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Abstract—The process of the isotope-selective multiphoton IR dissociation of SF6 molecules under the non-
equilibrium conditions of a pulsed gasodynamically cooled molecular flow interacting with a solid surface was
experimentally studied. The SF6 molecules dissociate as a result of excitation in a shock wave generated in the
flow, in the flow incident onto the sold surface, and in an unperturbed flow (in the absence of the solid). The
experiment was based on detecting the luminescence from HF* molecules (λ ≈ 2.5 µm) accompanying the SF6
dissociation in the presence of H2 or CH4, the emission intensity being a measure of the SF6 dissociation yield.
The molecular beam parameters were studied. The time-of-flight spectra of SF6 in the flow interacting with the
surface were measured under various experimental conditions. The spectral and energy characteristics of the
SF6 dissociation process were determined in the flow interacting with the solid surface and in the unperturbed
flow. The dissociation product (SF4) yield was measured and the coefficient of its enrichment with the 34S iso-
tope was determined. It is demonstrated that, using the shock wave formation, it is possible to increase the effi-
ciency of the isotope-selective dissociation of SF6 molecules. An explanation of the observed results is pro-
posed. The gas density and temperature in the incident flow and in the shock wave were estimated. The results
are analyzed and compared to the other published data on the SF6 dissociation in a molecular beam. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The isotope-selective dissociation of molecules
under the action of high-intensity laser radiation has
been studied in sufficient detail (see, e.g., [1–4]). The
main factors affecting the process selectivity and the
dissociation yield are understood. Based on this pro-
cess, an experimental isotope separation plant was cre-
ated (Kaliningrad, Russia) that separates carbon iso-
topes using the method of the selective dissociation of
CF2HCl (Freon-22) molecules.

Experiments on the isotope-selective dissociation of
SF6 molecules were performed for the most part under
static conditions in a cell at room temperature [5–7] or
at low temperatures (T ≈ 190 [8], 175 [9], 140 K [7]).
The isotope-selective dissociation of SF6 was also stud-
ied under nonequilibrium conditions in a molecular
beam [10–12] or in a gasodynamically cooled jet [13]
and flow [14]. The stronger gas cooling in the jet or
flow in the latter case leads to a significant narrowing of
the IR absorption bands of molecules, which
increases the selectivity of their excitation and disso-
ciation [13–15]. However, the jets and flows are char-
acterized by low efficiency of the photochemical pro-
cesses. Because of a small concentration of molecules
and the low temperature of the gas, the rates of chemi-
cal reactions, including those leading to the target prod-
1063-7761/01/9201- $21.00 © 20001
ucts of interest, are rather small. In some cases, a con-
siderable fraction of radicals formed at a low concen-
tration of molecules in the flow is lost on the walls, not
forming products (e.g., during the dissociation of CF3I
[16–18]).

A more favorable situation can be realized during
the interaction of a pulsed gasodynamically cooled
supersonic molecular flow interacting with a solid sur-
face. A shock wave formed in front of the surface in this
system is characterized by nonequilibrium conditions
which can be inverse to those in the incident flow:
T1, tr ≤ T1, rot ≤ T1, vib in the incident flow versus T2, tr ≥
T2, rot ≥ T2, vib in the shock wave, where Ti, tr , Ti, rot, and
Ti, vib (i = 1, 2) are the translational, rotational, and
vibrational temperatures of molecules. The shock wave
formation is accompanied by a significant increase in
the dissociation yield of molecules excited in the inci-
dent flow and provides for the modified nonequilibrium
conditions of the selective photochemical processes in
the shock wave, offering an interesting object for inves-
tigation.

Recently [19] we discovered a considerable (sever-
alfold) increase in the yield of dissociation products (at
a virtually unchanged selectivity of the process) for the
molecules (SF6, CF3I) excited in a pulsed flow incident
onto a solid surface. In [20, 21] we reported the first
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experimental data on the isotope-selective dissociation
of SF6 in the shock wave formed in this system. This
study is devoted to a detailed investigation of the iso-
tope-selective dissociation of SF6 in a pulsed gasody-
namically cooled molecular flow interacting with a
solid surface.

2. NONEQUILIBRIUM CONDITIONS
IN THE INCIDENT MOLECULAR FLOW

AND IN THE SHOCK WAVE
During the rapid cooling of a gas expanded on leav-

ing a nozzle, the gasdynamic equilibrium between var-
ious degrees of freedom in the gas molecules is vio-
lated. The resulting difference from the state of local
equilibrium depends on the number of collisions zcol
necessary for the relaxation of a given degree of free-
dom. Polyatomic molecules usually obey the relation-
ship ztr ≤ zrot ≤ zvib. Therefore, the corresponding effec-
tive temperatures in the flow obey the condition [22]

T1, tr ≤ T1, rot ≤ T1, vib . (1)

The interaction of a pulsed molecular flow with a
solid surface leads to the formation of a shock wave
[23–25] because of a difference between the transla-
tional, rotational, and vibrational relaxation rates [26],
which may lead to nonequilibrium conditions that are
“inverse” relative to those (1) in the incident flow:

T2, tr ≥ T2, rot ≥ T2, vib . (2)

In view of a large vibrational-translational relaxation
time (e.g., in SF6 the corresponding relaxation rate con-
stant is pτvib–tr ≈ 150 µs Torr [27]), the vibrational tem-
perature of molecules in the shock wave formed in a
pulsed rarefied gas flow may be virtually the same as
that in the incident flow (T2, vib ≈ T1, vib), while the trans-
lational and rotational temperatures are different
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Fig. 1. A schematic diagram of the experimental setup
(cross section in the xz plane; the laser beam is directed
along the y-axis).
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(T2, tr > T1, tr;T2, rot > T1, rot). Thus, the shock wave fea-
tures modified nonequilibrium conditions character-
ized by a vibrational temperature of molecules mark-
edly lower than their translational and rotational tem-
peratures. We have studied the selective dissociation of
SF6 under these conditions.

3. EXPERIMENTAL SETUP AND METHOD

Figure 1 shows a schematic diagram of the experi-
mental setup. The flow of molecules was formed in a
pulsed nozzle of the “stream loop” type [28]. The noz-
zle entrance hole diameter was 0.75 mm and the nozzle
open pulse time duration (at halfheight) was 100 µs.
The gas pressure at the nozzle entrance could be varied
in a range from 0.1 to 3.5 atm. The nozzle output chan-
nel had a cone shape with an apex angle of 60° and a
height of 15 mm. The total number of molecules Nfl in
the flow emitted from the nozzle per pulse depended on
the input gas pressure and was varied in our experi-
ments from 5 × 1015 to 1.5 × 1017 mol/pulse. The nozzle
could operate both in the regime of single pulses and in
the repeated pulse mode at a pulse repetition rate of up
to 1 Hz.

The molecular flow was formed in a vacuum cham-
ber (with a volume of Vch ≈ 20 l) evacuated to a pressure
of (1–2) × 10–6 Torr by an oil diffusion pump (ensuring
a pumping rate of 500 l/s). The molecular flow was
formed with the aid of two thin metal strips fixed at the
nozzle output cone so as to form a dihedral angle with
the edge parallel to the y axis and a variable curvature
radius in the xz plane (Fig. 1).

Spaced by x ≈ 50–150 mm from the nozzle, a solid
target (KBr, CaF2, or LiF crystal) was placed behind
the nozzle and oriented so that the surface was perpen-
dicular to the gas flow. The interaction of the supersonic
pulsed molecular flow with the solid surface led to the
formation of a shock wave in front of the surface [23–25]
with significantly inhomogeneous, nonstationary, and
nonequilibrium conditions established in this region.
A characteristic size of the shock wave front, equal (by
an order of magnitude) to the mean free path of mole-
cules [23, 24], under our experimental conditions was
0.2–5 mm. At a small distance ∆x between the solid sur-
face and the laser beam (excitation zone), the mole-
cules could be excited (depending on the time delay
between the nozzle open pulse and the exciting laser
pulse) either in the incident flow or in the shock wave
(see, e.g., Fig. 3).

The molecules were excited by the radiation of a
tunable TEA CO2 laser. The laser radiation pulse repre-
sented a leading front peak (with an ~100 ns width at
halfheight) and a trailing front of an ~0.5 µs duration,
the pulse energy being approximately equally distrib-
uted between the leading and trailing parts. The total
pulse energy reached up to 3 J. The molecules were
excited at a distance of ∆x = 1.5–8 mm from the solid
surface. The laser radiation was focused into this region
 AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001



SELECTIVE MULTIPHOTON IR DISSOCIATION OF SF6 MOLECULES 3
with the aid of a cylindrical lens with a focal distance
of 12 cm. The lens axis was parallel to the solid surface.
The laser beam cross section at the focal spot was
0.18 × 12.5 mm2.

The nozzle, the CO2 laser, and the lock-in registra-
tion system including an HF* emission detector (or a
pyroelectric detector with amplifier) and an S9-8 oscil-
lograph were switched by a delay pulse generator based
on a GI-1 oscillator. The synchronism between the laser
pulses and the pulsed molecular flow was monitored with
the aid of the pyroelectric detector measuring a signal
induced by the vibrationally excited SF6 molecules
[29, 30] or by measuring the HF* luminescence signal.

The dissociation of molecules in the gas flow was
studied by detecting the luminescence from HF* mole-
cules (λ ≈ 2.5 µm). The vibrationally excited HF* mol-
ecules are formed in the reaction between fluorine
atoms (the primary product of the dissociation of the
SF6 molecule) and hydrogen or methane [31]. The HF*
luminescence intensity is well correlated with the SF6
dissociation yield [13, 32]. The luminescence was mea-
sured using a PbS-based IR detector with a working
sensor area of 1 × 1 cm2. The transmission bandwidth
of the receiver with amplifier (×100) was about 16 kHz.
The spectral composition of the IR luminescence was
determined with the aid of color light filters. A weak IR
emission in the region of 2.5 µm was also observed
from SF6 molecules excited in the absence of H2 or
CH4. This is probably related to the presence of a small
amount of residual hydrocarbon impurities in the initial
gaseous SF6, which was purified by condensation and
pumping prior to experiments. Upon adding H2 or CH4,
the luminescence intensity increased more than ten
times. Most of the data presented below refer to SF6
excited in a mixture with H2 or CH4. In additional
experiments, however, we have studied the dissociation
of SF6 in the flow containing either a little amount of
hydrogen or methane or none at all. These experiments
were performed in order to compare the results with
other data reported for the dissociation of SF6 in a
molecular beam without a carrier.

We have also measured the yield of SF4 (another
dissociation product) and the coefficient of its enrich-
ment with 34S isotope. A procedure used for collecting
the dissociation products and for the IR analysis of
these products and the residual gas phase upon laser
excitation of the gasdynamic flow was described in
detail elsewhere [14, 33]. The coefficient of the SF4

enrichment with the 34S isotope was determined as

(3)

where [34SF4]/[32SF4] is the ratio of the concentrations
of the SF4 molecules with the corresponding sulfur iso-
topes and ζ = 34S/32S ≈ 0.044 is the sulfur isotope ratio

K34
prod 1

ζ
---

S34 F4[ ]
S32 F4[ ]

-----------------,=
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in the initial SF6 gas. The ratio of the concentrations of
the 34SF4 and 32SF4 molecules in the products was
determined using the IR absorption intensity measured
in the region of ν6 vibrations (ν6 ≈ 728 cm–1 for 32SF4 [34])
for which the isotope shift between 34SF4 and 32SF4

amounts to approximately 12.3 cm–1 [35].

4. RESULTS AND DISCUSSION

4.1. Determination of the Molecular Flow Parameters

The major parameters of a pulsed molecular flow,
affecting the formation and characteristics of the shock
wave, are the flow pulse duration and velocity, the gas
density (concentration), and the translational, rota-
tional, and vibrational temperatures of molecules in the
flow.

The pulse duration and average velocity of the flow
of SF6 molecules were determined with the aid of a
pyroelectric detector using a time-of-flight (TOF) tech-
nique described in [29, 30]. The average velocity of the
flow of SF6 molecules in the excitation zone (i.e., at a
distance of x ≥ 50 mm from the nozzle exit) was vx =
420 ± 20 m/s. The TOF spectra of molecules were also
studied by detecting the HF* luminescence (see Sec-
tion 4.3).

The temperature of molecules in the flow was not
studied in these experiments. However, since the flow
was created by means of a pulsed nozzle similar to that
described in [30], we may expect that the translational,
rotational, and vibrational temperatures of molecules in
the flow at the same pressures are comparable to those
reported in the work cited.

The concentration N1 of SF6 molecules in the flow
was estimated using the total number of molecules Nfl
emitted from the nozzle per pulse and the calculated
flow volume Vfl (N1 ≈ Nfl/Vfl). The Nfl value was deter-
mined from the pressure increment ∆p in the vacuum
chamber measured upon emitting n gas pulses from the
nozzle in the absence of pumping (T ≈ 300 K):

(4)

Alternatively, the Nfl value was determined from the IR
absorption spectrum of SF6 molecules collected from
the vacuum chamber into a cell upon emitting n gas
pulses from the nozzle. The estimated and measured Nfl
values showed good agreement. The flow volume Vfl
was estimated from its geometry, The flow cross sec-
tion at a distance of x ≈ 50 mm from the nozzle was
Sfl ≈ 7.2 cm2 and the flow pulse length was lfl ≈ 4.2 cm,
which yields Vfl = Sfllfl ≈ 30 cm3. Data on the SF6
molecular flow parameters are summarized in Table 1.

N fl
pfin pin–( )V ch

nkT
----------------------------------

∆pVch

nkT
---------------.= =
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4.2. SF6 Dissociation Yield in the Flow Incident
onto the Solid Surface

Recently [19], it was demonstrated that an HF*
luminescence pulse measured at a distance of ∆x ≥
30 mm from the excitation zone has the form of two
peaks separated in time, this time delay increasing with
the ∆x value. The first peak was attributed to the disso-
ciation of molecules in the excitation zone and the sec-
ond peak, to that in the region of interaction with the
solid surface (i.e., in the shock wave). For ∆x ≤ 20 mm,
the peaks are not resolved in time because of a rather
narrow IR detector transmission bandwidth (.16 kHz),
but the HF* luminescence intensity strongly depends
on whether or not the surface is placed in the flow.

Figure 2 shows typical plots of the HF* lumines-
cence intensity versus gas pressure at the nozzle
entrance for SF6 molecules laser-excited in the unper-
turbed flow (curve 1) and in the flow incident onto a
solid surface (curve 2) spaced by x = 51 mm from the
nozzle (∆x = 2.5 mm). A delay time between the nozzle
open pulse and the laser excitation pulse was τd = 260 µs,
which corresponds to the irradiation of the most intense
part of the flow pulse (see also Fig. 3). The SF6 mole-

0.5
pnoz, atm
1.0 1.5 2.0

1.5

1.0

0.5

0

IHF*, rel. units

1

2

Fig. 2. The plots of HF* luminescence intensity versus gas
pressure at the nozzle entrance for SF6 molecules laser-
excited (1) in the unperturbed flow and (2) in the flow inci-
dent onto a solid surface (see the text for comments).

Table 1.  Parameters of the flow of SF6 molecules at a dis-
tance of x ≈ 50 mm from the nozzle

Pulse duration ≈100 µs

Pulse length ≈4.2 cm

Velocity vx 420 ± 20 m/s

Number of molecules Nfl 5 × 1015–1.5 × 1017

Concentration of molecules N1 1.7 × 1014–5 × 1015 cm–3

Translational temperature T1, tr ≤40 K*

Rotational temperature T1, rot ≤40 K*

Vibrational temperature T1, vib ≤150 K*

* Data from [30].
JOURNAL OF EXPERIMENTAL 
cules were excited at a frequency of 947.74 cm–1 (laser
line 10P(16)), which is in close resonance with the ν3

vibration of SF6 (ν3 ≈ 948 cm–1 [36]). The excitation
energy density was Φav ≈ 7.3 J/cm2. As seen from
Fig. 2, the luminescence intensity in the flow incident
onto the solid surface is 5–8 times that in the unper-
turbed flow.

The increase in the intensity of the HF* lumines-
cence is explained by an increase in the SF6 dissocia-
tion yield related to the shock wave formation in front
of the solid surface. The multiphoton IR excitation of
gas in this region produces an ensemble of highly
excited molecules with a rather broad distribution over
the vibrational states [1, 2]. As a result, a part of the
excited molecules exhibit dissociation by the radiation
mechanism, while another part of the highly excited
molecules dissociate as a result of mutual collisions. In
the unperturbed flow, the molecules are subject only to
the radiation-induced dissociation: the collisional dis-
sociation of highly excited molecules (the contribution
of which to the total yield is usually quite large—see,
e.g., [1, 2]) is absent because of the deficit of collisions.
In the presence of a solid surface, the excited molecules
fall within the shock wave formed in front of this sur-
face, where the gas density and temperature are mark-
edly greater as compared to those in the incident flow.
Therefore, conditions in this region favor the collisions
of highly excited molecules leading to an increase in
the dissociation yield.

In the experiments reported in this article, the dis-
tance ∆x from the solid surface to the excitation zone
was shorter than 1 cm. For this reason, the lumines-
cence signal represented a single peak with the inten-
sity proportional to the total SF6 dissociation yield.

150 250 350

3

0

IHF*, rel. units

1

2

2

1

τd, µs

Fig. 3. The plots of HF* luminescence intensity versus delay
time τd  between nozzle pulse and laser pulse for SF6 molecules

excited in the presence of CH4 (  = 1 : 1) (1) in the

unperturbed flow and (2) in the flow incident onto a solid sur-
face. Total gas pressure at the nozzle entrance, pnoz = 2.4 atm.

pSF6
pCH4

⁄
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SELECTIVE MULTIPHOTON IR DISSOCIATION OF SF6 MOLECULES 5
4.3. Time-of-Flight Spectra of SF6 in the Flow Incident 
onto the Solid Surface

Figure 3 shows typical plots of the HF* lumines-
cence intensity as a function of the delay time τd

between nozzle open pulse and laser pulse for SF6 mol-
ecules excited in the presence of CH4 (  = 1 : 1)

in the unperturbed flow (curve 1) and in the flow inci-
dent onto a solid surface (curve 2). The SF6 molecules
were excited by the laser line 10P(16) (at a frequency
of 947.74 cm– 1). The nozzle to target surface distance
was x = 51 mm and ∆x = 2.5 mm. As seen from this fig-
ure, the maximum intensity of luminescence from SF6

excited in the flow interacting with the solid surface is
more than ten times that in the case of molecules
excited in the unperturbed flow. A sharp shock wave
front appears in the zone of excitation (∆x = 2.5 mm
from the surface) at τd = 310 µs; the molecular flow
velocity in this experiment was vx = 500 ± 20 m/s.

As the distance ∆x from the excitation zone to the
solid surface decreases (increases), the HF* lumines-
cence intensity in the shock wave grows (drops), while
the delay time τd corresponding to the maximum inten-
sity of luminescence in the excitation zone decreases
(increases). Figure 4 shows a plot of the HF* lumines-
cence intensity versus the distance ∆x for SF6 mole-
cules laser-excited in the shock wave. This curve char-
acterizes the width and slope of the shock wave front.
As seen, the profile width is approximately 3 mm for a
an SF6 pressure at the nozzle entrance pnoz = 1.25 atm
and a nozzle to target surface distance x = 51 mm. Fig-
ure 5 presents typical plots of the HF* luminescence
intensity versus delay time τd between nozzle and laser
pulses. The curves were measured at various SF6 pres-
sures at the nozzle entrance for the nozzle to target sur-
face distance x = 51 mm and ∆x = 2.5 mm. As seen, the
luminescence intensity in the shock wave sharply
increases, while the delay time τd corresponding to the
maximum luminescence intensity decreases. The
increase in the luminescence intensity is caused by a
growth in the gas density in the shock wave, while the
decrease in τd is related to an increase both in the flow
velocity and in the shock wave front slope (also caused
by the growth in the gas density). When the gas pres-
sure at the nozzle entrance is low (pnoz ≤ 0.2 atm), in
which case the concentration N1 of molecules in the
flow does not exceed 3 × 1014 cm–3, the shock wave
weakly affects the luminescence signal. On the con-
trary, for comparatively high gas pressures (pnoz ≥
1 atm), the intensity of luminescence in the shock wave
is markedly (20–30 times) greater than that in the
unperturbed flow.

pSF6
pCH4

⁄
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4.4. Spectral and Energy Characteristics
of the SF6 Dissociation Process

Figure 6 shows a series of plots of the HF* lumines-
cence intensity versus excitation energy density for SF6

molecules excited in the presence of CH4 (  =
1 : 1) in the unperturbed flow (curve 1), in the flow inci-
dent onto a solid surface (curve 2), and in the shock
wave (curve 3). These curves were measured at the
laser pulse delay times corresponding to maxima in the
TOF spectra of molecules (see Fig. 3): τd = 240 µs for
curves 1 and 2, τd = 310 µs for curve 3. As seen from
Fig. 6, the intensity of HF* luminescence from SF6

excited in the flow interacting with the solid surface is
approximately four times, and that in the shock wave–
more than 30 times greater than the luminescence
intensity in the case of molecules excited in the unper-
turbed flow. The difference is even more pronounced at

pSF6
pCH4

⁄

4 12

30

0

IHF*, rel. units

20

10

8
∆x, mm

Fig. 4. The plots of HF* luminescence intensity versus x dis-
tance for SF6 molecules laser-excited in the shock wave.
The SF6 pressure at the nozzle entrance, pnoz = 1.25 atm;
nozzle to target surface distance, x = 51 mm.

200 400 600

3

0

IHF*, rel. units

1

2

2

1

3

τd, µs

Fig. 5. The plots of HF* luminescence intensity versus
delay time τd for various SF6 pressures at the nozzle
entrance pnoz = 0.5 (1); 1 (2); 2.5 atm (3). Nozzle to target
surface distance, x = 51 mm; ∆x = 2.5 mm; excitation fre-
quency, 947.74 cm–1 (laser line 10P(16)); excitation energy
density, Φav ≈ 7 J/cm2.
SICS      Vol. 92      No. 1      2001



6 MAKAROV, PETIN
Φav ≤ 3 J/cm2, which indicates that a contribution due
to the collisional dissociation in the shock wave to the
total dissociation yield at small laser energy densities is
very large. Note also a greater slope of the HF* versus
Φav curve for the unperturbed flow, where the dissocia-
tion proceeds predominantly via the radiation mecha-
nism.

All the results presented above show that the excita-
tion of SF6 molecules in the shock wave and in the flow
incident onto the surface leads to a greater yield of the

1 10

0.01

IHF*, rel. units

1

2

0.1

3

Φav, J/cm2

1

10

Fig. 6. The plots of HF* luminescence intensity versus exci-
tation energy density for SF6 molecules excited in the pres-

ence of CH4 (  = 1 : 1) (1) in the unperturbed

flow, (2) in the flow incident onto a solid surface, and (3) in
the shock wave. Total gas pressure at the nozzle entrance,
pnoz = 2.4 atm; nozzle to target surface distance (for curves 2
and 3), x = 51 mm; ∆x = 2.5 mm; excitation frequency,
945.98 cm–1 (laser line 10P(18)).

pSF6
pCH4

⁄
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νlaser, cm–1
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Fig. 7. The plots of HF* luminescence intensity versus exci-
tation radiation frequency for SF6 molecules excited (2) in
the flow incident onto a solid surface and (3) in the shock
wave. Total SF6 pressure at the nozzle entrance, pnoz =
1.25 atm; nozzle to target surface distance, x = 51 mm; ∆x =
2.5 mm; excitation energy density, Φav ≈ 10 J/cm2. For com-
parison, curve 1 shows the frequency dependence of the SF4
product yield [14].
JOURNAL OF EXPERIMENTAL
dissociation products as compared to the case of exci-
tation in the unperturbed flow. Therefore, it would be of
interest to study the selectivity of the dissociation pro-
cess in the SF6 flow interacting with the solid surface.
The results of these investigations are presented below.

First, we have studied the dependence of the HF*
luminescence intensity on the frequency of the exciting
laser radiation (i.e., the spectral dependence of the SF6
dissociation yield). Figure 7 shows the plots of the HF*
luminescence intensity versus excitation radiation fre-
quency for SF6 molecules excited in the flow incident
onto a solid surface (curve 2) and in the shock wave
(curve 3). Also shown for comparison (curve 1) is an
analogous curve of the SF4 product yield in a molecular
flow of SF6 obtained previously [14] under identical
experimental conditions, which can probably be con-
sidered as the frequency dependence of the SF6 disso-
ciation yield in the unperturbed flow. The curves are
normalized to the maximum intensity. The ratio of the
maximum intensities of curves 2 and 3 was I2 : I3 = 1 : 3.9.
The widths at half height are approximately 11, 12.5,
and 16.5 cm–1 for curves 1–3, respectively. Note a greater
intensity in the region of wings at 937 and 953 cm–1 (espe-
cially pronounced in the high-frequency wing) for
curve 3 in comparison with curve 1. This is related to a
higher rotational temperature of SF6 molecules in the
shock wave as compared to the unperturbed flow, and
to the presence of the collisional dissociation compo-
nent in the former case.

It is seen that, although the widths of spectra 2 and 3
in Fig. 7 are greater than the width of curve 1, the rela-
tive intensities of the low-frequency wings (near the
absorption band corresponding to the ν3 vibration in
34SF6 at ν3 ≈ 930.5 cm–1 [37]) in all curves are rather
close. This fact indicates that the selectivity of dissoci-
ation in these cases must not significantly differ as well.
However, a comparison of the spectra presented in
Fig. 7 suggests that the selectivity of dissociation in the
shock wave must be somewhat lower than that in the
unperturbed and incident. This is confirmed by data
presented in Section 4.5.

Let us compare the results obtained for the dissoci-
ation of SF6 molecules in the shock wave to the data
available on the dissociation of these molecules in
molecular beams. This comparison would be of interest
for elucidating the role of the rotational and vibrational
temperatures of molecules as factors determining the
selectivity of dissociation. Continuous molecular
beams are usually characterized by rather low rota-
tional (≤50 K) and comparatively high vibrational
(≥250 K) temperatures of SF6 molecules. However, the
shock wave formed in our experiments is distinguished
by the vibrational temperature of SF6 molecules being
lower than their rotational temperature. The phenome-
non of SF6 dissociation in a molecular beam was most
thoroughly studied in [11], where the frequency depen-
dences of the SF6 dissociation yield were obtained for
 AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001



SELECTIVE MULTIPHOTON IR DISSOCIATION OF SF6 MOLECULES 7
various gas temperatures at the nozzle entrance (and,
hence, at various vibrational temperatures of SF6 mole-
cules in the beam). A comparison of curve 3 in Fig. 7 to
the frequency dependence of the SF6 dissociation yield
reported in [11] (for the gas temperature T ≈ 300 K and
Φav ≈ 7 J/cm2) shows that the low-frequency wing of
our curve 3 (in the region of the absorption band of
34SF6) is less intense than the corresponding wing in the
spectrum of a molecular beam. Thus, the selectivity of
SF6 dissociation in the shock wave is probably some-
what greater as compared to that in the molecular beam.

4.5. Determination of the SF4 Product Yield
and Its Enrichment with 34S Isotope

We have performed a series of experiments on the
direct determination of the SF4 (final product) yield and
the selectivity of SF6 dissociation for the molecules
excited in an unperturbed flow and in the same flow
interacting with a solid surface. The measurements
were conducted using a method described elsewhere
[14, 33]. The SF4 yield in the unperturbed flow was
measured at τd = 260 µs, while the measurements in the
flow incident onto the solid surface were performed for
τd = 260 and 370 µs; these delay times correspond to
maximum intensities in the TOF spectra of molecules
[20]. The nozzle to surface distance was x = 51 mm,
∆x = 2.5 mm, and the SF6 pressure at the nozzle
entrance was pnoz = 1.25 atm. It was found that the yield
of SF4 excited at τd = 260 µs in the flow incident onto
the solid surface was 2.5 times, and that in the shock
wave (at τd = 370 µs) it was approximately 12 times that
in the unperturbed flow.

The dissociation process selectivity was studied by
measuring the coefficient of enrichment of the SF4

product with the 34S isotope. The measurements were
performed in the flow incident onto the sold surface, in
the shock wave, and in the unperturbed flow. The SF6

molecules were excited at a frequency of 929 cm–1

(CO2 laser line 10P(36)), which is in resonance with the
ν3 vibration of the 34SF6 molecule [37]. The results of
these experiments are summarized in Table 2, together
with data on the SF4 yield. For the SF6 molecules
excited in the unperturbed flow, the isotope enrichment

coefficient at Φav ≈ 10 J/cm2 was  = 17 ± 4, while
the analogous value for molecules excited in the shock

wave was  = 14 ± 3.

4.6. Discussion of Results. Estimation of the SF6 
Density and Temperature in the Shock Wave

It should be noted that strongly inhomogeneous,
nonstationary, and nonequilibrium conditions in the
shock wave, as well as the numerous processes occur-
ring in this region of the flow, markedly complicate the
interpretation of the experimental data. For this reason,

K34
prod

K34
prod
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we will only qualitatively discuss the results of our
experiments and roughly estimate the density and
effective temperature of the gas in the shock wave.

An increase in the yield of dissociation products for
molecules excited in the shock wave is related to sev-
eral factors: (i) an increase in the gas density; (ii) an
increase in the rate of chemical reactions; (iii) an
increase in the dissociation yield caused by the more
effective excitation and the additional collisional disso-
ciation of molecules excited at the IR laser pulse energy
below the dissociation threshold (the latter mechanism is
inoperative in the unperturbed flow because of the deficit
of collisions). A comparatively high selectivity of dissoci-
ation in the shock wave is related to a comparatively low
vibrational temperature of molecules in this region.

The limiting increase in density in the direct shock
wave for a gas with constant heat capacity is given by
the relationship [23– 25]

where ρ1 and ρ2 are the gas densities in the incident
flow and in the shock wave, respectively; γ = cp/cv is the
ratio of specific heat capacities. For SF6 at T ≈ 300 K,
γ ≈ 1.1 [38, 39] and the formula yields ρ2/ρ1 ≈ 21. How-
ever, this estimate is likely to be incorrect because not
all of the molecular degrees of freedom contribute to
the heat capacity of molecules under the experimental
conditions studied. Let us estimate the limiting increase
in the gas density and the average concentration of mol-
ecules in the shock wave using the molecular flow
parameters obtained in Section 4.1. For a rough esti-
mate, the ratio ρ2/ρ1 can be taken equal to the ratio of
the flow pulse length (lfl ≈ 4.2 cm in the excitation zone
at a distance of x = 51 mm from the nozzle) to the shock
wave front width (≈3 mm, Fig. 4): ρ2/ρ1 ≈ 14. For an
SF6 pressure at the nozzle entrance pnoz = 1.25 atm, the
total number and concentration of molecules in the flow
were Nfl ≈ 4.2 × 1016 and N1 ≈ 1.4 × 1015 cm–3, respec-
tively. Therefore, the average concentration of mole-
cules in the shock wave is N2 ≈ 2 × 1016 cm–3. Note that
the limiting gas density is not reached at a distance of
∆x = 2.5 mm from the surface (as seen in Fig. 4, the
HF* luminescence intensity at shorter distances is

ρ2

ρ1
-----

γ 1+
γ 1–
------------,=

Table 2.  Data on the yield of SF4 and its enrichment with 34S
isotope for laser-induced SF6 dissociation in an unperturbed
flow and in the same flow interacting with a solid surface

pnoz, atm CO2
laser line

Φav,
J/cm2

Unperturbed
flow

Incident
flow

Shock
wave

SF4 yield, rel. units

1.25 10P(16) 12 1.0 ± 0.2 2.5 ± 0.5 12 ± 3

K34

1.25 10P(36) 10    17 ± 5 15 ± 3 14 ± 3
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higher). For this reason, a increase in the SF4 yield in
the shock wave is probably related not only to the
increase in the gas density, but to some other factors
considered above as well.

The gas heating due to retardation in the shock wave
was evaluated [20, 21] using the formula [24, 25]

where v0 is the flow velocity and cp is the heat capacity.
Using the SF6 flow parameters v0 ≈ 420 m/s; cp ≈
665 J/(kg K) [38, 39]), we obtain ∆T ≈ 130 K. However,
it must be noted that the heat capacity of SF6 under our
experimental conditions is lower than the value for T ≈
300 K and, hence, the additional gas heating can be
markedly greater. Taking into account the law of energy
conservation for SF6 molecules in the incident flow and
in the shock wave (assuming that the vibrational
degrees of freedom are not activated), we may conclude
that the temperature of translational and rotational
degrees of freedom increased by ∆T ≈ 530 K. Thus,
T2, tr ≈ T2, rot ≈ (T1, tr + ∆T) ≈ 570 K, while the vibrational
temperature in the shock wave is T2, vib ≈ T1, vib ≤ 150 K.

Therefore, once the vibrational temperature of mol-
ecules is a dominating factor, the SF6 dissociation
selectivity in the shock wave must not differ signifi-
cantly from that in the unperturbed flow, which is really
observed in experiment. Note also that a decrease in the
selectivity of dissociation in the shock wave related to
an increase in the gas temperature can sometimes be
compensated for by a growth in the selectivity due to the
increasing concentration of irradiated molecules [40].

5. CONCLUSION

Now we will summarize the main results of our
investigation and formulate the conclusions.

We have studied the isotope-selective multiphoton
IR dissociation of SF6 molecules in a pulsed gasdy-
namic flow incident onto a solid surface. It was found
that there is a considerable (severalfold) increase in the
product yield in this system as compared to the case of
unperturbed flow, without significant changes in the
selectivity of the dissociation process.

It was established that an increase in the efficiency
of the multiphoton IR dissociation of SF6 is related to
the formation of a shock wave at the target surface,
which provides for the conditions favoring collisions
between the highly excited SF6 molecules (this factor
leading to an increase in the dissociation yield).

We have also studied the selective multiphoton IR
dissociation of SF6 molecules excited under nonequi-
librium conditions in the shock wave. It was found that
there is a considerable (more than tenfold) increase in
the product yield as compared to the case of excitation
in the unperturbed flow at an insignificant (25–30%)
decrease in selectivity in the former case.

∆T v 0
2/2cp,=
JOURNAL OF EXPERIMENTAL
A method proposed for the shock wave formation in
a gas flow provides for the possibility of studying the
selective photochemical processes under nonequilib-
rium conditions (Ttr ≥ Trot ≥ Tvib, Tvib ≤ 150 K) that are
inverse to those occurring in the gasodynamically
cooled jets and flows.

The experimental results obtained for SF6 show that
the dissociation under conditions when Tvib ≤ 150 K
and Trot ≤ 570 K is characterized by a rather high selec-
tivity. This fact indicates that, from the standpoint of
selectivity, the vibrational temperature is a more impor-
tant factor than the rotational temperature.

The method proposed for increasing the efficiency
of the multiphoton dissociation is useful in the case of
the selective dissociation of large polyatomic molecules
possessing long lifetimes (exceeding 100–200 µs) with
respect to the monomolecular decay (even for the
vibrational excitation levels markedly exceeding the
dissociation threshold). Examples are offered by
(CF3)3CX molecules where X is a halogen of hydrogen
[41, 42]. Possessing long lifetimes with respect to the
decay, the overexcited molecules may reach the cham-
ber walls and relax there, not forming the dissociation
products. By creating a shock wave, it is possible to
provide conditions for the collisional dissociation of
excited molecules and, hence, to increase the product
yield.
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Abstract—In the quasi-optical aberration-free approximation, a parabolic equation for the envelope of an elec-
tromagnetic wave packet propagating along a geometric optical ray in a smoothly inhomogeneous isotropic
medium with time dispersion is obtained. The corresponding Green’s function is found whose parameters are
determined by integrating a system of ordinary differential equations. The effects of the combined influence of
the refraction, diffraction, and dispersion on the evolution of the packet are analyzed; in particular, the effects
that cause precession of the envelope waves about the binormal to the propagation trajectory are considered.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Under certain conditions, the propagation of wave
packets in smoothly inhomogeneous media assumes an
approximate quasi-optical description by means of an
abridged parabolic equation for the “envelope” waves
(complex amplitudes). On the one hand, the reference
gauge of the envelope (both transverse to the direction
of the wave propagation, Λ⊥ , and longitudinal, Λ||) must
be much greater than the length of the carrier wave λ.
These conditions are equivalent to constraints on the
width of the angular and frequency spectrum of the pro-
cess: ∆k⊥ /k ! 1, ∆ω/ω ! 1. On the other hand, the
cross size of the packet, Λ⊥ , must be small as compared
to the size of the medium inhomogeneity Lε. Upper
constraints on the longitudinal size of the packet (or, in
other words, on the pulse duration Tp) are immaterial
for quasi-optics; moreover, the continuous passage to
the steady-state or time-dependent wave beams is pos-
sible as Tp  ∞. Steady-state beams (∆ω = 0) in inho-
mogeneous media are thoroughly studied in [1], of
which the present paper is a generalization. In addition,
for the quasi-optical approach to be applicable, it is
required that the dispersion curve of the medium be
reasonably close to a parabola within the frequency
band ∆ω.

A theorem proved by Ehrenfest in wave mechanics
asserts that the trajectory of the center of a wave packet
is quasiclassical. By analogy, we assume that the packet
of electromagnetic waves propagates with the group
speed vg along a certain curvilinear geometric optics
ray r = rc(s) (in what follows, it is called the reference
ray). Then, the wave field can be represented as

(1.1)

where ω is the central frequency of the packet, φ is the
phase of the “carrier wave,” and A(t, r) is the complex
envelope. In homogeneous media, the eigenmode of the

E t r,( ) A t r,( ) iωt– iφ r( )+[ ] ,exp=
1063-7761/01/9201- $21.00 © 20010
system is used as the carrier wave; as a rule, it is a plane
monochromatic wave. In inhomogeneous media, the
carrier wave is chosen such that it is not the eigenwave,
but has plane phase fronts (φ= const) perpendicular to
the reference ray. φ(rc) is calculated along the ray in the
geometric optics approximation.

Due to the small size of the packet as compared to
Lε, the tendency towards transverse “diffusion”1 caused
by diffraction and towards longitudinal diffusion
caused by dispersion are retained, this being characteristic
of homogeneous media [2–4]. The diffusion of the packet
is accompanied by both phase and amplitude modula-
tion of the envelope. However, the dispersion in inho-
mogeneous media is manifested in one more way,
namely, in the transverse divergence of the packet due to
the frequency dependence of the ray curvature. The refrac-
tive (or Newtonian) dispersion2 leads, in the small-angle
approximation, to a relationship between the transverse
and longitudinal field structure [6].

Diffraction and dispersion effects in inhomoge-
neous media compete with refraction effects that man-
ifest themselves not only in the curving of the trajectory
of the packet propagation, but in its transverse focusing
(or defocusing) as well.3 Many studies are devoted to
the quasi-optics of focusing systems. In particular,

1 The analogy between diffraction and diffusion phenomena dates
to the works of Th. Young (1800) and received widespread use in
quasi-optics (M.A. Leonovich and V.A. Fok, 1944–1946) [5]. It is
clear that the wave analogue differs from the ordinary diffusion
(of particles or heat) in that it is reversible, i.e., invariant under the
change t  –t and under the reversal of the propagation direc-
tion.

2 As a matter of fact, the term dispersion was introduced in physics
by Newton exactly to describe the expansion of a solar beam into
the color spectrum as a result of the refraction in a piecewise
homogeneous medium (a prism).

3 By the way, curving the propagation trajectory results in addi-
tional focusing [7].
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these studies concern optical lines4 and lens-like media
(see, e.g., [9–11]) of the type of profiled optical fibers.
It is worth noting that the linear oscillator [12] is a
quantum-mechanical analogue of focusing systems.

The quasi-optical equation for the packet envelope
in an arbitrary smoothly inhomogeneous medium is
almost identical to the equation for the lens-like
medium. The difference is in the appearance of an addi-
tional operator (an analogue of the rotation operator in
the Schrödinger equation for the electron in a magnetic
field [12]) that leads to an unexpected interference phe-
nomenon—the wave precession of the packet about the
binormal to the propagation trajectory.

2. EQUATION FOR THE COMPLEX AMPLITUDE 
OF QUASI-HARMONIC WAVE FIELDS

In a stationary isotropic dielectric (without the mag-
netic susceptibility) medium with time dispersion, the
Maxwell equations can be reduced to the form [13]

(2.1)

where the electric field strength E and the induction
vector D are related as

(2.2)

For quasi-harmonic processes, we have

(2.3)

where the complex amplitudes  and  are slow func-
tions as compared to 1/ω and the constitutive Eq. (2.2)
can be written in the differential form (see, e.g., [4])

 . (2.4)

Series (2.4) provides an expansion in the small param-
eter µ ~ ∆ω/δω, which equals to the ratio of the width
of the process spectrum ∆ω to the reference dispersion
gauge of the permittivity ε(ω, r).

In the second approximation of dispersion theory
[4], Eq. (2.1) is transformed into the following equation

4 The small-angle (or paraxial) approximation of the diffraction
theory of optical systems was developed well before the term
quasi-optics became conventional in physics. A rather detailed
presentation of this theory can be found in [8].

curlcurl E
1

c2
----∂2D

∂t2
---------+ 0,=

D t r,( ) ε̂ τ r,( )E t τ– r,( ) τ .d

0

∞

∫=

E Ẽ t r,( ) iωt–( ),exp=

D D̃ t r,( ) iωt–( ),exp=

Ẽ D̃

D̃ ε r ω,( )Ẽ= i
∂ε
∂ω
-------∂Ẽ

∂t
------- 1

2
--- ∂2ε

∂ω2
---------∂2Ẽ

∂t2
---------– …+ +
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for the complex amplitude of the electric field (up to the
terms of order ~µ2):

(2.5)

For a wave packet with a narrow angular spectrum,
Eq. (2.5) can be simplified and reduced to a parabolic
equation in a curvilinear frame of reference attached to
the central (both in the spatial and spectral sense) geo-
metric optics ray.

3. THE FRAME OF REFERENCE ATTACHED
TO THE REFERENCE RAY

The canonical (Hamiltonian) equations for a ray in an
inhomogeneous isotropic medium are written as [14]

(3.1)

where r is the radius vector of a point on the ray, p is the

current wave vector k = sk0  = k0p normalized
with respect to k0 = ω/c (s is the unit vector tangent to
the ray), and the variable ς is related to the length of a

ray arc s, as dς = ds/ .

Let r = rc(ς), p = pc(ς) be a solution of Eq. (3.1). We
take it as the reference trajectory for the curvilinear
frame of reference. (In what follows, all quantities and
their derivatives calculated for the points on the refer-
ence ray are marked by a subscript c.)

The geometric characteristics of the reference ray,
the Darboux trihedral (s, n, m), the curvature K, and the
torsion T, are unambiguously determined at every point
by the propagation direction s, the local values of per-
mittivity, and its directional derivatives [1, 14]. The
principal normal n to the ray lies in the plane {s, ∇ε },
and the binormal is m = s × n. The curvature of the ray
and its torsion are expressed by the formulas

(3.2)

The normal and binormal are functions of the length
along the ray, (n(s), m(s)); however, this dependence is
unrelated to formulas (3.2), which involve the direc-
tional derivatives at a fixed point.

The reference frame attached to (s, n, m) is affine
(for T ≠ 0); this is seen from the Frenet–Serret formulas
dn/ds = –Ks + Tm, dm/ds = –Tn. However, one can
define an orthogonal frame of reference (s, ξ1, ξ2)
whose basis (s, g1, g2) rotates relative to (s, n, m)

curlcurl E
1

c2
---- ω2εẼ i

∂ω2ε
∂ω

------------∂Ẽ
∂t
-------+

–

–
1
2
---∂2ω2ε

∂ω2
--------------∂2Ẽ

∂t2
---------

 0.=

dr
dς
------ p, dp

dς
------

1
2
--- ∇ ε ω r,( ),==

ε r( )

ε

K
∂ε
∂n
------/2ε

r rc=
, T

∂2ε
∂s∂m
-------------/

∂ε
∂n
------

r rc=
.= =
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according to the translation of the vector along the
curve (in the Levi-Civita sense):

(3.3)

The Lamé coefficients of this frame of reference are

It is well known [14, 15] that in the geometric optics
approximation the polarization vector of the electric
field rotates with respect to n in accordance with (3.3);
this is the so-called Rytov law. Below we will show that
the Rytov law remains valid in the quasi-optical
approximation. This means that the projections of the
polarization vector onto the unit vectors g1 and g2 are
constant and can be factored outside the differentiation
operators.

4. QUASI-OPTICAL EQUATION
FOR THE ENVELOPE OF A WAVE PACKET

(ABERRATION-FREE APPROXIMATION)

We assume that a wave packet is propagating along
the reference ray and let the reference gauge of the
packet satisfy the conditions formulated above; i.e., Λ⊥ ,
Λ|| @ λ(r), Λ⊥  ! Lε, ∆ω ! δω, ω. It is seen that the prob-
lem involves several small dimensionless parameters
that can significantly differ from one another in magni-
tude. However, since the aberration-free quasi-optical
approximation is quadratic in each of these parameters,
we denote all of them by the same symbol µ:

We represent the complex amplitude of the electric
field as

(4.1)

where e⊥  = ag1 + bg2 is the polarization vector and a
and b are complex (in the general case) numbers such
that |a |2 + |b |2 = 1. In the case when the wave packet is
inhomogeneously polarized with respect to the trans-
verse coordinates, it can be represented as a superposi-
tion of two wave packets with homogeneous mutually
perpendicular polarizations (linear, circular, or elliptic).

Substituting (4.1) into (2.5) and writing the differen-
tial operators componentwise in the curvilinear frame
of reference (s, ξ1, ξ2) introduced above, we obtain
(accurate to terms that are cubic in µ) the following

g1 n θcos m θ,sin+=

g2 m θcos n θ,sin–=

dθ
ds
------ T .–=

h1 h2 1, hs h 1 K ξ1 θcos ξ2 θsin–( ).–= = = =

µ λ
Λ⊥
------,

λ
Λ||
-----,

Λ⊥

Lε
------,

∆ω
δω
--------,

∆ω
ω

--------.∼

Ẽ t r,( ) E⊥ t r,( )e⊥ E|| t r,( )s,+=
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equation for the transverse component of the electric
field E⊥ :

(4.2)

Here the summation is performed over the repeating
index m = 1, 2.

In the same approximation, vector e⊥ is constant
(accurate to µ3) in the orthogonal frame of reference
(s, ξ1, ξ2); i.e., it rotates with respect to the natural tri-
hedral obeying the Rytov law.

The longitudinal component of the field E||(t, r) can
be determined from the condition divD = 0:

Neglecting the dispersion at the angles βs @ µ to the
propagation trajectory and separating the rapidly oscil-
lating factor in field E⊥ , one can pass from (4.2) to a
parabolic equation for the slow and smooth envelope of
the packet W(t, r):

(4.3)

In the first-order approximation in µ, the wave
packet is carried along the ray with the group speed vg

without changing its shape:

Let us write down the terms of the second order of
smallness in µ. It is convenient to change the variables
(s, t) to the variables (τ, ς) that take this drift into
account. We have

(4.4)

Such a choice of variables corresponds to the following
observation method. In the plane s = const, receivers
are placed that yield the scan of the signal in time. The
local time reference τ is shifted by the magnitude of the
delay time

1
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WAVE PACKETS IN SMOOTHLY INHOMOGENEOUS DISPERSIVE MEDIA 13
Substituting (4.3) into (4.2) and retaining only the
zero- and first-order terms, we obtain the abridged par-
abolic equation

(4.5)

where

The meaning of the approximation in which
Eq. (4.5) is derived can be explained by invoking the
analogy between an inhomogeneous medium and an
optical line consisting of discrete phase correctors—
linear (prisms), quadratic (ideal lenses), and higher-
order correctors—that are responsible for aberrations
(cubic, spherical, etc.).5 The linear correctors can be
eliminated by changing to the curvilinear frame of ref-
erence attached to the ray. However, a trace of “prisms”
remains in (4.5) in the form of the operator δmξm∂τ that
accounts for the refractive dispersion in the second-
order approximation with respect to µ. Although
approximation (4.5) accounts for one form of aberra-
tion (astigmatism), it is, nevertheless, called aberration-
free in quasi-optics.

The quadratic form Ueff = αpqξpξq, which determines
the optical properties of the lenses, can be reduced to
the canonical form for every section ς = const by the
rotation by the angle ϕ(ς) in the plane (ξ1, ξ2):

The directions of the axes  and  are called the prin-
cipal directions of the astigmatic lens. The behavior of
the wave beam or packet essentially depends on the
speed of rotation of the principal axes as they are mov-
ing along the curve T* = dϕ/dς.6 

5 A series of ideal lenses is described by the same Eq. (4.5) with

αpq(z) = 

6 We designate the degree of twist of the optical curve (or its
“shear”) by the same symbol T as the torsion of the propagation
trajectory (we only mark it by an asterisk). The torsion of the ref-
erence ray always results in a shear of the equivalent lens system;
however, the shear can appear (T* ≠ 0) for T = 0 as well.
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If the degree of twist of the line is large (|T*|2 @
|α1 |, |α2 |), we can average over the period of the lens
rotation and pass to an effective axially symmetric opti-
cal line. This assertion follows from the equivalence of
two identical orthogonal thin cylindrical axially sym-
metric lenses pressed to one another:

When the opposite inequality |T*|2 ! |α1 |, |α2 | holds,
the shear of the optical line can be accounted for in the
adiabatic approximation.

The intermediate case α1 < |T*|2 < α2 is most interest-
ing. Under these conditions, the wave packet becomes
parametrically unstable (this situation is similar to the
parametric resonance of a pendulum). The size of the
packet increases exponentially in the direction that
rotates with the displacement along ς; moreover, defo-
cusing occurs in the locally focusing system: α1, α2 > 0.
By contrast, the torsion enhances the focusing in the
orthogonal direction and the size of the packet oscillates.
This effect was thoroughly studied in paper [1] devoted
to wave beams.

5. GREEN’S FUNCTION
OF THE QUASI-OPTICAL EQUATION

Equation (4.5) possesses a remarkable property: its
Green’s function can be exactly determined in the geo-
metric optics approximation [1]. The system of ray equa-
tions corresponding to (4.5) is linear, which makes the task
of “aiming” the ray originating from an arbitrary point
source (ς' = 0, ξ', τ') at an arbitrary observation point
(ς, ξ, τ) and the subsequent calculation of the phase and
amplitude of Green’s function G(ς', ξ', τ'; ς, ξ, τ) trivial.
However, since the coefficients in (4.5) are asymmetric,
an attempt to present this procedure in a compact form
fails. For this reason, we take advantage of the fact that
the coefficients in (4.5) do not depend explicitly on τ.
We use the Fourier method; i.e., we seek the solution in
the form of an expansion in partial monochromatic
beams (at the frequencies ω + Ω). Representing the
envelope of the packet in the form

(5.1)

we obtain

(5.2)

ikx2

2F
---------- 

 exp
iky2

2F
---------- 

 exp
ikr2

2F
--------- 

  .exp=

W ς ξ1 ξ2 τ, , ,( ) 1
2π
------=

× W̃ ς ξ1 ξ2 Ω, , ,( ) iΩτ–( )exp Ω,d

∞–

∞

∫

2ik0
∂W̃
∂ς
-------- ∂2W̃

∂ξ1
2

----------
∂2W̃

∂ξ2
2

----------+ +

– k0
2 αmnξmξn 2δmξmΩ– c2γΩ2
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14 PERMITIN, SMIRNOV
The expression in parentheses can be reduced to a qua-
dratic form by the change of variables

(5.3)

where the dot denotes the derivative with respect to ς.
The parameters qm that characterize the lateral dis-
placement of the partial beams with the frequency dis-
tinct from ω are the constraint solution to the system

(5.4)

with the zero initial conditions qm(0) = (0) = 0.

As a result of the change of variables (5.3), Eq. (5.2)
is reduced to the form

(5.5)

In the initial section ς = 0, the function V(ς, η, Ω) coin-

cides with  = (ς = 0, ξ, Ω), since ηm|ς = 0 = ξm and
Φ|ς = 0 = 0.

The partial beams on the frequencies ω + Ω are
described by the same Eqs. (5.5) with the coefficients
independent of the frequency shift Ω . However, this
does not mean that all beams are identical. Their fields
depend on frequency through the variables η1, 2 and

(parametrically) through the initial conditions (ξ, Ω).
Equation (5.5) was thoroughly studied in [1], where

its solution in the form of an expansion in Green’s func-
tions, in local plane waves, and in Hermitian functions
was derived. Assuming that the functions V(ς, η, Ω) are
determined in one way or another, the complex ampli-
tude of the packet can be written as

(5.6)

where ξ and q denote the two-dimensional vectors (ξ1, ξ2)
and (q1, q2).

The representation of a field as a superposition of
steady-state wave beams is very descriptive and makes
it possible to predict some physical phenomena. For
example, it is rather evident that the packet is decom-
posed in the transverse direction due to refractive dis-
persion (the dependence of the curvature of rays on fre-
quency). Moreover, the longitudinal (time) structure of
the packet’s envelope and its transverse structure turn
out to be interrelated; namely, the diffraction influences

ηm = ξm qm ς( )Ω, V ς η1 η2 Ω, , ,( )+  = W̃ ik0Φ( ),exp

Φ q̇1ξ1 q̇2ξ2+( )Ω 1
2
---Ω2 β ς( ) ς,d

0

ς

∫+=

β γ
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2
---- αmnqmqn– q̇1

2 q̇2
2,+ +=

q̇̇m αmn ς( )qn+ δm ς( )–=

q̇m

2ik0
∂V
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------- ∂2V

∂η1
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--------- ∂2V
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2

--------- k0
2αmn ς( )ηmηnV–+ + 0.=

W̃0 W̃
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W ς ξ τ, ,( ) 1
2π
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∞

∫=

× ik0Φ ς ξ Ω, ,( )– iΩτ–[ ]dΩ,exp
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the dispersive longitudinal extension (smearing) [6]. It
must be noted that the exact wave description shows
that the diffraction and dispersion phenomena are inter-
related even for homogeneous media; this is the so-called
Wolf effect [16], which is beyond the scope of the applica-
bility of the aberration-free quasi-optical approximation.

