the
RE velocities in RAs:

(22)

The scale of variation in the function f(v ) is specified
by the quantity v 0/n, which is close to the mean velocity
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Fig. 1. Radial distribution of the probability of the RE loca-
tion. Curve 1 corresponds to the immobile RA; curves 2 and
3 correspond to the moving RA for α = 0.5 and 1, respec-
tively.
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This distribution function is shown in Fig. 2 (curve 1).
Note that for v  > v0/n, the value of f(v) strongly
decreases with increasing v  (proportionally to 1/v 6):
the contributions from both small and large velocities to
the velocity distribution of REs are small. Similar to
f(r), the distribution f(v) for REs is universal (indepen-
dent of En) when v  is normalized to v0/n.

In the classical case, the RE moves along a certain
Kepler orbit around the ion core by retaining the mag-
nitude and direction of the angular momentum. The RE
trajectory changes in collisions with buffer atoms. Pro-
vided the total energy is conserved, this is equivalent to
the mixing of states with different values of the angular
momentum (l mixing). It is natural that the state of an
individual RE can no longer be characterized by the
conserved momentum. It is interesting to calculate the
distribution of REs over the angular momentum after
the l mixing. We decompose the velocity v in the distri-
bution function (21) into the radial v r and tangential v τ
components. Then, we consider the combination
f(r, v)drdv and integrate it over angles and the radial
velocity (the value of the latter does not affect the value
of the angular momentum). As a result, we obtain the
combination f(r, L)drdL, where

(23)

Here, L is the value of the RE angular momentum, and
Ln is the maximum value of L for the specified total
energy. The function f(r, L) is the distribution function
of REs over the angular momentum and radius. Note
that the RE angular momentum is small in the inner and
outer regions of the RA, as follows from (23). The max-
imum value of L is achieved at the point r = rn/2.

f r L,( )
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Fig. 2. The RE velocity distribution in the average-volume
RA. Curve 1 corresponds to the immobile RA; curves 2 and
3 correspond to the moving RA for α = 0.5 and 1, respec-
tively.
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For the specified value of L, the function f(r, L) coin-
cides, with an accuracy to a normalization factor, with
the square of the modulus of the radial part of a quasi-
classical wave function (see, for example, [15]) aver-
aged over spatial oscillations. This coincidence is quite
obvious and confirms the validity of expression (23).

By integrating function (23) over r, we obtain the
distribution function of REs over the angular momen-
tum:

(24)

The distribution over L represents a linear function with
a sharp cutoff at L = Ln. The mean value  of the RE
angular momentum is

(25)

which is equal to 2/3 of the maximum value of L. The
function f(L) coincides, as it should, with the quantum-
mechanical result. In the latter case, the result is
obtained without any calculations—it is sufficient only
to assume that the complete l mixing occurs and to take
into account the statistical weight (2l + 1) of the level
with the quantum number l.

For a particle moving in a potential representing a
homogeneous function of coordinates, the virial theo-
rem is valid in both classical and quantum mechanics.
In particular, the kinetic energy  averaged over the
period of motion of the RE and the mean potential
energy  in the Coulomb attraction potential U0(r) =
−e2/r are related by the known expression

(26)

The distribution (21) allows us to calculate the mean
values of the kinetic and potential energies of the RE,

(27)

in complete agreement with the virial theorem (26) for
the RE motion in the Coulomb potential.

Note in conclusion of this section that, after l-selec-
tive excitation of a Rydberg state (upon laser excitation
from deep energy states, the initial value of l is small),
the complete l mixing occurs for the time of the order

of  if the RA size does not strongly exceed the
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electron mean free path. This follows from both the
general physical considerations and the Euler equa-
tion (9), taking into account relation (13) between the
frictional force and the flux. This time is substantially
shorter than the energy diffusion time for REs and the
mean free time of the RA (the latter is characterized by
its own transport collision frequency; see below). This
justifies the separation of the intermediate stationary
stage in the total relaxation process for the RE gas.

4. DIRECTIONALLY MOVING RYDBERG ATOMS

Consider a flux of Rydberg atoms moving at the
velocity u ≠ 0 in buffer gas. Before solving stationary
hydrodynamic equations (8) and (9), taking into
account expression (13) for the frictional force, we
present some important qualitative considerations. Let
us discuss the part of the frictional force (13) that is
caused by the directional movement of RAs:

(28)

This force causes the displacement of the electron
cloud relative to the ion core (“blowing off” of elec-
trons by the buffer gas). If the velocity u is not very
high, the RA is conserved as a whole but the electron
density is no longer spherically symmetric. Note that,

for the transport collision frequency  dependent
on the velocity, the frictional force Fu(r)/f(r) acting on
a RE is not a potential force (curl[Fu(r)/f(r)] ≠ 0). This
means that the electron flux j that appeared at the initial
instant of time under stationary conditions does not
vanish even when the RA is conserved as a whole but
has the spatial inhomogeneity corresponding to the cir-
culation of the electron “gas” in the RA.

The problem is substantially simplified when the
dependence of the transport collision frequencies on

the velocity can be neglected (  ≡ ). In this
case, the force Fu(r) can be written in the potential form

(29)

This means that, in the reference system coupled with
the RA, the additional potential energy

is produced for the electron due to frictional forces.
Therefore, the evolution of the RE “gas” occurs in the
effective potential

(30)

Because this potential is no longer spherically symmet-
ric, the established electron density also will not be
spherically symmetric (blowing off by the buffer gas),
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and neither will the kinetic energy of REs, for which the
relation

(31)

is now valid when the total energy is specified.
Under stationary conditions and neglecting the

energy diffusion, the distribution function f(r, v) has
the same form (14), taking into account that v n is no
longer a spherically symmetric function of coordinates
but is determined by expression (31), i.e.,

(32)

We directed the z axis of the cylindrical coordinate sys-
tem along the vector u.

Let us substitute expression (14) with v n(r) from
(32) into expression (7) for the pressure tensor and into
Eq. (9) under stationary conditions (taking into account
that for the frictional force of the potential type (29) the
flux j vanishes at each point). As a result, we obtain the
differential equation for the spatial distribution of the
electron density in the RA, which coincides with
Eq. (17) after the replacement of v n(r) and U0(r) by
v n(r) and Utot(r), respectively. This equation can be
transformed to Eq. (18) in the same way by retaining
the above substitution. The solution to this equation
(which now has only cylindrical symmetry) is

(33)

where θ is the rotation angle between the vectors u and
r, so that rcosθ = z. The integration constant C ' is deter-
mined by the normalization condition

(34)

We introduced functions ϕkm(α), which are useful for
further analysis and are determined by the expression
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The integrals in (35) can be reduced to hypergeometric
functions; however, the integral representation of the
function ϕkm(α) proved to be more convenient for
numerical calculations. Taking into account the first
terms of the expansion in α, we have

(36)

Here, Γ(s) is the gamma function. By calculating C' and
other characteristics, one should remember that the
integration region is limited by the classical condition
En – Utot(r) ≥ 0. This region is not spherically symmet-
ric and is determined by the inequality

namely,

(37)

This condition determines the boundaries of the RA.
For θ = 0, the boundary value of r is smaller than rn,
whereas for θ = π, on the contrary, the boundary value
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Fig. 3. Cross sections of classically accessible regions of the
RE movement (37) by a plane passing through the z axis.
Curve 1 corresponds to the immobile RA; curves 2 and 3
correspond to the RA moving along the z axis for α = 0.4
and 1, respectively.
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of r is greater than rn. If α > 1, the radicand in (37)
becomes negative for θ = π. Physically, this means that
the RA loses its integrity due to ionization (electron
blowing off) caused by the frictional force produced by
the buffer gas.

Figure 3 shows the boundaries of the RA in the xz
plane according to expression (37) for several values of
the parameter α. The case α = 0 (u = 0) corresponds to
the spherically symmetric solution (21). The case α =
0.4 demonstrates a comparatively weak deformation of
the region of motion of REs produced by the frictional
force caused by the directional motion of RAs. The
maximum distortion of the region of finite motion is
achieved for α = 1. In this case, the attraction force of
the ion core is equal to the frictional force at the point
z = –2rn, which is the most remote from the nucleus (the
so-called Lagrange point in classical mechanics).

Consider the characteristic values of the parameter
α under real conditions. The transport cross section for
the polarization interaction potential is described by the
expression [16]

(38)

where β is the polarizability of a neutral collision part-
ner of a charged particle (with the charge e), µ is the
reduced mass, and v rel is the relative velocity. By using
formula (38), we obtain for the transport collision fre-
quency for REs

(39)

Here, Nb is the concentration of buffer particles, and a0
and v 0 are the atomic units introduced above. Thus, we
have

(40)

We can assume for estimates that β ~ . Then, for the
buffer gas pressure equal to 1 Torr at room temperature,
we obtain (Nb ~ 3 × 1016 cm–3, u ~ 105cm/s)

α ~ 2 × 10–10n4.

Recall that the parameter α determines the degree of
violation of the spherical symmetry in the region (37).
This parameter is small in rather realistic situations. For
example, for n < 100, we have α < 10–2. For this reason,
the first terms of the expansion of physical characteris-
tics in this parameter are important. On the other hand,
because the value of α rapidly increases with increasing
n, the value of α becomes comparable with or greater
than unity already for n > 300. This means that in this
case the RA is efficiently ionized due to the blowing off
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of REs. The distance to the ionization limit for the
immobile RA at n = 300 is about 10–4 eV, which is con-
siderably lower than the mean thermal energy of gas
particles. Therefore, it is most likely that the ionization
of the RA will be mainly determined by other mecha-
nisms rather than by the electron blowing off.

The function (33) characterizes the electron density
of the RA. The function f(r) normalized by the relation

dr = 1 is also useful. This function gives the prob-

ability for an electron to be at the distance r from the
nucleus and is described by the expressions

(41)

where

Curves 2 and 3 in Fig. 1 are plotted using these expres-
sions for α = 0.5 and 1, respectively. These curves dem-
onstrate the influence of the blowing-off effect on the
radial distribution of the probability of the electron
location.

Due to the blowing-off effect, the effective potential
energy Utot [see (30)] for REs is no longer a uniform
function of coordinates and, hence, the virial theorem is
not valid. The mean potential energy  calculated
using the distribution function (33) has the form

(42)

The dependence of  on α is presented in Fig. 4a.
Within the entire interval of variation in α where the
RA integrity is conserved, the value of  varies
weakly (by no more than 6%) compared to its change
predicted by the virial theorem. Therefore, we can
assume that the virial theorem remains valid with a suf-
ficient accuracy. Note also that the expression

based on the first terms of the expansion of ϕkm(α) [see

(36)] represents a good approximation of .
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Taking the above consideration into account, the
total distribution function f(r, v) is described by the
expression

(43)

where the velocity v n(r) is defined by expression (32).
After integration of expression (43) over coordi-

nates, we obtain the velocity distribution of REs

(44)

Curves 2 and 3 in Fig. 2 represent the velocity distribu-
tions of REs for α = 0.5 and 1, respectively. Note that
the velocity distribution function is distorted negligibly
over the entire interval of variation in α (when the RA
integrity is conserved). This fact is rather unexpected
because the size and shape of the RA itself strongly
change due to the blowing-off effect for α ≈ 1.

5. COLLISION-INDUCED DIPOLE MOMENT
OF THE RYDBERG ATOM

The asymmetry of the density distribution of REs
along the direction of the vector u means that the RA
has the nonzero electric dipole moment

The integration with the distribution function (33), tak-
ing expression (34) into account, gives the result

(45)

The dependence of d/ern on α is shown in Fig. 4b.
According to the result obtained, the dipole moment of
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Fig. 4. Dependence of the mean potential energy (a) and the
induced dipole moment (b) on the RA velocity (on the
parameter α).
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the RA reaches the value dmax ≈ ern/4, which is a huge
value at the atomic scale (d0 = ea0). In the linear approx-
imation in α, which, as one can see from Fig. 4b, is
valid over almost all values of α under study, we can
obtain, using (36)

(46)

where d0 is the natural atomic unit for measuring the
dipole moment. According the above estimate of α, the
induced dipole moment begins to exceed substantially
the value of d0 for n = 100.

The presence of unidirectional dipole moments for
individual atoms means the existence of the macro-
scopic polarization of the medium. If the RA gas is in
equilibrium with the buffer gas, it is clear that the mac-
roscopic polarization of the medium is absent due to the
symmetry. However, we point out that the so-called
latent polarization takes place, namely, the polarization
of a subensemble of RAs moving in the reference sys-
tem coupled with the buffer gas. This polarization can
be revealed in velocity-selective physical processes.

The macroscopic polarization of the RA gas can
also be produced. In particular, a velocity-selective
source of RAs can be created using laser excitation of
atoms to Rydberg states. In this case, the selectivity
over velocities is provided by the Doppler effect. Under
appropriate conditions, only such RAs will be produced
that have the projection of the velocity on the specified
direction (the x axis) near some (resonance) value ux0.
In the approximation linear in α, the macroscopic
polarization of the medium appears along the x axis:

(47)

Here, NR is the concentration of the RA flux. The polar-
ization of the medium can be manifested as optical
activity and other physical effects.

If Rydberg states are excited by pulsed laser radia-
tion, then the creation (and subsequent relaxation) of
polarization of the medium will result in the appearance
of a bias current, which can be directly detected in
experiments. Let us make some relevant estimates. The
dipole moment of the RA is formed during the time of

the order of . For the buffer gas pressure of about

1 Torr and β ~ , we have, according to (39),

 ~ 10–8 s.

It follows from this estimate that the duration of pulses
emitted by existing pulsed lasers is suitable for achiev-
ing the maximum effect. The relaxation time of the
induced polarization coincides with the relaxation time
of the directional motion of RAs and is determined by

the value of , where  is the transport collision
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frequency for RAs. We will show below that this value

is smaller by a factor of  than  (MR is the
RA mass). Therefore, the bias current is maximal at the
stage of polarization formation, when it is determined
by the relation

(48)

For the values of parameters used above and for NR ~
1013 cm–3, we have

i ~ 10–3 A/cm2.

This value can be measured experimentally. The value
of i increases with increasing Nb and n; however, it is
limited by the value

(49)

when the RA integrity is conserved. For NR ~ 1013 cm–3

and ux0 ~ 105 cm/s, we obtain i ~ 0.16 A/cm2.

Note that the disturbance of the RA integrity caused
by the blowing-off effect results not in the disappear-
ance of the electric current but in some modification of
the current, which is now not a bias current but a usual
current caused by the motion of the ion core. The latter
loses its directional velocity much slower than the
ejected electron. This current can exist in a continuous
regime as well, and its magnitude is described by
expression (49), in which NR is the concentration of
directionally moving ion cores. The physical nature of
the ion current is equivalent to that of a photoinduced
current (see, for example, [17] and references therein).
In this case, the velocity-selective ionization is caused
by the electron blowing-off effect.

6. CONTRIBUTION OF RYDBERG ELECTRONS 
TO THE TRANSPORT COLLISION FREQUENCY 

OF RYDBERG ATOMS

Deceleration of the RE “gas” in directionally mov-
ing RAs results in deceleration of RAs themselves due
to the Coulomb force caused by the electron blowing
off, which acts on the ion core. On the other hand,
deceleration of RAs in the buffer gas is characterized by
an important kinetic characteristic, the transport colli-
sion frequency. Consider the contribution of REs to this
characteristic.

The total frictional force acting on the RA from the
buffer gas is FR = FI + Fe, where FI is the frictional force
caused by collisions of the ion core with buffer particles
and Fe is the additional force caused by the friction of

MR/me νe
tr

i
dP
dt
------- Pνe

tr∼≡ 16
3
------ 2.21π( )2NReux0=

× Nb βa0a0n3( )2
NReux0 16Nbn3a0

3( )2
.≈

i eNRux0=
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the electron gas, which, according to (13), is described
by the expression

(50)

Here, we took into account that the concentration of the
electron “gas” in the RA has already become stationary
in accordance with the velocity u of its directional
movement, so that the integral electron flux relative to
the RA vanishes. The frictional force FR can be written
in the form

(51)

where νI is the transport collision frequency for the ion

core and  is the addition to the transport frequency
of the RA caused by the RE. This addition contains the
factor me/MR ! 1, which reduces its contribution. If we
assume that the interaction of the RE and ion core with
a buffer particle is described by the polarization mech-
anism, then the relation between the contributions from
the ion and electron components to the transport fre-
quency of the RA will be determined only by the mass
ratio:

(52)

Here, Mb is the mass of the buffer-gas particle. One can
see from this expression that, when MR, Mb ≥ 10 amu,
the contribution of the electron component to the trans-
port collision frequency of the RA does not exceed one
percent and can be neglected in many cases. The exclu-
sion is the problems related to the photoinduced drift of
RAs excited by radiation in resonance with transitions
between Rydberg states of the atoms. Because the pho-
toinduced drift can be detected even when the transport
characteristics of the combining states differ only
slightly, the corrections caused by the contribution
from REs can be measured. In this case, the results
obtained in this paper can be important.

Thus, the transport characteristics of RAs, which
determine transfer processes, are almost completely
related to the ion core, which is quite obvious without
any calculations. Therefore, a change in the transport
frequency of collisions between atoms upon excitation
of an electron to the Rydberg state is caused by a
change in the interaction with a collision partner:
instead of collisions between two neutral particles, we
deal with collisions between a charged ion core and a
neutral buffer particle. It is obvious that the transport
collision cross section σtr is higher in the latter case.

Assuming that  ≈ 4π  for an unexcited atom and

Fe F r( ) rd∫ meuνe
tr n u,( ),–= =

νe
tr n u,( ) νe

tr v r( )( ) f r( ) r.d∫=

FR ν I νR
e+( )MRu, νR

e–
me

MR

-------νe
tr n u,( ),= =

νR
e

ν I

νR
e

-----
MR MR Mb+( )

meMb

----------------------------------.=

σa
tr a0

2
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using expression (38) for the transport cross section 
for the ion core, we obtain

(53)

For β ~  and u ~ 105 cm/s, we have /  ~ 10; i.e.,
upon excitation of an atom from the ground state to the
Rydberg states, its transport cross section for collisions
with neutral particles increases approximately by an
order of magnitude.

7. CONCLUSIONS

We have considered the internal characteristics and
the kinetics of RAs in a buffer gas using the kinetic
Boltzmann equation directly for electrons in the Cou-
lomb field of the atomic core. Such a description of the
behavior of bound electrons was earlier demonstrated
by Pitaevsky [12], who studied recombination pro-
cesses in a plasma. The results obtained in our paper
have shown that this approach is also efficient for
studying the properties of individual RAs, which are
energy-selectively excited from the deep states, and of
the RA gas mixed with the buffer gas.

The kinetics of the RE “gas” exhibits two distinct
stages after excitation. At the first stage, the relaxation
of the momentum (and of the angular momentum) of
the RE occurs; and at the second stage, a slow energy
diffusion takes place. In this paper, we considered only
the first stage and obtained a number of interesting
results, in our opinion, at this stage. We found the sta-
tionary distribution function of REs over velocities and
intra-atomic coordinates for both the immobile RA and
the RA moving in the buffer gas, the distribution of the
electron density over the intra-atomic coordinates, and
the mean velocity distribution. We demonstrated the
practical applicability of the virial theorem and found
and described the effect of electron blowing off during
the RA movement. This effect results in the latent
polarization of the RA gas. Upon velocity-selective
excitation (for example, by a laser), macroscopic polar-
ization appears, which is manifested as the bias-current
pulse. When the RA integrity is lost due to the blowing-
off effect, the bias current transforms to a usual electric
current, which can exist in the stationary regime.

The latent and macroscopic polarizations, as well as
the bias current, represent the macroscopic kinetic
properties of the RA gas. Thus, the approach used in
this paper allowed us to study not only internal charac-
teristics of individual RAs but also the properties of the
RA gas. Another example of this kind is the problem of
the transport collision frequency for the RA, which
determines transfer processes in the RA gas. We found
the RE contribution to the transport collision frequency
for the RA.

σI
tr

σI
tr

σa
tr

------ 0.5
v 0

u
------

meβ
µa0

3
---------, µ≈

MRMb

MR Mb+
---------------------.=

a0
3 σI

tr σa
tr
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The next stage of the RE gas kinetics (energy diffu-
sion) will result in the deformation of the distribution
function of REs. At this stage, some new processes
(ionization, recombination, escape to deeper energy
levels, etc.) should be taken into account. However,
some results of the above analysis will not change sig-
nificantly. In particular, this concerns the latent and
macroscopic polarizations, as well as the RA transport
collision frequency.
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Abstract—It is shown that the indirect coupling between two-level optical systems through a radiation field
has the form of the Ising exchange interaction if the coupling between atoms and the field is conducted through
electric quadrupole interactions. The manifestation of the paired interaction between two-level systems in the
form of a nonuniform optical transition width and in the kinetics of nonequilibrium optical processes is consid-
ered. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A situation when optical transitions are excited
between a certain pair of energy levels of an atom (usu-
ally, between the ground level Eg and one of the excited
levels Ee), while the remaining energy levels do not par-
ticipate in physical processes, is often encountered in
optics. Such situations can be described conveniently
using the concepts of a two-level system and a pseu-
dospin. In this case, the pair of energy levels of an indi-
vidual atom under investigation is defined as eigenval-
ues and eigenstates of a certain Hamiltonian

(1)

having the form of the Zeeman energy operator for a
particle with the effective pseudospin Sj = 1/2 [1].

It follows from parity considerations (the states ψg

and ψe under investigation usually possess different
parities) that the projection of the electric dipole
moment operator dj = erj of the atom on the states of a
two-level system may contain only nondiagonal matrix
elements. For an atom in an axisymmetric electric crys-

tal field of the lattice, we can assume that dj = d . In
such a case, the two-particle dipole–dipole interaction
between atoms contains only the products of nondiago-

nal terms of the type  [2].

Dipole–dipole effects are reflected in the general-
ized Maxwell–Bloch equations. The required changes
in the equations are made phenomenologically through
the replacement of external (relative to atoms) electric
fields by the local fields created by neighboring atoms
of the two-level system [3, 4]. In particular, a number of
nonlinear optical effects which can be attributed to the
dipole–dipole interactions between optical atoms are
listed in [4].

It will be shown below, however, that in addition to
what has been said above, the Ising-type exchange

HS
j

"ω0
j Ŝ j

z
, "ω0

j Ee
j Eg

j ,–= =

S j
x

Ŝ j
x
Ŝk

x

1063-7761/02/9403- $22.00 © 20509
interaction between pseudospins  also exists. It
will be derived as an indirect interaction between the
diagonal energy components of pseudospins through
the electromagnetic field of vacuum. These results were
reported preliminarily in [5].

2. METHOD OF DERIVATION 
OF THE PAIR INTERACTION OPERATOR

The structure of the Hamiltonian of two subsystems
in the problem of indirect interaction can be presented
in the general form as

(2)

where HS is the Hamiltonian of the dynamic subsystem
consisting of noninteracting particles, Hf is the Hamil-
tonian of the interaction-carrier field, and VSf is the
operator of interaction between particles of the two
subsystems.

The method of calculation of indirect interactions
[6, 7] includes two stages and is constructed on the
assumption that the following inequality holds for the
matrix elements of the operators:

The first stage is the transition to a new representa-
tion using the unitary transformation U = exp{–L},
where L is an anti-Hermitian operator satisfying the
condition

(3)

In this new representation, Hamiltonian H assumes
the form

(4)

Ŝ j
z
Ŝk

z

H H0 VSf , H0+ HS H f ,+= =

VSf  ! H0 .

VSf H0 L,[ ]+ 0.=

H H̃ HS H f
1
2
--- VSf L,[ ] O VSf

3( );+ + +=
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i.e., it does not contain terms linear in VSf. The solution
of the operator equation (3) has the form

(5)

Thus, the generator of the unitary linear transforma-
tion L is on the order of magnitude

The second stage involves the averaging of expres-

sion (4) for  over the states of the interaction-carrier
field so that the second-order term

(6)

of perturbation theory in expansion (4) becomes inde-
pendent of the variables of the carrier of interaction, but
preserves the dependence on the dynamic variables for
different particles and, hence, acquires the meaning of
the operator of their indirect interaction. In most cases,
there is no need to carry out this averaging since the
second-order terms in expansion (4) do not contain
field operators.

3. HAMILTONIAN OF THE PROBLEM
UNDER CONSIDERATION

In order to simplify the notation, we assume that the
energy levels of a two-level system are determined by
the atomic shell containing one electron; e, m, and p are
the electron charge, mass, and momentum. The Hamil-
tonian of the jth atom in the radiation field has the form
[8]

(7)

where

(8)

(9)

Here, we have used the multiplet expansion, where H1
and H2 correspond to the electric dipole and quadrupole

interaction, respectively;  is the principal Hamilto-
nian of the jth atom (henceforth, we will use only the
“projection” of this Hamiltonian on the states of the
two-level system in form (1)); dj = erj and Qj = erj · rj/2
are the operators of the dipole and quadrupole moments
of the jth atom; and Rj and rj are the radius vectors of
the nucleus and of the electron in the jth atom, respec-

L
1
i"
----- eεtVSf t( ) t,d

∞–

0

∫ε 0→
lim=

VSf t( )
i HS H f+( )t

"
----------------------------VSf

i HS H f+( )t–
"

--------------------------------.expexp=

L
VSf

H0
----------.∼

H̃

WSS
1
2
--- VSf L,[ ]〈 〉=

H j H0
j H1

j H2
j ,+ +=

H0
j He0

j H ph
0 , He0

0+
p j

2

2m
------- eV R j( ),+= =

H1
j d jE R j t,( ), H2

j– Q j∇ RE R j( ).= =

He0
j
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tively. Using the definition of the electromagnetic field
strength,

we can present  in the form

(10)

Formula (9) for H1 was derived in the dipole approx-
imation. An analysis of Hamiltonian H1 using the
method described in the previous section leads to the
well-known expression for the dipole–dipole coupling

operator containing pair operators of the form  and

 [2].

In many cases, operator H2 could be neglected. It
will be proved below that the contribution from this
interaction to the paired coupling of two-level systems
is significant and may affect the observed physical
properties.

Substituting the expression for the vector potential
in the interaction representation, i.e.,

into the expression for , we obtain

(11)

Here,  and akµ are the creation and annihilation
operators for a photon of polarization µ (µ = 1, 2) with

the energy "ωk and the wave vector k;  is the αth
component of the polarization vector; and V is the
quantization volume of the radiation field.

Since the eigenstates ψg and ψe possess different
parities (see above), the operators which are even rela-
tive to spatial inversion contain only diagonal matrix

elements, which enables us to present the product 
for an two-level optical system in the form of the matrix
(see the Appendix)

E R t,( ) 1
c
--- A R t,( )∂

t∂
---------------------,–=
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j
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j e
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j rβ
j ∂
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α β,
∑–=

Si
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Si
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ekµ
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i ekµ
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j kβ( )e

ik R j⋅
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(12)

The term proportional to the operator unity  does
not generate the observed effects and, hence, will not be
considered here. Since the choice of the principal
Hamiltonian to be proportional to the z component of
pseudospin breaks the spherical symmetry, we must
assume that, generally, ρx = ρy ≠ ρz. Such a symmetry
breaking emerges as a result of the interaction between
an atom and the electric field of the crystal lattice. The
z axis of the reference frame is determined by this
choice and cannot be oriented arbitrarily.

Let us now consider a system of two-level atoms.
Substituting the first relation from formula (12) into
expression (11) and carrying out summation over all
atoms of the sample, we can present the Hamiltonian of
two-level systems interacting with the field in the form

(13)

The operator of the electromagnetic field energy in
the secondary quantization representation is known to
be

(14)

Finally, operator  may have a large set of eigen-

states  from which we choose a pair  and  as
a two-level optical system, which is characterized by
Hamiltonian (1) in the pseudospin representation.

4. PAIRED INTERACTION 
OF TWO-LEVEL OPTICAL SYSTEMS

Using the formulas from Section 2, we will calcu-
late the paired interaction operator for the physical sys-
tem described in Section 3. The role of the Hamilto-
nians HS, HF, and VSf in the problem under investigation

Ŝz
1
2
--- 1 0

0 1–
, Ê 1 0

0 1
,= =

ρα
j ψe rα

j( )2ψe〈 〉 ψ g rα
j( )2ψg〈 〉 .–=

Ê

H2 e
π"
2V
------- S j

z Gkµ R j( )Dkµ t( ),
k µ,
∑

j

∑–=

Dkµ t( ) akµ t( ) a kµ–
+ t( )–( ),=

Gkµ R j( ) ωk kαekµ
α( )rαe

ik R j⋅
.
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H f " ωk akµ
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1
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---+ 

  .
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H0e
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ψα
j ψg

j ψe
j
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is played by operators (1), (14), and (13). In this case,
the generator of the transformation has the form

(15)

Substituting this expression into Eq. (6), we obtain
the following expression for the operator of interaction
between two-level systems:

(16)

(17)

where Rij = (Ri – Rj) ≡ R. Thus, the mechanism consid-
ered by us here has led to the exchange interaction
between two-level systems of the Ising type. To our
knowledge, this type of interaction has not been consid-
ered before as applied to two-level optical systems.

Let us simplify the expression for the interaction
potential U2(R). We first find the sum over polariza-
tions,

(18)

where θk and ϕk are the polar and azimuthal angles of
vector k in the chosen system of coordinates.

Passing from summation over the wave vector to
integration according to the formulas

and using the representation of the exponential with the
scalar product in the exponent in the form of an expan-
sion in spherical Bessel functions jl(kR),

we calculate the integrals with respect to angular vari-
ables of vector k. Then, we expand all functions of the
angular variables θk and ϕk into series in the spherical
harmonics Ylm(θk , ϕk) and calculate the corresponding
integrals using the orthogonality properties of spherical

L e
π

2V"
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functions. After these calculations, we can pass to the
following expression for the interaction potential:

(19)

Here, P(cosθR) are the Legendre polynomials, and θR

is the polar angle between the crystal axis z and vector
R.

Unfortunately, the upper integration limit kmax can-
not go to infinity since, for wavelengths smaller than
the atomic size, the atom cannot be regarded as a point
particle, and the form of interaction VSf chosen above
can hardly be valid. In our case, it is expedient to carry
out integration to kmax = 2π/ra, where ra is the atomic
radius.

Finally, the condition kmaxr > 1 holds, which means
that the atomic spacing in the crystal is larger than the
linear size of an atom. This allows us to use the approx-
imation

jl(z) = cos z – (l + 1) ,

which is applicable for large values of the argument.
Under these conditions, we have

As a result of this simplification, we obtain

(20)

Thus, the oscillating potential (20) decreases as

. Such a decrease is associated with a decrease at
point Rj in the number density of photons interacting
with the two-level system at point Ri. A periodic depen-
dence is inherent in many types of indirect interactions,
the most familiar of which being the interaction of
nuclear spins through conduction electrons in metals
[7].

The paired interaction integral (16) together with
expression (20) for potential is the final result of our
analytic derivation of the operator of indirect interac-
tion between two-level systems. This operator has the
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2

Rij
2–
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form of the Hamiltonian of the Ising exchange interac-
tion with a potential depending on the distance and
direction between the interacting two-level systems.

The paired interaction in form (16) can also be
obtained if we characterize the contact between an
atom and the field by choosing the term in the Pauli
Hamiltonian, which is quadratic in the vector potential:

(this term is usually employed for describing weak dia-
magnetism of atoms). After a certain unitary transfor-
mation, this operator acquires the form [9]

which enables us to apply directly the algorithm of the
derivation of operator WSS from the previous section.
This leads to an operator of the form (16), whose poten-
tial is given by

(21)

In order to simplify this expression, we have used the
same approximations as for calculating the potential
U2(R) (20).

Finally, as was mentioned in the Introduction, the

expression for  from (9) leads to an indirect interac-
tion between transverse pseudospin components with
the potential [10]

where d = |d|.

5. ESTIMATION OF THE EXCHANGE 
INTERACTION POTENTIAL 
OF TWO-LEVEL SYSTEMS

Let us estimate the potential of the Ising interaction
(17). In order to obtain an order-of-magnitude estimate
for the quantity ρα (12), we calculate the matrix ele-

ment  in the simplest particular case. For states ψg

and ψe, we choose the states (1, 0, 0) and (2, 1, 1) of the
hydrogen atom (triads of quantum numbers (n, l, m)
are indicated in [1]). If we use the known functions of
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state ψ2, 1, 1 and ψ1, 0, 0 for hydrogen, we obtain ρx =

ρy = 5  and ρz = 11 , where rB is the Bohr radius.
Having chosen the values ra ~ 10–8 cm and R ~ 10–6 cm for
other parameters, we obtain the following value of the
Ising exchange interaction potential: U2(R) ≈ 1012 rad/s.

In the same approximations and for the same values
of parameters, the other potentials are found to be

Finally, the natural line width of spontaneous emis-
sion is defined by the formula [11]

;

for optical frequencies ω0/2π ~ 3 × 1014 Hz, the value
of γ is approximately equal to 2 × 105 Hz. Thus, the
indirect interaction potential (20) is much higher than
potentials of another origin and exceeds the spontane-
ous emission line width.

The question arises: Why is potential U2 higher than
all the remaining potentials? This question can be for-
mulated in a more stringent form: Why is the coupling
U2 between two-level systems through the second-
order multipole moment stronger than the coupling U1
through the first-order multipole moment? The reason
lies in the features of interactions H1 and H2 and also in
the nature of the quantum-mechanical perturbation the-
ory. Operator WSS from Eq. (16) is a second-order cor-
rection to the energy operator. In accordance with per-
turbation theory, such a correction must be on the order

of (∆E ± "ωk)–1, where ∆E is the difference in the
energy levels of a dynamic system, between which the
matrix element of the perturbation operator VSf is calcu-
lated. In the case of the dipole coupling between an
atom and the field, the operator VSf = H1 contains only
nondiagonal matrix elements in the pseudospin space
and ∆E = "ω0, where ω0 is the optical transition fre-
quency. In the case of the coupling through interaction
H2, operator VSf contains only diagonal matrix elements
and ∆E = 0. It is the larger value of the ratio VSf/"ωk as

compared to (∆E ± "ωk)–1 that determines the
numerical superiority of U2 over U1. The smallness of
potential U3 and of the spontaneous line width associ-
ated with interactions of other origins could be pre-
dicted beforehand.

6. POSSIBLE MANIFESTATIONS 
OF PAIRED INTERACTION 

BETWEEN TWO-LEVEL SYSTEMS

Let us consider the manifestations of interaction
(16) in optical properties of active substances.

In the case of a random distribution of two-level sys-
tems in a substance, interaction WSS may lead to the so-

rB
2 rB

2

U1 R( ) 108 rad/s, U3 R( ) 106 rad/s.≈ ≈

γ
2d2ω0

2

3"c3
---------------=

VSf
2

VSf
2
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called nonuniform broadening of the optical transition
since it generates at each jth atom the shift of the reso-
nant frequency ω0,

(22)

which is a random quantity. The mean 〈 〉  in this
expression corresponds to the molecular field approxi-
mation for pseudospin operators, which is often used
for estimating the resonance line shifts. The width can
be characterized by the root-mean-square value

where 〈 〉  is the temperature-averaged value of the z
component of the pseudospin of the jth atom at the
experimental temperature, which can generally be
regarded as independent of the point; R0 is the shortest
possible distance between two-level systems; and n is

their concentration. For n = 1017 cm–3, we have  ≈
1012 rad/s.

A more interesting manifestation of the Ising inter-
action can be expected in the case of an ordered distri-
bution of two-level systems in the crystal lattice. It is
well known that an Ising magnet exhibits additional
resonant peaks if the exchange integral is larger than
the natural line width [12]. Under these conditions, the
quantities ∆ωj are not random any longer and assume
several definite values in accordance with the number
of nonequivalent positions in which neighboring
exchange-coupled two-level systems can occur. This
gives rise to additional absorption peaks. The number
of peaks is determined by the number of exchange-cou-
pled atoms. For example, a linear Ising system with
exchange interaction between nearest neighbors spaced
by distance R0 from one another is characterized by
three resonance frequencies: ω0 and ω0 ± U2(R0) [12].

The integral intensities of these lines exhibit a typi-
cal temperature dependence; in particular, all the lines
(except one whose intensity increases) are frozen out as
the temperature decreases to zero. Unfortunately, the
separation Ee – Eg between the optical energy levels is
so large that the zero-temperature limit is realized in
equilibrium virtually in all cases. Consequently, addi-
tional peaks should be sought under nonequilibrium
conditions.

Experiments of this kind are well known in the field
of physics studying the magnetic resonance. When a
strong narrowband varying field acts on a uniformly
broadened EPR line, the subsequent passage of another
weak field through the line profile singles out a broad

∆ωj U2 Rij( ) S j
z〈 〉 ,

i

∑=

S j
z

∆ωj
2n

3 35
------------- 2π

ra

------ 
  3e2 ρz ρx–( )2

"
----------------------------

2πR0/ra( )cos

πR0

--------------------------------- S j
z〈 〉 ,=

S j
z

∆ωj
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profile with a “burnt-out hole” [13]. The EPR line pro-
file undergoes complex transformations during resto-
ration of equilibrium; the kinetics of this process
reflects the relaxation properties of the object under
investigation.

Let us consider another example: as a result of
intense narrow-frequency saturation of a uniformly
broadened EPR line, its profile varies intricately until it
acquires segments with negative absorption. The com-
plex kinetics of this process associated with the exist-
ence of a reservoir of magnetic dipole–dipole interac-
tions has been studied extensively by experimental
methods [13].

In order to observe experimentally the Ising
exchange interaction between two-level optical sys-
tems, the thermodynamic equilibrium of the physical
system must be disturbed, for example, by applying a π
pulse or subjecting it to an intense static irradiation fol-
lowed by scanning of the wide optical line of a two-
level system by a monochromatic frequency-tuned
laser beam. In this situation, we can expect the emer-
gence of additional peaks reflecting a complex kinetics.
The spectral burning of dips in a nonuniformly broad-
ened optical line was observed experimentally in [14].

APPENDIX

The concept of pseudospin (or effective spin) has
been permanently used in the theory of paramagnetic
resonance since the beginning of the 1950s [15] for a
concise description of the dynamics and kinetics of
paramagnetic ions possessing a small low-lying group
of n energy levels under the conditions when the
remaining levels do not participate in these processes.
Higher lying levels are empty at moderate temperatures
and are not involved in the resonant transitions induced
by a comparatively low-frequency (on the order of
1010 Hz) ac field used in the EPR.

Any operators in the form of square n × n matrices
can be projected onto the set of low-lying states. It is
well known that n × n matrices stretch the linear space
of dimension n2 and, hence, possess a basis such that
any n × n matrix can be expressed in terms of linear
combinations of its components. The role of such a
basis can be played, for example, by unit (or projective)
matrices ||pmn || such that all matrix elements of the
matrix ||pmn || are equal to zero except the single element
pmn, which is equal to unity.

Pseudospin operators can also serve as the basis of
the n × n space formed on the Hilbert n-dimensional
space of physical states; for the n-dimensional space,
the pseudospin operator is S = (n – 1)/2. For example, if
we consider a pair of energy levels (as is the case in the
present work), it suffices to take 22 = 4 operators: the
unity operator E and the three components Sα of the
pseudospin S = 1/2. The subspace of 3 × 3 matrices
must have a basis of 9 independent matrices. This basis
JOURNAL OF EXPERIMENTAL 
is constructed from the components of the pseudospins
S = 1. It consists of four elements of the basis of the 1/2

pseudospin and five operators (S) constructed from
the pseudospin components Sα in the form of quadratic
combinations transformed under rotation as the mth
component (m = 0, ±1, ±2) of a second-rank tensor. For
the four-dimensional space of physical states, use
should be made of the pseudospin S = 3/2, and the 4 ×
4 basis of the matrix space is constructed as the basis of
a three-dimensional space and includes components of

the (S) tensor, and so on.

In the case of projecting onto the low-lying group of
energy levels, the “correctly” written operator of a
physical quantity can be expressed in terms of the pseu-
dospin operators. The features of a specific problem are
reflected in effective coefficients (gyromagnetic ratios,
dipole moments, etc.) which may acquire a queer form.
For example, for the two-level optical systems consid-
ered here, the static energy can be expressed in terms of
the z component of pseudospin 1/2; the “Zeeman” fre-
quency ω0 in expression (1) is independent of the mag-
netic field, being generated by the splitting of optical
energy levels in the electric field of the crystal. The
“gyromagnetic” ratio (or Lande factor) has a definite
value for the “transverse” direction of the ac field and is
equal to zero for a “parallel” field, and so on. In partic-
ular, it follows from symmetry considerations that the
matrix elements of the operators rαrβ can only be diag-
onal and, hence, can be expressed in terms of the unity
operator and the z component of pseudospin (see for-
mula (12)).
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Abstract—The effect of a longitudinal magnetic field on the linear wake fields excited by a relativistic electron
bunch in a cold homogeneous plasma is considered. The obtained results prove that the presence of an external
magnetic field leads to a dependence of the wake wavelength on the transverse coordinate, to a change in the
wave amplitude with increasing distance from the bunch, and to the emergence of anharmonicity. It is found
that a strong magnetic field reduces the wave amplitude significantly for narrow bunches and changes the ampli-
tude insignificantly for broad bunches. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plasma waves excited by relativistic electron
bunches or high-intensity laser pulses (wake waves)
may create abnormally strong accelerating and focus-
ing fields. The results of theoretical and experimental
studies show that the acceleration rate in a wake wave
may reach up to several tens of GeV/m, which is three
orders of magnitude higher than the rates attained in
traditional accelerators (see the review in [1] and the lit-
erature cited therein). The plasma methods of accelera-
tion are being developed intensely at present.

In experiments, a plasma is usually placed in a mag-
netic field for its confinement and for the suppression of
various types of instabilities. It can be assumed that
when the electron gyrofrequency ωH = eH0/mec
becomes comparable to or higher than the plasma fre-

quency ωp =  (here, H0 is the magnetic
field strength and np is the unperturbed electron number
density in the plasma), the magnetic field may notice-
ably affect the excitation of wake fields. Thus, we can
choose as a natural parameter of the problem the
dimensionless frequency

For example, for np = 1012 cm–3 (which is typical of
experiments on the excitation of wake waves by relativ-
istic electron bunches [2]), ΩH = 1 for H0 ≈ 3.2 kG. When
wake waves are excited by a high-intensity laser pulse, the
required density of the plasma is 1016–1018 cm–3. Such
values of plasma density are determined by the length
of high-intensity laser pulses, which in turn must be
equal approximately to half the plasma wavelength. For
np = 1017 cm–3, we have ΩH = 1 for H0 ≈1 MG, which is
much higher than magnetic fields attainable by conven-

4πnpe2/me

ΩH

ωH

ωp

-------≡ 3.12 105 H0 kG[ ]

np cm 3–[ ]
--------------------------× .=
1063-7761/02/9403- $22.00 © 20516
tional methods. Megagauss magnetic fields can be gen-
erated in a plasma by a laser beam (see, for example,
[3]). For example, a strong longitudinal magnetic field
can be created in a plasma by a circularly polarized
laser pulse due to the inverse Faraday effect [4, 5]; how-
ever, such a field is localized in a region occupied by the
laser pulse and is equal to zero in the wake. For this rea-
son, we will confine our subsequent analysis to the
wake fields excited by electron bunches.

The linear theory of plasma wake waves in an iso-
tropic plasma was applied earlier both for laser pulses
(see references in [1]) and for electron bunches [6, 7].
In the latter case, regular potential plasma oscillations
whose amplitude depends on the parameters of a source
are excited behind this source. The effect of a finite lon-
gitudinal magnetic field on the excitation of three-
dimensional wake fields by a relativistic electron bunch
was considered for the first time (to our knowledge) by
Balakirev et al. in [8]. They discovered that, in a strong
magnetic field for which ΩH @ 1, the amplitude of a
wake wave at the axis decreases with increasing dis-
tance from the bunch. In the present work, we will
obtain an analytic solution to the linear problem of
excitation of wake waves in an external magnetic field,
which is valid for arbitrary values of ΩH and for an arbi-
trary distribution of electrons in the bunch, and will
give numerical results.

2. FORMULATION OF THE PROBLEM AND 
GENERAL SOLUTION TO INITIAL EQUATIONS

We consider a cylindrical homogeneous (in energy)
electron bunch with density nb(Z – v bt , r), flying along
the Z axis at velocity v b in a homogeneous plasma. As
usual, we assume that plasma ions are stationary owing
to their large mass. We disregard the thermal motion of
electrons in the plasma, assuming that vTe ! v b, which
002 MAIK “Nauka/Interperiodica”
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is observed virtually in all cases under laboratory con-
ditions. We also disregard the dynamics of electrons in
the bunch, which is justified for time intervals t < td ~

γb/ωp [9], where γb = 1/  is the relativistic
factor of the bunch. For convenience of subsequent cal-
culations, we introduce the following dimensionless
quantities. We normalize the electric E(Er , Eθ, EZ) and
magnetic H(Hr , Hθ, HZ) fields excited by the bunch to
the nonrelativistic wave breaking field EWB = mecωp/e

(EWB[V/cm] ∝  ), while spatial coordinates
are normalized to v b/ωp. Then, the Maxwell equations
and the equation of motion for electrons in the plasma
can be written in the form

(1)

where τ = ωpt, Nb = nb/np, Vb = vb/c, and Ve(Vr, Vθ, VZ) =
ve/c are the dimensionless velocities of the bunch and
of plasma electrons, ΩH = eH0/mec, H0 being the exter-
nal magnetic field strength.

Let the external magnetic field be directed along the
Z axis: H0 = H0eZ, H0 = const. We will consider ultrarel-
ativistic bunches and assume that Vb ≈ 1 (γb @ 1).
Owing to the axial symmetry of the problem, the field
is independent of azimuth angle θ. In this case, for
steady-state wake fields (i.e., the fields depending only
on z = Z – τ and r), we obtain from system (1)

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

1 v b/c( )2–

np cm 3–[ ]

∇ H× Vb
E∂
τ∂

------ Ve– NbVb,–=

∇ E× V– b
H∂
τ∂

-------,=

Ve∂
τ∂

--------- –VbE Ve WH,×–=

Hθ∂
z∂

---------
Er∂
z∂

-------- Vr,+=

Hr∂
z∂

---------
HZ∂
r∂

----------– –
Eθ∂
z∂

-------- Vθ,–=

∇ ⊥ Hθ
EZ∂
z∂

---------– Nb– VZ,–=

Eθ∂
z∂

--------
Hr∂
z∂

---------,–=

Er∂
z∂

--------
EZ∂
r∂

---------–
Hθ∂
z∂

---------,=

∇ ⊥ Eθ
HZ∂
z∂

----------,=

Vr∂
z∂

-------- Er ΩHVθ,+=
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(2h)

(2i)

where ∇ ⊥  = ∂/∂r + 1/r. It follows from Eq. (2d) that
Eθ = –Hr. In this case, the force exerted by the wake
wave on relativistic electrons flying behind the exciting
bunch is F(eEWB(Hθ – Er), 0, –eEWBEZ). In accordance
with Eq. (2e), we have

(3)

It can easily be seen that the field of forces F is of the
potential type; i.e., we can write F = ∇Φ , which also
holds for nonlinear wave waves. It should also be noted
that Eqs. (2a) and (2e) lead to

(4)

In order to solve the system of equations (2), we will
use the approach applied in [10]. In Eqs. (2), we pass to
the Fourier transforms in z and to the Hankel transfor-
mation in the transverse coordinate in accordance with
the formulas (see, for example, [11])

(5a)

(5b)

where Jn are Bessel functions; n = 1 for the quantities
equal to zero on the axis (r = 0), namely, for Er, θ, Hr, θ,
and Vr, θ; and n = 0 for EZ, HZ, VZ, and Nb. Then, Eqs. (2)
are reduced to a system of algebraic equations, which
gives

(6)

We present the number density of electrons in the
bunch in the form Nb(z, r) = Nb0g1(z)g2(r). Substituting
now Eqs. (6) into Eq. (5a) and integrating with respect
to λ, we obtain

(7)

Vθ∂
z∂

--------- Eθ ΩHVr,–=

VZ∂
z∂

--------- EZ,=

EZ∂
r∂
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Hθ Er–( )∂

z∂
--------------------------–

f r∂
z∂

--------– .≡=

Vr

EZ∂
r∂

---------.–=

Y z r,( ) 1

2π
---------- Yλξ iλz( )ξ Jn ξr( )exp ξd λ ,d

0

∞

∫
∞–

∞

∫=

Yλξ
1

2π
----------=

× Y z ' r ',( ) i– λz '( )r 'Jn ξr '( )exp r 'd z ',d

0

∞

∫
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∞

∫

EZ λξ,
iλ Nb λξ,

1 ξ2+( ) λ2 w2–( )
-----------------------------------------,=

w 1
ΩHξ2

1 ξ2+
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2

+ 1.≥=

EZ z r,( ) Nb0

ξ J0 ξr( )
1 ξ2+
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0

∞

∫=
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where

While evaluating the integral with respect to λ, we
bypassed the poles λ1, 2 = ±w on the complex plane
from above [10]. This is equivalent to the introduction
of an infinitely small damping and is associated with
the fact that the initial equations “are not aware” of the
plasma stability, i.e., that the plasma tends to the equi-
librium state for t  ∞. Indeed, if we introduce from
the very outset a dissipative term into the equations
(e.g., the collision term into the equation of motion), the
poles would occur outside the integration path and can
be bypassed “correctly.”

Thus, we obtain the general solution (7) for the lon-
gitudinal field. For the known EZ, we can also calculate
the remaining quantities in the system of equations (2).
For example, VZ and Vr can be evaluated from Eqs. (2i)
and (4), respectively. The focusing field fr can be deter-
mined from relations (3). For ΩH = 0 (w = 1), the inte-
gral with respect to ξ in expression (7) can be evaluated
easily and we arrive at the well-known solution for an iso-
tropic plasma [7, 10]. It should also be noted that since the
external magnetic field appears in expression (7) in the

form , the magnetic field directions parallel and anti-
parallel to the direction of motion of the electron bunch are
equivalent from the physical point of view.

In the case of a homogeneous bunch having the density

G1 g1 z '( ) w z z '–( )[ ]cos z ',d

z

∞

∫=

G2 g2 r '( )r 'J0 ξr '( ) z '.d

0

∞

∫=

H0
2

Nb

Nb0, –d z 0, r rb,≤≤<
0, z d , r rb,>–≤




=
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z
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Fig. 1. Wake wave in a plasma in zero external magnetic
field. Here and in all the remaining figures, electron bunches
are homogeneous with a length equal to half the plasma
wavelength in an isotropic plasma: d = π. The dimensionless
radius and the radius of the bunch are rb = 1 and Nb = 0.2.
(a) Longitudinal electric field of a wake wave; the normal-
ized distance r from the axis is equal to 0, 1, and 2 in order
of decreasing amplitude. (b) Focusing force, r = 1 and 2
in order of decreasing amplitude of the oscillations.
JOURNAL OF EXPERIMENTAL
where d and rb are the bunch length and radius, the
expressions for EZ and fr assume the form

(8)

(9)

where

Although the evaluation of integrals with respect to ξ in
Eqs. (7)–(9) for arbitrary values of ΩH is a complicated
problem, it can be seen that a finite magnetic field effec-
tively leads to the emergence of field components with
wavelengths smaller that the plasma wavelength in an
isotropic plasma or, which is the same, with frequencies
higher than ωp. It is well known that a cold magneti-
cally active plasma with stationary ions is characterized
by two vibrational eigenmodes. The frequency of one
of these modes increases monotonically with the angle
between the wave vector and the direction of the mag-

netic field, attaining its maximum value ωp  in
the case of transverse propagation [12]. Obviously, it is
the waves propagating at finite angles to the magnetic
field (and having a finite group velocity) that make a
contribution to the wake wave components having a
frequency ω > ωp. In contrast to the case of an isotropic
plasma, the wake wave is not plane any longer. It will
be demonstrated below that, according to Balakirev et al.
[8], the finiteness of the group velocity of the wake
wave leads to the transfer of the wake field energy in the
radial direction and to a decrease in the field amplitude
in the vicinity of the axis upon an increase in the dis-
tance from the bunch as a result of the absence of dissi-
pation.

3. NUMERICAL RESULTS 
FOR A HOMOGENEOUS BUNCH

In this section, we consider the numerical results for
a homogeneous bunch. The bunch length is chosen
equal to half the length of a wake wave in an isotropic
plasma: d = π. Figure 1 shows by way of an example a
wake wave excited in a plasma in zero external mag-
netic field (ΩH = 0). Figure 2 illustrates a typical behav-
ior of a wake wave in a finite magnetic field; the bunch
parameters are the same as in Fig. 1. It can be seen that
the presence of an external field leads (a) to a depen-
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dence of the wake wavelength on the transverse coordi-
nate; (b) to a change in the wave amplitude upon an
increase in the distance from the bunch; and (c) to the
emergence of anharmonicity in field oscillations or,
which is the same, to the emergence of harmonics. The
reason for these effects was considered above. It should
be noted that the field in the vicinity of the axis is sub-
jected to the strongest “deformation”. For r < rb, the
amplitude of the wake wave decreases noticeably with
increasing distance from the bunch. The case of a nar-
row bunch (rb < 1) is illustrated in Fig. 3. A distinguish-
ing feature here is a nonmonotonic decrease in the wave
amplitude behind the bunch. It can easily be seen that
the change in the wake wavelength with the distance r
from the axis leads to a distortion of the phase front of
the wave, which becomes stronger with increasing dis-
tance from the bunch, and to a nonmonotonic variation
of the field in the transverse direction. The latter is
depicted in Fig. 4, which also shows that the region
occupied by the wake field expands in the transverse
direction upon an increase in the distance from the
bunch. This occurs due to a finite group velocity of
plasma oscillations being excited (see also [8]). In turn,
the wake field amplitude decreases in the vicinity of the
axis since the total energy of the wave must be con-
served.

It is interesting to note that the dependence of the
wake wavelength on the transverse coordinate and the
wave front bending take place for H0 = 0 in the plasma
channel also (see, for example, [13]) in the case of a
nonlinear mode in a homogeneous plasma [14]. In
these two cases, the wavelength attains its maximum
value at the axis and decreases upon an increase in the
distance r from the axis. In the case under investigation,
when a wake wave is excited in the presence of a longi-
tudinal magnetic field, the wavelength at the axis
immediately behind the bunch has the minimum value
and increases with r (see Figs. 2 and 3). Consequently,
one could try to compensate the undesirable wave front
bending in the case of a nonlinear wake wave by apply-
ing a longitudinal magnetic field.

The obtained numerical results prove that the pres-
ence of a weak magnetic field (ΩH ! 1) affects linear
wake waves only insignificantly (at least, at distances
on the order of ten wavelengths behind the source). The
case of a strong magnetic field (ΩH @ 1) is illustrated in
Fig. 5. Here, the amplitude of the longitudinal electric
field for a narrow bunch (rb = 1) is more than an order
of magnitude smaller than in zero magnetic field (cf.
Figs. 5a and 1a); the focusing force is smaller by two
orders of magnitude. Thus, in the case of a narrow
bunch, when the dimensionless bunch radius is smaller
than or on the order of unity, a strong magnetic field
considerably reduces the amplitude of the wake wave,
which in the given case cannot be used for an effective
acceleration and focusing of charged bunches.

Behind a broad bunch (rb @ 1; see Fig. 5b), the
amplitude of the wake wave is comparable to that in an
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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isotropic plasma. This is due to the fact that in the case
of a broad bunch, the motion of electrons for r < rb is
predominantly longitudinal. The latter statement is true
of arbitrary values of ΩH and leads to the closeness of
the amplitude of the longitudinal component of the
electric field created by a wake wave in a magnetized
plasma to that in the 1D theory, while the transverse
components (including the focusing force also) are neg-
ligibly small as compared to the longitudinal field. This
is in accord with the theory of wake fields in an isotro-
pic plasma and with the well-known result in the theory
of plasma that a longitudinal magnetic field does not
affect the propagation of 1D plasma waves.

4. CONCLUSION
Thus, qualitatively new properties of 3D wake

waves excited in a plasma in the presence of a longitu-
dinal magnetic field have been observed, including a
change of the amplitude with the transverse coordinate
and an increase in the wavelength with the distance
from the axis. The latter effect can be used for compen-
sating the undesirable bending of the wave front in the
nonlinear 3D case. These features of wake fields in the
presence of a longitudinal magnetic field are associated
with the properties of eigenmodes of a magnetically
active plasma, namely, an increase in their frequency
with the angle between the wave vector and the mag-
netic field and with their nonzero group velocity.
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Abstract—The formation and destruction of ordered dust structures in glow discharges are investigated exper-
imentally. The initial construction phase of an ordered structure is related to the construction of its cooperative
field and is determined by the number of particles and by the existence of crystallization centers. After the struc-
ture has been constructed, it influences the local plasma properties and the discharge current–voltage charac-
teristics. The recovery of the structure after weak exposure takes place at local equilibrium, while, after intense
exposure to high-voltage nanosecond pulses, it is determined by the fluctuation level and the degree of chaoti-
zation in the system. © 2002 MAIK “Nauka/Interperiodica”.
Plasma with charged dust particles is an object with
a strong Coulomb coupling that yields record high
parameters of nonideality,

,

through a significant macroparticle charge Z. The for-
mation of structures from micron-sized dust particles
was experimentally observed in a low-pressure non-
equilibrium plasma in high-frequency and glow dis-
charges [1], as well as under intense ultraviolet and
radioactive radiation [2]. The particles acquire a large
negative charge (105–106 electron charges) that corre-
sponds to the floating plasma potential, and the dissipa-
tive dust structures can form a Coulomb crystal [1]. The
external conditions and the ambient-plasma properties
under which ordered plasma–dust structures can be
produced have currently been studied. It is not yet
known how the ordering of dust particles with a strong
Coulomb coupling and plasma condensation proceed;
the transition from chaos to order in such systems is not
understood and has been investigated neither experi-
mentally nor theoretically. The appearing stable struc-
ture must, in turn, change the local properties of the
ambient plasma, the distribution of parameters in it, the
electric fields, and the charged particle fluxes. Previ-
ously, most authors have assumed the background-
plasma properties to be virtually constant. Here, our
goal is to experimentally investigate the formation and
destruction of charged macroparticle structures, the
action of force on these structures, and the changes in
plasma properties.

We investigated the structures composed of Al2O3
particles (3–5 µm in size), polydisperse MgO particles
(5–20 µm in size), and hollow glass spheres (20–60 µm
in size) in glow discharges in helium, argon, nitrogen,
air, and their mixtures. The experiments were carried
out in cylindrical discharge tubes of 1 and 2 cm in

γ Z2e2n1/3/kT 105∼=
1063-7761/02/9403- $22.00 © 20521
diameter, as well as in a conical 50-cm-long discharge
tube with a variable diameter from 1.5 to 4 cm [3].
Since the similarity rule, according which the reduced
electric-field strength E/P is determined by the product
Pd (where d is the discharge tube diameter and P is the
gas pressure), holds for a positive gas discharge col-
umn, the longitudinal electric field in the conical tube
changes along its length: it is at a maximum in its lower
narrow part and decreases as one rises in height. There-
fore, particles with different masses can find a suitable
field, causing the localization of different particles in
different cross sections of the discharge tube and the
particle separation in size, charge, and mass along the
tube. When using the cylindrical tube of 2 cm in diam-
eter, we pasted two metal rings of the same diameter
spaced 5 cm apart in its walls. We used these rings to
measure the average field in the discharge and applied
high-voltage nanosecond pulses to them to act on the
dust structures. The particle structures were examined
with a videocamera through their illumination by two
perpendicular laser “knifes” with a 0.63-µm wave-
length and a 150-µm caustic. The particles were
imaged along and across the tube. The structures were
also examined with an optical microscope. We mea-
sured the average field along the discharge column with
probes, the voltage between the metal rings, the current
and voltage on the discharge tube, and the geometric
parameters of the dust structure as a function of the dis-
charge current and gas pressure.

A distinct three-dimensional dust structure is
formed in strata at Pd < 1 torr cm. The number of parti-
cles in the structure depends on conditions and can vary
from several tens to several thousand. The characteristic
distances between the strata are 150–250 µm. The hori-
zontal distances between the particles in the stratum are
typically a factor of 1.5 or 2 larger and increase with
particle size, tube diameter, and passing current. In air,
002 MAIK “Nauka/Interperiodica”
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the conditions for the formation of an ordered crystal
are fairly stringent; the range of discharge currents at a
pressure of 0.2 torr is 0.3–1 mA, while, in air–argon
mixtures at pressures of 0.1–0.5 Torr, it is 0.3–3 mA. As
the current rises further to several milliamperes, the
crystal is disordered and resembles a liquid. In this case,
the particles retreat to the walls of the discharge tube and
ring-shaped structures suspended in strata are observed
[3, 4].

In general, a distinct spatial structure is formed
when several particles are initially aligned in the stra-
tum and then the remaining particles sequentially line
up with them. The initial particles act as the crystalliza-
tion centers. These are localized in the undisturbed field
of the stratum and are aligned in its potential pit [4]. As
the number of dust particles gradually increases, they
sequentially fill the entire stratum volume to produce a
spatially ordered structure. The collective field of this
structure is a superposition of the stratum electric field

Fig. 1. Luminous jets above an ordered dust structure. The
cross section is longitudinal, the glow discharge is in air,
and the current is 0.5 mA.
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Fig. 2. The current–voltage characteristics of (a) a glow dis-
charge and (b) a stratified discharge column between the
rings with (dots) and without (triangles) glass microspheres.
The air pressure is 0.2 Torr.
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and the spatial fields of individual dust particles. Add-
ing several particles distorts this collective field only
slightly, and these line up with the structure. The spatial
order of the particle arrangement in the formed plasma–
dust structure is determined by Coulomb forces,
although the Debye screening length calculated from
the background plasma parameters is severalfold
smaller than the interparticle separation. The coopera-
tive field of the dust structure is comparable in strength
to the stratum field. Therefore, if many randomly mov-
ing dust particles whose average field greatly fluctuates
and distorts the local stratum field are simultaneously
injected into the stratum, then no stable ordered struc-
tures are formed. In this case, although the particles are
confined to the stratum, they randomly move through
its entire volume.

The cooperative behavior that facilitates the forma-
tion of a plasma–dust structure is consistent with the
standard principles of nonequilibrium thermodynamics
when the formation and self-organization of dissipative
structures have a threshold character [5]. In a thermo-
dynamic equilibrium, the probability that a macrosopic
number of particles are spontaneously organized into a
regular stream or a phased collective is negligible. A
system can form ordered structures only because the
external restrictions (temperature gradient, electric
field, and radiation field) maintain the system in a non-
equilibrium state. The new structure results from the
growth of instability and arises from fluctuations [5].

The collective action of the dust grain field on the
processes in the stratum can be significant, because the
grain charge per unit volume is comparable to the elec-
tron number density in the stratum itself (108–109 cm–3).
An ordered crystal changes not only the electric fields
in the stratum itself but also the properties of the adja-
cent plasma at distances comparable to the crystal size.
When a current passes through a macrocrystal, the for-
mation of luminous plasma jets above the crystal from
the anode is observed (Fig. 1). When moving along the
channels formed by neighboring parallel chains of
charged macroparticles, the electrons apparently
undergo grazing collisions and mirror reflections and are
confined to these channels. The channeled electrons are
accelerated when passing through the crystal, much as
they are in a solid [6], and produce an additional plasma
disturbance in the form of luminous fibers above the
crystal.

The formed dust structures also affect other dis-
charge properties, in particular, the current–voltage
characteristics. We measured the current–voltage char-
acteristics of a positive column with stationary strata at
an air pressure of 0.2–0.5 Torr with structures with and
without glass microspheres between the metal rings in
the discharge tube of 2 cm in diameter. At all pressures,
the voltage between the rings in the presence of macro-
particles is higher than that in the discharge without
particles (Figs. 2a and 2b). The difference between the
two current–voltage characteristics at a fixed current for
AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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a small number of particles in the structure is 5–10 V. For
a large number of particles in the structure, it increases
to 20–30 V, which is apparently attributable to the addi-
tional electron death on particles. The electron death on
macroparticles at small currents can cause the dis-
charge to be quenched. At the minimum possible dis-
charge current, we detected a relaxation discharge glow
when the discharge periodically went out and ignited
with a period of about one second. The oscillation
period decreases with increasing discharge current.
These oscillations can be explained as follows: an addi-
tional channel of the electron death on particles appears
when the particles enter into the discharge, a voltage
higher than the available one is required to maintain the
discharge, and the discharge goes out. The dust parti-
cles fall and retreat to the walls. The discharge ignites
again. In the discharge, the particles are charged, the
dust structure is recovered, and the process is repeated.

When the dust structure is destroyed, its recovery
depends on the type of exposure. For slow weak expo-
sure, for example, a thermal [4] or electric [7] one, the
structure shifts in space; part of it can be deformed or
destroyed. After the exposure, the destroyed part of the
structure gradually lines up with its preserved part. If
the disturbing processes are less intense than the pro-
cesses that produce an equilibrium of the dust structure,
then a local equilibrium is maintained in the system
with a certain accuracy. Otherwise, for intense expo-
sure, the structure is completely destroyed and chao-
tized. The recovery of the structure from chaos is no
longer determined by the local equilibrium alone. If
there is no initial seed with which the structure lines up,
then the formation of an ordered structure will depend
on the fluctuation level. One or more sufficiently
intense macrosopic fluctuations are needed for a new
ordered structure to emerge in the wake of instability.

The ordered dust structure was intensely exposed to
nanosecond high-voltage pulses. Since the pulse dura-
tion is very short, the particle displacement in the struc-
ture in the exposure time of the pulsed electric field is
negligible. The dust structure was produced in the stra-
tum between the two metal rings in the cylindrical dis-
charge tube (Fig. 3a). High-voltage pulses of negative
polarity, 40 ns in duration and 10 kV in amplitude, with
a repetition frequency of 1–100 Hz were applied to the
rings through blocking capacitors. After exposure to a
single pulse, the particles slightly oscillated about their
stable state. After pulse-periodic exposure with a fre-
quency of about 10 Hz, the order in the structure broke
down, while, at a higher frequency, the particles scat-
tered over the entire volume and began to randomly
move with large velocities (Fig. 3b). After the nanosec-
ond voltage was removed, the particles gathered in the
stratum in several seconds. The number of particles in
the new structure always exceeded their initial number,
which stems from the fact that a larger number of par-
ticles were drawn into the construction process. The
number of returning particles increases with exposure
intensity. When the number of particles after the expo-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sure to nanosecond pulses ended was smaller than some
critical number, the particles gradually formed an
ordered structure in several seconds (Figs. 3c and 3d).
If their number was too large, then the particles were
confined to the structure but they were not aligned into
an ordered structure; the dust structure resembled in
form a boiling liquid with randomly moving particles.
Such a chaotic state could be stable for a long period.

(a)

(b)

(c)

(d)

Fig. 3. Exposure of a dust crystal in a glow discharge in air
(cross section) to nanosecond pulses: (a) before the expo-
sure, (b) during the exposure with a pulse repetition fre-
quency of 40 Hz, (c) recovery of the structure after the
exposure, and (d) an ordered structure after the exposure.
SICS      Vol. 94      No. 3      2002
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The destruction of the structure and the scatter of
particles under nanosecond exposure primarily result
from an increase in their charge. High-voltage nanosec-
ond pulses produce many high-energy electrons (with
energies of several hundred eV [8]) in plasma that rap-
idly increase the dust-particle charge, which is propor-
tional to the electron energy. The surplus negative
charge is neutralized much more slowly, because this
neutralization is determined by the ion flux. The action
of this surplus charge results in their Coulomb repul-
sion. Chaotization proceeds gradually from pulse to
pulse. If the system of dust particles does not com-
pletely return to its initial ordered state in the time
between pulses and if this time depends on the extent of
the structure destruction and is several seconds for
complete chaotization, then the structure falls apart,
which is observed in the experiment.

Thus, the initial construction phase of an ordered
structure is related to the construction of its cooperative
field. It is determined by the initial electric-field distri-
bution in plasma, the number of particles, the degree of
their chaotization, and the existence of crystallization
centers. After the structure has been constructed, it
influences the local plasma and discharge properties.
After weak exposure, the structure is recovered at local
JOURNAL OF EXPERIMENTAL
equilibrium, while after intense exposure, it is deter-
mined by the fluctuation level and the degree of chaoti-
zation in the system.
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Abstract—Double ionization is studied by direct numerical integration of the time-dependent Schrödinger
equation for a model two-electron system in the field of an electromagnetic wave in the case when the photon
energy exceeds the energy required for the removal of both electrons of the atom. The probabilities of single-
electron and double ionization are obtained as functions of the radiation intensity. The energy spectra and dou-
ble pulse distributions of photoelectrons are analyzed. It is shown that single-photon ionization plays a signif-
icant role only in the limiting cases of weak and strong fields. The obtained results are used in an analysis of
the contributions from different channels to the double-ionization process (in particular, for clarifying the role
of the electron–electron interaction). The results of numerical calculations are compared with the analytic
model of the phenomenon. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of high-power laser sources of
electromagnetic radiation has resulted in the discovery
and analysis of the effect of multielectron ionization of
atoms in strong light fields [1]. The most significant
feature of the effect is an anomalously large yield of
doubly charged ions as compared to the model treating
the double-ionization process as a sequence of the acts
of ionization of an atom and a singly charged positive
ion [2, 3]. None of the models proposed for explaining
this feature of the effect (“shaking” [2], “rescattering”
[4], and collective tunneling [5] models) provides an
adequate description of the entire body of experimental
data [1].

