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The Akusticheskii Zhurnal (Acoustical Physics) Is 50 Years Old
O. V. Rudenko

(Editor-in-Chief)
The first issue of the Akusticheskii Zhurnal appeared
in 1955. Almost simultaneously, its English version
was started under the title of Soviet Physics–Acoustics.
The journal has become popular among acousticians of
many countries all over the world. Its popularity was
based on the high scientific standard that was set by
the very first issues. The authors whose papers were
published in the first volume included academicians
N.N. Andreev and L.M. Brekhovskikh; the winner of
the Nobel Prize Academician V.L. Ginzburg; professors
G.D. Malyuzhinets, L.D. Rozenberg, and L.A. Cher-
nov; and many other prominent scientists.

The first editorial board was approved by the Presid-
ium of the Academy of Sciences of the USSR and
included N.N. Andreev (editor-in-chief), L.M. Bre-
khovskikh, V.S. Grigor’ev, S.N. Rzhevkin, L.D. Rozen-
berg, and S.Ya. Sokolov. The merits of these outstand-
ing scientists and their roles in the formation of the
journal as a leading Soviet and, later, Russian periodic
edition in acoustics were described in detail in the paper
written by L.M. Lyamshev on the previous (40th) anni-
versary of the Akusticheskii Zhurnal (Acoustical Phys-
ics) (Akust. Zh. 41 (5), 677 (1995); Acoust. Phys. 41
(5), 595 (1995)).

The editorial board was periodically changed; new
members that came to work in the journal were widely
known scientists working in physical and applied acous-
tics. Beginning in 1962, the editor-in-chief was V.S.
Grigor’ev, and since 1984, L.M. Lyamshev.

After the USSR was broken into independent states,
Russian scientific journals and the book-publishing
business fell into a difficult situation. The situation
improved when the MAIK “Nauka/Interperiodica”
publishing company started the commercial English
version of the journal under the title Acoustical Physics;
the corresponding decree of the Presidium of the Rus-
sian Academy of Sciences was pronounced in 1994.
Since that time, the English version has been distrib-
uted outside Russia by the American Institute of Phys-
ics. It supports the Russian original version, which is
the common product of the “Nauka” Academic Pub-
lishing Center and the MAIK “Nauka/Interperiodica”
Publishing. The operation of these two companies is
described in detail on the internet (http:/www.maik.ru).

The MAIK “Nauka/Interperiodica” regularly con-
ducts competitions to determine the best publications
1063-7710/05/5101- $26.00 0001
of the year (papers or cycles of papers); the prizes are
awarded by a special commission.

The MAIK prize of 1995 was received by
Yu.M. Sukharevskii for his paper “Statistics of Basic
Acoustic Parameters of Deep-Water Oceanic Regions
and the Probabilistic Range of Sonar Systems” (Akust.
Zh. 41 (5), 848 (1995); Acoust. Phys. 41 (5), 749
(1995)).

In 1996, the prize was given to Yu.I. Bobrovnitskii
and T.M. Tomilina for the paper “General Properties
and Fundamental Errors of the Method of Equivalent
Sources” (Akust. Zh. 41 (5), 737 (1995); Acoust. Phys.
41 (5), 649 (1995)).

V.G. Andreev, V.N. Dmitriev, Yu.A. Pishchal’nikov,
O.V. Rudenko, O.A. Sapozhnikov, and A.P. Sarvazyan
received the prize of 1997 for the paper “Observation of
Shear Waves Excited by Focused Ultrasound in a Rub-
ber-like Medium” (Akust. Zh. 43 (2), 149 (1997);
Acoust. Phys. 43 (2), 123 (1997)).

In 1998, the prize was given to L.M. Lyamshev and
Yu.P. Lysanov for the paper “Sound Scattering by Ran-
dom Volume Inhomogeneities with a Fractal Spectrum”
(Akust. Zh. 44 (4), 506 (1998); Acoust. Phys. 44 (4),
434 (1998)).

An international team including A.P. Brysev,
F.V. Bunkin, L.M. Krutyanskii, V.L. Preobrazhenskii,
A.D. Stakhovskii, Yu.V. Pyl’nov, L. Hamilton, K. Cun-
ningham, and S. Younghouse received the prize of 1999
for the paper “Nonlinear Propagation of a Quasi-Plane
Conjugate Ultrasonic Beam” (Akust. Zh. 44 (6), 738
(1998); Acoust. Phys. 44 (6), 641 (1998)).

V.A. Zverev received the prize of 2000 for the paper
“Acoustic Dark Field” (Akust. Zh. 46 (1), 75 (2000);
Acoust. Phys. 46 (1), 62 (2000)).

In 2001, the prize was given to S.V. Krivokhizha,
I.L. Fabelinskii, and L.L. Chaikov for the paper “Partic-
ular Features of the Acoustic Wave Propagation in Con-
densed Media in Different Conditions” (Akust. Zh. 47
(2), 238 (2001); Acoust. Phys. 47 (2), 194 (2001)).

The prize of 2002 was given to E.A. Kopyl,
Yu.P. Lysanov, and L.M. Lyamshev for the paper
“Sound Scattering by Random Fractal Inhomogeneities
in the Ocean” (Akust. Zh. 48 (4), 517 (2002; Acoust.
Phys. 48 (4), 453 (2002)).

The MAIK prize is not only a financial support for
the winners but also a stimulus to an improvement of
the quality of publications for other authors. Precisely
© 2005 Pleiades Publishing, Inc.
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the quality of publications determines the demand for
the journal among the international scientific commu-
nity and eventually provides the necessary amount of
subscriptions to support the publication of the Russian
and English versions.

To evaluate the scientific quality of the Akusticheskii
Zhurnal (Acoustical Physics) compared to other Rus-
sian journals devoted to research in physics, let us con-
sider some objective estimates.

An important bibliometric factor characterizing the
use of the journal by the international scientific com-
munity is the impact factor (Ip). It is calculated as fol-
lows: the total number of citations of the journal that
occur in the literature within the current year and refer
to the papers published within the two preceding years
should be divided by the total number of papers pub-
lished in the journal within these two years. Thus, Ip = 1
means that the papers published in the two preceding
years were cited on the average once apiece in the cur-
rent year.

The impact factor is calculated using the database
published in the Journal Citation Reports by the Insti-
tute for Scientific Information, USA. In 2000, the data-
base covered approximately 5700 journals, and only
about 100 of them were Russian (for all natural sci-
ences). The physical journals with the maximum Ip val-
ues were the Journal of Experimental and Theoretical
Physics (Ip = 1.187), the JETP Letters (Ip = 1.411), and
the Physics–Uspekhi (Ip = 1.182). The Akusticheskii
Zhurnal (Acoustical Physics) occupied an intermediate
place with Ip = 0.356; in 2001, this value was Ip =
0.363, and in 2002, Ip = 0.447. Thus, the Ip of the Rus-
sian physical journals is fairly stable. An exception is
the Physics–Uspekhi: in 2003, the impact factor of this
journal increased to Ip = 2.595, and, according to this
value, the Physics–Uspekhi has become one of the ten
most cited journals in the world.

However, the comparison of the Akusticheskii Zhur-
nal (Acoustical Physics) with the leading Russian phys-
ical journals is incorrect for two reasons.

First, in acoustics, many of the papers are theoretical
ones of a “classical” type or of a methodical character.
Citations of such papers are usually delayed and occur
on the average within more than two years after their
publication.

Second, acoustics is closely related to applied phys-
ics where the scientific priority problems are not as
important as in basic physics. If a paper is devoted to a
new physical effect or to a discovery of some unknown
properties of matter or unknown processes in the uni-
verse, it is of global significance and, as a rule, is much
cited. The authors of high-level (close to Nobel-Prize
quality) basic works usually do not estimate their scien-
tific achievements in terms of finances. By contrast, in
applications, the priority is certified by an inventor’s
certificate and the success is estimated by the financial
criterion. Ideas that are most valuable for practical
applications are either not published in the journals or
published with large delays. If an inventor publishes an
innovative result too early, the idea may be put to prac-
tice by other people; in this case, the author evidently
cannot expect even formal references to his paper.

To compare the journals devoted to different fields
of science with allowance for their specificity, the so-
called standard impact factor ä was developed (see the
paper “Bibliometric Evaluation of Russian Natural-Sci-
ence Journals” by I.V. Marshakova-Shaikevich: Vestn.
Ross. Akad. Nauk 73 (9), 788 (2003); Herald of the
Russian Academy of Sciences 73, No. 9, (2003)). The
factor ä is calculated as follows. First, a list of five jour-
nals representing a given area of research (acoustics in
our case) and characterized by the highest individual
values of the impact factor Ip is made up. Then, for the
whole set of papers published in these five best jour-
nals, the characteristic factor for the given area of
research, Ig, is calculated by the method of calculating
the Ip factor. For acoustics in 2000, Ig = 1.52. The stan-
dard impact factor for a given journal is defined as ä =
(Ip/Ig) × 100%. According to this criterion, the Akus-
ticheskii Zhurnal (Acoustical Physics) with ä = 23.40
surpasses the Journal of Experimental and Theoretical
Physics (ä = 17.85), the JETP Letters (ä = 21.22), and
the Physics–Uspekhi (ä = 17.64). According to the
dynamics of the factors Ip and ä, the Akusticheskii
Zhurnal (Acoustical Physics) surpasses all other jour-
nals: from 1982 to 2000, its Ip increased from 0.094 to
0.356, and ä, from 7.7 to 23.40.

Thus, our authors should not complain that their
works are seldom cited abroad. The journal is being
read, the scientific results and their authors are known
to specialists in acoustics, and the influence of the
Akusticheskii Zhurnal (Acoustical Physics) on the
development of acoustics in the world is no smaller
than that of any other Russian physical journal on the
corresponding area of research.

The current editorial board and the editorial council
(see the lists on the cover of the journal) were approved
by the Bureau of the Division of Physical Sciences of
the Russian Academy of Sciences on March 5, 2003.
By the initiative of academicians heading the institutes
that are involved in acoustical research, the editorial
board was considerably renewed. The academicians
themselves became members of the editorial council to
determine the strategy of the journal. As a result, one
can say that the current editorial council mainly con-
sists of “stars” while the editorial board mainly consists
of “workers.” The regular monthly meetings of the edi-
torial board are always attended by almost all its mem-
bers. A reasonable ratio of the number of more experi-
enced members to that of younger ones contributes to
the successful (as we believe) work of the editorial
board.

Now, I would like to present some new tendencies in
the work of our editorial board to our authors and read-
ers. Our aim is to raise the interest in the journal and to
improve the scientific contents of the papers published
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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in it. Our actions are based on the ideas put forward by
our Russian and foreign colleagues. In particular, from
our colleagues working in the USA, we regularly
receive evaluations of the contents of papers, the tech-
nical appearance, and the quality of translations for
individual issues of the journal. The system of evalua-
tion is organized by the American Institute of Physics
(AIP).

Along with the regular issues of the journal, the edi-
torial board decided to form specialized issues devoted
to topical problems. Examples are the two first issues of
2003, which are devoted to the memory of L.M. Lyam-
shev, and issue 3 of 2004, which contains a set of papers
on biological acoustics (in honor of the birthday of
N.A. Dubrovsky). Currently, we are preparing an issue
devoted to the scientific activities of V.A. Zverev and an
extra issue devoted to the topical problems of seismoa-
coustics. The present issue, which is devoted to the
50th anniversary of the journal, is also an example of
this kind of journal. For participation in specialized
issues we invite well-known authors, and this strategy
allows us to raise the average scientific quality of the
papers. Specialized issues may be of interest to readers,
first, because they are devoted to topical problems and,
second, because the authors of papers concerned with
one area of research and published in one issue may
compete with each other in the significance of their
results. It should be noted that our referees from the AIP
acknowledged the high quality of the specialized issues
that appeared in 2003.

We are trying to extend both the scope of our journal
and the circle of well-known and actively working sci-
entists willing to submit their papers for publication in
it. Historically, such areas of research as underwater
acoustics, nonlinear acoustics, and the theory of propa-
gation and diffraction of acoustic waves predominated
in the journal. At the same time, other fields of acous-
tics, such as the acoustics of hearing, speech acoustics,
musical and architectural acoustics, bioacoustics, etc.
were insufficiently represented. However, this does not
mean that the editorial board will accept papers con-
cerned with these topics but of a poor scientific quality.
We intend to ask well-known specialists to write some
papers and reviews for our journal.

Areas of research that deserve special consideration
are those lying at the “boundaries” between acoustics
and other physical and natural sciences, such as geo-
physics, mechanics, condensed-matter physics, materi-
als science, and mathematical physics and simulations.
Most publications concerned with these areas of
research appear in other specialized journals, which
have their own circles of readers. Thus, the exchange of
information is often ineffective. Sometimes, this leads
to doubling of certain studies or even of directions of
research. Our editorial board intends to stimulate the
mutual influence of the journals by cooperating with
some new reviewers and authors specializing in the
“boundary” areas of research and initially participating
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
in other journals. Again, the novelty of the subjects
must be accompanied by a high scientific quality and an
appropriate style of publication to provide for an easy
understanding of the papers by our readers. In our expe-
rience, in some cases, relatively poor papers rejected by
other journals were submitted to the Akusticheskii
Zhurnal (Acoustical Physics) under the pretense that
their subjects were new to acoustics. We welcome
unconventional papers but only if they are of a suffi-
ciently high quality.

We also ask the new authors to cite as widely as pos-
sible the papers from the Akusticheskii Zhurnal (Acous-
tical Physics), as well as from JASA and other leading
journals in acoustics. Even if formal citations seem to
be unnecessary, i.e., not directly related to the results,
these references may help the readers to establish the
analogies with the neighboring fields of acoustics. It
would be natural to assume that, if a paper contains no
references to the papers published in the Akusticheskii
Zhurnal (Acoustical Physics), it may be of no interest
to our readers.

Despite the efforts of the editorial board and the pro-
fessional skills of our reviewers, sometimes papers of
questionable novelty or with a questionable reliability
of the results appear in the journal. To raise the respon-
sibility of the authors, we intend to welcome critical
comments on our publications. In the section called
“DISCUSSION”, we intend to publish the critical com-
ments and the responses of the authors (if any) to this
criticism.

At the end of 2003, the Presidium of the Russian
Academy of Sciences pronounced a Decree concerning
Scientific Journals, which said: “The founder of a jour-
nal of the Russian Academy of Sciences (RAS) is the
Russian Academy of Sciences. A journal of the RAS
operates under the supervision of the Presidium of the
RAS. The editor of a journal of the RAS is the Russian
Academy of Sciences represented by the “Nauka” Aca-
demic Publishing Center of the RAS.” The Akus-
ticheskii Zhurnal (Acoustical Physics) is a journal of
the Division of Physical Sciences, which, once every
five years, presents a candidate for its editor-in-chief to
the Presidium of the RAS for approval and approves the
members of the editorial board. The editorial board
makes the final decisions about accepting or rejecting
the papers submitted for publication in the journal and
shares the responsibility for the high scientific quality
of the journal with the editor-in-chief.

Thus, the Akusticheskii Zhurnal (Acoustical Phys-
ics) is classed in the academic science system, and the
main subject of the journal, with physical sciences. At
the same time, it is clear that acoustics is interdiscipli-
nary in character and strongly tends to applications.
The letter from the editorial board to the readers that
was published on the cover of the very first issue of the
Akusticheskii Zhurnal in 1955, says “In view of the
rapid development of scientific and engineering acous-
tics in the USSR and the need for the open publication
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of the results of research and engineering works in
acoustics, the Presidium of the Academy of Sciences of
the USSR has acknowledged the necessity to begin in
1955 the publication of the Akusticheskii Zhurnal of the
Academy of Sciences of the USSR.” During all these
years, the Akusticheskii Zhurnal (Soviet Physics–
Acoustics and later Acoustical Physics) published
both basic and applied papers. The publications that
appeared in the journal in these 50 years (without tak-
ing into account the last two issues of 2004) include
80 reviews, 4802 papers, 1900 short communications,
143 letters to the editor, and 482 papers related to the
chronicle and information.

The distinctive feature of the last few years is the
noticeable increase in the number of papers submitted
by scientists from other countries or by international
teams of authors. Many publications are supported by
Russian and international foundations. On the other
hand, because of growing international cooperation, a
considerable part of the scientific results obtained by
Russian scientists is only published in foreign journals.
The process of filling the “portfolio” is nonuniform and
depends on many factors: the rigidity of the formula-
tions issued by the Higher Certifying Commission and
by the financial foundations about the necessity of pub-
lishing the results in Russian journals, the dynamics of
the development of one or another field of acoustics in
Russia and abroad, the regular availability of foreign
scientific journals to Russian authors, and so on. The
fluctuations in the number and scientific quality of the
submitted papers require a certain flexibility in making
decisions in order to provide for an acceptable quality
and period of publications.

Unfortunately, the decrease in the number of sub-
scriptions to printed periodic scientific editions is a
world wide tendency. To retain the journals, one has to
increase the price, which reduces the subscriptions still
more. At the same time, this process is accompanied by
the development of the electronic form of scientific
publications. This opens up a number of fundamentally
new possibilities; for example, a reader can make up an
electronic journal himself by choosing articles of inter-
est from many sources of information. For this purpose,
the role of distributors should presumably be played by
large organizations or publishing houses (e.g., the AIP),
which own the rights for publishing the English ver-
sions of papers from a great number of journals.

Among acousticians, the conventional form of a
journal is still considered to be preferable. Therefore, it
is necessary to retain our printed edition for as long as
possible. This requires the combined efforts of all inter-
ested individuals, including authors, reviewers, and
members of the editorial board. With the understanding
that we are part of the international community of
acousticians, we can increase the number and improve
the quality of papers submitted to the Akusticheskii
Zhurnal (Acoustical Physics). Together, we can over-
come such usual drawbacks as the narrowness of the
scope, the small number of references to the papers
from the Akusticheskii Zhurnal (Acoustical Physics)
itself and from the international journals in acoustics
(especially to papers that appeared within the last one
or two years), the predominance of theoretical publica-
tions, and the escape of priority results to foreign jour-
nals. Both Russian and foreign specialists are interested
in the existence of a strong Akusticheskii Zhurnal
(Acoustical Physics). The journal can effectively
progress as long as there exists the advanced Russian
science that feeds it. In its turn, the journal provides for
the exchange of information, without which progress in
science can hardly be imagined. To contribute to these
processes as much as we can is our common aim and
our corporate duty.

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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Detection of Moving Objects and Flows in Liquids
by Ultrasonic Phase Conjugation
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Abstract—The possibility for the application of the method of parametric phase conjugation of ultrasonic waves
in measuring the velocity of moving objects and flows is investigated. Results of experimental measurements of
the Doppler frequency shift are presented for a low-frequency wave (1 MHz) generated by phase-conjugate waves
(10 MHz and 11 MHz) propagating in opposite directions in the presence of a moving scatterer. The super high
sensitivity of the phase of the low-frequency wave to variations in the spatial position of the scatterer is used to
measure the velocity of the object. The presence of flows in the region of propagation of phase-conjugate waves
returned leads to an uncompensated Doppler shift of the phase of the phase-conjugate wave at the primary radia-
tion source. The implementation of this feature of ultrasonic phase conjugation for the detection and measurement
of the flow velocities in a liquid is demonstrated experimentally. © 2005 Pleiades Publishing, Inc.
In the last decade, ultrasonic phase conjugation has
evolved into a promising and rapidly progressing field
of basic and applied acoustics [1–4]. It is necessary to
note that many key stages of its development were
reflected in Acoustical Physics, from the first papers
devoted to the successful implementation of the para-
metric phase conjugation with giant supercritical
amplification [5, 6] and studies of the nonlinear pro-
cesses of formation and propagation of phase-conju-
gate ultrasonic waves [7, 8] to the latest results in non-
linear phase-conjugation imaging [9].

In this paper, we consider some principles of using
the phase-conjugation phenomenon in ultrasonic
velocimetry. We present the results of studying the
Doppler frequency shift of sound generated due to the
combination scattering of phase-conjugate ultrasonic
beams. Earlier, in [10, 11], the generation of low-fre-
quency sound by opposite phase-conjugate waves scat-
tered by a stationary object in a liquid was studied. A
super high sensitivity of the phase of the low-frequency
wave to changes in the spatial position of the scatterer
was revealed. In our paper, we demonstrate the possi-
bility of using the superhigh phase sensitivity of low-
frequency sound for the Doppler detection and mea-
surement of the velocity of moving objects. In the first
section of the paper, we discuss the formation of the
phase of the low-frequency sound emitted from the
1063-7710/05/5101- $26.00 0105
region of interaction of phase-conjugate beams. The
second section presents the results of experimental
measurements of the Doppler frequency shift for the
low-frequency wave generated in the presence of a
moving scatterer.

A fundamental property of phase-conjugate waves
is their ability to reconstruct the phase of the primary
wave at its source. The phase shifts arising in the course
of the propagation of a direct wave in both homoge-
neous and inhomogeneous refractive media are com-
pensated for in the course of the backward propagation
of the conjugate wave. In the case of the parametric
phase conjugation, the phase of the phase-conjugate
wave at the source differs from the phase of the primary
wave in a fixed value. The phase reconstruction is
directly connected with the invariance of an acoustic
field with respect to time reversal. In the presence of
flows in the propagation medium, this invariance is vio-
lated. Earlier, in [2], accumulated distortions were
detected in the fronts of multiply phase-conjugated
waves propagating in a liquid medium with vortices. As
is demonstrated in the last section of this paper, the
presence of flows in the propagation region leads to an
uncompensated Doppler shift in the phase of a phase-
conjugate wave at the source, which may be used for
measuring the flow velocity with the help of phase con-
jugation.
© 2005 Pleiades Publishing, Inc.
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1. LOW-FREQUENCY ULTRASONIC 
GENERATION DUE TO THE INTERACTION

OF PHASE-CONJUGATE WAVES IN A LIQUID

Ultrasonic generation at the difference frequency
Ω− = ω1 – ω2 in the case of the combination scattering
of wave beams with frequencies ω1 and ω2 in a liquid is
described within the second order of perturbation the-
ory by a well-known integral relation for the varying
density of a medium (see [13]):

(1)

where Q is the density of nonlinear sources of radiation,
c0 is the sound velocity, (r0, θ, α) are the coordinates of
the observation point, and (r, z, ϕ) are the coordinates
of the region of nonlinear interaction. The distance R
between the observation point and the interaction
region in the parabolic approximation is equal to

The specific features of the formation of the phase
of low-frequency waves become clear from the model
of interaction of focused high-frequency phase-conju-
gate beams in the region bounded by the source and its
focal plane (0 < z < d). In the Gaussian approximation,
the nonequilibrium densities in interacting ultrasonic
waves are described by the expression [10]

where q1, 2 are the wave vectors, a is the radius of the
transducer aperture, and f1, 2(z) = 1 – (z/d) – j(2z/q1, 2a2).
The function of nonlinear sources Q(r, z, t) is equal to

Here, k1, 2 = /q1, 2/, γ is the nonlinear parameter and ρ0
is the equilibrium density of the liquid. The upper and
lower indices refer to the propagation of interacting
waves in one direction and in opposite directions,
respectively; ρ1 = ρ1(t – z/c). For the case of propaga-
tion in one direction, ρ2 = ρ2(t – z/c); for the case of
opposite interacting waves, ρ2 = ρ2[t + (z – d)/c]. In the
latter case, the interaction is of a nonresonance char-
acter.
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As the result of integration of Eq. (1), for the nonlin-
ear interaction of opposite waves we obtain

(2)

where kd = k2 – k1 and ks = k2 + k1. The function g(ξ)
takes into account the degrees of focusing of ultrasonic
beams and is equal to

The function g(x) under typical experimental condi-
tions ((a/2d)2 ~ 0.01) behaves as the Dirac δ function
and almost does not distort the envelope profile of ρ2(t).
As follows from Eq. (2), the low-frequency wave aris-
ing due to the nonlinear interaction of opposite phase-
conjugate acoustic waves has a high phase sensitivity to
the object position. At the observation angle θ = 0, the
phase shift is equal to (ks – kd)d = 2k2d, which notice-
ably exceeds the intrinsic phase shift of the wave of the
difference frequency (kdd).

2. SETUP OF THE EXPERIMENT
FOR DETECTING THE DOPPLER

SHIFT IN THE LOW-FREQUENCY WAVE

To radiate the initial ultrasonic wave at the fre-
quency of 10 MHz, we used a focusing transducer with
a focal distance of 30 mm. A test object in the form of
a metal ball with a diameter of 300 µm was positioned
in the transducer’s focal region. The object could move
in two directions with a step of 20 µm and could be
positioned with an accuracy of 1 µm by a scanning sys-
tem. After the scattering by the object, the signal
arrived at the phase-conjugating device, which was a
magnetoceramic cylinder with a diameter of 30 mm.
The active element was pumped by an electromagnetic
field at a frequency of 20 MHz. The phase-conjugate
ultrasonic wave with a frequency of 10 MHz propa-
gated back to the object, where it interacted with ultra-
sonic pulses emitted by the transducer at a frequency
of 11 MHz. The signal of the difference frequency was
detected by a transducer with a central frequency of
1 MHz. Two interaction modes were studied: the case
of opposite and parallel propagation of ultrasonic
beams.

In the latter case, the ultrasonic beam of 11 MHz
was formed at the instant of reflection of the 10-MHz
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phase-conjugate wave from the surface of the focusing
transducer. Thus, two ultrasonic waves with identical
wave fronts simultaneously propagated toward the
object. These waves produced the difference-frequency
wave due to nonlinear interaction in the focal region of
the transducer.

In the case of the interaction of opposite waves, a
signal at the frequency of 11 MHz was emitted with the
delay necessary to provide a spatial overlapping of the
pulses at the instant of reflection of the phase-conjugate
wave from the object.

In the case of opposite-wave interaction, the
receiver of the signal at the frequency of 1 MHz was
positioned opposite the focused transducer, and the
maximum of the signal at the difference frequency was
detected near the receiver–transducer axis. In this
mode, the super-high phase sensitivity of the differ-
ence-frequency signal to the object position was
observed: while the signal frequency was determined
by the wave vector kd = k2 – k1, the signal phase corre-
sponded to the wave vector of the nonlinear source ks =
k2 + k1.

As follows from Eq. (2), in the case of the axial posi-
tion of the low-frequency receiver (θ = 0), the phase
shift of the ultrasonic wave is equal to

If the scattering object moves with a velocity v
towards the receiver or away from it, the phase of the
low-frequency signal changes according to the law
∆ϕ(t) = ksv t – kdz, which leads to a shift of the low fre-

quency: Ωs = Ω ± ksv  = Ω  ± . Under the con-

ditions of our experiment, the ratio kS/kd is equal to 21.
As a result, the shift under study noticeably exceeds
the frequency shift in common Doppler velocity
meters, where it is determined by the common expres-

sion Ωs = Ω  ± .

The measurements of the Doppler shift were con-
ducted for relatively low (up to 0.5 mm/s) and high
(over 10 cm/s) velocities of the object motion. The rep-
etition rate of ultrasonic pulses with a duration of 20 µs
was 20 Hz. In the case of low velocities, the change in
the phase of the low-frequency ultrasonic signals was
detected from one pulse to another, and the Doppler fre-
quency shift was determined by differentiating the
phase with respect to time. This technique provided an
opportunity to measure very low velocities of the object
(from 10 µm/s). However, it could not be used to detect
high velocities because of the low repetition rate of
probing ultrasonic pulses. In the case of higher veloci-
ties of the object, the change in the phase within each
pulse was detected. The experimental results are repre-

∆ϕ ks kd–( )d kd z d–( )– ksd kdz.–= =
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c
----


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sented in Fig. 2. These results show that, in addition to
other advantages of implementation of the phase-con-
jugation methods, the use of low-frequency radiation in
the case of the nonlinear interaction of phase-conjugate
acoustic waves provides an opportunity to considerably
improve the sensitivity of Doppler velocity meters.

3. THE USE OF PHASE CONJUGATION
FOR DETECTING THE FLOW VELOCITY

As we have already noted above, the phenomenon
of phase conjugation of acoustic waves can be also used
for the detection of flow velocities in the medium of
ultrasonic wave propagation. If a direct wave being
transmitted through a flow moving with a velocity v
acquires a phase shift equal to ∆ϕi = kd/(1 – v /c), the
phase-conjugate wave has the phase shift ∆ϕc = kd/(1 +
v /c). As a result, the phase of the received signal is
equal to

Thus, the total phase shift of the received signal is
proportional to the flow velocity and can be used to
determine its value and direction.

In the experiment (Fig. 3), a probing ultrasonic wave
was transmitted through a tube with a diameter of
5 mm. Through the tube, water was flowing with a
velocity of about 100 cm/s. The tube was positioned at
an angle α = 20° to the axis of propagation of the ultra-
sonic beam. The phase profile was detected in the
course of the tube motion along the vertical axis. In this
case, the phase of the received signal depends on the
velocity of motion of the medium according to the rela-
tion

(3)

∆ϕ ∆ϕ i ∆ϕc– 2kd
v
c
----/ 1 v 2

c2
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3
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5

Fig. 1. Experimental setup: (1) pump generator, (2) genera-
tor of ultrasonic pulses, (3) phase-conjugating amplifier,
(4) transducer with a resonance frequency of 10 MHz,
(5) transducer with a resonance frequency of 1 MHz, and
(6) oscilloscope.
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where r is the tube radius and x is the distance from the
tube center along the vertical axis.

Figure 4 presents the distribution of the velocity of
water over the tube cross section, which was obtained
by recalculation according to Eq. (3). Alternative
measurements of the velocity of the water flow in the
tube according to the “flow rate” demonstrated a good
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0.4 v , mm/s0

0.4

v , mm/s

100

100

200

300

200 300

Phase-conjugating

amplifier

Radiation
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v

α

1 2 3 40–1–2–3–4

50

v , cm/s

x, mm

100

Fig. 2. Comparison between the preset velocity of the object
motion (horizontal axis) and the velocity measured by the
Doppler frequency shift of the low-frequency signal (verti-
cal axis).

Fig. 3. Measurement of the velocity of a liquid flow by the
Doppler phase shift of the phase-conjugate acoustic wave.

Fig. 4. Velocity distribution of the liquid flow over the cross
section of a tube with a diameter of 5 mm.
agreement with the aforementioned experimental
data.

The shape of the velocity distribution over the tube
cross section and the ratio of the average and maximum
velocities of the liquid motion testify that, under the
experimental conditions, the motion of the liquid flow
in the tube was close to laminar.

The results presented above demonstrate that the
phenomenon of phase conjugation can be used to deter-
mine the velocity of moving objects and flows in the
medium of propagation of acoustic waves. In the case
of measuring the velocities of moving objects, the
advantages manifest themselves if one employs the
low-frequency waves resulting from the nonlinear
interaction of phase-conjugate waves with close fre-
quencies that are scattered by the object. When the
interaction of such waves propagating in opposite
directions takes place, the wave at the difference fre-
quency has a Doppler shift several times greater than
that in the case of ordinary Doppler measurements. In
the case of detecting the flows in a medium, the use of
phase conjugation allows one to compensate for the
phase shifts and aberrations connected with the wave
propagation through the stationary part of the medium
while retaining the information on the flow velocity in
the phase of the phase-conjugate wave, which consider-
ably simplifies the measurement of this velocity.
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Abstract—The radiation produced by uniformly moving sources (the Vavilov–Cherenkov effect, the transition
radiation, and some other phenomena) is discussed. This area of physical research originated in the Lebedev
Physical Institute of the Russian Academy of Sciences and now represents an integral part of modern physics.
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1 1. INTRODUCTION

During my long life, I have worked in many fields of
science, which is typical of theoretical physicists. For
the topic of this lecture, I could choose between the the-
ory of superconductivity, astrophysics of cosmic rays,
and radiation of uniformly moving sources. I choose
the latter for two reasons. The first is that I love this area
of research. Of course, the word “love” is not often used
in scientific literature, but this is only a tribute to con-
ventional style. In fact, in science, as in everyday life,
we all love certain things and dislike some others. I love
the problems concerned with the radiation of uniformly
moving sources, because my first scientific results are
related to this subject and remind me of my youth. The
second reason for choosing this lecture topic is that the
radiation from uniformly moving sources represents a
basically Russian and, in addition, academic area of
research. Indeed, the brightest phenomenon in this area,
namely, the Vavilov–Cherenkov (V–Ch) effect, was
discovered by S.I. Vavilov and P.A. Cherenkov in 1934
[1, 2]. The effect was interpreted by I.E. Tamm and
I.M. Frank in 1937 [3]. The transition radiation was
first considered by I.M. Frank and myself in 1945 [4].
All the aforementioned authors worked at the Lebe-
dev Physical Institute and all of them were members
of the Academy of Sciences of the USSR. In 1958,
I.E. Tamm, I.M. Frank, and P.A. Cherenkov received
the Nobel Prize in Physics for the discovery and inter-
pretation of the V–Ch effect (Vavilov died in 1951 at
less than sixty years of age, and the Nobel Prize could
not be given posthumously).

2. THE VAVILOV–CHERENKOV EFFECT

In the framework of its own, somewhat narrowed
interpretation, the V–Ch effect is as follows: an electric

1 This lecture was given by V.L. Ginzburg upon receiving the
Lomonosov Large Gold Medal, the highest prize awarded by the
Russian Academy of Sciences. The lecture was published in
Physics–Uspekhi 39 (10), 973 (1996).
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charge (e.g., an electron) moving in a medium with a
constant velocity v emits electromagnetic waves (light)
with a continuous spectrum and with a specific angular
distribution. Radiation at a cyclic frequency ω occurs
only if the velocity of the charge v exceeds the phase
velocity of light in the transparent medium under con-
sideration, v ph = c/n(ω):

(1)

where n(ω) is the refraction index for light at the fre-
quency ω in the medium and c is the velocity of light in
vacuum. The aforementioned specificity of the angular
distribution of the radiation consists in that the wave
vector of the emitted waves k and the velocity v make
an angle θ0 characterized by the formula

(2)

Results (1) and (2) can be obtained by applying the
Huygens principle: every point on the path of a charge
moving uniformly along a straight line with a velocity
v  represents a source of a spherical wave, which is
emitted at the instant of the charge passage through this
point (Fig. 1). Under condition (1), the spheres have a
common envelope in the form of a cone whose vertex
coincides with the instantaneous position of the charge,
while the angle θ0 is determined by Eq. (2).

If the dispersion, i.e., the dependence of n on ω, is
ignored, the angle θ0 is the same for all frequencies ω,
and the radiation has a sharp wave front forming a cone
with an angle of π – 2θ0 and with the charge (source) at
its vertex (see Fig. 1). This cone is similar to the Mach
cone, which characterizes a shock wave accompanying
supersonic motion of a source (bullet, missile, airplane,
or rocket) in air or in another medium. In this case, the
role of the phase velocity of light v ph = c/n involved in
expressions (1) and (2) is played by the velocity of the
shock wave or the velocity of sound u. Since the disper-
sion of sound, i.e., the dependence of its velocity u on

v
c

n ω( )
------------,>

θ0cos
c

n ω( )v
----------------.=
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frequency, is usually very small, the hydrodynamic
(acoustic) wave front at the Mach cone surface is sharp
and is often observable (e.g., at the passage of a super-
sonic airplane).

Thus, V–Ch radiation represents an electrodynamic
(optical) analog of the well-known (since the nine-
teenth century) acoustic phenomenon. Why, then, was
V−Ch radiation not discovered and explained only as
late as only about 60 years ago? Of course, this could
have happened earlier, but, on the whole, the delay is
not accidental. First, the observation of the V–Ch effect
in a relatively pure form requires a beam of relativistic
or nearly relativistic charged particles. Such beams
were obtained in only the 1930s (when the first acceler-
ators were built). Second, in electrodynamics (unlike
hydrodynamics and acoustics), the motion of sources
(charges) is primarily and most commonly considered
in vacuum. Since the velocity of particles v  is always
smaller than the velocity of light c = 3 × 1010 cm s–1

(here, we do not consider the hypothetical and, most
likely, nonexistent supraluminal particles, i.e., tachy-
ons), the V–Ch effect in vacuum is impossible. Though
here some reservations are appropriate (see, e.g., Sect. 9
in [5] and [6, 7]), on the whole, the existence of the
former statement that “a uniformly moving charge does
not emit radiation” is quite understandable.

Presumably, this dogma did not allow one to predict
the V–Ch effect earlier. Actually, however, such a pre-
diction was made by the well-known English physicist
Heaviside in 1888 [8], but, at that time, even the elec-
tron had not been discovered and no fast particles mov-
ing in a dielectric could be imagined to exist in reality.
Therefore, Heaviside’s idea was forgotten and was not
again brought to light until as late as 1974 [9, 10].
Another precursor of the Tamm and Frank theory was
the calculation performed by the well-known German
physicist Sommerfeld [11], but Tamm and Frank
became acquainted with it only after the termination of
their work [3]. In 1904, Sommerfeld considered a uni-
form motion of a charge in a vacuum and made the con-
clusion that, at a supraluminal velocity v  > c, the charge
emits radiation. However, from the special relativity

k

v
qυt

(c/n)t

Medium Normal to the wave front

with refraction
index n

Source
(charge)

Wave front

θ0

Fig. 1. Formation of the Vavilov–Cherenkov effect: (c/n)t is
the path length traveled by light within the time t and υt =
[c/(ncosθ0)]t is the path length traveled by the charge
(source) within the same time.
theory, which appeared within a year (in 1905), it fol-
lowed that the motion of a charge with a velocity
higher than c is impossible, and the work by Sommer-
feld was forgotten as well.2 Within the next 30 years,
neither Sommerfeld nor any other physicists tried to
consider the motion of a charge in a medium instead
of the vacuum.

Precisely this idea was put forward by I.E. Tamm
and I.M. Frank [3]: they calculated the radiation from a
charge q moving with a constant velocity v in a medium
with a refraction index n(ω). As a result, they formally
derived expression (2) and obtained the radiation inten-
sity (power) per unit time (i.e., within a path length
equal to v):

(3)

Here, the integration is performed over all frequencies
satisfying condition (1). Tamm and Frank sent a reprint
of their paper [3] to Sommerfeld and, in response,
received a letter dated May 8, 1937, which arrived
through Austria (fascists were already in power, and it
was difficult to write a letter directly to the USSR). In
this letter, Sommerfeld wrote: “I never thought that my
calculations of 1903 may find any physical application.
This case proves that the mathematical part of the the-
ory experiences a change of physical concepts.”3

The prehistory of the discovery of the V–Ch effect
is described in more detail in the book written by Frank
[14]. The development of the theory has been consid-
ered above. As for the experiment, the V–Ch radiation
had actually been observed by Pierre and Marie Curie
in bottles with radium salt solutions. Today, the blue
glow of water, which mainly represents the V–Ch radi-
ation, can be observed by excursionists when they are
shown a nuclear reactor immersed in a water tank. The
radiation from fluids irradiated with gamma rays was
studied by the French scientist Mallet in 1926–1929.
However, before Vavilov and Cherenkov, no one under-
stood that this phenomenon was related to a new effect
rather than to some kind of luminescence under the
effect of gamma rays.

2 Note that, from relativity theory, it follows (without considering
tachyons) that the velocity c is limiting for a single charge (when

v   c, the mass of the particle m0/  tends to infin-
ity). However, a source of radiation (for example, a source con-
sisting of many particles) may have any velocity (see [5–7]). I do
not discuss this problem in this lecture, although it is of a certain
interest.

3 This letter is fully reproduced in Recollections of I.E. Tamm (see
p. 120 in [12]). Sommerfeld also mentioned that, as a foreign
member of the Academy of Sciences of the USSR, he received
some of the Russian academic literature. Presumably, he was
referring to the Doklady Akademii Nauk SSSR (Doklady Physics).
It is a pity that today’s foreign members of the Russian Academy
of Sciences receive nothing [13].
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Experiments suggested by Vavilov and carried out
by Cherenkov began with the observation of the lumi-
nescence of uranyl salt solutions under the effect of
gamma rays. The experiments used an original method
of measurement that was developed by Vavilov and his
coworkers on the basis of using a dark-adapted human
eye [14, 15]. By accident, Cherenkov discovered that
the fluid (sulfuric acid) glows even in the absence of
salt dissolved in it. He decided that his thesis had failed
[15]. However, Vavilov understood that the experi-
ments revealed a glow of a nature different from lumi-
nescence. Vavilov and Cherenkov continued their mea-
surements and finally obtained enough evidence to
report on the discovery of a new phenomenon [1, 2].
Vavilov indicated [2] that the glow observed in the
experiment was not caused by gamma rays but was
related to the Compton electrons that appeared in the
fluid as a result of their knocking-out by gamma rays.
The subsequent observations by Cherenkov [16] were
performed with the participation of Vavilov and Frank
[14, 15]. They revealed some properties of the new
radiation that allowed Tamm and Frank to determine its
nature [3].

From the aforesaid, it is clear that Vavilov is the co-
author of the discovery of the V–Ch effect, and only the
name “Vavilov–Cherenkov” should be used for it.
I stress this point because, in our (Soviet) literature,
other opinions can be found, ones which are considered
wrong by all physicists knowing the actual facts (see
[14, 15, 17, 18]). As for the name “Cherenkov effect,”
which is always used abroad and sometimes in Rus-
sia—it is a consequence of the actions of Vavilov him-
self: he first published only a small letter reporting on
the effect [2] and then sent to the Physical Review a
large paper describing the V–Ch effect in detail [19],
but this paper was signed by Cherenkov alone.4 I do not
know why Vavilov did such a thing. Possibly, because
of his noble nature, he did not want to eclipse his stu-
dent. Unfortunately, Vavilov suffered from various
kinds of malicious attacks as a physicist, as a person,
and as a scientific administrator and President of the
Academy of Sciences of the USSR. I believe that all this
criticism was groundless, and this opinion has already
been expressed by me in my previous publications (see
pp. 391, 393 in [20] and also [21]).

The V–Ch effect has found wide application in
physics (here, I do not mention its significance for the
electrodynamics of continuous media and for physics
as a whole). On the basis of the V–Ch effect, one can
determine the velocity of a particle v  by measuring the
angle θ0 (see Eq. (2)) or, from inequality (1), directly
(in the absence of the effect) conclude that v  < c/n(ω)
(evidently, the refraction index n(ω) in a transparent
medium may and should be considered to be known).
In addition, since the radiation intensity is proportional

4 Note that this paper [19] was initially sent to Nature but was
rejected. This shows that the V–Ch effect seemed to be rather
nontrivial at that time.
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to the square of the charge q of a particle (see Eq. (3)),
one can easily distinguish particles with the elementary
charge e (electrons, protons, etc.) from nuclei with
charges Ze (where Z is the ordinal number of an ele-
ment). Even for a helium nucleus (Z = 2), the radiation
intensity is four times as high as that for hydrogen iso-
topes (Z = 1); for an iron nucleus (Z = 26), the intensity
is 676 times higher that for protons with the same
velocity. The so-called Cherenkov counters are widely
used in accelerators and in high-energy physics as a
whole [22, 23]. Specifically, the V–Ch effect is used in
studying cosmic rays (the V–Ch radiation from a
shower in the atmosphere) and in systems designed for
observing high-energy neutrinos.

The theory of V–Ch radiation cannot be fully
described in the framework of this lecture (for details,
see [5–7, 14, 22, 24]), and I will dwell only on several
problems that are subjects of my own former investiga-
tions.

In 1940, Mandel’shtam, acting as an official oppo-
nent to Cherenkov’s doctoral thesis, noted that the
V−Ch effect should also be observed when a charge
(source) moves not in a continuous medium but in a
thin empty channel running through this medium.
Physically, the idea is that the V–Ch radiation is formed
not only on the very path of the charge but also near the
path, at a distance of about the wavelength of the emit-
ted light λ = 2πc/[n(ω)ω]. The corresponding radiation
intensity was calculated by Frank and myself [25]. Nat-
urally, this intensity decreases with increasing radius r
of the empty channel, along the axis of which the

charge moves. If we have  ~ 1, then, for
r/λ & 0.01 (in optics, this means that r & 5 × 10–7 cm),
the radiation is practically the same as that in the
absence of the channel. Qualitatively, a similar situa-
tion occurs when the channel is replaced by a gap or
when the charge moves near the boundary of a medium
(a dielectric). This consideration is important because,
in the course of the motion of the charge in a medium,
its energy loss due to V–Ch radiation is relatively small;
the predominant factor is the ionization loss, which is
localized in the immediate vicinity of the trajectory.
Therefore, in the case of motion in a channel, in a gap,
or near a medium, the ionization loss is absent though
the V–Ch radiation persists. For charges, this fact is
important but not critical, while for the observation of
the Doppler effect in a medium, where the motion of
excited atoms is involved, the whole phenomenon can
be observed only with the use of channels or gaps; oth-
erwise, the atom breaks up. However, the Doppler
effect may be observed (and was observed) in the case
of the motion in a rarefied medium, in particular, in
plasma.

Incidentlly, the analysis of the problem of radiation
in the case of motion near a medium was used by me in

1 v 2/c2–
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discussing various possibilities of microwave genera-
tion [26–28].

Now, I consider the methods of calculating the
intensity of V–Ch radiation. Tamm and Frank [3]
obtained expression (3) by solving the electrodynamics
equations in a medium and defining the radiation inten-
sity as the Poynting vector flux through a cylindrical
surface surrounding the trajectory of the charge.
Another method of calculation consists in the determi-
nation (on the basis of the same equations) of the force
that decelerates the moving charge: the work of this
force in a transparent medium is equal to the radiation
energy given by Eq. (3). Such calculations were per-
formed, for example, by Fermi [29], and they can be
found in the book by Landau and Lifshits [30] (see
§ 115). Finally, there is a third method for calculating
the same intensity (power) given by Eq. (3). It consists
of calculating the energy of the electromagnetic field
generated by the charge per unit time [31].

For this purpose, it is convenient to use the so-called
Hamiltonian method. For a homogeneous isotropic sta-
tionary medium, it uses a series expansion of the vector
potential A of the field (for more details, see, e.g., [5]):

(4)

where eλ is the polarization vector (eλ = 1) and n = 
is the refraction index (ε is the permittivity of the
medium, and the latter is assumed to be nonmagnetic
for simplicity). The transverse electromagnetic field
under consideration has the form

and the energy of this field is

(5)

where

(6)

The field equation has the form

for a point charge q moving with a velocity v, the cur-
rent density is j = qvδ[r – rq(t)], where rq(t) is the radius
vector of the charge and δ is a delta function. With the
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substitution of expansion (4), the field equation takes
the form

(7)

Thus, the field equations are reduced to Eqs. (7) for the
“field oscillators” qλi(t). Integrating these equations and
substituting the solution into Eq. (5), we obtain the field
energy as the sum of the energies of all oscillators. For
a charge uniformly moving along a straight line, we
have rq(t) = vt, and Eqs. (6) can be easily integrated,
because they are equations for an oscillator oscillating
under a harmonic force proportional to cos(kλvt) or
sin(kλvt), i.e., oscillating with a frequency

(8)

At ω = ωλ, a resonance takes place and the amplitudes
qλi increase with time; i.e., radiation is observed. Evi-
dently, in a vacuum where n = 1, the frequency ω is
always smaller than ωλ (provided that v  < c). This
means that a charge moving uniformly in a vacuum
does not emit any radiation. In a medium, however, the
resonance (and, hence, the radiation) is possible.
According to Eq. (8), the resonance condition is
(nv /c)cosθ = 1, i.e., the V–Ch radiation condition (see
Eq. (2)). The substitution of the solution for qλi(t) into
Eq. (5) yields the expression *tr = (dW/dt)t, where
dW/dt is determined by Eq. (3).