Green’s function (5.5) obtained in [1] is written as

(5.7)

where (ς, η) is the source point, (ς = 0, η') is the obser-

vation point, and DS = det . The matrices  and 

define an arbitrary ray ηm = Pmn  + Smn  (certainly,
in the small-angle approximation) that originates from
the plane of the initial aperture (ς = 0). These matrices
are the solutions of the identical differential equations

(5.8)

with different initial conditions

Green’s function of the quasi-optical Eq. (4.5) for
the packet envelope (i.e., the solution with the initial
conditions W0 = δ(ξ – ξ')δ(τ – τ')) is obtained by substi-
tuting the function V(ς, η, Ω) = GV exp(iΩτ') into (5.6),
where the exponential factor is the Fourier transform of
the unit impulse. Integrating with respect to Ω , we
obtain

(5.9)

where

GV ς η' η, ,( )
k0

2πi DS

-------------------=

×
ik0

2
------Smk

1– Pmnηk' ηn' 2ηmηk'– Ṡnkηnηm+( )
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If we recall that W(ς, ξ, τ) is the slow and smooth
envelope of the packet, it may seem that the point
source function GW has no physical meaning. However,
this is generally not the case. The function GW provides
a rather good approximation of Green’s function of the
exact wave equation in a certain neighborhood of the ref-
erence ray. However, the main property of GW is the pos-
sibility of representing the solution of (4.5) in the form of
the integral expansion

(5.10)

where W0(ξ, τ) = W(ς = 0, ξ, τ).

Thus, the initial value problem for the partial differ-
ential Eq. (4.5) is reduced to solving the system of ordi-
nary differential Eqs. (3.1), (5.4), (5.8) (which are inde-
pendent of W0(ξ, τ)) with the subsequent calculation of
integral (5.10) for all sections of the propagation trajec-
tory ς = ς* for “arbitrary”.7 This procedure is conve-
nient for numerical computer calculations of wave
fields; however, it is inconvenient for analytical analy-
sis aimed at revealing the characteristic features of the
propagation of packets in inhomogeneous media. In
part, these features, which are common for packets and
beams, were discussed at the end of Section 4. Below,
we discuss one more effect that is specific to short
packets (Λ|| ! Lε).

6. WAVE PRECESSION OF A PACKET IN MEDIA 
WITH A NEGATIVE DISPERSION

OF THE GROUP VELOCITY

In this section, we consider a particular case of the
propagation of a short wave packet along a plane trajec-
tory in a medium with a negative dispersion of the
group velocity (∂vg/∂λ < 0, γ > 0). In this case, T = 0,
g1 = n, g2 = m = const, α12 = 0, δ2 = 0, and Eq. (4.5)
allows for the separation of variables

(6.1)

7 The word “arbitrary” is in double quotation marks for the follow-
ing reason. Formally, for every function W0(ξ, τ), (5.10) is a solu-
tion of Eq. (4.5). However, only the initial conditions satisfying
the constraints formulated at the beginning of the paper have a
physical meaning.
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  ∂2W1

∂ξ1
2

------------+

+ γ ς( )
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∂τ2
------------ k0

2α1 ς( )ξ1
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2ik0
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∂ς
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(6.2)

As is seen, in the case when the variables in (4.5)
can be separated, the problem on the three-dimensional
wave packet is reduced to solving Eq. (6.2) for a two-
dimensional wave beam and Eq. (6.1) for a two-dimen-
sional packet. Formally, (6.1) can be considered as an
equation for the three-dimensional wave beam (where
ς is the longitudinal and ξ and τ are the transverse coor-
dinates) propagating in a lens-like medium. In this case,
the effective distributed lens is cylindrical (collecting in
the plane (n, s) for α1 > 0 and diverging for α1 < 0.8

With respect to the time coordinate τ, the equivalent
lens is neither focusing nor defocusing.

Were it not for the operator  = ξ1∂τ in Eq. (6.1), the
variables could be separated further, and the diffraction
and dispersion effects could be completely uncoupled
as in the case of a homogeneous medium. The opera-

tor , which is proportional to ∂K/∂ω, is responsible
for the Newtonian dispersion of waves in inhomoge-
neous media; it relates the longitudinal evolution of the
packet with the transverse one, and the type of this rela-
tionship essentially depends on the sign of γ. For γ > 0,
the differential operators in (6.1) can be made symmet-
ric by the change of variables

where the dot denotes the derivative with respect to the arc
length s, and coordinate u2 is directed along the group
velocity vector. This change of variables reduces (6.1) to
the form

8 α1 is negative when the packet propagates along the so-called
Pedersen ray. This case is not very interesting from the practical
point of view, since the signal along this ray attenuates exponen-
tially.

δ ε∂K
∂ω
-------, α1 3εK2 1

2
---∂2ε

∂n2
--------,–= =

α2
1
2
--- ∂2ε

∂m2
---------.–=

Ĝ
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(6.3)

Passage to the new variables in (6.3) corresponds to
making a “photograph” of the distributions of the field.
It seems that this method of observation is more diffi-
cult to implement in experiments than the signal scan-
ning with respect to time; however, it is more conve-
nient for verbal descriptions of changes of the wave
packet envelope.

After symmetrizing the operator  = ξ1∂τ, a qua-
dratic phase corrector appears in (6.3), which is propor-
tional to κ2. It plays the role of a focusing lens in the
plane (u2, s); in other words, it compresses the packet in
the longitudinal direction. The “focal power” of the
effective lens in the plane (u1, s) is reduced.9 

The fact that the longitudinal diffusion of the packet
is compensated seems rather strange. Indeed, in a
homogeneous medium with γ > 0, the high-frequency
harmonics of the packet spectrum propagate with a
higher group speed; due to this fact, the packet smears
and becomes frequency-modulated (the current fre-
quency at the leading edge of the impulse is greater and
at the trailing edge less than the average one). In a
straight wave duct, the packet bleeds even more rapidly,
since the dispersion due to the medium is combined
with the waveguide dispersion of the same type. A bend
of the wave duct results in an additional focusing [7],
the duct becomes narrower, and its waveguide disper-
sion enhances even more. Then, which is the cause of
the longitudinal diffusion compensation? The cause is
in the transverse refractive dispersion. The trajectories
of the steady-state phase of high-frequency harmonics
deviate from the reference trajectory and pass a longer

9 We can give little attention to the dependence of the tensor βmn on

 and , since it is a result of a nonuniform scale normalization
and does not lead to a longitudinal compression of the packet nor
to its smearing (extension).

emn
0 1

1– 0 
 
 

, β11 3 K2 κ2–( ) 1
2ε
-----∂2ε

∂n2
--------,–= =

β12 β21
3κ γ̇
4γ

---------–
1
2
--- κ̇ ,+= =

β22 κ2 γ̇̇
2γ
------

3γ̇2

4γ2
--------.–+=

Ĝ

γ̇ κ̇

ω + Ω
ω

Fig. 1. Oscillation of the central ray of a partial wave beam
(dotted line) at the frequency ω + Ω relative to the reference
trajectory (solid line) described by the equation ξ = qΩ,  +
αq = –δ.

q̇̇
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way until they touch it. As a result, an additional delay
of high-frequency harmonics occurs, which leads to the
compensation of the longitudinal diffusion of the
packet. Figure 1 illustrates this compensating mecha-
nism by way of a two-dimensional (∂/∂ξ2 = 0) packet.
It is seen that the refractive (transverse) dispersion does
not lead, in focusing media, to a regular deviation of the
packet from the reference trajectory.

The operator  ~ emnum∂/∂un in (6.3) is similar to
the projection operator of the angular momentum in

quantum mechanics (in cylindrical coordinates,  ~
∂/∂ϕ). It is clear that it can be eliminated by changing
the frame of reference to the reference frame (x1, x2)
that rotates with the angular speed –κ(s):

(6.4)

(6.5)

Thus, a two-dimensional packet is described by the
same equation as the wave function of an electron in a
parabolic potential well. However, the well rotates with
frequency –κ, and its depth and eccentricity generally
varies. The solution of Eq. (6.5) is thoroughly studied
in [1].

If we return to the frame of reference (u1, u2) associ-
ated with the normal n, then the rotation of the envelope
structure superimposes on the evolutionary picture of
the packet propagation and the variation of its longitu-
dinal and transverse size. Since n rotates with the angu-
lar speed Wn = vgKm with the motion along the refer-
ence ray, then the speed of rotation of the wave packet
envelope relative to the medium is

(6.6)

In order to separate the wave precession10 in the
pure form eliminating the accompanying effects (oscil-
lation of the transverse size and longitudinal smearing),
we consider, by way of example, a packet captured by
a plasma circular wave duct.

10The term precession is used for the description of various phe-
nomena related to the superposition of one rotational motion on
another. These are the stability of a top, evolution of the orbit of
Mercury, precedence (the word-for-word translation of praeces-
sio) of equinoxes, etc. The wave precession does not fall out of
this list, since in this case we deal with the rotation of the packet
envelope structure against the background of the rotation of the
propagation direction.
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6.1. A Packet in a Circular Duct

Consider the propagation of a packet in axially sym-
metric isotropic plasma; the approximate dependence

of its permittivity on the radius, ε(ω, r) = 1 – (r)/ω2,
is shown in Fig. 2.

A medium of this type is a wave duct for the modes
that propagate in the azimuth direction and are located
in a neighborhood of the ray r = ρ with the radius
defined by the equation ε'(ρ) + 2ε/ρ = 0. If we take this
ray as the reference one for the curvilinear reference
frame (s = ρϕ, ξ = ρ – r), then the coefficients in (6.1)
and (6.3) are constants

(6.7)

It is seen that, due to dispersion, the medium is a
“potential well” for the packet not only in the radial, but
also in the azimuth direction. If

,

then this “well” is symmetric (βmn = βδmn) and, there-
fore, invariant under rotation (6.4). Taking this fact into
account, Eq. (6.5) for the two-dimensional wave packet
can be written as

(6.8)

where the dimensionless coordinates

are used.
The properties of Eq. (6.8), which is similar to the

Schrödinger equation for the two-dimensional linear
oscillator, are thoroughly studied. Its solutions can be
represented as a superposition of steady-state modes
(described by two-dimensional Hermitian functions),
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which precess in the coordinate representation (u1, u2)
without changing their shape (Fig. 3).

The angular speed of the wave packet envelope (6.6)
with respect to the medium (both for the example above
and in the general case of the isotropic inhomogeneous
plasma) can be written as

(6.9)

where Wn is the rotation speed of the principal normal
n to the reference ray.

6.2. Analogy with the Thomas Precession

Expression (6.9) has a simple geometric meaning in
four-dimensional space-time. It is easy to show that Wp

coincides with the angular speed of the rotation of the
vector as it is pseudoparallelly translated along the
world line (or along the ray of the space-time geomet-
rical optics). Let a material point (or the center of the
packet) move on a circle of the radius a with the angular
speed Wn (the tangential speed is v = Wna). Consider
the imaginary variable z = ut, u = ic. Then, the world
line is described by the equation of a spiral in the space
with a formally Euclidean metric:

Wp 1 1

1 v g
2/c2–

--------------------------–
 
 
 

Wn,=

x a Ωnt( ), ycos a Ωnt( ), zsin ut.= = =

Fig. 2. The radial profile of permittivity in a circular plasma
wave duct.

u1

u2

y1

ϑ (s)

Fig. 3. Wave precession of the mode Q10 whose structure in
the direction of the axis y1 is described by the first Hermitian
function and in the direction of y2 by the zero Hermitian

function: Q10 ~ y1exp( /2 – /2)exp(–2il).y1
2

– y2
2

ε
1

0 rρ
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The length element and the torsion of this curve are
given by equations

An orthogonal curvilinear frame of reference can be
defined in the neighborhood of this curve such that its
basis rotates according to the Rytov law (3.3); in the
new notation, this law has the form

(6.10)

The description of physical processes in the orthog-
onal frame of reference associated with the world line
is equivalent to changing to the noninertial frame of ref-
erence S' attached to the particle (or packet) with the
diagonal metric tensor gik . The condition g0k = 0 (k ≠ 0)
testifies that there is no field of Coriolis forces in S'.
This fact gave Thomas [17] (see also [18]) a reason to
assert that the axis of a gyroscope with three degrees of
freedom must be at rest in S' and must precess with the
frequency Wp in the laboratory frame of reference.

The question of the response of actual gyroscopes to
geometric properties of the world lines of their suspension
points remains open. As for the wave packets, an “ade-
quate response” is characteristic only of those that propa-
gate in inhomogeneous plasma. It is easy to show that
in the Minkowski world plasma is the only isotropic
medium (for electromagnetic waves). Let us write
down the collinearity condition for two four-dimen-
sional vectors, the wave vector (k0; k) and the group

velocity ( ; vg/c), where  = (1 – /c2)–1/2, as

(6.11)

where  is the integration constant, which must be pos-
itive due to the relativistic causality principle (vg < c). The
last of the equalities (6.11) expresses the dispersion law
of electromagnetic waves in plasma and of fast de Bro-
glie waves.

In the general case, the wave precession is not a rel-
ativistic phenomenon: it manifests itself in arbitrarily
slow motions. For example, a packet of Langmuir (lon-
gitudinal) waves in plasma with the dispersion law of

the form ω2 =  + 3k2  (VTe ! c) precesses with
the frequency Ωp determined by the same formula (6.9)

in which c must be replaced by VTe. In media with a
positive dispersion of the group velocity, the wave pre-
cession is absent. The rotational motion is replaced by
“rotation by an imaginary angle” as in the Lorentz
transformation, and the refractional (transverse) disper-
sion results in an enhancement of the longitudinal dif-
fusion of the packet.

ds u2 v 2dt+ , T
1
a
--- uv

u2 v 2+
-----------------.= =

dθ
dt
------ T u2 v 2+–

Ωn

1 v 2/c2–
--------------------------.–= =

γ̃ γ̃ γ̃ v g
2

k
k0
---- = 

v g

c
------ ω∂ω

∂k
------- = c2k ω2 = c2k2 ω0

2,+

ω0
2

ωpe
2 VTe

2

3
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7. CONCLUSION

Equation (4.5) obtained in the aberration-free quasi-
optical approximation is very convenient for describing
quasi-harmonic fields of wave packets and time-depen-
dent beams in arbitrary (without one or another sym-
metric property) smoothly inhomogeneous media. It
makes it possible to recalculate the wave process from
one section of the curvilinear propagation trajectory s = sb

into any other section s = se (se _ sb) without calculating
the fields in intermediate domains. It is sufficient to solve
on the interval s ∈  (sb, se), the system of ordinary differen-
tial equations that determine the parameters of Green’s
function or of eigenfunctions of other expansions (for
example, in locally plane waves [1] or in generalized
three-dimensional Hermitian functions [19]).

It is nontrivial to determine the applicability condi-
tions of the aberration-free quasi-optical approxima-
tion. In this paper, we gave only the necessary local
constraints on the reference spatial and time gauge of
the processes whose violation can be discovered within
the framework of approximation (4.5). However, there
exist more insidious, gradually accumulating, viola-
tions of the aberration-free quasi-optical approxima-
tion. They can be detected only by comparing with the
results of a stricter theory. A similarly difficult problem
of obtaining sufficient applicability conditions is also
characteristic of geometrical optics and its generaliza-
tions, such as the Kravtsov–Ludwig reference function
method [14] and the Maslov method [20]. It must be
noted that quasi-optics has an advantage over other
short-wave asymptotics consisting in the following: for
quasi-optics, a way is directed not only for detecting
integral violations, but also for their elimination.

For optical systems, the powerful diffraction theory
of aberrations [8] has been developed. In this theory, the
wave field is represented as an integral convolution of an
“ideal image” (the aberration-free approximation W)
with the so-called pass function of system F. The result
given by the theory can greatly differ from W both quan-
titatively and qualitatively (structurally). Quasi-optics can
be adapted to the generalization of the diffraction theory of
aberrations to arbitrary smoothly inhomogeneous media
(the requirement of the smallness of aberrations of dis-
crete phase correctors is replaced by their smoothness).
An example of such a generalization to the case of two-
dimensional wave beams was made in [21], where it
was shown that the parameters of the pass function F
(as well as the parameters of Green’s function) could be
determined by solving an extended system of ordinary
differential equations.

Thus, (4.5) is not only the equation that approxi-
mately describes wave fields. Its solutions remain use-
ful even beyond the scope of their immediate applica-
bility. It must be noted that such inhomogeneous media
as the ionosphere, the magnetosphere, or plasma in con-
trolled thermonuclear reactors differ substantially from
optical lines and light guides, whose construction falls in
the field of high technology. Aberrations of “lenses” and
AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001
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“prisms” that are equivalent to such media are often large
and highly diversified. Moreover, no complete classifica-
tion of such aberrations exists. For these reasons, the dif-
fraction theory of aberrations cannot be directly extended
to quasi-optics of inhomogeneous media. The develop-
ment of a quasi-optical analogue of the diffraction the-
ory of aberrations requires additional justification and
somewhat different approaches.

Another advantage of quasi-optical equations is that
they can be extended to nonlinear (originally inhomo-
geneous) media. However, in this case, the reference
trajectory depends on the intensity and structure of the
wave field [22–24].

In conclusion, we note that the applicability of
Eq. (4.5) is not restricted to electrodynamics; it remains
valid (up to the notations) for waves of arbitrary nature.
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Abstract—The magnetic properties of La1 – xCaxMnO3 solid solutions were studied in wide temperature and
magnetic field ranges, T = 2–600 K and H ≤ 50 kOe. Semiconducting compositions with 0.6 < x < 0.9 exhibited
an unusual temperature behavior of magnetization and susceptibility with well-defined Curie and Néel temper-
atures. The simultaneous manifestation of both ferromagnetic and antiferromagnetic properties is evidence of
the coexistence of two collinear magnetic phases. The content of impurity ions was shown to have a strong
influence on the TC and TN values, whereas the ratio between the ferro- and antiferromagnetic phase vol-
umes heavily depended on thermal treatment conditions. The magnetic properties of the whole series of
La1 – xCaxMnO3 solid solutions can be explained in terms of the phase separation model. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The interest of researchers in perovskite-like man-
ganites based on LaMnO3 stems from the discovery of
the giant magnetic reluctance effect in these compounds
and their potential use, in particular, in various switching
devices, magnetic storage and recording units, etc. The
doping of a LaMnO3 antiferromagnetic semiconductor
with divalent nonmagnetic ions A = Sr, Ba, and Ca is
known to increase the conductivity and ferromagnetic
ordering of Mn ions. The highest TC, conductivity, and
reluctance values are characteristic of La1 – xAxMnO3
solid solutions in the composition range 0.2 < x < 0.4,
and most attention has therefore been given precisely to
these compositions.

The complex of such manganite properties as the
metal–insulator transition, giant reluctance, ferromag-
netic order, and the formation of magnetic polarons is
explained by either the double exchange mechanism [1] or
the model of spatial phase separation [2]. Both mecha-
nisms predict qualitatively similar properties of conduct-
ing compositions in close agreement with experiment.
According to the double exchange model, composi-
tions with low ion A contents, x < 0.2, should, however,
have a uniform magnetic state. In compositions with
x > 0.5, the double exchange mechanism should not
play an important role because of the low conductivity.
According to the spatial phase separation model, the
magnetic state of solid solutions with 0.2 < x < 0.5
should be uniform and ferromagnetic, and, at x < 0.2
and x > 0.5, the magnetic state should be nonuniform
with a collinear ordering of spins in the ferro- and anti-
ferromagnetic regions. Compositions with high and
low x values should largely differ in the volume ratio
1063-7761/01/9201- $21.00 © 20100
between the ferro- and antiferromagnetic regions. The
LaMnO3–CaMnO3 system, as distinguished from the
other systems, forms a continuous series of solid solu-
tions, which allows the magnetic properties of composi-
tions with large x values to be studied. In the preceding
paper [3], we studied the La1 – xCaxMnO3 system in the
whole composition range 0 ≤ x ≤ 1 and observed
unusual magnetic properties at x > 0.5. In this work, we
concentrate on solid solutions with 0.6 ≤ x ≤ 0.9. The
effects of magnetic fields on the temperature behavior
of magnetization and susceptibility and the influence of
sample preparation conditions on the magnetic proper-
ties of manganites have been studied.

2. SAMPLES AND PROCEDURE
FOR MEASUREMENTS

Polycrystalline La1 – xCaxMnO3 samples with 0 ≤ x ≤ 1
were prepared from La2O3 (99.9%), Mn3O4, and CaCO3
powders of OSCh (special purity) grade. The samples
were synthesized in several stages. First, the initial mix-
ture of powders was annealed in air at 1300°C for 30 h
with one intermediate grinding. Next, the samples were
reground, and the powders were pressed into pellets,
which were annealed at 1300°C for 50 h. The X-ray pow-
der patterns were obtained on a DRON-2.0 diffractometer,
CrKα radiation. The samples were single-phase. All com-
positions except LaMnO3 and La0.2Ca0.8MnO3 had per-
ovskite structures of cubic symmetry, and the samples
with x = 0 and 0.8 crystallized in the orthorhombic sys-
tem. The lattice parameters decreased as x increased [3].
As is known, deviations from stoichiometry in both the
cationic and anionic sublattices can strongly affect the
physical properties of manganites. The La1 – xCaxMnO3
001 MAIK “Nauka/Interperiodica”
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samples with 0.6 ≤ x ≤ 0.9, which exhibited unusual
magnetic properties, were subjected to additional
annealing at 1200–1400°C followed by quenching in
air. Quenching samples from high temperatures should
decrease the content of oxygen. The lattice parameters
of quenched La0.2Ca0.8MnO3 samples are listed in Table 1.
Annealing followed by quenching did not change lat-
tice symmetry. Lattice parameters decreased as the
temperature of quenching grew, which might be evi-
dence of an approach to stoichiometry compared with
the initial samples.

Magnetic measurements in a wide temperature
range T = 2–600 K were performed on three units, namely,
a vibrating-coil magnetometer, a Faraday magnetic bal-
ance, and a SQUID magnetometer (Quantum Design
Model 1822).

Several samples were magnetically nonuniform and
exhibited diffuse magnetic transitions. The determina-
tion of the Curie temperature by the Belov–Goryaga
method then gave incorrect results. To reveal the trends
of Curie and Néel temperature variations with the concen-
tration of Ca ions and depending on thermal treatment
conditions, the TC values were estimated by extrapolating
the sharpest decrease in σ(T) and χ(T) in a weak magnetic
field (H < 10 Oe), and the TN temperatures were deter-
mined from σ(T) and χ(T) maxima at H = 9 kOe.

3. EXPERIMENTAL RESULTS

Perovskite-like manganites LaMnO3 and CaMnO3
form a continuous series of solid solutions. The extreme
stoichiometric compositions with x = 0 and 1 in the
La1 – xCaxMnO3 system show semiconductor-type con-
ductivity and an antiferromagnetic ordering of the mag-
netic moments of Mn3+ (S = 2) or Mn4+ (S = 3/2) ions
below TN . Their magnetic properties are determined by
superexchange interactions between Mn ions through
the 3p oxygen wave functions. The replacement of a
part of La3+ ions in LaMnO3 by Ca2+ ions results in an
increase in conductivity and the appearance of ferro-
magnetism [4]. Our La1 – xCaxMnO3 samples with x < 0.5
had magnetic characteristics typical of ferromagnets
[3]. At low temperatures, the magnetization was fairly
high, which was evidence of a ferromagnetic ordering of
magnetic ions. An increase in temperature caused a sharp
decrease in magnetization in the region of TC. In the same
temperature region, the metal–insulator transition
occurred, and reluctance reached a maximum. In the para-
magnetic region (T > TC), magnetization linearly
increased with the magnetic field strength. The Curie
and Néel temperatures characterizing the magnetic
properties of the La1 – xCaxMnO3 samples are listed in
Table 2.

The temperature and external magnetic field depen-
dences of solid solution magnetization in the concen-
tration range 0.6 ≤ x ≤ 0.9 have a more complex char-
acter. The temperature dependences of magnetization
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
for La0.4Ca0.6MnO3 measured in various magnetic
fields and similar σ(T) dependences for La0.2Ca0.8MnO3

are shown in Figs. 1 and 2, respectively. In weak fields
(H < 100 Oe), the σ(T) dependences are typical of fer-

1

2

3

TN

TC
3

2

1

0

50 100 150 200 250 300

σ, emu/g

T, K

Fig. 1. Temperature dependences of magnetization for
La0.4Ca0.6MnO3 in magnetic fields H = 50 Oe (scale 1 : 3) (1),
5 kOe (2), and 10 kOe (3).

Table 1.  Crystal lattice parameters of quenched
La0.2Ca0.8MnO3 samples

Quenching
temperature, °C

Lattice parameters Unit cell
volume

a, Å b, Å c, Å V, Å3

1200 5.334 7.542 5.334 214.984
1350 5.339 7.547 5.330 214.764
1400 5.320 7.523 5.326 213.159

Table 2.  Curie and Néel temperatures for La1 – xCaxMnO3

Composition, x Quenching, °C TC, K TN, K

0.1 – 170 –
0.3 – 205 –
0.4 1350 172 –

0.6
– 111 260

1400 115 264
0.7 1400 Diffuse transition 260

0.8

– 93 183
1200 95 200
1350 93 215
1400 98 205

0.9 1400 98 129
1 – 115 –

Note: The TC values were determined by the kink method in a
weak magnetic field, and the TN values were found from the
positions of σ maxima in field H = 9 kOe.
SICS      Vol. 92      No. 1      2001
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romagnetic substances and exhibit a sharp decrease in
σ near TC = 115 and 98 K for x = 0.6 and 0.8, respectively.
An increase in field strength results in the appearance of a
magnetization maximum at T > TC, which becomes more
pronounced as H increases. These trends are most notice-
able for the composition with x = 0.8.

The temperature dependences of susceptibility, χ(T),
and reciprocal susceptibility, 1/χ(T), obtained for
La0.2Ca0.8MnO3 at high temperatures in fields H = 4.45
and 8.9 kOe are shown in Fig. 3. A susceptibility max-
imum is observed near T = 200 K, and the susceptibility
is smaller in the stronger field, as in collinear antiferro-
magnetic compounds NiO and MnF2 [5]. In the region
of high temperatures (T > 320 K), the sample is in the
paramagnetic state, because its susceptibility is inde-
pendent of the applied magnetic field and obeys the

T, K

σ, emu/g
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TC TN
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0–5
 Ò

m
3 /g
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0

3  g
/c

m
3

Fig. 2. Temperature dependences of magnetization for
La0.2Ca0.8MnO3 in magnetic fields H = 13 Oe (scale,
1 : 10) (1); 2 kOe (2); 5 kOe (3); 8 kOe (4); 10 kOe (5).

Fig. 3. Temperature dependences of susceptibility and
reciprocal susceptibility for La0.2Ca0.8MnO3 in fields
H = 4.45 (1) and 8.9 kOe (2).
JOURNAL OF EXPERIMENTAL 
Curie–Weiss law χ = N /3k(T – Θ) with Θ = 142 K
and µeff = 3.93µB, which is close to the calculated value
µeff = 4.10µB.

The presence of a susceptibility maximum in the
χ(T) dependence is characteristic of collinear antiferro-
magnetic substances near the Néel temperature TN , of
ferrimagnets with two and more magnetic sublattices
and TN > TC [6], and of the spin glass state near the
freezing point Tf . To check whether or not the sample
was in the spin glass state, we performed magnetization
and susceptibility measurements in the temperature
range 100 K < T < 300 K; the sample was cooled in the
presence and in the absence of a magnetic field. No
hysteresis phenomena typical of spin glasses were
observed for σ(T) and χ(T).

Theoretically, La1 – xCaxMnO3 manganites can occur
in the ferrimagnetic state, because the Mn3+ and Mn4+

ions have different magnetic moments, their concentra-
tions are different in samples of all compositions except
when x = 0.5, and they can occupy sites of two or sev-
eral magnetic sublattices. However, if our samples with
0.6 ≤ x ≤ 0.9 were ferrimagnets with TN > TC (that is, if
they underwent the transition from the paramagnetic to
the antiferromagnetic state near TN and from the anti-
ferromagnetic to the ferrimagnetic state near TC during
cooling from high temperatures), then the extrapolation
of the temperature dependence of reciprocal suscepti-
bility from high temperatures T > 320 K would give a
negative asymptotic Curie temperature Θ value, and the
1/χ(T) dependence itself would be nonlinear with a con-
cavity toward the temperature axis. 

Figure 3 shows that Θ is positive, and the 1/χ(T)
dependence is convex toward the T axis in the critical
region of temperatures of the transition from the para-
magnetic to the magnetically ordered state. The shape of
this dependence is characteristic of ferromagnets whose
long-range order is destroyed but short-range order is
retained. It would, therefore, be groundless to suggest
that there are several nonequivalent magnetic sublat-
tices whose magnetizations are balanced at TC < T < TN ,
or that one magnetic sublattice becomes paramagnetic
above TC , whereas antiferromagnetic ordering is
retained in the other up to TN . We believe that the max-
ima of σ(T) and χ(T) are related to the Néel temperature
of the antiferromagnetic collinear phase. The large pos-
itive Θ value, the sharp increase in magnetization
observed when the temperature decreases below 110 K,
and the nonlinear field dependences of magnetization are
evidence of the important role played by ferromagnetic
interactions in the region of low temperatures (T < TC). 

It appears that, in the intermediate (TC < T < 300 K)
temperature region, antiferromagnetic interactions pre-
vail. As a result, La1 – xCaxMnO3 manganites with 0.6 ≤
x ≤ 0.9 have the properties of both ferromagnets and
antiferromagnetic substances with pronounced Curie
TC and Néel TN temperatures. They are magnetically

µeff
2
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nonuniform because of spatial phase separation into the
ferromagnetic and antiferromagnetic components [2],
each with TC and TN temperatures of its own. The mag-
netic nonuniformity of these samples also follows from
a somewhat diffuse character of the phase transition
near TC compared with a similar transition in 0.2 < x <
0.4 samples.

In the region of x > 0.5, an increase in the content of
Ca2+ ions shifts TC and TN to the lower temperatures.
The Néel temperature decreases as x increases much
faster than the Curie temperature, and the difference
between TC and TN therefore also decreases. The tem-
perature dependences of magnetization obtained for
La0.1Ca0.9MnO3 in various magnetic fields are shown in

3
2

1

TC

TN

4

3

2

1

0
80 100 120 140 160

T, K

σ, emu/g

Fig. 4. Temperature dependences of magnetization for
La0.1Ca0.9MnO3 in magnetic fields H = 1.7 (1), 5 (2), and
9 kOe (3).
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Fig. 5. Temperature dependences of magnetization in field
H = 10 kOe for La0.4Ca0.6MnO3 recorded prior to (curve 1)
and after (curve 2) annealing at 1400°C with quenching; the
σ(T) dependence in field H = 60 Oe for the quenched sample
is shown in the inset.
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Fig. 4. For this sample, TC = 98 K, and the Néel tempera-
ture TN = 129 K is close to the TN = 131 and 139 K values
for stoichiometric CaMnO3 [7] and LaMnO3 [8].

The magnetic properties of manganites can be influ-
enced not only by impurities but also by intrinsic
defects. The compositions with x = 0.6 and 0.8 were
subjected to thermal treatment, which decreased the
content of oxygen in the samples. The temperature
dependences of La0.4Ca0.6MnO3 magnetization in field
H = 9 kOe obtained prior to annealing and after anneal-
ing at 1400°C followed by quenching are shown in Fig. 5.
Similar σ(T) dependences for La0.2Ca0.8MnO3 in
field H = 10 kOe are plotted in Fig. 6. Thermal treat-
ment has a weak effect on maximum magnetization
and, accordingly, on the antiferromagnetic phase, but
effectively suppresses the ferromagnetic contribution.
The σ(T) dependence for the quenched La0.2Ca0.8MnO3
sample has a form characteristic of collinear antiferro-
magnets. The results of magnetization measurements in
a weak field are, however, indicative of the presence of
a ferromagnetic phase with a Curie temperature close
to that of the initial sample.

Additional information about the presence of ferro-
magnetic and antiferromagnetic phases can be obtained
by magnetic measurements at low temperatures. This
prompted us to record the field and temperature depen-
dences of magnetization for the La0.2Ca0.8MnO3 sample
quenched from 1350°C with the use of the SQUID
magnetometer. The σ(T) dependences obtained for this
sample in fields H = 100 Oe and 10 kOe are shown in
Figs. 7 and 8. In the weak field, magnetization sharply
increases with decreasing temperature at T = 100 K,
which closely agrees with the data given in Fig. 2 and
the theory of paramagnetic–ferromagnetic state phase
transitions. At H = 10 kOe, a maximum of magnetiza-
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Fig. 6. Temperature dependences of magnetization in field
H = 9 kOe for La0.2Ca0.8MnO3 recorded prior to (curve 1)
and after (curve 2) annealing at 1400°C with quenching; the
σ(T) dependence in field H = 30 Oe for the quenched sample
is shown in the inset.
SICS      Vol. 92      No. 1      2001



104

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001

ARBUZOVA et al.

tion is observed at about 210 K (see Figs. 2 and 6).
Below 100 K, magnetization begins to increase and
reaches a value of σ = 0.99 Gs cm3/g at T = 2 K. Such
a magnetization value corresponds to ferromagnetic
ordering of about 1% of the total number of manganese
ions. Note that magnetization values at low tempera-
tures (2 K < T < 40 K) and near TN = 207 K are fairly
close to each other.

The field dependences of magnetization are different
for ferromagnets and antiferromagnets. The σ(H) field
dependences measured up to 50 kOe at low and medium
temperatures for the polycrystalline La0.2Ca0.8MnO3 sam-
ple quenched from 1350°C are shown in Fig. 9. At
T = 2 K, the σ(H) dependence is nonlinear, and magne-
tization hysteresis is observed. The nonzero magnetiza-
tion value at H = 0 was obtained because the hysteresis

loop at T = 2 K was recorded after cooling the sample
at H = 10 kOe; that is, the sample was not demagne-
tized. At T = 150 K (TC < T < TN), the ferromagnetic
phase in the paramagnetic state, like the antiferromagnet-
ically ordered phase, should exhibit a linear σ(H) depen-
dence tending to zero, which agrees with our experiment.
It follows that, according to the results of our mag-
netic measurements, the ferromagnetic properties of
La1 – xCaxMnO3 samples with high Ca2+ ion concentra-
tions (x > 0.5) manifest themselves at low tempera-
tures T < 100 K, whereas the antiferromagnetic properties
prevail in the temperature range 100 K < T < 300 K.

4. DISCUSSION

Manganites AMnO3 of the Rudlesden–Popper series
have three-dimensional perovskite structures consisting of
interpenetrating MnO6 octahedra and A2O2 blocks with a
NaCl structure. Magnetic manganese ions are situated in
the centers of octahedra, whose vertices are occupied by
oxygen ions. There can be no direct exchange between
manganese ions because of their small ionic radius
(about 0.7 Å). Magnetic interactions between Mn ions
in nonconducting manganites involve 180° superex-
change through oxygen ions. The sign and the magni-
tude of the superexchange interaction depend on lattice
parameters, the Mn–O–Mn bond angle, and the overlap
of the 3d–2p wave functions [9, 10]. The degree of
covalence has a strong influence on the exchange inter-
action and p-type conductivity. The higher this degree,
the stronger the superexchange interactions are.

In stoichiometric LaMnO3, all manganese ions should
be in the trivalent state (Mn3+ is a Jahn–Teller ion). The
replacement of a part of La3+ ions by divalent ions and
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Fig. 9. Field dependences of magnetization at T = 2 (1) and 150 K (2) for La0.2Ca0.8MnO3 sample quenched from 1350°C.
deviations from stoichiometry result in the appearance
of Mn4+ ions. In perovskite-like compounds, the
Mn3+–O2––Mn3+ interactions in a cubic environment
and the Mn4+–O2––Mn4+ interactions are antiferromag-
netic, whereas the Mn3+–O2––Mn3+ interactions in an octa-
hedral environment and the Mn3+–O2––Mn4+ interactions
are ferromagnetic. In the presence of Mn ions in different
valence states, the 3d electron of a Mn3+ ion can be delo-
calized, and a charge transfer can occur with electron
jumps between Mn3+ and Mn4+ ions. Manganites then
become conducting, and the double exchange mechanism
results in the ferromagnetic ordering of magnetic
moments [11]. If the concentration of mobile charge car-
riers is high, indirect exchange of the Ruderman–Kittel–
Kasuya–Yosida type should also lead to ferromagnetism.
Magnetic ordering in manganites is determined by com-
petition between ferromagnetic and antiferromagnetic
interactions.

Goodenough [9] used the theory of superexchange
through 180° and the experimental data on the mag-
netic, electric, and crystallographic properties of per-
ovskite to construct a semiempirical phase diagram for
the La1 – xCaxMnO3 system. According to this diagram,
compositions with x < 0.2 must exhibit noncollinear
antiferromagnetism, the compounds with 0.2 < x < 0.4
should be ferromagnetic, and compositions with 0.5 <
x < 0.9, antiferromagnetic. The phase diagram of the
La1 – xCaxMnO3 system at T = 0 was studied in [12] by the
method of heavy fermions. When the concentration of Ca
increases over the whole concentration range 0 < x < 1,
competition between double ferromagnetic exchange and
antiferromagnetic superexchange results in the occurrence
of several magnetic phase transitions, namely, antiferro-
magnet–helicoidal structure–ferromagnet–skew antiferro-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
magnet–antiferromagnet. At elevated temperatures,
kinetic energy should be taken into account. At 0.2 < x <
0.4, the electron-phonon interaction makes the helicoidal
magnetic structure less stable than the skew antiferro-
magnet. In antiferromagnets with nonequivalent mag-
netic ions, even weak magnetic fields at low tempera-
tures can disturb the collinearity of magnetic moments.
Unsaturated magnetic moments in compositions with x
< 0.2 are often explained precisely by skew antiferro-
magnetism.

The magnetic properties of manganites and the giant
reluctance effect are at present described by two alterna-
tive mechanisms, namely, the modified double exchange
mechanism [1] and the Nagaev model of spatial separa-
tion of phases [2]. According to [2], phase separation
occurs because the ferromagnetic ordering of magnetic
moments is energetically more favorable for free carriers
than antiferromagnetic ordering. At a not too high concen-
tration of charge carriers, they tend to assemble in separate
crystal regions and to establish ferromagnetic ordering in
these regions. As a result, the crystal becomes separated
into conducting ferromagnetic and insulating antiferro-
magnetic regions. The volume of the ferromagnetic phase
increases with the concentration of charge carriers. At the
critical concentration corresponding to the percolation
threshold, the metal–insulator concentration transition
occurs, and the whole crystal becomes ferromagnetic.
The double exchange and spatial phase separation
mechanisms are qualitatively similar and well explain
the giant reluctance effect and ferromagnetism of con-
ducting manganites with 0.2 ≤ x ≤ 0.4. At the same time,
in semiconducting systems with x < 0.2 and x > 0.5, the
double exchange model with noncollinear ordering of
magnetic moments predicts a uniform magnetic state over
the whole crystal, whereas according to the Nagaev
SICS      Vol. 92      No. 1      2001
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model, the magnetic state should be nonuniform (two-
phase) with a collinear arrangement of magnetic
moments in each phase.

The experimental data on the magnetic properties of
La1 – xCaxMnO3 manganites can be explained based on
the spatial phase separation model. Precisely the sepa-
ration of phases results in the simultaneous manifesta-
tion of both ferromagnetic and antiferromagnetic prop-
erties in samples with 0.6 < x < 0.9. These compositions
are semiconducting, because the larger fraction of the
crystal is in the insulating antiferromagnetic state. Ferro-
magnetic conducting regions are formed near defects such
as impurity ions and vacancies in the cationic and anionic
sublattices. The total magnetization of samples includes
the magnetization contributions of ferromagnetic and anti-
ferromagnetic regions. The form of the temperature
dependences of magnetization and susceptibility is deter-
mined by the volume ratio between the ferro- and antifer-
romagnetic phases. Experiments with quenching are
indicative of a decrease in the volume of ferromagnetic
regions. The magnetic properties of the ferro- and anti-
ferromagnetic regions themselves remain unchanged;
indeed, annealing virtually does not change the Curie
and Néel temperatures. It appears that our samples con-
tained excess oxygen. Quenching from high tempera-
tures decreased the content of oxygen, and the compo-
sition of the samples approached stoichiometry. This is
substantiated by a decrease in lattice parameters after
thermal treatment (see Table 1). Quenching from low
temperatures had a weak effect on the ferromagnetic
contribution and lattice parameters.

In the magnetically ordered region, the magnetiza-
tion of ferromagnets is known to be at least two–three
orders of magnitude larger than the magnetization of
antiferromagnets. At low temperatures T < TC , the total
magnetization of La1 – xCaxMnO3 samples is therefore
largely determined by the magnetization of ferromag-
netic regions. Near TC, the magnetization of ferromag-
nets sharply decreases. The different shapes of the tem-
perature dependences of magnetization in weak (H =
100 Oe) and medium (H = 10 kOe) fields are caused by
the small susceptibility of antiferromagnets. On a larger
σ(T) scale, an antiferromagnetic maximum of σ near TN

in field H = 100 Oe is clearly seen (see Fig. 7). At interme-
diate temperatures TC < T < TN, the contributions of the
ferromagnetic and antiferromagnetic phases become com-
parable. At high temperatures T > TN, both phases become
paramagnetic. Note that the asymptotic Curie tempera-
ture, Θ, determined from the experimental 1/χ(T) depen-
dences is a fictitious value. It does not characterize
long-range magnetic order because it represents a
superposition of the Θa < 0 and Θf > TC values for the
antiferromagnetic and ferromagnetic phases, respec-
tively. The large positive Θ value is only indicative of
strong ferromagnetic couplings in solid solutions. The
TC and TN critical temperatures are not related to struc-
tural phase transitions because the compositions with
x = 0.6 and 0.8 have qualitatively similar σ(T) depen-
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dences but differ in crystal lattice symmetry. Accord-
ing to [13], the lattice parameters of La0.35Ca0.65MnO3
do not change near TN = 160 K. The following obser-
vations lend support to the model of a nonuniform mag-
netic state. In a noncollinear antiferromagnet (weak
ferromagnetism or a magnetic spiral), magnetization
should decrease in the T < TN region rather than
increase with temperature lowering. The field depen-
dences of magnetization should either obey the law σ =
σs + χH, where χ is the field-independent susceptibility,
and σs is a small (≤0.1µB) spontaneous magnetization,
or exhibit a sharp change in σ at the critical field. These
rules do not hold with La1 – xCaxMnO3 (0.6 < x < 0.9)
solid solutions.

In ferromagnets, long-range magnetic order is
destroyed near TC, whereas short-range order is retained.
Applying a magnetic field favors the ferromagnetic order-
ing of spins and shifts TC to the higher temperatures. In
antiferromagnets, magnetic field effects are somewhat
different, namely, magnetic fields favor magnetic disor-
dering. The susceptibilities in different fields should
coincide at T = TN. The differences between the suscepti-
bilities increase with temperature lowering, because spins
tend to be orientated normally to the field. In antiferro-
magnets, the TN temperature remains unchanged or even
decreases in a strong magnetic field [5]. Such a behavior
of TN was observed for the majority of La1 – xCaxMnO3
solid solutions with 0.6 < x < 0.9. The suppression
of antiferromagnetic order in solid solutions with
0.50 < x < 0.68 by magnetic fields was also observed in
[14], where an increase in H from 1 to 2 T decreased TN

approximately by 20 K. In several samples, we, how-
ever, observed shifts of σ and χ maxima to the higher
temperatures in stronger fields (see Figs. 2, 3, 7, and 8).
The reasons for an increase in TN in a magnetic field
and for different susceptibility values at TN are not quite
clear. These effects may, for instance, be caused by a
change in the nonuniform magnetic state of a substance
under field action, which would result in changes in the
contributions of the ferro- and antiferromagnetic phases.

The separation of magnetic phases is also possible
in solid solutions with x < 0.2, but the properties of the
antiferromagnetic phase can then be obscured by the
ferromagnetic phase. The simultaneous manifestation
of ferro- and antiferromagnetic properties requires that
the TC temperature be lower than TN, and the volume of
the ferromagnetic phase be not larger than several per-
cent. Precisely these conditions are met in composi-
tions with 0.6 < x < 0.9. As mentioned above, the Néel
temperature lowers with a decreasing concentration of
Ca2+ ions and becomes lower than TC. For instance, the
La0.9Ca0.1MnO3 single crystal has TN = 118 K and
TC = 138 K [15]. The results obtained in [16–18] sub-
stantiate the suggesting of a nonuniform magnetic state
of manganites and phase separation in them. The neu-
tron diffraction data [16] on LaMnO3 + δ show that,
depending on δ, this compound can have antiferromag-
AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001
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netic or ferromagnetic properties or occur in a mixed state
with ferromagnetic clusters in an antiferromagnetic
matrix. The volume of ferromagnetic regions depends on
the concentration of defects (δ), which is determined by
the conditions of quenching. This is in agreement with our
data on the thermal treatment of La1 – xCaxMnO3 samples
with 0.6 < x < 0.9. In [17], the magnetic properties of
LaMnO3 + δ are also explained by a mixed two-phase
magnetic state. In [18], the presence of ferromagnetic
clusters against the background of an antiferromagnetic
matrix was observed for the other limiting composition,
namely, for quenched CaMnO3 – δ samples.

5. CONCLUSIONS
The unusual temperature behavior of magnetization

and susceptibility with well-defined Curie and Néel
temperatures observed for La1 – xCaxMnO3 manganites
in the composition range 0.6 < x < 0.9 is determined by
the spatial separation of the magnetic system into col-
linear antiferromagnetic and ferromagnetic phases. The
volume of the ferromagnetic phase depends on the con-
centrations of both specially introduced admixtures and
intrinsic defects. The magnetic properties of the whole
La1 – xCaxMnO3 system can be explained in terms of the
unified phase separation model.
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Abstract—An analytical theory of the polarization-degenerate interaction of light waves in cubic photorefrac-

tive crystals of the 23 and 3m space symmetry groups is proposed. The theory, based on a systematic use of
the spatial symmetry properties and the σ-matrix apparatus, provides for a unified description of the polariza-
tion and orientation properties of the wave interactions, including the AC and DC methods for enhancement of
the nonlinear response and the influence of optical activity, elastooptical effect, and spatial inhomogeneity. The
application of the theory to the description of the properties of photorefractive crystals Bi12TiO20 and Bi12SiO20
shows a good agreement with experimental data. © 2001 MAIK “Nauka/Interperiodica”.

4

1. INTRODUCTION
The interaction of light waves under the conditions of

a photorefractive nonlinearity was extensively studied by
theoretical and experimental methods [1–3]. The most
pronounced photorefractive interactions take place in fer-
roelectric crystals (LiNbO3, BaTiO3, SBN, etc.) possess-
ing significantly anisotropic properties. Accordingly, the
wave surfaces of the two intrinsic optical modes (usually,
the ordinary and extraordinary waves) are well separated
in the k-space. This feature allows the nonlinear interac-
tions in ferroelectrics to be described by equations for
the scalar amplitudes, thus speaking of a scalar interac-
tion of the light waves.

The situation dramatically changes in the case of iso-
tropic photorefractive media, the most characteristic
examples being offered by cubic crystals of the sillenite
family (Bi12SiO20, Bi12TiO20, Bi12GeO20) and some cubic
semiconductor crystals (GaAs, CdTe). In these media,
where a distance between the wave surfaces is (even in the
presence of an electric field) considerably smaller than in
ferroelectrics, the introduction of scalar wave ampli-
tude is often senseless. Instead of the scalar interaction
of waves, we have to consider their vectorial interaction
in which changes in the energy and polarization of the
interacting waves are nonseparable.

The problem of describing the vectorial interaction
of waves initially appeared as being not of large signif-
icance, since the photorefractive nonlinearity of cubic
crystals is usually rather small. However, subsequent
investigations [2–5] showed that the nonlinearity can be
markedly increased for the waves interacting in the pres-
ence of an alternating electric field (AC method) or for the
waves with a small frequency detuning interacting in the
presence of a constant field (DC method). At present,
1063-7761/01/9201- $21.00 © 20108
the gain in cubic photorefractive crystals reaches a level
of 102 cm–1, which is comparable to the values typical
of ferroelectrics. The phenomenon of the enhanced
photorefractive nonlinearity of cubic crystals is already
manifested in a number of strong optical effects such as
phase conjugation, optical oscillations, generation of
surface light waves, nonlinear scattering etc. [6–9].

An important advantage of the cubic crystals is a
fast photorefractive response [2, 3]. The response time
under continuous illumination conditions usually does
not exceed 10–2 s, which is smaller by at least two
orders of magnitude as compared to the values in ferro-
electrics. The fast photorefractive response, in combi-
nation with the possibility of increasing its magnitude,
makes the cubic crystals promising media for a number
of applications.

Owing to the results of investigations conducted for
may years, the principal elements that have to be
included into the theory of vectorial interactions in
cubic crystals have became clear. Besides the afore-
mentioned increase in the nonlinear response, these
elements are as follows:

(i) The so-called elastooptical contributions to the
nonlinear variation of the optical permittivity, which
must be taken into account together with the traditional
electrooptical contributions to photorefraction [10–14].

(ii) The effect of optical activity for crystals of the

3m group (sillenites).
(iii) Various optical configurations, differing by the

orientation of external electric fields and wave vectors
relative to the crystallographic axes.

(iv) The arbitrary selection of the input light beam
polarization.

4
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Despite all clarity with respect to separate aspects of
the description of vectorial interaction, no consistent the-
ory has been developed. Several existing models, which
either ignore the polarization degree of freedom [15, 16]
or appeal to thin nonlinear crystals [17–19], can by no
means provide for the interpretation of the available exper-
imental material. Nor does the numerical modeling
approach [7, 20–22]. The presence of many variable
parameters (different in physical meaning) can hardly
allow us to consistently consider realistic variants and for-
mulate adequate notions of the properties of these interac-
tions. Moreover, numerical methods are usually insensi-
tive to small parameters involved in a theory.

This study presents an attempt at combining the afore-
mentioned fragments so as to obtain a consistent analyti-
cal theory of vectorial interaction and apply the resulting
model to the most important AC and DC methods for
enhancement of the photorefractive response. The rela-
tionships derived below are compact and sufficiently
general. This is achieved by using the properties of spa-
tial symmetry, applying the σ-matrix apparatus, and
minimizing the number of independent parameters.
Equations derived within the framework of this theory
are convenient for considering various approximations
and particular cases.

The structure of this article is as follows. Section 2
introduces the main relationships for the optical permit-
tivity of cubic crystals, including linear and nonlinear
terms, derives equations for the vectorial amplitudes of
light waves (describing their propagation in and diffrac-
tion from a light-induced space charge grating), and
describes the basic properties of these waves. The equa-
tions contain a minimum number of parameters, which
are compatible with the spatial symmetry properties of
cubic crystals. These parameters are specified for two
basic optical configurations (equivalent configurations
are indicated) and some practically important cases are
considered. These data are sufficient for describing all
real configurations.

In Section 3, we will derive relationships for a non-
linear photorefractive response to the application of the
AC and DC enhancement methods. These relationships
express the amplitude of the space charge field through
the wave amplitudes, thus closing the system of nonlin-
ear equations for the light waves. We will also discuss the
applicability of the material relationships and consider the
physical meaning of the parameters involved.

Section 4 is devoted to analysis of the interaction of
two light waves in a cubic photorefractive crystal. First,
the nonlinear system is simplified to a maximum extent by
passing (quantum-mechanical analogy) to the interaction
representation. Then the AC amplification of a weak wave
in the presence of a strong wave is considered in the unde-
pleted pump approximation (not trivial in the case of
vectorial interaction). Finally, the features of spatial
amplification related to a strong influence of the linear
absorption are considered for the DC method of the
photorefractive response amplification.
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Section 5 gives several examples of applications of
the proposed theory to the study of the angular and
polarization properties of spatial amplification in crys-
tals of the sillenite family. We will also present original
experimental results for the Bi12TiO20 crystals and
some published data to demonstrate the agreement
between the proposed theory and the available experi-
mental data.

Section 6 presents discussion of the results and for-
mulates the conclusions.

2. BASIC RELATIONSHIPS

Let two light waves with wavevectors k1 and k2
propagate in a photorefractive cubic crystal along the z
axis in a laboratory frame of reference. The electric
field %%%% of the light waves can be presented in the fol-
lowing form:

(1)

where Ω is a small (&102 s–1) frequency difference. The
light intensity is modulated at a spatial frequency K =
k1 – k2 (grating vector). The photogenerated charge car-
riers, diffusing and drifting (migrating) in the applied
field E0, form a lattice of the space charge field Esc(r)
with a period of Λ = 2π/K. The field vector Esc is paral-
lel to K, and the field strength is determined by the inter-
ference pattern contrast m = 2(A1 · )/|A1|2 + |A2|2. In a
linear (with respect to m) approximation, the space
charge field obeys a relationship

(2)

where n = K/K is the unit grating vector and EK ∝  m is
the lattice amplitude. The Esc(r) field modulates the
optical permittivity tensor  and gives rise to the non-
linear optical effects.