The process of formation of doubly charged ions in
the laser radiation field has also been widely investi-
gated recently by the method of direct numerical inte-
gration of the time-dependent Schrödinger equation
describing a model two-electron system in an external
electromagnetic field [6–13]. Although such calcula-
tions make it possible to visualize the detailed space
and time pattern of the single- and double-ionization
process, the contributions of various mechanisms to the
probability of simultaneous photodetachment of two
electrons remain unclear.

First experiments on double photoionization of
atoms had been made long before high-power laser
sources of radiation were created. The photoionization
of atoms of inert gases by short-wave electromagnetic
radiation was studied in [14, 15] under the conditions
when the photon energy exceeded the energy of simul-
taneous photodetachment of two electrons from the
outer shell of an atom. Under such conditions, two elec-
trons can be removed upon the absorption of a single
1063-7761/02/9403- $22.00 © 20525
photon, the probability of this process being deter-
mined by the intensity of the correlation energy
exchange between the electrons. A detailed theoretical
analysis of single-photon double ionization was carried
out in [16]. However, this analysis is in fact confined to
perturbation theory and the self-consistent field approx-
imation for atomic electrons. In strong electromagnetic
fields, where multiphoton processes occur together
with single photon processes, such approximations are
obviously insufficient. It should also be noted that,
according to [8, 17], the self-consistent field approxi-
mation based on the time-dependent Hartree or Har-
tree–Fock equations cannot be used for describing the
multiphoton double ionization even on a qualitative
level.

In the present work, the process of single and double
photoionization of a model two-electron quantum sys-
tem is investigated by the method of direct numerical
integration of the time-dependent Schrödinger equation
in the case when the energy "ω of a quantum is sufficient
for the removal of both electrons from the atom. The
obtained results are used for studying various channels
of double ionization. The results of calculations are com-
pared with the analytical model of the effect.

2. NUMERICAL MODEL

In this work, we confine our analysis to a 1D two-
electron quantum system simulating a negative hydro-
gen ion H– and studied in detail in [9, 18, 19]. The
Hamiltonian of the system was given in the form

(1)H0 Ti V xi( )+( ) V12 x1 x2,( ),+
i 1=

2

∑=
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Table

n 1 2 3 4 5 6 7 8 9

En, eV –11.45 –6.05 –3.85 –2.52 –1.74 –1.26 –0.96 –0.60 –0.41
where Ti is the kinetic energy of the ith electron,

is the energy of its interaction with the nucleus, and

is the energy of the electron–electron interaction. For
the value of the smoothing parameter α = 0.92 Å, the
energies required for the removal of the first and second
electrons are I1 ≈ 1.11 eV and I2 ≈ 11.45 eV, respec-
tively.

A detailed analysis of the model of a negative hydro-
gen ion under investigation and of its relation to 3D
models was carried out in [9]. Among other things, it
was proved in [9] that the system has a single bound
state characterized by different sizes of the regions of
spatial localization for the electrons. Indeed, if we try to
present the wave function of the steady state of the sys-
tem in the form of the symmetrized product of one-
electron wave functions,

(N is the normalization factor and u(x) ≠ v(x)), we must
assume that the coordinate dispersions calculated on
the basis of functions u and v  are different.1 This means
that the electron density of one of the electrons (the
identity principle does not allow us to specify the elec-
tron exactly) is localized closer to the attracting center
than that of the other electron. In other words, the
model under investigation is a system with an expelled
electron. In this sense, we will speak of the “outer” and
“inner” electrons.

All excited states of our system belong to the contin-
uum; among these states, we can single out the states of
one- and two-electron continua. Following [9], we will
approximately describe the states of the one-electron
continuum by a symmetrized wave function of the form

(2)

1 In the 3D case, such a situation is described, for example, by the
Chandrasekhar wave function (see [9] and the literature cited
therein).

V xi( ) e2

α2 xi
2+

---------------------–=

V12
e2

α2 x1 x2–( )2+
---------------------------------------=

ϕ0 x1 x2,( ) N u x1( )v x2( ) u x2( )v x1( )+[ ]=

ϕnk x1 x2,( )
1

2
-------=

× Φn x1( )
ikx2( )exp

2π
------------------------ Φn x2( )

ikx1( )exp

2π
------------------------+

 
 
 

.
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Here, Φn(x) is the wave function describing a one-elec-
tron (hydrogen) atom in the nth stationary state (the
corresponding values of energy En are given in the
table), and k is the wave vector of the electron in the
continuum, which is connected with the energy through
the relation E = "2k2/2m.

An analysis of the temporal dynamics of the model
H– ion in the field of a wave was carried out on the basis
of direct numerical integration of the time-dependent
Schrödinger equation for the wave function of the sys-
tem. In the dipole approximation, the interaction of the
system with the field of an electromagnetic wave is
determined by the operator

(3)

where ε and ω are the amplitude and frequency of the
field of the electromagnetic wave. In analogy with [9,
12, 13], the envelope ε(t) has a smoothed trapezoidal
shape, the durations of the generation pulse fronts and
plateau being tf = 5T and tpl = 10T, T = 2π/ω.

The frequency of the external field was chosen cor-
responding to "ω = 15 eV, which is sufficient for single
photon ionization of both atomic electrons. The mesh
parameters and the size of the counting region were
chosen in analogy with [12, 13]; this enabled us to cal-
culate the wave function of the system over the entire
pulse length in the absence of the probability flux
absorption in the vicinity of the boundaries. The latter
circumstance is important for calculating the energy
spectra and the momentum distributions for photoelec-
trons.

All physical parameters of the system were calcu-
lated by using the function ψ(x1, x2, t0) obtained as a
result of numerical integration of the time-dependent
Schrödinger equation at instant t0 corresponding to the
end of the radiation pulse. In particular, the probability
of finding the system in the bound state was defined as

(4)

where ϕ0(x1, x2) is the wave function of the ground state
of the system.

The probabilities of single-electron ionization and
the energy and momentum distributions for electrons
were calculated using the function

(5)

W e x1 x2+( )ε t( ) ωt( ),cos–=

W0 t( ) C0 t( ) 2=

=  ψ x1 x2 t, ,( )ϕ0 x1 x2,( ) x1d x2d∫
2
,

ψ̃ x1 x2 t, ,( ) ψ x1 x2 t, ,( )=

– C0 t( )ϕ0 x1 x2,( )
i
"
---E0t–
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(E0 is the energy of the stationary state ϕ0(x1, x2))
describing the state of the system in the one- and two-
electron continua. The technique of the corresponding
computations was considered in detail in [9].

For an analysis of the electron–electron energy
exchange contribution to the ionization of the system,
some of the calculations were made in the “passive”
electron approximation which was used earlier to ana-
lyze double ionization by radiation in the visible fre-
quency range [12, 13]. In this approximation, the inter-
action with an external field can be written in the form

(6)

the ionization of the “passive” electron occurring only
as a result of its interaction with the “active” electron.

3. DISCUSSION

Figure 1 shows the distributions of the probability
density |ψ(x1, x2)|2 at the instant corresponding to the
end of a laser pulse for three values of radiation inten-
sity. The results presented in the figure indicate that
double ionization under the given conditions occurs
mainly as a result of absorption of two field quanta by
the system; we can assume that each electron absorbs
only one quantum. Indeed, the structure of the electron
density distribution |ψ(x1, x2)|2 in the region corre-
sponding to double ionization indicates that the ratio of
the velocities of the photoelectrons is

v 2 : v 1 ≈ 2 : 1,

which correlates well with the expression

obtained under the assumption of independent photo-
ionization of the “outer” and “inner” electrons. Here,
we assume that the energy required for the removal of
the inner electron is equal to the ionization potential I ≈
11.45 eV of a model hydrogen atom; i.e., this quantity
is virtually independent of the presence of the outer
electron. It should be noted that the process occurs con-
secutively in time: first, the outer electron is ionized,
which leads to the emergence of a fast electron in the
continuum and to the formation of a “cross” on the dis-
tribution |ψ(x1, x2)|2, followed by the ionization of the
inner electron. In this case, the continuum acquires an
electron with a comparatively low energy E2 ≈ "ω – I2 ≈
3.5 eV, and a probability flux moving away from both
coordinate axes is formed on the |ψ(x1, x2)|2 distribu-
tion. The results presented in Fig. 1 lead to the conclu-
sion that, at the instant of ionization of the second
(inner) electron, the first electron is separated from the
attracting center by approximately 10 Å and, hence, the
delay in the emission of the second electron can be esti-
mated at 0.3 fs. Such a delay corresponds to the dura-
tion of an optical cycle. It should be noted that, never-

W ex1ε t( ) ωt( ),cos–=

E2

E1
-----

v 2
2

v 1
2

------
"ω I1–
"ω I2–
------------------ 4 : 1,≈= =
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theless, double ionization is a correlated process: the
electrons fly apart only in opposite directions (this fea-
ture of the emission was also noted in [16]), which
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Fig. 1. Spatial distribution of the two-electron density |ψ(x1,

x2)|2 at the instant of termination of the external action for the

radiation intensities (a) 1015, (b) 1016, and (c) 1017 W/cm2.
The level lines correspond to the following values: 10–2 (1),
10–3 (2), 10–4 (3), and 10–5 (4).
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necessitates the inclusion of the electron–electron inter-
action in the course of the photodetachment of the elec-
trons.

Similar |ψ(x1, x2)|2 distributions obtained in the “pas-
sive” electron approximation are presented in Fig. 2.
These distributions indicate an intense energy exchange

–50 –36 –22 –8 6 20 34 x1, Å

(‡)

–34

–17

0

17

34

–34

–17

0

17

34

–34

–17

0

17

34

(b)

(c)

1

2

1

3

2

x2, Å

4

3

Fig. 2. The same as in Fig. 1, but in the “passive” electron
approximation.
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between electrons. By the instant of cessation of the
action of the wave field, the absorbed energy is distrib-
uted between the electrons so that the obtained distribu-
tions |ψ(x1, x2)|2 virtually cannot be used to determine
which of the electrons was subjected to the external
action. The only exception is the case of extremely
strong fields (see Fig. 2c), in which the intensity of
energy exchange proved to be noticeably lower, leading
to predominant ionization of the “active” electron.

The probabilities of single and double ionization as
functions of the radiation intensity, which were
obtained from the solution of the Schrödinger equation
(exact calculations and calculations in the “passive”
electron approximation) are shown in Fig. 3. It should
be noted that, in the region where single-electron ion-
ization dominates P ≤ 1016 W/cm2), the probabilities of
single-electron ionization in the “passive” electron
model and in exact calculations virtually coincide. On
the contrary, the probability of double ionization in the
“passive” electron model is several times higher than in
exact calculations. Thus, we can draw the following
conclusion: in moderate fields, double ionization
occurs as a result of the electron–electron energy
exchange, while the action of the field of a wave on
both electrons “hampers” the process. In the “passive”
electron model, the action of the wave field on the
bound “active” electron is apparently stronger than in
exact calculations. As a result, the energy of vibrational
motion of the active electron turns out to be higher,
leading to an increase in the probability of ionization of
the passive electron by an electron impact. Such a pat-
tern of the process corresponds to the widely discussed
“rescattering” model [4]. Thus, we can assume that, in
the case under investigation, the action of the field on
both electrons partly suppresses the effect of “rescatter-
ing.”

On the other hand, in the region of strong fields (P ≥
1016 W/cm2), the probability of double ionization in the
“passive” model decreases upon an increase in the

0.1

0.01

0.001

1014 1015 1016 1017

Intensity, W/cm2

1
2

3

4

 P
ro

ba
bi

lit
y

Fig. 3. Probabilities of single (1, 3) and double (2, 4) ioniza-
tion of the system during a pulse as functions of the radia-
tion intensity, obtained in exact calculations (1, 2) and in the
“passive” electron approximation.
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intensity, indicating a decreasing role of the energy
exchange between the electrons. In exact calculations,
double ionization turns out to be considerably stronger
than in the “passive” electron approximation. However,
a decrease in the total (single and double) ionization
probability upon an increase in the intensity is also
observed in exact calculations in the region P ≥
1017 W/cm2: the effect of stabilization relative to the
ionization process takes place. Since the electron–elec-
tron interaction in this intensity range is weak, the sta-
bilization effect is apparently of the one-electron origin
and can be explained in the framework of the Kramers–
Hennenberger formalism [20, 21].

The distribution over the quantum states of the
remaining electron (Fig. 4), which was calculated for
single-electron ionization, may serve as an additional
confirmation of the fact that the system contains an
“inner” and an “outer” electron ionized by an external
field almost independently. The second peak for n = 5
appears as a result of the photodetachment of the inner
electron, the probability of this process increasing with
the radiation intensity.

The energy spectra of photoelectrons calculated as a
result of expansion of the wave function  in
functions (2) also indicate the independent photode-
tachments of the outer and inner electrons (see Fig. 5).
The main peak 1 corresponds to the photodetachment
of the outer electron; the hydrogen atom formed as a
result of photoionization remains in the ground state.
Peak 2 corresponds to the detachment of the inner elec-
tron, the hydrogen atom being in an excited state (n = 4,
5, 6). As the radiation intensity increases, this peak
becomes higher. The presence of peak 3 corresponds to
the photodetachment of an electron accompanied by
the excitation of the remaining electron to the state with
n = 2. The origin of this peak cannot be explained in the
model of independent photoionization of the outer and
inner electrons; it is associated with the correlation
energy exchange between the electrons. Indeed, in the
case under investigation, the energy absorbed by the
system in the form of a quantum "ω is distributed in a
certain proportion between the electrons. As the radia-
tion intensity increases, the role of this correlation pro-
cess becomes smaller and the correlation peak 3 virtu-
ally vanishes for P = 1017 W/cm2.

Let us now analyze the momentum distributions of
photoelectrons formed as a result of double ionization.
These distributions were calculated at the instant of ter-
mination of the laser radiation action on the basis of the
formula

(7)

ψ̃ x1 x2,( )

W k1 k2,( ) ψ̃ k1 k2,( ) 2=

1
2
--- ψ̃ x1 x2,( ) i k1x1 k2x2+( )–( )exp[∫∝

+ i k1x2 k2x1+( )–( )exp ]dx1dx2

2
.
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It was mentioned above that the momentum distribu-
tions take into account the states of one- and two-elec-
tron continua. The distributions obtained for various
values of intensity are presented in Fig. 6. The electron
densities corresponding to single-electron ionization
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Fig. 4. Probabilities of populating various stationary states
of the one-electron atom formed as a result of single-elec-
tron ionization of a two-electron system. The radiation
intensities are 1015 (1), 1016 (2), and 1017 (3) W/cm2.
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by the end of a pulse. The intensities are (a) 1014; (b) 1015; (c) 1017; and (d) 3 × 1017 W/cm2. The level lines (in relative units) are
given in each figure.
determine the characteristic rectangular structure
(which is manifested most clearly in Fig. 6b) formed
due to the fact that one (bound) electron has a broad
momentum distribution with zero average value, while
the other (free) electron is characterized by the momen-
tum

(8)

where En is the energy of the bound electron in the
atom. For P = 1015 W/cm2 (Fig. 6b), the peaks corre-
sponding to n = 1, 2 are manifested clearly. The double
ionization corresponding to the absorption of two field
quanta is obviously responsible for local peaks on the

p 2m "ω En–( ),=
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W(k1, k2) distribution, which are at considerable dis-
tances from both coordinate axes. Such peaks emerge
indeed (see Figs. 6b and 6c). At the same time, in
extremely weak (P = 1014 W/cm2) and extremely strong
(P = 3 × 1017 W/cm2) fields, two slow electrons emerge
in the continuum with a certain probability (see Figs. 6a
and 6d). Obviously, these electrons cannot appear as a
result of two-quantum absorption and are associated
with the existence of the two-electron single-quantum
process of photoionization. The distributions presented
in the figures convincingly indicate that such a process
is virtually absent in the intermediate intensity range
(P = 1015–1017 W/cm2).
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Similar conclusions also follow from the total
momentum (K = k1 + k2) distributions for two electrons,
which can be obtained from function W(k1, k2) as a
result of integration with respect to the relative momen-
tum k = k1 – k2. These W(K) distributions are presented
in Fig. 7. The bifurcated structure of the peaks at P =
1015 and 1017 W/cm2 (see Figs. 7b and 7c) emerges as a
result of single electron ionization: in this case, one
electron has zero momentum on the average, and the
total momentum is determined by the momentum of the
electron in the continuum. As the radiation intensity
increases (Fig. 7d), the role of double ionization
becomes larger, and the position of the peak is deter-
mined by the difference in the absolute values of the
photoelectron momenta (it should be recalled that the
electrons fly apart in opposite directions). This leads to
a displacement of the peak towards smaller values of K.
At the same time, the structure of the function W(K) in
weak fields (P = 1014 W/cm2) is different in principle:
slow electrons formed as a result of single-photon dou-
ble ionization dominate in the distribution. A similar
increase in the role of slow electrons is observed in
extremely strong fields (P = 3 × 1017 W/cm2). In this
case, we can apparently speak of the competition of sin-
gle- and double-photon double-ionization processes.

Let us analyze qualitatively the results obtained on
the probabilities of single- and double-photon pro-
cesses of double ionization. In the case of weak fields,
when perturbation theory is applicable [16, 22], the
expression for the amplitude of single-photon double
ionization can be written in the form

(9)

Here, d is the dipole operator, u = e2/x12 is the electron–
electron interaction operator, ϕ0 and ϕnk are the wave
functions of the ground state and of the one-electron
continuum, E0 and Ekn are the corresponding energies,
and |k1, k2〉  are the states of the two-electron continuum.

Similarly, for the amplitude of a double-photon pro-
cess, we have

(10)

The first process, (9), is linear in the wave field
strength, while the second, (10), is quadratic; conse-
quently, single-photon ionization must dominate in
weak fields. The ratio of the amplitudes of the process
under investigation is determined by the ratio of the
energy dε of interaction between an electron and the
field to the energy u = e2/x12 of the electron–electron
interaction. Assuming that x12 ≈ 4a0 and d ≈ 4ea0 for our

M fi
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system (a0 is the Bohr radius), we obtain /  ≈ 1
for P ≈ 3 × 1014 W/cm2, which is in good agreement
with the results of numerical calculations. Surprisingly,
in extremely strong fields, the contribution of single-
photon double ionization increases again. This fact is
apparently associated with the stabilization relative to
ionization in strong electromagnetic fields. Indeed, if
the condition dε @ e2/x12 is satisfied, the motion of elec-
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Fig. 7. Total momentum distribution W(K) for two electrons
in the superposition of the states of the one- and two-elec-
tron continua, corresponding to the instant of pulse termina-
tion. The intensities are (a) 1014, (b) 1015, (c) 1017, and
(d) 3 × 1017 W/cm2.
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trons in the first approximation can be regarded as inde-
pendent. Under such conditions, double ionization can
be regarded as a combination of two processes of sin-
gle-electron ionization. If the stabilization threshold is
exceeded, the probability of these two processes
decreases upon an increase in the lasing intensity.
Against such a background, the role of the electron–
electron energy exchange increases again and, hence,
the probability of single-photon double ionization also
increases. In ultrastrong fields, when the amplitude of
free electron vibrations in the field of the wave is larger
than the characteristic atomic size, this energy exchange
between the electrons can be interpreted in terms of the
rescattering concept. The electron density distribution
|ψ(x1, x2)|2 obtained at the instant of termination of a radi-
ation pulse of intensity P ≈ 3 × 1017 W/cm2 may serve as
a qualitative confirmation of the change in the mecha-
nism of double ionization in extremely strong fields
(see Fig. 8). In addition to the characteristic structure
indicating the presence of a fast and a slow electron (see
the data presented in Fig. 1), photoelectrons with
almost identical momenta and with an energy approxi-
mately equal to 1 eV also appear. In addition, along
with the ejection of electrons in opposite directions, the
probability of emission in the same direction becomes
appreciable; this was considered in [23–25] as a confir-
mation of the “rescattering” effect.

4. CONCLUSIONS

In this work, the double ionization of a system under
the conditions when the energy of a quantum exceeds
the total binding energy of both electrons in the atom is
considered. It is shown that, in a wide range of radiation
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Fig. 8. Same as in Fig. 1, for a radiation intensity of
3 × 1017 W/cm2.
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intensities, double ionization occurs as a result of con-
secutive correlated absorption of two field quanta and is
accompanied by the ejection of electrons in opposite
directions. The strictly single-quantum process of dou-
ble ionization is realized only in relatively weak fields,
when the energy of interaction of an electron with the
field of the wave is much lower than the energy of the
electron–electron interaction. It is shown that, in
extremely strong fields, the relative contribution of the
energy exchange between the electrons to the double-
ionization process also increases, leading to an increase
in the probability of photodetachment of two electrons
upon the absorption of a single quantum of the laser
field. In the case of extremely strong fields, the vibra-
tional energy of an electron is sufficient for ionizing the
atomic electron by an electron impact, which can be
regarded as a manifestation of the rescattering effect.
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Abstract—The dynamics of the development of instability of the free surface of liquid helium, which is
charged by electrons localized above it, is studied. It is shown that, if the charge completely screens the electric
field above the surface and its magnitude is much larger than the instability threshold, the asymptotic behavior
of the system can be described by the well-known 3D Laplacian growth equations. The integrability of these
equations in 2D geometry makes it possible to describe the evolution of the surface up to the formation of sin-
gularities, viz., cuspidal point at which the electric field strength, the velocity of the liquid, and the curvature of
its surface assume infinitely large values. The exact solutions obtained for the problem of the electrocapillary
wave profile at the boundary of liquid helium indicate the tendency to a change in the surface topology as a
result of formation of charged bubbles. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known [1, 2] that the liquid helium surface
may be charged to high values of the surface density of
a negative electric charge. This is due to the fact that, on
the one hand, electrons are attracted to the surface by
weak electrostatic image forces and, on the other hand,
the liquid helium boundary is a potential barrier for
electrons, which prevents their penetration in the bulk.
An important feature of liquid helium as a dielectric
with a low polarizability is the relative weakness of the
image forces, as a result of which the mean distance
between localized electrons and the surface is much
larger than the atomic spacing. Consequently, the elec-
trons are not bound to individual atoms of the substance
and form a two-dimensional conducting system.

The ability of electrons to move freely over the sur-
face of liquid helium ensures the equipotential nature of
this surface over characteristic hydrodynamic times and
scales. A charged surface of a conducting liquid also
possesses this property, the only difference being that
the electric field cannot penetrate into a conducting
medium, while liquid helium is not subjected to such a
limitation. This enabled Gor’kov and Chernikova [3, 4]
to extend a number of classical results from the theory
of instability of a liquid metal surface in an external
electric field [5–7] to the case of the charged boundary
of liquid helium (the geometry of the system is shown
schematically in Fig. 1). For example, a natural gener-
alization of the dispersion relation for linear waves on
the surface of a conducting liquid is the following dis-
persion relation for liquid helium:

(1)ω2 gk
α
ρ
---k3 E2 E '2+

4πρ
-------------------k2,–+=
1063-7761/02/9403- $22.00 © 20534
where ω is the frequency, k is the wave number, g is the
acceleration due to gravity, α is the surface tension, ρ is
the density of the medium, and E' and E are the electric
field strengths above the liquid and in the bulk of it,
respectively (E = 0 for a conducting medium). It fol-
lows hence that for

the inequality ω2 > 0 holds for any k and, hence, small
perturbations of the surface do not build up with time.
In the case when the sum of the squares of the fields
E'2 + E2, which plays the role of an extrinsic controlling

parameter, exceeds the critical value , a region of
wave numbers k for which ω2 < 0 is formed. This cor-
responds to an aperiodic instability of the liquid bound-
ary.

The buildup of perturbations of the surface inevita-
bly transforms the system to a state in which its evolu-
tion is determined by nonlinear processes. The nature

E '2 E2+ Ec
2< 8π gαρ=

Ec
2

E

E ' < E z
x

y

Fig. 1. Schematic diagram of the surface of liquid helium,
charged by electrons, in a parallel-plate capacitor.
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of their effect can be estimated most easily in the vicin-
ity of the instability threshold, i.e., for a small supercrit-
icality

when only perturbations with wave numbers close to

k0 =  increase and we can pass to envelopes in
the equations of motion. For example, Gor’kov and
Chernikova [8] proved that, in the case of the 2D sym-
metry of the problem, the complex amplitude A(x, t) of
perturbation of the surface obeys the nonlinear Klein–
Gordon equation

(2)

where

is the dimensionless parameter characterizing the sur-
face charge density. It can be seen from Eq. (2) that,
depending on the value of parameter S, the nonlinearity
either saturates the instability, or, conversely, facilitates
a burst of the perturbation amplitude. A similar conclu-
sion can also be drawn in the general (3D) case with a
correction taking into account the fact that the nonlin-
earity in the first nonvanishing order plays a destabiliz-
ing role due to the interaction of three waves forming
the hexagonal structure. As in the 2D case, cubic non-
linearities produce a stabilizing effect for small values
of S [9, 10]. Consequently, for a low surface charge
density (when the values of E and E' are close), a
steady-state relief of the liquid helium boundary may
be formed. In this case, the standard perturbation theory
in the small parameter, viz., the characteristic slope of
the surface, can be used for studying the structures
being generated (see [11] and the literature cited
therein).

The processes occurring in the supercritical region
of electric fields and for relatively large electron surface
charge screening the field above the liquid surface to a
considerable extent have not been investigated in detail
theoretically. This is due to the fact that, in these cases,
the development of instability violates the small-angle
approximation. For example, the analysis of the behav-
ior of the charged boundary of liquid helium by high-
speed microphotography carried out by Volodin et al.
[12] proved that the dimples appearing on the surface
are sharpened over a finite time (the bubbles which are
subsequently formed at the tips carry the charge from
the helium surface to the positive plate of the capaci-
tor). In view of the considerable nonlinearity of such
processes, their description requires the construction of
solutions to the fundamental equations of the electrohy-
drodynamics of liquid helium.

ε
E2 E '2 Ec

2–+

Ec
2

-------------------------------,=

gρ/α

gk0( ) 1– Att 2εA k0
2– Axx 2S2 5

8
---– 

  A A 2,+ +=

S
E2 E '2–

Ec
2

-------------------=
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In the present work, it will be shown that, when the
condition E @ E', which corresponds to complete
screening of the field above the liquid by the surface
electron charge, is satisfied along with the condition
that the electric field strength considerably exceeds the
critical value, E @ Ec, the equations of motion of liquid
helium have an infinitely large number of exact analytic
solutions. Their analysis has facilitated a considerable
advance in the analysis of unsolved problems in the
electrohydrodynamics of liquids with a free surface,
which are associated with the formation of singularities
(cusps) and with considerable changes in the surface
geometry (formation of bubbles).

In Section 2, the equations of a vortex-free flow of
liquid helium with a free surface charge are considered.
In the limit of a strong electric field, when the effect of
the force of gravity and capillary forces can be
neglected, the approach to an analysis of the liquid
helium dynamics proposed in our earlier work [13] is
developed. This approach is based on the separation of
two branches corresponding to solutions increasing and
decreasing with time in the equations of motion. In Sec-
tion 3, it is shown that the asymptotic behavior of the
system is given by the well-known equations describ-
ing the Laplacian growth in the 3D geometry (the
motion of the equipotential boundary with the velocity
determined by the normal derivative of the harmonic
potential). Section 4 is devoted to an analysis of the
dynamics of the formation of cuspidal dimples on the
helium surface in 2D geometry, when the Laplacian
growth equations have an unlimited number of exact
nontrivial solutions. The propagation of nonlinear sur-
face waves in the short-wave region in which the sur-
face pressure must be taken into account along with the
electrostatic pressure is considered in Section 5. It is
shown that the problem of the profile of a progressive
electrocapillary wave at the liquid helium boundary has
exact analytic solutions similar to the Crepper solutions
for capillary waves [14]. These solutions are used for
obtaining a nonlinear dispersion relation for surface
waves of an arbitrary amplitude, whose analysis led to
a number of conclusions concerning the stability of the
charged surface of liquid helium to finite-amplitude
perturbations and the domain of the existence of wave
solutions to the electrohydrodynamic equations. In
Section 6, the simplest axisymmetric solutions of the
equations of motion, describing the pulling of the sur-
face into the bulk of the liquid at a constant rate, are
analyzed.

2. INITIAL EQUATIONS: 
THE LIMIT OF A STRONG FIELD

Let us consider the potential motion of an ideal
dielectric liquid (liquid helium) with a free surface
charged by electrons in an electric field. We assume
that, in the unperturbed state, the boundary of the liquid
is a flat horizontal surface z = 0 and the field vector is
directed along the z axis of our system of coordinates
SICS      Vol. 94      No. 3      2002
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(Fig. 1). We introduce a function η(x, y, t) specifying
the deviation of the boundary from the plane. Then, the
shape of the perturbed surface of liquid helium is
described by the equation z = η(x, y, t). The velocity
potential Φ for an incompressible liquid satisfies the
Laplace equation

(3)

which must be supplemented with the dynamic bound-
ary condition

(4)

where ϕ is the electric potential in the liquid (we
assume that the charge completely screens the field
above the helium surface). The first term on the right-
hand side of the time-dependent Bernoulli equation (4)
is responsible for electrostatic pressure, the second is
responsible, for the capillary pressure, and the third
takes into account the effect of the field of gravity. We
assume that the characteristic spatial scale of surface
perturbations is smaller than the size of the region occu-
pied by the liquid. In this case, we can write

(5)

i.e., the motion of the liquid attenuates at infinity. The
time evolution of the free surface is determined by the
kinematics relation (the condition that the liquid does
not flow through its boundary):

(6)

Finally, the electric potential ϕ in the absence of space
charges satisfies the Laplace equation

(7)

which must be solved under the condition that the liq-
uid helium boundary is equipotential and the field is
uniform at an infinitely large distance from the surface:

(8)

(9)

It should be noted that, in zero electric field (E = 0 and,
hence, ∇ϕ  = 0), the above equations coincide with the
equations of motion for a thick layer of liquid in the
field of gravity.

Let the electric field strength exceed considerably its
critical value (E @ Ec) and let the following relation hold
for the characteristic wavelength λ of surface waves:

∇ 2Φ 0,=

Φt
∇Φ( )2

2
----------------+

E2 ∆ϕ( )2–
8πρ

--------------------------=

+
α
ρ
--- ∇ ⊥

∇ ⊥ η

1 ∇ ⊥ η( )2+
------------------------------- gη ,–

z η x y t, ,( ),=

Φ 0, z ∞;–

η t Φz ∇ ⊥ η∇ ⊥ Φ, z– η x y t, ,( ).= =

∇ 2ϕ 0,=

ϕ 0, z η x y t, ,( ),= =

ϕ Ez, z ∞.––

αE 2–
 ! λ  ! 

E2

gρ
------.
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It follows from the dispersion relation (1) that, in an
analysis of small-amplitude surface perturbations, we
can disregard the effect of both the capillary forces and
the force of gravity. In Section 4, we will prove that this
statement also holds for finite-amplitude surface pertur-
bations. This means that we can omit the last two terms
on the right-hand side of the boundary condition (4) and
take into account the electrostatic pressure alone.

Now we pass to the dimensionless notation, assum-
ing that the unit of length is equal to λ, the unit of elec-
tric field strength is E, and the unit of time is
λE−1(4πρ)1/2. In this case, the equation of motion (3)–
(9) assume the form

(10)

(11)

(12)

(13)

(14)

(15)

Let us write these equations in the form which does not
contain function η explicitly and introduce the per-
turbed harmonic potential  = ϕ + z attenuating at
infinity (   0 as z  –∞). At the boundary, we
have

 = η.

This readily leads to the relations

which allow us to eliminate η from Eq. (12). The kine-
matic and dynamic boundary conditions (11) and (12)
can be transformed to

Adding and subtracting these equations, we obtain

i.e., the boundary conditions can be specified separately
for the sum and the difference of the harmonic poten-

∇ 2ϕ 0, ∇ 2Φ 0,= =

Φt ∇Φ( )2/2 ∇ϕ( )2/2+ + 1/2,=

z η x y t, ,( ),=

η t Φz ∇ ⊥ η  · ∇ ⊥ Φ, z– η x y t, ,( ),= =

ϕ 0, z η x y t, ,( ),= =

Φ 0, z ∞,–

ϕ z, z ∞.––

ϕ̃
ϕ̃

ϕ̃ z η=

η t
ϕ̃ t

1 ϕ̃ z–
--------------

z η=

, ∇ ⊥ η ∇ ⊥ ϕ̃
1 ϕ̃ z–
--------------

z η=

,= =

ϕ̃ t Φz– ∇ϕ˜  · ∇Φ , z– η x y t, ,( ),= =

Φt ϕ̃ z– –
∇Φ( )2

2
---------------- ∇ϕ˜( )2

2
---------------, z– η x y t, ,( ).= =

ϕ̃ Φ+( )t ϕ̃ Φ+( )z–
∇ ϕ˜ Φ+( )( )2

2
------------------------------,–=

z η x y t, ,( ),=

ϕ̃ Φ–( )t ϕ̃ Φ–( )z+
∇ ϕ˜ Φ–( )( )2

2
------------------------------,=

z η x y t, ,( );=
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tials  and Φ. It is convenient to introduce a pair of
auxiliary potentials

Using these potentials, we can write the equations of
motion in the following symmetric form:

(16)

(17)

(18)

while the shape of the liquid helium boundary is deter-
mined from the relation

(19)

Thus, the equations of motion can be split into two
systems of equations for potentials φ(+) and φ(–), the
relation between which is given by the implicit equa-
tion for the shape of the surface (19). It is important that
these equations are compatible with the condition φ(–) = 0
or with the condition φ(+) = 0. In the next section, we
will show that the former condition corresponds to the
solutions of the problem whose amplitude increases
with time, while the latter (which is of no interest to us),
to damped solutions.

The possibility of separating equations into individ-
ual branches is due to the symmetries of the electrohy-
drodynamic equations, which can be easily seen when
the Hamilton formalism is used. Indeed, the equations
of motion (10)–(15) for a liquid with a free surface pos-
sess a Hamilton structure, the functions η(x, y, t) and
ψ(x, y, t) = Φ|z = η being canonically conjugate quanti-
ties [15],

where the Hamiltonian H coincides to within constants
with the total energy of the system:

It should be recalled that the harmonic potentials Φ
and  attenuate for z  –∞ and their values on the
surface are defined by the functions ψ and η, respec-
tively. Consequently, if ψ = η, then Φ = , and the
kinetic energy functional K coincides, except for the
sign, with the potential energy functional P. This allows

ϕ̃

φ ±( ) x y z t, , ,( ) ϕ̃ Φ±
2

--------------.=

∇ 2φ ±( ) 0,=

φt
±( ) φz

±( )± ∇φ ±( )( )2
, z+− η x y t, ,( ),= =

φ ±( ) 0, z ∞,–

η φ +( ) φ –( )+( ) z η= .=

ψt
δH
δη
-------, η t–

δH
δψ
-------,= =

H K P, K+
∇Φ( )2

2
----------------d3r,

z η≤
∫= =

P
1 ∇ϕ( )2–

2
------------------------d3r

z η≤
∫ ∇ϕ˜( )2

2
---------------d3r.

z η≤
∫–= =

ϕ̃

ϕ̃
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us to write the Hamilton equations of motion using the
functional K alone:

It can be seen that, if we set ψ = η in these equations,
they will coincide. This means that the condition ψ = η
or (which is the same) the condition φ(–) = 0 is compat-
ible with the equations of motion for liquid helium.
Similarly, we can prove that the Hamilton equations
coincide for ψ = –η, which corresponds to the condition
φ(+) = 0. It should also be noted that the equations
describing the evolution of the system on the branches
φ(+) = 0 and φ(–) = 0 coincide except for the substitution
t  –t, which is associated with the time reversibility
in the Hamilton equations of motion. In this case, the
conditions φ(±) = 0 single out the solutions of the prob-
lem for which H is equal to zero.

3. INCREASING BRANCH: STABILITY

In the linear approximation whose applicability is
limited by the condition of the smallness of the slopes
of the surface |∇ ⊥ η| ! 1, the boundary conditions (17)
assume the form

and Eqs. (16)–(19) split into two independent systems.
The dispersion relations for these systems can be found
by substituting potentials in the form

This gives

(the same result follows directly from the dispersion
relation (1) considered in the strong field limit). It can
be seen that, for one branch, small periodic perturba-
tions of the surface increase exponentially with the
characteristic times k–1, while, for the other branch,
these perturbations attenuate. In this case, for large
periods of time, we can assume that φ(–) = 0 and con-
sider only the equations for potential φ(+). Let us prove
that this statement is also valid in the general case,
when the evolution of the surface is described by the
nonlinear equations (16)–(19).

We assume that, in the nonlinear equations of
motion (16)–(19),

which, in accordance with the results of linear analysis,
isolates the solutions increasing with time. Passing to
the moving fame of reference {x, y, z'} = {x, y, z – t} in
which the plane unperturbed surface of the liquid
moves downwards (i.e., in the direction opposite to the

ψt –
δK
δη
------- δK

δη
------- δK

δψ
-------+ 

 
ψ η=

, η t+
δK
δψ
-------.= =

φt
±( ) φz

±( ), z± 0,= =

φ ±( ) kz ik r⊥ iωt–⋅+( ).exp∝

ω ±( ) ik±=

φ +( ) ϕ z, φ –( )+ 0,= =
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z' axis) at a constant velocity, after simple transforma-
tions, we obtain

(20)

(21)

(22)

(23)

where η'(x, y, t) = η – t and ∂n denotes the derivative
along the normal to the boundary of the liquid. These
equations define explicitly the motion of the free
charged surface of liquid helium z' = η'(x, y, t). They
coincide with the equations describing the so-called
Laplacian growth, viz., the motion of the phase bound-
ary with a velocity directly proportional to the normal
derivative of a certain harmonic scalar field (ϕ in our
case). Depending on the chosen frame of reference, this
field may have the meaning of temperature (Stefan’s
problem in the quasi-stationary limit), electrostatic
potential (electrolytic deposition), or pressure (flow
through a porous medium).

Let us prove that the solutions of Eqs. (10)–(15) cor-
responding to system (20)–(23) are stable to small per-
turbations of potential φ(–). It should be noted that the
motion of the liquid boundary described by Eqs. (20)–
(23) is always directed inwardly; this is associated with
the principle of the extremum for harmonic functions.
Let function η' at the initial instant t = 0 be a single-val-
ued function of variables x and y. In this case, for t > 0,
the following inequality holds:

In the original notation, we have

(24)

for any x and y. This inequality remains valid for small
perturbations of φ(–) also, when the effect of potential
φ(–) in relation (19) can be disregarded as compared to
the effect of potential φ(+), and the motion of the bound-
ary is described by the same Eqs. (20)–(23).

As regards the evolution of potential φ(–), it is
described, for small |∇φ (–) |, by Eqs. (16)–(18), where it
is sufficient to consider the condition (17) at the bound-
ary in the linear approximation:

Let us suppose that, at the initial instant t = 0, the poten-
tial distribution is described by the following expres-
sion:

where φ0 is a certain function which is harmonic for
z ≤ η(x, y, 0) and attenuating for z  –∞. In this case,

∇ 2ϕ 0,=

η t' ∂nϕ 1 ∇ ⊥ η '( )2+ , z ' η ' x y t, ,( ),= =

ϕ 0, z ' η ' x y t, ,( ),= =

ϕ z ', z ' ∞,––

η ' x y t, ,( ) η ' x y 0, ,( ).≤

η x y t, ,( ) η x y 0, ,( ) t+≤

φt
–( ) φz

–( ), z– η x y t, ,( ).= =

φ –( )
t 0= φ0 x y z, ,( ),=
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the temporal dynamics of potential φ(–) is described by
the expression

It can be seen from this expression that the singularities
of the function φ(–) are displaced in the direction of the
z axis and can exist only in the region

(25)

A comparison of this inequality with (24) shows that
the singularities of potential φ(–) do not approach the
liquid helium boundary z = η(x, y, t) and, hence, the
value of the potential at the surface does not increase
with time. It should be noted that, otherwise, the solu-
tion obtained by us for φ(–) would be inapplicable.

In view of incompressibility of the liquid, the level
of its surface (the value of function η averaged over the
spatial variables) is not displaced. On the other hand,
the boundary of the region defined by inequality (25)
and averaged over x and y, in which the singularities of
the function φ(–) occur, moves upwards at a constant
velocity. This means that the singularities move away
from the surface of liquid helium and the perturbation
of φ(–) relaxes to zero.

Thus, we have proved that, as t  ∞, we have

and Eqs. (20)–(23) describe the asymptotic behavior of
liquid helium with a charged surface in a strong electric
field.

4. SOLUTIONS OF 2D EQUATIONS
OF MOTION

In the previous section, we proved that the analysis
of the 3D potential motion of liquid helium in a strong
electric field can be reduced to an analysis of Eqs. (20)–
(23) describing the three-dimensional Laplacian
growth. The exact solvability of these equations in the
2D geometry will allow us to effectively study the
dynamics of the development of instability of the
charged surface of a liquid, including the formation of
singularities in it.

We assume that, in the system of equations (20)–
(23), all quantities are independent of variable y (vari-
able y'). We introduce the function w = v  – iϕ of the
complex argument Z = x + iz', which is analytic for z' ≤
η'(x, t) (this is the so-called complex potential of the
field correct to a constant factor). Here, v  is a function
harmonically conjugate to ϕ and such that the condition
v  = const defines the lines of force of the electric field
in the medium. Clearly, w  Z as Z  x – i∞.

It is convenient for the subsequent analysis to pass
to a system of coordinates in which the role of the inde-
pendent variable is played by quantity w and the role of
the unknown function is played by function Z which is
analytic in the lower half-plane of the complex variable

φ –( ) φ0 x y z t–, ,( ).=

z η x y 0, ,( ) t.+>

ϕ x y z t, , ,( ) z Φ x y z t, , ,( ),+
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w (i.e., for ϕ > 0). It follows from condition (23) that the
following condition holds at infinity:

(26)

We can also obtain the condition for Z at the boundary
ϕ = 0 of the half-plane. The profile of the liquid helium
surface can be specified by the parametric relations

Using these relations, we can easily express the normal
velocity of the surface and the electric field strength
appearing in formulas (21) in terms of the functions
z'(v, t) and x(v, t):

Substituting these relations into the condition (21) at
the surface, we obtain

or, which is the same,

(27)

Thus, we arrive at the problem of determining the
function Z, which is analytic in the lower half-plane of
the complex variable w and satisfies conditions (26) and
(27). The nonlinear condition (27) is the so-called
Laplacian growth equation which is widely used for
describing the 2D motion of the boundary between two
liquids with noticeably different viscosities [16, 17],
the evolution of the free surface of a liquid in the field
of gravity [18, 19], and so on. The Laplacian growth
equation is integrable in the sense that it has an infi-
nitely large number of particular solutions of the form
[20]

(28)

Here, an are complex constants, and the function of
time wn satisfies the condition Im(wn) > 0 (singularities
of the function Z can only be in the upper half-plane of
the complex variable w). The last term in expression
(28) was supplemented to ensure the fulfillment of con-
dition (26) and, hence, the condition of localization of
the perturbation of the surface in a certain region:
η  0 for |x |  ∞. We can set Im(w0) @ Im(wn); in
this case, the effect of this term on the evolution of the
surface is negligibly small.

Substituting expression (28) into Eq. (27) and
decomposing the obtained expression into simple frac-
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tions, we obtain a system of N ordinary differential
equations for wn(t):

Integration with respect to t leads to the following N
transcendental equations:

where Cn are arbitrary complex constants.

Let us consider the simplest solutions of this type,
which correspond to N = 1, Re(w1) = 0, and a1 = ±1:

(29)

(30)

where q = Im(w1) and tc is a real constant. The form of
a solitary perturbation corresponding to Eqs. (29) and
(30) is specified by the parametric expressions

Let us suppose that a1 = +1 and we are dealing with
a solitary perturbation of the surface, which is directed
“upwards.” It can be seen from Eq. (30) that for large
values of t, the quantity q ~ e–t and, hence, the surface
perturbation amplitude increases linearly with time:
z|v  = 0  t as t  ∞. This is the “one-finger” solution
of the Laplacian growth equation (see Fig. 2). It can
easily be proved that similar solutions are possible in
the 3D case also. It can be seen from Eqs. (20)–(23)
describing the three-dimensional Laplacian growth
that, if the surface initially contains a region in which
the field strength ∂nϕ is small (e.g., in the vicinity of the
apex of a 3D fingerlike perturbation of the surface), its
velocity in the coordinates {x, y, z'} is also small. In the
laboratory reference frame, this corresponds to a jet
flowing at a constant velocity in the direction of the z
axis.

Let us now consider a solitary perturbation of the sur-
face, which is directed “downwards” (a1 = –1, q(t) ≥ 1).
This solution exists only during a finite period of time,
leading to the formation of a singularity on the liquid sur-
face, viz., cuspidal point of the first kind (Fig. 3), at instant
t = tc. Indeed, expanding z and x into a power series in
v  and τ taking into account the fact that the function
q(t) in the vicinity of tc satisfies the relation

ẇn i i am*
ẇn ẇm*–

wn mm*–
-------------------

m 1=

N

∑+ + 0.=

wn it i am* wn wm*–( )ln
m 1=

N

∑+ + Cn,=

Z w( ) w it– i w iq t( )–( ),ln+−=

q t( ) q t( )ln± 1 tc t,–+=

z v t,( ) z ' v t,( ) t+ v 2 q2 t( )+ ,ln+−= =

x v t,( ) v
v

q t( )
---------.arctan±=

q t( ) 1 2τ , τ+≈ tc t,–=
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we obtain the following expressions in the main order:

(31)

It can be seen that, at instant τ = 0 (i.e., for t = tc), the
shape of the surface in the vicinity of a singular point is
defined by the relation 2z = |3x |2/3, which corresponds
to a cusp.1 It was indicated in [17, 23] that the singular-
ities of z3 ∝  x2 are general-position singularities for pro-
cesses described by the Laplacian growth equation.
Similar solutions of the equations of motion for liquid

1 On the charged surface of a conducting liquid, for which E = 0
and E' ≠ 0, in the limit of a strong field, weak root singularities of
the type z ∝  |x |3/2 are formed, for which the curvature is equal to
infinity, while the surface itself remains smooth [21, 22].
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v 2
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------ 2τ , x+ v 3

3
------ v 2τ .+= =

12
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0 –2 –4
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–8 –10 –12

z

x

Fig. 2. The profile of the liquid helium surface, correspond-
ing to the “one-finger” solution of the Laplacian growth
equation; a1 = 1, q = 10–4, and w0 = 5i.
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Fig. 3. The profile of the liquid helium surface at the instant
of formation of a singularity (cusp); a1 = –1, q = 0.8, and
w0 = 4i.
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helium with the charged boundary reflect the experi-
mentally observed tendency [12, 24] to the emergence
of dimples on the surface, which become sharpened
over a finite time. From the mathematical point of view,
the emergence of a singularity on the liquid surface is
associated with vanishing of the Jacobian of the trans-
formation {x, z'}  {v, ϕ} for ϕ = v  = τ = 0. At a
cusp, the electric field strength increases indefinitely
along with the velocity of the surface over a finite time
interval:

It is important to note that the singular solution of
the problem described by expressions (31) is also valid
in the case when the field above the surface is not
screened completely; i.e., the condition E' ! E does not
hold. As a matter of fact, in the vicinity of a singularity,
the condition of the smallness of the field above the sur-
face as compared to the field in the bulk of the liquid
naturally holds. In addition, the condition λ ! E2/gρ is
not necessary. This is due to the fact that the amplitude
of surface perturbations remains finite, and the effect of
the gravity forces is always negligibly small in the
vicinity of the cusp.

Let us now consider the capillary effects. The sur-
face and electrostatic pressures in the vicinity of a sin-
gularity can be estimated easily:

Here, we have returned to the dimensional notation. It
can be seen from these expressions that, when the con-
dition λ @ αE–2 is satisfied, the capillary forces are
small as compared to electrostatic forces and, hence,
can be disregarded at the stage of formation of cusps.
This is the only necessary condition of the applicability
of the Laplacian growth equation and its solutions (31)
in the vicinity of singularities.

5. ELECTROCAPILLARY WAVES

Let us consider the case when the characteristic
length of surface waves is comparable with the value of
αE–2 and the capillary effects must be taken into con-
sideration. We assume that condition E @ Ec is satis-
fied; in this case, the effect of the force of gravity can
be neglected. The dispersion relation (1) for electrocap-
illary waves at the charged boundary of liquid helium
for E' = 0 in the dimensionless notation introduced in
Section 2 assumes the form

(32)

where the value of λ = 4παE–2 is taken for unit length.
It can be seen from Eq. (32) that ω2 < 0 for k < 1 and,
hence, an aperiodic electrohydrodynamic instability of
the liquid surface develops. If, however, the condition

∇ϕ xv
1–

v 0= τ 1/2– , ∇Φ zt v 0= τ 1/2–( ).∝ ∝ ∝∼

PS αη xx αρ1/2E 1– τ 1– ,∝∝

PE ∇ϕ( )2 λρ1/2Eτ 1– .∝∝

ω2 k( ) k3 k2,–=
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k > 1 holds, the frequency ω is real-valued, which cor-
responds to the propagation of linear dispersive waves.

The approach to the study of the evolution of a
charged liquid surface based on the analysis of relation
(32) is obviously applicable only in the case of small-
amplitude perturbations of the boundary: A ! k–1. For
finite-amplitude waves, the nonlinear effect may con-
sist in the dependence of the dispersion relation on A
(see, for example, [25]):

The amplitude dependence of frequency is usually
sought in the form of a power series in A (Stokes expan-
sion), which limits the analysis to the weak-nonlinear-
ity limit. Let us prove that, for electrocapillary waves,
an exact solution to the nonlinear dispersion relation
can be found.

The equations describing a progressive wave
(whose profile does not change in the reference frame
attached to the wave) can be obtained from the electro-
hydrodynamic equations (3)–(9) with the help of the
following substitutions:

where x' = x – Ct and constant C has the meaning of the
velocity of a wave moving in the direction of the x axis.
This gives

(33)

(34)

(35)

(36)

(37)

(38)

(39)

These equations can be simplified by introducing the
function of current Ψ(x', z), which is harmonically con-
jugate to potential Φ':

This function satisfies the Laplace equation

(40)

with the boundary conditions

(41)

(42)

which follow from relations (36) and (38). It can easily
be seen that Eqs. (40)–(42) coincide with the Eqs. (34),

ω ω k A,( ).=

ϕ ϕ x ' z,( ), Φ Φ' x ' z,( ) Cx ', η η x '( ),=+= =

Φx 'x '' Φzz'+ 0,=

ϕ x 'x ' ϕ zz+ 0,=

Φx ''2 Φz'
2

C2–+
2

----------------------------------
ϕ x '

2 ϕ z
2 1–+

2
---------------------------+

η x 'x '

1 η x '
2+( )3/2

--------------------------,=

z η x '( ),=

Φx' η x 'Φx '' , z η x '( ),= =

ϕ 0, z η x '( ),= =

Φ' Cx ', z ∞,––

ϕ z, z ∞.––

Ψx ' Φz' , Ψz– Φx '' .= =

Ψx 'x ' Ψzz+ 0=

Ψ 0, z η x '( ),= =

Ψ Cz, z ∞,––
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(37), and (39) for the electric potential. Consequently,
the following functional relation exists:

Using this relation, we can considerably simplify the
Bernoulli equation (35), which assume the form

(43)

In combination with relations (34), (37), and (39), this
condition completely defines the shape of a wave prop-
agating in the coordinate system {x', z}.

Equations (34), (37), (39), and (43) coincide except
for constant factors with the equations describing the
shape of a progressive capillary wave [14] and an equi-
librium configuration of the charged surface of a liquid
metal [26]. These equations have exact periodic solu-
tions for which the boundary of the liquid is defined by
the parametric expressions

(44)

(45)

where z0 and  are constants, p is a parameter (the
value of p changes over a period by 2π/k), and the quan-
tity A has the meaning of the amplitude of a surface per-
turbation; i.e., A = (zmax – zmin)/2. The dependence of A
on k and C is specified by the relation

(46)

It was mentioned in [14] that solutions (44) and (45)
exist only for

where γ ≈ 1.52.
Considering that C is the phase velocity of the wave,

we set C = ω/k in relation (46). Solving the obtained
equation for frequency ω, we arrive at the exact nonlin-
ear dispersion relation

(47)

and the conditions of its applicability

(48)

It can be seen that, in the limit of infinitely small ampli-
tudes (A  0), expression (47) is transformed into the
linear dispersion relation (32). Let us consider the con-

Ψ Cϕ .=

C2 1+
2

--------------- ϕ x '
2 ϕ z

2 1–+( )
η x 'x '

1 η x '
2+( )3/2

--------------------------,=

z η x '( ).=

z
4k 2–

2 C2 1+( ) 1–
A kp( )cos+

---------------------------------------------------------- z0,+=

x ' p
2Ak 1– kp( )sin

2 C2 1+( ) 1–
A kp( )cos+

----------------------------------------------------------– x0' ,+=

x0'

A
4

C2 1+( )2
---------------------- 4

k2
----–

1/2
.=

1
k

C2 1+
--------------- γ,≤ ≤

ω2 k A,( ) k3

1 A2k2/4+
------------------------------ k2–=

k3γ 1– ω2 k2 k3.≤–≤
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sequences of this nonlinearity. It can be seen from rela-
tion (47) that, for a fixed wave number k ≥ 1, the maxi-
mum value of the surface perturbation amplitude
Amax(k) corresponds to the minimum possible value of
ω2. It follows from conditions (48) that, for 1 ≤ k ≤ γ,

the value of  = 0, which corresponds to a wave with
zero velocity. In this case, expressions (44) and (45)
define the solution of the problem on the steady-state
profile of the charged surface of liquid helium. For k >
γk1, the amplitude has the maximum value for electro-
capillary waves propagating at the velocity

ωmin
2

C kγ 1– 1– ;=

1

2

0

0 1 2 3 4 5

Amax

k

k = γ

Fig. 4. The maximum value of amplitude Amax of an elec-
trocapillary wave on the charged surface of liquid helium as
a function of the wave number k. For k < γ, the peak corre-
sponds to the value of ω = 0, while, for k > γ, the frequency
differs from zero.

3

2

1

0

–2 –1 0 1 2

z

x

Fig. 5. A period of the steady-state profile of a charged sur-
face of liquid helium for k = γ. For this value of the wave
number, the amplitude of the electrocapillary wave attains
its maximum value.
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in this case,

This gives

(the curve describing this dependence is presented in
Fig. 4). If the amplitude exceeds this value, expressions
(44) and (45) describe a self-intersecting surface, which
cannot be realized from the physical considerations, or
ω2 < 0, which corresponds to an incorrectly formulated
problem in the context of wave propagation. This leads
to the assumption that the condition A(k) > Amax(k) is
the criterion of hard excitation of electrohydrodynamic
instability of a plane charged surface of liquid helium,
which generalizes the simplest linear instability crite-
rion k < 1 to the case of finite-amplitude perturbations.

It should be noted that the peak of the function
Amax(k) corresponds to k = γ. The shape of the liquid
surface corresponding to this value of the wave number
is depicted in Fig. 5. It can be seen that the liquid
acquires cavities. Such solutions reflect the tendency to
the formation of charged bubbles (referred to as bub-
blons in the experimental work [12]) on cuspidal dim-
ples of the liquid helium boundary. The main mecha-
nism of departure of electrons from the surface is asso-
ciated with the generation of such bubbles.

6. AXISYMMETRIC SOLUTIONS
Let us consider the evolution of the charged surface

of liquid helium in an important case of the axial sym-
metry of the problem. The equations of motion (20)–
(23) corresponding to the increasing branch of the solu-
tions to system (10)–(15) in the cylindrical coordinates
{r, z'} = (r, z – t} assume the form

Here, r =  and we have taken into account the
fact that ∂nϕ = –|∇ϕ|  at the equipotential boundary in
condition (21).

At essentially nonlinear stages of the formation of a
dimple on the surface of a liquid, we can assume that
the electric field in the region of a large curvature of the
surface is much stronger than the external field, |∇ϕ|  @ 1.
In this case, the dynamics of the boundary η' = η – t is

ωmin
2 k3γ 1– k2.–=

Amax k( )

0, 0 k 1,<≤

2 1 k 2–– , 1 k γ,≤ ≤

2k 1– γ2 1– , k γ>







=

ϕ rr r 1– ϕ r ϕ z 'z '+ + 0,=

η t' ϕ r
2 ϕ z '

2+( )1/2
1 η r'

2
+( )

1/2
, z '– η ' r t,( ),= =

ϕ 0, z ' η ' r t,( ),= =

ϕ z ', z ' ∞.––

x2 y2+
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completely determined by the intrinsic field rapidly
attenuating with increasing distance, which allows us to
use the condition|∇ϕ|   0 for z  –∞ instead of the
condition of field uniformity. We will also assume that
the velocity of the liquid surface is considerably higher
than the velocity of the origin in the laboratory refer-
ence frame (i.e., |ηt | @ 1). In this case, we can substitute
η for η' and z for z' in the equations of motion. This
gives

(49)

(50)

(51)

(52)

In relations (50), we have used the following conditions
at the boundary of the liquid:

The conditions for the applicability of this approxima-
tion will be considered at the end of this section.

A particular solution of Eqs. (49)–(52) can be
obtained by using a substitution similar to that used in
[27] for constructing the axisymmetric solutions of the
Stefan problem:

(53)

(54)

where the constant V has the meaning of the inward-
directed velocity of the liquid surface. It can easily be
seen that the equipotential surfaces corresponding to
Eqs. (53) and (54) form a family of confocal parabo-
loids of revolution:

(55)

with the focus at the point r = 0 and z = –Vt.
Substituting expressions (53) and (54) into Eq. (49),

we arrive at the following ordinary differential equation:

(56)

It follows from Eqs. (50) and (51) that the boundary
conditions to this equation have the form

(57)

Here, u0 is the value of parameter u at the surface of the
liquid. Henceforth, we will use the quantity K = 1/u0
which, in accordance with Eq. (55), defines the curva-
ture of the liquid surface at the symmetry axis. Solving
Eqs. (56) and (57), we obtain

(58)

ϕ rr r 1– ϕ r ϕ zz+ + 0, z η r t,( ),<=

ϕ t –ϕ r
2 ϕ z

2, z– η r t,( ),= =

ϕ 0, z η r t,( ),= =

ϕ r
2 ϕ z

2 0, r2 z2 ∞.+ +

η t

ϕ t

ϕ z

-----, η r–
ϕ r

ϕ z

-----.–= =

ϕ r z t, ,( ) f u r z t, ,( )( ),=

u r z t, ,( ) –z Vt– r2 z Vt+( )2+ ,+=

r2 = 2u z Vt+( ) u2+

u f uu f u+ 0.=

f u u0( ) V
2
---, f u0( ) 0.= =

f u( ) V Ku( )ln
2K

----------------------,=
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which, together with Eqs. (53) and (54), describes the
time evolution of the electric potential. It should be
noted that condition (52) is naturally satisfied. The
shape of the surface for the given exact solution of the
equations of motion (49)–(52) is defined by the relation

(59)

which corresponds to a needle-shaped dimple pulled
into the bulk of the liquid at velocity V. Such a geometry
of the surface perturbation can be regarded as the sim-
plet (paraboloidal) approximation of the shape of the
liquid boundary at essentially nonlinear stages of the
development of instability of the charged boundary of
the liquid.

It should be recalled that the applicability of approx-
imation (49)–(52) of the initial system (20)–(23) is lim-
ited by the conditions

Since ηt = –V in solutions (59) for any r and t, the first
condition is reduced to the inequality V @ 1 (in the

dimensional notation, V @ E ). As regards the
second condition, we can find the characteristic size D
of the region in which the electric field created by a
charged paraboloidal surface exceeds the external field.
It follows from relations (53), (54), and (58) that the
field distribution in the liquid is described by the rela-
tion

Here, R =  is the distance to the focus of
the paraboloid; i.e., the field attains it maximum value
equal to V at the point r = 0 and z = –Vt – (2K)–1. Since
the field strength generally decreases in proportion to
R–1 with increasing distance from the focus, the scale of
D can be estimated as D ∝  V/K. It should be noted that
such a conclusion makes sense only if the value of D is
much larger than the radius of the curvature K–1 of the
surface perturbation. This requirement again leads us to
the inequality V @1.

Thus, we have obtained partial axisymmetric solu-
tions to the equations of motion of liquid helium with a
charged surface, which describe the evolution of a
localized perturbation of the surface with a consider-
able curvature, and have determined the conditions of
their applicability. However, the obtained solutions
should not be regarded as general-position solutions. In
all probability, solutions of the burst type, for which the
surface becomes indefinitely cuspidate over a finite
time interval, will dominate as in the 2D case.

η r t,( ) Kr2

2
--------- Vt– 2K( ) 1– ,–=

η t  @ 1 and ∇ϕ  @ 1.

4πρ

∇ϕ V

K 2Ru
-------------------.=

r2 z Vt+( )2+
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7. CONCLUDING REMARKS

In the absence of a surface charge, the equations of
electrohydrodynamics of liquid helium considered by us
are transformed into the well-known equations of a vor-
tex-free flow of an incompressible liquid with a free
boundary. These equations are extremely difficult to ana-
lyze, and the methods for their solution have not been
developed at present. In this work, we succeeded in prov-
ing that the inclusion of the electrostatic pressure does not
complicate the analysis of these equations. On the con-
trary, the emergence of an additional term in the dynamic
boundary condition introduces a certain symmetry into the
equations so that they become compatible with the condi-
tions ϕ + z = ±Φ. The emerging functional relation
between the potentials of velocity and of the electric field
makes it possible to reduce by half the number of equa-
tions required for describing the motion of the surface and,
in the long run, to find a wide class of exact solutions of
the equations of motion of liquid helium with the bound-
ary charged by electrons. It is important that the solutions
obtained by us are not limited by the condition of the
smallness of surface perturbations; they describe the evo-
lution of the liquid boundary up to the formation of cusp-
idal points in it.

The dynamics of the formation of singularities in the
case when the characteristic scale λ of surface perturba-
tions is comparable with the value of αE–2 and the cap-
illary effects must be taken into consideration has not
been considered by us here. In 2D geometry, such an
analysis can be carried out using the methods of inves-
tigations of 2D potential flows with a free boundary,
which was proposed in [28, 29] and is based on confor-
mal mapping of the region occupied by the liquid to a
half-plane. In terms of the present work, such a transfor-
mation corresponds to the use of the field potential ϕ and
its harmonically conjugate function v  as independent vari-
ables. In the case of the axial symmetry of the problem
(such a geometry reflects the experimentally observed
phenomena [12, 24] most correctly), the formation of sin-
gularities can be described by self-similar solutions of the
electrohydrodynamic equations, which are analogous to
those considered in the recent publication [30] devoted to
the formation of conic tips on the surface of a liquid metal
in an external electric field. In accordance with the self-
similar scenario of the development of instability, conical
dimples with an angle of 98.6° appear on the surface over
a finite time. A detailed analysis of these processes calls
for further investigations.
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Abstract—We obtained an equation of the Burgers type modeling the glass transition process in binary alloys
with inhomogeneous inclusions. The proposed equation is thermodynamically justified; conditions are indi-
cated under which this equation converts into the classical Cahn–Hillard equation. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

As is well known, polymers in the glassy state rep-
resent a system of randomly distributed regions of
increased and decreased density with not very clearly
pronounced space and time scales: in the thermody-
namic approximation, the space scale is much greater
than the monomer unit length but much smaller than the
system size. There are hydrodynamic models of glass
transition in polymers under these conditions, which
are based on the continuum approximation (see [1]). In
an alloy with the characteristic length l of the spatial
variation of the concentration (density) ci = 〈ni〉 = c(ri, t)
comparable to the spatial scale of the interaction
between “adjacent” fluctuations, the phase transition is
usually described in terms of the nearest neighbor inter-
action model [2–7]. Below, we will consider this situa-
tion using a nonstandard method of probability analysis
[5]. On an intuitive level, this implies that we differen-
tiate between the rates of convergence of the trajecto-
ries of random processes ni(t, ω), where ω ∈  Ω is a
measure space of random events with a certain proba-
bility measure (in particular, mean).1 Examples in
which this approach leads to positive results in real
problems of mathematical physics are given in [8]. 

Below, we describe a new formal approach to mod-
eling of the structural evolution of nonequilibrium
alloys. It should be recalled that (see, e.g., [1]) the local
concentration ci = c(ri , t) in the ith cell of a lattice is,
generally speaking, a random process; typical exam-
ples are offered by the well-known Ising lattice models
[2, 3]. This situation takes place provided that the char-
acteristic scale l of variation of the concentration ci in the
ith cell is not greater than the lattice parameter a (l ≤ a),

1 In contrast to the classical analysis, where the quantities 1/n and
1/n2 are of the same order of smallness, in the nonstandard case
1/n2 ! 1/n [8].
1063-7761/02/9403- $22.00 © 20545
otherwise the mean (i.e., the mathematical expectation)
of some random process is 〈ni 〉  = ci = c(ri , t) in the ther-
modynamic sense. 

The questions as to what the “real” structure of a
random process ni(t, ω) is and how to define strictly the
space of elementary events ω ∈  Ω were formulated
long ago by Kac [4]. Since then, considerable progress
has been achieved in this respect: Benassi and Fouque
[5] showed that ni(t, ω) can be defined as a random pro-
cess of the Poisson clock type. For a  +0, the mean
〈ni 〉 satisfies the ordinary diffusion equation only pro-
vided that the probabilities p± of transitions from ith to
the neighboring (i ± 1)th cell are p+ = p– = 1/2. 

For p ≠ 1/2, we obtain thermodynamic equations of
an absolutely different type—the Burgers equations [5,
6], the solutions to which have the form of concentra-
tion waves showing a tendency to “triggering” within a
finite time. Thus, selecting a model even on the micro-
scopic level is a nontrivial problem. 

This paper can be divided into two parts. In Section 2,
we derive a relationship for calculating the probability
density of transitions in binary alloys in terms of the
nearest neighbor model. This model is a simple conse-
quence of the formal results [8] and physical data [1].
We do not know whether an analogous formula can be
derived within the framework of the classical probabil-
ity analysis. In Section 3, we have to make a recourse
to the classical (thermodynamic) equations for binary
alloys (Cahn– Hillard model) in order to show that fluc-
tuations in the vicinity of an equilibrium state (there can
be several such sates) satisfy the Burgers equation with
a “viscosity” term. Then, we will demonstrate that a lin-
earized Burgers equation in the case of an “ideal” liquid
corresponds to a random process of the Poisson clock
type, which breaks the symmetry of transitions (p ≠
1/2) on the nearest neighbor lattice. Taking into account
the viscosity and assuming that v  ! 1, where v  is the
002 MAIK “Nauka/Interperiodica”
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flow (polymer chain) velocity, we obtain a diffusion
equation the solution to which represents a mathemati-
cal expectation of an ordinary (classical) random pro-
cess with a normal (Gaussian) distribution for p = 1/2
(or with a close distribution for p ≈ 1/2). 

From this standpoint, the Burgers equation can be
considered (in the vicinity of an equilibrium state of the
classical system) as a “deterministic” model for binary
alloys with chaotic nucleation. We did not consider the
case of a simultaneous mismatch between velocity and
viscosity (v  ≠ 0 and γ ≠ 0). 

2. ABSTRACT MODEL 
OF HYPERRANDOM WALK ON LATTICE 

Let us consider the random concentration dynamics
of a binary alloy on a hyperfinite lattice. For this pur-
pose, it is necessary to analyze the density of probabil-
ity of transitions from ith to (i ± 1)th cell for all i ∈  Z+ =
{0, 1, …}. The simplest hyperfinite model is just the
nearest neighbor model [8]. 

Let Λδ be the lattice 

where Zd is an integer lattice of the dimension d ≥ 1. For
each i ∈  Λδ we define the set of nearest neighbors of the
ith site on the Λδ set: 

Therefore, |Ni | is the number of elements in this set.
Obviously, |Ni | = 2d, except for the case (i = s) when the
ith site occurs on the lattice boundary. 

Let us assume that ci(t, ω) is a hyperfinite Markov
process. According to [8, p. 540], this process is gener-
ated by an infinitesimal generator –∆δ/2 + m2, where 

δ is the lattice period (step), and fi is the function corre-
sponding to the concentration ci to be determined. 

Following [1], where the alloy concentrations were
calculated based on the Ising model, we introduce the

relaxation time t ∝  . Here, kCH is the wave vector
taking into account the amplitude of the fluctuation
decay depending on the wavelength λ = 2πkCH/L, and L
is the sample size (we restrict the consideration to the
one-dimensional case). In addition, we define a poten-
tial for the finite binary alloy under consideration [1]: 

where A is a constant factor determined below and σ is
the variance. It should be noted that this model coin-

Λδ uδ Λ Rd⊂∈ u Zd∈,{ } ,=

Ni j Λδ : i j–∈ δ={ } .=

∆δ f i( ) δ 2– f i( )
j Ni∈
∑ Ni f i( )–

 
 
 

,=

kCH
2–

v r( ) A a2/σ2–( ) for r a δ,∼≤exp–

0 for r a,>



=
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cides with that considered by Kac [4] for a one-dimen-
sional (continuous) gas. Since (by definition) we con-
sider the probability densities of the concentration ran-
domly distributed on a lattice, below we will take a = δ. 

Let us select the dimensionless time in the form t =
t 'γ–1σ2, where γ is related to the mobility M(c) in the
spinodal decomposition theory [1]. The relaxation time
in the cell is 

and we may formally consider the quantity 

as the constant of interaction between nearest neigh-
bors, so that the hyperfinite random process under con-
sideration is a local Markov process [3]. 