Thus, in the case under consideration, calculation by
the Hamiltonian method is simple and self-evident. The
character of this lecture allows me to note that precisely
this simplicity, which I discovered by accident, encour-
aged me to switch to theoretical physics (I graduated
from the Moscow State University in 1938 as an exper-
imentalist in optics and believed that I should not work
in theoretical physics because of the lack of mathemat-
ical talent). Of course, I considered the Hamiltonian
method not with the aim of making the above comment.
It is important that, unlike the two other methods men-
tioned above, the Hamiltonian method for calculating
the radiation energy allows for an almost trivial gener-
alization to the case of an anisotropic medium, i.e., to
noncubic crystals or to a plasma in a magnetic field. In
an anisotropic medium, the field should be decomposed
into normal waves, which may propagate in the corre-
sponding medium (in an isotropic medium, as in vac-
uum, degeneration takes place and the normal waves
are reduced to waves Aλi given by Eqs. (4)). Thus, one
can easily consider the V–Ch effect in an anisotropic
medium, the simplest example of which is a uniaxial
crystal [32]. In this case, the V–Ch radiation forms two
cones, which, in the general case, are not circular and
have different polarizations (directions of the electric

d2qλ1

dt2
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2qλ1+ 8πc
n
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d2qλ2

dt2
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2qλ2+ 8πc
n
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ω kλv kλv θcos
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RADIATION FROM UNIFORMLY MOVING SOURCES 15
field in the waves). Experimental studies of the V–Ch
effect in crystals were performed, in particular, by Zre-
lov [22].

Numerous publications in addition to those cited are
concerned with different aspects of the theory of V−Ch
radiation. They include the generalization to magnetic
media, a detailed analysis of radiation in crystals, the
role of boundaries, etc. (see [5–7, 14, 22, 33, 34] and
the literature cited there). I specially note the study of
the role of absorption [29, 35] and the consideration of
V–Ch radiation not from charges but from various
dipoles and multipoles (see [5–7, 14] where references
to original publications are given). The problem of the
V–Ch radiation from multipoles has not been com-
pletely investigated [5–7]. Presumably, this can be
explained by the fact that the known particles have
rather small magnetic moments (not to mention other
multipoles), and the radiation associated with these
moments is also very weak and of no practical interest.
As for the radiation from a magnetic charge (a mono-
pole), it should be considerable, but such monopoles
have never been observed; possibly, they do not exist in
nature.

For reasons of space, it is impossible to dwell here
on the problems listed above and on all the experiments
using V–Ch radiation (see [22, 23]). However, the
quantum interpretation of the V–Ch effect seems to be
worth discussing.

3. THE QUANTUM THEORY
OF THE VAVILOV–CHERENKOV EFFECT

The classical theory of the V–Ch effect, which was
discussed above, is sufficiently accurate in the optical
part of the spectrum. Nevertheless, proceeding from
methodical considerations, it is expedient to consider
more closely the quantum theory of the effect [36] (see
also [5–7], 14]).

How should the absence of radiation from a charge
(or some other source possessing no eigenfrequency)
uniformly moving in vacuum be explained in quantum
terms? For this purpose, it is sufficient to use the energy
and momentum conservation laws in application to the
emission of a photon by a particle:

(9)

where E0, 1 and p0, 1 are the energy and momentum of a
charge with a mass at rest m before the emission (sub-
script 0) and after the emission (subscript 1) of a photon
with an energy "ω and momentum "k = ("ω/c)(k/k).
One can easily verify that Eqs. (9) have no solution for
v  < c (with ω > 0); i.e., the photon emission is impossi-
ble (see Eq. (11) with n = 1).

E0 E1 "ω, E0 1,+ m2c4 c2 p0 1,
2+ ,= =

p0 p1 "k, k+
ω
c
----, p0 1,

mv0 1,

1 v 0 1,
2 /c2–

------------------------------,= = =





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To consider the problem of radiation from a source
in a medium, it is necessary to know only: what the
energy and momentum of the radiation are in this case,

because the energy of a particle E =  does
not change in the medium. This question is not that sim-
ple (see Sect. 13 in [5]), but it can be solved rather sim-
ply (and correctly) at the intuitive level. Indeed, in a sta-
tionary and time-invariant medium, its presence does
not affect the frequency ω, and the wavelength is λ =
λ0/n, where λ0 = 2πc/ω is the wavelength in vacuum.
The wave number is k = 2π/λ = "ωn/c. Taking this into
account, instead of Eqs. (9), we write

(10)

Solving these equations with respect to ω and θ0, where
θ0 is the angle between v0 and k, we obtain

(11)

(12)

Under the condition

(13)

(or under a more accurate inequality evident from
Eq. (11)), expression (11) is transformed into classical
expression (2). This result should be expected, because
condition (13) evidently corresponds to the classical
limit (it is always valid when "  0). In the classical
limit, the recoil (the change in the momentum p0 of the
particle) due to the emission of a photon in the medium
with a momentum "k is ignored. As was mentioned
above, from Eq. (12) it follows that emission (ω > 0) is
possible only when v 0 > c/n (because cosθ0 ≤ 1). In the
classical limit, when the result (see Eq. (2)) does not
depend on ", the quantum calculation is only of
methodical significance; it may be convenient but is not
obligatory. This corresponds to the real situation, and
the conservation laws can be formulated in the classical
region as well; it is only necessary to take into account
the relation between the emitted electromagnetic
energy *tr and the momentum of the radiation. The
corresponding simple calculations are given in [5–7].
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Evidently, the radiation intensity can also be calculated
in quantum terms by generalizing Eq. (3) [36].

In the optical region, which is the only one dealt
with in the applications of the V–Ch effect, even for
electrons the ratio "ω/mc2 ~ 10–5 is small; i.e., the quan-
tum corrections are insignificant. In light of this, Lan-
dau, when he became aware of my work [36] published
in 1940, noted that it is of no interest (see p. 380 in
[20]). From the aforesaid, it is clear that this conclusion
was justified, and this was characteristic of Landau: his
critical comments were usually correct. However, a dif-
ferent approach or method of obtaining a known result
proves to be useful in applications to other problems.
Such an example concerning different ways of calculat-
ing the V–Ch radiation power given by Eq. (3) was
mentioned above. It was found that a similar situation
arises in the case of applying the conservation laws to
the analysis of the radiation in a medium. Precisely the
application of conservation laws proves to be fruitful in
studying the Doppler effect in a medium.

4. THE DOPPLER EFFECT IN A MEDIUM

The sources discussed above (specifically, charges)
possess no eigenfrequency. Another important case is a
source without a charge or any time-invariable multi-
pole moment but with an eigenfrequency ω0. A classi-
cal example is an oscillator, and a quantum example is
an atom, which, at a certain transition, radiates a fre-
quency ω00 (this frequency refers to the frame of refer-
ence in which the source is at rest).

If such a source moves with a constant velocity v (in
the laboratory frame of reference) in a vacuum, the fre-
quency of the waves produced by it is estimated in the
laboratory frame of reference by the formula

(14)

where θ is the angle between the wave vector k (the
observation direction) and the velocity v; the frequency
ω0 in Eq. (14) represents the oscillation frequency in
the laboratory frame of reference. The change in the
frequency of waves produced by a moving source is
called the Doppler effect. This effect also occurs in
acoustics, as well as for waves of any nature.

Now, let us consider a transparent medium (with a
refraction index n(ω)), which is at rest in the same lab-
oratory frame of reference, and an oscillator or an atom
(molecule) moving in it. The fact that a source moving
through a continuous medium may fail is insignificant,
because a channel or a gap in the medium can be used
(see above).

ω θ( )
ω00 1 v 2/c2–
1 v /c( ) θcos–
-----------------------------------

ω0

1 v /c( ) θcos–
-----------------------------------,= =
In the presence of the medium, Eq. (14) should be
replaced by the expression [37, 14]

(15)

This formula can be obtained using the following gen-
eral rule: by replacing the velocity of light in vacuum
by the phase velocity in the medium c/n(ω) (in the rad-

icand of , the quantity c should not be
replaced by c/n, because this root is associated with the
time dilation for the moving source and is unrelated to
the radiation process). Expression (15) can also be
derived formally by solving the field equations for a
moving source. In this expression, the appearance of
the absolute value is nontrivial (its necessity is evident
from the requirement that the frequency should be pos-
itive). If the motion is subluminal (i.e., v  < c/n) or if it
is supraluminal but occurs outside the cone defined by
Eq. (2), i.e., under the condition that

(16)

the conventional normal Doppler effect takes place.
Note that, in this case, the so-called complex Doppler
effect, which is caused by the dispersion, i.e., by the
dependence of n on ω, is also possible [37, 14].

If the motion is supraluminal (condition (1) is satis-
fied), then, in the angular region determined by the for-
mula

(17)

Eq. (15) without the absolute value sign leads to nega-
tive frequency values. The radiation in region (17), i.e.,
inside the cone defined by Eq. (2) (often called the
Cherenkov cone (Fig. 2)), is called the anomalous Dop-
pler effect. With allowance for the dispersion, the
whole picture proves to be complicated (every fre-
quency has its own cone and, if the dependence of n on
ω is nonmonotone, several cones). Here, we limit our
consideration to the case without dispersion: n(ω) = n =
const. Then, according to Eq. (15), on the Cherenkov
cone surface where (v /c)ncosθ = (v /c)ncosθ0 = 1, the
frequency is ω  ∞, and this occurs on both sides of
the cone surface (at θ  θ0). From Eq. (15), no other
inferences can be drawn, and the difference between
the normal and anomalous Doppler effect does not
seem to be significant.

However, it was found that the quantum approach
(or, more precisely, the use of the energy and momen-
tum conservation laws) reveals a very important feature
of the anomalous Doppler effect [38, 5–7, 14]. Let us
assume that the source is a “system” (atom) with two
levels: the lower level 0 and the upper level 1 (Fig. 3).

ω θ( )
ω00 1 v 2/c2–

1 v /c( )n ω( ) θcos–
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=  
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1 v /c( )n ω( ) θcos–
--------------------------------------------------.

1 v 2/c2–
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Then, using conservation laws of type (10), one only
has to modify the expression for the energy of the
source by taking into account the presence of the inter-
nal degrees of freedom (levels). This energy has the
form

(18)

where (m + m0)c2 = mc2 + W0 is the total energy of the
system (atom) in the lower state 0 and (m + m1)c2 =
mc2 + W1 is the corresponding energy in the upper
state 1. Since W1 > W0, in the case of the transition
1  0, the atom at rest emits radiation with the fre-
quency ω00 = (W1 – W0)/".

Using the conservation laws in classical limit (13),
we arrive at Eq. (14) and, in the case of an exact calcu-
lation [38], to a somewhat more complex expression
containing terms on the order of "ω/mc2. However, not
the quantum corrections but the following unexpected
situation proves to be significant. Tracing the signs (this
is simple algebra), one can easily see that, in the region
of the normal Doppler effect, the atom, as in vacuum,
performs a transition from the upper level 1 to the lower
level 0 (the direction of the transition is determined
from the requirement that the energy of the emitted
photon, "ω, be positive, i.e., from the condition ω > 0).
By contrast, in the region of the anomalous Doppler
effect, the emission of a photon is accompanied by the
excitation of the atom: it performs the transition from
level 0 to level 1 (Fig. 3). In this case, the energy is
taken from the kinetic energy of the translational
motion.

Thus, in the case of supraluminal motion (v  > c/n),
which is the only case allowing the anomalous Dop-
pler effect, the initially nonexcited atom (in the lower
state 0) becomes excited (changes to level 1), simulta-
neously emitting a photon within the Cherenkov cone.
The excited atom emits radiation (upon the transition

E0 1, m m0 1,+( )2
c4 c2 p0 1,

2+ ,=

k

k

v(θ > θ0) (θ < θ0)

θ0

θ0

Region of the normal
Doppler effect

Cherenkov cone

Region of the anomalous
Doppler effect

Fig. 2. Regions of the normal (θ > θ0) and anomalous (θ < θ0)
Doppler effects.
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1  0) outside the Cherenkov cone, i.e., at the angles
θ > θ0. As a result, in the course of the supraluminal
motion, the atom is continuously excited and emits
radiation. For the classical oscillator model, this means
that the oscillator is excited all the time. The anomalous
Doppler effect is quite important for plasma physics.
On the whole, in plasma, the V–Ch effect and the
notions and analogies related to it play an important
role. This fact was stressed by Tamm in his Nobel lec-
ture [17]. There, he also put forward the assumption
that the acoustic analog of the anomalous Doppler
effect known in optics plays an important part in the
analysis of vibrations that accompany the supersonic
motion of an airplane (the so-called flutter).

I think that, without the quantum consideration, it
would be difficult to reveal the aforementioned feature
of the anomalous Doppler effect [38] (more precisely,
as follows from the above, not the quantum approach
but the application of the conservation laws is impor-
tant). The testing of the result and further progress is
made possible by means of a classical or quantum cal-
culation of the radiation response for a source moving
in a medium. Specifically, for an oscillator moving in a
medium, one can determine the effect of the radiation
force on the oscillations of the oscillator (see [39], [5],
ch. 7). The wave radiation in the region outside the
Cherenkov cone (i.e., in the case of the normal Doppler
effect) was found to slow down the oscillations. By
contrast, the radiation directed inside the Cherenkov
cone, i.e., corresponding to the anomalous Doppler
effect, enhances the oscillations of the oscillator, i.e.,
excites it. This result agrees well with the above quan-
tum consideration.

Note that a number of publications developing the
cited work [39] and also some other publications in this
area of research belong to B.E. Nemtsov [40], the well-
known governor of the Nizhni Novgorod region and a
former talented theoretical physicist.

1

0

1

0

k

k

v v

θ0 θ0

(‡) (b)
Atomic levels

Fig. 3. Transitions between atomic levels 0 and 1 in the
cases of the (a) normal and (b) anomalous Doppler effects.
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The above consideration also clarifies the mecha-
nism of excitation of uniformly accelerated “detectors”
[41, 7]. As is known, the latter problem has been much
discussed in the literature (for references, see [41]) in
connection with studies of the radiation from black
holes and uniformly accelerated systems (acceleration
radiation).

5. TRANSITION RADIATION AT A BOUNDARY 
BETWEEN TWO MEDIA

In the course of uniform rectilinear motion of a
source without an eigenfrequency (a charge or a multi-
pole), radiation in the medium, i.e., V–Ch radiation,
occurs only at a supraluminal velocity defined by con-
dition (1). However, in this case, the medium is
assumed to be homogeneous and time-invariant. If the
medium is inhomogeneous and/or varies with time,
some radiation is also possible from a source uniformly
moving with a subluminal velocity. This radiation, the
possibility of which was first considered in 1945 [4], is
called transition radiation.

The simplest case of transition radiation is as fol-
lows: a charge uniformly moving along a straight line
with any velocity crosses a boundary between two
media. The point of intersection of the charge trajectory
with the boundary becomes a source of transition radi-
ation. This conclusion is most evident in the situation
where the charge is incident from the vacuum on a
metal surface (with a high conductivity), which plays
the role of a perfect mirror (Fig. 4). From electrody-
namics, it follows that, under such conditions, the field
of the charge in vacuum is a sum of the fields of the
charge q moving in the vacuum in the absence of the
mirror and a charge –q moving in the mirror toward the
charge q (i.e., with the velocity –v). The charge –q is
called the “image” of the charge q. When charge q
crosses the metal boundary, it falls into a conducting
medium and ceases to produce a field in the vacuum;
the image –q also disappears. Thus, from the viewpoint
of an observer in the vacuum, the annihilation of the
pair of charges q and –q occurs at the instant of crossing
the boundary. From the same electrodynamics, it is
known that annihilation, as well as any acceleration of
charges (in the case under study, both charges q and −q
are abruptly stopped at the boundary), should be

q –qθ

Metal (perfect mirror)

Charge moving
with velocity v

Charge
trajectory

Vacuum

“Image”

and velocity –v)
(charge –q

Fig. 4. Transition radiation from a charge q crossing the
vacuum–metal boundary.
accompanied by a radiation. This is the transition radi-
ation for the case under consideration.

For a perfect mirror, the energy radiated into the
vacuum is expressed as

(19)

In the ultrarelativistic limit (as v   c), we have

(20)

Formulas (19) and (20) are derived rather easily [5–7,
42]. However, in the general case of two media charac-
terized by complex permittivities ε1 and ε2, the calcula-
tions are cumbersome [4, 5, 42], and I do not present
here even their results. It should only be noted that the
aforementioned “backward” transition radiation (see
Fig. 4) is of no practical interest. Presumably, it may
account for the optical glow of anticathodes of X-ray
tubes. In principle, this transition radiation may be used
for measuring the particle energy E, because this quan-
tity is involved in Eq. (20) for the emitted energy. How-
ever, in Eq. (20), the dependence on E is logarithmic
while the absolute value of the energy W1 is fairly
small. It was found (in 1959; [43, 44]) that, for ultrarel-
ativistic particles, it is expedient to consider the “for-
ward” transition radiation, i.e., the radiation in the
direction of the particle velocity, for example, when the
particle passes from a substance into the vacuum. In
this case, high-frequency radiation should be emitted as
well, and the total radiation energy of a particle with a
charge q and mass m is

(21)

where ωp is the plasma frequency of the substance (at
high frequencies, all substances are equivalent to a
plasma with a permittivity

where N is the electron concentration in the substance
and e and me are the charge and mass of an electron).

The radiation energy W2 is proportional to the parti-
cle energy E. Hence, by measuring W2 one can deter-
mine E, which is important for high-energy particle
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physics. Here, it should be noted that the use of the
V−Ch effect for the energy measurements at high ener-
gies is ineffective. The point is that, in the ultrarelativ-
istic region where v   c, the Cherenkov angle θ0 (see
Eq. (2)) and the radiation intensity (Eq. (3)) are almost

insensitive to the particle energy E = mc2/ .
The measurement of the energy of the “forward” tran-
sition radiation W2 is used as a basis for so-called tran-
sition counters, which have found wide application in
high-energy particle physics [45, 46]. To avoid any mis-
understanding, it should be noted that, since for a single
boundary the energy W2 (Eq. (21)) is rather small, the
transition counters should use a “sandwich” of many
sheets (plates) of a material with, e.g., air-filled gaps
between them. The presence of many boundaries
imposes certain limitations on the structure of such a
counter. This fact involves some rather interesting
physics (the consideration of the zone of the radiation
formation) (see [5–7, 14, 42]).

6. TRANSITION RADIATION
(THE GENERAL CASE).

TRANSITION SCATTERING.
TRANSITION BREMSSTRAHLUNG

The transition radiation that occurs at the intersec-
tion of a sharp interface represents the simplest case. In
the general case, the transition radiation always appears
when a source (charge) uniformly moves in an inhomo-
geneous and/or nonstationary medium or near it. In
addition to the aforementioned situation with the “anni-
hilation” of the source and its image, the transition radi-
ation can be interpreted in a more general way. As an
example, let us consider an isotropic transparent
medium characterized by a refraction index n. Then, in
the general case, the phase velocity of light in the
medium is v ph = c/n(ω, r, t), where r represents the
coordinates and t is time (evidently, in a homogeneous
stationary medium, we have n(ω, r, t) = n(ω)). The light
radiation from a charge moving with a velocity v  is
governed by the ratio v /v ph = vn/c. In vacuum, n = 1
and, at v  = const, the radiation is absent (we assume
that v  < c); the radiation is possible only with the accel-
eration of the charge, i.e., when v  = v(t) and the accel-
eration is w = dv /dt ≠ 0. In the medium, in the case of a
uniform rectilinear motion with v  = const and w = 0, the
ratio vn/c still may change because of the dependence
of n on r and/or on t. Precisely this is the transition radi-
ation, provided that the refraction index n(ω, r, t) varies
at the charge site or near it (within the zone of the radi-
ation formation).

In the case of crossing a boundary between two
media, the index n changes at this boundary. Another
version involves any inhomogeneous medium (emul-
sion, plasma in an inhomogeneous magnetic field, etc.).
One more possibility is of interest but not really practi-
cal: a charge uniformly moves in a homogeneous
medium but, at some instant t = t0 (or within some inter-

1 v 2/c2–
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val of time near the instant t0), the refraction index
changes in the whole medium, for example, because of
the compression of the medium. Then, the point where
the charge occurs at the instant t0 plays (although not
literally) a role similar to that of a boundary between
two media [47, 42]. An important case of an inhomoge-
neous medium is a periodically inhomogeneous one,
for example, a stack of plates used in transition
counters [48, 42]. The transition radiation arising under
such conditions is sometimes called resonance transi-
tion radiation or transition scattering. When a charge
moves through a periodically inhomogeneous medium
(a sine medium (see Eq. (22) below), a medium consist-
ing of a set of sharp boundaries, etc.), one can say (from
the charge standpoint) that a permittivity (refraction
index) wave is incident on the charge. The scattering of
this wave from the charge gives rise to transition radia-
tion. However, the use of the term “transition scatter-
ing” would be not justified without the presence of this
effect for a charge at rest. In this case, the term “transi-
tion radiation” seems to be inappropriate, while the
term “transition scattering” fits the situation. For exam-
ple, the effect occurs when a permittivity wave is inci-
dent on a charge q at rest (a fixed charge), and, as a
result, an electromagnetic wave propagates (is scat-
tered) from the charge (Fig. 5).

This result can also be easily understood without the
general theory of transition radiation. For example, let
us consider an isotropic transparent medium with a per-
mittivity ε = n2. If an acoustic wave propagates in such
a medium, the density of the latter has the form ρ =
ρ(0) + ρ(1)sin(k0r – ω0t), where k0 and ω0 are the wave
vector and the frequency of the acoustic wave, respec-
tively. The variation of the density ρ is accompanied by
a variation of ε, which gives rise to a permittivity wave:

(22)

where ε(0) is the permittivity in the absence of the
acoustic wave and ε(1) is the variation in ε due to the
density variation. Evidently, a permittivity wave may
be caused not only by an acoustic wave but also by
some other factor, e.g., a longitudinal plasma wave.

Let us place a fixed or an infinitely heavy charge q
in the medium. An electric field E and an induction D =

ε r t,( ) ε 0( ) ε 1( ) k0r ω0t–( ),sin+=

Fig. 5. Schematic diagram of the transition scattering of a
permittivity wave from a stationary (fixed) charge q.
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εE appear around the charge. If no wave is present, the
field E is a Coulomb one:

(23)

In the presence of wave (22), in the first approximation
(under the condition |ε(1)| ! ε(0)), an additional polariza-
tion arises:

(24)

Such a polarization, which has no spherical symmetry
(at k0 ≠ 0), gives rise to an electromagnetic wave of fre-
quency ω0 diverging from the charge (see Fig. 5). The

wave number of this wave is k = 2π/λ = (ω0/c) . If
the permittivity wave is caused by an acoustic wave (as
we assumed above), we have k ! k0 = ω0/u, where u is
the velocity of sound (evidently, we assume that u !

c/ ).
The arising electromagnetic wave can be interpreted

as a scattered one in the sense common to other types
of scattering, for example, the Thomson scattering of an
electromagnetic wave from an electron at rest (in this
case, at rest means without taking into account the
effect of the incident wave). If the medium is an isotro-
pic plasma and the incident wave is a longitudinal
(plasma) wave, the transition scattering under discus-
sion represents a transformation of a longitudinal wave
into an electromagnetic (transverse) one. This suggests
that the transition scattering plays an important part in
plasma physics, which actually is true [5–7, 42]. Let us
illustrate this by an example. A longitudinal wave in

plasma (its frequency is close to ωp = )
contains some electric field and also involves a varia-
tion in ε. Thus, when a longitudinal wave propagates in
plasma, the plasma particles (electrons and ions) are
under the simultaneous effects of the electric field wave
and the permittivity wave. Electrons of the plasma
oscillate in the electric field and, hence, are sources of
scattered electromagnetic waves (the so-called Thom-
son scattering), whose intensity is inversely propor-
tional to the square of the mass of the scattering particle
m. Therefore, the Thomson scattering from ions is char-
acterized by an intensity that is (mi/me)2 times smaller
than the intensity of the scattering from electrons (me is
the electron mass and mi is the ion mass). Hence, even
in the case of Thomson scattering from the lightest
ions, namely, protons with a mass mp = 1836me, its
intensity is (1836)2 ≈ 3.4 × 106 times smaller than that
in the case of scattering from electrons. By contrast,
transition scattering in the first approximation does not
depend on the mass of the scattering particle m and is
also present at m  ∞. Therefore, in plasma, the total
scattering of the longitudinal wave from ions actually is
a transition scattering, whose intensity is of the same

E 0( ) qr

ε 0( )r3
------------, D 0( ) ε 0( )E

qr

r3
------.= = =

δP δD
4π
-------

ε 1( )

4π
-------E 0( ) k0r ω0t–( ).sin= =

ε 0( )

ε 0( )

4πe3N /me
order of magnitude as the intensity of the longitudinal
wave scattering from electrons. On the whole, without
taking into account the transition scattering, an analysis
of the processes that occur in plasma is impossible.

Another effect related to transition scattering is
transition bremsstrahlung [50, 42]. Conventional
bremsstrahlung occurs as follows: when particles col-
lide, they are accelerated (or decelerated) and, as a
result, emit electromagnetic waves. Since light particles
(electrons) are accelerated more strongly than heavy
particles (say, at the same velocity), the bremsstrahlung
of electrons is much more intense (under comparable
conditions) than the bremsstrahlung of heavy particles
(protons, etc.). However, the aforesaid is valid only
when the collisions and the corresponding bremsstrahl-
ung occur in a vacuum. In the presence of a medium,
the situation is different. As was mentioned above, radi-
ation (transition radiation) is possible without any
acceleration of the particles. Therefore, if a charge q
moves in a medium (plasma) past a charge q', radiation
appears even without any noticeable acceleration of
some of these charges. This radiation is called transi-
tion bremsstrahlung. The physical nature of transition
bremsstrahlung can be most easily understood by
decomposing the field E and polarization P = [(ε –
1)/4π]E of a uniformly moving charge q into waves
with a wave vector k0; the frequency of these waves is
ω0 = k0v, where v is the velocity of the charge. These
waves give rise to permittivity waves with the same
ω0 and k0. The permittivity waves are scattered from
the other charges q', which results in transition
bremsstrahlung.

Transition radiation, as well as transition scattering
and bremsstrahlung, which are closely related to it, are
considered in many publications and in a special book
[42].

In this lecture, the problems were only briefly
reviewed. However, I hope that it has clearly demon-
strated the significance of the given area of research for
physics (in the case of transition radiation, the transi-
tion counters and the applications in plasma physics are
of special importance).

7. CONCLUDING REMARKS

In the development of physics and (evidently) other
sciences, analogies, i.e., the transfer of notions from
one area to another, play an important part. Therefore,
for fruitful work in science it is important to have a
wide scope of scientific interests rather than to only
specialize (which often happens) in some narrow field
of research. This rather trivial statement was formu-
lated in my book [20] and, as I dare to believe, has been
implemented in my scientific activities. The circle of
problems described in this lecture may serve as an illus-
tration of the above statement. Namely, the V–Ch effect
is an analog of the Mach supersonic radiation (cone),
the excitation of mechanical vibrations in supersonic
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flows is analogous to the anomalous Doppler effect,
and different types of transition radiation are also con-
nected by common notions. On the whole, one can say
that the analysis of different problems and effects
related to radiation from uniformly moving sources
forms a certain “ideology” and has its own “language.”
This can be seen from a number of examples, some of
which are given above and others of which are given
below (see also [5–7, 14, 42]; a clear popular descrip-
tion is given in [51]).

In 1946, Landau found that, in an isotropic plasma,
even in the absence of collisions some attenuation of
longitudinal (plasma) waves takes place [52]. This
effect, which is called “Landau damping” (or collision-
less damping), plays an important role in the physics of
plasma and plasma like media (specifically, in the phys-
ics of metals and semiconductors, i.e., materials in
which the conduction electrons form a kind of plasma).
Landau obtained his result without any recourse to
V−Ch radiation, and, undoubtedly, the mechanism of
Landau damping can be understood without any refer-
ences to the V–Ch effect. At the same time, the condi-
tion of Landau damping is the V–Ch condition
(Eq. (8)) for the emission of a longitudinal wave by an
electron (in this case, n in Eq. (8) is the refraction index
for the longitudinal wave). Thus, for those who under-
stand the mechanism of V–Ch radiation, the nature of
Landau damping is evident.

Above, I have stressed that V–Ch radiation and the
Doppler effect can be observed not only in the case of
the motion of sources through a medium but also in the
case of their motion in a narrow empty channel passing
through the medium or near the medium boundary. The
same is true for transition radiation and transition scat-
tering. For example, let a charge uniformly move along
a straight line over a flat surface of a medium consisting
of two different materials. Then, when the charge
passes over the boundary between these two media,
transition radiation arises. On the whole, it always
appears when some inhomogeneities occur near the tra-
jectory of the charge, for example, when the charge
enters or exits a metal waveguide (the inhomogeneity is
represented by the edge of the waveguide), when the
charge moves over a diffraction grating [53, 54], etc.
This type of transition radiation is sometimes called
diffraction radiation. The physical nature of this radia-
tion can be most easily understood by using the afore-
mentioned notion of the “image” charges, which move in
the medium surrounding the charge trajectory (the “mir-
ror”). The “images” move nonuniformly and emit radia-
tion (another illustrative explanation of the effect is also
possible; see, e.g., [51]).

As early as 60 years ago, at the first stage of the
development of quantum electrodynamics, it became
clear that, with allowance for quantum effects (prima-
rily, electron–positron pair production, e+e–), the vac-
uum in a sufficiently strong magnetic field ceases to be
the “absolute emptiness” of classical physics, in which
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electromagnetic waves of any frequency can freely
propagate (without interacting with each other). By
contrast, with allowance for the possibility of virtual
pair production, the vacuum in a strong field behaves as
a nonlinear anisotropic medium. The field is considered
to be strong if it (e.g., the magnetic field H) is compa-
rable to some characteristic field

(25)

The characteristic electric field Ec is determined by the
same Eq. (25), and its meaning is evident: within the
Compton electron wavelength "/(mec) = 3 × 10–11 cm,
the field 2Ec performs work on the electron charge e
that is equal to 2"Ec/(mec) = 2mec2 and is necessary for
the production of an e+e– pair (its mass at rest is equal
to 2mec2 ~ 10–6 erg ~ 106 eV). The field given by
Eq. (25) is so strong that, for years, a nonlinear polar-
ization of the vacuum seemed to be an abstract concept.
However, in 1967 and 1968, magnetized neutron stars
(pulsars) with typical fields of 1012–1013 Oe were dis-
covered. It was also found that, in semiconductors, it is
possible to model to some extent the situation typical of
strong fields (25) in a vacuum. Thus, strong fields have
become an object available for astrophysical and phys-
ical studies. In the framework of this lecture, the afore-
said is of interest in relation to the fact that, in strong
fields in vacuum, the V–Ch effect may occur, as may
transition radiation and transition scattering (see [42]
and the references given there). The vacuum also
behaves as a medium in a gravitational field, which
makes it possible to consider, e.g., transition scattering
with a transformation from gravitational waves to elec-
tromagnetic ones [42].

In addition to the aforementioned acoustic analog of
the V–Ch effect, acoustic analogs also exist for the elec-
tromagnetic transition radiation and transition scatter-
ing [55]. For me, a somewhat unexpected feature
proves to be the important role that is played by the
transition elastic-wave radiation in elastic systems, for
example, in the case of the interaction between an inho-
mogeneous railway track and the wheels of a uniformly
moving car [56].

Presumably, analogs of the V–Ch and Doppler
effects and of transition radiation and scattering are
possible for wave fields of any type and, hence, with
allowance for the quantum theory, for particles of any
type with a transformation (radiation) of fields (parti-
cles) of some other type. An example is the transition
radiation in the form of electron–positron pair produc-
tion that arises when a charge crosses some boundary,
e.g., the boundary of an atomic nucleus. In brief, the
radiation that accompanies a uniform motion of differ-
ent kinds of sources is a universal phenomenon rather
than an exotic effect. Therefore, it is natural that new
experimental and theoretical studies concerned with
this subject continue to appear in the literature. The
papers I have seen in 1995 are as follows: the transition

Hc
me

2c
3

e"
----------- 4.4 1013 Oe.×= =
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(diffraction) radiation accompanying the motion of rel-
ativistic electrons over a diffraction grating [54], transi-
tion radiation in elastic systems [56], the transition
radiation from a neutrino with a magnetic moment [57],
the development of the theory of transition radiation
[58, 59], the problem of the polarization of transition
bremsstrahlung in plasma [60], and a detailed consider-
ation of the transition scattering processes in an analy-
sis of the bremsstrahlung in plasma [61] with an impor-
tant application to the solar neutrino problem [62].

Thus, the area of physical research that appeared at
the Lebedev Physical Institute of the Russian Academy
of Sciences more than 50 years ago [1–4] and that was
described in this lecture has now become an integral
part of modern physics.
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The set of hydrodynamic equations for a two-
dimensional model with (x, y) coordinates, where x is
the coordinate along the flow U(y) and y is the coordi-
nate along the flow normal, has the following form in
the quadratic approximation [1]:

(1)

In the linearized limit, the set of equations has the form

(2)

The first equation of set (2) is a modified Orr–Sommer-
feld equation, which, when taken without the two last
terms on the left-hand side, is rather well-known. The
equation written above takes into account the interac-
tion that occurs between the eddy and potential compo-
nents of the velocity field because of the presence of the
shear flow U(y). The second and third equations taken
together are equivalent to the Lighthill equation [3]
with the linearized right-hand side. They are written
with allowance for a Doppler frequency shift that is
nonuniform along the y axis. The instability appears
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already in the case of a linear variation of the flow in the
y direction:

(3)

Below (Eq. (5)), it will be shown that the inclusion of
the potential component of the wave field is a necessary
condition for the appearance of an instability in the
absence of an inflection point in the flow profile.

Ignoring the viscosity, we obtain

(4)

Equations (4) yield a closed equation for p(x, y, t):

(5)

The presence of derivatives of different parity in Eq. (5)
is a feature of a nonconservative problem.

Note that Eqs. (4) yield a Poisson equation for the
stream function:

(6)

According to Eqs. (3), we obtain

Solving set of equations (4) to the first order in ε, i.e.,
assuming that U and Uy are constant, we obtain

(7)

U y( ) U0 εy, Uyy y( )+ 0.= =

D∆φ ∆ϕUy+ 0;=

D∆ϕ 1
ρ0
-----∆p+ 2Uy

∂
∂x
------ ∂ϕ

∂y
------ ∂φ

∂x
------– 

  ;–=

1

ρ0c2
----------Dp ∆ϕ+ 0.=

∆ ∆p
1

c2
----D2 p– 

  2
Uy

c2
------ ∂

∂x
------ ∂

∂y
-----Dp Uy

∂
∂x
------ p– 

  .=

∆φ
Uy

ρc2
-------- p.=

Uy ε.=

ϕ c1 j ωt– kx qy+ +( )[ ] ,exp=

φ c2 j ωt– kx qy+ +( )[ ] .exp=
© 2005 Pleiades Publishing, Inc.



THE POTENTIAL COMPONENT OF THE FIELD 111
Assume that

(8)

From Eqs. (4), we obtain a dispersion equation:

(9)

Equation (9) yields

(10)

Here, the last term in Eq. (9), i.e., the term quadratic in
Uy, is ignored. Note that, when

,

we have

and solution (10) fails.

Now, let us return to set of equations (1) and linear-
ize it without separating the velocity field into the
potential and eddy components. Then, we obtain a
wave equation for the quasi-harmonic pressure field
p(x, y, t) in a form simpler than that of Eq. (5) even for
an arbitrary U(y):

(11)

It should be stressed that Eq. (5) describes the potential
component of a quasi-eddy wave, while Eq. (11)
describes the potential component of a quasi-potential
wave. In both cases, the instability of the shear flow
generates both potential and eddy components. Hence,
linearized set of equations (2) corresponds to four
waves: an eddy wave accompanied by a potential wave
attached to it and a potential wave accompanied by an
eddy wave. Their relation is described by the first equa-
tion of set (2).

In the linearized limit, we have
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Here,

py =  = –jρωdv y .

Let us determine p(y) for a normal wave in a
waveguide given as 0 < y < h to first order in U' (U0 = 0):

(12)

In fact, we use two small parameters:

Let us determine the solution under the boundary con-
ditions

(13)

The dispersion equation takes the form

(14)

Solving Eq. (14), we obtain

(15)

The following specific cases are possible for the imped-
ance at the boundary:

(a) 
and

In the first case, four solutions ωd0 to Eq. (12) are pos-
sible, and one of them has an imaginary part satisfying
condition (15).

Earlier [4] it was shown that, for linearized set of
equations (1) in the presence of a shear flow U(y), the
energy integral has the form

(16)

The energy flux from the shear flow, which is the origin
of the instability, is described in terms of the Reynolds
stresses on the right-hand side of Eq. (16). Its sign is
determined by the sign of the right-hand side of
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Eq. (16). Both components of the unstable wave, (ψ, ϕ),
are the consequence of this process. No change of sign
is necessary for the curvature of the flow profile.

At the same time, a change of sign of the curvature
of the flow profile is necessary for the appearance of an
instability if the potential component of the instability-
generated field is not taken into account.
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Abstract—In 2003, the Andreev Acoustics Institute celebrated its 50th birthday. The formation of the institute
in the framework of the Academy of Sciences of the USSR, which occurred in 1953, lead to the appearance of
the Akusticheskii Zhurnal (Acoustical Physics). This journal always reflected the main achievements of the sci-
entists from the Acoustics Institute. The leading scientists of the institute, in their turn, always took an active
part in the work of the editorial board of the journal. In the present paper, the history of the Acoustics Institute
is briefly reviewed and its current areas of research are outlined. The role of the institute in the development of
acoustical research in Russia is discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The establishment of the Akusticheskii Zhurnal in
1955 was a natural consequence of the foundation of
the Acoustics Institute of the Academy of Sciences of
the USSR in December 1953. Thus, the Acoustics Insti-
tute and the Akusticheskii Zhurnal (Acoustical Physics)
almost simultaneously celebrate their 50th anniversa-
ries. The need for a specialized academic journal
devoted to acoustics was determined by the standard
accepted at that time for the scientific activity of an aca-
demic institute. Each academic institute either had its
own academic journal devoted to the corresponding
area of research or published its own proceedings. A
publication of scientific results in such a journal or in
the proceedings of the institute was the final step of any
research.

According to the decision of the Presidium of the
Academy of Sciences of the USSR, the first editor-in-
chief of the Akusticheskii Zhurnal was Academician
N.N. Andreev, who initiated the foundation of the
Acoustics Institute of the Academy of Sciences of the
USSR. The first editorial board included scientists rep-
resenting the acoustical elite of the country. They
included the first director of the Acoustics Institute,
Corresponding Member (at that time) of the Academy
of Sciences of the USSR L.M. Brekhovskikh and the
leaders of the main lines of research carried out at the
institute V.S. Grigor’ev (deputy editor-in-chief) and
L.D. Rozenberg who, together with the chair of the
Department of Acoustics of Moscow State University
S.N. Rzhevkin and Corresponding Member of the
Academy of Sciences of the USSR S.Ya. Sokolov (rep-
resenting the acousticians from Leningrad), determined
the style of the journal and the requirements imposed
on the quality of publications. A substantial contribu-
tion to the formation and development of the Akus-
1063-7710/05/5101- $26.000024
ticheskii Zhurnal was made by L.M. Lyamshev. Begin-
ning in 1963, he was deputy editor-in-chief and, from
1987 to 2002, editor-in-chief of the journal. Actually, it
is in this period of time that the current image of the
journal was formed.

The very first issue of the journal began with an
address from the editorial board to the readers, which
said:

“In view of the rapid development of scientific and
engineering acoustics in the USSR and the need for the
open publication of the results of research and engi-
neering works in acoustics, the Presidium of the Acad-
emy of Sciences of the USSR has acknowledged the
necessity to begin in 1955 the publication of the Akus-
ticheskii Zhurnal of the Academy of Sciences of the
USSR.

The main purpose of the journal is to provide the
information on research in theoretical and experimental
acoustics and on the problems of the improvement and
production of acoustical measuring equipment, the
improvement of the quality of acoustical equipment
and systems of sound transmission and reproduction,
the improvement of the acoustic properties of public
buildings and homes, noise and vibration control, and
also on the problems of the practical and scientific
applications of ultrasound….”

Research in these and other areas has been carried
out at the Acoustics institute from the first days of its
existence under the supervision of well-known special-
ists heading the main lines of the scientific activity of
the institute.

The Acoustics Institute was founded according to
the decision of the government of the USSR, which was
issued on October 31, 1953. The institute was orga-
nized on the basis of the Acoustical Laboratory of the
Lebedev Physical Institute of the Academy of Sciences
 © 2005 Pleiades Publishing, Inc.
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of the USSR. The laboratory, in its turn, was organized
in 1939, also on the initiative of N.N. Andreev.

Thus, an indissoluble relation exists between the
history of the development of the Akusticheskii Zhurnal
and the history of the Acoustics Institute. Therefore, the
role and place of the Akusticheskii Zhurnal in the devel-
opment of acoustics in Russia cannot be completely
understood without considering the history of the
development of this institute.

SOME HISTORY

The most important basic result of research carried
out by the Acoustical Laboratory of the Lebedev Phys-
ical Institute in the late 1940s and early 1950s was the
discovery of long-range sound propagation in the
ocean. The role of L.M. Brekhovskikh and L.D. Rozen-
berg, researchers from the Acoustical Laboratory, in
this discovery was acknowledged with the First-degree
Stalin Award, which was given to them and their col-
leagues in 1951. The Acoustics Institute was founded
with the aim to continue research in this area, and the
main purpose of the institute was to carry out compre-
hensive studies in underwater acoustics. The results of
these studies should serve as the basis for a consider-
able increase in the range of underwater acoustic sur-
veys. Decisive contributions to the development of
Russian acoustics and underwater acoustics and to the
formation of the main lines of research at the Acoustics
Institute were made by the following leading scientists:
N.N. Andreev, L.M. Brekhovskikh, V.S. Grigor’ev,
M.A. Isakovich, G.D. Malyuzhinets, A.V. Rimskii-
Korsakov, L.D. Rozenberg, Yu.M. Sukharevskii, and
B.D. Tartakovskii. During World War II, most of these
scientists were involved in the development and practi-
cal application of antimine acoustic trawls, sound
detectors, and listening sonars for the air raid system
and also in theoretical and experimental research for
naval purposes.

Over the half-century of its history, the Acoustics
Institute has been a national research center for basic
and applied studies in many fields of modern acoustics
and underwater acoustics. Since 1994, the institute has
been a State Research Center of the Russian Federa-
tion.

Three main periods can be distinguished in the his-
tory of the institute. In the first period (from 1954 to
1961), the institute belonged to the Academy of Sci-
ences of the USSR. At that time, the first buildings of
the institute were constructed and the following
research stations were organized: the Sukhumi marine
research station on the Black Sea and the Volga research
station on the Ivan’kovskoe storage lake (now, it has
become the Institute of Applied Acoustics). In addition,
the first specialized research vessels (Sergei Vavilov and
Petr Lebedev) intended for acoustic studies in the ocean
were built and given to the Acoustics Institute. The
Department of Acoustics was organized at the Moscow
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
Institute of Physics and Technology. To the graduate
students of this department, lectures and laboratory
training were given at the Acoustics Institute. In this
period, several tens of young scientists—graduates of
the best universities of the USSR—came to the Acous-
tics Institute and formed the basis of its staff. The devel-
opment of research included the study of the formation
of an underwater sound channel and the zonal structure
of the sound field that was necessary for designing
long-range hydroacoustic systems (Yu.M. Sukharev-
skii, I.D. Ivanov, and A.L. Sosedova). At the same time,
regular All-Union Acoustical conferences were re-
established. The first of them was held in September
1931 at the Physicotechnical Institute (Leningrad) and
was initiated by Academician N.N. Andreev. The sec-
ond conference was held in 1958 in Moscow. Later, the
conferences were held on a regular basis up to 1991.
The Acoustics Institute was involved in organizing all
of these conferences. Thus, from the very beginning,
the Acoustics Institute not only carried out research but
also supervised research and field tests at its branches,
developed original methods of acoustic studies on
research vessels in the ocean (no such experience
existed in the world at that time), educated young spe-
cialists, and contributed to the popularization of acous-
tical research over the whole country.

The second period began in 1961, when the institute
(together with some other institutes of the Academy of
Sciences) was transferred from the Academy of Sci-
ences to an industrial ministry. In this period (which is
the longest one), new buildings were constructed for
the institute, the pilot production department was
increased, and new lines of research were started. The

Chairman of the Supreme Soviet of the USSR Kliment
Efremovich Voroshilov gives the Star of the Hero of Social-
ist Labor to Academician Nikolai Nikolaevich Andreev.
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Research ships of the Acoustics Institute, Sergei Vavilov and Petr Lebedev, with which unique studies in the ocean were carried out
for a quarter of a century.
departments, laboratories, and branches of the institute
received new scientists and engineers: by 1989, the
staff of the institute together with its branches included
2852 people. The possibilities for experiments were
extended, the Northern and Pacific branches of the
institute and the Black Sea laboratory were formed,
new research vessels were built (Akademik Nikolai
Andreev and Akademik Boris Konstantinov), and
unique experimental test facilities were constructed
(the anechoic and reverberation chambers and a vibra-
tion-insulated chamber). A powerful computer center
equipped with the best computers available at that time
was formed. Within this period, unique data on the
acoustic properties of the ocean were accumulated;
these data were obtained from 44 expeditions on
research ships. Many scientists and engineers from the
Acoustics Institute received high state and governmen-
tal awards for their achievements. The USSR govern-
ment and the Central Committee of the Communist
Party decided to give the official status of the Leading
institute in acoustics and underwater acoustics in the
country to the Acoustics Institute. The directors of the
institute of that time were N.A. Grubnik (1963 to 1980)
and F.I. Kryazhev (1980 to 1989).

The beginning of the third period (since 1991) coin-
cides with the fall of the Soviet Union and the forma-
tion of a new economic system in Russia. During this
period, since 1989, the director of the institute has been
N.A. Dubrovsky.

Researchers working at the Acoustics Institute are
the authors of many papers that appear in the Akus-
ticheskii Zhurnal (Acoustical Physics). From these
publications, one can get an idea of the scientific results
obtained in this period at the institute. Even the very
first papers submitted by the scientists from the Acous-
tics Institute to the Akusticheskii Zhurnal were charac-
terized by a very high scientific and professional level.
The first issue of the journal began with the paper by
N.N. Andreev “On Some Second-Order Quantities in
Acoustics.” This paper triggered numerous studies in
nonlinear acoustics in the USSR. Andreev not only ini-
tiated but also supervised many of these studies. Thirty
years later, a group of scientists received the USSR
State Award for a series of works in this field of acous-
tics.

The first issue of the Akusticheskii Zhurnal also con-
tained a paper by L.M. Brekhovskikh and I.D. Ivanov,
who considered a particular type of attenuation for
waves propagating in layered inhomogeneous media.
The results presented in this paper were included in the
widely known monograph by L.M. Brekhovskikh
Waves in Layered Media, which appeared in 1957.
There, readers can also find a paper by Yu.P. Lysanov,
which proposes a new method for solving the problems
of scattering from a periodically inhomogeneous sur-
face. The clarity of the solution obtained by Lysanov
stimulated experimental studies in this area of research,
and the method itself was further developed by other
authors.

The publication by I.P. Golyamina devoted to the
study of the relation between the electric impedance
and the acoustic radiation of piezoelectric plates, shows
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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that the development of this area of research was given
much attention at the institute. The same issue of the
Akusticheskii Zhurnal contained the paper by L.A. Cher-
nov “Correlation of the Phase and Amplitude Fluctua-
tions in the Wave Propagation through a Medium with
Random Inhomogeneities.” The problem of wave prop-
agation in randomly inhomogeneous media has become
the object of investigation for many scientists, and the
papers by Chernov are still the most cited ones in this
area of research. A number of interesting papers on
wave diffraction were published by G.D. Malyuzhe-
nets. He presented the results of his studies in the
framework of the general Sommerfeld integral theory
for stationary diffraction problems in an arbitrary
region and proposed new mathematical methods for the
diffraction theory.

The theoretical studies carried out at the institute
were characterized by a wide scope of interests. For
example, the theory of highly viscous microinhomoge-
neous media, which was developed by M.A. Isakovich
and I.A. Chaban, still attracts considerable attention
from researchers. Yu.L. Gazaryan was the first to derive
an exact solution to the problem of a multiple scattering
of sound in a one-dimensional randomly inhomoge-
neous medium. The same author solved the problem on
the propagation of nuclear-explosion-caused infra-
sound in the atmosphere. The papers by A.D. Lapin on
waveguide insulation attracted considerable interest.
Remarkable investigations into the wave scattering
from fractal structures were carried out by L.M. Lyam-
shev, Yu.P. Lysanov, and I.A. Urusovskii.