In cubic crystals of the 23 and 3m space symmetry
groups, the permittivity  for a wave with wavevector k
can be presented in the following form [23, 24]:

(3)

where n0 is the index of refraction, α is the absorption
coefficient, ρ is the optical activity coefficient, and δijl

is the antisymmetric isotropic tensor. The terms δeij(E0)
and δeij(Esc) describe contributions to the permittivity
induced by the homogeneous field E0 and the spatially-
oscillating field Esc. By introducing the scalar field
amplitudes E0 and Esc, such that E0 = E0n0 and Esc = Escn,
these contributions are conveniently written as follows:

(4)

%%%% A1e
ik1 r iΩt–⋅

A2e
ik2 r⋅

+( )e iωt– c.c.,+=

A2*

Esc nEKei K r⋅ Ωt–( ) c.c.,+=

ê

4
ê

eij n0
2 1 iαk 1–+( )δij 2iρn0

2k 2– δijlkl+=

+ δeij E0( ) δeij Esc( ),+

δeij E0( ) n0
4r41E0Hij

0( ),–=

δeij Esc( ) n0
4r41EscHij,–=
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where r41 is the independent component of the electroop-

tical tensor rijl and  = rijl /r41 is the real symmetric

dimensionless matrix with the elements  depending
on the direction of the unit grating vector n0. These ele-
ments can be determined using the fact [23, 24] that rijl =
r41|δijl| (in the crystallographic system of coordinates).

The elements of the real dimensionless matrix 
depend on the orientation of the unit grating vector n. If
only the obvious electrooptical contribution to δ (Esc)

is taken into account, then (n) = (n). Allowance

for the elastooptical effect makes the (n) expression
more complicated [11, 12, 14]. In some cases (see
below), the contributions to  due to the elastooptical
and electrooptical effects are comparable.

Below we will restrict the consideration to a usual
paraxial approximation, assuming that the angles
between k1, 2 and the z axis are small. Accordingly, only
the x- and y-components of the wave amplitudes A1, 2

and vectors n0 and n are nonzero. Using the Maxwell
equations and relationships (1)–(4), one may readily
derive reduced equations for A1, 2 describing the dif-
fraction of the two light waves from the field grating:

(5)

Here,  is a Hermitian (2 × 2)-matrix describing the

linear optical properties of the medium, while  is a
real symmetric interaction (2 × 2)-matrix responsible
for the wave coupling. The matrix elements Gij and Vij

are determined by the relationships

(6)

where ρ and sE0 are the dimensional coefficients, λ is
the light wavelength, and the indices i, j refer to the x
and y axes. According to Eqs. (5), the diffraction only
leads to a redistribution of the energy between two waves,
their total intensity I0 being proportional to exp(–αz).

Formulation of the theory and the operations with
two-dimensional vectors can be considerably simpli-
fied by using the Pauli matrix (σ-matrix) apparatus,
which is widely employed in quantum mechanics [25,
26] and optics. According to this approach, three Her-
mitian matrices

(7)

Hij
0( ) nl

0

Hij
0( )

Ĥ

ê

Ĥ Ĥ
0( )

Ĥ

Ĥ

∂z 0.5α iĜ–+( )A1 iEKV̂A2,=

∂z 0.5α iĜ–+( )A2 iEK*V̂A1.=

Ĝ

V̂

Gij sE0Hij
0( ) iρδijz, Vij+ sHij,= =

s πn0
3r41/λ ,–=

σ̂1
0 1

1 0 
 
 

; σ̂2
0 i–

i 0 
 
 

;= =

σ̂3
1 0

0 1– 
 
 

,=
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are considered as components of a vector matrix .
The σ-matrices possess a number of remarkable prop-
erties [25, 26], which reduce some cumbersome calcu-
lations involving two-dimensional vectors to simple
algebraic operations.

The  and  matrices can be represented as linear

combinations of  and the unit matrix :

(8)

Here, the scalar quantity ν0 and the three-dimensional
vectors k and n (all being real values) are defined by the
relationships

(9)

Accordingly, set (5) acquires a canonical form

(10)

Vector k characterizes the linear optical properties of
the medium: the κ1, 3 components describe the anisot-
ropy induced by the external field, while the κ2 compo-
nent represents the optical activity. The ν0 and n values
determine the nonlinear coupling of the light waves. The
presence of the scalar quantity ν0 indicates that the inter-

action matrix  has an isotropic part not affecting the
polarization properties of the waves. The n ·  product
matrix corresponds to the anisotropic interaction com-
ponent. The description of the nonlinear interaction
markedly simplifies in the case when ν ≡ |n| ! ν0.

Strictly speaking, matrix  (as well as ) also has
an isotropic part. This part leads only to a trivial phase
shift, which is the same for both waves (and is omitted
in Eq. (10)).

We should like to emphasize the difference between
vectors A1, 2 (with the x- and y-components) and the
vectors (such as k and n) defined in the three-dimen-
sional configuration space (components of the latter
values are denoted by integers 1, 2, and 3).

First, we will use Eqs. (10) to obtain the necessary
information concerning the optical eigenmodes in the
absence of interaction between waves (that is, for EK = 0).
Assuming A1, 2 ∝  exp(–0.5αz + iδkz), we arrive at the
problem of determining the eigenvalues for the correc-
tion δk to the wavevector:

(k · )A± = δkA±. (11)

The Hermitian operator k ·  has two real eigenvalues,
δk± = ±κ, so that the distance between two wave sur-
faces is 2κ. This distance is determined by the optical

ŝ

Ĝ V̂

ŝ 1̂

Ĝ κ ŝ, V̂⋅ ν01̂ n ŝ.⋅+= =

ν0 0.5s Hxx Hyy+( ), ν1 sHxy, ν2 0,= = =

ν3 0.5s Hxx Hyy–( ), κ1 sE0Hxy
0( ),= =

κ2 ρ, κ3– 0.5sE0 Hxx
0( ) Hyy

0( )–( ).= =

∂z 0.5α ik ŝ⋅–+( )A1 iEK ν01̂ n ŝ⋅+( )A2,=

∂z 0.5α ik ŝ⋅–+( )A2 iEK* ν01̂ n ŝ⋅+( )A1.=

V̂
ŝ

Ĝ V̂

ŝ

ŝ
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activity and induced birefringence. The unit polariza-
tion vectors e± = A±/|A±| corresponding to eigenvalues
δk± are given by the relationship

(12)

These vectors are in fact orthogonal (  · e– = 0). In the
general case, the optical eigenmodes possess an elliptic
polarization. The orientation of the principal axes of the
polarization ellipse depends on the choice of the optical
configuration (see below), while the eccentricity
depends on the relationship between |sE0 | and |ρ|. For
|E0| ! |ρ/s|, the polarization is close to circular, whereas in
the opposite limit, the polarization is almost linear. The
data presented in Table 1 show that the |ρ/s| value for
Bi12TiO20 is ~2.8 kV/cm, which is considerably lower
than the field strengths typically used in experiment. In
other words, the optical activity of Bi12TiO20 is easily sup-
pressed by an external field. On the contrary, in experi-
ments with Bi12SiO20, the field strength usually does
not exceed the value |ρ/s | ≈ 14 kV/cm.

If the input amplitude A(0) is real (that is, the inci-
dent wave is linearly polarized), then A(–E0, z) =
A*(E0, z). This means that a change in the sign of E0
leads to a reversal of the direction of polarization rota-
tion at each point of the crystal.

Using the σ-matrix representation introduced as
described above, we may readily obtain a general solution
to the problem of Bragg vector diffraction from the grating
with a constant amplitude. This grating can be recorded
using noninteracting waves. Substituting the grating

amplitude in the form EK = |EK|  into Eq. (10), we
obtain

(13)

where A1, 2(0) are the entering amplitudes, (z) =

(  ± )/2, and  = k ·  ± |EK|(ν0  + n · ).
The initial functions of σ-matrices are readily reduced
to linear [25, 26].

The general solution to Eq. (13) contains a large
amount of information concerning the diffraction effi-
ciency and polarization properties. This solution can be
generalized so as to include the case of a partly polar-
ized light. Earlier attempts at solving the problem of
vector diffraction were restricted to strongly simplified
analytical models [27, 28] and numerical computa-
tional procedures [29, 30]. Direct calculations in partic-
ular cases lead to very cumbersome expressions [31].

e±
1

2κ
----------

κ κ3±
κ1 iκ2+

κ κ3±
-------------------±

 
 
 
 
 

.=

e+*

e
iφ0

A1 2, z( ) e α z/2–=

× T̂+ z( )A1 2, 0( ) e
iφ0±

T̂– z( )A2 1, 0( )+[ ] ,

T̂±

e
iĝ+z

e
iĝ–z

ĝ± ŝ 1̂ ŝ
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In the experiment, the z axis usually coincides with
a crystal symmetry axis. If this is the principal axis

(e.g., [001]), the  and  matrices turn zero. This
geometry is convenient for nonperturbing grating
recording.

Optical configurations important for the wave inter-
action can be reduced to a basic configuration depicted

in Fig. 1a. Here, the z axis coincides with the [1 0]
direction, while the x and y axes are directed in the

[001] and [ 0] directions, respectively. The angles ζ
and ζ0, characterizing orientation of the K and E0 vec-
tors in the xy plane, are measured from the [001]direc-
tion. The angle ψ = ζ – ζ0 is convenient for the compar-
ison with experiment (see Section 5). For the basic con-
figuration considered, we obtain

(14)

Using this representation and formulas (9), components
κ1, 3 are expressed as

(15)

Neglecting the elastooptical contribution, whereby  =

(ζ). In this approximation

(16)

In [11, 13], elements of the  matrix were measured and
calculated for Bi12TiO20 and Bi12SiO20 crystals with

Ĥ
0( )

Ĥ

1

11

Ĥ
0( ) ζ0( )

0 ζ0sin

ζ0sin ζ0cos 
 
 

.=

κ1 sE0 ζ0, κ3sin 0.5sE0 ζ0.cos–= =

Ĥ

Ĥ
0( )

ν0 0.5s ζ , ν1cos s ζ ,sin= =

ν3 0.5s ζ .cos–=

Ĥ

Table 1.  Optical characteristics of Bi12SiO20 and Bi12TiO20
crystals

Para-
meter Bi12SiO20 (λ = 514 nm) Bi12TiO20 (λ = 633 nm)

n0 2.6 2.58
ρ 38.6 deg/mm ≈ 6.74 cm–1 6.5 deg/mm ≈ 1.13 cm–1

r41 4.51 × 10–12 m/V 4.74 × 10–12 m/V
|ρ/s| 14 kV/cm 2.8 kV/cm

n0

K

y, [110]

z, [110] x, [001]

ζ0

ψ
ζ

(‡) (b)
z, [110] x, [001]

ζ0
ψ

ζ n0

K

y, [110]

Fig. 1. Two basic optical configurations.
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Fig. 2. The plots of ν0, 1, 3(ζ) corresponding to Fig 1 for Bi12TiO20 and Bi12SiO20 crystals.
allowance for the elastooptical contributions. Figure 2
shows a summary of the results obtained for ν0, 1, 3(ζ). As
seen, neglect of the elastooptical contributions is often
justified.

A configuration depicted in Fig. 1b is generally sim-
ilar to that considered above (Fig. 1a). However, the
two configurations are not equivalent and the transition
between them must be accompanied by a change in the
sign of the electrooptical coefficient r41.

There are twelve symmetry transformations not affect-
ing the electrooptical properties of crystals, which include
identical transformation, 180° rotations about principal
axes, ±120° rotations about principal diagonals, and their
combinations [25]. Table 2a gives a set of 12 equivalent
configurations, the first of which corresponds to Fig. 1a; by
the same token, Table 2b gives another set of 12 equivalent
configurations, the first of which is depicted in Fig. 1b.
JOURNAL OF EXPERIMENTAL 
The symmetry properties lead to the following gen-
eral relationships

(17)

In other words, matrix  (or ) changes sign upon
the inversion of E0 (or K). Upon reflection from the xz
plane, the nondiagonal matrix elements change sign,
while the diagonal elements remain unchanged.

There are three optical configurations [2, 11, 29]
corresponding to various values of angle ζ0 (Fig. 1a)
that are of special importance for experiment:

(i) Longitudinal configuration, E0 || [001] (sinζ0 = 0);

(ii) Transverse configuration, E0 ⊥ [001] (cosζ0 = 0);

Ĥ
0( ) ζ0( ) Ĥ

0( ) ζ0 π+( ),–=

Ĥ ζ( ) Ĥ ζ π+( ), Hxx ζ( )– Hxx ζ–( ),= =

Hyy ζ( ) Hyy ζ–( )= , Hxy ζ( ) H– xy ζ–( ).=

Ĥ
0( )

Ĥ
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(iii) Diagonal configuration, E0 || [ 1] (  = ).

For the longitudinal and transverse configurations,
the elastooptical contributions to ν0, 3 are absent for ζ = ζ0
(K || E0), while the contribution to ν1 is insignificant
(see Fig. 2). The diagonal configuration corresponds to
a maximum value of parameter ν0(ζ0), which character-
izes the isotropic interaction; here, the elastooptical
contribution to ν0 is significant.

3. NONLINEAR PHOTOREFRACTIVE RESPONSE

In order to obtain a closed system of equations for
the light waves in a cubic crystal, it is necessary to sup-
plement Eqs. (10) with relationships describing the
grating amplitude EK as function of the interference
pattern contrast m = 2(A1 · )/(|A1 |2 + |A2 |2). These
relationships are usually derived based on a simple
semiconductor model describing the photogeneration
of charge carriers from deep centers followed by the
migration and recombination of carriers [1–3]. This
model is justified for sillenites, where the photogener-
ated carriers are electrons, and works satisfactorily in
many semiconductors. In a linear (with respect to m)
approximation, this model leads to the following equa-
tion for EK:

(18)

Here,  = E0 cosψ = E0(n0 · n) is the drawing field and
ED, M, q are the characteristic fields defined by the for-
mulas

(19)

where e is the elementary charge, T is the absolute tem-
perature, ε is the static dielectric permittivity, Nt is the
effective concentration of traps, and µτ is the mobility-
lifetime product for photoelectrons. The fields ED, EM,
and Eq characterize the diffusion and drift of electrons
and the saturation of traps, respectively. Finally, ω0 =
αI0/"ωNt is the frequency characterizing the rate of
charge carrier photoexcitation, which is proportional to
the number of light quanta αI0/"ω absorbed per unit time
in a unit volume.

An important feature of the “fast-response” photore-
fractive crystals, including sillenites and most semicon-
ductors, is the presence of a low-frequency branch of
weakly-damped space charge waves (SCWs) [32, 33]. It is
this feature that provides for the possibility of enhance-
ment of the photorefractive response. A sufficient condi-
tion for the SCWs to exist is provided by inequalities

11 ζ0tan 2

A2*

∂EK

∂t
---------- ω0

Eq ED iẼ0–+

EM ED iẼ0–+
---------------------------------- iΩ–

 
 
 

EK+

=  
mω0

2
----------–

Eq Ẽ0 iED+( )
EM ED iẼ0–+
----------------------------------.

Ẽ0

ED
KT
e

--------, EM
1

Kµτ
----------, Eq

4πeNt

εK
---------------,= = =
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Eq @ E0 @ ED, M, while the necessary limitation of
the material parameters is given by the inequality
πeNtµτε–1

 @ 1 (see [33]). Once these conditions are sat-
isfied, the first term in the parentheses of Eq. (18) can
be replaced by the combination iωK + γK, where

(20)

are the frequency and damping factor of a space charge
wave with wavevector K. Note that the parameter Q =
|ωK |/γK is the quality factor for SCW. Within the frame-
work of our theory, this parameter (depending on the
product |K · E0 | and independent of I0) is markedly
greater than unity. The large values of Q are necessary
to explain the parametric excitation of SCWs in sillen-
ite crystals [33, 34].

Table 3 presents typical values of the material parame-
ters for Bi12TiO20 and Bi12SiO20 crystals and gives esti-
mates of the factor πeNtµτε–1 and the characteristic
fields. As is seen, the above approximations are well
justified in a broad range of the grating period Λ, where
the most important phenomena related to the nonlinear
photorefractive response enhancement take place.

The further analysis of the features of the photore-
fractive response is expediently performed for the DC
and AC cases separately.

ωK ω0

Eq

Ẽ0

-----,=

γK ω0 1
EqEM EqED+

E0
2 ψcos

2
---------------------------------+ 

 =

Table 2.  Triplets of basis vectors x, y, z equivalent to (a)

[001], [ 0], [1 0] and (b) [001], [1 0], [110]

a b

x y z x y z

[001] [ 0] [1 0] [001] [1 0] [110]

[001] [110] [ 10] [001] [ 10] [ 0]

[00 ] [ 10] [110] [00 ] [110] [1 0]

[00 ] [1 0] [ 0] [00 ] [ 0] [ 10]

[100] [0 ] [01 ] [100] [01 ] [011]

[100] [011] [0 1] [100] [0 1] [0 ]

[ 00] [0 1] [011] [ 00] [011] [01 ]

[ 00] [01 ] [0 ] [ 00] [0 ] [0 1]

[010] [ 0 ] [ 01] [010] [ 01] [101]

[010] [101] [10 ] [010] [10 ] [ 0 ]

[0 0] [10 ] [101] [0 0] [101] [ 01]

[0 0] [ 01] [ 0 ] [0 0] [ 0 ] [10 ]

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1
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3.1. DC Enhancement Method

Assuming that field E0 is time-independent, we
obtain from Eq. (18) a relationship for the grating
amplitude

(21)

The dependence of the grating amplitude on the fre-
quency difference Ω exhibits a resonance character. In
the region of resonance, |Ω – ωK | & γK, we obtain a rela-
tionship

(22)

For convenience, we have introduced dimensionless

amplitudes of the light waves a1, 2 = A1, 2/ .
Note that linear absorption does not lead to the decay of
these amplitudes: |a1|2 + |a2|2 = 1.

The large value of Q in Eq. (22) is the essence of the
DC enhancement method. The presence of an imagi-
nary unit in this relationship indicates that the response
has a gradient character, whereby the grating Esc(r) is
shifted by a quarter period relative to the light interference
pattern.

It should be recalled that ωK, γK ∝  I0, while intensity
I0 decreases in proportion to e–αz as a result of the linear
absorption. Therefore, the resonance excitation condi-
tion |Ω – ωK(z)| & γK is satisfied in a layer of thickness
δz ≈ 2/αQ. As the frequency difference Ω decreases
from ωK(0) to ωK(l) = ωK(0)exp(–αl), the resonance
layer shifts from the input (z = 0) to output (z = l) faces
of the crystal. If the crystal thickness l is markedly
greater than δz, the wave interaction in most parts of the
crystal becomes ineffective. For Q ≈ 6 and α ≈ 1 cm–1,
we obtain an estimate δz ≈ 0.3 cm.

In the general case, relationship (21) can be conve-
niently written in the following form

(23)

EK
ωK Ẽ0

Ω ωK– iγK+
--------------------------------

A1 A2*⋅
A1

2 A2
2+

-----------------------------.≈

EK –iQ Ẽ0 a1 a2*⋅( ).≈

A1
2 A2

2+

EK iQR Ẽ0 a1 a2*⋅( ),–≈

R 1 iQ 1 δ αz( )exp–( )+[ ] 1– ,=

Table 3.  Material parameters of Bi12TiO20 and Bi12SiO20
crystals and the characteristic field strengths for Λ = 20 µm

Parameter Bi12TiO20 Bi12SiO20

Nt, cm–3 2 × 1016 1016

µτ, cm2/V 2 × 10–7 5 × 10–7

ε 47 56

Eq, kV/cm 250 105

EM, kV/cm 1.5 0.6

ED, kV/cm 0.08 0.08

πeNtµτ/ε 38.5 40.4
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by introducing a resonance factor R(z) and a dimen-
sionless detuning δ = Ω/ωK(0).

Finally, note that the approximation linear with
respect to contrast is valid for |m | & Q–1 ! 1. For the
greater |m | values, we must take into account the higher
spatial harmonics of the field (E2K, E3K, …). Thus, the
DC amplification of the photorefractive response is
achieved at the expense of certain restrictions on the
crystal length l and the light pattern contrast m.

3.2. AC Enhancement Method

In this case, Ω = 0 and field E0 is a rapidly oscillat-
ing function of time. The oscillation period T0 is
assumed to be shorter than 2π/ωK ≈ 10–2–10–1 s but
longer than the charge carrier lifetime τ & 10–7 s. These
conditions ensure that the high-frequency component
of EK(t) is small compared to the constant component.
We will restrict the consideration to the case of periodic
alternating-sign E0(t) with a constant amplitude |E0 |,
which corresponds to the most effective AC enhance-
ment [3, 35].

Upon averaging over the high-frequency oscilla-
tions in Eq. (18) and taking into account inequalities
Eq @ |E0 | @ ED, M, we obtain

(24)

where the averaging 〈…〉  reduces to taking a half sum
of two values calculated for |E0| and –|E0|.

The response enhancement factor Q has the same
form as that in the DC method. However, the AC ampli-
fication (in contrast to the DC case) is weakly sensitive
with respect to the I0 decrease as a result of the light
absorption. Moreover, the validity of Eq. (24) is restricted
to even smaller contrast variations: |m| & Q–2 ! 1. Other-
wise, it is necessary to take into account the parametric
generation of SCWs [33, 36].

Using Eq. (10), we can make another step in simpli-
fying relationship (24). Assuming (which is usually
justified in experiment) that the entrance light beams 1
and 2 are linearly polarized, we may conclude that a
nonlinear evolution of the amplitudes a1, 2(z) is compat-
ible with the linear property a1, 2(E0) = (–E0) (see

Section 2). This implies that 〈a1 · 〉 = a1 ·  and rela-
tionship (24) for the AC response reduces to formula (22).

4. INTERACTION OF TWO LIGHT WAVES

Substituting relationship (23) for the nonlinear
response into Eq. (10), we obtain a closed system of equa-

tions for a1, 2 = A1, 2/  in the DC case. By the
same token, an analogous closed system of equations for
the AC case is obtained upon combining Eqs. (24) and
(10). An advantage of the σ-matrix representation used
here is the possibility to simplify the nonlinear equa-

EK i Ẽ0 Q a1 a2*⋅〈 〉 ,–≈

a1 2,*

a2* a2*

A1
2 A2

2+
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tions by excluding terms describing linear wave propaga-
tion.

Let us pass from amplitudes a1, 2 to the new dimen-
sionless amplitudes b1, 2 defined as

(25)

which is equivalent to the interaction representation used
in quantum mechanics [25]. In applying to the DC case,
the system of equations describing the interaction of two
light waves takes the form

(26)

Here, R = R(z) is the factor defined in (23) and q =
(q1, q2, q3) is a real vector expressed as

(27)

The isotropic part of the wave interaction, character-
ized by parameter ν0, does not change upon going to the
interaction representation. The anisotropic part, which
is proportional to q, has acquired an oscillating part
related to the interference of the eigenmodes.

Expressions for the AC case exhibit an analogous
structure and are obtained from (26) by substituting
R(  · b1)  〈  · b1〉 . In other words, equations for
AC include averaging over period T0 instead of the res-
onance factor R(z).

4.1. Undepleted Pump Approximation

The condition |m | ! 1 determining the applicability
of Eqs. (23) and (24) for describing the nonlinear pho-
torefractive response can be fulfilled either for a large dif-
ference in intensities of the interacting waves, or at the
expense of their polarizations being almost strictly orthog-
onal. The former case, which is more important, corre-
sponds to the spatial amplification of a weak light beam
in the presence of a strong beam. This case, known as
the undepleted pump approximation will be considered
below.

4.1.1. AC amplification. Assuming for certainty
that |a1|/|a2| ≡ |b1|/ |b2| ! 1, we may neglect the variation
of amplitude b2 in Eq. (26) for b1 and take b2 = b2(0) ≡
a2(0) ≈ ep, where ep is the unit polarization vector of the
pump wave (wave 2) at the input crystal face. Then the
weak wave (wave 1) amplitude is described by the
equation

(28)

a1 2, ei k ŝ⋅( )zb1 2, ,=

db1

dz
-------- RQ Ẽ0 b2* b1⋅( ) ν01̂ q ŝ⋅+( )b2,=

db2

dz
-------- R– *Q Ẽ0 b1* b2⋅( ) ν01̂ q ŝ⋅+( )b1.=

q k n k⋅( )
κ2

-------------------- n k n k⋅( )
κ2

--------------------– 2κz( )cos+=

+
k n×( )

κ
------------------ 2κz( ).sin

b2* b2*

db1

dz
-------- Q Ẽ0 ep* b1⋅〈 〉 ν01̂ q ŝ⋅+( )ep.=
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Multiplying this equation (scalar product) by  and
averaging with respect to time, we obtain

(29)

where ξpj = ( ep) are components of the Stokes
vector xp = (ξp1, ξp2, ξp3) of the incident pump wave
[37]. For a completely polarized light wave, this vector
has a unit length: the ξp1, 3 components describe the degree
of linear polarization and the ξp2 component, the degree of
circular polarization. On averaging the vector q value, we
should take into account that κ1, 3(E0) = –κ1, 3(–E0) and
that the component κ2 = –ρ is independent of E0 (see
Eqs. (9) and (15)). For this reason, 〈q1, 3(z)〉 = q1, 3(z),
〈q2〉  = 0, and 〈q · xp〉  = q1ξp1 + q3ξp3. These relationships
and Eq. (29) lead to the conclusion that, for a linearly
polarized pumping wave (ξp2 = 0), the  · b1 compo-
nent does not exhibit jumps upon switching the field.
This case is most important for experiments.

Integrating Eq. (29), we obtain

(30)

where increment Γ (the main characteristic of spatial
amplification) and coefficients C1, 2 are given by the
formulas

(31)

For Γl @ 1, the amplification is very large. Note some
important properties of the increment:

(i) Formula (31) contains the isotropic (∝  ν0) and
anisotropic parts. The isotropic part is independent of
the pump wave polarization, while both the magnitude
and sign of the anisotropic contribution are polariza-
tion-dependent. For a circular polarization (ξp1, 3 = 0,
ξp2 = ±1), the anisotropic contribution is zero.

(ii) Substitution K  –K leads to the reversal of
the increment sign: Γ(ζ) = –Γ(ζ ± π). This behavior fol-
lows from Eqs. (9), (14), and (17).

(iii) The increment is independent of the signs of E0

and n0, which follows from the definition of vector k.
Using relationship (31), we can maximize the incre-

ment with respect to the pump wave of polarization.
The maximum of Γ corresponds to a linear polarization

such that ξp1, 3 = κ1, 3sgn(n · k)/ . This condi-
tion can be readily rewritten in terms of the inclination

ep*

d ep* b1⋅〈 〉
dz

------------------------ Q Ẽ0 ν0 q xp⋅〈 〉+( ) ep* b1⋅〈 〉 ,=

ep* σ̂ j

ep*

ep* b1 z( )⋅〈 〉 ep* b1 0( )⋅=

× Γz C1 2κz( )sin C2 κz( )sin
2

+ +[ ] ,exp

Γ Q Ẽ0 ν0
n k⋅( )
κ2

---------------- κ1ξ p1 κ3ξ p3+( )+ ,=

C1
Q Ẽ0

2κ3
------------- κ2 n xp⋅( ) n k⋅( ) κ1ξ p1 κ3ξ p3+( )–[ ] ,=

C2
Q Ẽ0 ρ

κ2
----------------- n xp×[ ]2.=

κ1
2 κ3

2+
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angle of the polarization plane. The maximum incre-
ment for the optimum polarization is

(32)

As is seen from this expression, the optical activity neg-
atively affects the amplification. The right-hand side
of Eq. (32) can be further optimized with respect to |K|
(that is, with respect to the angle θ = λ|K|/2π between
the light beams) and with respect to angles ζ and ζ0
determining the orientation of K and E0. Examples of
such optimization, which can be important in particular
cases, are given in Section 5. Here we should like to
note that the absolute maximum of the function Γ(ζ, ζ0)
is attained at ψ ≡ ζ – ζ0 = 0, that is, at K || E0. For a fixed
value of ζ0, the maximum is observed in the general
case at ζ ≠ ζ0.

Finally, we should like to mention the characteris-
tics of spatial amplification which are not related to the
properties of increment Γ. Additional contributions to
the exponents in Eq. (30) are mostly important when
|C1, 2| @ 1, whereas in many cases (see also Section 5)
|C1, 2| & 1. The b1 vector component orthogonal to ep

(necessary for the complete description of the polariza-
tion properties of the amplified wave 1) can be also cal-
culated using Eq. (28). The main feature of the spatial
variation of this component is the exponential growth
of its magnitude with increment Γ. The initial polariza-
tion of the weak beam enters only into the preexponen-
tial factor in Eq. (31). The optimum is attained for
A1(0) || A2(0) ∝  ep.

4.1.2. DC amplification. Assuming |b1| ! |b2|, we
obtain the following expression for the weak wave
amplitude from Eq. (26):

(33)

Γ Q Ẽ0 ν0
n k⋅ κ1

2 κ3
2+

κ1
2 κ3

2 ρ2+ +
------------------------------------+

 
 
 

.=

db1

dz
-------- RQ Ẽ0 ep* b1⋅( ) ν01̂ q ŝ⋅+( )ep,=

1.0
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δ

Fig. 3. The curves of Φ(δ) for α = 0.75 cm–1, Q = 6, and var-
ious crystal thicknesses l = 0.2 (1); 0.4 (2); 0.8 (3); 1.6 (4);
the dash–dot curve corresponds to the ideal case of αl = 0.
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where R = R(z) is the resonance factor defined by
Eq. (23). This quantity determines special features of
the DC enhancement.

In order to illustrate distinctive features of the DC
enhancement, let us omit the spatially-oscillating part q
in Eq. (27) by taking q = q0 = const. This simplified
model provides for a rough quantitative description of
the wave interaction (see also Section 5). Within the
framework of this approximation, ln(|a1(l)|/|a1(0)|) ≈
ΓlΦ, where Γ = Q (ν0 + q0 · xp) is the spatial
enhancement increment (essentially the same as consid-
ered above for a linear polarization of the pumping wave)
and

(34)

is the factor of loss in the exponential enhancement rate
as compared to that in the AC case. For α = 0, the peak
value of Φ(δ) = 1 is attained with δ = 1.

Figure 3 (solid curves) shows the curves of Φ(δ) for
α = 0.75 cm–1, Q = 6, and several values of the crystal
thickness l. The dash–dot curve corresponds to the
ideal case of α = 0. As seen, a decrease in the peak
amplitude, the shift toward small detunings, and deteri-
oration of the resonance are significant even in rather
thin crystals. This behavior is more pronounced with
increasing α. Taking into account that the absorption is
manifested by the saturation of the enhancement with
increasing l: the higher the α value, the earlier the satura-
tion onset.

5. APPLICATIONS OF THE THEORY

The most important and simple applications are
offered by calculations of the angular and polarization
characteristics of spatial amplification for the basic
optical configurations in particular crystals and by the
comparison of the results of such calculations with
experiment. Below we illustrate these applications of
the theory to calculations for Bi12TiO20 and Bi12SiO20
crystals.

5.1. AC Enhancement in Bi12TiO20 Crystals

The AC field amplitude in the experiments with
these crystals is usually varied from 10 to 50 kV/cm
and the laser beams typically possess a linear polariza-

tion. Using the data from Table 1 and assuming  =

30 kV/cm, we obtain the estimate s  ≈ 12 cm–1. This
implies that (ρ/κ)2 ≈ 10–2 ! 1, that is, the optical activity
is strongly suppressed by the external field. This situation
favors the enhancement. Assuming Q = 6 and using

Eq. (31), we obtain the estimate Γ ≈ sQ  ≈ 70 cm–1.
Such a high increment implies the possibility of provid-

Ẽ0

Φ 1
l
--- 1 Q 2– 1 δeα z–( )2

+[ ]
1–

zd

0

l

∫=

E0

E0

E0
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ing for a giant enhancement of weak waves even in mil-
limeter-thick crystals.

Under the conditions of strong spatial amplification,
the presence of two incident light beams is not neces-
sary for studying the interaction of two waves. Con-
sider a single pump wave incident onto a crystal. The
very weak scattered seed waves can also be amplified
due to their coupling to the pump wave, which leads to
the appearance of light-induced scattering [1–3]. Mea-
surements of the angular characteristics of this scatter-
ing provide direct information concerning the depen-
dence of the degree of spatial amplification on the direc-
tion of weak wave propagation. Let us consider the
application of this concept to various particular cases.

5.1.1. Longitudinal configuration, E0 || [001].
According to the results obtained in Section 2 and the
data presented in Fig. 1a, this case is characterized by
ζ0 = 0, ψ = ζ, and κ1 = 0. Denoting the angle between
ep and the horizontal axis [001] || E0 by ϕp, we may
write expressions for the nonzero components of the
Stokes vector of the pump wave in the following form:
ξp1 = sin2ϕp, ξp3 = cos2ϕp. Using Eqs. (9) and (31), we
obtain a formula for the increment:

(35)

According to Eq. (20), the Q value is a function of ,
|K|, and the angle ψ between K and the z axis. The opti-
mum polarization is vertical (ϕp = 90°).

Figure 4 shows the patterns of the increment distri-
bution Γ(θ||, θ⊥ ) in the region of its positive values for
the polarization angles ϕp = π/2 and 0. The components
θ|| = θcosψ and θ⊥  = θsinψ (θ = λ|K|/2π is the polar
angle of scattering) characterize the horizontal and ver-
tical angular deviations of the output weak wave. These
parameters are convenient for comparison with experi-
ment. The behavior of the increment in the region of
negative values is determined by the symmetry proper-
ties: Γ(K) = –Γ(–K).

As seen, the effective enhancement has to be
observed in the region of small θ values, which is
explained by the behavior of Q(|E0|, K). The increase in
|E0| leads to a decrease in the characteristic θ values.
For ϕp = 90° (Fig. 4a), the elastooptical contributions to
Γ are insignificant. A maximum value of the increment
(Γmax ≈ 75 cm–1) corresponds to the azimuthal angle
ψ = 0. For ϕp = 0 (Fig. 4b), nonzero values of the incre-
ment are due to the elastooptical effect; once this effect
is absent, Γ(θ||, θ⊥ ) = 0. This angular dependence repre-
sents two rather narrow lobes and is characterized by
the Γmax values that are markedly smaller as compared
to those in the case of ϕp = 90°. Note that, in Eq. (30),
C1, 2 = 0 for ϕp = 0 and π/2.

Figure 5 presents the angular distributions of the
light-induced scattering experimentally measured for
ϕp = 0 and π/2 in the longitudinal optical configuration.
In accordance with the theory, we observe a single-lobe

Γ s E0 ψcos Q Hxx ϕ pcos
2

Hyy ϕ psin
2

+( ).=

E0
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pattern for ϕp = 90° and a two-lobe pattern for ϕp = 0.
The orientation of lobes also agrees with the theoretical
predictions. As expected, the scattering intensity is
markedly lower for the horizontal polarization of the
pump wave than for vertical polarization.

5.1.2. Transverse configuration E0 ^ [001]. Upon
selecting ζ0 = π/2, we have ζ = ψ + π/2 and κ1 = sE0,
κ3 = 0. Denoting the polarization angle (measured from
the applied field direction) of the pump wave by ϕp and
using Eqs. (9) and (31), we obtain an expression for the
increment

(36)

The values of ν0, 1(ζ) were calculated with and without
allowance for the elastooptical effects in Section 2. Fig-
ure 6 shows the distributions of Γ(θx, θy) for the polar-
ization angles ϕp = 0, π/4, and –π/4 (here, the values of
ϕp = 0 and π/2 are equivalent). In the case of ϕp = 0
(or π/2), the theory predicts two symmetric lobes in the

Γ s E0 ψcos Q ν0 ν1 2ϕ psin–( ).=
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Fig. 4. The patterns of increment isolines Γ(θ||, θ⊥ ) = const
in the longitudinal configuration for (a) vertical and (b) hor-
izontal polarizations of the pump wave relative to the E0
direction. The curves are calculated for |E0| = 30 kV/cm
(other parameters taken for Bi12TiO20 from Tables 1 and 3).
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upper quadrants. For ϕp = ±π/4, the diagram shows single
lobes centered at ψ ≈ –90°  64°. A maximum value of
the increment (Γ ≈ 100 cm–1) for the transverse config-
uration is greater than that for the longitudinal scheme.
The elastooptical contributions do not strongly affect the
increment variation. Parameter C1 in this case is zero.

Figure 7 shows the patterns of light-induced scatter-
ing experimentally measured in the transverse configu-
ration for ϕp = 0, π/2, π/4 and –π/4. In accordance with
the theory, the patterns for ϕp = 0 and π/2 are virtually
identical. The angular distributions of the scattering
intensity well correlate with the increment variations.

5.1.3. Transverse configuration, E0 || [ 1]. Accord-
ing to the formulas derived in Section 2, this configura-

tion is characterized by ζ = ψ + ζ0, ζ0 =  ≈
54.7°, κ1 = sE0/ , and κ3 = –sE0/2 . The polar-

ization angle ϕp is measured from the [ 1] axis paral-
lel to E0. Using Eq. (31), we obtain the following
expression for the increment

(37)

+−
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2arctan

2 3 3
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Γ 1
3
--- E0 ψcos Q 3ν0 2 2ν1 ν3–( ) 2ϕ pcos+[ ] .=
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Fig. 5. Experimental angular distributions of the light-
induced scattering intensity in Bi12TiO20 crystals measured
in the longitudinal geometry for ϕp = π/2 (a) and 0 (b).

Experimental parameters: λ = 632.8 nm; I0 = 0.8 W/cm2;
|E0| = 20 kV/cm; l ≈ 2 cm.
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Figure 8a shows the isolines of increment for a horizon-
tal polarization of the pump wave calculated for ϕp = 0.
This case corresponds to the maximum possible ampli-
fication (Γmax ≈ 110 cm–1), with a single lobe extended

along the [ 1] axis. The elastooptical contributions
markedly increase the Γ value, while not significantly
affecting the shape of the angular distribution. Figure 8b
shows an analogous pattern of isolines for Γ(θ||, θ⊥ ) in
the case of ϕp = π/2. Here we observe the main lobe
extended in the direction of ψ ≈ 120° and an additional
small lobe. The elastooptical contributions slightly
increase the maximum value of the increment and shift
the main lobe toward the horizontal axis.

Figure 9 shows the corresponding experimental pat-
terns of the light-induced scattering. These patterns also
show a good agreement with theoretical predictions. As is
clearly seen, the spots of induced scattering are sepa-
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Fig. 6. The patterns of increment isolines for the transverse
configuration with l ≈ 2 cm; ϕp = 0 (a), π/4 (b), and –π/4 (c)
calculated for the same parameters as in Fig. 5.
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rated from the origin. This feature is related to the high
quality of the crystal sample studied.

5.2. DC Enhancement in Bi12SiO20 Crystals

The optical activity observed in the Bi12SiO20 crys-
tals is approximately six times that for Bi12TiO20, while the
applied field strengths usually do not exceed 10 kV/cm.
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Fig. 7. The experimental patterns of the light-induced scatter-
ing measured in the transverse geometry for |E0| ≈ 20 kV/cm,
l ≈ 2 cm and ϕp = 0 (a), π/2 (b), π/4 (c), and –π/4 (d).
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–
θ 

si
n

ψ

5°

0

–5°

–20° –10° 0 10° 20°

(a)

–
θ 

si
n

ψ

5°

0

–5°

–20° –10° 0 10° 20°
θ cosψ

(b)

Fig. 9. The patterns of the light-induced scattering measured
in the diagonal geometry for |E0| ≈ 20 kV/cm, l ≈ 0.8 cm,
and ϕp = 0 (a) and π/2 (b).
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Fig. 10. The plots of lng(δ) calculated for (a) longitudinal and (b) diagonal optical configurations with the parameters taken for
Bi12SiO20 crystals from Tables 1 and 3 (E0 = 6 kV/cm; α = 1 cm–1; l = 0.8 cm). The solid curves correspond to (1) a1, 2 || E0 and
(2) a1, 2 ⊥  E0; the dashed curves correspond to the isotropic (polarization-independent) model.
Under these conditions, the polarization plane rotation
tends to average the anisotropic part of the interaction
inside the resonance crystal layer. The optical activity
and the inhomogeneity related to the light absorption
are capable of strongly reducing the level of spatial
amplification, which may lead to complicated fre-
quency and angular dependences. The main problems
considered below are concerning (a) the efficiency of
the simplified model formulated in Section 4 and
(b) the optimum conditions for DC amplification under
these conditions.

Figure 10 shows the plots of the weak wave ampli-
fication factor g = |a1(l)|2/ |a1(0)|2 calculated as a func-
tion of the detuning δ = Ω/ωK(0) in the longitudinal
and diagonal geometries. Here, solid curves 1 and 2

6°

–2°

0

θ sin ψ

θ cos ψ

4°

2°

–4°

–6° –4° –2° 0 2° 4° 6°

3.0
3.5

2.5

2.0

1.0

Fig. 11. The pattern of lng(θ||, θ⊥ ) = const isolines calcu-
lated using the isotropic model for the longitudinal geome-
try with α = 1.5 cm–1, E0 = 6 kV/cm, l = 4 mm, a1, 2 || E0,
and the material parameters from Table 3.
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were obtained by numerically integrating Eq. (33)
for a1, 2(0) || E0 and a1, 2(0) ⊥  E0, respectively. The
dashed curves correspond to an isotropic model in
which vector q(z) is zero (these curves are independent
of the polarization). As seen, the solid curves reveal
oscillations in the enhancement factor, which are
related to the influence of the optical activity. These
oscillations were observed in the DC experiments with
Bi12SiO20 crystals [38]. The details of the oscillatory
behavior are strongly polarization-dependent. The
greater numerical values of enhancement observed for
the diagonal geometry are explained by a greater con-
tribution of the isotropic component ν0.

As seen, the simple isotropic model provides for a
rough but still reasonable description of the amplifica-
tion effect. The physical considerations concerning the
suppression of the anisotropic contribution to the wave
interaction are of considerable heuristic importance.
The accuracy of the isotropic model increases with
decreasing absorption coefficient α and increasing
optical activity ρ.

Now we will consider the influence of the optical
activity and spatial inhomogeneity on the angular char-
acteristics of enhancement. Figure 11 shows a distribu-
tion of the lng(θ||, θ⊥ ) value calculated using the isotro-
pic model for the longitudinal geometry with a1, 2(0) ⊥  E0,
l = 4 mm, and a peak Ω value. As seen, the distribution
exhibits two maxima at ψ ≈ ±30° which correspond to
the peaks in the ν0(ζ) curve in Fig. 2 and are related to
the elastooptical effect. The peaks in the g(θ||, θ⊥ ) dis-
tribution possess somewhat different shapes and
dimensions. A change in the input wave polarization
affects only the details of the split maxima. Beginning
with l ≈ 4 mm, an increase in the crystal thickness leads
only to a small increment in lngmax(l). Note that the
splitting of the angular distribution was also revealed
by numerical calculations and observed in experiments
with Bi12SiO20 crystals [39, 40].
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Figure 12 shows a distribution of lng(θ||, θ⊥ ) calcu-
lated for the diagonal configuration with l = 8 mm and
a1, 2(0) || E0. This pattern differs only slightly from that
obtained in the case of a1, 2(0) ⊥  E0, which is evidence
for the applicability of the isotropic model. The main
maximum observed at ψ ≈ –5° corresponds to the right
peak of ν0(ζ) in Fig. 2, while the secondary maximum
(ψ ≈ –130°) corresponds to the left peak on ν0(ζ). A dif-
ference between the amplitudes of maxima in Fig. 12 is
related to the different values of Q(|E0 cosψ|). The
growth of lng as a function of the crystal size l slows
down beginning with l ≈ 4–5 mm.

Finally, we should like to note that the isotropic
model is inapplicable to the transverse configuration,
where ν0 = 0 (see Fig. 2). In this case, suppression of
the spatial amplification by the inhomogeneity and
optical activity is most pronounced.

6. DISCUSSION AND CONCLUSIONS

First, we will summarize the distinctive features and
indicate the advantages of the proposed theory.

The basic relationships of the theory are sufficiently
general, covering all the important optical configura-
tions and including factors such as the optical activity,
induced birefringence, and the elastooptical effect. The
theory also accounts for the AC and DC mechanisms of
the photorefractive nonlinear response amplification.

Despite this generality, the main equations are writ-
ten in a quite compact and informative form. This com-
promise is achieved owing to the use of the spatial sym-
metry properties, σ-matrix apparatus, and convenient
phenomenological parameters.

The factors of different physical natures are not mixed
in the theoretical relationships. The “block” structure
allows the data extracted from various experiments to be
readily incorporated into the theory. An example is
offered by the quality factor Q characterizing the degree of
nonlinear photorefractive response enhancement, on the
one hand, and determining the observable properties of
subharmonics in crystals of the sillenite family, on the
other hand [33, 34].

The derived theoretical relationships are readily com-
patible with various applications and simplified models,
including the approximations of undepleted pump, weak
and strong optical activity, isotropic model, etc. These
relationships help in developing the qualitative notions
concerning the general properties of vector interac-
tions.

A systematic consideration of numerous particular
cases falls outside the scope of this paper. Sometimes we
only indicated the possibility of describing various effects.
Nevertheless, we have demonstrated the ability of this the-
ory to predict and explain many distinctive features of the
photorefractive amplification in Bi12TiO20 and Bi12SiO20
crystals.
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A practically important conclusion of the proposed
theory consists in predicting the possibility of using an
external field for suppressing the negative influence of
the optical activity on the spatial amplification in
Bi12TiO20 crystals. The elimination of this negative
effect may increase increment Γ and simplify its orien-
tation and polarization properties. This is valid for both
AC and DC enhancement methods.

Finally, we will indicate some possibilities for the
generalization and application of the proposed theory.

(i) Analysis of the four-wave schemes based on the
vector interaction, including optical generation and
phase conjugation [41, 42].

(ii) Study of the unusual (critical) optical phenom-
ena arising near the threshold of the parametric gener-
ation of space charge waves in crystals of the sillenite
family [43], which certainly requires the application of
the vectorial interaction theory.

(iii) Description and interpretation of the polariza-
tion properties of the spatial enhancement in particular
crystals.
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Abstract—The problem of the electric conductivity of a two-dimensional three-component system containing
periodically arranged conducting circular inclusions of two types has been solved. A consistent method for the
calculation of the conductivity and other effective electrical characteristics of this model is proposed, which is
applicable in the case of arbitrary component concentrations. A complex potential outside the inclusions is
expressed in terms of the Weierstrass zeta function and its derivatives. Undetermined coefficients entering into
the general expression for the potential are determined from an infinite system of algebraic equations. In the
case of a small concentration of inclusions, this system yields a virial expansion for the conductivity. A numer-
ical analysis of this system of equations provides for the principal possibility of investigating various effective
characteristics of the model (including the Hall coefficient and thermo emf) within the entire range of the prob-
lem parameters. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigations of the transfer phenomena in inhomo-
geneous media mostly concentrate on two-component
systems (composites), which are the most simple for
analysis. However, solving the “simplest” problem of
conductivity (dielectric permittivity, heat transfer, sta-
tionary diffusion, etc.) even in this case encounters
almost insuperable mathematical difficulties when dis-
ordered systems are under consideration. For this rea-
son, data concerning the electric conductivity in such
systems were obtained for the most part by model calcu-
lations and numerical experiments. Still more complicated
are the problems related to description of the thermoelec-
tric, galvanomagnetic, thermogalvanomagnetic, etc.,
properties of two-component media. Nevertheless, there is
certain progress in the study of the electrical properties of
these media, which is more significant in the case of
two-dimensional systems.

Among the results obtained for two-component
media, the following are worth of mentioning. A critical
behavior of the conductivity in systems with the metal–
dielectric phase transition was described within the frame-
work of a similarity hypothesis [1. 2]. Relationships
between the effective conductivities of the initial and the
so-called reciprocal system were established in the two-
dimensional case [3, 4] (see also [5]). Using the func-
tion theory methods, an analytical solution of the conduc-
tivity problem was obtained for a series of two-dimen-
sional doubly-periodic models [6–8]. The conductivity
[4], galvanomagnetic [9], and thermoelectric [5] charac-
1063-7761/01/9201- $21.00 © 20123
teristics were determined for randomly-inhomogeneous
two-dimensional systems with critical compositions.
Finally, it was established that, in the two-dimensional
case, the description of the thermoelectric, galvanomag-
netic, and thermogalvanomagnetic properties is isomor-
phous to the problem of conductivity [10, 11]. Once an
effective conductivity of a two-dimensional system is
known, the corresponding isomorphism relationships
[10, 11] allow all the main electrical characteristics of
this system to be determined and, hence, the whole set
of steady-state transfer phenomena in this system to be
described. Some results were obtained for the two-
component media in the three-dimensional case as well
(see, e.g., [1, 2, 10, 12–16]).

A different situation occurs in the study of multi-
component media, the characteristics of which are
much more diverse than those of the two-component
composites. Although some results from [3–5, 14, 15]
and other papers can be applied to multicomponent sys-
tems as well, the corresponding theory is yet to be
developed. In this field, neither general relationships of
the isomorphism type nor the results of consistent cal-
culations for particular models were reported. At the
same time, the study of the multicomponent (in partic-
ular, three-component) systems is of both theoretical
and applied interest. It would be natural to begin the
investigation of these systems with periodic objects that
are simpler for analysis.

A step in this direction was made in [17], where the
conductivity of a two-dimensional three-component
system was studied using a generalization of the Ray-
001 MAIK “Nauka/Interperiodica”
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leigh model [18] representing an isotropic matrix with
regularly (chessboard pattern) arranged circular inclu-
sions of two types with different radii and conductivi-
ties. However, the method used in [17] was intrinsically
approximate and can be applied only to systems with
small concentrations of inclusions. Moreover, the exact
limits of the validity of the virial expansion for the
effective conductivity could not be determined even in
this approximation, not to mention the concentrations
that cannot be considered as small.

In this study, the problem of the electric conductivity
of a two-dimensional three-component model system
considered in [17] has been solved using a method devel-
oped in [8]. A consistent scheme for calculating the con-
ductivity and other effective electrical characteristics of
this model is proposed, which is applicable in the case of
arbitrary component concentrations. A complex potential
outside the conducting inclusions is expressed (as it was
done in [8]) in terms of the Weierstrass zeta function
[19, 20] and its derivatives. Undetermined coefficients
entering into the general expression for the potential are
determined from an infinite system of algebraic equa-
tions. In the case of a small concentration of inclusions,
this system can be solved by a method of iterations
yielding an exact analytical virial expansion for the con-
ductivity and other quantities. In the case of arbitrary con-
centrations, the system of equations for the coefficients
can be solved by numerical methods, which provides for
the principal possibility of investigating various effective
characteristics of the model within the entire range of the
problem parameters.

Within the framework of the conductivity problem,
we have also calculated the partial mean-square values
of the field strength components ψi , which are directly
expressed through derivatives of the effective conduc-
tivity function σe with respect to the variables (com-
ponent conductivities) [14] (see also [8]). This rela-
tionship allows us to study some fine details in the
behavior of σe (e.g., in vicinity of the metal–insulator

y

x

Fig. 1. Schematic diagram of a model two-dimensional
three-component lattice.
JOURNAL OF EXPERIMENTAL
phase transition), not revealed by the direct calculation
of the effective conductivity. In addition, the knowledge of
ψi values is necessary for studying the magnetoresistance
in weak magnetic fields, the low-frequency dielectric per-
mittivity of metallic conductors, structural fluctuations in
the electric field strength and current density, etc.

In addition to the electric conductivity, we have also
solved the problem of determining the Hall coefficient
in a weak magnetic field H. The Hall component σae of
the effective conductivity tensor  in a linear (with
respect to H) approximation is expressed through the
coefficients ξn and ηn entering into the potential of the
conductivity problem at H = 0. The same coefficients
were used to express the thermo emf of the model with
a weak thermoelectric coupling. Note also that a number
of exact relationships were established between various
quantities, which can be used for checking the correctness
of calculations during the numerical analysis of the system
of equations for coefficients ξn and ηn.

2. ELECTRIC FIELD IN THE MEDIUM

The proposed model represents a two-dimensional
matrix possessing an electric conductivity σ1, containing
circular conducting inclusions of two types arranged in a
chessboard order (Fig. 1). Inclusions of the first type
(radius, R; conductivity, σ2) form a square lattice with
period 2a; inclusions of the second type (radius, ρ; con-
ductivity, σ3) form a square lattice with the same period
shifted by half period in axes x and y. Thus, inclusions
of the second type occur at the centers of squares
formed by inclusions of the first type and vice versa.
Note that this model differs from that considered in
[17] only by the coordinate axes being rotated by 45°.

Let us consider a situation when an average electric
field vector 〈E〉  is directed along the x axis. The field
strength E = E(x, y) in this system is obviously a peri-
odic function

possessing a certain symmetry (cf. [8]):

The vertical boundaries of the elementary cell (Fig. 2)
and the axis x = 0 represent the equipotential lines on
which Ey = 0, while the horizontal boundaries and the
axis y = 0 are the current lines on which Ey = 0 as well.

The complex potential Φ2(z) inside a conducting
inclusion with the conductivity σ2 (|z| < R) can be writ-
ten, with allowance for the field symmetry, in the fol-
lowing form:

(1)

σ̂e

E x 2a+ y,( ) E x y 2a+,( ) E x y,( ),= =

Ex x y,–( ) Ex x y–,( ) Ex x y,( ),= =

Ey x y,–( ) Ey x y–,( ) Ey x y,( ).–= =

Φ2 z( ) A2n 1+ z2n 1+ , z
n 0=

∞

∑ x iy.+= =
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Accordingly, the complex potential Φ2(z) inside a con-
ducting inclusion with the conductivity σ3 (|z – z0| < ρ),
centered at the point z0 = (1 + i)a, is

(2)

Similar formulas can be written for the potential of
other inclusions centered at the points z0 = (1 – i)a,
z0 = –(1 + i)a, and –(1 – i)a belonging to the same ele-
mentary cell, but these expressions are not necessary
for the consideration.