Now consider a hyperdiscrete line 

where N* is the expanded natural universum (see [8,
p. 541]) and ∆t is a certain positive fixed infinitesimal
value (in contrast to the period δ, which will be stan-
dard in some cases and infinitesimal in the hyperfinite
sense in other cases). Finally, to render the analysis
formally strict, we add a “trap” h (or an “absorbing”
state) so that the space of states of the hyperfinite lat-
tice is Λh = Λδ ∪  {h}. 

Usually, the unknown probabilities of transitions
between cells are set a priori in the form of a transition
matrix generating by the Kolmogorov reconstruction
theory (see, e.g. [9]) a certain discrete Markov chain
[3]. Below, we will calculate these transition probabili-
ties for a binary alloy model based on the data reported
in [1]. Consider a nucleus occasionally formed at a cer-
tain time instant. At the next instant, the nucleus may
occur in any of the neighboring states (see formulas in
[8, p. 541]) j ∈  Ni at a probability 

(1)

Note that, by virtue of the local Markovian character of
the random process under consideration (proved in [7]),
this probability is independent of the nucleation proba-
bility. 

Since 0 ≤ P ≤ 1, we obtain 

(2)

tCH
σ2

γkCH
2

-----------,∝

m
σ2A

γkCH
2

----------- δ2

2σ2
---------–

 
 
 

exp–=

T k∆t k N*∈ 0{ }∪{ } ,=

Pi j≠
∆t

2δ2
--------≈ 1

2
--- t

δ2
-----=

≈ 1
2
--- σ

δ
--- 

 
24π2

λ2
-------- 2π2 σ

δ
--- 

 
2 1

λ2
-----.=

λ 2π σ
δ
--- 

  .>
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This inequality has a simple physical meaning: for
large variance, we can (and must) take into account
only the long-wave fluctuations (at a given period δ),
while the ratio σ/δ can be considered as the scattering
of the random process on the lattice. 

Formula (1), following from the aforementioned
mathematical model (see [8, p. 541]) and the physical
model [1], implies that (i) the binary alloy most proba-
bly features short-wave fluctuations and (ii) the growth
of the nucleus depends on the square ratio of variance
to the wavelength (σ/λ)2. 

The nucleus can remain in the ith state at a prob-
ability 

(3)

This relationship also admits a clear physical interpre-
tation. Indeed, formula (3) readily yields a restriction
on the amplitude of the interaction potential, 

which merely indicates that, provided A is sufficiently
large (i.e., the interaction is strong), a nucleus appear-
ing in the ith cell will never reside in this cell. It should
be recalled that, although we restricted the consider-
ation to a simple case of σ ! δ, the general case is also
readily analyzed. 

A less trivial requirement is that 

for the lattice dimension d (recall that 2d = |Ni |). This
condition implies limitations (i) on the magnitude of
the nearest neighbor interaction 

and (ii) on the magnitude of fluctuations (remaining
within a given cell) depending on the lattice dimension 

The latter restrictions can be more conveniently written
as 

where V is the volume of an occasionally formed
nucleus. This inequality has a simple physical meaning:
the greater the space dimension, the larger the size nec-
essary for a nucleus to reside (after spontaneous
appearance) in a given cell of this space. From the
standpoint of phase transitions, the situation is even
more clear. Indeed, it is known [3] that no phase transi-

Pi j= 1
Ni

2δ2
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σ
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tions take place in the one-dimensional Ising model,
while the probability of such transitions in the models
with d ≥ 2 usually increases with the space dimension. 

3. CLASSICAL APPROACH 

Let us write the free energy f = βF (β = 1/T) for an
inhomogeneous alloy in the following form: 

Then, the ordinary differential equation describing evo-
lution of the concentration ci in the ith cell is [1] 

(1')

where Ais = Asi > 0 owing to the Onsager condition. In
an equilibrium state, all fi = ∂f/∂ci values are equal to the
chemical potential and the right-hand part of Eq. (1')
vanishes.

For a multicomponent alloy, the corresponding
equations are as follows: 

(2')

where 

These relationships will be employed below. 
In the case of an alloy with inhomogeneous density

distribution, we will use the Cahn–Hillard equation [1] 

(3')

where 

is the mobility, β is proportional to the probability of
jumping from ith to (i + 1)th cell, γ is the quantity
defined above, c' = 1 – c, and u is the value determining
the interaction potential in the Kac theory (see above). 

Let us assume that Eq. (3') is averaged with respect
to i (in the sense of [1], see also the Introduction). The
corresponding equation can be written in the following
form: 

f ci ciln ci' ci'ln+( )
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Linearizing this expression in a certain equilibrium
state (there can be several such states), we obtain an
equation for the perturbations: 

Applying the method of “frozen coefficients” (see, e.g.,
[10]) to this last equation and taking into account that
the term ∇ c∇ (cc') on the order of ε3 can be ignored, we
obtain 

Since this is the equation for perturbations, the strict
form should be as follows: 

(3")

where the meaning of coefficients ai (i = 1, 2, 3) is obvi-
ous. Equation (3") has a simple physical sense. Indeed,
if the gradient 

is small, the term with the coefficient a1 can be ignored
and we arrive at an equation of the Burgers type 

(4')

albeit written in a somewhat unusual form: a solution u
to the equation 

yields the function c = –a3lnu which is a solution to
Eq. (4'). In the standard writing, the Burgers equation is
obtained from (4') by differentiating with respect to x
and substituting u = ∂c/∂x. In what follows, we will bear
this in mind and consider the Burgers equation in the
commonly accepted form: 

(4")

Since the potential v (r) is small both for r ≤ σ2 and for
r @ σ], Eq. (4") is valid in the latter case as well. The

c∂
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intermediate situation r ~ σ corresponds to a simple
equation 

(5)

which can be written as 

(6)

where 

Introducing the notation y = x/σ and expanding the
function exp(y2) into a Taylor series, we obtain an
equation (for sufficiently small y2) 

which has an integral 

(7)

This expression implies that the function c(x, t) remains
constant along the curve determined by a solution to
Eq. (6). In particular, any initial δ-like perturbation
propagates along this curve without changing in shape,
which is analogous to a solution of the soliton type.
These perturbations propagate at a phase velocity deter-
mined by the function a1(x). It is convenient to consider
the perturbations existing in a “phase tube” with a
radius of |x | = σ, for which 

This formula has an obvious physical meaning. 

Note that, upon “eliminating” the parameter ε from
Eq. (4') by means of substitution x = x '/ε and t = t '/ε, we
arrive at Eq. (4"). On the contrary, upon “returning” to
the initial variables in Eq. (4"), the left-hand part of this
equation possesses the order of ε2, while the right-hand
part acquires the order of ε2 and, hence, can be ignored.
As a result, we arrive at the Burgers equation 

(5')

where G(u) = u2 and a = a2/2 (it should be recalled that
a2 = M'(c0)/c0(1 – c0). 

Let us select the following boundary conditions for
Eq. (5'): 

(5'')
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According to [5–7], a solution to Eq. (5') with this
boundary condition can be written for ε  +0 in the
following form: 

where ε > 0 plays the role of the lattice period and E{·}
denotes the operation of taking mathematical expecta-

tion of the random process (·). 

In this case, the convergence takes place in any
sense [3] 

and, hence, 

for almost all z ∈  R. Here, 

{Xt = {Xt(k)}, k ∈  Z}, t ≥ 0}

is a standard Markov Process (in the narrow sense) of
the Poisson clock type (for detail, see [3, 5–7]), which
is continuous on the right and possesses finite limits on
the left. A generator of this random process is deter-
mined on a set of cylindrical functions from a certain
measure space % (for the definition see, e.g., [3, 8]) by
the relationship 

where 

the function g(·) is generated by the function G(·) (see
Eq. (5')), and 

Thus, the quantity a determines the mean velocity of
the perturbation flow moving from left to right for a > 0
and right to left for a < 0. 

The system must obey the following entropy condi-
tions for a < 0 [8], 

while, for a > 0, 
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These conditions are obviously satisfied because u is a
decreasing function of the coordinate x: 

where u0(x, 0) = α for x = 0 and u0(x, 0) = β for x > 0.2 
For a > 0, the continuous function G'(·) is strictly

decreasing and we obtain 

According to the method of characteristics for hyper-
bolic equations (see [10]), 

and 

In the general case, 

which is the well-known representation of a solution to
the Burgers equation. The case of a leftward motion is
considered by analogy. 

Thus, we have demonstrated that perturbations of a
solution to the Cahn–Hillard equation in the vicinity of
a certain equilibrium state have the form of a traveling
wave, which propagates at a phase velocity v(x, t) =
aG'(u(x(t), t)) for any preset solution u. As is known
(see, e.g., [10]), each point on the profile of such a wave
travels by its own characteristic trajectory (at its own
velocity); since these characteristics are nonparallel,
the wave profile changes (expands or contracts). This
leads to the appearance of a break representing a region
of infinitely rapid variation of the perturbation ampli-
tudes (within a given approximation). 

When a sufficiently narrow region featuring a rapid
variation of the perturbation amplitude appears in the
vicinity of an equilibrium state, a significant role is
played by the high-frequency dissipation and disper-
sion. When the action of these factors compensates for
the effect of nonlinearity, the shape of the wave virtu-
ally ceases to change (not considering a weak damp-
ing); that is, a quasi-stationary shock wave is formed in
the system. In this wave, the region containing a large
number of breaks propagates at a finite velocity v c. As
is known, the value of this velocity is determined by the

2 Here and below, we assume that the initial nucleus can be consid-
ered as a “step.”
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Dynamics of the probability distribution for an elementary quasiequilibrium fluctuation in the vicinity of a spinodal decomposition
point in the nearest neighbor model. 
boundary conditions at the break; in the situation under
consideration, these conditions are as follows: 

where the α and β values refer to the amplitudes before
and after the break at the shock wave front. 

An example of the numerical modeling results
obtained by the Monte Carlo method is presented in the
figure for random walk on a lattice with a distribution
density of the “step” type. Note that the Burgers prob-
lem with an arbitrary (sufficiently general) boundary
condition (nucleus shape) may also possess piecewise
linear periodic solutions of the traveling wave type
(over the self-similar variable; see [10]). In such a case,
it is unknown which random process corresponds to the
Burgers equation derived above. Thus, an experiment is
necessary in order to “extend” the result obtained in this
study to the general initial distributions of the nuclei.
This situation is analogous to that taking place for the
well-known Ginzburg–Landau equation in supercon-
ductivity theory: strictly proved only for T = Tc (the crit-
ical temperature), this equation is nevertheless experi-
mentally confirmed over a finite temperature interval
far from the critical point. 

4. CONCLUSIONS

We have proved the following statements: 
(i) Upon reducing the Cahn–Hillard equations (in

the vicinity of an equilibrium state) to the Burgers
equation with a viscosity term, we may formally use the
results [5–7] indicating the class of random processes
averaged on a lattice (in the sense of mathematical
expectation). Thus, in the limit of a continuous

β α–( )v c a G β( ) G α( )–[ ] ,=
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medium, we obtain a Cauchy problem for the Burgers
equation. Using such (strictly indicated) random pro-
cess, we can model the process of nucleation in binary
alloys. 

(ii) Using the hyperfinite approach [8] and the cor-
responding data from [1], it is possible to exactly calcu-
late the probabilities of transitions from one cell to
another with an allowance for the relaxation. 

(iii) The lattice model proposed above for the den-
sity fluctuations, describing the process of nucleation in
binary alloys according to the Cahn–Hillard theory
[11], can be strictly methodologically justified. 
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Abstract—The surface phase transition in a SrTiO3 crystal was studied by second optical harmonic generation.
Nonlinear optical response singularities were observed at temperature T* = 145 K, which was 40 K higher than
the Tc structural phase transition temperature in the crystal volume. Nonlinear critical opalescence in the crystal
volume caused by the presence of point defects was studied. The second harmonic field and the intensity of
critical opalescence were calculated based on the phenomenological model of nonlinear optical processes with
the use of the Landau theory of phase transitions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The strontium titanate SrTiO3 (STO) single crystal
is an example of crystals with perovskite structures.
The same structure is characteristic of many other
materials that are extensively used in modern technol-
ogy such as ferroelectric and piezoelectric materials,
high-Tc superconductors, and materials with giant mag-
netoresistance. During the past three decades, STO
crystals have been studied in detail by dielectric, IR,
and Raman spectroscopy and X-ray and neutron dif-
fraction (see review [1]). STO is a potential ferroelec-
tric material in which the ferroelectric transition is sup-
pressed by quantum fluctuations [1]. At Tq ≈ 40 K, the
STO crystal experiences the transition to the quantum
paraelectric state [2, 3]. At Tc = 105 K, a structural
phase transition from the high-temperature cubic
phase (point group m3m) to the low-temperature tet-
ragonal phase (point group 4/mmm) is observed in the
crystal. This phase transition is close to second-order
transitions and is caused by the softening of the trans-
verse optical phonon mode at the R point at the bound-
ary of the Brillouin zone. Soft modes are nonover-
damped and are observed fairly close to the phase tran-
sition point [4].

The revival of interest in STO first and foremost
stems from the discovery of some new anomalies in its
dielectric and optical properties, especially those
1063-7761/02/9403- $22.00 © 20552
observed close to Tq and Tc. In particular, optical scat-
tering studies at T < Tq showed that the structure of the
central peak became more complex in this temperature
region than at high temperatures. This peak contained
several spectral components, in particular, components
forbidden by selection rules [5]. X-ray and neutron dif-
fraction exhibited unusual features in the structural
phase transition region [6, 7]. Two scales appeared in
scattering indicatrices, namely, a narrow (∆θ ≈ 1°–2°)
peak was observed in the immediate vicinity of Tc

against the background of the usual fairly wide peak
(∆θ ≈ 10°–20°). The broad peak with a small correla-
tion length corresponded to bulk material, and the nar-
row peak, to the subsurface region. The unusual fea-
tures of the optical phonon peak observed in thin STO
films were studied as a function of film thickness [8].

Size effects in phase transitions in the bulk and on
the surface have been studied since the 1950s. In the
past decade, the progress in technologies for the prepa-
ration of high-quality thin films of technologically
important materials such as ferromagnets and ferro-
electrics (see review [9]) revived interest in studying
these phenomena. The difference of the phase transition
temperatures on the surface and in the bulk was for the
first time predicted for magnetic [10] and then for struc-
tural phase transitions [11]. The shift of the surface
phase transition temperature depends on the quality of
002 MAIK “Nauka/Interperiodica”
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the surface (the presence of defects, dislocations,
adsorbed molecules, and stresses). This shift is, how-
ever, nonzero even on an ideal crystal surface [12].

The principal experimental techniques sensitive to
the structure of the surface are scanning microscopies,
slow electron diffraction, X-ray diffraction at glancing
angles, and second optical harmonic generation. We
will only mention several works published in recent
years and concerned with surface phase transitions.
Scanning tunnel microscopy was used in [13] to study
the mechanism of growth of 7 × 7 domains from the
1 × 1 phase on the surface of Si(111). In [14], the spe-
cial features of the phase transition on the (111) dia-
mond surface including kinetic and electronic structure
characteristics were studied by slow electron diffrac-
tion. X-ray diffraction at glancing angles was employed
to study the surface phase transition in the ND4Cl crys-
tal [15].

It should, however, be borne in mind that each of the
methods mentioned above is characterized by a probing
depth specific to it and different from those of the other
methods. The results obtained in studying surface
phase transitions by different methods may therefore be
different. It should also be taken into account that an
ideal surface (the surface of an infinite crystal “cut” by
a plane) cannot be prepared experimentally. Even in a
vacuum, dangling bonds formed in such a “cutting”
interact with each other or with adsorbed atoms, which
results in surface reconstruction. A certain contradic-
tion arises; namely, methods sensitive to the properties
of the upper atomic layer study reconstructed surfaces,
whereas penetrating methods study subsurface layers
whose thickness is method-dependent.

The method based on second harmonic generation
has certain special features. Depending on the object of
study and the experimental configuration, this method
may be sensitive either to the structure of the upper
crystal layer one–two lattice parameters deep (that is, to
the surface proper), or to the structure of several (about
ten) subsurface atomic layers, or to the bulk phase. This
circumstance was used to study phase transitions of
various types. For instance, surface reconstruction was
studied in [16, 17] by second harmonic generation. In
[18, 19], this method was used to study a ferroelectric
phase transition in the bulk of a film. The orientation
transition in a monolayer on the surface of water [20,
21] and the phase transition in a superthin (two mono-
layers) PVC film [22] were also studied by second har-
monic generation.

Generally, an analysis of a second harmonic signal
for obtaining structural information is based on exam-
ining the dependence of coherent second harmonic
intensity I2ω on the orientation of electric field vectors
of incident and detected radiation with respect to some
symmetry-selected directions on the surface or in the
bulk, which are characterized by the azimuthal angle of
the sample. The selected directions may be, for
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
instance, crystallographic axes in single crystals and
directions of structure formation in thin (Langmuir
deposited) films. Depending on the orientation that
remains unchanged and the orientation that changes in
the laboratory frame of reference (wave or crystal elec-
tric field orientation), either polarization dependences
at a given sample orientation or azimuthal dependences
of second harmonic intensity in various polarization
configurations are studied. If the medium is spatially
nonuniform, incoherent alongside coherent second har-
monic generation occurs. These two components are
separated by studying the scattering indicatrix (the
dependence of the second harmonic intensity on the
polar angle).

In this work, we suggest a method for separating the
surface and volume contributions to the second har-
monic intensity in a centrally symmetrical medium.
The temperature dependences of the volume coherent
second harmonic contribution are shown to have singu-
larities near Tc. Similar singularities in the surface
coherent second harmonic contribution are observed at
a different T* temperature. We assign these singulari-
ties to the surface phase transition, and the T* tempera-
ture is treated as the surface phase transition tempera-
ture. As an extension to [23], we study the configura-
tions in which the volume contribution is suppressed
and configurations in which both volume and surface
contributions are present. We also study nonlinear opti-
cal light scattering (the incoherent contribution to the
second harmonic intensity) in the STO crystal near the
structural phase transition. Following Gorelik [24], we
use the term “critical hyperopalescence” to combine
two phenomena, hyper-Raman and hyper-Rayleigh
scattering. From the point of view of nonlinear optics,
it is important that both high- and low-temperature
phases of the transition under consideration are cen-
trally symmetrical, that is, second harmonic generation
is forbidden in the dipole approximation. We suggest a
method for calculating the intensity of critical hypero-
palescence for the phase transition with second har-
monic generation only permitted in the quadrupole
approximation in both phases. Note that critical
hyperopalescence is for the first time studied for a non-
ferroelectric (structural) phase transition. The corre-
sponding phenomenon for a ferroelectric phase transi-
tion was studied in [24, 25].

This paper is organized as follows. The second sec-
tion describes a method for separating the volume and
surface contributions to the second harmonic intensity.
The phenomenological models of the temperature
dependences of coherent and incoherent second har-
monic fields are considered in Sections 3 and 4, respec-
tively. The experimental unit is described in Section 5.
Sections 6–8 contain the results of second harmonic
generation studies of the volume and surface phase
transitions and of the nonlinear critical hyperopales-
cence phenomenon.
SICS      Vol. 94      No. 3      2002
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2. A NONLINEAR OPTICS-BASED PROCEDURE 
FOR SEPARATING THE SURFACE AND VOLUME 

CONTRIBUTIONS TO SECOND HARMONIC 
GENERATION INTENSITY

The nonlinear optics-based procedure for separating
the surface and volume contributions to second har-
monic generation is based on the key role played by
medium symmetry in the arising of nonlinear polariza-
tion and on the special features of second harmonic
wave propagation.

A phenomenological description of nonlinear polar-
ization is based on expanding nonlinear polarization
P(2ω) in multipoles,

. (1)

The first term in (1) is the dipole polarization

(2)

and the second term describes the quadrupole polariza-
tion,

. (3)

Here,  and  are the quadratic dipole and qua-
drupole susceptibility tensor components, and E(ω) is
the incident wave electric field strength. Every succes-
sive term in Eq. (1) for nonlinear polarization is much
smaller than the preceding one. In particular,

,

where r0 is the Bohr radius and λ is the fundamental fre-
quency radiation wavelength.
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Fig. 1. Dependences of the factor of second harmonic wave
propagation in transmission (dashed line) and reflection
(solid line) geometries. Shown in the inset are the character-
istic second harmonic wave generation regions: surface S
(thick solid line) and volumes V1 and V2, different in trans-
mission and reflection measurements.
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In the volume of a centrally symmetrical medium,
dipole polarization is absent and χ(2)D = 0. The intro-
duction of a boundary essentially changes the symme-
try, because surface atoms have different environments
on the sides of the bulk and the vacuum. In addition,
several subsurface layers have unit cells deformed
along the normal to the surface because of the differ-
ence in interactions with outside (surface side) and
inside (volume phase side) atoms. Surface layers of all,
even centrally symmetrical, crystals are therefore non-
centrally symmetrical. The volume of a centrally sym-
metrical medium is described by quadrupole polariza-
tion, and the surface layers are described by the dipole
polarization

This means that volume second harmonic genera-
tion in such a medium is comparatively weak, and sur-
face generation is comparatively strong (per unit
medium volume). The volumes described by surface
(dipole) and bulk (quadrupole) susceptibilities also dif-
fer by several orders of magnitude, and the signals from
the surface and bulk substance are therefore compara-
ble, which makes it possible to diagnose a surface layer
several lattice periods thick (1–5 nm). The surface and
volume regions of a crystal described by dipole and
quadrupole susceptibilities are schematically shown in
the inset in Fig. 1.

The relative contributions of the volume and surface
to the second harmonic intensity are determined not
only by the medium symmetry but also by the geometry
of measurements. The passage from transmission to
reflection measurements can additionally increase the
relative surface contribution to the second harmonic
intensity by one order of magnitude. Generally, the
field at the frequency of the second harmonic generated
by a semi-infinite centrally symmetrical medium is
described by the equations (see [26])

(4)

Here,  and  are the amplitudes of the corre-
sponding incident wave components, fω and f2ω are
Fresnel factors defined in [5], sign “+” corresponds to
reflection, and sign “–” corresponds to transmission
through the medium. The GBQ(z) Green’s function mul-
tiplied by the exponential factor exp[i(2kz, ω ± kz, 2ω)z]
forms the so-called “propagation factor,” which is an
oscillating coordinate function (see Fig. 1). If the
medium absorption is weak, an unbalanced contribu-
tion to the resultant second harmonic field is generated

Pi
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from the subsurface region of effective thickness l eff

equal to half the distance at which second harmonic
field is balanced. For weak absorption, the effective
thickness is given by

with “–” and “+” signs corresponding to transmission
and reflection, respectively. For the STO crystal at λω =

739 nm, the  value equals 40 nm in the reflection

geometry and  = 420 nm in the transmission geom-
etry. This means that the contribution of bulk substance
to the second harmonic intensity is two orders of mag-
nitude larger in the transmission geometry than in the
reflection geometry. The relative contribution of the
surface is therefore two orders of magnitude larger in
the reflection geometry. Precisely for this reason, if sur-
face diagnostics are possible for a given material, it can
much more effectively be performed by reflection mea-
surements.

It was shown in [27] that, in a medium with nonlin-
ear polarization P(2ω) fluctuations (spatial and/or

time), coherent second harmonic  generation is
accompanied by the generation of an incoherent, or dif-

fuse, second harmonic ,

The incoherent second harmonic intensity is deter-
mined by the Φi, j(r1, r2) nonlinear polarization correla-
tion function [28],

(5)

where

(6)

(symbol 〈 〉  denotes statistical averaging including aver-
aging over disorder realizations).

Coherent radiation is generated as a mirror image of
incident radiation; that is, its angular diagram is only
determined by the angular divergence of laser beams
(1–2 degrees). The angular width of scattered radiation
depends on the ratio between inhomogeneity size ∆ and
wavelength λ and can vary from π (∆ ! λ) to a value
comparable with laser beam divergence (∆ ≥ λ) [27].
The procedure for separating coherent and incoherent
contributions is based on examining the scattering indi-
catrix.

Because incoherent radiation has a random phase,
its propagation does not lead to field compensation.
Scattered radiation at the exit from the crystal is there-
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fore the sum of second harmonic intensities (rather than
fields) over the whole crystal volume, and no nonlinear
optical probing of the crystal in depth occurs in inco-
herent second harmonic generation. On the other hand,
the intensity of backscattering is much lower than the
intensity of scattering along the beam direction. For this
reason, the fraction of scattered radiation is much lower
when the reflection rather than transmission geometry
is used. Clearly, no matter what geometry, the contribu-
tion of the crystal volume to the incoherent second har-
monic intensity far exceeds the contribution of the sur-
face. We will therefore only consider the volume con-
tribution in discussing incoherent second harmonic
generation.

3. A PHENOMENOLOGICAL DESCRIPTION
OF THE COHERENT SECOND HARMONIC 

FIELD NEAR THE PHASE TRANSITION

Determining the temperature dependences of the
second harmonic intensity near the phase transition
requires calculating the temperature dependences of
nonlinear susceptibilities. In the Landau theory of
phase transitions, the equation for the nonlinear suscep-
tibility in the low-temperature phase takes the form

(7)

where

(8)

 is the nonlinear susceptibility, θijklmn is the sixth-
rank tensor (both correspond to the high-temperature
phase), and η is the volume order parameter. In the STO
crystal, order parameter ηi is the angle of oxygen octa-
hedron rotation about the ith crystallographic axis (see

Fig. 2). The first nonvanishing additional term in 
is quadratic in the order parameter. Note that such a sus-
ceptibility representation is in principle similar to the
linear susceptibility representation suggested in [29].
At the same time, the authors of [29] disregard the ten-
sor character of the additional susceptibility term,
which should be taken into account for both linear and
nonlinear susceptibilities. Otherwise, it is, for instance,
impossible to distinguish between the longitudinal and
transverse (with respect to the tetragonal axis) linear
susceptibilities in the low-temperature STO phase.

The temperature dependence of the order parameter
is determined by the free energy, which, in the volume
of an ideal crystal, has the form [1]

(9)
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Fig. 2. STO crystal unit cell structure in the high-temperature phase (at the top left). Solid circles are oxygen atoms constituting an
oxygen tetrahedron. The angle of rotation of the tetrahedron about one of crystal axes (x, y, or z) equals the corresponding order
parameter component at the structural phase transition point; x0y0z0 is the (110) surface system of coordinates; tuk is the laboratory
system of coordinates; Ψ is the azimuthal angle between axis t of the laboratory frame of reference and the (001) crystal axis (or
the x0 axis of the surface coordinate system), that is, the angle of crystal rotation about the normal to its surface. Shown at the bottom
is the arrangement of atoms in the unit cell of the surface layer in the low-temperature phase when the oxygen tetrahedron rotates
about axes (from left to right) x, y, and z; the same is shown at the top right for the high-temperature phase. For convenience of
comparing the volume and surface unit cells, oxygen atoms are also labeled by letters.

c c

O

where

and a and D are the Landau expansion constants. For
the STO crystal, a = 5.4 × 10–3 eV K–1 and D = 3.7 ×
10−15 eV cm2 [30].

We have η = 0 above Tc and η ∝ τ 1/2 below Tc (τ =
|Tc – T |/Tc is the reduced temperature). It follows that,
below Tc, the temperature dependence of the additional
nonlinear susceptibility term and, therefore, the addi-
tional second harmonic field term is linear in tempera-
ture,

(10)

where α is a constant. In the high-temperature phase,

∆  = 0. The temperature dependence of 
unrelated to the phase transition can be included as a
second order polynomial of Tc – T; that is, in a way sim-
ilar to that used for the index of refraction in [31]. It fol-
lows that the temperature dependence of nonlinear sus-
ceptibility has a kink at T = Tc; a kink should therefore

A a T Tc–( ), B B1 0,> >=
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be present also in the temperature dependence of the
second harmonic field.

The presence of a surface causes the appearance of
the additional Fsurf term in the equation for the free
energy. If the presence of a surface only results in the
arising of a single order parameter component, η can be
written without indices, and Fsurf takes the form [12]

(11)

where η0 is the order parameter value on the surface,

 < 0 and d0 > 0 are constants, and the integration is

performed over the surface of the crystal. The  value
describes coefficient A changes close to the surface, and

d0 is the thickness of the layer within which  varies.
For a plane surface coinciding with the z = 0 surface of
the Cartesian coordinate system, η0 = const, and the
order parameter in the volume only depends on coordi-
nate z. Varying Eq. (9) for the free energy with respect
to the order parameter yields

Fsurf
Ã0d
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(12)

At T > Tc, when the order parameter equals zero far
from the surface, the solution to (12) has the form

(13)

which in turn gives

(14)

if

.

Here, rc =  is the correlation radius for the order
parameter. Substituting the equation for the free energy
into (13) and minimizing the resulting equation with
respect to η, we obtain temperature T* at which a non-
zero component of the surface order parameter appears;
that is, the temperature of the surface phase transition,

(15)

Assuming that d0 equals the lattice parameter and  ≈
aTc, we obtain

For order–disorder phase transitions (for instance,

magnetic phase transitions),  > 0, and the order
parameter near the surface is suppressed compared with
its value in the volume, because the number of nearest
neighbors and, therefore, the effective field created by
them for a spin situated close to the surface are lower
than in the bulk. For displacement transitions, addi-
tional lattice softening caused by the absence of neigh-
bors near the surface may occur; this corresponds to the

condition  < 0. If this condition is met, the phase tran-
sition on the surface occurs earlier than in the bulk as
temperature decreases.

If

,

the surface order parameter is described by the equation

(16)

To calculate nonlinear susceptibility, consider the
symmetry of subsurface layers in the high- and low-
temperature phases. The arrangement of atoms in the
unit cell of the (110) STO crystal surface is schemati-
cally shown in Fig. 2. The surface has 2mm symmetry
in the high-temperature phase. In the low-temperature
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Brc

-------------------------------- T∗ T–( ).∝–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
phase, the order parameter can be oriented along any
crystallographic axis. However, surface unit cells have
m symmetry in any event.

By analogy with the volume nonlinear susceptibil-
ity, the nonlinear susceptibility of the surface can be
written as

(17)

where

(18)

As in the bulk, the surface phase transition causes the
appearance of a kink in the temperature dependence of
the second harmonic field. We therefore have

(19)

for T < T*, where α' is a constant.
In both transmission and reflection measurements,

the second harmonic field is determined by the mutual
orientation of pumping wave and second harmonic field
vectors and the sample crystallographic axes, on the
one hand, and by the Frensel factors, which, in turn,
depend on the incidence angle, on the other.

The azimuthal angle at which the surface compo-
nent can be observed was selected based on model cal-
culations of the azimuthal dependences of the surface
and volume contributions to the second harmonic inten-
sity at various symmetry properties of the volume and
surface corresponding to different temperature regions
(Fig. 3). At temperature T > T*, p-polarized second har-
monic field components (the E vector lies in the inci-
dence plane) generated in the volume and on the sur-
face of a sample are described by the equations

(20a)

, (20b)

where bi are the linear combinations of the quadrupole

nonlinear susceptibility tensor  components and si

are the linear combinations of the dipole nonlinear sus-

ceptibility tensor  components determined by sym-
metry of the corresponding phase and the polarization
of pumping radiation. These second harmonic field
components always have a constant constituent. Here
and throughout, the Ψ angle is counted from the (001)
crystallographic axis. S-polarized field components
(the E vector is perpendicular to the plane of incidence)
from both volume

and surface
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have minima at equal azimuthal angle values. It follows
that, at T > T*, there is no such (110) surface azimuthal
angle at which the surface contribution can be observed
while the volume contribution is zero. In the Tc < T < T*
temperature region, the surface is in the low-tempera-
ture and the volume in the high-temperature phase. For
the s–s polarization combination (the α–β combination
denotes the α polarization of pumping radiation and the
β polarization of second harmonic radiation), the sur-
face contribution can be observed against zero volume
contribution. Indeed, for such a polarization combina-
tion, the azimuthal dependences of volume and surface
second harmonic fields are described by

(21)

(22)

According to these equations and Fig. 3, the neces-
sary condition for surface second harmonic observation
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Fig. 3. Qualitative azimuthal angle dependences of the
intensity of second harmonics generated in the bulk (dashed
lines) and on the surface (solid lines): (a) T > Tc, T*, polar-
ization combinations pp and sp; (b) T > Tc, T*, polarization
combinations ps and ss; and (c) Tc < T < T*, polarization
combinations ps and ss [see (21) and (22)].
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is met at the Ψ = π/2 azimuthal angle. We selected two
azimuthal angles for measurements, namely, Ψ = π/2
and Ψ = π/4. At Ψ = π/2, the surface contribution
should be maximum. At Ψ = π/4, both surface and vol-
ume contributions should be observed. An interesting
problem is to find whether or not the surface contribu-
tion can be identified against the background of a non-
zero volume contribution.

4. A PHENOMENOLOGICAL DESCRIPTION
OF INCOHERENT SECOND HARMONIC FIELD 

IN THE PHASE TRANSITION REGION

The characteristics of light scattering in the critical
region have been extensively studied in works con-
cerned with ferroelectric phase transitions. The corre-
sponding data on the structural phase transition in the
STO crystal are, however, scarce, because the soft
mode at the boundary of the Brillouin zone is inactive
in first-order Raman spectra [1]. That is, both first-order
Raman scattering at the soft mode frequency and first-
order Rayleigh scattering are forbidden in the high-
temperature phase. Processes allowed in the high-tem-
perature phase are second-order processes.

Unlike linear scattering, scattering at the doubled
frequency, that is, hyper-Rayleigh and hyper-Raman
scattering, has not been studied in detail for structural
phase transitions. Generally, the selection rules for
hyper processes are less stringent. Even if Raman or
Rayleigh scattering at the fundamental frequency is not
observed, it can be observed at the doubled frequency;
the more so if the corresponding processes at the funda-
mental frequency are allowed.

Quite a different picture was, however, observed in
experiments. The elastic light scattering peak at the
fundamental frequency was observed for STO crystals
in [32]. Light scattering at the doubled frequency was
studied in [33] in a wide temperature range 40–300 K,
but no singularity was detected at Tc = 105 K.

The central light scattering peak near the phase tran-
sition point appears because of the presence of thermal
fluctuations and defects. Generally, processes of differ-
ent types are characterized by different temperature
dependences of light scattering intensity [34]. Order
parameter thermal fluctuations give a central quasi-
elastic scattering peak and side Raman scattering
branches at the soft mode frequency. Defects are elastic
scattering sources. According to the estimates made in
[35], linear (fundamental frequency) scattering on defects
may be comparable in intensity with scattering on fluc-
tuations even in a “pure” crystal with a 1018 cm–3 con-
centration of defects. The nature of the central peak can
be determined by studying the temperature depen-
dences of scattering intensity.

According to (5), we must first calculate the nonlin-
ear polarization correlation function in the nonuniform
medium to determine the incoherent second harmonic
intensity. For this purpose, consider the equation for the
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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free energy containing a term taking into account the
presence of defects, Fdef [35],

(23)

where the summation over m is over the defects, Rm are
radii vectors determining the positions of chaotically
distributed defects, and

Here, zm is a random variable which equiprobably takes
on the values 0 and 1 (the case of unpolarized defects),
and tm is a random variable which equiprobably takes
on the values 1, 2, and 3 (depending on the defect).
Equation (23) only takes into account the contribution
of so-called s defects of the “random field” type; it was
shown in [35] that precisely these defects made the pre-
dominant contribution to the intensity of quasi-elastic
scattering.

By analogy with linear scattering [29], the intensity
of light scattered at the doubled frequency is given by
the equation

(24)

where

k2ω is the wave vector of the second harmonic wave; eω

and e2ω are the unit vectors in the directions of the elec-
tric field vectors of pumping and second harmonic
waves, respectively; and

The summation is over the Brillouin zone in the second

term in (24), and u = V2 , where V is the scattering
volume.

The first and second terms in (24) determine the
intensity of critical hyperopalescence of the first and
second orders, respectively. The temperature depen-
dence of the intensity of scattering is determined by the
Fourier transform of the correlation function. For ther-

Fdef hi
m( )η iδ r Rm–( ),

m

∑
i 1=

3

∑–=

hi
m( ) h0 1–( )

zmδi tm, .=
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u
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iq r1 r2–( )⋅
e j

2ωθ jlmnpskl
2ωem

ωen
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× eβ
2ωθβγδµνξkγ

2ωeδ
ωeµ

ωη p r2( )η s r2( )ην r1( )ηξ r1( )

=  uΠ psνξ 4 ην〈 〉 η p〈 〉 η̃ s q( )η̃ξ q–( )〈 〉
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Q
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f 2ω
2 f ω
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mal order parameter fluctuations, this function will be
denoted by Ffδik, and for static order parameter fluctu-
ations caused by the presence of defects, by Fdδik. For
definiteness, set 〈η i〉  ≡ δi, x at T < Tc. The Fourier
transform of the correlation function for the sth order
parameter component then takes the form

(25)

(26)

The 1/3 factor appears because the number of
defects with a given random field direction equals one-
third of the total number of defects.

As a result, we obtain

(27)

for first-order scattering. At T > Tc,  is zero, and the

 and  scattering intensities of both types
are therefore zero in the high-temperature phase. At T <
Tc, substituting Ff into (27) gives the intensity of scat-
tering on thermal fluctuations

in the qrc ! 1 approximation; that is, the intensity of
scattering on thermal fluctuations is independent of
temperature. For scattering on defects, substituting Fd

into (27) yields

The intensity of scattering on defects is therefore pro-
portional to τ–1.

Note that the contribution of domains with one order
parameter orientation to scattering intensity differs
from the contribution of domains with another orienta-
tion.

Consider second-order scattering.

η

F f s x q, ,( )
T
V
---=

×
A 3 B B1–( )η2 Dq2+ +( ) 1–

, s x,=

A Bη2 Dq2+ +( ) 1–
, s x,≠




Fd s x q, ,( )
Nh0

2

3V
---------=

×
A 3 B B1–( )η2 Dq2+ +( ) 2–

, s x,=

A Bη2 Dq2+ +( ) 2–
, s x.≠




I1 q( ) 4uΠ xsxsη
2F s x q, ,( )=

η
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1( ) q( ) Id
1( ) q( )
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1( ) 0( )
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For thermal fluctuations, (24) yields (see [29])

(28)

The presence of the coefficient  in (28) is indica-
tive of the anisotropic character of scattered radiation,
that is, of the dependence of the intensity of scattered
radiation on the azimuthal angle of the crystal at fixed
polarization combinations of incident and second har-
monic waves.

I2 q( ) 2uΠ pspsV=

× Q3d

2π( )3
-------------F f p x Q, ,( )F f s x q Q–, ,( )∫

Π psps
T
D
---- 

 
2

rc Π pspsτ
1/2– ,∝∝

T Tc, qrc ! 1.>

Π psps

0

30

60
90

120

150

180

210

240
270

300

330

(a)

80 K
85
100
110
140

0

30

60
90

120

150

180

210

240
270

300

330

(b)

240 K
210
150
120
107

Fig. 4. Dependences of second harmonic intensity on the
angle of analyzer rotation (deg) at various sample tempera-
tures in (a) transmission and (b) reflection geometries.
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For defects, applying the approximation of quasi-
isolated defects and (24) yields (cf. [34])

(29)

where z(p, s) = δp, s. At qrc ! 1 and T > Tc, we obtain

(30)

The first term in (29) is proportional to , and the

second term is proportional to . Either the first or
the second term may be predominant depending on the
concentration of defects. In both cases, we obtain a
power dependence of scattering intensity on reduced
temperature,

where γ = 1 at 2π  ! 1 and γ = 5/2 at 2π  @ 1.
In the whole range where the theory of quasi-isolated
defects [35] applies, that is, if

, (31)

first-order scattering intensity exceeds second-order
scattering intensity at T < Tc. The observation of sec-
ond-order scattering is therefore only possible in the
high-temperature phase.

The results of the calculations described above are
summarized in the table.

Note that the equations for the temperature depen-
dences of the intensity of scattering on defects at the
second harmonic frequency coincide with the equations
for the temperature dependences of linear scattering
intensities obtained in [34]. These equations contain
different coefficients, which, in particular, depend on
the directions of incident and scattered wave polariza-
tions and on the azimuthal angle of the crystal.

5. EXPERIMENTAL PROCEDURE

The STO crystal that we used was grown by optical
zone melting, polished to an optical quality, and ori-
ented by the (110) plane accurate to ±0.05°. The crystal
was placed into an optical helium cryostat (Oxford
Instruments, 5–300K).

In nonlinear optical experiments, we used titanium-sap-
phire laser pumping radiation, radiation wavelength =

I2 q( ) uΠ pspsV=

× 2
Q3d

2π( )3
-------------Fd p x Q, ,( )Fd s x q Q–, ,( )∫ ------ 

 




+
Nh0

4
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  z p s,( )




,

I2d Π psps

Nrc
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D4
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3 1+( ).∝
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Nrc
2

I2d Π pspsτ
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3 Nrc

3

BNh0
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3

4πD3
------------------ ! 1
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739 nm, pulse width = 100 fs, pulse frequency = 82 MHz,
and mean power = 100 mW. Radiation was focused
onto a spot about 100 µm in diameter. The incidence
angle was 45° in reflection measurements and 0° (nor-
mal incidence) in transmission measurements.

Pumping radiation polarization was changed by
rotating a half-wave plate, and second harmonic radia-
tion polarization, by rotating a polaroid film. By rotat-
ing the polaroid, we obtained polarization curves at var-
ious sample temperatures, that is, the dependences of
second harmonic intensity on the angle of analyzer
rotation I2ω(ϕ) (Figs. 4a, 4b). The ϕ = 0 angle corre-
sponded to the vertical orientation of the second har-
monic field vector (output s polarization in reflection
measurements).

The azimuthal dependence of second harmonic
intensity I2ω(Ψ) was measured in the mirror direction
when the sample was rotated with respect to normal z
to the surface of the crystal (utk is the laboratory immo-
bile frame of reference, and x0y0z0 is the mobile surface
coordinate system; azimuthal angle Ψ was measured
between axes u and x0—see Fig. 2). An example of azi-
muthal anisotropy in reflection measurements is given
in Fig. 5. The azimuthal dependences of second har-
monic intensity qualitatively coincided with the theo-
retical dependences shown in Fig. 3.

The second harmonic scattering indicatrix was mea-
sured when the recording system was rotated about ver-
tical axis t (Fig. 2). The reference point for counting
polar angle θ was selected in such a way that the θ angle
equaled zero in the direction of the normal to the sur-
face of the crystal and was negative in the direction of
pumping radiation. An example of the scattering indic-
atrix in reflection measurements is shown in Figs. 6a
and 6b. The receiving aperture equaled 2°. In all exper-
iments, we measured second harmonic radiation inten-

sities at  and  at polar θ angle values θ = 0°

and 5°, respectively. The  second harmonic inten-
sity was assigned to scattered radiation. The angular
width of all measured scattering indicatrices was sub-
stantially larger than the angular width of the mirror
maximum (see Fig. 6) and the 5° detuning value. For

this reason, the  intensity could be considered
equal to the scattering radiation intensity at θ = 0°. This

allowed us to assign the  –  difference to
coherent second harmonic radiation.

6. AN EXPERIMENTAL STUDY OF VOLUME 
PHASE TRANSITION BASED ON COHERENT 

SECOND HARMONIC GENERATION 
IN THE TRANSMISSION GEOMETRY

The polarization curves of second harmonic inten-
sity measured in the transmission geometry at normal
incidence and various temperatures are shown in

Iθ 0°=
2ω Iθ 5°=

2ω

Iθ 5°=
2ω

Iθ 5°=
2ω

Iθ 0°=
2ω Iθ 5°=

2ω
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Fig. 4a. An analysis of these dependences shows that a
second harmonic signal is observed at T > Tc, but its
intensity is insignificant. At T = 105 K, second har-
monic intensity sharply increases, and the predominant
polarization direction changes. The temperature depen-
dences of the angle of predominant polarization are
shown in Figs. 7a and 7b for two azimuthal angles.

Second harmonic radiation is incoherent above the
phase transition point. After subtracting the intensity of
incoherent radiation from the total intensity, the coher-
ent component intensity as a function of the angle of
analyzer rotation can be written as

(32)

The temperature dependences of the parallel (with

respect to the pumping field)  and perpendicular

I ϕ( ) E2ω
|| ϕcos E2ω

⊥ ϕsin+( )2
.∝

E2ω
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ps

90 135 180 225 270 315 360

Fig. 5. Experimental azimuthal dependences of second har-
monic intensity in reflection geometry at room temperature.
Solid lines correspond to approximation by the suggested
model.

Table

Fluctuations Defects

T > Tc T < Tc T > Tc T < Tc

First order I = 0 I = const I = 0 I ∝  τ–1

Second order I ∝  τ–1/2 I ∝  τ–1/2  ! 1

I ∝  τ–1 I ∝  τ–1

 @ 1

I ∝  τ–5/2 I ∝  τ–5/2

2πNrc
3

2πNrc
3
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(a) (b)

(c) (d)
 second harmonic field components for the Ψ = π/2
crystal azimuthal angle are shown in Fig. 8; these
dependences were obtained by approximating the
experimental polarization curves according to (32). At

E2ω
⊥
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T > Tc, the coherent second harmonic was absent within
the error of measurements, in agreement with the
model that we use (see Section 3). At T < Tc, we
observed an increase in both perpendicular and parallel
AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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field components for the Ψ = π/4 azimuthal angle and
in the perpendicular second harmonic field component
for the Ψ = π/2 azimuthal angle. In agreement with our
calculations, the parallel field component was absent
for this azimuthal angle. Within the framework of our
model, such a behavior of the second harmonic inten-
sity means that only second harmonic generation in
the crystal volume was observed in the transmission
geometry. Below the phase transition point, the tem-
perature dependences of nonzero field components
could be approximated by a linear function, in agree-
ment with (10).

It follows that the structural phase transition to the
low-symmetry phase manifests itself by coherent sec-
ond harmonic generation, that is, by the appearance of
the corresponding field at the transition point. This field
linearly changes as a function of temperature, in agree-
ment with the phenomenological description.

7. AN EXPERIMENTAL STUDY 
OF THE SURFACE PHASE TRANSITION BASED 

ON COHERENT SECOND HARMONIC 
GENERATION IN THE REFLECTION 

GEOMETRY

The polarization curves for the second harmonic
intensity measured in the reflection geometry at various
temperatures are shown in Fig. 4b. The intensity of the
coherent component (after subtracting the intensity of
the incoherent component) can be written in the form

(33)

(α = p, s), which indicates the orientation of the inci-
dent wave field vector. The experimental temperature

dependences of second harmonic fields  and 
obtained for the Ψ = π/2 and π/4 azimuthal angles are
shown in Figs. 9 and 10, respectively. As in transmis-
sion measurements, these dependences pass tempera-
ture T* = 145 K at which the character of the tempera-
ture dependence of second harmonic field changes.
Note that the direction of predominant polarization
changes at the same temperature T* (see Fig. 7).

For the Ψ = π/2 azimuthal angle, the second har-
monic s component at all pumping polarizations and
the p component at p pumping polarization are zero as
temperature decreases from room temperature to T*.
Decreasing temperature below T* causes an increase
(in magnitude) in the second harmonic field until tem-
perature Tc is reached. Further, the character of the
dependence again changes. Under p pumping, a con-
stant constituent of the second harmonic p component
should always be present. The equality of this com-
ponent to zero observed experimentally at T > T*
may be explained by the smallness of the b1 – b2 + b3
and s1 – s2 linear combinations [see (20)]. In the tem-

Iα ϕ( ) E2ω
α s, ϕcos E2ω

α p, ϕsin+( )2
=

E2ω
α s, E2ω

α p,
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perature range Tc < T < T*, the surface is already in the
low-temperature phase, whereas the volume is in the
high-temperature phase. An increase in the second har-
monic field is then only related to the surface contribu-
tion and can, according to (19), be approximated by a
linear function. For s pumping at Ψ = π/2 and all polar-
ization combinations at Ψ = π/4, the volume contribu-
tion to the second harmonic p component is nonzero in
the high-temperature phase. As a result, the tempera-
ture dependences of the second harmonic field become
much more complex. In particular, these dependences
contain a trivial (unrelated to the phase transition) tem-
perature dependence of volume nonlinear susceptibili-

ties  and  [see (10) and (19)], which
can be taken into account by a polynomial second-order
in temperature, as was done for the index of refraction
in [30]. This trivial dependence does not change as tem-
perature passes the phase transition point. The addition
to the second harmonic field caused by the phase tran-
sition can be determined as the difference between the
temperature dependences of low-temperature phase
second harmonic field and of the field obtained by
approximating the experimental temperature depen-
dence for the high-temperature phase by the second-

χ ijk
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order polynomial. The temperature dependences of the
additional second harmonic field obtained by this pro-
cedure are shown in the inset in Fig. 10.

Clearly, the surface contribution may only be quali-
tatively identified in this situation (Fig. 10). Neverthe-
less, the results of such an analysis do not contradict the
data obtained at Ψ = π/2. The polarization change at T*
can only be related to the appearance of a surface con-
tribution and can, based on (19), be described by a
dependence of the type

,

where a, b, c, and d are constants.
The experimental data allowed us to determine the

surface phase transition temperature, T* = 145 ± 5 K.

8. AN EXPERIMENTAL STUDY OF NONLINEAR 
OPTICAL OPALESCENCE IN THE STRUCTURAL 

PHASE TRANSITION REGION

The incoherent second harmonic component was
measured in both reflection and transmission geome-
tries.

a b∆T+
c d∆T+
--------------------
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The incoherent second harmonic component inten-
sity measured in the reflection geometry smoothly
increased at small polar angles (θ = 5°) as temperature
decreased (see Fig. 11).

Such an increase was also observed in [33] and
assigned to scattering into the second harmonic as tem-
perature approached the potential ferroelectric phase
transition point (such a transition was assumed to occur
as T  0). This dependence can be approximated by
the expression [33]

(34)

where ωTO is the phonon TO mode frequency and a, b,

and  are constants.

In the transmission geometry, a singularity at the Tc

volume phase transition point was observed in addition
to a low-temperature increase in incoherent second har-
monic radiation. The intensity of the incoherent second
harmonic, ∆I2ω, obtained by subtracting the intensity of
the second harmonic related to the low-temperature
intensity growth [approximation by (34) based on

I2ω
scatt ωTO

4– T( )∝ b
"Ω/2kBT( )coth

Ω
--------------------------------------- a– 

 
2–

,=

Ω
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temperature dependences of nonlinear susceptibilities unrelated to the phase transition.
points situated far from Tc (τ > 0.1)] is shown in Fig. 12
on a logarithmic scale as a function of reduced temper-
ature for two crystal azimuthal angle values. This inten-
sity can be used to determine the critical index γ of the
dependence

For the Ψ = π/4 azimuthal angle, we obtained the criti-
cal index γ = 1.08 ± 0.13, and for the Ψ = π/2 angle, this
index was γ = 1.2 ± 0.3. These values refer to the high-
temperature phase. The number of experimental points
was insufficient to determine critical index values for
the low-temperature phase.

The critical index values obtained in our experi-
ments coincide with the theoretical γ = 1 value within
the error of measurements. This is evidence of the pre-
dominance of the contribution of hyper-Rayleigh scat-
tering on defects over the contribution of hyper-Raman

I2ω τ γ– .∝
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scattering on thermal fluctuations (  @ ); in
addition,

These two conditions allow the concentration of defects
in the crystal to be estimated.

The second condition gives the upper bound for the
concentration of defects,

for

The lower bound follows from the predominance of
scattering on defects. Indeed, it follows from a compar-
ison of (28) and (29) that N > 1018 cm–3. This is a fairly
high concentration of defects, which may be related to
oxygen vacancies.

I2d
T Tc>

I2 f
T Tc>

2πNrc
3
 ! 1.

N  ! 
1

2πrc
3

----------- 5 1019 cm 3–×=

tc 2.6 nm τ 0.1∼( ).=
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9. CONCLUSION

In this work, we continued studies of the surface
phase transition in the STO crystal, which was discov-
ered by us in [23], by the method of second optical har-
monic generation. The linear character of the tempera-
ture dependences of the second harmonic field in the
low-temperature (for the surface) phase proves that the
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Fig. 11. Temperature dependence of scattered incoherent
component intensity in reflection geometry. Crystal azi-
muthal angle Ψ = π/4.

Fig. 12. Temperature dependence of incoherent second har-
monic component radiation intensity in transmission geom-
etry for Ψ = (a) π/2 and (b) π/4 on logarithmic scale.
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surface transition under consideration is a second-order
phase transition.

The methods for separating, first, coherent and inco-
herent contributions and, second, surface and volume
coherent contributions suggested in this work enabled
us to study the properties of the surface. We were able
to separate surface and volume coherent contributions
by simultaneously studying the angular, polarization,
and temperature dependences of the second harmonic
in the reflection geometry. We showed that there existed
azimuthal angle values at which second harmonic gen-
eration was caused solely by the surface contribution at
temperatures above the volume phase transition point
but below the surface phase transition point. Studies of
the second harmonic characteristics at the phase transi-
tion point in the transmission geometry, in which the
volume contribution was predominant, were used as
reference.

The study of the special features of the temperature
dependences of the incoherent second harmonic near
the volume phase transition point allowed us to relate
this phenomenon to scattering on defects.

Both coherent and incoherent second harmonic field
components were described within the framework of
the Landau theory of phase transitions taking into
account the tensor character of the relations between
nonlinear susceptibilities and order parameter.

ACKNOWLEDGMENTS
This work was financially supported by the Russian

Foundation for Basic Research (project no. 00-02-
16557) and the NWO Scientific Foundation of the
Netherlands (grant NFO 1604-1999).

REFERENCES
1. M. E. Lines and A. M. Glass, Principles and Applica-

tions of Ferroelectrics and Related Materials (Oxford
Univ. Press, Oxford, 1977; Mir, Moscow, 1981).

2. K. A. Muller, W. Berlinger, and E. Tossati, Z. Phys. B 84,
277 (1991).

3. R. Mizaras and A. Loidl, Phys. Rev. B 56, 10726 (1997).
4. G. Shirane and Y. Yamada, Phys. Rev. 177, 858 (1969).
5. B. Hehler, A.-L. Perou, E. Courtens, and R. Vacher,

Phys. Rev. Lett. 75, 2416 (1995).
6. R. Wang, Y. Zhu, and S. M. Shapiro, Phys. Rev. Lett. 80,

2370 (1998).
7. K. Hirota, J. P. Hill, S. M. Shapiro, and G. Shirane, Phys.

Rev. B 52, 13195 (1995).
8. A. A. Sirenko, I. A. Akimov, J. R. Fox, et al., Phys. Rev.

Lett. 82, 4500 (1999).
9. Ultrathin Magnetic Structure 1: An Introduction to the

Electronic, Magnetic, and Structural Properties, Ed. by
J. A. C. Bland and B. Heinrich (Springer-Verlag, Berlin,
1994).

10. D. L. Mills, Phys. Rev. B 3, 3885 (1971).
11. K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194

(1974).
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002



A STUDY OF THE STRUCTURAL PHASE TRANSITION IN STRONTIUM TITANATE 567
12. A. P. Levanyuk and S. A. Minyukov, Fiz. Tverd. Tela
(Leningrad) 25, 2617 (1983) [Sov. Phys. Solid State 25,
1506 (1983)].

13. M. Chida, Y. Tanishiro, H. Minoda, and K. Yagi, Surf.
Sci. 423, L236 (1999).

14. J. B. Cui, J. Ristein, and L. Ley, Phys. Rev. B 59, 5847
(1999).

15. O. H. Seeck, D. Hupfeld, H. Krull, et al., Phys. Rev. B
59, 3474 (1999).

16. S. Chandola and J. F. McGilp, Phys. Status Solidi A 175,
189 (1999).

17. D. Lim, M. C. Downer, J. G. Ekerdt, et al., Phys. Rev.
Lett. 84, 3406 (2000).

18. O. A. Aktsipetrov, S. A. Apukhtina, A. A. Nikulin, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 54, 562 (1991) [JETP Lett.
54, 563 (1991)].

19. T. V. Misuryaev, T. V. Murzina, O. A. Aktsipetrov, et al.,
Solid State Commun. 115, 605 (2000).

20. Th. Rasing, Y. R. Shen, M. W. Kim, and S. Grubb, Phys.
Rev. Lett. 55, 2903 (1985).

21. S. Lin and S. R. Meech, Langmuir 16, 2893 (2000).
22. O. A. Aktsipetrov, T. V. Misuryaev, T. V. Murzina, et al.,

Opt. Lett. 25, 411 (2000).
23. E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, et al.,

Phys. Rev. Lett. 85, 3664 (2000).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
24. V. S. Gorelik, Ferroelectrics 170, 243 (1995).
25. H. Vogt, Phys. Rev. B 58, 9916 (1998).
26. J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B

35, 1129 (1987).
27. A. A. Nikulin and A. V. Petukhov, Dokl. Akad. Nauk

SSSR 304, 87 (1989) [Sov. Phys. Dokl. 34, 48 (1989)].
28. O. A. Aktsipetrov, A. A. Fedyanin, D. A. Klimkin, et al.,

Ferroelectrics 190, 143 (1997).
29. V. L. Ginzburg, A. P. Levanyuk, and A. A. Sobyanin,

Phys. Rep. 57, 151 (1980).
30. F. Schwabl and U. C. Tauber, Phys. Rev. B 43, 11112

(1991).
31. T. Toyoda and M. Yabe, J. Phys. D 16, L251 (1983).
32. E. F. Steigmeier, H. Auderset, and G. Harbeke, Solid

State Commun. 12, 1077 (1973).
33. W. Prusseit-Elffroth and F. Schwabl, Appl. Phys. A 51,

361 (1990).
34. N. I. Lebedev, A. P. Levanyuk, A. I. Morozov, and

A. S. Sigov, Fiz. Tverd. Tela (Leningrad) 25, 2979
(1983) [Sov. Phys. Solid State 25, 1719 (1983)].

35. N. I. Lebedev, A. P. Levanyuk, A. I. Morozov, and
A. S. Sigov, Fiz. Tverd. Tela (Leningrad) 25, 2975
(1983) [Sov. Phys. Solid State 25, 1716 (1983)].

Translated by V. Sipachev
SICS      Vol. 94      No. 3      2002



  

Journal of Experimental and Theoretical Physics, Vol. 94, No. 3, 2002, pp. 568–580.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 121, No. 3, 2002, pp. 663–677.
Original Russian Text Copyright © 2002 by Tarasenko.

                                                                                                                         

SOLIDS
Electronic Properties
A New Class of the Surface Shear Magnetoacoustic Waves
in Antiferromagnetic Crystals

S. V. Tarasenko
Galkin Institute of Physics and Technology, National Academy of Sciences of Ukraine, Donetsk, 83114 Ukraine

e-mail: tarasen@host.dipt.donetsk.ua
Received April 12, 2001

Abstract—It is shown that the hybridization of magnetoelastic and dipolar interactions may give rise (even in
a zero magnetic field) to a new type of surface shear magnetoacoustic waves near a mechanically free or an
acoustically continuous interface between uniaxial ferromagnetic and nonmagnetic media. The effect of the
conductivity of the nonmagnetic medium on the localization conditions of this surface mode is studied. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Despite a sufficiently large number of works
devoted to the analysis of conditions for the formation
of surface shear magnetoacoustic waves near a
mechanically free surface of ferro- and antiferromag-
netic crystals [1], only one class of surface shear hori-
zontal (SH) phonons, a dipolar Bleustein–Gulyaev
wave [2–5], has been traditionally analyzed. The exist-
ence of this wave is known to be associated with the
fact that a bulk shear elastic wave (SH wave) propagat-
ing at a grazing angle along a mechanically free surface
of a crystal may completely satisfy the elastic boundary
conditions (a exceptional volume wave) [6–9]. As a
result, a small variation in the boundary conditions may
transform this wave into a surface shear acoustic wave.
For example, if a bulk SH phonon is a dipolar wave, a
linear coupling between certain components of the
elastic strain tensor u and the magnetic field H can
serve as such a perturbation. In this case, a transverse
elastic SH wave traveling along a mechanically free
surface of a crystal will be transformed into a surface
shear magnetoacoustic wave. In ferro- and antiferro-
magnetic crystals, even in the absence of a constant
external magnetic field H0, such a coupling between uik

and H can be induced by the long-range magnetic
ordering [1, 10].

Conditions for the formation of a surface magneto-
acoustic SH wave were first considered in [2] by an
example of an elastically and magnetically isotropic
ferromagnetic half-space with a mechanically free sur-
face that was uniformly magnetized by an external
magnetic field H0 (H0 || z, n || x, k⊥  || y, u || z ⊥  n, where
n is a normal to the surface of the magnetic material, k⊥
is the wave vector directed along the propagation direc-
tion of the elastic wave, and u is the vector of elastic
displacements). The generalization of the results of [2]
to the case of an acoustically continuous interface
between ferromagnetic and nonmagnetic dielectrics
1063-7761/02/9403- $22.00 © 20568
was carried out in [11]. The effect of the dynamic mag-
netoelastic interaction on the structure of the spectrum
of a surface SH wave near the stability boundary of this
magnetic state (the presence of a magnetoelastic gap in
the spectrum of a soft magnon mode) was properly
taken into account in [1] for a mechanically free inter-
face between a ferromagnetic material and vacuum.
The results obtained in [1, 2, 11] imply that a surface
shear magnetoelastic SH wave (the Parekh wave) is not
a direct analogue of the Bleustein–Gulyaev wave in a
nonmagnetic crystal or in the paramagnetic phase (T > TC,
where TC is the Curie point) of a magnetically ordered
crystal because of the following circumstances:

(1) In the paramagnetic phase (T > TC), this type of
surface SH waves is formed when H0 || z, k⊥  || y, n || x,
and u || z due to the hybridization of dipolar and mag-
netoelastic interactions in a bounded magnetic mate-
rial, whereas the results of [1, 2, 11] imply that, when
T < TC (even when the dipolar interaction is neglected1),
the surface shear elastic wave under consideration is
delocalized neither in the case of a mechanically free
nor in the case of an acoustically continuous interface
between ferromagnetic and nonmagnetic dielectric
media.

(2) In contrast to the case of T > TC, when T < TC, the
type of surface magnetoacoustic SH waves under con-
sideration exists on both a mechanically free and an
acoustically continuous interface between supercon-
ducting and ferromagnetic materials (by its elastic
properties, a nonmagnetic medium is assumed to be
magnetically harder than a magnetic medium; i.e., the
Love wave cannot be formed, and there are no bound-
ary capillary phenomena).

In [12], it was shown that the formation of a surface
SH wave on a mechanically free interface between

1 To this end, one has to formally pass to the limit as 4π  0 in
the relevant formulas in [1, 2, 11].
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magnetic and superconducting materials in the absence
of a dipolar interaction is attributed to the fact that, for
the propagation plane of the elastic SH wave (k ∈  xy),
the magnetic medium under consideration (an easy-
axis ferromagnet with the easy axis z) is acoustically
gyrotropic. As a result, even in the absence of a dipolar
interaction, the spectrum of such a surface magneto-
acoustic SH wave (H0 || z, k⊥  || y, n || x, and u || z), first,
is nonreciprocal with respect to the inversion of the
propagation direction of the wave, ω(k⊥ ) ≠ ω(–k⊥ ), and,
second, consists of several branches separated by for-
bidden frequency bands.

If we make another formal passage to the limit,
B44  0 (we neglect the coupling between the spin
and elastic subsystems; B44 is the constant of magne-
toelastic interaction) in the relevant formulas in [1, 2,
11], then, for the same relative orientation of the vectors
n, H0, and k⊥ , these formulas describe (in the magneto-
static approximation) the dispersion law of a surface
magnetic TE polariton (the Damon–Eshbach wave) and
a homogeneous bulk SH wave.

However, because magnetoelastic effects are rela-
tively small as compared with dipolar ones, the contri-
bution of the magnetoelastic mechanism to the localiza-
tion of transverse phonons on the spectrum of a surface
magnetoacoustic SH wave in a ferromagnetic material
is negligible. At the same time, it is well known [10]
that the exchange amplification of the magnetoelastic
and exchange damping of dipolar interactions occur
simultaneously in antiferromagnetic materials; this
makes the consideration of the magnetoelastic mecha-
nism of the formation of a surface shear magnetoacous-
tic SH wave more topical, first of all, for this class of
magnetic crystals.

When the magnetoelastic interaction is neglected,
the conditions for the formation and propagation of sur-
face magnetic TE polaritons in easy-axis ferromagnetic
materials both with and without regard to electromag-
netic delay phenomena were studied in sufficient detail
in [13–15].

The possibility of localization of elastic shear waves
near the mechanically free surface of an antiferromag-
net or the acoustically continuous interface between
antiferromagnetic and nonmagnetic media due to the
magnetoelastic interaction but without regard to the
dipolar interaction was investigated in [12, 16, 17]. As
regards the simultaneous effect of the magnetoelastic
and dipolar interactions on the formation and propaga-
tion of a surface magnetoacoustic SH wave near the
surface of an antiferromagnet, such a problem has not
yet been considered.

One should expect that, in this case, the localization
conditions for a shear magnetoacoustic wave propagat-
ing along the surface of an easy-axis antiferromagnet
for |H0 | = 0 may essentially differ from those studied
earlier in [1, 2, 11] by an example of an easy-axis fer-
romagnet. This is associated with the fact that, conven-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tionally, only a piezomagnetic interaction [1, 3–5] was
considered as a mechanism inducing a linear coupling
between uik and H (and, hence, a mechanism inducing
the instability of a homogeneous exceptional volume
SH wave traveling along the mechanically free surface
of the magnetic material), in spite of the fact that the
existence of a magnetoelastic interaction in an antifer-
romagnetic crystal, in contrast to a piezomagnetic crys-
tal, does not require certain special symmetry criteria
[10]. In addition, up to the present, normal spin waves
[1, 3–5] that exist in the same range of frequencies ω
and wave numbers k⊥  have been neglected in calculat-
ing the spectrum of surface magnetoacoustic SH
phonons in antiferromagnetic media. For an arbitrary
value of the wave number k⊥ , this fact is justified for
high-temperature antiferromagnetic materials (TN > TD,
where TN (TD) is the Néel (Debye) temperature) [18] but
is not valid for low-temperature antiferromagnetic
materials (TN < TD).

Of special interest here is the analysis of the effect
of the magnetoelastic mechanism of linear coupling
between elastic uik and magnetic H fields on the propa-
gation conditions for a exceptional volume magnetoa-
coustic SH wave along a mechanically free or acousti-
cally continuous interface between an easy-axis antifer-
romagnet in the collinear phase (H0 = 0) and a
superconductor (n || x, k ∈  xy, u || l || z; l is the antifer-
romagnetic vector). This interest is stimulated by the
following factors.

(1) In contrast to the ferromagnet [1, 2, 11], for
|H0 | = 0, the antiferromagnet in the collinear phase is
not simultaneously optically and acoustically active.

(2) As follows from [13–15], the presence of a
superconducting coating makes the formation of a sur-
face magnetostatic wave impossible in an easy-axis
antiferromagnet (|H0 | = 0).

(3) A dipolar Bleustein–Gulyaev wave induced by a
piezomagnetic interaction [19, 20] cannot exist on a
mechanically free interface between a piezomagnetic
and superconducting (superdiamagnetic) material.

Thus, the aim of this work is to determine the neces-
sary conditions under which the hybridization of mag-
netoelastic and dipolar interactions gives rise to a new
class of surface shear magnetoacoustic waves for |H0| = 0
on both a mechanically free and an acoustically contin-
uous interface between antiferromagnetic and nonmag-
netic media (either a dielectric or a superconductor can
be chosen as the nonmagnetic medium).

The paper consists of several sections. In Section 2,
we present the basic relations and determine the condi-
tions under which a simultaneous effect of a magne-
toelastic and dipolar interactions gives rise to a new
type of surface magnetoacoustic SH waves near a
mechanically free interface between an easy-axis anti-
ferromagnet and a nonmagnetic medium. In this sec-
tion, we also study the dispersion characteristics of this
SICS      Vol. 94      No. 3      2002
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surface wave as a function of the conductivity of the
nonmagnetic medium (either dielectric or supercon-
ductor). The characteristic features of the dispersion
relations of the shear magnetoacoustic wave under con-
sideration for an acoustically continuous interface
between an easy-axis antiferromagnet and a nonmag-
netic medium are considered in Section 3. In Section 4,
we discuss the possibility of the formation of a new
type of gap magnetoelastic SH waves by an example of
an antiferromagnet–nonmagnetic medium–antiferro-
magnet three-layer structure. In Section 5, we show a
relation between the spectrum of the gap magneto-
acoustic SH wave determined for the antiferromagnet–
nonmagnetic medium–antiferromagnet structure and
the spectrum of a surface shear magnetoacoustic wave
propagating along an elastically isotropic antiferro-
magnetic slab both of whose surfaces have a continuous
acoustic contact with identical nonmagnetic half-
spaces. Section 6 is devoted to the analysis of the char-
acteristic features of the localization and propagation of
the surface magnetoacoustic SH wave under consider-
ation that are induced by the spatial dispersion of the
magnetic medium (by the inhomogeneous-exchange
interaction). In the Conclusion, we summarize the
results obtained.