In the USSR, the development of active compensa-
tion methods for vibration and sound fields was pio-
neered by B.D. Tartakovskii. He is the author of publi-
cations concerned with the use of statistical methods
for evaluating random vibration and sound fields and
the propagation of vibrations through inhomogeneous
structures. It should be noted that the first research
projects carried out by Tartakovskii were concerned
with the theoretical study of sound reflection from the
shell and the sound-absorbing layer of the dome that
should cover the Large Hall of the Palace of Soviets.
Under the supervision of Tartakovskii and with his par-
ticipation, vibration-absorbing polymer materials were
designed. These materials are currently in use for noise
control in production goods and transport.

The beginning of computational methods in
acoustics is associated with the publications by
V.Yu. Zavadskii. The class of problems studied by
Zavadskii was closely related to sound propagation in
the ocean, and his first scientific results were devoted to
the development of effective methods for studying the
fields in acoustic waveguides. He was the first to pro-
pose the methods for the numerical solution of the
Helmholtz equation in open regions and waveguides on
the basis of the finite-difference approximation of the
differential operators of this equation. Prior to his stud-
ies, the finite-difference method was used only for
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bounded regions. Zavadskii also succeeded in develop-
ing rapidly converging iteration schemes for open
regions with nonlocal boundary conditions represent-
ing the difference analogs of the radiation conditions.

In the late 1940s, under the supervision of
Yu.M. Sukharevskii, research projects concerned with
the development of antisonar protection for submarines
were carried out. The development of the theory of
wave diffraction by shells (G.D. Malyuzhenets) and the
development of original sound-absorbing coatings
(under the supervision of V.V. Tyutekin) resulted in the
design of noise-suppressing coatings for submarines of
the third and fourth generations (which are still in use).
The main designers of these coatings were all from the
Acoustics Institute: A.E. Vovk, Yu.B. Upadyshev, and
I.P. Zhukov.

Following the tradition founded by Academician
N.N. Andreev when he worked at the Acoustical Labo-
ratory of the Lebedev Physical Institute, theoretical and
experimental studies in physical acoustics were carried
out. Here, one should note the studies on the physics of
ultrasound and in ultrasonics (L.D. Rozenberg), in bio-
logical and nonlinear acoustics (N.N. Andreev), and in
musical acoustics (A.V. Rimskii-Korsakov). Many of
the applied studies carried out at the institute within the
last ten years originate from these physical studies. For
example, the research and development that resulted in
the design of an ultrasonic imaging system were started
at the institute in the 1960s by Yu.B. Semennikov. The
design of pneumoacoustic atomizers proposed by
Yu.Ya. Borisov and widely used today originates from
studies initiated in the 1980s at the Ultrasonics Depart-
ment of the institute.

During the half-century-long history of the Acous-
tics Institute, its staff members have carried out numer-
ous investigations at the highest scientific level. The
authors of many of these works received state prizes
and awards. The contribution of the scientists from the
Acoustics Institute to the development of underwater
sonars for the Navy was several times honored with
state awards. The authors of the most significant
achievements in this area of research are L.M. Bre-
khovskikh (the Lenin prize of 1970) and Yu.M. Sukha-
revskii and V.I. Mazepov (the USSR State Award,
1967). For underwater acoustic studies in the Arctic,
V.S. Grigor’ev, N.A. Grubnik, F.I. Kryazhev, and
N.A. Petrov received the USSR State Award in 1969. In
the 1960s, I.A. Viktorov initiated research in acousto-
electronics at the Acoustic Institute. Later, in 1974,
Viktorov and his colleagues from the Institute of Radio
Electronics of the Academy of Sciences of the USSR
received the USSR State Award. The State Award of
1976 was given to the authors of the monograph Ocean
Acoustics, edited by L.M. Brekhovskikh (Nauka, Mos-
cow, 1974). Its authors were scientists from the Acous-
tics Institute: N.S. Ageeva, I.B. Andreeva, L.M. Bre-
khovskikh, V.I. Volovov, Yu.Yu. Zhitkovskii, Yu.P. Lysa-
nov, A.V. Furduev, S.D. Chuprov, and R.F. Shvachko.
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Laureates of the USSR State Award, authors of the monograph Ocean Acoustics (from left to right): Yu.Yu. Zhitkovskii,
I.B. Andreeva, S.A. Chuprov, L.M. Brekhovskikh, N.S. Ageeva, R.F. Shvachko, Yu.P. Lysanov, A.V. Furduev, and V.I. Volovov.
In 1984, the USSR State Award was given to the research
group working under the supervision of N.A. Dubrovsky
on bioacoustic studies. In the 1970s, under the supervi-
sion of L.M. Lyamshev and K.A. Naugol’nykh,
research in nonlinear acoustics was started at the
Acoustics Institute. In the 1980s, this research was
complemented with pioneering investigations in a new
area of research: laser acoustics. At the same time, aero-
hydrodynamic acoustic studies were carried out under
the supervision of A.V. Rimskii-Korsakov. The latter
studies resulted in the formation of a combined team of
researchers from the Acoustics Institute, Moscow State
University, the General Physics Institute of the Russian
Academy of Sciences, Taganrog Radio Engineering
University, and the Institute of Applied Physics of the
Academy of Sciences of the USSR. For these studies,
L.M. Lyamshev, K.A. Naugol’nykh, and A.V. Rimskii
Korsakov together with a group of coauthors received
the USSR State Award in 1985. As a continuation of the
achievements of scientists from the Acoustics Institute
in this direction of research, one can cite the Russian
Federation State Award given in 1997 to S.A. Rybak
and his colleagues from other institutions for a series of
works on the dynamics of intense noise waves and non-
linear structures.

THE ACOUSTICS INSTITUTE TODAY

Let us now briefly describe the State Research Cen-
ter of the Russian Federation, Andreev Acoustics Insti-
tute in its present state.
The Andreev Acoustics Institute of today is a scien-
tific institution that carries out comprehensive research
and engineering projects in the key areas of modern
acoustics: underwater and ocean acoustics, geoacous-
tics, processing and discrimination of acoustic signals,
nonlinear acoustics, photoacoustics, development of
active and passive methods and means for noise and
vibration control, thermoacoustics, bioacoustics, medi-
cal acoustics, and ultrasonic applications.

The institute has gained world wide recognition
owing to well-known discoveries and to leading scien-
tists including Academician L.M. Brekhovskikh (ocean
acoustics), Professor G.D. Malyuzhenets (theory of
wave diffraction), Professor L.D. Rozenberg (physics
of ultrasound and ultrasonic technologies), Professor
A.V. Rimskii-Korsakov (acoustics of gas jets), Profes-
sor L.M. Lyamshev (photoacoustics), and Professor
N.A. Dubrovsky (bioacoustics). The scientists and
engineers from the Acoustics Institute have, in the fifty
years of its existence, laid the foundation for the devel-
opment of underwater sonars for three generations of
submarines, surface warships, and stationary hydroa-
coustic systems (Yu.M. Sukharevskii, V.S. Grigor’ev,
S.G. Gershman, N.A. Dubrovsky, V.I. Mazepov,
O.P. Galkin, V.V. Ol’shevskii, R.Yu. Popov, Yu.I. Tuzhil-
kin, V.M. Baronkin, S.I. Dvornikov, V.P. Tebyakin, and
many others).

Today, the staff of the institute includes 25 profes-
sors and doctors of science and 75 candidates of science
(most of whom are well known to the international sci-
entific community) and more than 100 engineers, com-
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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puter programmers, and experimental physicists. The
institute retains its Northern branch in Severomorsk,
where research for the Russian Navy is carried out. The
institute has postgraduate and doctoral departments.
Scientists from the institute successfully participate
with their projects in various competitions of the Rus-
sian Foundation for Basic Research and international
scientific foundations (CRDF, INTAS, Copernicus).

The scientific activity of the institute is coordi-
nated by the Deputy Director, Professor S.V. Egerev,
and by the Deputy Director, Professor V.I. Mazepov.
The Technological Department of the institute is
headed by Chief Engineer N.S. Isaev. The Northern
Branch is headed by Candidate of Physics and Math-
ematics S.P. Aksenov, a former student of Professor
V.Yu. Zavadskii.

The basic research and engineering developments are
carried out at 22 laboratories, which are headed by the
leading scientists of the institute: Yu.Ya. Borisov,
O.P. Galkin, E.P. Gulin, A.V. Evtushenko, I.B. Esi-
pov, V.P. Kodanev, V.M. Lekomtsev, M.A. Margulis,
V.Yu. Machnev, M.A. Mironov, V.A. Pirogov, R.Yu. Popov,
P.A. Pyatakov, V.D. Svet, A.N. Serebryanyi, V.I. Sizov,
V.N. Telepnev, Yu.I. Tuzhilkin, V.V. Tyutekin, and
D.P. Frolov. The laboratories of the Northern Branch are
headed by V.A. Zhuravlev and A.N. Neronov.

The institute takes part in basic and applied research
under international, federal, and industrial programs.
One of the main aspects of its activity is the work on its
own scientific and technological projects. Since 1999,
the institute, as a State research center, has carried out
basic research in the fields of science specified by the
Federal Scientific-Engineering Program “Research and
Development in the Priority Directions of Civil Science
and Engineering.”

Underwater Acoustics. Along with continuing
comprehensive studies of underwater sound propaga-
tion for naval purposes, the Acoustics Institute carries
out systematic research in underwater acoustics. This
research is aimed at the refinement of acoustic models
of the ocean and seas and at the development of meth-
ods for predicting the energy and statistical characteris-
tics of sound fields in application to specific oceanolog-
ical conditions. Data obtained from previous expedi-
tions in seas and oceans are collected to form acoustic
oceanographic data bases. Methods of the ocean zoning
according to these data are developed. An important
applied aspect of the work on ocean and sea acoustics
is the development of the marine test stations at the
Black Sea and of the new acoustic methods for under-
water observation of the variability of ocean and sea
regions (O.P. Galkin, R.F. Shvachko, K.D. Sabinin, and
A.N. Serebryanyi). Methods and means for the acousti-
cal monitoring of the ocean, seas, and internal water
bodies of Russia are developed to control the environ-
ment and to predict anomalous natural phenomena and
antropogenic catastrophic events. Studies are carried
out and methods are developed to detect and determine
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
the epicenters of underwater earthquakes and to predict
tsunamis on the basis of analyzing the hydroacoustic
fields in the ocean (O.P. Galkin). Acoustic methods of
gas hydrate–deposit exploration are developed, and
engineering approaches to constructing the acoustic
means for such explorations on the North Sea shelf are
justified (I.B. Esipov).

Sources and Receivers of Sound. In the last few
years, new principles of designing parametric radiators
and receivers of sound on the basis of nonlinear acous-
tic phenomena have been widely investigated. The
experimental studies performed with parametric arrays
for ranges up to several hundreds of kilometers in the
ocean showed the good prospects for the practical
application of such sources (I.B. Esipov). A fundamen-
tally new direction in the development of sound sources
is the recent study of efficient low-frequency transmit-
ters for ocean investigations. The tests of the pilot mod-
els of such sources showed that they are rather promis-
ing and deserve further development (V.A. Pirogov,
I.A. Urusovskii, and M.A. Mironov). The search for
new electromechanically active materials (composite,
elastomer, liquid-crystal, etc.) and their study are car-
ried out to provide the basis for a further development
of the methods of electroacoustic energy transforma-
tion. New magnetostrictive alloys of rare-earth metals,
electrostrictive ceramics, and composite and film-based
elastic piezoelectric materials are investigated. The
results of these studies are aimed at the development of
a new generation of efficient acoustic sources and receiv-
ers with preset parameters, which are necessary both for
underwater acoustics and for the intensification of dif-
ferent technological processes, geological surveys,
medicine, and environmental monitoring (V.A. Pirogov,
I.P. Golyamina, V.D. Svet, and V.I. Sizov).

Acoustic Signal Processing. Computer models of
signals and noise are developed along with the meth-
ods and algorithms for solving a wide class of prob-
lems, including the detection, identification, and
localization of various objects. A software that imple-
ments the modern adaptive algorithms of data pro-
cessing on the basis of tomographic investigations is
elaborated (E.P. Gulin).

Atmospheric Acoustics. On the basis of monitoring
the sound and infrasound fields produced in the atmo-
sphere by natural, industrial, or transportation sources,
the physical models of these fields are refined. The
physical principles of protection from infrasound radi-
ation, which has the most adverse effect on humans, are
justified (A.V. Evtushenko).

Methods and Means for Noise and Vibration
Control. Physical foundations and principles of sup-
pressing noise and vibration caused by mechanisms
and machines in transportation and industry are devel-
oped. Computer programs are elaborated for determin-
ing the characteristics of noise produced by engineer-
ing structures. Methods for the optimum combination
of different measures for reducing the noise and vibra-
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tion of equipment are justified. The studies are aimed at
increasing the service life of machines and mechanisms
and improving the conditions of work for personnel
(V.Yu. Machnev, M.A. Mironov, A.A. Dogadov, and
A.I. Orlov). Principles of designing acoustic baffles for
reducing traffic noise are developed (O.V. Kudryavtsev
and I.A. Urusovskii).

Photoacoustics. Basic laws governing the forma-
tion of acoustic signals due to the effect of laser radia-
tion on an inhomogeneous medium are determined.
Photoacoustic methods for nondestructive testing and
determination of the physical properties and parame-
ters of materials are developed. The subject of main
interest is the photoacoustic testing of special solu-
tions and suspensions for medical purposes, for exam-
ple, lipopolysaccharide solutions and nanoparticle sus-
pensions (S.V. Egerev and A.V. Fokin). Photoacoustic
methods are successfully used for analyzing the physi-
cal properties of carbon nanotubes and nanostructured
amorphous materials (I.A. Chaban and O.B. Ovchinni-
kov).

Nonlinear Acoustics. Nonlinear acoustic phe-
nomena that occur in inhomogeneous structures,
granular media, and rock are studied. The results of
the studies are aimed at developing physical models
of acoustic impact on the efficiency of oil and gas
production (I.B. Esipov).

Sonochemistry. Physical–chemical effects caused
by acoustic cavitation in low-frequency acoustic fields,
namely, emulsification, sonoluminescence, and disper-
sion of substances, are investigated. The principles of
controlling the parameters of intense low-frequency
cavitation fields are justified for applying them in
industry and in solving some environmental problems
(M.A. Margulis).

Bioacoustics. Neural mechanisms of auditory anal-
ysis and methods of data processing are investigated on

Ultrasonic imaging system: an instrument for observation in
a turbid medium. A new development of the Acoustics Insti-
tute.
the basis of bioacoustic analogies. Neural mechanisms
that allow the auditory system to analyze complex sig-
nals in a wide dynamical range and in the presence of
noise are revealed. Mechanisms of sounding signal
radiation in dolphins are modeled. Principles of model-
ing the mechanisms of spatial hearing are studied. The
studies are aimed at the development of experimental
systems for testing machines and mechanisms, high-
quality devices for hearing aids, devices for improving
speech intelligibility, and new means of acoustic signal
processing on the basis of cybernetic methods and bio-
acoustic analogies (N.G. Bibikov, N.A. Dubrovsky, and
V.N. Telepnev).

Medical Acoustics. Medical–biological founda-
tions of the application of ultrasound in medicine are
developed, including methods of acting with focused
ultrasound on the human organism and on human bio-
logical tissues. For this purpose, focusing (and also
multifocus) radiators with a controlled structure of their
ultrasonic fields are designed. The results of the studies
should make it possible to create new medical instru-
ments for surgery and therapy and to extend the appli-
cation of ultrasound to the diagnosis and treatment of
various disorders (L.R. Gavrilov and P.A. Pyatakov).

Applied Projects. Among the applied projects car-
ried out under the Federal Program “Research and
Development in the Priority Directions of Civil Science
and Engineering,” here we note two projects: first, the
development of a series of pneumoacoustic atomizers
for fine-disperse atomization of liquids in fire-control
systems in closed rooms, for efficient burning of liquid
fuel in steam boilers and heating plants, and for fine-
disperse atomization of liquid solutions used in agricul-
ture (Yu.Ya. Borisov); second, the development of
ultrasonic imaging systems of different types, including
those lowered from the board of a ship and self-con-
tained ones for scuba divers, to provide for a rapid sur-
vey of underwater structures and to make it possible to
carry out technological operations in turbid water or on
a silt bottom (V.I. Sizov).

Federal Special-Purpose Program “National
Technological Base.” Since 2002, the Acoustics Insti-
tute has taken part in the development of critical acous-
tic technologies under the Federal Special-Purpose Pro-
gram “National Technological Base.” As a result, an
acoustic chamber for underwater observations at depths
up to 300 m was developed; a high-speed system of
long-range underwater communication was designed; a
parametric acoustic system for underwater monitoring
of a shallow sea was elaborated; and structures of high-
efficiency noise-absorbing materials were invented
(V.P. Kodanev, V.Yu. Machnev, and V.I. Sizov).

CONCLUSIONS

During the fifty-year history of the Acoustics Insti-
tute, its scientists have taken an active part in the forma-
tion of the promising problems and directions of
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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research in acoustics that were developed in our coun-
try. Despite the fact that, more than 40 years ago, the
institute was formally transferred from the system of
research institutes of the Academy of Sciences to
another system, its leading specialists continued to par-
ticipate in the work of various commissions of the
Academy of Sciences. The Scientific Council on
Acoustics of the Academy of Sciences has traditionally
been chaired by scientists from the Acoustics Institute
(A.V. Rimskii-Korsakov, L.M. Lyamshev, and S.V. Ege-
rev). Following the principles of the continuous popu-
larization and development of scientific achievements
in acoustics all over the country, the scientists of the
institute initiated the establishment of the Russian
Acoustical Society. Many specialists from the Acous-
tics Institute have become active members. The Rus-
sian Acoustical Society was established in June 1991, at
the last (11th) All-Union Acoustical Conference, and
now has its own history. Today, the Society (its presi-
dent is Academician of the Russian Academy of Natu-
ral Sciences N.A. Dubrovsky, and its executive director
is E.V. Yudina) has more than 600 members and extends
its activities to 49 regions of Russia. These activities
are coordinated by five territorial branches of the soci-
ety: the Far East Branch (headed by Academician of the
Russian Academy of Sciences V.A. Akulichev), the
South Branch (Academician of the Russian Academy
of Natural Sciences V.I. Timoshenko), the Siberian
Branch (Academician of the Russian Academy of Nat-
ural Sciences V.K. Kedrinskii), the Volga Branch (Pro-
fessor S.N. Gurbatov), and the Moscow Branch (Corre-
sponding Member of the Russian Academy of Sciences
O.V. Rudenko). Members of the society include
researchers, professional workers, directors of enter-
prises and institutes, deans and chairs of departments of
universities, university professors, and postgraduate
and graduate students from more than 70 organizations
and more than 60 cities of Russia and Ukraine.

An important part of the activity of the Russian
Acoustical Society and the Acoustic Institute is the
organization of the annual sessions where the current
status of research in acoustics in Russia is discussed.
Today, the sessions of the Russian Acoustical Society
approach the previous All-Union Acoustical Confer-
ences in the width of their scope and in the number of
participants. As a member of the European Acoustics
Association and a member of the International Institute
of Noise-Control Engineering, the Russian Acoustical
Society allows its members to present the results of
their studies in the information structures of these inter-
national organizations. Currently, President of the Rus-
sian Acoustical Society N.A. Dubrovsky represents
Russia in the International Commission for Acoustics.

For several years, the Russian Acoustical Society
has held a competition among Russian graduate and
postgraduate students for scholarships from the Amer-
ican Acoustical Society in support of the most interest-
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ing projects carried out by young researchers beginning
their career in science. By now, 60 graduate and post-
graduate students from different universities and
research institutes have already received such scholar-
ships. The geography of the origins of these young sci-
entists actually reproduces the geography of our coun-
try: from St. Petersburg to Vladivostok and from
Arkhangel’sk to Taganrog.

The Acoustics Institute, together with the Russian
Foundation for Basic Research, supports the publishing
activities of the Russian Acoustical Society. In addition
to the proceedings of the sessions of the Russian
Acoustical Society, the Annuals of the Russian Acous-
tical Society have appeared in the last few years. These
annuals basically consist of series of papers presenting
the results of studies devoted to a single area of research,
namely, “Acoustics of Inhomogeneous Media.” Most of
the papers of this series were presented and discussed
at the regular seminar held by Professor S.A. Rybak at
the Acoustics Institute. Owing to the advanced level of
problems discussed at this seminar, it has become
widely known as a special kind of scientific club for
discussing the problems of acoustics of inhomogeneous
media. In recent years, a number of leading specialists
in physics and acoustics of inhomogeneous media pre-
sented their results at this seminar. It should be noted
that this area of research is rapidly progressing due to
the efforts of many research groups in our country, and
it is of interest to scientists specializing in solving both
theoretical and experimental problems with different
areas of application. In addition, the atmosphere of free
discussion that is characteristic of the aforementioned
seminar also attracts specialists working in adjacent
areas of research. Useful information about current
publications and the development of acoustic studies in
Russia can be obtained on the web sites of the Acous-
tics Institute and the Russian Acoustical Society:
www.akin.ru and www.akin.ru/rao.

In the framework of a single paper, it is difficult to
describe the results of the great creative work of hun-
dreds of people working at the Acoustics Institute—
professors, doctors and candidates of science, engi-
neers, technicians, and laboratory assistants—all those
who, within 50 years, have laid the scientific founda-
tions for modern acoustics and hydroacoustics. Many
of these specialists, who possess priceless experience,
are still working at the institute and creating new acous-
tic technologies. More fully than in this paper, the
many-sided activities of the institute are represented by
the publications of our scientists. A comprehensive
description of the life and history of the institute can be
found in the jubilee book devoted to the 50th anniver-
sary of the Acoustics Institute, which currently is in
active preparation for publication. The list of references
presented below contains the monographs written by
authors from the Acoustics Institute and published
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within the 50 years of its existence and also two papers
devoted to the history of the institute.
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Abstract—In an experiment with a beam of protons accelerated up to an energy of 200 MeV, the space–time
structure of the hydroacoustic field generated by protons stopping in the water medium was observed. The
contributions of three components were separated: a cylindrical wave diverging from the middle part of the
acoustic antenna and the signals from the ends of the antenna, namely, from the region of the maximal energy
density release by protons (the Bragg peak) and from the other end corresponding to the beam entrance into
water. © 2005 Pleiades Publishing, Inc.
The properties of acoustic radiation generated in the
passage of ionizing particles through matter have been
studied theoretically and experimentally for several
decades [1–11]. Currently, its main characteristics are
known: the proportionality of the response of acoustic
transducers to the intensity of the proton beam, the
interdependence between the diameter of the beam and
the duration of the response signal, the temperature
dependence of the intensity of an acoustic signal arising
in liquids, and so on. All experimental data were
obtained using proton and electron accelerators. In the
experiments, the radiation from the nearest point of the
antenna was measured without analyzing the acoustic
field produced by other parts of the antenna. Further
experiments in this area, including the measurement of
the space–time structure of the field, are important not
only for determining the radiation mechanisms but also
from the point of view of its application, for instance, to
the problem of detection of ultra-high-energy cosmic
neutrinos in natural water basins [12–14]. Hydroacous-
tic methods of detecting the cascades caused by cosmic
particles have a number of advantages compared to the
conventional scintillation method. These methods
include the low absorption of sound in water and its
much lower velocity compared to the same parameters
of light. This leads to a reduction in the experiment cost
and makes it possible to use a great number of hydro-
phones in realizing the acoustic method of cosmic par-
ticle detection.

The current status of the problem of diagnosing the
ionizing radiation by hydroacoustic methods is
described in [15, 16]. A successful practical application
1063-7710/05/5101- $26.00 ©0033
of sound waves in solving the problem of measuring the
spectra of cosmic neutrinos requires not only the detec-
tion of the desired signal against the background of sea
noise but also the determination of no less than four
parameters characterizing the source of radiation by
using the detected signal: the coordinates and size of
the radiating area, the direction of propagation, and the
energy of a cosmic particle. The study of sea noise is a
separate problem; the objective of the present paper is
to study, under laboratory conditions, the acoustic field
generated due to the deceleration of an intense beam of
accelerated protons in water down to a stop, which is
the best model of a nuclear-electromagnetic cascade.

A beam of accelerated ionizing particles, axially
symmetric along the direction of propagation, upon
entering an initially homogeneous boundless equilib-
rium liquid practically instantly creates a heated zone in
a limited space region. The process of heating can be
conveniently described by a distribution of instantly
acting heat sources in a cylindrical coordinate system
connected with the beam, with the Z axis directed along
the propagation of the beam of particles. As a result,
perturbations of the pressure, density, and temperature
fields appear in the initially stationary liquid. The inten-
sity of the perturbations is proportional to the specific
energy density loss in the beam of particles, which has
a noticeable maximum at the last two centimeters of the
particle path. Figure 1 shows a double differential dis-
tribution of the mean energy loss of protons in water,
which was obtained by modeling with the GEANT-3.21
program [17]. The initial proton energy was 200 MeV.
The upper part of Fig. 1 displays the contours of the
 2005 Pleiades Publishing, Inc.
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Fig. 1. Double differential distribution of the mean energy loss of protons in water, which was obtained by modeling. The protons
propagate along the Z axis, and the X axis lies in the horizontal plane passing through the beam center. The beam energy is 200 MeV.
In the upper part of the plot, the contours of the two-dimensional distribution of energy loss are shown for the levels of 0.85, 0.7,
0.56, 0.42, 0.28, and 0,14 of the maximum.
two-dimensional loss distributions for the levels of
0.85, 0.7, 0.56, 0.42, 0.28, and 0.14 of the maximum.
A similar spatial form has an antenna that appears at the
instant of the beam passage and creates the acoustic
field in the medium.

The experiment to measure the parameters of the
hydroacoustic field of a proton beam of charged parti-
cles was carried out using an external proton beam at
the accelerator of the Institute of Theoretical and
Experimental Physics that is similar to the accelerator
employed in [4]. The beam had the following parame-
ters: the energy was 200 MeV, the beam pulse duration
was 70 ns, the spatial form of the beam in the transverse
direction was close to a Gaussian distribution, and the
beam diameter was 2 cm (at a half-maximum level).
The beam intensity was maintained constant at about
4 × 1010 protons per pulse and was monitored by an
inductive sensor. As a target, in which the proton beam
was decelerated, we used salt water (the salt concentra-
tion was about 3%) filling a tank (Fig. 2) in the form of
a parallelepiped 50.8 × 52.3 × 94.5 cm in size. The tank
was made of acrylic plastic and was reinforced and
sealed at the side joints. It was filled 90% full. The
water temperature was 13.5°C. The size and equipment
of the target made it possible to prevent the reflection
from the boundaries during the measurements and
obtain a detailed structure of the hydroacoustic field of
a proton beam. The injection of the beam at the center
of the measurement volume was carried out through a
tube of diameter 59 mm and length 46 cm with a wall
thickness of 1.5 mm, which was inserted in a lateral
face of the tank and was closed with a teflon cap 2 mm
thick. The mean proton path length in water was 25.2 cm.
Other sizes characterizing the relative positions of
equipment in the experiment are given in Fig. 2.

The measurements were performed using two GI-14
hydrophones with a transducer diameter of 4 mm and a
height 6 mm. One of the hydrophones, H2, was fixed
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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and the position of the other, H1, was changed during
the experiment. The GI-14 hydrophone has a linear
amplitude–frequency characteristic in a frequency
range greater than 100 kHz, which makes it possible to
record an undistorted acoustic pulse generated in water
by the beam of protons. The hydrophone H1 was
moved using a specially designed electromechanical
remote-control scanner, which enabled us to position
the hydrophone discretely, at a step of 8.9 mm, within a
linear aperture 0.4 m long.

The signals from the hydrophones and the inductive
sensor of beam intensity were entered into a standard
IBM PC using a specially developed board. The analog
part of the input board allows one to simultaneously
digitize up to four analog signals with a maximum sam-
pling frequency of 400 kHz for every channel. The
read-out of information was carried out by the signal
fed to the sync input of the board simultaneously with
the arrival of the beam at the target. A special system
software was developed for this board, which provided
a simultaneous input and displaying and recording the
signals of all channels with synchronization by any sig-
nal. A set of application software for signal processing
was also developed, which made it possible to compute
the amplitude–phase dependences of signals, the nar-
row-band spectrum, the third-octave spectrum, three-
dimensional representations of the spatial and time
dependences, and other signal characteristics.

The measurements of the acoustic field generated by
the proton beam were carried out via scanning with the
hydrophone H1 in the horizontal plane passing through
the axis of the proton beam, along linear paths at dis-
tances of 3, 6, and 13.5 cm from the beam center (the
01, 02, and 03 runs of measurements, respectively). The
coordinate ZH1 (along the beam) was varied from the
point of entrance of the beam into water up to 36 cm. The
time of realization for every position of the movable
hydrophone was 250 µs (1000 readings of 0.25 µs
each). The mathematical processing was performed
using the aforementioned equipment and included fre-
quency filtering, amplitude analysis and analysis of the
waveform of the signal, construction of averaged data
samplings for arbitrary coordinate directions, and
three-dimensional imaging.

Figure 3 presents in a three-dimensional space–time
structure of the hydroacoustic field produced by a pro-
ton beam introduced in the water target (the results of
run 02 are illustrated in this example). The time sweep t
is represented by the abscissa axis; the quantity ZH1 in
scanner step units (p1–p40), by the ordinate axis; and
the voltage at the output of the hydrophone H1 in rela-
tive units, by the Z axis. For better comprehension of
the field structure, the signal is inverted in the figure.
The dynamics of variation of hydrophone response can
be seen. The contributions from three coherent sources
can be separated. The acoustic signal from the nearest
point of the radiating acoustic antenna is observed as an
extended valley in the A–B direction (the first source).
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
The longitudinal size of the antenna corresponds to the
proton path length in water. In Fig. 3, the letter γ
denotes the region of termination of the beam and, cor-
respondingly, the end of the acoustic antenna. In the ini-
tial part (before the region γ), the valley is parallel to the
ordinate axis, because the hydrophone moves parallel
to the antenna and the time of signal propagation to the
hydrophone remains constant. In this part, a cylindrical
wave is detected, which, according to theory [6],
diverges from the antenna. Further, the hydrophone,
continuing its movement along a straight line, recedes
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Fig. 2. Schematic diagram of the hydrohone positions in the
water target.

Fig. 3. Space–time structure of the acoustic field generated
in water by a beam of protons with an energy of 200 MeV.
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from the antenna, the time of signal arrival increases,
and the valley in the section γ–Ç changes its direction.
Note that the main energy of the acoustic signal from
this source manifests itself as a compression wave.

The other source, the signal from which is presented
in Fig. 3 by the ridge DB, is the area of the so-called
Bragg peak (at the end of the proton path), where,
according to Fig. 1, the energy density release rises
sharply. When the hydrophone is located at the begin-
ning of the antenna, near the point of the entrance of the
beam into the water (the curve corresponding to this
case is designated as P1 in Fig. 3), the area of the Bragg
peak is spaced from the hydrophone by 25.2 cm and the
signal from this area arrives within 168 µs after the pas-
sage of the beam (near the point D). As the hydrophone
moves along the beam, the Bragg peak approaches the
hydrophone, and the corresponding branch of the
ridge DB moves from right to left. As the γ area is
approached, the interference of the signals AB and DB
and their junction in the section γÇ are observed. It is
significant that the signal from this source appears in
the section Dγ mainly as a rarefaction wave; then (γÇ),
the signal changes its polarity, and a wave of increased
pressure propagates in this direction.

The third source, the signal from which is shown in
Fig. 3 as a ridge AC, corresponds to the cap through
which the proton beam enters the tank. As the hydro-
phone moves along the beam, the source recedes from
the hydrophone and the source trajectory is directed
from left to upward right. The bending of the trajectory
at the beginning takes place due to the interference of
this signal with the signal from the first source. The
polarity of this signal coincides with the polarity of the
signal from the Bragg peak in the section Dγ.

Figure 4 displays the waveform of a typical acoustic
pulse P39 from run 01 in a direct (not inverted) form.
The curve is recorded at a point, the z coordinate of
which is 8.3 cm greater than the coordinate of the Bragg
peak area. The first signal detected by the hydrophone
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Fig. 4. Waveform of the acoustic signal.
comes from the area of the beam stopping. It is charac-
terized by a sharp increase in pressure, and its duration
is 10.5 µs. The following several periods of relaxation
have considerably less amplitudes and attenuate within
approximately 70 µs. The second signal comes from
the third source. In its shape, it looks like a signal from
a laser thermoacoustic sound source in the far-field
zone (see Ch. 10 of [6]) and is characterized by alternat-
ing signals of increased and reduced pressure with dif-
ferent amplitudes. On the whole, the energy of this sig-
nal is the rarefaction and its duration is 4.5 µs.

Figure 5 shows the distribution of acoustic pressure
in the near-field zone of the antenna: the dependence of
the signal amplitude on the hydrophone position along
the beam axis on the path nearest to the beam (measure-
ment 01). The shape of this distribution coincides with
the well-known shape of the ionization loss curve. The
drop of the curve at the beginning is explained by the
fact that, at the first two points, the hydrophone was
located before the point of the entrance of the beam into
water. The sharp rise at the end of the curve corresponds
to the so-called Bragg peak, i.e., the increase in the ion-
ization loss at the end of the particle path in the matter,
which is observed at a distance of 23.8 cm from the
point of entrance of the beam into water. The calculated
position of the Bragg peak for a proton beam of such an
energy is 25.2 cm [17]. The difference is possibly con-
nected with the interference of the signals AB and DB
in the area γ.
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Abstract—It is found that the articulation process is accompanied by active variations of the pharynx width.
To describe the latter, a linear combination of two width eigenvectors with varying coefficients is proposed. A
new algorithm is constructed for calculating the cross-section areas of the vocal tract. The algorithm takes into
account not only the anatomic parameters and the shape of the tract in the saggital plane but also the parameters
in the lateral and axial planes. © 2005 Pleiades Publishing, Inc.
In the problems of automatic recognition, synthesis,
and compression of speech, it is expedient to determine
the shape of the vocal tract from the parameters of the
speech signal. Such a determination presents an inverse
problem. To solve the inverse problem with respect to
the shape of the vocal tract, it is necessary to have a
“code book” that relates the measured acoustic param-
eters of the speech signal to the articulatory parameters.
To create such a book, it is necessary to solve a number
of particular problems and, first of all, to construct an
algorithm for calculating the cross-section areas of the
vocal tract from the current values of controlled articu-
latory parameters and also from the values of anatomic
parameters of the vocal tract.

In the theory of speech production, the problem of
calculating the cross-section areas from the current
controlled articulatory parameters is usually solved
using one of three approaches. The first approach is
based on the so-called αβ model [1–3]. According to
this model, the cross-section area of the vocal tract S(x)
for each x coordinate, which is measured along the
tract’s midline beginning from the glottis, is calculated
as S = αhβ, where h(x) is the distance measured from
moving to immovable surfaces of the vocal tract in the
mid-saggital plane and α and β are some coefficients to
be determined.

In the second approach, the cross-section area func-
tion is represented as a linear combination or a qua-
dratic form of some eigenvectors obtained by the factor
analysis of experimental data [4]. The main advantage
of this approach is that the vocal tract is parametrized
with a very small number of parameters. In both the
first and the second approaches, sounds that have iden-
tical (or almost identical) saggital profiles but different
tongue shapes in the lateral and/or axial planes cannot
1063-7710/05/5101- $26.00 0038
be distinguished. Another disadvantage is referencing to
a specific speaker and/or to a specific speech material.

In the third approach [5], it is assumed that, for an
effective calculation of the cross-section areas, it is nec-
essary to take into account not only the saggital but also
the lateral and axial parameters of the vocal tract.

The algorithm for calculating the cross-section areas
from the articulatory parameters is based on a mathe-
matical model of articulation. We used the articulatory
model described in [5]. This model is determined by the
following articulatory parameters: the height of the
glottis, the coordinates of the tongue root, the coordi-
nates of the tongue tip, the rotation angle of the lower
jaw, the horizontal displacement of the rotation point of
the lower jaw, five coefficients multiplying the eigen-
functions of the elastic deformations of the tongue,
and the height of the lower lip, which makes a total of
13 controlled parameters. The analysis performed by
us showed that the model should be complemented
with two more parameters, namely, the coefficients
multiplying the eigenfunctions that describe the varia-
tions of the pharynx width (see below).

We denote the vector of articulatory parameters
determining the shape of the vocal tract at an instant t
as u(t) = (u1(t), u2(t), …, u15(t)). Knowing u(t), one can
calculate the moving surfaces of the tract: the tongue
surface, the lip surface, and the lower part of the phar-
ynx in the saggital cross section. From the moving sur-
faces of the tract and from the shapes of the hard palate
and teeth, one can calculate the distance between the
moving and immovable surfaces of the vocal tract h(x).
In [5], an algorithm was proposed for calculating the
cross-section areas in different regions of the vocal tract
from the function h(x) and also from some additional
articulatory parameters. However, a comparison of the
© 2005 Pleiades Publishing, Inc.
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cross-section areas calculated with this algorithm and
the areas measured by magnetic resonance imaging
(MRI) showed that the algorithm describes the relation
between the articulatory parameters and the areas in
some regions of the tract with insufficient accuracy, and
the errors prove to be much greater than those charac-
teristic of the MRI. Therefore, it has become necessary
to reconsider the algorithm used for calculating the
areas on the basis of magnetic resonance measure-
ments.

Currently, magnetic resonance imaging is the main
experimental technique used for measuring the cross-
section areas of the vocal tract. The speaker is placed
inside a magnetic system producing a magnetic field,
which rotates the hydrogen spins in the vocal tract tis-
sue through 90° and 180°. To perform the scanning,
several plates oriented across the vocal tract are posi-
tioned on the head of the speaker. Inside the plates,
radio-frequency coils are placed. The coils excite the
hydrogen spins in each layer by high-frequency radio
pulses and also detect the reflected nuclear magnetic
signal. The reflected signal is subjected to a two-dimen-
sional Fourier transformation, which generates a mag-
netic resonance image of each of the layers [6].

In this paper, we use the results of the measurements
performed in Grenoble (Centre Hospitalier Regional
Universitaire de Grenoble, France) by one of the
authors [7, 8]. The shape of the cross section of the
vocal tract was studied for ten French vowels and six
Swedish consonants. In each experiment, three sets of
plates were used. The positions of these plates in the
saggital plane are shown in Fig. 1. The first set of plates
(from 1st to 18th) was placed across the larynx and the
lower part of the vocal tract. These plates provided the
cross-section areas of the larynx and the pharynx. The
second set (from 19th to 37th) was positioned at an
angle of 45° to the first set, across the middle part of the
vocal tract. These plates provided the measurement of
the cross-section areas of the tract in the region of the
velum (plates 19 to 27). The third set (from 38th to
55th) was oriented at an angle of 90° to the first set,
across the front part of the vocal tract. These plates
provided the measurement of the cross-section areas
of the tract in the region of the hard palate and alveo-
les. Each plate was divided into 65536 measurement
units, i.e., pixels. The spatial resolution of each plate
was 1 mm/pixel.

Owing to the difference in the anatomic features in
different regions of the vocal tract, the dependences of
the cross-section area on the tract’s geometric dimen-
sions are also different. We can separate six such
regions (Fig. 2): (1) from the glottis to the esophagus
inlet (the epilaryngeal region); (2) from the esophagus
inlet to the projection of point p onto the back wall of
the tract, where p is the center of the polar coordinate
system in which the tongue surface is described; (3) from
the projection of the center p onto the rear surface of the
tract to the lower point on the velum; (4) the velum;
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
(5) the hard palate (excluding the alveoles); and (6) the
alveolar region. For the sixth region, the data were not
obtained for all sounds. The lip region was not included
in the analysis, because the shapes of the cross sections
in this region were beyond the abilities of the MRI tech-
nique [7]. From the contours of the MRI cross sections,
the following parameters were measured: the distance
between the moving and immovable surfaces of the
tract in the saggital cross section; the width of the tract
(in the axial section) in its different parts; the transverse
dimensions of the tongue, the uvula, and the lower jaw;
and the thickness of the teeth. In addition to the shapes
of the cross sections, the MRI also provided the saggital
contours of the vocal tracts of both speakers for all
sounds. An example of a saggital contour together with
the boundaries dividing the vocal tract into six regions
is shown in Fig. 2. The saggital contours were used to
measure the shape of the hard palate, the coordinates of
the tongue root and the center of the polar coordinate
system p, the tongue surface, and the sublingual sur-
face.

The pharynx has the form of a funnel-shaped chan-
nel, 7–10 cm long, with its wider end looking down-
wards. The cross section of the pharynx is determined
by contractions of three muscles (the upper, middle,
and lower pharynx constrictors). In [6, 8, 9], it was
noted that, for different vowels, the width of the phar-
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Fig. 1. Plate positions for magnetic resonance imaging in
the saggital section. The total number of plates is 55. The
thickness of each plate is 3.5 mm, and the distance between
neighboring plates is 4 mm. The numbers in the plot indi-
cate the order numbers of some of the plates (first plate,
ninth plate, etc.).



 

40

        

BADIN 

 

et al

 

.

                                                                                                      
ynx in the frontal plane as a function of coordinate
along the tract exhibits different behavior. According to
our data, the values of the pharynx width also were
noticeably different for different vowels.

The variations of the pharynx width can be
explained by the following factors:

(i) the muscle activity, i.e., the activity of the phar-
ynx contraction muscles, which was observed in the
electromiogram measurements for these muscles [10];
and

(ii) the rubber pipe effect: by compressing the pipe
in one direction, we increase its transverse dimension in
the other direction. This conclusion could be derived
from the results reported in [11], where it was shown
that the pharynx width approximately linearly depends
on the saggital distance.

Studying the behavior of the pharynx width for all
vowels in our experiments, we did not observe its
dependence on the distance in the saggital plane, and
the pharynx width could not be described by any ana-
lytical function of the saggital distance. This agrees
well with the understanding of the activity of the phar-
ynx contraction muscles in the speech production pro-
cess.

The development of a mathematical model of the
elastic deformations of the pharynx under the effect of
contraction muscles encounters certain difficulties, and
the efforts required to overcome them are not justified
by the resulting accuracy of the solution. Instead of the
direct mathematical approach, it is expedient to use a
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Fig. 2. Saggital MRI scan and six regions of the vocal tract.
statistical analysis. The principal component method
provides a sufficiently precise mathematical model of
the pharynx width P(x) on the basis of the experimental
data analysis:

(1)

where x is the distance along the tract’s midline, fi(x) is
the ith eigenvector, and ai is the factorial load. Two
eigenvectors cover about 93% of the measurement vari-
ance. To these vectors, a certain physiological meaning
can be ascribed. The first vector is associated with the
activity of the upper pharynx constrictor, and the sec-
ond, with the activity of the middle pharynx constrictor,
while (x) is the constant pharynx width characteristic
of an individual speaker.

The function  can be approximated by a hyper-
bola with a root-mean-square error of 3%:

y = 1/(b1x + b2). (2)

This parametrization allows one to include the quan-
tities b1 and b2 into the optimized parameters of the
articulatory model for an arbitrary speaker. For speak-
ers that participated in the MRI experiments, the
parameters b1 and b2 were determined as a result of

minimization of the error between the function 
and the curve y described by Eq. (2) by the quasi-New-
tonian method in the least-squares sense.

Judging from the MRI data, the shape of the cross
section in the first region is close to an ellipse. It area is
approximated as

S1 = (π/4)r1r2, (3)

where r1(x) is the measured distance in the saggital
plane and r2(x) is the measured width of the tract.

From Figs. 3a, 3b, 4a, and 4b, one can see that, in the
second and third regions, the shape of the back wall of
the tract, which is represented by the upper half of the
section, is close to parabolic. Then, for a flat tongue sur-
face, the cross-section area is calculated as

S2 = S3 = r3r4, (4)

where r3(x) is the measured distance from the tongue
surface to the rear surface of the tract and r4(x) is the
width of the parabola basement, which is equal to the
measured width of the tract.

In the fourth region, the parabolic shape of the rear
wall of the tract is distorted by the shape of the uvula,
which, in its turn, can be approximated by another
parabola (Figs. 3c and 4c). Then, under the same
assumption that the tongue surface is flat, the cross-sec-
tion area can be calculated as

S4 = r5r6 – r7r8, (5)

P x( ) P x( ) ai f i x( ),
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where r5(x) is the measured width of the tract, r6(x) is
the measured distance from the tongue surface to the
uvula, r7 is the measured width of the uvula, and r8 is
the measured thickness of the uvula.

The shape of the cross section in the fifth region
depends on the tongue position with respect to the
upper and lower teeth. If the tongue is above the plane
tangential to the teeth of the upper jaw, the cross section
has the shape shown in Fig. 3d. In this case, the area of
the cross section can be approximated by the area of a
parabola whose height is equal to the distance from the
tongue surface to the hard palate and whose base width
is determined not only by the distance from the tongue
surface to the upper palate but also by the distance from
the lower jaw base to the coordinate of the given cross
section:

(6)

where W is the measured width of the base of the lower
jaw, r9(x) is the measured distance from the tongue sur-
face to the hard palate, R9(x) is the measured distance
from the line of intersection of the hard-palate surface
and the plane in which the cross-section area is mea-
sured, c is the measured length of the upper jaw from
the base to the front surface of the cutting teeth, and
m(x) is the distance from the line connecting the molar
teeth with the plane in which the cross-section area is
measured.
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Fig. 3. Some shapes of the cross section for the vowel [i].
The numbers above the plots correspond to the numbers of
plates shown in Fig. 1.
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If the tongue is below the plane touching the teeth of
the upper jaw, the cross section has the shape shown in
Fig. 4d and its area is calculated as

(7)

where t1 is the measured thickness of the molar teeth
and l is the measured distance from the tips of the upper
teeth to the tips of the lower teeth.

In the sixth region, the cross-section area depends
on the height of the tongue and also on the tongue posi-
tion with respect to the front lower teeth. If the tongue
moves backwards and the sublingual surface is
revealed, the cross-section area is calculated by Eq. (7),
where t1 is the measured thickness of the cutting teeth
and r9(x) is the measured distance from the sublingual
surface to the hard palate. If the tongue touches the
front lower teeth, the cross-section area is also calcu-
lated by Eq. (7), but in this case r9(x) is the measured
distance from the tongue surface to the hard palate.

The genioglossus muscle is attached at its one end to
the lower jaw, and its other end grows into the tongue
body. The activity of the rear and middle parts of this
muscle may lead to an axial deflection of the tongue
(Figs. 3a–3c, 4a, and 4b). The area of this deflection can
be approximated as

(8)
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Fig. 4. Some shapes of the cross sections for vowel the [u]
with the same speaker as in Fig. 3. The numbers above the
plots correspond to the numbers of plates shown in Fig. 1.
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where lax is the measured width of the tongue in this
cross section and aax(x) is the measured amplitude of
the deflection [5].

The MRI data for lips are absent. Previous X-ray
studies [5] showed that the shape of each lip is approx-
imately described by a sinusoid half-period. Hence, the
area of the lip opening can be calculated as

(9)

where Rl(x) is the distance between the lips and ll is the
current lip length.

The accuracy of different algorithms used for calcu-
lating the cross-section areas was investigated in [12].
It was found that the highest accuracy is achieved with
the αβ model. This model was programmed and
applied to our data. The parameters α and β were deter-
mined by the minimization of the following functional
for each of the tract regions:

(10)

where K is the total number of regions into which the
vocal tract was divided, NK is the number of plates in the
Kth region, i is the current number of a plate, and h(i) is
the measured saggital distance of the tract in the ith plate.

The results of approximating the measured cross-
section areas of the vocal tract are shown in the table.
The relative error was assumed to be positive if the area
calculated by the algorithm proved to be greater than
the measured area. Otherwise, the relative error was
negative. Since, for the alveolar region, the data were
not obtained for all sounds, the fifth and sixth regions
were combined into one.