Outside the conducting inclusions, the complex
potential Φ1(z) can be presented as a superposition of
the potentials of two square lattices [8]

(3)

where ζ(z) is the Weierstrass zeta function [19, 20],
ζ(2n)(z) are the 2n-order derivatives of this function, and
ϕ0 is a constant. In this equation, the linear term z rep-
resents an external homogeneous electric field, the
terms with n = 0 represent the field of induced dipole
moments, and the terms with n ≥ 1 are due to the higher
multipoles. For the 〈E〉  direction selected, the coeffi-
cients ϕ0, β, B2n, and D2n in Eq. (3), as well as the quan-
tities A2n + 1, C0, and C2n + 1 in Eqs. (1) and (2), are real
values. Using the known properties of the Weierstrass
zeta function [19, 20], one may readily check that the
potential described by Eq. (3) satisfies the above condi-
tions at the boundaries and on the symmetry axes of the
elementary cell. Note that the real part of the complex
potential determines a real electric potential

while the derivative of Φ(z) is related to the compo-
nents of the field strength vector:

For the square lattice under consideration, charac-
terized by the half-periods ω = a and ω' = ia in the com-
plex plane (the so-called lemniscate case), the Weier-
strass zeta function obeys the following relationships
[19, 20]:

(4)

(5)

Φ3 z( ) C0 C2n 1+ z z0–( )2n 1+ .
n 0=

∞

∑+=

Φ1 z( ) ϕ0 βz B2nζ
2n( ) z( )

n 0=

∞

∑+ +=

+ D2nζ
2n( ) z z0–( ),

n 0=

∞

∑

ϕ r( ) ReΦ z( ),=

Φ' z( ) Ex– iEy.+=

ζ z 2a+( ) ζ z( )
π

2a
------,+=

ζ z 2ia+( ) ζ z( ) i
π

2a
------,–=

g2
1

a4
----- K

1

2
------- 

  4

, g3 0,= =
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where g2 and g3 are the invariants of the Weierstrass

zeta function and K(1/ ) = 1.85407… is the complete
elliptic integral of the first kind K(k) for the modulus

k = 1/ .

The electric potentials ϕi(r) = ReΦi(z) (i = 1, 2, 3)
must satisfy the usual boundary conditions (see the next
section), which can be used to determine the coeffi-
cients entering into Eqs. (1)–(3). This procedure is per-
formed with the ζ(z) function expanded in the vicinity
of the point z = 0 [20]:

(6)

where

(7)

In the above lemniscate case, all the ck coefficients with
odd indexes are zero, while the c2k quantities satisfy a
recurrent relationship [20]

(8)

which can be used for determining the sequential coef-
ficients c2k with increasing number k.

Besides expression (6), we will also employ an
expansion of the ζ(z) function in the vicinity of the
point z = z0 [20]:

(9)

2

2

ζ z( ) 1
z
---

ck

2k 1–
---------------z2k 1– ,

k 2=

∞

∑–=

c2

g2

20
------, c4

1
3
---c2

2,= =

c6
2

3 13×
---------------c2

3, c8
5

3 13 17××
---------------------------c2

4, ….= =

c2k
3

4k 1+( ) 2k 3–( )
---------------------------------------- c2mc2k 2m– , k 2,≥

m 1=

k 1–

∑=

ζ z( ) ζ z0( )
dk

2k 1–
--------------- z z0–( )2k 1– ,

k 2=

∞

∑–=

y

xa
R

a

〈 E 〉

Fig. 2. Schematic diagram of an elementary unit cell of the
model lattice. Dashed curves show equipotential lines, solid
curves with arrows show the current lines.
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where

(10)

and

(11)

Coefficients dk with odd numbers are zero, while the d2k

quantities satisfy a recurrent relationship

(12)

obtained upon substituting expansion (9) into the dif-
ferential equation [19, 20]

where ℘ (z) = –ζ'(z) is the Weierstrass elliptic function.
A relationship between the coefficients d2k c2k from
Eqs. (6)–(8) is established below (see Section 8, Eq. (99)).

By the same token, we may consider a situation with
the average field strength vector 〈E〉  directed along the
y axis. The corresponding values are denoted by sym-
bols with an upper bar. The complex potentials in the
regions with conductivities σ1, σ2, and σ3 are given by
the following formulas:

(13)

(14)

, (15)

where the notations are the same as in Eqs. (1)–(3), the

quantities , , , , , , and 
being real.

3. BOUNDARY CONDITIONS

At the boundaries of an inclusion of the first type
(σ = σ2) with r = R, the potential must obey the usual

ζ z0( ) 1 i–( ) π
4a
------, z0 1 i+( )a,= =

d2

g2

4
-----, d4–

1
5
---d2

2,= =

d6
2
75
------d2

3, d8
1

325
---------d2

4, ….= =

d2k
3

2k 1–( ) 4k 3–( )
---------------------------------------- d2md2k 2m– ,

m 1=

k 1–

∑=

k 2,≥

2℘ '' z( ) 12℘ 2 z( ) g2,–=

Φ1 z( ) ϕ0 i βz B2nζ
2n( ) z( )

n 0=

∞

∑–




–=

– D2nζ
2n( ) z z0–( )

n 0=

∞

∑




,

Φ2 z( ) i A2n 1+ z2n 1+ ,
n 0=

∞

∑–=

Φ3 z( ) C0 i C2n 1+ z z0–( )2n 1+

n 0=

∞

∑–=

ϕ0 β B2n D2n A2n 1+ C0 C2n 1+
JOURNAL OF EXPERIMENTAL 
conditions

(16)

In the vicinity of this inclusion, the electric potential
ϕ1(r) = ReΦ1(z) can be presented using expansion (6)
for the ζ(z) function and an expansion according to Eq. (9)
for the ζ(z – z0) function:

(17)

The derivatives ζ(2n)(z) can be expressed using formula
[8, (A.2)], while the quantities ζ(2n)(z – z0) are determined
from Eq. (17) as

(18)

Substituting these expansions for ζ(2n)(z) and ζ(2n)(z – z0)
into Eq. (3), taking z = rexp(iθ), and separating the real
part, we obtain an expression for ϕ1(r) in the vicinity of
inclusions of the first type. An expression for the poten-
tial ϕ2(r) = ReΦ2(z) is readily obtained from Eq. (1).

Substituting the expressions for ϕ1(r) and ϕ2(r) into
the boundary conditions (16) and using a method anal-
ogous to that described in [8], we may determine the
coefficients A2n + 1 and B2n:

(19)

(20)

In the vicinity of an inclusion of the second type (σ = σ3),
the functions ζ(z) and ζ(z – z0) can be expressed using
analogous expansions at z = z0 and taking z – z0 =
r'exp(iθ'). The usual boundary conditions at r' = ρ

(21)

yield

(22)

ϕ1 ϕ2,=

∂ϕ1

∂r
--------- h2

∂ϕ2

∂r
---------, h2

σ2

σ1
-----.= =

ζ z z0–( ) ζ z0( )–
dk

2k 1–
---------------z2k 1– .

k 2=

∞

∑–=

ζ 2n( ) z z0–( ) ζ z0( )δn0–=

–
2n 2m+( )!
2m 1+( )!

---------------------------dn m 1+ + z2m 1+ .
m 0=

∞

∑

A2n 1+
2

1 h2–
-------------- 2n( )!

R4n 2+
--------------B2n, ϕ0

π
4a
------D0,= =

B2n

1 h2–
1 h2+
-------------- 2n 2m+( )!

2n( )! 2n 1+( )!
------------------------------------

m 0=

∞

∑+

× R4n 2+ B2mcn m 1+ + D2mdn m 1+ ++( )
1 h2–
1 h2+
--------------βR2δn0.=

ϕ1 ϕ3,=

∂ϕ1

r'
--------- h3

∂ϕ3

∂r'
---------, h3

σ3

σ1
-----,= =

ϕ0 βa B0
π

4a
------+ + C0,=
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(23)

(24)

Replacing B2n and D2n by the new variables ξn and
ηn defined as

(25)

(26)

we may write Eqs. (20) and (24) in the following form:

(27)

(28)

where

(29)

Here, matrices  and  are symmetric (Mnm = Mmn,

Nnm = Nmn) and matrices  and  are related by the
equation

(30)

As noted above, coefficients ck and dk with odd sub-
scripts are zero. For this reason, only the matrix ele-
ments Mnm, Pnm, Qnm, and Nnm with different (even-odd)
indexes m and n are nonzero. The coefficients A2n + 1
and C2n + 1 are expressed through ξn and ηn by the for-
mulas

(31)

(32)

C2n 1+
2

1 h3–
-------------- 2n( )!

ρ4n 2+
-------------D2n,=

D2n

1 h3–
1 h3+
-------------- 2n 2m+( )!

2n( )! 2n 1+( )!
------------------------------------

m 0=

∞

∑+

× ρ4n 2+ B2mdn m 1+ + D2mcn m 1+ ++( )
1 h3–
1 h3+
--------------βρ2δn0.=

B2n β
R2n 2+ δ2

2n( )! 2n 1+( )!
----------------------------------------ξn, δ2

1 h2–
1 h2+
--------------,= =

D2n β
ρ2n 2+ δ3

2n( )! 2n 1+( )!
----------------------------------------ηn, δ3

1 h3–
1 h3+
--------------,= =

ξn Mnmξm Pnmηm+( )
m 0=

∞

∑+ δn0,=

ηn Qnmξm Nnmηm+( )
m 0=

∞

∑+ δn0,=

Mnm GnmR2 n m 1+ +( )cn m 1+ + δ2,=

Pnm GnmR2nρ2m 2+ dn m 1+ + δ3,=

Qnm Gnmρ2nR2m 2+ dn m 1+ + δ2,=

Nnm Gnmρ2 n m 1+ +( )cn m 1+ + δ3,=

Gnm
2n 2m+( )!

2n( )! 2n 1+( )! 2m( )! 2m 1+( )!
-------------------------------------------------------------------------------.=

M̂ N̂

P̂ Q̂

PnmR2δ2 Qmnρ
2δ3.=

A2n 1+
2β

1 h2+
-------------- 1

R2n
-------- 1

2n 1+
-------------------ξn,=

C2n 1+
2β

1 h3+
-------------- 1

ρ2n
------- 1

2n 1+
-------------------ηn.=
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By introducing the column vectors

(33)

the set of Eqs. (27) and (28) can be written on a com-
pact “vector” form:

(34)

where

(35)

Upon solving Eq. (34) by the iteration method with

expansion in the powers of matrix elements , we
obtain the following formal solution:

(36)

For n = 0, this yields

(37)

where only  with different (even-odd) indexes m
and n are nonzero.

Equations (1)–(3) and (25)–(37), together with an
expression for the difference of potentials Ux (see
Eq. (43) below) describe an exact solution for the prob-
lem of describing electric potential in the medium
under consideration.

By the same token, we obtain for the case when the
average field 〈E〉  is directed along the y axis:

(38)

xn
ξn

ηn 
 
 

, 1 1

1 
 
 

,= =

xn Ŝnmxm

m 0=

∞

∑+ 1 δn0,⋅=

Ŝnm
Mnm Pnm

Qnm Nnm 
 
 

.=

Ŝnm

xn δn0 Ŝn0 ŜnmŜm0

m

∑ ŜnlŜlmŜm0

lm

∑–+–




=

+ ŜnkŜklŜlmŜm0 …–
klm

∑




1.⋅

x0 1 Ŝ0mŜm0

m

∑+




=

+ Ŝ0kŜklŜlmŜm0 …+
klm

∑




1,⋅

Ŝnm

ϕ0 D0
π

4a
------, ϕ0 βa B0

π
4a
------+ + C0,= =

A2n 1+
2β

1 h2+
-------------- 1

R2n
-------- 1

2n 1+
-------------------ξn,=

C2n 1+
2β

1 h3+
-------------- 1

ρ2n
------- 1

2n 1+
-------------------ηn,=
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Here  and  satisfy the set of equations

(39)

where Mnm, Pnm, Qnm, and Nnm are the same matrix ele-
ments as in Eqs. (27)–(29). Set (39) can also be written
in the “vector” form:

(40)

where  are the matrix elements defined by formu-
las (35).

Using formulas (40) for , we may obtain an expan-

sion analogous to (36) upon the substitution  

– , which yields

, (41)

in particular,  = ξ0 and = η0. Accordingly, upon
comparing Eqs. (38) with (25), (26) and (31), (32) and

taking into account (41), we obtain (for  = β)

(42)

4. EFFECTIVE CONDUCTIVITY

Using the complex potential Φ(z), we may calculate
(using a procedure analogous to that described in [8])
the voltage drop Ux across the elementary cell and the
total current Ix through this cell in the direction of the
x axis:

(43)

(44)

B2n β
R2n 2+ δ2

2n( )! 2n 1+( )!
----------------------------------------ξn,=

D2n β
ρ2n 2+ δ3

2n( )! 2n 1+( )!
----------------------------------------ηn.=

ξn ηn

ξn Mnmξm Pnmηm+( )
m 0=

∞

∑– δn0,=

ηn Qnmξm Nnmηm+( )
m 0=

∞

∑– δn0,=

xn Ŝnmxm

m 0=

∞

∑– 1 δn0,⋅=

Ŝnm

xn

Ŝnm

Ŝnm

ξn 1–( )nξn, ηn 1–( )nηn= =

ξ0 η0

β

B2n 1–( )nB2n, D2n 1–( )nD2n,= =

A2n 1+ 1–( )nA2n 1+ , C2n 1+ 1–( )nC2n 1+ .= =

Ux 2a β B0 D0+( ) π
4a2
--------+ ,–=

Ix 2σ1a β B0 D0+( ) π
4a2
--------– .–=
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For the effective conductivity defined as σeff = Ix/Ux ,
formulas (43) and (44) yield

(45)

Substituting 

determined from Eqs. (25) and (26), respectively, we
obtain an expression for the dimensionless conductivity
defined as f = σeff /σ1:

(46)

where p2 = πR2/(2a)2 and p3 = πρ2/(2a)2 are the concen-
trations of the second and third components (i.e., inclu-
sions of the first and second type), respectively. As can
be readily checked, the same expression for f is
obtained when the electric field 〈E〉  is directed along
the y axis. Thus, the effective conductivity in the model
under consideration can be calculated as soon as the ξ0
and η0 values are determined.

For a small density of both inclusions (i.e., for R ! a
and ρ ! a), coefficients ξn and ηn can be determined
using Eqs. (36) and (37) in the form of virial series.
Restricting these cumbersome expansions to the first
terms, we obtain the following expression from Eq. (37):

which yields

(47)

By the same token, Eq, (36) gives

and

(48)

In the case when the size of inclusions R and ρ is not
small, the ξn and ηn values (n = 0, 1, 2, …) can be obtained
by numerically solving the set of Eqs. (27) and (28).

In the two-dimensional case, the medium satisfies a
reciprocation relationship [3, 4] between the effective

σeff σ1

β B0 D0+( )π/4a2–

β B0 D0+( )π/4a2+
-----------------------------------------------.=

B0 ξ0βR2δ2 and D0 η0βρ2δ3,= =

f
1 ξ0 p2δ2– η0 p3δ3–
1 ξ0 p2δ2 η0 p3δ3+ +
-------------------------------------------------,=

x0 1 Ŝ01Ŝ10 …+ +{ } 1,⋅=

ξ0 1
1
3
--- R8c2

2δ2
2

R6ρ2c2d2δ2δ3+(+=

+ R2ρ6d2
2δ2δ3 ρ8c2d2δ3

2+ ) …,+

η0 1
1
3
--- R8c2d2δ2

2
R6ρ2c2d2δ2δ3+(+=

+ R2ρ6c2d2δ2δ3 ρ8c2
2δ3

2+ ) …+

x1 S10 …+–{ } 1,⋅=

ξ1
1

3
------- R4c2δ2 R2ρ2d2δ3+( )– …,+=

η1
1

3
------- R2ρ2d2δ2 ρ4c2δ3+( )– …+=
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conductivity of the initial system (with the local con-
ductivity σ(r)) and the so-called reciprocal system
(with the local conductivity λ2/σ(r)):

where λ is some constant quantity that is a parameter of
the corresponding symmetry transformation [5]. In this
form, the reciprocation relationship is valid for the iso-
tropic two-dimensional systems with σ(r) representing
an arbitrary function of the coordinates. For an N-com-
ponent medium, this relationship is as follows:

(49)

A particular value of parameter λ is insignificant,
because this quantity does not enter into the expression
for the dimensionless effective conductivity f defined as

according to which

(50)

Note that the transition to a reciprocal system
(h2  1/h2, h3  1/h3, …) is equivalent to the sub-
stitution δ2  –δ2, δ3  –δ3, …, where δi = (1 –
hi)/(1 + hi). For the three-component model under con-

sideration, the matrix  defined by Eq. (35) changes
its sign upon transition, while quantities ξ0 and η0
remain unchanged. As a result, f transforms into 1/f
according to Eq. (46) and the reciprocation relation-
ship (50) for N = 3 is automatically satisfied.

5. PARTIAL QUADRATIC CHARACTERISTICS

The effective conductivity σeff of a composite is
directly related to the partial mean-square components
of the electric field strength [8, 14]:

(51)

where 〈…〉 (i) denotes the integral over volume (or area
in the two-dimensional case) of the ith component,
divided by the total sample volume V. Using the well-
known identity 〈j · E〉  = 〈j〉  · 〈E〉  = σe(〈E〉)2 [4, 14], we
obtain the following relationship for an N-component
medium:

, (52)

σeff σ r( ){ }( )σeff λ2/σ r( ){ }( ) λ2,=

σeff σ1 σ2 … σN, , ,( )σeff
λ2

σ1
----- λ2

σ2
----- … λ2

σN

------, , , 
  λ2.=

σeff σ1 σ2 … σN, , ,( ) σ1 f σ2/σ1 … σN/σ1, ,( ),=

f h2 … hN, ,( ) f 1/h2 … 1/hN, ,( ) 1,=

hi σi/σ1.=

Ŝnm

ψi e2〈 〉 i( ) ∂σe

∂σi

--------,= =

e r( ) E r( )/ E〈 〉 ,=

hiψi

i 1=

N

∑ f=
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where the ψi and hi values are determined from Eqs. (51)
and (50), respectively. For the three-component system,
this yields:

(53)

which implies that there is no need to directly calculate
ψ1 by Eq. (51) for the model under consideration.

Using potentials (1) and (2), we obtain

(54)

(55)

(56)

According to expressions (51), the system must obey
the following relationships:

(57)

Using formulas (46)–(48) one may readily check that
these relationships are really satisfied to within the
terms on the order of R8 and ρ8. However, the validity
of Eqs. (57) for the model under consideration can be
proved by direct calculation for arbitrary R and ρ as
well.

Indeed, differentiating Eq. (46) with respect to h2
yields

(58)

For the first equality in (57) to be valid with ψ2 from
Eq. (54) and ∂f /∂h2 from (58), it is necessary that

(59)

with the J2 value determined according to Eq. (55).

We may rewrite Eq. (36) in the following form:

(60)

where

ψ1 f h2ψ2– h3ψ3,–=

ψi
4

1 hi+( )2
--------------------

piJi

∆2
---------, i 2 3,,= =

J2 ξn
2

n 0=

∞

∑ , J3 ηn
2,

n 0=

∞

∑= =

∆ 1 ξ0 p2δ2 η0 p3δ3.+ +=

ψ2
∂f
∂h2
--------, ψ3

∂f
∂h3
--------.= =

∂f
∂h2
--------

4

1 h2+( )2
---------------------=

× ξ0

∂ξ0

∂δ2
--------δ2+ 

  p2

∂η0

∂δ2
--------- p3δ3+ ∆ 2– .

∂ξ0

∂δ2
-------- p2δ2

∂η0

∂γ2
--------- p3δ3+ p2 J2 ξ0–( )=

xn( )ν 1 Ŝ+( ) 1–( )n0
νµ

,
µ
∑=

xn( )1 ξn, xn( )2 ηn,= =

Ŝ( )nm
11

Mnm, Ŝ( )nm
12

Pnm,= =

Ŝ( )nm
21

Qnm, Ŝ( )nm
22

Nnm.= =
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Differentiating Eq. (60) with respect to δ2 (for ν = 1 and
n = 0) yields

(61)

and an analogous expression for (∂η0/∂δ2)δ2. Matrix 
in Eq. (61) has the following form:

(62)

Using the condition of symmetry of the matrix ele-
ments Mnm and Nnm and Eq. (30), one may readily
obtain the following relationships:

(63)

Substituting these formulas, the definition of ξn from
Eq. (60), and the relationship (30) into Eq. (61) yields

(64)

By the same token, we obtain

(65)

Using these expressions and taking into account the
definitions of ξn and ηn in Eq. (60), we arrive at

(66)

Multiplying Eq. (27) by ξn and summing over n, we
obtain

(67)

Substituting Eqs. (66) and (67) into (59) transforms it
into an identity. By a similar procedure, one may

∂ξ0

∂δ2
--------δ2 1 Ŝ+( ) 1–

V̂ 1 Ŝ+( )
1–( )00

1µ

µ
∑–=

V̂

V̂nm
Mnm 0

Qnm 0 
 
 

.=

1 Ŝ+( ) 1–( )0n
11

1 Ŝ+( ) 1–( )n0
11

,=

1 Ŝ+( ) 1–( )0n
12 p2δ3

p2δ2
----------- 1 Ŝ+( ) 1–( )n0

21
,=

1 Ŝ+( ) 1–( )0n
21 p2δ2

p3δ3
----------- 1 Ŝ+( ) 1–( )n0

12
,=

1 Ŝ+( ) 1–( )0n
22

1 Ŝ+( ) 1–( )n0
22

.=

∂ξ0

∂δ2
--------δ2 1 Ŝ+( ) 1–( )n0

11
Mnm{

nm

∑–=

+ 1 Ŝ+( ) 1–( )n0
21

Pnm } ξm.

∂η0

∂δ2
---------δ2

p2δ2

p3δ3
----------- 1 Ŝ+( ) 1–( )n0

12
Mnm{

nm

∑–=

+ 1 Ŝ+( ) 1–( )n0
22

Pnm } ξm.

∂ξ0

∂δ2
-------- p2δ2

∂η0

∂δ2
--------- p3δ3+

=  p2 ξnMnm ηnPnm+{ } ξm.
nm

∑–

J2 ξ0 ξnMnm ηnPmn+( )ξm.
nm

∑–=
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readily show that the second condition in (57) is valid
for the model under consideration as well.

As was pointed out in the introduction, the knowl-
edge of ψi values allows us to study the behavior of the
effective conductivity σeff in much detail. In addition,
the derivatives ∂σeff /∂σi = ψi may appear, for example,
in the description of the magnetoresistance in a weak
magnetic field, the low-frequency dielectric permittiv-
ity of metallic conductors, and structural fluctuations in
the electric field strength and current density. For cer-
tain relationships between the system parameters, the
ψi functions appear in the problem of determining
thermo emf as well (see Section 7).

6. HALL COEFFICIENT
The effective Hall coefficient Re in a weak magnetic

field H is expressed through a non-diagonal (Hall’s)
component σae of the  tensor:

According to [14], the σae values in the linear (with
respect to H) approximation are given by the general
formula

(68)

which is valid for an arbitrary inhomogeneous medium
(both two- and three-dimensional). In Eq. (68), the
angular brackets 〈…〉  denote averaging over the sample
volume V (or area in the two-dimensional case), E(ν) =
E(ν)(r) is the electric field strength in the medium in the
absence of the magnetic field (ν indicating the axis ν in
which the average field 〈E(ν)〉  is directed), and […]z
denotes the z-component of the vector product.

For an N-component medium, Eq. (68) acquires the
form

(69)

(70)

where 〈…〉 (i) denotes the same integral as in Eq. (51).
As was demonstrated in [14], the E(µ)(r) and E(ν)(r) val-
ues satisfy the identity

which leads to the following “summing rule” for ϕi

functions in the N-component medium:

(71)

σ̂eff

Re
1
H
----

σae

σeff
2

--------.=

σae

σa E x( ) E y( )×[ ] z〈 〉
Ex

x( )〈 〉 Ey
y( )〈 〉

------------------------------------------,=

σae σaiϕ i,
i 1=

N

∑=

ϕ i

Ex
x( )Ey

y( ) Ey
x( )Ex

y( )–〈 〉 i( )

Ex
x( )〈 〉 Ey

y( )〈 〉
----------------------------------------------------,=

E µ( ) E ν( )×〈 〉 E µ( )〈 〉 E ν( )〈 〉 ,×=

ϕ i

i 1=

N

∑ 1.=
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Upon excluding ϕ1 with the aid of Eq. (71), we obtain
from Eq. (69) the following relationship for a three-
component medium:

(72)

In the two-dimensional case, the system obeys
another relationship for the current density components
j(µ)(r) and j(ν)(r) [14],

which leads to a relationship between the ϕi values and
the effective conductivity σeff :

(73)

Upon excluding ϕ1 with the aid of Eq. (71), we obtain
from Eq. (73) the following relationship for a three-
component medium:

(74)

In the two-dimensional case, Eq. (74) allows us to restrict
the consideration to a single component ϕi (e.g., ϕ2).

Upon determining the field components E(x) and E(y)

from Eqs. (1), (2), (14), and (15), calculating the inte-
grals entering into the expressions for ϕ2 and ϕ3, and
taking into account relationships (41), we obtain for ϕi

the following expressions analogous to Eq. (55) (with
J2 and J3 replaced by I2 and I3):

(75)

Note that substituting the expressions for ϕ2 and ϕ3 into
Eq. (74) leads to the relationship

(76)

which can be used to check for the correctness of cal-
culations upon solving Eqs. (27) and (28) by numerical
methods.

Now we will demonstrate that the values of I2 and I3
from Eq. (75) satisfy relationship (76). Upon multiply-

ing Eq. (27) by  and the first equation in (39) by ξn,
adding these equations, and summing over all n, we
obtain

(77)

σae σa1 σa2 σa1–( )ϕ2 σa3 σa1–( )ϕ3.+ +=

j µ( ) j ν( )×[ ] z〈 〉 j µ( )〈 〉 j ν( )〈 〉×[ ] z,=

σi
2ϕ i

i 1=

N

∑ σeff
2 .=

1 1 h2
2–( )ϕ2– 1 h3

2–( )ϕ3– f 2.=

I2 ξnξn

n 0=

∞

∑ 1–( )nξn
2,

n 0=

∞

∑= =

I3 ηnηn

n 0=

∞

∑ 1–( )nηn
2.

n 0=

∞

∑= =

I2 p2δ2 I3 p3δ3+ ξ0 p2δ2 η0 p3δ3,+=

ξn

I2 ξ0
1
2
--- 1–( )m 1–( )n–[ ]Pnmξnηm.

nm

∑+=
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By the same token,

(78)

Substituting Eqs. (77) and (78) into (76), the latter trans-
forms into an identity by virtue of Eq. (30).

7. THERMO EMF

According to [15], the effective thermo emf coeffi-
cient αeff in the case of a weak thermoelectric coupling
(Tσα2/κ ! 1, where κ is the thermal conductivity) is
determined by the formula

(79)

which is valid for an arbitrary isotropic medium. Here,
j = σ(r)E is the electric current density, G = –∇ T is the
temperature field “strength,” and T is the absolute tem-
perature. For an N-component medium, Eq. (79) yields

(80)

where

(81)

and 〈…〉 (i) denotes the same integral as in Eqs. (51)
and (70).

The j and G values satisfy the identity 〈j · G〉 = 〈j〉 · 〈G〉,
which leads to the following “summing rule” for Ψi

functions in the N-component medium:

(82)

The heat flux density q = κ(r)G (obeying the equation
divq = 0) and the field strength E satisfy the identity
〈q · E〉 = 〈q〉 · 〈E〉, where 〈q〉 = κeff〈G〉 and κeff is the effec-
tive thermal conductivity. This relationship leads to the
following sequence of equations:

which is equivalent to an expression

(83)

relating the Ψi values to the effective electric and ther-
mal conductivities of the medium.

I3 η0
1
2
--- 1–( )m 1–( )n–[ ]Qmnξnηm.

nm

∑–=

α eff
α jG〈 〉

j〈 〉 G〈 〉⋅
----------------------,=

α eff α iΨi,
i 1=

N

∑=

Ψi
j G⋅〈 〉 i( )

j〈 〉 G〈 〉⋅
----------------------

σi

σe

----- E G⋅〈 〉 i( )

E〈 〉 G〈 〉⋅
------------------------= =

Ψi

i 1=

N

∑ 1.=

κ eff E〈 〉 G〈 〉⋅ q E⋅〈 〉=

=  κ i E G⋅〈 〉 i

i 1=

N

∑ κ i

σi

---- j G⋅〈 〉 i( ),
i 1=

N

∑=

κ i

σi

----Ψi

i 1=

N

∑ κ eff

σeff
--------=
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Excluding Ψ1 with the aid of Eq. (82), we obtain for
a three-component system from (80)

(84)

The same procedure with Eq. (83) yields

(85)

which allows us to exclude Ψ3 or Ψ2 from Eq. (84).
Note that, for a two-component medium (Ψ3 = 0),
Eqs. (84) and (85) yield an expression for αeff coincid-
ing with that obtained in [10].

In the absence of thermoelectric effects, the prob-
lems of describing the thermal and electric conductivities
transform one into another upon substituting κ  σ.
Therefore, the results obtained in Sections 2–4 can be
applied to the problem of thermal conductivity by substi-
tuting σi  κi and σeff  κeff (the quantities corre-
sponding to this case will be denoted by double upper
bars).

By calculating the bilinear characteristics 〈E · G〉 (i)

(i = 2, 3) using the potentials (1) and (2) and the corre-
sponding “temperature potentials,” we obtain

(86)

where

(87)

hσi = σi/σ1, hκi = κi/κ1, and ∆σ are the same values as in
Eq. (56), and ∆κ is obtained from ∆σ upon substituting
σi  κi. For a system obeying the Wiedemann–Franz
law

,

we obtain

In this case, Eqs. (86) and (87) yield

,

where ψi is determined from (54)–(56).
Substituting Ψ2 and Ψ3 from Eq. (86), as well as

σeff = σ1f with f from Eq. (46) and an analogous expres-
sion for κeff , into Eq. (85) leads to the relationship

(88)

where

α eff α1 α2 α1–( )Ψ2 α3 α1–( )Ψ3.+ +=

κ1

σ1
-----

κ2

σ2
-----– 

  Ψ2
κ1

σ1
-----

κ3

σ3
-----– 

  Ψ3+
κ1

σ1
-----

κ eff

σeff
--------,–=

Ψi

σi

σeff
-------- 4

1 hσi+( ) 1 hκ i+( )
------------------------------------------

piJi

∆σ∆κ
------------, i 2 3,,= =

J2 ξnξn, J3

n 0=

∞

∑ ηnηn,
n 0=

∞

∑= =

κ1

σ1
-----

κ2

σ2
-----

κ3

σ3
-----= =

hκ i hσi, ∆κ ∆σ, Ji Ji.= = =

Ψi σi/σeff( )ψi=

δκ 2 δσ2–( ) p2J2 δκ 3 δσ3–( ) p3J3+

=  p2 ξ0δκ 2 ξ0δσ2–( ) p3 η0δκ 3 η0δσ3–( ),+

δσi

1 hσi–
1 hσi+
----------------, δκ i

1 hκ i–
1 hκ i+
---------------.= =
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Upon subtracting from Eq. (27) multiplied by 

the corresponding equation for  multiplied by ξnδσ2
and summing the difference over all n, we obtain

By the same token, we obtain

Substituting expressions for  and  into Eq. (88)
transforms this relationship into an identity. Thus, rela-
tionship (85) is satisfied by a solution to the conductiv-
ity problem determined in this study. In analyzing the
system of Eqs. (27) and (28) by numerical methods,
relationship (85) can be used for checking the correct-
ness of the results of calculations.

8. LIMITING CASES

In concluding, we will consider four limiting cases
in which some local characteristics possess particular
values or satisfy additional relationships.

1. In the limit ρ  0, the model becomes two-
component, whereby Pnm = Qnm = Nnm = 0. As a result,
ηn = δn0 and D2n = 0, so that Eqs. (1), (3), (27), (46) and
some others transform into the corresponding formulas
derived in [8]. A difference in the values of Mnm is
related to different definitions of the ξn coefficients.

2. For δ3  0, the model also becomes two-com-
ponent: inclusions of the second type are formally
retained (ρ ≠ 0), but their properties are the same as
those of the first component (σ3 = σ1). As a result,
Pnm = Nnm = 0, Eq. (27) converts into the corresponding
expression derived in [8], and Eq. (28) yields

Substituting this expression into (32) (for h3 = 1) and
taking into account the explicit form of Qnm from
Eq. (29) and definition (25), we obtain

(89)

According to Eq. (26), D2n = 0 for δ3 = 0. As can be
readily checked, the expansion of the complex poten-
tial (3) (for D2n = 0) in the vicinity of the point z = z0
with allowance for Eq. (9) coincides with Eq. (2) upon

ξ0δκ 2

ξn

δκ 2 δσ2–( )J2 Pnmδκ 2ξnηm(
nm

∑–=

– Pnmδσ2ξnηm ) ξ0δκ 2 ξ0δσ2.–+

δκ 3 δσ3–( )J3 Qmnδσ3ξnηm(
nm

∑=

– Qmnδκ 3ξnηm ) η0δκ 3 η0δσ3.–+

J2 J3

ηn δn0 Qnmξm.
m 0=

∞

∑–=

C2n 1+ βδn0 B2m
2n 2m+( )!
2n 1+( )!

---------------------------dn m 1+ + .
m 0=

∞

∑–=
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substituting C2n + 1 values from Eq. (89). The effective
conductivity according to Eqs. (45) and (46) coincides
(as in the limiting case 1) with the corresponding for-
mula derived in [8] for α = 1/ξ0.

3. In a more complicated case of ρ  R and
σ3  σ2, the tree-component system under consider-
ation transforms into a two-component system as well,
differing from the system studied in [8] only by the

period (2  = a instead of 2a, which corresponds to
the lattice depicted in Fig. 1 with the coordinate axes
rotated by 45°). We will demonstrate that, with allow-
ance for this rotation, the solution obtained in our study
coincides (in the limit as ρ  R and δ3  δ2) with
that derived in [8].

For ρ = R and δ3 = δ2, we have Nnm = Mnm and Qnm =
Pnm . In this case, upon subtracting (28) from (27), we
obtain a homogeneous system of equations with respect
to the “variable” ξn – ηn. Possessing a nonzero determi-
nant, this system has only a zero solution that implies
ηn = ξn (and D2n = B2n), where ξn satisfies the equation

(90)

Let the field 〈E〉 be directed along the quadrant diagonal.

The corresponding complex potential  is described

by a superposition of Eqs. (3) and (13) for  = β:

(91)

This equation is derived taking into account the rela-
tionships D2n = B2n and  = (–1)nB2n [see Eq. (42)];
the constants ϕ0 and  (insignificant for subsequent
consideration) are omitted. Using the summation rule
and homogeneity relationship for the Weierstrass zeta
function [19, 20], as well as the obvious equalities

(valid in the lemniscate case under consideration), one
can readily check that

(92)

Here, ζ(z) and ζ(z – z0) are the Weierstrass zeta func-

tions with halfperiods a and ia, while  is the function

with the halfperiods  = a/  and i  = ia/ . Substi-

ã 2

ξn Mnm Pnm+( )ξm

m 0=

∞

∑+ δn0.=

Φ̃1 z( )

β

Φ̃1 z( )
1

2
------- Φ1 z( ) Φ1 z( )–[ ] βzeiπ/4= =

+
1 i 1–( )n–

2
------------------------B2n ζ 2n( ) z( ) ζ 2n( ) z z0–( )+{ } .

n 0=

∞

∑

B2n

ϕ0

℘ z0( ) 0, ℘ ' z0( ) 0, ζ iz( ) iζ z( ),–= = =

℘ iz( ) ℘ z( ), ℘ ' iz( )– i℘ ' z( )= =

ζ z( ) ζ z z0–( )+ ζ z0( )– eiπ/4ζ̃ z̃( ),+=

z̃ zeiπ/4.=

ζ̃ z̃( )

ã 2 ã 2
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tuting variable  into Eq. (91) and taking into account
Eq. (92), we obtain

(93)

(an insignificant constant is omitted).
Note that an expansion of the left and right parts of

Eq. (92) in powers of z and  using Eqs. (6) and (17)
leads to a relationship

(94)

where  differs from c2n by the substitution a 

 = a/ . The validity of Eq. (94) for n = 1, 2, 3, …
can be directly verified using the expressions for c2n and
d2n from Eqs. (7) and (11). Taking into account rela-
tionship (94), Eq. (90) can be presented in the following
form:

(95)

where the matrix elements  differs from the Mnm

given by Eq. (29) only by substituting cn + m + 1 

 (i.e.,  refers to the square lattice with the

halfperiod  = a/ ).
As can readily be checked, by introducing the vari-

ables  defined by the relationships ξ4k = , ξ4k + 1 =

– , ξ4k + 2 = – , ξ4k + 3 =  (k = 0, 1, 2, …),
the set (95) can be converted into the following form:

(96)

Using this relationship, the final expression for poten-
tial (93) can be rewritten as

(97)

By the same token, the potential of an inclusion with
ρ = R and h3 = h2 centered at z = 0 converts into

(98)

The same form (with the corresponding shift in ) is

obtained with ρ = R and h3 = h2 for the potential .

The coefficients  and  entering into Eqs. (97)

and (98) are related to  from Eq. (96) by relation-
ships identical in form to the expressions relating B2n

and A2n + 1 to  [see Eqs. (25 and 31)].
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ã 2

ξ̃n ξ̃4k

ξ̃4k 1+ ξ̃4k 2+ ξ̃4k 3+

ξ̃n M̃nmξ̃m

m 0=

∞

∑+ δn0.=

Φ̃1 z̃( ) βz̃ B̃2nζ̃
2n( )

z̃( ).
n 0=

∞

∑+=

Φ̃2 z̃( )
1

2
------- Φ2 z( ) Φ2 z( )–[ ] Ã2n 1+ z̃2n 1+ .
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Thus, the complex potential in the coordinate sys-
tem  rotated by 45° relative to the coordinate sys-
tem (x, y) acquires (for ρ = R and σ3 = σ2) the same
form as that for the two-component model studied in

[8], but the lattice halfperiod changes to  = a/ .
Note that relationship (94) allows coefficient d2n to

be expressed through c2n. Equations (5)–(8) indicate
that c2n ∝  (c2)n ∝  1/a4n. Therefore, /c2n = (a/ )4n = 4n

and, hence, Eq. (94) yields as a relationship

(99)

which allows us to calculate d2n using the known values
of c2n .

4. In the limiting case with ρ = R and δ3 = –δ2 (i.e.,

h3 = 1/h2 or σ2σ3 = ), the system under consideration
is characterized by Nnm = –Mnm and Pnm = –Qnm . There-
fore,

The same structure is inherent in all the odd powers of .
Therefore, Eq. (36) shows that η2k + 1 = –ξ2k + 1 . All the

even powers of  also possess identical structures (dif-
ferent from that for the odd powers) such that η2k = ξ2k .
Therefore, the case of ρ = R and δ3 = –δ2 implies that
ηn = (–1)nξn. In particular, η0 = ξ0 and Eq. (46) yields
f = 1 and σeff = σ1. The same conclusion was derived in
[17] based on an approximate expression for the effec-
tive conductivity (dielectric permittivity).

Finally, it should be noted that, in the general case,
the equality f = 1 takes place provided that the relation-
ship

is valid. This relationship indicates that it is possible to
vary some effective characteristics (Hall coefficient,
thermo emf, etc.) of this system without affecting the
electric conductivity.

x̃ ỹ,( )

ã 2

c̃2n ã

d2n 4–( )n 1–[ ]c2n,=

σ1
2

Ŝnm
Mnm Qnm–

Qnm Mnm– 
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Ŝ

Ŝ

ξ0R2δ2 η0ρ
2δ3+ 0=
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Abstract—The two-dimensional electron gas in the surface layers of HgMnTe with inverted bands is studied
for the first time experimentally and theoretically. It is shown that the structure of the investigated capacitance
magnetooscillations in HgMnTe MOS structures is entirely similar to that observed in the non-magnetic gapless
semiconductor HgCdTe and the sole effect of the exchange interaction is the temperature shift of beat nodes.
The information about the exchange parameters is obtained only from modeling the oscillations, because no
pronounced changes in the position of oscillations are observed and the separate spin components are not
resolved. For the description of the spectrum in the magnetic field, we propose a theory that takes the exchange
and spin–orbit interactions into account for materials with direct and inverted bands. A comparison between
experiment and theory for different temperatures and exchange interaction parameters is reported. The model-
ing shows that the spin–orbit splitting by far exceeds the contribution of the exchange interaction. The calcu-
lated amplitudes of “partial” oscillations for different spin branches of the spectrum are essentially different in
accordance with the difference in the intensities of the corresponding lines in the Fourier spectra of the exper-
imental oscillations. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The peculiar features of, and the interest in, the two-
dimensional (2D) electron gas in narrow-gap diluted
magnetic (semimagnetic) semiconductors (DMSs) are
due to two factors. One stems from the s, p–d exchange
interaction between band electrons and localized mag-
netic moments [1]. This interaction changes spin split-
ting of the band states, which can be varied by external
factors, e.g., the magnetic field and temperature. The
other factor is due to the peculiarities inherent to small-
gap Kane semiconductors, leading to the relativistic-
type effects of non-parabolicity, kinetic confinement
(motional binding [2]), spin–orbit (SO), splitting, and
resonant interband mixing by the surface electric field
[3–5]. An important property of 2D electronic systems
involving DMS is that both the exchange and SO inter-
action lead to a rearrangement of the spin structure of
Landau levels (LLs).

Although historically the first studies of the 2D elec-
tron gas in DMSs were performed for metal–insulator–
semiconductor (MIS) structures based on HgMnTe [6],
the experimental results are mostly available for the
grain boundaries in HgMnTe and HgCdMnTe with a
positive Kane gap Eg > 100 meV at the typical Mn con-
tent x = 0.02 (for higher x, the exchange interaction
exhibits itself poorly, which was attributed to the anti-
ferromagnetic interaction between Mn2+ ions) [1, 7–9].
This is due to low electron mobility in the previously

¶This article was submitted by the authors in English.
1063-7761/01/9201- $21.00 © 20135
investigated MIS structures. At the same time, the
inversion layers in MIS structures are of particular
experimental interest because of the possibility of con-
trolling the depth of the surface quantum well by gate
voltage and because of a relative ease and accuracy of
the surface potential description (for bicrystals, addi-
tional poorly verified assumptions have to be used to
describe the self-consistent potential near the grain
boundaries [10]). An important point is that these
results can be compared with the data for MIS struc-
tures based on narrow-gap HgCdTe [4, 11], which is a
non-magnetic analogue of narrow-gap DMSs.

As to the theoretical description, the subband calcu-
lations were carried out only for DMSs with direct but
not inverted bands and without taking the spinorlike
effects into account [1, 6]. However, the SO splitting in
asymmetric quantum wells at a zero magnetic field
(which itself is currently of great interest [4, 5, 12, 14–
19]) leads to a rearrangement of the subband magnetic
levels. In narrow-gap semiconductors, the magnetic
spectrum perturbation is so drastic that the SO interac-
tion cannot be neglected in the theoretical treatment. It
must be stressed that as we see in what follows, the SO
splitting by far exceeds the exchange interaction contri-
bution, and therefore, it cannot be considered as a cor-
rection to the exchange interaction. It is also clear that
a treatment based on the semiclassical quantization in
the magnetic field of the subband spectrum (calculated
in a zero magnetic field) is unsuitable for the descrip-
tion of exchange interaction effects. A more rigorous
001 MAIK “Nauka/Interperiodica”
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theoretical consideration of the LL structure is
required.

In this paper, the peculiarities of 2D electron gas due
to the exchange and SO interaction are studied in inver-
sion layers on Hg1 – xMnxTe with a small Mn content. In
Section 2, we describe the parameters of the samples
and the experimental methods used. The experimental
data related to the capacitance oscillations in perpen-
dicular magnetic fields versus gate voltage and mag-
netic field and their temperature evolution are presented
in Section 3. The experiments in tilted magnetic fields
are discussed in Section 4. In Section 5, we present the
theoretical model based on developing the concept that
we proposed previously for non-magnetic Kane semi-
conductors. In Section 6, the results of the computer
modeling of capacitance oscillations are presented. The
results of comparing the experimental data and theoret-
ical calculations for different temperatures and
exchange interaction parameters are discussed.

2. SAMPLES AND EXPERIMENTAL METHODS

MIS structures were fabricated from p-Hg1 – xMnxTe
single crystals. We investigated samples with different
values of Mn content (x = 0.024, 0.040, 0.060, and 0.1).
The Kane gap Eg and the Kane effective mass mb (and
therefore, x) were determined independently by the
tunnel spectroscopy method for a comparison of band
parameters in the bulk with those in the vicinity of the
surface. The discrepancy is within the accuracy of the
analysis (∆x ~ 0.002–0.003). Because the tunnel con-
tacts and the studied MIS capacitors were produced
using the same technology (see below) and differ only
by the insulator thickness, this agreement testifies that
the surface layers are chemically close to the bulk. The
similarity of the results for the structures with different
insulators (fabricated using different methods) supports
this conclusion. The fact that the cyclotron masses mea-
sured in 2D subbands for small surface concentrations
extrapolate to the bulk value mb is direct evidence of the
absence of a noticeable decomposition in the 2D layer
during the structure fabrication process.

At x < 0.08, HgMnTe has inverted bands (i.e.,
becomes semimetal) and traditional galvanometric
methods cannot be used because of the shunting of sur-
face conductance by the bulk. We employed the magne-
tocapacitance spectroscopy method, which is applica-
ble to semiconductors with any sign of the Kane gap.
The differential capacitance C of the capacitors and its
derivative dC/dVg with respect to the gate voltage Vg

were measured in the dark, typically at 1 MHz and with
a test signal amplitude of 5 mV.

Several methods have been used for forming an
insulating film in MIS structures: the anodic oxide for-
mation, the silicon oxide and Al2O3 deposition, and the
Langmuir–Blodgett film technique. The capacitance
magnetooscillations due to the magnetic quantization
of the 2D electron gas were observed in all the above
JOURNAL OF EXPERIMENTAL
structures. The general shapes of the oscillations at the
same carrier surface density and the same Mn content
are similar. In what follows, we present the results for
the structures with an ~80 nm thick anodic oxide film.
There are several reasons for this choice: (i) the ampli-
tudes of oscillations in these structures are the highest
owing to a large insulator capacitance value (this is
caused by a large dielectric constant value of the anodic
oxide), (ii) the highest surface carrier densities are
achieved at low gate voltages Vg = 10–15 V, and (iii) the
dielectric constant of the oxide is close to that of a
semiconductor, and the contribution of image forces to
the surface potential can therefore be neglected in the
calculations.

We restrict our consideration to the results for
HgMnTe with x ≈ 0.04 (Eg = (–100 ± 5) meV). The
amplitudes of the oscillations for other samples are
much less even at 4.2 K and rapidly decrease with
increasing temperature. (For x ≈ 0.024, this is caused by
a small cyclotron energy due to a large Kane gap; for
x ≈ 0.06 and x ≈ 0.1, this is the result of a large doping
level of available materials.) As a result, we could not
obtain reasonably accurate information about the oscil-
lation temperature evolution where the specificity of
the DMS is manifested. As to the measurements at
T = 4.2 K, the subband parameters extracted from
oscillations for these samples are similar to those for
HgCdTe with the same band parameters and agree well
with the theory.

On the other hand, the samples with x = 0.04 are best
suited to the purpose of this first study aimed at inves-
tigating the peculiarities of the 2D electron gas in DMSs
with inverted bands, where (i) the SO and exchange
interaction effects are expected to be more clearly pro-
nounced and (ii) the results can be compared with those
for well studied surface layers on gapless HgCdTe with
Eg ~ –(50–100) meV [4, 20]. For a small gap (|Eg| <
100 meV), the parameters of 2D subbands depend only
weakly on Eg (except the case of small subband occu-
pancies) [4, 20]. By contrast, the subband parameters
are more sensitive to the doping level. For this reason,
we present the results for two samples with NA – ND =
1.2 × 1016 cm–3 (sample S1) and NA – ND = 1.5 × 1017 cm–3

(sample S2 with the gate area S = 7.7 × 10–4 cm2 and the
insulator capacitance Cox = 155.1 pF).

3. MAGNETOCAPACITANCE
IN PERPENDICULAR MAGNETIC FIELDS

Figure 1 shows the capacitance–voltage characteris-
tics at T = 4.2 K in the magnetic field B = 4.5 T perpen-
dicular to the 2D layer for sample S2. The C(Vg) char-
acteristics are typical for the low-frequency behavior.
This means that 2D electrons in the inversion layers
contribute predominantly to the measured capacitance
under the inversion band bending. The low-frequency con-
ditions with respect to the minority carriers are satisfied in
the entire investigated frequency range 30 kHz–5 MHz.
 AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001
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The wide hysteresis loop and the dependence of the
C(Vg) characteristics on the voltage sweep rate are
observed. At a fixed Vg, the capacitance changes in time
because of a flat-band voltage shift ∆Vf b. The time con-
stant is of the order of several minutes and is almost
independent of the temperature. This behavior points to
the charge tunnel exchange between the semiconductor
and the slow traps in the insulator. The sample prehis-
tory effects and instability are manifested in all the
investigated HgMnTe-based MIS structures. This is in
contrast with the HgCdTe- and HgTe-based structures
with the same insulators that we investigated simulta-
neously.

The voltage dependence of the charge density
eNs(Vg) induced in the inversion layer is sublinear. This
is demonstrated by the non-equidistant of quantum
oscillations of the capacitance C(Vg) (see Fig. 1). The
tunneling of electrons from the 2D layer into the oxide
causes a saturation of the Ns(Vg) dependence at Vg – Vfb ≈
(10–15) V. As a result, the Ns range accessible for inves-
tigations is limited by the value (3–4) × 1012 cm–2 (in
HgCdTe, the Ns values up to 1013 cm–2 can be obtained).
Although the hysteresis effects hamper the measure-
ments, the discussed physical results are not affected by
the band bending instability. This instability is caused
by the transient processes but not by degradation.
Although the C(Vg) characteristics are history depen-
dent, they are completely repeatable if the voltage
range, rate, and direction of the sweep are the same. To
assure the stability of the band bending during the mea-
surement of C(B) oscillations, the sample was held at a
given voltage for 5–15 min. The identity of C(B) plots
registered at increasing and decreasing the magnetic
field (i.e., at different times) was examined for each
C(B) curve. When the temperature (or angle) depen-
dences of the C(B) oscillations were measured, the long
term stability was checked by the repetitive measure-
ment of the initial C(B) plot (for a given measurement
cycle).

The C(B) oscillations (and consequently, the sub-
band occupancy and the surface potential) measured at
the same capacitance magnitude in zero magnetic field
C(0) are identical, irrespective of the voltage (the value
of the latter for any given C(0) is determined by the flat-
band voltage, which is history- and time-dependent).
When the dc gate voltage (or the flat-band voltage at the
same Vg) is changed, the filling of interface states is
also changed but does not respond to the ac ripple, i.e.,
the interface states do not contribute to the capacitance.
This occurs for all frequencies and temperatures and
testifies that the high-frequency conditions with respect
to interface states are satisfied. Thus, there is a “one-to-
one correspondence” between C(0), the band bending,
and the surface density of 2D electrons Ns = Ni

(where i is the 2D subband number).
The subband parameters are presented below as

functions of Ns. Contrary to the dependence on Vg, their

∑
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dependence on Ns is not affected by the hysteresis
effects or any specific parameters of MOS capacitors;
the same Ns dependence is common to a given HgMnTe
sample. It may be noted that there are some positive
aspects of hysteresis. It is possible to investigate the 2D
electron gas in the same surface quantum well on the
same sample but with a different interface charge. This
is important, in particular, in the investigation of scat-
tering mechanisms.

Typical C(B) oscillations are presented in Fig. 2
together with their 1/B Fourier transforms. The individ-
ual spin components have not been observed in the
oscillations at any Ns even for the lowest LLs. On the
other hand, the oscillation beats and the Fourier spectra
distinctly demonstrate the presence of two frequencies
connected with the SO splitting of each 2D subband.
The surface densities in the spin-split subbands  and

 determined from Fourier transforms are plotted in

Fig. 3. The carrier distribution among 2D subbands is
different for the two samples. The concentrations Ns

corresponding to the “starts” of the excited subbands
increase as the doping level increases and agree well
with the theoretical calculations in which the bulk val-
ues of NA – ND are used. This fact also testifies that the
disruption of stoichiometry in surface layers that could
be caused by the migration of atoms is insignificant. A
discrepancy with the theory is detectable only in the
relative differences of occupancies ∆Ni/Ni = (  –

)/(  + ) in the small Ns range. Similar dis-

agreement also occurs for inversion layers on HgCdTe.
Possible reasons for this behavior are discussed in [4].
The intensities of Fourier lines for the high-energy

Ni
+

Ni
–

Ni
–

Ni
+ Ni

– Ni
+

–2 0
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Vg, V
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2 4

135

140

145

150

155

Fig. 1. Capacitance-voltage dependences in the magnetic
field B = 4.5 T perpendicular to the 2D plane for sample S2
at different gate voltage sweeps. The arrows indicate the
sweep direction. The sweep rate is 2 V/mn.
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Fig. 2. (a) Experimental and (b) simulated temperature evolutions of C(B) oscillations and (c, d) their Fourier spectra for sample S2.
Temperature (from top to bottom): 4.2, 10, 15, 22, 29 K, and 35 K. The values TD = 11 K for i = 0, TD = 9.5 K for i = 1, and
TN = 10 K are used in the calculation.
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Fig. 3. The calculated (lines) and measured (points) distributions of 2D electrons among the spin-split subbands for (a) S1 and
(b) S2 samples. The theoretical dependences are calculated as in [4]. The numbers at lines are the subband numbers.
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Fig. 4. (a) Capacitance oscillations plotted versus the normal component B⊥  of the applied magnetic field for sample S2 at Ns =

1.62 × 1012 cm–2. The angle θ between B and the normal to the 2D layer: (1) 0; (2) 26°; (3) 42°; (4) 50°. To demonstrate the repro-
ducibility of the results, we plotted two C(B⊥ ) oscillations for θ = 0. The upper and lower plots are measured before and after the
angle dependence measurements respectively. (b) The angle dependences Bn(0)/Bn(θ) for oscillation maxima marked on the upper
C(B) plot. The line is the cosine function.
branch  and the low-energy branch  are different

and the ratio /  decreases with increasing Ns.