2. BASIC RELATIONS: MECHANICALLY FREE 
INTERFACE BETWEEN ANTIFERROMAGNETIC 

AND NONMAGNETIC MEDIA

Assume that an antiferromagnetic medium occupies
a lower half-space (x < 0) with the normal to the inter-
face n || [100]. As an example, consider a two-sublattice
model (M1, 2 are the saturation magnetizations of
respective sublattices, and |M1| = |M2| = M0) of an easy-
axis exchange-collinear antiferromagnet (with the easy
axis z). For simplicity and obviousness of calculations,
assume that the magnetoelastic and elastic properties of
the antiferromagnet are isotropic. The density of the
thermodynamic potential can be represented in terms of
ferromagnetic (m) and antiferromagnetic (l) vectors as
follows [10]:

(1)

Here, b, δ, and γ are the constants of magnetic anisot-
ropy, homogeneous-exchange interaction, and magne-
toelastic interaction, respectively; K and µ are the com-
pression and shear moduli, respectively; hm is the mag-
netic dipole field; and δik is the Kronecker delta. If we
assume that electromagnetic waves propagate at infinite
velocity in the magnetic material, the dynamics of
model (1) is described by a closed system of equations
involving the Landau–Lifshits equations for the vectors

W 0.5δm2 0.5blz
2– m hm γlilkuik+⋅–=

+ µ uik δikull/3–( )2 0.5Kull
2 ,+

m M1 M2+( )/2M0, l M1 M2–( )/2M0.= =
JOURNAL OF EXPERIMENTAL
m and l, the basic equation of continuum mechanics,
and the equations of magnetostatics:

(2)

where B is the magnetic flux density, u is the vector of
lattice displacements, ρ is the mass density, σik is the
elastic strain tensor, g is the gyromagnetic ratio, and
Hr ≡ δW/δr is the effective field with r = m, l.

Since our aim is to analyze the conditions for the
formation of a surface magnetoacoustic wave localized
near the interface between antiferromagnetic and non-
magnetic media (x = 0), the system of dynamic equa-
tions considered must be supplemented with appropri-
ate elastic and electromagnetic boundary conditions. If
the interface is mechanically free, then such a system of
boundary conditions can be represented as [19, 20]

(3)

(4)

Here, k⊥  is the wave number; φ is the magnetostatic
potential (hm ≡ –∇φ ); and subscripts 1 and 2 correspond
to magnetic and nonmagnetic media, respectively.
Everywhere below, we assume that the permeability of
the nonmagnetic medium is equal to unity. In formula
(4), depending on the conductivity of the nonmagnetic
medium, β ≡ 0 for a perfect metal or a superdiamag-
netic material [20], β ≡ 1 for vacuum, and β ≡

 for a superconductor with the London pen-
etration depth λ.

Calculations show that, if b > 0 in (1), then, in the
equilibrium state with |H0 | = 0, l || z and |m | = 0 (the col-
linear phase). Hence, when the propagation direction of
the shear wave with u || z coincides with the axis y (k ∈
xy), the characteristic equation for the boundary value
problem (1)–(4) can be represented as

(5)

where

1
g
---∂m

∂t
-------- m Hm l Hl,×+×=

1
g
---∂l

∂t
----- m × Hl l Hm× ,+=

divB 0, ρ
∂2ui

∂t2
---------

∂σik

∂xk

----------,= =

σix 0 x 0=( ), u x –∞( ) 0,=

B1 n⋅ βk ⊥ φ1 x 0=( ), φ1 x ∞–( ) 0.–=

k ⊥ λ( )tanh

α2 1– ω2

s1t
2 c55k ⊥

2
------------------+

 
 
 

α2 1–( ) 0,=

kx
2 α2k ⊥

2 , c55–≡
ω0

2 ω2–
∆

------------------,=

µxx µyy

ω0
2 ωme

2+( )e

∆
----------------------------- 1,+= =

ω0
2 g2M0

2δb, ωme
2 g2M0

4δγ2

µ1
---------------------, s1t

2 µ1

ρ1
-----,≡≡≡
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Thus, the elastic SH wave in this case is one-partial
with respect to the elastic displacement and is non-
magnetic-dipole-active in the bulk of the crystal. Fol-
lowing the standard calculation technique and taking
into account (5), we can represent the dispersion rela-
tion for the spectrum of the appropriate surface shear
magnetoacoustic wave (u || l || z, k ∈  xy) traveling along
the mechanically free interface (x = 0) between antifer-
romagnetic and nonmagnetic media (expressions (1)–
(4)) as follows (for all values of β considered in the
electromagnetic boundary value problem (4)):

(6)

The analysis of Eqs. (5) and (6) shows that the dis-
persion law of a exceptional volume SH wave is deter-
mined from (5) by the relation α = 0, while the neces-
sary condition for the existence of a surface SH wave is
given by the inequalities

Here, one should emphasize that the formation of the
surface shear magnetoacoustic wave on the mechani-
cally free interface between antiferromagnetic and non-
magnetic media (conditions (3) and (4)) can be satisfied
only due to the hybridization of the magnetoelastic (γ ≠ 0)
and dipolar (e ≠ 0) interactions. In the general case, the
analysis of the dispersion relations (5) and (6) can be
carried out only by numerical methods; therefore,
below, we restrict the analysis to certain particular
cases. For example, it follows from (5) and (6) that, in
the long-wavelength limit (k⊥   0), the dispersion
law for the surface shear magnetoacoustic wave can be
obtained from the relation

(7)

i.e., the surface wave in question is a forward wave
(∂Ωs(k⊥ )/∂k⊥  > 0) irrespective of the conductivity of the
nonmagnetic medium (irrespective of the type of β). In
the short-wavelength (elastostatic) limit, when ω/s1t !
k⊥ , the dispersion law of the surface magnetoacoustic
SH wave (5), (6) is determined by the following rela-
tion:

(8)

Thus, it follows from (8) that, if the nonmagnetic half-
space is occupied by a superconductor with the London
penetration depth λ (β ≡ ), then the surface

∆ ω0
2 ωme

2 ω2, e
16π

δ
---------.≡–+≡

c55α1 D β( ), α1
2 1

ω2

s1t
2 c55k ⊥

2
------------------,–≡–=

D β( )
e*ωme

2 ω2

∆ ω0
2 ωme

2+( )e* ∆+( )
---------------------------------------------------, e*

e
1 β+
------------.≡≡

ω0
2 ω2 ω0

2 ωme
2 .+< <

k ⊥
2 ω2c55s1t

2–

c55
2 D2 0( )–

--------------------------,≈

Ωs
2 k ⊥( ) ω0

2 1 e*+( ).=

k ⊥ λ( )tanh
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wave (5), (6) with the dispersion law Ωs(k⊥ ) in the
short-wavelength limit (8) is a backward wave
(∂Ωs(k⊥ )/∂k⊥  < 0). In the general case, a simultaneous
analysis of formulas (5)–(8) shows that the dispersion
curve of the surface shear magnetoacoustic wave (5),
(6) under this type of electromagnetic boundary condi-
tions may have an extremum for k⊥  ≠ 0. The presence
of this extremum depends, in particular, on the London
penetration depth λ (Fig. 1, curve 1). If the electromag-
netic boundary conditions (4) on the mechanically free
surface of the antiferromagnet (1) are such that β ≡ 0 or
β ≡ 1, then, as follows from (5)–(8), the dispersion
characteristics of the surface wave considered will pri-
marily be determined by the acoustic-delay phenome-
non (Fig. 1, curves 2 and 3, respectively).

In view of the extensive study of multilayer mag-
netic structures based on antiferromagnetic and non-
magnetic materials [21, 22], the following question is
of undoubted interest: How will the spectrum of the
surface magnetoacoustic SH wave change if the elastic
conditions on the interface between antiferromagnetic
and nonmagnetic media correspond to an acoustically
continuous (rigid) contact between these media rather
than to a mechanically free surface (3)?

III

I

II

ω2
0

ω2
0

ω2 ω2
1

ω2
2

0 κ⊥

~

Fig. 1. The structure of the spectrum of a surface shear mag-
netoacoustic wave (5), (6) on the mechanically free inter-
face (3), (4) between antiferromagnetic and nonmagnetic
media;

(1) β =  and (k⊥  @ 1) ≈ (1 + e/2);

(2) β = 0 and (k⊥  @ 1) ≈ (1 + e); and

(3) β = 1 and (k⊥  @ 1) ≈ (1 + e/2);  ≡  + ;

the frequencies  are determined from (5) with α = 0.

k⊥ λ( )tan Ωs
2 ω0

2

Ωs
2 ω0

2

Ωs
2 ω0

2 ω̃0
2 ω0

2 ωme
2

ω1 2,
2

SICS      Vol. 94      No. 3      2002



572 TARASENKO
3. A RIGID CONTACT 
BETWEEN ANTIFERROMAGNETIC 

AND NONMAGNETIC MEDIA

When, as before, the antiferromagnetic medium
(medium 1) occupies the lower half-space x < 0 and the
nonmagnetic medium (medium 2) represents a layer of
thickness f (f > λ) whose external surface x = f is
mechanically free and is coated by an infinitely thin
perfectly superconducting film (B2 · n = 0 for x = f ), the
system of elastic and electromagnetic boundary condi-
tions for a dipolar SH wave (u || z || l, k ∈  xy) takes the
following form instead of (3), (4):

(9)

(10)

where

The corresponding dispersion relation for the spec-
trum of a surface magnetoacoustic SH wave guided by
the acoustically continuous interface between antifer-
romagnetic (1) and nonmagnetic (9), (10) media can be
rewritten, with regard to (5), (6), as (k ∈  xy, n || x, l || z)

(11)

In the limit as µ2  0, relation (11) coincides with (6);
i.e., combined with (5), relation (11) describes the dis-
persion law for the surface magnetoacoustic SH wave
localized near the mechanically free interface between
magnetic and nonmagnetic media. If we pass to the
limit as f  ∞ in (5) and (11), we obtain a dispersion
relation for the surface magnetoacoustic SH wave prop-
agating along the acoustically continuous interface
between antiferromagnetic and nonmagnetic half-
spaces. The analysis of Eqs. (5) and (11) implies that,
when f < ∞, the necessary condition for the existence of
the surface magnetoacoustic SH wave is given, as
before, by the inequalities

In the case of a nonmagnetic half-space for x > 0 (f 
∞), in addition to the above constraint on the frequency
of the surface wave, it is required that the inequality
µ2ρ1 < µ1ρ2 should be satisfied. However, one should
stress that the formation of the surface shear elastic
wave in the case of a rigid contact between antiferro-
magnetic and nonmagnetic media (see (9)) is possible
when the dipolar interaction is neglected (e/γ  0)
and only the magnetoelastic interaction is taken into
account (γ ≠ 0); this result coincides with the results of
[12]. Since a full analysis of relations (5) and (11) can
be carried out only by numerical techniques, we will

σix1 µ1ak ⊥ uz1+ 0 x 0=( ),=

uz1 2, x ∞–( ) 0,

B1 n⋅ βk ⊥ φ1 x 0=( ),–=

φ1 2, x ∞–( ) 0,

a
µ2

µ1
-----α2 α2k ⊥ f( ), α2

2 1
ω2ρ2

k ⊥
2 µ2

------------.–≡tanh≡

c55α1 a D β( )+ + 0.=

ω0
2 ω2 ω0

2 ωme
2 .+< <
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only consider certain particular cases. For example, it
follows from (5) and (11) that, when µ2ρ1 > µ1ρ2, the
spectrum of the surface wave in the long-wavelength
limit (k⊥   0) has the following endpoint:

in the neighborhood of this point, the surface wave
under consideration is a forward wave (∂Ωs(k⊥ )/∂k⊥  >
0) irrespective of the conductivity (the form of β) of the
nonmagnetic medium and the elastic properties of the
nonmagnetic coating. The comparison of (6) and (11)
shows that the effect of the nonmagnetic coating on the
spectrum of the surface SH wave under consideration is
manifested most clearly in the short-wavelength (elas-
tostatic) limit ω/s1t ! k⊥ .

As a result, the dispersion law of the surface magne-
toacoustic SH wave (5), (11), is rewritten as

(12)

where

Thus, in contrast to the case of a mechanically free
interface between magnetic and nonmagnetic media (5)
and (6), even if the nonmagnetic layer is a dielectric
(β = 0) or a perfect superconductor (β = 0), the presence
of a rigid contact at x = 0 gives rise to the dispersion of
the surface mode considered even in the short-wave-
length limit. In this case, the dispersion curve (12) cor-
responds to a forward wave (∂Ωs(k⊥ )/∂k⊥  > 0) for both
β = 0 and β = 1. If the nonmagnetic medium (0 < x < f )
is a superconductor with the London penetration depth
λ (β ≡ tanh(k⊥ λ)), then, as follows from (12), the disper-
sion curve of the surface magnetoacoustic SH wave of
the type under consideration may have an extremum
point for k⊥  ≠ 0 even in the elastostatic limit (ω/s1t ! k⊥ ).
In particular, a necessary condition for the existence of
a minimum is the inequality λ < f.

Both for a mechanically free (3) and for an acousti-
cally continuous (9) interface between magnetic and
nonmagnetic media, the conditions for the formation of
the surface magnetoacoustic SH wave (5), (6) or (5),
(11) prove to be closely related to the reflection condi-
tions of a normal dipolar shear elastic wave from the
surface of an antiferromagnetic crystal (x = 0).

Calculations show that the reflection coefficient R of
a bulk transverse wave polarized perpendicular to the
plane of incidence (k ∈  xy, u || l || z) for the acoustically
continuous interface between ferromagnetic (x < 0,
medium 1) and nonmagnetic (x > 0, medium 2) half-
spaces (n || x) that is defined by relations (9) and (10)
for f  ∞ and φ2(x  ∞)  0, uz2(x  ∞)  0
can be represented as

kmin
2 ω0

2ρ1/µ1, Ωs kmin( )≡ ω0;=

Ωs
0 k ⊥( ) ω0

2 ωme
2 a*/ 1 a*+( )+[ ] 1 e*+( ),=

a*
µ2

µ1
----- k ⊥ f( ).tanh≡
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(13)

irrespective of the conductivity of the nonmagnetic
medium; here, the angles θ1 and θ2 define the directions
of the wave vector k1 of the incident SH wave in the
antiferromagnetic medium (π ≤ θ1 ≤ 3π/2) and the wave
vector k2 of the refracted wave in medium 2 (0 ≤ θ2 ≤
π/2), respectively. In a particular case of µ2 = 0, the rela-
tion obtained corresponds to the reflection coefficient of a
bulk magnetoacoustic SH wave from a mechanically free
surface of the antiferromagnetic crystal (3), (4).

Thus, it follows from (13) that the character of
reflection of a bulk magnetoacoustic SH wave from a
mechanically free interface between antiferromagnetic
and nonmagnetic media is qualitatively similar to the
reflection of a shear SH wave from a mechanically free
surface of a cubic piezocrystal [23, 24]. In particular,
the total internal reflection (|R | = 1) occurs for any angle
of incidence of a normal elastic SH wave onto the sur-
face of the antiferromagnet. In addition, in this case, the
hybridization of the magnetoelastic and dipolar interac-
tions (e ≠ 0, γ ≠ 0) makes impossible the propagation of
a bulk magnetoacoustic SH wave along the surface of
the magnetic crystal at a grazing angle (when θ1  π,
R  –1). Otherwise (e/γ  0 or γ/e  0), formula
(13) implies that R = 1 for π ≤ θ1 ≤ 3π/2; i.e., a excep-
tional volume SH wave can propagate along a mechan-
ically free surface of the antiferromagnetic crystal (µ2 =
0) in the absence of a dipolar (e/γ  0) or magne-
toelastic (γ/e  0) interactions. Upon the substitution
ik1cosθ1  α1k⊥ , k1sinθ1  k⊥ , the pole of the
reflection coefficient R (13) coincides with the disper-
sion relations for the spectrum of a surface shear mag-
netoacoustic wave (5), (6) or (5), (11). It should be
noted that, if the interface between antiferromagnetic
and nonmagnetic media is acoustically continuous, (9)
and (10), then formula (13) implies that, according to
(5), (11), a sufficient condition for the impossibility of
propagation of a homogeneous SH wave along the
interface between magnetic and nonmagnetic media
(R(θ1  π/2)  –1) for µ2 ≠ 0 is fulfilled even in the
absence of the dipolar interaction (e/γ  0). This
result agrees with the aforementioned fact that, in such
a structure, a surface SH wave can propagate in this
direction due to the magnetoelastic interaction alone
(γ ≠ 0). The corresponding dispersion relation is deter-
mined from (13) by the equation

R–1 = 0

R ic55 θ1 h–cos( ) ic55 θ1 h+cos( ) 1– ,=

h
eω2ωme

2

µxx β+( )∆2
---------------------------- θ1 ã θ2, k1

2 ω2

s1t
2 c55

------------,≡cos–sin≡

k2
2 ω2ρ2

µ2
------------, ã

µ2k2

µ1k1
----------, θ ky/kx,≡tan≡≡
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for e/γ  0 and upon the substitutions

ik1cosθ1  α1k⊥ , k1sinθ1  k⊥ ,

ik2cosθ2  –α2k⊥ .

Calculations show that, when a normal bulk SH wave is
reflected from the surface of antiferromagnet (1), not
only the amplitude of the reflection coefficient R but
also its phase ψ (R = |R |exp(iψ)) shows anomalous
behavior. Since h ≠ 0, both for µ2  0 and e/µ2  0,
the phase of the reflected shear wave differs from the
phase of the incident elastic SH wave for both a
mechanically free surface of antiferromagnet (1) and an
acoustically continuous interface between antiferro-
magnetic and nonmagnetic half-spaces. In the general
case, the phase shift considered depends not only on the
frequency ω and the wave number k⊥  of the incident
elastic wave but also on the elastic properties (µ2) and
the conductivity (λ) of the nonmagnetic medium. One
of the practically important consequences of the total
reflection is the Schoch effect, which consists in the
shift of a beam of reflected elastic waves along the
boundary [25]. If k⊥  is the wave number of the beam,
then, according to [25, 26], its shift ∆s upon reflection
from the boundary is determined by the relation

(14)

It follows from (13) and (14) that the shift ∆s depends
on the sign and the magnitude of the ratio h/ . In this
case, depending on the relation between the parameters
entering in this ratio, the shift ∆s may be either positive
or negative. In particular, ∆s attains its maximum when
the condition µxx + β = 0 is satisfied, which corresponds
to the frequency of a magnetostatic surface wave prop-
agating along the interface between antiferromagnetic
and nonmagnetic media [22].

Taking into account the results of this and the pre-
ceding sections, one can expect that the localization
mechanism of a surface magnetoacoustic SH wave will
work even in the case of a magnetic-sandwich-type
structure, which represents two identical antiferromag-
netic half-spaces separated by a nonmagnetic layer of a
dielectric or superconducting medium. In view of this
fact, we devote the following section to the study of the
conditions for the formation of a new type of gap mag-
netoacoustic SH waves induced by the hybridization of
dipolar and magnetoelastic interactions for such a
structure.

4. ANTIFERROMAGNET–NONMAGNETIC 
LAYER–ANTIFERROMAGNET-TYPE 

STRUCTURE

Suppose that the upper and lower half-spaces (x < –d
and x > d) are occupied by antiferromagnet (1), the
spacing between them (–d < x < d) is occupied by a
nonmagnetic medium (medium 2), and both interfaces

∆s
∂ψ
∂k ⊥
--------–= .

c55
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(x = ±d) of this structure are mechanically free. If, as
before, l || z || u and k ∈  xy, then the system of elastic
and electromagnetic boundary conditions correspond-
ing to the elastic SH wave localized near the nonmag-
netic layer can be represented as

(15)

(16)

Calculations show that a shear gap magnetoacoustic SH
wave with k⊥  || y can propagate in such a three-layer
structure along the interface between the magnetic and
nonmagnetic media. This wave is formed as a result of
hybridization of two surface shear magnetoacoustic
waves in each half-space due to the indirect interaction
between these oscillations through a magnetostatic
field in the nonmagnetic layer separating these antifer-
romagnetic half-spaces (–d < x < d). The dispersion law
of such a gap shear magnetoacoustic wave consists of
two branches, Ω±(k⊥ ), whose spectra, with regard to (5),
(6), are determined by

(17)

where

Just as in the case (5), (6), the necessary condition for
the existence of a gap magnetoacoustic SH wave (5),
(17) is given by the inequalities

and a simultaneous consideration of the magnetoelastic
and (γ ≠ 0) and magnetostatic (e ≠ 0) interactions.

In the long-wavelength limit as k⊥   0, the branch
Ω+(k⊥ ) of the dispersion law of the shear gap magneto-
acoustic wave coincides with (7), while the branch
Ω−(k⊥ ) is given by the relation

(18)

In the elastostatic limit (ω/s1tk⊥  ! 1), both branches of
the spectrum of shear gap magnetoacoustic wave (5),
(17) are dispersive and are determined by relation (8)
with β = β+ for Ω+(k⊥ ) = Ωs(k⊥ ) and β = β– for Ω–(k⊥ ) =
Ωs(k⊥ ). Thus, in the three-layer structure under consid-
eration, the “low-frequency” branch of the spectrum of

σix1 0 x d±=( ), uz1 x ∞±( ) 0,=

B1 n⋅  = B2 n,⋅
φ1 φ2,= 




x = d , φ1 x ∞±( ) 0.±

c55α1 D β±( ),–=

D β±( )
e± ωme

2 ω2

∆ ω0
2 ωme

2+( )e± ∆+[ ]
---------------------------------------------------,≡

e±
e

1 β±+
---------------,≡

β+ tanh k ⊥ d( ) for Ω+ k ⊥( ),≡

β– coth k ⊥ d( ) for Ω– k ⊥( ).≡

ω0
2 ω2 ω0

2 ωme
2+< <

k ⊥
2 ω2c55s1t

2–

c55
2 D2 ∞( )–

----------------------------.≈
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shear gap magnetoacoustic waves is a forward wave
(∂Ω+(k⊥ )/∂k⊥  > 0), while the “high-frequency” branch
represents a backward wave (∂Ω–(k⊥ )/∂k⊥  < 0) even for
the interface between an antiferromagnet and a non-
magnetic dielectric. When k⊥ d  ∞, the dispersion
curves of these waves tend to the same limit given by
the relation

The spectrum of the gap magnetoacoustic SH waves
of the type under consideration exhibits additional fea-
tures when the three-layer structure (two identical anti-
ferromagnetic half-spaces and a nonmagnetic layer) is
acoustically continuous, while the nonmagnetic layer
itself is a perfect superconductor (λ = 0). In this case,
the corresponding system of elastic and electromag-
netic boundary conditions can be represented as

(19)

(20)

As a result, for k ∈  xy, n || x, l || z || u, |H0 | = 0, the spec-
trum of the gap magnetoacoustic SH wave under con-
sideration also consists of two branches: symmetric and
antisymmetric ones. Unlike (5), (17), the classification
of the branches of the spectrum for this type of gap
waves is based on the character of distribution of elastic
displacements u || z in the nonmagnetic layer with
respect to the midplane x = 0. Calculations show that
the formation of the gap SH wave is attributed to the
hybridization of two surface shear magnetoacoustic
waves in each half-space due to the indirect interaction
of these oscillations through the field of elastic dis-
placements (u || z) in the nonmagnetic superconducting
layer separating the two antiferromagnetic half-spaces
(–d < x < d). Taking into account (5), (6), we can repre-
sent the dispersion equation for the spectrum of the gap
magnetoacoustic SH wave in the case (19), (20) as

(21)

where

The simultaneous analysis of (5), (6), and (21) shows
that, as expected, the structure of the branch Ω+(k⊥ ) is
qualitatively similar to the case of a rigid contact (5),
(11), considered above, between an antiferromagnetic
half-space and a superconducting layer of thickness d
with the London penetration depth λ = 0. The corre-
sponding dispersion curve represents a forward wave
(∂Ω+(k⊥ )/∂k⊥  > 0). As regards the branch Ω–(k⊥ ) of the
gap SH wave (5), (21) under consideration, its most dis-
tinctive feature induced by the rigid contact between
magnetic and nonmagnetic media is that the relation

Ω± k ⊥ ∞( ) ω0 1 e/2+ .=

σix1 = σix2,

u1 u2,= 



x = d , u1 x ∞±( ) 0,±

B1 n⋅ 0 x d±=( ), φ1 x ∞±( ) 0.=

c55α1 a±+ D 0( ),–=

a+ µ2/µ1( )α2 α2k ⊥ d( ) for Ω+ k ⊥( ),tanh≡

a– µ2/µ1( )α2 α2k ⊥ d( ) for Ω– k ⊥( ).coth≡
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∂Ω–(k⊥ )/∂k⊥  < 0 holds even in the elastostatic limit. Due
to the finiteness of the acoustic delay, a maximum
appears on this dispersion curve for k⊥  ≠ 0. For k⊥ d  ∞,
we have

In the cases (5), (17) and (5), (21), the lower branch
Ω+(k⊥ ) of the spectrum of the gap magnetoacoustic
wave coincides, for 2d  ∞, with the above expres-
sions for the spectrum of a surface magnetoacoustic SH
wave traveling, respectively, along a mechanically free
and an acoustically continuous interface between the
antiferromagnetic and superconducting half spaces. To
compare with the cases (5), (17) or (5), (21), one should
assume in (5), (6) that β = 1 or β = 0, respectively.

The analysis shows that, in both cases (15)–(17) and
(19)–(21), the spectrum of the gap magnetoelastic SH
wave for the antiferromagnet–nonmagnetic layer–anti-
ferromagnet structure investigated above is closely
related to the spectrum of the surface wave formed in
the structure of the type nonmagnetic material–antifer-
romagnet–nonmagnetic material.

5. SPECTRUM OF A MAGNETOACOUSTIC
SH WAVE IN AN ANTIFERROMAGNETIC SLAB

Consider an antiferromagnetic (medium 1) slab of
thickness 2d assuming that both of its surfaces (x = ±d)
have a continuous acoustic contact with the nonmag-
netic (medium 2) half-space (x > d and x < –d) and, as
before, n || x, k ∈  xy, and l || u || z. The corresponding
system of boundary conditions has the form

(22)

(23)

Taking into account (5), we can seek a solution to this
boundary value problem in the form

(24)

for −d ≤ x ≤ d;

for x > d; and

Ω±
2 k ⊥ ∞( ) ω0

2 ωme
2

1 µ1/µ2+
----------------------+ 

  1 e+( ).=

σix1 = σix2,

u1 u2,= 



x = d , u2 x ∞±( ) 0,±

B1 n⋅  = B2 n x = d±( ),⋅
φ2 x ∞±( ) 0.

uz1 u+ α1k ⊥ x–( ) u– α1k ⊥ x( )exp+exp[ ]=

× iωt ik ⊥ y–( ),exp

φ1 φ+ k ⊥ x–( ) φ– k ⊥ x( )exp+exp[ ]=

× iωt ik ⊥ y–( )exp

uz2 u0 α2k ⊥ x–( ) iωt ik ⊥ y–( ),expexp=

φ2 φ0 k ⊥ x–( ) iωt ik ⊥ y–( )expexp=

uz2 u0 α2k ⊥ x( ) iωt ik ⊥ y–( ),expexp=

φ2 φ0 k ⊥ x( ) iωt ik ⊥ y–( )expexp=
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for x < –d. As a result, the calculation of the spectrum
of shear magnetoelastic waves shows that, in this case,
two types of normal magnetoelastic SH waves can
propagate simultaneously and independently with the
same wave number k⊥ ; the distribution of the vector of
elastic displacements u || l || z in these waves can be
either symmetric or antisymmetric with respect to the
midplane x = 0 of the slab (λ < 2d is the penetration
depth of a magnetic field into the nonmagnetic super-
conducting medium, and  ≡ µ2α2/µ1):

(25)

(26)

It follows from (25) and (26) that, in the short-wave-
length limit (α1, 2  1), the spectrum of the gap magne-
toelastic SH waves for the acoustically continuous antifer-
romagnet–superconductor–antiferromagnet structure
coincides with the spectrum of surface magnetoelastic
SH waves traveling along an acoustically continuous
nonmagnetic medium–antiferromagnet–nonmagnetic
medium structure. Moreover, such a correspondence
holds both when all interfaces are mechanically free,
µ2 = 0 [see Eqs. (15)–(17)], and when both structures are
acoustically continuous, β/µ2  0 [see Eqs. (19)–(21)].

Up to now, the spatial dispersion has been neglected
in the analysis; in the magnetic medium, this dispersion
is primarily attributed to the inhomogeneous-exchange
interaction (δ* > 0 is the inhomogeneous-exchange

constant). As a result, the term 0.5δ*(∇ l)2 has not been
taken into account when calculating the spectrum of
surface magnetoacoustic SH phonons in the thermody-
namic potential density (1) (it was assumed that |m| ! |l |
in the exchange-collinear antiferromagnet for |H0| = 0).
A simultaneous consideration of the dipolar, magne-
toelastic, and inhomogeneous-exchange interactions
substantially complicates the boundary value problem,
because, in addition to the elastic and electromagnetic
boundary conditions, one has to take into account addi-
tional exchange-induced boundary conditions that
determine the behavior of the magnetic moment on the
surface of the magnetic medium.

The analysis of the influence of the inhomogeneous-
exchange interaction on the formation conditions and
the dispersion characteristics of surface magnetoacous-
tic SH waves is described in the next section as applied
to a ferromagnetic with the Néel temperature TN less
than the Debye temperature TD.

a

u+ u–, φ+ φ–,–= =

c55α1 α1k ⊥ d( )tanh a+[ ] µ xx k ⊥ d( )coth β+[ ]

+ eωme
2 ω2/∆2 0,=

u+ –u–, φ+ φ–,= =

c55α1 α1k ⊥ d( )coth a+[ ] µ xx k ⊥ d( )tanh β+[ ]

+ eωme
2 ω2/∆2 0.=
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6. EFFECTS OF INHOMOGENEOUS-EXCHANGE 
INTERACTION

Neglecting the effects of surface magnetic recon-
struction, in this study, we choose the Rado–Weertman
[27] exchange boundary conditions as additional
boundary conditions; this choice corresponds to the
surface (x = 0) of a magnetic with completely free
spins:

(27)

here,  and  describe small deviations of the ferro-
magnetic m and antiferromagnetic l vectors from their
respective equilibrium orientations.

If, as before, n || x, k ∈  xy, and l || u || z, then the con-
sideration in (1) of the additional term 0.5δ*(∇ l)2,
induced by the inhomogeneous-exchange interaction,
substantially complicates the corresponding character-
istic equation:

(28)

where  ≡ –q2,  ≡ , and c2 = g2 . It follows
from (28) that the spatial dispersion (δ* ≠ 0) gives rise
to additional partial waves (two waves for an easy-axis
ferromagnet) that take part in the formation of a normal
magnetoacoustic SH wave. As a result, for δ* ≠ 0, a
shear magnetoacoustic wave with u || l || z, k ∈  xy, and
n || x propagating in an easy-axis antiferromagnet is a
four-partial wave.

Calculations show that, in the case of (28) with δ* ≠ 0
(without taking dissipation into account), the disper-
sion law of the surface SH mode Ωs(k⊥ ) determined
from (3), (4), and (27) or from (9), (10), and (27),
depending on the type of acoustic contact at the inter-
face between magnetic and nonmagnetic media, will
have both real ΩsR(k⊥ ) and imaginary ΩsI(k⊥ ) parts:

For δ*  0, we have

This fact suggests that, in the case of a magnetic half-
space with δ* ≠ 0, the surface magnetoacoustic SH
wave under consideration transforms into a leaky wave.
It follows from (28) that the physical mechanism of the
leakage of this surface mode is associated with the fact
that the spatial dispersion in the magnetic medium (the
inhomogeneous-exchange interaction) gives rise to
additional partial waves that take part in the formation
of a normal shear magnetoacoustic wave. One of these

∂ l̃
∂x
------ ∂m̃

∂x
-------- 0, x 0,= = =

l̃ x ∞–( ) 0, m̃ x ∞–( ) 0,

m̃ l̃

s1t
2 k ⊥

2 q2–( ) ω2–[ ] ∆ c2 k ⊥
2 q2–( )+[ ] ωme

2– ω2ωme
2–{ }

× ∆ c2 k ⊥
2 q2–( )+[ ] k ⊥

2 q2–[ ] 0,=

kx
2 ky

2 k ⊥
2 M0

2δδ*

Ωs k ⊥( ) ΩsR k ⊥( ) iΩsI k ⊥( ), ImΩsR I, k ⊥( )+ 0.= =

ΩsI k ⊥( ) 0, ΩsR k ⊥( ) Ωs k ⊥( ).
JOURNAL OF EXPERIMENTAL 
additional partial waves in the domain of existence of
an exchange-free (δ*  0) surface magnetoacoustic
SH wave (5), (6) or (5), (11) is a wave of trigonometric
type; therefore, the energy of the surface magneto-
acoustic SH wave traveling along the interface between
magnetic and nonmagnetic media is pumped into the
bulk of the magnetic material.

As the wave number k⊥  increases, the contribution
of the exchange mechanism to the dynamic properties
of the magnetic medium increases, and, in the short-
wavelength limit, the dispersion curves for the spec-
trum of the surface magnetoacoustic SH wave will
always correspond to a forward wave (∂ΩsR(k⊥ )/∂k⊥  > 0).
In particular, in the case of an easy-axis antiferromag-
net with δ* ≠ 0, the expression for ΩsR(k⊥ ) in the elas-
tostatic limit (ω/s1t ! k⊥ ) will be determined, as before,

by (5), (6) upon the substitution    + c2 . As
a result, the dispersion curve of the surface magneto-
acoustic SH wave with δ* ≠ 0 that travels along the
mechanically free interface between an easy-axis anti-
ferromagnet and a superconductor may have a mini-
mum for k⊥  ≠ 0 even when the acoustic delay is
neglected, provided that the London penetration depth
λ of a magnetic field into the superconductor is differ-
ent from zero (i.e., β ≡ tanh(k⊥ λ) ≠ 0 in (4)).

However, this does not exhaust the phenomena asso-
ciated with the effect of the spatial dispersion of the
magnetic medium (inhomogeneous-exchange interac-
tion) on the spectrum and the conditions for the forma-
tion of the surface magnetoacoustic SH wave of the
type considered. The analysis shows that the consider-
ation of the inhomogeneous-exchange interaction
(0.5δ*(∇ l)2) in (1) may also be essential for the trans-
formation of a exceptional volume magnetoacoustic
SH wave into a surface shear wave traveling along the
mechanically free surface of a magnetically ordered
crystal.

As an example, consider a semi-infinite easy-axis
antiferromagnet (1) with the mechanically free surface
(3). Let a normal vector n to the surface be collinear to
the easy axis z of the antiferromagnet and the sagittal
plane coincide with the plane xz (k ∈  xz). Calculations
show that, in such a configuration, when the spatial dis-
persion of the magnetic medium is neglected (δ*  0),
the formation of a surface magnetoacoustic SH wave
(u || y) due to the hybridization of the dipolar and mag-
netoelastic interactions is impossible. We will assume
that, together with the additional (exchange) boundary
conditions (27), the elastic boundary conditions (3) and
the electromagnetic boundary conditions (4)2 with
β = ∞ are satisfied simultaneously on the mechani-
cally free surface z = 0. Possible physical mechanisms
for the realization of such an electromagnetic condition

2 In this case, one has to make the changes x  z and uz  uy
in (3), (4), and (27).

ω0
2 ω0

2 k ⊥
2
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are described, for example, in [20]. If k ∈  xz, l || z, and
u || y then the corresponding dispersion equation is
given by

(29)

The simultaneous analysis of (29) and (13) shows that,
when n || z, the inhomogeneous-exchange interaction is
neglected (δ*  0), and β = ∞, a homogeneous bulk
magnetoacoustic SH wave (u || y) can propagate at a
grazing angle to the surface of the magnetic crystal in
this configuration; hence, the localization of a shear
dipolar wave on the mechanically free surface of the
antiferromagnet is impossible. If we take into account
the spatial dispersion in the magnetic medium (δ* ≠ 0
in (29) and the additional boundary condition (27)),
then the calculations show that the inhomogeneous
exchange makes impossible the propagation of a bulk
homogeneous two-partial magnetoacoustic SH wave
(u || y, l || z, k ∈  xz) along the surface with n || z and
β = ∞. This is a necessary condition for the formation
of a three-partial surface shear magnetoacoustic wave
in the magnetic medium (z < 0). As a result, the spatial
structure, for example, of the vector of elastic displace-
ments u || y in this wave can be represented as

(30)

where q1–3 (  ≡ ) are only those of the six roots of
Eq. (29) that satisfy the localization condition for the
SH wave under consideration near the surface of the
antiferromagnet:

This makes it possible to study, on the basis of (29) and
(30), the effect of the inhomogeneous-exchange inter-
action on the degree of localization of the magneto-
acoustic SH wave traveling along the surface of the
antiferromagnetic crystal (z = 0) under the assumption
that the frequency ω and the wave number k⊥  are pre-
scribed external parameters. It follows from (29) that,

in the elastostatic limit (ω/s1t ! k⊥ ), up to e2 ! 1,  ≈

(1 + e) , while  are the roots of the equation

(31)

where

s1t
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k ⊥
2 ky

2
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l̃ y z ∞–( ) 0, m̃x z ∞–( ) 0.
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2 q2 3,
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q4 P1q2– P2+ 0,=
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1

c2
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2 2c2k ⊥
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The simultaneous analysis of Eqs. (30), (31) shows
that, depending on the frequency ω and the wave vector
k⊥ , two types of traveling three-partial surface magne-
toacoustic SH waves can be formed that differ by the
character of their spatial localization near the surface of
the antiferromagnetic crystal:

I. A surface magnetoacoustic SH wave (  > 0)

(32)

II. A generalized surface magnetoacoustic SH wave

(  > 0 and  = ( )*, where the asterisk denotes
complex conjugation)

(33)

III. A bulk magnetoacoustic SH wave of type A

(  > 0 and  < 0)

(34)

IV. A bulk magnetoacoustic SH wave of type B

(  > 0 and  < 0)

(35)

Here,  are the positive roots of the equation

 = 4P2, and k1, 2 are determined by the relations

The analysis of expressions (30)–(33) shows that one of
characteristic features of the spectrum of magneto-
acoustic SH waves induced by the inhomogeneous
exchange in this configuration (u || y, k ∈  xz, n || z) is
the presence of “high-frequency” and “low-frequency”
regions of existence of surface shear magnetoacoustic
waves in the plane of parameters ω and k⊥ .

Using relations (30)–(33), we can now proceed to a
more detailed analysis of the possibility of formation,
due to the inhomogeneous-exchange interaction, of a
shear three-partial surface magnetoacoustic wave with
k ∈  xz, u ⊥  l || z, and n || z near the mechanically free
surface of an antiferromagnet (see (3) and (4) with
β = ∞). Calculations show that the spectrum of this
three-partial shear magnetoacoustic wave can be deter-
mined in the explicit form if we restrict the analysis to
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the elastostatic approximation. The corresponding dis-
persion equation is

(36)

Hence, taking into account (30) and (31), we obtain the
following dispersion law for the surface magnetoacous-
tic SH wave induced by the inhomogeneous-exchange
interaction:

(37)

where

The juxtaposition of (36), (37) with inequalities (32),
(33) shows that, if 0 < k⊥  < k** (k** is determined from

the equation  =  with the use of (32)–
(37)), then the surface shear mode under consider-
ation is a three-partial magnetoacoustic SH wave

(  > 0,  = ) whose dispersion curve trans-
forms into that of a three-partial surface magnetoacous-

tic SH wave (  > 0) at k⊥  = k**. It follows from (36)
and (37) that this type of localized magnetoelastic exci-
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Fig. 2. The structure of the surface of wave vectors for a
normal magnetoacoustic SH wave in the easy-axis antifer-

romagnet (38): (I)  < ω2 < (  + )/(1 – e); (II) ((  +

)/(1 – e) < ω2 < ; and
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tations is not realized without taking into account the
inhomogeneous-exchange interaction (δ*  0).

This conclusion can also be confirmed by calculat-
ing the reflection coefficient R of a shear elastic wave
(u || y, k ∈  xz) from the surface of antiferromagnet (26)
with n || z and the boundary conditions (3), (27), and (4)
for β = ∞. In particular, if kz  0, then R  –1 for
δ* ≠ 0 and R  1 for δ* = 0.

The analysis shows that, for an easy-axis antiferro-
magnet (29) with the spatial dispersion of the medium
(the inhomogeneous-exchange interaction) taken into
account, the conditions for the formation of a surface
magnetoacoustic SH wave prove to be related not only
to the amplitude characteristics of the incident and
reflected shear normal magnetoacoustic waves (to the
reflection coefficient) but also to the local geometry of
its isofrequency surface constructed in the elastostatic
approximation.

As an example, consider a two-sublattice model of
easy-axis antiferromagnet (1) under the conditions u || y,
k ∈  xz, and n || z. In this case, if we neglect the acoustic
delay (ω/(s1tk⊥ )  0), the cross section of the iso-
frequency (ω = const) surface, in the k space, of a
normal magnetoacoustic SH wave in an unbounded

crystal ( , , uy ≠ 0) by the sagittal plane xz is deter-

mined from (29) by the equation (  = kx/kz)

(38)

Calculations show that, with allowance for (32)–(35),
the condition under which regions with negative Gaus-
sian curvature appear on the curve (38) can be repre-
sented as

(39)

It follows from (39) that, for (38), a region with nega-
tive Gaussian curvature is realized for θ = π/2 (Fig. 2).
Juxtaposing this result with the existence conditions for
the surface magnetoacoustic SH wave that were
obtained above with regard to the inhomogeneous-
exchange interaction, we can conclude that a region
with negative curvature on curve (38) is a necessary
condition for the transformation of this type of normal
oscillations into an appropriate surface magnetoacous-
tic SH wave. Here, it is required that the direction of the
normal n to the surface of the magnetic medium should
be perpendicular to the direction in which the above
region with the maximum negative curvature is formed.

It should be noted that, for the given geometry (n ||
l || z, u || y, k ∈  xz), the hybridization of dipolar, magne-
toelastic, and inhomogeneous-exchange interactions
may lead to the localization of the magnetoacoustic SH
wave near the surface of antiferromagnet (1) even when
the surface is rigidly fixed. Suppose, as before, that the
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antiferromagnetic medium occupies the lower half-
space (z < 0) and the following system of boundary
conditions holds on the surface:

(40)

Since the dispersion relation for the shear wave is deter-
mined by (29) as before, the surface wave under consid-
eration is three-partial again (30). Calculations show
that, in the short-wavelength limit under the condition
that β ! 1 in (40), the spectrum of the magnetoacoustic
SH wave traveling along the surface of the antiferro-
magnet can be represented as

(41)

Using (32)–(35), one can verify that this type of oscil-
lations corresponds to a surface shear three-partial

(  > 0) wave.

7. CONCLUSIONS
In this work, we determined conditions under which

the magnetoelastic mechanism of linear coupling
between the oscillations of the magnetostatic potential
φ and the lattice may give rise, even in a zero external
magnetic field, to a new type of surface shear magne-
toacoustic waves near both a mechanically free and an
acoustically continuous interface between a uniaxial
antiferromagnet and a nonmagnetic medium. In partic-
ular, we demonstrated that

(1) this type of surface shear waves cannot be
formed for a mechanically free interface between a
uniaxial antiferromagnet and a perfect superconductor
when either only magnetoelastic or only dipolar inter-
action is taken into account;

(2) the conductivity of the nonmagnetic medium
may essentially affect the structure of the spectrum of
the surface magnetoacoustic SH wave obtained;

(3) in an easy-axis antiferromagnet, this type of sur-
face waves is dipolar only on the surface of the mag-
netic crystal but not in the bulk;

(4) in the case of a rigid contact between antiferro-
magnetic and nonmagnetic media, the formation of the
surface SH wave with allowance for the magnetoelastic
interaction is possible even in the absence of the dipolar
interaction;

(5) there exists a close relationship between the con-
ditions for the formation of the surface magnetoacous-
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tic SH waves obtained and the conditions for the prop-
agation of a shear bulk magnetoacoustic wave at a graz-
ing angle along the surface of the magnetic medium;

(6) conditions for the reflection of a normal magne-
toacoustic SH wave from the surface of the antiferro-
magnet essentially depend on the frequency and the
wave number of the incident wave, as well as on the
conductivity and the elastic properties (in the case of a
rigid contact) of the adjoining nonmagnetic medium;

(7) in the short-wavelength (elastostatic) limit, the
spectrum of a gap magnetoacoustic SH wave in the
antiferromagnet–nonmagnetic layer–antiferromagnet
structure coincides with the spectrum of a surface shear
magnetoacoustic traveling along an antiferromagnetic
slab in the structure of the type nonmagnetic medium–
antiferromagnet–nonmagnetic medium;

(8) a consistent consideration of the spatial disper-
sion induced by the inhomogeneous-exchange interac-
tion in the antiferromagnet may give rise to both a leaky
and a surface three-partial magnetoacoustic SH wave
even in the case when the surface of the magnetic mate-
rial is rigidly fixed;

(9) the analysis of the local geometry of the surface
of wave vectors of the normal bulk magnetoacoustic
SH wave in an antiferromagnetic crystal allows one to
determine the necessary conditions under which a sur-
face three-partial magnetoacoustic SH wave can propa-
gate along the interface between magnetic and nonmag-
netic media.

Despite the fact that we considered a model of a
uniaxial antiferromagnet with isotropic magnetoelastic
and elastic interactions, one can easily verify that all the
results obtained are qualitatively the same when the
antiferromagnetic crystal is cubic, tetragonal, or hexag-
onal, provided that the equilibrium antiferromagnetic
vector l is directed along the higher order axis (or along
the edges of a cube in the case of a cubic crystal). More-
over, all the above solutions remain valid when the elas-
tic boundary conditions at the interface between anti-
ferromagnetic and nonmagnetic media (3) correspond
to a grazing-type condition rather than to a mechani-
cally free boundary [28].
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Abstract—The second magnetization harmonic was studied for a moderately doped Nd0.77Ba0.23MnO3 neody-
mium manganite single crystal in parallel constant and harmonic magnetic fields in the critical paramagnetic
region. According to the neutron and X-ray diffraction data, the crystal was crystallographically single-phase
and had a pseudocubic structure both at room temperature and below the Curie point TC = 124.1 K. Although
the specific resistance of this compound had a singularity near TC and exhibited giant magnetoresistance, it
remained an insulator in the ferromagnetic state. Nonlinear response measurements in the TC < T < T* ≈ 146.7 K
paramagnetic region were indicative of the existence of two magnetic phases. Above T*, the crystal was mag-
netically single-phase, and its critical behavior was well described by dynamical similarity theory for isotropic
3D ferromagnets. The unexpected appearance of a new magnetic phase in the structurally homogeneous crystal
was discussed based on phase separation ideas; such a phase separation could occur in moderately doped cubic
manganites experiencing orbital ordering. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The appearance of ferromagnetic ordering in
LMnO3 manganites, where L is a trivalent rare-earth
metal ion, is a consequence of doping them with a diva-
lent alkaline-earth metal (Ca, Sr, or Ba) [1]. Doping
results in the formation of mobile holes and, above a
certain level, causes the transition to the ferromagnetic
metallic state by the double exchange mechanism [2,
3]. Usually, an isotropic insulating ferromagnetic phase
is formed in the transition from the antiferromagnetic
dielectric to the ferromagnetic metallic state as the level
of doping increases; this phase cannot be described by
the double exchange mechanism [1]. The interactions
responsible for the ferromagnetic transition in doped
compounds are fairly complex in character (e.g., see
[4]). In [4], an important example of interactions in
cubic manganites was considered; these interactions
included double exchange for eg electrons in the pres-
ence of orbitally degenerate states, superexchange
caused by electron correlation, and antiferromagnetic
exchange for spins of localized t2g electrons. The spin
and orbital degrees of freedom were interrelated in such
interactions. As a result, a complex phase diagram was
obtained, which included phase separation regions with
the coexistence of phases that differed in magnetic or
(and) orbital order. The authors were able to correlate
1063-7761/02/9403- $22.00 © 20581
the formation of a ferromagnetic insulating phase and
the appearance of an antiferromagnetic-type orbital
order observed in La0.88Sr0.12MnO3 below the Curie
temperature [5].

Among the manganites that have been studied, only
L1 – xBaxMnO3 compounds moderately doped with bar-
ium (0.15 < x < 0.5) have very weak structural distor-
tions for most of the rare-earth metals [6, 7]. This cir-
cumstance allows these compounds to be treated as
manganites with the predominance of electronic inter-
actions and their properties to be compared with those
predicted by the model suggested in [4]. Note that the
La0.88Sr0.12MnO3 compound is characterized by static
cooperative Jahn–Teller deformations, which develop
at TJT ≈ 291 K > TC ≈ 172 K and persist up to the orbital
ordering temperature Too ≈ 145 K [5].

One of the important aspects of the magnetic prop-
erties of manganites is their critical behavior in the
vicinity of the ferromagnetic transition, which has not
been studied in detail. In spite of the complexity of
magnetic interactions resulting in ferromagnetism in
manganites, it can be expected that, by virtue of the uni-
versality of second-order phase transitions, their criti-
cal static behavior depends not on all interaction details
but only on such characteristics as symmetry, the num-
ber of order parameter components, and the dimension
002 MAIK “Nauka/Interperiodica”
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of the system. Apart from these properties, the univer-
sality of dynamic behavior is determined by the laws of
conservation in the system and permutation relations
between the operators of strongly fluctuating values
[8]. This universality arises because the physics of crit-
ical phenomena is determined by interaction of large-
scale fluctuations, whose correlation radii substantially
exceed interatomic distances.

The interactions that result in ferromagnetism in
cubic manganites are isotropic in the spin space. If the
universality hypothesis is valid for these systems, it is
natural to assume that their critical behavior should not
differ from the behavior of a magnet described by the
Heisenberg Hamiltonian. A similar assertion applies to
changes in the critical properties when dipole forces,
which are the most important anisotropic spin interac-
tions in isotropic magnets, are taken into account. Usu-
ally negligibly weak influence of single-ion cubic
anisotropy, which, according to estimates, can also be
ignored for cubic manganites, was considered in [9].

In this work, we studied critical dynamics of the
Nd0.77Ba0.23MnO3 single crystal in the paramagnetic
region. According to the neutron and X-ray diffraction
data, the crystal was pseudocubic both above and below
the Curie temperature. Although the specific resistance
of this manganite has a singularity near TC, the ferro-
magnetic transition occurred without a change in its
dielectric state, and the crystal exhibited giant magne-
toresistance [10].

In [11], we used the temperature dependence of
nonlinear response at low frequencies (1–100 kHz) to
reliably determine the ferromagnetic ordering tempera-
ture TC = 124.1 K of the single crystal under study.
Above TC, the critical exponents for linear susceptibil-
ity χ and the third magnetization harmonic in zero con-
stant magnetic field and also for the real second magne-
tization harmonic component M2 (f = 15.7 MHz) in the
presence of a weak constant field (see below) were
determined. Their values agreed with the predictions of
similarity theory for isotropic 3D ferromagnets in the
temperature range τ = (T – TC)/TC > 0.12.

In this work, most attention is given to the nonlinear
dynamic response to alternating magnetic field actions.
The temperature and field dependences of the second
magnetization harmonic M2(T, H) and, especially, its
imaginary component allowed us to determine the tem-
perature boundary T* ≈ 146.7 K of the appearance of
the second magnetic phase. In addition, these data were
used to analyze the spin dynamics based on the isotro-
pic ferromagnet model. As a result, we obtained the
temperature dependence of spin relaxation rate Γ for
uniform magnetization and determined spin diffusion
coefficient D in the region T > T*. Below this tempera-
ture, the appearance of the second magnetic phase pre-
vented us from performing a quantitative analysis of the
M2(T, H) data. The relative volume of the new phase,
whose critical behavior was radically different from
JOURNAL OF EXPERIMENTAL
that of a classic isotropic ferromagnet, increased as
temperature approached TC. It was assumed that the for-
mation of the new phase was related to orbital ordering,
because, at 110 K (below TC), no structural changes were
observed in the crystal compared with room temperature.

The paper is organized as follows. Section 2 briefly
considers second magnetization harmonic generation
in an isotropic ferromagnet and contains equations nec-
essary for quantitatively analyzing data. The sample is
characterized and the procedure for measurements is
described in Section 3. Section 4 contains experimental
results, which are discussed in Section 5. Lastly, the most
important results are summarized in the Conclusion.

2. SECOND CUBIC FERROMAGNET 
MAGNETIZATION HARMONIC 

IN THE CRITICAL PARAMAGNETIC 
NEIGHBORHOOD OF TC

It has been shown [11] that the linear and nonlinear
static magnetic properties of the Nd0.77Ba0.23MnO3
crystal in the critical paramagnetic region not too close
to TC are described by the isotropic 3D ferromagnet
model. As we study second harmonic M2 generation in
this region, we will briefly describe this model.

The second magnetization harmonic, which is
induced in a magnet by a harmonic magnetic field
h(t) = hsinωt parallel to the constant field if M2 ∝  h2, is

described by second-order dynamic susceptibility .
In ferromagnets, where the transition to the magneti-
cally ordered state is caused by fairly strong interac-
tions isotropic in the spin space, there exists a tempera-
ture region above TC in which weak anisotropic spin
interactions responsible for uniform magnetization
relaxation can be taken into account by perturbation
theory [9, 12]. The nonlinear response to a uniform har-
monic magnetic field is then described by the relaxation
time approximation, and the corresponding expression

for  has the form [13]

(1)

Here,

 and  are the first- and second-order static lon-
gitudinal susceptibilities, respectively; and Γ|| = Γ||(H,
ω0, τ) is the longitudinal magnetization relaxation rate.
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The first term in (1) is caused by the nonlinear depen-
dence of M on H. The second term takes into account
alternating field influence on relaxation processes. This
is a purely dynamic part of the response, which van-
ishes at ω = 0. In Γ||, the dependences on H and ω0 =
gµH are separated in accordance with static and
dynamic influence of H on the properties of the isotro-

pic magnet [12, 13]. Note also that (ω) is, in accor-
dance with the common properties of susceptibilities,
an odd function of H, which vanishes at H = 0 [14]. In
the frequency region ω < Γ||, the first term in (1) [a con-
sequence of the nonlinearity of the M(H) dependence]

makes the major contribution to Re (ω), whereas
the second term [a consequence of the influence of H(t)
on uniform magnetization relaxation rate] makes the

major contribution to Im (ω).

The most important anisotropic spin interactions in
a cubic ferromagnet are caused by dipole forces, which
are taken into account by perturbation theory in the
temperature region in which 4πχ < 1 (exchange region)

and χ = (H = 0). These forces change the dynamics
of fluctuations and cause uniform magnetization relax-
ation (Hewber damping) at the rate [9, 15]

(2)

Here, ωd = 4π(gµ)2/V0 is the characteristic dipole energy
(V0 is the magnetic unit cell volume), γd ~ γd1 ~ 1 are mul-
tipliers, and Ω(τ) = TCτ5/3 is the characteristic energy of
critical fluctuations (we ignore Fisher index η, which is
small for 3D systems). Complete change in the critical
behavior occurs in the dipole region (4πχ > 1) [9, 16].
Note that dipole crossover at 4πχ ≈ 1 was observed in
manganites in only one work concerned with spin
relaxation of muons in Nd0.5Sr0.5MnO3 [17].

Consider the critical behavior of an isotropic three-
dimensional ferromagnet in a magnetic field. The influ-
ence of H on its static properties is determined by the
characteristic energy of critical fluctuations Ω(τ). The
field is considered weak (strong) if gµH/Ω(τ) ! (@) 1.
We are interested in the case of a weak field, when

(3)

Here, factor Cχ is usually close to S(S + 1)/3, where S is

the magnetic center spin value. The  function can
conveniently be written as

(4)

where the  coefficient is determined from the
expansion of M in powers of H. The dependence of Γ||

χ||
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χ||
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χ||
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Γd

γdωd
2

TCτ
----------- γd1 4πχ( )2Ω τ( ).= =

4πχ||
1( ) τ H,( ) 4πχ τ( )≈ Cχ ωd/TC( )τ 4/3– .=
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χ τ( )
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Ω2 τ( )
---------------------,–=
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on ω and ω0 in a weak field is determined by the decay
of a uniform mode into two hydrodynamic modes
caused by dipole forces [9, 12]. Because of the exist-
ence of spin diffusion, the characteristic scale of Γ||
variations is a value substantially smaller than Ω(τ),
namely, magnetization relaxation rate Γ at ω = ω0 = 0.
Virtually the same processes determine the dependence
of the EPR signal width on H. This circumstance was
used to determine spin diffusion coefficient D(τ) under
weak field conditions for ω0 @ Γ in studying the critical
dynamics of the cubic Heisenberg ferromagnets
CdCr2Se4 and CdCr2S4 [18]. Under the conditions of
interest to us, when ω ! ω0 ! Γ, an important disper-
sion correction to Γ appears. This ∆Γ||(τ, ω0) ∝  D–3/2

correction, for which the diffusion mode is responsible
[12], can be written in the form

(5)

Here, the dipole damping scale Γd = γd /TCτ is sin-
gled out. The numerical factor is described by the equa-
tion

in which the CD multiplier is determined by the spin dif-
fusion coefficient,

(6)

where d is the magnetic lattice constant. Diffusion cor-
rection (5) is the main term determining the Γ||(ω0)
dependence in a weak field. If we know Cχ, determining
this correction allows CD and, through this, the spin dif-
fusion coefficient to be found.

In addition to dipole forces, other interactions can
contribute to damping Γ. Of these, the most important
ones in cubic ferromagnets with spin S > 1/2 are inter-
actions with phonons. The corresponding noncritical
Γnc(τ) contribution varies as χ–1 ∝ τ 4/3 [12]. We eventu-
ally obtain

(7)

For convenience of further use, we factored out here the

 = γd /TC dipole contribution amplitude and intro-
duced dimensionless parameter Λ, which describes the
relative noncritical component value.

Next, consider the ratio between Re (ω) and

Im (ω). We will see that the relations

∆Γ || τ ω0,( ) Γ τ( ) Γ|| τ ω0,( )–=

=  CΓ||
Γdω0

2 Ω τ( )Γ3( )–1/2
.

ωd
2

CΓ||

Cχ

120πCD
3/2

----------------------,≈

D τ( ) CDTCd2τ1/3 D0τ
1/3,= =

Γ τ( ) Γd τ( ) Γnc τ( )+ Γd
* τ 1– Λτ 4/3+( ).= =

Γd
* ωd

2

χ||
2( )

χ||
2( )

∆Γ||/Γ  ! 1, 2ω/Γ|| 2ω/Γ  ! 1≈
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hold in the whole range of τ and H variations that we
consider. Accordingly, we find from (1) and (4) for con-
ditions linear in H that

. (8)

Under the same conditions, (1) and (5) give the imagi-
nary component in the form

(9)

Taking into account (8) and (9), the ratio between
the imaginary and real M2 components can be written as

(10)

Here, CΓ = 2 /  is a factor of the order of one. It
will be shown that, although the ω/Γ ! 1 ratio is small
in (10), the inequality R > 1 can be satisfied in the
exchange region because, in this region, Ω(τ)/Γ(τ) @ 1.
This inequality cannot be met at ω/Γ ! 1 for linear sus-
ceptibility described by a Lorentzian. In our problem,
such a ratio arises as a consequence of the existence of

two contributions of different natures to (ω). The H
dependence of one of them is controlled by Ω(τ) and of
the other, by Ω(τ) and Γ(τ) [see (4) and (5)].

Increasing H requires including terms of a higher

order in ω0/Γ in the equation for Im (ω). According
to [12], the ∂Γ||(τ, ω0)/∂ω0 function present in (1) and
(9) is then proportional to

(11)

where x = ω0/Γ(τ). As a result, Eq. (9) for Im  is
multiplied by the ϕ(x) function.

Lastly, note that M2, which is an even function of h,
is an odd function of H in the paramagnetic region as a
pseudovector, and M2 = 0 at H = 0. For this reason, this
function is sensitive to the appearance of spontaneous
moment Msp in the sample because M2 ∝  Msp at H = 0.
As a result, the M2(H) dependence changes in a jump as
H passes zero. This jump corresponds to a change in the
direction of Msp [19]. Such a hysteresis-free behavior is
possible at a vanishingly small coercive force. Other-
wise, a hysteresis with M2 ≠ 0 at H = 0 would be
observed.
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3. EXPERIMENTAL

The Nd0.77Ba0.23MnO3 single crystal (m ≈ 54.5 mg,
2 × 2 × 3 mm3) was taken from the same portion of
material as the single crystals studied in [10, 11]. The
neutron and X-ray diffraction data showed that the sam-
ple remained pseudocubic at 293 and 110 K. Within the
resolving power and transmission characteristics of
standard four-circle diffractometers (neutron and X-
ray) used in this study, Jahn–Teller crystal lattice distor-
tions were undetectable. Nor were weak (of 10–3–10–2

of the intensity of Bragg reflections) diffuse superstruc-
ture peaks observed in the characteristic [100], [110],
and [111] crystallographic directions. The lattice
parameter a = 3.899 ± 0.002 Å measured at room tem-
perature equaled that reported in [10]. Note that a ferro-
magnetic contribution to Bragg reflections was
observed below TC. At the same time, no reflections
corresponding to some antiferromagnetic phase were
detected either above or below TC.

The single crystal was used to study the temperature
and field behaviors of the second nonlinear response
harmonic in parallel constant and harmonic magnetic
fields,

Alternating field amplitude h equaled 35 Oe at high
temperatures and was decreased to 0.1 Oe as signal
intensity increased at low temperatures to prevent sig-
nal distortions by the receiver, on the one hand, and to
satisfy the M2 ∝  h2 condition, on the other. The latter
condition allows second-order susceptibility to be used
in describing the response; for second-order suscepti-
bility, we have explicit theoretical expression (1). The
experimental data were recalculated to one alternating
field amplitude value. Both signal phase components,
ReM2(H, T) and ImM2(H, T), were recorded simulta-
neously as functions of constant magnetic field H at
various sample temperatures. The appearance of long-
range magnetic order could conveniently be controlled
by detecting field hysteresis of M2. For this purpose,
constant magnetic field scans were symmetrical with
respect to the H = 0 point (±400 Oe). The error of sam-
ple temperature measurements was smaller than 0.2 K.
The experimental unit and the method for isolating
phase components were described in more detail in [13,
20]; unit sensitivity was 10–9 G or higher.

4. EXPERIMENTAL RESULTS

4.1. Linear Susceptibility and Transport Properties

The temperature dependence of the real linear sus-
ceptibility part, Reχ(T) = χ'(T), obtained in [11] is plot-
ted in Fig. 1. The analysis performed in [11] shows that
the behavior of χ'(τ) is close to that predicted for the
isotropic 3D ferromagnet in the τ range 0.07 ≤ τ ≤
1(133 K ≤ T < 250 K). The ReM2(τ) dependence also
satisfies the power law for cubic ferromagnets; devia-

H t( ) H h 2πft, fsin+ 15.7 MHz.= =
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tions from this law began below τ ≈ 0.12 (T ≈ 139 K).
The deviations of the linear and nonlinear susceptibili-
ties from the characteristic power laws starting with τ
specified above are difficult to explain by the known
dipole crossover [9, 11, 16], because the crossover tem-
perature τd ≈ 4.3 × 10–2 (Td ≈ 129.4 K) determined by
the equality 4πχ(τd) = 1 is lower. Indeed, in usual cubic
ferromagnets (CdCr2Se4 and CdCr2S4), the linear sus-
ceptibility ceases to satisfy the χ'(τ) ∝ τ –γ scaling law
(γ ≈ 4/3) at 4πχ ≥ 10, that is, at temperatures much
lower than the dipole crossover temperature [21],
whereas, in the compound under consideration, this
phenomenon is observed even at 4πχ ≈ 0.5.

The temperature dependences of specific resistance
ρ and magnetoresistance of the single crystal under
study obtained in [10] are shown in Fig. 2. The ρ(T)
curve has a singularity near TC, and, although the
metal–dielectric transition is absent, giant magnetore-
sistance is observed. As follows from Fig. 2, the ρ(T)
dependence is satisfactorily described by the conduc-
tivity model with a variable carrier jump length [22] in
the temperature range T ≈ 145–265 K,

The temperature dependence of the T0 =
T{ln[(ρ(T)/ρ0)]}4 parameter obtained from the experi-
mental data on the assumption that this model is appli-
cable is shown in the inset in Fig. 2. According to these
results, the T0 and, accordingly, ρ(T) values become
lower than those predicted by the model below 147 K.
The polaron mechanism describes the ρ(T) dependence
substantially worse above 147 K. Note that the experi-
mental ρ(T) values below 147 K are much lower than
those predicted by the polaron mechanism too.

4.2. The Second Magnetization Harmonic

The temperature and field dependences of the sec-
ond magnetization harmonic phase components, ImM2
and ReM2, were studied in the temperature range 119 K <
T ≤ 204 K. The ImM2 and ReM2 values were recorded
as constant field functions at various crystal tempera-
tures. Typical experimental ReM2(H) and ImM2(H)
curves are shown in Fig. 3 for several temperatures.
Shown in Figs. 3a and 3c–3h are the ReM2(H) and
ImM2(H) dependences obtained in forward and back-
ward constant field scans both above and below TC. The
experimental and theoretical [calculated by (12)]
ImM2(H) dependences at T = 168.8 K are shown in
Fig. 3b.

The ReM2(H) phase component dependence is close
to linear in the scan range (±400 Oe) at T from 204 to
146.7 K (0.64 ≥ τ ≥ 0.18), in agreement with the
Reχ2(T, H) dependence described by (4) in the weak
field region. The condition of field weakness for the
maximum H = 400 Oe value is well satisfied also at the
lowest τ temperature, τ ≈ 0.18 (gµH/Ω(0.18) ≈ 7.5 ×

ρ T( ) ρ0 T0/T( )1/4.exp=
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10–3). According to the estimate made from the gµH ≈
TC  scaling relation, the transition to strong field
conditions at H = 400 Oe occurs much nearer to TC, at
τH ≈ 10–2 (TH ≈ 125 K). The ReM2(H) signal at
T = 168.8 K is shown in Fig. 3a. The response changes
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Fig. 3. Experimental (a, c, e, g) ReM2(H) and (b, d, f, h) ImM2(H) curves at T = 168.8, 146.7, 142.8, and 119.6 K, respectively. Shown
in Fig. 3b are the experimental (symbols) and theoretical (solid curve) ImM2(H) dependences at T = 168.8 K; the theoretical curve is
described in text. The other figures contain curves for forward (solid symbols) and backward (open symbols) magnetic field scans.
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in the temperature range 139 K < T ≤ T* ≈ 146.7 K

(Figs. 3c, 3e), and there appear two intervals with dif-
ferent linear behaviors separated by a sharp crossover
region, which is virtually a point (H ≈ 30 Oe). The
ReM2(τ) dependence in the field range 30 Oe < H <
400 Oe follows the scaling law for an isotropic 3D fer-
romagnet also below T* down to T < 139 K [11]. At the

same time, in weak fields H < 30 Oe, a linear depen-
dence with a larger slope is observed. At T < 139 K, lin-
ear behavior in the 30 Oe < H < 400 Oe interval changes
to nonlinear. As the boundary temperature of strong
field conditions for an isotropic ferromagnet deter-
mined above (TH ≈ 125 K for H = 400 Oe) is obviously
lower than 139 K, this nonlinearity cannot be explained
in terms of the usual critical behavior. The changes in
ReM2(H) below T* described above correlate with the

appearance of a minimum of the second phase compo-
nent ImM2(H) in a weak H ≈ 20 Oe field (Figs. 3d, 3f).

Probable reasons for the observed transformation of
the M2 signal caused by temperature lowering are (1) a
change in the magnetic properties of the whole phase
responsible for the signal, while the sample remains
homogeneous, and (2) the formation of an inhomoge-
neous state caused by the arising of a new magnetic
phase in some part of the sample which gives a signal
with a field dependence uncharacteristic of cubic ferro-
magnets; this signal is summed with the signal from the
remaining initial phase. If signal change at weak fields
H < 30 Oe (Figs. 3c–3f) is caused by the appearance of
a new magnetic phase, it is reasonable to suggest that
the special features of the temperature behavior of sig-
nal intensity and the positions of the signal extrema (if
any) at H < 30 Oe should noticeably differ from the
temperature behavior at H > 30 Oe. Clearly, such spe-
cial features cannot appear in a magnetically uniform
isotropic ferromagnet. Note also that two M2(H, T) sig-
nals with different temperature dependences were
observed for Sm0.6Sr0.4MnO4 [19]; it was shown that
two different magnetic phases were responsible for
these signals.

To elucidate the problem, we measured (1) ReM2(H,
T) and ImM2(H, T) values at two constant field values,
H1 = 22 Oe [close to the minimum of ImM2(H) in a
weak field] and H2 = 198.4 Oe (far from this minimum),
and (2) the magnetic field Hm positions of the extrema
of both phase components at H < 30 Oe and H > 30 Oe.

The ImM2(T, Hi) (i = 1, 2) temperature dependences
are shown in Fig. 4. According to this figure, the curves
have different signal signs and intensities. The ImM2(T,
H1) curve contains a sharp minimum at T ≈ TC.

The temperature dependences of the positions of
extrema, Hm, for both phase components are plotted in
Fig. 5. The figure shows that the position of the
ImM2(H) minimum in weak fields (H ≤ 30 Oe) (this
minimum appears at T ≤ T*) is independent of temper-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ature virtually to T ≈ TC, whereas the positions of the
maxima of both ImM2(H) and ReM2(H) in fields H >
30 Oe are temperature-dependent. Note that the maxi-
mum of ReM2(H) becomes observable in the H scan
range only below 130 K, and its position corresponds to
the minimum at T ≈ TC.

Let us summarize the differences between the tem-
perature behaviors of ImM2(T, H) at H < 30 Oe and H >
30 Oe.

(1) The signs of ImM2(T, H1) and ImM2(T, H2) are
opposite (Figs. 3, 4), and the ImM2(T, H1) value
increases much faster as temperature decreases (Fig. 4).