From the table, one can see that the mean values of
errors are approximately the same for the two algo-
rithms, except for the lower pharynx region. In this
region, our algorithm provides a much smaller error,
thanks to the use of the active variation of the pharynx
width. In addition, the difference between the algorithms
manifests itself in the error variance, which for the pro-
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Table

Vocal 
tract

region

Mean relative error (%) Standard deviation of 
relative errors (%)

proposed 
algorithm αβ model proposed 

algorithm αβ model

1 17.3% 20.4% 7% 35.4%

2 0.04% 10.3% 10.5% 25.0%

3 –4.6% –3.0% 9.3% 33.7%

4 5.0% 4.2% 41.3% 43.0%

5, 6 6.4% 8.4% 13.5% 40.2%
posed algorithm is 2–5 times smaller than for the
αβ model. This testifies to the higher accuracy and sta-
bility of the proposed algorithm as compared to the
αβ model. An exception is part of the velum, where the
standard deviation is fairly large for both methods.

In analyzing the results shown in the table, it is nec-
essary to take into account the evaluation of the accu-
racy of the MRI method. Since the spatial resolution of
the scanner is 0.1 cm/pixel, the minimum measurable
area is 0.010 cm2. For example, an area of 0.2 cm2

should be represented by 20 pixels. Therefore, if the
algorithm that performs the processing of the MRI
results fails in one pixel, the error in the measured area
with respect to the actual cross-section area is 5%.

An algorithm for estimating the accuracy of the
MRI data was proposed in [6]. Knowing the cross-sec-
tion area, one can calculate the circumference of a cir-
cle whose area is equal to the measured one. The error
in the area measurement is determined by the pixels
lying on the circumference. If we assume approxi-
mately that every pixel lying on the circumference is
separated in two halves by the circumference, the num-
ber of pixels on the circumference is determined to be
half the ratio of the circumference to the spatial resolu-
tion of the plate. Then, the MRI measurement error for
an area of 0.22 cm2 is close to 40%.

In our experiments, for those regions of the vocal
tract where the mean areas were about 0.2 cm2, the
mean error between the calculated and measured cross-
section areas proved to be about 15–20% and the stan-
dard deviation was within 40–45%. Thus, the approxi-
mation errors for areas of an order of 0.2 cm2 fall within
the errors in the MRI measurements of the cross-sec-
tion areas. The source of the large values of the standard
deviation in the velum region is the considerable scatter
of the area values in this region. For some vowels, a
nasalization, i.e., a lowering of the velum, was
observed. In this case, the mean areas in this region
were of the order of 0.22 cm2, which resulted in large
values of the standard deviation.

According to [6], the MRI measurement error for an
area of about 3 cm2 is about 7%. In our experiments, for
those regions of the vocal tract where the mean areas
were about 3 cm2, the mean approximation error was
about 2–5% (i.e., within the MRI measurement error
for cross-section areas) and the standard deviation was
about 5–8%. The variance of the errors characterizing
the approximation of the cross-section areas of the
vocal tract by our algorithm also proves to be within the
measurement error, which testifies to the adequacy of
the chosen approach.

Formulas (3)–(9) approximating the shape of the
cross section of the vocal tract were used to construct an
algorithm for calculating the cross-section areas from
the articulatory parameters of the mathematical model
of articulation.

The algorithm operates as follows. At the first stage,
the vocal tract is separated into seven regions, six of
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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which are shown in Fig. 2 and the seventh of which rep-
resented by the lips. Then, from the current values of
the controlled saggital parameters of the mathematical
articulation model, the function h(x) is calculated [5].
The factorial loads ai involved in Eq. (1) are included in
the set of controlled parameters of our articulation
model. From the current values of these parameters and
also from the preset values of the parameters b1 and b2,
the pharynx width is calculated using Eqs. (1) and (2).
The eigenvectors of the pharynx width fi are taken from
the database. From the calculated pharynx width, the
parameters r2, r4, and r5 involved in Eqs. (3)–(5) are
determined. From the function h(x), the saggital dis-
tances between the moving and immovable surfaces of
the tract, which are involved in Eqs. (3)–(9), are deter-
mined for different regions. This allows one to calculate
the distribution of the cross-section areas in the vocal
tract (from the glottis to the alveoles) by using the
aforementioned formulas.

The proposed algorithm for calculating the cross-
section areas from the articulatory control vector u(t)
and the anatomic parameters was used to solve the
inverse problem of determining the shape of the vocal
tract from acoustic and geometric data [14, 15]. The
inverse problem was solved for vowels, vowel + vowel
and vowel + fricative + vowel combinations, and some
American English words pronounced by a male
speaker. The input data were the first three resonant fre-
quencies measured in the speech signal (for vowels);
the measured acoustic spectra and some spectral
parameters (for fricative sounds); and the correspond-
ing trajectories of eight moving points on the inner sur-
faces of the vocal tract, which were determined by a
microbeam X-ray study. The shape of the hard-palate
vault, the dimensions of the upper and lower jaws, and
the height and width of teeth were taken from the data-
base formed on the basis of the microbeam X-ray data
[13]. The parameters a1, a2, b1, and b2, along with the
articulatory parameters, were included in the optimiza-
tion process in solving the inverse problem. When cal-
culating the transfer function of the vocal tract, the opti-
mization process was performed with allowance for the
compliance of the tract walls and the presence of
branching at the esophagus inlet [16]. The mean error
in the coordinates of the points was 2.8%; the mean
error in the first resonance, 3.7%; the mean error in the
second resonance. 3.8%; and the mean error in the third
resonance, 2.6%. The mean error between the mea-
sured fricative spectra and those calculated in the opti-
mization process was about 30%. The dynamic solution
obtained for the inverse problem was used by an artic-
ulatory synthesizer to generate a speech signal. The
synthesized speech sounds and their sonogram proved
to be very close to the original sounds. The original and
resynthesized speech sounds can be displayed from the
sound files attached to [14, 15].

Thus, the use of the possibilities offered by MRI
measurements allowed us to construct a new algorithm
for calculating the cross-section areas of the vocal tract
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
on the basis of a three-dimensional articulation model.
This algorithm takes into account not only the anatomic
parameters and shape of the vocal tract in the mid-sag-
gital plane but also the articulatory parameters in the
frontal and axial planes. The algorithm developed by us
was successfully tested in solving the acoustic parame-
ters–to–vocal tract shape inverse problem by varying
the parameters of the articulatory model. The use of the
factor of varying pharynx width has made it possible to
considerably reduce the error in calculating the shape
of the vocal tract and the acoustic characteristics with
respect to the measured ones.
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Abstract—The method earlier proposed by the author for obtaining a complete set of conservation laws is applied
to a number of simple acoustic problems. Some of the conservation laws presented are derived for the first time.
Special attention is given to the physical interpretation of the results. © 2005 Pleiades Publishing, Inc.
The theory of invariants is a large and much investi-
gated field of science, which plays a key role in some
areas of mathematics and physics [1]. In acoustics and
theory of oscillations, the invariance of the basic equa-
tions with respect to different groups of transforma-
tions, for example, canonical ones, as well as the gen-
eral invariants, including the volume and circulation of
trajectories in the state space (the Liouville and Helm-
holtz theorems), Poincare integral invariants, etc., are
of general theoretical importance [2]. For analyzing
wave and oscillatory processes in specific media and
dynamic systems, the invariants of most practical
importance are those called conservation laws or, oth-
erwise, integrals of motion. These invariants include,
for example, the energy-conservation law, the momen-
tum-conservation law, the energy-flux-conservation
law, etc. [2, 3]. The knowledge of the quantities that
conserve their values in the course of motion often
allows one to describe the physics of phenomena in suf-
ficient detail without solving any equations. The
present paper is devoted to the construction and analy-
sis of precisely this kind of invariant.

Conservation laws are closely related to the symme-
try properties of the medium or system under consider-
ation. Jacobi [4] presumably was the first to notice this
fact. Owing to the efforts of Hilbert, Klein, and Noet-
her, this idea evolved into a general result, which now
is known as the Noether theorem [5]. According to this
theorem, each transformation of variables that does not
change the Lagrangian of a given physical system cor-
responds to a specific conservation law and vice versa.
The theorem allows one to represent the conservation
laws in an explicit form if the symmetry transformation
is represented analytically. For example, if the
Lagrangian of the system does not depend on time or,
in other words, the system possesses a translational
symmetry in time (the corresponding symmetry trans-
formation is a time shift), the Noether theorem yields
the energy-conservation law. According to this theo-
rem, the homogeneity and isotropy of the space lead to
the momentum- and moment-of-momentum-conserva-
1063-7710/05/5101- $26.00 0044
tion laws, and so on [2, 3]. Unfortunately, the Noether
theorem is only applicable to physical systems whose
motion is described by differential equations obtained
from the variational principle. Therefore, numerous
publications that followed Noether’s paper [5] were
devoted not only to specific applications of the theorem
but also to generalizations of the group theoretical
approach to systems for which the classical Lagrange
function did not exist, for example, to damped and
gyroscopic oscillatory systems [6–13]. In particular,
attempts were made to modify the variational principle
[8] or to construct an unconventional Lagrangian
which, under a formal application of the classical vari-
ational principle and the Noether theorem, could pro-
vide a correct result [7]. In [10], the problem of free
oscillations for a system with a viscous loss was first
reduced through a change of variables to the problem
for a similar lossless system and, then, the conservation
laws known for a conservative system were trans-
formed into the conservation laws for the initial (non-
conservative) system by returning to the initial vari-
ables. Some authors obtained the integrals of motion
directly from the equations of motion by using artificial
procedures (see, e.g., [11–13]). However, no general
method was developed for constructing a complete set
of irreducible conservation laws. Note that the above
brief review refers to only a small part of the extensive
literature concerned with conservation laws, namely, to
the part most closely related to the present paper.

In a recent publication [14], a new method was pro-
posed for obtaining conservation laws, and this method
partially solves the problem under discussion. The
method can be applied to linear physical systems in
which the oscillatory or wave processes are described
by sets of ordinary linear differential equations, includ-
ing systems to which the Noether theorem does not
apply. The method allows one to construct a complete
set of independent conservation laws of the bilinear
(quadratic or energy) type. In the present paper, the
method proposed in [14] is applied to a number of sim-
ple acoustic problems. Some of the conservation laws
© 2005 Pleiades Publishing, Inc.
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given below are obtained for the first time. Special
attention is paid to the physical interpretation of the
results.

Briefly, the approach used to obtain the conservation
laws is as follows [14]. Consider a linear inhomoge-
neous continuous medium or a discrete oscillatory sys-
tem whose motion is described by a linear differential
operator of the nth order:

(1)

where x is the space or time coordinate, y(x) is the field
quantity (displacement, pressure, etc.), and the prime
and superscript (k) denote the first and kth derivatives.
The equation with operator (1) can be represented in
several equivalent forms and, in particular, as a set of n
equations of the first order. Here, we consider only
form (1), although the method is also applicable to sets
of equations (see Example 3 below). Operator (1)
describes a rather wide class of acoustic situations:
oscillations of linear finite-element (discrete) models,
waves in one-dimensional continuous media, and some
wave processes in arbitrary fluid and solid waveguides
and two- and three-dimensional inhomogeneous media.

The general solution to the homogeneous equation

(2)

has the form

(3)

where yj(x) are linearly independent particular solu-
tions to Eq. (2) and cj are arbitrary constants. The con-
servation law (integral of motion) of solution (3) is a
function that does not depend on x in the interval under
consideration: P[y(x)] = const(x). The constant on the
right-hand side of the latter equality is a combination of
constants cj and parameters of the problem. The number
of conservation laws is infinite, but only n of them are
independent (basic). All other laws are expressed
through the basic ones. The method proposed in [14]
constructs n basic conservation laws of the bilinear
(quadratic) type.

The derivation of the conservation laws is based on
the well-known Lagrange identity [15]

(4)

Here, l* is the nth-order differential operator adjoint to
l, P(y, z) is the so-called bilinear form containing deriv-
atives from y and z up to the (n – 1)th order (expressions
for l* and P are given in [14, 15]), and the overbar
means complex conjugation. Note that operators and
functions involved in Eqs. (1)–(4) are assumed to be
complex in the general case and Hermitian products of
the  type are accepted for them.

l y( ) a0 x( )y n( ) a1 x( )y n 1–( )+=

+ … an 1– x( )y' an x( )y,+ +

l y( ) 0=

y x( ) c jy j x( ),
j 1=

n

∑=

l y( )z yl* z( )–
d
dx
------P y z,( ).=

ab
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If y(x) is a solution to Eq. (2) and z(x) is a solution
to the adjoint equation

(5)

from Lagrange identity (4) it follows that the bilinear
form does not depend on x and, hence, represents a con-
servation law (let us call it the first conservation law):

(6)

If, in identity (4), we replace solution y by y', we obtain
the second conservation law [14]:

(7)

where l' represents operator (1), in which coefficients
ak(x) are replaced by (x) while, in the bilinear form
P(y', z), the term with the nth derivative is replaced by
terms with lower order derivatives using Eq. (2). The
third conservation law is obtained from identity (4) by
replacing y with y'':

(8)

Further, replacing y by y(k) and z by z(m) in Lagrange
identity (4), we obtain n basic conservation laws and a
number of other laws representing their combinations.

One more group of bilinear conservation laws can
be obtained by proceeding from the Lagrange identity
with ordinary ab-type products of complex quantities:

(9)

Repeating the derivation, we arrive at conservation
laws in the form

(10)

These laws coincide with laws (6)–(8) as the adjoint
operators and bilinear forms coincide, provided that the
equations and their solutions are real. In the complex
case, they differ in form and in physical meaning (see
examples below). Note that, while conservation law (6)
is well known, laws (7), (8), and (10) have never before
been mentioned in the literature (as far as the author of
this paper knows). For media and systems whose oscil-
lations are described by differential operators with con-
stant coefficients, the conservation laws obtained above
have especially simple forms, because they contain no
integrals. For layered and other media that are
described by differential operators (1) with nondiffer-
entiable or discontinuous coefficients, these conserva-
tion laws remain valid if one passes from the common

l* z( ) 0,=

P1 y z,( ) P y z,( ) C1.= =

P2 y z,( ) P y' z,( ) l' y( )z xd

x0

x

∫+ C2,= =

ak'

P3 y z,( ) = P y'' z,( ) 2l' y'( ) l'' y( )+[ ] z xd

x0

x

∫+  = C3.

l y( )z yl z( )–
d
dx
------P y z,( ).=

)

P1 y z,( ) P y z,( ) C1,= =

P2 y z,( ) P y' z,( ) l' y( )z xd

x0

x

∫+ C2, etc.= =
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derivatives to the so-called quasi-derivatives (see [14]).
Now, let us consider some examples.

Example 1. To reveal the physical meaning of the
conservation laws obtained above, let us consider the
simplest system: a lossless oscillator (a mass m
attached to a spring with a stiffness χ). Free oscillations
of this system are described by an ordinary differential
equation of the second order:

(11)

where y(t) is the displacement of the mass, the parame-
ters m and χ are assumed to be real and independent of
time t, and an overdot means a derivative with respect
to t. Operator (11) is a self-adjoint one, i.e.,  = l* = l,
and its bilinear form is equal to P(y, z) = m z – my .
The general solution to an equation of the second order
depends on two arbitrary constants, and, hence, two
independent conservation laws are obtained for it:

(12)

(13)

All other conservation laws are combinations of laws
(12) and (13). For example, the law

(14)

is equivalent to law (12) with the factor χ/m, and so on.
Functions y(t) and z(t) involved in Eqs. (12)–(14) repre-
sent two solutions to Eq. (11). Let us first consider the
case when these solutions are real functions of time and
the Hermitian product coincides with the ordinary one.

Let

be the general solution to Eq. (11), so that this solution
depends on two real arbitrary constants A1 and A2 and
ω0 = (χ/m)1/2 is the eigenfrequency. First, let us show
that, for any solution z(t), the constants on the right-
hand sides of conservation laws (12)–(14) are combina-
tions of constants A1 and A2 and the oscillator parame-
ters. Indeed, for z1(t) = cosω0t, from Eqs. (12) and (13),
we obtain

For the other independent solution to Eq. (11), z2(t) =
sinω0t, laws (12) and (13) yield

If solution z(t) coincides with y(t), law (12) becomes an
identity (C1 ≡ 0) and carries no useful information,
while law (13) represents the conservation law for the
total instantaneous energy E(t) of the system:

(15)

l y( ) mẏ̇ χy+ 0,= =

l
ẏ ż

P1 y z,( ) P y z,( ) mẏz myż– C1,= = =

P2 y z,( ) P y ż,( ) mẏż χyz+ C2.= = =

P3 y z,( ) P ẏ ż,( ) χyż– χ ẏz+ C3= = =

y t( ) A1 ω0t A2 ω0tsin+cos=

P1 y z1,( ) C1 2mω0A2,= =

P2 y z1,( ) C2 2χA1.= =

P1 y z2,( ) C1 2– mω0A1,= =

P2 y z2,( ) C2 2χA2.= =

P2 y y,( ) = mẏ2 χy2+  = 2E = C2 = 2χ A1
2 A2

2+( ).
This result is well-known: the energy of free oscilla-
tions of a conservative system does not depend on time.
Note that law (15) is the only conservation law that is
encountered in the literature for a lossless oscillator.
Law (13) obtained above is a more general conserva-
tion law, because it relates two different free motions of
the system; it coincides with law (15) at z = y. Conser-
vation law (12), which also relates two different solu-
tions to Eq. (11), has never been encountered by us in
the literature.

To reveal the physical meaning of conservation
laws (12)–(14), it is necessary to introduce the notation
of cross-energy quantities. For two oscillatory motions,
y(t) and z(t), the quantity Tyz(t) = /2 can be called
the kinetic cross-energy of the momentum  of the
first motion at the velocity  of the second motion, and
the quantity Tzy(t) = /2 can be called the instanta-
neous kinetic cross-energy of the momentum of the sec-
ond motion at the velocity of the first motion: Tyz(t) =
Tzy(t). In a similar way, we introduce the potential
cross-energy of the two motions:

as well as the total cross-energy and the cross-
Lagrangian: Eyz = Tyz + Uyz, …, Lzy = Tzy – Uzy. These
quantities naturally appear when quadratic (energy)
quantities of the sum of motions are considered. For
example, the total energy of the sum of two motions y + z
is equal to the sum of energies of individual compo-
nents and the cross-energies:

Returning to conservation law (13), one can easily see
that, physically, this law means that, for any two free
motions of a lossless oscillator, the following quantities
are conserved (do not depend on time):
the cross-energies

(16)

and the energies of individual motions

(17)

Let us also introduce the cross-action of the two
motions of the oscillator: after some transformation,
this quantity can be reduced to the form

From this expression, one can see that conservation
law (12) can be physically interpreted as follows: for
any two free motions of the oscillator, the action of the
momentum of the first motion  on the displacement

mẏż
mẏ

ż
mżẏ

Uyz t( ) Uzy t( ) 1
2
---χyz,= =

E Eyy Ezz Eyz Ezy.+ + +=

2Eyz t( ) 2Ezy t( ) mẏż χyz+ C2= = =

2Eyy t( ) mẏ2 χy2+ C2' ,= =

2Ezz t( ) mż2 χz2+ C2''.= =

Syz t( ) Lyz td

t0

t

∫ 1
2
---mẏz Syz t0( ).–= =

mẏ
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z of the second motion varies in time in the same way
as the action of the momentum  of the second
motion on the displacement of the first motion but dif-
fers from it by a time-independent constant,

(18)

Although other conservation laws are combinations of
laws (12) and (13), they may have other physical mean-
ing. In particular, since the first term in law (14) repre-
sents the cross-power

i.e., the power of the force (–χy) acting on the mass in
the first motion and on the velocity  of the mass in the
second motion, conservation law (14) can be inter-
preted as the constancy of the difference between two
cross-power fluxes,

(19)

One more useful aspect of the physical interpreta-
tion of the conservation laws obtained above is related
to the behavior of energy quantities as functions of
time. Let y(t) and z(t) be arbitrary free motions of the
oscillator:

(20)

Any quadratic or bilinear functions of signals that are
harmonic in time, including the energy quantities
involved in the conservation laws, consist of two com-
ponents: a constant component (i.e., the time-averaged
component) and a variable component varying in time
with a double frequency [16]. For example, the kinetic
cross-energy Tyz(t) for motions (20) is equal to the sum

of the constant and variable components  and

(t), where the latter, in its turn, consists of the cosine

 and sine  components:

(21)

The potential cross-energy of the system for motions (20)
also consists of the constant and variable components,
where the first of them is equal to the constant compo-

nent of kinetic energy  =  =  =  (this is a
general law: the kinetic energy of free oscillations of a

mż

Syz t( ) Szy t( )– C1.=

Fyz t( ) χy–( )ż,=

ż

Fyz t( ) Fzy t( )– C3.=

y t( ) A1 ω0t A2 ω0tsin+cos= ,

z t( ) a1 ω0t a2 ω0tsin+cos= .

Tyz
=

Tyz
≈

Tyz
c Tyz

s

Tyz t( ) Tzy t( ) Tyz
== = Tyz

≈ t( ),+

Tyz
= 1

4
---mω0

2 A1a1 A2a2+( ),=

Tyz
≈ t( ) Tyz

c 2ω0t Tyz
s 2ω0t,sin+cos=

Tyz
c 1

4
---mω0

2 A1a1– A2a2+( ),=

Tyz
s 1

4
---mω0

2 A1a2 A2a1+( ).–=

Uyz
= Uzy

= Tyz
= Tzy

=
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lossless system is, on average, equal to the potential
energy [17]), and the second differs in sign from the
variable component of kinetic energy (21). As a result,
the total cross-energy only contains a nonzero constant
component, so that conservation law (16) is equivalent
to the absence of variable component in the instanta-
neous energy:

(22)

The same is true for laws (17).
One can directly verify that the cross-power fluxes

Fyz(t) and Fzy(t) have constant components that are
equal in magnitude but opposite in sign and variable
components that are identical to each other:

(23)

Similar relations are valid for action. Therefore, conser-
vation laws (18) and (19) can be interpreted as the
equality of the variable components of cross-powers
and actions and, hence, as the independence of the dif-
ference of their instantaneous values from time.

Now, let us consider the case of complex solutions
to Eq. (11). Complex solutions are often used in acous-
tics. Although in considerations their real parts are
always implied, these solutions have their own inde-
pendent meaning. Therefore, we consider more closely
the physical meaning of the conservation laws men-
tioned above in the case of complex solutions. This
meaning essentially depends on the type of the product
of the complex functions. If an ordinary product of two
complex functions, e.g., YZ, is used with initial
Lagrange identity (9), the conservation laws for an
oscillator exactly coincide with laws (12)–(14). If a
Hermitian product  is used with initial identity (4), the
conservation laws can be represented as

(24)

(25)

(26)

Let

(27)

be two arbitrary complex solutions to Eq. (11) with
complex amplitudes A and a, respectively. Their real
parts coincide with solutions (20), provided that

(28)

Consider the kinetic cross-energy of complex oscilla-
tions (27) for an ordinary product of complex quanti-
ties:

(29)

Eyz
≈ t( ) Ezy

≈ t( ) 0,= =

Eyz t( ) Ezy t( ) Eyz
= const.= = =

Fyz
= Fzy

=+ 0, Fyz
≈ t( ) Fzy

≈ t( )– 0.= =

YZ

P1 Y Z,( ) mẎZ mYŻ– C1,= =

P2 Y Z,( ) mẎ Ż χYZ+ C2,= =

P3 Y Z,( ) χ– YŻ χẎZ+ C3.= =

Y t( ) A iωt–( ), Z t( )exp a iωt–( )exp= =

A A1 iA2, a+ a1 ia2.+= =

T̃̃ YZ t( ) 1
2
---mẎ Ż

1
2
---mω0

2Aa i2ω0t–( ).exp–= =



48 BOBROVNITSKIŒ
One can see that this is a complex harmonic function
of double frequency without any constant component.
Substituting Eqs. (28) into Eq. (29), one can verify
that the real part of function (29) is twice the variable
component of instantaneous kinetic energy (21):

Re( ) = 2 (t). As for the imaginary part of
function (29), which can be called the reactive variable
component of the kinetic cross-energy, it does not have
such a direct physical meaning. One can show that the
imaginary part is a Hilbert transform of the physically
significant real variable component and, hence, com-
plements it to form the analytical (complex) function of
time given by Eq. (29) (see, e.g., [18]). However, when
operations are performed with physical quantities in the
complex domain, the reactive (imaginary) parts play a
role that is equally important as that of the active (real)
parts. For example, the reactive part of function (29) mul-
tiplied by –2ω0 characterizes the variation (time deriv-
ative) of the active part of the kinetic cross-energy and,
hence, is equal to the active part of the cross-power flux

Re( ), and so on.
The potential cross-energy of complex solutions (27)

for the ordinary product

also describes only the variable component of the
instantaneous energy and differs from the kinetic cross-
energy in sign. Hence, the total cross-energy of solu-
tions (27) is equal to zero:

(30)

and this is also true for the cross-energy (t) and for

the individual energies: (t) = (t) = 0. Thus, the
meaning of conservation law (13), (30) for complex
solutions (27) with an ordinary product consists in that
the variable components of total cross-energies and
individual energies are equal to zero (see Eqs. (22)). As
for conservation laws (12) and (14), these laws for the
complex solutions with an ordinary product mean that
the variable components of the cross-powers and
actions are identical (see Eqs. (23)).

Now, let us assume that a Hermitian product of com-
plex functions is used. It is evident that any bilinear or
quadratic function of complex harmonic motions of
type (27) does not depend on time and, hence, is an
integral of motion. For example, in this case the kinetic
cross-energy has the form

(31)

Since this is a complex quantity, it actually contains two
independent conservation laws: for the real part and for
the imaginary one. By direct calculations, one can ver-
ify that the real part of energy (31) represents twice the

T̃̃ YZ t( ) Tyz
≈

F̃̃YZ

Ũ̃YZ t( ) 1
2
---χYZ

1
2
---χAa i2ω0t–( )exp= =

Ẽ̃YZ t( ) T̃̃ YZ t( ) Ũ̃YZ t( )+ 0,= =

Ẽ̃ZY

Ẽ̃YY Ẽ̃ZZ

TYZ
1
2
---mẎ Ż

1
2
---mω0

2Aa.= =
constant component  of the instantaneous kinetic
energy Tyz(t) and that the imaginary part (the reactive
kinetic cross-energy) is proportional to the constant
component of the instantaneous power flux . Thus,
in the case of complex solutions (27) with a Hermitian
product, among all conservation laws (24)–(26), only
one law, e.g., law (25) or (31), is independent. All other
laws can be represented as its functions; for example

and so on.
Let us summarize the results of considering the

physical meaning of the conservation laws obtained for
a lossless oscillator. Two independent laws obtained for
this system correspond to the absence of time depen-
dence for the total cross-energy and individual energy
of free oscillations and to the constancy of the differ-
ence between two instantaneous cross-power fluxes or
cross-actions. Since each of these quantities consists of
constant and variable components, these laws are
equivalent to the absence of variable component in the
total energy of oscillations (i.e., the variable compo-
nents of the kinetic and potential energies cancel each
other) and to the equality of the variable components of
two cross-power fluxes or actions.

If the natural oscillations of the oscillator are
described by complex functions of time with an ordi-
nary or Hermitian product, only one complex conserva-
tion law is independent and its real and imaginary parts
are equivalent to two conservation laws in the real
domain. Although the specific physical content of con-
servation laws depends on the system under consider-
ation, general approaches to their interpretation, which
are described above in detail for the simplest system
(oscillator), are valid for other systems. They will be
used below to study more complicated examples.

Example 2. Now, let us consider an oscillator with a
viscous damping. Its oscillations are described by a
non-self-adjoint equation

(32)

with real coefficients. The adjoint operator l* differs
from the direct one in the sign of the damping factor b
and, thus, describes an active system with a negative
loss. If the ordinary product is accepted, the bilinear
form is expressed as P(y, z) =  –  + byz. If the
Hermitian product is accepted, z should be replaced by .
For real solutions y(t) and z(t) to direct (32) and adjoint
(5) equations, conservation laws similar to laws (12)–(14)
are valid:

(33)

(34)

(35)

Tyz
=

Fyz
=

FYZ 2iω0TYZ– const,= =

l y( ) mẏ̇ bẏ χy+ + 0= =

mẏz myż
z

P1 y z,( ) P y z,( ) mẏz myż– byz+ C1,= = =

P2 y z,( ) = P y ż,( ) = P ẏ z,( )–  = mẏż χyz+  = C2,

P3 y z,( ) P ẏ ż,( ) χyż– χzẏ bẏż–+ C3.= = =
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They are related by the formula

Therefore, only two laws are independent. As in the
case of a lossless oscillator, their physical meaning con-
sists in the conservation of some cross-energy quanti-
ties. However, unlike lossless systems, no quadratic
laws are possible for lossy systems. The laws must be
bilinear, and each of them should contain one solution
to the direct problem and one solution to the conjugate
problem. This is a consequence of the non-self-adjoint-
ness of operator (32): natural oscillations of the damped
system attenuate with time, while oscillations of the
adjoint system grow up. In a bilinear function, these
opposite dependences compensate for each other mak-
ing possible the existence of conservation laws of this
type.

Law (34) represents the conservation law for the
total cross-energy. It has been derived in different ways
by many authors (see, e.g., [7, 9]). By analogy with
law (14), law (35) can be interpreted as the equality of
the variable components of two cross-power fluxes if
one accepts that the force acting on the mass in the
course of motion y(t) is equal to –χy – /2 and if
expression (35) can be represented in the form

Analogously, conservation law (33) means that the dif-
ference between two cross-actions is independent of
time if the action Syz is understood as the quantity (  +
by/2)z and the action Szy is equal to (  – bz/2)y.
Laws (33) and (35) were never encountered by the
author of this paper in the literature.

Example 3. Let us now consider oscillations
described by a set of differential equations. Let these
oscillations be those of a linear damped mechanical
system with N degrees of freedom. They are known to
be described by N linear ordinary differential equations
of the second order:

(36)

where y = [y1, …, yn]T is the function vector of displace-
ments; M, B, and K are square matrices of order N, not
necessarily real and symmetric; and the superscript T
means transposition. Operator (36) with these parame-
ters describes the oscillations of a wide class of
mechanical systems with allowance for viscous and
structural losses, gyroscopic effects, and Coriolis and
Lorentz forces, as well as systems containing active
elements. Using the Hermitian product of the function
vectors z*y = y1  + … + yN , from the Lagrange
identity we easily obtain the adjoint operator and the
bilinear form:

χP1 bP2– mP3– 0.=

bẏ

P3 χy– bẏ/2–( )ż χz– bż/2+( ) ẏ.–=

mẏ
mż

l y( ) Mẏ̇ Bẏ Ky+ + 0,= =

z1 zN

l* z( ) M* ż̇ B*ż– K*z,+=

P y z,( ) z*Mẏ ż*My– z*By.+=
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The corresponding conservation laws have the form

(37)

These laws are valid for any solutions to the direct and
adjoint sets of equations. The general solution to direct
set of equations (36) involves 2N arbitrary constants.
Hence, among the infinite number of laws like Eq. (37),
2N are the basic ones. They are obtained from Eqs. (37)
with the use of some kind of N independent particular
solutions to the adjoint set of equations. The physical
meaning of conservation laws (37) is the same as that
for a system with one degree of freedom.

Example 4. Consider the propagation of free longi-
tudinal waves in a thin homogeneous linearly elastic
rod without losses. These waves are described by the
Bernoulli wave equation

(38)
where u(x, t) is the longitudinal displacement, m = ρS is
the mass per unit length, ρ and E are the density and
Young’s modulus of the material, and S is the cross-sec-
tional area of the rod. All parameters are assumed to be
real and independent of the spatial coordinate and time.
The wave motion depends on two variables. The prob-
lem is to find the quantities that are invariable along the
x axis and the quantities that are independent of time.
Quantities that are simultaneously invariant with
respect to both coordinates are not considered here: the
generalization of the proposed method to the multidi-
mensional case is planned to be the subject of a special
publication.

Seeking the solution to Eq. (38) in the form u(x, t) =
X(x)T(t) by the Fourier method, for each factor we
obtain the following ordinary differential equations:

(39)
where γ is a constant. For a motion that is harmonic
(exponential) in x and t and characterized by a fre-
quency ω and a wave number k, this constant is calcu-
lated as

(40)

and the general real solution to the equation under study
has the form

(41)

This solution consists of a wave propagating with an
amplitude A0 and an arbitrary phase α in the positive
direction of the x axis and a wave propagating in the
opposite direction with an amplitude B0 and phase β.
The propagation velocity is c = ω/k = (E/ρ)1/2. In the
complex domain, the solution has the form

(42)

where the complex amplitudes are

(43)

P1 P y z,( ) C1,= =

P2 P y ż,( ) ż*Mẏ z*Ky+ C2.= = =

ESu'' x t,( ) mu̇̇ x t,( )– 0,=

ESX'' x( ) γX x( )+ 0, mṪ̇ t( ) γT t( )+ 0,= =

γ ESk2 mω2,= =

u x t,( ) = A0 kx ωt– α–( )cos B0 kx ωt β–+( ).cos+

u x t,( ) A ikx iωt–( )exp B ikx– iωt–( ),exp+=

A A0 iα–( ), Bexp B0 iβ( ).exp= =
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The real part of the complex solution given by Eqs. (42)
and (43) coincides with real solution (41).

The operators involved in Eq. (39) are self-adjoint.
They are analogous to operator (11) for a lossless oscil-
lator. Hence, the conservation laws for them are analo-
gous to laws (12) and (13). For an ordinary product,
they have the form

(44)

(45)

(46)

(47)

The superscripts indicate the coordinate along which
the given quantity is conserved. These four conserva-
tion laws are valid for both real and complex solutions.
For complex solutions with a Hermitian product, the
conservation laws coincide with laws (44)–(47), in
which the adjoint solution v  is replaced by the complex
conjugate one, .

The physical meaning of the quantities involved in
Eqs. (44)–(47) is as follows. The quantity f = –ESu' is
the force acting in the cross section, and the product fv
in Eq. (44) is the cross-work of this force at the dis-
placement v. Expressions in laws (45) and (47) with
allowance for Eq. (40) represent the total cross-energy
density. The quantities in law (46) represent the
mechanical action. For example, the term  is the
action of the pulse  on the displacement v  (see
Example 1).

For an arbitrary real solution (41) and a similar solu-
tion to the adjoint problem

conservation laws (44)–(47) are transformed into the
form

(48)

As one can see from Eqs. (48), the first two quantities
do not depend on the spatial coordinate and contain
constant components and components varying in time
with a double frequency. The last two quantities in

P1
x ES u'v uv '–( ) const x( ),= =

P2
x ESu'v ' γuv+ const x( ),= =

P1
t m u̇v uv̇–( ) const t( ),= =

P2
t mu̇v̇ γuv+ const t( ).= =

v

mu̇v
mu̇

v x t,( ) a0 kx ωt– ϕ–( ) b0 kx ωt ψ–+( ),cos+cos=

P1
x/ESk A0a0 α ϕ–( )sin B0b0 β ψ–( )sin+=

+ A0b0 α ψ– 2ωt+( )sin B0a0 β ϕ– 2ωt–( ),sin+

P2
x/mω2 A0a0 α ϕ–( )cos B0b0 β ψ–( )cos+=

+ A0b0 α ψ– 2ωt+( )cos B0a0 β ϕ– 2ωt–( ),cos+

P1
t /mω A– 0a0 α ϕ–( )sin B0b0 β ψ–( )sin+=

+ A0b0 2kx α– ψ–( ) B0a0 2kx β– ϕ–( ),sin–sin

P2
t /mω2 A0a0 α ϕ–( )cos B0b0 β ψ–( )cos+=

+ A0b0 2kx α– ψ–( ) B0a0 2kx β– ϕ–( ).cos+cos
Eqs. (48) do not depend on time and contain constant
components and components varying with x. It should
be stressed that conservation laws (44)–(48) contain no
quantities simultaneously depending on both variables.
However, such quantities can be obtained by averaging
Eqs. (48) over time and/or over the spatial coordinate.

When complex solutions (42), (43) with a Hermitian
or ordinary product are used, the real parts of conserva-
tion laws (44)–(47) yield the constant and variable
components of laws (48). In this case, the imaginary
parts of some of the laws prove to be proportional to the
real parts of other laws, so that not all of the laws are
independent. For example, for complex solutions with

a Hermitian product, the relation ω  + i  = 0 is valid
(see also Example 1).

It should be noted that the cross-power flux through
the cross section Fuv = –ESu’  is not a conserved
quantity, because, in addition to the constant compo-
nent, it contains components varying with x and t. The
sum and the difference of the cross-energy fluxes, Fuv ±
Fvu, also represent non conserved quantities.

Example 5. As an example of conservation laws in
an inhomogeneous medium, let us consider waves in a
pipe with a varying cross section (a horn). The pipe is
assumed to be thin, and the variation of the cross-sec-
tional area S(x), sufficiently smooth. Then, a harmonic
wave motion is approximately described by the equa-
tion [19]

(49)

where p(x) is the pressure in the cross section x, k0 =
ω/c, and c is the velocity of sound in the medium. The
operator on the left-hand side of Eq. (49) is self-adjoint:
l* = l. For it, independent conservation laws (6) and (7)
take the form

(50)

(51)

where p and q are any two solutions to Eq. (49). The
physical meaning of the quantities involved in Eqs. (50)
and (51) is the same as that in the previous example,
correct to constant factors. Since, by virtue of the Euler
equation [19], the derivative of pressure with respect to
x is proportional to the particle velocity in the medium,
conservation law (50) means that, in the cross-power
fluxes, the components varying with x are identical.
Conservation law (51) is related to the energy of the
medium, although the meaning of its individual terms
is unclear.

P1
t P2

t

v̇

l p( ) S p'( )' k0
2
Sp+ 0,= =

P1 p q,( ) P p q,( ) S p'q pq'–( ) C1,= = =

P2 p q,( ) P p q',( )=

=  Sp( )'q' k0
2Spq+ pl' q( ) xd

x0

x

∫– C2,=
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Let us consider some specific cases of laws (50) and
(51). Let the pipe be an exponential horn, whose cross
section increases according to the exponential law

In this case, the general solution to Eq. (49) has the
form

(52)

where A and α are arbitrary constants and k = .
For an exponential horn, relation l'(q) = 2εl(q) is valid
and, hence, the integral in law (51) turns out to be equal
to zero. If q(x) is a solution similar to solution (52) with
arbitrary constants a and β, the constants involved in
conservation laws (50) and (51) can be represented as

Solutions to Eq. (49) in terms of known functions
also exist for some other horns, for example, for a
power-law horn with the cross section

In the case of an even n = 2(m + 1), the general solution
to Eq. (49) can be represented in the form

where jm and nm are Bessel and Neumann spherical
functions. In the case of an odd n = 2m + 1, the spherical
functions involved in this solution should be replaced
by common cylindrical functions Jm and Nm. One can
directly verify that conservation laws (50) and (51) are
valid in both cases. The integral terms in Eq. (51) are
not equal to zero in this case.
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S x( ) S0 2εx( ).exp=

p x( ) A εx–( ) kx α–( ),cosexp=

k0
2 ε2–

P1 C1 kS0Aa α β–( ),sin= =

P2 C2 k2S0Aa α β–( ).cos= =

S x( ) S0xn.=

p x( ) Ax m– jm k0x( ) Bx m– nm k0x( ),+=
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Abstract—Variational principles are derived for the analysis of dynamical phenomena associated with spher-
ical inclusions embedded in homogeneous isotropic elastic solids. The starting point is Hamilton’s principle,
with the material properties assumed to vary only with the radial distance r from the origin. Attention is
restricted to disturbances that are symmetric about the polar (z) axis, such that the nonzero displacement com-
ponents in spherical coordinates, ur and uθ, are independent of the polar coordinate φ. The symmetry allows for
a decoupling of the polar components, the nth of which is described by Ur, n(r, t)Pn(cosθ) and Uθ, n(r, t)dPn/dθ.
A variational principle is subsequently derived for the field quantities Ur, n and Uθ, n. Concepts analogous to
those of the theory of matched asymptotic expansions are used to embellish the principle in order to allow for
the damping associated with the outward radiation of elastic waves. Examples illustrating the use of the varia-
tional principle for formulating plausible lumped-parameter models are given for the cases of n = 0 and n = 1.
© 2005 Pleiades Publishing, Inc.
1 1. INTRODUCTION

The present paper is concerned with a general class
of fundamental dynamical problems associated with
isolated inhomogeneities or foreign substances in
elastic media. The general topic dates back to the anal-
ysis by Isakovich in 1949 of the oscillations of a gas-
filled bubble in a nearly incompressible elastic solid.
Isakovich’s analysis is presented in the form of an
exercise in the text on elasticity [1] in the series by
Landau and Lifshitz. A more elaborate derivation for

1 This article was submitted by the author in English.
1063-7710/05/5101- $26.00 0005
a somewhat more general case was given in 1958 by
Meyer [2] and others.

A related topic is the scattering of elastic waves by
inclusions of limited size. Scattering by spherical cavi-
ties was treated in an early paper by Sivukhin [3],
which appeared in the first issue of Acoustics Journal in
1955. Ying and Truell [4] subsequently gave a lengthy
analysis of compressional wave scattering from general
classes of spherical inclusions, in which they made use
of analytical techniques used much earlier by Herzfeld
[5] for analysis of the scattering of sound waves by
small elastic spheres in a fluid with viscosity.
© 2005 Pleiades Publishing, Inc.
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Over the years, many other papers have appeared on
this general topic of elastic wave scattering by spherical
inclusions. Examples include the papers by Knopoff
[6]; Einspruch and Truell [7]; Johnson and Truell [8];
Mow [9], Norwood and Miklowitz [10]; and Gaunaurd
and Überall [11].

For the most part, the papers concerned with scatter-
ing have focused on far-field scattering and on numeri-
cal predictions of quantities associated with scattering
rather than with the details of what is happening within
and near the inclusion itself. A more recent trend, some-
what in the tradition of the work by Isakovich and by
Meyer and his colleagues, is evident in a 1999 paper in
Acoustical Physics by Alekseev and Rybak [12] that is
concerned with the oscillations of a gas bubble encased
in an elastic shell and within an external elastic
medium. Later papers by Allen and Roy [13]; by Khis-
matullin and Nadim [14]; by Zaslavskiœ [15]; and by
Emelianov, Hamilton, Ilinskii, and Zabolotskaya [16]
have examined such bubble oscillations taking into
account the viscoelasticity of the medium, various pos-
sibilities regarding the shell enclosing the bubble, and
nonlinear effects.

The present paper recognizes that vibrations that are
not purely radial may be intrinsically more difficult to
analyze. Such vibrations certainly exist, and one would
ideally desire to have as simple a description of their
basic properties as is practical. For vibrations of com-
plex systems, variational principles have been found to
be highly useful for devising simpler analytical models.
In this spirit, one finds frequent applications of Hamil-
ton’s equations, Lagrange equations derived from an
approximated Lagrangian, Rayleigh’s principle, and
the Rayleigh–Ritz technique. However, the application
of such concepts and techniques to the vibration of
inclusions in extended elastic media is not immediately
performed, since the mechanical system is unbounded.
Viable analytical models with only a relatively small
number of lumped parameters are desired, and one fur-
thermore desires that these lumped parameters have a
clear physical interpretation. The present paper
describes one general methodology for achieving this.
For simplicity, as well as to allow the use of relatively
simple explicit examples, the analysis is limited to
inclusions of a spherical shape.

2. ELASTODYNAMICS
OF INHOMOGENEOUS MEDIA

The formulation here begins with that for an arbi-
trary orthogonal curvilinear coordinate system with the
coordinates r, θ, and φ. The use of the symbols corre-
sponding to spherical coordinates is deliberate,
although the equations in this section hold for any
choice of coordinate system, including the rectangular
coordinate system.

Cauchy’s equations of motion [17] for an isotropic
solid can be derived from Hamilton’s principle [18]
(with the integration volume and the time integration
kept deliberately vague, and with the absence of exter-
nal forces and nonconservative forces in the region of
integration)

(1)

where + = 7 – 9 is the Lagrangian per unit volume.
Here, 7 is the kinetic energy per unit volume and 9 is
the potential energy per unit volume; these are given by

(2)

(3)

Here, λ and µ are the Lamé coefficients and are possi-
bly dependent on position. The quantities eα, β are the
strain-tensor components in a specified curvilinear
orthogonal coordinate system. The length scales that
appear in the volume integration in Eq. (1) are defined
so that the square of the differential of distance is

(4)

The displacement vector u has components ur, uθ, and
uφ, so that

(5)

where er, eθ, and eφ are unit vectors pointing in the
direction of the increase of the corresponding displace-
ment coordinate.

In terms of the various quantities just introduced, a
representative strain component is given by

(6)

The other strain components are denoted analogously.
The diagonal components can be regarded as incremen-
tal changes in length per unit length, and the off-diago-
nal components can be regarded as half the decrease in
angle in radians between two lines originally aligned
parallel to the local increasing directions of the coordi-
nates.

In the application of Hamilton’s principle under the
circumstances just stated, one limits the admissible
variations to be such that they vanish at all points on the
boundaries of the fourfold integration region. This
restriction is sufficient to derive partial differential
equations (Lagrange–Euler equations) that hold within
the interior of the region. There are three such equa-
tions; the equation corresponding to the r coordinate is

(7)

δ +hrhθhφ r θ φ tdddd∫∫∫∫{ } 0,=

7
1
2
---ρ∂u

∂t
------∂u

∂t
------,=

9
1
2
---λ ∇ u⋅( )2 µ eα β,( )2.

α β,
∑+=

ds( )2 hr
2 dr( )2 hθ

2 dθ( )2 hφ
2 dφ( )2.+ +=

u urer uθeθ uφeφ,+ +=

2erθ
1
hθ
-----

∂ur

∂θ
--------

ur

hθ
-----

∂er

∂θ
------- eθ

1
hr

----
∂uθ

∂r
--------

uθ

hr

-----
∂eθ

∂r
-------- ee.⋅–+⋅–=

∂
∂t
-----

∂}
∂ ∂ur/∂t{ }
------------------------- 

  ∂
∂r
-----

∂}
∂ ∂ur/∂r{ }
------------------------- 

 +

+
∂

∂θ
------

∂}
∂ ∂ur/∂θ{ }
-------------------------- 

  ∂
∂t
-----

∂}
∂ ∂ur/∂φ{ }
-------------------------- 

  ∂}
∂ur

---------–+ 0,=
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with the abbreviation } = +hrhθhφ. The product of the
three length factors is recognized as the Jacobian. Anal-
ogous equations hold for the θ and φ components.

For the specific case of spherical coordinates, the
length factors are hr = 1, hθ = r, and hφ = rsinθ. The unit
vectors are such that all are independent of r; the non-
zero derivatives of these unit vectors with respect to the
coordinates are

(8)

(9)

(10)

3. AXIALLY SYMMETRIC MOTIONS

The interest in the present paper involves those cir-
cumstances where, within the context of a system of
spherical coordinates, the Lamé constants depend only
on the radial coordinate r and where the overall distur-
bance is symmetric about the z axis, with z = rcosθ. The
only two components of the particle displacement are ur
and uθ, both of which depend in general on r, θ, and t
but not on the axial coordinate φ. In such circum-
stances, the coupled partial differential equations
derived in the manner described above can, after some
algebra, be reduced to

(11)

(12)

Here, τrr and τrθ are the stress components

(13)

(14)

and Ω is the linear operator defined such that

(15)

An important feature of these equations is that they
are separable in the sense that, if ur(r, θ, t) were

∂er

∂θ
------- eθ;

∂eθ

∂θ
-------- er,–= =

∂er

∂φ
------- eφ θ;sin

∂eθ

∂φ
-------- eφ θ,cos= =

∂eφ

∂φ
-------- er θsin– eθ θ.cos–=

ρ
∂2ur

∂t2
----------

∂τ rr

∂r
--------- 4µ ∂

∂r
-----

ur

r
---- 

 +=

+ µr2Ω ∂
∂r
-----

uθ

r3
----- 

  µ
r2
----Ω

∂ur

∂θ
--------,+

ρ
∂2uθ

∂t2
---------- 1

r3
----

∂ r3τ rθ( )
∂r

------------------- 2µ
r2
------uθ+=

+
1
r
--- ∂

∂θ
------ λ

r
--- ∂

∂r
----- r2ur( ) 2µur λ 2µ+( )Ωuθ+ + 

  .