The structure of oscillations and the subband param-
eters extracted from oscillations are identical to those in
HgCdTe. No features due to the exchange interaction
are manifested. Because the exchange effects are deter-
mined by the magnetization and can be varied by the
temperature, the investigation of the temperature evolu-
tion of oscillations is of primary interest. The results for
sample S2 are shown in Fig. 2. As can be seen, no pro-
nounced changes in the position oscillations are
observed. The shift of beat nodes to higher gate volt-
ages and to lower magnetic fields (to larger LL num-
bers) with increasing temperature (and hence, with
decreasing magnetization) is the sole temperature
effect, besides the usual decrease of oscillation ampli-
tudes. This shift must be attributed to the features inher-
ent to semimagnetic semiconductors because neither
the positions of the oscillations nor those of the beat
nodes change with the temperature in HgCdTe-based
structures.

4. MEASUREMENTS
IN TILTED MAGNETIC FIELDS

Although there is no doubt that we are dealing with
a 2D system (the existence of the magnetooscillation
effect in the capacitance and the observation of magne-
tooscillations versus gate voltage already testify to it),
experiments in a tilted magnetic field were also per-
formed. Some results for sample S2 are presented in
Fig. 4. The magnetic field positions of the oscillation
extrema and the fundamental fields in the Fourier spec-
tra (to a smaller extent) vary only roughly as the cosine
of the angle θ between B and the normal to the 2D

Ii
+ Ii

–

Ii
– Ii

+
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layer. Clearly distinguishable deviations from this
behavior are observed, Namely, the experimental angle
dependences are stronger.

There are several reasons for this deviation from the
classical cosine dependence, because a number of
physical factors are ignored in the simplified model
[21]. First, in the strictest sense, this behavior, even for
the parabolic dispersion, is valid only for an ideal 2D
system. The condition to be satisfied for the cosine
dependence is 〈r〉/〈z〉 @ 1, where 〈r〉  and 〈z〉  are the
respective mean sizes of the wave function in the 2D
plane and in the confinement direction. For narrow-gap
semiconductors, the width of the surface quantum well
is relatively large and such a strong requirement may
not be fulfilled (we also note that 〈z〉  is energy depen-
dent in this case). In a strong magnetic field and at a
small surface concentration, the cyclotron radius and
the 2D layer width can be comparably sized (especially,
for excited subbands) and the diamagnetic shift must
weaken the angle dependence. This is contrary to the
experimental behavior. Second, the cosine relationship
is obtained for spinless particles, which is not the case
in a real system. Third, the SO interaction is neglected
in this simple consideration. Undoubtedly, spinlike
effects can affect the spectrum in a tilted magnetic field
and modify the angle dependence.

Finally, the exchange interaction can also give an
additional contribution to the deviation from the simple
angle dependence. This assumption has experimental
support. For comparison, we investigated the HgCdTe-
based samples in a tilted magnetic field. Under the
same conditions, they also manifest a deviation from
the cosine behavior. However, the deviation is weaker
than for gapless HgMnTe and has the opposite sign.
At the same time. the samples based on HgCdTe with
SICS      Vol. 92      No. 1      2001
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Eg > 0 show a deviation of the same sign as in HgMnTe,
but smaller in magnitude. Contrary to HgCdTe sam-
ples, changes in the structure of oscillations are
observed in HgMnTe inversion layers. Namely, the beat
nodes in oscillations C(B⊥ ) (with B⊥  = Bcosθ) are
shifted to the lower LL numbers with the increase of θ
(i.e., with the increase of the total magnetic field B), see
Fig. 4. We note that the direction of the shift occurring
with the increase of B (with B⊥  kept fixed) is similar to
the one observed with decreasing temperature.

These experimental observations testify that the
behavior in tilted magnetic fields is markedly affected
by both the SO interaction (which essentially depends
on the Eg sign [4]) and the exchange interaction. For
narrow-gap semiconductors, the theoretical analysis
requires a consideration of spin from the outset. Strong
SO and exchange interactions and the resonant effects
lead to a serious complication of the theoretical
description even for the perpendicular orientation. The
calculations in tilted magnetic fields are troublesome
even for the simplest parabolic Hamiltonian with a
k-linear Rashba term. At present, we cannot make a rea-
sonable theoretical analysis of the effects in tilted fields
JOURNAL OF EXPERIMENTAL
and we restrict our analysis to the case of perpendicular
orientation.

As shown in Section 3, the analysis based on the
Fourier transform of oscillations for different tempera-
tures cannot yield any information about the exchange
interaction. On the other hand, these data cannot be
obtained from spin splitting either because, as noted
above, the separate spin components are not observed
in the oscillations at any temperatures. Thus, we must
settle the question by the capacitance magnetooscilla-
tions modeling.

5. THEORETICAL ANALYSIS
To simulate the capacitance magnetooscillations,

the density of states (DOSs) must be calculated as a
function of B (or Vg). This requires knowing the sub-
band spectrum in the magnetic field and the broadening
of the Landau levels. Under the homogeneous magnetic
field B(0, 0, B) parallel to the confinement direction
(the surface potential V = V(z)), the motion in the 2D
plane can be quantized using the mean field approxima-
tion for the exchange interaction. In the framework of a
six-band Kane model, the subband LL energy En(B) is
determined by the matrix equation 
(1)

E–– α+
EB 3 n 1–( )

2
-------------------------------

EB n
2

------------- 0 0 sb"k̂z

EB 3 n 1–( )
2

------------------------------- E+– 3β+ 0 0 0 0
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2

------------- 0 E+– β– sb"k̂z 0 0

0 0 sb"k̂z E–– α–
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2
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-------------–

0 0 0
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f 3
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f 5
n z( )

f 2
n z( )

f 4
n 1– z( )

f 6
n 1– z( ) 

 
 
 
 
 
 
 
 
 
 
 

0,=
where E±(z) = En – V(z) ± Eg/2, sb =  is the
Kane velocity, n is the LL number, and EB =

 = sb"/λ (with "ωb = "eB/mbc being the

cyclotron energy and λ =  the magnetic
length). We denote α = xNα'〈Sz〉/2 and β = xNβ'〈Sz〉/6,
where x is the MnTe mole fraction, N is the number of
unit cells per unit volume, and α' and β' are the respec-
tive exchange integrals for the Γ6 and Γ8 bands. The
thermodynamic average 〈Sz〉  of the z-component of a
localized spin S (with 5 = 5/2 for Mn2+ ions) defines the

Eg /2mb

2mbsb
2
"ωb 2

c"/eB
 

magnetic field and temperature dependence of the
exchange effects and can be described via the normal-
ized Brillouin function BS(x),

(2)

where TN is the effective temperature arising from the anti-
ferromagnetic interaction between Mn2+ ions [22, 23].

To solve Eq. (1), we use the concept proposed by
Zel’dovich and Migdal [24, 25] for the related problem
of describing the vacuum condensate of Dirac electrons

Sz〈 〉 S 1 x–( )18BS

2µBB
kB T T N+( )
--------------------------- 

  ,–=
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near supercritical nuclei; we have used this model for
the Kane Hamiltonian [4, 26]. In this scenario, the
problem is reduced to a Schrödinger-type equation with
the effective potential in which the terms responsible
for non-parabolicity, spin–orbit splitting, and the “res-
onant” shift are easily singled out. The qualitative sim-
ilarity and the quantitative difference between the cases
where Eg > 0 and Eg < 0 are also clearly seen. As in [4],
we use the semiclassical approximation both for the
calculation of the surface potential V(z) and for the
quantization of the resulting equations. The validity of
this approach in narrow-gap semiconductors was
argued and demonstrated by comparison with numeri-
cal self-consistent calculations in many papers (see [4]
and references therein). The simplicity of the method is
of considerable advantage for the purposes of oscilla-
tions modeling.

Arguing as in [26], we obtain from (1) the semiclas-
sical expression for the “spin-split” z-components of
the wave vector

(3)

where

and the effective energy is Eeff = (E2 – )/2mb . In

the effective potential U± = U0 +  +  + , we
single out the “Klein–Gordon” term

two spin-like terms, namely the “magnetic potential”

and the “exchange potential”

and the “resonant” term describing a “spin-interband”
interaction arising from the mixing of the Γ6 and Γ8
bands by the electric field,

kz
± 2mbsb

2

sb"
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The spin–orbit term involved in Eq. (3) is

In the above expressions, we used the notations

and

We must put

and g = –1 for surface electrons in Kane semiconduc-

tors with Eg < 0, and  = 0,  = E+ ± β, and g = +1
in semiconductors with Eg > 0. Together with the Bohr-
Sommerfeld quantization rule, Eq. (3) defines the mag-

netic levels (i, B) in the surface quantum well V(z). It
must be stressed that the exchange interaction causes
not only the appearance of an exchange term in the
effective potential, but also a modification of the terms
describing the “resonant” and SO interaction.

The calculations show that the SO splitting by far
exceeds the contribution of the exchange interaction.
Furthermore, the SO interaction also suppresses the
splitting due to the exchange interaction. As an exam-
ple, the SO splitting near the Fermi level corresponding
to the first beat node in Fig. 2 is 17.2 meV (at the sub-
band Fermi energy EF0 = 78 meV). If we take the
exchange interaction into account, the splitting
increases by only 4.2 meV even at T = 4.2 K. At the
same time, the exchange splitting calculated without
taking the SO interaction into account is 5.6 meV. This
is why the exchange effects manifest themselves only
as a small change in the structure of oscillations near
the beat nodes, where the oscillations from different
spin branches quench each other.

The SO interaction leads to such a drastic recon-
struction of the 2D spectrum in magnetic fields that the
description of the spin splitting by the non-relativistic
g-value loses its physical meaning. This is also true for
narrow-gap DMS with Eg > 0. In view of this effect, the
results of the analysis of 2D systems in asymmetric
quantum wells in these materials are to be revised,
because they ignore the SO interaction.

6. RESULTS OF MODELING AND DISCUSSION
In calculating the differential capacitance of the

space charge region, the density of states in the mag-
netic field was described neglecting the mixing
between LLs and assuming a Gaussian shape of each
level, as we did in [26]. The surface potential and the
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Fig. 5. (a) “Partial” oscillations for different spin sub-subbands i± (curve 1, 1+; 2, 1–; 3,0+; 4, 0–) extracted from the experimental
C(B) trace (the lower plot). (b) Magnetic field positions of (i) the maxima of experimental oscillations (crosses), (ii) “partial” oscil-
lations maxima extracted from the experimental C(B) traces (circles) and (iii) LLs calculated at the Fermi energy (lines) for the
ground subband i = 0 as functions of temperature. Solid lines and solid circles correspond to the low-energy spin branch (0–), the
dashed line and open circles to the high-energy branch (0+).
subband Fermi energies are assumed to be constant
when the magnetic field is changing. The alternative
model is based on the assumption that the surface den-
sity is fixed. However, both models give indistinguish-
able results for a sufficiently large LL broadening (this
is manifested by the cosine form of experimental oscil-
lations) [27]. The temperature dependences of band
parameters and the bulk Fermi energy are accounted for
in the calculations.

Although we performed the calculations for a differ-
ent net of exchange parameters (literature data vary
markedly, see [1, 28–30] and references therein), the
results discussed in this section correspond to Nβ' = 1.5 eV
and Nα' = –0.4 eV, unless otherwise specified. These
values are close to those obtained in [28, 29] by the tun-
nel spectroscopy method for narrow-gap and gapless
HgMnTe with small |Eg|. We suppose that these data
(with similar values for gapless HgMnTe obtained in
many works, see references in [1, 28, 29]) are more
suitable for the purposes of this work because the typi-
cal electron energies are of the order of or even consid-
erably larger than |Eg| in the studied surface quantum
wells. In tunnel experiments, the LL energy positions
of “p-electrons” as functions of the magnetic field are
measured at energies up to 150 meV.

Once the exchange parameters are chosen, two
parameters can be obtained when the modeling fits the
experimental data: the effective temperature TN, which
describes the temperature shift of beat nodes, and the
Dingle temperature, which determines the oscillation
amplitudes (and which we use as a characteristic of the
scattering).

In calculations, we assume that TD is the same for
both spin–orbit branches. This assumption is supported
experimentally. When three or more beat nodes are
JOURNAL OF EXPERIMENTAL 
observed in the oscillations, the “partial” oscillations
related to different spin branches can be extracted from
the experimental C(B) traces using Fourier filtration
and the inverse Fourier transform (see Fig. 5a). The TD

values determined from the fitting of “partial” oscilla-
tions turn out to be close for both branches within the
accuracy of the analysis.

At the same time, the amplitudes corresponding to
these branches can differ considerably (up to several
times). This difference is not surprising. Although the
DOS is higher at B = 0 in the low-energy branch, the
corresponding amplitudes can be smaller (even if the
relaxation times are equal), because the lower cyclotron
energy in this branch leads to a smaller amplitude fac-

tor. The calculated amplitude ratio /  decreases
rapidly as Ni increases. This behavior correlates well
with the decreasing ratio of the Fourier line intensities
observed experimentally. The difference of the ampli-
tudes for different spin components of oscillations
mentioned in [11, 14] are therefore expected to be dif-
ferent for 2D systems with a strong SO interaction
without invoking the spin-dependent scattering.

Although the general shapes of the simulated and
measured oscillations C(B) are well matched, the exact
magnetic field positions of the peaks and beat nodes are
somewhat different. This is because a number of phys-
ical factors are ignored or cannot be exactly taken into
account in the theory (the contribution of remote bands,
the interface contribution to the SO interaction (see
below), the deviation of the real surface potential and
the Landau level shape from the calculated ones, etc.).
The adjustable phase correction was introduced for
convenience for the comparison of the temperature evo-
lution in the measured and calculated oscillations. Its
magnitude was chosen to fit the high-field node posi-

Ac
– Ac

+
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tion of the beat pattern at T = 4.2 K. None of the phys-
ically meaningful results that we discuss are affected by
the choice of this factor.

The oscillations calculated with this correction and
their Fourier transforms are plotted in Fig. 2. The agree-
ment is quite good with respect to the structure of oscil-
lations and the amplitudes. However, a distinguishable
difference in the “number” of oscillations between beat
nodes for the measured and calculated plots is
observed. These results, as well as similar data on the
dC/dVg(Vg) oscillations, testify to a small (but distin-
guishable) underestimation of the SO splitting by the-
ory. (We note that in the high-Ns range, the analysis
based on the Fourier spectra does not give a clearly
detectable discrepancy between experiment and the-
ory.) This inconsistency with theory can be caused by
the interface contribution to the SO splitting [16],
which cannot be treated in the framework of the effec-
tive mass method.

According to the experiment, the individual spin
components are not exhibited in simulated C(B) or
dC/dVg(Vg) oscillations even for the lowest LLs at any
reasonable broadening parameters, magnetic fields of
experimental interest, and temperatures. A decrease of
magnetization with increasing temperature results in a
slight energy shift of the calculated spin sublevels.
However, the position of the resulting oscillations on
the magnetic field is almost unchanged (see Fig. 5b),
except for the oscillations near the beat nodes (as
occurs experimentally). The calculated rate of the tem-
perature shift of beat nodes with the temperature
depends on Ni and the node number. At the same time,
the value of TN extracted from the fit of the temperature
evolution of the oscillations is almost the same for dif-
ferent nodes and different Ni. The simulation results are
not critically dependent on the exact value of TN cho-
sen. However, the “best fitting” value TN = (10 ± 1.5) K
must be a reasonably good estimate.

Unfortunately, as far as we know, the low-tempera-
ture data on the TN value for bulk HgMnTe with x =
0.04 are absent. Most of the literature data are obtained
either for high temperatures or for samples with the Mn
content x ≤ 0.025. However, the value TN = 10 K does
not contradict other published data. If the sample-inde-
pendence of the spin-spin interaction is postulated, TN

is nearly proportional to x(1 – x)18 [22]. Using the low-
temperature data in [22] for a sample with x = 0.01
(TN = 2.9 K at T = 2 K), we can estimate the value of TN

for samples with x = 0.04 as TN ≈ 8 K. This is somewhat
smaller than the measured value, but TN can also be
temperature dependent [33]. For example, for the same
sample with x = 0.01, TN is equal to 7 K in the high-
temperature range [22]. It must be noted that the above
estimates are based on assumptions (including the phe-
nomenological expression itself, Eq. (2)) that can be
violated for x > 0.02 and for low temperatures.
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We now turn to the dependence of the observed
exchange effects on the value of the exchange parame-
ters. As mentioned above, the exchange interaction is
very weakly manifested in the studied system, showing
itself as only a slight temperature shift of beat nodes.
Because the oscillation amplitudes are small in the
neighborhood of nodes even at T = 4.2 K and because
they decrease drastically with the temperature, the nar-
row range of T < 10–15 K is accessible to the quantita-
tive analysis. Thus, the results are not critically sensi-
tive to the choice of Nβ' and Nα'. Because the shift rate
depends on the product of the exchange parameters Nβ'
and Nα' and the magnetization 〈Sz〉 , the variations in
Nβ' and Nα' can be cancelled by the variation in TN,
which is used as an adjustable parameter.

Only the shift of beat nodes to low LL numbers is
observed at low temperatures with decreasing Nβ' (the
shift is slightly sensitive to the variations of Nα' in the
–(0.25–0.5) eV range). As a result, the rate of the tem-
perature shift of nodes decreases and becomes less than
the one calculated at Nβ' = 1.5 eV. However, at Nβ' >
0.75 eV, this decrease can be cancelled by a decrease in
TN. For Nβ' = 1.0 eV and Nα' = –0.4 eV, the shifts coin-
cide with those found for Nβ' = 1.5 eV and Nα' = –0.4 eV
if the value TN = 4 K is chosen. In both cases, the oscil-
lations are practically the same at all B (including the
ranges near the beat nodes) and T. However, the value
TN = 4 K seems to be too small for x = 0.04.

At the same time, the experimental results cannot be
described at Nβ' < 0.7 eV. The measured shift rate is
nearly twice as large as that calculated at Nβ' = 0.6 eV
and Nα' = –0.4 eV (the values given in [30]) even if
TN = 0 is chosen. Although the exchange effects in the
studied systems with a strong interband mixing are sup-
pressed by the SO splitting, this discrepancy is beyond
the limits of experimental error. It is easy to verify that
the experimental data (the energy position of LLs and
its temperature shift) presented in [28, 29] for bulk
HgMnTe with small |Eg| also cannot be explained at
Nβ' < 1.0–1.2 eV even for TN = 0. As already noted, the
value of Nβ' reported in works on gapless HgMnTe falls
typically within 0.9–1.6 eV.

The terms in Eq. (3) containing parameter β play the
dominant role at the conditions corresponding to a typ-
ical experimental situation. On the other hand, the
results are only slightly sensitive to reasonable varia-
tions of α even in the inversion layers on HgMnTe with
Eg > 0. It must be stressed that at the energies E ~ |Eg|
or higher, the terms involving β must also give the lead-
ing contribution in the bulk of DMSs with Eg > 0. As a
rule, however, the electrons with energy near the band
bottom are tested in the investigation of bulk properties.
At the same time, in the surface quantum wells on nar-
row-gap semiconductors, the typical electron energies
are of the order of or even considerably larger than |Eg|.
In this work, the band bending ranges up to 450 meV
(this value corresponds to Ns ≈ 4 × 1012 cm–2). The above
SICS      Vol. 92      No. 1      2001
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analyses of the experimental data revealed that the bulk
values of the exchange coupling constants obtained at
low-energy experiments are workable even at these
high energies.

As a related issue, we note that the decrease of |Nα'|
in a wide-gap CdMnTe-CdMgMnTe quantum well with
the increase of energy is reported in a recent paper [31].
The effect is attributed to the admixing of Γ8 band states
to the Γ6 band at finite k-vectors, which leads to switch-
ing on a kinetic exchange of the Γ6 band electrons with
the d electrons of Mn ions. We note that in narrow-gap
semiconductors, the interband mixing described by
Kane’s Hamiltonian (1) results in a strong (and energy
dependent) contribution of the Nβ' containing terms to
the spectrum of the Γ6 band. This is true without taking
the energy dependence of the Nα' parameter into
account. As for the Γ8 band electrons, the value of the
exchange parameter Nβ' is from the outset governed
mainly by the kinetic exchange (at any k-vector). In
this case, an increase of the k-vector cannot play a crit-
ical role. The absence of an essential change in the
value of Nβ' is noted in [31, 32].

The Dingle temperatures TD determined from the
fitting are close to those in HgCdTe-based structures. In
the high-Ns range, the TD values are dictated by the sur-
face roughness scattering. The best agreement between
the experimental and calculated values of TD is
achieved at the correlation length Λ ≈ (110–120) Å and
at the average interface displacement ∆ ≈ (20–25) Å.
Using the TD values, we can estimate the electron
mobility as 0.8 × 104 cm2/V s in the i = 0 subband and
1.5 × 104 cm2/V s in the i = 1 subband for sample S1 at
Ns ~ 1012 cm–2, which is close to the value 1 × 104 cm2/V s
measured for grain boundaries in p-HgMnTe [7].

As in HgCdTe [26], somewhat larger values of TD

are detected at small surface densities Ns < 5 × 1011 cm–2.
According to [26], theoretical estimates show that no
increase in TD with the decrease of Ns within this range
can be caused by the Coulomb scattering from chargers
in the oxide. This conclusion has direct experimental
evidence in the present work. It can be seen in Fig. 1
that the charges localized in the oxide differ by a factor
of several times for different sweep cycles. If the Cou-
lomb scattering were important, the amplitudes of
oscillations corresponding to different cycles (different
Vf b) but with the same Ns (the same LL number at a
fixed magnetic field) would be different. However, the
oscillation amplitudes are the same. A possible cause
for the increase of the LL broadening at small Ni is the
intersubband scattering [34].
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Abstract—Variational calculations of the magnetization curve at zero temperature are reported for two models
of frustrated ladder spin systems with ferro- and antiferromagnetic interactions. The ground state of the models
is either ferro- or antiferromagnetic depending on model parameters. The character of the transition from the ferro-
to the antiferromagnetic state differs from that of the corresponding transition in the XXZ model and is character-
ized by the appearance of bound multimagnon states. The existence of these states is shown to result in magneti-
zation jumps at certain external field values. The region of the phase diagram where such jumps occur was deter-
mined, and the corresponding critical field values were found. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, spin-ladders have been the focus of
considerable attention from both experimental and the-
oretical physicists. These systems, which comprise
bound spin chains and are intermediate between one-
and two-dimensional systems, possess certain unique
properties [1]. For instance, in some doped ladder sys-
tems, superconductivity under compression was observed
[2]. The synthesis of new ladder systems is expected to
lead to creating high-Tc superconductors based on them.

Of special interest are the properties of ladder sys-
tems in magnetic fields. It has, for instance, been found
that, under certain conditions, a plateau can appear in
the magnetization curves of spin-ladders [3, 4]. Recent
discussions have been concerned with another possible
anomalous phenomenon, namely, the occurrence of
magnetization jumps at certain critical magnetic fields
[5]. This phenomenon is sometimes called the meta-
magnetic transition.

Magnetization is difficult to study even for compar-
atively simple spin models, because such studies
require knowledge of the dependence of energy on the
total spin. One of few models that allow this depen-
dence to be determined exactly is the one-dimensional
XXZ model [6]. For this model, the m(H) magnetization
curve (m is the mean spin value per center) is smooth;
that is, m(H) continuously varies from zero to the satu-
ration value. Including nearest-neighbor interactions
can, however, substantially change the situation and
lead to the appearance of magnetization jumps [5].

The magnetic properties of antiferromagnetic spin-
ladders have been studied in detail. More complex frus-
trated system models including both antiferromagnetic
and ferromagnetic interactions have received much less
attention. Such interactions are present in real ladder
systems. Note that the metamagnetic transition at low
temperatures was observed in CsCuCl3 [7]. The topol-
1063-7761/01/9201- $21.00 © 20146
ogy of the structure of CsCuCl3 is close to ladder, and
the compound is characterized by both ferro- and anti-
ferromagnetic interactions.

In this work, we consider two spin-ladder models
comprising two spin s = 1/2 chains with competing
ferro- and antiferromagnetic interactions. The phase
diagram of these models includes the ferromagnetic (F)
and antiferromagnetic (AF) phases. One of the models,
which corresponds to a ferromagnetic ladder system
with antiferromagnetic diagonals, is gapless in the AF
phase, whereas the other, which is a zigzag ladder sys-
tem, contains a gap in the excitation spectrum.

Generally, the m(H) magnetization curve at zero
temperature is characterized by the presence of two
critical fields, Hc1 and Hc2. At 0 < H ≤ Hc1, m(H) equals
zero, and at H ≥ Hc1, m(H) = 1 / 2. It is natural to expect
that Hc1 should be zero for the gapless model and
should equal ∆ for the model with a gap (∆ is the sin-
glet–triplet gap). So far as the upper critical field (Hc2)
is concerned, it usually equals one-magnon excitation
energy e1, that is, the single-spin-flip energy in the F
state. The m(H) dependence exhibits such a behavior
when the ε(m) energy of the ground state at a fixed
magnetization is a monotonically increasing and con-
vex function. Precisely such is the ε(m) dependence for
the XXZ model if the anisotropy parameter satisfies the
inequality –1 < γ < 1 [6]. However, if ∂2ε/∂m2 ≤ 0 at cer-
tain m values, then the m(H) magnetization curve has
jumps, and, generally, the Hc1 and Hc2 critical fields are
not determined by the ∆ and e1 values. Such an anoma-
lous m(H) behavior is characteristic of the models
under consideration at certain parameter values. As will
be shown, this is caused by the presence of bound mul-
timagnon states and ensuing phase separation.

The ε(m) dependence cannot be calculated exactly
for ladder systems. For this reason, various approxima-
tions are used, such as the mean-field method [8], per-
001 MAIK “Nauka/Interperiodica”



        

METAMAGNETIC TRANSITIONS IN FRUSTRATED SPIN-LADDERS 147

                                 
turbation theory [9], bosonization of spin models [10],
and numerical diagonalization of finite systems. In this
work, we apply the variational approach based on the
use of variational functions of the matrix-product (MP)
type. This function has been extensively employed in
calculations of one-dimensional and quasi-one-dimen-
sional spin and electronic systems [11, 12] and gives
results comparable in accuracy with those of the den-
sity matrix renormalization group (DMRG) method
[13]. The advantage of the MP approximation is the
possibility to apply it to systems containing more than
106 spins and, therefore, to virtually pass to the thermo-
dynamic limit. Note also that an MP-type function is
the exact wave function of the ground state for certain
special models of ladder systems [14–16]. Apart from
variational calculations, we used the results of the exact
diagonalization of finite systems. In a certain limiting
case, zigzag ladder systems can be reduced to the
exactly solvable XXZ model.

The material is arranged as follows. The results of
calculations of magnetization curves for two ladder
system models and the details of the approximations
that we use are described in Sections 2 and 3. A brief
discussion of the results is given in the Conclusions.

2. LADDER MODEL WITH TWO TYPES
OF INTERACTIONS

Consider a ladder system with ferromagnetic near-
est-neighbor and antiferromagnetic diagonal interac-
tions (Fig. 1). The Hamiltonian of this model in a
homogeneous magnetic field has the form

(1)

where

(2)

S1(2)n are the operators of spin s = 1/2 that refer to the
lower (upper) chain, N is the number of transverse
bonds (ladder rungs). Further, exchange integrals are
assigned the values JF= –1 and JF = J > 0.

At low J values (J ! 1), the ground state of Hamil-
tonian *0 is ferromagnetic. The exact Jc value at which
the transition from the ground ferromagnetic to the sin-
glet state occurs (the F–AF transition at zero tempera-

* *0 H Sin
z ,

n 1=

N

∑
i 1=

2

∑–=

*0 JF Sin Sin 1+⋅ 1
4
---– 

 
n 1=

N

∑
i 1=

2

∑=

+ S1nS2n
1
4
---– 

 
n 1=

N

∑

+ JAF S1n S2n 1+⋅ S2n S1n 1+⋅ 1
2
---–+ 

  ,
n 1=

N

∑
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ture) is not known. Let Jc be defined as the J value at
which the ground F state becomes unstable with
respect to the creation of one magnon. As the energy of
the one-magnon state e1(J) = Emin(Smax – 1) is given by

and as EF = E(Smax) = 0, we have Jc = 1 / 2.

The same Jc value follows from the classical
approximation. However, with respect to the creation of
two magnons, the ground ferromagnetic state is unsta-
ble already at J = 0.442. What is more, calculations of
finite systems show that Jc(n + 1) < Jc(n), where Jc(n) is
the J value at which the F state becomes unstable with
respect to the creation of n magnons. In this respect, the
model under consideration is identical to the two-
dimensional ferromagnetic model with antiferromag-
netic diagonal interactions [17]. On the other hand, the
character of the transition in the present model differs
from that of the F–AF transition in the one-dimensional
XXZ model, in which anisotropy parameter γ tends to –1
and all n-magnon energies simultaneously vanish (EF = 0)
at the transition point.

As follows from the aforesaid, the true Jc value in
model (2) corresponds to the instability of the F state
with respect to the flip of a half of all spins; that is, Jc =
Jc(N). At J = Jc, the direct transition from the ferromag-
netic to the singlet state occurs.

The observation that en < 0 at J > Jc(n) and all ei ∝
N–2  (i < n) at Jc(n) < J < Jc(n – 1) means that n magnons
form a bound state at least at J values within this interval
[in reality, the state may also be bound at J > Jc(n – 1), and
the binding energy reduces to zero at J = Jc(n). It fol-
lows that, when J  Jc, the bound state of N magnons
only “survives.” As the total number of spins in this
state equals 2N, the state is singlet (m = 0). It is also
clear that, when J  Jc, the ground state for a fixed m
value is two-phase and comprises the ferromagnetic
and singlet (bound) states. As the energy of the bound
state of a macroscopic number of magnons is propor-
tional to their number, we come to the conclusion that,
when J  Jc, the ε(m) = E0(m)/N energy per cross-
piece (m = S/2N) is a linear function of m; that is,

(3)

e1 2J– 1+( ), J 1/2,≥=

e N 2– , J 1/2,<≈

ε m( ) ε 0( ) 1 2m–( ).=

–1

J

Fig. 1. Ferromagnetic ladder with antiferromagnetic diagonals.
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When magnetic field is switched on or J tends to Jc,
magnetization experiences a jump from m = 0 to the
saturation value, m = 1/2, at H = Hc = |ε(0)|. (Note that
the spectrum of model (2) is gapless, and Hc1 = 0. We
therefore use the denotation Hc instead of Hc2 in this
section.)

The situation becomes more complex at J > Jc(n),
because the limiting number of magnons in the bound
state, nc, can be smaller than N, and the magnetization
of this state is given by mc = 1/2 – nc/2N. The ε(m)
dependence is then linear at mc < m < 1/2. In this region,
the ground state is two-phase and comprises the ferro-
magnetic phase and the phase with magnetization mc.
At H = Hc, the magnetization changes in a jump from
m = mc to the saturation value m = 1/2, and the critical
field value is given by Hc = (2J – 1) + |eb|, where eb is
the binding energy per magnon.

It should, however, be noted that bound magnon
states exist not at all J values. Calculations of finite sys-
tems (up to N = 18) show that increasing J causes a
gradual decrease in the limiting number of magnons in
JOURNAL OF EXPERIMENTAL
the bound state to n = 2. The exact solution of the two-
magnon problem gives the value J = J2 = 2.054, at
which the binding energy vanishes. At J > J2, bound
states do not exist, the ε(m) function is convex, and no
magnetization jump occurs. The critical field then
equals Hc = |e1(J)| = 2J – 1.

2.1. MP-Type Variational Function

The considerations given above are, of course, heu-
ristic in character, and their substantiation requires per-
forming calculations of the m(H) dependence. For this
purpose, we used an MP-type variational function,
which, for the model under consideration, had the form

(4)

where index n refers to the nth rung of the ladder, |0〉  =
|↓↓ …↓〉 , and A, Bλ, and C are l × l matrices.

The energy per rung equals
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--------------------------------------------------------------------------------------------------------- 3

4
---
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2
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where

and symbol  denotes the direct product of the
matrices.

The magnetization per center at N @ 1 is given by

(6)

Gλ A Bλ B λ– C,⊗+⊗=

Qλ Bλ A⊗ C B λ– ,⊗+=

Z1 1–( ) C C⊗ A A⊗ λ Bλ B λ– ,⊗
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λ 1–=

1

∑+ +=

⊗

m
1

2N
------- Sz〈 〉 2

S+〈 〉 S–〈 〉+ ,=
where

Equations (5) and (6) determine the ε(m) dependence.
The matrix elements of matrices A, Bλ, and C are vari-
ational parameters. Formally, there are 4l2 variational
parameters with respect to which variation should be
performed. In reality, one of the matrices under the Tr
sign can be selected as diagonal, and one of the ele-
ments can be fixed, which leaves 3l2 + l – 1 variational
parameters. Naturally, the accuracy of calculations with

Sz〈 〉
Tr ZλT N 1–( )

TrT
N

-----------------------------,
λ 1–=

1

∑=

S+〈 〉
Tr GλT N 1–( )
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------------------------------.
λ 1–=
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∑=
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function (4) depends on the size of the matrices. Note
that analytic calculations are only possible at l = 1,
when the matrices are numbers. For l > 1, a numerical
minimization procedure should be used.

2.2. Magnetization Curve

The critical Jc value is found from the condition

ε(m) = 0. If l = 1, Jc = (  – 1)/4 ≈ 0.411, l = 2 gives
Jc = 0.409, and with matrices for l = 4 and 6, we obtain
Jc = 0.403 and 0.4029, respectively. Generally, the dif-
ference in the results for l = 4 and 6 is very insignificant
(less than 0.1%). We therefore used 4 × 4 matrices in
our calculations.

It was found that the ground singlet state energy at
J * Jc was a linear function of J – Jc. This was evidence
that the F–AF transition in the model under consider-
ation was a first-order transition.

The m(H) magnetization curve was found by mini-
mizing the e – 2mH energy at a fixed magnetic field
value. By way of example, the m(H) dependence for
J = 0.5 is shown in Fig. 2. Note that, when H tends to zero,
the m(H) function is linear, because ε(m) ~ ε(0) ∝  m2

at m ! 1 for the model with a gapless spectrum [18].
The dependences of critical field Hc and critical magne-
tization mc on J are shown in Fig. 3. According to this
figure, Hc ∝  J – Jc, at least at small J – Jc values. Such a
dependence follows from (3), because Hc ≈ |ε(0)| ∝  J – Jc
if J  Jc.

According to our calculations, critical field Hc is
larger than the |e1| value at 1/2 < J < 2. As mentioned
above, the upper critical field coincides with this value
in models in which the ε(m) function is everywhere
convex. In the model under consideration, the condition
of convexity of the ε(m) function is violated because of
the presence of bound multimagnon states, and Hc =
(2J – 1) + |eb|. The eb energy cannot be found exactly,
and we estimated it from the e2b value equal to half the
binding energy of the two-magnon state. Clearly, the
|eb(J)| energy is larger than |e2b(J)|. It follows that the Hc(J)
estimate obtained in such a way is the lower bound esti-
mate of the critical field. Figure 3 shows that this estimate
is very close to the critical field value found in variational
calculations. It follows that the deviation of eb from e2b is
exceedingly small, at least at J > 1 / 2.

As follows from Fig. 3, the magnetization jump dis-
appears when J  2; that is, at J values close to J2 at
which bound states do not exist.

3. THE ZIGZAG MODEL

Consider a ladder model of another type with ferro-
magnetic interaction –α along chains and antiferro-
magnetic interaction J in crosspieces. In addition, there
is ferromagnetic interaction (assumed to equal –1)
along one of ladder diagonals (Fig. 4). The Hamiltonian

7
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of this model, which is also called the zigzag ladder
system model, or zigzag model, has the form

(7)
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Fig. 2. Magnetization curve of model (2) at J = 0.5.
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Fig. 3. Critical field Hc (curve 1) and critical magnetization
mc (curve 2) as functions of J in model (2). Curve 3 corre-
sponds to Hc(J) estimated from e2b.
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Fig. 4. Zigzag model.
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This model is equivalent to the one-dimensional
spin model with alternating ferro- and antiferromag-
netic nearest-spin interactions and ferromagnetic next-
nearest-spin interactions.
As distinguished from the model considered above, the
exact critical Jc(α) value for the F–AF transition in
model (7) is known [16, 19], and Jc(α) = 2α/(2α + 1).
The corresponding phase diagram (at zero temperature)
is shown in Fig. 5. The AF phase has a gap in the exci-
tation spectrum [19]. There is one more feature distin-
guishing model (7) from that considered above,
namely, all n-magnon energies en simultaneously van-
ish at J = Jc(α) [19]. In particular, when J  Jc(α) at
a fixed α value, we have

and the ground state energy equals ε(0) = εN = –(J –
Jc)/2Jc.

This model, however, differs from the one-dimen-
sional XXZ model with γ * –1 by the formation of
n-magnon bound states; the binding energies reduce to
zero at J = Jc(α). As mentioned in Section 2, the pres-

e1 J( )
J Jc–( )2

4 1 Jc–( )Jc
2

---------------------------,–=

ΑF

F

ΑF

I

III

II

0 1

0.1
1/6

J

α

2 3 4 5

1.0

3.0

5.0

3/2

Fig. 5. Phase diagram of the zigzag model. Solid curve is the
line of F–AF transitions, dashed lines are the boundaries of
the existence of bound two-magnon states. The region of
magnetization jumps is hatched.
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ence of bound states results in the appearance of linear
ε(m) dependence regions and magnetization jumps
(metamagnetic transitions). Generally, bound magnon
states exist in the AF phase not at all J and α values. The
results of the exact diagonalization of finite systems
show that, if two-magnon states are not bound, bound
states of larger numbers of magnons also do not exist.
The boundary of the phase diagram region in which
magnetization jumps should be expected is therefore
determined from the condition of the vanishing of the
two-magnon state binding energy. The exact solution to
this problem gives the boundary shown in Fig. 5. To the
right of this boundary (that is, in the AF phase outside
regions I, II, and III), bound states do not exist.

As for the model considered in Section 2, the ε(m)
and m(H) dependences were found with the use of an
MP-type variational function with a 4 × 4 matrix. The
corresponding calculations showed that the m(H) func-
tion in the region where bound states do not exist had
the form typical of an antiferromagnet with a gap in the
spectrum (Fig. 6a); that is, it was a monotonically
increasing function characterized by the presence of
two critical fields, upper Hc2 and lower Hc1. In addition,
Hc1 = ∆, where ∆ is the singlet–triplet gap, and Hc2 =
|e1|. The region of the existence of bound states is char-
acterized by m(H) dependences of two different types.
In regions II and III, the m(H) dependence has the form
schematically shown in Fig. 6b, and the Hc2 critical
field is larger than |e1|. At the boundary between these
regions, where the binding energy of two-magnon
states vanishes, we have mc = 1/2 and Hc2 = |e1|, where

By way of example, the dependences of Hc1, Hc2, and
mc on J at a fixed α = 2 value are shown in Fig. 7.

Of special interest in the phase diagram is region I
with 1/6 < α < 3/2. In this region, m(H) is a step func-
tion (Fig. 6c), and hc1 = hc2 = |ε(0)|. The m(H) depen-
dence exhibits such a behavior because ∆ > |ε(0)| in
region I, the critical field is smaller than is required for
triplet excitation, and, at fields exceeding critical, the
transition from the singlet to the ferromagnetic state

e1

1 J , α 1/2>–

2α J , α 1/2.<–



=

(‡) (b)

Hc1 H

m

0

0.5

Hc2

0.5

m

0 Hc1 HHc1

mc

0.5

m

(c)

H0 |ε(0)|

Fig. 6. Behavior of m(H) for the zigzag model (schematically) (a) in the region without bound magnon states, (b) in regions II and
III, and (c) in region I.
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occurs without the formation of states with intermedi-
ate spins. It follows that the metamagnetic transition
that occurs in region I is ideal.

These conclusions concerning the behavior of the
magnetization curve in the zigzag model follow from
variational calculations. At the same time, at J @
max(1, α), the zigzag model can be reduced to the exactly
solvable effective XXZ Hamiltonian. This reduction is per-
formed with the use of the Bose representation of a pair of
spins s = 1/2 of ladder rungs [20]. According to [20], the
S1n and S2n spin operators can be expressed in terms of four

Bose operators , , , and . The action of these
operators on the |0〉 vacuum state determines four possible
spin states of the rung, namely,

(8)

In the |αβ〉 configuration, α and β refer to the lower and
upper chains, respectively.

The Bose operators in (8) satisfy the constraint con-
dition

(9)

The S1n and S2n operators are written in terms of the
introduced Bose operators as follows [20]:

(10)

At J @ max(1, α), the singlet–triplet gap and the
lower critical field values are proportional J; we can

therefore ignore the  and  triplet states and

only retain the  singlet state and the  state
with the largest spin projection onto the field direction.
These two states correspond to pseudospin  = 1/2.
Taking into account (9), the S1n and S2n operators can be

written through the  pseudospin operators as
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Representation (11) corresponds to a perturbation
series expansion in 1/J to first-order terms [21, 22].

Using (11), let us write the Hamiltonian of the zig-
zag model at J @ max(1, α) in the form

(12)

where

(13)

The projections of the total spin of the initial model
and model (12) are related as

(14)

It follows that, in the J @ max(1, α) limit, the zigzag
model reduces to the XXZ model with exchange inte-
grals given by (13). As Jz < 0, the zz interaction in (12)
is ferromagnetic.

The properties of the XXZ model have been thor-
oughly studied, and the corresponding exact results can
be used to analyze the behavior of the zigzag model in
a magnetic field at J @ max(1, α).

Clearly, the ground state of the  Hamiltonian at

H = 0 corresponds to  = –N/2, and, for the zigzag
model, Sz = 0. The ground state energy is given by

ε(0) = –J + µ/2. The gap in the spectrum of  exci-
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Fig. 7. Critical fields and critical magnetizations for the zig-
zag model with α = 2 (Jc = 0.8); solid, dot-and-dash, and
dashed lines correspond to Hc2, Hc1, and mc, respectively. 
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tations corresponding to a single-spin flip (the singlet–
triplet gap in the initial model) equals ∆ = J – |λ|.

If

then the lowest excited states of at H = 0 are bound
states of n flipped spins, and their energies are [23, 24]

This means that the ground state energy of the zigzag
model at a fixed magnetization value is a linear function
of m,

(15)

According to (15), a magnetization jump from m =
0 to m = 1 / 2 occurs at H = |ε(0)|, and Hc1 = Hc2 = |ε(0)|.
This substantiates the conclusion of the existence of the
metamagnetic transition in region I, which was made
based on variational calculations.

At |Jz/Jxy| < 1 (that is, at 0 < α < 1/6 and α > 3/2),
the ε(m) function is convex [6]. According to [6], m(H)
increases from m = 0 at H = Hc1 = ∆ to m = 1/2 at H =
Hc2 = |e1|. The behavior of m(H) at H ≈ Hc1 and H ≈ Hc2
has the root-type singularity

(16)

It follows that, outside the 1/6 < α < 3/2 band, the
m(H) dependence has the form typical of an antiferro-
magnet with a gap in the spectrum. At the same time,
the region of the phase diagram where m(H) has jumps
(Fig. 5) extends outside this band and covers regions II
and III. At J @ 1, these regions, however, have sizes of
the order of 1/J.

4. CONCLUSIONS
We considered two models of frustrated spin-lad-

ders with ferro- and antiferromagnetic interactions.
One of them is gapless in the AF phase, whereas the
other has a gap in the spectrum of excitations. At cer-
tain model parameter values, the magnetization curves of
these models have jumps corresponding to metamagnetic
transitions. Such jumps are caused by the presence of mul-
timagnon bound states and the appearance of linear ε(m)
dependence regions. These linear regions correspond to
the two-phase state of the system. The results of the
numerical diagonalization of finite systems lead us to con-
clude that the boundaries of the phase diagram regions in
which magnetization jumps occur are determined by the
condition of the disappearance of two-magnon bound
states. This conclusion is substantiated by variational cal-
culations of magnetization curves.

Jz/Jxy 1 1/6 α 3/2< <( ),>

*̃eff

En J– µ
2
---+ 

  N n–( ).=

ε m( ) J– µ
2
--- 2 J

µ
2
---– H– 

  m.+ +=

m
1

2π
------ 2

λ
------ H Hc1–( ),=

1
2
--- m–

1
2π
------ 2

λ
------ Hc2 H–( ).=
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It is reasonable to expect that such transitions can
occur in a two-dimensional ferromagnet with antiferro-
magnetic interaction between next neighbor spins.
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Abstract—Interaction of the spins of 2D electrons with an alternating electric field in the plane of the system
is considered. It is assumed that the double spin degeneracy is eliminated by the spin-orbit splitting. It is shown
that transitions between different spin states produce a narrow absorption band in the degenerate electron gas.
In the frequency domain corresponding to these transitions, those frequencies are combined with two-dimen-
sional plasmons; as a result, the plasmon spectrum is modified, and a new type of oscillations occurs, namely,
a spin-plasmon polariton. The dispersion law of these oscillations is derived. The problem of the excitation of
spin-plasmon polaritons by an external electromagnetic field is solved. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, the investigation of spin effects in low-
dimensional systems has come to the attention of
researchers. This is mainly due to the possible application
of the spin degree of freedom for creating quantum bits. It
is preferable to control the spin subsystem by means of an
electric field, since the magnetic field required for this
purpose must be rather large, and large fields cannot be
varied quickly. Another advantage of the electric con-
trol is a high degree of spatial selectivity.

An electric field can affect the spin degree of free-
dom by means of the spin-orbit interaction. For exam-
ple, it was shown in [1] that a direct current induced by
a static electric field lying in the plane of the system
results in the spin polarization of the electrons in the
two-dimensional system. In the case of alternating
fields, resonance effects occur, and the relatively small
spin-orbit interaction can become substantial. It is well
known (see [2]) that an alternating electric field can
cause transitions between spin sublevels; this phenom-
enon is called combined resonance. The combined res-
onance for the one-electron problem in the presence of
a magnetic field was considered in [2, 3]. It is clear that
similar effects can manifest themselves in the collective
oscillations of the electron plasma.

The purpose of this study is to analyze the effect of
an alternating electric field on a two-dimensional Fermi
gas with account for the spin-orbit interaction. In the
absence of the magnetic field, a narrow peak occurs in
the absorption spectrum caused by transitions between
spin-orbit split subbands in the vicinity of the spin split-
ting of the Fermi surface. The interaction of such a tran-
sition with two-dimensional plasmons induces mixed
spin-plasmon waves. The spectrum of these oscillations
1063-7761/01/9201- $21.00 © 20153
is found and the possibility of exciting them is consid-
ered.

2. DYNAMIC CONDUCTANCE 
IN THE COLLISION-FREE APPROXIMATION

It is well known that the spin-orbit interaction of 2D
electrons on an oriented surface can be described in
terms of the Hamiltonian proposed in [3, 4]:

(1)

Here p = (px , py) is the two-dimensional momentum of
the electron, axis z is directed perpendicular to the sys-
tem’s plane, α is the spin-orbit interaction constant, and
σi are the Pauli matrices; here and in what follows, we
assume that " = 1.

Hamiltonian (1) yields the energy spectrum

(2)

where µ = ±1 labels two branches of the spin split spec-
trum of the two-dimensional electron gas. The splitting of
the branches is usually not large and amounts to ~10–2 of
the Fermi energy. The wave functions can be written as

(3)

where ϕp is the azimuth angle of vector p and S is the
area of the system.

Resonance transitions between spin-orbit split sub-
bands in the degenerate two-dimensional gas occur in
the vicinity of the spin splitting frequency of the Fermi
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surface ω0 = 2|α|pF (where pF is the Fermi momentum).
The Kubo formula [5] for the tensor of the dynamic
conductivity is written as

(4)

Here T is temperature, G0 = e2/π is the conductance

quantum,  is the complete Hamiltonian of the sys-
tem, f(ε) = 1/(1 + exp(ε – ζ)/T) is the Fermi function
(ζ is the chemical potential), δ  +0,  is the elec-
tron velocity operator in the Heisenberg representation,
and ω is the frequency of the electric field; here and in
what follows, " = 1. Angular brackets denote averaging
over impurities.

In the collision-free limit, we obtain from (4) that

(5)

Here  = –µ and fµp ≡ f(εµ(p)). The infinitely small
switching rate of the field δ can be considered as the
phenomenological reciprocal relaxation time.

Using the wave functions (3), we can easily find the
matrix elements of the velocity operator as

(6)

In what follows, we assume that the electron gas is
degenerate in the sense that the temperature is small as
compared to the Fermi energy εF. At the same time, the
temperature can be comparable with the splitting
between spin subbands.

Substituting (2) and (6) in (5), we obtain σij(ω) =
δijσ(ω)

(7)

(8)
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Here n is the density of the 2D electrons. Magnitude σD

is the contribution to conductivity due to the diagonal
(in µ) matrix elements of the velocity. We included this
contribution in the principal order with respect to the
parameter (α/vF)2 (vF is the Fermi velocity) in which it
coincides with the Drude conductivity. Magnitude σs is
determined by transitions between spin subbands.

We are interested in the domain of frequencies close
to ω0 (|ω – ω0 | ! ω0). In this domain, formula (8) for σs

can be simplified as

(9)

where Θ = T/(αpF) is the dimensionless temperature
and η = (ω – ω0)/(2mα2) is the detuning from the center
of the spin absorption band. The symbol  denotes the
principal part of the integral.

For low temperatures Θ ! 1, we obtain from (9) that

(10)

For T = 0, Re(σ(ω)) is a step function of frequency,
which is not zero for ω0 – 2mα2 < ω < ω0 + 2mα2. This
is a result of the energy conservation law under vertical
transitions between spin subbands (see Fig. 1). The
imaginary part of the conductivity has logarithmic sin-
gularities at the endpoints of this interval. The low tem-
perature limit is obtained for the temperature less than
that of the splitting of the subbands in the vicinity of the
Fermi momentum 2|α|pF. At large temperatures, the
peak of absorption due to spin transitions is smeared by
the magnitude 2Tmα/pF .

3. SPECTRUM OF THE PLASMON

We consider the problem of oscillations of the two-
dimensional electron gas with allowing for transitions
between spin subbands; however, we neglect the dis-
placement currents.

To determine the spectrum of the oscillations, one
must solve the system of the continuity equation  + ∇ j =
0 for the surface charge density ρ and the current j, the
Poisson equation ∆φ = –4πρδ(z) for the potential, and
the constitutive equation j = –σ∇φ .
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After the Fourier transform in the pattern plane, the
dispersion equation for the plasmon is written as

(11)

Here q is the wave vector and κ is the static dielectric
constant. If the 2D system is located between two
dielectrics with constants κ1 and κ2, then κ = (κ1 +
κ2)/2. For the configuration of the type metal–dielec-
tric–semiconductor [6], we have

(12)

where d is the distance between the two-dimensional
electrons and the gate electrode. Thus, the dependence
of the conductivity on frequency implicitly determines
the spectrum of the spin-plasmons ω(k).

In the collision-free limit and the zero temperature,
the spectrum in the absence of the gate electrode is
determined by the equation

(13)

where k = qπG0/(κmα2) is a dimensionless wave vector
and λ = |α|/vF is a parameter. In the absence of the spin-
orbit interaction (λ = 0), (13) yields the well-known
root spectrum of the plasmon [7] (see also survey [8]
and references therein). Nondamping plasma waves
exist for η > 1 and η < –1, which corresponds to the fre-
quencies ω < 2αpF – 2mα2 and ω > 2αpF + 2mα2 (see
Fig. 2). Within the frequencies 2αpF – 2mα2 < ω <
2αpF + 2mα2, the damping of the plasmon occurs due
to the collision-free transfer of the energy into spin
excitation.

For the same limit case, Eq. (13) can be further sim-
plified in the domain of the wave interaction η ! 1/λ by
introducing the dimensionless variable ξ = (k – 4)/8λ:

(14)

Equation (14) shows that the domain of characteristic
frequencies and momenta in which the plasmon spec-
trum is modified are determined (in the order of magni-
tude) by the domain of the intersection of the plasmon
dispersion and the domain of spin transitions; they are
|ω – 2αpF | ~ 2mα2 and (k – 4) ~ 8λ, respectively (see
the inset in Fig. 2).

4. QUANTUM KINETIC EQUATION
We have already derived a formula for high-fre-

quency conductivity for the collision-free case.
Although magnitude δ can be considered as a phenom-
enological damping, the following question remains
open taking into account the fact that both the transla-
tional and spin degrees of freedom are involved: which

2πiσ ω( )q
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relaxation time must be used as δ? To answer this ques-
tion, one must solve the kinetic problem with account
of the collisions of electrons; we consider this problem
for the case of impurity scattering.