(2) The position of the minimum of ImM2(T, H) in
weak fields H < 30 Oe (Hm ≈ 20 Oe) is virtually inde-
pendent of temperature from its appearance at T* to TC

(Fig. 5), in contrast to the temperature behaviors of the
maxima of ImM2(T, H) and ReM2(T, H) at H > 30 Oe.

The invariability of the character of the field depen-
dence of ImM2 in weak fields as temperature changes,
which manifests itself especially well by the constant
extremum position Hm, is at variance with the tradi-
tional critical behavior, according to which Hm ∝ τ 5/3.
On the other hand, this invariability can be explained on
the assumption that a new phase, which is in the critical
state, is responsible for the low-field signal below T*. If
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the magnetic correlation length of fluctuations that
develop in such a phase is larger than the typical size of
new phase fragments, the signal intensity can increase
sharply without changes in the shape of the signal (in
particular, without extremum shifts) because of an
increase in the phase volume not accompanied by
changes in its critical properties [23]. Such a behavior
can be observed if the new phase has a certain spatial
distribution (if a large number of its comparatively
small-sized fragments are formed within the initial
phase). This suggestion also allows the nonlinear char-
acter of ReM2(H) variations at H > 30 Oe, which
appears below 139 K (see above), to be explained in a
natural way by relating this peculiarity to a substantial
nonlinear contribution of the newly formed phase.

Note also that the M2(H) signal at H < 30 Oe below
T* is accompanied by the arising of a small field hys-

teresis (Figs. 3d and 3f, T = 146.7 and 142.8 K, respec-
tively), although the ferromagnetic ordering tempera-
ture is much lower (124.1 K).

To summarize, the differences between the temper-
ature dependences of M2(T, Hi) and Hm(T) at H < 30 Oe
and H > 30 Oe lead us to conclude that a second mag-
netic phase with critical properties uncharacteristic of
isotropic ferromagnets is formed in the crystal below
T* ≈ 147 K.

In addition, it will be shown that the behavior of the
ImM2(τ) function, which much more strongly depends
on τ than ReM2(τ), closely corresponds to the critical
behavior of an isotropic ferromagnet only at tempera-
tures of 204 K to T*.

The ReM2(T, H1 = 22 Oe) and ReM2(T, H2 = 198.4 Oe)
dependences are shown in Fig. 6. Both functions have
maxima at T ≈ TC. It follows that, below T*, the temper-

ature dependences of both phase components of the
low-field and initial signals and the positions of their
extrema Hm(T) have singularities at T ≈ TC. This is evi-
dence of the arising of ferromagnetic ordering in both
magnetic phases virtually at the same temperature.
Below, the low-field signal and the corresponding mag-
netic phase will be called anomalous, and the high-field
signal observed above T* and the corresponding phase,

usual.
As mentioned above, the appearance of the anoma-

lous signal in the paramagnetic region is accompanies
by a field hysteresis of ImM2 and a weak (coercive
force Hc ≈ 6 Oe) hysteresis of the ReM2 component
(Figs. 3c, 3d). This phenomenon at temperatures higher
than TC can be caused by the character of fragmentation
of the anomalous phase; namely, the characteristic size
of the arising fragments may be smaller than the mag-
netic correlation radius in this phase. Actually, the mag-
netic state of the anomalous phase remains unchanged
to TC. As the surrounding usual phase is in the critical
state, the creation of magnetization in the sample by an
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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external field can cause the formation of a compara-
tively long-lived metastable ferromagnetic state of the
anomalous phase.

In classic cubic ferromagnets, the field hysteresis of
ReM2(H) with ReM2(0) ≠ 0, which is evidence of the
appearance of a spontaneous moment, develops directly
below TC [13]. The behavior of Nd0.77Ba0.23MnO3 is
more complex. The hysteresis of such a kind that devel-
ops in ReM2(H) at T ≈ T* decreases to zero at T ≈
139.9 K and then again increases (Hc ≈ 1.5 Oe at
130.2 K, the ascending and descending branches then
changing places) and is preserved approximately to
123.7 K. A further increase in hysteresis is only
observed at T ≈ 122.6 K (Hc ≈ 5 Oe), below TC (see
Fig. 3g for a close temperature). As temperature
decreases further, the hysteresis loop gradually opens,
which is evidence of a small coercive force near TC and
its increase as T lowers.

5. DISCUSSION

First, consider the T > T* temperature region, where
only one signal is observed for M2. A quantitative anal-
ysis of the temperature behavior of the corresponding
usual magnetic phase was only performed in this tem-
perature region based on the experimental data on
ImM2(H, T).

Note from the outset that, in [11], the 0.12 ≤ τ ≤ 0.64
region (from 139 K to a maximum T = 204 K tempera-
ture at which the signal was still observed) was estab-

lished within which the ReM2(τ) ∝  Reχ2(τ) ∝  
power dependence with the critical index γ2 = 5.2 ± 0.2
was in satisfactory agreement with scaling result (8) for
isotropic 3D ferromagnets (γ2 ≈ 14.3).

The experimental data on ImM2(T, H2)(see Fig. 4)
were used to analyze spin dynamics. The Γ ≈ 990 Oe
value (g factor ≈ 2.05, ∆g ≈ 0.12) was found from the
EPR spectrum (fEPR = 8.34 GHz) of the sample at T =
204 K (τ ≈ 0.64). This value was used to independently
check the 2ω/Γ ! 1 condition, whose fulfillment is nec-
essary for Eqs. (7)–(10) used to analyze the ImM2(T)
dependence to be applicable. EPR measurements were
performed at the highest temperature of M2 measure-
ments, because field influence on the critical behavior
and on Γ decreased as the distance from the transition
point increased. A comparison of the obtained Γ value
with the frequency used in our experiments (ω ≈ 5.77 Oe
in field units) gives 2ω/Γ ≈ 1.2 × 10–2.

Let us turn to the Im  dependence determined
by (9) with damping Γ(τ) in form (7). Note that the rela-
tion

contains a strongly changing power factor τ, which
worsens the accuracy of determining Λ from the exper-

τ
γ2–

χ||
2( ) τ( )

Imχ||
2( ) τ( ) Γd τ( )Ω 1/2– τ( )χ τ( ) τ 19/6–∝∝
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imental data. We therefore found Λ by forming an array
of τ19/6ImM2(τ) values for which the approximation
was performed.

Next, consider ImM2(H) at a fixed T = 168.8 K tem-
perature. A comparison of ReM2(H) ∝  H (Fig. 3a) and
ImM2(H) (Fig. 3b) shows that these dependences are
different and ImM2(H) is not a linear field function in
the whole range of field variations. As the 2ω/Γ ratio is
small, this leads us to conclude that the contribution of
the first term in (1) to ImM2 is insignificant. The reason
for the difference between the field dependences of M2
components is therefore the dynamic contribution to
ImM2, which arises because of the influence of h(t) on
the rate of uniform magnetization relaxation. This con-
clusion also follows from the experimental R(H, T) =
ImM2(T, H)/ReM2(T, H) dependence shown in the inset
in Fig. 5. According to this plot, R(T, H) is larger than
one in the high-temperature region 156 K ≤ T ≤ 204 K
in spite of the smallness of 2ω/Γ ! 1. As follows from
Eq. (10) for R, the smallness of ω/Γ can be compen-
sated by a large value of the (Ω(τ)/Γ(τ))3/2 multiplier;
we may then have R > 1. To be more definite, we have
R = 1.16 at T = 168.8 K (τ ≈ 0.36) and H = 198.4 Oe.
According to the Γ(τ) dependence (see below),
Γ(0.36) ≈ 600 Oe and 2ω/Γ ≈ 2 × 10–2 at this point.

The nonlinearity of the ImM2(H) dependence
requires that the terms of higher orders in ω0/Γ should
accurately be taken into account. The approximation
was therefore performed using (9) with multiplier ϕ
from (11),

(12)

where  is the normalization constant. The approxi-
mation was performed in the temperature range 0.19 <
τ < 0.64 above T*. The ΓEPR ≈ 990 Oe value found at

T = 204 K (τ ≈ 0.64) was used to express one of two
independent parameters in (7)  through the other,

one free dimensionless parameter Λ was found from the
experimental data. The inset in Fig. 4 shows that such a
one-parameter equation allows the ImM2(τ)τ19/6 depen-
dence to be described fairly well at Λ = 23.4 ± 0.7. If
we know Λ, we can calculate  = 68.5 ± 1.0 Oe. In
the inset, three experimental points (T = 146, 146.4, and
146.7 K) not used in the adjustment are given, and the
theoretical curve is extended to this region. The plot
shows that the experimental ImM2(τ)τ19/6 value again
begins to grow at these points instead of the descent

ImM2 τ H,( )τ19/6 CM2
Γ 5/2– τ( )=

×
ω0

Γ τ( )
----------

1 ω0/Γ τ( )( )2+

1 1 ω0/Γ τ( )( )2++
------------------------------------------------,

CM2

Γd*

Γd*
ΓEPR

0.64( ) 1– Λ 0.64( )4/3+
--------------------------------------------------;=

Γd*
SICS      Vol. 94      No. 3      2002



590 RYZHOV et al.
predicted by the theory. According to the arguments
presented above, the reason for the discrepancy is the
appearance of the new magnetic phase below T*.

The obtained  value can be used to determine the
γd coefficient in (2) for Hewber damping. As ωd =

4π(gµ)2/d3 ≈ 0.53 K at d ≈ 3.9 Å, the  = γd /TC ≈
68.5 Oe value gives γd ≈ 4.

According to (5) and (9),  ∝  Cχ ∝  .

We can therefore find CD from  and Cχ. The Cχ ≈
1.9 value was determined using the data on the critical
static susceptibility of the crystal reported in [10]. This
gave CD ≈ 0.02. The CD value allows the D0 constant in
Eq. (6) for the spin diffusion coefficient to be found. We
have d ≈ 3.9 Å, and (6) yields D0 ≈ 3.3 meV Å2. The
obtained CD and D0 values can be compared with those
characteristic of classic cubic ferromagnets, namely,
CD ≈ 0.045 and D0 ≈ 5.4 meV Å2 in CdCr2S4 (TC ≈ 84 K,
d ≈ 4.07 Å) and CD ≈ 0.07 and D0 ≈ 15 meV Å2 in
CdCr2Se4 (TC ≈ 129 K, d ≈ 4.27 Å) [18]. The CD values
for classic ferromagnets are fairly different. According
to [18], the CDγd product only remains approximately
constant; it equals 6.5 × 10–2 (γd ≈ 1.45) for CdCr2S4

and 5.9 × 10–2 (γd ≈ 0.84) for CdCr2Se4. We also
obtained a similar magnetic moment, CDγd ≈ 8 × 10–2.

Recall that Γ (in zero field) was set equal to the half-
width of the EPR line. This was justified because the
ω0-dependent diffusion correction to Γ|| did not exceed
15% at the selected τ ≈ 0.64 value and given frequency.

As Γd(τ) ∝ τ –1, Γnc ∝ τ 4/3, and, usually, Γnc > Γd for
τ = 1, a characteristic minimum at some τmin is observed
in dependence (7) for Γ(τ). Such a minimum was
observed not only in cubic ferromagnets with localized
spins [18] but also in several doped manganites with
virtually cubic structures studied by the EPR method
[24]. This is direct evidence of the influence of dipole
forces on spin relaxation processes in isotropic manga-
nites; this influence was virtually undetectable in the
present work. In [24], experiments were performed for
compounds with doping levels at which the dielectric–
metal transition temperature was TIM ≈ TC. Measure-
ments at different resonance frequencies showed that
magnetic field strongly changed the temperature depen-
dence of Γ at τ ≤ τmin. An analysis shows that field
effects in these manganites cannot be fully reduced to
the known change in the critical behavior that occurs in
classic ferromagnets and is related to the transition to
strong field conditions [9, 12, 13]. The difference can
be explained by the closeness of TC and TIM, that is, by
the “metallization” of holes.

The Γ(τ) function obtained in this work is also non-
monotonic and has a minimum Γmin ≈ 520 Oe at τmin ≈
0.23. The Γd(τmin)/Γnc(τmin) ratio equals 4/3; that is, the
dipole contribution to Γ exceeds the noncritical contri-

Γd*

Γd* ωd
2

CM2
CΓ||

Cχ
2CD

–3/2

CM2
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bution at τmin. This leads us to conclude that the  and
Λ values were determined fairly reliably, although the
interval of τ values accessible to analysis was fairly
small.

Lastly, the theoretical ImM2(H) dependence at a
fixed temperature T = 168.8 K is shown in Fig. 3b. This
dependence was described by (12) with Γ(τ) = 600 Oe
determined above and did not contain free parameters.
Close agreement between the experimental values and
the theoretical curve is an important test for the reliabil-
ity of the obtained Γ(τ) value and consistency of the
approach that we use.

The results described above show that the magnetic
behavior of the Nd0.77Ba0.23MnO3 single crystal is quan-
titatively similar to that of classic Heisenberg ferro-
magnets in the T > T* ≈ 146.7 K critical exchange
region. As stated in the Introduction, such a similarity
at equal numbers of order parameter components and
equal system dimensions is a consequence of the uni-
versality of second-order transitions.

Let us turn to the experimental results obtained
below T*. According to the neutron and X-ray diffrac-

tion data, the structure of the crystal virtually does not
change in cooling from 293 to 110 K and remains
pseudocubic. The appearance of structural changes can
hardly be expected in this temperature interval. It is
therefore unlikely that the appearance of the new phase
may be related to lattice rearrangement. Thus, the
whole body of data indicates that two coexisting phases
appear below T* irrespective of the structural transfor-
mation. Like the usual phase, the anomalous phase
experiences ferromagnetic ordering at T ≈ TC. One of
the most probable physical reasons for this phenome-
non is different types of orbital states in the phases.

A theoretical analysis of cubic manganites shows
that phases in different orbital or (and) magnetic states
can exist in these compounds at moderate doping levels
[4]. In the case of the paramagnetic and ferromagnetic
states at finite temperatures that we are interested in,
three orbital order types are considered, namely, anti-
ferromagnetic (G), paramagnetic (P), and ferromag-
netic (F). In the ferromagnetic state, phase separation
arises because of competition of ferromagnetic interac-
tions of two types, superexchange caused by electron
correlation and double exchange. These interactions are
responsible for different orbital order types. As the
degree of doping increases, the G type with the pre-
dominance of superexchange changes to the F type
with the predominance of double exchange. Uniform
ferromagnetic states with G- and F-type orbital orders
were present in the low-temperature region at x ≤ 0.06
and 0.4 < x < 0.5, respectively. In addition, in the 0.2 <
x ≤ 0.3 region of doping at T = 0, two orbitally ordered
phases that had lower orbital symmetries than those
characteristic of the G- and F-type orbital orders were
observed in the ferromagnetic state. These phases were
not taken into account in analyzing phase separation at

Γd*
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finite temperatures, it appears, because of the very high
complexity of the ensuing phase diagram.

The P-type–G-type orbital ordering transition was
directly observed by resonance X-ray scattering in
lightly doped La0.88Sr0.12MnO3 at Too ≈ 145 K [5]. The
ferromagnetic phase above Too was in the metallic state,
dρ/dT < 0, whereas the phase below Too was dielectric.
A more complex picture was observed for
La0.75Ca0.25MnO3 studied by the NMR method [25]. A
mixture of metallic and dielectric phases existed in the
temperature intervals 160 K < T < TC ≈ 250 K and
3.2 K < T < 20 K, whereas only the metallic phase sig-
nal was present at intermediate temperatures. The result
obtained in the low-temperature region was interpreted
as evidence of the occurrence of a mixture of orbital G
and P states caused by electron correlations. It was
assumed that the same mixture of orbital states was
responsible for the two-phase state of the system in the
other temperature region. Orbital ordering was related
to strong interactions with Jahn–Teller phonons.

It is clear from the aforesaid that there are reasons to
relate the appearance of the anomalous phase in the
manganite under study to its orbital ordering. Orbital
ordering can strengthen ferromagnetic interactions in
this phase. As a result, the magnetic correlation radius
can prove to be larger than the characteristic size of
orbitally ordered regions that appear in the orbitally
paramagnetic usual phase, as follows from the experi-
mental data. It can be suggested that the type of orbital
ordering in the anomalous phase is intermediate
between G and F. The point is that the experimentally
observed G type corresponded to a phase with a larger
specific resistance than that characteristic of the P type,
and the P type corresponded to a phase with metallic
conductivity. The crystal studied in this work remained
in the dielectric state below TC, and the ρ(T) depen-
dence only contained a plateau in a narrow temperature
interval below TC. If this specific resistance singularity
is related to the appearance of the anomalous phase, the
conductivity of this phase should be higher than that of
the P-type orbital phase. Bearing in mind that there is a
tendency to metallization accompanied by the G-type–
F-type orbital order transition as the degree of doping
increases, we can expect the existence of an intermedi-
ate type of orbital ordering in our crystal, for instance,
one of the two types observed at T = 0 K [4]. If this sug-
gestion is correct, the fraction of the anomalous phase
should increase at higher doping levels.

Nevertheless, we cannot rule out the variant with G-
type orbital ordering in the anomalous phase; that is, we
do not exclude the possibility of the formation of the
orbital phase characteristic of light doping. The
observed ρ(T) singularity is then caused by the behav-
ior of the main phase, and the volume of the anomalous
phase with a higher specific resistance should decrease
as the level of doping increases.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
6. CONCLUSION

The study of the longitudinal nonlinear response of
the Nd0.77Ba0.23MnO3 single crystal with a pseudocubic
structure both in the paramagnetic region and below the
Curie temperature revealed the existence of two tem-
perature intervals separated by the boundary tempera-
ture T* ≈ 146.7 K (TC = 124.1 K). Above this tempera-
ture, the system is structurally and magnetically single-
phase. Its behavior in the critical exchange region
above T* closely agrees with dynamic similarity theory

for isotropic ferromagnets and gives critical parameters
close to the theoretical values, which is a consequence
of the universality of second-order phase transitions.
Below T*, the system is structurally single-phase and

magnetically heterophase. A possible reason for this
may be orbital ordering, which causes the appearance
of the anomalous phase with magnetic correlation
properties and conductivity different from those of the
usual phase. As mentioned above, a study of samples
with a high doping level may provide insight into the
nature of the fairly unusual heterophase magnetic state
in this system, which remains dielectric at T < TC.
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Abstract—A new approach to calculating the parameters of resonant states is proposed, which also makes it
possible to determine the probabilities of the resonant scattering and capture probabilities at the resonant state.
This approach is based on the application of the method of configuration interaction, which was proposed for
the first time by Fano for an analysis of field ionization of the helium atom. Following Fano, use is made of two
different Hamiltonians of the initial approximation for the states of continuum and the initial local state. Fol-
lowing Dirac, the wave functions are constructed in the same way as in the general theory of scattering. A
detailed analysis and specific calculations are made for resonant acceptor states in uniaxially strained germa-
nium under a pressure directed along the [001] and [111] axes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quasi-stationary (resonant) states have been much
studied in atomic physics. Semiconductors proved to be
another system in which quasi-stationary states play a
significant role in physical processes. Resonant states
are formed, for example, as a result of doping of gapless
semiconductors with a shallow acceptor impurity [1, 2]
or in the spectrum of 2D holes for energies exceeding
the potential well depth [3]. The resonant states induced
by a shallow acceptor impurity in uniaxially stressed
germanium are of special interest in connection with
the possibility of generation of radiation in the THz
region [4–6].

In semiconductors with the zinc blende structure
(gallium arsenide, germanium, and silicon), the top of
the valence band is fourfold degenerate; accordingly,
the acceptor ground state is also degenerate (see, for
example, [7]). Under strain, the top of the valence band
splits into two doubly degenerate subbands, and the
fourfold degeneracy of acceptor levels is removed. In
the limit of high pressures, a series of energy levels falls
into the continuous spectrum and forms the resonant
states. In this situation, effective optical transitions
between resonant and local states of the same impurity
become possible. In electric fields above the impurity
breakdown threshold, virtually all holes are in the
valence band. Under these conditions, the population of
resonant states may lead to the creation of intracenter
population inversion forming the basis for the genera-
tion of radiation in the THz region [8, 9].

For this reason, it is important to find the hole distri-
bution function in strained p-Ge in external electric
fields taking into account resonant scattering and to cal-
culate the population of resonant states. To this end, it
1063-7761/02/9403- $22.00 © 20593
is necessary to develop a method permitting one not
only to find the position and width of the resonance, but
also to calculate the probabilities of capture and ejec-
tion to the resonance level. Such a method will be pro-
posed in this paper and applied to resonant acceptor
states in uniaxially strained p-Ge.

Resonant acceptor states in strained semiconductors
were studied in the model of zero-radius potential [10]
or using the Dirac approach in the case of the Coulomb
potential [11]. The numerical method of analysis of res-
onant states on the basis of the continuous spectrum
discretization was used in [12]. The application of the
Dirac approach requires construction of the Hamilto-
nian in the initial approximation in which the initial
local states can be obtained on the background of the
continuous spectrum [13], which is normally difficult
to do directly. In [11], the diagonal component of the
Luttinger Hamiltonian was used as the initial Hamilto-
nian, while its nondiagonal component was treated as a
perturbation leading to the decay of local states. Such
an approach, however, is suitable for local states related
to the split-off band, but in the case of continuous spec-
trum, it is valid only for small quasimomenta.

In this work, we propose a new approach for calcu-
lating the parameters of resonant states as well as the
probabilities of resonant scattering and capture into the
resonant state. This approach is based on the applica-
tion of the method of configuration interaction, which
was proposed for the first time by Fano for analyzing
the field ionization of the helium atom [14]. Following
Fano, we will use two different Hamiltonians of the ini-
tial approximation for the states of the continuum and
for the initial local state. On the other hand, wave func-
tions will be constructed, following Dirac, in the same
002 MAIK “Nauka/Interperiodica”
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way as in the general theory of scattering. A detailed
analysis and specific calculations are made for resonant
acceptor states in uniaxially stressed germanium under
a pressure applied along the [001] and [111] axes.

In Section 2, a general approach is described adopt-
ing the spherical approximation for the Luttinger
Hamiltonian and then, generalized to the case of the
cylindrical approximation for a strain directed along the
[001] axis. The results of calculations of the probabili-
ties of elastic scattering and capture into the resonant
acceptor state in p-Ge strained along the [001] axis are
presented in Section 3. In Section 4, a generalization is
made to the case of straining along the [111] axis.

2. CONFIGURATION INTERACTION 
APPROXIMATION FOR RESONANT ACCEPTOR 

STATES

The Luttinger Hamiltonian for a cubic-symmetry
semiconductor has the form

(1)

where the matrix elements are given by

(2)

Here, the operators  = –i∇ , and the kinetic energy of
holes is assumed to be positive. Hamiltonian (1) is writ-
ten in the basis of Bloch functions

(3)

In the presence of strain, the Hamiltonian acquires a
correction Hε which depends on the strain tensor com-

ĤL k( )
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ponents εij in the same way as HL depends on the prod-
uct kikj:

(4)

where

(5)

and a, b, and d are the strain potentials. In the presence
of a Coulomb acceptor center, the complete Hamilto-
nian has the form

(6)

where

(7)

e is the electron charge, and κ is the dielectric constant.
We will describe the application of the configuration

interaction method to the problem of scattering and
capture into the resonant acceptor state in a strained
semiconductor using the spherical approximation for
the Luttinger Hamiltonian. In this approximation, γ2
and γ3 are replaced by γ = (2γ2 + 3γ3)/5, and the matrix

elements of the Hamiltonian  acquire the form

(8)

We assume that pressure is applied along the [001] axis.
In this case, the strain tensor has the form

(9)

where Sij are the components of the elastic moduli ten-
sor and P is the pressure. In this case, only the diagonal

components of the Hamiltonian  differ from zero.
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â+ – γ1 2γ–( )k̂z
2 γ1 γ+( ) k̂x

2
k̂y

2
+( ),–=
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Ĥε
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Disregarding terms of the form aTr  describing the
shift of the top of the valence band, we can conve-

niently write Hamiltonian  in the form

(10)

where parameter ζ is associated with the strain tensor
components and with the strain potential b through the
relations

(11)

A uniaxial strain along the [001] axis leads to the split-
ting of the fourfold degenerate top of the valence band
into two doubly degenerate levels separated by the
energy interval

(12)

where α = 2b(S11 – S12) (α = 6 meV/kbar for germa-
nium stressed along the [001] axis).

The energy spectrum in this case consists of two
subbands, whose states will be characterized by the val-
ues of the components of the total momentum M at
point Γ, and is defined by the formulas

(13)

where the plus sign corresponds to the upper subband
(M = ±3/2) and the minus sign, to the lower subband
(M = ±1/2); see Fig. 1.

The fourfold degenerate acceptor ground state also
splits similarly. Under high pressure, the doubly degen-
erate state corresponding to the upper subband (M =
±3/2) lies in the continuous spectrum of the lower sub-
band; as a result, their wave functions are hybridized
and a resonant state is formed.

In order to find the initial approximation for the
local state ϕ±3/2, we will use the diagonal component of
the complete Hamiltonian (6). Such an approximation
is fully justified for small k (k2 ! ζ), i.e., in the limit
when Edef is larger than the binding energy EA.

The corresponding wave functions of the initial dou-
bly degenerate local state can be determined using the

ε̂

Ĥε

Ĥε
"
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0 ζ– 0 0

0 0 ζ– 0

0 0 0 ζ
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"
2ζ
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2ζ
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εk
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2 k2–( )– 4γ2k4+±[ ] ,=
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variational method and can be presented in basis (3) in
the form [15]

(14)

where

(15)

and the variational parameters a and b are connected
with the binding energy EA counted from the bottom of
the upper subband (see [15]).

In the case of germanium, the solution of the corre-
sponding variational problem gives a = 114 Å, b = 61.8 Å,
and EA = 4.68 meV.

As the initial approximation for the wave functions
of the continuous spectrum, we choose the eigenfunc-
tions of the Luttinger Hamiltonian for free holes with
an allowance for the pressure:

(16)

(17)

(18)

ϕ3/2 r( )
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0
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0
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2 k2–( )– 4γ2k4+–[ ] ,=

0
k

E0
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Fig. 1. Valence band of uniaxially stressed Ge in the direc-
tion of strain. Acceptor levels are indicated.
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(19)

Following Dirac [13], we will seek the solution of
the Schrödinger equation with the complete Hamilto-
nian

(20)

in the form

(21)

as it is usually done in the general theory of scattering.
Here, we neglect the effect of the potential of one impu-
rity on the states of the continuous spectrum: Ek = εk.

The wave function  describes the scattering of a
particle located at a large distance from the center in the

state , which is accompanied by transitions to the

states  and by capture into the states ϕ±3/2(r). The

scattering of a particle from the initial state  is
considered similarly.

Substituting relation (21) into Eq. (20), multiplying

it by (ϕ±3/2(r))* or ( )*, and integrating with
respect to dr, we obtain a system of equations for the

capture coefficient  and the scattering ampli-

tudes . The solution of this system leads to the
following expressions:

(22)

(23)
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The expressions for coefficients  and the matrix

elements Wk and  are given in Appendix A. The
expressions for Γ and ∆E are presented in Appendix B.
The resonant nature of capture and scattering is deter-
mined by the presence of the denominator εk – (Ei +
∆E) + iΓ/2 in the expressions (22) for the capture coef-
ficients. Expressions (23) for scattering amplitudes
were derived taking into account the Coulomb potential
scattering in the Born approximation. This scattering
corresponds to the first terms in formulas (23). The
remaining terms in these formulas describe the reso-
nant scattering which is a result of capture followed by
ejection.

It can be seen that as a result of configuration inter-
action, the energy level of the initial local state is dis-
placed by ∆E and acquires the width Γ/2, which corre-
sponds to a finite lifetime of a particle in this quasi-
local state. The values of ∆E and Γ/2 are functions of
energy εk (see Appendix B). Consequently, it is natural
to determine the position of resonance E0 as the energy
for which the real part of the resonance denominator is
equal to zero:

(24)

In this case, the resonance half-width is defined as the
value of Γ/2 calculated by formula (59) from Appen-
dix B for the resonant energy E0.

It should be noted that the spherical approximation
for the Luttinger Hamiltonian is quite rough and does
not permit an analysis of the effect of anisotropy in the
spectrum of the light hole subband on the parameters of
the resonant state. The anisotropy effects can be taken
into account by using the cylindrical approximation for
the Luttinger Hamiltonian. A transition to this approxi-
mation is carried out by the replacement of γ2 and γ3 in
the nondiagonal elements of Hamiltonian (1) by their
mean value γc = 0.5(γ2 + γ3). In this case, the dispersion
relation in the light hole subband becomes

(25)

where  =  + . The results of calculations of the
position of the resonance and its half-width for p-Ge
stressed along the [001] axis are presented in Figs. 2
and 3.

Figure 3 also shows the results of calculations of the
resonance level half-width Γ/2 in the spherical approx-
imation of the Luttinger Hamiltonian.

Ak
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The inset to Fig. 3 shows that, for low resonant ener-
gies (E0 ! Edef), the Γ(E0) dependence has the form

 in accordance with the general theory [11].

3. PROBABILITIES OF CAPTURE 
INTO THE RESONANT STATE AND RESONANT 

ELASTIC SCATTERING

The representation of the wave function in the form
(21) makes it possible to derive expressions for the

probability  of resonant elastic scattering and the

probability of capture into the resonant state ,

which are related to the capture coefficients 

and the scattering amplitudes  through the fol-
lowing relations [11]:

(26)

(27)

It should be noted that resonant scattering is elastic
by nature when no phasebreaking takes place during
the lifetime "/Γ in the resonant state; i.e., the capture is
followed by a coherent ejection. In the opposite case,
resonant scattering becomes inelastic and δ(εk – εk')
in Eq. (27) should be replaced by the Lorentzian factor
[8, 11].

Considering the scattering of a particle in the 

state, we can easily prove that  =  and  =

. Accordingly, the hole distribution functions

, which must be determined from the solution of
the kinetic equation taking into account elastic resonant
scattering, are also equal.

The population fr of the resonant state is defined by
the formula [11]

(28)

It is convenient to present the capture probability
(26) in a form similar to the simple isotropic Breit–
Wigner model [16, 17] by isolating the resonance factor
and the dimensionless factor w(θ, εk) specifying the
angular dependence. In view of the resonant nature of
the capture process, this factor can easily be evaluated
for the hole energy εk = E0:

(29)
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(30)

The results of numerical calculations of w(θ, E0) as
a function of the angle θ between the wave vector and
the direction of pressure (z axis) for germanium
stressed along the [001] axis are presented in Fig. 4. It
can easily be proved that w(θ, E0) = w(π – θ, E0); for

w θ E0,( )
4 E0

πΓ
------------- Ak

1/2 3/2, 2
Ak

1/2 3/2, 2
+ 
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× 1
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Fig. 2. Energy diagram of the dependence of the splitting of
light and heavy hole subbands and also of the position of the
resonance level on the applied pressure. Solid curves corre-
sponds to the [001] direction of strain, and dashed curves,
to the [111] direction.
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this reason, the curves are plotted in the interval 0 < θ <
π/2.

The expression for the elastic scattering probability
derived on the basis of formulas (22), (23), and (27)
splits into two terms corresponding to the potential
Coulomb scattering (Born approximation) and to the
resonant scattering. It is convenient to present the reso-
nant component of the elastic scattering probability

 by introducing the resonant scattering cross sec-

tion :

(31)

Using relations (22) and (23) and separating the res-

onant factor, we can write  in the form

(32)

where a and b define the size of the localized state (15),
and the dimensionless factor η(θ', E0), which is a func-
tion of the angle of scattering relative to the stress axis
(z axis), is defined as

(33)
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Fig. 4. Angular dependence of the coefficient w(θ, E0) in the
capture probability (see relation (29)). Angle θ =

, E0 = 10, 15, and 20 meV. The pressure is

applied along the [001] axis (cylindrical approximation).
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The theoretical dependence of the factor η(θ, E0) for
germanium strained along the [001] axis is shown in
Fig. 5.

It can be seen that particles moving along the z axis
have zero probabilities of capture and scattering. This
result can be obtained from an analysis of expressions
for Wkr without resorting to calculations. This is due to
the fact that the capture takes place if the states of the
light hole subband contain an admixture of states of the
heavy hole subband, i.e., if the wave function (17) con-
tains nonzero components for the Bloch functions u±3/2.
In the case when the wave vector of a particle is
directed along the z axis, the states in both subbands are
“pure,” i.e., contain contributions of their own sub-
bands only. In this case, the transverse wave vector
component and the nondiagonal elements of the Lut-
tinger Hamiltonian (1) vanish and functions (17)

acquire the form  = eikr/ . Thus, a particle

in the state  does not interact with the local sates
(14), and no capture into this state takes place. The cap-
ture probability increases with the component of the
wave vector of the particle, which is perpendicular to
pressure. If particles move in an electric field directed
along the strain axis in the complete absence of scatter-
ing (streaming mode), the distribution function for the
particles is extended in the direction of the field and the
probability of the particles being captured into the res-
onant state is extremely low. This leads to a decrease in
the population of the center. Conversely, in the diffu-
sion mode which is characterized by a broad angular
distribution of particles, the capture probability
increases for most particles, thus increasing the popula-
tion of the center. The population of the resonance state
of an impurity center in the diffusion mode was consid-
ered in [9].
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Fig. 5. Angular dependence of the coefficient η(θ', E0) in
the ejection probability (see relation (32)). Angle θ' =

, E0 = 10, 15, 20, and 30 meV. The pressure

is applied along the [001] axis (cylindrical approximation).
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According to the results of calculations (see Figs. 4
and 5), the capture probability has the highest value for
particles with a wave vector directed at an angle on the
order of 10° to the direction of straining, while elastic
scattering mainly takes place at an angle of approxi-
mately 20°.

4. STRAINING ALONG THE [111] AXIS

Let us now consider a generalization of the method
of configuration interaction for resonant acceptor states
emerging under strain along the [111] axis. In this case,
the strain tensor has the form

(34)

Eliminating the terms describing the shift of the top of
the valence band in analogy with the case of straining

along the [001] axis, we can present Hamiltonian  in
the following convenient form:

(35)

where

(36)

The splitting of the top of the valence band is described
by

(37)

where α = 4 meV/kbar. The dispersion relations have
the form

(38)
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for k || [111] and

(39)

for k lying in a plane perpendicular to the [111] axis

(e.g., directed along [11 ] axis). In order to find the ini-
tial approximation Hamiltonian for local acceptor
states under the heavy hole band, we pass to the coordi-
nate basis (x 'y 'z ') with the z' axis directed along [111],

the y' axis directed along [1 0], and the z' axis directed

along [11 ]. The coordinates of vector k in the old and
rotated frames of reference are connected through the

linear transformation k = k', where

(40)

With such a rotation of the system of coordinates, basis
(3) and Hamiltonian (6) are transformed through the

linear transformation . The matrix of this transforma-
tion can be composed from the eigenvectors of Hamil-
tonian (6), in which vector k is replaced by a unit vector
directed along the new quantization axis z' || [111]:

(41)

It should be noted that the coordinate axes of the rotated
frame of reference coincide with the principal axes of
the strain tensor under a pressure directed along the

[111] axis. Transformation  converts  in relation
(35) to a diagonal form similar to (10), while the Cou-
lomb interaction Hamiltonian remains unchanged. In
order to find the wave functions of local states under the
heavy hole band, we will use as the initial approxima-
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tion Hamiltonian the diagonal component of Hamilto-

nian (6) transformed with the help of matrix :

(42)

where

(43)

with the matrix elements

(44)

The eigenfunctions of this Hamiltonian in the trans-
formed basis ,  look similar to functions (14)
in basis (3). It should be borne in mind, however, that
the variables z and ρ in the expression for the envelope
of the wave function (15) are connected with the rotated
coordinate basis with the z axis directed along [111].
The variational parameters are now a = 110 Å and b =
49.9 Å, while the energy of state EA = 5.05 meV. It is
convenient to carry out subsequent calculations in basis
(3). We transform both sides of Eq. (42) to this basis
using the inverse transformation

(45)

where  –  and
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ã– –γ1 k̂x
2

k̂y
2

k̂z
2

+ +( )=

– 2γ3 k̂xk̂y k̂xk̂z k̂yk̂z+ +( ) ζ .+

ˆ

ˆ

u 3/2±' u 1/2±'
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ϕ(r) is defined by relation (15), and

(47)

where

(48)

We add to and subtract from Hamiltonian (6) the

term ; then, the complete Hamiltonian  can
be presented in the form

(49)

where

 (50)

is the Hamiltonian of perturbation for local states under
the bottom of the heavy hole subband.

As in the case of straining along the [001] direction,
we choose as the initial approximation for the wave
functions of the light hole subband the solutions of the
Schrödinger equation with a free Luttinger Hamilto-

nian taking the strain into consideration:  + .

A procedure completely analogous to the case of
straining along the [001] direction again leads to
expressions (59) and (60) for the displacement of the
position of the local state and its broadening. However,
the components of vector k in expressions (53) used for
calculating the matrix elements Wk and Vk are associ-
ated with the frame of reference in which the z axis is
directed along the [111] axis. Accordingly, the wave vec-
tor components in expressions (44) for a+(k) and a–(k) as
well as in the dispersion relation εk for the light hole
band must be transformed to the same coordinate basis
with the help of the linear transformation T (40). As a
result, the expressions for a+(k), a–(k), and εk used for
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0
3

3
-------iĝ
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evaluating the integrals in expressions (59) and (60)
now take the form

(51)

The expression for εk corresponds to the cylindrical
approximation for the spectrum in the light hole sub-
band relative to direction [111]. Figures 2 and 3 show
the results of calculations of the position of the reso-
nance and its half-width under a pressure applied along
the [111] direction. It can be seen that the form of the
Γ(E0) dependence in this case remains almost the same
as for strain along [001].

5. CONCLUSION

A method of configuration interaction is proposed for
studying the parameters of the resonant states emerging in
a doped p-type semiconductor under uniaxial stress. Con-
crete calculations of the position of the lowest resonance
level, the lifetime in this resonant state, and the probabili-
ties of elastic scattering and capture into this state were
carried out for p-Ge subjected to uniaxial stress along the
[001] and [111] directions.

It is shown that elastic scattering at resonant states
induced by shallow acceptors in uniaxially strained
p-Ge is strongly anisotropic. The same property is also
characteristic of the coefficients of capture into reso-
nant states. This anisotropy considerably influences the
dependence of the occupancy of the resonant state on
the electric field and temperature and affects the condi-
tions for the emergence of population inversion of res-
onant states relative to local states (see [9]).

The obtained results make it possible to develop a
computer model of a THz laser operating on resonant
states in uniaxially strained p-Ge.

It should be noted that the method developed by us
here can be used for analyzing the kinetics in the pres-
ence of other types of resonant states also, which
emerge in semiconductors and semiconducting nano-
structures. Among other things, this method makes it
possible to study the features of the kinetics of hot 2D
carriers due to capture and ejection at the resonant
states induced by impurities in the barriers of nano-
structures [18].
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APPENDIX A

Expressions for Matrix Elements

(52a)

(52b)

(53)

(54)

(55)

(56)

(57)

(58)

J0 being a zeroth-order Bessel function.

APPENDIX B

Expressions for Γ and ∆E
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Abstract—A set of kinetic equations for the distribution functions of carriers differing both by the energy spec-
trum and by the spin projection is used to investigate the conductivity of a multilayer sample (alternating layers
of magnetic (m) and nonmagnetic (n) metals). The boundary conditions on the interlayer surfaces are derived
in an approximation in which the surface scattering is divided into “specular” and “diffuse” scattering and is
characterized by scattering parameters (reflection and transmission) which are related to each other by relations
dependent on spin projections and on the type of spectrum. The problem on the longitudinal (with respect to
the layers) current is treated; situations are analyzed in which the variation in conductivity due to the change of
mutual orientation of magnetization in successive m layers from antiparallel to parallel may be of the order of
the values of the conductivity proper (the so-called giant magnetoresistance effect). This is possible only in the
case of thin (compared with the free path) n layers (in m layers, the ratios of the characteristic dimensions may
be arbitrary) and in the mandatory presence of specular surface scattering. Results are given for different pos-
sible ratios of Fermi momenta of electron groups and for different fractions of specular and diffuse scattering.
The possibility of realizing the effects of both signs is demonstrated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of electron transport in laminated con-
ductors has been attracting particular interest in the last
decade in view of studies into the so-called giant nega-
tive magnetoresistance (GNMR) effect. This effect
involves a marked decrease in the electric resistance
under the effect of relatively weak magnetic fields (the
characteristic magnitude of relative variation of resis-
tance may be as high as tens of percent in fields of up to
several kilooersteds). The GNMR effect is realized in
systems of alternating layers of ferromagnetic (m lay-
ers) and nonmagnetic (n layers) metals; the drop of
resistance occurs during the change of orientation of
magnetizations in successive m layers from the initial
antiparallel (AP) to parallel (P) orientation, this change
being due to the effect of an external magnetic field
(which is weaker than the field exhibiting galvanomag-
netic effects in uniform samples of the metals of which
the multilayer systems are made up). The first experi-
ments into the GNMR were reported in [1, 2]; tens of
publications a year have been made since then; reviews
of relevant studies are found in [3–6]. To date, numer-
ous experimental investigations have been performed
using different multilayer samples. Numerous theoreti-
cal publications are devoted to revealing the mecha-
nisms of the GNMR effect.

In a number of theoretical papers, this phenomenon
was analyzed (according to the terminology of their
authors) “from the first principles” [7–12]. These stud-
ies involved the simulation of the electronic structure of
a multilayer sample for concrete cases of packing of
1063-7761/02/9403- $22.00 © 20603
monatomic planes into layers with different structures
of the transition regions between n and m layers, for
defects of different types and their arrangement in the
bulk and on the surfaces, and so on. In this manner, a
number of features of electron states were revealed for
concrete structures made up of thin (several atomic
planes) layers, in particular, the emergence of specific
electron modes localized at the interfaces, sensitive to
the type of magnetic ordering, and capable of manifest-
ing themselves in electron transport and causing a drop
of resistance upon transition from the AP to P order,
i.e., as in the case of the GNMR effect. However, inves-
tigations of this kind (based on selecting models, fol-
lowed by verification using numerical methods) can
hardly reveal the general physical pattern of the GNMR
effect. For example, the situation involving thicker lay-
ers (tens of or more interatomic spacings) and very fre-
quently observed in experiments calls for different
treatment: in this case, the surface modes cannot make
a determining contribution to the processes of electron
transport, so that their variation is incapable of provid-
ing for a “giant” variation in the electric resistance.

Another approach appears to be promising, which is
not based on revealing the special features of quantum
electron states in the case of multilayer packing of
unlike atoms, but utilizes an ordinary quasi-classical
description of delocalized electrons involving the spec-
tral properties of the “parent” n and m metals of which
the layers are made up. In this case, the characteristics
of interlayer interactions, which bring about AP order-
ing in the absence of an external magnetic field, are not
002 MAIK “Nauka/Interperiodica”
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treated: it is assumed that these interactions do not play
an important part in the formation of transport proper-
ties (this assumption is justified, in particular, by the
realizations of the GNMR effect on the so-called spin
valves, i.e., structures in which both the AP and
P polarizations of layers are imposed from without [11,
13, 14]). In studies based on this approach, the conduc-
tivity of the system is calculated using either the Green
function formalism [15–18] or kinetic equations [19–
24]; in a quasi-classical approximation, these proce-
dures are equivalent [25]. When the Boltzmann formal-
ism is used, the transition regions between layers are
approximated by the interfaces on which the boundary
conditions that relate the values of the electron distribu-
tion functions in neighboring layers with one another
must be valid on both sides of the boundary.

A number of theoretical studies performed within
the foregoing concepts produced results which were
used to estimate the variation of the resistance in con-
crete structures (Co/Cu, Fe/Cr, and so on [9, 11, 17, 22,
26]); the fitting of correlations between the determining
parameters made it possible to reveal options leading to
agreement with experiment. In our opinion, however,
the theoretical analysis was inconsistent and incom-
plete and, in a number of cases, incorrect. Serious com-
ments need to be made in relation to the approximations
used in formulating the boundary conditions. The prob-
lem of boundary conditions on the interface still attracts
the theorists’ attention, especially, in the case of the
current normal to the layers. In studies in the field under
consideration, these conditions are usually formulated
by analogy with the known approximations of Fuchs
[27] and Sondheimer [28], i.e., with the processes of
surface scattering divided into “specular” (retaining the
longitudinal momentum) and “diffuse” (fully isotropic
scattering) processes and with the introduction of
“specular reflection” and “diffusion” coefficients corre-
sponding to the fractions of electron flow normal to the
surface and scattered on the latter; in addition to the
reflection parameters of Fuchs, parameters are intro-
duced which characterize the penetration of electrons
through interfaces.

Such an approximation simplifies considerably the
theoretical treatment of the problem on the formation of
conductivity with due regard for scattering by inter-
layer surfaces and, in principle, may enable one to
determine the mechanisms of its “giant” variation dur-
ing the change of the pattern of the distribution of mag-
netizations over layers. In this case, it is important to
correctly include the correlations between the coeffi-
cients of transitions (from the m layers to n layers and
back). The values of these parameters are related by the
principle of detailed balance (and the sets of these
parameters must satisfy the normalization rules follow-
ing from the conditions of conservation of normal
flows), and their correlations are sensitive, in particular,
to differences in the spectra of electrons of the m and n
layers. This fact per se must cause the spin dependence
of the parameters of transitions and, consequently, the
JOURNAL OF EXPERIMENTAL 
possibility of the effect of the type of distribution of
magnetization over layers on the conductivity of a mul-
tilayer system. However, in a number of studies, the
coefficients of direct and reverse transitions were
assumed to coincide with each other (and to do so in the
entire range of variation of momenta [20, 24]); in some
studies, this equality was associated with the diffuse
parts, while simplified optical analogs were used for the
specular parts [22, 29]. The contributions made to the
scattering potentials by exchange or other spin-sensi-
tive perturbations were invoked for interpreting the spin
dependence of the scattering parameters (in particular,
of the free paths) [21, 30]. These contributions may be
appreciable (especially if the s–d interaction plays an
important part); however, the densities of final states (to
which the probabilities of transitions upon scattering
are proportional) serve as spin-dependent factors along
with the above-identified contributions (and, in numer-
ous critical situations, predominantly): this fact must
always be taken into account.

The above-identified studies lack analysis which
would enable one to understand the physical mecha-
nisms of the effect on the qualitative level: the relative
importance of n and m electrons in the formation of ori-
entationally dependent contributions to conductivity
was not estimated; it was not found what the ratio of the
specular and diffuse parts of surface scattering must be
for the giant effect to be realized, what influence is
made by bulk scattering, and which factors define the
sign of the effect (the latter is important, in particular,
in view of experimental discovery of positive magne-
toresistance as well—the so-called inverse effect of
giant magnetoresistance [31–35]).

This paper deals with the theoretical analysis of the
problem under consideration associated with singulari-
ties of propagation of current in a sample made up of
metal n and m layers, i.e., in a conductor that is nonuni-
form as regards both the material and the distribution of
magnetization orientation. The mechanisms peculiar to
ferromagnetics, which affect the magnetoresistance
(for example, manifestations of magnetopolaron cou-
pling [36], scattering by magnetization fluctuations
[37], etc.), are not included (for marked involvement of
such processes, external fields are required that are
much higher than those at which the giant magnetore-
sistance effect is realized). A set of kinetic equations is
used to describe the electron behavior. The derivation
of the boundary conditions for the distribution func-
tions of layers on interfaces is suggested, as well as the
approximation of these relations using the generalized
Fuchs–Sondheimer parameters expressed in terms of
surface scattering probabilities. The problem on longi-
tudinal current is analyzed. A study is made into the
dependence of the variation of electric conductivity on
the parameters defining the properties of carriers in the
n and m layers, and the factors are revealed on which
the magnitude and sign of the effect depend.
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2. PROBLEM EQUATIONS

Following is the kinetic equation for the distribution

function component  describing electrons of

momentum p, energy , and spin projection s (the
z axis is directed on a normal to the layers, and s = ±1
indicates the sign of spin projection onto the quantiza-
tion axis):

(2.1)

Here, ϕ is the potential of the current-exciting external
field, and Sts(f ) is the collision integral. The expression
for St(f ) must include both the contributions due to col-
lisions in the bulk of layers with fairly uniformly dis-
tributed scatterers and the contributions due to elec-
tronic transitions caused by the effect of the intermedi-
ate region between adjacent layer structures and by
defects localized in this gap. The observed nonunifor-
mity of scatterers manifests itself as the coordinate
dependence of the transition probabilities appearing in
the expression for St(f ) as a result of their proportion-
ality to the concentrations of the respective scattering
centers (for the case of laminated system being treated,
the transition from the Dyson equations to kinetic equa-
tions with coordinate-dependent collision terms was
demonstrated in [23]).

In the case when the thicknesses of the transition
regions are much less than those of the layers, one can
restrict oneself to solving Eqs. (2.1) within the layers,
while retaining in the collision integrals only the parts
responsible for intrabulk scattering. As to the presence
and effect of boundary regions, they will be expressed
by relations relating the distribution functions in neigh-
boring layers with one another; it is these relations,
defined by the form of Eqs. (2.1) and by the surface
parts of the collision integral St(f ), that are the bound-
ary conditions which must be valid on the interfaces.
The derivation of such relations and their simplified
form are given in Appendix A.

We will now turn to concretely defining the problem
within the layers and agree to use the subscripts j to
indicate the nonmagnetic layers nj and the magnetic
layers mj. For definiteness, we will assume that the
external surfaces of a sample are n layers and will
denote a sequence of three layers as nj – 1, mj, nj, with
j = 1, …, K. We will further assume that the layer thick-
ness is the same for each sort and equal to dn, dm, so that
the total sample thickness is

(2.2)

f p
s z( )

εp
s

∂εp
s

∂ pz

--------
∂ f p

s
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In what follows, we will restrict ourselves to a simple
parabolic spectrum of carriers and will use in the n layers

(2.3)

and in the m-layers

(2.4)

Here, the origins for spectra in massive n and m sam-
ples, εn0 and εm0, are identified. In Eq. (2.4), the pres-
ence of magnetization is expressed in the form of Zee-
man spin energy in the internal magnetic field Hj

(µ0 denotes the product of the Bohr magneton and the
g factor); it is assumed that the directions of magnetiza-
tion in the layers are collinear, so that, in the case of
P packing, all values of  are identical, and, in the

case of AP packing,  changes its sign when the sub-
script j is changed by unity. The expressions for energy
include the potential ϕ0(z) arising as a result of redistri-
bution of the electron densities (initially related to the
chemical potentials µn and µm of isolated materials)
when the layers are combined in a single sample of total
chemical potential µ. The Poisson equation with the
uncompensated charge density defined by the differ-
ence of local electron concentrations between a multi-
layer system and initial materials readily yields the fol-
lowing expressions for ϕ0:

(2.5)

for the n and m layers, respectively (  denotes the mid-
dles of the respective layers). In the end layers (for def-
initeness, here and below, we will assume them to be
nonmagnetic), we have

(2.6)
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In Eq. (2.6),  denotes the Debye screening radii in

the layers; it is assumed that dn, m @ . The quantity
eϕ0, j ≈ µ0j – µ; i.e., it is equal to the difference between
the electron work function of the material of a separate
isolated layer and that of a unified multilayer sample.

We will write the electron distribution function in an
arbitrary layer i = (nj, mj) in the regular form,

(2.7)

where  =  is the equilibrium Fermi func-
tion (the system is taken to be degenerate, so that we

assume in what follows that ∂ /∂  = –δ(µ – ). In
the linearized equation for the nonequilibrium addition

, we will restrict ourselves to writing the collision
integral (its volume part) in terms of the relaxation
times,

(2.8)

where  is the electron velocity, and the notation

(2.9)

is introduced. In the expression for the partial density of

states at the Fermi level,  = (µ);  in the case of
i = nj must be given by εn from Eq. (2.3), and, in the case
of i = mj, by the set εm – sΩj from Eq. (2.4). We will
introduce the notation convenient for further use,

(2.10)

For i = nj, the quantity psi = pn is the Fermi momentum
of n electrons; in the case of i = mj, Fermi momenta of
separate s groups arise. The parameter Γsj (important
for further analysis) characterizes the differences between
the energy shifts of s groups, which are observed for m
electrons alone (for n electrons, Γsn = 1). When
Eqs. (2.10) are used, the expressions for electron

momenta on a Fermi sphere (i.e., at  = µ) and for the
densities of states take the form

(2.11)
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where p|| is the electron momentum component parallel
to the layer surfaces.

In writing the volume collision integral, Eq. (2.8)
takes into account the possibility of emergence of non-
equilibrium variations of carrier concentration, as

expressed by the terms . In the problem being
treated, the redistribution of the concentrations between
groups of s electrons must be taken into account in ana-
lyzing the current transverse with respect to the layers.

Equation (2.8) includes a set of relaxation times: 
corresponds to scattering with conservation of spin pro-

jection, and , to scattering with spin flip. Here and
in what follows, the superscripts indicate the initial
state, and the subscripts indicate the final state. The

times of flip transitions,  and , are related by the
condition of cancellation of the total collision integral,

 = 0, which defines their correlation in
accordance with the principle of detailed balance,

(2.12)

For further discussion, it is important to have infor-
mation about the dependence of the relaxation times on
the spin index s. We will restrict ourselves to the situa-
tion in which the mechanisms of bulk scattering are
dominated by elastic scattering by point defects (δ-like
interaction potential). The general expression for the
relaxation frequency must include the density of final

states at the level of chemical potential,  in
Eq. (2.11), which contains the dependence on s for
m electrons. Other reasons for the emergence of the
spin dependence of relaxation frequency may be asso-
ciated only with the involvement of spin-dependent
potentials in the scattering. The simplest (and most
realistic) case is that of scattering by defects with a
potential in the form of the sum of two parts, of which
one contains spin operators [21, 30, 38]. In this case, it
is necessary that the linear contribution made by the
spin part to the total scattering cross section would not
be canceled upon averaging over the set of defects of a
given type; this is, in principle, feasible in the m mate-
rial, in which the sign of spin addition in the scattering
potential may be fixed by the internal magnetic field. In
order to take into account the foregoing cases, it is con-
venient to perform the following redesignation of the
relaxation times:

(2.13)

Here, the pattern of the s dependence associated with
the density of final states is clearly identified, and the
“nominal” times τsi and τfi are introduced. In the case

χ i
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τ si
s
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described above, the s dependence of the nominal time
τsi is possible only in the m layers. As to scattering with
a change of spin, τfi is insensitive to the index s by virtue
of relations (2.12).

The boundary conditions on the surface between the
layers are formulated in Appendix A.

3. LONGITUDINAL CURRENT:
GENERAL EXPRESSIONS

We will treat the problem on the electron kinetics in
a laminated system in the presence of a potential differ-
ence applied along the layers, i.e., under the effect of a
uniform electric field Ex = –∂ϕ/∂x directed along the x
axis. By virtue of the inference about the proportional-
ity of the nonequilibrium parts of the distribution func-

tions  to the velocity component v x (which is obvi-
ous for this geometry), the terms with nonequilibrium
concentrations drop out from kinetic equations (2.8), so
that the equations are simplified,

(3.1)

where

(3.2)

(relations (2.13) are used). We will write the solutions
of (3.1) in the mj layer and in the adjoining nj layer (the
left-hand and right-hand boundaries of the mj layer are

 =  and  = , respectively),

(3.3)

(3.4)
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The formulas for χ on other boundaries differ from
those written above by the layer indices. Expressions
(3.3) and (3.4) are written so that the values of χ> (χ<)
on the left-hand (right-hand) boundary of the layer are
proportional to the parameters α (β) in terms of which
the effect of scattering on the left-hand (right-hand)
interface on the electron distribution is expressed. The
values of the parameters α and β must be found from
the boundary conditions given by Eq. (A.12). On the
surfaces separating the mj layer from the neighboring
n layers, these conditions take the form (for both sides
of the respective interfaces)

(3.5)

Here,

(3.6)
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The definitions given by Eqs. (3.6) imply restrictions on
the ranges of variation of the longitudinal momentum
that are dictated by the specular parameters t and r in
Eqs. (A.9), which appear in Eqs. (3.5) along with the
quantities g. Further,

(3.7)

The subscripts (r) and (l) in Eqs. (3.5) indicate the sur-
faces of the respective layer, i.e., right-hand or left-
hand, to which the reflection coefficients belong. No
contributions by the diffuse parts of expression (A.12)
are present in Eqs. (3.5): in the problem on longitudinal
current, at χ ∝ v x, these contributions are zero. Note
that the parameters α and β depend on the specular
components of surface scattering alone, so that, in the
absence of specular scattering, in accordance with
Eqs. (3.5), every α = β = 0. When canceling in the
boundary relations the velocities v x appearing in for-
mulas (3.3) and (3.4) for χ, we take into account the
condition of conservation of longitudinal momentum
during specular transitions. As a result, the parameters
κsj appear in Eqs. (3.5), which are equal to the ratios of

electron mobilities in the n and m layers, Mn and .

The expression for the s component of the current
density in the mj layer (for zlj ≤ z ≤ zrj) has the form

(3.8)

where

(3.9)

and the notation

(3.10)

is introduced for the partial conductivity of a group of
m electrons with spin projection s, which would charac-
terize a massive sample in the case of partial concentra-
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tion . The total current density at point z of the mj

layer is found by summation of (3.8) with respect to s.
The formula for the current density in the nj layer dif-
fers from expressions (3.8) and (3.9) by the change of
indices (in so doing, Γsn = 1). In order to characterize
the entire sample, we will use, as usual, the average cur-
rent density and, accordingly, the conductivity σ aver-
aged over the entire sample thickness D,

(3.11)

Two components of average conductivity are identified
in Eq. (3.11). The first of these components, σbd, is
formed by the contributions from (3.9) in the absence
of α and β and corresponds to the value of the conduc-
tivity of a multilayer sample under conditions of fully
diffuse surface scattering. The quantity σbd is written in
the form of the difference

(3.12)

where σb is made up of the conductivities of massive
materials,

(3.13)

and σd describes the reduction of the bulk conductivity,
which would be performed under conditions of fully
diffuse surface scattering reducing the bulk free paths
to appropriate effective values,

(3.14)

Here,

(3.15)

(  denotes the free paths, and the relaxation times  are
introduced in Eq. (3.2)). The summation with respect to
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s of expressions dependent only on the local properties
of a given (n or m) layer, which appears in Eqs. (3.13)
and (3.14), points to the absence of interlayer correla-
tions in σbd and, consequently, to the independence of
this part of conductivity given by Eq. (3.11) of the type
of magnetic order in the sample.

The second component of average conductivity
given by Eq. (3.11), σc is defined by the “specular”
transitions on the layer interfaces,

(3.16)

where

(3.17)

The part played by contributions to the conductivity
due to specular scattering usually consists in compen-
sating for the above-mentioned diffuse reduction asso-
ciated with σd from Eq. (3.12); the degree of this com-
pensation depends on the values of the parameters α
and β defined by the boundary conditions given by
Eqs. (3.5). Of chief interest in our case is the depen-
dence of the “specular” corrections of σc on the pattern
of ordering of magnetic layers; it is this dependence
that must define the scale of corresponding variations
of conductivity.

We will analyze expressions for σc in the P and AP
configurations. Assume that the structure of all bound-
aries between the n and m layers is the same, so that the
nonequivalence of their scattering properties may be
due only to the differences in the orientation of magne-
tizations of the m layers adjoining the interfaces. There-
fore, the parameters of penetration t and reflection r on
different boundaries must be related by certain rela-
tions. Consider the case of parallel polarization of all
m layers (P packing), when the following obvious
equalities must be valid:
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The exception is provided by the external surfaces of
the n0th and nKth layers; for these layers, it should be

assumed that t = 0 and  =  ≡ .

By virtue of relations (3.18), the set of equations
(3.5) breaks down into sets of pairs of equations with
identical coefficients at α and β and identical right-
hand parts except for the equations which contain the
external surface parameters r0. If not for this excep-
tion, the set of linking equations for α and β would
have been reduced to equations for two neighboring

layers with simple correlations of  =  and  =

. As a result of the presence of external bound-

aries, the equality of the parameters α and β is dis-
turbed; the difference between these parameters must
depend on the layer number and will apparently be the
smaller, the larger the distance from the layers to the
sample surfaces. We will represent the sought param-
eters in the form

(3.19)

and use the set of equations (3.5), given the validity of
relations (3.18), to derive the following equations for
the quantities A:

(3.20)
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(3.22)

and for the external right-hand layer,

(3.23)

The number of independent equations in the set of
equations (3.22) is reduced when the symmetry relative
to the middle of the multilayer sample is taken into
account. For definiteness, we will restrict ourselves to
the case where the nk' layer is the middle one (an even
number of m layers, k' = K/2). In the case of P packing,
obvious relations

(3.24)

must be valid, so that in Eqs. (3.22) it is sufficient to
retain the equations up to the subscript j = k', with the
last one of the retained equations having the form

(3.25)

In the case of antiparallel polarization of neighboring
m layers (AP packing), it is convenient to use in all layers
the values of spin projections s relative to a single axis,
namely, the same axis which was used when relations
(3.18) were written in the case of P packing. We will use
the subscript i to indicate the numbers of layers in which
the directions of magnetization are the same as in the P
layers; the (i ± 1) layers are polarized oppositely. We will
express the parameters of the ith and (i ± 1)th layers in
terms of the same quantities which appear in Eqs. (3.18),
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The quantities α and β may be conveniently repre-
sented as binomials of the following form:

(3.27)

As follows from the set of equations (3.5) with relations
(3.26), the equations for A1, a1, and b1 are written simi-
larly to Eqs. (3.20)–(3.23), with the quantities A, a, and
b replaced by A1, a1, and b1; in so doing, in the sums

with respect to s', the quantities , , and  must

be replaced by , , and ; in the case of other

replacements, the spin indices are retained. In the set of
equations written in this manner, the subscript j indi-
cates any layer (it is assumed that the magnetization in
the m1 layer is parallel to the magnetization observed in
the case of P packing).

So, in order to calculate the contributions due to
specular scattering to the conductivity σc given by
Eq. (3.16), one must find the values of A, a, and b from
Eqs. (3.20)–(3.23) for the P configuration and A1, a1,
and b1 from the respective equations for the AP config-
uration. The variation of the electric conductivity in the
case of change of the type of configuration from P to AP
orientation of magnetizations in successive m layers is
determined using the difference parameters of the fol-
lowing form in formulas (3.17):

(3.28)

in n components and

(3.29)

in m components. These difference quantities may be
found from the following equations:
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For δa and δb, we have,
for the external layer,

(3.31a)

for the intermediate layers,

(3.31b)

and for the central layer,

(3.31c)

Here, the following notation is introduced for the dif-
ference of parameters characterized by the opposite
values of spin projection:

(3.32)

According to Eqs. (3.30) and (3.31), the parameters
δA, δa, and δb depend on the differences between the
surface corrections to the distribution functions of n

electrons, , , and , and go to zero in their
absence. These differences characterize the asymmetry
of the scattering properties of the surfaces of an n layer
surrounded by oppositely polarized m layers, which, in
accordance with the physical pattern described in this
paper, must define the effect of variation of conductiv-
ity in the case of the AP  P reorientation.

4. ANALYSIS OF BOUNDARY RELATIONS

It is the objective of further analysis to reveal the
conditions of realization of such values of boundary
parameters at which the specular part of conductivity
given by Eq. (3.16) and its variation in the case of the
AP  P reorientation make up a significant fraction
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of the total conductivity of the system σ given by
Eq. (3.11). We will eliminate from treatment the situa-
tions in which this is a priori impossible. First of all,
this is the case of “thick” layers defined by the inequal-
ities

(4.1)

When inequalities (4.1) are valid, both the diffuse, σd

(3.14), and specular, σc (3.16), corrections are insignif-
icant: the parameters gn ≈ gm ≈ 1 and the integrals Yn ~
Ym ~ l/d, so that the surface scattering causes the con-
ductivity σ to vary by values on the order of σ(l/d).
Similarly, the case of thick n, but “thin” m, layers, when
the conditions

(4.2)

are valid, appears to be unpromising. When conditions
(4.2) are valid, marked “specular” contributions to the
conductivity in the m layers are possible (with a minor
variation in the n components); however, their differ-
ences for the cases of P and AP packings must be neg-
ligibly small. This follows from Eqs. (3.30) and (3.31),

according to which the quantities δ , δ , and δ
are proportional to the specular parameters T n in
Eqs. (3.7) that are exponentially small at dn @ ln.

A substantially different situation arises when
“thin” n layers are used, when the mutual (and com-
bined) influence of the m layers (of arbitrary thickness)
separated by these n layers is permissible. We will fur-
ther analyze the possibilities associated with different
options of such systems with a simplification of no fun-
damental importance, which, nevertheless, enables one
to do away with excess awkwardness of computations
and formulas, namely, under conditions of negligibly
weak processes of scattering with variation of the spin
state s  –s (flip transitions). The conservation of
spin projection during transitions between layers con-
tributes to the manifestation of correlations in the
behavior of electrons, which are due to the coincidence
or difference in the magnetic order between neighbor-
ing layers, so that an analysis performed in the absence
of flip processes must enable one to estimate the possi-
ble effect of maximal variation of conductivity. Further,
strictly in order to simplify the analysis, we will restrict
ourselves to treating the problem under the following
conditions (which are of no fundamental importance):
let the s dependence of the bulk relaxation frequencies

1/  be related mainly to the density of final states, and
let the contributions made by s-dependent potentials to
scattering be less significant so that they may be omit-
ted. Then, the “nominal” times τsi in Eqs. (2.13) in both
m and n-layers may be assumed to be independent of s,
and the index s may be omitted from the notation. In so
doing, the free paths given by Eqs. (3.15) also lose their

dn @ l̃n, dm @ l̃m.

dn ! l̃n, dm ! l̃m

Am
s am

s bm
s

τ is'
s
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dependence on s, and the notation of a number of
parameters is simplified,

(4.3)

Before starting an analysis of the importance of var-
ious factors defining the magnitude of the “specular”
part of conductivity of the system being treated, one
must clear up the question of the ratio of the quantities
identified in the surface parameters α and β for describ-
ing the contributions (A) identical for all layers of a
given sort and for describing additions dependent on
the location of the layer (a and b, see Eqs. (3.19)). This
part of analysis is given in Appendix B, where it is dem-
onstrated that, in multilayer samples at K @ 1, the
parameters a and b may be ignored. Therefore, in what
follows, the specular contribution to the conductivity
given by Eq. (3.16) is estimated (in terms of parameters
A and δA) as

(4.4)

and its variation is estimated as

(4.5)

The expressions for δσ differ from Eqs. (4.4) in that the
quantities A in the arguments of the integrals Yn and Ym

in Eqs. (3.15) are replaced by δA. The equations from
which the determining parameters for Eqs. (4.4) are
found have the form

(4.6)

and those from which the determining parameters for
Eq. (4.5) are found have the form

(4.7)
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In Eqs. (4.6) and (4.7),

(4.8)

Here, the designation Gs is introduced for the complete
diffuse component of scattering (surface and bulk), and
the sum rule is written out, which is a result of determi-
nations of the parameters T and R in Eqs. (3.7), G in
Eqs. (4.8), and of normalization relations in the absence
of flip transitions,

(4.9)

It will be recalled that the transition parameters tc

include in their definition given by Eq. (A.9) the restric-
tive factors defining the range of coincidence of longi-
tudinal momenta. The dependence on the transverse
component of momentum, with respect to which the
integration in Eqs. (3.15) is performed, is determined
from relations (2.11) for the n and m parameters,
respectively, i.e., from the condition of conservation of
energy and its coincidence with the chemical potential.

The functions  and  characterizing the scattering
during the passage of electrons through the respective
layers are given by expressions (3.6).

The difference between the ranges of existence of
individual terms in Eqs. (4.6) and (4.7) brings about an
additional (apart from that associated with the presence
of the functions ) momentum dependence of solu-
tions of these equations. We will select characteristic
concrete options of correlations between the Fermi
momenta of ms and n electrons, psm and pn, and detail
this dependence for subsequent analysis of the behavior
of solutions in typical situations.

Option 1:

(4.10)

In this case, the parameters characterizing the n layers
in the Is(1n) interval, 0 ≤ pz ≤ pn (0 ≤ p|| ≤ pn), assume
the form

(4.11)

The contribution by the m layers in the Is, 1(1m) interval,

0 ≤ pz ≤  (pn ≤ p|| ≤ psm), takes the form

(4.12)
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ĝn
s ĝm
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s–( ) 1 ζn
s–( )+[ ] rcn

s gnGm
s .+=

psm
2 pn

2–

Am
s gm

s rcm
s /Gm

s , δAm
s 0,= =
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002



THE ELECTRIC CONDUCTIVITY OF A LAMINATED METAL SYSTEM 613
and in the Is, 2(1m) interval,  ≤ pz ≤ psm (0 ≤
p|| ≤ pn),

(4.13)

The foregoing formulas include the “nominal” (see
Eqs. (A.9)) coefficients t and r which are the same for
direct and reverse specular transitions and constant in
the regions of realization of such transitions.

For other options of correlations between Fermi
momenta (namely, p+m > pn > p–m and pn > psm), we will
restrict ourselves to treating simple but typical situa-
tions realized in the case of limiting asymmetry of the
s branches of m electron spectrum, when the states of
m electrons with the projection s = –1 may be totally
ignored (for example, the density of states of such car-

riers at the Fermi level is  ~ p–m  0). This restric-
tion may be realized in the so-called magnetic semimet-
als, but is unfit for d metals. It will be used strictly to
simplify the description: as a result of this choice, all
physical factors defining the special features of the
effect being investigated are retained, and its maximal
scale is revealed. So, all of the options of correlations
between Fermi momenta that differ from Eq. (4.10)
will be restricted to the application to systems in which
only electrons with the spin projection s = +1 are
involved in transport in m layers magnetized in parallel.
In nonmagnetic layers, electrons with both projections
are involved.