τ rr λ∇ u⋅ 2µ
∂ur

∂r
--------,+=

τ rθ µ 1
r
---

∂ur

∂θ
--------

uθ

r
-----–

∂uθ

∂r
--------+ 

 =

ΩF
1

θsin
----------- ∂

∂θ
------ F θsin( ) ∂F

∂θ
------ θcot( )F.+= =
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expanded in terms of Legendre polynomials Pn(cosθ)
such that

(16)

then the corresponding solution for the θ component
has the form

(17)

For any given n, the equations governing Uθ, n and Ur, n
are uncoupled from those for other values of n. This
uncoupling occurs because the individual Legendre
polynomials satisfy the differential equation

(18)

The residual equations that result when these expan-
sions are inserted into the preceding equations are

(19)

(20)

where

(21)

(22)

(23)

(24)

These four linear operators 4rr, 4rθ, etc., depend on the
radial coordinate, the Lamé coefficients, and the index n,
as is evident in the expressions above.

ur Ur n, r t,( )Pn θcos( ),
n 0=

∞

∑=

uθ Uθ n, r t,( ) d
dθ
------Pn θcos( ).

n 1=

∞

∑=

Ω d
dθ
------Pn θcos( ) n n 1+( )Pn θcos( )+ 0.=

ρ
∂2Ur n,

∂t2
--------------- 4rr Ur n,{ } 4rθ Uθ n,{ } ,+=

ρ
∂2Uθ n,

∂t2
--------------- 4θ n, Ur n,{ } 4θθ Uθ n,{ } ,+=

4rr Ur n,{ } ∂
∂r
----- λ

r2
---- ∂

∂r
----- r2Ur n,( ) 2µ ∂

∂r
-----Ur n,+=

+ 4µ ∂
∂r
-----

Ur n,

r
---------- 

  µ
r2
----n n 1+( )Ur n, ,–

4rθ Uθ n,{ }

=  n n 1+( )–
∂
∂r
-----

λUθ n,

r
-------------- 

  µr2 ∂
∂r
-----

Uθ n,

r3
---------- 

 + ,

4θr Ur n,{ }

=  
1

r3
---- ∂

∂r
----- µr2Ur n,( ) 2µ

r2
------Ur n,

λ
r3
---- ∂

∂r
----- r2Ur n,( ),+ +

4θθ Uθ n,{ } 1

r3
---- ∂

∂r
----- µr4 ∂

∂r
-----

Uθ n,

r
---------- 

 =

+
2µ
r2
------Uθ n,

λ 2µ+( )
r2

---------------------n n 1+( )Uθ n, .–
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4. REDUCED VARIATIONAL PRINCIPLE

The residual equations just derived can also be
obtained directly from Hamilton’s principle, with the
insertions

(25)

For the application of Hamilton’s principle, one speci-
fies that the volume of interest is a sphere centered at
the origin and with some fixed radius R. As before,
admissible variations are restricted to be those that van-
ish at points on the integration boundary, including all
points on the external spherical surface.

One then does the (trivial) integration over φ and the
integration over θ. The kinetic energy, for example,
becomes

(26)

where

(27)

(28)

are definite integrals involving Legendre polynomials
(here, for simplicity, we omit the subscripts n on Ur, n

and Uθ, n, with the understanding that we are here deal-
ing with a particular value of n).

Similarly, the contribution from the n terms to the
total potential energy is

(29)

where

(30)

(31)

ur Ur n, r t,( )Pn θcos( );

uθ Uθ n,
d

dθ
------Pn θcos( ).

KE π ρ
∂Ur

∂t
--------- 

 
2

I1

∂Uθ

∂t
---------- 

 
2

I2+ r2 r,d∫=

I1 Pn θcos( )[ ] 2 θsin θd

0

π

∫ 2
2n 1+
---------------,= =

I2
d
θd

------Pn θcos( )
2

θsin θd

0

π

∫ 2n n 1+( )
2n 1+

-----------------------= =

PE π λVλ 2µVµ+[ ] r2 r,d∫=

Vλ
∂Ur

∂r
---------

2
r
---Ur

n n 1+( )
r

--------------------Uθ–+ 
 

2

I1,=

Vµ
∂Ur

∂r
--------- 

 
2 2

r2
----Ur

2+ I1
2

r2
----UrUθI3

1

r2
----Uθ

2I4+ +=

+
1

2r2
------- Ur Uθ– r

∂Uθ

∂r
----------+ 

 
2

I2.
Here, the integrals I1 and I2 are as given previously and

(32)

(33)

These integrals are, for the most part, derivable by inte-
gration by parts and by explicit use of ordinary differ-
ential equation (18) and of fundamental integrals given
in basic texts [19].

One notes that the coupled partial differential equa-
tions (Eqs. (19) and (20)) are alternately derived from

(34)

(35)

where

(36)

is the apparent Lagrangian density per unit radial dis-
tance.

5. ASYMPTOTIC BEHAVIOR

The interest here is in dynamical behavior that is
composed primarily of frequencies that are so low that
the wavelengths of compressional and shear waves in
the external elastic solid are much larger than any
length scale associated with the inclusion. We let ω be
such a frequency and let ke and κe be the wave numbers
for compressional and shear waves in the external
medium. Then, kea ! 1 and κea ! 1. One allows, how-
ever, for the possibility that the inclusion may have a
characteristic time scale ti that is such that, for some
such frequencies, ωti is comparable to unity. This
implies that one should not neglect the kinetic energy in
the inner region, where r is on the order of a. One can
nevertheless adopt the general philosophy of the
method of matched asymptotic expansions [20] and
assume that the inner solution for all such frequencies
approaches a quasi-static solution of the residual equa-
tions at large values of r.

Within the outer region, the most general solution
can be expressed as

I3 Pn

d2Pn

θ2d
----------- θsin θd

0

π

∫ Pn

Pnd
θd

-------- θcos θd

0

π

∫+ I2,–= =

I4

d2Pn

θ2d
-----------

 
 
 

2

θsin θd

0

π

∫
Pnd
θd

-------- 
 

2

θcot
2 θ θdsin

0

π

∫+=

=  n2 n 1–+( )I2.

∂
∂t
-----

∂3
∂ ∂Ur/∂t{ }
-------------------------- 

  ∂
∂r
-----

∂3
∂ ∂Ur/∂r{ }
--------------------------- 

  ∂3
∂Ur

---------–+ 0,=

∂
∂t
-----

∂3
∂ ∂Uθ/∂t{ }
--------------------------- 

  ∂
∂r
-----

∂3
∂ ∂Uθ/∂r{ }
--------------------------- 

  ∂3
∂Uθ
----------–+ 0,=

3 πρ
∂Ur

∂t
--------- 

 
2

I1

∂Uθ

∂t
---------- 

 
2

I2+ r2=

– π λVλ 2µVµ+[ ] r2
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(37)

(38)

Ur outer,
∂
∂r
----- rn 1

r
--- ∂

∂r
-----– 

 
n FA t r/c1[ ]–( ) FB t r/c1[ ]+( )+

r
------------------------------------------------------------------------- 

 =

+ n n 1+( )rn 1– 1
r
--- ∂

∂r
-----– 

 
n GA t r/c2[ ]–( ) GB t r/c2[ ]+( )+

r
--------------------------------------------------------------------------- 

  ,

Uθ outer, rn 1– 1
r
--- ∂

∂r
-----– 

 
n FA t r/c1[ ]–( ) FB t r/c1[ ]+( )+

r
------------------------------------------------------------------------- 

 =

+
1
r
--- ∂

∂r
----- rn 1+ 1

r
--- ∂

∂r
-----– 

 
n GA t r/c2[ ]–( ) GB t r/c2[ ]+( )+

r
--------------------------------------------------------------------------- 

  .
Here, the arbitrary functions FA and FB correspond
to outgoing and incoming longitudinal waves, while the
functions GA and GB correspond to outgoing and
incoming shear waves. All of these are functions of a
single variable, while

(39)

are the wave speeds of longitudinal and shear waves in
the external medium. The subscript “e” denotes values
that correspond to the external medium. The derivation
of the above relations is omitted for brevity, but can be
deduced from the formulation in terms of potentials for
a homogeneous medium given by Ying and Truell [4]
and from Rayleigh’s expression for the spherical Bessel
functions.

To the lowest order in the parameters describing the
size of the inclusion, the outer solution should be the
same as if the inclusion were not present, so the corre-
sponding expressions for Ur and Uθ should be finite at
r = 0. To determine what restrictions this condition
imposes on the functions that appear in the above
expressions, one first notes that

(40)

is zero if s is odd and if 1 < s < 2n – 1. If s is odd and
s > 2n + 1, then the above is zero (for n ≥ 1) at r = 0. If,
on the other hand, s = 0, then the expression is singular
at r = 0. This requires that power series expansions of
FA + FB in r only contain odd powers of r, so that the
overall expression is odd in r. This condition is met if
one sets

(41)

where F is some given function, so that

c1

λ e 2µe+
ρe

-------------------- 
 

1/2

, c2

µe

ρe

----- 
 

1/2

= =

rn 1
r
--- d

dr
-----– 

 
n rs

r
---- 

 

=  
1 s–( ) 3 s–( ) 5 s–( )… 2n 1– s–( )

rn 1 s–+
------------------------------------------------------------------------------------

FA t r/c1[ ]–( ) FB t r/c1[ ]+( )+

=  F t r/c1[ ]+( ) F t r/c1[ ]–( ),–
S      Vol. 51      No. 1      2005
(42)

Here, F(2n + 1)(t) is the (2n + 1)th derivative of F(t).

In a similar manner, one can define a function G(t)
with regard to the shear wave terms.

In terms of the quantities just defined, one can write
the two leading terms, valid for small r, of this outer
solution as

(43)

(44)

where

(45)

(46)

The three time-dependent functions F1(t), F2(t), and
F3(t) are related to the previously introduced quanti-
ties as

(47)

(48)

F t r/c1[ ]+( ) F t r/c1[ ]–( )– 2 r/c1( )F' t( )=

+
2
3!
----- r/c1( )3F''' t( )… 2

2n 1+( )!
---------------------- r/c1( )2n 1+ F 2n 1+( ) t( )+

+
2

2n 3+( )!
---------------------- r/c1( )2n 3+ F 2n 3+( ) t( ) ….+

Ur asymp, pnF1 t( )rn 1– qF2'' t( )rn 1+ ,+=

Uθ asymp, pF1 t( )rn 1– qF3'' t( )rn 1+ ,+=

p = 
2

2n 1+( )!
--------------------- 2n–( ) 2n– 2+( ) 2n– 4+( )… 2–( )[ ] ,

q = 
2

2n 3+( )!
--------------------- 2n– 2–( ) 2n–( ) 2n– 2+( )… 4–( )[ ] .

F1 t( ) 1
c1
---- 

  2n 1+

F 2n 1+( ) t( )=

+ n 1+( ) 1
c2
---- 

  2n 1+

G 2n 1+( ) t( ),

F2 t( ) n 2+( ) 1
c1
---- 

  2n 3+

F 2n 1+( ) t( )=

+ n n 1+( ) 1
c2
---- 

  2n 3+

G 2n 1+( ) t( ),
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(49)

Only two of these functions are independent. The deriv-
able relationship is

(50)

In the terminology of the method of matched
asymptotic expansions [20], the asymptotic expres-
sions Ur, asymp and Uθ, asymp are the leading terms in the
inner expansion of the lowest order term of the outer
solution.

(The remainder of the manuscript is being polished.)
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Abstract—The problem of classifying images of different biological tissues and composite structures is solved
using the spectral and morphological analysis based on the Bayesian method for statistical hypothesis verifica-
tion. The basis functions are constructed from a learning set. The spectral approach and its particular realiza-
tions in the form of Bartlett’s and Pisarenko’s methods adapted to the problem are considered. An extension of
the spectral approach to the more general spectral–morphological classification is proposed. The latter takes
into account the spatial-spectrum features of the structure types to be classified, as well as their morphological
features, which manifest themselves in a correlation between the expansion coefficients. The characteristic
properties of the spectral and spectral–morphological approaches are discussed using numerical classification
examples. The method is generalized to the classification of multiparameter images of structures, which may
be represented, for example, by the distributions of the sound velocity, density, absorption, and values of the
nonlinear parameter. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In this paper, we solve the problem of the statistical
classification of images of biological tissues by spectral
and morphological methods. For example, the spatial
distributions obtained for the quantitative characteris-
tics (including multiparameter ones) of tissues from
acoustoscopic experiments need a further secondary
classification in order to make an overall diagnostic
decision. A review of the mathematical foundations of
digital image processing developed to date is given in
[1]. At the same time, the classification methods for
tomographic and microscopic images of composite
structures and biological tissues can be categorized
from a physical viewpoint into three classes, which,
however, have no clear-cut boundaries between them:
locally parametric methods, nonlocal spectral statistical
methods, and morphological methods. There are also
publications devoted to image-quality improvement
with the aim of enhancing visual perception [2, 3]. The
first class includes locally parametric methods and sug-
gests that a combination of quantitative characteristics
(parameters such as, for example, velocity of sound and
attenuation) be analyzed at one point; i.e., the charac-
terization is purely local [4]. In [5, 6], such parameters
as attenuation and backscattering coefficient are esti-
mated in parallel. However, the backscattering coeffi-
cient cannot be attributed to a particular point and
implies a certain structured scattering volume whose
size is comparable with the wavelength. Therefore, [5,
6] in essence represent a transition from the first class
of local methods to the second class. Nonlocal spectral
1063-7710/05/5101- $26.00 0052
statistical methods, which constitute the second class
(the largest in terms of the number of publications),
assume classification according to the statistical char-
acteristics of an isolated small image area or a tissue
cut. This class includes the spectral methods that pro-
cess the acoustic echo signal carrying the information
on the object [7–10] and nonlocal classification meth-
ods that are based on the brightness distribution func-
tion [11]. In addition, one of the fundamental problems
of image analysis is the development of mathematical
description methods that convey the image content and
meaning. The description must only convey the image
features that are essential from the viewpoint of the
problem being solved and must be independent of ines-
sential features. In this regard, a great number of publi-
cations are devoted to developing the statistical proper-
ties of images [12, 13], so that these properties can also
be used in the problems of classification based on neu-
ral networks [14, 15].

The third class is represented by morphological
methods, which analyze the internal structure of the
image. For the morphological analysis, conditions of
recording the object’s image and the parameters of the
recording equipment are insignificant characteristics
[16]. For images of engineering structures, these meth-
ods provide good results, because the clear-cut shape of
the image being sought is known a priori. In these prob-
lems, the classification often consists of the minimiza-
tion of a discrepancy with respect to linear dimensions
or orientation of an object of a known shape [16–18].
However, a disadvantage of the purely morphological
© 2005 Pleiades Publishing, Inc.
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analysis in the classification of biological tissues is that,
as a rule, the exact shape of the tissue structure element
being classified is initially unknown (for example, there
exist a great number of cell formations even for the one
type of a mammary cancer).

This paper develops classification methods for
images of structures and biological tissues that can be
used to separate regions with particular statistical, para-
metric, and morphological properties. These methods
can be used to process the images independently of the
technique used to produce them, as well as to directly
classify the structures on the basis of experimental
acoustic scattering data. The approaches are applicable
to one-parameter and multiparameter classification
problems with the parametric, spectral, and morpholog-
ical aspects of the problem taken into account sequen-
tially or simultaneously. In this respect, they hold an
intermediate and, at the same time, unifying position
between the classes mentioned above. We also general-
ize the analysis to multicomponent images, in which
the components are the tomographic data, for example,
the velocity of sound, the attenuation, and the nonlinear
parameter. Thus, the specificity of the problem under
consideration, as applied to acoustic images produced
by tomographs, acoustic microscopes, etc., consists in
the fundamental possibility of performing a multipa-
rameter classification of tissues in combination with the
observed morphological features of their structure.

2. CLASSIFICATION IN TERMS
OF THE LIKELIHOOD RATIO

The general approach proposed here can, to a cer-
tain extent, be conventionally called the optimal one,
because it relies on the Bayesian method of statistical
hypothesis verification, i.e., on the likelihood ratio [1].
Particular criteria that follow from this general
approach refer to spatial multidimensional spectral–
correlation analysis and, in this sense, are close to the
algorithms developed earlier [7, 10]. The difference is
that our approach employs a sequence of linear and
nonlinear transformations, which sharpen the response
of the algorithms to a spatial region with a given struc-
ture.

The physical essence of the approach is as follows.
The brightness image to be classified is described by a
two-dimensional nonnegative function Γ0(r). In this
image, it is necessary to find regions with structural fea-
tures of a given type. Each type is greatly determined
by the shape and size of its characteristic elements and
also by their relative arrangement. Let two types of
structure be defined a priori, which we label with indi-
ces I and II. Then, a criterion of whether or not each
current fragment Xr (r is the center of the fragment) of
the image Γ0(r) belongs to one of the given types is con-
structed at each particular point r based on the current
likelihood ratio function L(Xr) ≡ L(r) = P(Xr|I)/P(Xr|II).
Here, P(Xr|I) and P(Xr|II) are the conditional probability
densities of the event that the fragment Xr belongs to the
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structure of the first type (this assumption is the hypoth-
esis) and of the second type (this is the alternative),
respectively. A close approach is applied in [19] to a
similar problem of classification of random noise sig-
nals in terms of a specified shape of their spectrum and
of simultaneous estimation of the spectrum parameters.
However, the problem of image classification has sev-
eral specific features. First, the images are two-dimen-
sional. Second, the space in which the images are clas-
sified in our approach is the eigenvector space of the
autocovariance matrix, which is specified a priori or
estimated for each structure type. From the viewpoint
of the initial information, this is equivalent to classifi-
cation based on differences in the local spatial power
spectrum, with the spectrum in this case being known
completely rather than being accurate to unknown
parameters, as in [19].

We assume that a learning set is given for each type
of structure. Each sample of this set is described by the
two-dimensional function u(r). On the one hand, the
size of the sample is much smaller than that of the
whole image. On the other hand, the sample must con-
tain specific features of the structure type being classi-
fied. For each of the given structure types, a basis that
describes its statistical properties is constructed. We use
the Karhunen–Loéve basis [1]. It is constructed with the
help of the autocovariance matrix A(r, r') of an ensemble

of functions u(r): A(r, r') ≡ , where

udif(r) ≡ u(r) –  and  ≡ . Here and below, the
overbar symbol means averaging over the ensemble of
realizations of the given type; the asterisk symbol
means complex conjugation (for the analysis to be gen-
eral, complex designations are used). Subtracting the
average brightnesses  and  from the whole image
Γ0(r) being classified and from each sample u(r)
(respectively) removes the effect of brightness on the
classification process. The values  and  can be cal-
culated by averaging over a series of images and series
of samples or by averaging Γ0(r) and u(r) over coordi-
nates (which we used in numerical simulations under
the assumption of the spatial ergodicity). As a result, we
obtain an alternating-sign image Γdif(r) ≡ Γ0(r) – 
with a zero mean.

The exact form of the autocovariance matrix A(r, r')
for the complete ensemble with given correlation prop-
erties to which the learning set belongs is unknown.
Therefore, we use an estimate of this matrix obtained
under the assumption that the statistical properties of
the structure being classified are spatially uniform.
According to this assumption, the autocovariance opera-
tor is constructed as a Hermitian block Toeplitz matrix:
A(r, r') = A(r' – r) = A*(r – r'). In this manner, functions

of the autocovariance cut Kuu(r) ≡ (r) (r +

r)dr are constructed one by one for each sample u(r) of

udif r( )udif* r'( )

u u u r( )

Γ0 u

Γ0 u

Γ0

1
Vu

------ udif∫ udif*
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the learning set. The normalizing factor Vu is equal to
the area occupied by the sample. The functions Kuu(r)

are averaged over the samples: K(r) ≡ (r). Finally,
the matrix A(r, r') is constructed as described by the
relationship

(1)

under the assumption of spatial homogeneity and
ergodicity. The following analysis relies on the hypoth-
esis that this matrix is associated with a certain com-
plete ensemble, which below will be called the hypo-
thetical ensemble. Such an ensemble consists of a set of
all spatially homogeneous (in the statistical sense)
images whose correlation properties are described by
the matrix A(r, r') obtained above. The set that was used
to estimate A(r, r') is a subset of this complete hypo-
thetical ensemble.

The Karhunen–Loéve basis consists of eigenvectors
ϕ(r) of the matrix A(r, r'), which correspond to eigen-
values λ and, by definition, satisfy the relationship

(2)

All λ are real, because the matrix A(r, r') is Hermitian,
and are nonnegative because of its autocorrelation ori-
gin. When we change from the continuous functions
to their discrete analogs, the sample functions u(r) are
replaced with their values at N × N discrete points.
Then, the dimension of the block Toeplitz matrix A(r, r')
is N2 × N2.

In subsequent calculations, it is convenient to use
the Dirac notation. Discrete values of the samples
udif(r) without the average value are represented as a
column vector consisting of N2 components: udif ≡ |T I 〉
and udif ≡ |T II 〉  for structure types I and II, respectively.
In this notation, relationship (2) takes the following
form (the discrete analog of the spatial element dr is
assumed to be equal to unity):

(3)

Here, {ϕi} and {λi} are the sets of orthonormal eigen-
vectors and eigenvalues (numbered by index i) for
structure type I (i.e., A = AI); similarly, {ψj} and {µj}
are those for structure type II (i.e., A = AII). The initial
format of the samples u(r) in the sequences of both
types are assumed to be the same and, therefore, the
number of components in the eigenvectors ϕi and ψj is
the same.

The basis {ϕi} is the proper basis for the structure of
the first type |T I 〉  and a “foreign” alternative basis for
the structure of the second type |T II 〉 . For the basis {ψj},
the situation is reversed. These bases are used below to
construct the likelihood ratio L(r). Then, coefficients of

Kuu

A r r',( ) K r r' r–=( )≈

A r r',( )ϕ r'( ) r'd∫ λϕ r( ).=

AI ϕ i| 〉 λ i ϕ i| 〉 , AII ψ j| 〉 µ j ψ j| 〉 ,= =

i j, 1 … N2., ,=
expansion of the structure of a given type in its proper
basis and in the alternative basis are

(4)

In a similar way, the coefficients of expansion of the
vector |Xr〉 , which is a current fragment of the whole
image Γdif(r) being classified, are introduced:

(5)

For each type of structure, we construct correlation
matrices of expansion coefficients in the proper basis
(matrix Kaa), in the alternative basis (matrix Kbb), and in
both bases simultaneously (matrices Kab and Kba of
cross coefficients). The elements of these matrices
(described by indices m, n = 1, …, N2) for structure |T I 〉
are as follows:

(6)

The averaging is performed over an ensemble of struc-
tures of the corresponding type. The purely spectral
approach classifies structures only in terms of the spa-
tial-spectrum features, and the above ensemble is the
complete hypothetical ensemble corresponding to the
estimated matrix A. The spectral–morphological
approach, which is considered in Section 4 below, addi-
tionally takes into account the morphological features,
which narrows the ensemble. In both cases, when we
consider all N 2 eigenvectors and eigenvalues of each
type, an explicit relationship between the matrices

occurs:  = Kϕψ;  =  = Kψϕ ;

 = Kψϕ , where the matrix Kϕψ with elements
(Kϕψ)i, j ≡ 〈ϕ i|ψj〉  is the transition matrix between the

bases {ϕi} and {ψj}; Kψϕ = ; and the plus symbol

means Hermitian conjugation. For the structure |T II〉 ,
the corresponding elements (KII)mn are obtained from
(KI)mn by replacing T I with T II, ϕm with ψm, ϕn with ψn,
and matrices Kϕψ with Kψϕ.

ai
I ϕ i T I〈 | 〉 , b j

I ψ j T I〈 | 〉≡ ;≡

a j
II ψ j T II〈 | 〉 , bi

II ϕ i T II〈 | 〉≡ .≡

ci
I r( ) ϕ i Xr〈 | 〉 Xr r'( )ϕ i* r'( ) r',d∫≡ ≡

c j
II r( ) ψ j Xr〈 | 〉 Xr r'( )ψ j* r'( ) r'.d∫≡ ≡

Kaa
I( )mn am

I an
I( )*≡ ϕm T I〈 | 〉 T I ϕn〈 | 〉 ;=

Kbb
I( )mn bm

I bn
I( )*≡ ψm T I〈 | 〉 T I ψn〈 | 〉 ;=

Kab
I( )mn am

I bn
I( )*≡ ϕm T I〈 | 〉 T I ψn〈 | 〉 ;=

Kba
I( )mn bm

I an
I( )*≡ Kab

I( )nm
* .=

Kab
I Kaa

I Kba
I Kab

I( )+
Kaa

I

Kbb
I Kab

I

Kϕψ
+
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The resultant combined matrices  and 
(their dimension is 2N2 × 2N2) for the structure of the
corresponding type consist of four blocks:

(7)

These matrices, which are quadratic forms of the
expansion coefficients, account for the individual sta-
tistical properties of structures of both types and for
their “cross” properties. The current image fragment
|Xr〉  in the classification process is characterized by the

column vectors | 〉 and | 〉:

(8)

It was found numerically that real brightness histo-
grams of the classified structures can be approximately
described by a Gaussian distribution. Then, under the

assumption that the random vectors | 〉 and

| 〉 obey the multidimensional zero-mean Gauss-
ian distribution, the classification likelihood ratio takes
the form

The classification criterion is the result of a comparison

of the function L(r) with a given threshold value 
determined by the costs of the errors and by the prior-
occurrence probabilities for structures of both types. It
is convenient to make a decision by taking a logarithm
lnL(r) ≡ Λ(r) and comparing the following quantity
with zero:

Kcomb
I Kcomb

II

Kcomb
I Kaa

I ; Kab
I

Kba
I ; Kbb

I
 
 
 
 

≡ , Kcomb
II Kaa

II ; Kab
II

Kba
II ; Kbb

II
 
 
 
 

.≡

Xr( )II
I Xr( )I

II

Xr( )II
I| 〉

ci
I{ } i 1 … N

2, ,=

c j
II{ } j 1 … N

2, ,= 
 
 
 

,=

Xr( )I
II| 〉

c j
II{ } j 1 … N

2, ,=

ci
I{ } i 1 … N

2, ,= 
 
 
 

.=

Xr( )II
I

Xr( )I
II

L r( )
P Xr I( )
P Xr II( )
---------------------=

=  

det1/2 Kcomb
II( ) 1

2
--- Xr( )II

I Kcomb
I( ) 1–

Xr( )II
I〈 〉– 

 exp

det1/2 Kcomb
I( ) 1

2
--- Xr( )I

II Kcomb
II( ) 1–

Xr( )I
II〈 〉– 

 exp

---------------------------------------------------------------------------------------------------------------.

L0( )II
I

Λ' r( ) Λ r( ) L0( )II
Iln–≡

=  
1
2
--- Xr( )I

II〈 | Kcomb
II( ) 1–

Xr( )I
II| 〉[

– Xr( )II
I〈 | Kcomb

I( ) 1–
Xr( )II

I| 〉

+ detKcomb
II( )ln detKcomb

I( )ln– ] L0( )II
I .ln–
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If the decision is made based on the two-level
(binary) scheme, we assume that, if Λ'(r) > 0, the frag-
ment Xr is a type I structure or, if Λ'(r) < 0, it is a type II
structure.

General expressions (6) can be used and rendered
concrete for the spatial–spectral approach, in which the
averaging is performed over the complete hypothetical
ensemble. By definition, this ensemble includes all
structures whose correlation properties are determined
by the given autocovariance matrix of the type under
consideration, i.e., AI or AII. Therefore, here,

(9)

and Eq. (3) takes the form

(10)

Then, by virtue of property (10) and because the eigen-
vectors are orthonormal, the correlation matrices of
expansion coefficients of the given type of structure in

the proper basis,  and  of Eqs. (6), become
diagonal:

(11)

Expressions for the cross coefficients are reduced to

(12)

Finally, the relationship  =  (and a sim-

ilar expression for ψj), where  is the unit matrix, and
property (10) yield

(13)

It should be noted that the combination of the bases
 and  creates a redundant

basis. In this regard, it is reasonable to discuss the clas-
sification process that uses a redundant basis and a non-
redundant one. The technique proposed above for con-
structing the likelihood ratio function L(r) with the help

of the combined matrices  and  relies on the
two bases simultaneously in the form of the combined

T I| 〉 T I〈 | AI, T II| 〉 T II〈 | AII,= =

T I| 〉 T I〈 |ϕ i〉 λ i ϕ i| 〉 , T II| 〉 T II〈 |ψ j〉 µ j ψ j| 〉 ,==

i j, 1 … N2., ,=

Kaa
I Kaa

II

Kaa
I( )mn 〈ϕ m T I| 〉 T I〈 |ϕ n〉 λ nδmn;= =

Kaa
II( )mn 〈ψm T II| 〉 T II〈 |ψn〉 µ nδmn;= =

δmn

1, m n=

0, m n.≠



≡

Kab
I( )mn λm ϕm ψn〈 | 〉 ; Kab

II( )mn µm ψm ϕn〈 | 〉 .= =

ϕ i| 〉 ϕ i〈 |
i 1=
N

2

∑ Ê

Ê

Kbb
I( )mn λ i ψm ϕ i〈 | 〉 ϕ i ψn〈 | 〉 ;

i 1=

N
2

∑=

Kbb
II( )mn µ j ϕm ψ j〈 | 〉 ψ j ϕn〈 | 〉 .

j 1=

N
2

∑=

ϕ i{ }
i 1 … N

2, ,=
ψ j{ }

j 1 … N
2, ,=

Kcomb
I Kcomb

II
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basis  ∪   used to construct

each of the probability densities P(Xr|I) and P(Xr|II). In
most situations, this basis is redundant, because, if we
consider all N2 eigenvectors of each type with all non-
zero eigenvalues, each of the bases {ϕi} and {ψj} (i, j =
1, …, N2) is complete for describing any image fragment
(whose spatial format is the same as that of the eigenvec-
tor), including structures of both types. If we take into
account only i = 1, …,  and j = 1, …,  eigenvectors
of type I and II that correspond to relatively large λi and
µj (λi and µj are numbered in decreasing order of magni-

tude; ,  < N), the combined basis  ∪
 is sufficient to describe structures of both

types with a given relative accuracy δ, which can be esti-

mated using the generalized Parseval’s theorem:  ≡

 = . Therefore, the relative

accuracy δI, within which a type I structure can be
described in terms of the truncated basis 

taking into account no less than ≅  terms, and,
similarly, the accuracy δII, within which a type II struc-
ture can be described in terms of the truncated basis

 taking into account no less than ≅

terms, are as follows: δI ≅  

and δII ≅  . In the purely

spectral approach,  ≡ ( )ii = λi and  ≡

( )jj = µj; then, δI ≅   and δΙI ≅

, or coarser estimates are δI ≅

 and δII ≅  , where λmax ≡ λi = 1

and µmax ≡ µj = 1 are the maximum eigenvalues and λmin

and µmin are the minimum eigenvalues taken into

account and corresponding to the numbers i =  and

j = . It is natural to take  and  such that the
accuracies δ within which structures of both types are
described are equal: δ = δI ≈ δII. The results of structure
classification for model and real images, which we
intend to discuss in the next paper, have shown that it is
the redundant combined basis that is convenient to use.

Of course, a different technique can be used to
define the ratio L(r), for which P(Xr|I) is formed on the
nonredundant basis , while P(Xr|II), on

. In this description, instead of Eqs. (8),

ϕ i{ }
i 1 … N

2, ,=
ψ j{ }

j 1 … N
2, ,=

N I' N II'

N I' N II' ϕ i{ } i 1 … NI', ,=

ψ j{ } j 1 … NII', ,=

T I T I〈 | 〉

T I ϕ i〈 | 〉 ϕ i T I〈 | 〉
i 1=
N

2

∑ ai
I 2

i
N

2

∑
ϕ i{ } i 1 … NI', ,=

ai NI'=
I

ψ j{ } j 1 … NII', ,= a j NII'=
II

ai
I 2

/ ai
I 2

i 1=
N

2

∑i NI' 1+=
N

2

∑
a j

II 2
/ a j

II 2

j 1=
N

2

∑j NII' 1+=
N

2

∑
ai

I 2
Kaa

I a j
II 2

Kaa
II λ i/ λ ii 1=

N
2

∑i NI' 1+=
N

2

∑
µ j/ µ jj 1=

N
2

∑j NII' 1+=
N

2

∑
λmin/λmax µmin/µmax

N I'

N II' N I' N II'

ϕ i{ }
i 1 … N

2, ,=

ψ j{ }
j 1 … N

2, ,=
we obtain | 〉 =  and | 〉 =

, while the combined matrices  and

 are replaced with matrices  and , respec-

tively. If only i = 1, …,  and j = 1, …,  eigenvec-
tors are used, the following consideration must be taken
into account. The truncated basis  or

 is complete for describing a structure of

the corresponding (proper) type within the accuracy δ,
but this basis may prove to be incomplete for describing
a structure of the alternative type within the same accu-
racy. Therefore, in the method of constructing L(r) con-
sidered here, the truncated bases must be augmented.
To this end, only those vectors {ϕi = i'} and {ψj = j '} that
describe the structure of the alternative type within an
accuracy no higher than the accuracy within which the
vector  describes the structure type I and the vec-

tor  describes the structure type II are selected

from the eigenvectors with small eigenvalues (i ≥  +

1, j ≥  + 1):

(14)

In other words, only the vectors {ϕi'} should be added
that are noticeably collinear with some vectors

 with large eigenvalues and, therefore,

can describe (together with ) structure

type II. Similar considerations apply to {ψj '}. For the
spectral approach, selection rule (14) takes the follow-
ing form (see Eqs. (11) and (13) at m = n):

Thus, both augmented bases  ∪  {ϕi'}

and  ∪  {ψj '} are complete (within a tol-

erable accuracy) for describing structures of both the
proper and the alternative types. In this approach, pre-
cisely the small eigenvalues λi' and µj ' play the decisive
role in the classification criterion, because they are

involved in the corresponding matrices  and

 of the likelihood ratio with large weights 1/λi'

and 1/µj '. In this sense, the method of defining L(r) pro-

Xr( )II
I ci

I{ } i 1 … N
2, ,= Xr( )I

II

c j
II{ } j 1 … N

2, ,= Kcomb
I

Kcomb
II Kaa

I
Kaa

II

N I' N II'

ϕ i{ } i 1 … NI', ,=

ψ j{ } j 1 … NII', ,=

ϕ i NI'=

ψ j NII'=

N I'

N II'

ϕ i'{ } : i' N I' , ϕ i' T
II〈 | 〉 2 ϕNI'

T I〈 | 〉 2
;≥>

ψ j'{ } : j' N II' , ψ j' T
I〈 | 〉 2 ψNII'

T II〈 | 〉 2
.≥>

ψ j{ } j 1 … NII', ,=

ϕ i{ } i 1 … NI', ,=

ϕ i'{ } : i' N I' , µ j ϕ i' ψ j〈 | 〉 2

j 1=

N
2

∑ λmin;≥>

ψ j'{ } : j' N II' , λ i ψ j' ϕ i〈 | 〉 2

i 1=

N
2

∑ µmin.≥>

ϕ i{ } i 1 … NI', ,=

ψ j{ } j 1 … NII', ,=

Kaa
I( ) 1–

Kaa
II( ) 1–
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posed in this paper can be regarded as the general
Pisarenko’s method [20].

The above optimal approach simultaneously classi-
fies only two structure types in the image. If it is neces-
sary to classify a greater number of types, one should
use multialternative decision rules (see Ch. 13 in [21]).
Then, all possible alternative structures are specified
a priori and a decision about whether or not a particular
type of structure is present is made based on the com-
parison of distributions Λ'(r) obtained for all pairs of
different structures.

3. MODIFIED BARTLETT’S
AND PISARENKO’S METHODS

The general optimal approach yields the particular
Bartlett’s and Pisarenko’s classification methods modi-
fied for application to the problem under consideration.
Under certain conditions, these methods prove to be
rather efficient. In this formulation, by Bartlett’s
method, we mean the direct use of the image spectro-
grams without subjecting them to nonlinear processing.
The classical Pisarenko’s harmonic expansion method,
however, relies on an analysis of eigenvalues of the
autocovariance matrix; specifically, this method finds
one or several smallest eigenvalues and corresponding
eigenvectors and processes them. An advantage of
these particular methods over the general approach is
that they require many less calculations.

The modified Bartlett’s method classifies the images
in terms of the statistical features that are pronounced
in the structure type being classified and, simulta-
neously, that are hardly observed or absent in the alter-
native type [20].The process of classification of the
structure of the given type occurs with the participation
of all those eigenvectors of this type whose presence in
the given type of structure is much more pronounced
than in the structure of the alternative type. Particularly,
to classify a type I structure, this method takes only
those vectors  of the whole set  that

satisfy the following condition: the average statistical
value of the expansion coefficient of structure |T I 〉  for

the vector | 〉, which equals  (see (6)), is
greater than a similar value of the expansion coefficient
of the structure |TII 〉  for the same vector | 〉, which

equals :

(15)

This method is in essence a spectral one, because selec-
tion criterion (15) does not allow for the off-diagonal

elements , n ≠ m, which become nonzero when
morphological classification features are taken into

ϕ i i0= ϕ i{ }
i 1 … N

2, ,=

ϕ i0
ϕ i0

T I〈 | 〉 2

ϕ i0

ϕ i0
T II〈 | 〉 2

ϕ i0
T I〈 | 〉 2

ai0

I 2≡  @ ϕ i0
T II〈 | 〉 2

bi0

II 2≡ .

am
I an

I( )*
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account and thereby carry the main information on the
morphology of the structure (see Section 4 below).
Then, with Eqs. (11) and (13), relationship (15) takes
the form

(16)

where the coefficient h0 < 1 defined a priori is deter-
mined by the costs and probabilities of the errors.

Similarly to formulas (15) and (16), the classifica-
tion of structure type II uses only such eigenvectors

 of the complete set  that satisfy the

conditions

i.e.,  @  or h0  ≥

 (h0 < 1).

Thus, in fact, the modified Bartlett’s method classi-
fies a structure of the given type by using the eigenvec-
tors of the same type that correspond to relatively large

eigenvalues. The resultant responses (r) and (r)
to the zero-mean image Γdif(r) being classified appear
to be strong in regions with structure type I or II,
respectively, and are weak in regions with the alterna-
tive structure type:

where  and  are the total numbers of vectors 

and , respectively. Replacing  and  with the

sums  =  and 

= , one obtains a more accurate normalization.

Another version of our classification process selects
the eigenvectors of a specified type that directly pro-
duce a weak response of the image being classified in
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regions whose structure is of the given type. In this
sense, this method can be referred to as the modified
Pisarenko’s method. In contrast to Bartlett’s method, it
classifies the structures in terms of a statistical feature
that is weakly observed or absent in the structure type
being classified and, simultaneously, is pronounced in
the alternative type of structure [20]. The criterion for
selecting eigenvectors  used to classify structure

type I is opposite to criterion (15):  !

; i.e.,

(17)

where H0 > 1. It should be noted that the classical
Pisarenko’s method analyzes the structure of the given
type using eigenvectors of the same type that corre-
spond to the smallest eigenvalues. At the same time,
more general criterion (17) does not impose stringent
limitations on the magnitude of , which may be not
too small.

By analogy with formulas (17), to classify structure
type II, we select only such vectors  of the set

 that  ! ; i.e.,

Now, the values of | (r)| and | (r)| are minimal in
the localization regions of the structure type being
sought. To enhance visual perception, it is convenient to

ascribe the greatest resultant responses (r) and

(r) to these regions through the inversion
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where  and  are the total numbers of selected

 and , respectively (  and  may again be

replaced by a weighted sum); and  and  are the
regularization coefficients. However, strong responses

(r) and (r) occur here not only in regions whose
structure is of the corresponding type, but also in the
regions where Γdif(r) ≡ 0. Such an undesirable effect is
excluded by destructively combining the responses to

structures of the two types: at  = , the difference
RI(r) – RII(r) compensates for the response to regions
Γdif(r) ≡ 0, while this difference is positive or negative
in regions with structure type I or II, respectively.

Therefore, the difference (r) – (r) plays the
classification role of the logarithm of the likelihood
ratio.

Thus, the possibility of classifying by Bartlett’s and
Pisarenko’s methods depends on the particular set of
eigenvectors and corresponding eigenvalues of the
types considered. Unlike the general approach based on
the likelihood ratio, which always separates the struc-
tures of given types in the optimum manner, Bartlett’s
and Pisarenko’s methods separate the structures only if
vectors with the contrast properties necessary for clas-
sification can be found among all of the eigenvectors.
The existence of such vectors at admissible values of h0
and H0 may serve as a distinguishability criterion for
the given type of structure by the corresponding
method.

4. INCORPORATION OF MORPHOLOGICAL 
FEATURES INTO THE CLASSIFICATION 

PROCESS

The spatial–spectrum version of the optimal method
analyzed in Sections 2 and 3 assumes that the combined
matrices are constructed using the complete hypotheti-
cal ensemble, which consists of all possible images
whose correlation properties are described by given
estimate (1) of the autocovariance matrix A(r, r'), con-
structed in the form of a block Toeplitz matrix. At the
same time, if the process is spatially homogeneous and
ergodic, the autocovariance matrix A(r, r') is one-to-
one related through Wiener–Khintchin’s theorem to the
spatial power spectrum averaged over the complete
ensemble. This spectrum approximately coincides with
the spatial spectrum of the sample autocovariance func-
tion K(r) of the given type. The power spectrum, unlike
the amplitude spectrum, loses the initial information
about the relative phase behavior of different frequency
components characteristic of the structure type being
classified. As a consequence, A(r, r') also does not carry
this information. The matrix A(r, r') constructed in
accordance with relation (1) is a block Toeplitz matrix,
but it does not possess the property of cyclicity. There-
fore, its eigenvectors (Karhunen–Loéve basis (2), (3))
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are not exactly harmonic two-dimensional functions,
and an expansion of a chosen image fragment or a
structure of a certain type in terms of these functions is
not a rigorous Fourier transform. However, the ele-
ments of matrix A(r, r') with the greatest magnitude are
concentrated in a narrow band near its main diagonal,
and the difference of this matrix from a cyclic matrix is
not very significant. Due to this fact, the eigenvectors
are close to harmonic functions, and, when relation-
ships (9)–(13) are used, the optimal classification
method is close to the spectral method. In this
approach, the combined matrices are constructed based
on the two Karhunen–Loéve bases. Therefore, the com-
bined matrices actually contain the same information
about the structure types being classified as that con-
tained in the power-spectrum properties of the struc-
tures, and no other information is present. Thus, we
actually deal with a spectral approach in which the clas-
sification does not allow for the morphological features
of the structure to be sought. This circumstance will be
illustrated below by an example of numerical process-
ing of an artificially generated random combined struc-
ture.

The loss of the significant information on morpho-
logical features in the purely spectral approach means
that it does not use all the possibilities that provide for
the most reliable result of classification. In this regard,
in this section we introduce morphological features into
the spectral approach. To this end, we allow for a cer-
tain correlation between the expansion coefficients
when constructing combined matrices (7). The proper
and alternative bases {ϕi} and {ψj} remain the same.

Hence, the expansion coefficients | 〉 and | 〉
also do not change (see Eqs. (8)). However, now, when
we construct correlation matrices of expansion coeffi-
cients (6), we replace averaging over the complete
hypothetical ensemble (as in the purely spectral
approach) with averaging over a subset of this ensem-
ble. This subset, which is also hypothetical, consists of
all image realizations of the structure of a certain type
with the sought-after morphological features. It has the
same average spatial power spectrum as the complete
ensemble; i.e., all images of the subset can be expanded
into the two Karhunen–Loéve bases, as before. How-
ever, the coefficients of this expansion become corre-
lated in a certain manner, which reflects the morpholog-
ical features of this type of structure.

Our numerical realization of the above spectral–
morphological approach represented the hypothetical
subset by a particular learning set in the form of sam-
ples of type I or II, respectively (q is the sample num-

ber): udif =  or udif = . Then,
averaging over the complete hypothetical ensemble in
Eqs. (6) is replaced with averaging over the selected
samples of the corresponding type, and the correlation

Xr( )II
I Xr( )I

II

Tq
I| 〉q 1 … Q1, ,= Tq

II| 〉q 1 … Q2, ,=
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obtained in this manner is further used in the matrices
Kaa, Kab, Kba, and Kbb:

The relationships for matrices of type II are similar.

Since realizations  and 
are only finite samples of the hypothetical subset,
which does not coincide with the complete ensemble,
in the spectral–morphological approach, unlike the
spectral approach, the matrices

do not coincide with matrices AI and AII (i.e., Eqs. (9)
and (10) are not valid), a fact that introduces the mor-
phological features. In fact, in the spectral approach,
the correlation matrices of expansion coefficients are
exactly expressed in the form of Eqs. (11)–(13) in terms
of the eigenvalues and inner products of eigenvectors
belonging to the Karhunen–Loéve bases. This circum-
stance shows that the classification process takes into
account only the spatial-spectrum features. In the spec-
tral–morphological approach, relationships (11)–(13)
become invalid. In particular, the correlation matrices

 and  of the structure expansion coefficients in
terms of the proper basis now lose their diagonal form

(Eq. (11)), which means that coefficients  and 

and  and  (n ≠ m) were uncorrelated when the
averaging in the spectral approach was performed over
the complete hypothetical basis. Thus, the correlation
of these coefficients (at least in the sense of their sign)
that appears in the spectral–morphological approach
allows for not only spectral, but also morphological
features of the structure. The inclusion of morphologi-
cal features thereby narrows the class of structures that
will be referred to the given type as a result of classifi-
cation, as compared to the spectral approach.

5. MULTIPARAMETER NONLOCAL 
CLASSIFICATION

The spectral and spectral–morphological approaches
considered above can be generalized to classification in
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several parameters simultaneously. Namely, a decision
on whether or not a given complex structure belongs to
a certain type is made based on the combined process-

ing of a set of images (r) of this structure, which
are spatial distributions of each of its parameters speci-
fied by the index β = 1, …, B. In particular, in acoustic
tomograpy images, these parameters may be the veloc-
ity of sound, density, absorption, the nonlinear parame-
ter, and so on. Then, the learning sets must be given for
each parameter in the form of samples T I(β) and T II(β) for
each of the two structure types I and II to be identified.

One of the possible ways to construct the vectors
and matrices that enter into the classification likelihood
ratio suggests that vectors |TI〉 , |TII〉, and |Xr〉  are ini-
tially formed by combining the corresponding vectors
for different β and have BN2 components instead of N2:

Then, the autocovariance matrices AI and AII and expan-
sion coefficients are formally constructed based on the
same relationships as in the one-parameter case. How-
ever, in this version, AI and AII are block matrices; each
block (AI)β1, β2 and (AII)β1, β2 is specified by a pair of
indices (β1, β2), where β1, β2 = 1, …, B. Matrices AI

and AII, whose size is BN2 × BN2, have BN2 eigenvec-
tors and eigenvalues: {ϕi}, {λi} for AI and {ψj}, {µj} for
AII, where i, j = 1, …, BN2. The expansion coefficients

, , , , , and  are formally calculated from
the same relationships (4) and (5), and their correlation
matrices Kaa, Kab, and Kbb, from Eqs. (6), where m,
n = 1, …, BN2. As before, in the purely spectral

approach, we have  = A; in the spectral–morpho-

logical approach, we have  = 

(Q is the number of realizations in the learning set) for
the corresponding structure type, but these matrices

 consist of blocks .
Local classification methods decide the structure

type by comparing one or several parameters of this
structure at a particular point of the coordinate or spec-
tral space with initial given values. By contrast, the
method proposed in this paper is nonlocal and its mul-
tiparameter realization requires knowledge of the cor-

relation matrices  and ,

Γdif
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T| 〉 T〈 |

T| 〉 T〈 | 1
Q
---- Tq| 〉 Tq〈 |

q 1=
Q∑

T| 〉 T〈 | T β1( )| 〉 T β2( )〈 |

T I β1( )| 〉 T I β2( )〈 | T II β1( )| 〉 T II β2( )〈 |
which account for the autocorrelation properties of the
given type of structure at a fixed parameter β1 = β2, as
well as for cross-correlation properties at different
parameters β1 ≠ β2, including the multiparameter mor-
phological characteristics.