The electron kinetics is described by the single-par-
ticle density matrix , which is diagonal in the
momentum p and nondiagonal in the spin variable. The

ρ̂ p( )

p

εp, µ

εF

Fig. 1. The scheme of transitions between spin subbands.
The arrows correspond to transitions with threshold fre-
quencies of 2(|αpF | ± mα2).
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Fig. 2. The spectrum of spin-plasmons in the absence of
wave damping for λ = 0.0259 corresponding to the hetero-
structure InAs/GaSb with the concentration 7.5 × 1011 cm–2

of carriers (2mα2 = 0.117 meV). Outside the domain of the
intersection with the spin transitions, the spectrum is

described by the function ω ~ . The inset shows the
domain of the transition interaction in more detail. The dot-
ted lines mark the boundary frequencies for spin transitions.
Away from the interaction domain, the branches exponen-
tially approach the dotted lines.

k
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quantum kinetic equation linearized with respect to the
external electric field is written as

(15)

Here  is the field term, and St( ) is the collision term.
We write Eq. (15) in the basis of the eigenstates of the
Rashba Hamiltonian as

(16)

where the field and collision terms are written as

(17)

(18)

Here Mpµ'; p'µ is the matrix element corresponding to
the interaction with the impurity center and Ni is the
number of impurities. For µ' = µ, the definition of the
fraction in (17) must be understood as f '(εµ(p)), where
f '(ε) = ∂f(ε)/∂ε. Equation (16) with the collision term (18)
was derived in [9, 10] for the general form of the energy
spectrum of the electron by using the Konstantinov–
Perel’ diagram technique [9]. For spin-orbit split bands,
a similar equation without the collision term was given
in [11] (however, with the interband optic generation
matrix). The field term linearized in α was presented
in [1].

It is convenient to use a fixed basis of states (inde-
pendent of the direction of p). For the field term F, we
have

(19)

where ε = p2/2m. Since parameter λ is assumed to be
small, we can confine ourselves to spin-conserving
scattering. Then, the collision integral can be written as

(20)

Here Vp' – p is the Fourier component of the impurity
potential (we neglected the spin-orbit corrections to the
Hamiltonian of the interaction with impurities).

We are interested in the response to the alternating
electric field E(t) = Re(Eωe–iωt). Using the fact that the
identity matrix I and s form a complete basis in the
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space of the second-order matrices, we seek the solu-
tion to Eq. (15) as

(21)

For Aω(p), we have

(22)

Here Ω = |W| = |α|p, 1/τ1ω = 1/τ1 – iω, and f±(ε) ≡
f(ε + Ω) ± f(ε – Ω). Here and in what follows, τn is the
relaxation time of the nth angular moment of the distri-
bution function (τ1 is the conventional transport relax-
ation time for the momentum) determined as

(23)

where φ is the angle between p and p'.
The quantity Bω(p) satisfies the equation

(24)

The solution to Eq. (24) is decomposed into the sum
of three terms corresponding to the angular harmonics
with respect to the momentum:

(25)

Separating the angular harmonics out, we obtain a sys-
tem of algebraic equations for Bi(ε):
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The dynamic conductivity can be expressed in terms
of Aω(p) and B0(ε) as

(27)

The quantity B0(ε) in (27) can be determined from sys-
tem (26) as

(28)

The first term in (27) (in the principal order in λ) coin-
cides with the conventional Drude–Lorentz formula (7)
σD = ne2τ1(1 – iωτ1)–1m–1 for a finite δ = 1/τ1.

In order for a plasmon to be weakly damping in the
vicinity of the resonance ω ~ ω0, the inequality Ωτ1 @ 1
must be satisfied. This makes it possible to simplify the
expression for σs and write it as

(29)

Here,  is the collision broadening
of the spin transitions.

From Eq. (29) in the collision-free limit, we obtain
(9) and, for low temperature Ω ! 1,

(30)

The order of the magnitude of τs is the same as that of
τ1, which determines the mobility. In particular, for the
scattering by neutral impurities, we have τs = (4/3)τ1;
for charged unscreened impurities in the plane of the
2D electrons, τs = τ1; and for the small-angle scattering
by charged impurities placed far away from the two-
dimensional layer (a thick spacer), τs = (2/3)τ1.

5. EXCITATION OF PLASMONS

It is well known that the plasmon spectrum can be
observed by the absorption of the electromagnetic wave
incident onto the two-dimensional system. Since the
wavelength of the corresponding frequencies in a vac-
uum is large, the electric field of the wave is spatially
modulated by means of a grating structure [12] (see
also survey [8] and references therein). The density of
the power absorbed by a two-dimensional system is
determined by the Fourier harmonics of the electro-
magnetic field E(q, z = 0) in the plane of the system.
For a one-dimensional grating with grooves oriented
along axis y with period d, we have qn = (0, 2πn/d).
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These harmonics are linearly related to the zero har-
monic of the field E(q = 0, z = 0) by the coefficients cq
determined only by the grating:

E(q, z = 0) = E(q = 0, z = 0)cq. (31)

According to [8], the absorbed power can be written as

(32)

The effective conductivity σeff(ω) is determined by the
Fourier coefficients of the field and by the partial effec-
tive conductivity σ(q, ω)

(33)

where

(34)

Zeros of the denominator in (34) determine the spec-
trum of the oscillations ω(q).

Figure 3 illustrates the dependence of the absorption
coefficient on frequency for various values of the wave
vector. We use the parameters of the heterostructure
InAs/GaSb m = 0.055m0 and α = 9 × 10–10 eV cm [13]
with the electron mobility µ = 106 cm2/V s (Fig. 3a) and
µ = 3 × 106 cm2/V s (Fig. 3b) and the concentration n =
7.5 × 1011 cm–2. It is seen from the figure that there are
two main absorption peaks—a narrow plasma one and
a wide spin one; moreover, if the resonances are spaced
in terms of frequency, then the spin resonance becomes
much weaker (by several orders of magnitude) than the
plasma one. The maximum of the absorption in terms
of frequency “follows” the spectrum of the spin-plas-
mon ω(q) as k varies. For convenience, Fig. 3 presents
only the plots for those k for which the plasma reso-
nance lies to the left or in the domain of the spin transi-
tions (if the wave vector determined by the grating
structure is greater than kc = 4, then the plasmon peaks
lie symmetrically to the right of the domain of spin-flip
transitions).

As the domain of the spin transitions is approached,
the plasma resonance substantially decreases, while the
spin one increases. The transfer of the force of oscilla-
tors occurs due to the shielding of the external field by
the polarization of the medium caused by the spin tran-
sitions. When the resonance frequency falls in the
domain of spin transitions, the narrow plasma reso-
nance presses itself against the boundary of this domain
in accordance with the spectrum of the spin-plasmon
resonance in the collision-free limit (Fig. 2).

For the parameters of the heterostructure
InAs/GaSb indicated above, "ω0 = 3.91 meV (ω0 =
5.94 × 1012 s–1) and qc = 2.44 × 104 cm–1 (the corre-
sponding period of the grating structure is a = 2.57 µm).

W
1
2
--- Ex q 0= z 0=,( ) 2Re σeff ω( )( ).=

σeff ω( ) σ q ω,( ) cq
2,

q

∑=

σ q ω,( ) σ ω( ) 1 2πiqσ ω( )
ωκ

------------------------+ 
  1–

.=
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We note that the substantial increase of the absorption
coefficient on the spin transitions in the vicinity of the
resonance with the plasma oscillations makes it easier
to observe this phenomenon experimentally.

(a)

Re(σeff)/G0

103

102

101

100

10–1

(b)103

102

101

100

10–1

30 32 34 36 38
ω/2mα2

Fig. 3. The dependence of the absorption coefficient on fre-
quency in the domain of the spin-plasmon resonance for the
same system as in Fig. 2. The dimensionless wave vector
runs through the values k = 3.2, 3.4, 3.6, 3.8, 4, and 4.2.
These values correspond to the motion of the principal absorp-
tion maximum from left to right; panels (a) and (b) correspond
to the mobility µ = 106 cm2/V s and µ = 3 × 106 cm2/V s,
respectively.
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Abstract—Linear and nonlinear dynamic response to the penetration of very weak magnetic fields (of the order
of 10–2 Oe) into polycrystalline superconductors are studied theoretically and experimentally. The results of
experiments are found to be in satisfactory agreement with the conclusions of the low-field electrodynamics.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that magnetic fields weaker than the
lower critical field do not penetrate in superconductors.
However, this statement becomes incorrect if the super-
conductor is a multiply connected system, e.g., a poly-
crystal in which crystallites are connected through
Josephson junctions. Since Josephson junctions can be
easily pierced by very weak magnetic fields, such fields
will penetrate into polycrystalline superconductors also.
A similar situation is observed in ceramic HTSC in
which granules are connected through weak Josephson
junctions. In this case, a wide range of irreversible and
nonlinear effects is observed experimentally, which can
be explained in the frames of low-field electrodynamics
[1, 2]. However, to our knowledge, the penetration of
very weak magnetic fields into polycrystalline super-
conductors has not been investigated as yet.

The present work is devoted to an analysis of the
penetration of ultraweak magnetic fields into supercon-
ducting polycrystalline samples of SnMo6S8 and
PbMo6S8. This choice was dictated by a very large
value of Hc2, and accordingly, very small coherence
length ξ ≈ 23 Å for molybdenum chalcogenides. This
makes these materials similar to HTSC for which ξ is
of the order of a few Ångströms. Hence, we can expect
that any (even small) defect will play the role of a
Josephson junction for such values of ξ. The results of
our experiments prove, first, that very weak magnetic
fields of the order of a few millioersteds indeed pene-
trate into such a superconductor, and second, that the
obtained experimental results are in accord with the
predictions of low-field electrodynamics.

2. THEORY

It should be recalled that low-field electrodynamics
was formulated initially for granular HTSC materials
and is based on the following two assumptions.
1063-7761/01/9201- $21.00 © 20159
1. Bean’s model of the critical state [3] is applicable
to ceramic superconductors. It is well known that the
critical state of a superconductor is strongly nonequi-
librium and can be described by a spatially inhomoge-
neous magnetic induction B(r). The latter is defined by
the equation of the critical state which contains, among
other things, the dependence of the equilibrium mag-
netic induction on the magnetic field strength Beq(H) ≈
µeffH (µeff is the effective permeability of the ceramic
material, taking into account the impermeability of
granules to the field). Consequently, the problem boils
down to the definition of the nonuniform field H(r) for
which the equation of critical state has the form [3–5]

(1)

where jc(H) = α(H)/H. The average induction for an
infinitely large slab of thickness d is given by

In Eq. (1), α(H) is the pinning force and jc(H) has
the meaning of the critical current density and is a phe-
nomenological function of H.

It should be noted that there exist several models
leading to different dependences jc(H). For instance,
our experiments with various YBaCuO ceramic sam-
ples [2, 6] revealed that

(2)

Here H0 is a certain characteristic field, approximately
equal to 3 Oe.

The case when H0  ∞ leads to Bean’s model [3]
in which jc is independent of H. The case H0 = 0 and
j0H0 = const in the first formula of (2) corresponds to

dH
dx
------- 4πjc H( ),=

B
2
d
---µeff H x( ) x.d

0

/2d

∫=

jc H( )
j0H0

h H0+
------------------, jc H( )

j0H0
2

h2 H0
2+

------------------.= =
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the Kim–Anderson model [5] in which the pinning
force α(H) does not depend on H. Generally speaking,
there is no theoretically substantiated choice of the
function jc(H).

2. A Josephson medium can exhibit two qualita-
tively different patterns of magnetic field penetration,
whose realization is determined by the dimensionless
parameter β (which will be defined below) characteriz-
ing the number of magnetic flux quanta per elementary
loop formed by adjacent granules. When β ! 1, a gran-
ular superconductor behaves as a classical type II
superconductor in which the field penetrates in the
form of vortices, and anisotropy induced by the field
becomes an important factor. It was shown in a previ-
ous publication by one of the authors [7] that in the
other limiting case, when β @ 1, the discreetness of the
Josephson medium, which is now described by equa-
tions equivalent to those for systems with self-orga-
nized critical state [8], becomes significant.

An approach that can be used to distinguish unam-
biguously between these two limiting cases and com-
pletely different physical patterns corresponding to
them was considered in [9].

This approach is directly connected with a very
important though sparsely studied problem of longitu-
dinal currents in hard type II superconductors. The
essence of the problem can be briefly formulated as fol-
lows. It is well known [10] that in the presence of uncut
vortices and pinning, the critical current jc||, which is
longitudinal relative to the magnetic field, is equal to
infinity (in fact, it is equal to the depairing current),
while the longitudinal electric field E|| is always equal
to zero. However, experiments [11–16] proved that jc||
and jc⊥  (jc⊥  is the transverse critical current density) are
of the same order of magnitude, and E|| differs from
zero. In order to explain these phenomena, a model of
flux-line cutting was proposed [17–20] (the macro-
scopic theory of flux-line cutting was formulated in
[21–27]). According to this model, nonparallel external
magnetic fields penetrate a superconductor through
mutual cutting of the flux lines formed by these fields,
followed by their cross restoration. As a result, finite jc||
and E|| are formed. In such a case, the local current–
voltage characteristic (IVC) connecting the electric
field E and the current density j is strongly anisotropic
relative to the magnetic induction vector B. All that has
been said above is also applicable to a Josephson
medium for β !1.

On the other hand, if β @ 1, the local IVC does not
depend on the angle between the current and the mag-
netic field and is isotropic (see [9]). Thus, if we can
establish experimentally whether or not the IVC is iso-
tropic, we can distinguish between the continual (β ! 1)
and discrete (β @ 1) cases.
JOURNAL OF EXPERIMENTAL 
2.1. Continual Approximation 
in the Theory of Josephson Medium

In this subsection, we will show how parameter β
appears and derive an expression for the IVC in the
flux-line cutting model for β ! 1.

If a granule has a phase ϕ, the current between the
ith and jth granules is given by

(3)

where Jij is the overlap integral and A is the vector
potential.

We assume that |ϕi – ϕj | ! 1 and |eAij | ! 1. Putting

(4)

and neglecting fluctuations, we arrive at the Londons
equation

(5)

The solution of Maxwell’s equations

(6)

and Londons equation (5) taking into account the fact
that the induction B for an effective medium is con-
nected with H through the simple relation

B = µeffH (7)

leads to the conventional Meissner effect with the
effective penetration depth

(8)

where a is the characteristic size of granules and Φ0 is
the magnetic flux quantum.

The obtained expression holds for λeff @ a. Hence,
we can easily obtain the following expression for the
dimensionless parameter β:

(9)

Parameter β is very important since it characterizes
the number of flux quanta per elementary loop formed

jij 4eJij ϕ i ϕ j– 2eAij+( ),sin–=

Aij A l,d

ri

r j

∫=

ϕ i ϕ j– ∇ ϕ l, Jijd

ri

r j

∫– Ja2,= =

j r( )
4e
a

------J ∇ ϕ 2eA–( ).=

∂B
∂t
------- curl E, 4πj– curl H= =

λ eff
2 a

32πJe2µeff
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Φ0

8π2aµeff jc

-------------------------,= =

jc
4e

a2
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π
e
---,= =
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3

a2
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Φ0

8π2µeff jca
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by adjacent granules. For β ! 1 (λeff @ a), this means
that each flux line embraces many granules, and such a
medium can be regarded as a conventional type II
superconductor. Naturally, the theory of flux-line cut-
ting is applicable in this case. For β @ 1, however,
λeff ! a, and the theory presented above obviously
becomes inapplicable. (For the sake of simplicity, we
will henceforth assume that µeff = 1.)

In the electrodynamics of continuous media, a
description of electromagnetic field propagation
requires, in addition to two Maxwell’s equations (6), an
explicit expression for E(j, B). Following [21–27], we
will write the expression for the IVC taking into
account the pinning and flux-line cutting model. In this
model, the system is strongly anisotropic, and the local
IVC splits into two individual equations for longitudi-
nal and transverse (relative to B) components of the
current and electric field. We put

(10)

Since we have only one preferred direction (j⊥ ) in a
plane perpendicular to B, the IVC in the flux-line cut-
ting model has the form

(11)

Here, ρ||, ⊥  are the longitudinal and transverse resistivi-
ties in the supercritical (j||, ⊥  > jc||, ⊥ ) state and sgn x is the
signum function.

Using (10) and (11), we obtain the final expression
for the IVC:

(12)

Maxwell’s equations (6) and the IVC (12) form a
complete system of equations. It should be noted that
ρ||, ⊥  and j||, ⊥  are generally functions of the modulus of B.

2.2. Equations of Critical State for the Flux-Line 
Cutting Model in Planar Geometry

Since we used samples in the form of a thin disk in
our experiments, the subsequent analysis will be car-
ried out in the planar geometry.

Let us consider an infinitely large slab in the yz
plane, having a thickness d along the x-axis. If the

n
B
B
----, E|| E n, E⊥⋅ n E n×[ ] ,×= = =

j|| j n, j⊥⋅ n j n×[ ] ,×= =

E nE|| E⊥ , j+ n j|| j⊥ .+= =

E|| 0, j|| jc||,<=

E|| ρ|| j|| jc|| j||sgn–( ), j|| jc||,>=

E⊥ E⊥
j⊥

j⊥
-----, j⊥ j⊥ ,= =

E⊥ 0, j⊥ jc⊥ ,<=

E⊥ ρ⊥ j⊥ jc⊥–( ), j⊥ jc⊥ .>=

E nE|| j||( )
j⊥

j⊥
-----E⊥ j⊥( ).+=
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external field H is parallel to the yz plane, the quantities
B, E, and j also lie in this plane and depend only on x.
In this geometry, Maxwell’s equations have the form

(13)

We now introduce the unit vectors n(x) and m(x),
which are parallel and perpendicular to vector B(x):

(14)

where α is the angle between B and the z axis. We
define E||, E⊥ , j||, and j⊥  as

E = E||n + E⊥ m, j = j||n + j⊥ m. (15)

In the planar geometry, E⊥  and j⊥  become scalars. It
is convenient to write Eqs. (13) in terms of B, α, E⊥, ||,
and j⊥, ||:

(16)

It can be seen from these equations that the longitu-
dinal current determines the change in the direction of
B, while the transverse current determined the change
in its magnitude.

Equations (11) for the IVC in the flux-line cutting
model in this case assume the form

(17)

It is often more convenient to use the dependence
j(E) rather than E(j). In this case, using the fact that
σ⊥ , || = 1/ρ⊥ , ||, we obtain

(18)

If the external field varies quite slowly, it can be
seen from Eqs. (16) that |E||| and |E⊥ | tend to zero, and
we can assume that j|| and j⊥  are close to their critical
values. This gives

j|| = jc||sgnE||, j⊥  = jc⊥ sgnE⊥ , (19)

which are equations of critical state for longitudinal
and transverse currents defined for E||, ⊥   0. If the
magnetic field variation ceases, the value of E vanishes,
but the currents do not vanish and are given by

j|| = ±jc||, j⊥  = ± jc⊥ , (20)

∂B
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-------, 4πj× ex
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∂α
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∂E⊥
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---------,–=

B
∂α
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E|| ρ|| j|| jc|| j||sgn–( ), j|| jc||,>=
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j|| jc|| E||sgn σ||E||.+=
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the plus or minus sign depending on the sign possessed
by E⊥, || before vanishing. It is this two-valuedness of
the current that is responsible for the hysteresis of the
critical state.

Thus, Eqs. (20) are generalizations of the conven-
tional equations for the critical state in the case of pin-
ning and flux-line cutting model, when both longitudi-
nal and transverse critical currents are present.

2.3. Equations of Critical State for β @ 1. 
Model of Isotropic Local IVC

The physical meaning of the condition β @ 1 is that
several magnetic flux quanta are embraced by an ele-
mentary loop (β ~ Φ/Φ0). It was proved earlier [7] that
the local IVC in this case does not depend on the angle
between j and B. We considered in [7] the model with
a cubic symmetry, and hence the local IVC also pos-
sessed the same symmetry. Naturally, ceramics do not
possess a cubic symmetry and must have a spherical
symmetry. We will assume that the local IVC in this
case can be presented in the form

E = E(j) ,

(21)

In other words, we have

(22)

A local IVC in the form (21) or (22) will be referred
to as an isotropic IVC. In this case, the equation of the
critical state for small E has the form

(23)

Note that this is the same model as that proposed by
Bean [28], but in a different language.

The expressions for IVC in the isotropic model and
in the flux-line cutting model differ radically. First, an
isotropic IVC does not depend on the angle between j
and B. Second, in Eq. (23) we have

(24)

and  and  are not fixed separately, while for the
IVC in the flux-line cutting model, these quantities
remain unchanged.

In the case of a slab, we derive from (23)

(25)

At first sight, the difference between expressions (24)
and (19) is insignificant, but actually this is not so since

j
j
---

E j( )
0, j jc,<
ρ j jc–( ), j jc.>




=

j jc
E
E
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1
ρ
---.= =

j jc
E
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----.=
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2 j⊥

2+ jc
2,= =

j||
2 j⊥

2

j|| jc

E||

E||
2 E⊥

2+
----------------------, j⊥ jc
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j|| and j⊥  are now determined not only by their “intrin-
sic” fields, E|| and E⊥ , but also by “alien” fields in con-
trast to the flux-line cutting model. In simple cases, the
solutions in the two models are very close, but in more
complex situations these solutions are completely dif-
ferent.

In the following subsections, we will consider the
penetration of a linearly polarized varying field of
amplitude h0 in the presence of a constant field H for
the anisotropic and isotropic models. In all cases, we
will assume that, first, h0 ! H, and second, the constant
field is directed strictly along the z axis, while the vary-
ing field h(t) = h0cosωt lies in the zy plane at an angle
γ to H.Thus, for x = 0, we have

H(0, t) = Hez + h(t), h0/H ! 1,

(26)

hy = h0sinγcosωt.

2.4. Linearly Polarized Varying Magnetic Field
in the Presence of a Strong Constant Field

in the Flux-Line Cutting Model 

Field Hez penetrates over a distance x0 = H/4πjc⊥ ,
while field h(t) penetrates only to a depth of the order
of h0/(4πjc1) = x1 ! x0, where jc1 has the meaning of jc||, ⊥
in the flux-line cutting model and of jc in the isotropic
model. Obviously, for x < x1, we have

H(x, t) = Hez + h(x, t). (27)

Substituting this equation into Maxwell’s equa-
tions (16) in the planar geometry, we take into account the
IVC in the flux-line cutting model and linearize in h(x, t).
Here, we assume that jc⊥  is a function of the total field
H. Linearization in h is reduced to the choice of the lon-
gitudinal direction along the z-axis and of the trans-
verse direction along the y-axis. Generally speaking, we
must use Eqs. (16) and carry out linearization in these
equations. It can be proved, however, that the result will be
the same. Thus, we arrive at the two pairs of equations

(28)

Hz = H + hz.

h hzez hyey,+=

hz h0 γ ωt,coscos=

∂Ez

∂x
--------

∂hy

∂t
--------,=

1
4π
------

∂hy

∂x
-------- jc|| H( ) Ezsgn ,=

∂Ey

∂x
---------

∂hz

∂t
--------– ,=

1
4π
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∂hz

∂x
-------- j– c⊥ Hz( ) Eysgn ,=
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In these equations, we retain only the dependence on hz

in jc⊥ . Indeed, we can write

(29)

Thus, we are left only with hz in the first order in h,
but it can be easily proved that the term containing hz in
the expression for jc|| is insignificant and is hence omit-
ted, but it leads to the emergence of even harmonics in
jc⊥  and is therefore retained in this expression.

It can be seen that system (28) contains two pairs of
independent equations in hy and hz. This means that the
fields hy and hz penetrate into the sample independently.
The solutions of Eqs. (28) leads to the following
expressions for the induction h(t) = 〈h(x, t)〉x:

h(t) = hz(t)ez + hy(t)ey ,

(30)

a2k, y = 0,

b2k, y = 0.

It can be seen from these equations that the z and y
components oscillate independently with their jc, and

odd harmonics are proportional to cos2γ and
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sin2γ, while even harmonics differ from zero only

for the z component and are proportional to cos3γ.

2.5. Linearly Polarized Varying Field in the Presence 
of a Strong Constant Field in the Isotropic Model

As in the previous case, we assume that the varying
field is directed at an angle γ to the constant field, i.e.,
we put

(31)

Since there is no preferred direction in the constant
field in the isotropic model, the direction is specified
only by vector n0. This means that

(32)

In this case, Maxwell’s equations (13) in the planar
geometry together with (23) lead to the following equa-
tions for h and E:

(33)

Equations (33) are ordinary equations of a critical
state. A difference appears only when we expand

(H) in h and calculate even harmonics:

(34)

Thus, in this expansion we have an extra cos γ as
compared to the case when h0 and H are parallel. Ulti-
mately, we obtain

(35)
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In this case, we obtain the following expressions for
the z and y components:

(36)

Thus, it can be seen that the isotropic model
strongly differs from the flux-line cutting model, first,
in the form of the angular dependence of harmonics,
and second, in that the even harmonics a2k, y, b2k, y ,
which are equal to zero in the flux-line cutting model,
now differ from zero.

3. EXPERIMENT

The experimental part of this work was aimed at an
analysis of the applicability of the concepts of low-field
electrodynamics to polycrystalline superconductors of
the molybdenum chalcogenide type and the effect of
anisotropy induced by a constant magnetic field on the
penetration of a varying magnetic field directed at an
angle to the constant field in a superconductor. For this
purpose, we studied the dependences of higher har-
monics of induction on the amplitudes of the varying
and constant magnetic fields and on the angle formed
by these fields.

The experiments were made on polycrystalline sam-
ples of SnMo6S8 and PbMo6S8, having the shape of a
disk of diameter 9.4 mm and thickness 3.4 mm. The
sample was placed in a measuring coil that also served
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as a source of the varying magnetic field. The constant
field was produced by an external solenoid. The linear
and nonlinear responses were measured in the temper-
ature range from 4.2 K to T > Tc at frequencies varying
from 103 to 105 Hz in the field interval 10–2 ≤ h0 ≤ 1 Oe
and for H ≤ 20 Oe. We studied the field and temperature
dependences of the real and imaginary components of
linear susceptibility (χ' and χ") as well as the moduli of

the higher harmonic amplitudes cn = (  + )
1/2

(n = 2, 3, …) by using the approach which was applied
earlier for studying the low-field electrodynamics of
granular HTSC materials (see, for example, [2]).

Let us first consider the results of analysis of the
temperature and field dependences of the linear and
nonlinear susceptibilities for collinear fields (γ = 0). In
such a configuration, expressions (30) and (36) are
obviously identical. Taking into account µeff, we obtain

(37)

It should be noted that in our experiments we studied in
detail the temperature and field behavior of χ' and χ",
which are directly connected with a1 and b1, as well as
the moduli of amplitudes of the third and fifth harmon-
ics (c3 and c5). The values of a1 and b1 were determined
from the measured values of the real and imaginary
susceptibility components. Obviously, χ' = –1/4π in the
limit h0  0. Consequently, χ' can be presented as
χ'(h0) = –1/4π + (h0). This gives

(38)

It follows from the temperature dependences of the
real component of linear susceptibility (see Fig. 1) that
the superconducting transition for the samples under
investigation begins at a temperature typical of this
class of compounds (see, e.g., [29]). The same figure
shows the χ"(T) dependences having a peak typical of
type II superconductors.

The spectrum of higher harmonics demonstrates the
clearly manifested nonlinear properties of the polycrys-
tals under investigation. For example, the spectrum
obtained for PbMo6S8 (Fig. 2) indicates a weak

an
2 bn
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Fig. 1. Temperature dependences of the real (curves 1 and 3) and imaginary (curves 2 and 4) components of linear susceptibility for
SnMo6S8 and PbMo6S8 samples, respectively; H = 0, h0 = 1 Oe.
decrease in the amplitude of the harmonics upon an
increase in their number. It should be noted that even
harmonics were not observed for SnMo6S8 for H ≠ 0
either.

Figure 3 shows the temperature dependences of the
susceptibility χ3 = c3/h0 for various values of the ampli-
tude of the varying field h0, which are identical to the
corresponding dependences for HTSC ceramics (see,
e.g., [2]). A typical feature of these curves is the pres-
ence of two peaks. The high-temperature peak can be
associated with the penetrating of the field into crystal-
lites, while the low-frequency peak is associated with
the penetration only into the Josephson medium formed
by weak links between the crystallites (note that no
high-temperature peak was observed on the χ3(T)
dependence for PbMo6S8). The position of the low-
temperature peak is displaced towards lower tempera-
tures upon an increase in h0, which is associated with a
transition from the mode in which the field penetrates
to the middle of the sample to a mode in which the field
penetrates only to a small depth of the sample. In the
latter case, the condition of a weak field (h0 ! H) can
be realized easily, and hence expression (37) can be
used to verify the applicability of the conclusions of the
critical state theory to the polycrystals under investiga-
tion. Henceforth, we will consider the experimental
results only for this limiting case.

Figure 4 shows the dependences of a1, b1, c3, and c2
(for H ≠ 0) on h0 for PbMo6S8. It can be seen that in
accordance with the results of the theory, odd harmon-
ics exhibit a quadratic dependence on h0, while the sec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ond harmonic exhibits a cubic dependence. Note that
the scale of magnetic induction induced by the varying
field (from 0.01 mOe to 1 Oe) varies from 1 µG to
0.1 G. Similar dependences for a1, b1, c3, and c5 were
also obtained for SnMo6S8.

Equation (37) contains two independent quantities
µeff and j0, which were not determined independently in
our experiments. Consequently, in order to compare the
theoretical and experimental results, it is expedient to
consider the ratios a1/b1, b1/c3, etc., which must be
independent of µeff and j0 in accordance with (37). It
follows from the table that these experimentally deter-
mined ratios are in good agreement with the theoretical
predictions.

2

–40

n

cn, dB

4 6 8 10 12 14 16

–30

–20

–10

0

10

Fig. 2. Spectrum of higher harmonics (PbMo6S8); H = 6 Oe,
h0 = 0.8 Oe, and T = 11 K.
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Fig. 3. Temperature dependences of nonlinear susceptibility c3/h0, obtained in zero constant magnetic field H for various amplitudes
of the varying field h0: (curve 1) 0.1, (curve 2) 0.3, (curve 3) 0.6, (curve 4) 0.9 Oe (SnMo6S8) and (curve 5) 0.9 Oe (PbMo6S8).
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Analyzing the behavior of even harmonics propor-
tional to (∂/∂H)(1/jc(H)) and odd harmonics propor-
tional to 1/jc(H) in a constant field for h0 = const and
using expressions (37), we can determine self-consis-
tently the form of function jc(H). This is how the
explicit form of this function was determined for gran-
ular HTSC [see (4)]. However, the situation turned out
to be more complicated for the dependence on the con-
stant magnetic field in PbMo6S8 (Fig. 5). It can be
seen from the figure that starting from H ≈ 1 Oe, c3 is
practically independent of H. Proceeding from for-
mulas (37), we should expect the absence of the sec-
ond harmonic (as in the case of SnMo6S8). However,
in the experiments with PbMo6S8 we observed the
second harmonic whose magnitude was considerably
larger than the value predicted by (37). Using rela-

Ratio of amplitudes of neighboring harmonics for SnMo6S8

Ratio

a1/b1 b1/c3 c3/c5

Theory 2.3 5 7

Experiment 2.2 ± 0.2 3.5 ± 0.3 9.5 ± 1.2
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tions (37), we can write the following expression for
the ratio c2/c3:

(39)

which does not depend on the specific form of function
jc(H), i.e., is independent of the model. If we calculate
the derivative in (39) proceeding from the experimental
data on the third harmonic [c3 ∝  1/jc(H)], it turns out
that the ratio c2/c3 must be two or three orders of mag-
nitude smaller than the observed value equal approxi-
mately to 0.1. In this case, our sensitivity (not worse
than 0.1 µV) is insufficient for observing the second
harmonic (precisely this situation was observed for
SnMo6S8). However, in spite of such a discrepancy, all
the remaining (field and angular) dependences are in
excellent agreement with the theory.

The next series of experiments was carried out with
a linearly polarized varying field forming an angle γ
with the constant field. These experiments were aimed
at determining the version (the flux-line cutting model
or the isotropic model) realized in the polycrystalline
superconductors under investigation. It can be seen
from formulas (30) and (36) that in the former case,
c3z ∝  cos2γ, c3y ∝  sin2γ, and c2z ∝  cos3γ, c2y = 0, while in
the latter case c3z ∝  cosγ, c3y ∝  sinγ, and c2z ∝  cos2γ,

c2

c3
---- 4h0 jc H( )

H∂
∂ 1

jc H( )
------------ 

  ,≈
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c2y ∝  sinγcosγ. Figure 6 shows that the angular depen-
dences for harmonics obtained by us unambiguously
correspond to the isotropic model. Besides, the fact that
the second harmonic c2y differs from zero for an arbi-
trary γ (except γ = 0 and γ = π/2) also speaks in favor of
this model.

4. CONCLUSIONS

Thus, the results of our experiments show that a
polycrystalline superconductor, as well as an HTSC
ceramics material, behaves as a standard Josephson
medium in weak fields. Such systems display irrevers-
ible and nonlinear effects typical of low-field electrody-
namics in Josephson media.
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Abstract—The behavior of electrons, excitons, and charged electron–hole complexes in quantum rings is stud-
ied taking into account radial vibrations in a magnetic field. The diamagnetic shift of the exciton luminescence
line is found to be positive for a neutral exciton and negative for a trion and all other charged complexes. It is
shown that the magnetic-field dependent component of the electron ring energy does not depend on the elec-
tron–electron interaction. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of the self-organization of quantum rings
in the InAs/GaAs system has been reported recently [1, 2].
Under certain conditions, the evolution of the ensemble
of quantum points of InAs located on the GaAs surface
as a result of the diffusion of the material to the edges
of the points leads to the formation of objects resem-
bling volcano craters. The region formed at the center
is free of InAs and has a characteristic diameter of 20 nm.
The outer diameter of a “crater” is estimated in [1, 2] as 60
to 120 nm. Thus, an ensemble of rings is formed, their
radius being comparable with the effective Bohr radius
of an electron in InAs. Such a structure permits the dep-
osition of a field electrode (shutter), owing to which the
population of rings by electrons can be controlled. War-
burton et al. [3] reported a successive population of
rings by up to five electrons. In the same publication,
the exciton luminescence of charged rings was investi-
gated; i.e., recombination-induced emission by the sys-
tems from a neutral exciton X0 to a quintuply negatively
charged complex X5– was observed. The behavior of
these systems in a magnetic field is of considerable
interest. The present article deals with a theoretical
analysis of this problem.

In order to take into account the radial degree of
freedom of electrons and holes, we will use the para-
bolic model of a ring proposed by Chakraborty and
Pietilähen [4]. The potential energy of a particle has the
form

(1)

where the subscripts e and h mark an electron or a hole,
and R0 is the electron (and hole) radius of the ring.
Thus, the position of the minimum is assumed to be the

Ui ρ( )
miωi

2 ρ R0–( )2

2
----------------------------------, i e h,,= =
1063-7761/01/9201- $21.00 © 20169
same for electrons and holes.1 In the present work, we
will be interested in orbital (diamagnetic) effects, leav-
ing aside the contribution from the spin degree of free-
dom. The latter depends on the specific form of the sys-
tem through the g-factors of electrons and holes, and a
transition, say, from a quantum point to the ring is not
critical for this contribution. On the contrary, the orbital
motion is sensitive to a change in the object topology
(the Aharonov–Bohm effect), and we will be interested
here in such an effect of a magnetic field on the system
behavior.

According to estimates of the above parameters of a
quantum ring, the radial motion is characterized by a
much smaller amplitude as compared to the azimuthal
motion, for which the corresponding size is just 2πR0.
In this sense, the ring is narrow, and we will assume that
the condition "ωi @ Wi is satisfied, where Wi =

"2/2mi  is the rotational motion quantum (an ideal one-
dimensional ring corresponds to the limit Wi/"ωi  0).
In this case, the problem can be solved in the approxi-
mation which is well known from molecular theory:
first, the rotational energy levels are determined for
fixed nuclei (in our case, for fixed radial coordinates ρe

and ρh of an electron and a hole), after which the small
vibrations of nuclei are taken into account. In this case,
effects of the type of a nonrigid rotator and the interac-
tion between vibration and rotation are observed. Sim-
ilar corrections to energy levels also appear in the prob-
lem on excitons in a finite-width quantum ring.

1 The absence of a noticeable spatial separation of electrons and
holes follows from the fact that the recombination manifested in
exciton luminescence is quite effective.
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2. ELECTRON RING

We begin our analysis with a system containing N
electrons in a ring. This is the final state of the initial
system (Ne + h) after recombination, and hence the
magnetic-field dependence of its energy makes a sig-
nificant contribution to the diamagnetic shift of the
exciton luminescence line. In an ideal one-dimensional
ring, the position of electrons is defined by azimuthal
angles ϕj (j = 1, …, N). It is convenient to introduce the
Jacobi variables in accordance with the formulas

(2)

In new variables, The Hamiltonian of the system taking
into account the magnetic field B normal to the ring
assumes the form

(3)

where We0 = "2/2me  is the rotational quantum,  =

πB /Φ0 (Φ0 = hc/e is the magnetic flux quantum), and
Vee is the electron–electron interaction energy, which is
naturally independent of ϕc. Thus, the magnetic-field
dependent component of the system energy is defined
by the first term in (3):

(4)

where J = 0, ±1, ±2, … is the total angular momentum
of the system.

It is important that the value of E(B) is independent
of the electron–electron interaction. For this reason, the
diamagnetic shift, for instance, for an interacting sys-
tem with J = 0 (the ground state in a weak field) is equal
just to the n-fold shift of a single particle:

(5)

where Ωe is the cyclotron frequency of an electron.
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Let us now take into account the radial degrees of
freedom and write the Hamiltonian in the polar coordi-
nates ϕj and ρj:

(6)

where  is the kinetic energy operator for the radial

motion, Wej = "/2me ,  = πB /Φ0, Ue(ρj) is
defined by formula (1), and Vee is now a function of all
ϕj and ρj. The second term in (6) containing the mag-
netic field can be transformed as follows:

(7)

where ∂  = πB(  – )/Φ0. We now apply transfor-
mation (2) to the right-hand side of Eq. (7). Since ϕc

does not appear explicitly in the Hamiltonian (Vee

depends only on pairwise difference ϕj – ϕk in which ϕc

does not appear), we can single out the “magnetic”
component of the Hamiltonian, i.e.,

(8)

which completely determines the diamagnetic shift of
energy levels, the effects of the finite ring width appear-
ing only in the second term on the right-hand side of
Eq. (8). Introducing the vibrational coordinates ξj = ρj –
R0, we obtain the following expression for perturbation:

(9)

It was mentioned in the Introduction that for "ωe @ We0,
the corrections to energy associated with ∆Hpert can be
calculated in perturbation theory. Strictly speaking, the
unperturbed wave function of radial motion must
include the interaction Vee between particles. However,
the Coulomb interaction strongly perturbs the azi-
muthal and weakly radial motion of particles in the
approximation adopted by us. Indeed, expanding the
paired interaction of particles separated by a distance of
the order of R0 from one another into a power series in
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their radial coordinates ξi, we can easily obtain the esti-
mates

(10)

where l0 =  is the amplitudes of vibrations in

potential (1) and  is the effective Rydberg energy,
for the shift of the equilibrium position, and

(11)

for the correction to the square of frequency. For the
ring parameters indicated at the beginning of the arti-

cle,  ~ "ωe, and hence both corrections are small in
the parameter We0/"ωe, and the vibrational component
of diamagnetic shift can be calculated using the unper-
turbed vibrational functions. This gives

(12)

where ve is the vibrational quantum number.
In this formula, we have also taken into account the

second approximation in the linear term appearing in
(9) (the contribution proportional to B4). It can be seen
that the vibrational component of diamagnetic shift is
small as compared to the rotational component [for-
mula (5)] in the same parameter We0/"ωe.

3. NEUTRAL EXCITON X0

The rotational component of diamagnetic shift in
the energy of a neutral formation X0 connected with the
motion of an exciton as a whole obviously vanishes.
For an ideal one-dimensional ring, there exists a contri-
bution to the exciton binding energy ε, which is a peri-
odic function of the magnetic flux and emerges as a
result of the tunneling of an electron and a hole towards
each other along the ring. In the strong coupling
approximation (a* ! 2π , where a* is the effective
Bohr radius) and for zero total angular momentum J =
0, the binding energy is given by

(13)

where ε0 < 0 is the energy level of a one-dimensional
exciton and ∆ > 0 is the tunneling amplitude (see our
previous publication [5]). For weak fields (fluxes),
Eq. (13) gives a positive (diamagnetic) energy shift.
However, this shift can be considerably smaller than the
vibrational diamagnetic shift which does not contain an
exponential smallness. Besides, radial vibrations of
particles lead to the attenuation of the oscillating energy
component due to the destructive interference of trajec-
tories embracing various magnetic fluxes.
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In order to take these effects into consideration, we
introduce the coordinate ϕc of the exciton “center of
gravity” and the angular separation ϕ between an elec-
tron and a hole:

(14)

as well as the radial coordinates ξ = ρe – R0, η = ρh – R0.
To avoid cumbersome expressions, we confine our

analysis to the case of zero orbital angular momentum
of an exciton as a whole (for an optical transition, the
intensity of the exciton line is determined by the inte-

gral  which differs from zero only for

J = 0). The magnetic-field dependent component of the
Hamiltonian has the form

(15)

where  = πB /Φ0, We = "2/2me , and the
expression for Wh has a similar form.

The phase transformation of the wave function

(16)

makes it possible to eliminate the second term in the
brackets in (15) and to obtain the Schrödinger equation
for the relative motion of an electron and a hole in the
adiabatic approximation, i.e., for fixed radial coordi-
nates ξ and η. Arguing in the same way as in [5] (the
conditions for the wave function periodic in ϕe and ϕh),
we obtain the oscillating contribution to energy of the
form ∆(ξ, η)cos2πλ(ξ, η). Averaging this contribution
in the vibrational functions of radial motion, we obtain
the following expression for attenuation of the Aharonov–
Bohm oscillations of the exciton binding energy:

(17)

where we have used the following expression for the
damping decrement of the vibrational ground state:

(18)

and  is the tunneling amplitude averaged over radial
vibrations. Thus, in the case under investigation, oscil-
lations attenuate according to the Gaussian law, and the
damping decrement 1/B0 increases linearly with the
ring radius.
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The vibrational diamagnetic shift for an exciton is
determined by the last term in Hamiltonian (15). After
averaging over vibrations, we obtain

(19)

where ve and vh are the quantum numbers for the vibra-
tional states of electrons and holes, and Ωe and Ωh are
their cyclotron frequencies.

4. TRION X– AND MULTIPLY CHARGED 
EXCITONS

The complex e–e–h (trion) is known to form a
bound state of three particles, i.e., is more advanta-
geous from the energy point of view than an individual
electron and an exciton. Since a trion has a charge, its
motion as a whole along a ring in a magnetic field must
lead to a rotational diamagnetic shift of energy levels.
Besides, as in the case of an exciton, we can expect an
oscillating magnetic-flux dependence of the trion inter-
nal energy in a one-dimensional ring. Indeed, introduc-
ing the variables

(20)

where Mtr = 2me + mh is the trion mass and ϕ1, 2 are the
coordinates of the electrons, we can easily derive the
following expression for the total energy of the trion:

(21)

Here, Wtr = "/2Mtr , εint is the internal energy, which
is the eigenvalue of the equation

(22)

The wave function ψ of the trion is connected with the
solution χ(α, β) of Eq. (22) through the relation

(23)
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The potential energy in Eq. (22) is a periodic function
on the plane (α, β). The basis vectors of the correspond-
ing lattice are given by

(24)

where a0 and b0 are the unit vectors of the Cartesian
system of coordinates in the plane (α, β). Equations (24)
describe a rectangular body-centered lattice (in the
two-dimensional sense). The reciprocal lattice is of the
same type with the basis vectors

(25)

The general solution of Eq. (22) is characterized by the
quasimomentum vector a0p + b0q, and energy εint is a
function of its components p and q. Subjecting the total
function ϕ to the conditions of periodicity in ϕ1, ϕ2, and
ϕh, we can find the allowed values of p and q, and thus
determine the energy levels of a trion in a quantum ring.
The periodicity conditions have the form

(26)

were n1, n2, and n3 are integers. It follows hence that J
and 2q are integers, while p = Jmh/Mtr – λ + integer. The
energy εint is periodic on the reciprocal lattice, and
hence it depends periodically on Φ through λ. By way
of an example, we write the result in the strong-cou-
pling approximation:

(27)

The arguments 2π, π, and 4π of the tunneling
amplitudes indicate the distances from the initial site to
their nearest neighbors in the lattice which is defined by
Eq. (24), and ε0 is the binding energy of a trion in a rec-
tilinear quantum wire (i.e., the limit R0  ∞). All the
tunneling amplitudes in Eq. (27) are positive. Thus, the
binding energy of the trion oscillates with the magnetic
flux (two harmonics are present in the model under
investigation). The period of oscillations ∆Φ is deter-
mined by the value of λ from Eq. (23), i.e., is a function
of the ratio of effective masses; for the fundamental
harmonic, we have

(28)

In the opposite limit of weak coupling outside for-
bidden bands, the Coulomb interaction between parti-
cles can be neglected outside the region of forbidden
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bands in the spectrum. In the first Brillouin zone, we
must put n1 = n2 = n3 = 0 in formulas (26), whence we
obtain J = 0, q = 0, and p = –λ. It follows from (22) that

while for the total energy we obtain the expression

(29)

as should be expected in the case of three free particles.
A comparison of this result with Etr from (21) for J = 0
shows that the Coulomb interaction reduces consider-
ably the rotational component of diamagnetic shift (to
zero for X0).

The vibrational diamagnetic shift is of the order of

" /ωe as in the case of an exciton, but the main con-
tribution for a trion comes from rotations defined by the
first term on the right-hand side of (21). The observable
quantity is the shift of the exciton luminescence line,
which is equal to the difference between energies (21)
and (5) in the principal order in We/"ωe for N = 1:

(30)

Since Mtr > me, the obtained diamagnetic shift turns out
to be negative. Naturally, the total shift contains a con-
tribution from spin splitting; the obtained value of ∆νtr
describes the behavior of the center of gravity of the
spin multiplet.

Finally, the same computations (separation of the
rotation of the system as a whole and the gradient trans-
formation of the wave function) can be used to obtain
the following magnetic-flux dependent contribution to
the total energy for a multiply charged complexes
(hole + N electrons):

(31)

The corresponding shift of a line upon the transition
(h + Ne)  (N – 1)e is given by

(32)

In formulas (31) and (32), we have omitted small correc-
tions to EN(B) and ∆νN associated with radial vibrations
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and the magnetic- field dependent component of the inter-
nal energy of the complex. Numerical estimates for mc =

0.07m0, mh = 0.35m0, "ωe = 12 meV (i.e., close to ),
and R0 = 14 nm give ∆ν(X0) = 7 × 10–3B2 meV for the
frequency shift for a neutral exciton (the ground state in
radial vibrations) and ∆ν(X–) = –5 × 10–2B2 meV for a
trion, where B is measured in teslas. The values of ωe

and R0 are borrowed from [6].

Let us summarize the obtained results. The diamag-
netic shift of the energy of a system comprising elec-
trons only in a quantum ring of a small but finite width
in a transverse magnetic field does not depend on the
electron–electron interaction. Conversely, the Coulomb
interaction in the Xn– complexes reduces the diamag-
netic shift appreciably. In the case of a neutral exciton,
we are left only with the vibrational component of the
shift and with the exponential small contribution asso-
ciated with the Aharonov–Bohm effect. The diamag-
netic shift of the exciton luminescence line is positive
for X0 (and small in the parameter We/"ωe) and negative
for all charged excitons. The period of oscillations of
the binding energy of charged complexes in magnetic
flux differs from Φ0 and depends on the ratio of effec-
tive masses of electrons and holes.
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Abstract—A physical description of the rotary molecular motors is given, the fundamental relationships
between the dynamic characteristics of the motors are found, and their basic macroscopic parameters are eval-
uated. The role of the molecular chirality is explained. The membrane nanostructure and the ionic subsystem
as elements of the motors are discussed in much detail. The stochastic features of the thermal noise-assisted
processes occurring in the motors are established. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Adenosine triphosphate (ATP) synthase is an excep-
tional molecular machine acting in the cell respiration
in mitochondria and in the photosynthesis in chloro-
plasts of plants and also in bacteria [1–3]. ATP synthase
is called the enzyme “F0F1ATPase,” in which the F1
part contains the catalytic center and the F0 part couples
the F1 part to the membrane. It was shown that a flow
of hydrogen ions across the membrane controls the
ATP formation and that the binding of ATP synthase to
the hydrogen ion transport occurs via the F0 part. ATP
functions as a carrier of energy in all living organisms,
it captures the chemical energy released by the combus-
tion of nutrients and transfers it to reactions that require
energy. ATP consists of the nucleoside adenosine
linked to three phosphate groups. Upon the removal of
the outermost phosphate group, adenosine diphosphate
(ADP) is formed and the energy released can be used in
other reactions. Conversely, with the help of energy, an
inorganic phosphate group can be bound to ADP and
form ATP.

To understand in detail how the F0F1ATPase func-
tions, a detailed chemical and structural knowledge of
the enzyme was obtained [2]. The three-dimensional
structure of ATP synthase was clarified. The F1 part
consists of sub-units of five types: α, β, γ, δ, and ε.
While there are three α and three β units, there is only
one unit of each of the γ, δ, and ε types. The ATP syn-
thesis occurs on the β units. The sub-units γ, δ, and ε are
not symmetrical, they are in fact chiral [4, 5], a feature
of importance for our understanding of how ATP syn-
thase functions.

Much attention has been given to the F1 part. It was
found that the step requiring energy is not the synthesis
of ATP from ADP and inorganic phosphate, but the
binding of ADP and the phosphate to the enzyme which
produces the ATP (where the energy surplus is stored).

¶This article was submitted by the authors in English.
1063-7761/01/9201- $21.00 © 20174
The γ, δ, and ε sub-units rotate in a cylinder formed of
the alternating α and β sub-units. This rotation induces
structural changes in β that lead to differences in the
binding ability during a cycle; in addition, this rotation
is driven by the ion flow through the membrane. The γ
sub-unit behaves as an asymmetrical axle. It has unique
contacts with the β sub-units and forces their active sur-
faces to assume different three-dimensional structures.
The rotation of the γ sub-unit was demonstrated exper-
imentally [6].

2. GENERALIZED FORCES AND CURRENTS IN 
THE ISOTHERMAL CHIRAL ROTARY MOTOR

This molecular motor is isothermal, which means
that its internal states are locally in equilibrium at a
constant temperature T. We believe that a certain gen-
eral physical approach to the description of these
motors is possible, similarly to how this was recently
done for linear molecular motors [7]. The action of the
motor is induced by generalized forces: the electric
field E acting in the membrane, the mechanical motion
velocity N relevant to the motor, and the chemical
potential difference ∆ that measures the free energy
change per consumed “fuel” molecule (∆ = 0 at chem-
ical equilibrium, ∆ is positive for the ATP hydrolysis
process when ATP is in excess and is negative when
ADP is in excess). The action of forces E, N, and ∆
leads to the electric current, rotation, and fuel con-
sumption characterized by the generalized “currents”:
the electric current density j, the mechanical force g
applied to the motor, and the average consumption rate
of fuel molecules u, i.e., in our case, the average num-
ber of ATP molecules bound and hydrolyzed per unit
time (or the average number of ADP molecules bound
to the enzyme and used for ATP synthesis). The
mechanical force g includes the viscous friction force
relevant to the motor in which the mechanical motion
occurs.
001 MAIK “Nauka/Interperiodica”



        

PHYSICS OF THE ATPASE MOLECULAR MOTOR 175

                                                                                     
The functions j(E, N, ∆), g(E, N, ∆), and u(E, N, ∆)
are, in the general case, nonlinear because the motor
operates far from the equilibrium (∆ > kBT). Still it is
useful to consider the linear regime (∆ < kBT), where
we can write the relations

j = σE + vn × N + e∆, (1a)

u = –e · E – v · N + λ∆, (1b)

g = vn × E + ηN + v∆. (1c)

Relations (1) insure that the dissipation rate  is posi-
tive,

(2)

where the electric conductivity σ, the viscosity η, and
the coefficient λ are positive. The appearance of coeffi-
cient v in Eqs. (1) is directly related to the asymmetry
(chirality) of the moving part (the γ sub-unit) of the
motor; v is a pseudo-scalar when the product n × N is
a pseudo-vector and vn × N is a vector. The component
n⊥  of the director n = n|| + n⊥  describes the inclination
of the γ sub-unit axis n at a small angle Θ from the nor-
mal z to the membrane surface,

(3)

We have the vector N = dn/dt = W × n, where the
pseudo-vector W is the angular velocity of the axle,

(4)

It is seen from Eqs. (1) and (4) that the polar vector v
must be perpendicular to n and parallel to N if vN ≠ 0.
The formalism in Eqs. (1)–(4) based on describing the
motor by a director n is quite similar to the approach
developed for liquid crystals [8].