Option 2:

(4.14)

For nonmagnetic layers in the Is(1n) interval, 0 ≤ pz ≤ pn

(0 ≤ p|| ≤ pn), we have

(4.15)

and for magnetic layers in the I+, 1(1m) interval, 0 ≤ pz ≤

 (pn ≤ p|| ≤ p+m),

(4.16)

and in the I+, 2(1m) interval,  ≤ pz ≤ p+m (0 ≤
p|| ≤ pn),

(4.17)
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The same notation is used for the parameters as that in
the respective ranges in Eqs. (4.11)–(4.13).

Option 3:

(4.18)

The contribution by the m+ carriers in the I+(3m) inter-
val, 0 ≤ pz ≤ p+m (0 ≤ p|| ≤ p+m, takes the form

(4.19)

The contribution by the n electrons in the Is, 1(3n) inter-

val, 0 ≤ pz ≤  (p+m ≤ p|| ≤ pn), takes the form

(4.20)

and in the Is, 2(3n) interval,  ≤ pz ≤ pn (0 ≤ p|| ≤
p+m),

(4.21)

In Eqs. (4.19), the parameter Aa has the subscript 3n,
which points to the Is, 2(3n) interval of the variable pz, in
which this quantity is determined.

The formulas for options 1–3 express the depen-

dence of the “specular” surface corrections  and 
to the distribution functions of n and m electrons on the
parameters of specular transmission tc and reflection rc.

For the quantities δ  and δ , which characterize the
effect of variation of conductivity being investigated,

their proportionality to the value of  =  –  is
shown. It is natural that, in the case of m electrons, the

parameters δ  arise only in the case of specular tran-
sitions between n and m layers.

The foregoing results are then used in systems in
which one can expect the specular fractions of conduc-
tivity to play an important part, namely, in multilayer
samples containing thin nonmagnetic layers.

5. THE CONDUCTIVITY OF A MULTILAYER 
SYSTEM WITH THIN NONMAGNETIC LAYERS

We will start with the case in which the magnetic
layers are thick,

(5.1)

Under conditions (5.1), the contribution made by the m
layers to the total conductivity given by Eq. (3.11)
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614 KRAVCHENKO
reduces to the quantity σb(m) (3.13) defined by the bulk
conductivity; the corrections due to the diffuse and
specular m parts are small to the extent of smallness of
the ratio lm/dm. The contribution by the n layers to σbd

given by Eq. (3.12) experiences, at dn/ln ! 1, the well-
known size-dependent reduction

(5.2)

It is necessary to reveal the situations in which the val-
ues of specular additions σc(n) (3.17) are of the order of
σbn in Eqs. (3.13), i.e., they do not contain the small fac-
tor λn appearing in Eqs. (5.2) and may introduce a con-
tribution comparable with σbm to the total conductivity
given by Eq. (3.11). This requires that the value of the
integral Yn in (3.17) be of the order of unity. Because it
is the realization of “giant” variation of conductivity,

i.e., of the quantities δσc(n) ≈ , which is of prime
interest, one must find the conditions at which

We will take into account the fact that, because of the
presence of the size-dependent function gn in the inte-
grands in Yn, the main contribution to the integral is
made by the region beginning with the values of un of
the order of d/l. In this region, for performing estima-
tions, it is permissible to replace the function gn by its
argument. One can readily see that, in satisfying condi-
tions (5.1), the situation in which the specular factors
dominate the scattering parameters is favorable,

(5.3)

Under conditions of option 1 as given by Eq. (4.10), we
find

. (5.4)

The respective specular fractions of conductivity are

(5.5)
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The results for option 2 given by Eq. (4.14) are as fol-
lows:

(5.6)

so that

(5.7)

(5.8)

Under conditions of option 3, it is only the contribu-
tion according to Eqs. (4.21), made by the Is, 2(3n)

region in which the expressions for  and  coin-
cide with Eqs. (5.6), that may turn out to be important
for δσc. In this case, we find

(5.9)

(5.10)

where the notation

(5.11)

is used.

Then, we perform calculations for a multilayer sys-
tem in which the layers of both types are thin,

(5.12)
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In this case, the m parts of σbd given by Eq. (3.12)
decrease similarly to (5.2),

(5.13)

so that, along with specular n contributions, specular m
contributions may become significant as well. For giant
effects to be realized, it is now sufficient that the values
of specular additions according to Eq. (3.16) corre-
spond to reduced values of conductivities given by

Eq. (3.12) (in addition to the fact that  and δσc are
close to each other). However, the conditions are quite
permissible in which the specular additions according
to Eq. (3.16) take values of the order of σbn and σbm and
define the total conductivity of the sample. We will start
with treating this case which is realized under condi-
tions of extremely weak diffuse surface scattering,

(5.14)

Under conditions of option 1 in the Is(1n) interval,
Eqs. (4.11)–(4.13) yield

(5.15)

in the Is, 1(1m) interval,

; (5.16)

and in the Is, 2(1m) interval,

(5.17)

In estimating the conductivity  according to

Eqs. (4.4), it is permitted to use the values of 
according to Eqs. (5.15) in which the functions g are
taken at the upper limit of integration in Yn. In order to
calculate δσc(n), one needs to estimate the sum

 more exactly, because Eqs. (5.15) include the
cofactor

which goes to zero at the upper limit pz = pn. Used for
further estimations is its approximate value,
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obtained from the exact value by isolating the factor 
and replacing pz by pn in the remaining terms. As a
result, we find

(5.18)

Here, the notation
(5.19)

is introduced (the quantity δ estimates the ratio of the
functions gn and gm at the upper limit of the integration
variable).

The contribution to the conductivity from the m lay-
ers is introduced by the intervals Is, 1(1m) (4.12) and
Is, 2(1m) (4.13). We use Eqs. (5.16) and (5.17) to find

(5.20)

If the parameters defining the differences between the

spectra of n and m electrons are such that  @ 1, the
value of the integral in Eqs. (5.20) will be

and the conductivity variation δσc(m) proves to be
insignificant compared with σc(m). A favorable situa-

tion will be the situation in which  @ 1 and  ≈ 1;
then, the integral Y ' ≈ 2/3 for s = –1, which makes the
δσc(m) contribution quite appreciable.

The estimations made for option 2 given by Eq. (4.14)
under conditions (5.14) of negligibly weak diffuse scat-
tering lead to

(5.21)
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to

(5.22)

in the I+, 1(1m) interval; and to

(5.23)

in the I+, 2(1m) interval.
As a result, Eqs. (4.4) and (4.5) yield

(5.24)

Equations (5.24) give the value of δσc(m) at the maxi-

mal value of the respective integral  ≈

2/3, which is realized at  = 1 + e, e ! 1, with the
notation

(5.25)

where the quantity  in Eqs. (4.3) is the bulk conduc-
tivity of the m layer with the condition of absence of
carriers with s = –1 adopted above.

In the case of option 3, given by Eq. (4.18), and con-
ditions (5.14), we have

(5.26)

in the Is, 1(3n) interval,

(5.27)

and in the Is, 2(3n) interval,

(5.28)

Am
+ 1, δAm

+ 0,≈≈

Am
+ 1

κ+ 1–( )δ
1 δ+

----------------------,+≈

δAm
+ δ 1 κ+–( )

1 δ+( ) 1 2δ+( )
-------------------------------------≈

σc
P n( ) σbn 1

1 κ+–( )
2κ+ 1 δ+( )
--------------------------+ ,≈

δσc n( )
σbn κ+ 1–( )

2κ+ 1 δ+( ) 1 2δ+( )
-----------------------------------------------,≈

σc
P m( ) σbm

+ 1
δ κ+ 1–( )

δ 1+( )
----------------------+ ,≈

δσc m( )
σbm

+ 1 κ+–( )δ
1 δ+( ) 1 2δ+( )

-------------------------------------.≈

Y' 1 q+
2–– 1,( )

q+
2

σbm
+ Dm

D
-------σ0m

+ ,=

σ0m
+

Am
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Here, we will also restrict ourselves to estimation for
situations with the maximum possible values of δσc,
namely, with the maximal width of the Is, 2(3n) interval
according to Eqs. (5.28), which is realized on condition

that  = 1 – e, e ! 1. In this case, Eqs. (4.4) and (4.5)
yield expressions for conductivity close to Eqs. (5.28).

The foregoing examples exhaust the possibilities of
finding the bulk conductivity values under conditions
(5.12). We will now turn to analyzing the problem for
the situations in which the values of σc and δσc depend
significantly on the diffuse components of surface scat-
tering and are of the order of the values yielded by
Eqs. (5.2) and (5.13). This is primarily the case in
which, under conditions of general prevalence of spec-
ular factors, diffuse surface scattering turns out to be
more important than bulk scattering,

(5.29)

(in this situation, the characteristic values of the func-
tions g are estimated by the values of λ).

As in the case of Eqs. (5.14) above, we will illustrate
the case given by (5.29) by examples which correspond
to the maximal effects of conductivity variation. For
option 1 according to Eqs. (4.11)–(4.13), we have, in
the 1s(1n) interval,

(5.30)

in the Is, 1(1m) interval,

; (5.31)

and in the 1s, 2(1m) interval,

(5.32)

The functions  are present here only in the numerators
and define the size reduction of conductivity. We will
recall a significant detail: an important part is played by
the logarithmic factor ln(l/d) @ 1 (included in the defi-
nition of the parameter λ according to Eqs. (5.2) and
(5.13)) which is due to the contribution by the electrons
incident on the surfaces at small angles θ (θ < d/l ! 1).
One can readily see that this factor is introduced only
by regions of integration with respect to pz which begin
with pz = 0, in the presence in integrands of the func-
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tions g with an argument proportional to 1/pz. In Eqs. (5.30),
these are the terms with gn, which appear in the inte-
grals Yn when calculating σc(n) and δσc(n) according to

Eqs. (4.4) and (4.5), and the terms with  in the
Is, 1(1m) interval according to Eqs. (5.31) of the integral
Ysm defining σc(m). The contributions made by other

terms containing the functions  include only factors
of the order of d/l without logarithmic multiplication
and may be omitted.

By way of illustration of the maximum possible
effect, we will use the above-identified case of close
values of the Fermi momenta p–, m and pn, in which the
ranges of integration with respect to pz in Yn and the
I−, 2(1m) interval in Y–m almost coincide. Then, for the
n layer from Eqs. (5.30)–(5.32) and (4.4) and (4.5), we
have (q+ – 1 @ d/l, q– – 1 ≤ d/l)

(5.33)

For the m layer under the same conditions, we have

(5.34)

If the conditions qs – 1 @ d/l are valid for both quanti-
ties qs, the expressions for conductivity vary as follows:
in the formulas written above for σc(n) and δσc(n), the
terms with λm must be omitted, and in those for σc(m),
the term with λn must be omitted; as to the quantity
δσc(m), it should be ignored in the approximation used
(it does not contain the logarithmic factor ln(d/l) @ 1).

In the case of option 2 given by Eq. (4.14), we have,
for the parameters A in the Is(1n) interval,
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(5.35)

in the I+, 1(1m) interval,

(5.36a)

and in the I+, 2(1m) interval,

(5.36b)

It follows from this and from Eqs. (4.4) and (4.5)
that, with an almost complete intersection of the
ranges of determination of the n and m+ states of the car-
riers, the maximal values of conductivity are observed

(  – 1 ≤ d/l),

(5.37)

With q+ being markedly different from unity (q+ – 1 @
d/l), the quantities σc(n) and δσc(n) are described by
formulas (5.37), from which the terms with λm must be
omitted; the quantities σc(m) coincide with those in
Eqs. (5.37) in the absence of the term with λn; as to the
variation of δσc(m), it may be ignored, as is the case in
the previous example.
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For option 3 given by Eq. (4.18), we find, in the
I+1(3m) interval,

(5.38)

in the Is, 1(3n) interval,

(5.39a)

and in the Is, 2(3n) interval,

(5.39b)

which, in the limiting case of coincidence of the Is, 2(3n)
and Is, 1(3m) regions for the ns and m+ spectra, leads to
the following (1 – q+ ≤ d/l):

(5.40)

If the ranges of variation of the variable pz in Eqs. (3.15)
for the n and m+ contributions diverge considerably, the
values of conductivity vary (1 – q+ @ d/l),
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(5.41)

Note that the estimated values of  and 
given above differ from the reduced values of conduc-
tivity according to Eqs. (5.2) and (5.13) by the factors
containing the quantities 1/ζ > 1, so that the resultant
contributions due to specular scattering, generally
speaking, define the total conductivity for conditions
(5.29).

In conclusion, we will treat the case in which the
surface scattering is largely diffuse, and the parameters
ζ exceed both the small quantities d/l and the coeffi-
cients of specular transmission and reflection, tc and rc,

(5.42)

Under these conditions, the contribution made by the m
layers to the variation of conductivity must be a priori
small (by virtue of the proportionality of the parameters

 to the coefficients tc); therefore, it is sufficient to
estimate δσc(n) alone. We will now consider the results
for option 1. According to Eqs. (4.11) under conditions
(5.42),

(5.43)

In this case, the specular additions  proper do not
exceed the values according to Eqs. (5.2) and (5.13); as
to the variation of conductivity, we find

(5.44)

One can see that, for options 2 and 3, the estimates of
the values of δσc(n) coincide with those according to
Eq. (5.44).
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6. DISCUSSION

Summing up, it will be recalled that our results were
obtained within the quasi-classical description of an
electron system; the interlayer gaps in the system were
simulated by scattering surfaces on which the boundary
conditions for the distribution functions were preas-
signed of the type of Fuchs–Sondheimer conditions
with due regard for the possibility of transmission
through interfaces involving other electron groups (dif-
fering both by the energy spectrum and by the spin
state). Theoretical analysis resulted in the demonstra-
tion of the possibilities of realizing a giant variation of
conductivity (i.e., of the order of magnitude of the con-
ductivity proper) during a change of pattern of alterna-
tion of magnetic polarization in the m layer sequence.
As was already noted, one can expect this in the follow-
ing cases:

(a) when at least the n layers are thin, i.e., relations
(5.1) or (5.12) are valid; and

(b) when the presence of specular components in the
set of parameters responsible for the scattering on the
boundaries between layers is imperative.

The magnitude and sign of the effect depend signif-
icantly both on the values of the coefficients tc and rc

of specular transitions and on the correlations
between the parameters characterizing diffuse sur-
face (ζ, see Eq. (A. 14)) and bulk (di/li) scattering. An
important part is played by the differences between the
spectra of n and ms electrons, which are expressed by
the ratios between the Fermi momenta of electron
groups, in other words, between the respective concen-
trations of carriers (options 1 (4.10), 2 (4.14), and
3 (4.18)).

We will start systematizing the data of Section 4
from the case in which the diffuse surface scattering is
of minimal significance,

(6.1)

(in the case of thin layers of both types according to
(5.12)).

The results for options 1 and 2, 3 differ substantially.
In the case of option 1 (qs = pms/pn > 1), the variations
of conductivities δσc(n) and δσc(m) turn out to be neg-
ative (expressions (5.18) and (5.20)) and depend on the
value of the difference parameter Γa = Γ+ – Γ– accord-
ing to Eqs. (2.10), which is the measure of asymmetry
of the s branches of m electrons. The total value of δσc =
δσc(n) + δσc(m) is maximal (in magnitude) at q– ≈ 1 and
q+ @ 1. If both parameters qs @ 1 (this means that q =
pm/pn @ 1 as well), the effect of conductivity variation
will decrease considerably and may drop out of the cat-
egory of giant effects.

For electron groups with spectra typical of options 2
and 3, the signs of variation of the conductivities δσc(n)
and δσc(m) are opposite (see Eqs. (5.24)). If the Fermi

tc rc @ di/li @ ζ i,
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momenta pn and p+m are close to one another in magni-
tude (q+ ≈ 1), the total quantity δσc is positive,

(6.2)

(the correlations between the parameters according
to Eqs. (3.13), (4.3), and (5.19) are used). As to the
“extreme” situations, i.e., at q+ @ 1 (option 2) and
q+ ! 1 (option 3), δσc(n) (5.24) and δσc(m) (5.25) pre-
dominate, respectively; the signs of these quantities are
opposite and defined by the sign of the factor κ+ – 1.
Common to all results in the case given by (6.1) is that
the specular parameters tc and rc are absent from the
estimated values of δσc.

We will now turn to the situation in which the sur-
face diffuse scattering is more important than bulk scat-
tering, and the quantities λn (5.2) and λm (5.13) are used
as the effective free path,

(6.3)

Under conditions (6.3), in contrast to the results in the
case given by (6.1), the expressions for δσc depend
explicitly on the components of the diffuse parameters
ζsn, m. In the case of option 1, the signs and values of
δσc(n) (5.33) and δσc(m) (5.34) are defined by the dif-

ference parameters  and , whose values (and even
their signs) are undefined within our analysis; however,
generally speaking, it is possible to expect the emer-
gence of a giant quantity δσc. In the extreme situation
of q– @ 1, the value of δσc is definitely positive: accord-
ing to Eqs. (5.33) and (5.34),

(6.4)

Under conditions of options 2 and 3 and close values of
Fermi momenta of electron groups (q+ ≈ 1), the quanti-
ties δσc(n) and δσc(m) in Eqs. (5.37) and (5.40) are
quite appreciable, while their signs are indeterminate.
In the extreme situation (q+ @ 1 for option 2),

(6.5)

the effect of conductivity variation is a priori positive.
In the case of option 3 with the extreme correlation
q+ @ 1, the conductivity varies both for n electrons (the
value coincides with that according to Eqs. (6.5)) and
for m+ electrons,

(6.6)

with an a priori positive total result.
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Finally, under conditions when the diffuse surface
coefficients exceed the specular parameters as well, i.e.,
at

, (6.7)

the conductivity variations reduce to δσc(n) and, for all
three options, are positive and close to one another,

(6.8)

According to the sum rule given by Eqs. (4.9), the dif-
ference parameter

according to conditions (6.7), the specular differences

must be much less than . Therefore, the scale of con-
ductivity variation under conditions (6.7) may hardly
correspond to a giant effect.

Note the distinctions of the situation in which the m
layers are thick, i.e., relations (5.1) are valid. In this
case, only the conditions of prevalence of specular scat-
tering given by (5.3) are promising from the standpoint
of realization of giant variations of conductivity, and
the contributions to δσc are defined by the n electrons
alone. For option 1, according to Eqs. (5.5), the conduc-
tivity variation δσc is proportional to the difference

parameter , whose value and sign remain undefined.
As to options 2 and 3, here, as in the case given by (6.1),
no parameters of surface scattering appear in the result-
ant formulas. The variations of conductivity are
described by simple relations: in the case of extremely
weak diffuse surface scattering (ζn ! dn/ln), the value
and sign of δσc(n), as in the case given by (6.1), depend
on κ+ – 1,

(6.9)

If the surface diffuse scattering is more significant
than bulk scattering, and the conditions tc, rc @ ζn @ dn/ln
are valid, the conductivity variation is a priori nega-
tive and, according to (5.8), it is defined by the
parameter κ+,

(6.10)

Expressions (6.9) and (6.10) hold for option 2 for any
value of q+ > 1. They are also valid for option 3 in the
case of q+ ≈ 1; however, in the case of extreme correla-
tion q+ ! 1, the quantity δσc(n), as well as δσc, are neg-
ligibly small. Note the differences of Eqs. (6.9) and
(6.10) from the results for thin m layers under analo-

ζ  @ tc rc λ, ,

δσc n( )
σbn

---------------
λn ζn

a( )
2

ζn
+ζn

– ζn
s

s

∑
-----------------------.≈

ζn
A –tcm

na rc
na;–=

ζn
s

tc
a

δσc n( )
σbn

---------------
κ+ 1–
2κ+

--------------≈ .

δσc n( )
σbn

--------------- 1
2κ+
---------.–≈
JOURNAL OF EXPERIMENTAL 
gous conditions of scattering: the quantities δσc in these
two cases may differ even by their sign.

The foregoing set of expressions for δσc demon-
strates the diversity of the possibilities of attaining giant
values of conductivity variation of both signs. As is
demonstrated, the result depends on the correlations
between quite a number of parameters, and it proves to
be rather difficult to interpret or predict the scale and
sign of the effect on a qualitative level. In view of this,
it appears useful to make remarks concerning the fre-
quently suggested makeshift explanation of the effect
of negative magnetoresistance, which was formulated
as early as the first papers on the subject [1] and repeat-
edly used later on (see, for example [15, 39]). It is based
on elementary “electrotechnical” considerations con-
cerning the current in two independent s channels (the
spin projection s is registered in a laboratory system)
with different resistivities ρs ≠ ρ–s within the layers. In
the case of AP packing, the total resistance over all lay-
ers is the same for each channel; in the case of P pack-
ing, the channel with ρmin must predominate, via which
the short-circuiting (using the adopted terminology)
occurs and, thereby, the GNMR effect is realized. Anal-
ogous explanations are suggested for the case of the so-
called inverse effect (an increase in the resistance dur-
ing the AP  P rearrangement): here, the same rea-
soning is used, and the involvement of magnetic layers
of two types with different ρ+/ρ– ratios is required [31–
35]. No grounds exist, however, for using this simpli-
fied scheme to interpret the effect being treated, which
is associated with a complex of physical processes. We
will only point out some aspects of the problem. In
order to introduce the s-group resistance of all layers of
the sample, it is insufficient to know the values of ρs

within independent layers: the surface processes are of
decisive importance. In the case of fully diffuse surface
scattering which, by definition, interrupts the process of
distortion of electron distribution by the external field
and thus defines the effective free path, the electric cur-
rents and respective kinetic characteristics will be
formed within individual layers independently and in a
like manner for both types of magnetic order. The spec-
ular scattering intervenes in these processes and pro-
vides for the conservation of the “memory” of varia-
tions of the electron distribution during transitions from
layer to layer or during reflections from the boundaries;
it is this conservation that introduces interlayer and
s-dependent correlations into the formation of the total
conductivity of the sample. The combination of physi-
cal effects of this kind, complemented with the possible
s dependence of electric resistivity within the layers,
defines the scale of the effect of variation of total con-
ductivity during the AP  P rearrangement; of
course, the estimation of this scale lies outside the lim-
its of the above-mentioned electrotechnical analogs.
Note further that the short-circuiting scheme, based on
the inequality ρs ≠ ρ–s, leads to the underestimation of
the part played by the n layers (in which ρs = ρ–s) in the
AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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formation of δσ, while the contribution made by these
layers may be decisive in a number of cases.

For some of the inferences made in this paper con-
cerning the possibility of realizing giant quantities δσ,
the physical reasons on a qualitative level appear to be
fairly apparent. For example, the need for long free
paths in the n layers is quite clear, i.e., the requirement
of ln @ dn (this condition was pointed out even in the
early papers when using arguments based on the inter-
layer correlations of m carriers; see, for example, [40]).
The special part played by surface scattering in the for-
mation of δσ is based on the following simple physical
pattern: in an n layer, electrons with a fixed spin projec-
tion s are scattered similarly by both surfaces of the
given n layer if the neighboring m layers are magne-
tized in parallel; in the case of AP packing of the m
neighbors, the surface scattering must be different for
different surfaces. It is this variation of scattering from
a pair of surfaces (the measure of which is provided by

the quantities  in Sections 4 and 5) that is an essen-
tial prerequisite to the emergence of δσn. As to the m
layers, both surfaces of every one of them scatter m
electrons with a fixed value of s similarly for any order
of magnetization orientations. Therefore, the quantities
δσ(m) arise only due to the penetration of electrons
through neighboring layers. We will mention once
again the result which must be regarded as one of the
main results, namely, that a variation of the order of
magnetization orientations causes a variation in the
conductivity of the system layers only in the presence
of specular components of scattering on interlayer
boundaries. In the process, in accordance with the
described physical pattern, specular reflections are suf-
ficient in the n layers, while the realization of δσ(m)
requires specular components of penetration. In this
case, the so-called channeling effect shows up, i.e.,
restrictions on transitions from layer to layer for a part
of carriers due to differences in magnitude of Fermi
momenta between respective groups of electrons [15,
22, 41] (according to the method of describing surface
scattering in my paper, this fact is included in terms of
the p dependence of the transition parameters t p in
Eqs. (A.10)), as well as the effect of a possible match
between the band parameters in neighboring layers
(band matching effect) [42–45]. Qualitative evidence of
the contribution due to penetrations is provided by the
parameter κ+ – 1 = (Mn – Mm+)/Mm+ in Eqs. (5.24): the
difference in mobilities characterizes the variation of
the electron states in a layer due to the penetration from
the neighboring layers and departure to those layers.
Similar reasoning is used to explain the emergence of the
σbn/κ = eMmnn combination appearing in Eqs. (5.18): the
variation of conductivity in the n layer is defined by the
mobility in the m layer.

Note yet another result which appears to be of
importance, namely, the possibility of variation of con-
ductivity of both signs, i.e., of both direct and inverse
effects of giant magnetoresistance. In the general case,
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a
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it is difficult to predict the sign of the effect based on
qualitative reasoning. Most apparent, perhaps, is the sit-
uation for options 2 (4.14) and 3 (4.18) with predomi-
nating specular transmissions through interlayer sur-
faces. In the case of thick m layers but thin n layers,
when the size reduction of conductivity (more pre-
cisely, of mobility) is realized only in the n layers (on
condition that ζ @ d/l), the conductivity in the latter
layers will be defined by the arrivals from the neighbor-
ing m layers; in so doing, the unreduced m mobility is
also “introduced.” It is clear that, in this case, the AP
configuration will define a higher value of effective
conductivity in the n layers, because carriers with both
spin projections are introduced, while in the case of P
packing they are introduced only with one (within
adopted restrictions for options 1 and 2) or mostly with
one (in a more general case) spin projection. In the final
analysis, the quantity δσ(n) turns out to be negative (see
Eqs. (5.8) and (5.10)). In the case of weak diffuse sur-
face scattering (ζ ! l/d), the mobility in the n layers
retains its bulk value, so that the departures to the m lay-
ers become significant as well; in the final analysis, the
effective conductivity comes to depend on the differences
between the n and m mobilities (see Eqs. (5.7)–(5.10)).
In samples with thin layers of both types, analogous
reasoning explains the result given by Eqs. (5.24). As to
the situation under conditions of significant diffuse
fractions in the surface processes, the results of our
analysis demonstrate that, in the case of the AP  P
reorientation, one can expect a positive variation of
conductivity (i.e., the effect of negative magnetoresis-
tance), even if without a priori grounds for a giant mag-
nitude of this variation. Other combinations of the cor-
relations between the scattering parameters and the
characteristics of electron groups, which provide for
the possibility of giant variations of conductivity,
exhibit, as was shown above, a great diversity and
require concrete data for estimating the real magnitude
and sign of the effect.

The objectives of my study did not include qualita-
tive comparison with experiment. For this purpose, the
problem would have to be concretely defined: the data
on real energy spectra of laminated metals (for exam-
ple, from [46–48]) would have to be used instead of
parabolic laws of dispersion given by Eqs. (2.3) and
(2.4). Note, for example, that a Fe/Cr system corre-
sponds to option 1 according to the classification of
possible ratios of Fermi momenta introduced in Sec-
tion 4; for a Co/Cu system, the data pertaining to
options 2 or 3 could be used, under conditions of simi-
larity between the momentum for copper and some
Fermi momentum or other for cobalt. In order to
describe the surface scattering, one must use the mech-
anisms and field configurations that fit the situation (as
in [9, 22] or, for example, in [49]) and treat samples of
a concrete structure, and so on. Some fairly general
results of my analysis may be compared with experi-
mental data. In a number of studies, significant varia-
tions of the value of giant magnetoresistance were
ICS      Vol. 94      No. 3      2002
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observed when the interlayer surfaces were subjected to
special stimulation; as a result, the specular component
in their scattering properties varied, and an increase
(decrease) in this component was accompanied by an
increase (decrease) in the giant magnetoresistance [49,
50–52]; the dependence of this effect on the layer thick-
ness was investigated, and its decrease with an increase
in dm was observed [53, 54]; an increase in the giant
magnetoresistance with the number of m–n pairs and
the saturation of this behavior were demonstrated [53],
which may be compared with the results of analysis in
Appendix B. Naturally, special-purpose experiments
need to be performed. A rather concrete testlike inves-
tigation may be suggested: the difference of the results
between the cases of thin and thick m layers under the
same conditions of surface scattering was demonstrated
above, i.e., a significant variation of the effect during
transition from one type of multilayer sample to
another type of the same composition (when the effect
is regarded as giant in both cases).
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APPENDIX A

Characteristics of Surface Scattering: 
Boundary Conditions

It is assumed that the kinetic Boltzmann equations
are valid in the entire space of a multilayer sample (the
conditions of smallness of de Broglie wavelength on
the Fermi level with respect to the characteristic dimen-
sional parameters such as thickness and free path are

valid). The dependence of the distribution functions 
on z arises due to the nonuniformity of the system. First
of all, the nonuniformity is due to the variation of the
spectral characteristics of electrons from layer to layer.
In addition, a nonuniform distribution of scattering
fields is observed; it is obvious that, in the situation in
which the layers are much thicker than the interlayer
gaps, specific potentials localized in narrow intervals
with respect to z are associated with the latter gaps, so
that these gaps are anomalous as regards their scatter-
ing properties.

The nonuniformity of the scattering properties
shows up in the formalism of kinetic equations in terms
of collision integrals, in the form of the z dependence of
the transition probabilities appearing in those integrals,

(A.1)

f p
s

Sts f( ) = τ p' Ws' p'
sp f p

s'' f p
s–( ), τ pdd∫

s'

∑  = 
d p3

2π"( )3
-----------------.
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Here, W is the density (per unit reduced volume of
momentum space dτp) of the probability of scattering
per unit time, which corresponds to the (sp)  (s'p')
transitions. We restrict ourselves to the Born approxi-

mation for which  = , as well as to elastic
scattering.

In Eqs. (A.1), the probabilities of respective bulk
scattering appear in one of the layers (over the extent of
uniform material), which are described by quantities
that are uniform with respect to z (are associated with
scatterers uniformly distributed in the bulk). For ana-
lyzing the behavior of electrons within the layers, it is
sufficient (for the purposes of the problem being
treated) to resort to the relaxation time approximation,
as given in Eq. (2.8). The variation of electron distribu-
tion in interlayer gaps, which are assumed to be much
thinner than the scattering probabilities locally identi-
fied in the interfaces, may be used to find correlations
between the values of distribution functions at the
edges of these gaps. When the gap thickness is ignored,
such correlations will serve the function of boundary
conditions relating the solutions of kinetic equations in
successive layers j and j' on both sides of the separating
interface z = zjj'. This program may be conveniently exe-
cuted with the aid of overdetermination of the probabil-
ity density W in Eqs. (A.1) and its reduction to the form
suitable for describing the scattering by a flat object
(see, for example, [55–57]). If, in calculating the tran-
sition probability, the wave function of the initial state
is normalized to a flux of unit density normal to the sur-
face, we will obtain the probability density of scattering
V per unit thickness of the range of effect of flat scatter-
ers (rather than per unit time, as in the case of W). These
characteristics are related as

(A.2)

The quantity V is used to describe the scattering which
is inevitable for the flux incident on the surface. The
involvement of all surface scatterers (characterized by
the quantity V integrated with respect to the interlayer
gap thickness) and the inclusion of all possible final
states (s'p') corresponding to the reflections (change of
sign of v z) and transmissions to the neighboring layer,
i.e., the summation with respect to s' and integration
with respect to , provide for reliable realization of
departure from the state (sp) in the initial layer, as
expressed by the normalizing relation

(A.3)

(the integral with respect to dz covers the range of local-
ization of flat scatterers in the interlayer region).

In treating the boundary region, we will use in the
interlayer gap (in the vicinity of z = zjj') the collision
integral according to Eqs. (A.1), expressed in terms of
the functions V. We will write the kinetic equation for

Ws' p'
sp Wsp

s' p'

Ws' p'
sp v z Vs' p'

sp .=

dτ p'

τ p' V1s' p'
spd∫

s'

∑ 1, V1 V zd∫= =
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the nonequilibrium addition  in Eq. (2.7), divide all
terms of the equation by vz, and integrate with respect
to the gap between the layers j and j'. The boundary
conditions formally follow from here as the extent of
the integration range tends to zero (while retaining the
resultant nonzero contribution by the integrals V1
according to Eqs. (A.3)). For the case of vz > 0, we find

(A.4)

(here, the factors ∂f0/∂ε are omitted: they are the same
with all terms; in the collision integral, this is provided
for by the condition of elasticity of scattering). The col-
lision parameters V1 bear the layer indexes j and j'
which correspond to the following types of transitions
during scattering: to arrivals to the state (jsp) from the
states (j's 'p ') (transmissions) and (j's 'p ') (reflections)—
positive terms on the right in Eq. (A.4); and to depar-
tures from the state (jsp) to the states (j 's 'p ') (transmis-
sions) and (js 'p ') (reflections)—negative terms in
Eq. (A.4). The indexes r(l) indicate that the jth or j'th
layer belongs to the right-hand (left-hand) boundary,
and the symbols > (<) correspond to the positive (neg-
ative) values of the velocity v z. By virtue of the normal-

ization conditions given by (A.3), the terms with 
in Eq. (A.4) are canceled, and the rest are the boundary
condition which relates at point zjj ' the values of the dis-

tribution functions , , and . Similar compu-
tations for v z < 0 will produce the condition of coupling

for , , and .

In order to introduce the scattering parameters sim-
ilar to the Fuchs coefficients and use them in the bound-
ary conditions, we will rewrite the normalizing relation
(A.3) in the form (for the v z > 0 region)

(A.5)

By its meaning, the quantity  is the coefficient of
electron transmission from the state (sp) in the layer j to
the states in the neighboring layer j' with the spin pro-

jection s', and the quantity  is the coefficient of

χ j
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φj'lp
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t j's'
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rs
js p'
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
electron reflection in the state (sp) from the boundary of
the jth layer with transition to the states s' of the same
layer (initial states are indicated starting from above).
The transition coefficients for the case of v z < 0 are
determined analogously. The thus introduced parame-
ters have the meaning of probabilities of the respective
transitions; their set generalizes the set of the Fuchs
parameters, which relate to reflections alone, to the
cases of transmission through boundaries and addition-
ally details the channels of scattering over spin vari-
ables. The scheme of introducing the transition param-
eters may be extended to cover situations involving
groups of electrons differing by other than spin charac-
teristics, for example, by the feature of belonging to
independent “valleys” of the energy spectrum, as in the
case of semimetals or some semiconductors. In this
case, the parameters of respective transitions will
appear, as well as the additional parts in the boundary
conditions, which generalize the relations used in the
investigation of anisotropic size effects [58].

In order to reveal the correlations between various
transition coefficients and their dependence on spin
indexes, which are essential to the problem being inves-
tigated, we will resort to a simplified model of scatter-
ing (in the spirit of Fuchs approximation) after defining
concretely the expressions for the scattering functions

V1. We will identify in  the δ function expressing

the conservation of energy, as well as the factor 
(similarly to the procedure of (A.2)), which will result
in recovering, in the remaining part, the symmetry rel-
ative to permutation of indexes,

(A.6)

Then, the parameters of surface scattering assume the
form

(A.7)

(in writing Eq. (A.7), the presence of the factors

∂ /∂ε = –δ(  – µ) in the nonequilibrium distribu-
tion functions was taken into account), which enables

one to replace  in V1 by µ and use expressions (2.10)
and (2.11) in the δ functions in Eq. (A.7). The next step
is to identify, in the scattering characteristic w, the cor-
related and uncorrelated parts corresponding to the
specular and diffuse cases of the Fuchs model. The cor-
relation in this case implies the conservation of

V1 j's' p'
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jsp v z' δ εjp
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momentum parallel to the surface, which is realized in
the presence of a uniform (along the interlayer inter-
face) component of scattering potential (the potential
which is periodic in the plane will complement the cou-
pling of longitudinal momenta with reciprocal lattice
vectors; we will not take into account the attendant sin-
gularities of scattering). We will further take into
account the contribution due to scattering fields, which
vary randomly in the interlayer planes, and write w in
the form

(A.8)

where, remaining within the Fuchs model, we assume
the parameters wc and wd to be constant and momen-
tum-independent quantities (in so doing, their differ-
ences for the cases of transmission and reflection are
retained, as will be indicated by the indexes t and r,
respectively). From (A.7) follows

(A.9)

Here, Θ is the Heaviside unit function. The parameters

(A.10)

symmetric relative to the permutation of indexes,
appear in Eqs. (A.9). The parameters of diffuse scatter-
ing, which are also assumed to be constant, may be con-
veniently written as

(A.11)

One can easily check that the principle of detailed
balance is automatically valid for each type of tran-

sition processes separately  = 
and so on.

We will turn to the boundary conditions according
to Eq. (A.4) and use Eqs. (A.6) and (A.7) to derive

(A.12)
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Here,

The values of distribution functions at z = zjj' are used

throughout. The boundary conditions for  (on the
other side of the z = zjj' boundary) are written similarly
to (A.11).

APPENDIX B

Assessment of the Part Played by Scattering 
from External Surfaces in the Formation

of Distribution Functions in a Multilayer Sample

We will eliminate  and  in the equations of
set (3.21)–(3.23), from which the coefficients nondiag-
onal with respect to the spin index s are omitted. We use
pairs of neighboring equations containing these param-
eters (with identical spin indexes) to derive

(B.1)

Here and in what follows, the notation

(B.2)

is used.

For the n parameters, we have

(B.3)

(B.4)

(B.5)
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We express the parameters b in terms of a (using the
boundary conditions (3.6) containing one term with
b each) and substitute them into the other equations
to derive the following set of equations for the parame-
ters a:

(B.7)

Here,

(B.8)

We act similarly to derive the set of equations for the
quantities b,

(B.9)

where

(B.10)

The solutions to Eqs. (B.7) and (B.9) are as follows:

(B.11)

where  are Gegenbauer polynomials of the jth order
[57]. We use Eqs. (B.11) to write the sum over the n lay-

ers appearing in the expression for (n) (3.17),
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(B.12)

The summation was performed using the well-known
representation of Gegenbauer polynomials [58]

(B.13)

and recurrent relations. The sum according to Eq. (B.12)
appears in the expression for the specular part of con-
ductivity σc(n) (3.17) along with the analogous term

(K + 1) . Comparison reveals that the latter is
approximately K + 1 times greater: the parameter xs in
Eqs. (B.8) varies from unity (in the case of purely spec-
ular scattering) to a value much greater than unity in the

case of prevailing diffuse scattering and ,   0,
so that (B.12) is estimated by a quantity of the order of

 ~ . A similar comparison may be performed for
the m parameters, as well as for the quantities δA, δa,
and δb, and with the same estimation.

The obtained result has a simple qualitative valida-
tion: the special features of the effect of external sur-
faces on the electron behavior must affect the overall
electric conductivity of the entire system the less, the
larger the number of conducting layers.
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Abstract—Using a photothermal laser deflection technique the profiles of laser-induced hyperacoustic pulses
in single crystal germanium were studied at a subnanosecond time resolution. It is shown that the hyperacoustic
pulses are excited due to an electron-deformation interaction of photogenerated carriers with the crystal lattice,
which is much more effective than the thermoelastic mechanism of the acoustic wave generation. Evolution of
the hyperacoustic pulse profiles related to the diffraction and acoustic absorption effects was studied. An anal-
ysis of the hyperacoustic signal profiles allowed us to estimate the coefficient of ambipolar diffusion of the pho-
togenerated charge carriers and the coefficient of hyperacoustic wave damping. It is established that the front
of the electron–hole plasma laser-excited in germanium at room temperature propagates at a supersonic veloc-
ity. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Using picosecond optoacoustic techniques, it is pos-
sible to measure the sound velocity in thin films and
determine the thicknesses of thin semiconductor [1, 2],
dielectric [3], conducting polymer [2, 3], and metal [2,
4] films and interfaces between such films [5]. An anal-
ysis of the hyperacoustic signals excited by subpicosec-
ond laser pulses in thin α-SiO2 films allowed the acous-
tic absorption to be studied in a frequency range of up
to several hundred gigahertz [6]. The picosecond opto-
acoustics provides for the possibility of tracing the spa-
tiotemporal dynamics of the energy transfer from elec-
trons to coherent phonons (i.e., to the acoustic oscilla-
tions) and revealing athermal mechanisms of the hyper-
acoustic wave excitation [7, 8]. On the other hand, there
were attempts at determining the effect of hyperacous-
tic waves on the electron spectrum. In particular, it was
reported that hyperacoustic pulses lift up the symmetry
prohibition on the dipole-allowed transitions in con-
ducting polymers [9]. In addition, the picosecond
optoacoustic provides for valuable information about
the electron structure of solids. For example, detection
of the hyperacoustic pulses by measuring changes in
the reflection coefficient induced by these pulses
allowed the contribution of interband transitions to the
acoustic absorption in metal films to be determined
[10]. 

The optical detection schemes have proved to be
especially effective in detecting hyperacoustic pulses.
1063-7761/02/9403- $22.00 © 20627
The original, and still the most popular, method in pico-
second optoacoustics [1] consists in measuring the
sample reflection coefficient modulated by a short
acoustic pulse [3, 6, 9, 10], which is performed using
the well-known excite–probe technique that provides
for a time resolution on the level of laser pulse duration;
within the framework of the same approach, picosec-
ond optoacoustics employs more direct methods: using
the modulated probing beam in the displacement [4]
and interference [5, 11] schemes, it is possible to mea-
sure the mechanical shift of the sample surface. It
should be noted that picosecond optoacoustics typically
measures the time of arrival and amplitude of an acous-
tic signal, while the signal profile could be measured
only in a few cases (see, e.g., [10]). This is caused by an
insufficient signal-to-noise ratio in most experiments
[1–6, 12]. However, the signal profile may carry impor-
tant information about certain details of the acoustic
wave photoexcitation and propagation processes. 

The purpose of this study was to develop the method
of laser hyperacoustic spectroscopy for measuring the
shape of ultrashort acoustic signals and to apply this
technique to investigation of the athermal mechanisms
of the photoacoustic wave conversion in single crystal
semiconductors. We will demonstrate that, within a
picosecond time scale, the electron-deformation mech-
anism of the acoustic wave generation [1, 7, 13] on a
moderate excitation level is much more effective than
the universal thermoelastic mechanism. By studying
features of the acoustic pulse shape, it is possible to
002 MAIK “Nauka/Interperiodica”
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obtain information about the source of excitation—
moving nonequilibrium electron–hole plasma, in par-
ticular, to determine the plasma diffusion coefficient
[14, 15]. For example, using the developed laser hyper-
acoustic spectroscopy technique, we showed that the
front of an expanding photogenerated electron–hole
plasma can propagate at a supersonic velocity [14]. 

In the first part of this paper, we describe a model of
hyperacoustic wave photoexcitation and propagation
(Section 2) and present the main principles of measure-
ments and their experimental implementation (Section 3).
Then, we present the experimental results (Section 4), fol-
lowed by their analysis and discussion (Section 5). The
main results are summarized in the Conclusion. 

2. THE MODEL OF HYPERACOUSTIC WAVE 
PHOTOEXCITATION AND PROPAGATION 

In a semiconductor under pulsed optical action, the
sources of acoustic waves are the spatiotemporal fields
of the lattice temperature T and the nonequilibrium
electron–hole plasma density N. These sources are
responsible for the thermoelastic and electron-defor-
mation mechanisms of the acoustic wave excitation.1

We have employed a one-dimensional model of acous-
tic wave excitation on a mechanically free surface,
since the characteristic depths of light absorption, heat
transfer, and electron–hole plasma diffusion in our
experiments are below 1 µm, while the exciting beam
spot diameter on the sample surface is above 20 µm. 

An equation describing longitudinal acoustic waves
of mechanical displacement U in a semi-infinite homo-
geneous medium is as follows [7, 8]: 

(1)

where ca is the longitudinal sound velocity, K is the
modulus of dilatation, β is the volumetric expansion
coefficient, d is the sum of electron and hole deforma-
tion potentials, and ρ is the equilibrium density. The
boundary conditions on the free surface is selected in
the following form: 

(2)

where subscripts x and t indicate derivatives with
respect to the corresponding coordinate and time,
respectively. 

On the subnanosecond time scale, we may assume
that the absorption of an exciting photon with the
energy hνL exceeding the bandgap width Eg leads to
the production of an electron–hole pair possessing the
energy Eg and the instantaneous (on the same time
scale) dissipation of the energy hνL – Eg spent for the

1 In piezoelectric semiconductors, the acoustic waves can also be
excited through the so-called inverse piezoeffect [8], whereby the
photogenerated electron–hole plasma produces screening of the
electric field in the sample.

Utt ca
2
Uxx– dNx KβT x–( )/ρ,=

–ca
2Ux t x 0=,( )

=  dN t x 0=,( ) KβT t x 0=,( )–( )/ρ,
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lattice heating. The spatiotemporal dynamics of the
nonequilibrium electron–hole plasma and lattice tem-
perature are described by the diffusion equations with
the corresponding diffusion coefficients D and χ: 

(3)

(4)

where R is the coefficient of reflection of the exciting
beam from the sample surface, α is the coefficient of
light absorption at the excitation wavelength, I is the
excitation pulse intensity, f(t/τL) is the laser pulse enve-
lope, τL is the pulse duration, and C is the isobaric heat
capacity per unit volume. The boundary condition for
Eqs. (3) and (4) corresponds to the zero total diffusion
flux on the surface x = 0. 

The above model does not take into account the pos-
sible nonlinear effects, the contribution of which was
insignificant in our experiments (see Section 4.2) and
ignores processes of the electron–hole plasma recombi-
nation. An analysis [16] showed that the rates of various
recombination processes (surface, linear, and Auger) in
Ge single crystals on our time scale (0.1–1 ns) are small
and do not influence the profiles of hyperacoustic sig-
nals. Note that the surface recombination process can
be ignored unless the recombination rate is smaller than
the sound velocity; this conclusion follows both from
the theory [8] and from the results of experiments on
samples with properly prepared surfaces [16]. 

Now, we present some reference data on the Ge
crystal parameters at room temperature, which will be
used below: Eg = 0.65 eV; C = 9 J/(cm3 K); ρ = 5.3 g/cm3;
ca = 5.6 × 105 cm/s (in the [111] direction); K = 75 GPa;
β = 1.8 × 10–5 1/K; D = 65 cm2/s; χ = 0.35 cm2/s [17];
d = –K∂Eg/∂P ≈ –5 eV [18]. The optical absorption
coefficients for the excitation wavelength employed in
the experiments, λ1 = 1064 nm and λ2 = 532 nm (hνL =
1.17 and 2.33 eV, respectively), are α(λ1) ≈ 1.4 × 104 cm–1

[18] and α(λ2) ≈ 5.3 × 105 cm–1 [19]; the reflection coef-
ficient, R ≈ 0.5. In our experiments, the excitation pulse
energy densities were IτL ≤ 50 µJ/cm2, from which we
obtain using Eq. (3) an upper estimate for the electron–
hole plasma density: N ≈ 1018 cm–3. 

The hyperacoustic signal profiles were determined
by analytically solving Eqs. (1)–(4) in a spectral repre-
sentation [7, 8], followed by the inverse Fourier trans-
form. For the electron-deformation mechanism, the
source of acoustic oscillations is described by Eq. (3)
and a solution to the problem (1)–(3) outside the exci-

Nt DNxx–
1 R–( )α I

hνL

------------------------ αx–( ) f t/τL( ),exp=

Tt χT xx–
1 R–

C
------------ 1 Eg/hνL–( )αL=

× αx–( ) f t/τ1( ),exp
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tation region (determined by max{α–1, (DτL)1/2}) is as
follows [7]: 

(5)

where ωD = /D is a characteristic frequency for
which the wave vectors of the acoustic and diffusion
waves are compared; mD = αD/ca is the ratio of the time
of acoustic wave propagation to the time of carrier dif-
fusion over the region of light absorption (α–1); f(ω) =

exp(–ω2 ) is the envelope spectrum of the exciting

laser pulse; and U0 = (1 – R)dIτL/(hνLρ ) is a charac-
teristic displacement. As can be seen from expression
(5), the spectrum and, hence, the time profile of the
acoustic signal are determined by the same sample
parameter—the ambipolar diffusion coefficient D of
the photogenerated carriers (assuming that the α and ca

values are known). 

For the thermoelastic mechanism described by
Eq. (4), a solution is given by the same expression (5) in
which D is replaced by χ. In this case, the characteristic

displacement is U0 = –(1 – R)(1 – Eg/hνL)KβIτL/(Cρ ).
As can be seen from Eq. (1), the ratio of efficiencies of
the electron-deformation and thermoelastic mecha-
nisms is B = Nxd/(KβTx). Using Eqs. (3) and (4) and
solution (5) and ignoring the transfer of heat and free
carriers during the optical excitation time τL, this ratio
can be expressed as B = Cd/(Kβ(hνL – Eg)). For λ1, this
yields β ≈ 20, which indicates that the electron-defor-
mation mechanism in Ge single crystals is significantly
more effective than the thermoelastic mechanism.
Below, we will demonstrate that our experimental data
agree with this estimate. It should be noted that the
obtained estimate for B is correct for moderate excita-
tion levels (N < 1019 cm–3), that is, until we can neglect
the nonlinear recombination processes capable of satu-
rating the linear relationship between N and I. 

The effects of propagation of the hyperacoustic sig-
nals were taken also into account in the spectral form.
The calculated spectrum of displacements in the acous-
tic wave U(ω) given by expression (5) was multiplied
by the function K(ω, x) = Ka(ω, x)Kd(ω, x) [8] taking
into account the absorption and diffraction of the
acoustic wave. In this function, the absorption factor is 

(6)

where γ = 2.8 cm–1 GHz–2 for crystalline Ge in the [111]
direction [20]. In the quasi-optical approximation, the

U ω( ) U0

mDωD

ωD iω+
-------------------=

×
ωD

ω2 mD
2 ω2+

-------------------------- 1

iωD– mD ωD iω–+( )
------------------------------------------------------------+ f ω( ),

ca
2

τL
2

ca
2

ca
2

Ka ω x,( ) γω2x/4π2–( ),exp=
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diffraction factor can be expressed as [21] 

(7)

where a is the acoustic beam radius (on the 1/e level)
for x  0 and Ld = ωa2/2ca is the characteristic dif-
fraction length for the spectral component ω. Note that
an allowance for the diffraction within the quasi-optical
approximation is correct for acoustic wavelengths
much shorter than the transverse size of the acoustic
beam (λ ! 2a). 

In addition to the absorption and diffraction effects,
an analysis of the hyperacoustic wave propagation in a
crystal must take into account the effect of phonon
focusing [22], since this phenomenon changes the
amplitude–phase relationships between spectral com-
ponents of the acoustic signal. We have estimated the
phonon focusing effect on the hyperacoustic signal pro-
file in experiments with the samples oriented in the
focusing and defocusing directions [16]. To within the
experimental accuracy, we observed no difference
between the profiles measured in these two cases. For
this reason, the phonon focusing effect is ignored
below. 

3. EXPERIMENT: METHOD, SCHEME, SAMPLES 

The idea of the photothermal displacement method
involving the measurement of small shifts of the sur-
face of a solid sample is as follows [23]. An acoustic
beam reaches the sample surface and deforms the mate-
rial (Fig. 1a). At the same time, a probing light beam
focused on the deformed region is mirror-reflected
from this surface area. The material straining induces a
small deflection of the beam axis in proportion to the
slope of the deformed surface and, hence, to the surface
displacement. This small deflection is measured by a
position-sensitive detector (see, e.g., [24, 25]). There is
a significant disadvantage in the originally proposed
scheme of measurements: the response signal may con-
tain a contribution not related to the mechanical shift of

Kd ω( )
1

1 ix/Ld+
---------------------- r2

a
2

1 ix/Ld+( )
--------------------------------– ,exp=

1

2
(a) (b)

Ge
Ge

1 2

SiO2/TiO2

PSD

Fig. 1. Schematic diagrams illustrating the laser beam
deflection measurements for the sample excited and probed
(a) from the opposite sides and (b) from the same side
coated with a dielectric mirror film: (1) probing beam;
(2) exciting beam; (PSD) position-sensitive detector. 
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the sample surface if the excited and probed regions are
on the same sample surface [26]. 

As will be demonstrated below, the propagation
effects produce a significant influence on the profile of
our hyperacoustic signals only for the pathlengths on
the order of x ~ 100 µm. For this reason, it was impor-
tant to measure the hyperacoustic signal profile at a
point as close as possible to the region of excitation. For
this purpose, we used a scheme with excitation and
probing of the same sample surface (Fig. 1b) [27]. In
order to eliminate the optical interaction of exciting and
probing beams, the sample was coated by a dichroic
mirror layer transmitting the former beam and reflect-
ing the latter beam before reaching the excitation region
on the Ge crystal surface. 

We have developed a method of laser beam deflec-
tion measurements with a sensitivity of ~0.1 nrad to the
laser beam deflection angle [28], based on the RF lock-
in amplification technique. Using this method, it is pos-
sible to measure small surface deformations with an
amplitude of ~0.1 pm at a time resolution on the level

1
2

3

4

56

7

8

9

Fig. 2. Schematic diagram of a laser beam deflection spec-
trometer: (1) picosecond laser; (2) nonlinear crystal;
(3) electrooptical modulator; (4) delay line; (5) mechanical
chopper; (6) position-sensitive detector; (7) frequency con-
verter; (8) lock-in detector; (9) sample. 
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of the laser pulse duration. A scheme of the laser deflec-
tion spectrometer is depicted in Fig. 2. The exciting and
probing radiation beams were generated by a continu-
ously pumped double-frequency picosecond Nd:YAG
laser operating on the wavelengths λ1 = 1064 nm and
λ2 = 532 nm. The λ1 pulses were produced at a repeti-
tion frequency of 100 MHz and had a duration of τL ≈
100 ps. The exciting and probing radiation beams were
focused by lenses onto the sample surface, showing
spots with a characteristic size of 20–100 and 15–20 µm,
respectively. The surface energy density in the exciting
beam could be varied from 0 to 5 µJ/cm2. The photore-
sponse detection technique is described in detail else-
where [16, 29, 30]. 

The samples were [111]-oriented Ge plates cut
from an undoped single crystal Ge ingot. The exper-
iments were performed with the samples of three
types: (i) ≈5-mm-thick plates polished to an optical
quality from one side; (ii) analogous plates with the fin-
ished side coated by multilayer dielectric films (dich-
roic mirrors) (Fig. 1b); and (iii) ≈100-µm-thick wedge-
shaped plates (Fig. 1a) polished to an optical quality
from both sides. The coated sample had three surface
regions with different numbers of sequentially depos-
ited TiO2 and SiO2 layers m = 8, 18, and 36. These films
transmitted well the exciting laser radiation (λ1 = 1064 nm)
and reflected the probing radiation (λ2 = 532 nm), the
reflection coefficient being about 90% for the sample
surface region with m = 8 and ≥99% for the coatings
with m = 18 and 36. The layer thicknesses were l1 =
0.18 µm for SiO2 and l2 = 0.12 µm for TiO2, as esti-
mated from the optical thickness of λ2/2 films. The
angle between faces of the wedge-shaped samples was
≈3°, which excluded interference of the acoustic pulse
reflected from the crystal–air interface (responsible for
the echo signals in the probing channel). 

4. EXPERIMENTAL RESULTS 

4.1. Hyperacoustic Signal Excitation

In order to probe the hyperacoustic response in the
vicinity of the photoexcitation region, we used the
scheme presented in Fig. 1b with a sample of the first
type (uncoated). The probing channel yielded two sig-
nals, including a deflection signal δθ(t) and a signal due
to the photoinduced reflection δR(t). The latter signal
was detected by a position-sensitive detector section
onto which a probing beam was focused. 

Figure 3 shows typical profiles of the δθ(t) and δR(t)
signals. The peak values of the relative variation in the
reflection coefficient was δR(t)/R ≈ –2 × 10–4; the
deflection signal δθ(t) showed a relative change in the
photocurrent on the same level. A characteristic feature
of the signals measured is a sharp leading front with a
duration of~100 ps observed at the point of coincidence
of the exciting and probing radiation pulses. As can be
seen from Fig. 3, the two signal profiles virtually coin-
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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cide in both leading and trailing fronts. Therefore, the
deflection signal is related to an optical interaction of
the exciting and probing beams on the sample surface,
rather than to a mechanical displacement of this surface
[26]. As was demonstrated in [16, 26], this deflection
signal is due to a transverse phase gradient of the pho-
toinduced complex reflection coefficient. 

In order to eliminate the optical interaction of the
exciting and probing beams on the sample surface, we
performed an experiment with Ge samples coated with
dichroic mirror layers. The mirror layer allowed the
excited and probed regions to be spatially separated
by ~1 µm, thus significantly suppressing the optical
interaction of the exciting and probing beams. Figure 4
shows the time variation of the deflection signal for
three coatings of different thickness on the same sam-
ple. The mirror with m = 8 (curve 1) transmitted about
10% of the probing beam, which produced a deflection
signal in the region of zero delay, the profile of which
was similar to that of a deflection signal measured in
the photoexcitation region (Fig. 3). The second peak in
curve 1 of Fig. 4, observed at a delay time of ~0.3 ns
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Fig. 4. Time variation of the deflection signal for a sample
with dielectric mirror coatings containing various numbers
of layers m = 8 (1), 18 (2), and 36 (3). 
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relative to the first peak, is due to the dielectric coating
being strained by the photoexcited acoustic pulse. The
position of each maximum in the acoustic response (the
second and third peaks in curve 1 and the peaks in
curves 2 and 3) corresponds to a delay of the acoustic
signal propagating in the coating τ = lm/ca, where ca ≈
7 × 105 cm/s is the average sound velocity in the coating
and l = (l1 + l2)/2 is the average film thickness. The third
peak in curve 1, which is delayed by ~1.3 ns relative to
the excitation pulse, is attributed to the acoustic signal
traveling three times across the multilayer film. As can
be seen from Fig. 4, the acoustic pulse rise and fall
times increase with the number of layers in the dielec-
tric coating. 

Thus, the experiments with Ge crystal samples
excited and probed from the same side coated with
dichroic mirror layers showed a displacement of the
mirror layers under the action of an acoustic signal
excited near the germanium surface. 

4.2. Hyperacoustic Signal Propagation

Let us consider the results of experiments with
wedge-shaped samples excited and probed from the
opposite surfaces (Fig. 1a). Figure 5a (solid curve)
shows a deflection signal corresponding to a single pas-
sage of the acoustic signal across the sample (path-
length x ~ 110 µm). A characteristic peak amplitude of
the surface displacement was ~5 pm, which is close to the
value calculated within the framework of the electron-
deformation mechanism (formula (5)). Also depicted in
Fig. 5a are the acoustic signals having passed a length of
x ≈ 770 and 2300 µm. The pathlength traveled by the
acoustic signal was calculated using the corresponding
delay of the deflection signal relative to the excitation
pulse front. The signal that traveled a distance of
110 µm exhibits a bipolar profile; the profile width
increases with the path traveled by the acoustic signal
(Fig. 5a). It should be noted that the hyperacoustic sig-
nal front duration weakly depended on the propagation
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length and amounted to ~250 ps (on the 1/e level). A
maximum of the acoustic signal spectrum was close to
1 GHz irrespective of the propagation length (Fig. 5b). 

The propagation effects significantly change the
acoustic signal profile. As can be seen from Fig. 5b, the
acoustic absorption decreases the high-frequency com-
ponents of the signal spectrum (formula (6)), while dif-
fraction decreases the low-frequency components (for-
mula (7)). As a result, the absorption leads to extension
of the leading and trailing fronts of the pulse, while dif-
fraction mostly reduces to differentiation of the signal
profile. Indeed, for a given spectral component ω of the
signal, formula (7) with x @ Ld  describes differentia-
tion of the profile with respect to time on the beam axis
(r = 0). Using the high-frequency (above 1 GHz) spec-
tral components (corresponding to different propaga-
tion lengths) of the acoustic signal (Fig. 5b), the absorp-
tion coefficient γ was calculated by formula (6) (Fig. 6).
This calculation yielded 3 cm–1 GHz–2 [16], which
agrees with the published reference value [20]. 
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Fig. 6. A plot of the ratio of the high-frequency spectral
components (Fig. 5b) versus f 2 for x = 770 and 110 µm
(∆x = 660 µm). 
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The acoustic signal profile did not change when the
excitation pulse energy density was varied in the range
from 5 to 50 µJ/cm2, while the signal amplitude
increased in proportion to the excitation energy [16].
Therefore, various possible nonlinear effects did not
play any significant role for the excitation energy level
studied (N ~ 1017–1018 cm–3). 

4.3. Relative Efficiency of the Thermoelastic 
and Electron-Deformation Mechanisms

Figure 7 shows the hyperacoustic signal profiles for
two excitation wavelengths (λ1 = 1064 nm, λ2 = 532 nm).
As can be seen, the two profiles are very close in shape,
which is indicative of an almost identical spatiotempo-
ral localization of the corresponding acoustic sources,
although the optical absorption of germanium at these
wavelengths differs by more than one order of magni-
tude: α–1(λ1) @ α–1(λ2). Indeed, the depth of heat trans-
fer during excitation is LT = (χτL)1/2 ≈ 0.1 µm, while the
electron–hole plasma diffusion depth is about ten times
as great, LN = (DτL)1/2 ≈ 1 µm, so that LN ≈ α–1(λ1).
Therefore, the regions of localization of the photoex-
cited electron–hole plasma in the sample excited at λ1
and λ2 for the time ~τL are approximately equal, while
the regions of heating determined by max(LT , α–1) are
significantly different. Thus, we may conclude that the
main contribution to the hyperacoustic signal excitation
for both wavelengths is related to the electron-deforma-
tion mechanism. 

In order to directly compare efficiencies of the ther-
moelastic and electron-deformation mechanisms of the
optoacoustic response formation, we performed an
experiment in which the signal at λ1 was excited in an
Al–Ge sample representing an Al film with a thickness
of several tens of nanometers deposited onto a Ge plate
surface. The exciting laser beam was incident to the
Al-coated surface of the sample. In this experiment, the
optoacoustic signal intensity measured in the scheme of
Fig. 1a dropped by a factor of 30. Since the Al film was
nontransparent, acoustically thin, and (to the first
approximation) thermally thin as well, we may suggest
that the acoustic signal in the Al–Ge sample is excited
due to the near-surface layer of Ge being heated by the
Al film [31]. With an allowance for a difference
between the reflection coefficients of Ge and Al at the
excitation wavelength (λ1), it was established [31] that
the efficiency of the thermoelastic mechanism is lower
approximately by one order of magnitude than that of
the electron-deformation mechanism (on our time
scale). This result agrees with an independent estimate
obtained in Section 2. 

5. ANALYSIS AND DISCUSSION OF RESULTS 
Below we will compare the hyperacoustic signal

profiles obtained in the experiment (Section 4) to those
calculated within the framework of the model devel-
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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oped for description of the electron-deformation mech-
anism of the hyperacoustic wave excitation (Section 2)
with an allowance for the diffraction and absorption
effects. 

5.1. Hyperacoustic Signal Excitation 
in Multilayer Coatings

Figure 8 shows the hyperacoustic signal profile cal-
culated by formula (5) for a point in the vicinity of the
excitation region (x  0). This curve is compared
with the deflection signal dynamics observed for a Ge
crystal plate coated with a reflecting film containing
m = 18 layers. A difference between the experimental
data and the results of calculation is evident: the mea-
sured profile exhibits extended leading and trailing
fronts in comparison with the model curve. 

The observed time delay and increased duration of
the deflection signal (Fig. 4) observed for the sample
with multilayer coatings are explained by two factors:
optical and acoustic. The former is related to certain
features of the probing beam reflection from the multi-
layer dielectric mirror. Indeed, the probing laser pulse
is not only reflected from the outermost layer (distant
from the crystal surface), but penetrates into the film as
well, to be reflected from deeper layers (up to about
ten). The coefficient of reflection of the probing radia-
tion from an SiO2/TiO2 interface is rather significant:
(n1 – n2)/(n1 + n2) = 0.22, where n1 = 1.46 and n2 = 2.3
are the refractive indices of SiO2 and TiO2. Thus, the
deflection signal formed due to the probing light reflec-
tion from many interfaces contains contributions from
several layers, which are separated by the characteristic
time interval required for the acoustic pulse to travel
through a single layer. For a pair of adjacent SiO2 and
TiO2 layers, the average delay time per layer is τ =
l/ca ≈ 40 ps. Note that the time delay due to the light
propagation through the coating is smaller by three
orders of magnitude as compared to the acoustic pulse
delay and, hence, can be ignored. The second (acoustic)
factor is related to interference of the acoustic signal in the
multilayer coating, which is caused by a difference in the
acoustic impedance of SiO2 and TiO2 layers amounting
to Z1 = 3.4 × 106 g/(cm2 s) and Z2 = 1.5 × 106 g/(cm2 s),
respectively. The difference between Z1 and Z2 leads to
a significant coefficient of reflection of the acoustic sig-
nal from the SiO2/TiO2 interface: (Z1 – Z2)/(Z1 + Z2) ≈
0.4 (with respect to amplitude). Obviously, both optical
and acoustic factors lead to a time delay and broadening
of the deflection signal with the characteristic times
determined by the acoustic signal propagation across
the coating (mτ) and across the depth required for the
reflected signal formation (~10τ). 

It should also be noted that the model of acoustic
signal excitation on the free surface of germanium
described by Eqs. (1) and (2) is, generally speaking,
valid only for an acoustically thin coating with a thick-
ness of ml ! λ, where λ is a characteristic acoustic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
wavelength. Under the conditions studied, the exciting
laser pulse gives rise to a wideband acoustic signal with
a maximum spectral density at a wavelength of about
5 µm (see the spectra in Fig. 5b). Therefore, the approx-
imation of acoustically thin film is obeyed, even with a
thinnest coating of m = 8 layers (ml ≈ 2.4 µm), only for
the longwave components of the hyperacoustic pulse.
Thus, the adopted model of the acoustic pulse excita-
tion on the free crystal surface is not quite correct. 

In addition, note that the experimental signal pro-
files exhibit an overshoot (Fig. 4) probably related to a
complicated mechanism of interaction between the
probing pulse and the hyperacoustic response formed
in the multilayer coating. A detailed analysis of the
measured deflection signal requires taking into account
the multibeam interference of both the probing light
and the hyperacoustic wave in the multilayer coating,
as well as their interaction, which falls outside the
scope of this publication. 

Thus, the multilayer dielectric coating (a dichroic
mirror for the exciting and probing beams) deposited
onto the semiconducting crystal sample allows the
excitation region to be spatially separated from the
region of hyperacoustic signal generation and detec-
tion, thus suppressing a spurious deflection signal not
related to the mechanical displacement of the sample
surface (Fig. 4, the first peak in curve 1). On the other
hand, although the time profile of the measured deflec-
tion signal is determined primarily by the hyperacous-
tic pulse excited in Ge, the effects of optical and acous-
tic signal interference in the multilayer mirror film does
not provide for an adequate profile description within
the framework of the model developed in Section 2.
Nevertheless, the experiments on a sample with multi-
layer coating definitely showed that the hyperacoustic
signal excited in Ge single crystal is unipolar, whereas
the signals measured after traveling through a distance
of x ≥ 100 µm (Fig. 5a) are bipolar. From this, we con-
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clude that the propagation effects significantly change
the hyperacoustic signal profile even over relatively
small distances. 

5.2. Hyperacoustic Signal Propagation

Let us compare the calculated hyperacoustic pulse
profiles to the experimental signals observed with a
wedge-shaped sample. As demonstrated above (Sec-
tion 4), the acoustic absorption leads to broadening of
the experimental profile. An analysis of the signal spec-
tra obtained for various propagation lengths allowed
the acoustic absorption coefficient to be estimated at γ ≈
3 cm–1 GHz–2. For this γ value, we may ignore the
absorption of low-frequency components (below 1 GHz)
of the signal spectrum in the range of propagation
lengths studied (<3 mm). Therefore, a significant mod-
ification of the signal profile can be related, besides the
broadening, to the diffraction effects. Based on the
model developed for description of the electron-defor-
mation mechanism, we have calculated the hyperacous-
tic pulse profiles (see [14, Fig. 3]) with an allowance for
both diffraction and absorption (formulas (5)–(7)) for
the known parameters of Ge (see the data in Section 2).
The results showed good coincidence of the leading
fronts of model pulses and experimentally measured
signals (Fig. 5a) for various propagation lengths, but
the profiles showed not as good a fitting. 

The most significant discrepancy was observed for
x = 110 µm. The calculated profile exhibited a weakly
pronounced negative phase, while the experimental sig-
nal showed a fast negative phase with a characteristic
duration below 0.5 ns. At the same time, the calculated
profile acquired a more pronounced negative phase
upon taking into account the diffraction effects. How-
ever, the duration of this phase was significantly shorter
than the experimental value even for large diffraction
lengths (see [14, Fig. 3]). We explain these discrepan-
cies by incorrect description of the diffraction of low-
frequency components (below 1 GHz) within the
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framework of the quasi-optical approximation, which is
valid for λ = 2πca/ω ! 2a (formula (7)). Indeed, the
model pulse spectra calculated with neglect of the prop-
agation effects (x  0) show that a characteristic fre-
quency of the energy concentration for the model pulse
is ~0.1 GHz, which corresponds to a hyperacoustic
wavelength approximately equal to the acoustic beam
diameter (λ ≈ 2a). 