6. TEST ILLUSTRATION OF THE DIFFERENCE 
BETWEEN THE SPATIAL–SPECTRUM
AND SPECTRAL–MORPHOLOGICAL 

APPROACHES

As we mentioned above, the spatial–spectrum
approach classifies images based on the information on
the spatial power spectrum of the sought-after bright-
ness structure type. To clearly illustrate this circum-
stance, we considered a model Gaussian random struc-
ture whose spatial spectrum, with equal initial levels,
contains all spatial frequencies observed in the spec-
trum of an acoustic microscopic image of mammary-
gland tissue (Fig. 1b). The two chosen types of this tis-
sue were the large-cluster and small-grain tissues,
whose typical regions are outlined in Fig. 1b by the
white and black contours, respectively. The spatial
spectrum components of the random structure were
multiplied by respective root-mean-square values of the
spectrum of the large-cluster (in the first version) or
small-grain (in the second version) regions. Two test
structures were thus synthesized, whose spatial power
spectra were tailored to fit the power spectra of each of
the two above types of real biological tissue. The
brightness variances of these random structures with
corrected spectra were additionally made equal to aver-
age spatial variances of real tissues of the types consid-
ered. Next, we constructed a combined image in the
form of a collage. Two of its quadrants were filled with
the type I structure described above; two other quad-
rants, with structure type II (Fig. 1a). Note that, even at
a glance, these images and the corresponding real struc-
ture types are morphologically dissimilar to the corre-
sponding real tissue types (see Figs. 1a and 1b). The
processing of this collage by the spectral method using
the bases corresponding to the two types of the mam-
mary-gland tissue classifies the quadrants as large-clus-
ter or small-grain tissue: Fig. 1c shows a nonsmoothed
classification result normalized by the maximum value
of the result of a similar classification of a real tissue
image. (We intend to present a detailed description of
the classification results for a real mammary-gland tis-
sue image in our next paper devoted to numerical image
processing.) Thus, the purely spectral approach does
not discriminate between morphologically different
structures whose spectra are statistically equal. This
approach does not use the information on the particular
shape of characteristic features of the structure being
sought, because it ignores the fact that completely dif-
ferent structures can have the same spatial power spec-
trum. The spectral–morphological approach removes
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Fig. 1. Illustration of the disadvantage of classification in terms of only the spectrum features and the removal of this disadvantage
with allowance for the morphological features of the structure: (a) combined image of two types of random structures whose spatial
power spectrum is proportional to the average power spectrum of (b) the large-cluster and small-grain mammary-gland tissue (it is
seen that the random structure and the structure of the mammary gland are morphologically dissimilar, although their spatial spectra
are close); the results of classification of this combined image with the (c) spectral and (d) spectral–morphological methods.
this disadvantage. Classification with its help does not
ascribe the respective quadrants of the collage to any of
the given types (Fig. 1d).

7. CONCLUSIONS

The result of the above study is that the Bayesian
method was used to describe several seemingly unre-
lated approaches from a single viewpoint and to find the
regions where it is reasonable to apply them. In our next
paper, we intend to report on the numerical results
obtained with the general and particular methods and to
discuss them with examples of the classification of
acoustomicroscopic images of real biological tissues
and composite structures. These results may be used as
an illustration in a comparative analysis of the methods
as applied to practical problems.
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Abstract—Theoretical and experimental studies on the localization of heated objects by the methods of acous-
tic brightness thermometry are carried out. It is demonstrated that, in the case of using a single focusing array,
the spatial localization of heated objects depends on the size of the source. One- and two-dimensional tomog-
raphy of a real heated source is performed by an acoustic thermal tomograph with a focusing array. The results
agree well with the data calculated according to the suggested model. The applicability of correlation focusing
acoustic brightness thermometry to the localization of a heated source is investigated both theoretically and
experimentally. It is demonstrated that a considerable increase in the spatial resolution of the method leads to
a significant loss in sensitivity. © 2005 Pleiades Publishing, Inc.
The distribution of internal temperature of a human
body may contain ample information on the body’s
state, functioning, and reactions to various effects. It
can also be used for the diagnostics of certain disorders,
including oncological ones. Monitoring the internal
temperature of biological tissues is also necessary in
the case of tissue hyperthermia. One of the promising
techniques for investigating internal temperature fields
is acoustic brightness thermometry based on the recep-
tion of equilibrium acoustic radiation caused by the
thermal motion of atoms and molecules of the medium.
The radiation intensity is directly proportional to the
thermodynamic temperature of the medium, and the
radiation itself has a broad spectrum. The method of
acoustic brightness thermometry provides an opportu-
nity to perform an in-depth detection of acoustic radia-
tion with a relatively high spatial resolution. This is
possible thanks to the reception of ultrasonic radiation
in millimeter and submillimeter wavelength range,
where the sound attenuation in biological tissues is rel-
atively weak. In this case, the ratio of the reception
depth L to the wavelength may reach L/λ ~ 60 [1].

When discussing the opportunities provided by
acoustic brightness thermometry, it is possible to sepa-
rate two major problems that should be solved in the
course of the investigation. First is the problem of local-
izing the heated sources. This problem can be solved
using highly directional scanning arrays and applying
reconstruction algorithms. Second is the problem of
monitoring the temperature of an object during a long
time period. Such a problem may arise, for example, in
the process of hyperthermia or engraftment.

Up to now, the theoretical foundation of acoustic
brightness thermometry has been considered in [1, 2]
and some algorithms for the reconstruction of the
1063-7710/05/5101- $26.00 0063
images of thermal fields of biological objects have been
proposed according to the results of scanning the
objects with the array of an acoustic brightness thermal
tomograph [3–5]. Measurements of the acoustic bright-
ness temperature of a human hand have been conducted
[6]. Correlation properties of thermal acoustic radiation
have been studied [7–9], and methods for improving
the resolution of correlation acoustic brightness ther-
mal tomographs have been proposed [10]. Methods of
matching the sensors and improving the efficiency were
investigated in [11]. Designs of acoustic brightness
thermal tomographs were optimized [12], and multi-
channel localization of heated objects has been per-
formed experimentally [13]. Ways of applying the
methods of acoustic brightness thermal tomography to
monitoring the internal temperature of biological
objects in the process of laser hyperthermia were stud-
ied in [14, 15].

The purpose of this work is to investigate theoreti-
cally and experimentally the applicability of focusing
arrays, which can be very important for both the prob-
lem of localization of heated objects and the problem of
continuous monitoring of the internal temperature of an
object.

The use of short-focus scanning arrays with large
apertures in acoustic brightness thermal tomography
provides an opportunity to obtain additional possibili-
ties for the localization of heated regions within biolog-
ical tissues in both the transverse coordinate and the
depth [16]. The cross-sectional area of a beam pro-
duced by a focusing array changes as a function of the
distance to the array and reaches its minimum at the
focus. A redistribution of the intensity of the signal
received by the array from different spatial points takes
place, and the maximum signal arrives from the focus
© 2005 Pleiades Publishing, Inc.
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“waist.” This gives grounds to believe that, by using a
focusing array, it is possible to localize heated objects
by moving the focus waist.

At the same time, these advantages are not as evi-
dent as in the case of the use of focusing transmit–
receive transducers in active location [17]. First, in the
case of active location, a multiplication of the directiv-
ity patterns of an array operating in transmission and
reception modes occurs. Second, in the case of the
reception mode, the intensity of radiation from the
focal zone (the useful signal) does not always exceed
the intensity of radiation from other regions (noise).
Third, the presence of considerable absorption in some
cases completely prevents the object localization.
Fourth, as we will demonstrate later, the use of a single
focusing array even with a large amplification factor
does not ensure the localization in depth for objects
with transverse dimensions noticeably exceeding the
diameter of the focus waist.

Let us consider several situations for different rela-
tionships of the heated-object dimensions and the focus
waist and then compare the result obtained with the
case of the use of a nonfocusing array. The physical
quantity measured by an acoustic thermal tomograph is
the acoustic brightness temperature, which is equal to
the thermodynamic temperature of an ideal blackbody
producing the same acoustic radiation flux as that of the
object under investigation [1, 2]. In the case of an array
with an inhomogeneous distribution of spatial sensitiv-
ity, the acoustic brightness temperature Ta can be repre-
sented in the form

(1)

where γ(l) is the acoustic absorption coefficient (in this
model case, we take into account only the dependence
on the longitudinal coordinate and ignore the frequency
dependence for simplicity), T(x, y, z) is the distribution
of the thermodynamic temperature of the object, and
E(x, y, z) is the intensity distribution of the array field in
the case of operation in the transmission mode.

Let us consider an array with a Gaussian distribution
of sensitivity. Exactly this array, which is a piezoelec-
tric transducer shaped as a spherical segment, was
implemented in our experiments. Measurements of the
reception field of such an array, made with the help of
a radiator with a diameter of 0.5 mm, which was posi-
tioned in the focus waist of the array, demonstrated that
it is close to the Gaussian one [18]. This provides an
opportunity to use a corresponding approximation in
calculating the field intensity.
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In this case, E(x, y, z) can be represented as

(2)

where R2(z, r) = (1 – z/F)2 + z2(kR0)2, R0 is the radius
of the array aperture, k is the wave number, and F is the
geometrical focus.

We write down the temperature distribution in the
medium in the form of the sum of the constant temper-
ature (background) T0 and the Gaussian distribution of
the temperature of the heated source:

(3)

where x0, y0, and z0 are the coordinates of the source
center and σx, σy, and σz are the characteristic dimen-
sions of the source (the half-width of the Gaussian
function).

Now, let us consider several particular cases of
source positioning with respect to the array for mea-
surements with the help of focusing and nonfocusing
arrays. Let an array with R0 = 25 mm, F = 30 mm, and
λ = 1.5 mm be positioned on the surface of a biological
tissue. The source with ∆T = 1 K has the dimensions
σx = σy = σz = 5 mm and is located at the array axis. The
background temperature T0 is assumed to be equal to
zero for simplicity. Physically, this can be realized by
subtracting the constant level, which corresponds to an
equivalent medium without the source with the thermo-
dynamic temperature T0, from the received acoustic
brightness signal. The dependence of acoustic bright-
ness temperature on the depth of the source position is
shown in Fig. 1 (curve 1). The dependence of the acous-
tic brightness temperature on the coordinate of the
source located on the axis of a nonfocusing array with
R = 5 mm is given for comparison (curve 2 in Fig. 1).

As one can see from Fig. 1, it becomes possible to
localize the source by the focusing array when the
source falls into the focus. A sharp drop of the curve at
a distance of 45 mm in the case of the nonfocusing
array can be explained by the diffraction divergence of
the beam.

Figure 2 displays the dependence of the acoustic
brightness temperature on the distance between the
array and the source for different values of the exten-
sion of the heated source along the array axis. As one
can see from the plots, an increase in the source dimen-
sions leads to growth of the acoustic brightness temper-
ature even in the case when its dimensions noticeably
exceed the dimensions of the focus waist.

It is necessary to note that, using a focusing array, it
is impossible to localize in depth the objects extended
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in the transverse direction, since the change in the sig-
nal intensity, as the object approaches the focus, is
exactly compensated by the decrease in the cross-sec-
tional area of the beam and, therefore, in the brightness
of the object part that falls into the sensitivity zone of
the array. Thus, the detected acoustic brightness tem-
perature of an extended object in the case of its motion
changes only because of the presence of acoustic
absorption and does not depend on the focusing proper-
ties of the array. As a result, the value of the acoustic
brightness temperature is shown to depend on the vol-
ume of the heated object even if its dimensions exceed
the focus diameter.

Figure 3 demonstrates the dependence of the acous-
tic brightness temperature of an infinite heated layer
with a thickness of 10 mm and a source with a trans-
verse dimension of 10 mm on the depth of their position
in a biological tissue (the array focus is located at a
depth of 50 mm).

It is possible to obtain almost equal acoustic bright-
ness temperatures for different shapes of the source.
For example, in the case of a heated layer and an object
extended in the transverse direction positioned at a dis-
tance of 50 mm from the surface, their acoustic bright-
ness temperatures almost coincide in Fig. 3. It is possi-
ble to select the shapes and dimensions of two different
sources for which, even in the case of different thermo-
dynamic temperatures, the values of the acoustic
brightness temperature are equal; however, the shapes
of the curves will be different. Therefore, to reconstruct
the true distribution of the thermodynamic temperature,
it is necessary to scan an object and subsequently solve
the inverse problem that takes into account the parame-
ters of the array field. This means that, even for such a
simple procedure as monitoring the temperature of a
selected tissue region, for example, in the case of
hyperthermia, it is necessary to measure the tempera-
ture not at one point but in a certain vicinity, which
requires the array scanning and the subsequent recon-
struction of the temperature distribution with the help
of some tomographic algorithm (see, e.g., [13]).

In the case when the focal distance has a value of the
order of magnitude of the absorption depth, the position
of the peak of acoustic brightness temperature turns out
to be shifted with respect to the focus position, and if
the focal distance considerably exceeds the absorption
depth, the pronounced peak may be absent (Fig. 4). In
this case, localization is impossible, but such an array
provides an opportunity to equalize the sensitivities at
different points along the array axis.

Now, let us consider another version of scanning.
Let an array be located not on the tissue surface but
within a weakly absorbing contact fluid, and let it move
along and across the axis and receive radiation through
a sound-transparent window (Fig. 5). This scanning
scheme is most appropriate for implementation in prac-
tice. An example of the distribution of acoustic bright-
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Fig. 1. Dependence of the acoustic brightness temperature
on the depth of the heated source position in a biological tis-
sue: measurements with (1) a nonfocusing array and (2) a
focusing array (γmedium = 0.23 cm–1).

Fig. 2. Longitudinal distribution of the acoustic brightness
temperature for different lengths of the source: σz = (1) 5,
(2) 10, (3) 15, and (4) 20 mm. The source is positioned on
the array axis (γmedium = 0.23 cm–1).

Fig. 3. Dependence of the acoustic brightness temperature
of (1) a layer and (2) a source extended in the transverse
direction on the depth of the source position (γmedium =
0.23 cm–1).
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ness temperature in the case of scanning a heated object
through a layer of a contact fluid is given in Fig. 6.

The experimental verification of the theoretical con-
cepts discussed above was conducted using a thermal
tomograph with a focusing array, which had the follow-
ing parameters: the radius of the array aperture was
equal to 30 mm, and the focal distance was F = 64 mm.
The thermal tomograph was designed according to the
compensation scheme [13, 19].

A thin-walled polystyrene tube with a diameter of
10 mm, filled with castor oil and heated by electric cur-
rent passing through a nichrome wire placed in the tube
center, was used as a heated source. It is necessary to
note that no direct measurement of acoustic absorption
for the oil-filled tube was conducted. The absorption in
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2

Fig. 4. Dependence of the acoustic brightness temperature
on the depth of the source position when the focal distance
is (1) of the order of magnitude and (2) greater than the
absorption depth.

Medium under investigation

σz

γ

γ = 0

F

F

T0
T0 + ∆T

z0

0

z

Focusing
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Contact
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To a high-frequency

(biological tissue)

Fig. 5. Schematic diagram of an acoustic brightness thermal
tomograph with a focusing array.

amplifier
polystyrene (according to the known reference data) is
0.42 cm–1. As for the oil, the absorption was mea-
sured using active ultrasonic location and was equal
to 0.33 cm–1. Since the tube was thin-walled (the wall
thickness was no greater than 0.5 mm), the absorption
in the object was practically determined by the oil.

The sensitivity of the thermal tomograph with cali-
bration according to the model of an ideal blackbody
was 0.2 K at a storage time of 5 s, the average operation
frequency was 1.5 MHz, and the reception bandwidth
was 800 kHz. Figure 7 shows the measured and calcu-
lated dependences of acoustic brightness temperature
versus the transverse and longitudinal coordinates (the
time of a single measurement was 60 s). Figure 8 dis-
plays a two-dimensional scan of the distribution of the
acoustic brightness temperature.

The longitudinal and transverse localization of a
heated source placed under a layer of cow liver with a
thickness of 5 mm was also conducted experimentally
(Fig. 9). One can see from Fig. 9 that the spatial distri-
butions of the normalized acoustic brightness signal are
different for the source in water and within the liver
layer, despite the small thickness of the layer. This is
connected with the presence of a considerable sound
absorption in the layer (the coefficient of acoustic
absorption of cow liver at a frequency of 1.5 MHz is
γ ≈ 0.45 cm–1 [15]).

Thus, we have demonstrated that, first, the localiza-
tion of small objects whose transverse dimensions are
comparable with the dimensions of the focal waist by a
scanning thermal tomograph with a focusing array is
possible, while it is impossible to localize objects
extended in the transverse direction. To reconstruct the
temperature profile more accurately, it is necessary to
take into account the spatial sensitivity of the array and,

–10 0 10 20 30 40 z, mm
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∆Ta, °C
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Fig. 6. Variation of the acoustic brightness temperature in
the case of the longitudinal scanning for a fixed position of
the source at the depth z0 = (1) 10, (2) 20, and (3) 30 mm
below the tissue surface; F = 40 and R0 = 25 (γmedium =
0.23 cm–1).
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Fig. 7. Experimental data on the localization of a heated source by an acoustic brightness thermal tomograph with a focusing array
in different media: (a) result of the longitudinal localization of a heated source positioned in water (an oil-filled tube) and (b) result
of the transverse localization of a heated source in water (the dots represent experimental data, and the solid line, the theoretical
approximation).
therefore, to solve the inverse problem. Second, despite
the high spatial selectivity of a focusing array, the value
of the acoustic brightness temperature in the case of a
motionless focal waist depends on the dimensions of
the source and the temperature distribution in it, which
prevents temperature monitoring without scanning the
object. Finally, when the values of the focal distance are
of the order of magnitude or greater than the absorption
depth, it is impossible to localize a heated source.

A further improvement of the localization of heated
sources is possible by combining the advantages of
focusing arrays and the opportunities provided by cor-
relation signal processing [7–9, 19, 20]. The possibility
of using the correlation reception of signals by plane
arrays in the problems of acoustic thermal tomography
was indicated in [7–9]. However, this method has sev-
eral drawbacks. The correlation processing of signals
can be employed mainly for the localization of point
sources of radiation. In the case of distributed sources
with dimensions noticeably larger than the spatial cor-
relation radius, the sensitivity of an acoustic thermal
tomograph depends on the transverse dimensions of the
object, since the signals from different object points
arrive at the receiving arrays with different delays. As
the band of a received signal is finite and determined by
the transmission bandwidth of the array and the receiv-
ing amplifier (here and further ∆f ≈ fav/2), the correla-
tion function is alternating. As a result of averaging
over all object points covered by the receiving beams,
the integral value of the response turns out to be close
to zero. In particular, it was indicated in [20, 21] that a
signal from a distributed source turns out to be nonzero
only in the presence of the temperature gradient
detected by different channels of the correlation ther-
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
mal tomograph. However, as will be shown below, the
combination of correlation processing and focusing
arrays provides an opportunity to obtain a uniquely
high spatial resolution. For this purpose, it is necessary
to select the appropriate parameters of the correlation
function (the spatial correlation length) and the focal
waists (the array dimensions, the focal length, and the
wavelength).

Technologically, a correlation acoustic thermograph
with a focusing array can be designed in several ways.
For example, a focusing array is divided into two equal
parts, the signals of which are amplified and multiplied,
and the result is integrated. We used this array design in
the experiments.

40
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max

min

Fig. 8. Two-dimensional scan of a heated source in water.
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Fig. 9. Experimental results on the localization of a heated source by an acoustic brightness thermal tomograph with a focusing
array in different media: (a) result of the transverse localization of a heated source and (b) result of the longitudinal localization of
a heated source; the open circles refer to a heated source in water, and the crosses, to a heated source under a layer of cow liver.
Another method is the employment of two focusing
arrays positioned at a certain “base” distance from each
other. Since there are no fundamental differences
between these two methods but theoretical calculations
are much simplified, we used the second method to
simulate the object localization. In this case, the z axis
is directed into the region under investigation and the x
and y axes are directed along the axis connecting the
array centers and normally to it, respectively. For this
array configuration, the acoustic brightness tempera-
ture can be represented in the form

(4)

where E12(x, y, z) is the product of the spread functions
of the array and K(x, y, z) is the cross-correlation func-
tion of signals at the output of the thermal tomograph,
after a multiplier and an integrator; this function is
determined by the frequency bands of the arrays and the
radio channel. In the case of a rectangular frequency
characteristic of the receiver with an average frequency
ω0 and a half-width ∆ω, the correlation function has the
form

(5)
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where ∆r(x, y, z) ≈  – 
and x0 is the coordinate of the array center. We assume
that the array centers lie in the xz plane. Two situations
can be realized depending on the relationship between
the parameters of the correlation function of the signal
and the parameters of the spread functions of the arrays.
If the width of the spread function considerably
exceeds the width of the principal lobe of the correla-
tion function, the average response value is close to
zero (Fig. 10a).

When the width of the spread function E12(x, y, z) is
considerably narrower than the principal lobe of the
correlation function, it determines the spatial resolution
(Fig. 10b). The value of the acoustic brightness temper-
ature in this case is also very small because of the small
value of the volume from which the signal is received.
Thus, in any case, the acoustic brightness signal is
small, although the reasons for this are different.

Nevertheless, the last case deserves our attention.
Using this tomograph it is possible, first, to localize a
layer with a temperature different from the temperature
of the surrounding medium (Fig. 11a) and, second, to
localize small sources, in which case the value of the
acoustic brightness temperature almost does not depend
on the source dimensions in a wide range (Fig. 11b). This
can be used for monitoring the temperature of a
selected region of the medium without scanning the
object.

A correlation acoustic brightness thermal tomo-
graph with a focusing array was designed to test exper-
imentally the possibility of the localization of heated
objects. The average operation frequency of the acous-
tic brightness thermal tomograph was 1.5 MHz, and its
reception band was 800 kHz. The array, shaped as a
spherical segment, was divided in two halves, the signal
from which was multiplied and averaged after amplifi-
cation. The same thin-wall polystyrene tube 10 mm in

x x0+( )2 z2+ x x0–( )2 z2+
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Fig. 10. Dependence of the product of the correlation and spread functions of the arrays (in relative units) on the transverse coordi-
nate (a) when the size of the cross-section zone is greater than the width of the principal lobe of the correlation function and (b) when
the size of the cross-section zone is smaller than the width of the principal lobe of the correlation function.
diameter, filled with castor oil, was used as a heated
source, as in the experiments described above. The
experimentally measured sensitivity of the correlation
acoustic brightness thermal tomograph calibrated with
respect to a heated source was about 5 K at a storage
time of 5 s. It is necessary to note that the problem of
sensitivity determination by calibration according to
the model of an ideal blackbody is rather difficult in our
case and is not considered here. Figure 12 demonstrates
the measured dependences of the acoustic brightness
temperature (in relative units) on the transverse and
longitudinal coordinates. This result shows that, in the
case of transverse localization of heated objects, the
effect of the negative components of the spatial correla-
tion function at the given characteristics of the acoustic
brightness thermal tomograph is substantial, which
influences the sensitivity of the method.

Thus, we have conducted theoretical and experi-
mental studies on the localization of heated objects by
the methods of focusing acoustic brightness thermom-
etry. It was demonstrated that, in the case of employ-
ment of a single focusing array, the value of the mea-
sured acoustic brightness temperature depends on the
dimensions of the source. The proposed model agrees
well with experimental data. Two-dimensional tomog-
raphy of a heated source by a thermal tomograph with
a focusing array was conducted, and theoretical and
experimental investigations of the applicability of the
correlation focusing acoustic brightness thermometry
were performed. As one can see from the curves
obtained for the distribution of the acoustic brightness
temperature, when the thermodynamic temperature of
the source changes by one degree, the acoustic bright-
ness temperature changes by only several tenths of
degree in the case of measurement with a focusing
array, and by several hundredths of degree in the case
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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Fig. 11. (a) Example of the localization of a “temperature”
layer (∆T = 1°C, the layer thickness is 10 mm, and the depth
of the layer position is 50 mm) by a correlation acoustic
brightness thermal tomograph. (b) Variation of the acoustic
brightness temperature in the case of longitudinal scan-
ning for different dimensions of a spherical heated source:
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of measurement with a correlation reception, which is
caused by the smallness of the region from which the
detected signal arrives. This region can be expanded by
increasing the wavelength and retaining a constant
value of the amplification coefficient of the focusing
array. In this case, a decrease in the frequency-depen-
dent absorption coefficient leads to a decrease in the
acoustic brightness of the source and also to a decrease
in the ultrasound propagation loss along the reception
path.
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Abstract—An approximate analytical approach is developed to describe the chaotic behavior of ray trajectories
in a deep-water acoustic waveguide up to three to five thousands of kilometers in length. The ray dynamics is
investigated using the Hamiltonian formalism expressed in terms of the canonical action–angle variables. A real-
istic waveguide model is used, with refractive-index fluctuations due to the random field of internal waves. The
Fokker–Planck equation is obtained for the action variable, and it is shown that the range dependence of this vari-
able can be approximated by the Wiener random process, which represents the simplest model of diffusion. For-
mulas are derived for calculating the probability density of the coordinate and other ray characteristics. An approx-
imate expression is found for the smoothed field intensity of a point source. For illustrating and testing the formu-
las obtained, their predictions are compared with the results of numerical solutions of ray equations and the results
of field calculations by the parabolic equation method. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The numerical modeling of the fields in underwater
acoustic waveguides testifies that the ray theory pro-
vides correct predictions for many important character-
istics of signals received even at ranges up to several
thousands of kilometers long. Many results obtained in
the geometrical optics approximation agree well with
the computations performed by the parabolic equation
method, as well as with the data of field experiments
[1–4]. This stimulates interest in the development of
new methods for analyzing the ray structure of the field
under the conditions of long-range sound propagation
in the ocean.

As is known, the horizontal scales of sound-speed
variations in sea water considerably (by two orders of
magnitude at minimum) exceed the vertical ones [5].
This fact allows one to ignore the horizontal ray refrac-
tion and, therefore, confine one’s consideration to the
analysis of the two-dimensional environmental model
[6, 7]. In this case, the sound speed is given by the func-
tion c(r, z), where r is the distance and z is the depth. In
typical waveguide models, this function is represented
in the form

(1)

where c0(r, z) is the unperturbed sound speed field
smoothly depending on both coordinates and δc(r, z) is
a small perturbation. It is assumed that δc(r, z) is a ran-
dom function and, therefore, the study the ray structure
of the sound field requires the application of statistical
methods.

In the theory of wave propagation in random media,
the description of rays (as well as other characteristics

c r z,( ) c0 r z,( ) δc r z,( ),+=
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of wave fields) is based on the notion of a statistical
ensemble of realizations of a medium. The statistical
characteristics of a ray with initial parameters z0 and χ0
representing the initial depth and launch angle, respec-
tively, are determined by averaging over the rays with
the same initial conditions in various realizations form-
ing the ensemble. This approach is the conventional
one, and it is used in most studies concerned with the
analysis of the statistical ray structure [8].

In the late 1980s, a new approach to studying the
stochastic dynamics of rays was developed on the basis
of the optical-mechanical analogy [4, 9–14]. The point
is that the behavior of a ray trajectory in a range-depen-
dent waveguide obeys almost the same equations that
describe the oscillations of a nonlinear oscillator under
the action of a nonstationary external force. It is well
known that, in mechanics, the situation where such an
oscillator exhibits a chaotic behavior is typical [15].
Numerical calculations confirmed that the ray trajecto-
ries in underwater waveguides behave, as expected, in
a similar way [4, 16]. The chaotic rays are characterized
by a high instability: for the trajectories with very close
initial conditions, the difference in vertical coordinates
∆z grows with distance r, on the average, according to
the exponential law [9]

(2)

The aim of this paper is the approximate analytical
description of the statistical ray chaos in a realistic
model of a deep-sea acoustic waveguide with sound-
speed inhomogeneities δc(r, z) caused by random inter-
nal waves. In this model, the Lyapunov exponents λ
have values on the order of 0.01 km–1 [4]. At distances
exceeding 1000 km, the ray chaos is fully developed

∆z λr( ).exp∼
© 2005 Pleiades Publishing, Inc.
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and the inclusion of this phenomenon in the analysis of
the sound field statistics is necessary.

This paper investigates the chaotic ray dynamics in
a determinate medium with spatial sound-speed fluctu-
ations given by a single realization of the perturbation
δc(r, z). Using the fact that the ray trajectories with
close initial conditions become almost independent at
r @ λ–1, the averaging over initial conditions is be
treated as a statistical one. The results of numerical
modeling testify that the resulting statistical character-
istics of chaotic rays weakly depend on the specific
realization c(r, z) used in the calculations. Therefore,
one can expect that the analysis of ray statistics in a sin-
gle realization of the sound-speed field should give the
results close to those that could be obtained by averag-
ing over a statistical ensemble of waveguides. However,
the very important and interesting question of how well
one realization of inhomogeneities represents the com-
plete statistical ensemble is beyond the scope of this
paper and is not considered here.

The method of the analysis of chaotic ray dynamics
that is presented in this paper is based on the Hamilto-
nian formalism expressed in terms of the canonical
action–angle variables [9, 17]. These variables are
widely used for analyzing the finite motions of particles
in mechanics, as well as for studying the oscillations of
ray trajectories in waveguides. The action variable I
determines the amplitude and the ray cycle length,
while the angular variable θ (not to be confused with
the geometric grazing angle of a ray) defines the posi-
tion of the current point of a ray within the given cycle.
One can say that θ plays the role of the phase of an
oscillating trajectory.

For most rays, the variable θ soon becomes stochas-
tic: even on rather short tracks, it can be considered as
uniformly distributed over the interval from 0 to 2π.
This allows one to obtain the Fokker–Planck equation
for the action variable. A numerical calculation shows
that, in our waveguide model, the diffusion coefficient I
can be approximated by a constant. In this approxima-
tion, the random function I(r) is modeled by the Wiener
process and, therefore, the probability density of the
action is determined by the well-known formula.

Knowing the combined probability density of I and
θ, one can calculate almost any statistical ray character-
istics. In this paper, the capabilities of this approach are
illustrated by the example of the field produced by a
point source. Two specific problems are considered.
First, for chaotic rays launched from the point source,
the probability densities of their parameter distributions
are determined. Second, a formula is obtained for the
field intensity in the vertical section of the waveguide
with smoothing of the intensity by a smooth weighting
function. The predictions obtained in the framework of
our approximation (let us call it the Wiener process
approximation) are compared with the results (numeri-
cal) of the direct calculations of the ray trajectories and
the wave field.
In this study, the parabolic equation approximation
(small-angle approximation) is used, although the gen-
eralization of the results to the case where the field is
determined by the Helmholtz equation presents no seri-
ous problems. The point is that the parabolic equation,
in contrast to the Helmholtz equation, can be easily
solved numerically [5]. The formula for the smoothed
field intensity is tested using one of the known codes for
solving parabolic equations, which is called MMPE
[18].

A more detailed description of the approach pro-
posed here is presented in the electronic preprint
(e-print) [19]. It can be found on the internet, on the site
xxx.lanl.gov.

2. THE HAMILTONIAN FORMALISM
FOR THE RAY TRAJECTORY DESCRIPTION

2.1. Momentum–Position Variables

For simplicity, we assume that the unperturbed
sound-speed field in Eq. (1) does not depend on r; i.e.,
it is presented by a smooth function c0(z) along the
whole acoustic path. Let the axis z be directed down-
ward and the water surface coincide with the plane z = 0.
The refractive index n(r, z) equals cr/c(r, z), where cr is
an auxiliary constant, which in underwater acoustics can
always be chosen so that |c – cr| ! cr. In this case, n(r, z) =
n0(z) + δn(r, z), where n0(z) = cr/c0(z) and δn . −δc/cr
is the small perturbation of the refractive index that is
responsible for the ray chaos.

For the analysis of ray trajectories, we use the
Hamiltonian formalism [9, 20]. In its framework, the
ray equations have the form

(3)

where

(4)

The function H can be interpreted as the Hamiltonian of
some (conceptual) mechanical system. The trajectory
the parameter p involved in Eqs. (3) and (4) is an analog
of the mechanical momentum, and the distance r plays
the role of time. The relation between the momentum
and the ray grazing angle χ is given by the formula p =

. The expression for the Hamiltonian is presented
in the small-angle approximation (p ! 1), which, as
stated in the introduction, is used in this paper.

2.2. Action–Angle Variables

In an underwater acoustic waveguide, the ray trajec-
tories have the form of oscillating curves. For their
description (as for the description of mechanical parti-
cle oscillations in a potential well), along with the
momentum–position variables (p, z), it is convenient to

dz
dr
-----

∂H
∂p
-------,

dp
dr
------ ∂H

∂z
-------,–= =

H
p2

2
-----

1 n2–( )
2

------------------.+=

χtan
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use the action–angle canonical variables (I, θ) [9, 17].
To determine the latter, we consider an unperturbed
waveguide with the Hamiltonian

(5)

According to Snell’s law (an analog of the energy-con-
servation law in mechanics), the quantity H0 remains
constant along a ray path and, therefore, Eq. (5) defines
the momentum p as the function of coordinate z:

(6)

The action variable is given by the integral along the
period of the unperturbed trajectory:

(7)

Here, zmin and zmax are the depths of the lower and upper
turning points of the ray. Integral (7) defines the
“energy” H0 as the function of the action variable I. An
important characteristic of the waveguide is the deriva-
tive of this function

(8)

which determines the spatial frequency of trajectory
oscillations. In this formula, D is the ray cycle length
(period).

The known generating function of the canonical
transformation that relates the pairs of variables (p, z)
and (I, θ) [9, 17] can be presented in the form

(9)

where zmin and zmax are considered to be functions of I.
The canonical transformation given by the functions

(10)

(both functions are periodic in θ with a period of 2π) and

(11)

is determined by the equations

(12)

By virtue of the Liouville theorem [17], the Jacobian is

(13)

H0
p2

2
-----

1 n0
2

–( )
2

-------------------.+=

p 2H0 1– n0
2

+ .±=

I
1

2π
------ p zd∫°

1
π
--- z 2H0 1– n0

2 z( )+ .d

zmin

zmax

∫= =

dH0

dI
---------- 2π

D
------ ω,= =

G I z,( )

z 2H0 I( ) 1– n0
2

z( )+ , p 0>d

zmin

z

∫

2πI z 2H0 I( ) 1– n0
2

z( )+ , p 0,<d

zmin

z

∫–











=

z z I θ,( ), p p I θ,( )= =

I I p z,( ), θ θ I z,( )= =

p
∂G
∂z
-------, θ ∂G

∂I
-------.= =

∂ z p,( )
∂ I θ,( )
---------------- 1.=
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In spite of the fact that this transformation is deter-
mined for an unperturbed range-independent waveguide,
it can formally be used in the presence of perturbations
as well. Substituting Eqs. (10) into Eq. (4), we represent
the perturbed Hamiltonian as

(14)

where

(15)

In terms of the action–angle variables, the Hamiltonian
equations assume the form

(16)

and

(17)

In closing this section, it should be noted that the
canonical transformation given by generating func-
tion (9) is expressed in terms of elementary or special
functions only for several simplest profiles n0(z).
However, this transformation can easily be realized
numerically with a standard code for calculating the
ray trajectories in a range-independent waveguide.
This issue is discussed in [19].

3. STATISTICAL CHARACTERISTICS
OF CHAOTIC RAYS

3.1. The Fokker–Planck Equation

Let us consider Hamiltonian equations (16) and (17)
as the Langevin stochastic equations. In the case of
weak inhomogeneities, the typical horizontal scale lm of
the function δc(r, z) is much smaller than the scale lI of
the action variable variations:

(18)

In this case, the random function on the right-hand side
of Eq. (16) can approximately be considered as a delta-
correlated function. Then, I(r) is a Markovian process
whose probability density P(I, r) obeys the Fokker–
Planck equation [21, 22]

(19)

The coefficients of this equation, A and B, are deter-
mined by the relationships

(20)

(21)

where P(I, r|I0, r0) is the probability density of the
action I at the distance r, provided that the action mag-
nitude is I0 at the point r0 ≤ r.

H I θ r, ,( ) H0 I( ) V I θ r, ,( ),+=

V  . δn . δc/cr.–

dI
dr
-----

∂V
∂θ
-------,–=

dθ
dr
------ ω ∂V

∂I
-------.+=

lm ! lI.

∂P
∂r
------

∂
∂I
----- AP( )–

1
2
--- ∂2

∂I2
------- BP( ).+=

A I r,( ) 1
∆r
------ ∆IP I ∆I r ∆r I r,+,+( ) ∆I ,d∫∆r 0→

lim=

B I r,( ) 1
∆r
------ ∆I2P I ∆I r ∆r I r,+,+( ) ∆I ,d∫∆r 0→
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By virtue of the detailed balance principle, which
expresses the symmetry of the Hamiltonian equations
with respect to the time reversal (in our case, a change
of the sign of r), the following relationship is valid [22]:

(22)

In this case, the Fokker–Planck equation takes the form

(23)

The derivation of this equation without using the
detailed balance principle is given in [19]. To calculate
the coefficient B, we choose two points r and r0 < r in
such a way that

(24)

We denote the action and angle variables at the point r0
as I0 and θ0, respectively, and their values at the point r,
as I and θ. According to condition (24), we can use the
approximate equality

(25)

where

(26)

is the unperturbed solution to Eq. (17). Let us introduce
the correlation function

(27)

where the symbol  means averaging over θ0

and over inhomogeneities V that are located between r0
and r. Assume that the medium is statistically homoge-
neous along the r axis and, therefore, the function K
does not depend on r. In this case, we have

(28)

Condition (24) allows one to extend the upper limit to
infinity. On the other hand, inequality (24) means that
r – r0 is small compared to the scale of variation of I.
Therefore, it is possible to substitute Eq. (28) into
Eq. (21) by replacing (r – r0) with ∆r. Using the prop-
erty K(I, ρ) = K(I, –ρ), we obtain

(29)

If the angular variable θ becomes stochastic (i.e.,
uniformly distributed over the interval from 0 to 2π) at
distances that are small compared to the distance to the

A
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r r0–

∫=

B I( ) 1
2
--- ρK I ρ,( ).d

∞–

∞

∫=
observation point, the function B(I) can be found
numerically from a single realization of the inhomoge-
neous medium. From Eq. (15), it follows that

(30)

where the derivative with respect to θ is calculated for
the function z(I, θ)—one of the functions determining
canonical transformation (10). In a range-independent
waveguide, for small values of p, we have

(31)

When operating with one realization of inhomoge-
neities δn(r, z) = –δc(r, z)/cr, for the numerical calcula-
tion of correlation function (27) we consider an unper-
turbed ray trajectory with the action variable I. Let the
coordinate and the momentum along this trajectory be
given by functions z(r) and p(r), respectively. Accord-
ing to Eqs. (30) and (31), at a distance r, the derivative
Vθ at a point on the trajectory of the unperturbed ray is
equal to

(32)

where

(33)

The estimate of the correlation function is given by the
integral along the trajectory of the unperturbed ray

(34)

on a track whose length R must be much greater than
both the ray cycle length and the maximal horizontal
scale of inhomogeneities. A more accurate estimate of
the correlation function can be obtained by calculating
integral (34) along a group of unperturbed rays with the
same values of the action variable I but with different
initial values of the angular variable θ and with a sub-
sequent averaging of the results obtained. In the next
section, a specific example of calculating the diffusion
coefficient B(I) by the aforementioned method is pre-
sented.

3.2. The Action Variable in the Wiener Process 
Approximation

Consider a model of a deep-water acoustic
waveguide with an unperturbed sound-speed profile
c0(z) shown at the left of Fig. 1. Weak fluctuations of the
sound speed δc(r, z) are caused by the effect of the ran-
dom field of internal waves, whose statistics is deter-
mined by the Garrett–Munk empirical spectrum [6]. In
every point of the waveguide, the average (over the

Vθ
∂δn
∂z
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∂θ
------,–=
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ensemble of inhomogeneities) value of perturbations is
zero. For the numerical modeling of specific field real-
izations δc(r, z), we use the method proposed in [23].
Omitting details, note that the rms amplitude of δc(r, z)
near the sea surface equals 0.5 m/s and decreases with
depth by the exponential law exp(–z/L), where L =
0.66 km. As a function of the horizontal coordinate r,
the spectrum of perturbations is concentrated in the
interval of spatial frequencies from 2π/100 km–1 to
2π/4 km–1. The right-hand side of Fig. 1 exhibits the
vertical sections of the field δc(r, z) at three different
distances. In such a waveguide model, the rays behave
chaotically [19, 24].

The dependence of the diffusion coefficient B on the
action I, as calculated from formulas of Section 3.1, is
shown in Fig. 2. This dependence proves to be rather
weak, and the quantity B can be approximated by a con-
stant:

(35)

In what follows, this approximation will be called the
Wiener process approximation. The point is that, at a
constant B, the variable I can be represented as

(36)

where Is = I(0) is the initial value of the action and x(r)
is the Wiener random process that begins at the point
x(0) = 0 [21, 22]. The process x(r) obeys the stochastic
equation

(37)

where ξ is the white noise whose mean value and cor-
relation function are given by the formulas

(38)

Consider the following important point. The random
function I(r) given by relationships (36)–(38) can
assume both positive and negative values. However, the
action variable is nonnegative by definition. This fact
can easily be taken into account by introducing a
reflecting boundary at I = 0. The conditional probability
density (I, r|Is) at the distance r, i.e., the probability
density of the variable I on condition that its initial
value (at r = 0) is equal to Is, is given by the solution
to Fokker–Planck equation (23) with a constant diffusion
coefficient and with the initial condition P(I, 0|Is) =
δ(I – Is). In the presence of the reflecting boundary, the
desired solution is [21]

(39)
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Our method of describing the chaotic ray statistics is
based on this formula.

The magnitude of the action variable Is grows as the
launch angle χs of a ray from the source increases (this
is the grazing angle of the ray, which should not be con-
fused with the canonical angular variable θ). For steep
rays with

(40)

the second term in the square brackets in Eq. (39) can
be neglected. This approximation means that the trajec-
tories of the Wiener process on the track under consid-
eration do not reach the reflecting boundary previously
introduced by us. In this case, the description of the ray
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Fig. 1. Unperturbed sound-speed profile c0(z) (at the left)
and vertical sections of the perturbation δc(r, z) for three
different distances (at the right).

Fig. 2. Dependence of the diffusion coefficient B on the
action I.
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Fig. 3. Standard deviation of the action variable I as a function of distance r: the result of averaging over 100 ray trajectories with
the initial action Is = 0.06 km and different initial values of the angle variable θ (the solid curve); the Wiener process approximation
(the dashed curve).
statistics is considerably simplified. In particular, the
quantity I spreads with distance according to the diffu-
sion law

(41)

The results of the numerical modeling show that crite-
rion (40) can be moderated by replacing the symbol @
with >. For a point source located at the waveguide axis,
this condition is met at the distance r = 3000 km for rays
with the launch angles χs > 5°. Consider a numerical
example. Figure 3 shows the standard deviation of the
variable I as a function of distance for a ray with the ini-
tial value of the action variable Is = 0.06 km. In an
unperturbed waveguide, such a ray crosses the
waveguide axis under the grazing angle χs = 7.8°. The
solid line shows the result of averaging over 100 rays
with the aforementioned initial value of the action vari-
able and initial values of the angular variable, which are
uniformly distributed over the interval from 0 to 2π.
The dashed curve is given by Eq. (41). As is seen, the
simplest statistical model constructed in this section for
describing the fluctuations of I agrees well with the
results of the direct numerical modeling. Similar results
are obtained for rays with other initial conditions.

Equation (37) gives a simplified form of Hamilton
equation (16). The simplified form of the second
Hamilton equation (17) is considered in detail in [19].

σI I Is–( )2〈 〉 Br.= =
4. THE FIELD OF A POINT SOURCE

4.1. Probability Densities of Chaotic Ray Parameters

The probability density (I, r|Is) describes the dis-
tribution of the action variable for an ensemble of rays
with initial values of the angular variable θs uniformly
distributed over the interval from 0 to 2π. Now, we con-
sider a point source located at the point (0, zs). We
assume that the initial momenta of rays, p0, are within the
interval

(42)

We consider the chaotic rays with such initial condi-
tions as a statistical ensemble, the description of
which is our aim. In this case, the probability for an
arbitrary ray to have the initial momentum in a small
interval (p0, p0 + dp0) is dp0/(2pmax). For the rays with
initial momenta from this interval, the probability den-
sity of the action at a distance r is (I, r|I(p0, zs))
(here, we use the function I(p, z) that appears on the
right-hand side of the first of Eqs. (11)). The probability
density of the action for the rays with momenta lying
within interval (42) is given by the integral

(43)

In the Wiener process approximation, the angular vari-
able θ is assumed to be uniformly distributed over the

PI I0

pmax– p0 pmax.< <

PI I0

PI I r,( ) 1
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------------- p0PI I0
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Fig. 4. Probability densities (distributions) of the variables (a) I, (b) θ, (c) p, and (d) z at a distance of 3000 km for rays launched
from a point source located at a depth of 0.78 km—the Wiener process approximation (the solid curves). The stepped lines represent
the normalized histograms of the distributions obtained by a numerical calculation over 48000 trajectories.
interval (0, 2π) and statistically independent of I. Then,
the combined probability density of I and θ is

(44)

Using standard formulas of probability theory and rela-
tionship (13), from Eq. (44) we obtain the formula for
the joint probability density of p and z:

(45)

From Eq. (45), we find the probability densities of both
momentum

(46)

and the coordinate

(47)
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The smooth curves in Fig. 4 show the probability
densities for I, θ, p, and z on a 3000-km-long track,
which are calculated in the Wiener process approxi-
mation, i.e., by formulas (43), (46), and (47) (in this
approximation, θ is expected to be uniformly distrib-
uted). These curves are compared with the estimates
of the probability densities obtained by the numerical
calculation for 48000 rays. The calculations are car-
ried out for a point source positioned at a depth of
0.78 km. The boundaries of interval (42) were deter-
mined from the condition that the initial grazing
angles of rays are within the range ±12°. The stepped
lines in Fig. 4 show normalized histograms of the dis-
tributions of I, θ, p, and z along the given track. As is
seen, the predictions based on the Wiener process
approximation agree well with the results of the
numerical modeling.

4.2. Smoothed Distribution of the Field Intensity

In this paper, we assume that the complex amplitude
of the field is given by the parabolic equation [5]

(48)2ik
∂u
∂r
------ ∂2u

∂z2
-------- k2 1 n2 r z,( )–( )u–+ 0,=
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where k = 2πf/cr and f is the carrier frequency. The field
of the point source considered in the previous section
obeys equation (48) with the initial condition

(49)

Equation (48) coincides with the Schrödinger equation
of quantum mechanics, but, in our case, the role of the
Planck constant is played by k–1. In the geometrical
optics approximation, u(r, z) is given by the superposi-
tion of ray arrivals at the point of observation.

When analyzing the sound fields in acoustic
waveguides, the common practice is to limit the calcu-
lations to a rough estimate of the field intensity by an
incoherent summation of rays [5]. This is explained not
only by the mere simplification of calculations. The cal-
culation of fine details of the wave pattern (the knowl-
edge of which is often unnecessary in practice) under
the conditions of multipath propagation typical of
waveguide problems is complicated by inevitable inac-
curacies of the mathematical model of the medium and
the approximate character of geometrical optics. The
incoherent summation of rays gives an estimate aver-
aged over spatial coordinates for the field intensity dis-
tribution in the waveguide. In this case, the dependence
of the result on small variations of the waveguide
parameters is weaker than in the case of the calculation
with allowance for the ray phases. In the problem under

u 0 z,( ) δ z zs–( ).=
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Fig. 5. Smoothed sound field intensity of a point source in
the vertical section of the waveguide at distances of 1500
(the upper plot) and 3000 km (the lower plot): the numerical
calculation with the parabolic equation method (the solid
curves) and the Wiener process approximation (the dashed
curves). The source depth is 0.78 km, and the carrier fre-
quency is 75 Hz. The smoothing scales ∆z are indicated in
the plots.
study, the incoherent summation of rays leads to the
expression

(50)

where p0, m is the initial momentum of the mth ray arriv-
ing at the point (r, z). In Eq. (50), the known formula for
the ray amplitude in the parabolic equation approxima-
tion is used [25].

Under the ray chaos conditions, the number of rays
arriving at the observation point becomes very large.
Therefore, the use of formula (50) requires many calcu-
lations. In addition, the result will widely differ from the
true field intensity at the point (r, z). The situation is rad-
ically simplified if the incoherent summation of rays is
complemented with spatial averaging. Here, we con-
sider the smoothed intensity defined by the relationship

(51)

In [26, 27], it was conjectured that the choice of suffi-
ciently large scales of smoothing ∆z removes the differ-
ence between the exact value of J obtained from the
parabolic equation solution and the approximate value
of this quantity found by the incoherent summation of
rays, i.e., from the combination of Eqs. (50) and (51).
This assumption was confirmed by the results of
numerical modeling. Unfortunately, the question about
the choice of necessary scales of smoothing is as yet
poorly investigated.