The kinetic coefficient e is a polar vector. It
describes the interaction whereby the fuel consumption
induces the electric current and mechanical motion.
Without the tilting at a finite angle Θ, this interaction
disappears. We, thus, assume e to be related physically
to some polar interactions, for example between
dipoles (electric and/or steric) pβ characterizing the
deformation of the β-units and the polarization Pγ char-
acterizing the inclined γ-unit. Because of chirality, the
two-dimensional vector Py is related to n by

(5a)

(5b)

where µ is the “piezomodulus” depending on the
enzyme chirality. Equations (5) are similar to the for-
malism developed for the description of chiral smectic-
C liquid crystals [9]. Thus, vector e can be repre-
sented as

e = cPβ × x, (6)

Ṡ

Ṡ j E⋅ u∆ g N⋅+ + σE2 λ∆2 η N2,+ += =
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2 ny

2+ Θ2, n2 1, nz
2 1.≈= =

Ωz 0, Ωx≠ Ωy 0.= =

Nx nyΩz, Ny– nxΩz, Nz 0.= = =

Pγ µξ , ξ x nzny, ξ y nznx,–= = =

Pγx µnzny, Pγy µnznx,–= =

Py n⊥× µΘ2,≈
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which vanishes in the absence of the γ-unit tilting.

The polar vector v, by the same physical reasons, is
assumed to be related to director n and the polarization
vectors Pγ and pβ. The relation v = bPγ, for example, is
forbidden because, in this case, a part of the dissipation
rate is the scalar product

∆v · N = –bµnzΩzΘ2∆

that depends on the direction of n. However, the physi-
cal quantities must not depend on the direction of n
(they depend on even combinations of the n compo-
nents). At the same time, the components of v must be
proportional to the components of director n, with v
being parallel to N in accordance with Eqs. (1). It is
possible to write a unique combination (at small tilt
angles) for vector v,

(7)

The products v · N and v × n then become

v · N = bµnzΩzΘ2(n⊥  · pβ), (8)

[v × N]i = bµ(n⊥  · pβ)(  – δiz)ni. (9)

These expressions depend only on even combinations
of the n components. The products n⊥  · pβ and pβ × ξ
must be constant parameters of the system under con-
sideration. This is possible under the assumptions made
above: dipoles pβ, pseudo-vector ξ, and the director
component n⊥  are in the membrane plane, n⊥  and pβ are
collinear, and n⊥  and ξ are orthogonal to each other dur-
ing the interactions of the rotating γ-unit with different
β-units. It then follows that n⊥  · pβ = Θpβ. Thus, these
products are constant parameters of the membrane sys-
tem and are proportional to the tilt angle Θ and the
dipole moment pβ.

We note that the tilt angle Θ and the dipole moment
pβ describing the inclination of the γ-unit and deforma-
tions of β-units respectively, must depend on the energy
transferred to these sub-units during the motor work.
These quantities vanish in the absence of this energy
transfer. The energy transfer can occur due to chemical
reactions, ionic currents, and mechanical movements.
Constants b and c in relations (6) and (7) must in gen-
eral describe some energy transfer mechanisms, which
are unknown in detail unfortunately. Because these
constants involved in e and v are related to the same
physical process, we can expect them to be related to
each other by other parameters of the motor, such
as  the electric conductivity, chirality, etc.; in other
words, the motor is assumed to work as a self-consis-
tent system in which all kinds of motion start and stop
simultaneously.

v bµ n e×[ ]=

=  bµξ n⊥ pβ⋅( )– bPγ n⊥ pβ⋅( ).–=

nz
2
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3. NON-PASSIVE REGIMES
OF THE MOTOR WORK

The molecular motor stops in the absence of the
γ-unit tilting because both the j · E and u∆ terms are
positive and g · N = 0; i.e., there is no energy output
from the enzyme: all work performed at the enzyme is
dissipated in the thermal bath. When ∆ = 0 and Θ = 0,
we have the density current j = σE if the electric field
is present inside the membrane. But without the energy
output from the thermal bath, this current decreases
with time and vanishes at the equilibrium conditions
because of a re-distribution of ions. We assume that
E = 0 if the difference ∆ is zero.

If g · N is negative, mechanical work is performed
by the motor. If u∆ is negative, chemical energy is gen-
erated by the motor. If j · E is negative, the motor pro-
duces electric energy. Thus, the enzyme can work in
various non-passive regimes.

1) u∆ > 0, g · N < 0, j · E > 0. The motor takes the
energy from the heat bath, for instance, it uses the
hydrolysis of ATP in excess (i.e., u > 0 and ∆ > 0) and
from the work produced by the electric current to gen-
erate mechanical rotation.

2) u∆ < 0, g · N > 0, j · E > 0. The system binds ADP
and the phosphate to the enzyme and releases ATP
already in excess (i.e., u < 0 and ∆ > 0) from the
mechanical and electrical input.

3) u∆ > 0, g · N < 0, j · E > 0. The motor uses ADP
in excess (i.e., u < 0 and ∆ < 0) and the electric current
to generate mechanical work.

4) u∆ < 0, g · N > 0, j · E > 0. The system produces
ADP already in excess (i.e., u > 0 and ∆ < 0) from the
mechanical and electric input.

5) u∆ > 0, g · N < 0, j · E < 0. The motor (a) uses the
hydrolysis of ATP in excess (i.e., u > 0 and ∆ > 0) or
(b) uses ADP in excess for the synthesis of ATP (i.e.,
u < 0 and ∆ < 0) to generate mechanical rotation and
electric current.

6) u∆ < 0, g · N > 0, j · E < 0. The system (a) produces
ADP already in excess (i.e., u > 0 and ∆ < 0) or (b) pro-
duces ATP already in excess (i.e., u < 0 and ∆ > 0) and
also the electric current from the mechanical input.

7) u∆ > 0, g · N > 0, j · E < 0. The motor (a) uses the
hydrolysis of ATP in excess (i.e., u > 0 and ∆ > 0) or
(b) uses ADP in excess (i.e., u < 0 and ∆ < 0) and also
the mechanical input to generate electric current.

8) u∆ < 0, g · N < 0, j · E > 0. The motor (a) releases
ATP already in excess (i.e., u < 0 and ∆ > 0) or (b) pro-
duces ADP already in excess (i.e., u > 0 and ∆ < 0) and
generates mechanical rotation from the electric input.

Thus, 12 regimes are available in this motor. The
rotation of the axle (at Θ ≠ 0) with a constant angular
velocity Ωz = φ occurs when the viscous-driven torque
and the field-driven torque compensate each other
JOURNAL OF EXPERIMENTAL 
(neglecting some elastic forces), i.e., when g × n = 0.
We then obtain from Eqs. (1) and (5)–(9) that

γΩz = vEz – bµ∆(pβ · n⊥ )nz. (10)

This equation shows that a constant angular velocity
arises even in the case where E = 0, but the tilt angle Θ
must have a finite value for the effect to occur. Tilting
of the γ-unit induced by the energy transfer to this sub-
unit from the heat bath results in the appearance of the
electric current j even at E = 0 (see Eq. (1a)). We note
that the motor does not produce mechanical work; i.e.,
g · N = 0, when the rotation of the axle occurs with con-
stant velocity (10).

In the general case, the sum

j · E + g · N = σE2 + γN2 + ∆(e · E + v · N) (11)

can change its sign only if the sign of ∆(e · E + v · N)
changes. In the regimes with u∆ > 0 and j · E + g · N < 0,
the motor produces mechanical work if ∆(e · E + v · N) is
negative and g · N is negative. Thus, we conclude that
the sign of the angular velocity can change only if the
direction of vector E and the sign of ∆ are reversed to
preserve the negative signs of j · E + g · N and g · N.
This means that to preserve the positive sign of u∆, the
sign of u must change; for example, the hydrolysis of
ATP in excess must change to using ADP in excess. At
the same time, the direction of E is reversed. If the
motor also generates the electric current, i.e., j · E < 0,
the change of the E direction results in changing the
direction of the electric current j in the case where
energy is taken from the heat bath.

In the acting motor [1], the regime u∆ > 0 seems to
determine the binding of ADP in excess and phosphate
to the enzyme and the release of ATP (i.e., u < 0 and
∆ < 0). This results in only one way for the enzyme to
react; i.e., the directions of the angular velocity Ω and
of current j are strictly determined. The hydrolysis of
ATP in excess and the release of ADP (i.e., u > 0 and
∆ > 0) must lead to reversing the directions of Ω and j.
We note that at E = 0, the dissipation rate  is equal to
λ∆2, with N = g = 0 and j = e∆; i.e., the motor does not
produce work. Thus, to produce mechanical work, a
certain electric field inside the biomembrane and the
inclination of the γ-unit at a certain angle must occur.

4. ELECTRIC CURRENT WORK 
AND EFFICIENCY OF THE ROTARY MOTOR

For the motor with a constant rotation velocity
(g · N = 0, with the mechanical work not produced), we
see from Eqs. (5)–(11) that j · E < 0 if

(12)

Ṡ

σ v 2Θ2

γ
-------------+ 

  Ez
2 ∆ c

bvµΘ2

γ
------------------+ 

 –

× n⊥ pβ⋅( ) nzEz( ) 0.≤
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Thus, the motor generates electric current until j · E <
0 occurs at a finite value of Ez when condition (12) is
satisfied. In this case, the jz value is

(13)

(14)

We conclude from relations (12)–(14) that certain
threshold conditions (for the Θ value at a given value of
Ez or for the Ez value at a given value of Θ) must occur
for the motor to generate the current. In weak fields and
at small tilt angles, the threshold condition must have
the form

σnzEz ≈ c∆pβΘ. (15)

At the threshold condition, we have jz = 0. The motor
stops to generate current when Ez overcomes the
threshold value determined by Eq. (15) or, in other
words, when the tilt angle Θ is less than the threshold
value determined by Eq. (15). We also see from rela-
tions (12)–(14) that the change of the sign of ∆ results
in sign changes of Ez, jz, and Ωz when the motor gener-
ates electric current in another regime with u∆ > 0.
Thus, the change of regimes reverses the directions of
the electric current and the angular velocity. In the
regime with u < 0 and ∆ < 0, the same threshold condi-
tions take place for the electric field of the opposite
direction. Because the experimental data show that the
rotation and the current flow start and stop simulta-
neously, i.e., jz = 0 and Ωz = 0 at the same time, we con-
clude from Eqs. (10) and (14) that parameters σ, v, b,
and c are related by

bµσ ≈ cv. (16)

It is useful to note that relation (16) can also be
obtained when Ez = 0 if we consider Ωz and jz in
Eqs. (10) and (14) as induced by the effective field

(17)

This is quite reasonable physically because the current
density jz = σEz, eff and the angular velocity Ωz =
vEz, eff /γ must have the same origin: these closely
related quantities have the same meaning as in the Leh-
mann effect in chiral liquid crystals [8]. These relations
show again that the flow of ions and the γ-unit rotation
are related to each other and exist due to the tilting of
the γ-unit. According to the data known today [3–5],
both the tilt and the rotation of the γ-unit open the way
for the ion motion and the effect of moving ions (the
transfer of their energy) on the sequence of β- and
α-units; the latter ones are prepared (by a change of the
unit shape) for the subsequent processes of the ADP
and phosphate binding to the enzyme and of releasing
ATP. It is important for the motor that the rotation of the
γ-unit involves a cycle: while the γ-unit interacts with one
of the β-units (see the products (n⊥  · pβ) and (pβ × ξ)),

jz σ v 2Θ2

γ
-------------+ 

  Ez
2 ∆ c

bvµΘ2

γ
------------------+ 

  n⊥ pβ⋅( )nz–=

=  σEz c∆ pβΘnz– vΘ2Ωz.+

Ez eff,
bDµpβΘ

v
----------------------nz–

c∆ pβΘ
σ

-----------------– nz.≈ ≈
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two other β-units are deformed by the ion flow to be
ready for the next interaction with the γ-unit (with the
steric end electric dipoles probably appearing during
the process).

To induce the γ-unit tilting in the membrane, the
heat bath must transfer a portion of energy to the
enzyme, for example, by chemical reactions. The sim-
plest assumption is that this portion of energy, which is
proportional to the tilt angle squared, is related to the
chemical potential difference ∆ via ∆ = aΘ2, where a is
a constant that has the scale of the intermolecular inter-
action energy. Thus, Θ is determined by ∆ and vanishes
at ∆ = 0.

It is interesting to estimate the efficiency of the con-
sidered regime. As for any macroscopic motor, we can
define the electric efficiency of the molecular motor η
by the ratio of the electric current work performed to
the chemical energy consumed,

(18)

For other regimes, in which the chemical energy is gen-
erated from the electric input, the chemical efficiency is
the inverse of expression (18). It is seen from Eq. (18)
that the efficiency maximum ηmax occurs at the values
of ∆(Ez) given by

(19)

Thus, ηmax has a constant value along the straight line
∆ = constEz. It is independent of force Ez, is close to
zero at small tilt angles Θ, and is close to 1 at large val-

ues of Θ (when Θ @ λσ/c2 ). This general statement
is independent of the assumption about a relation
between ∆ and Θ. This molecular motor is an isother-
mal chemical motor working irreversibly far from equi-
librium, i.e., it differs principally from the reversible
Carnot engines [7].

5. ESTIMATES OF THE MOTOR 
CHARACTERISTICS AND CONCLUDING 

REMARKS

We now make rough quantitative estimates of the
above parameters using some characteristic values [10,
11] such as the intermolecular interaction energy ε ~
102 kcal/mole ~ 10–19 J, the volume per protein mole-
cule l3 ~ 10–24 m3 (linear dimension l ~ 102 Å), the
dipole moment of proteins pβ ~ 100D ~ 10–16 esu, the
piezoelectric modulus µ ~ 10–3 C m–2 (assumed to be of
the order of unity in liquid crystals), i.e., µpβ ~ 10–20 J,
the rotation viscosity γ ~ 10–1 Pa s ~ 1 Poise (assumed
to be of the order of unity in liquid crystals), and the
conductivity σ ~ 10–7 Ω–1 m–1 ~ 103 s–1. From the
dimensional considerations, we can conclude roughly

η
jzEz

u∆
---------–

c∆ pβΘnzEz σEz
2–

λ∆2 c∆ pβΘnzEz+
--------------------------------------------.≈=

∆ Ez( )
λσ λ2σ2 λσ c pβΘ( )2++

cλ pβΘ
------------------------------------------------------------- nzEz( ).≈

pβ
2
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that the coefficient a in the expected relation ∆ = aΘ2 is
of the order ε, i.e., ∆ ~ εΘ2; the coefficient b is of the
order (εl3)–1, i.e., ab ~ l–3 ~ 1024 m–3; the coefficient c is
of the order c ~ (τεl3)–1, where τ is a certain relaxation
time that probably admits the estimate τ ~ γl3/ε, i.e.,
ac ~ (ε/γl6); the parameter v has the dimension [energy
density]1/2, i.e., v ~ r(ε/l3)1/2, where r is a factor charac-
terizing a small part of chiral interactions with respect
to the total energy of intermolecular interactions.

Thus, we obtain the estimate

(20)

which implies that for a typical value Θ ~ 10–1, we have
Eth ~ 106 V m–1, which is close to the membrane param-
eter [10]. From Eq. (10), we obtain the estimate

(21)

where v is measured in J1/2 m–3/2. Thus, if the motor
stops when the current flow and the angular rotation
stop simultaneously, we obtain v ~ 10–4 J1/2 m–3/2 from
Eqs. (16), (20) and (21). Because (ε/l3)1/2 ~ 102 J1/2 m–3/2,
the factor r is of the order r ~ 10–6. Because vEth ~
10 J m–3 ~ 102 erg/cm3 and γ ~ 1 Poise, we obtain the
order value of Ωz as

, (22)

which is also comparable with the measured values [6].
It was also shown in [6] that, when ATP is absent, there
is no rotary motion apart from the Brownian fluctua-
tions (a few turns in either direction). Therefore, the
obtained estimates do not look fantastic, they can
explain some experimental facts.

No doubt, the problem of molecular motors in bio-
physical objects is very important and very compli-
cated. It opens many possibilities for the research by
various experimental methods and by physical model-
ing. The present paper proposes a physical model and
the description of a rotary (F1-ATPase) motor type avoid-
ing the purely biological complexity. Our approach is
based on the knowledge of the structure and properties
of liquid-crystalline substances including the structure
of ultrathin films, polarization properties of chiral
materials, and the relations between dynamics of struc-

Eth

c∆ pβΘ
σ

----------------- 109Θ3 V m 1– ,∼ ∼

Eth

b∆µpβΘ
v

--------------------- 104Θ3

v
--------------- J1/2 m 3/2– 105Θ3

v
--------------- V m 1– ,∼ ∼ ∼

Ωz

vEth

γ
----------- 102 s 1–∼ ∼
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tural parameters and ionic currents in films. We have
determined:

(i) general symmetry principles for the operation of
these motors using the polar and chiral properties of the
molecular system under consideration, the order
parameter for this molecular system being defined;

(ii) general relationships between ionic currents
across the membrane and the velocity characterizing
the dynamics of the order parameter;

(iii) relationships between generalized forces induc-
ing the motor, including viscous friction forces
between the motor and the surrounding solvent and the
free energy change per consumed “fuel” molecule, and
generalized currents, including the above-mentioned
velocity and the consumption rate of fuel molecules;

(iv) basic macroscopic parameters of the motor and
the relationships between them. This may explain the
observed action of the motor.
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support from Russian Foundation for Basic Research
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Abstract—Large entropy fluctuations in a nonequilibrium steady state of classical mechanics are studied in
extensive numerical experiments on a simple two-freedom model with the so-called Gauss time-reversible ther-
mostat. The local fluctuations (on a set of fixed trajectory segments) from the average heat entropy absorbed in
the thermostat are found to be non-Gaussian. The fluctuations can be approximately described by a two-Gaus-
sian distribution with a crossover independent of the segment length and the number of trajectories (“parti-
cles”). The distribution itself does depend on both, approaching the single standard Gaussian distribution as any
of those parameters increases. The global time-dependent fluctuations are qualitatively different in that they
have a strict upper bound much less than the average entropy production. Thus, unlike the equilibrium steady
state, the recovery of the initial low entropy becomes impossible after a sufficiently long time, even in the largest
fluctuations. However, preliminary numerical experiments and the theoretical estimates in the special case of
the critical dynamics with superdiffusion suggest the existence of infinitely many Poincaré recurrences to the
initial state and beyond. This is a new interesting phenomenon to be further studied together with some other
open questions. The relation of this particular example of a nonequilibrium steady state to the long-standing
persistent controversy over statistical “irreversibility”, or the notorious “time arrow”, is also discussed. In con-
clusion, the unsolved problem of the origin of the causality “principle” is considered. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION: EQUILIBRIUM VS. 
NONEQUILIBRIUM STEADY STATE

Fluctuations are an inseparable part of statistical
laws. This has been well known since Boltzmann. What
is apparently less known are the peculiar properties of
rare big fluctuations (BF) as different from, and in a
sense even opposite to, those of small stationary fluctu-
ations. In particular, the former can be perfectly regular
on the average, symmetric in time with respect to the
fluctuation maximum, and can be described by simple
kinetic equations rather than by a sheer probability of
irregular “noise”. Even though big fluctuations are very
rare, they may be important in many various applica-
tions (see, e.g., [1] and references therein). In addition,
the correct understanding and interpretation of the
properties and origin of big fluctuations may help (at
last!) to settle a strangely persistent controversy over
statistical “irreversibility” and the notorious “time
arrow”.

In the big fluctuations problem, one must distin-
guish at least two qualitatively different classes of the
fundamental (Hamiltonian, nondissipative) dynamical
systems: those with and without the statistical equilib-
rium, or the equilibrium steady state (ES).

In the former (simpler) case, a big fluctuation con-
sists of the two symmetric parts: the rise of a fluctuation

¶This article was submitted by the author in English.
1063-7761/01/9201- $21.00 © 20179
followed by its return, or relaxation, back to ES (see
Fig. 1 below). Both parts are described by the same
kinetic (e.g., diffusion) equation, the only difference
being in the sign of time. This relates the time-symmet-
ric dynamical equations to the time-antisymmetric
kinetic (but not statistical!) equations. The principal
difference between the two, sometimes overlooked, is
that the kinetic equations are widely understood as
describing the relaxation only, i.e., the increase of the
entropy in a closed system, whereas they actually do so
for the rise of the big fluctuation as well, i.e., for the
entropy decrease. All this was qualitatively known
already to Boltzmann [2]. The first simple example of a
symmetric big fluctuations was considered by
Schrödinger [3]. A rigorous mathematical theorem for
the diffusion (slow) kinetics was proved by Kolmog-
orov in 1937 in the paper entitled “Zur Umkehrbarkeit
der statistischen Naturgesetze” (“Concerning the
Reversibility of Statistical Laws in Nature”) [4] (see
also [5]). Regrettably, the principal Kolmogorov theo-
rem still remains unknown to participants of the heated
debate over “irreversibility” (see, e.g., “Round Table on
Irreversibility” in [6]) and to the physicists actually
studying such big fluctuations [1].

By now, there exists the well developed ergodic the-
ory of dynamical systems (see, e.g., [7]). In particular,
it proves that the relaxation (correlation decay, or mix-
ing) proceeds eventually in both directions of time for
almost any initial conditions of a chaotic dynamical
001 MAIK “Nauka/Interperiodica”
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system. However, the relaxation must not always be
monotonic, which simply means a big fluctuation on
the way, depending on the initial conditions. To elimi-
nate this apparently confusing (to many) “freedom,”
one can take a different approach to the problem: to
start at arbitrary initial conditions (most likely corre-
sponding to ES) and see the big fluctuation dynamics
and statistics.

At this point, it is essential to recall that the systems
with ES allow for very simple models in both the theo-
retical analysis and numerical experiments (of which
the latter are even more important). In this paper, we
use one of the most simple and popular models speci-
fied by the so-called Arnold cat map (see [8, 9])

(1.1)

that is a linear canonical map on the unit torus. It has no
parameters and is chaotic and even ergodic. The rate of
the local exponential instability, the Lyapunov expo-
nent

implies a fast (ballistic) kinetics with the relaxation
time tr ~ 1/λ ≈ 1.

p p x mod 1,+=

x x p mod 1,+=

λ 3/2 5/2+( )ln 0.96,= =

Equilibrium

Anti-diffusion Diffusion

exp(2S)

1.2

1.0

0.8

0.6

0.4

0.2

0
–500 –400 –300 –200 –100 0 100 200 300 400 500

t – ti

Fig. 1. Boltzmann’s diffusive fluctuations in model (1.2)
with the parameter C = 15: the square of the phase space
area occupied by N independent trajectories (“particles”) vs.
the time (the number of map iterations t – ti) counted from
the instant ti of fluctuation maximum, or of minimal Γfl, for
each of the Nfl superimposed big fluctuations separated by
the average period P = 〈(ti – ti – 1)〉 . Straight lines show the
expected dependence for anti-diffusion and diffusion (see
text). Two slightly different curves correspond to N = 1
(grey) and N = 4 (black) with Γfl = 0.0001 and 0.1: Nfl =
3352 and 2851; P = 29863 and 35110, respectively.
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A minor modification of this map,

(1.2)

where C @ 1 is the circumference of the phase space
torus admits a slow (diffusive) relaxation with

where Dp = 1/12 is the diffusion rate in p. A convenient
characteristic of the big fluctuation size is the rms phase
space volume (area) Γ(t) = σpσx for a group of N trajec-
tories. In the ergodic motion at equilibrium, we have

In what follows, we use the dimensionless measure

and omit the tilde.
The entropy S can be defined by the relation

(1.3)

with S = 0 at equilibrium. This definition is not identical
to the standard one (via the (coarse-grained) distribu-
tion function) but it is quite close to the latter if Γ ! 1,
i.e., for a big fluctuation, which is what we need in the
problem under consideration. A great advantage of def-
inition (1.3) is that the computation of S does not
require very many trajectories as does the distribution
function. In fact, even a single trajectory is sufficient!

A finite number of trajectories used for calculating
the phase-space volume Γ is a sort of the coarse-grained
distribution, as required in relation (1.3), but with a free
bin size that can be arbitrarily small. The detailed study
of big fluctuations in this class of ES models will be
published elsewhere [10]. Here, we briefly consider the
example shown in Fig. 1.

The data were obtained from running 4 and only 1 (!)
trajectories for a sufficiently long time in order to col-
lect sufficiently many big fluctuations; they are super-
imposed in Fig. 1 to clean up the regular big fluctuation
from a “podlike trash” of stationary fluctuations. The
size of big fluctuation chosen was approximately fixed
by the condition Γ(t) ≤ Γfl. In spite of the inequality, the
mean values 〈Γ (ti)〉  = 0.000033 and 0.069 are close (by
the order of magnitude) to the fixed Γfl values in Fig. 1.
We note that for a slow diffusive kinetics, we have

and σx remains constant.
The probability of big fluctuations can be character-

ized by the average period between them, for which a
very simple estimate

(1.4)

p p x
1
2
--- mod  C,–+=

x x p mod 1,+=

tr C2/4Dp,∼

Γ Γ0 C/12.= =

Γ̃ Γ /Γ0 Γ=

S t( ) Γ t( ),ln=

2S( )exp σp
2 p2〈 〉∝ ∝

P 3Γ fl
N– 3 NS fl–( )exp≈ ≈
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is in a good agreement with data in Fig. 1 (upon includ-
ing the empirical factor 3).

In the example presented here, the position of all big
fluctuations in the phase space is fixed as xfl = 1/2 and
pfl = C/2. If one lifts this restriction, the probability of
big fluctuation increases by the factor 1/Γfl, or by
decreasing N by one (N  N – 1), due to the arbitrary
position of a big fluctuation in phase space. In the
former case, a chain of big fluctuations is precisely the
well known Poincaré recurrence. It is less known that
the latter are a particular and specific case of big fluctu-
ations, and the recurrence of a trajectory in a chaotic
system is determined by the kinetics of the system. The
recurrence of several (N > 1) trajectories can also be
interpreted as the recurrence of a single trajectory in N
uncoupled freedoms.

As can be seen from Fig. 1, irregular deviations
from a regular big fluctuation are rapidly decreasing
with the entropy S  Sfl. It may seem that the motion
becomes regular near big fluctuation maximum, hence
the term “optimal fluctuational path” [1]. In fact, the
motion remains diffusive down to the dynamical scale,
that is, |∆p | ~ 1 independently of parameter C in
model (1.2).

Big fluctuations are not only perfectly regular by
themselves but also surprisingly stable against any per-
turbations, both regular and chaotic. Moreover, the per-
turbations do not need to be small. At first glance, this
looks very strange in a chaotic, highly unstable dynam-
ics. The resolution of this apparent paradox is that the
dynamical instability of motion affects the big fluctua-
tion time instant ti only. The big fluctuation shape is
determined by the kinetics that can have an arbitrary
mechanism, ranging from a purely dynamical one, as in
model (1.2), to a completely noisy (stochastic, cf.
Fig. 1 above and Fig. 4 in [1]). As a matter of fact, the
fundamental Kolmogorov theorem [4] is specifically
related to the latter case but remains valid in a much
more general situation. The surprising stability of big
fluctuations is similar to the full (less known) robust-
ness property of the Anosov (strongly chaotic) systems
[11], whose trajectories are only slightly deformed
under a small perturbation (for discussion, see [12]).
From a different perspective, this stability can be inter-
preted as a fundamental property of the “macroscopic”
description of big fluctuations. In such a simple few-
freedom system similar to (1.2), the term “macro-
scopic” refers to the averaged quantities σ, Γ, S, and
similar ones. However, a somewhat confusing result is
that the “macroscopic” stability comprises not only the
relaxation of big fluctuations but also its rise, because
both parts of big fluctuation always appear together.
This may lead to another misunderstanding that the
fluctuation and relaxation probabilities are the same,
which is certainly wrong. The point is that the ratio of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
both (unequal!) probabilities is determined by the
crossover parameter

(1.5)

where the latter expression refers to model (1.2) and the
inequality determines the region of a big fluctuation
where its waiting time is much longer than that of its
immediate relaxation from a nonequilibrium “macro-
scopic” state (for further discussion, see Section 6 in
what follows).

2. A NEW CLASS OF DYNAMICAL MODELS: 
WHAT ARE THEY FOR?

A relatively simple picture of big fluctuations in sys-
tems with the equilibrium steady state is well under-
stood by now, although not yet well known. To Boltz-
mann, this picture was the basis of his fluctuation
hypothesis for our Universe. Again, as is well under-
stood by now, this hypothesis is entirely incompatible
with the present structure of the Universe, because it
would immediately imply the notorious “heat death”
(see, e.g., [13]). For this reason, one may even term
such systems the heat death models. Nevertheless, they
can be and actually are widely used in the description
and study of local statistical processes in thermodynami-
cally closed systems. The latter term means the absence of
any heat exchange with the environment. We note, how-
ever, that for exponentially unstable motion, the only
dynamically closed system is the whole Universe. In par-
ticular, this excludes the hypothetical “velocity reversal,”
which is still popular in debates over “irreversibility”
occurring since Loschmidt (for discussion, see, e.g.,
[12, 14] and Section 6 in what follows).

In any event, dynamical models with ES do not tell
us the whole story of either the Universe or even a typ-
ical macroscopic process therein. The principal solu-
tion of this problem, unknown to Boltzmann, is quite
clear by now, namely, the “equilibrium-free” models
are wanted. Various classes of such models are inten-
sively studied today. Moreover, the celebrated cosmic
microwave background tells us that our Universe was
born already in the state of a heat death; fortunately to
us, however, it became unstable because of the well-
known Jeans gravitational instability [15]. This resulted
in developing a rich variety of collective processes, or
synergetics, the term recently introduced or, better to
say, put in use by Haken [16]. The most important
peculiarity of this collective instability is in that the
total overall relaxation (to somewhere?) with ever
increasing total entropy is accompanied by an also
increasing phase space inhomogeneity of the system,
particularly in temperature. In other words, the whole
system as well as its local parts become more and more
nonequilibrium to the extent of the birth of a secondary
dynamics that can be, and sometimes is, as perfect as,

Rcro S fl( ) P
tr

---
3 NS fl–( )exp

C2
------------------------------- @ 1,≈=
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for example, the celestial mechanics (for general dis-
cussion see, e.g., [17, 18, 12]).

We stress that all these inhomogeneous nonequilib-
rium structures are not big fluctuations as in ES sys-
tems, but are a result of regular collective instability,
and therefore, they are immediately formed under a
certain condition. In addition, they are typically dissi-
pative structures in Prigogine’s terms [19] because of
the energy and entropy exchange with the infinite envi-
ronment. The latter is the most important feature of
such processes, and at the same time the main difficulty
in studying the dynamics of those models both theoret-
ically and in numerical experiments, which are so much
simpler for the ES systems. Usually, the investigations
in this field are based upon statistical laws omitting the
underlying dynamics from the beginning.

Recently, however, a new class of dynamical models
has been developed by Evans, Hoover, Morriss, Nosé,
and others [20, 21]. Some researchers still hope that
these new models will help to resolve the “paradox of
irreversibility.” A more serious reason for studying
these models is that they allow one to relatively simply
include the infinitely dimensional “thermostat,” or
“heat bath” into a model with a few degrees of freedom.
This greatly facilitates both numerical experiments and
the theoretical analysis. In particular, a derivation of the
Ohm law within this model was presented in [22],
thereby solving “one of the outstanding problems of
modern physics” [23] (for this peculiar dynamical
model only!). The authors of [22] claim that “At
present, no general statistical mechanical theory can
predict which microscopic dynamics will yield such
transport laws….” In my opinion, it would be more cor-
rect to inquire which of many relevant models could be
treated theoretically, and especially in a rigorous way
as was actually done in [22].

The zest of new models is the so-called Gauss ther-
mostat, or heat bath (GHB). In the simplest case, the
motion equations of a particle in this bath are [20–22]:

(2.1)

where F is a given external force and ζ stands for the
“friction coefficient.” The first peculiarity of this “fric-
tion” is in its explicit time reversibility contrary to the
“standard friction.” The price for reversibility is the
strict connection between the two forces, the friction
and the external force F. Moreover, and this is most
important, the connection is such that

is the exact motion invariant,

(2.2)

The first of the two identical terms represents the
mechanical work of the external regular force F, the

dp
dt
------ F ζp, ζ–

F p⋅
p2

-----------,= =

p 2 p0
2 const= =

d
dt
----- p 2

2
-------- p

dp
dt
------⋅ p F F p.⋅–⋅= =
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spring of the external energy, and the second one
describes the sink of energy into GHB. Thus, asymptot-
ically as t  ∞, the model describes a steady state
only. This is the main restriction of such models. The
particle itself does only immediately transfer the
energy without any change of its own because of the
above constraint

For a single degree of freedom, the latter would lead
to the trivial solution p = const. Therefore, at least two
degrees of freedom are required to allow for a variation
of vector p in spite of the constraint. For many interact-
ing particles, the constraint

is less stringent, hence the reference to the Gauss “Prin-
ciple of Least Constraint” [24] for deriving the revers-
ible friction in Eq. (2.1). In the present paper, the sim-
plest case of N noniteracting particles with two degrees
of freedom is considered only as in [22].

The next important point is a special form of the
energy in GHB, which is the heat. In true heat bath it is
given by the chaotic motion of infinitely many parti-
cles. This is not the case in GHB, and one needs an
additional force in Eq. (2.1) to make the particle motion
chaotic, at the same time maintaining the constraint.
Whether such an external to GHB chaos is equivalent to
the chaos inside the true heat bath, at least statistically,
remains an open question, but it seems plausible from
the physical viewpoint [22] (see also [25]). If so, the
model describes the direct conversion of mechanical
work into heat Q, and hence the permanent entropy pro-
duction. The calculation of the latter is not a trivial
question (for discussion, see [20–22]). In our opinion,
the simplest way is to use the thermodynamic relation

(2.3)

where T =  is the effective temperature [22]. Because
the input energy is of zero entropy (the formal temper-
ature Tin = ∞), relation (2.3) determines the entropy pro-
duction in the whole system (particles + GHB). We
note that in Eq. (2.3), as well as throughout this paper,
the entropy S is understood to be determined in the
standard way via a coarse-grained distribution func-
tion.

On the other hand, the usual interpretation of GHB
models is quite different [20–22]. Namely, the entropy
production in Eq. (2.3) is expressed via the Lyapunov
exponents λi of the particle motion,

(2.4)

where SGHB and Sp are the respective entropy of GHB
and of the ensemble of particles. An unpleasant feature

p 2 const.=
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-------,
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of this relation is in that the latter equality holds for the
Gibbs entropy only, which is conserved in the Hamilto-
nian system modeled by the GHB. As a result, the
entropy of the total system (particle + GHB) remains
constant (the second equality in Eq. (2.4)), which liter-
ally means no entropy production at all! Even though
this interpretation can be formally justified, it seems to
us to be physically misleading. In our opinion, the
application of Lyapunov exponents would be better
restricted to characterization of the phase-space fractal
microstructure of the particle motion (which is really
interesting), retaining the universal coarse-grained def-
inition of the entropy (cf. ES models in Section 1).

As mentioned above, the GHB models describe the
nonequilibrium steady states only. Moreover, any col-
lective processes of interacting particles are also
excluded, among them those responsible for the very
existence of regular nonequilibrium processes, in par-
ticular, of field F in model (2.1). In a more complicated
Nosé–Hoover version of GHB models, these severe
restrictions can be partly, but not completely, lifted.
Whether this is sufficient for the inclusion of collective
processes remains, to my knowledge, an open question.

In any event, even the simplest GHB model like
(2.1) represents a qualitatively different type of statisti-
cal behavior compared to that in the ES models. The
origin of this principal difference is twofold: (i) the
external “inexhaustible” spring of energy, if only intro-
duced “by hand”, and (ii) a heat sink of infinite capacity
that excludes any equilibrium.

In conclusion of this section, we precisely formulate
the model considered in the main part of the paper.
Choosing the model for numerical experiments, I fol-
low my favored the “golden rule”: construct the model
as simple as possible but not simpler. In the problem
under consideration, the models already studied are
mainly based on the well-known and well-studied
“Lorentz gas” that is a particle (or many particles) mov-
ing through a set of fixed scatterers. A new element is a
constant field accelerating the particles. Actually, the
Lorentz model becomes the famous Galton Board [26],
the very first model of chaotic motion, which was
invented by Galton for another purpose, and which has
not been studied in detail until recently [20–22]. Our
model is still simpler, and is specified by the two maps:
(i) the 2D Arnold cat map (1.1) to chaotize particles,
and (ii) the 1D map version of Eq. (2.1),

(2.5)

where p1 = p – p0 and the parameter in Eq. (2.1) is p0 =
1/2. For |F| < 1/4, the momentum p remains within the
unit interval (0 ≤ p ≤ 1) as in map (1.1). The principal
relation (2.3) for the entropy reduces also to the addi-
tional 1D map,

(2.6)

where the entropy unit is changed by the factor 2 for
simplicity. Because S is the entropy produced in GHB,

p1 p1 F 4F p1
2,–+=

S S p1 F+( )2 p1
2–+ S 2 p1F F2,+ += =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the latter map implicitly includes also the motion in the
second degree of freedom for each of the noninteract-
ing particles because of the Gauss constraint that guar-
antees the immediate transfer of energy to GHB.

In numerical experiments considered below, an
arbitrary number N of noninteracting particles (trajec-
tories) with random initial conditions was used. In this
case, the Gauss constraint remains unchanged, and all
the trajectories are run simultaneously.

3. NONMONOTONIC ENTROPY PRODUCTION: 
LOCAL FLUCTUATIONS

The statistical properties of entropy growth in the
model chosen are determined by the first two moments
of the p1 distribution function. In the limit as t  ∞
and/or N  ∞, they are given by (per iteration and per
trajectory)

(3.1)

where averaging is done over both the motion time t
(now the number of the iterations of the map) and N
noninteracting particles (particle trajectories). In com-
bination with Eq. (2.6), the first moment in Eq. (3.1)
implies the linear growth of the average entropy (per
trajectory),

(3.2)

In this section, the statistics of local fluctuations is
considered. A similar problem was studied in [27] for a
more realistic model with many interacting particles. In
the present model, the local fluctuation is defined as
follows. The total motion time t f is subdivided into
many segments of equal duration t1. On each segment
i = 1, …, t f /t1, the total change of the entropy Si for all
N trajectories is calculated using Eq. (2.6) and repre-
sented as the dimensionless random variable

(3.3)

where

(see Eq. (3.2)), and the rms fluctuation σ is given by a
simple relation (see Eqs. (2.6) and (3.1))

(3.4)

This relation neglects all the correlations, which
implies the standard Gaussian distribution

(3.5)
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An example of the actual distribution function is
shown in Fig. 2 for a single trajectory with the segment
length t1 = 10, 25, 100 iterations, and the number of
segments up to 107. The cap of the distribution is close
to the standard Gauss form (3.5) (see also Fig. 3) but
both tails clearly show a considerable enhancement of
fluctuations depending on both t1 and N (in other exam-
ples, see below).

The shape of the tails is also Gaussian but the width
is larger the smaller t1 and N. This is especially clear in
a different representation of the data in Fig. 3, where
the ratio of the empirical distribution to the standard
Gauss one is plotted as a function of the Gaussian vari-

able SG = /2. Each run with particular values of N
and t1 is represented by two slightly different lines for
both signs of Sσ. In addition to fluctuations, the differ-
ence apparently involves some asymmetry of the distri-
bution with respect to Sσ = 0. The origin of this asym-
metry is not completely clear as yet. A sharp crossover
between the two Gaussian distributions at SG ≈ 3 is
nearly independent of the parameters N and t1, as is the
top distribution below crossover. On the contrary, the
tail distribution essentially depends on both parameters
in a rather complicated way. The origin of the differ-
ence between the two Gaussian distributions apparently
lies in dynamical correlations. In spite of a fast decay
(see Section 1), the correlation in Arnold map (1.1)
does affect somehow the big entropy fluctuations
except in the limiting case N @ t1 (two lower lines in
Fig. 3), where the correlations vanish because of ran-
dom and statistically independent initial conditions of
many trajectories.

Sσ
2

–6
10–6

Sσ

(2π)1/2 f(Sσ)

–4 –2 0 2 4 6

10–5

10–4

10–3

10–2

10–1

100

Fig. 2. Distribution function f (Sσ) of local fluctuations in
the nonequilibrium steady state with F = 0.01. Dashed line
is the standard Gauss law (3.5); points represent the results
of numerical experiments with N = 1 and t1 = 10, 25, 100.
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For any fixed parameters N and t1, the fluctuations
are bounded (F ! 1),

(3.6)

which follows from Eqs. (2.6), (3.3), and (3.4). This is
clearly seen in Fig. 3 for minimal Nt1 = 5. If only force
F is fixed instead, the relative entropy fluctuations

(3.7)

are also restricted but can be arbitrarily large for small
F and, moreover, can have either sign. This implies a
nonmonotonic growth of the entropy at the expense of
the segments with Si < 0.

The probability (in the number of trajectory seg-
ments) of extremely large fluctuations, Eqs. (3.6) and
(3.7), is exponentially small (see Eq. (3.5) and below).
However, the probability of the fluctuations with a neg-
ative entropy change (Si < 0) (without time reversal!) is
generally not small at all, reaching 50% as τ  0 (for
arbitrary N and t1). In principle, this is known, at least
for the systems with an equilibrium steady state (Sec-
tion 1). Nevertheless, the first, to my knowledge, direct
observation of this phenomenon in a nonequilibrium
steady state [27] has so much staggered the authors that
they even entitled the paper “Probability of Second
Law violations in Shearing Steady State”. In fact, this
is simply a sort of peculiar fluctuations that are big not
so much with respect to their size but primarily to their
probability (cf. discussion in Section 1). However, the
important point is that all those negative entropy fluctu-
ations (transforming the heat into work) are randomly

Sσ 3Nt1,<

Si

Si〈 〉
--------- 1

F
---±≈

0

100

Sσ
2 /2

f(Sσ)/G(Sσ)

2 4 6 8 10

101

Fig. 3. The ratio of the distribution f (Sσ) to the standard
Gauss law (3.5) (broken lines). The values of the parameter

N/t1 from top to bottom are: 1/5 ( /2 < 7.5, see text); 1/10;

1/100; 10/10, and 100/1. The oblique dotted straight line
demonstrates the Gaussian shape of the tails.

Sσ
2
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scattered among the others of positive entropy, and for
making any use of the former a Maxwell’s demon is
required who is known by now to be well in a “peaceful
coexistence” with the Second Law.

A Gaussian distribution of the entropy fluctuations
shifted with respect to Si = 0 in a nonequilibrium steady
state first observed in [27] was also theoretically
explained there in terms of the Lyapunov exponents
(see Eq. (8) in [27]). This was the first form of what is
now called the “Fluctuation Theorem” (see, e.g.,
D. Ruelle in [6, p. 540]). In my opinion, a more physi-
cal representation of this theorem would be the ratio of
the two moments in Eq. (3.4). In any representation, the
theorem essentially depends on both the underlying
dynamics and the type of fluctuations considered (see
Sections 4 and 5).

Another interesting limit is t1  t f  ∞ (a single
segment) [27] with τ  0, which is possible if F 
0 too. In this case, the probability of zero entropy
change in the entire motion also approaches 50%.
However, the probability of any negative entropy fluc-
tuation vanishes (see Eq. (3.3)). An interesting question
is whether there exists some intermediate region of
parameters where the latter probability remains finite.
In other words, are the Poincaré recurrences to negative
entropy change Si < 0 possible in a nonequilibrium
steady state as these are in the equilibrium (Section 1)?
The answer to this question is given by the statistics of
the global fluctuations.

4. NONMONOTONIC ENTROPY PRODUCTION: 
GLOBAL FLUCTUATIONS

The definition of the global fluctuations is similar to,
yet essentially different from that of the local fluctua-
tions in the previous section. Namely (cf. Eqs. (3.3) and
(3.4)), the principal dimensionless random variable
Sσ(t) now explicitly depends on time,

(4.1)

where S(t) is calculated from Eq. (2.6), S(0) = 0, 〈S(t)〉 =
NtF2 ≡ τ (see Eq. (3.2)), and the rms fluctuation σ is
given by the same relation (3.4) with a new time vari-
able τ,

(4.2)

In other words, the global fluctuations are described as
a diffusion with the constant rate

(4.3)

The global fluctuations can also be viewed as a con-
tinuous time-dependent deviation of the entropy from
its average growth unlike the local fluctuations in the
ensemble of fixed trajectory segments (Section 3).
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Now, the primary goal is to find whether the entropy
can reach negative values S(t) < 0 as t  ∞. As was
discussed in the previous section, this is possible at
some finite segments of the trajectory with the proba-
bility rapidly decreasing (but always finite) as the seg-
ment length grows.

In Fig. 4, three examples of global fluctuations are
shown in a slightly different representation (cf. Eq. (4.1))

(4.4)

chosen in order to always keep the most important bor-
der S(τ) = 0 in front of one’s eyes (with Sg(τ) = –1, the
horizontal line in Fig. 4). Eventually, all trajectories
converge to the average entropy growth (the horizontal
line Sg = 0 in Fig. 4). During the initial stage of diffu-
sion, the probability of negative entropy is roughly
50%, similar to the local fluctuations (Section 3). How-
ever, the situation cardinally changes at t * 1, with all
the trajectories moving away from the border S = 0.
Moreover, the relative distance to the border with
respect to the fluctuation size increases indefinitely.

The fluctuation size is characterized by two param-
eters. The first one is the well-known rms dispersion σ,
Eq. (4.2) (two dashed curves in Fig 4), which estimates
the fluctuation distribution width. In the problem under
consideration, the most important is the second charac-
teristic, σb (two solid curves in Fig. 4), which sets the
maximum size (the upper bound) of the diffusion fluc-
tuations, and therefore insures against the recurrence

Sg τ( ) S τ( )
τ

---------- 1–=

S < 0

10–3 10–2 10–1 100 101 102
–2

–1

0

1

2

τ

Sg

Fig. 4. Time dependence of the reduced global fluctuations
Sg(τ), Eq. (4.4): three sets by N = 10 trajectories with differ-
ent initial conditions but the same initial entropy S(0) = 0
and F = 0.01. Horizontal solid line Sg = 0 represents the
average entropy growth. The lower solid line S = 0 is the
border between positive and negative entropy. A pair of
dashed curves corresponds to the standard rms fluctuation
σ, Eq. (4.2), and two solid curves represent the maximum
diffusion fluctuations σb, Eq. (4.5).
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into the region S < 0 in a sufficiently long time. The
ratio of the two sizes

(4.5)

is given by the famous Khinchin law of iterated loga-
rithms [28].

We emphasize again that the principal peculiarity
and importance of the border σb is that it characterizes
a sharp drop of the fluctuation probability down to zero
(in the limit as τ  ∞). In other words, almost any tra-
jectory approaches infinitely many times arbitrarily
close to this border from below, but the number of bor-
der crossings remains finite. In Fig. 4, this corresponds
to the eternal confinement of trajectories in the gap
between the two solid curves.

This surprising behavior of random trajectories is
well known to mathematicians but, apparently, not to
physicists. In Fig. 5 several examples of the fluctuation
distributions are shown for illustration of that impene-
trable border.

In the Khinchin theorem, factor A in Eq. (4.5) is
irrelevant and is set to A = 1. This is because the theo-
rem can be proved in the formal limit as τ  ∞, only
as most theorems in the probability theory (as well as in
the ergodic theory, by the way). However, in numerical
experiments on a finite time, even if arbitrarily large,
one needs a correction to the limit expression. In addi-
tion, it would be desirable to look at the border over the
whole motion down to the dynamical time scale deter-
mined by the correlation decay. In the model under con-
sideration. it is of the order of the relaxation time tr ~ 1

Rσ τ( )
σb

σ
----- 2 Aτ( )lnln= =

0 0.4

100

|Sσb
|

0.8 1.2 1.6 2.0

102

104
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108

Fig. 5. Histogram of the global fluctuations in the number of
entries per bin of the width 0.02: F = 0.01; N = 100; Rσ ≈ 3.

From bottom to top in the left-most part of figure: τ = 105

(dashed line); 106 (two solid lines, different initial condi-
tions); 107 (circles); the total motion time t = 100τ itera-
tions. For comparison, the smooth dashed line shows
unbounded Gaussian distribution (4.7) for τ = 106.
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(see Section 1). The additional parameter A can be fixed
by the condition

(4.6)

for minimal t = 1 on the dynamical time scale of the dif-
fusion. It then follows from Eq. (4.5) that

which is used in Figs. 4 and 5. The condition assumed
is, of course, somewhat arbitrary but the dependence on
A remains extremely weak provided τ1 ! 1.

The histogram in Fig. 5 is given in the absolute num-
bers of trajectory entries into bins in order to graphi-
cally demonstrate a negligible number of exceptional
crossings of the border. The exact formulation of the
Khinchin theorem admits a finite number of crossings
in infinite time. Actually, all those “exceptions” are
concentrated within a relatively short initial time inter-
val τ ~ 1 (for the accepted A value, see Fig. 4).

The distribution of entropy fluctuations between the
borders is characterized by its own big fluctuations due
to a large time interval (~τ) required for crossing the
distribution region (see Eq. (4.3)). The spectacular
precipice of many orders of magnitude is reminiscent
of a diffusion “shock wave” cutting away the Gaussian
tail. The unbounded Gauss curve is also shown in Fig. 5
by the smooth dashed line.

In terms of the variable  = Sσ/Rσ, the standard
Gauss law is no longer a stationary distribution (cf.
Eq. (3.5)),

(4.7)

Both the probability density at the border  = 1 and
the integral probability beyond that are slowly decreas-
ing ∝ 1/ln(Aτ). The “shock wave” decays but still con-
tinues to “hold back” the trajectories.

Thus, unlike unrestricted entropy fluctuations out of
the equilibrium steady state (Section 1), the strictly
restricted fluctuations in the nonequilibrium steady
state are well separated, in a short time, from the nega-
tive-entropy region, separated in a large excess. that
grows in time. In other words, the Poincaré recurrences
to any negative entropy quickly and completely disap-
pear leaving the system with ever increasing, even if
nonmonotonically, entropy.

As the nonequilibrium steady state involves a heat
bath of the infinite phase-space volume (or its nice sub-
stitute, the Gauss heat bath), the Poincaré recurrence
theorem is not applicable. However, the “anti-recur-
rence” theorem is not generally true either. For exam-
ple, the entropy repeatedly crosses the line S = τ of the
average growth in spite of the infinite heat bath, yet it
does not do so for the line S = 0 of the initial entropy.
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We note that the new ratio  〈S(t)〉  (cf. Eq. (3.4))
represents another “Fluctuation Theorem” as compared
to the known one mentioned in Section 3.

5. BIG ENTROPY FLUCTUATIONS
IN CRITICAL DYNAMICS

The strict restriction of the global entropy fluctua-
tions in a nonequilibrium steady state considered in the
previous section is a result of the “normal,” Gaussian,
diffusion of the entropy with a constant rate (4.3) and
with the surprising impenetrable border (4.5). In turn,
this is related to a particular underlying dynamics of
model (1.1) with very strong statistical properties. We
note that the border (4.5) has a statistical nature because
it is much less than the maximum dynamical fluctua-
tion (3.7).

However, it is well known by now that the homoge-
neous diffusion can in general be “abnormal” in the
sense that the diffusion rate depends on time,

(5.1)

where cD is the so-called critical diffusion exponent.
The term “critical” refers to a particular class of such
systems with a very intricate and specific structure of
the phase space (see, e.g., [29] and references therein).
The “normal” diffusion corresponds to cD = 0, while a
positive cD > 0 represents a superfast diffusion with the
upper bound cD = +1, the maximum diffusion rate pos-
sible for a homogeneous diffusion. The latter is, of
course, the most interesting case for the problem under
consideration here. A superslow diffusion for a nega-
tive cD < 0 is also possible with the limit cD = –1, which
means the absence of any diffusion for cD < –1. An
interesting example of a superslow diffusion with cD =
–1/2 was considered in [30]. Besides a particular appli-
cation to the plasma confinement in magnetic field, the
example is of a special interest because this slow diffu-
sion is the result of the time-reversible diffusion of par-
ticles in a chaotic magnetic field. For other examples
and various discussions of abnormal diffusion, see [31].

A number of dynamical models exhibiting the
superfast diffusion are known including the limiting
case cD = 1 [29, 32]. Interestingly, a simple simulation
of the abnormal diffusion is possible by a minor modi-
fication of the model under consideration. It concerns
the additional 1D map (2.6) only, which now becomes

(5.2)

where the new variable ts is defined by a simple relation

(5.3)

with s being the distance from any of the two borders
p1 = ±0.5 homogeneously distributed within the inter-
val (0 < s < 1). The quantity ts > 1 describes the sticking
of a trajectory in the “critical structure” concentrated

σb
2

D t( ) t
cD, 1– cD 1,≤ ≤∝

S S 2 p1F F2+( )ts,+=

ts s
cs–

, s 1 2 p1 ,–= =
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near s = 0. Actually, the model does not involve this
structure, however its effect is simulated by the “stick-
ing time” ts that enhances both the fluctuations and the
average entropy (5.2). In a sense, this simulation is sim-
ilar in spirit to that of the Gauss heat bath. All the prop-
erties of that sticking are described by a single parame-
ter cs, the critical sticking exponent (0 ≤ cs ≤ 1). In par-
ticular, it is directly related to the diffusion exponent cD

(see below).
The statistical properties of the abnormal diffusion

in this model are determined by the first two moments
of the ts distribution, which can be directly evaluated
from the above relations as follows. For the first
moment, we have

(5.4a)

and

(5.4b)

In the latter case the integral diverges and is determined
by the minimum s ≈ s1 ~ 1/t reached over time t that is
the total motion time in the iterations of the map. It
must be distinguished from the “physical time” in a true
model of the critical structure,

(5.5)

Similarly, the second moment is given by three rela-
tions:

(5.6a)

for the normal diffusion,

(5.6b)

in the critical case, and

(5.6c)

for the superfast diffusion.
The average entropy production is found from

Eq. (5.2) as

(5.7)

with the redefined time variable τ (cf. Eq. (3.3)). In this
section, we only consider the simplest case of a single
trajectory (N = 1).