A comparison of the experimental signal to the pro-
file calculated for a greater propagation length x =
2300 µm (Fig. 9) shows a much better agreement than
that observed for x = 110 µm. We attribute this behavior
to the fact that, for large x, the diffraction strongly sup-
presses the low-frequency components of the spectrum
(which are incorrectly described in the quasi-optical
approximation). As a result, the quasi-optical approxi-
mation provides for a rather adequate description of the
remaining spectral components. Thus, we may con-
clude that the second (negative) phase of the hypera-
coustic signal appears as a result of the pulse propaga-
tion, rather than during photoexcitation. The same con-
clusion follows from the results of experiments with the
acoustic pulse detection on the excited surface, where
the observed signal shows a unipolar profile (Fig. 8). It
should be emphasized that such a profile is predicted by
the model of acoustic wave excitation at x  0 (see
the solid curve in Fig. 8). 

5.3. Supersonic Expansion 
of the Electron–Hole Plasma

Of special interest for us was the leading front dura-
tion of a hyperacoustic pulse, since this information
helps answering the question concerning the regime of
expansion of the photoexcited electron–hole plasma.
This question, which has been extensively discussed
since the 1980s [32–36], can be briefly formulated as
follows: Is it possible to directionally accelerate the
charge carriers in a solid up to a hypersonic velocity?
The presence of a sound velocity barrier for the expand-
ing electron–hole plasma is related to the possibility of
“feedback” of the phonons emitted at the density front
of the expanding electron–hole plasma on the velocity
of this front.2 At the beginning of the 1980s, a series of
low-temperature experiments with the electron–hole
plasma “drops” accelerated up to subsonic velocities
were performed with single crystals of Ge [33] and Si
[34]. It was demonstrated that these drops could not be
accelerated to a supersonic velocity. At the same time,
rougher (in our opinion) estimates of the electron–hole
plasma velocity, based on an analysis of the Raman
scattering line shape of the light emitted from the
excited plasma [36], did not point to the presence of
such a barrier and suggested that the plasma may prop-
agate at a speed of the order of the Fermi velocity. 

2 An exhaustive review devoted to the problem of sound velocity
barrier and the methods for evaluation of the photoexcited elec-
tron–hole plasma velocity is given in [31].
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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Recently [14], we proposed a method for estimating
the electron–hole plasma velocity using the duration of
the plasma-excited acoustic pulse. The idea of this
method is based on the following considerations. Since
the acoustic signal is generated at the photoexcited
electron–hole plasma density front moving inward the
sample, the moment of the acoustic pulse arrival at the
rear face of the sample will depend on the plasma prop-
agation velocity. The proposed method can also be
applied to an electron–hole plasma propagating in the
diffusion regime. In this case [14, 31], the hyperacous-
tic pulse front will acquire an additional broadening
depending on the electron–hole plasma diffusion rate.
By this rate, we imply an effective velocity of the elec-
tron–hole plasma density front propagation [14], which
is equal to VD = αD immediately upon photoexcitation.
Thus, the parameter mD = αD/ca introduced in expres-
sion (5) has the meaning of a Mach number: mD is the
ratio of the effective plasma diffusion rate immediately
upon photoexcitation to the sound velocity. At an exci-
tation wavelength of λ1 = 1064 nm, the best coinci-
dence of the model and experimental fronts of the
hyperacoustic signals is obtained for D ≈ 50–70 cm2/s,
which corresponds to the published reference value.
This D value corresponds to the Mach number mD ≈ 1.5.
From this we may conclude that a Ge single crystal at
room temperature features a regime of the electron–
hole plasma diffusion at a supersonic rate. In this
regime, the electron–hole plasma velocity drops down
to the velocity of sound within a time period on the
order of the hyperacoustic pulse rise time τD [14], that
is, within ~200 ps. A difference of the experimental pulse
front from that calculated for a subsonic diffusion regime
can be experimentally observed (see [14, Fig. 3]). 

It should be noted that, for the photoexcitation
wavelength λ2 = 532 nm, the Mach number must be sig-
nificantly greater than 1.5 because α(λ2) @ α(λ1).
Indeed, the electron–hole plasma excited at λ2 in a thin
layer on the order of α–1(λ2) ≈ 20 nm diffuses within the
excitation pulse duration over the characteristic length
(DτL)1/2 ≈ 1 µm. Therefore, the effective velocity of
propagation of the electron-hole plasma density front
significantly exceeds the sound velocity. The super-
sonic regime of the electron–hole plasma diffusion in
Ge is possible even at room temperature, since the
internal pressure NkBT (kB is the Boltzmann constant) in
this plasma is higher by three orders of magnitude than
the acoustic field pressure ~dNUx ~ dNU/caτD devel-
oped for the typical mechanical displacements (in our
experiments, U ~ 5 pm). It should be noted that we have
also performed analogous experiments in Si and GaAs
single crystals [37], where it was found that Si features
a subsonic regime of electron–hole plasma diffusion,
while GaAs has a supersonic regime. Thus, an analysis
of the shape of an acoustic pulse excited by the elec-
tron–hole plasma mechanism provides for a correct
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
evaluation of the coefficients of diffusion of the photo-
generated charge carriers. 

6. CONCLUSION 

We have developed a method of laser deflection
spectroscopy for studying condensed media, which is
based on thorough measurements and analysis of the
shape of wideband hyperacoustic pulses in a 0.1–3 GHz
frequency range. The proposed technique employs
laser beam deflection measurements with a sensitivity
limited by photocurrent shot noise. An important con-
clusion of this study is that, under moderate excitation
densities in a semiconductor (<1019 cm–3), the electron-
deformation mechanism of acoustic wave excitation
(rather than the universal thermoelastic mechanism)
dominates on a subnanosecond time scale. We have
also developed a method for estimating the rate of dif-
fusion of the photoexcited carriers based on the analy-
sis of the related hyperacoustic signal. The most signif-
icant physical result of this study is the conclusion
about a supersonic velocity of propagation of the pho-
toexcited electron–hole plasma density front in Ge.
Note that the fast diffusion of the electron–hole plasma
leads to spatial “smearing” of the photoacoustic excita-
tion source (that is, the electron–hole plasma front),
thus leading to expansion of the hyperacoustic signals
with time. 
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Abstract—The dielectric properties of an antiferroelectric B2 phase representing a homolog (n = 14) from a
series of 4-chloro-1,3-phenylene-bis[4-(4-n-alkylphenyl)aminobenzoates] with banana-like molecules were
studied. The temperature dependence of the dielectric relaxation time was measured, and the corresponding
activation energy was determined. The kinetics of the dielectric permittivity was studied in the course of the
polarization vector variation under the action of a low-slope triangular bias voltage in the entire temperature
range of existence of the B2 phase. Dependence of the dielectric permittivity on the electric field strength (bias
voltage) is determined by the presence of two polar subsystems forming the antiferroelectric B2 phase. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

In recent years, polar [12], antiferroelectric [2–5],
and ferroelectric [6] liquid crystals (LCs) were synthe-
sized, which (in contrast to the previously known chiral
ferro- and antiferroelectric LCs [7, 8]) are composed of
nonchiral (mirror-symmetric) molecules and are char-
acterized by large spontaneous polarizations [9]. From
the basic standpoint, of special interest are new LCs
with banana-like molecules [2, 3, 5, 6, 10] capable of
spontaneously forming macroscopic domains possess-
ing a chiral structure as a result of local breakage of the
mirror symmetry [11]. In addition, these LCs exhibit a
fast change of the polarization vector and transparency
under the action of an applied electric field, which
makes the antiferroelectric B2 phase composed of the
banana-like molecules a promising material for display
technology. 

A favorable packing in a smectic layer of molecules
with bent cores is that for which the convex parts of all
these banana-like molecules are oriented in the same
direction parallel to the polar axis. In addition, the pre-
ferred direction of long axes of these molecules in the
plane perpendicular to the polar axis deviates from the
normal to the smectic layer. The breakage of mirror
symmetry, caused by these two factors of molecular
ordering, results in that each smectic layer possesses
chiral properties despite the fact that individual mole-
cules are achiral. In this case, chirality appears due to a
polar order generated by a special steric packing of
banana-like molecules—in contrast to the usual ferro-
electric LCs where the polar order is a consequence of
the intrinsic molecular chirality. 
1063-7761/02/9403- $22.00 © 0637
The antiferroelectric B2 phase of compounds with
banana-like molecules is a tilted smectic phase featur-
ing an isotropic distribution of the mass centers of mol-
ecules in the smectic layer [5]. According to a model
proposed by Link et al. [11], the B2 phase may contain
coexisting antiferroelectric domains of three types:
racemic domains and chiral domains of two types (with
opposite handedness). The chiral domains with oppo-
site handedness are present in approximately equal
amounts [12]. 

In the absence of an external field (Fig. 1b), the race-
mic domains (composed of smectic layers of opposite
handedness) are characterized by the same azimuthal
angles of the tilt planes (determined by the LC director
and the layer normal) of molecules in all smectic layers
(this synclinic structure is analogous to that existing in
smectic C phases), but the spontaneous polarization
vectors PS of the adjacent smectic layers are antiparal-
lel. When an external electric field E is applied, the
handedness of each smectic layer remains the same but
(for the field strength exceeding a certain threshold) the
polarization vectors of all smectic layers are aligned in
the field direction (Fig. 1c). As a result, the azimuthal
angles of the tilt planes of molecules in the adjacent
layers differ by ±180° (anticlinic structure). 

The chiral domains in the ground state possess an
anticlinic structure (Fig. 1d) comprising smectic layers
of the same handedness but opposite directions of the
spontaneous polarization in the adjacent layers. In a
sufficiently strong electric field, the spontaneous polar-
ization vectors of all smectic layers align in the field
(Fig. 1e) and the chiral domains acquire a synclinic
structure. The azimuthal angles of the tilt planes of
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagrams showing (a) chemical structure of a banana-like molecule and the patterns of molecular ordering in (b,
d) racemic and (c, e) chiral domains in the ground state for (b, c) E = 0 and (d, e) for the applied electric field strength exceeding a
threshold value. A vector diagram near the second smectic layer of the racemic domain shows vectors determining the chiral prop-
erties: L is the normal to the smectic layer, c is the projection of the LC director onto the smectic layer plane, and PS is the vector
of spontaneous polarization of the smectic layer. 
molecules in the chiral domains of opposite handedness
differ by ±180°. Recently, Kats and Lazherovich [13]
gave a theoretical justification of the observed domain
structures within the framework of the Landau theory. 

In the general case, the dielectric properties of vari-
ous domains must be different, with the permittivity
changing differently in response to variation of the bias
voltage frequency and magnitude. The purpose of this
experimental work was to study the dielectric proper-
ties of a liquid-crystalline compound with banana-like
molecules in a broad temperature range of existence of
the B2 phase. 
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2. EXPERIMENT 

The experiments were performed with a homolog
representing a series of 4-chloro-1,3-phenylene-bis[4-
(4-n-alkylphenyl)aminobenzoates] possessing a struc-
ture depicted in Fig. 1a. This compound forms an anti-
ferroelectric B2 phase in a temperature range from 75 to
127°C [14]. The transition from B2 into an isotropic
state is a first-order phase transition. The B2 phase tex-
ture observed in a polarization microscope depends on
the method of the cell surface preparation and on the
temperature and field prehistory of a given sample. The
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B2 phase is characterized by a high spontaneous polar-
ization on the order of 500 nC/cm2 [14] (we obtained
~400 nC/cm2 in [15]). 

The LC cells were prepared by a conventional tech-
nique using glass plates with transparent electrodes. A
planar orientation of the LC layer was provided by rub-
bing a polyimide film deposited onto the electrode. Two
glass plates prepared in this way were assembled into a
flat capacitor cell with an interelectrode gap determined
by 10-µm-thick Teflon spacers. The overlapping area of
the upper and lower electrodes was 4.5 × 4.5 mm2. 

The scheme of dielectric measurements is presented
in Fig. 2. The probing sinusoidal signal with a fre-
quency in the 100 Hz–10 kHz range from oscillator 1
and the slowly varying triangular voltage (for biased
measurements) from ramp generator 2 operating at a
repetition frequency of 0.01 Hz were fed to the input of
summing amplifier 3. The output signal comprising a
sum of the ±95-V triangular bias and 0.25-V probing
sinusoidal signals was applied to sample 4. The mea-
suring circuit represented a set of virtual devices pro-
vided by a PhysLab multipurpose program package
[16]. In particular, a virtual lock-in detector 5 with
recorder 6 was used to measure the amplitude and
phase relationships of the harmonic components of a
response current in a 3-kΩ load resistor 7. The PhysLab
virtual lock-in detector is capable of simultaneously
measuring both real and imaginary components of the
current passing through a sample. The possibility of
separating these components is a basis of the method
employed for determining the dielectric permittivity
and losses of the LC sample studied. The sample tem-
perature was measured using a platinum resistor 8
(temperature sensor) and a multimeter unit 9 from
which the signal was transmitting via a serial computer
port to the PhysLab recorder. 

3. THEORETICAL PRINCIPLES 
OF DIELECTRIC MEASUREMENTS 

In the general case, the current density in a sample
obeys the well-known relationship 

(1)

where σ is the specific conductivity, E(t) is the electric
field, and D(t) is the displacement. In order to deter-
mine a contribution from the spontaneous polarization
to dielectric permittivity of a polar liquid crystal, it is
convenient to write the displacement as 

(2)

where ε0 = 8.85 × 10–12 F/m is the permittivity of vac-
uum, ε1 is the LC permittivity without the spontaneous
polarization contribution, and P(t) is the contribution
due to the spontaneous polarization of smectic layers
aligned by the applied electric field. In Eq. (2), the
terms ε1 and P(t) are macroscopic means over a mani-

j t( ) σE t( )
∂D t( )

∂t
-------------,+=

D t( ) ε0ε1E t( ) P t( ),+=
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fold of smectic layers with different orientations of the
spontaneous polarization vector. According to the
model proposed in [11], the B2 phase in the absence of
the electric field is unpolarized (P = 0); as the applied
field strength increases, the polarization grows and
eventually reaches saturation (P ≈ PS) for field strengths
significantly exceeding the polarization threshold level. 

In order to study the voltage dependence of the
dielectric properties of our LCs, a slowly varying bias
field Eb(t) = EmF(t) of a triangular shape with large
amplitude Em was applied to a sample, which led to
reorientation of the spontaneous polarization vectors of
smectic layers in the field direction. The sample was
simultaneously probed with a sinusoidal field Ei(t) =
Ei0sinωt of small amplitude. Thus, the total field
applied to the sample is the sum E(t) = Eb(t) + Ei(t).
Dependence of the polarization P on the applied elec-
tric field can be expressed as 

(3)

or, with an allowance for the frequency dispersion of
the dielectric susceptibility χ, as 

(4)

Here, the quantities χ' and χ'' depend on the bias field
Eb(t) and represent the real and imaginary parts of the
dielectric susceptibility χ. Substituting expressions (4)
and (2) into Eq. (1), we obtain an expression for the cur-
rent density through the sample. We will neglect disper-
sion of the permittivity ε1, because the relaxation fre-
quency of this value usually falls in the range of high

P E t( )( ) P Eb t( )( )
dP
dE
------- 

 
Eb

Ei t( )+≈

=  P Eb t( )( ) ε0χ Eb t( )( )Ei t( )+

P t( ) PEb
ε0 χ'Ei0 ωtsin χ''Ei0 ωtcos–( ).+=

 Reference
PhysLab1

2

3
4 5

6

7
8

9

10

Fig. 2. Schematic diagram of the experimental setup with
lock-in detector for studying the dielectric properties of
LCs: (1) sinusoidal signal generator; (2) ramp generator; (3)
summing amplifier; (4) LC cell; (5) lock-in detector; (6)
recorder; (7) load resistor; (8) platinum temperature sensor;
(9) multimeter; (10) temperature-controlled chamber. 

 signal devices
 virtual
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frequencies (~1 MHz and above); in addition, we will
ignore the change of ε1 induced by the bias field,
because these variations are small as compared to the
change in χ related to the spontaneous polarization. 

A voltage drop measured on the load resistor at a
frequency ω can be expressed as follows: 

(5)

where A is the overlapping area of the upper and lower
cell electrodes and RL is the load resistance (Fig. 2).
Using a probing sinusoidal signal with the base fre-
quency ω and the scheme of lock-in detection tuned to
this frequency, it is possible to measure the voltage
components Uy(t) and Ux(t) proportional to the dielec-
tric permittivity and losses, respectively. Possessing a
relative phase shift of 90°, the two components, are
readily separated by the phase-sensitive lock-in detec-
tor scheme. 

The experimentally measured dielectric parameters
are determined by the formulas 

(6)

where ε' and ε" are the real and imaginary components

of the effective permittivity of an LC sample, and 

and  are the effective (rms) voltages measured by the
lock-in detector. 

U t( ) Ux t( ) Uy t( )+=

=  ARLEi0 σ ωε0χ''+( ) ωtsin ωε0 ε1 χ'+( ) ωtcos+[ ] ,

ε''
σ

ωε0
--------- χ'' σ

ωε0
---------+≡+

Ux

ARLEi0ωε0
---------------------------,=

ε' χ' ε1+≡
Uy

ARLEi0ωε0
---------------------------,=

Ux

Uy
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Fig. 3. The dielectric permittivity ε' and losses ε'' + σ/ωε0 as
functions of the temperature for the isotropic and B2 phases
measured in a nonbiased sample using the probing signal
frequencies f = 1 kHz (solid curves) and 10 kHz (filled and
open circles). 
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4. RESULTS AND DISCUSSION 

Figure 3 shows the dielectric permittivity ε' and
losses ε'' + σ/ωε0 of the isotropic and B2 phases mea-
sured without bias (Eb = 0) as functions of the temper-
ature in the sample cooling mode. The measurements
were performed for the probing signal frequencies f = 1
and 10 kHz. The sharp increase in ε' observed for the B2
phase is too large for a contribution from individual
molecules related merely to a change in the molecular
order upon the phase transition. It is obvious that only
collective motions of molecules in the smectic layers
possessing large spontaneous polarizations can lead to
this large growth in the ε' value. 

However, the model proposed in [11], which stipu-
lates an antiferroelectric structure of racemic and chiral
domains (and, hence, a high threshold for the polariza-
tion onset), also fails to explain the large increase in ε'
observed for the B2 phase in small fields. Therefore, the
base concepts of this model have to be checked and
refined. 

As the temperature of the B2 phase is lowered, the
permittivity ε' monotonically decreases as well (as a
result of decreasing relaxation frequency) and sharply
drops upon crystallization (down to a value correspond-
ing to the crystal). The contribution of electric conduc-
tivity to the dielectric losses (σ/ωε0) decreases in
inverse proportion to the probing field frequency ω and
becomes negligibly small as compared to the imaginary
part of the permittivity ε" at a sufficiently high fre-
quency. This decrease can be seen on comparing the
dielectric losses observed at 1 and 10 kHz in the isotro-
pic phase. 

In the Debye approximation, the complex permittiv-
ity in the relaxation region is described by the formula 

(7)

where ε∞0 is the static permittivity, ε∞ is the high-fre-
quency permittivity, and τ is the characteristic dielectric
relaxation time. Using this formula, we can readily
express the relaxation time as a function of the real and
imaginary parts of the effective permittivity and the
probing signal frequency: 

(8)

Figure 4 shows a plot of the dielectric relaxation
time in the B2 phase versus the inverse temperature,
which was calculated by formula (8) using data on the
temperature dependence of ε' and ε" measured at a
probing signal frequency of 10 kHz (Fig. 3). The calcu-
lation was performed assuming that the dielectric
losses at 10 kHz are determined predominantly by the
imaginary part ε" of the complex permittivity. In the
region of lower temperatures of existence of the B2
phase (from 100°C down to the crystallization temper-
ature of ~65°C), the τ versus 1/T curve is well described

ε∗ ε' jε''– ε∞
εω0 ε∞–
1 jωτ+
-------------------,+= =

τ ε''
ω ε' ε∞–( )
------------------------.=
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by the Arrhenius equation τ = τ0exp(W/kBT) with an
activation energy of W = 0.65 eV (60 kJ/mol). A some-
what smaller value of the activation energy (W =
0.55 eV) was obtained for an analogous compound in
[12]. The difference can be explained by the presence
of a lateral chlorine atom in the central benzene ring of
our compound, which can lead to a more pronounced
retardation of the rotation of molecules about longitu-
dinal axis. 

A deviation of the experimental temperature depen-
dence of the relaxation times from the Arrhenius law in
the region of higher temperatures of existence of the B2

phase probably indicates that some other mechanism of
the dielectric relaxation becomes dominating in this
region. Such a mechanism, involving rotation of the
director on a cone around the normal to the smectic
layer, is well known in chiral ferroelectric LCs [17].
This mechanism is characterized by a lower activation
energy [12]—that is, by a less steep temperature depen-
dence of the relaxation time—in agreement with the
experimental data presented above. The temperature
dependence of the repolarization time studied previ-
ously [15] by measuring a current generated in
response to a meander signal was characterized by an
activation energy of W = 0.49 eV. This value is smaller
by a factor of almost one and a half than the activation
energy for the mechanism of rotation about the longitu-
dinal axis. 

Figure 5 shows time variation of the dielectric per-
mittivity ε' and losses ε'' + σ/ωε0 over a single period of
the triangular bias voltage. The periodic bias repetition
frequency was 0.01 Hz, and the voltage amplitude was
±95 V. At a lower temperature in the region of existence
of the B2 phase (Fig. 5a), both curves display two nar-
row peaks (within each half-period) situated almost
symmetrically relative to the point Ub  = 0. This shape
of response to the triangular bias is characteristic of
repolarization currents in the antiferroelectric phase. At
higher temperatures of the B2 phase (Fig. 5b), we may
also speak of two ε' peaks observed within each bias
half-period. However, the two peaks are no longer sym-
metric relative to the point Ub = 0; the double peak cor-
responding to greater absolute value of the displace-
ment dominates in both amplitude and area of the sig-
nal. Moreover, the ε' response to the bias exhibits a non-
threshold behavior: the ε' value increases with the bias
field beginning from very small voltages. 

A thresholdless increase in ε' with small bias volt-
ages is also observed in the chiral smectic SmC* ferro-
electric phase below a threshold voltage corresponding
to the helicoid rotation onset. There is a narrow peak in
ε' at |Ub | ≈ 40 V observed with decreasing bias field, as
well as a broad peak observed with increasing bias at
approximately the same voltage. This behavior sug-
gests that the B2 phase features two polar subsystems,
ferroelectric and antiferroelectric. 
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It should be noted that investigations of the B2 phase
of banana-like LCs by method of repolarization currents
gave ambiguous results. In some cases [12, 14], the
response current showed evidence of a typical antiferro-
electric behavior of the B2 phase. However, Niori et al.
[2, 18] observed the response characteristic of an anti-
ferroelectric phase. An analysis of the features
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Fig. 4. A plot of the dielectric relaxation time τ phase versus
the inverse temperature for the B2 phase. Solid line shows
the approximating Arrhenius plot τ = τ0exp(W/kBT) with an
activation energy of W = 0.65 eV. 
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Fig. 5. Time variation of the dielectric permittivity ε' and
losses ε'' + σ/ωε0 measured over a single period of the trian-
gular bias voltage Ub (dashed curve) at T = 108 (a) and
122°C (b). 
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observed in the dielectric spectra led to a conclusion
that ferroelectric clusters are present in the B2 phase [3].
According to our data [15], the behavior of the response
current depends on the amplitude of the triangular bias
voltage. When the amplitude is below the polarization
switching threshold (Ub < 40 V), the response exhibits
a ferroelectric character whereby a single current peak
is observed in each bias half-period with increasing
|Ub |. If the voltage amplitude exceeds the threshold,
two current peaks appear within each bias half-period;
being approximately symmetric relative to the point
Ub = 0, these peaks are characteristic of the antiferro-
electric behavior. 

Figure 6 shows the plots of permittivity ε' versus the
bias field strength Eb measured at various temperatures
in the region of existence of the B2 phase. At lower tem-
peratures in this region (Fig. 6a), the permittivity
weakly varies with the field strength below a threshold
at which the field-induced transition from antiferroelec-
tric to ferroelectric state takes place. At this point the
permittivity first increases to a maximum and then
drops to a minimum (characteristic of nonpolar liquid
crystals). Analogous suppression of the dielectric per-
mittivity by a large external field is also observed in the
usual chiral ferroelectric LCs [17]. At higher tempera-
tures of the B2 phase, the permittivity ε' first increases
with the bias field strength Eb, passes through a maxi-
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Fig. 6. The plots of permittivity ε' versus the bias field
strength Eb measured at (a) lower and (b) higher tempera-
tures in the region of existence of the B2 phase. 
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mum, and decreases with increasing bias. The character
of variation of ε' as a function of the bias field strength
changes within the temperature interval of 115–118°C.
The same interval contains a bending point observed on
the temperature dependence of the spontaneous polar-
ization PS, which is accompanied by certain changes in
the sample texture [15]. 

An analysis of the curves of plots of permittivity
versus the bias field strength (Fig. 6) shows that the
threshold field strength corresponding to the transition
from antiferroelectric to ferroelectric state monotoni-
cally varies from 2.3 to 4.5 V/µm with increasing tem-
perature; in the high-temperature region of existence of
the B2 phase, the threshold field strength varies rather
insignificantly (from 2.3 to 2.6 V/µm). 

The model proposed in [11] for description of the
chiral domain structure in the antiferroelectric B2 phase
fails to explain the ferroelectric behavior of this phase
manifested by large ε' values and their field dependence
in the high-temperature region. However, a certain
modification of this model might eliminate the discrep-
ancies. The measurements of selective reflectance and
circular dichroism [19] showed evidence of the pres-
ence of a chiral structure with large helix pitch. Such a
structure may form provided that the tilt plane of mole-
cules in the smectic layer would rotate on the passage
to the adjacent layer by an angle of ±180° + α, rather
than by ±180° as stipulated for the chiral domains in the
original model [11]. According to the modified model,
there is no complete compensation of spontaneous
polarization in the adjacent smectic layers and the
residual polarization δPS ≈ αPS would exhibit preces-
sion with a period of H ≈ (360/α)d along the normal to
the smectic layers (d ≈ 50 Å is the layer thickness). For
α = 1°, we can estimate the residual polarization at
δPS = 0.017 × 500 nKl/cm2 = 8.5 nKl/cm2 and the helix
pitch at H = 1.8 µm. Thus, we may speak of a chiral fer-
roelectric subsystem existing in the chiral domains of
the antiferroelectric B2 phase. This subsystem accounts
for the manifestations of ferroelectric properties in the
predominantly antiferroelectric B2 phase. 

5. CONCLUSION 

We have studied the dielectric properties of an anti-
ferroelectric B2 phase representing a homolog (n = 14)
from a series of 4-chloro-1,3-phenylene-bis[4-(4-n-
alkylphenyl)aminobenzoates] with banana-like mole-
cules. A complicated behavior of the dielectric
response to triangular bias voltage observed in the high-
temperature part of the region of existence of the anti-
ferroelectric B2 phase is explained by the coexistence of
two polar subsystems, ferroelectric and antiferroelec-
tric, in the domain structure. These subsystems are
characterized by different shapes of the curves of per-
mittivity versus bias field strength and by different
threshold fields for the transition from antiferro- to fer-
roelectric state with a homogeneous spontaneous polar-
 AND THEORETICAL PHYSICS      Vol. 94      No. 3      2002
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ization. The temperature dependence of the dielectric
relaxation time in the B2 phase was measured, and the
corresponding activation energy was determined. A
modification of the existing model of the antiferroelec-
tric B2 phase is suggested, which explains the features
of the experimental data obtained. 
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Abstract—A tight-binding theory is elaborated for multilayer semiconductor heterostructures of type II in
which the states of electrons and holes are dimensionally quantized in adjacent layers and overlap in a narrow
region near the interface. The major effort is focused on the calculation of linear photoluminescence polariza-
tion induced by the anisotropy of chemical bonds on the ideal interface under the radiation along the axis of
growth. An expression for the matrix element of the optical transition on the type-II interface under arbitrary
polarization of the emitted photon is obtained. The treatment is based on the sp3 tight-binding model. The effect
of the interface tight-binding parameters considered as free ones on the linear photoluminescence polarization
is analyzed. The theory allows for the giant linear photoluminescence polarization discovered in the ZnSe/BeTe
heterostructure; it also predicts that the polarization plane usually coincides with the plane containing the chem-
ical bonds at the heterojunction. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The second-order tensor in crystals with cubic sym-
metry is isotropic. Therefore, optical properties of such
crystals without effects of spatial dispersion and non-
linear susceptibility taken into account are also isotro-
pic. In particular, the light absorption coefficient is
independent of the propagation direction and polariza-
tion of the light wave, and photoluminescence is not
polarized (if optical memory effects are neglected). The
heterostructure grown on the basis of cubic composite
materials possesses uniaxial anisotropy with respect to
the growth axis; however, it is not clear whether lateral
anisotropy, i.e., anisotropy in the interface plane,
occurs. Suppose the composite materials CA and C'A'
have the zinc-blende lattice (the Td crystalline class),
and the heterostructure CA/C'A' is grown in the [001]
direction. The symbols C, C' and A, A' denote cations
and anions, respectively. In a CA monocrystal, every
atom, cation or anion, is in a tetrahedral surrounding of
atoms of the other sort, which implies the tetrahedral
symmetry of the crystal as a whole. For an atom on the
ideal interface in a heterostructure, for example, atom
A, two tetrahedral chemical bonds have the form C'–A
and lie in one of the planes {110}, say, (110), and two

other bonds A–C are in the orthogonal plane (1 0).
Therefore, the interface CA/C'A' is described by the
point group C2v , which includes the axis of rotation

C2 || [001] and the reflection symmetry planes (1 0)
and (110). These planes are not equivalent, since at C' ≠
C the two pairs of chemical bonds C'–A and A–C are
not equivalent. It is clear that the answer to the question
on the lateral anisotropy depends on how the physical
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properties of the heterostructure are affected by the
behavior of the electron wave function in the interface
region occupied by nonstandard atomic planes for
which the adjacent atomic planes on the left and on the
right are different in composition.

In structures of type I with a common cation (C = C')
or anion (A = A'), interfaces that bound the heterolayer
on the left and on the right, for example, the interfaces
CA/C'A' and C'A'/CA for the heterolayer CA, are con-
nected by the rotation-reflection element of the point
symmetry S4 with the transformation center at the mid-
dle of this layer. Since the transformation S4 inter-

changes the planes (1 0) and (110), the lateral anisot-
ropy in such structures that is induced by one interface
is balanced out by the contribution of the other inter-
face. However, for heteropairs without a common cat-
ion or anion (C ≠ C', A ≠ A'), the left and right interfaces
can be asymmetric if for one of them the transition from
the layer CA to C'A' is, for example, through the chem-
ical bond C'–A in the sequence of atomic planes –C'–
A'–C'~A–C–A–, and the transition CA/C'A' is through
the bond C–A' in the sequence –C–A–C~A'–C'–A'–
(the nonstandard chemical bond is designated by ~).
The lateral optical anisotropy of structures with quan-
tum wells of type I with a common atom became an
subject of intensive theoretical and experimental study
five years ago and continues to attract particular interest
(see [1–5] and references therein). For cubic semicon-
ductors A3B5 and A2B6, the main anisotropy mecha-
nism is the mixing of heavy (hh) and light (lh) hole
states on the interfaces (001) under the normal inci-
dence. In earlier studies, the hh–lh mixing was invoked

1

002 MAIK “Nauka/Interperiodica”



        

OPTICAL TRANSITIONS ON A TYPE II SEMICONDUCTOR INTERFACE 645

                                                                                                                               
to explain the fine structure of exciton levels in super-
lattices GaAs/AlAs [6]. In type-I structures, a typical
estimate of the observed lateral anisotropy is 10% in
relative units (for example, for the ratio of the differ-
ence of optical absorption coefficients with respect to

the polarizations [1 0] and [110] to their sum).

An analysis of the polarization of edge photolumi-
nescence of type-II heterostructures [7–14] showed that
the optical anisotropy estimated on the basis of the
degree of linear polarization is several dozen percent
and can reach 70–80%. Recall that, in type-II hetero-
pairs CA/C'A', the bottom of the conduction band is
lower in one material, e.g., C'A', and the valence band
top is higher in the other material, CA. For this reason,
the electron wave function exhibits a dimensional
quantization in the band C'A' and exponentially decays
in the adjacent CA layers; the situation for the holes is
converse. Since the matrix element of the interband
radiative recombination is proportional to the overlap-
ping of the electron and hole wave functions, we have
that, for sufficiently large band discontinuities on the
interface when the tunnel tails decay very quickly, only
a small region adjacent to the interface contributes to
the overlap integral. As a result, the value of the free
carrier wave function considerably increases in the

interface region, where the directions [1 0] and [110]
are nonequivalent. This explains the giant linear photo-
luminescence polarization in multilayer samples
ZnSe/BeTe [11]. This polarization is caused not by
defects accumulated on the interface or, at least, not
only by those defects; indeed, the polarization is stable
with respect to the variation of temperature, external
electric field, and an increase in the intensity of exciting
light, which causes the photoluminescence intensity to
increase by many orders of magnitude [12].

The main purpose of this paper is to develop a tight-
binding theory suitable for the calculation of interband
optical transitions on a type-II heterojunction, when the
method of smooth envelopes (or the effective mass
method) is inapplicable. Taking into account the exper-
iments reported in [10–13], we use the simplest sp3

model to find out whether the theory explains the giant
linear photoluminescence polarization under such tran-
sitions. In the next section, we briefly present the calcu-
lation procedure for the energy spectrum and electron
states in the tight-binding method. In Sections 3 and 4,
we derive formulas for the reflection coefficient of elec-
trons on the interface and find a relation between the
reflection coefficient and the energy of electron or hole
dimensional quantization. In Section 5, an expression
for the interband matrix element of the optical transi-
tion in the framework of the sp3 model is obtained. Sec-
tions 6 and 7 are devoted to the presentation of calcula-
tion results, discussion, and conclusions.

1

1
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2. ELECTRON STATES
IN THE sp3 TIGHT-BINDING METHOD

We consider a periodic CA/C'A' heterostructure
grown along the axis [001] consisting of alternating
layers of binary compounds CA and C'A' with different
cations and anions. The electron wave function in the
tight-binding method is written in the form

(1)

Here, φnα(r) are the planar orbitals, n is the number of
the atomic plane, and α is the orbital state index. For the
states with a zero lateral wave vector, i.e., for the states
with kx = ky = 0, the planar orbitals are related to the

orthogonalized atomic orbitals  by the equation

where n1, n2 are arbitrary integers, o1 = (a0/2)(1, 1, 0),
o2 = (a0/2)(1, –1, 0), a0 is the constant of the face-cen-
tered cubic lattice, and an is the position of an atom on
the nth plane. The distance between neighboring cation
and anion planes equals a0/4. The orthogonal atomic

orbitals  were suggested by Löwdin in [15] and are
widely used for the calculation of electron states in the
tight-binding method (see [16, 17] and references
therein1). Below, we use the following enumeration of
atomic planes. Even values of n run through anion
planes, while the odd ones run through cation planes.
For clarity, the coefficients in expansion (1) are sup-
plied with an additional superscript b = a for the anion
(n = 2l, where l is an integer) and b = c for the cation
(n = 2l + 1). In the tight-binding method, the wave
equation of motion of the electron with energy E is
replaced by the system of linear equations for the coef-

ficients 

(2)

Here  are the one-atom energies, and  =

 are the off-diagonal tight-binding parameters
for the pair n, n'.

In the sp3 tight-binding method, the atomic s and
p orbitals are taken into account; hence, the pair of
superscripts α, b runs through eight values sa, sc, px'a,

1 Note that [16] contains an error in the equation connecting
orthogonalized atomic orbitals (see [14] on page 374): the matrix
element S–1(nbRi; mb'Rj) must be replaced by S−1/2(mb'Rj;
nbRi).

ψ r( ) Cn
αbφnα r( ).

n α,
∑=

Φα
b

φnα Φα
b r an– n1o1– n2o2–( ),

n1 n2,
∑=

Φα
b

Cn
αb

En
αb E–( )Cn

αb 1
2
--- Vn n',

αb α'b', Cn'
α'b'

n' n α',≠
∑+ 0.=

En
αb Vn n',

αb α'b',

Vn' n,
α'b' αb,
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646  IVCHENKO, NESTOKLON
px'c, py'a, py'c, pza, and pzc. For convenience, we choose
the orbitals

oriented along the axes [1 0] and [110] instead of the
orbitals px || [100] and py || [010].

First, we consider system (2) for a homogeneous
semiconductor crystal. At kx = ky = 0, this system splits
into three independent subsystems—for s and pz orbit-
als, for px'  orbitals, and for py'  orbitals. In the approxi-
mation of the closest neighbor interaction, which is
used below, the first subsystem is reduced to the form

(3a)

px'

px py–

2
----------------, py'

px py+

2
-----------------,= =

1

Esc E–( )C2l 1–
sc 1

2
--- VssC2l 2–

sa VssC2l
sa+(+

– Vsc pa, C2l 2–
pza Vsc pa, C2l

pza+ ) 0,=
JOURNAL OF EXPERIMENTAL 
(3b)

(3c)

(3d)

where the diagonal energies and parameters Vss, Vxx,
Vxy, Vsa, pc = Vpc, sa, and Vsc, pa = Vpa, sc are determined
according to [16]. The dependence of energy E on the
electron wave vector k = (0, 0, k) for the orbital
branches s–pz is obtained by equating to zero the deter-
minant

Epc E–( )C2l 1–
pzc 1

2
--- V xxC2l 2–

sa V xxC2l
pza+(+

+ V pc sa, C2l 2–
sa  – V pc sa, C2l

sa ) 0,=

Esa E–( )C2l
sa 1

2
--- VssC2l 1–

sc VssC2l 1+
sc+(+

– Vsa pc, C2l 1–
pzc Vsa pc, C2l 1+

pzc+ ) 0,=

Epa E–( )C2l
pza 1

2
--- V xxC2l 1–

pzc V xxC2l 1+
pzc+(+

+ V pa sc, C2l 1–
sc  – V pa sc, C2l 1+

sc ) 0,=
(4)

Esa E– Vss φcos 0 iVsa pc, φsin

Vss φcos Esc E– iVsc pa, φsin 0

0 –iVsc pa, φsin Epa E– V xx φcos

iVsa pc, φsin– 0 V xx φcos Epc E–

0,=
where φ = ka0/4. Equation (4) is reduced to the form

(5)

Now we find from (5)

(6)

At the Γ point of the Brilloin band, φ = 0, and Eq. (5)
takes the form D1D2 = 0. The two roots of the equation
D1 = 0 determine the energy of Bloch symmetry states

Γ1, one of which, , is deep in the valence band and

A φcos
4

B φcos
5

C+ + 0,=

A VssV xx Vsa pc, Vsc pa,+( )2, B D1D2 A– C,–= =

C D3D4,=

D1 Esa E–( ) Esc E–( ) Vss
2 ,–=

D2 Epa E–( ) Epc E–( ) V xx
2 ,–=

D3 Esa E–( ) Epc E–( ) Vsa pc,
2 ,–=

D4 Esc E–( ) Epa E–( ) Vsc pa,
2 .–=

φcos
2 –B B2 4AC–±

2A
-----------------------------------------,=

ka0

2
--------cos f E( )

– A B+( ) B2 4AC–±
A

--------------------------------------------------------.≡=

Γ1
v

the other, , is in the conduction band. The roots of
the other equation D2 = 0 determine the top of the

valence band  and the energy of the state , which
belongs to the conduction band.

For finite thickness layers, one must take into
account solutions with all (including complex) values
of k that satisfy Eq. (5) for the given energy value E
(which is always real). In [18], such solutions are
divided into four categories of complex band structure:
(1) real k; (2) imaginary k; (3) k = 2π/a0 + ik'', k'' =
Imk ≠ 0; (4) k = k' + ik'', k' = Rek ≠ 0, ±2π/a0, k'' ≠ 0. It
follows from (6) that if B2 – 4AC is positive, then the
solutions belong to categories (1)–(3) when, respectively,
(1) |f | < 1, (2) f > 1, and (3) f < –1. If B2 – 4AC < 0, the
solutions belong to category (4).

The subsystem for px' orbitals has the form

(7)

where U± = (Vxx ± Vxy)/2. Equations for py' orbitals are
obtained from (7) by replacing U± by . Notice that
when the spin and spin-orbital interaction are neglected,
the passage from the electron to the hole representa-
tion is done by replacing the sign of the energy E and of

Γ1
c

Γ15
v Γ15

c

U+C2l 1–
px'c Epa E–( )C2l

px'a U–C2l 1+
px'c+ + 0,=

U–C2l 2–
px'a Epc E–( )C2l 1–

px'c U+C2l
px'a+ + 0,=

U+−
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all tight-binding parameters  and by complex

conjugation of the coefficients . In the case of a
homogeneous semiconductor, dispersion of the orbital
branches px' and py' can be written in the form

(8)

where

In this case, the solutions belong to the first three cate-
gories. Figure 1a illustrates the complex band structure
calculated in the framework of the sp3 tight-binding
model for the parameters of ZnSe presented in [16].
Figure 1b illustrates the complex band structure of a
model semiconductor with sp3 parameters chosen so
that the forbidden band width at the Γ point is 4.4 eV

and the conduction bands  and  are close to each
other according to the calculation presented in [19, 20].
Solid curves in Fig. 1 correspond to the s–pz branches
satisfying the dispersion Eq. (5); dashed curves corre-
spond to solutions (8).

In heterostructures grown in the [001] direction,

equations for the coefficients  retain the form

(3a), (7); however, the parameters  and  in
the layers CA and C'A' are different from each other,
and the values of those parameters for interface
atomic planes can differ from the corresponding vol-
ume values.

3. THE ELECTRON REFLECTION COEFFICIENT 
ON AN ISOLATED INTERFACE

In this section, we calculate the reflection coefficient
of an electron in the px'-orbital state that is incident on
the interface from right to left

…–C'(–3)–A'(–2)–C'(–1)–A(0)–C(1)–A(2)–C(3)–….

The numbers of corresponding atomic planes are indi-
cated in parentheses; the anion interface plane A is
assigned the number n = 0, the axis x' lies in the plane
of interface chemical bonds C'–A, and the axis y' ⊥  x', z.
It is assumed that the valence band top in the layer CA

Vn n',
αb α'b',

Cn
αb

E k( )
Epc Epa+

2
---------------------- R,±=

R D2 V k( )V k–( )+ ,=

D
Epc Epa–

2
----------------------,=

V k( ) U+

ika0

4
---------- 

  U–
ika0

4
----------– 

  ,exp+exp=

U±
V xx V xy±

2
----------------------.=

Γ1
c Γ15

c

Cn
αb

Eαb Vαb α'b',
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is higher than that in the layer C'A'. At n ≥ 0, the solu-
tion is a sum of the incident and reflected waves

(9)

Here, ±k are the real wave vectors of an electron with
energy E (k > 0), and the coefficients  and

 are related to the tight-binding parameters by
the equations

(10)

The solution at n < 0 is described by the imaginary
wave vector –iκ (κ > 0) and decays in absolute value
when n  –∞. The reflection coefficient ρ, which
equals unity in absolute value, can be found from the
equations

where the tilde symbol denotes the tight-binding
parameters for the interface atoms, and the prime
denotes the parameters for the atoms in the C'A' layer.
Omitting intermediate manipulations, we present the
final result:

(11)

Expressions for φy', Σy', and ζy' are obtained by replacing
U+ and U– by U– and U+.

C2l
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k–( ) ik
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2
-----l– 
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k( ) ik

a0

2
-----l 
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4
----- 2l 1+( )–exp=
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--------------,
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Ũ+

2
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ζ x'
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Fig. 1. Dispersion of an electron calculated for ZnSe (a) and BeTe (b) in the sp3 tight-binding model. The left, middle, and right
panels depict the dependence of energy on the wave vector k for solutions with purely imaginary, real, and complex (Rek = 2π/a0)
values of k, respectively. The inset shows the relationship of the energy with the real and imaginary parts of the wave vector for
solutions of the fourth category. On the horizontal axis, the quantities are plotted in the units 2π/a0. In the calculation, the following
values of the tight-binding parameters were used: the diagonal energy elements Esa = –11.8 (a), –11.2 (b) eV; Esc = 0.02 (a), 2.8 (b) eV;
Epa = 1.5 (a), 2.23 (b) eV; Epc = 6.0 (a), 3.77 (b) eV; the off-diagonal tight-binding parameters are Vss = –6.2 eV; Vxx = 3 (a),
2 (b) eV; Vsa, pc = 3.5 eV; Vpa, sc = 6.3 eV; and Vxy = 5.0 eV.
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Substituting (11) into (9) and taking into account the
equality of the coefficients  = , we find

(12)

The subscript x' in  is omitted since  = .

4. RELATION BETWEEN THE REFLECTION 
COEFFICIENT AND THE ENERGY 

OF DIMENSIONAL QUANTIZATION
OF A CHARGE CARRIER

Given the dependence of the reflection coefficient
on energy E, we can write an equation for the energy of
dimensional quantization of an electron (hole). Con-
sider a structure with a layer CA of thickness a between
thick layers C'A' with interfaces containing chemical
bonds C'–A. Such a structure possesses the point sym-
metry D2d, and the axes x' and y' coincide with intersec-
tion lines of the interface plane with the planes contain-
ing the interface chemical bonds on the left and right
interfaces, respectively. The dimensionally quantized
px'- and py'-orbital hole states are degenerate, and the
equation for E can be written as

(13)

Here, a is the distance between the anion interface
planes. In order to make estimates, we can set ρx'(E) =
ρy'(E) = –1, as is done for infinitely high barriers in the
effective mass method. Then, e.g., for the ground state,
Eq. (13) transforms to the equation

(14)

Similarly, we can calculate the reflection coefficient
and write an equation for the energy of dimensional
quantization of an electron in the conduction band of a
structure consisting of a layer C'A' of thickness a' lying
between thick layers CA. States in a homogeneous
material can be found by solving four linear equations
obtained from (3a)–(3d). However, the resulting
expression for the reflection coefficient ρc.b. is too cum-
bersome. For this reason, its values were found by the
numerical solution of this system of equations. In the
process, it was taken into account that in the framework
of the sp3 model the four wave vectors ±k, ±iκ (k, κ are
real) correspond to the value of E that is immediately
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above the conduction band bottom of the semiconduc-
tor, and the imaginary values of the wave vector ±iκ1,
±iκ2 correspond to the value of E that lies in the prohib-
ited band. The quantity ρc.b. is interpreted as the ratio of
the reflected wave amplitude –k to the amplitude of the
incident wave k. If the layer thickness a' is sufficiently
large so that exp(–κa'/2) ! 1, then the energy of dimen-
sional quantization can be calculated by formula (13) in

which a must be replaced by a' and ρx'ρy' by .

5. THE INTERBAND MATRIX ELEMENT
OF THE OPTICAL TRANSITION 

ON TYPE-II INTERFACE

The matrix element of the optical transition for the
polarization photon e is proportional to the matrix ele-
ment of the inner product of the velocity operator 
with e. To express the matrix elements of  in terms of

the coefficients  of the resolution of ψ(r) into the

planar orbitals, we should first express  in terms of the

atomic orbitals (r – a – tb), where α is the orbital
index and the vectors a and tb specify the location of an
elementary cell and the location of the atom of sort b
within the cell. Atomic orbitals are completely deter-
mined by two parameters—α and the position of the
atom R = a + tb. For convenience, we will sometimes
use a redundant subscript b specifying the atom sort.
The tight-binding Hamiltonian is determined by the

matrix elements .

In the tight-binding method, the expression for the
matrix elements of the velocity operator can be found
by using the formula

that relates the velocity and coordinate operators, tak-

ing the Hamiltonian H in the form , and
introducing the matrix elements of the coordinate oper-
ator rαα '(R, R'). As a rule, only intrasite matrix elements

(15)

are taken into account (see [21, 22] and references
therein), where the contribution

describes interorbital transitions within a single atomic
site. Here we use the theory developed in [23] (see also
[24–26]) in which it is assumed that rα'α = 0 and the
optical transitions are uniquely determined by the tight-

ρc.b.
2

v̂
v̂
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αb

v̂

Φα
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Hα'α
b'b R' R,( )

v̂
i
"
--- Hr rH–( )=

Hα'α
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binding parameters. Then, we obtain for the velocity
operator the expression

It is seen that according to this theory the intra-atomic

terms  are equal to zero, and the interatomic
terms are directed along the vector R – R', i.e., along
the chemical bond between the atoms R and R'. In this
case, the interatomic transitions between the planes 2l,
2l – 1 and 2l, 2l + 1 cause the emission of photons

polarized in the direction of the axes x' || [1 0] and y' ||
[110], respectively.

The optical matrix elements corresponding to the
emitted photons polarized along the axes x' and y' are
written as

(16)

where

vα'α
b'b R' R,( )

i
"
--- R R'–( )Hα'α

b'b R' R,( ).=

vα'α
bb R R,( )

1

M j i
a0

4"
------ Vl
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Fig. 2. The linear photoluminescence polarization in the
ZnSe/BeTe heterostructure depending on the tight-binding
parameter Vxy on the interface for the heterojunction with
the interface coupling ZnTe (curves 1, 2, and 3) or BeSe
(curves 4, 5, and 6). The tight-binding parameters for both
materials are presented in the caption of Fig. 1. Curves 1, 2,
and 3 are calculated, respectively, for the diagonal energy
Epc = 5, 6, 7 eV for the interface Zn and curves 4, 5, 6 for
Epc = 3, 4, 5 eV for the interface Be. For the other interface
parameters, mean values, for example, Esa(ZnTe) =
[Esa(ZnSe) + Esa(BeTe)]/2, etc., were used.
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Here, Mj is the interband matrix element of the velocity

operator  (j = x', y');  is the contribution to Mx'

from the interatomic transitions between the anion

plane 2l and the cation plane 2l – 1;  is the similar
contribution to My' from transitions between the planes

2l and 2l + 1;  and  are the coefficients of the s
and pz orbitals in expansion (1) for the electron states in

the lower conduction band Γ1;  is the pj-orbital
coefficient for the pj hole states in the valence zone;
Vsa, pc, Vpa, sc, and Vxy are the off-diagonal elements of
the s–p and px–py tight binding (see (3a) and (8)). For
example, Vsa, pc and Vpa, sc are determined so that, for the
atomic sites R' and R lying in the planes n' = 2l and n =
2l – 1, we have

for R' and R lying in the planes n' = 2l + 1 and n = 2l,
we have

The factor 1/4 is obtained if we take into account that,
for example,

and on each side of the atom belonging to the atomic
plane (001) there are two nearest neighboring atoms
of the other sort. Note that in [11] the terms in (16)
proportional to Vxy are omitted. Below, we consider
the radiative recombination of electrons and holes
from the lower subbands of the dimensional quantiza-
tion e1 and h1.

6. CALCULATION RESULTS AND DISCUSSION

The results of the calculation of linear luminescence
polarization

are presented in Fig. 2. Here  and I110 are the inten-

sities of the components polarized along the corre-
sponding axes. Note that the constants of lattices ZnSe
and BeTe are close to each other; i.e., ZnSe/BeTe con-
stitute a heteropair with consistent lattices; however,
they are different from those of the volume semicon-
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ductor ZnTe or BeSe. For this reason, we consider the
tight-binding coefficients for interface atoms as inde-
pendent parameters of the theory. Three dependences
of Plin on the interface coefficient Vxy depicted in the
upper panel of Fig. 2 are calculated for the ZnTe inter-
face at three different values of the diagonal energy
Epc = 5, 6, 7 eV for Zn atoms on the interface. The other
parameters of the interface atoms were chosen by aver-
aging the corresponding parameters of the volume
materials constituting the heteropair. The curves
Plin(Vxy) in the lower panel are calculated for the BeSe
interface at Epc = 3, 4, 5 eV for the Be atom on the inter-
face, while the other tight-binding parameters were
averaged. Figure 2 suggests the main qualitative result
of the present paper: in type-II heterostructures, the
photoluminescence can be substantially polarized; the
theory allows for large values of Plin for ideal interfaces
without considering anisotropic localized states caused
by the nonideality of the interface. Figure 2 also sug-
gests another important conclusion: as a rule, the lumi-
nescence polarization plane coincides with the plane of
interface chemical bonds, which was predicted in [11]
on the basis of a quantitative analysis. The coefficients

 in expansion (1), which appear in expression (16)
for the matrix elements and were used in the calculation
of the curves in Fig. 2, were calculated for periodic het-
erostructures with the ZnSe and BeTe layers 75 Å and
50 Å thick. In this case, the energy of dimensional
quantization at the states e1 and h1 is 39 and 23 meV,
respectively. The absolute values of the optical matrix
elements are very sensitive to the layer thickness,
whereas the polarization Plin weakly depends on the
electron and hole quantization energy in a wide range
of thickness values. However, recall that we consider
the electron and hole states only at kx = ky = 0.

The points in Fig. 3 show the contributions  made
by the interatomic transitions 2l  2l – 1 (at j = x')
and 2l  2l + 1 (at j = y') to the optical matrix ele-
ment. As was predicted in [11], the maximum contribu-
tion to Mx' is made by the pair of interface atomic planes
Zn and Te, and the major contribution to the sum (16)
is made by the terms with l = 0, ±1.

The dependence of the polarization degree Plin on
the discontinuity of valence bands Vh on the interface
calculated for the interface ZnTe at Vxy(ZnTe) = 5 eV

and  = 5 eV is shown in Fig. 4. The change of the
polarization sign and the fact that it attains the value
−100% are explained as follows. As the discontinuity of

bands decreases, the dependence of  on l becomes
alternate, and (at a certain value of Vh ≈ 260 meV) the

sum of  over l in (16) goes to zero.

In the calculation (its results are presented in Figs. 2–
4), we neglected intra-atomic (intrasite) transitions. At

Cn
αβ

Vl
j

     

En 1–=
pc

Vl
x'

Vl
x'
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the present time, no consensus on the relative contribu-
tions of intra- and interatomic transitions to interband
optical matrix elements has been reached. In the studies
[27–29], both transitions were taken into account; how-
ever, the values of the intra-atomic matrix elements of
the momentum operator exceeded those of the cation–
anion transitions. In the papers [30–32], the contribu-
tion of interatomic transitions was completely ignored.
On the other hand, many researchers [23–26] com-

Vx ' 
Vy '

V α

2

1

0
–10 –8 –6 –4 –2 0 2 4 6 8 10

l

Fig. 3. The contribution  of various pairs of atomic

planes 2l, 2l – 1 (the points connected by solid lines) and 2l,
2l + 1 (the points connected by dashed lines) to the inter-
atomic matrix element of the optical transition Mα at the
off-diagonal tight-binding matrix element Vxy = 5 eV for the
Zn and Te interface atoms. The other parameters are the
same as those used in the calculation of curve 1 in Fig. 2.

Vl
α

Vh

ZnSe BeTe

100
80

40

0

–40

–80
–100

0 200 400 600 800

Plin, %

Vh, MeV

Fig. 4. Luminescence linear polarization as a function of the
valence band discontinuity on the heterojunction. The cal-
culation is done for the interface ZnTe at Vxy(ZnTe) = 5 eV;
the other parameters are the same as those used in the cal-
culation of curve 1 in Fig. 2.
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pletely neglected interatomic transitions. For compari-
son, it is of interest to calculate the dependence 

 

P

 

lin

 

(

 

V

 

xy

 

)
in the presence of only intra-atomic transitions. For this
purpose, we set

and took into account the fact that the matrix elements

 are nonzero for the pair of orbitals 

 

α

 

' = 

 

s

 

, 

 

α

 

 = 

 

p

 

j

 

 or

 

α

 

' = 

 

p

 

j, α = s, so that

where  = , and oj is the unit vector corresponding
to the axis j. The curves in Fig. 5 are calculated for three

particular cases—when one of the parameters  or

 is zero and when they are identical. The dependence

( ) on the cation (anion) sort was neglected. It is
seen from Fig. 5 that the luminescence linear polariza-
tion can be very large under intra-atomic transitions as
well.

7. CONCLUSIONS

In conclusion, we formulate the main results
obtained in this study. A tight-binding theory was elab-
orated that makes it possible to calculate the anisotropy
of indirect optical transitions in type-II AC/A'C' hetero-
structures grown from composite AC and A'C' materials
with a zinc-blende lattice in the direction of the crystal-

rα'α R' R,( ) rα'α
b δR'R=

rα'α
b

rs p j

b rp js
b rsp

b o j,= =

rsp
b zspz

b

rsp
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rsp
a

rsp
c rsp
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Plin, %

Vxy, eV
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0
4 5 6

Fig. 5. Luminescence linear polarization as a function of the
interface tight-binding parameter Vxy with only intra-atomic

transitions taken into account: (1) ,  = 0; (2)

 = 0,  ≠ 0; (3)  ≠ 0. The calculation was

carried out for the ZnTe interface at Vxy(ZnTe) = 5 eV with
the other parameters identical to those used in the calcula-
tion of curve 1 in Fig. 2.
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lographic axis [001]. The influence of the interface type
(C'A or A'C) and the interface tight-binding parameters,
such as the off-diagonal coefficient 

 

V

 

xy

 

, the diagonal
energy 

 

E

 

pc

 

, and the band discontinuity on the hetero-
junction 

 

V

 

h

 

, on the luminescence linear polarization is
analyzed. In accordance with the experiment [10–13],
the theory allows a giant luminescence linear polariza-
tion caused by the radiative recombination of electron–
hole pairs on an ideal type-II interface. The calculation
shows that the polarization usually follows the orienta-
tion of interface chemical bonds and changes its sign
when the interface C'A (ZnTe) is changed for CA'
(BeSe). The polarization degree is almost independent
of the thickness 

 

d

 

AC

 

 and 

 

d

 

A'C'

 

 of the layers AC and A'C'
in a wide range of values. On the other hand, the oscil-
lator strength for interband transitions strongly depends
on 

 

d

 

AC

 

 and 

 

d

 

A'C'

 

. The major contribution to the inter-
band optical matrix element is determined by transi-
tions between several cation and anion atomic planes
adjacent to the interface; moreover, the maximum con-
tribution is made by transitions between interface
planes. Note that the 

 

sp

 

3

 

 model is the simplest tight-
binding model that makes it possible to describe micro-
scopic electron wave functions both in the conduction
band and in the valence band, which is necessary for the
calculation of optical transition matrix elements. How-
ever, the above conclusions remain qualitatively valid
for more complex tight-binding models, such as 

 

sp

 

3

 

s

 

*
[16] or 

 

sp

 

3

 

s

 

*

 

d

 

 [17]. In addition, our theory does not
take into account the spin-orbital splitting of the
valence band in composite materials. An analysis
shows that the inclusion of the spin-orbital interaction
for the optical transitions of type “conduction band–
heavy holes subband” only leads to certain quantitative
changes.
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Abstract—The features of the superconducting state are studied in the simple exactly solvable model of the
pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface
with “hot” spots. The analysis is carried out for arbitrary short-range correlation lengths ξcorr. It is shown that
the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above
the temperature Tc of the uniform superconducting transition in the entire sample, which is a consequence of
non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature
range T > Tc, superconductivity apparently exists in individual regions (drops). These effects become weaker
with decreasing correlation length ξcorr; in particular, the range of existence for drops becomes narrower and
vanishes as ξcorr  0, but for finite values of ξcorr, complete self-averaging does not take place. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Among a large number of anomalies in the elec-
tronic properties observed in high-temperature super-
conductors (HTSC) based on copper oxides, the so-
called pseudogap state [1, 2] existing in a broad region
of their phase diagram has become an object of intense
studies in recent years. There are two main trends in
constructing the models of the pseudogap state of high-
Tc superconductors. One of these trends is based on the
popular model of formation of Cooper pairs above the
superconducting transition temperature [3]. In the other
trend, it is assumed that the pseudogap state is associ-
ated with fluctuations of the antiferromagnetic short-
range order or with other similar fluctuations of the
“dielectric” origin (e.g., fluctuations of charge density
waves [2]).

In our opinion [2], the preferable scenario of the for-
mation of the pseudogap state in HTSC is the pattern
based on the existence (in the corresponding region of
the phase diagram) of strong scattering of charge carri-
ers from developed short-range fluctuations of the
dielectric type (antiferromagnetic or charge density
waves). This scattering leads to a considerable non-
Fermi liquid rearrangement of the electron spectrum in
certain regions of the momentum space in the vicinity
of the Fermi surface around the so-called hot spots or
near hot (flat) regions on this surface [2]. The prefer-
ence of the dielectric and not superconducting scenario
of the formation of a pseudogap [3] is confirmed by a
series of experiments which are discussed, for example,
in the review [2]. In the present work, we naturally
1063-7761/02/9403- $22.00 © 20654
adhere to the same point of view. It should be empha-
sized, however, that the origin of the pseudogap state in
HTSC remains unclear and can be determined only as a
result of further experimental investigations.

Most of the available theoretical publications are
devoted to an analysis of the effect of the pseudogap on
the properties of a system in the normal state, and only
an insignificant number of such publications deal with
the features of superconductivity in this state [4–6]. For
example, superconductivity in a simple exactly solv-
able model of the pseudogap state, which is based on
the model of the Fermi surface of a 2D system with hot
spots [4], was considered by us in [5]. In this work, we
used the exact solution for the pseudogap, which was
obtained earlier [7] for the one-dimensional case, in the
limit of very large correlation lengths of dielectric
short-range fluctuations. It was proved that the super-
conducting gap averaged over short-range fluctuations
generally differs from zero in the temperature range
exceeding the mean-field superconducting transition
temperature Tc corresponding, according to [5], to the
emergence of a homogeneous superconducting state in
the entire sample. It was hence concluded in [5] that, in
the temperature range T > Tc, superconducting drops
are formed in the system and exist down to the super-
conducting transition temperature Tc0 in the absence of
a dielectric pseudogap. This effect was attributed in [5]
to the absence of self-averaging in the superconducting
order parameter (gap) under the conditions when the
correlation length of short-range fluctuations exceeds
the coherence length (the size of Cooper pairs) in the
theory of superconductivity.
002 MAIK “Nauka/Interperiodica”
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The effects of finiteness of the correlation length of
short-range fluctuations was taken into account in [6]
under the assumption of self-averaging of the supercon-
ducting gap over such fluctuations. In this publication,
the effect of the pseudogap on Tc was analyzed, the
behavior of the gap in the region T < Tc was considered,
and the microscopic derivation of the Ginzburg–Lan-
dau expansion was carried out for T ~ Tc. We used the
approach based on the almost exact solution of the gen-
eral model of the pseudogap state with Gaussian short-
range fluctuations, which was proposed in [8, 9] for the
1D case and generalized for the 2D problem in [10, 11].
In this approach, it is difficult to go beyond the scope of
the assumption concerning the self-averaging of the
superconducting gap. It should be noted that the pres-
ence or absence of such a self-averaging has been stud-
ied insufficiently. In most cases, self-averaging is just
assumed from physical considerations with a reference
to essentially different scales of lengths over which the
superconducting order parameter (coherence length ξ0)
and the basic parameters of the electron subsystem
(atomic spacing or the reciprocal Fermi momentum in
the impurity problem [12–14] or the short-range corre-
lation length ξcorr in the pseudogap model under inves-
tigation [2, 5, 6]) change noticeably. In particular, in our
model of pseudogap, we should expect complete self-
averaging of the superconducting gap for ξcorr ! ξ0
[2, 6]. We are not aware of publications in which the
problem of self-averaging of the gap is investigated in
an exactly solvable model of disorder.

The present work mainly aims precisely at such an
investigation in the framework of a very simple
(although, perhaps, not very realistic) 1D model of the
pseudogap state induced by dielectric short-range fluc-
tuations with a finite correlation length, which was pro-
posed in a recent publication by Bartosch and Kopietz
[15]. The exact solution proposed in this work and close
essentially to the models considered earlier [7–9]
makes it possible to carry out a sufficiently comprehen-
sive analysis of the self-averaging problem under inves-
tigation in the 2D model of hot spots [4, 6, 11]. In addi-
tion, we will analyze the temperature dependences of
the superconducting gap in a superconductor with a
dielectric pseudogap.

2. SIMPLIFIED MODEL
OF THE PSEUDOGAP STATE

Let us consider the exactly solvable model of the
pseudogap state, proposed in [15], using a slightly dif-
ferent approach. We assume that an electron performs a
one-dimensional motion in a periodic field of the form

(1)

We choose Q = 2pF – k, where pF is the Fermi momen-
tum and k ! pF is a certain detuning from the preferred

V x( ) 2D Qx φ+( ).cos=
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scattering vector 2pF.
1 We choose the electron spectrum

in the following conventional form linearized near the
Fermi level:

(2)

where we have introduced the variable η = vFk (vF is
the Fermi velocity), which will be widely used in the
subsequent analysis. Field (1) can be written in the
form

(3)

where the complex amplitude has been introduced as a
result of the substitution D  Deiφ.

Such a problem can be solved in an elementary way.
In the two-wave approximation of the conventional
band theory, the one-electron (normal) Green’s func-
tion corresponding to the (diagonal) transition p  p
in the Matzubara representation has the form

(4)

where we have introduced in the last equality the nota-
tion ξp = ξ and εn = ε, which will be widely used below
to simplify the form of the equations. We can also intro-
duce the nondiagonal (anomalous) Green’s function
corresponding to the Umklapp process p  p – Q:

(5)

Let us now suppose that field (1) is random. Follow-
ing [15], we consider a rather specific model of disor-
der, in which the detuning vector k is regarded as a ran-

1 Such a choice of the vector for the antiferromagnetic superstruc-
ture or for a structure of the of charge density wave type implies
incommensurate ordering and corresponding fluctuations.

ξ1 ξ p≡ v F p pF–( ),=

ξ p 2 pF– ξ p nesting( ),–=

ξ2 ξ p Q–≡ ξp– v Fk ξ p– η ,–≡–=

V x( ) D i2 pFx ikx–( )exp=

+ D∗ i2 pFx– ikx+( ),exp

g11 iεn pp( ) 1
iεn ξ1–
-----------------

1
iεn ξ1–
-----------------+=

× D∗ 1
iεn ξ2–
-----------------D

1
iεn ξ1–
----------------- …+

=  
iξn ξ2–

iεn ξ1–( ) iεn ξ2–( ) D 2–
-------------------------------------------------------------

=  
iε ξ η+ +

iε ξ–( ) iε ξ η+ +( ) D 2–
--------------------------------------------------------------,

g12 iεn pp Q–( )
1

iεn ξ1–
-----------------D∗ 1

iεn ξ2–
----------------- …+=

=  
D∗

iεn ξ1–( ) iεn ξ2–( ) D 2–
-------------------------------------------------------------

=  
D∗

iε ξ–( ) iε ξ η+ +( ) D 2–
--------------------------------------------------------------.
SICS      Vol. 94      No. 3      2002



656 KUCHINSKIŒ, SADOVSKIŒ
dom quantity and its distribution function is written in
the form of the Lorentzian2:

(6)

where κ ≡  and ξcorr is the short-range correlation
length. Phase φ in expression (1) is also regarded as a
random quantity distributed uniformly on the interval
from 0 to 2π:

(7)

The field correlation function V(x) at various points can
be calculated elementary and is given by

(8)

where the angle brackets denote averaging over distri-
butions (6) and (7). The random field with precisely this
correlation function was considered in the well-known
publication [16] as well as in [7–9], where it was
assumed that the field is of the Gaussian type.3 The ran-
dom field V(x) considered here is not Gaussian in the
general case [15]. The Fourier transform (8) has the
form of a typical Lorentzian defining the effective inter-
action of an electron with short-range fluctuations [2]:

(9)

It is an interaction of this type that was considered in all
publications on the “dielectric” pseudogap cited above.

Green’s functions averaged over an ensemble of
random fields of type (1) with distributions (6) and (7)
are calculated by elementary integration. The mean
value of the anomalous Green’s function (5) is just
equal to zero (after averaging over distribution (7)),
which corresponds to the absence of a long-range
dielectric order. The averaged Green’s function (4) can
easily be obtained by term-by-term integration of series
(4) with respect to (6) and is given by

2 In fact, we are speaking here of a specific model of phase fluctua-
tions of field (1).

3 For a Gaussian field, all higher order correlators of field V(x) are
factorized, according to Wick, through paired correlators (8).

3k k( )
1
π
--- κ

k2 κ2+
----------------,=

ξcorr
1–

3φ φ( )
1

2π
------ for 0 φ 2π,≤ ≤

0, for remaining values.





=

V x( )V x'( )〈 〉 2D2 2 pF x x'–( )[ ]cos=

× κ x x'––[ ] ,exp

V eff q( ) 2D2=

× κ
q 2 pF–( )2 κ2+

------------------------------------- κ
q 2 pF+( )2 κ2+

-------------------------------------+
 
 
 

.
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(10)

This is the exact solution for the Green’s function that
was proposed in [15].