In the Wiener process approximation, one can
obtain the analytical description of the smoothed field
intensity. Substituting Eq. (50) into Eq. (51), we obtain
J(r, z) in the form

(52)

where the function z(r, p0, zs) denotes the trajectory of
the ray launched from the point zs with the initial
momentum p0. Under the ray chaos conditions, the inte-
gration over the initial conditions is equivalent to a sta-
tistical averaging. Therefore, using Eq. (47), we
approximately replace Eq. (52) by

(53)

Thus, we obtained the analytical expression for the
smoothed field amplitude under the ray chaos condi-
tions. Figure 5 indicates that formula (53) adequately
predicts the results of the numerical calculation of J(r, z)
by the direct solution of the parabolic equation. The
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wave field u(r, z) was computed with the MMPE code
[18]. The scales of smoothing ∆z that were used to con-
struct the plots were chosen empirically.

5. CONCLUSIONS

This paper discusses an analytical approach to the
approximate description of the chaotic ray dynamics in
a deep-water acoustic waveguide with inhomogeneities
induced by the random field of internal waves. The
method is based on using the Hamiltonian formalism in
terms of the action–angle canonical variables (I, θ). The
analysis of ray statistics is considerably simplified by
the fact that the angular variable θ can be considered as
uniformly distributed over the interval (0, 2π) even at
comparatively short ranges. In this approximation, the
dependence of the action I on distance r is well approx-
imated by the Wiener random process, which repre-
sents the simplest diffusion model [21].

Canonical transformation (10) from (I, θ) to (p, z)
can be interpreted as a nonlinear change of variables. It
allows one to recalculate the known statistical charac-
teristics (I, θ) as the characteristics (p, z) by using stan-
dard formulas of probability theory. According to the
Liouville theorem, the Jacobian of the transformation
from (I, θ) to (p, z) equals unity, which simplifies the
recalculation process. As a result, expressions are
obtained for analyzing the statistics of the coordinates
and grazing angles of chaotic rays.

It should be noted that, in the Wiener process
approximation, the influence of the environmental
inhomogeneities is determined by only one parameter:
the action diffusion coefficient B. The canonical trans-
formation used for the recalculation of statistical char-
acteristics is determined by only the unperturbed
sound-speed profile.

As an example of the application of the results
obtained, the probability densities of the variables I, p,
and z are calculated for the rays launched from a point
source. In addition, an analytical expression is obtained
for the smoothed acoustic intensity. The results of
numerical modeling agree well with the estimates
obtained with our approximate formulas.

All calculations described in this paper, including
the calculation of the diffusion coefficient of the action
variable, are carried out for a single realization of inho-
mogeneities. Here, an analog of statistical averaging is
the averaging over the initial conditions. Numerical cal-
culations testify that the ray statistics weakly varies
with a change from one realization to another. How-
ever, the question of the extent of general nature of the
results of studying the ray dynamics for a single realiza-
tion of inhomogeneities remains open and requires fur-
ther investigation.

The approach considered above can be used to study
the statistics of other parameters of chaotic rays. In par-
ticular, this refers to the travel times of sound pulses
along ray trajectories connecting the source and the
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
receiver (for brevity, these times are called travel
times). In [19, 24], it is shown that the variations of ray
arrival times are easily expressed in terms of the varia-
tions of the action variable. Therefore, our formulas for
calculating the statistical characteristics of I allow one
to describe the arrival-time fluctuations [19]. In partic-
ular, in [19], a quantitative theory is developed to
describe the effect of separation of the travel times of
chaotic rays into compact clusters and an explanation is
offered for the unexpected high stability of the initial
part of a sound pulse in a deep sea, which is observed
up to distances of several thousands of kilometers.
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Abstract—The application of high-frequency acoustic devices to the enhancement of electronics saw an
extraordinary growth in both Eastern and Western countries in the sixties and seventies. A major impetus for
these developments was the tension existing between the Soviet Bloc countries in the east and the former Allied
countries in the west. Government military spending on both sides provided funding to explore new acousto-
electronic concepts in universities, institutes, and major defense companies. The direct exchange of visits
between scientists and engineers of the East and West was limited until the 1980s, when travel restrictions were
lifted on both sides and authors that has previously only been names in the open literature became face-to-face
contacts and enjoyed exchanges at conferences of mutual interest. This resulted in a new era of cooperative
work between the East and West and a large number of device applications that are seen in electronic systems
around the world today. This paper explores the major acoustoelectronic developments of the sixties and sev-
enties from an eastern and western perspective. © 2005 Pleiades Publishing, Inc.
1 When we accepted the invitation to make a histori-
cal report, we were aware that, at full scale, this under-
taking is very difficult. It is difficult not only because
acoustoelectronics, especially its surface acoustic
waves part, is a rather wide branch of current science
and technology. The main difficulty is that many impor-
tant results were obtained in parallel in several coun-
tries and even in different firms and universities, and
thus, in many cases, who was the first remains a big
question. This especially relates to work carried out
under conditions of secrecy in counterpoised Western
and Eastern blocs of countries during the Cold War. Of
course, there is also the danger of forgetting to mention
someone, which may be painful.

Thus, we decided the following:
First: to restrict ourselves only to the time period

from the beginning of the 1970s.
Second: to speak mainly on the physical foundations

of acoustoelectronics rather than on its practical appli-
cations.

Third: to ask you to excuse us for the inevitable per-
sonal character of our estimates: we see events from the
perspective of our age, which is over 70….

Acoustic waves of high frequency (>20 kHz, ultra-
sound) have been widely used for a long time in various
branches of science and technology. Two important fea-
tures of these acoustic waves are their relatively low
propagation velocity (100000 times smaller than the
velocity of light) and the ease of their excitation in
piezoelectric materials with high efficiencies. This pro-

1 This article was submitted by the authors in English.
1063-7710/05/5101- $26.00 0081
vided for their use in radio engineering and electronics.
The delay lines with bulk acoustic waves have been
used in radioengineering for many decades. Equally
well known is another device using bulk acoustic waves
in piezoelectric materials, namely, a quartz resonator
for frequency stabilization. These two devices are very
well-known examples of the use of acoustic waves
(ultrasound) in radioelectronic systems for the process-
ing and transmission of information signals.

Many scientists and engineers have contributed to
this field—see the well-known books by W. Cady [1],
W.P. Mason [2], B. Auld [3], and others. Since they are
not very well known in the West, we would especially
like to stress the pioneering contributions of the follow-
ing Soviet (Russian) scientists: I.G. Shaposhnikov, who
in 1941 first considered the propagation of bulk acous-
tic waves in piezoelectric materials [4]; A.V. Shubni-
kov, who investigated the piezoelectric properties of
quartz and made the first quartz resonators [5]; and
S.Ya. Sokolov, A.G. Sokolinsky, S.G. Kalashnikov,
V.A. Krasil’nikov, G.K. Ul’yanov, S.S. Karinsky,
K.N. Kozlovsky, L.K. Zarembo, L.D. Rosenberg,
A.G. Smagin, M.I. Yaroslavsky, V.S. Bondarenko,
I.A. Victorov, V.E. Lyamov, and many others.

The effects of the interaction of acoustic waves with
free electrons, “acoustoelectronic effects,” were proba-
bly first studied by I.G. Shaposhnikov in 1941 [4] for
piezoelectric materials. He investigated the “elec-
tronic” absorption of acoustic waves and the change of
the acoustic wave velocity due to an interaction with
electron plasma.
© 2005 Pleiades Publishing, Inc.
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In 1953, Parmenter [6] predicted a third acousto-
electronic effect, the so-called acoustoelectric (AE)
effect, consisting of the appearance of a dc voltage or a
dc electric current in the direction of the acoustic wave
propagation. Physically, the AE effect is due to the
transmission by the acoustic wave of some part of its
momentum to the electron gas in the process of elec-
tronic absorption. This results in the appearance of a dc
electric current (acoustoelectric current) or a dc electric
voltage (acoustoelectric voltage) if the specimen is
open-circuited. Later, these effects were studied by
H.E. Bommel [7], A.B. Pippard [8], G. Weinreich [9],
and many others (see also the review paper by I.M. Lif-
shitz and M.I. Kaganov [10]).

A key point was the experimental observation by
A.R. Hutson, J.H. McFee, and D.L. White in 1961 of
the amplification of bulk ultrasonic waves in piezoelec-
tric semiconductor CdS by the supersonic drift of elec-
trons [11]. The very idea of the possibility of such an
amplification was earlier discussed (in 1956) by the
Russian scientists K.B. Tolpygo and Z.I. Uritsky and
the American scientist G. Weinreich [12, 13]. The
detailed theory of acoustic-wave (AW) amplification in
semiconductors of various types, namely, piezoelectric,
nonpiezoelectric, many-valley, with hot electrons, mag-
netic, etc., was developed in 1962 [14–22] (see also the
review papers [23–25]).

Soon after this work [11], R.W. Smith [26] observed
one more acoustoelectronic effect that is, in fact, a com-
bination of previously described effects: the sublinear-
ity and even the saturation of the current–voltage curve
of the specimen under the conditions of acoustic-wave
amplification. Physically, this effect is connected with
the loss of the directed momentum of drifting electrons
to acoustic fluctuations (phonons) amplified by them,
which leads to a reduction of the drift current.

The very beautiful effect of acoustic-wave amplifi-
cation brought to this field many brilliant scientists and
engineers, and the number of publications grew rapidly.
Everybody was thinking of the creation of a “solid-state
traveling-wave tube” and other new microwave
devices.

However, the researchers very soon understood
that, since the mobility of electrons in good piezoelec-
tric semiconductors of the CdS type is rather small
(200 cm2/V s), for good amplification it is necessary to
apply a high voltage (several kilovolt). As a conse-
quence, it was possible to use only a pulse operation
regime, not dc. Otherwise, there is either a strong
buildup of noise or the crystal burns out.

The solution to the problem was found in 1964 by
Yu.V. Gulyaev and V.I. Pustovoit [27], who suggested
the use of surface acoustic waves (SAWs) for amplifi-
cation and proposed a layered-structure semiconduc-
tor–piezoelectric as the basic structure for an acoustic-
wave amplifier and other possible acoustoelectronic
devices with SAWs. This was indeed another key point.
The SAW propagates along the surface of a solid and,
thus, is accessible all along the path of its propagation.
If the solid is piezoelectric, the SAW is accompanied by
an electric field wave (in the general case, both longitu-
dinal and transverse, perpendicular to the surface). Due
to this field, the wave can interact with electrons in con-
ducting media that are adjacent to the surface, excite
electric currents, create a certain distribution of poten-
tials, produce bunching of electrons, etc. On the other
hand, the redistribution of potentials in the conducting
media can have an influence on the SAW via the inverse
piezoeffect. In particular, if there is a supersonic drift of
electrons in the conducting media in the direction of
SAW propagation, it may lead to the amplification of
the SAW just as in a traveling-wave tube. Since there
now appears the possibility of a wide choice of materi-
als, one can take for this “layered structure” a very
strong piezoelectric, not bothering about its conductiv-
ity, and a semiconductor with very high electron mobil-
ity, such as, for example, Ge, Si, or InSb. Thus, the dc
regime of the SAW amplifier becomes possible.

In fact, the main idea of [27] is the indication that a
SAW in a piezoelectric dielectric can interact with the
electric fields and electrons from another conducting
medium (one that is adjacent to the surface) all along
the path of its propagation.

The further development of this idea was done in the
work of R.M. White and F. Voltmer in 1965 [28], in
which they suggested exciting the SAW electrically by
a periodic interdigital structure of metallic electrodes
on the surface of the piezoelectric with a period equal
to the SAW wavelength, to which the alternating volt-
age is applied with the period of the wave. This con-
struction, which is an analog of the Udo–Yagi antenna
in electrodynamics and which was called an “interdigi-
tal transducer” in the simplest bidirectional excitation
case, transforms the electric signal to a SAW very effec-
tively (if it is infinitely long) with a loss of about 3 dB.
Specially constructed unidirectional transducers can
have losses of around 1 db or less. This method of SAW
excitation is much more effective than previous
attempts to mechanically excite SAWs by bulk acoustic
waves with the help of wedges, grooves on the surface,
combs, etc. (see, for example, [29]).2 

Experimentally, the amplification of SAWs in lay-
ered structures (semiconductor–piezoelectric) was
observed almost simultaneously by K. Ioshida and
M. Yamanishi [30] in a structure consisting of a Ge
plate over a piezoceramic plate; by J.H. Collins,
K.M. Lakin, C.F. Quate, and J.H. Shaw [31] in a struc-
ture consisting of a Si film on a LiNbO3 crystal (see also
[32] by Yu.V. Gulyaev, A.M. Kmita, I.M. Kotelyansky,
A.V. Medved, and Sh.S. Tursunov [33]); and on a

2 There were two patents, by W.S. Mortley (1963) and J.H. Rowen
(1963), both containing the idea of an interdigital transducer
(IDT). In 1963, W.E. Newell applied for a patent at the Westing-
house company for a resonator structure of the type of the IDT
proposed by White and Voltmer for the generation and reception
of SAW. However, he was refused. But at that time, R. White and
F. Voltmer did not know of the existence of these patents, so their
work is indeed the first open publication on the IDT.
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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monolithic-structure CdS film on a Ge substrate by
L.A. Coldren, and G.S. Kino [34]. An effective acous-
toelectronic SAW amplifier was demonstrated later by
Yu.V. Gulyaev, I.M. Kotelyansky, A.V. Medved, and
R.A. Mishkinis [35]. The detailed theory of SAW
absorption and amplification and of the acoustoelectric
effect in piezoelectric semiconductors and in layered
piezoelectric–semiconductor structures was developed
in [36]. The suggestion of the interdigital transducer
(IDT) is indeed a very important key point, and today
IDTs in different variations are a main part of all SAW
devices.

The works [27] and [28] were the first publications
in which it was suggested to use SAWs for information
signal processing. The main principle of SAW devices
is that the SAW propagates along the free surface of the
medium and, thanks to this, is accessible at every point
along its path. Thus, it is possible to contact it, influence
it, transform it, amplify it, etc., along all the path of its
propagation.

Precisely this “accessibility” of SAWs allowed one
to consider SAW devices as an effective realization of
the so-called model of a “transversal filter.” This was a
concept of signal processing suggested in 1940 by
H.E. Kallmann. Today, SAW devices indeed demon-
strate the full scale of the possibilities of this concept
for the processing of both analog and digital signals.

The first effective IDT, and the one that was closest
to the idea of transversal-filter construction, was sug-
gested (this is another key point) in 1971 independently
by A.V. Kovalev and I.B. Yakovkin [37] and by
R.F. Tancrell and M.G. Holland [38]. They suggested,
for the formation of the required amplitude–frequency
curve (AFC), using the variation of the overlapping
lengths of the electrodes: the so-called “apodization.”
In this construction the electric fields under the elec-
trodes, which excite the SAW, can be approximated by
δ sources. It is obvious that the amplitude of each δ
source (each pair of electrodes of the IDT) is deter-
mined by the overlapping length of neighboring elec-
trodes. Calculations show that, in this “ideal” case, the
amplitude–frequency curve (AFC) of such an IDT is
the Fourier transform of the overlapping of the elec-
trodes as a function of coordinates along the path of
SAW propagation.

Unfortunately, this is all true only theoretically, i.e.,
in the ideal case. All formulas for the ideal transversal
filter calculate the characteristics of the SAW IDT only
in the first approximation, since they do not take into
account the real physical processes that occur when the
SAW propagates along the surface of the piezoelectric
with metallic electrodes on it. These physical processes
lead to “secondary effects” that can drastically change
the characteristics of the IDT.

What are these “secondary effects”? Let us list most
of them in arbitrary order:

(1) reflections of the SAW inside the transducers
themselves;
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
(2) influence of the mass and electrical conductivity
of the electrodes and, hence, of the shape of the elec-
trode structure of the transducer;

(3) influence of diffraction (especially in the region
of small overlapping of the electrodes), absorption, and
dispersion of the SAW;

(4) influence of the reflection of the SAW from both
the input and output transducers;

(5) influence of the impedances of both the source
and the load;

(6) influence of parasitic bulk acoustic waves that
are generated in transducer structures together with
SAWs;

(7) influence of the direct transit of electromagnetic
waves via the substrate, the package, or through the
external electric circuits.

To avoid the parasitic influence of these “secondary
effects,” various constructive solutions were suggested,
many of which were principal key points. Thus, in
1973, E.G.S. Paige and coworkers [39] suggested a so-
called “multistrip coupler.” This is a construction that,
with the help of metallic strips on the surface, transmits
the SAW electric potentials to the other part of the sur-
face and excites the SAW in another channel. Some of
the “secondary effects” mentioned above can be
reduced by this operation.

To correct the most deleterious “secondary effects”
of the AFC shape, namely, (1), (2), (3), and (4), in 1977
Yu.V. Gulyaev, A.M. Kmita, and A.S. Bagdasarian [40]
and, independently, S.C. Malocha and B.J. Hunsinger
[41] suggested the so-called “capacitive weighting of
electrodes.” In this construction, the main array of
SAW-emitting electrodes (that have uniform overlap-
ping) is connected with complement electrode arrays
with apodization by capacitive links. Only these com-
plement (additional) electrode arrays have electrical
(ohmic) contacts with the bus lines. Besides reducing
the “secondary effects” mentioned above, this con-
struction is much more flexible for the formation of any
arbitrary complex amplitude–frequency curve and
phase–frequency curve, since there are more places
where such characteristics may be formed. One of the
most important advantages of the capacitive tap
weighted IDT is that both the input and output IDTs
may have capacitive apodization, meaning that their
AFCs may be multiplied by each other. This can drasti-
cally improve the quality of the filter. In the case of
usual apodization inside the SAW propagation channel,
only one of the IDTs can be apodized, while another
IDT should be a wideband one without apodization.
This is connected with the distortion of the wave front
due to apodization inside the channel, which prevents
multiplication of the AFCs.

In 1969, K. Ingebrigtsen [42] suggested a very con-
venient phenomenological method for the calculation
of the characteristics of SAW devices via the “effective
dielectric constant” of a piezoelectric semispace by
using the measurements of the velocity of SAWs on
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free and metallized surfaces. This “Ingebrigtsen
method” is widely used even in complicated cases.

E. Ash in 1967 [43] suggested the so-called topo-
graphic SAW waveguide, and D.L. White, also in 1967,
suggested the “strip” waveguide [44], both of which are
used to concentrate acoustic energy along certain paths
and which are very important elements of SAW
devices. In 1970, E. Ash proposed the SAW resonators
and resonator filters [45] that today are widely used in
SAW devices.

Most SAW devices use surface acoustic Rayleigh
waves [46], which were first considered by Lord Ray-
leigh in 1885 in connection with problems posed by
earthquakes. These waves have no dispersion both in
nonpiezoelectric and in piezoelectric materials. They
propagate in a surface layer that has a thickness on the
order of one wavelength. Thus, for frequencies higher
than 1 GHz, these waves propagate in a layer less than
1 micron thick, and surface treatment can unfortunately
spoil the properties of a material in this layer. In 1968,
J. Bleustein [47] and, independently, Yu.V. Gulyaev
[48] suggested a new type of nondispersive SAW,
namely, pure shear surface acoustic waves in piezoelec-
tric materials.3

They considered piezoelectric crystals of hexagonal
symmetry (CdS type) where the wave propagates per-
pendicular to the C axis with mechanical displacement
along the C axis. The satisfaction of stress-free bound-
ary conditions is here due to the exact compensation at
the surface by the stresses produced by mechanical dis-
placement and by the piezoeffect. The surface character
of this wave, which in textbooks is called the
Bleustein–Gulyaev (BG) wave, is due to the reduction
of the “stiffened” piezoelectric constant near the sur-
face and the subsequent reduction of the shear bulk
acoustic wave velocity in the surface layer (see [50]). In
1970, J. Kerber and R.F. Vogel published a paper (IEE
Trans. Sonics Ultrason., Vol. 19, No. 3) entitled “Gen-
eralized Bleustein Modes.” This theoretical paper pre-
sented the general conditions for the existence of shear
SH surface waves and specified the crystal cuts where
they are possible. This was a generalization of the pre-
vious publications [27, 28] and provided a list of the
types of piezoelectric crystals, in which such SH sur-
face waves can exist. The first experimental observa-
tion of BG waves was done by P. Tournois, C. Maer-
feld, and F. Jires [51] in 1970 and, independently, by
A.I. Morozov and M.A. Zemlyanitzyn [52] also in
1970.

The broad investigations of physical phenomena
connected to the interaction of SAWs with electric
fields and electrons in piezoelectric dielectrics and

3 Bleustein’s paper appeared in December 1968 and Gulyaev’s
paper in January 1969, but the latter was submitted 20 days
before Bleustein’s. Both works were carried out independently. It
should be noted that a shear SAW whose surface character is pro-
vided by the piezoeffect was considered earlier by M. Kaganov
and S. Sklovskaya [49], but they considered piezocrystals of
cubic symmetry, in which such waves cannot exist.
semiconductors and in layered piezoelectric–semicon-
ductor structures, carried out from 1970s to the 1990s
in Europe, the United States, the USSR, Japan, and in
other countries led to the rapid development of SAW
devices and their use in various radioelectronic systems
for information processing and communications (see
the review paper by D. Morgan [53]). In 1974, five
European scientists, namely, E. Ash, J. Collins,
Yu. Gulyaev, K. Ingebrigtsen, and E. Paige were
awarded the Hewlett-Packard European Physical Soci-
ety Prize for the development of the physical founda-
tions of SAW devices.

Parallel to the development of the SAW devices in
the sixties and seventies, detailed investigations of
acoustic-wave (AW) propagation in conducting materi-
als (semiconductors and metals) and of AW interaction
with free electrons were carried out. Many new effects
were discovered and new methods were developed.
Among the most important achievements in this field
were new methods of characterizing materials—by
their mechanical, electrical, magnetic, thermal, etc.,
properties—with the help of acoustic waves. These are
in the works of F.S. Hickernell and his coworkers [54–
57], Slobodnik (see his book [58]), S.N. Ivanov et al.
[59], A.I. Morozov [60], and many others.

Another achievement was the theoretical prediction
and experimental observation of new transport phe-
nomena connected with the dragging of electrons by
acoustic waves. One of these phenomena had already
been described, namely, the acoustoelectric (AE) effect
discovered in 1953 by R. Parmenter. Another effect of
this type is the acoustomagnetoelectric (AME) effect:
the excitation, by an acoustic wave in a specimen
placed in a magnetic field that is transverse to the AW
propagation direction, of an electric current (or voltage
if the specimen is open-circuited) perpendicular both to
the magnetic field and to the AW propagation direction.
In the case of a bipolar semiconductor, the AME effect
was discovered by A.A. Grinberg and N.I. Kramer [61],
and it is due to the dragging of both electrons and holes
by the AW and the resulting Hall effect on the acousto-
electric currents related to the electron and holes. In a
monopolar semiconductor, AME effects were theoreti-
cally predicted by E.M. Epstein and Yu.V. Gulyaev [62]
and experimentally observed by A. Korolyuk and
N. Roy [63].

In the monopolar semiconductor, the AME effect is
connected with the fact that, due to the energy depen-
dence of the electron momentum relaxation time, elec-
trons of different energies are dragged by the AW with
different forces. In the case of a short-circuited speci-
men, the AME current is just the Hall current with a dif-
ferent (“acoustoelectric”) Hall coefficient. In the case
of an open-circuited specimen, there appears a compen-
sating electric field that drags the electrons in the oppo-
site direction with the same force, i.e., independently of
electron energy. As a result, two “partial” electric cur-
rents, equal in size and opposite in direction, in which
the average energy of the electrons and, hence, their
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mobilities are different, appear in the specimen in ori-
entations transverse to the magnetic field and AW prop-
agation directions. Thus, the Hall effects due to these
“partial” currents do not compensate each other, and a
“differential” acoustomagnetoelectric field appears,
which depends on the momentum relaxation mecha-
nism of electrons. This effect is a tool for the study of
electron scattering mechanisms in solids. The presence
of these partial current leads to other “acoustic” elec-
tron-transport phenomena: the acoustothermal effect
[64], the acoustomagnetothermal effect [65], the
“acoustic” Ettingshausen and Peltier effects [66], etc.,
in which the moving force is the dragging of electrons
by the acoustic wave.

Surface acoustic waves produce both longitudinal
and transverse (perpendicular to the surface) acousto-
electric effects. The transverse AE effect, which is due
to SAW and which was theoretically predicted by
Yu.V. Gulyaev et al. [36] and experimentally observed
by A.M. Kmita and A.V. Medved [67], is a basis for
the creation of effective SAW convolvers, correlators,
and image-reading devices [68]. The interaction of
SAWs with a two-dimensional electron gas in thin
films and surface layers was first considered in 1976
by Yu.V. Gulyaev and R. Gasparian [69].

The nonlinear theory of the interaction of an AW of
arbitrarily large amplitude with electrons in semicon-
ductors was developed at the end of the sixties. In the
works of Y. Abe [70], I.R.A. Beale [71], and P.E. Zil-
berman [72], stationary AWs that are due to nonlinear
effects are considered. P.K. Tien [73] numerically cal-
culated some of the nonlinear effects of AW interaction
with electrons for certain cases.

The analytical nonlinear theory of the interaction
of AWs of arbitrary large amplitudes with electrons
in semiconductors was developed in 1970 by
Yu.V. Gulyaev [74].

The analytical nonlinear theory of AW propagation
for the nonclassical case (the so-called “momentum”
nonlinearity) was developed by P.E. Zilberman [75] in
1971 and experimentally verified that same year by
S.N. Ivanov, I.M. Kotelyansky, G.D. Mansfeld, and
E.N. Khazanov [76].

In the late 1960s, a nonlinear theory of interaction
between acoustic waves of arbitrary high amplitude and
electrons in semiconductors was developed. Abe [70],
Beale [71], and Zilberman [72] considered stationary
acoustic waves caused by nonlinear effects. Tien [73]
numerically calculated some of the nonlinear effects of
the interaction of acoustic waves with electrons for a
number of specific cases.

A detailed experimental study of different mecha-
nisms of acoustoelectronic nonlinearity was carried out
using the idea of the multiflight generation and amplifi-
cation of high-intensity acoustic waves, which was for-
mulated and developed by A.S. Bugaev, Yu.V. Gulyaev,
and G.D. Mansfeld in 1978.
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We have mentioned here only a few achievements in
the early stage of development of acoustoelectronics
(before the beginning of the seventies) that, in our opin-
ion, are important contributions to solid-state physics
and electronics and that determined the progress of this
branch of science and technology for years afterward.
More than 40 years have already passed since the first
works on SAW applications in electronics appeared.
During this period, many new physical works have
been carried out, thousands of scientific articles and
more than ten large monographs have been published,
hundreds of patents have been registered, and many
acoustoelectronic devices have been developed.

In this short report, it is not possible to describe
everything that has been done, as well as to mention the
names of all the scientists and engineers who have con-
tributed to this field. Nevertheless, we dare to give a list
(of course, far from complete) of the names of those
who, in our opinion, have made the main contributions
to the early stage of the development of acoustoelec-
tronics (in the 1960s and the beginning of the 1970s).
In alphabetical order, the list is as follows:

USA: R. Adler, B. Auld, J. Bleustein, L. Coldren,
C. Hartman, F. Hickernell, M. Holland, A. Hutson,
S. Joshi, B. Khuri-Yakub, G. Kino, K. Lakin, D. Mal-
ocha, H. Mathews, M. Pomerantz, C. Quate, J. Shaw,
A. Slobodnik, H. Smith, R. Smith, H. Spector, R. Tankrell,
P. Tien, H. Tiersten, C. Wang, G. Weinreich, D. White,
R. White, H. Whitehouse,….

USSR (Russia): V. Anisimkin, M. Balakirev,
V. Bonch-Bruevich, S. Bogdanov, A. Bugaev, A. Cha-
ban, L. Chernozatonsky, E. Epstein, Yu. Galperin,
A. Ganapolsky, M. Grigor’ev, Yu. Gulyaev, V. Gure-
vich, Yu. Ilisavsky, S. Ivanov, M. Kaganov, A. Kmita,
I. Kotelyansky, I. Kucherov, V. Lemanov, V. Levin, V. Lya-
mov, R. Maev, G. Mansfeld, A. Medved, A. Morozov,
V. Plessky, V. Proklov, V. Pustovoit, V. Shevchik, N. Sini-
tzyn, Yu. Solodov, K. Tolpygo, I. Victorov, I. Yakovkin,
P. Zilberman, Yu. Zyuryukin,….

Japan: N. Chubachi, K. Inoue, S. Inuishi, K. Ioshida,
N. Mikoshiba, K. Nakamura, E. Sezawa, K. Shibayama,
H. Shimizu, T. Shiosaki, K. Tsubouchi, M. Yamanishi,
K. Yamanouchi….

UK: E. Ash, J. Collins, R. De la Rue, J. Maines,
D. Morgan, E. Paige, K. Wilkinson,….

France: E. Dieulesaint, J. Henaff, F. Jires, C. Maer-
feld, G. Quentin, P. Tournois,….

Norway: K. Blotekjaer, H. Engan, K. Ingebrigt-
sen,….

Canada: E. Adler, C. Campbell, G. Farnell,….
Germany: W. Buff, K. Dransfeld, M. Weinacht,….
Poland: E. Daniski, S. Kalissky, M. Shusta-

kowsky,….
Many younger scientists and engineers are now very

well-known names in SAW devices, physics, and tech-
nology. One may find references to works published in
the 1970s–1990s in the excellent historical review by
D. Morgan [53].
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Today, many practical applications of acoustoelec-
tronic phenomena are connected with SAW devices,
including

—bandpass filters,
—dispersive filters,
—dispersive delay line,
—devices for coded-signal processing (coders and

decoders),
—fast Fourier transformers,
—convolvers and correlators,
—amplifiers and generators,
—digital Nyquist filters,
—frequency synthesizers, etc.
Various SAW bandpass filters, due to their unique

characteristics in comparison with other analogous
devices, are now used in practically all radioelectronic
systems for analog and digital information processing
and form more than 90% of the world market in acous-
toelectronic devices. These are filters for television, ste-
reo radio broadcasting, audio and videotape recorders,
compact disc recorders and players and, more and more
in recent years, for radio telephones and cellular tele-
phone networks. Of course, there are many special
applications for acoustoelectronic devices in military
systems. In accordance with data published in 2003, the
production volumes of various kinds of filters are as
follows:

—traditional TV filters for intermediate frequencies
for different standards—over 2 billion pieces per year;

—filters for audio devices, mainly for automobile
FM radios, frequency synthesizers—billions of pieces
per year;

—filters for cellular phones: radio frequency fil-
ters for frequencies up to 2.5 GHz with bandwidths of
25 MHz (GSM), 34 MHz (EGSM), and 75 MHz
(TCM)—over 2 billion pieces per year;

—IF filters for frequencies of 70–450 MHz with the
bandwidths 300 kHz (GSM), 1.25 MHz (CDMA), and
5 MHz (WCDMA)—over 2 billion pieces per year.

The total production of acoustoelectronic devices
based on SAWs and bulk AWs (resonators and vibra-
tors) in 2003 was approximately more than 10 billion
dollars.

The main producers of SAW devices are Murata,
Kyoto Ceramics, Samsung, LG, Fujitsu, Hitachi, NEC,
Tai SAW, Epcos, SAWTEK, Thomson, Vectron, CTS
(Motorola), RF Monolithics, Morion, etc.

The production of acoustoelectronic devices using
bulk AW high-precision quartz oscillators, quartz reso-
nators and vibrators (OCXO)- and bulk AW filters is
now about 2 billion pieces per year (~3 billion dollars)
for:

—watches;
—radio telecommunications and telephony;
—navigation and positioning (GPS);
—control and measurements technique;
—emergency services (Kospas, SARSAT);
—rocket and space techniques.
The main producers are Conning Frequency Con-

trol, CQE, C-MAC, Piezo Technology, Frequency
Electronics, Morion, etc.

Due to their unique features, small size, mechanical
durability, reliability, tuning-free operation, good tem-
perature stability, and ability to work in aggressive
media under conditions of strong radiation and high (up
to 700°C) temperatures, acoustoelectronic devices will
always have their proper niche in electronics of the
twenty-first century.

The scientific aspects of acoustoelectronics con-
tinue to develop. Though not pretending to predict all
but the most important tendencies in the development
of future acoustoelectronics in the twenty-first century,
we nevertheless will make several notes.

First of all, we should mention SAW matched filters,
which are now used for the recognition of coded sig-
nals. In the twenty-first century, these filters will have
very wide applications as various markers for every-
thing from consumer goods to planes, trains, cars, and
even the identification of personnel.

Another direction is connected with the use of bulk
acoustic waves (BAWs) at very high frequencies (more
than 2 GHz), where SAWs are difficult to apply due to
high absorption in the surface layer. The amplification
of BAWs at a frequency of 9.4 GHz by the supersonic
drift of electrons was obtained by M. Pomerantz [77] in
1964 at 4.2 K and by S.N. Ivanov and G.D. Mansfeld
[78] in 1969 at 77 K. Today, the high-frequency devices
using BAWs are represented by high-quality resonators
and resonator filters [79] that are widely used in radio-
electronic systems, and their area of application will
surely grow.

Next, we should point out SAW applications in sen-
sors and actuators. Today, SAW sensors are already
being used for the identification of gases, vapors, and
liquids. Recently, many new constructions of SAW sen-
sors with higher sensitivity and selectivity were sug-
gested, which will open new areas for their application,
including narcotics identification [80–82].

The fourth direction of acoustoelectronics develop-
ment in the twenty-first century will definitely be con-
nected with the use of piezoelectric semiconductors or
layered piezoelectric–semiconductor structures, as was
suggested in [27]. We can point out at least six acousto-
electronic devices that are based on layered piezoelec-
tric–semiconductor structures:

(1) A SAW amplifier employing the supersonic drift
of electrons of the TWT type (see [27], as well as [30–
35]). The best result of [35] (central frequency 280 MHz,
amplification 50 db, noise factor <7, wide band) is com-
parable to transistor amplifiers and allows one to hope
that this amplifier will find its niche, since it has certain
advantages that include the complete electrical isola-
tion of output from input.
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(2) Another prospective device may be the so-called
acoustic injection transistor (AIT) [83], in which the
amplification of the signal is perfomed by the conduc-
tivity modulation of the space between collector elec-
trodes as a result of the bunching of electrons in the AW
generated by an input signal. Several constructions of
AITs have been suggested, many of which theoretically
may have quite good characteristics.

(3) Examples of devices connected with charge
transmission by an AW of sufficiently large amplitude
are acoustic analogs of CCDs (charge-coupled devices)
[84–86]. The “physical” principle of these “ACCDs” is
that electrons may be trapped into potential pits, cre-
ated by the large-amplitude AW in a piezoelectric mate-
rial, and transmitted with an AW velocity. Another con-
struction of an ACCD may use the acoustoelectric
effect: the charge bunches in technologically created
potential pits can be transferred from one pit to another
via the dragging of electrons by the AW pulse.

(4) Convolvers and correlators based on the trans-
verse acoustoelectric effect (see [36, 67, 68, 87]) are
much more effective than those devices using SAWs in
piezodielectrics, since the “electron nonlinearity” in
piezosemiconductors is much larger than the “lattice
nonlinearity.” One may think that, in the twenty-first
century, “acoustoelectronic” convolvers and correlators
will be widely used for information processing.

(5) Another perspective is the acoustic image-read-
ing device based on the propagation of short acoustic
pulses in a layered-structure piezoelectric-photocon-
ducting semiconductor and the transverse acoustoelec-
tric effect. This is an analog of videcon, only instead of
electron-beam scanning, acoustic pulses are used.

(6) Acoustic memory devices may be based on the
effect of the trapping of secondary electrons produced
by an external electron beam pulse in the surface layer
of a piezoelectric in accordance with the potential relief
of a traveling SAW [88, 89]. It looks like the SAW is
“stopped” for a long time (hours or days, depending on
the residual conductivity of the piezoelectric). The
reading of the “recorded” information is performed by
the application to the surface of another short electron
beam pulse, which shorts the piezoelectric fields while
the existing stresses excite the same SAW, which can
then be registered by an output transducer. It should be
noted that, recently, the phenomenon of the “stopping”
of light [90] in some gases was experimentally
observed. One may see that it is an exact analog of the
above-mentioned previously observed “stopping” of a
SAW [88, 89].

In conclusion, we want to say that the study of the
propagation of acoustic waves in various solid-state
materials and their interaction with electric and mag-
netic fields and with elementary excitations in these
solids will, no doubt, lead to the discovery of new inter-
esting effects, which, in turn, will bring new break-
throughs in the creation of high-technology devices in
the twenty-first century.
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
REFERENCES
1. W. G. Cady, Piezoelectricity (McGraw-Hill, New York,

1946; Inostrannaya Literatura, Moscow, 1949).
2. Physical Acoustics. Principles and Methods, Ed. by

W. P. Mason (Academic, New York, 1964; Mir, Moscow,
1966), Vol. 1, Part A.

3. B. Auld, Acoustic Fields and Waves in Solids (Wiley,
New York, 1973).

4. I. G. Shaposhnikov, Zh. Éksp. Teor. Fiz. 11, 332 (1941).
5. F. V. Shubnikov, Piezoelectric Devices (Moscow, 1940).
6. R. H. Parmenter, Phys. Rev. 89, 990 (1953).
7. H. E. Bommel, Phys. Rev. 96, 200 (1954).
8. A. B. Pippard, Philos. Mag. 46, 1104 (1955).
9. G. Weinreich, Phys. Rev. 107, 317 (1957).

10. I. M. Lifshitz and M. I. Kaganov, Usp. Fiz. Nauk 69, 419
(1959) [Sov. Phys. Usp. 2, 831 (1959)].

11. A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev.
Lett. 7, 237 (1961).

12. K. B. Tolpygo and Z. I. Uritsky, Zh. Éksp. Teor. Fiz. 30,
929 (1956) [Sov. Phys. JETP 3, 725 (1956)].

13. G. Weinreich, Phys. Rev. 104, 321 (1956).
14. D. L. White, J. Appl. Phys. 33, 2547 (1962).
15. H. N. Spector, Phys. Rev. 127, 1054 (1962).
16. M. E. Gertzenstein and V. I. Pustovoit, Radiotekh. Élek-

tron. (Moscow) 7, 1009 (1962).
17. V. L. Gurevich, Sov. Phys. Solid State 4, 909 (1962).
18. N. Mikoshiba, J. Phys. Soc. Jpn. 15, 1189 (1962).
19. R. F. Kazarinov and V. G. Skobov, Zh. Éksp. Teor. Fiz.

42, 910 (1962) [Sov. Phys. JETP 15, 628 (1962)].
20. A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40

(1962).
21. V. L. Gurevich, Sov. Phys. Solid State 4, 1380 (1962).
22. V. L. Gurevich and V. D. Kagan, Sov. Phys. Solid State

4, 2441 (1962).
23. H. N. Spector, Solid State Phys. 19, 291 (1966).
24. V. L. Gurevich, Fiz. Tverd. Tela (Leningrad) 10, 1557

(1968) [Sov. Phys. Solid State 10, 1233 (1968)].
25. V. I. Pustovoœt, Usp. Fiz. Nauk 97, 257 (1969) [Sov.

Phys. Usp. 12, 105 (1970)].
26. R. W. Smith, Phys. Rev. Lett. 9, 87 (1962).
27. Yu. V. Gulyaev and V. I. Pustovoœt, Zh. Éksp. Teor. Fiz.

47, 2251 (1964) [Sov. Phys. JETP 20, 1508 (1964)].
28. R. M. White and F. Voltmer, Appl. Phys. Lett. 7, 314

(1965).
29. I. A. Victorov, Sov. Phys. Acoust. 7, 295 (1961).
30. K. Yoshida and M. Yamanishi, Jpn. J. Appl. Phys. 7, 1143

(1968).
31. J. H. Collins, K. M. Lakin, C. F. Quate, and J. H. Shaw,

Appl. Phys. Lett. 13, 314 (1968).
32. J. H. Collins, H. M. Gerard, and H. J. Shaw, Appl. Phys.

Lett. 13, 312 (1968); K. M. Lakin and H. J. Shaw, IEEE
Trans. Microwave Theory Tech. 17, 912 (1969).

33. Yu. V. Gulyaev, A. M. Kmita, I. M. Kotelyansky, et al.,
Fiz. Tverd. Tela (Leningrad) 13, 1557 (1971) [Sov. Phys.
Solid State 13, 1305 (1971)].

34. L. A. Coldren and G. S. Kino, Appl. Phys. Lett. 23, 117
(1973).



 

88

        

GULYAEV, HICKERNELL

                
35. Yu. V. Gulyaev, I. M. Kotelyansky, A. V. Medved, and
R. A. Mishkinis, Electron. Lett. 16, 114 (1980).

36. Yu. V. Gulyaev, A. Yu. Karabanov, A. M. Kmita, et al.,
Sov. Phys. Solid State 12, 2595 (1970).

37. A. V. Kovalev and I. B. Yakovkin, Radiotekh. Élektron.
(Moscow) 16, 1521 (1971).

38. R. H. Tancrell and M. G. Holland, Proc. IEEE 59, 393
(1971).

39. F. G. Marshall and E. G. S. Paige, Electron. Lett. 7, 460
(1971); F. G. Marshall, C. O. Newton, and E. G. S. Paige,
IEEE Trans. Sonics Ultrason. 20, 124 (1973).

40. Yu. V. Gulyaev, A. M. Kmita, and A. S. Bagdasarian,
Sov. Tech. Phys. Lett. 5, 287 (1979); SU Patent
No. 726648; US Patent No. 4,162,415; US Patent
No. 4,185,218; GB Patent No. 2,003,353; JP Appl.
No. 1,069,686; FR Patent No. 7,821,723; FR Patent
No. 8,020,674, DE Patent No. 2,831,584, DE Patent
No. 2,831,585.

41. D. C. Malocha and B. J. Hunsinger, IEEE Trans. Sonics
Ultrason. 24, 293 (1977).

42. K. Ingebrigtsen, J. Appl. Phys. 40, 2681 (1969).
43. E. A. Ash, in Proceedings of the IEEE Symposium on

Microwave Theory and Technology (Boston, 1967).
44. D. L. White, in Proceedings of the IEEE Ultrasonic Sym-

posium (Vancouver, 1967).
45. E. A. Ash, in Proceedings of the IEEE Symposium on

Microwave Theory Technology (Newport Beach, 1970).
46. Lord Rayleigh, Proc. London Math. Soc. 17, 4 (1885).
47. J. Bleustein, Appl. Phys. Lett. 13, 412 (1968).
48. Yu. V. Gulyaev, JETP Lett. 9, 63 (1969).
49. M. I. Kaganov and S. Sklovskaya, Sov. Phys. Solid State

9 (1967).
50. Yu. V. Gulyaev, Rep. at the UFFC Symposium (Seattle,

1995); IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45, 935 (1998).

51. P. Tournois, C. Maerfeld, and A. Jires, Appl. Phys. Lett.
(1970).

52. A. I. Morozov and M. I. Zemlyanitsyn, JETP Lett.
(1970).

53. D. Morgan, in Proceedings of IEEE International Fre-
quency Control Symposium (Pasadena, 1998).

54. F. S. Hickermell and N. Sakiotis, Proc. IEEE 52, 194
(1969).

55. J. Wasilik and F. S. Hickernell, Appl. Phys. Lett. 24, 153
(1974).

56. F. S. Hickernell, Int. J. High Speed Electron. Syst. 10,
603 (2000).

57. F. S. Hickernell and T. S. Hickernell, IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 42 (3), 410 (1995).

58. A. Slobodnik, R. Delmonico, and E. Conway, Micro-
wave Acoustics Handbook (Air Force Cambridge Lab.,
Bedford, Mass., 1970).

59. S. N. Ivanov, S. F. Akhmetov, I. M. Kotelyansky, and
V. V. Medved, Sov. Phys. Solid State 19, 308 (1977);
S. N. Ivanov, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 653 (1992); Yu. V. Gulyaev, S. N. Ivanov, and
A. G. Kozorezov, Radiotekh. Élektron. (Moscow) 23,
2396 (1978).

60. A. I. Morozov and M. A. Zemlyanitsyn, Sov. Phys. Solid
State 6, 2298 (1972); A. I. Morozov, M. A. Zemlya-
nitsyn, and V. I. Anisimkin, Phys. Status Solidi A 14, 339
(1974); Phys. Status Solidi A 24, 381 (1974).

61. A. A. Grinberg and N. I. Kramer, Dokl. Akad. Nauk
SSSR 157, 79 (1964) [Sov. Phys. Dokl. 9, 552 (1965)].

62. E. M. Epstein and Yu. V. Gulyaev, Sov. Phys. Solid State
9, 376 (1967).

63. A. Koroluk and N. Roy, Sov. Phys. Solid State 16 (1974).
64. Yu. V. Gulyaev and E. M. Epstein, JETP Lett. 3, 410

(1966).
65. Yu. V. Gulyaev and E. M. Epstein, Sov. Phys. Solid State

9, 864 (1967).
66. Yu. V. Gulyaev, Sov. Phys. Solid State 8, 3366 (1966).
67. A. M. Kmita and A. V. Medved, JETP Lett. 14, 455

(1971); J. Appl. Phys. 44, 3034 (1973).
68. W. C. Wang and P. Das, in Proceedings of IEEE Ultra-

sonic Symposium (1972), p. 316.
69. Yu. V. Gulyaev and R. A. Gasparian, Microelectronics 8,

326 (1979); Surf. Sci. 98, 553 (1980).
70. Y. Abe, Prog. Theor. Phys. 31, 956 (1964).
71. I. R. A. Beale, Phys. Rev. 136, 1761 (1964).
72. P. E. Zilberman, Sov. Phys. Solid State 9, 309 (1967).
73. P. K. Tien, Phys. Rev. 171, 970 (1968).
74. Yu. V. Gulyaev, Sov. Phys. Solid State 12, 415 (1970);

IEEE Trans. 415, 19 (1970).
75. P. E. Zilberman, Sov. Phys. Solid State 5, 1240 (1971).
76. S. N. Ivanov, I. M. Kotelyansky, G. D. Mansreld, and

E. N. Khazsnov, JETP Lett. 13, 283 (1971).
77. M. Pomerantz, Phys. Rev. Lett. 13, 308 (1964).
78. S. N. Ivanov and G. D. Mansfeld, Radiotekh. Élektron.

(Moscow) 14, 368 (1969).
79. Yu. V. Gulyaev and G. D. Mansfeld, Radiotekh. Élek-

tron. (Moscow) 8, 1529 (2003).
80. V. I. Anisimkin, R. G. Kryshtal, A. V. Medved, et al.,

Electron. Lett. 34, 1360 (2000).
81. I. V. Anisimkin, V. I. Anisimkin, and Yu. V. Gulyaev, in

Proceedings of IEEE Ultrasonic Symposium (Puerto
Rico, 2000), p. 713.

82. I. V. Anisimkin, in Proceedings of IEEE Ultrasonic Sym-
posium (Hawaii, 2003), p. 1326.

83. Yu. V. Gulyaev, SU Patent (1971); Yu. V. Gulyaev,
G. D. Mansfeld, and G. A. Orlova, Electron. Lett. 17
(12) (1981).

84. Yu. V. Gulyaev, SU Patent (November 1971).
85. A. Siegert, Austrian Patent (December 1971).
86. R. L. Miller, C. E. Northwic, and D. S. Bailey, Acoustic

Charge Transport: Device Technology and Application
(Artech, Boston, 1992).

87. G. D. Mansfeld, in Proceedings of IEEE Ultrasonic
Symposium (Hawaii, 2003).

88. P. S. Voronov, Z. S. Chernov, et al., Pis’ma Zh. Tekh. Fiz.
(1971).

89. A. G. Bert, B. Epstei, and G. Kantorovicz, IEEE Trans.
Microwave Theory Tech. 21, 255 (1973).

90. M. D. Lukin, M. Fleischhauer, R. Cote, et al., Phys. Rev.
Lett. 87, 037901 (2001). 
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005



  

Acoustical Physics, Vol. 51, No. 1, 2005, pp. 89–94. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 1, 2005, pp. 111–116.
Original Russian Text Copyright © 2005 by Kanev, Mironov.