In the subsequent analysis, we can assume that not
only the phase of field (1) fluctuates, but also its ampli-
tude D, and the corresponding Green’s function can be
obtained by simple averaging of expression (10) with
the corresponding distribution 3D(D). In particular, the
amplitude distribution can be chosen in the form of the
Rayleigh distribution [7, 8, 15]:

(11)

Averaging of correlators (8) and (9) in this case leads to
the simple substitution D  W. The average electron
Green’s function now assumes the form

(12)

where W determines the energy width of the
pseudogap. In the limit of large correlation lengths of
fluctuations of field (1), i.e., for ξcorr  ∞ (κ  0),
solution (12) coincides with that obtained in [7] for a
Gaussian random field. For finite values of κ, it coin-
cides with the solution proposed in [11] in the formal
analysis of the accuracy of approximations used in [8,
9], where the general problem of an electron in a Gaus-
sian random field with a paired correlator of type (8)
was considered. In [11, 15], it was proved that the den-
sity of states corresponding to Green’s function (12)
possesses a characteristic blurred pseudogap in the
vicinity of the Fermi level, the values of the density of
states being quite close quantitatively [11, 15, 17] (vir-
tually for all energy values in the incommensurate case)
to the values obtained in [8] as well as to the results of
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exact numerical simulation of the problem with a Gaus-
sian random field which was carried out in [18–20].4

If field (1) is created by fluctuations of a certain
dielectric order parameter (e.g., antiferromagnetic
order parameter or that of charge density waves), distri-
bution (11) may correspond to its Gaussian fluctuations
in the range of fairly high temperatures [10, 11]. As the
temperature decreases below a certain characteristic
value, the amplitude fluctuations become “frozen out”
even before the emergence of the corresponding long-
range order in the system (cf. [3, 21]) and we can sim-
ply set D = W, while the phase fluctuations are present
down to very low temperatures. For this reason, we will
use a solution of type (10), leading to a clearly mani-
fested pseudogap for large correlation lengths ξcorr [16],
assuming the low-temperature mode of short-range
fluctuations. Since we do not consider the microscopic
aspects of dielectric fluctuations, all the parameters
characterizing such fluctuations (like the correlation
length ξcorr = κ–1 and amplitudes D and W, viz., the
energy width of the pseudogap) are treated here as phe-
nomenological parameters. The low- or high-tempera-
ture mode of short-range fluctuations can be realized in
a similar way at temperatures differing, for example,
from the superconducting transition temperature.

A generalization to the case of a 2D electron system
typical of HTSC cuprates can be carried out on the
basis of the model of hot spots on the Fermi surface
which was considered in [4–6]. In this case, it is
assumed that two independent systems of fluctuations
of type5 (1), which are oriented along the orthogonal
axes x and y and which interact only with electrons
from flat regions of the 2D Fermi surface, are orthogo-
nal to these axes. We assume that the 2D potential in
which an electron is moving is factorized in these direc-
tions: V(x, y) = V(x)V(y) [4–6]. The size of flat (hot)
regions is defined by parameter α, the angular size of a
flat region viewed from the center of the Brillouin zone
being equal to 2α [2, 4–6]. In particular, the value of
α = π/4 corresponds to a square Fermi surface (com-
plete nesting), when the entire Fermi surface is hot. For
α < π/4, the Fermi surface contains cold regions on
which the scattering from fluctuations of the dielectric
order parameter is assumed to be absent and the elec-
trons are treated as free. In this model, various charac-
teristics defined by the integrals over the Fermi surface
consist of additive contributions from hot and cold
regions. The pseudogap rearrangement of the electron
spectrum takes place only in the hot regions (and in

4 Using the method developed in [7], it is also possible to calculate
exactly the two-particle Green’s function and the corresponding
frequency dependences of conductivity [15] in the model under
investigation. Unfortunately, the specific form of the disorder
being considered leads to a nonphysical behavior at zero fre-
quency, which corresponds to an ideal conductor.

5 It should be noted that this pattern is roughly similar to the con-
cept of phase separation in HTSC cuprates (stripes) [22] if we
treat the correlation length ξcorr as a characteristic size (period) of
stripe regions [2].
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their vicinity), while the Fermi liquid behavior is pre-
served in the cold regions [2].

This pattern is in qualitative agreement with the
results of numerous ARPES experiments on under-
doped HTSC cuprates [1, 2], which indicate that
pseudogap anomalies appear in the vicinity of point (0, π)
in the Brillouin zone and vanish as we pass to its diagonal.
The presence of flat regions on the Fermi surface for
HTSC cuprates was also reliably observed in ARPES
experiments made by several independent groups [2].

3. GOR’KOV EQUATIONS AND THEIR 
SOLUTION FOR THE PSEUDOGAP STATE

An analysis of superconductivity in a system with a
pseudogap induced by short-range fluctuations of the
dielectric type will be carried out under the simplest
assumption concerning the existence of a pairing inter-
action of the BCS type, characterized by the attraction
constant V, which, as usual, is assumed to have a non-
zero value in a certain layer of width 2ωc in the vicinity
of the Fermi level (ωc is the characteristic frequency of
quanta ensuring the attraction between electrons). The
same approach was used by us in [4–6]. In the present
work, we confine our analysis to the s-type pairing only.
There are no principal difficulties for analyzing the d
pairing typical of HTSC cuprates, but the presence of
the angular dependence (anisotropy) of the supercon-
ducting gap in this case necessitates [4, 5] additional
integration, which considerably increases the comput-
ing time. At the same time, it was proved in [4–6] that
the effect of the pseudogap on superconductivity is vir-
tually the same in the s and d cases, the only difference
being in fact in the scales of the parameters leading to
the corresponding changes in the main characteristics
of the superconducting state (d pairing is less stable to
the dielectrization of the electron spectrum than the s
pairing).

Superconductivity in cold regions of the Fermi sur-
face is described by the standard equations of the BCS
theory. For this reason, we concentrate our attention on
the derivation of the Gor’kov equations in the 1D
model, which is equivalent to an analysis of hot regions
in the 2D case [5, 6]. In fact, Green’s functions (4), (5)
for a 1D system in the periodic field (1) form the matrix

(13)

g11

iεn ξ2–

iεn ξ1–( ) iεn ξ2–( ) D 2–
-------------------------------------------------------------,=

g12
D∗

iεn ξ1–( ) iεn ξ2–( ) D 2–
-------------------------------------------------------------,=

g21
D

iεn ξ1–( ) iεn ξ2–( ) D 2–
-------------------------------------------------------------,=

g22

iεn ξ1–

iεn ξ1–( ) iεn ξ2–( ) D 2–
-------------------------------------------------------------.=
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In the presence of Cooper pairing, the Gor’kov equa-
tions constructed on Green’s functions of type (13) can
be depicted by the graphs shown in Fig. 1. In analytic
form, this system of equations can be written as

(14)

where the superconducting gap is determined, as usual,
from the relation

(15)

Here, λ = N0(0)V is the dimensionless constant of pair-
ing interaction, and N0(0) is the density of states of free
electrons at the Fermi level.

The solution of the system of equations (14) gives

(16)

where

(17)

G11 g11 g11∆F11
+– g12∆F21

+ ,–=

F11
+ g11* ∆∗ G11 g12* ∆∗ G12,+=

G21 g21 g21∆F11
+– g22∆F21

+ ,–=

F21
+ g21* ∆∗ G11 g22* ∆∗ G21,+=

∆∗ VT F11
+ εn p( )

n, p

∑=

=  λT ξ pF11
+ εnξ p( )d

∞–

∞

∫
n

∑ λT F11
+ εn( ).

n

∑≡

G11
1

Det
-------- iε ξ1+( ) ε2 ξ2

2 D2 ∆+ + +( )[–=

– D2 ξ1 ξ2+( ) ] 1
Det
-------- iε ξ+( ) ε2 ξ η+( )2+[{–=

+ D2 ∆2+ ] D2η+ } ,

F11
+ 1

Det
--------∆∗ ε2 ξ2

2 D2 ∆2+ + +( )–=

=  
1

Det
--------∆∗ ε2 ξ η+( )2 D2 ∆2+ + +[ ] ,–

Det ε2 ξ1
2 D2 ∆2+ + +( ) ε2 ξ2

2 D2 ∆2+ + +( )=

– ξ1 ξ2+( )2D2 ε2 ξ2 D2 ∆2+ + +( )=

× ε2 ξ η+( )2 D2 ∆2+ + +( ) η2D2,–

= –

+=

=

= – –

–

+

G11

G21 g21

g11 g11
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G11 G21
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Fig. 1. Gor’kov equations in a 1D periodic field.
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and D is the real amplitude of the fluctuation field (1).
In accordance with relation (15), the Gor’kov Green’s

function  determines the energy gap of the super-
conductor. Taking into account the random nature of
the field of dielectric fluctuations, Eq. (15) must be
averaged over the fluctuations of phase η = vFk and
amplitude D using distributions (6) and (11) (for the
high-temperature fluctuation mode).

The cumbersome but direct calculations of the inte-
gral in Eq. (15) by the residue method give

(18)

where

(19)

Using now Eq. (15), we immediately obtain the follow-
ing equation for the superconducting gap in the 2D
model of hot regions [4–6]:

(20)

where  = (4/π)α is the relative fraction of hot regions
on the Fermi surface. The second term in Eq. (20) gives
the standard BCS contribution from cold regions con-
stituting the fraction (1 – ) on the Fermi surface.
Summation over n in Eq. (20) is carried out up to the
maximum value determined by the integral part of the
ratio ωc/2πT.

Using Eq. (20) and numerical calculations, we can
find the gap width ∆(η, D) for fixed values of η and D
(i.e., for the given value of the random field of fluctua-
tions (1)) for any temperature. Then, by averaging over
distributions (6) and (11), we can find the temperature
dependences of the averaged gap. In particular, for the
low-temperature mode of dielectric fluctuations, it is

F11
+

F11
+ ε( )

π∆∗
2

----------=

× ε̃2 D2 η2

4
-----+ + 

 
2

η2D2– ε̃2 D2 η2

4
-----–+ +

 
 
 

1/2–

× 1
ε̃2 D2 η2

4
-----+ +

ε̃2 D2 η2

4
-----+ + 

 
2

η2D2–

------------------------------------------------------------+

 
 
 
 
 
 
 

≡ π∆∗ ^ ε ∆ η D, , ,( ),

ε̃ ε2 ∆2+ .=

1 2πλT α̃^ ε ∆ η D, , ,( ) 1 α̃–
ε̃

------------+
 
 
 

,
n 0=

ωc

2πT
----------

∑=

α̃

α̃
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sufficient to carry out averaging over phase η only; the
superconducting gap in this case is given by

(21)

In the high-temperature approximation, averaging over
amplitude D with distribution (11) must also be carried
out:

(22)

As a result, we obtain the temperature dependences of
the averaged superconducting gap 〈∆〉  without resorting
to any statistical assumptions like that concerning the
self-averaging of the order parameter. Similarly, we can

∆〈 〉 1
π
--- η

v Fκ
η2 v F

2 κ2+
------------------------∆ η D,( ).d

∞–

∞

∫=

∆〈 〉 2

W2
------- DD

D2

W2
-------– 

  1
π
---expd

0

∞

∫=

× η
v Fκ

η2 v F
2 κ2+

------------------------∆ η D,( ).d

∞–

∞

∫
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also calculate the temperature dependences of variance
〈∆2〉  – 〈∆〉 2, from which we can judge the extent of ran-
domness of ∆, i.e., on the presence or absence of self-
averaging. The results of corresponding calculations
will be discussed in the next section.

It was noted in the Introduction that, in most publi-
cations on superconductivity in disordered systems, an
analysis is carried out under the assumption of self-
averaging of the superconducting gap ∆. In this case, ∆
is in fact regarded as a nonrandom quantity indepen-
dent of the random characteristics of the field in which
the electrons forming Cooper pairs propagate. In our
case, these are the amplitude D and the phase η of field
(1); accordingly, the self-averaging over these parame-
ters can be analyzed separately.

Let ∆ be a parameter self-averaging over fluctua-
tions of η. In this case, we can assume that ∆ in Eq. (16)
is independent of η. Accordingly, the anomalous
Gor’kov function averaged over fluctuations of η has
the form
(23)F11
+〈 〉 ∆∗

π
------ η

v Fκ
η2 v F

2 κ2+
------------------------d

∞–

∞

∫ ε2 ξ η+( )2 D2 ∆2+ + +

ε2 ξ2 D2 ∆2+ + +( ) ε2 ξ η+( )2 D2 ∆2+ + +( ) η2D2–
-----------------------------------------------------------------------------------------------------------------------------.=
This integral can be evaluated directly; after cumber-
some calculations, we obtain

(24)

Accordingly, we can also evaluate the integral of
expression (24) appearing in the equation for the
pseudogap:

(25)

Thus, in spite of the cumbersome form of the anoma-
lous Green’s function (24), the inclusion of interaction
with fluctuations in hot (flat) regions on the Fermi sur-
face in the equation for the gap can be reduced to the
standard renormalization,

(26)

similar to that emerging in the problem taking into
account the effect of impurities on superconductivity

F11
+〈 〉 ∆ ∗=

×
ε̃2 1 v Fκ /ε̃+( )2 D2 1 v Fκ /ε̃+( ) ξ2+ +

1 v Fκ /ε̃+( )ε̃2 ξ2 D2+ +[ ]
2

v F
2 κ2ξ2+

-------------------------------------------------------------------------------------------.

F11
+〈 〉 ξ F11

+〈 〉d

∞–

∞

∫≡
π∆∗ 1 v Fκ /2ε̃+( )

D2 ε̃2 1 v Fκ /2ε̃+( )2+
--------------------------------------------------------.=

ε ε 1
v Fκ
2ε̃

----------+ 
  ε 1

v Fκ

2 ε2 ∆2+
------------------------+

 
 
 

,=

∆ ∆ 1
v Fκ
2ε̃

----------+ 
  ∆ 1

v Fκ

2 ε2 ∆2
+

------------------------+
 
 
 

,=
[23] and already encountered in the context of the prob-
lem under investigation in [6]. The analogy with the
impurity problem is almost complete since the quantity

vFκ = vF  is the characteristic reciprocal time of
electron flight through a short-range region with a
length on the order of ξcorr. Naturally, the effect of the
pseudogap is also associated with the emergence of the
square of the dielectric gap D2 in Eqs. (24) and (25).

Ultimately, the equation for the superconducting
gap in the model of hot spots under the assumption of
self-averaging over phase fluctuations assumes the
form

(27)

This equation can obviously be solved more easily than
Eq. (20) with subsequent averaging (21). In the absence
of fluctuations of the dielectric field amplitude D,
which is the case in the low-temperature region of
short-range fluctuations, it is precisely Eq. (27) that
determines the mean-field (in terms of [5]) behavior of
∆(T) relative to fluctuations of the random field (1).

In the high-temperature region of short-range fluctu-
ations with distribution (11) for D, under the assump-
tion of self-averaging over the fluctuations of D also,

ξcorr
1–

1 2πλT=

× α̃
1 v Fκ /2ε̃+

D2 ε̃2 1 v Fκ /2ε̃+( )2+
-------------------------------------------------------- 1 α̃–

ε̃
------------+

 
 
 

.
n 0=

ωc

2πT
----------

∑
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we obtain the following equation for the averaged
superconducting gap:

(28)

This equation describes a situation similar to that con-
sidered in detail in our earlier publication [6], where we
included the effect produced on superconductivity by
Gaussian dielectric short-range fluctuations using the
approach proposed in [8, 9]. In this case, fluctuations of
field (1) are taken into account exactly, but it is assumed
that ∆ is self-averaging. It will be demonstrated below
that all the results following from Eq. (28) are quite
close to those obtained in [6]. As κ  0 (ξcorr  ∞),
Eq. (28) is transformed into a similar mean-field equa-
tion derived in [5]. The superconducting transition tem-
perature obtained from Eq. (27) or (28) can apparently
be identified with the temperature at which an infinitely
narrow gap (superconductivity) emerges uniformly in
the entire sample [5].

In the next section, we will consider the results of
numerical solution of Eqs. (27) and (28) in comparison
with the results of exact analysis based on Eqs. (20)–
(22).

1 = 2πλT
2α̃
W2
------- DD

D2

W2
-------– 

 expd

0

∞

∫



n 0=

ωc

2πT
----------

∑

×
1 v Fκ /2ε̃+

D2 ε̃2 1 v Fκ /2ε̃+( )2+
-------------------------------------------------------- 1 α̃–

ε̃
------------+
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Fig. 2. Superconducting transition temperature in the low-
temperature region of dielectric fluctuations as a function of
the pseudogap width W for various values of the correlation
length vFκ/Tc0 of dielectric fluctuations.
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4. BASIC RESULTS AND DISCUSSION

Let us now consider the results of a numerical anal-
ysis of the equations given in the previous section.6

Figures 2 and 3 show the superconducting transition
temperature Tc in the low-temperature range of dielec-
tric fluctuations (the temperature at which the mean-
field gap defined by Eq. (27) vanishes) as a function of
the pseudogap width W (which coincides in the present
case with the dielectric gap amplitude D) and of the
correlation length, respectively. The results are in qual-
itative agreement with the corresponding results for the
high-temperature range of dielectric fluctuations
(where Tc is defined by Eq. (28)) as well as with the
results obtained by us earlier [6] in a somewhat differ-
ent model of short-range dielectric fluctuations with a
finite correlation length. Upon an increase in the
pseudogap width W, the mean-field temperature Tc is
suppressed. A decrease in the correlation length blurs
the pseudogap [2, 8, 15] and, accordingly, diminishes
the suppression of Tc.

Solid curves in Fig. 4 present the temperature
dependences of the superconducting gap 〈∆〉  averaged
over both amplitude D and phase η (the high-tempera-
ture region of short-range fluctuations, where 〈∆〉  is
described by formula (22)) for various values of vFκ.
The dashed curves describe the corresponding mean-
field temperature dependences of the superconducting
gap, which were obtained under the assumption of self-
averaging of the superconducting order parameter over

6 In the numerical analysis, it was assumed that the fraction of flat
regions on the Fermi surface is α = 2/3.
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Fig. 3. Superconducting transition temperature in the low-
temperature region of dielectric fluctuations as a function of
the correlation length of these fluctuations for various val-
ues of the pseudogap width W/Tc0.
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both the amplitude fluctuations and the phase fluctua-
tions described by Eq. (28).

The superconducting gap averaged over fluctuations
also differs from zero in a temperature range above the
superconducting transition temperature Tc, which cor-
responds to vanishing of the mean-field superconduct-
ing gap (i.e., the gap which is homogeneous in the
entire sample). Moreover, it can be seen that the super-
conducting gap averaged over fluctuations differs from
zero in a narrow temperature region above the super-
conducting transition temperature Tc0 in the absence of
short-range fluctuations also. This is due to the fact that
there exist fluctuations of phase η, for which the Fermi
level falls to the region of the peaks of density of states,
which are associated with the formation of the dielec-
tric gap. Indeed, the density of states for a specific real-
ization of phase η and of the dielectric gap amplitude D
has the form

(29)

N E( )
N0 0( )
-------------

1
πN0 0( )
-----------------Im g11

R Epp( )
p

∑–=

=  

E η /2+

E η /2+( )2 D2–
------------------------------------------  for E η /2+ D,>

0 for remaining values,





Fig. 4. Temperature dependence of the superconducting gap
in the high-temperature region of dielectric fluctuations.
Solid curves correspond to the superconducting gap 〈∆〉
averaged over amplitude D and phase η and described by
expression (22). Dashed curves correspond to the mean-
field superconducting gap defined by Eq. (28). The inset
shows the temperature dependence of the relative root-
mean-square fluctuation of the superconducting gap. The
curves are plotted for W/Tc0 = 3 and for various values of
vFκ/Tc0.
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where  is the retarded Green’s function which
can be obtained from Eq. (4) by the standard analytic
continuation iεn  E + i0 and N0(0) is the density of
states at the Fermi level in the absence of short-range
fluctuations. Consequently, for η/2 ≈ D, the Fermi level
corresponds to the peaks of the density of states, which
leads to an increase in the superconducting gap ∆(η, D).
Moreover, an increase in the dielectric gap amplitude D
broadens the peaks in the density of states (29); conse-
quently, if the condition η/2 ≈ D remains in force, the
superconducting gap ∆(η, D) increases with D. As a
result, at any temperature above Tc0 and for large ampli-
tudes of the dielectric gap D > D*(T), the phase dia-
gram plotted in the η vs. D coordinates always contains
a narrow region in the vicinity of the straight line η/2 =
D, in which the superconducting gap ∆(η, D) differs
from zero (see Fig. 5). This leads to the emergence of
an exponentially small tail on the temperature depen-
dence of the superconducting gap 〈∆〉 averaged over
fluctuations in the temperature range above Tc0.

7

The inset to Fig. 4 shows the temperature depen-
dence of the relative root-mean-square fluctuation

δ∆/∆ = /〈∆〉  of the superconducting gap
for the high-temperature mode of dielectric fluctua-
tions. In the case of large short-range correlation
lengths (ξ0/ξcorr ! 1), the superconducting order param-
eter fluctuations are very strong in the entire tempera-
ture range, indicating the obvious non-self-averaging of

7 In the model under investigation, this effect is obviously a conse-
quence of the one-dimensional nature of the random field of fluc-
tuations, leading to corresponding singularities in the density of
states (29). For this reason, it may turn out to be not universal and
inherent only in the given simplified model.

g11
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Fig. 5. Regions of the phase diagram with a nonzero super-
conducting gap for various temperatures above Tc0. The
dashed line corresponds to D = η/2.
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the superconducting order parameter. Surprisingly, the
superconducting gap fluctuations are quite strong in the
region of small correlation lengths also (at least in the
temperature range T > Tc). In particular, the tail on the
temperature dependence of 〈∆〉  for T > Tc is noticeable
even for vFκ/Tc0 = 100, when ξ0/ξcorr ≈ 30 ≥ 1.

Solid curves in Fig. 6 are the temperature depen-
dences of the superconducting gap 〈∆〉  averaged over
phase η (see Eq. (21)) in the low-temperature mode of
dielectric fluctuations, when the amplitude fluctuations
of the dielectric gap are frozen out and D = W. The
dashed curves are the corresponding temperature
dependences of the mean-field superconducting gap
obtained under the assumption of self-averaging of the
superconducting order parameter over the fluctuations
of phase η, which are defined by Eq. (27). For large
short-range correlation lengths, the averaged gap for
T < Tc is very close to the mean-field gap and has a rel-
atively small tail in the range T > Tc. Such a behavior in
the low-temperature mode of dielectric fluctuations is
associated with the fact that, for ξcorr  ∞, the ran-
domness of such a model disappears altogether (η = 0,
D = W). Accordingly, the root-mean-square fluctuation
of the gap, which is shown in the inset to Fig. 6 for a
large correlation length, is quite small for T < Tc, but
increases sharply for T > Tc. As the correlation length
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Fig. 6. Temperature dependence of the superconducting gap
in the low-temperature region of dielectric fluctuations.
Solid curves correspond to the superconducting gap 〈∆〉
averaged over phase η for a fixed amplitude D = W,
described by expression (21). Dashed curves correspond to
the mean-field superconducting gap defined by Eq. (27).
Inset (a) shows the temperature dependence of the relative
root-mean-square fluctuation of the superconducting gap.
The curves are plotted for W/Tc0 = 3 and for various values
of vFκ/Tc0. Inset (b) shows the dependence of the critical

temperature on the pseudogap width.Tc*
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decreases, the superconducting gap fluctuations δ∆ for
T < Tc first increase just due to the increase in random-
ness (parameter vFκ determines the width of the distri-
bution of phase η) and then decrease in the region
ξ0/ξcorr @ 1. In the tail region of the averaged supercon-
ducting gap (T > Tc), the superconducting gap fluctua-
tions are very strong. Although they decrease with the
short-range correlation length ξcorr, they still remain
significant even for small correlation lengths, i.e., in the
region ξ0/ξcorr @ 1.

As in the high-temperature mode of dielectric fluc-
tuations, the tail on the temperature dependence of the
average gap is observed for T > Tc0 also. This can be
explained by the above-mentioned factors. However,
the dielectric gap amplitude in the low-temperature
mode is not random any longer, but is strictly fixed (D =

W). For this reason, for Tc0 < T < , where  is

determined by the condition D*( ) = W, there exists
a narrow region of phases near η = 2W in which the
superconducting gap ∆(η, W) differs from zero, but no

such region is present for T >  (see Fig. 5);  is the
temperature to which the tail of the averaged gap
extends, i.e., the critical temperature for the averaged

gap 〈∆〉 . It follows from the definition of  that it is
obviously independent of the correlation length and
depends only on W. Since the width of the peaks of the
density of states (29) (and, hence, of ∆(η, D) also)
increases with D as long as the condition η/2 ≈ D is sat-

isfied, the value of  increases with W. The depen-

dence of  on W is shown on the corresponding inset
to Fig. 6.

5. CONCLUSIONS

In the present work, we have studied the features of
the superconducting state in the framework of the
extremely simplified model of the pseudogap in a 2D
electron system, which has an exact solution. The main
result is the obvious absence of complete self-averag-
ing of the superconducting order parameter (energy
gap) over the random field of dielectric fluctuations
leading to the formation of the pseudogap state. This
fact is quite astonishing from the viewpoint of the stan-
dard model of superconductivity in disordered systems
[12–14]. The absence of self-averaging, which is man-
ifested in the emergence of strong fluctuations of the
gap, can be seen most clearly in the range of tempera-
tures exceeding the mean-field superconducting transi-
tion temperature Tc that can be obtained from the stan-
dard equations written under the assumption of self-
averaging of the order parameter. This temperature is
identified by us with the temperature of the emergence
of a homogeneous superconducting state in the entire
sample, while the superconducting state in a real disor-
dered system is inhomogeneous. The superconducting

Tc* Tc*

Tc*

Tc* Tc*

Tc*

Tc*

Tc*
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state can exist in the range T > Tc in the form of individ-
ual regions (drops) formed as a result of random fluctu-
ations of the local density of electron states. In contrast
to our previous publication [5], in which this pattern
was considered in the limit of very large short-range
correlation lengths ξcorr  ∞, the application of the
model [15] has made it possible to obtain the complete
solution for arbitrary values of ξcorr. This solution has
demonstrated the absence of complete self-averaging
of the superconducting gap even for ξcorr < ξ0, which
contradicts the naive expectations following from the
standard approach [2]. It was noted above that we are
not aware of publications in which the self-averaging of
∆ would be considered in the framework of exactly
solvable models of disorder. In the present paper, such
an analysis has been carried out. It is unclear, however,
to what extent the obtained results will be preserved in
more realistic models.

For further investigations associated with the given
model, it would be interesting to analyze the behavior
of the spectral density of the electron and tunnel densi-
ties of states as was done in our earlier work [5] in the
limit ξcorr  ∞. In particular, it would be interesting
to investigate the problem of self-averaging of the den-
sity of states, which is assumed in the theory of disor-
dered system almost in all cases.

As regards the comparison with the experimental
data on high-temperature superconductors, it should be
noted that the existence of microscopic superconduct-
ing regions coexisting with predominant regions of the
semiconductor type with a typical pseudogap in the
electron spectrum of Bi2Sr2CaCu2O8 + δ films was
clearly demonstrated in [24, 25] using the method of
scanning electron microscopy for measuring the local
density of states. These observations are in qualitative
agreement with the main conclusions drawn on the
basis of the model under investigation.
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Abstract—A correction to the electric field strength linear in magnetic field H was found by computations for
a two-dimensional disordered system. This correction was used to calculate and graphically tabulate two two-
parameter functions present in the equation describing magnetoresistance in a wide range of parameter varia-
tions. This correction was also used to determine and tabulate the derivative of the function present in the equa-
tion for the effective Hall coefficient with respect to one of its arguments. The data obtained in this work com-
bined with the earlier results of these authors allow the magnetoresistance of binary (composite) media to be
completely described in the spirit of the similarity hypothesis. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The determination of the galvanomagnetic charac-
teristics of three-dimensional nonuniform media
(binary composites in particular) is a topical and fairly
difficult problem even when magnetic field H is weak.
The presence of additional (compared with the H = 0
case) parameters complicates the problem and, for
instance, leads to the possibility of varied critical
behaviors of the effective Hall coefficient [1, 2]. Still
more complex critical behavior should be expected for
magnetoresistance, where the number of additional
parameters is much larger. Nevertheless, certain
progress has been made in developing the theory of gal-
vanomagnetic properties of three-dimensional two-
component media in a weak magnetic field.

The approximation linear in H, the Hall effect, was
studied in several works (e.g., see [1–5]). Shklovskii [1]
suggested an appropriate approximation formula to
describe the effective Hall coefficient Re in the vicinity
of the metal–dielectric phase transition point. The
results obtained in [1] give a qualitative description of
Re in the critical region; the question of a quantitative
approach to the problem, however, remains open. Skal
[2] obtained an exact (in the approximation linear in H)
formal equation for Re. This equation was not, however,
given a proper theoretical analysis; it was only used for
numerically studying the Hall coefficient. Lastly, in [3,
4], the equation for Re in binary systems was brought to
the level of a two-parameter function (see below) and
written in an explicit form in terms of electric field
strength in a medium at H = 0. Note that the Hall coef-
ficient was only considered in [3], and no technique for
calculating approximations of high orders in H was
suggested.

A scheme for consistently calculating the galvano-
magnetic characteristics of binary composites in a
weak magnetic field was suggested in [4]. In that work,
1063-7761/02/9403- $22.00 © 20664
perturbation theory (expansion in powers of H) was
developed and, apart from the Hall coefficient, magne-
toresistance was considered in much detail. The struc-
ture of the effective conductivity tensor part  qua-
dratic in H, that is, its dependence on the galvanomag-
netic characteristics of separate components, was found
[4]. The coefficients of these characteristics are deter-
mined by the properties of the medium at H = 0 and are
functions of two arguments, namely, concentration p
and the ratio between component conductivities h =
σ2/σ1. In the approximation quadratic in H, ten such
functions that cannot be determined theoretically
appear. One more similar function is present in the lin-
ear approximation.

Most of these functions are written in terms of elec-
tric field strength in the medium at H = 0, which allows
them to be determined within the framework of the
standard conductivity problem. In addition, several
relations between these functions established in [4]
reduce the problem to calculating some of them. In the
numerical experiment performed in [5], the functions
mentioned above and present in the equations for the
Hall coefficient and magnetoresistance were calculated
alongside conductivity. Two functions (χx and χz)
remained undetermined in [5]. Finding them requires
calculating the correction to the electric field linear in
H, which goes beyond the scope of the conductivity
problem.

This work is concerned with determining the χx and
χz values as functions of p and h in a wide range of vari-
ations of these arguments by numerical methods. For
this purpose, we simulated the problem of the galvano-
magnetic properties of binary composites using a pair
of primitive cubic cells, main and auxiliary, to extend
the two-dimensional dual problem to the three-dimen-
sional case. The problem of electric field in a medium
was solved iteratively [5, 6] in two stages. First, poten-

σ̂e
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tials in all nodes of both lattices were found at H = 0.
At the second stage, corrections to these potentials lin-
ear in H were found. At both stages, we applied the
Chebyshev method of polynomial acceleration of the
main iterative process [6]. At the first stage, we used the
same method for controlling the accuracy and correct-
ness of calculations as in [5], which was based on ana-
lyzing the spread of total current values calculated for
each sample cross section. At the second stage, the
results were verified by comparing ϕ function values
(the ϕ function is present in the equation for the effec-
tive Hall coefficient) determined by two different meth-
ods (see Section 5).

The general formulas found in [4] were used to cal-
culate the χx and χz functions from the zeroth- and first-
approximation potentials in the whole range of concen-
tration p variations at three argument h values. The
results are plotted below (Figs. 3, 4). The behavior of
the χx and χz values in the vicinity of the metal–dielec-
tric phase transition was fairly thoroughly analyzed,
and the critical indices of these functions were esti-
mated. It follows that the results obtained in [5] and this
work can be used to quantitatively describe the magne-
toresistance of binary composites whose properties are
correctly reproduced by the lattice model. For the other
disordered two-component systems, these results give a
qualitative description of magnetoresistance “at the
level of critical indices” (that is, in the spirit of the stan-
dard similarity hypothesis [7]).

The knowledge of correction E1(r), linear in H, to
electric field allows a new approach to be used in study-
ing the properties of function ϕ present in the equation
for the effective Hall coefficient. The point is that E1(r)
can be used to determine the ∂ϕ/∂h derivative without
cumbersome numerical differentiation. This allows
critical indices and also one of the coefficients in the
expansion of ϕ, which cannot be found from the data on
function ϕ itself, to be determined by an essentially
independent method. The results for ϕ from [5] and for
the ∂ϕ/∂h derivative from this work therefore allow us
to give a detailed description of the ϕ function in the
whole interval of variations of each of its arguments
including the critical region.

2. MAIN RELATIONS

The conductivity of an isotropic medium in mag-
netic field H is described by the tensor

(1)

where it is assumed that H is directed along the z axis.
To simplify further formulas, we use the notation σx =
σxx = σyy, σz = σzz, and σa = σxy = –σyx for the transverse,
longitudinal, and off-diagonal (Hall) conductivity ten-

σ̂
σx σa 0

σa– σx 0

0 0 σz 
 
 
 
 

,=
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sor  components, respectively. In a weak magnetic
field (H  0), the σa value is linear, whereas correc-
tions to σx and σz are quadratic in H,

(2)

Here, σ = σ(r) is the medium conductivity at H = 0. If
H  0, the effective conductivity tensor σe compo-
nents possess the same properties as  in (1); namely,
the expansion of σae only contains odd powers of H,
and the expansions of σxe and σze only contain even H
powers.

The effective conductivity σe of a two-component
medium (binary composite) can, at H = 0, be written in
the form

(3)

where p is the concentration (the fraction of the occu-
pied volume) of the first component and σi is the con-
ductivity of the ith component. According to [4], in the
approximation linear in H, the Hall component can be
written as

(4)

The ϕ function is determined by the properties of the
medium at H = 0 and can be expressed through the elec-
tric field as [4]

(5)

(6)

Here, 〈…〉 (1) is the integral over the volume of the first

component divided by sample volume Vs, and 
is the electric field strength in the medium at H = 0,
where index ν denotes that the mean (over the whole Vs

volume)  vector is directed along the ν axis.

Let us write σxe and σze in the form similar to (2),

(7)

where σe is the same as in (3). According to [4], γxe and
γze are expressed via the galvanomagnetic characteris-
tics of separate components (γxi, γzi, and σai where i = 1,
2) as follows:

(8)

σ̂

σx σ γx, σz+ σ γz;+= =

γx H2, γz H2.∝∝

σ̂

σe σ1 f p h,( ), h
σ2

σ1
-----,= =

σae σa2 σa1 σa2–( )ϕ p h,( ).+=

ϕ ex
x( )ey

y( ) – ey
x( )ex

y( )〈 〉 1( )
,=

eα
ν( ) r( ) E0α

ν( ) r( ) E0ν
ν( )〈 〉( ) 1–

.=

E0
ν( ) r( )

E0
ν( )〈 〉

σxe σe γxe, σze+ σe γze;+= =

γxe H2, γze H2,∝∝

γxe γx1ψx
1( ) γz1ψx

2( ) γx2ψx
3( )+ +=

+ γz2ψx
4( ) σa1 σa2–( )2

σ1
----------------------------χx,+
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(9)

Here, dimensionless coefficients ,  (a = 1, 2, 3,
4) and χx, χz only depend on the properties of the
medium at H = 0 and are, like f and ϕ, functions of the

p and h arguments. All  functions are expressed

through  [4],

(10)

The  functions are in turn related to each other by
two equations containing dimensionless conductivity f
and its derivative [4],

(11)

The  functions can be written in terms of elec-
tric field strength in the medium at H = 0 [4],

(12)

where 〈…〉 (i) is the integral over the volume of the ith
component divided by sample volume Vs. Here, e(r) is
the same as in (6) (where, for instance, ν = x), and e⊥ (r)
and e||(r) are the transverse and longitudinal (with
respect to 〈E0〉) e(r) vector components. Note that dis-
crete analogues of (5) and (12) were used in [5] to cal-

culate and tabulate ϕ and  (a = 1, 2, 3, 4) functions.
In particular, the behavior of these functions in the
vicinity of the metal–dielectric phase transition was
studied, and the critical indices and the coefficients of

the expansions of ϕ and  in the critical region were
estimated [5].

The determination of the χx and χz functions in (8)

and (9) requires knowledge of correction , linear

in H, to electric field strength, E(ν)(r) =  +

 + … . According to [4], this correction is pro-
portional to (σa1 – σa2). Therefore, setting

(13)

γze γx1ψz
1( ) γz1ψz

2( ) γx2ψz
3( )+ +=

+ γz2ψz
4( ) σa1 σa2–( )2

σ1
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ψx
a( ) ψz

a( )

ψx
a( )

ψz
a( )

ψx
1( ) 1

2
---ψz

1( ) ψz
2( ), ψx

2( )+
1
2
---ψz

1( ),= =

ψx
3( ) 1

2
---ψz

3( ) ψz
4( ), ψx

4( )+
1
2
---ψz

3( ).= =

ψz
a( )

ψz
1( ) ψz

2( )+ f h
∂f
∂h
------, ψz

3( )– ψz
4( )+

∂f
∂h
------.= =

ψz
a( )

ψz
1( ) e⊥

2〈 〉 1( )
, ψz

2( ) e||
2〈 〉 1( )

,= =

ψz
3( ) e⊥

2〈 〉 2( )
, ψz

4( ) e||
2〈 〉 2( )

,= =

ψz
a( )

ψz
a( )

E1
ν( ) r( )

E0
ν( ) r( )

E1
ν( ) r( )

E1
ν( ) r( )

σa1 σa2–
σ1

---------------------%%%%
ν( ) r( ),=
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we obtain the following expressions for χx and χz at
〈%%%%(ν)〉  = 0 [4]:

(14)

(15)

Note that, according to (13), the %%%%(ν)(r) value does not

contain magnetic field and is therefore, like , of
a “normal” order of magnitude. In calculating χx by
(14), we may equally assume ν = x and ν = y.

For the longitudinal magnetoresistance, we have

where ρz = 1/σz is the longitudinal specific resistance.
In the approximation quadratic in H, we have

(16)

with γze from (9). Accordingly, for the transverse mag-
netoresistance, we have

where ρx = σx/(  + ) is the transverse specific resis-
tance. In the approximation quadratic in H,

(17)

with σae from (4) and γxe from (8).

Note that the knowledge of the  correction
allows the ϕ function from (4) to be calculated by a for-
mula different from (5). Using the method suggested in
[4], it is easy to show that, at 〈%%%%(ν)〉  = 0, we have

(18)

Here, f is given by (3), and %%%%(ν)(r), by (13). A compari-
son of the ϕ values calculated by (5) and (18) provides

a means of controlling the correctness of  cor-
rection calculations.

χx

E0x
x( )%y

ν( )
E0y

x( )%x
ν( )

–〈 〉
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E0x
x( )〈 〉 E0ν

ν( )〈 〉
------------------------------------------------------, ν x y,,= =

χz

E0x
z( )%y
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E0y

z( )%x
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----------------------------------------------------.=
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ρze 0( )
-----------------------------------,=
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σe

------–=

∆ρxe

ρxe

-----------
ρxe H( ) ρxe 0( )–

ρxe 0( )
------------------------------------,=

σx
2 σa

2

∆ρxe

ρxe

-----------
γxe

σe

------
σae

2

σe
2

-------+
 
 
 

–=

E1
ν( ) r( )

ϕ f h–
1 h–
------------ 1 h–( )

%x
y( )〈 〉

1( )

E0y
y( )〈 〉

--------------------.+=

E1
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The method suggested in [4] can also be used to
show that the derivative of ϕ(p, h) with respect to h is

expressed through  [more exactly, through

%%%%(ν)(r)]:

(19)

Equation (19) is valid at 〈%%%%(x)〉  = 〈%%%%(y)〉  = 0. Calculations
of the ∂ϕ/∂h derivative by (19) allows us to obviate the
necessity of laborious numerical differentiation and
study the ϕ(p, h) function in more detail, also in the crit-
ical region.

3. SIMULATION OF GALVANOMAGNETIC 
PHENOMENA

Studies of various properties of inhomogeneous
media by numerical methods are as a rule performed for
lattice models. For instance, the conductivity of binary
systems was studied by simulating cubic lattices with
randomly distributed bonds of two types (bonds with
conductivities σ1 and σ2) [8] (also see [5]). Importantly,
at a low concentration of one of the components, a sep-
arate “impurity” bond gives the same contribution to
effective conductivity as a spherical inclusion in the
continuous problem. This observation inspires hope
that such a lattice model can correctly reproduce the
principal features of the dependence of the conductivity
of a binary composite on its arguments p and h in the
whole range of their variations. It would be desirable to
preserve the correspondence with the continuous model
mentioned above also in lattice studies of the galvano-
magnetic properties of binary media.

In this work, we suggest a technique for simulating
galvanomagnetic phenomena with the use of a pair of
lattices, main and auxiliary. The main lattice is primi-
tive cubic, and its bonds are of the first type (conductiv-
ities σx1, σz2, and σa1) with probability p and of the sec-
ond type (conductivities σx2, σz2, and σa2) with proba-
bility (1 – p). The auxiliary lattice is also primitive
cubic and is obtained from the main lattice by the tran-
sition to the lattice dual to it in the (x, y) plane and trans-
lation of vertical (parallel to the z axis) bonds (see Fig. 1).
If bonds are distributed randomly, as is assumed in
this work, the main and auxiliary lattices are inter-
changeable.

A discrete analogue of the direct current equation
divj = 0 is the Kirchhoff law of the equality of the sum
of currents coming to node r to the sum of currents

E1
ν( ) r( )

∂ϕ
∂h
------

1
h
---

E0
x( )

%%%%
y( ) E0

y( )
%%%%

x( )
–〈 〉

1( )

E0x
x( )〈 〉 E0y

y( )〈 〉
------------------------------------------------------.–=
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flowing from r. For a primitive cubic cell, the Kirchhoff
law takes the form

(20)

where the summation is over the nearest neighbors; that
is, Dx = (1, 0, 0), Dy = (0, 1, 0), and Dz = (0, 0, 1). In (20),
jr, r + D is the current along the bond that connects nodes
r and r + D.

Let each node r of the main lattice be assigned
potential Vr and, accordingly, each

node of the auxiliary lattice be assigned potential .
The equalities valid for the continuous model at H ≠ 0,
namely,

where E = –∇ V(r), then have the discrete analogues

(21)

jr r D+, jr D– r,–{ }
D Dx Dy Dz, ,=

∑ 0,=

r r
Dx

2
-----

Dy

2
-----–+=

Ṽr

jx σxEx σaEy, jy+ –σaEx σxEy,+= =

jz σzEz,=

jr r Dx+, σr r Dx+,
x V r V r Dx+–( ) σr r Dx+,

a Ṽr Ṽr Dy+–( ),+=

jr r Dy+, –σr r Dy+,
a Ṽr Dx– Dy+ Ṽr Dy+–( )=

+ σr r Dy+,
x V r V r Dy+–( ),

jr r Dz+, σr r Dz+,
z V r V r Dz+–( ).=

Fig. 1. Elements of the main (solid lines) and auxiliary
(dashed lines) lattices.
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Here,  (γ = x, z, a) is the conductivity of the

bond between nodes r and r + D, and  (α = x, y, z)
are the currents flowing from node r. Expressions for
currents  coming to node r follow from (21),
where the substitutions r  r – Dα (α = x, y, z) and
ρ  ρ – Dα (α = x, y) should be made.

Substituting  from (21) and the correspond-

ing expressions for , into (20) yields

(22)

Similarly, we find for the auxiliary lattice

(23)

In accordance with the procedure used to construct the
auxiliary lattice, we can write

(where γ = x, y, a), and  = .

σr r D+,
γ

jr r Dα+,

jr Da r,–

jr r Dα+,

jr Da r,–

D Dx± Dy±,=

∑ σr r D+,
x V r V r D+–( )=

+ σr r D+,
z V r V r D+–( )

D Dz±=

∑
=  –σr r Dx+,

a Ṽr Ṽr Dy+–( ) σr Dx– r,
a Ṽr Dx– Ṽr Dx– Dy+–( )–

+ σr r Dy+,
a Ṽr Dx– Dy+ Ṽr Dy+–( ) σr Dy– r,

a Ṽr Dx– Ṽr–( ).–

σr r D+,
x Ṽr Ṽr D+–( )

D Dx± Dy±,=

∑

+ σr r D+,
z Ṽr Ṽr D+–( )

D Dz±=

∑
=  –σr r Dx+,

a V r Dx Dy–+ V r Dx+–( ) σr Dx– r,
a V r Dy– V r–( )+

– σr r Dy+,
a V r V r Dx+–( ) σr Dy r,–

a V r Dy– V r Dx Dy–+–( ).–

σr r Dx+,
γ σr Dx Dy–+ r Dx+,

γ ,=

σr r Dy+,
γ σr r Dx+,

γ ,=

σr Dx– r,
γ σr Dy– r,

γ ,=

σr Dy– r,
γ σr Dy– r Dx Dy–+,

γ …,=

σr r Dz±,
z σr r Dz±,

z

JOURNAL OF EXPERIMENTAL
Simultaneously solving (22) and (23) with the cor-
responding boundary conditions allows us to find the Vr

and  potentials, which, in turn, makes it possible to
calculate the galvanomagnetic characteristics of the lat-
tice model under consideration. Note that (22) and (23)
are valid at all r and r points, probably, except the
boundary nodes (see Section 4).

If  and  do not depend on the coordi-
nates, the right-hand sides of (22) and (23) equal zero,
and the σa Hall component in the equation for the
potentials vanishes. For this reason, the substitution

(24)

does not change (22) and (23) and leaves the Vr and 
potentials unchanged, although it transforms currents

(21) (and the corresponding expressions for the 
currents) in an obvious way. An analogue of these sub-
stitutions in the continuous problem is the symmetry

transformation [4] E = E', j = j' + E', where  is a
coordinate-independent antisymmetric tensor. This
transformation does not change the direct current equa-
tion curlE = 0, divj = 0. The conductivity tensor is then

transformed as (r)  (r) = (r) – , which is
equivalent to substitution (24). The existence of such a
transformation, in particular, means that the correction
to electric field strength linear in H, E1(r) is propor-
tional to σa1 – σa2.

This circumstance can be used as follows. Let us
select the Hall component of the conductivity tensor of
the second component σa2 (or σa1) taken with the oppo-
site sign as const in (24) and achieve the vanishing of
all terms that refer to second-type (or first-type) bonds
in the right-hand parts of Eqs. (22) and (23). This pro-
cedure can also be used to somewhat simplify calcula-
tions in numerically analyzing system (22), (23).

To conclude this section, note that the solution to the
problem of the potential in the main (and, accordingly,
auxiliary) lattice with one “defect” bond by (22) and
(23) almost fully coincides with the solution to a similar
continuous problem (e.g., see [9]). The only difference
is the replacement of depolarization coefficients n(α)

[10] by their lattice analogues N(α) (at σx = σy ≠ σz),

Ṽr

σr r D+,
a σr r D+,

a

σr r D+,
a σr r D+,

a const,+

σr r D+,
a σr r D+,

a const+

Ṽr

j̃r r D+,

Ĉ Ĉ

σ̂ σ'ˆ σ̂ Ĉ
(25)
N z( ) σz 1 kzcos–( )

σx 1 kxcos–( ) 1 kycos–( )+[ ] σ z 1 kzcos–( )+
--------------------------------------------------------------------------------------------------------------- kd

2π( )3
-------------,∫

π–

∫
π

∫=

N x( ) N y( ) 1
2
--- 1 N z( )–( ).= =
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The N(α) values are close to the corresponding n(α) coef-
ficients at all σx/σz & 1. In particular, both N(x) = N(y) =
N(z) and n(x) = n(y) = n(z) equal 1/3 at σx = σy = σz.

4. NUMERICAL EXPERIMENT ORGANIZATION

In this work, the numerical experiment was per-
formed for a pair of primitive cubic cells, both of
dimensions N × N × N = 51 × 51 × 51 nodes or, accord-
ingly, 50 × 50 × 50 bonds. In the general case of not
weak magnetic fields H, systems (22) and (23) for Vr

and  should be solved simultaneously. In a weak
magnetic field, system (22), (23) can be solved using
perturbation theory, by expanding in powers of H. The

Vr and  potentials are then represented by the series

(26)

where  and  are the terms of the nth order in H.

In the approximation zeroth with respect to H, the

 potentials are obtained from the system

(27)

where σr, r + D is the conductivity of the bond between
nodes r and r + D at H = 0; the summation in (27) is
over all the nearest neighbors. The σr, r + D value equals
σ1 with probability p (“pure” bonds) and σ2 with prob-
ability 1 – p (“defect” bonds). Nodes of the two oppo-
site external cell faces normal to the x axis are assigned
constant potential values, 0 and 1, respectively. Peri-
odic boundary conditions are set in the directions along
axes y and z.

For performing calculations, system (27) is written
as in [5], in the quasi-one-dimensional form

(28)

Here,  is an M × M square matrix (so-called banded
matrix), where M = (N – 1)2(N – 2). Vector v (0) is a col-
umn of M elements representing the unknown poten-

tials ; vector b(0) is a column of M elements of
which only (N – 1)2 elements are nonzero. The right-
hand side of (28) is nonzero because system (27) is
inapplicable to nodes situated on the outside cell faces
normal to the x axis.

The problem of finding zeroth-approximation

potentials  satisfying the equations

(29)

in auxiliary lattice nodes is formulated similarly. The
boundary potential values (0 and 1) are then assigned to
nodes situated on the opposite outside auxiliary lattice

Ṽr

Ṽr

V r V r
0( ) V r

1( ) …, Ṽr+ + Ṽr
0( )

Ṽr
1( ) …,+ += =

Vr
n( ) Ṽr

n( )

V r
0( )

σr r D+, V r
0( ) V r D+

0( )–( )
D
∑ 0,=

Âv 0( ) b 0( ).=

Â

V r
0( )

Ṽr
0( )

σr r D+, Ṽr
0( )

Ṽr D+
0( )

–( )
D
∑ 0=
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faces normal to the y axis, and periodic boundary con-
ditions are set in the x and z directions. For computa-
tional purposes, system (29) is also written in the quasi-
one-dimensional form

(30)

The  matrix and  and  vectors are con-
structed similarly to those present in (28).

Systems (28) and (30) were solved on a computer
using an iterative technique. As in [5], the Chebyshev
method for polynomial acceleration of the main itera-

tive process [6] was used. The  and  potentials
obtained in the computations were, in particular, used
to determine the ϕ function by (5), which was one of the
methods for checking correctness of calculations (see
below). However, most importantly, these values were
used as “seed” potentials in calculating corrections to

 and  linear in H.

In the approximation linear in H,  are given by
the system

(31)

which follows from (22). Let us use the procedure
described in Section 3 and make the substitution

   – σa2. This yields (31), whose
right-hand side only contains nonzero terms that refer
to bonds of the first type, and these terms are propor-
tional to (σa1 – σa2). Let us make one more substitution

(32)

The equation for Ur that follows from (31) can be writ-
ten in the quasi-one-dimensional form

(33)

which does not contain the (σa1 – σa2)/σ1 small param-

eter. Here,  is the same matrix as in (28), u is the col-
umn of Ur values, and b(1) is the column originating

from the right-hand side of (31). Note that, like ,
the Ur values are zero on the outside lattice faces nor-
mal to x.

Equation (33) only differs from (28) in the form of
the right-hand side. This equation was therefore solved

Ãṽ 0( ) b̃
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.=ˆ

Ẫ ṽ 0( ) b̃
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σr r D+, V r
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1( )–( )
D
∑

=  –σr r Dx+,
a Ṽr

0( )
Ṽr Dy+

0( )
–( )

+ σr Dx– r,
a Ṽr Dx–

0( )
Ṽr Dx– Dy+

0( )
–( )

+ σr r Dy+,
a Ṽr Dx– Dy+

0( )
Ṽr Dy+

0( )
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– σr Dy– r,
a Ṽr Dx–

0( )
Ṽr
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–( ),

σr r D+,
a σr r D+,

a

V r
1( ) σa1 σa2–
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---------------------Ur.=

Âu b 1( ),=

Â

V r
1( )
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by exactly the same method as (28). A similar proce-

dure was used to determine corrections  linear in H

to the  potentials. The obtained  and  val-
ues were used to calculate the ϕ function, its derivative
∂ϕ/∂h, and the χx function (see Section 5). The χz func-
tion was determined using a similar procedure to calcu-

late  and  under the condition that the potential
difference was applied in the z direction.

5. NUMERICAL EXPERIMENT RESULTS

When using (5), (14), (18), and (19) to calculate the
corresponding effective galvanomagnetic characteris-
tics of the lattices, we made the following substitutions:

(34)

(α = x, y, z) and performed the summation over nodes

instead of the integration. In (34),  is related to 
by (32). The χz function was determined by (15) using

similar substitutions and the  and  potentials
calculated on the condition that the potential difference
was applied along z.

Ṽr
1( )

Ṽr
0( )

V r
1( ) Ṽr

1( )

V r
0( ) V r

1( )

E0α
x( ) r( ) V r

0( ) V r Dα+
0( ) ,–

E0α
y( ) r( ) Ṽr

0( )
Ṽr Dα+

0( )
,–

%α
y( ) r( ) Ur Ur Dα+ ,–

%α
x( ) r( ) Ũr Ũr Dα+–

Ũr Ṽr
1( )

V r
0( ) V r

1( )

2.0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

h = 10–5

10–2

10–1

dϕ/dh pc

p

Fig. 2. Derivative ∂ϕ/∂h as a function of concentration p of
the first component at three argument h values.
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The determination of ϕ(p, h) by (5) and (18) and a
comparison of the results with those obtained in [5]
showed that all three ϕ(p, h) functions coincided in the
whole range of argument p and h variations within the
error of calculations. This coincidence was, in particu-
lar, evidence of the validity of E1(r) correction determi-
nation.

According to [4, 5], the ϕ(p, h) function in the vicin-
ity of the metal–dielectric phase transition (h ! 1, |τ| ! 1,
and τ = (p – pc)/pc, where pc is the critical concentra-
tion) behaves as follows within the framework of the
similarity hypothesis:

(35)

where ∆0 = hs/t is the size of the smearing region [7] and
t and s are the critical effective conductivity indices.
The l, u, and r indices are related by two equations [4],
which allow u and r to be expressed through l,

(36)

τ 0, ∆0 ! τ  ! 1:>

ϕ τ l C0 C1
h

τ t /s
------- …+ +

 
 
 

,=

τ  ! ∆0: ϕ hu c0 c1
τ

hs/t
------- …+ +

 
 
 

,=

τ 0, ∆0 ! τ  ! 1:<

ϕ h2

τ–( )r
------------ D2 D3

h

τ–( )t /s
--------------- …+ +

 
 
 

,=

u
s
t
--l, r 2

t
s
-- l.–= =

0.24

0.20

0.16

0.12

0.08

0.04

0 0.2 0.4 0.6 0.8 1.0

h = 10–5

10–2

10–1

pc

p

χx

Fig. 3. Concentration dependence of χx(p, h) at three argu-
ment h values (solid lines) and dependence of χx on p at h =
1, χx(p, 1) = p(1 – p)/3 (dashed line).
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The critical conductivity indices can be estimated as
(e.g., see [5])

(37)

where q is the third conductivity index related to t and
s as [7] q + t = t/s. Processing the numerical experiment
data on ϕ ([5] and this work) yields

(38)

The ∂ϕ/∂h derivative calculated by (19) is shown in
Fig. 2. The critical behavior of the ∂ϕ/∂h value is deter-
mined by differentiating expansions (35). Processing
the numerical experiment data on ∂ϕ/∂h by the corre-
sponding equations gives

(39)

Considering fairly large errors in index and, especially,
coefficient values, a comparison of (38) with (39) and
(37) shows that the results obtained by two different
methods satisfactorily agree with each other. Note that
the C1 coefficient can only be determined from the data
on ∂ϕ/∂h.

The χx(p, h) and χz(p, h) functions calculated by (14)
and (15) are shown in Figs. 3 and 4. In the vicinity of
the metal–dielectric phase transition, χx and χz should
be expected to show a critical behavior of the form

(40)

Here, only the main terms of the corresponding expan-
sions are given. The critical indices in expansions (40)
are related by equations similar to (36),

(41)

t 2, s 0.7 q 0.8,≈≈≈

l 3.7 0.4, u± 1.3 0.1, r± 1.7 0.2,±= = =

C0 0.3 0.3, c0± 1.4 0.7,±= =

D2 1.5 0.8.±=

l
t
s
--– 0.9 0.6, u 1–± 0.33 0.1,±= =

r 1.8 0.3, C1± 2.9 2.1,±= =

uc0 1.8 0.8, 2D2± 2.8 0.6.±= =

τ 0, ∆0 ! τ  ! 1: χx X0τ
tx, χz Z0τ

tz,≈≈>

τ  ! ∆0: χx x0h
sx, χz z0h

sz,≈≈
τ 0, ∆0 ! τ  ! 1:<

χx X2
h2

τ–( )
qx

--------------, χz Z2
h2

τ–( )
qz

--------------.≈≈

sx
s
t
--tx, qx 2

t
s
-- tx,–= =

sz
s
t
--tz, qz 2

t
s
-- tz.–= =
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Processing the numerical experiment data on χx(p, h)
and χz(p, h) in the critical region yields

(42)

(43)

The critical indices in (42) and (43) satisfy equations
(41) within the error of their determination.

For randomly inhomogeneous two-component
media, χx and χz satisfy the equalities [5]

(44)

These equalities can be used to determine the χx(p, h)
and χz(p, h) functions at h > 1 if their values at h < 1 are
known in the whole range of concentration variations.
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Abstract—A three-dimensional electron system with a corrugated-cylinder-type Fermi surface is considered.
We show that the quantum Hall effect must be observed in such a system with a smooth random potential. Our
results are in qualitative agreement with available experimental data. © 2002 MAIK “Nauka/Interperiodica”.
Strong magnetic fields open up possibilities for
observing the quantum Hall effect (QHE) in three-
dimensional (3D) layered structures. The possibility of
observing the integer QHE in such structures was first
pointed out by Azbel’ [1]. The first experiments were
carried out by Störmer et al. [2] on a GaAs/(AlGa)As
superlattice; the three-dimensionality of the electron
spectrum was checked experimentally. The QHE in a
3D layered system was also observed by Murzin et al.
[3].

In this paper, we consider the integer QHE and
peculiarities of the dependence of Hall conductivity σxy

on the chemical potential in 3D systems with a smooth
random potential in comparison with two-dimensional
(2D) systems by using the semiclassical approach to
localizing noninteracting electrons in a magnetic field.
The following conditions are assumed to be satisfied:

Here, lH = (c"/eH)1/2 is the magnetic length, L is the
scale length of the random potential, T is the tempera-
ture, U0 is the rms amplitude of the random potential
U(r), e is the electron charge, and c is the speed of light.
In the 2D case where these conditions are satisfied, the
electrons move along isolines of the random potential.

The dispersion law is taken in the form

(1)

where –t0 ≤ t(pz) ≤ t0. Here, pz is the quasi-momentum
along the magnetic field, and the band width t0 is
assumed to be small compared to the cyclotron energy
"ωH. To enable the localization of electrons, we also
assume that t0 ! U0.

In this case, the classical equations of electron
motion are

lH ! L, T  ! U0.

ε
p⊥

2

2m⊥
---------- t pz( ),+=
1063-7761/02/9403- $22.00 © 20673
(2)

(3)

Here, ez is a unit vector along the magnetic field, and E
is the electric field. By z and r⊥ , we mean the coordi-
nates of the leading center of the electron orbit. Note
that these equations conserve the electron energy ε =
t(pz) + U(r). Such equations were the subject of analy-
sis in [4, 5]; in the former paper, the accuracy of these
equations was estimated numerically. In [4], the motion
along the z axis was assumed to be rapid compared to
the motion perpendicular to the magnetic field. In this
case, the motion has an adiabatic invariant,

where the integral is taken between turning points over
z. Such an invariant must shape the projections of the
electron trajectories onto the plane perpendicular to the
magnetic field. However, as was pointed out in [5], this
approach is too rough, because it disregards the possi-
bility of an abrupt change of the turning points in z,
which results in chaotization of the electron motion.
Below, we assume the drift velocity perpendicular to
the magnetic field to be of the order of the velocity
along it, so the adiabatic approach becomes inapplica-
ble.

In our problem, the percolation properties of the
random potential play a significant role. In the 2D case,
the unbounded electron trajectories carrying the current
perpendicular to the electric field can take place only
near the percolation threshold (for a potential whose
statistical properties do not change with the substitution
U  –U, the percolation threshold corresponds to
U = 0) [6]. This leads to the QHE pattern [7] with cor-

d pz

dt
--------

U∂
z∂

-------,
dz

t∂
-----–
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d pz

---------------,= =
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-------- –

U∂
r⊥∂
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eH
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H

----------------------.+=
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rect values of the quantized Hall resistance. In this case,
the transition between the plateaus occurs at a chemical
potential close to "ωH(n +1/2) [i.e., near the U(r) = 0
isolines], and the width of the transition region turns
out to be small and determined either by quantum
effects or by the applied electric field [8]. If we apply
such reasoning to the 3D case, then, in contrast to the
2D case, the U(r) = const level surfaces are definitely
closed only when U > Uc and U < –Uc (we consider the
symmetric case). Here, in contrast to the 2D case, the
fraction of the volume occupied by open level surfaces is
not zero but of the order of 1/2 [5]. If we are not inter-
ested in the detailed behavior of σxy at the boundary
between the plateau and the transition region (see below
for these details), then it will suffice to assume that all
level surfaces are closed for |U| > Uc and that there is one
open level surface at each U for |U| < Uc; the set of such
surfaces occupies a finite volume, which we call con-
ductive for the reasons that will become clear below.

In contrast to the 2D case, the electrons do not move
(to within the magnetic length) along level surfaces but
get off them as t(pz) changes, so ε – t0 ≤ U ≤ ε + t0. [Here
and below, ε is the sum of the potential energy of the
electron and the kinetic energy of its motion along the
magnetic field. We disregard the large "ωH(n + 1/2),
which does not change during the electron motion.]
Under the condition t0 ! U0, which is assumed to be
satisfied, this is of little importance and the electron
may be assumed to move along an level surface. Thus,
the states with ε > Uc + t0 and ε < –Uc – t0 (or, ignoring
t0 compared to Uc, with ε > Uc and ε < –Uc) are defi-
nitely localized. Since σxy does not change when the
chemical potential varies in the region of localized
states, these regions correspond to plateaus. When the
chemical potential is between the plateaus, infinite cur-
rent-carrying trajectories emerge. We take the ergodic
hypothesis that the electron trajectory fills the entire
energetically accessible space. This can be effected, for
example, by short-range neutral impurities by which
the electron can be elastically scattered.

In the absence of an external electric field, there is
no average current because of statistical isotropy. In the
semiclassical approximation, the average Hall current
itself can be calculated from the formula

(4)

where dr⊥ /dt is given by formula (3). Here, V is the vol-
ume of the 3D system; a is the lattice constant along the
magnetic field; and n(pz, r) is the electron distribution
function, which depends only on the electron energy ε =
U(r) + t(pz) (dissipation is ignored). At zero temperature,

(5)

jH e
d3r
V

-------
pzd

2π"
----------

r⊥d
dt

--------n pz r,( ),

π"/a–

π"/a

∫
V

∫=

n pz r,( ) n ε( )≡ 1/2πlH
2 for ε µ,<=

n pz r,( ) n ε( )≡ 0 otherwise=
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[µ is the chemical potential, which, as ε, is counted off
from "ωH(n + 1/2)]. If the chemical potential is large
and is in the gap of the density of states, so that the den-
sity is constant at any point in space, then, given that the
first term on the right-hand side of Eq. (3) vanishes
when averaged over space, it follows from formula (4)
that

This quantity gives a constant Hall conductivity on the
plateau per filled Landau level:

(6)

The Hall resistance changes with decreasing µ. At
µ ≈ Uc, the chemical potential falls within the region of
delocalized states, and some current-carrying states
will be turned off with decreasing µ. Given (5), the
expression for the average Hall current can be rewritten
as

Let us pass from the integration over d3r to the integra-
tion over dU with the substitution

where 3(U) is the density of the random potential nor-
malized to unity. We also take into account the fact that
the average dr⊥ /dt is zero in the regions occupied by
closed level surfaces and c[E × ez]/H in the remaining
regions, i.e., in the conductive volume. Since t0 is small
compared to U0, we ignore the dependence of the inte-
grand on pz. Subtracting from the conductivity on the
plateau (6) its part provided by the delocalized electron
states with energies larger than the chemical potential,
we finally obtain

(7)

Here, γ is a factor smaller than unity, which appears
because not all level surfaces with |U| < Uc belong to the
conductive volume; γ depends weakly on the chemical
potential unless it is close to the percolation thresholds.
In what follows, we count off σxy from ne2/2π"a, where
n is the number of Landau levels lying below the chem-
ical potential. Similarly, increasing the chemical poten-
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"ωH µUc + t0t0–t0–Uc – t0

Hall conductivity versus chemical potential. The coordinate origin corresponds to µ = "ωH(n + 1/2), σxy = ne2/2π"a.
tial from large negative values, we derive the following
expression for the conductivity:

(8)

Expressions (7) and (8) are inapplicable in the immedi-
ate vicinity of the percolation thresholds, because we
disregard t0.

As was said above, γ is of the order of 1/2 virtually
in the entire range (–Uc; Uc). Therefore, using the well-
known result of the percolation theory (see, e.g., [5, 6]),

(9)

we can estimate σxy(µ = 0) from Eqs. (7) and (8). The
first and second equations yield (0.8–0.9)e2/2π"a and
(0.1–0.2)e2/2π"a respectively. The discrepancy stems
from the fact that the electrons with energies in the
range (–t0; t0) have not only 3D conductivity channels
but also 2D ones, similar to conventional channels in
the 2D QHE [7, 8]. It thus follows that a sharper change
in conductivity must be observed in a relatively narrow
(no wider than 2t0) region in the vicinity of µ = 0. The
dependence σxy(µ) is schematically shown in the figure.

Let us consider the behavior of σxy(µ) in the vicinity
of µ = –Uc – t0 (the vicinity of Uc + t0 is considered in a
similar way). Let µ = –Uc – t0 + δ, where δ & t0. Now,
we cannot ignore t0 compared to U0. The reasoning is
the same as that used when deriving (7) from (4). We
pass to the integration over dU over the region specified
by the condition ε < µ but do not ignore the dependence
of n(ε) on pz. It is also well known from the percolation
theory [5] that the volume occupied by open level sur-
faces (the conductive volume) with U ∈  (U1; U1 + dU)
is zero for |U1| > Uc and proportional to |(Uc –

σxy µ( ) e2

2π"a
-------------γ 3 U( ) U .d

Uc–

µ

∫=

3 U( ) Ud

Uc–

Uc

∫ 0.7,≈
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U1)/Uc |βdU near the percolation thresholds for |U1| <
Uc with β = 0.4. Let us define the function 3∞(U) in
such a way that the conductive volume confined
between U and U + dU is V3∞(U)dU. We obtain the
domain of integration over U and pz specified by the
conditions

Thus, of importance are those values of pz at which t(pz)
are close to its minimum, where we may assume that

and 1/m|| is of the order of t0a2/"2. Passing to the vari-
able u = U + Uc, we derive

The function P3∞(U) in the domain under consider-
ation is proportional to [(U + Uc)/Uc]β. Hence, we find,
to within a constant factor, that

(10)

The difference between the Hall conductivity and its
value on the plateau at µ = Uc + t0 – δ behaves in the
same way.

The above estimate of the Hall conductivity is based
on the neglect of quantum effects, with the most impor-
tant of them being the possible electron localization
along the magnetic field because of the quantum inter-
ference between the incident and scattered waves. As is
well known from the theory of weak localization, a

U t pz( )+ µ,<
U Uc.–>

t pz( ) –t0

pz
2

2m||
---------,+=

jH
ceE

2πlH
2 H

----------------
pzd

2π"
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0

δ
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2
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---------–
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2δm||–
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e2

2π"a
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t0
1/2U0

β 1+
-------------------- e2
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magnetic field hinders the localization by destroying
the phase coherence. This effect can be qualitatively
estimated for a smooth random potential using the
semiclassical approach. The displacement of the elec-
tron trajectory by δz from an level surface is of the order
of δz ~ Lt0/U0, with the required time being

In this time, the electron displaces in the x, y plane by a
distance

and the phase decoherence due to the magnetic field is

In the attainable magnetic fields at moderately large a,
δφ is much larger than unity, implying that the interfer-
ence corrections to the Hall conductivity are small.
However, for a * lH, quantum effects will result in the
motion being localized along the magnetic field and
the above approach will be inapplicable. This may
take place in superlattices with a large (*30) number
of atomic layers per each superlattice layer in strong
(*5 T) magnetic fields.

Experimentally, the dependence σxy(H) rather than
σxy(µ) is measured. It follows from (9), statistical sym-
metry of the potential, and the standard expression for
the number of states per Landau level (N = VeH/2π"ca)
that the boundaries Hn± of the nth plateau (if t0 is
ignored) are specified by the conditions

τ δz/
t∂
pz∂

-------- 
  L"

U0a
---------.∼ ∼

δr⊥ τ c
eH
-------

U0

L
------

lH
2

a
----,∼ ∼

δφ e
c"
------Hδr⊥

2 lH
2

a2
-----.∼ ∼

eHn±

2π"a
------------- n 0.15+−( ) ne.=
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Here, ne is the bulk electron density. We see that the
width of the first plateau is severalfold smaller than that
in the 2D case and the widths of the next plateaus
decrease in inverse proportion to n2. Coupled with the
fact that the condition lH ! L is satisfied worse in weak
magnetic fields, this explains why the authors of [2, 3]
managed to observe only one or two plateaus.

The above reasoning shows that there are intrinsic
factors in 3D layered structures responsible for the
finite width of the transition region between the quan-
tized Hall conductivities on the plateau, in contrast to
the 2D case where the transition region can be made
arbitrarily narrow by decreasing the temperature and
the external electric field. This is consistent with the
experimental data [2, 3] that give a smoother transition
in the 3D case than in the 2D one.
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