                                                                                                              
A Monopole–Dipole Resonance Absorber
in a Narrow Waveguide

N. G. Kanev and M. A. Mironov
Andreev Acoustics Institute, Russian Academy of Sciences, ul. Shvernika 4, Moscow, 117036 Russia

e-mail: mironov@akin.ru
Received June 23, 2004

Abstract—A sound absorber in a narrow waveguide is considered. The absorber consists of one monopole and
one dipole resonator placed in a narrow pipe. The optimum parameters of the resonators that provide for the
maximum absorption of acoustic power are determined. Results of an experimental study of a two-resonator
absorbing system are presented. A 95% absorption is achieved. © 2005 Pleiades Publishing, Inc.
Using a nondissipative resonator of a monopole
(e.g., a Helmholtz resonator [1]) or dipole [2] type, it is
possible to provide for a total reflection of sound prop-
agating in a narrow waveguide. However, when used as
an absorber of sound, a resonator shows a much lower
efficiency. A single resonator with an optimal loss is
capable of absorbing only half the incident acoustic
power. A complete absorption of sound is possible with
a combination of resonators. Lapin [3] proposed the use
of two Helmholtz resonators, one of which provides a
total reflection of the incident wave and the other,
placed at the pressure antinode, completely absorbs the
power. The distance between the resonators should be
equal to an odd number of quarter-wavelengths. A com-
plete absorption is also possible when two resonators,
namely, a monopole resonator and a dipole one, tuned
to the same frequency, are positioned in one waveguide
cross section [4]. The resonators operate independently,
so that each of them absorbs half the incident acoustic
power. Note that a system of monopoles and dipoles
that absorbs a sound wave was considered years ago
[5]. It was shown that a planar array of monopoles and
dipoles arranged in a staggered order so that the dis-
tances between them were small compared to the wave-
length completely absorbs a plane wave incident on the
array under a certain angle.

In this paper, we present the results of an experiment
with two resonators, namely, a monopole resonator and
a dipole one, placed in a narrow pipe. For some reason,
the resonators were positioned not in one cross section
of the pipe (as in [4]) but at a small (compared to the
wavelength) distance along the pipe axis. In this regard,
we present a theoretical generalization of the problem
of sound absorption by two resonators, which was con-
sidered in [4]. We theoretically investigate the depen-
dence of the absorption efficiency on the distance
between the resonators and on their resonance fre-
quency mismatch and calculate the bandwidth within
which the absorption is sufficiently effective.
1063-7710/05/5101- $26.00 0089
If two closely spaced resonators are used to provide
for the sound absorption in a pipe, it is necessary that
they be of different types. If one of the resonators, e.g.,
the monopole one, is used as a reflector, a particle
velocity antinode is formed near it on the side of the
incident wave. To absorb the incident sound, it is nec-
essary to place a dipole resonator with an optimal
absorption at this antinode. Analogously, if the dipole
resonator is used as a reflector, a pressure antinode is
formed near it and, hence, an absorbing monopole
should be placed there. Below, we study an absorbing
system that consists of one monopole and one dipole
resonator with the monopole resonator serving as a
reflector.

A harmonic wave of unit amplitude with a fre-
quency ω and a wave number k propagates in the pos-
itive direction of the x axis of a narrow waveguide
(Fig. 1). A dipole resonator is placed at the point x = 0,
and a monopole resonator is placed at x = L. The system
of two resonators reflects a wave with an amplitude V
and transmits a wave with an amplitude W. Thus, the
pressure field to the left of the resonators can be repre-
sented as Pl(x) = exp(ikx) + Vexp(–ikx) and the pressure
field to the right, as Pr(x) = Wexp(ikx). The field
between the two resonators is also represented as a sum
of two waves traveling in opposite directions: P1(x) =
Aexp(ikx) + Bexp(–ikx). The particle velocity fields
are represented in a similar way: Ul(x) = (exp(ikx) –
Vexp(–ikx))/ρc, Ur(x) = Wexp(ikx)/ρc, and U1(x) =

d m

0 L x

A

BW

l V

Fig. 1. Monopole (m) and dipole (d) resonators in a
waveguide.
© 2005 Pleiades Publishing, Inc.
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(Aexp(ikx) – Bexp(–ikx))/ρc, where ρ is the density of
the medium and c is the sound velocity in it.

For the cross section in which the dipole is posi-
tioned, two boundary conditions are satisfied: (i) the
velocities to the right and to the left of the dipole are
equal and (ii) the pressure drop is equal to the dipole
strength f divided by the area of the waveguide cross
section S. These conditions are expressed as

(1)

(2)

For the cross section in which the monopole is posi-
tioned, two additional boundary conditions should be
satisfied: (i) the pressures to the left and to the right of
the monopole are equal and (ii) the particle velocity
drop is equal to the monopole volume velocity q
divided by S. These conditions have the form

(3)

(4)

The dipole strength and the monopole volume
velocity are determined from the corresponding equa-
tions of motion. The equation of motion of the dipole
resonator has the form [2]

(5)

where v 1 and ξ1 are the velocity and displacement of
the dipole, respectively; m1 is its mass; µ is the associ-
ated mass; κ1 is the coefficient of elasticity; γ1 is the
friction factor; and u is the velocity of the medium
near the dipole. The first term on the right-hand side
of Eq. (5) is the force acting on the dipole from the side
of the medium. This quantity with the opposite sign is the
dipole strength. From boundary condition (1), we obtain
a expression for the velocity of the medium near the
dipole: u = (1 – V)/ρc. Thus, the dipole strength can be
expressed through the sound field as

(6)

where D1 = –iω(m1 + µ) + γ1 + .

The equation of motion of the monopole resonator
has the form [1]

(7)

where v 2 and ξ2 are the velocity and displacement of air
in the resonator neck, m2 is the mass of air in the neck,
σ is the area of the neck cross section, κ2 is the elasticity
of air inside the resonator, γ2 is the friction factor, and
p is the pressure near the resonator. From boundary
condition (4), it follows that the pressure near the
monopole is equal to p = Wexp(ikL). Thus, the mono-

Ul 0( ) U1 0( ),=

Pl 0( ) P1 0( )– f /S.=

U1 L( ) Ur L( )– q/S,=

P1 L( ) Pr L( ).=

m1v̇ 1 µ v̇ 1 u̇–( )– κ1ξ1 γ1v 1,––=

f
iωµ
ρc

---------
iωµ D1+

D1
---------------------- 1 V–( ),=

κ1

iω–
---------

m2v̇ 2 pσ– κ2ξ2– γ2v 2,–=
pole volume velocity is expressed through the sound
field as

(8)

where D2 = –iωm2 + γ2 + .

With allowance for Eqs. (6) and (8), set of boundary
conditions (1)–(4) can be represented in the form

(9)

Here, we have introduced the notations

(10)

The physical meaning of the quantities M1 and M2
can be understood from the comparison of Eqs. (6) and
(8) with Eqs. (10). The dipole impedance is equal to
ρcM1S, and, at the resonance frequency, it tends to
infinity with decreasing loss. Hence, at the resonance
frequency, the dipole is equivalent to a hard wall. The
monopole impedance is equal to σρc/M2, and, at the
resonance frequency, it tends to zero. Hence, at the res-
onance frequency, the monopole is equivalent to a soft
boundary.

Solving set of equations (9), we obtain the expres-
sions for the coefficients of reflection V and transmis-
sion W:

(11)

(12)

A complete absorption of the sound wave incident
on the system means the absence of transmitted and
reflected waves. From Eq. (12) it follows that, for the
absence of any transmitted field, one of the following
conditions should be satisfied: M1 = ∞ (D1 = 0) or M2 =
∞ (D2 = 0). This means that at least one of the resona-
tors should be nondissipative, i.e., should reflect the
whole wave at the resonance frequency. Since the
monopole is positioned behind the dipole along the
direction of the wave incidence (Fig. 1), it is the mono-
pole that should reflect the sound wave at the corre-

q
σ2

D2
------W ikL( ),exp–=

κ2

iω–
---------

A B– V+ 1,=

A B M1 1–( )V+ + M1 1,+=

ikL( )exp A ikL–( )exp B ikL( )Wexp–+ 0,=

ikL( )exp A ikL–( )exp B– M2 1+( ) ikL( )Wexp–  = 0.

M1
iωµ
ρcS
---------

iωµ D1+
D1

----------------------, M2
σ2ρc
SD2
------------.–= =

V
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M1

2
-------
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2
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M1M2

4
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1
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2
-------
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2
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4
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1

1
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sponding resonance frequency ω2 = . Hence,
the friction factor of the monopole γ2 should be equal to
zero. Under the condition M2 = ∞, expression (11) for
the reflection coefficient takes the form

(13)

For the reflected field to be equal to zero, it is neces-
sary that the numerator in Eq. (13) be equal to zero; i.e.,
the following condition should be satisfied:

(14)

Equating the real and imaginary parts of Eq. (14)
and assuming that kL ! 1 (the size of the absorber is
small), we arrive at a system of two equations that
determines the necessary parameters of the dipole res-
onator:

(15)

where k2 =  and ω1 =  is the resonance fre-

quency of the dipole. Solving Eqs. (15) for the reso-
nance frequency ω1 and the friction factor γ1 of the
dipole, we obtain

(16)

The quantity ρSL represents the air mass in the
waveguide between the two resonators, and, for a

κ2/m2

V
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2
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--------------------------------------------------------------------------------.–=
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small-size dipole, we can assume that µ ! ρSL. Then,
Eqs. (16) take the form

(17)

Remember that the frequency corresponding to the
zero value of the transmission coefficient is equal to the
resonance frequency of the monopole ω2. According to
Eqs. (16) and (17), for a complete absorption of the
incident wave, the resonance frequency of the dipole
should be lower than the resonance frequency of the
monopole. The difference in the resonance frequencies
is proportional to the distance L. The friction factor at
which the complete absorption takes place exhibits a
weaker dependence on L.

When the resonance frequencies of the dipole and
the monopole coincide, a complete absorption is possi-
ble if the dipole is placed precisely at the antinode of
the particle velocity of the standing wave and if the con-
dition M1 = –1 is satisfied. In the case of a compact
absorber (the wave distance between the resonators is
small but not equal to zero), the latter condition is not
satisfied and part of the sound wave is reflected. In the
case of coincident resonance frequencies of the dipole
and monopole, i.e., ω1 = ω2 = ω0, from Eqs. (10) and
(13) it follows that, for the maximum absorption, the
friction factor of the dipole should be

(18)

The corresponding minimum coefficient of reflection
from the system of resonators is

(19)

In the limit L  0, we obtain a complete absorption,
which is the same result as that obtained in [4]. The dif-
ference here from [4] consists in that, in our case, the
absorption is provided by only the dipole, while in the
geometry considered in [4], with the monopole and
dipole lying in the same cross section, the absorption is
equally distributed between the monopole and the
dipole. Actually, the distance between the monopole
and the dipole can be reduced to a value at which the
interaction of the resonators through the near field (the
mutual associated mass) can still be ignored.

In addition to the maximum value of the absorption
coefficient, an important parameter characterizing the
efficiency of the absorbing system is the frequency
bandwidth within which the absorption coefficient

(20)

remains smaller than a certain value α0. Determining
the bandwidth, we assume that the dipole and mono-
pole resonators have the same resonance frequency ω0

ω1 ω2 1
ω2µ
ρcS
---------- µ

m1 µ+
----------------k2L– ,=

γ1

ω2
2m2

ρcS 1 k2L( )2+( )
---------------------------------------.=

γ1

ω0
2µ2

ρcS
------------.=

V ikL/2.–=

α 1 V 2 W 2––=
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and that the friction coefficient of the dipole is given by
Eq. (18). This assumption does not practically affect the
result, because the optimal eigenfrequency of the
dipole differs little from the eigenfrequency of the
monopole (see Eq. (13)). This difference is significant
only for the maximum value of the absorption coeffi-
cient.

When kL ! 1, Eqs. (11) and (12) take the form

For small deviations of M1, 2 from the optimum val-
ues M1 = –1 and M2 = ∞, the formulas given above can
be approximately represented as

(21)

It is convenient to introduce the dimensionless
parameter x that determines the deviation of the fre-
quency from the resonance one: ω = ω0(1 + x). Under
the assumption that the associated mass of the dipole
is much greater than its own mass, i.e., µ @ m1, we
represent expressions (10) for the case of x ! 1 in the
form

(22)

Here, Q1 = (m1 + µ)ω0/γ1 and Q2 = m2ω0/γ2 are the Q
factors of the dipole and monopole resonators, respec-
tively.

Substituting Eqs. (22) into Eqs. (21) and then substi-
tuting Eqs. (21) into Eq. (20), we obtain the relation
between the absorption coefficient and the frequency
mismatch x:

(23)

The factors  and  determine the operat-

ing bandwidths of the dipole and monopole resonators,
respectively. According to [2], dipole and monopole
resonators of the same volume exhibit the same effi-
ciency in terms of the sound reflection in a narrow
waveguide. The dipole volume is the volume of the
associated mass: Ω1 = µ/ρ. The cited paper [2]
describes the structure of a dipole resonator that pro-
vides for a multiple increase in the associated mass.
The monopole volume is the volume of the cavity Ω2,
and its resonance frequency can be expressed through

V
M1 M2 M1M2+ +

2 M1– M2 M1M2–+
---------------------------------------------------,–=

W
2

2 M1– M2 M1M2–+
---------------------------------------------------.=

V
1 M1+
1 M1–
----------------, W–

1
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-------.= =
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ω0µ
ρcS
----------

Q1

1 2ixQ1–
-----------------------, M2 = 

σ2ρc
ω0m2S
----------------

Q2

1 2ixQ2–
-----------------------.––

α 1
ρcS
ω0µ
---------- 

  2

2
Sω0m2

σ2ρc
---------------- 

  2

+ 
  x2.–≈

ρcS
ω0µ
----------

Sω0m2

σ2ρc
----------------
this volume [1]:  = . Expressing absorption

coefficient (23) in terms of the resonator volumes Ω1
and Ω2, we determine the bandwidth within which the
fraction of the absorbed power is no less than α0:

(24)

Factor 2 multiplying Ω1 in Eq. (24) appears because
the dipole plays the role of an absorber rather than a
scatterer. From Eq. (24) it follows that the absorption
bandwidth increases as the volumes of the dipole and
monopole increase. If the total volume of the dipole and
monopole is fixed, i.e., Ω = Ω1 + Ω2 = const, the maxi-
mum absorption bandwidth is achieved when Ω2 =

2Ω1 = Ω, i.e., when the monopole volume is twice as

great as the dipole volume. Let us compare the operat-
ing bandwidth ∆ω with the difference between the res-
onance frequencies of the dipole and the monopole δω =
ω1 – ω2 at the optimum tuning given by Eq. (17):

When the optimum relation between the dipole and
monopole volumes takes place, this ratio is equal to

From this formula it follows that, when the condition

kL <  is satisfied, the operating bandwidth

does not depend on the accuracy of tuning of the two
resonators.

Figure 2 illustrates the operation of an absorbing
system of two resonators (Fig. 1) tuned to the same fre-
quency ω0 for different relations between the resonator
parameters. The dimensionless distance between the
resonators is k0L = 0.1, where k0 = ω0/c. The thin lines
indicate the amplitude coefficients of transmission (the
dashed lines) and reflection (the thin solid lines), and
the thick line represents the sum of transmitted and
reflected acoustic powers, i.e., the quantity |W|2 + |V|2.
Figure 2a refers to a system in which both resonators
have the same operating bandwidth (Ω1 = Ω2). The
transmission coefficient is equal to zero, and the reflec-
tion coefficient is nonzero according to Eq. (19). How-
ever, at the optimum parameters of the resonators, the
reflection coefficient V is small and the absorption coef-
ficient α is close to zero but not equal to it. Figure 2b
represents the condition under which the operating
bandwidth of the dipole is two times smaller (2Ω1 =
Ω2). The absorption curve is somewhat narrower, and a

ω2
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minimum of the reflection coefficient appears at the
resonance frequency. The width of the absorption curve
noticeably decreases if the operating bandwidth of the
monopole is reduced to half its initial value (Ω1 = 2Ω2,
Fig. 2c; compare with Fig. 2a).

The absorbing system considered above has been
studied experimentally. In the experimental setup, the
transmitted and reflected fields are measured by an
acoustic interferometer, which has the form of a circu-
lar pipe 10 cm in diameter and 2 m in length (Fig. 3) [6].
A sound source is mounted on one end of the interfer-
ometer, and a broadband signal is supplied to the
source. The other end is filled with a sound-absorbing
material to reduce the natural resonances of the pipe.
The sample is mounted in the middle of the interferom-
eter, i.e., at a distance of 1 m from the source. The
amplitudes of waves A, B, C, and D travelling on both
sides of the sample are measured by pairs of micro-
phones (see, e.g., [7]). Wave B is the sum of wave A
reflected from the sample and wave D transmitted
through the sample. The following equality takes place:

(25)

Analogously, wave D is a sum of wave A transmitted
through the sample and wave D reflected from the sam-
ple. Hence, we have

(26)

Using Eqs. (25) and (26), the reflection and trans-
mission coefficients can be expressed in terms of the
measured amplitudes of the four travelling waves that
occur in the interferometer:

If the wave transmitted through the sample can be
completely absorbed, i.e., if D = 0, common relations
are valid for the reflection and transmission coeffi-
cients: V = B/A and W = C/A.

The signals from four microphones are supplied to a
four-channel analog-to-digital converter, and the data
from the latter are sent to a PC, which performs the sig-
nal processing.

The monopole is a cylindrical cavity with a circular
hole closed with a membrane (to reduce the resonance
frequency) on its one end. The volume of the cavity is
2.2 × 10–4 m3, and the area of the hole is 7.9 × 10–5 m2.
The dipole has the form of a 2-cm-long pipe with a diam-
eter of 3.7 cm (the cavity volume is 2.15 × 10–5 m3), and
one end of this pipe is closed with a membrane. Here,
the membrane plays the role of elasticity. Such a struc-
ture is considered in detail in [2]. The parameters of the
dipole, namely, the resonance frequency coinciding
with the monopole resonance frequency and the opti-
mal loss necessary for the maximum absorption, are
provided by adjusting the membrane tension and the
length of the pipe. The resonance frequencies of the
monopole and the dipole are approximately identical

B VA WD.+=

C WA VD.+=

V
DC AB–

D2 A2–
----------------------, W
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D2 A2–
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and equal to 315 Hz. The problem of achieving the nec-
essary resonator mismatch given by Eqs. (17) was dis-
carded, because the theoretical difference δω for the
system under investigation was smaller than 1 Hz. The
Q factors of the resonators are determined from their
resonance curves and are equal to 90 for the monopole
and 30 for the dipole. This value is close to the optimum
Q factor at which the friction coefficient takes on the
necessary value given by Eqs. (17). The distance
between the resonators is 8 cm (kL = 0.47).

Figure 4 shows the results of measurements. Two
resonators with parameters closest to the optimum ones
absorb 95% of the energy of the incident sound wave at
the resonance frequency. The frequency dependence of
the coefficient E = 1 – α is shown in Fig. 4a. The mini-
mum value of E is –13 dB, and the relative bandwidth
within which E does not exceed –10 dB is equal to

(c)

ω/ω0

1.0
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0.4
0.2

0
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Fig. 2. Coefficients of reflection (thin solid lines), transmis-
sion (thin dashed lines), and absorption (thick lines) of the
two-resonator system for the following different values of
the parameters: (a) Ω1 = Ω2 = Ω; (b) Ω1 = Ω/2, Ω2 = Ω; and
(c) Ω1 = Ω, Ω2 = Ω/2.

Fig. 3. Schematic representation of the experimental setup:
(1) waveguide, (2) sound source, (3) sound absorber,
(4) pair of microphones measuring the reflected field, and
(5) pair of microphones measuring the transmitted field.
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0.008. A complete absorption of the incident wave was
not achieved, presumably because the dipole loss was
not the optimum one.

Figures 4b and 4c show the characteristics of single
resonators. The coefficient of transmission (Fig. 4b)
through the waveguide cross section, in which the
monopole resonator is positioned, is equal to –16 dB at
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(b)
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280 290 300 310 320 330 340 350

(c)

W, dB
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0
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Fig. 4. Results of the experimental study of the resonator
operation: (a) absorption coefficient of the monopole–
dipole resonator, (b) transmission coefficient of the mono-
pole resonator, and (c) absorption coefficient of the dipole
resonator.
the resonance frequency. The coefficient E (Fig. 4c) for
the dipole is characterized by small values and is equal
to 1.5 dB at the resonance frequency. The operating
bandwidth of the dipole [3] is much smaller than that of
the monopole: their ratio is about 1 : 10, i.e., the same
as the ratio of their volumes. Therefore, the operating
bandwidth of the two-resonator absorbing system is
four times smaller than the operating bandwidth of the
monopole.

Thus, this study experimentally verifies the possibil-
ity of an effective absorption of sound in a narrow pipe
by a system of two closely spaced resonators, one of
which is a monopole and the other, a dipole. A theory
that allows for the optimization of the parameters of the
system is developed. Later, we intend to perform a
more detailed experimental verification of the theory
proposed above, specifically to study the influence of
the distance between the resonators and the accuracy of
their tuning and dimensions on the absorption band-
width.
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Abstract—An experimental study of the vertical acoustic sounding of stratified flows is carried out. The flows
include two-dimensional wakes behind cylinders and three-dimensional wakes behind single ring vortices.
A simultaneous optical visualization of the sound-scattering zones is performed. By the spectral processing of
the schlieren patterns (in the wave number domain) and echo signal arrays (in the frequency domain), the most
probable structure-forming elements of the scattering region are determined. These elements are internal
boundary layers whose vertical size (thickness) is determined by the local frequency of internal waves and the
kinematic viscosity. © 2005 Pleiades Publishing, Inc.
Acoustic sounding is one of the most rapidly pro-
gressing methods for a fast evaluation of the physical
properties and characteristics of the processes that
occur in a stratified ocean or atmosphere [1]. Sound-
ing is used to detect relatively large-scale (streams,
flows, wakes behind obstacles, or internal waves) and
also fine-structured phenomena. The interpretation of
the results of measurements involves the problem of
determining the nature of scatterers, which can be of a
physical (bubbles, suspensions), biological, or hydro-
mechanical origin (turbulence, multicomponent con-
vection, vortices).

The identification of the class of scatterers is based
on the empirical laws [1] established under full-scale
and laboratory conditions. One can reliably detect the
presence of gas bubbles (by the resonant frequencies in
echo signals) and the presence of a biological suspen-
sion (from the frequency dependence and the character-
istic temporal migration of the depth), while inorganic
suspensions are less reliably identified.

Hydrodynamic mechanisms that lead to the forma-
tion of an acoustic contrast include thermohaline con-
vection [2], turbulence, and more compact formations,
such as vortex bundles, ring vortices, and coherent
structures [3–5]. The scattering from turbulent wakes
behind bodies was studied under half-full-scale condi-
tions in [6]. Theoretical models of scattering in the
ocean were developed using hypotheses that contain
deterministic spectra of refraction-index fluctuations;
such models can be extended to the case of a three-
dimensional anisotropy of inhomogeneities [7].

Theoretical and experimental studies of the scatter-
ing from a stationary single two-dimensional vortex in
a homogeneous fluid revealed zero levels in the forward
and backward directions [5]. However, according to
laboratory experiments in a stratified fluid, a compact
1063-7710/05/5101- $26.00 ©0095
vortex strongly scatters ultrasound in all directions [8].
In two-dimensional stratified wake flows, which may
contain vortices, layered structures, and small-scale
turbulence, peaks associated with specular reflection
from high-gradient boundary surfaces arise in certain
directions against the background of diffuse volume
scattering [9]. It is of both theoretical and practical
interest to study scattering from discrete vortex forma-
tions, whose variety underlies the classification of flow
regimes behind obstacles.

From the viewpoint of the scattering of sound, the
regions of interest in a fluid are those containing a set
of elements with close characteristic dimensions. An
example is a turbulence region, which, at a certain stage
of evolution, is characterized by a statistically uniform
internal scale.

In a stratified fluid, in addition to turbulence, other
mechanisms generate small-scale inhomogeneities
possessing such a property. One of them is the so-called
internal boundary layer formed as a result of the inter-
action of internal waves with the fine structure of the
flow.

The existence of internal boundary layers follows
from the analysis of the system of equations of motion,
which, for an isothermal case, can be reduced to the
form [1]

(1)

Here, v is the velocity of the fluid, p is the pressure, g is
the acceleration of gravity, s is the salinity, ν is the kine-

∂v
∂t
------ v∇( )v+ ∇ p

ρ0
-------– g ν∇ 2v,+ +=

∂ρ
∂t
------ div ρv( )+ 0,=

∂s
∂t
----- v∇( )s+ κS∇

2s.=
 2005 Pleiades Publishing, Inc.
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matic viscosity, and κs is the salt diffusion coefficient.
The boundary conditions are the no-slip and no-flux
conditions at the surface of the moving object of height
D (or a stationary object in a flow) and the decay of all
disturbances at infinity.

A detailed analysis of system (1) shows that each
type of internal waves corresponds to two different
types of layers on surfaces in a flow [10] or on interlay-
ers inside the fluid [11, 12], whose thicknesses are
determined by the local frequency of internal waves
and the corresponding kinetic coefficient, i.e., the kine-
matic viscosity or the salt diffusion coefficient.

The term “layer” means that this structural element
has a certain vertical size (thickness), which, for a
dynamic layer (i.e., a layer in the flow velocity field) is
determined as [11]

where ωi is the local frequency of internal waves. The
horizontal length of the layer may take any value,
which, in the general case, may be smaller than its
thickness. The flow region, within which the viscosity
and the frequency ωi are approximately constant,
should contain a set of elements characterized by the
same vertical scale δ.

The efficiency of the backscattering of sound from a
microstructured region depends on the relation between
the structure-forming microscale δ (i.e., the internal
scale, which is the predominant one) and the sound
wavelength λ. As is known, maximum volume scatter-
ing corresponds to the condition δ = λ/2 (the Bragg res-
onance), and, therefore, the closeness of the scale δ to
the half-wavelength λ/2 can be accepted as the criterion
for classifying a given inhomogeneity with the class of
effective scatterers.

In this paper, with allowance for the aforementioned
criterion, we study the role of internal boundary layers
as sources of scattering on the basis of experimental
data on the echo sounding and optical visualization of
stratified flows.

We consider the scattering of sound characterized
by frequency ω and wavelength λ from a hydrodynamic
wake in an exponentially stratified fluid, whose density
ρ(z) linearly increases with depth due to the increase in
salinity. The temperature is assumed to be constant. The
stratification is characterized by the scale Λρ =

|d(lnρ)/dz|–1 and the buoyancy frequency N =  =
2π/Tb (Tb is the buoyancy period), and the mechanical
oscillations (internal waves) are characterized by the
frequency ωi and the wavelength λi.

The dimensionless parameters of the wake are as
follows: the Reynolds number Re = D/δu = UD/ν,
where U is the velocity of motion of the wake-forming
object (a cylinder or a vortex), and the internal Froude
number Fr = U/ND.

δν 2ν/ωi,=

g/Λρ
The simultaneous utilization of the schlieren visual-
ization method [13] and acoustic sounding, which com-
plement each other, extends the scope of the experi-
ment. The optical image spectra allow for the determi-
nation of the spatial structural features of the flow and
the structure-forming scales. The frequency spectra of
oscillations of the echo signal make it possible to single
out the local frequencies of internal waves, which,
together with the kinetic coefficients, determine the
current dimensions of the internal boundary layer in the
insonified region.

The experiments were performed in a tank with the
dimensions 240 × 40 × 60 cm3, which had transparent
walls. The tank was filled with a linearly stratified water
solution of common salt by the continuous displace-
ment method. The density distribution profile and the
buoyancy period were measured before each experi-
ment by a conductivity sensor (with an error of no more
than 5%). In the given series of experiments, the period
was Tb = 5.4 s.

Two types of wake flows were generated in the tank:
a two-dimensional wake behind a horizontally moving
circular cylinder (with a diameter D of 1.5 or 5.0 cm)
and a three-dimensional wake behind ring vortices. The
cylinder was attached by thin knifes to a sledge, which
moved along the guides mounted above the tank.

The vortices were generated by a spring–piston
mechanism [8] with a horizontal guiding taper pipe
ending with a nozzle. The vortex emerging from the
nozzle moved with some velocity through the sonar
operation zone, where it was insonified with acoustic
signals. The axis of the schlieren visualization system
and the axis of motion of the perturbing object (vortex
or cylinder) were perpendicular to each other in the hor-
izontal plane. The two axes intersected the vertical axis
of the sound beam at the center of the tank. The error in
the determination of the velocities of the cylinder and
the vortex was no greater than 5%.

The flows were visualized by an IAB-458 schlieren
visualization system in two ways: the conventional
method (vertical slit–knife-edge combination) and the
Maksutov method (slit–thread at the focus). With
allowance for the linear relation between the density
and the refraction index of the salt solution, the first
method visualizes the horizontal component of the
refraction index and the second method visualizes the
magnitude of this component [13].

The buoyancy period was measured by the conduc-
tivity oscillations in the wake behind the density mark
(no greater than 1 mm in thickness), which was formed
by vertically rising gas bubbles or dropping sugar crys-
tals. The error in measuring the buoyancy period was
no greater than 10%.

The sonar antenna had the form of a circular piston
radiator (a piezoceramic disk 2.5 cm in diameter),
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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which was tuned to the mechanical resonance fre-
quency. The radiation power (in the pulse) was 0.3 W.
The acoustic sounding was performed in the vertical
direction by radio pulses with a duration of τ = 40 µs at
a wavelength of λ = 0.15 cm (a carrier frequency of f0 =
1 MHz). The repetition period was chosen to be suffi-
ciently large (T = 0.16 s), which allowed us to avoid a
superposition of the multiple echo from the tank walls
on the useful signal. The sampling interval in the digi-
tization of the echo signal was ∆t = 2.2 µs. The distance
from the acoustic antenna plane to the cylinder center
was H = 23 cm.

The schematic diagram of the acoustic sounding of
a vortex ring and its wake is shown in Fig. 1, where the
characteristic dimensions of the vortex ring and the
sound signal are indicated.

The experiment was performed as follows. After the
tank was filled and all inhomogeneities decayed, the
buoyancy period was measured. Then, an inhomogene-
ity was generated by a towed cylinder or a moving vor-
tex ring, and this inhomogeneity produced a contrast in
both the acoustic and optical fields. The fully created
wake flow was sounded with acoustic pulses and simul-
taneously photographed. The photograph was used
together with the echo signal array in computer pro-
cessing.

The acoustic data were used to determine the inter-
nal wave frequencies, which served to calculate the
dimensions of the internal boundary layers. In the opti-
cal image processing, at the first stage, a rectangular
fragment was separated with the dimensions Wh, where
W is the mean transverse size of the sound beam and
h = cτ/2 is the length of the acoustic transmission.
Then, for this fragment, a spectrum of vertical wave
numbers was constructed, on the basis of which the
presence of linear dimensions obtained from the acous-
tic data was verified and the relation between these
dimensions and the wavelength was determined.

Figures 2a–2c show a sequence of schlieren patterns
of the flow behind a circular cylinder with the diameter
D = 1.5 cm. The images are obtained by the Maksutov
method (the cylinder moves from right to left). The flow
regime is the vortex-wave nonturbulent one, because
the Reynolds number is much smaller than its critical
value Rec = 1000. The central strip on the left-hand side
of the frame (Fig. 2a) represents the blocked fluid at the
depth where the body moves, and the inclined strips
represent the crests (the dark line above) and troughs
(the gray line below) of nonstationary internal waves,
which smoothly transform to the attached internal
waves behind the body.

With the given parameters of motion (Fr = 1.6 and
Re = 410; see Fig. 2a), a vortex density wake is formed
behind the cylinder. As the vertical velocity component
decays, the three-dimensional vortices transform to a
plane-layered structure. In this case, the layer with the
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
highest optical contrast lies in the plane of motion of
the cylinder center. The height of the wake and the
number of interlayers in it increase with time.

To make the processing and the representation of the
results more convenient, the echo signals are combined
into a two-dimensional array, whose elements Amn are
proportional to the scattering amplitude and the num-
bers of rows m and columns n of which are proportional
to the depth zm = z0 + (m – 1)cτ/2 and the running time
tn = (n – 1)T. The array is visualized in the form of an
echogram (Fig. 2d) in the dimensionless time-versus-
depth coordinates. The amplitude of the echo signal is
represented by the degree of blackening.

From the schlieren images and the echogram, one
can see that the density wake and individual high-gra-
dient interlayers perform oscillations in depth. To
extract these oscillations from each column of the array,
we select the maximum value of Amn with its pair of
coordinates zm and tn, after which we filter out the pairs
with Amn < Ac, where Ac is the threshold value.

The resulting array (zm, tn) represents the time
dependence of the vertical coordinate of the acoustic
mark with maximum contrast (Fig. 3a). Its frequency
spectrum contains three maxima in the internal wave
range (f* < 1), which correspond to the frequencies ωi =
0.15, 0.53, and 1.16 s–1 indicated in increasing order in
Fig. 3b.

For these frequencies, the thickness of the dynamic

internal boundary layers is equal to δν =  =
0.36, 0.19, and 0.13 cm, respectively. The latter size is
close to the half-wavelength of sound, and, therefore, it
is the most probable structure-forming element of the

2ν/ωi

1

cτ/2

2

3

5

B

2r

2R

4

Fig. 1. Schematic diagram of the experiments on the acous-
tic sounding of a vortex ring and its wake: (1) sonar antenna,
(2) computerized sonar, (3) vortex ring emerging from the
nozzle, and (4, 5) geometric parameters of the vortex ring.
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Fig. 2. Schlieren pattern (side view) of the flow behind a cylinder for t* = (a) 6.5, (b) 8.0, and (c) 11.0, (a–c) Tb = 5.4 s, D = 1.5 cm,
U = 2.8 cm/s, Fr = 1.6, and Re = 410. (d) The corresponding scattering echogram as a function of the dimensionless age t*. The
elongated light-striking near t* = 7 is the echo from the cylinder, which is formed by the main and side lobes of the directivity pattern
of the sonar antenna.

Fig. 3. (a) Record of oscillations and (b) the frequency spectrum of the depth at which the central sound-scattering layer lies in the
wake behind the cylinder: Tb = 5.4 s, D = 1.5 cm, U = 2.8 cm/s, Fr = 1.6, and Re = 410 (the dimensionless time and frequency are
t* = t/Tb and f* = fTb).
scattering region. This is also evidenced by the fact that
the height of spectral peak 3 observed at the frequency
of 1.11 s–1 (Fig. 3a) is maximal. In the acoustic sound-
ing of stratified flows, the backscattering frequency
spectra often exhibit peaks at the double frequency of
internal waves as well, which is explained by the insen-
sitivity of the scattering amplitude to the sign of the
scattering acoustic impedance jump [14].

When the diameter of the cylinder considerably
increases, the wake region expands, and contrast
regions are formed on both sides of the axis of motion
at a noticeable distance from it (Figs. 4a–4d). The wave
motions in the upper and lower halves of the wake are
in antiphase, which manifests itself in the oscillations
of the acoustic contrast (Fig. 4e). The frequency spec-
tra of the upper and lower halves differ little in shape
(Fig. 4f), and, in the internal wave frequency range
(f* < 1), each of them has a principal maximum at the
frequency ωi = 2π × 0.6/Tb = 0.5 s–1. However, the
width of the maxima is much greater than in the first
experiment (Fig. 2). This is related to the greater size of
the wake in the vertical and, hence, a noticeable vari-
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
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Fig. 4. Schlieren pattern for the wake age t* = (a) 1.7, (b) 2.2, (c) 3.5, and (d) 4.0; (e) the echogram; and (f) the frequency spectrum
of the echo signal in the (1) upper (z < 24 cm) and (2) lower part (z > 24 cm) of the wake behind a cylinder: D = 5 cm, Tb = 7.8 s,
U = 3.6 cm/s, Re = 1900, and Fr = 0.9. The elongated light-striking observed in the echogram with the center at t* = 1.5 is the echo
from the moving cylinder.
ability of the internal wave frequencies from point to
point, according to the dispersion relation ωi = Ncosθ,
where θ is the slope angle of the phase surface of the
wave with respect to the vertical. The values of the fre-
quency ωi (at a level of 0.7 of the first maxima of
curves 1 and 2, Fig. 4f) lie within 0.3–0.7 s–1, and,
according to Eq. (2), the ranges of the dimensions of the
concentration (salt) and dynamic layers should be δs =

 = 0.005–0.01 and δν =  = 0.16–0.25 cm,
respectively.

2κ s/ωi 2νs/ωi
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The actual presence of structural elements with
these dimensions in the wake can be judged from the
spatial spectra of schlieren patterns, which are con-
structed for the vertical wave number kz:

(3)

where x = U(n – 1)T is the horizontal separation of the
point of scattering from the cylinder center, ∆z = c∆t/2,
and M = int(τ/∆t) is the number of rows that fit within

Fz kz n,( ) = Fz kz x,( ) Amn ikzm∆z[ ]∆ z,exp
m 1=

m M=

∑=
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the sounding pulse length cτ/2. Function (3) represents
the dependence of one-dimensional spectra for each
column vector of the scattering matrix on the local
coordinate x. To reduce this dependence to the final
form, taking into account the inhomogeneity of the
sound beam, it should be averaged over the horizontal
coordinate with an interval equal to the width of the

Fresnel zone µ =  ≈ 2 cm:

(4)

where n0 = int(µ/UT).
Spectral form (4) allows us to take into account the

influence of the horizontal length of the scale inhomo-

geneities lz =  and the width of the sound beam on
the echo formation.

For better illustration, Figs. 5a and 5d show magni-
fied fragments of the flow patterns at the stages t* = 3.5
and 4.0. Here, on the background of small-scale inho-
mogeneities, inclined high-gradient interlayers extend-
ing along the horizontal are observed. As the flow
becomes degenerate, the stratification is recovered
within the whole thickness of the fluid and internal
waves begin to penetrate into the wake. In the photo-
graph, this manifests itself as alternating dark spots
along the central horizontal in Fig. 5d.

Averaged spectra (4) of optical inhomogeneities
can be conveniently represented as a grayscale image
in the (x, kz) coordinate plane. The degree of blacken-
ing in Figs. 5b and 5e is proportional to the scattering
level Amn.

The significant spectral amplitudes exceeding the
threshold value of 0.3 lie in the region of wave numbers
kz < 8 cm–1. Thus, the region of existence of the salt
layer (kz = 100–200 cm–1), as well as the resonance
scale λ/2 = 0.075 cm (kz = 13.4 cm–1), are far beyond the
limits of the significant part of the spectrum.

At the same time, the range with the lower bound-
ary kz = 8 cm–1 completely covers the limits of vari-
ability of the dynamic layer (kz = 4–6.25 cm–1). The
most probable scatterer is the structure with the inter-
nal boundary layer scale of 0.16 cm, which is closest
to the size of λ/2.

Since oceanic currents are predominantly three-
dimensional, a question arises as to the presence of inter-
nal boundary layers in three-dimensional structures and
their participation in the scattering of sound. Such a
structure may be a moving vortex ring, which is an effec-
tive sound scatterer by itself and which also produces a
density wake with a high acoustic contrast [8].

The wake formed behind a vortex ring contains the
same elements as those in the wake behind an obstacle:
the attached internal waves, the advance disturbances
including the zero-frequency waves, and the density

Hλ

Yz kz x,( ) 1
n0
----- Fz kz n,( ),

n

n n0 1–+

∑=

kz
1–
wake. The dimensionless parameters characterizing the
regime of motion are the Reynolds and Froude numbers
determined by the external vertical size B (Fig. 1) and
the initial translational velocity U of the vortex: Ree =
UB/ν and Fre = U/NB. An important internal parameter
that determines the stability of the vortex as a whole is
the ratio η of the orbital velocity uϕ to the translational
velocity U. Taking into account the weakness of the
stratification, the value of this ratio can be estimated by
the relation suitable for a homogeneous fluid [15]:

(5)

where β = R/r is the ratio of the large and small radii of
the vortex (Fig. 1).

The schlieren images of two different vortex rings
with different parameters of motion are shown in Fig. 6.
Sequential photographs presented in Figs. 6a, 6b, 6d,
and 6e were obtained at an interval of 2 s.

In the first pair of images (Figs. 6a, 6b), one can see
a structurally ordered compact vortex ring, which is
shown in Fig. 6c on an enlarged scale. The second ring,
characterized by a smaller value of the Reynolds num-
ber, forms a wake with a greater vertical size as com-
pared to the first ring. The wake from the first ring is
more ordered and has a contour formed by inclined
high-gradient interlayers. Their shape testifies that the
point of separation of the interlayer from the wake con-
tour is uniformly displaced toward the axis of motion.

The wake of the second vortex consists of a
sequence of ring structures formed by a set of small
vortex rings connected by thin bundles. Its vertical size
exceeds the height of the vortex itself (Figs. 6d, 6e). At
the center of the upper half of Fig. 6e, one can see a
light vertical line, which is the density wake of a rising
air bubble.

Finer details are visible in the magnified fragments
(Figs. 6c, 6f), where internal rings can be distinguished
through the vortex shell (these rings are indicated by
dashes). From these data, we calculated the mean val-
ues of the radii R and r and the ratios β and η. The
resulting values are shown in the table. The ratio η for
the first vortex is much greater than for the second one,
which explains its stability. In the second vortex with a
smaller value of η, a fast erosion of the shell of the
internal surface takes place. As a result, an increase
occurs in the amount of liquid transferred by the vortex
to the wake in the form of vortex bunches.

The geometric difference between the flows mani-
fests itself in the backscattering field (Fig. 7). In the first
case, the scattering of sound from the vortex alone is
detected. In the second case, an acoustic contrast is
observed from both the vortex and its wake (a series of
dark spots along the time axis) within a period of t ≈
4Tb. In Fig. 7b, the most pronounced feature is the dark
inclined strip, which represents the acoustic illumina-

η
uϕ

u
-----

2β
8β 0.25–( )log

------------------------------------,= =
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the amplitude spectra as functions of the vertical wave number kz and horizontal coordinate x. (c, f) Spectral amplitude scales.
tion of a rising bubble; its angle of inclination deter-
mines the velocity of the bubble rise: 3.2 cm/s.

The comparison of the schlieren patterns behind the
vortices (Fig. 6) testifies that the origin of the drastic
difference in the acoustic patterns is the difference in
the structural elements participating in the scattering.
The wake in Fig. 6e is 3 cm in height, which coincides
ACOUSTICAL PHYSICS      Vol. 51      No. 1      2005
with the length of the echo sounding pulse cτ/2 and by
more than two times exceeds the vertical size of the
other wake (Fig. 6b). In addition, from the schlieren
images, we can conclude that the concentration of
microscale inhomogeneities is much greater in the sec-
ond wake. Thus, the number of scatterers in the region
of intersection of the second wake with the sound pulse
is sufficient for a noticeable acoustic contrast (Fig. 7b),
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Fig. 6. (a, b, d, e) Schlieren patterns of the wake behind the ring vortices and (c, f) the magnified images of the vortices with dashes
indicating the contours of the internal rings. The parameters of motion are Tb = 6.7 s, U = (a–c) 9.5 and (d–f) 8.5 cm/s, B = (a–f) 3 cm,
Ree = (a–c) 2800 and (d–f) 2500, and Fre = (a–c) 3.5 and (d–f) 3.1.

Fig. 7. Echograms of the wake behind the ring vortices for the flow regimes with Ree = (a) 2800 and (b) 2500 and Fre = (a) 3.5 and
(b) 3.1. The broad inclined strip in the echogram represents the scattering from a rising bubble.
while, in the first case, their number is too small to
exceed the acoustic background level.

To reveal the structural inhomogeneities participat-
ing in the scattering, the same method as that used for
two-dimensional flows is suitable, namely, a spectral
analysis in the form of Eqs. (3) and (4) with a spectrum
representation on the gray scale. However, in the case
of a three-dimensional wake, it is necessary to take into
account that the schlieren visualization system gives

Table

Plot in Fig. 6 R, cm r, cm β η

c 1 0.35 2.8 4.2

f 1 0.65 1.5 2.8
the projection of all inhomogeneities onto the image
plane. This does not prevent the detection of fine verti-
cal scales, but their distribution along the axis perpen-
dicular to the image plane remains unknown.

With allowance for the above consideration, the
spectra of the vertical wave number of a three-dimen-
sional flow should be interpreted as indicators of the
presence or absence of inhomogeneities with preset
scales. From the form of the spectral fields (Fig. 8), it
follows that both wake flows contain components with
the dimensions of the order of the sound wavelength.
Their number and type of distribution in the horizontal
are approximately the same in both cases. Here, the
wave number of 7 cm–1 (the scale of 0.14 cm, which is
closest to the half-wavelength) is in fact the boundary,
above which the spectral amplitudes are negligibly
small.
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Fig. 8. Amplitude spectra as functions of the vertical wave number kz and horizontal coordinate x. The spectra are calculated from
the schlieren pattern of the wake behind a vortex ring: Re = (a) 2800 and (b) 2500 and η = (a) 4.2 and (b) 2.8. (c) The spectral
amplitude scale.
The thickness of the internal boundary layer, when
calculated from the local frequency of internal waves,
is determined, as in the case of two-dimensional flows,
according to Eq. (2) and the frequency spectrum of oscil-
lations of the highest contrast acoustic mark (Fig. 9). In
the case under consideration, we have three peaks, only
one of which falls within the range of existence of inter-
nal waves: ωi = 0.62 s–1 (f* = 0.66). The next peak,
which originates from the insensitivity of the echo
power to the sign of the density jump, occurs at the dou-
ble frequency of the fundamental internal oscillation of
the wake ωi (f* = 1.32, Fig. 9).

The third peak has a considerable amplitude, which
is second in magnitude, but this peak is of no wave
nature, because its dimensionless frequency fTb = 2.33
lies far beyond the limits of the wave range. One of the
mechanisms of the echo formation at such frequencies
is the horizontal motion of a large-scale periodic struc-
ture through the sound zone [14]. In Fig. 6e, nodes and
antinodes are seen in the wake with their average period
Lc being equal to 3 cm. This yields the velocity of the
wake motion Uc = fLc = f*Lc/Tb = 1 cm/s, which is much
smaller than the average velocity of motion of the vor-
tex itself (8.5 cm/s).

Taking the first value ωi = 0.62 s–1 as the fundamen-
tal frequency of internal waves, we obtain the thickness
of the dynamic layer δν = 0.18 cm. Of all possible
dimensions, this one is closest to λ/2 and, in addition, it
falls within the range of the actual scales of spatial
spectra of the schlieren pattern of the wake (Fig. 8).
These features testify that the basis of the structural
inhomogeneities responsible for the sound scattering is
formed by the dynamic internal boundary layers.

Thus, in the experiments on the backscattering of
ultrasound from wake flows behind a horizontal cylin-
der and a single vortex ring, the general regularities of
the acoustic contrast formation are determined.
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The analysis of the experiments shows that the most
probable sources of scattering are the internal boundary
layers in the velocity field, with the scale of these layers

determined as .

The extension of the laboratory data to full-scale
conditions is possible with supporting the criterion of
modeling, namely, the ratio of the thickness of the inter-
nal boundary layer to the sound wavelength, which in
the experiments proved to be close to unity. Taking the

quantity  as the estimate of the minimum thick-
ness of an internal boundary layer, we obtain that,
under typical oceanic conditions (ν = 0.01 cm2 s–1, N =
5 × 10–3 s–1), the middle of the frequency range within

2ν/ωi

2ν/N

0.4

1
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2 3

0.8
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Fig. 9. Frequency spectrum of the vertical oscillations of the
acoustic mark in the wake behind the vortex ring; Re =
2500. The maxima in the curve correspond to (1) the fre-
quency of internal waves, (2) the double frequency of inter-
nal waves, and (3) the frequency of the echo signal oscilla-
tions due to the motion of the periodic structure of the wake
through the sound zone.
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which the most intense backscattering from internal
boundary layers is expected lies in the region of 75 kHz.
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