Evaluating the superfast diffusion requires a slightly
different averaging 〈(2p1ts)2〉  (see Eq. (5.2)). However,
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it is easily verified that asymptotically as τ  ∞, the
difference with respect to Eq. (5.6c) vanishes, and one
arrives at the following estimate for the critical rms dis-
persion σcr:

(5.8a)

if 1/2 < cs < 1 (5.6c), and

(5.8b)

in the most interesting limiting case where cs = 1. The
empirical factor B ~ 1 accounts for all the approxima-
tions in the above relations.

The limit as cs  1 in Eq. (5.8a) crucially differs
from the limiting relation (5.8b). The origin of this dis-
crepancy is Eq. (5.4a). A more accurate evaluation for
cs ≈ 1 reads

(5.9)

where s1 ~ 1 is the minimum s over t iterations of the
map (cf. Eq. (5.4b)). Relation (5.4a) is therefore valid
under the condition elnt > 1 only (with e = 1 – cs), while
in the opposite limit, we have 〈ts〉  ≈ lnt as for cs = 1,
Eq. (5.4b). The crossover between the two scalings
occurs at

(5.10)

The deviation from Eq. (5.8a) is essential for a suffi-
ciently small e only.

The ratio of fluctuations to the average entropy pro-
duction is given by the reduced entropy (see Eq. (4.4))

(5.11)

where the latter expression is estimate (5.8b) for the
rms fluctuations. They are slowly decreasing with time,
and at

the rms line crosses the border Sg = –1 of zero entropy.
Afterwards, the entropy remains mainly positive. To be
more precise, the probability for a trajectory to enter
into the negative-entropy region is systematically
decreasing with time, although rather slowly. This must
be compared with the F-independent crossover τ0 = 1/3
and a rapid drop of the probability to return to S < 0 for
the normal diffusion (Section 4).
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However, there exists another mechanism of big
fluctuations, specific for the critical dynamics. Namely,
a separated individual fluctuation can be produced as
the result of a single extremely big sticking time ts over
the total motion up to the moment the fluctuation
springs up in a single map iteration. We recall that in the
present model, each sticking corresponds to just one
map iteration. The increments of dynamical variables
in this jump are obtained from Eq. (5.2) as

(5.12)

where ts @ 1 (with 2p1 ≈ 1) is assumed (a big fluctua-
tion). The reduced fluctuation is then given by

(5.13)

The maximum single sticking time over the motion
time t is, on the average,

(5.14)

Therefore, a single fluctuation (5.13) has the upper
bound

(5.15)

where an empirical factor A ~ 1 is introduced similarly
to Eq. (5.8b).

The border (5.15) considerably exceeds the rms dif-
fusion fluctuation (5.11) and, even more importantly,
the former never crosses the zero-entropy line Sg = –1.
Therefore, the critical fluctuations repeatedly bring the
system into the negative-entropy region. This is
because the upper bound (5.15) does not depend on
time τ provided that ∆τ * τ in Eq. (5.13). However, in a
chain of successive fluctuations, the values of τ in
Eqs. (5.13) and (5.14) are not generally equal. While
in the former relation it is always the total motion time
as assumed above, it must be the preceeding period of
fluctuations in Eq. (5.14): τn  Pn < τn, where n is the
serial number of fluctuations. Hence, the approach to
the upper bound (5.15) is only possible under the con-
dition Pn @ Pn – 1, which implies Pn ≈ τn. Thus, the fluc-
tuations become more and more rare with the period
growing exponentially in time. In other words, the fluc-
tuations are stationary in lnτ with a sufficiently big
mean period 〈lnP〉  ≈ 5 (see Fig. 6).

In Fig. 6, an example of several big critical fluctua-
tions in the limiting case cs = 1 is presented for five sin-
gle sufficiently long trajectories with different initial
conditions and the motion time up to τ ≈ 5 × 109 and
t = 1010 iterations. To achieve such a long time, the
force was increased up to F = 0.1 (see Eq. (5.14)).

Unlike a similar Fig. 4 for the normal diffusion, only
several big fluctuations with F|Sg | > 0.3 are presented in
Fig. 6. For the full picture of critical fluctuations, the

∆S Fts, ∆τ± F2ts,= =
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τ F2ts+
------------------± ± 1/F

1 τ /∆τ+
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required output becomes formidably long. The distri-
bution of all fluctuations, independent of time, is shown
in Fig. 7.

Each fluctuation in Fig. 6 is presented by a pair of
FSg values connected by the straight line: one at a map
iteration just before the fluctuation (circles), and the
other (stars) at the next iteration when the fluctuation
springs up (see above). Both are plotted at the same, lat-
ter, τ to follow the pairs. This slightly shifts the circles
to the right.

The most important, if only preliminary, result of
numerical experiments is the confirmation of the fluc-
tuation upper bound (5.15) that is independent of
time. As expected, the circles represent considerably
smaller F|Sg | values, roughly following the diffusive
scaling (5.11).

The border (5.15) qualitatively reminds the strict
upper bound for the normal diffusion (Section 4),
including a logarithmic ratio with respect to the rms
size (4.5), as compared to the ratio

(5.16)

in the critical diffusion. An interesting question
whether the new, critical, border is also as strict as the
old one in the normal diffusion remains, to my knowl-
edge, open, at least for the physical model under con-
sideration where the superdiffusion is caused by a
strong long-term correlation of successive entropy
changes due to the sticking of trajectory.

However, for a much simpler problem of statisti-
cally independent changes, various generalizations of
Khinchin theorem to the abnormal diffusion were
proved by many mathematicians (see, e.g., [33]). In the
present model, this is precisely the case for description
in the map time t with statistically independent itera-
tions. The most general and complete result was
recently obtained by Borovkov [34]. In the present
notation, it can be approximately represented in a very
simple form for the ratio

(5.17)

in the entire superdiffusion interval (1/2 < cs ≤ 1). For
the most important reduced fluctuation (5.13), we then
arrive at the two relations

(5.18a)

for cs < 1 and

(5.18b)

in the limiting case cs = 1. The latter confirms esti-
mate (5.15), which, in turn, is in a good agreement with
the empirical data in Fig. 6. In any event, a simple phys-
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ical estimate (5.15) seems to provide an efficient
description of the fluctuation upper bound.

In Fig. 7, an example of all (at each map’s iteration)
fluctuations is shown for the data from the same runs
as in Fig. 6. In addition to very large overall distribu-
tion fluctuations, a sharp drop by about four orders of
magnitude is clearly seen near the expected upper
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Fig. 6. Time dependence of 26 big fluctuations in critical
dynamics: 5 single trajectories up to 1010 iterations, cs = 1,
F = 0.1. Only fluctuations with F|Sg | > 0.3 are shown, each
by a pair of points connected by the straight line: the big
fluctuation itself (stars) and at the preceding map iteration
(circles, see text). Two dashed curves show the rms fluctua-
tions of F|Sg |, Eq. (5.11), with B = 1. Horizontal dotted lines
mark the upper bound, Eq. (5.15), with A = 1.
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Fig. 7. Histogram of critical fluctuations in the number of
entries per bin of width 0.007 for the data in Fig. 6. The bor-
der S = 0 corresponds to F|Sg | = –F = –0.1. The points for
the longest trajectory are connected by line.
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bound (5.15). It is similar to the drop in Fig. 5 for the
normal diffusion.

Thus, the critical diffusion results in infinitely many
recurrences far into the negative-entropy region S < 0
(for F ! 1), the sojourn time in that region being com-
parable to the total motion time. Of course, the former
is less than 50% on the average, so that asymptotically
in time the entropy is always growing. In this respect,
the global critical fluctuations are similar to the local
ones in the normal diffusion (Section 3).

We note, however, that the upper bound σb/τ ~ 1/F
(5.18b) is permanent in the strict limit cs = 1 only. For
any deviation from the limit e = 1 – cs > 0, this bound
lasts a finite time determined by the crossover (5.10)
(τ   & F2exp(1/e)/e) to decreasing σb/τ  0,
Eq. (5.18a). Another interesting representation of this
intermediate behavior is the crossover in the sticking
exponent,

(5.19)

which is actually shown in Fig. 6 by the upper dashed
line. For the longest τ = 5 × 109, the latter crossover is
ecro ≈ 0.037.

Again, the new cardinally different critical ratio

/〈S(t)〉  and the distribution of entropy fluctuations
lead to yet another “Fluctuation Theorem” as compared
to the two previous ones mentioned in Sections 3 and 4.

6. DISCUSSION AND CONCLUSIONS

In the present paper, the results of extensive numer-
ical experiments on big entropy fluctuations in a non-
equilibrium steady state of classical dynamical systems
are presented and their peculiarities are analyzed and
discussed. For comparison, some similar results for the
equilibrium steady state are briefly described in the
Introduction (they will be published in detail elsewhere
[10]).

All numerical experiments have been carried out on
the basis of a very simple model, the Arnold cat
map (1.1) on a unit torus, with only three minor, but
important, modifications that allowed comprising all
the problems under consideration. The modifications
are:

(1) The expansion of the torus in the p direction
(1.2), which allows more impressive diffusive fluctua-
tions out of the equilibrium steady state (Fig. 1 in Sec-
tion 1).

(2) The addition of 1D map (2.5) with the constant
driving force F and with an ingenious time-reversible
friction force that represents the so-called Gauss heat
bath and which allows modeling a physical thermostat
of infinitely many degrees of freedom [20, 21]. This is
the principal modification in the present studies of fluc-
tuations in a nonequilibrium steady state (Sections 3–5).

e & 
1

τ /F2( )ln
--------------------- F Sg ,≈

σb
2
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(3) The addition of a new parameter ts, Eq. (5.3), in
map (5.2) which allows for the study of very unusual
fluctuations of an “abnormal,” critical, dynamical diffu-
sion (Section 5).

Big fluctuations in the equilibrium steady state are
briefly considered in Section 1. The simplest one of this
class, which we call the Boltzmann fluctuation, is
shown in Fig. 1. It is obviously symmetric under time
reversal, and at least in this case, therefore, there is no
physical reason for the notorious “time arrow” concept.
Nevertheless, a related concept, for example, the ther-
modynamic arrow, pointing in the direction of the aver-
age increase of entropy, makes sense in spite of the time
symmetry. The point is that the relaxation time of the
fluctuation is determined by the model parameter C
only, and does not depend on the fluctuation itself. On
the contrary, the expectation time for a given fluctua-
tion, or the mean period between successive fluctua-
tions, rapidly grows with the fluctuation size and with
the number of trajectories (or degrees of freedom).

Besides the simplest Boltzmann fluctuation, various
others are also possible, typically with a much smaller
probability. One of those—the two correlated Boltz-
mann fluctuations, which we call the Schulman fluctu-
ation—was recently described in [36] using the same
Arnold cat map. However, this model is not related to
cosmology as was speculated in [36]. At least, the Uni-
verse and most of the macroscopic phenomena therein
require qualitatively different models, ones without an
equilibrium steady state. These structures do appear
(with a probability of 1) as a result of certain regular
collective processes that lead to very complicated non-
equilibrium and inhomogeneous states with ever
increasing entropy. This is in contrast with a constant,
on the average, entropy in ES systems.

A nonequilibrium steady state, the main subject of
this paper, is but a little, characteristic though, piece of
the chaotic collective processes. In model (2.5), the
driving force F represents a result of some preceding
collective processes, the spring of free energy, and the
Gauss friction does so for an infinite environment
around, the sink of the energy, converting the work into
heat, on the average. An interesting peculiarity of these
systems is that the big fluctuations can, and under cer-
tain conditions, do the opposite, converting some heat
back into the work.

Two types of fluctuations were studied:
(i) the local ones on a set of trajectory segments of

length-t1 iterations and of the entropy change Si (Sec-
tion 3), and

(ii) ones of the global entropy S(t) along a trajectory
with respect to the initial entropy set to zero, S(0) = 0
(Sections 4 and 5).

The former were found to have a stationary unre-
stricted distribution close to the standard Gauss law
with some enhancement of an unknown mechanism for
large fluctuations. The study of the latter effect will be
continued. The distribution is symmetric with respect
 AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001
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to the average entropy, growing in proportion to time in
agreement with previous studies on a more complicated
(and more realistic) model [27]. Even though the distri-
bution is asymmetric with respect to zero entropy
change, the probability of negative Si < 0 is generally
not small provided F2 Nt1 & 1. This phenomenon,
apparently a new one in the nonequilibrium steady
state, was first observed in [27] but has been interpreted
there as a violation of the Second Law. It seems to be
the reflection of a common, but wrong in my opinion,
understanding of the Second Law as a monotonic
growth of entropy, neglecting all the fluctuations
including the large ones. The nonmonotonic rise of
entropy is clearly seen, for instance, in Fig. 4, and dis-
cussed in detail in Sections 3 and 4.

The behavior of global entropy is completely differ-
ent as the data in the same Fig. 4 demonstrate (Sec-
tion 4). Although the entropy evolution remains non-
monotonic, it quickly crosses the line of the initial zero
entropy and does not return into the negative entropy
region S < 0. This is insured by the famous Khinchin
theorem about the strict upper bound for the diffusion
process. At least for physicists, this limitation of a sta-
tistical nature for a random motion is surprising and
apparently less known. That unidirectional evolution is
the most important distinction of the nonequilibrium
steady states from the equilibrium ones. In particular, it
leads to a certain asymmetry of the entropy distribution
sometimes called the “Fluctuation Theorem” or “Fluc-
tuation Law”. However, one should bear in mind that
this law essentially depends on the underlying dynam-
ics as briefly discussed in Sections 3–5.

This characteristic feature of nonequilibrium steady
state further justifies the concept of the thermodynamic
arrow pointing to a larger, on the average, entropy. Yet,
again it is not related to the properties of time. Of
course, the entropy will systematically decrease upon
formal time reversal, which is also the case with the
model under consideration because the Gauss heat bath
is time reversible. Within the steady state approxima-
tion, or rather restriction, this would be an infinitely
large fluctuation that never comes to the end. However,
this fluctuation would never occur either, as a result of
the natural time evolution of the system, opposite to the
case of equilibrium fluctuations. The ultimate origin of
that crucial difference is that the former process, even
asymptotically in time, is a tiny little part of the full
underlying dynamics of an infinite system. In particu-
lar, the initial state S(0) = 0 is not a result of the preced-
ing fluctuation, as is the case in ES, but has been even-
tually caused, for instance, by instability of the initial
ES at a very remote time in the past. If one imagined the
time reversal at that instant, nothing would change
because the thermodynamic arrow does not depend on
the direction of time provided, of course, the time
reversible fundamental dynamics. Precisely this uni-
versal overall dynamics unifies the time for all the inter-
acting objects like particles and fields throughout the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Universe. In particular, it is incompatible with the two
opposite time arrows (an old Boltzmann’s hypothesis
[2] that still has some adherents [36]).

Coming back to nonequilibrium steady states, it is
worth mentioning that the regularities of the fluctua-
tions in those, both local and global, can be applied, at
least qualitatively, to a small part of a big fluctuation in
a statistical equilibrium (Fig. 1) on both sides of the
maximum. This interesting question will be considered
in detail elsewhere [10].

Finally, some preliminary numerical experiments
on the global entropy fluctuations and the theoretical
analysis were carried out in a special case of the critical
dynamics, which turned out to be the most interesting
one for the problem in question (Section 5). The point
is that the critical dynamics leads to the “abnormal”

superdiffusion with the rate D ∝   and the rms

fluctuation size σcr ∝  , where cs is a new parameter
of the third model (1/2 < cs ≤ 1). This implies that for

cs ≈ 1, the reduced entropy |Sg | ∝   decreases very

slowly compared to the normal diffusion |Sg | ∝  1/ .
In the limiting case where cs = 1, the entropy |Sg | ∝
1/lnτ is still decreasing. However, in addition to diffu-
sive fluctuations, there is a set of infinitely many sepa-
rated fluctuations whose size does not decrease with
time (Fig. 6). In other words, these preliminary numer-
ical experiments suggest that in the limiting case of the
critical dynamics, the Poincaré recurrences to the initial
state S = 0 and beyond repeatedly occur without limit.
These are preliminary results to be confirmed and fur-
ther studied in detail.

In this paper, we only considered the fluctuations in
classical mechanics. In general, the quantum fluctuations
must be significantly different. However, according to
the Correspondence Principle, the dynamics and statis-
tics of a quantum system in the semiclassical regime
must be close to the classical ones on the appropriate,
generally finite, time scales (for details, see [12, 35]).
Interestingly, the computer classical dynamics (that is,
the simulation of a classical dynamical system on digital
computer) is of a qualitatively similar character. This is
because any quantity is discrete (“overquantized”) in the
computer representation. As a result, the correspondence
between the classical continuous dynamics and its com-
puter representation in numerical experiments is
restricted to certain finite time scales as in quantum
mechanics (see the first two references in [35]).

The discreteness of computer phase space leads to
another peculiar phenomenon: generally, the computer
dynamics is irreversible because of the rounding-off
operation unless the special algorithm is used in numer-
ical experiments. Nevertheless, this does not affect the
statistical properties of chaotic computer dynamics. In
particular, the statistical laws in computer representa-
tion remain time-reversible in spite of the (nondissipa-
tive) irreversibility of the underlying dynamics. This

τ2cs 1–

τ
cs

τ
cs 1–

τ
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simple example demonstrates that contrary to a com-
mon belief, the statistical reversibility is a more general
property than the dynamical one.

In the very conclusion, we briefly remark on a very
difficult, complicated and vague problem, the so-called
(physical) causality principle, i.e., the time-ordering of
the cause and the effect. A detailed discussion of this
important problem will be published elsewhere [37].
We only note the example of a simple Boltzmann fluc-
tuation shown in Fig. 1. I adhere to the idea of statistical
nature of causality. Indeed, the cause is, by definition,
an “absolutely” independent event that is only possible
in the chaotic dynamics. Moreover, the concept of
cause loses its usual physical meaning in any purely
dynamical description. For example, the initial condi-
tions precisely determine the entire infinite trajectory
(−∞ < t < ∞), i.e., both the future and the past of such a
“cause.” For a single Boltzmann fluctuation, an appro-
priate cause is the minimum entropy (at t = ti in Fig. 1).
This was exactly the procedure used in numerical
experiments for the location of a fluctuation of an
approximately given size. The principal difference
from the exact dynamical initial conditions is that the
former cause is an approximate (e.g., average) fluctua-
tion size, which is sufficient for the complete statistical
description of the fluctuation, however it leaves enough
freedom for the independence from other events,
including the preceding fluctuations. However, this
cause determines not only the future relaxation of the
fluctuation (in agreement with the causality principle)
but also the past rise of the same fluctuation, which is a
violation of causality, or acausality (spontaneous rise of
a fluctuation), or anti-causality, which is perhaps the
most appropriate term. Upon the time reversal, the cau-
sality/anticausality exchange, which allows for the con-
cept of the causality arrow, however this is not related
to the physical time. In this philosophy, the directions
of the thermodynamic and causal arrows, coincide
independently of the direction of time. An important
point of this philosophy is that the “arrow” concept is
related to the interpretation of a physical phenomenon
rather than to the phenomenon itself. In particular, the
question “how to fix or maintain the arrow” [36] is up
to the researcher alone. In a more complicated Schul-
man’s double fluctuation, the causality mechanism
becomes more interesting [36], and will be discussed in
[37] from a different point of view.

I am grateful to Wm. Hoover for attracting my atten-
tion to a new class of highly efficient dynamical models
with the Gauss heat bath and for stimulating discus-
sions and suggestions. I very much appreciate the ini-
tial collaboration with O.V. Zhirov. I am also indebted
to A.A. Borovkov for elucidation of Khinchin theorem
and of its recent generalizations to the “abnormal”
superdiffusion.
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Abstract—The ponderomotive force acting on a relativistic charged particle crossing an inhomogeneous elec-
tromagnetic wave is investigated numerically and analytically. The initial velocity of the particle is perpendic-
ular to the electric field vector of the wave and to the direction of its propagation. The wave has zero gradient
in the direction of propagation and is inhomogeneous in both transverse directions. It is shown that the ponder-
omotive force acting on the particle is parallel to the wave vector. The magnitude of the force is determined not
only by the extent of wave inhomogeneity in the direction of the translational motion of particle, but also by its
inhomogeneity in the transverse direction. It is found that the trajectory of a particle is determined by the action
of ponderomotive forces as well as by its drift in a nonuniform field. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The introduction of the concept of ponderomotive
forces simplifies the description of particle dynamics in
rapidly oscillating nonuniform fields [1, 2]. For exam-
ple, ponderomotive forces are of potential nature in
many cases in spite of the fact that electric and mag-
netic fields acting on a particle in an electromagnetic
wave contain only vortex components. This makes it
possible to reduce the order of equations describing the
motion of particles and to obtain an approximate solu-
tion for a number of problems [3, 4]. In such problems,
the term ponderomotive forces denotes time-averaged
forces acting on an individual particle.

In the method of time-averaging the motion equa-
tions for particles, which is widely used for describing
the dynamics of charged particles in an external spatially
inhomogeneous high-frequency electromagnetic field, the
motion of an individual charged particle is presented as the
sum of a smooth translation r0(t) and a rapid oscillatory
motion r~(t) at the frequency of the external field. It is
assumed that the value of r~ averaged over the period T
vanishes, while the value of r0 varies insignificantly over
this time period. The variation of the smooth component
of the particle momentum is interpreted as the result of
the action of ponderomotive forces.

The authors of earlier publications devoted to an
analysis of the ponderomotive forces acting on a particle
in a spatially inhomogeneous electromagnetic field (see,
for example, [2]) assumed that the initial velocity  of

the particle, as well as the oscillatory velocity 
acquired by the particle under the action of the field of the
wave, are much smaller than the velocity of light. The
field of the wave was regarded as weakly inhomoge-
neous, and the number of periods of particle vibrations

ṙ0 0( )

ṙ~ t( )
1063-7761/01/9201- $21.00 © 20020
during the time of its flight through the region of the
inhomogeneous field was assumed to be large. It was
proved that under these conditions, the ponderomotive
force is given by [2]

(1)

where e and m are the charge and mass of the particle,
and ω and E are the frequency and strength of the exter-
nal electromagnetic field. The bar indicates averaging
over the field period.

It follows from Eq. (1) that the force is directed
along the gradient of average intensity of the field. On
account of the direction of its action, this force is often
referred to as the gradient force. Another term used for
this force in the literature is the Gaponov–Miller force.
Subsequently, ponderomotive forces acting on a parti-
cle in strong fields were investigated [5, 6] in the case
when the velocity  of the oscillatory motion
becomes relativistic.

It was proved by us earlier [7] that when the initial
translational velocity  is comparable with the veloc-
ity of light, the dynamics of particles can be noticeably
affected by another ponderomotive force, which differs
considerably from the gradient force. The features of
this force were studied in [8, 9], where the dynamics of
relativistic particles crossing a linearly polarized wave
H10 propagating along a waveguide with a constant
rectangular cross section. Particles were injected from
a point on the waveguide wall at right angles to the
wave vector and to the electric vector of the wave. The
wave was inhomogeneous in the direction of the trans-
lational motion of the particles and homogeneous in the

fp
e2

4mω2
--------------∇ E2,–=

ṙ~ t( )

ṙ0
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transverse directions. There are no gradient forces act-
ing on a particle interacting with wave H10 in the direc-
tion of the wave vector. It was proved that particles
crossing such a wave experience the action of a ponder-
omotive force having a component parallel to the wave
vector. The value of this force is proportional to the ini-
tial velocity v0 and to the fourth power E4 of the electric
field strength.

The interaction of relativistic electrons with an
inhomogeneous electromagnetic wave was considered
by Bituk and Fedorov [10] who separated the motion
into fast and slow components in the second order of
the perturbation theory and averaged the equation of
motion of a particle in the given electromagnetic field
over fast oscillations. They derived expressions for rel-
ativistic ponderomotive forces in the general case and
considered a specific realization of an inhomogeneous
field in the form of a steady-state plane-focused beam.
It was proved that apart from gradient forces, there also
emerge force components parallel to the wave vector
and to the direction of field polarization. The force act-
ing along the field polarization vector emerges even
when the field gradient in this direction is equal to zero.
The field of the electromagnetic wave was regarded
in [10] as quite weak.

The structure of ponderomotive forces acting on an
electron in strong fields was considered by Taranukhin
[11]. He obtained an expression for the ponderomotive
force acting on a classical electron in a weakly inhomo-
geneous field of arbitrary intensity by averaging over
the proper time of the leading center of the electron.
Scattering of relativistic electrons from a focused laser
pulse was studied by Narozhnyœ and Fofanov [12] who
proposed, among other things, a three-dimensional
model of the field, which is an exact solution of Max-
well’s equations. The equations of averaged motion of
an electron in the field of a laser pulse were derived by
using the standard method of separating motion into
smooth and rapidly oscillating components.

In the present paper, we consider the action of a pon-
deromotive nongradient force acting parallel to the
wave vector. The ponderomotive force acting on a rela-
tivistic particle crossing a wave inhomogeneous in both
transverse directions, i.e., inhomogeneous in the cross
section of the waveguide, is studied numerically and
analytically. The main result obtained by us here is that
the magnitude of the ponderomotive force is deter-
mined not only by the extent of the inhomogeneity of
the wave in the direction of the translational motion of
particles, but also by the wave inhomogeneity in a
transverse direction. The ponderomotive force directed
parallel to the wave vector is proportional to E2 only
when the wave is inhomogeneous in both transverse
directions. If the wave is inhomogeneous only in the
direction of translational motion of particles, the force
is proportional to E4 [7–9]. An analysis of the dynamics
carried out by the method of iterations in a field leads
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to results which agree with the results of numerical cal-
culations.

2. NUMERICAL ANALYSIS
OF PARTICLE DYNAMICS

Expressions describing the field distribution of an
electromagnetic beam in empty space are usually
derived using certain approximations. It is difficult to
estimate the influence of these approximations on the
accuracy of the calculation of particle vibrations, and
the more so, on the smooth motion of particles. This is
especially pertinent while estimating the accuracy of
calculations for particles moving in regions far away
from the beam axis and crossing the beam boundaries,
i.e., for particles entering the wave and leaving it. As a
rule, the deviations from Maxwell’s equations in
approximate expressions describing the fields of elec-
tromagnetic beams become significant with increasing
distance from the axis. Since we study here the action
of averaged forces, which are of the difference type and
have second or higher order in a field, it is necessary
that the electric and magnetic fields used in numerical
calculations satisfy Maxwell’s equations on the entire
trajectory of the particle. For this reason, we consider
here the motion of particles in the field of an electro-
magnetic wave propagating in a waveguide, for which
the expressions describing the spatial field distribution
satisfy Maxwell’s equations at all points in the space.
Besides, in contrast to a wave in empty space, a wave in
a waveguide does not diverge, and hence a particle in
the waveguide is subjected neither to a gradient force,
nor to any other forces associated with a change in the
wave cross section along the particle.

The geometry of the problem is shown in Fig. 1.
Particles interact with an electromagnetic wave H12

(a)

(b)

x
b

az

y

x

y

Fig. 1. Geometry of the problem (a) and electric field distri-
bution over the waveguide cross section (b).
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propagating along a rectangular waveguide. The field
of this wave is described by the formulas

(2)

where ϕ = ωt – kzz, ω = 2πc/λ, λ being the wavelength,
α = (b2 + 4a2)/b2, χ = [1 – α(λ/2a)2]1/2, kz = kχ =
(2π/λ)[1 – α(λ/2a)2]1/2, a and b being the waveguide
dimensions along the x- and y-axes. The spatial distri-
bution of the electric field of the H12 mode is presented
in Fig. 1b. It can be seen that the field of the wave is
inhomogeneous in both transverse directions (along the
x-axis as well as along the y-axis).

Since we analyze a nongradient ponderomotive
force, the conditions of particle injection and the beam
cross section were chosen so that the effect of gradient
forces on the particle dynamics was reduced to the min-
imum. It follows from Eqs. (2) that the wave is homo-
geneous in the direction of its propagation at all points
of the space, and hence no gradient force is acting along
the z-axis. The width of the bunch (the size along the
z-axis) can be arbitrary since the z0 value of the initial
coordinate does not affect the nature of the ponderomo-
tive forces acting on a particle. When the particle
moves in the xz plane, the gradient force along y is also
equal to zero. It emerges only on segments of the parti-
cle trajectory lying above or below this plane. In order
to reduce the effect of this force, the height of the bunch
(the size along the y-axis) must be such that the change
in the field strength over the beam cross section is much
smaller than the field strength. This condition sets a
limit on the height of the bunch: it must be much
smaller than the transverse size of the wave.

The calculations were made under the following ini-
tial conditions. Particles were injected from points
located at a waveguide wall symmetrical relative to the
xz plane and had a velocity v0 directed along the x-axis.
At the initial moment of time, the particles moved at
right angles to the direction of wave propagation
(z-axis) and to the electric field vector of the wave (y-axis).
The case when particles are injected in the symmetry
plane xz at a certain angle to the z-axis can be reduced
to the case considered by us here. For this purpose, we
must go over to a reference frame moving at a constant

Ex E
2a
b

------ 
  πx

a
------ 2πy

b
--------- ϕ ,sinsincos=

Ey E
πx
a

------ 2πy
b

--------- ϕ ,sincossin–=

Ez 0,=

Hx Eχ πx
a

------ 2πy
b

--------- ϕ ,sincossin=

Hy Eχ 2a
b

------ 
  πx

a
------ 2πy

b
--------- ϕ ,sinsincos=

Hz Eα λ
2a
------ 

  πx
a

------ 2πy
b

--------- ϕ ,coscoscos–=
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velocity along the z-axis and carry out the Lorentz
transformations of the wave field.

It follows from Fig. 1b and expressions (2) that under
the given conditions of injection, the field of the H12 mode
along an unperturbed trajectory is close to the field of a lin-
early polarized wave. On this trajectory, the electric field
vector has a large Ey component which is a function of
the transverse coordinate x. In the xz plane, the gradient
force has an x component only.

The numerical method was used to solve the equa-
tion of motion [13] of a particle in the given electro-
magnetic field (2):

(3)

where γ = (1 – (v/c)2)–1/2 is the relative energy of the
particle.

Particles were injected from five points with differ-
ent y coordinates (y0 = 0, ±0.25yb, ±0.5yb) and identical
x and z coordinates (x0 = z0 = 0). The motion of one hun-
dred particles injected successively with a time interval
dt = 0.01T across the wave was analyzed for each value
of the initial transverse coordinate yn . Under such con-
ditions, the dynamics of a strip bunch with a vertical
size yb and length L = vT, which was injected into the
wave during the time equal to a period T, was simulated
in our calculations. We calculated the position and the
velocity of the bunch during its motion in the wave and
at the exit from the wave. The position and velocity of
the bunch at a given instant were determined as the val-
ues of coordinates 〈x〉 , 〈y〉 , 〈z〉  and velocities 〈vx〉 , 〈vy〉 ,
〈vz〉  averaged over all the particles, the angle brackets
indicating averaging over all the particles. The calcula-
tions were made for various values of the waveguide
height b, wavelength λ, initial electron velocity v0, and
electric field E of the wave.

Figure 2 shows the trajectory of the center of gravity
of the bunch, obtained as a result of calculations. The
calculations were made for the vertical size yb = 0.3 mm
of the bunch, waveguide parameters a = 10 mm and b =
25 mm, and wavelength λ = 1 mm. A wave with such a
relation between the wavelength and the transverse
dimensions can be regarded as weakly inhomogeneous
since a particle crossing the wave performed more than
ten oscillations. The electric field of the wave was E =
3 × 106 V/cm. Particles were injected at a velocity v0 =
2.75 × 1010 cm/s, which corresponds to the relative
velocity β = v/c = 0.92. For such parameters of the
wave and initial velocity of the particle, the relative
velocity of oscillatory motion was β~ = v~/c = 0.1.
It can be seen from the figure that the amplitude of
oscillations increases as the bunch moves to the region
with a high field strength and decreases as it leaves this
region. Besides, the average velocity of the bunch along
the x axis varies smoothly, and the bunch is gradually
displaced along the z axis. The change in the velocity

ṙ̇
e

mγ
------- E

1
c
--- ṙ H×[ ] 1

c2
---- ṙ ṙ E⋅( )–+
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along the x-axis can be attributed to the action of a gra-
dient ponderomotive force. This force decelerates the
bunch during its motion in an increasing field from the
point of injection to the middle of the waveguide and
accelerates it during its motion in a decreasing field
from the middle of the waveguide to the exit from the
wave.

The displacement of the bunch along the z-axis indi-
cates the existence of another ponderomotive force
directed parallel to the wave vector. This force is of a
nongradient type since the field of the H12 wave has

(a)

(b)

x/a
10

–3

v
x–
v

0,
 1

07  m
/s

x/a
1

1

0

–1

y,
 1

0–
3 

m
m

(c)

x/a

1

0.4

0

–0.4

z,
 1

0–
4 

m
m

Fig. 2. Variation of the velocity of a bunch in the direction
of injection (a) and bunch coordinates in the directions of
the electric field vector (b) and the wave vector (c): a = 10 mm,
b = 25 mm, λ = 1 mm, yb = 0.3 mm, E = 3 × 106 V/cm, v0 =

2.75 × 1010 cm/s.
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zero gradient along the z-axis. In order to determine the
order of magnitude of this ponderomotive force, we
analyzed the dependence of the longitudinal coordinate
z of the bunch at the exit from the wave as a function of
the wave field. Calculations show that for small values
of the field, the change in the bunch coordinate is pro-
portional to E2.

According to calculations, the value of the pondero-
motive force increases with the distance from the point
of injection to the xz plane. The change in the force
does not depend on the sign of the initial transverse
coordinate y0 of a particle and is a function of its abso-
lute value only. Figure 3 shows the dependence of the
displacement of particles along the z-axis on the initial
transverse coordinate y0. The displacement was calcu-
lated as the mean displacement over all particles
injected from the given point. It can be seen that the
increment of force is proportional to the square of coor-
dinate y0 since ∆z ~ (y0/b)2. The value of the force act-
ing on the particles at a distance y0 = 0.01b from the xz
plane is 1.5 times larger than the value of the force in
the plane.

According to the results of calculations, the longitu-
dinal force Fz is sensitive to the spatial inhomogeneity
of the field not only in the direction of the translational
motion of the particle (along the x-axis), but also to the
field inhomogeneity in the transverse direction (along
the y-axis). In order to study the effect of this inhomo-
geneity on force Fz , we analyzed the particle dynamics
for various values of the waveguide height b. It follows
from Eqs. (2) that the field strength Ey on the x-axis
remains unchanged upon a variation of the size of the
electromagnetic beam along the y-axis (wave height),
while the gradient of field Ey along the y-axis changes
as well as the magnitudes of fields Ex , Hy , and Hz . If we
make the waveguide height tend to infinity, fields Ex

and Hy, and hence the gradient of field Ey along the
y-axis, will tend to zero. Wave H12 degenerates into

*
*

*
*

*****

z, rel. units

1.5

1.0

0.5
0 1

y0/b, 10–2

Fig. 3. Displacement of particles along the z-axis as a func-
tion of the initial transverse coordinate y0: a = 10 mm, b =
25 mm, λ = 1 mm, E = 3 × 106 V/cm, v0 = 2.75 × 1010 cm/s.
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wave H10 whose electric field is homogeneous along
the y-axis. The dynamics of the bunch in the field of the
H10 wave was considered in [7–9], where is was
proved that the ponderomotive longitudinal force act-
ing on a particle in such a wave is proportional to E4. In
the given wave H12, however, the force is proportional
to E2. Thus, the field inhomogeneity in the direction
perpendicular to the translational motion of particles
induces a longitudinal ponderomotive force of a lower
(second) order.

The results of the calculation of the displacement of
the bunch along the z-axis as a function of the ratio b/a
of the wave dimensions in the transverse directions are
presented in Fig. 4. It can be seen that with increasing b/a,
the displacement of the bunch in the positive direction
becomes smaller and is transformed into displacement
in the negative direction. For a certain ratio of the
height of the wave to its width, the displacement passes
through its maximum value. A further increase in the
value of b/a leads to a decrease in the displacement. Our
calculations proved that the values of the wave height-to-
width ratio for which the dependence z = f(b/a) passes
through zero and through its maximum value do not
change upon a variation of the initial velocity of the
particles, the field strength, and the wave frequency.

3. ANALYTIC CALCULATION
OF PONDEROMOTIVE FORCES

In order to derive expressions describing pondero-
motive forces, we carried out analytical calculations of
the motion of particles through a given electromagnetic
wave. We analyzed the dynamics in a weakly inhomo-
geneous field; a particle crossing this field performed a
large number of oscillations. Besides, we assumed that
the velocity of oscillatory motion associated with the
interaction of a particle with the wave is much smaller
than the velocity of light. The equation of motion (3) of

b/a

4 8
0

–1

〈z〉 , 10–5 mm
*

*

*
*
*

*

*

*

**
**

*
* *

* *

Fig. 4. Displacement of a bunch along the z-axis as a func-
tion of the ratio of the wave height b to the wave width a:
a = 10 mm, λ = 1 mm, E = 3 × 106 V/cm, v0 = 2.75 ×
1010 cm/s.
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particles taking into account the fields (2) acting on a
particle can be written in the form

(4)

(5)

(6)

were βi = vi/c are relative velocities of particles.
The solution of this system of equations was

obtained by the method of successive approximations.
Using the quantity η = v~/c = (eE/mcγω) as a smallness
parameter, we can present the velocities and displace-
ments of particles in the form of series:

.

In the case under investigation, a particle at the ini-
tial instant has a constant velocity β0 directed along the

x-axis, and hence  =  = 0 and x(0) = cβ0t. Taking
these expressions into account and integrating Eq. (5),
we obtain the following expression for the first approx-
imation of the velocity βy:

(7)

where ξ = Ω/ω = β0λ/2a, Ω = πcβ0/a, α = (b2 + 4a2)/b2,
and ψ = ωt – kz + ϕ0, ϕ0 being the phase of the wave at
the instant of injection.

For a relativistic initial velocity, the value of ξ,
which is proportional to the ratio of the wavelength λ to
the transverse size a of the wave, characterizes the
wave inhomogeneity in the direction of particle injec-
tion. In the case under investigation, the wave was
weakly inhomogeneous, and ξ = 0.04 ! 1. The value of
α is determined by the electromagnetic wave mode.
A transition from the fields of the H12 mode to the fields
of the H10 mode in Eqs. (2) occurs as the waveguide
height b tends to infinity. As we go over in Eq. (7) to H10
mode (whose field is homogeneous along the y-axis),
the value of H10 must be taken to be equal to unity. In
this case, the first term on the right-hand side vanishes,

dβx

dt
--------

e
mcγ
----------=

× Ex βyHz βzHy– βx βxEx βyEy+( )–+{ } ,

dβy

dt
--------

e
mcγ
----------=

× Ey βzHx βxHz– βy βxEx βyEy+( )–+{ } ,

dβz

dt
--------

e
mcγ
----------=

× βxHy βyHx– βz βxEx βyEy+( )–{ } ,

βx βx
0( ) βx

1( ) …, βy+ + βy
0( ) βy

1( ) …,+ += =

βz βz
0( ) βz

1( ) …, x+ + x 0( ) x 1( ) …,+ += =

y y 0( ) y 1( ) …, z+ + z 0( ) z 1( ) …+ += =

βy
0( ) βz

0( )

βy
1( ) 1

1 ξ2–
-------------- eE

mcγω
-------------- 

 =

× ξ α 1–( ) ψ Ωtcossin ϕ0sin–( )[

+ 1 αξ2–( ) ψ Ωtsincos ] ,
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and the transverse velocity oscillates with a phase shift π/2
relative to the transverse components of the wave field [7].
Thus, the inhomogeneity of the field in the y direction
leads to the emergence of additional terms in the
expression for velocity βy , which describe the velocity
oscillations in the phase coinciding with the phase of
transverse fields of the wave.

The integration constant in Eq. (7) was determined

from the condition that the transverse velocity  is
equal to zero at the initial instant of time. Carrying out
integration and taking into account the initial condition
y(1)(0) = 0, we obtain the following expression for the
displacement along the y-axis:

(8)

Let us consider Eq. (6) describing the acceleration
component along the z-axis. In the first approximation,

the acceleration d /dt is equal to zero since the first
term on the right-hand side is equal to zero because
Hy(y = 0) = 0, while the remaining terms are of a
higher order. It follows from the initial conditions that

(0) = 0 and z(1)(0) = 0. We assume that the quantity
ξ = v~/c is a smallness parameter, and hence the ampli-
tude of oscillations is much smaller than the transverse
dimensions of the waveguide. Consequently, the func-
tion sin(2πy/b) in the expression for the magnetic field
Hy can be replaced by the first term of the expansion.
Taking into account this fact, we substitute Eqs. (7) and
(8) into Eq. (6). Since we are determining the force act-
ing on the bunch, we must carry out averaging over all
the particles in the bunch, i.e., over initial phases ϕ0 of
the injection. After averaging, we obtain the following
expression for the acceleration of the bunch along the
z-axis:

(9)

where 〈…〉ϕ denotes averaging over the initial phases of
injection.

βy
1( )

y 1( ) 1

1 ξ2–( )2
-------------------- c

ω
---- eE

mcγω
-------------- 
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× ξ 2 α– αξ2–( ) ψ Ωtcoscos ϕ0cos–( )[

+ ψ Ωtsinsin ] c

1 ξ2–
-------------- eE

mcγω
-------------- 

  ξ α 1–( )t ϕ0.sin–

βz
1( )

βz
1( )

dβz
2( )

dt
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ϕ

χΩ
2 1 ξ2–( )2
------------------------a2

b2
----- eE

mcγω
-------------- 

 
2

–=

× ξ2 α 1–( ) 2Ωt 1 ξ2–( ) Ωt ωtcossin+sin[

– ξ 2 α– ξ2α–( ) Ωt ωtsincos ]

–
χΩ2

1 ξ2–( )
------------------a2

b2
----- eE

mcγω
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2

α 1–( )t Ωt ωt,coscos
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The right-hand side of this expression contains
terms of different origins: the first term describes only
the smooth variation of acceleration over time periods
of the order of a/c, while the second and third terms
describe, in addition to the smooth variation, the oscil-
lations with the frequency of the external field. After
averaging over the period of oscillations, we obtain the
following expression for the ponderomotive force Fz:

(10)

Since we assumed that a particle performs a large num-
ber of oscillations during the time of its crossing the
wave, the quantities sinΩt and cosΩt were regarded as
constants during averaging over the period of oscilla-
tions.

It follows from Eq. (10) that the ponderomotive
force is proportional to E2 and is opposite to the direc-
tion of wave propagation when a particle enters the
region of a strong field, while for a particle moving into
the region of a weak field, the direction of the force
coincides with the direction of wave propagation. The
force is observed only for a wave inhomogeneous in
both transverse directions. As the wave size b perpen-
dicular to the velocity of the particle increases, the field
gradient in the direction of the y axis decreases, and the
force decreases in proportion to 1/b4. For a wave homo-
geneous in y (for b = ∞), the force, which is propor-
tional to E2, vanishes and the particle will experience
only the action of a ponderomotive force proportional
to E4 and directed along the z-axis [7–9]. Figure 5
shows the field strength Ey and force Fz as functions of
the longitudinal coordinate x.

A comparison of the results of numerical calcula-
tions (see Fig. 4) with the structure of expression (10)

Fz

dβz
2( )

dt
-----------

ϕ
∼

=  
πcχ

2
---------

λ2β0
3a

b4
-------------- eE

mcγω
-------------- 

 
2 2πx

a
--------- 

  .sin–

1

2

1

1

0

–1

x/a

Ey, Fz, rel. units

Fig. 5. Distribution of the transverse electric field strength
Ey (curve 1) and the longitudinal force Fz (curve 2) along the
x-axis.
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and Fig. 5 shows that the trajectory of the cluster is
determined not only by the ponderomotive force Fz .
Indeed, the sign of the ponderomotive force does not
change upon variation of the transverse dimensions of
the wave, while the displacement of the bunch in the z
direction at the exit from the wave changes its direction.
In order to describe the particle trajectory, we must take
into account the drift of the particles during their
motion in an inhomogeneous field. After integrating
Eq. (9) and averaging over the period of oscillations,
we obtain the following expression for the average
velocity:

(11)

In this expression, only the first term is associated
with the action of a ponderomotive force, while the sec-
ond and third terms describe the drift velocity of the
bunch in an inhomogeneous field. Integrating Eq. (9)
twice and taking into account the initial conditions, we
obtain the displacement in the direction of wave propa-
gation. After averaging, the coordinate z of the bunch at
the exit from the wave is described by the relation

(12)

which shows that the displacement is zero for b = a

and passes through a peak for b = a. Such a depen-
dence agrees with the results of the numerical analysis
of particle dynamics presented in Fig. 2.

The emergence of a nongradient ponderomotive
force can be explained on a qualitative level. The longi-
tudinal component of the force appears as a result of
averaging the corresponding component of the Lorentz
force. It is well known [13] that for a particle moving in
a plane wave, the phases of magnetic field oscillations
and the velocity component of the particle perpendicu-
lar to the magnetic field are shifted by π/2. Conse-
quently, averaging over the wave period gives zero. In
an inhomogeneous wave, a small longitudinal magnetic
field component Hz appears along with the large com-
ponents Ey and Hx . The magnitude of field Hz is deter-
mined by the inhomogeneity of the wave in the direc-
tion of particle injection (along the x-axis) and in the
transverse direction (along the y-axis). If the wave is
inhomogeneous in y, the transverse velocity βy and the dis-
placement y acquire components coinciding in phase with
magnetic field oscillations. Consequently, averaging
over the period of oscillations gives a nonzero ponder-
omotive force.
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6
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4. CONCLUSION

We investigated the motion of a bunch in an inho-
mogeneous electromagnetic wave by using numerical
methods. Calculations show that in the case of a direc-
tional motion of particles through an inhomogeneous
wave, they experience the action of a force differing
significantly from the gradient force. For example, par-
ticles intersecting the wave at right angles to the direc-
tion of its propagation and to the electric vector are
acted upon by a force Fk parallel to the wave vector. The
force is proportional to E2 if the wave is inhomoge-
neous in both transverse directions and to E4 if the
wave is inhomogeneous only in the direction of the
translational motion of the particles.

We derived the expressions for the ponderomotive
force and the velocity associated with the action of
force and particle drift in an inhomogeneous field. The
expression obtained for the displacement of the bunch
in the direction of the wave vector agrees with the
results of numerical calculations.

The nongradient ponderomotive force can be inves-
tigated experimentally by passing an electron beam
through an electromagnetic wave. In such an experi-
ment, the position of the center of gravity of the elec-
tron beam and its cross section must be recorded. The
most favorable conditions for the injection are created
when electrons intersect the electromagnetic wave at
right angles. In this case, the contribution of gradient
forces directed along the direction of wave propagation
to the particle dynamics is minimal. After the interac-
tion with the wave, first, the transverse dimensions of
the electron beam increase, and second, the center of
gravity is displaced in the direction opposite to the
direction of wave propagation.

It should be noted that the results obtained here con-
tradict the conclusions drawn in [10], according to
which the component Fz of the ponderomotive force
must be equal to zero when particles are injected at
right angles to the electric vector of the wave and to the
wave vector. A possible reason behind this discrepancy
are the conditions under which relativistic ponderomo-
tive forces were investigated in [10]. Bituk and Fedorov
[10] confined their analysis to the lowest (linear)
approximation in gradients, while in our case the pon-
deromotive forces are proportional to 1/b4, i.e., higher-
order gradient terms are taken into account.
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RADIATION
Dynamics of Mass Transfer Caused
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Abstract—The reasons behind the three-dimensional mass transfer of the inert components of a mixture in
which photoinduced spatially inhomogeneous polymerization takes place are discussed. Such a mass transfer
is responsible for the laser-induced formation of controllable diffraction gratings in polymer composites con-
taining liquid crystals [R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, Chem. Mater. 5,
1533 (1993); R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, Appl. Phys. Lett. 64, 1074 (1994);
R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, et al., J. Nonlinear Opt. Phys. Mater. 5, 89 (1996); R. Caputo,
A. V. Sukhov, and C. Umeton, Mol. Mater. 12, 192 (1999)]. The semiphenomenological model proposed in this
work is based on the assumption that mass transfer results from conventional Fickian diffusion which, however,
does not occur over the entire volume of the sample, but only in regions free from clusters of long polymer
chains. It is shown that such a “restriction of the active volume” is responsible for the conventional diffusion of
inert components of liquid crystals as well as reagents and low-molecular products (short chains), in spite of
the initial spatial homogeneity of concentrations in the sample. The qualitative predictions of the model
coincide with the experimental results [R. Caputo, A. V. Sukhov, and C. Umeton, Mol. Mater. 12, 192 (1999)].
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The photoinduced formation of three-dimensional
periodic gratings in composites containing liquid crystals
(LC) has attracted considerable attention during the last
decade (see, for example, [1–3]). The reasons behind
such an interest are obvious and are mainly associated
with the possibility of obtaining cheap holographic ele-
ments, which can be switched (or controlled) by mod-
erate electric voltages (e.g., 10–100 V, see [1–3]). The
traditional approach to the problem of producing such
gratings [1, 2] involves the induction of a spatially
inhomogeneous phase separation of the LC component
of the mixture. This is usually achieved as a result of the
photoinitiation of the polymerization process in an LC
mixture containing initial reagents by the interference
pattern of laser radiation of the appropriate frequency
(blue–green or near-UV part of the spectrum). Such a
process, which is usually called “laser curing,” leads to
the formation of a three-dimensional periodic structure
(grating) consisting of alternating polymer strips and
strips of a polymer-disperse liquid crystal (PDLC).

Although the diffraction efficiency of such gratings
is quite high [2], the spatial inhomogeneity of the struc-
ture of PDLC strips results, as a rule, in considerable
losses due to the disordered scattering of the radiation
used for the grating readout. Attempts to prevent such
1063-7761/01/9201- $21.00 © 20028
losses by reducing the average size of the encapsulated
LC drops to much below the wavelength of the radiation
result in a considerable increase in the required values of
the controlling electric field strength (10 V/µm, [5]).

The possibility of a basically new approach towards
the problem of creating such gratings was experimentally
demonstrated recently [4]. It was found that if the process
of polymerization occurs in a mixture of LC and reagents
which initially dissolve quite easily in each other, the
phase separation as such can be avoided and a spatial
modulation of the LC-component concentration can be
attained. If such a modulation is quite deep, the liquid
undergoes a phase transition into LC at the modulation
peaks. Consequently, the grating obtained in this way is
formed by strips of a uniformly oriented LC phase sepa-
rated by polymer walls [4] rather than the above-men-
tioned alternating strips of the polymer and PDLC
strips. Since such a grating does not reveal inhomoge-
neities within a strip, there are practically no scattering
losses, and the required controlling field is found to be
quite weak (3–8 V/µm [4]).

The dependence of the diffraction efficiency of the
gratings obtained in this way on the laser radiation
intensity (i.e., on the reaction rate) and the three-dimen-
sional grating interval (i.e., on the characteristic diffusion
001 MAIK “Nauka/Interperiodica”
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time within one interval) has the following distinguishing
features.

(1) The dependence of the diffraction efficiency on
the intensity of laser radiation displays one peak, the
optimal value of the intensity increasing sharply with
decreasing grating interval.

(2) Each specific combination of the mixture com-
ponents corresponds to a certain limiting value of the
grating interval (usually of the order of 0.2 µm) for
which recording of the grating is possible; for shorter
grating intervals, the diffraction efficiency is extremely
low for laser radiation of any intensity.

The present paper aims at developing a model of the
processes responsible for the formation of a grating under
the given conditions, including an analysis of real chemi-
cal transformations and mass transfer processes, which is
capable of explaining these qualitative features.

2. QUALITATIVE DESCRIPTION OF THE MODEL

To begin with, we assume that conventional Fickian
diffusion is responsible for the change in the LC con-
centration distribution from the initially uniform distri-
bution. However, this diffusion occurs not in the entire
volume of the sample, but only in its “active part”
which has not yet been occupied by immobile polymer
clusters (this part of the volume will be referred to as
“passive” volume in the following analysis). The pas-
sive volume contains only the residual concentration of
LC molecules, determined approximately by its solu-
bility in the corresponding polymer. The remaining LC
molecules are expelled from the passive part of the vol-
ume to the active part and thus the concentration of LC
molecules in the active volume is found to be higher
than the mean concentration in the entire volume and
increases upon an increase in the passive volume. Con-
sidering that the rate of growth of the passive volume is
determined by the local intensity of radiation and is
therefore nonuniform over a grating interval, it turns
out that the LC concentration in the active volume is
modulated within a grating interval in contrast to the mean
concentration over the entire volume, which has so far
remained unchanged and uniform. Consequently, conven-
tional Fickian diffusion takes place in the active volume
and tends to level out the concentration in the active vol-
ume over a grating interval, thus modulating the mean LC
concentration which is the parameter determining the
local variation of the refractive index of the medium.

At the same time, the molecules of the monomer
start diffusing in the opposite direction, and also strive to
level out its concentration in the active volume within a
grating interval. Thus, the LC molecules diffuse to the
regions with the smallest fraction of the passive volume,
while the monomer molecules diffuse in the opposite
direction.

The latter process can occur in two possible
regimes. If the reaction is quite slow (for a given grating
interval), the diffusion of the monomer has time to
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
occur before it ultimately perishes in the immobile
polymer chains. For a quite fast reaction, on the other
hand, there is no time for the monomer diffusion to
occur. We shall call these regimes respectively the
“slow curing” and “fast curing” modes.

It is important to specify here the reaction products
that are attributed to the passive volume. Short polymer
chains are definitely mobile and hence must belong to
the active volume. We introduce a certain critical length
N0 of a polymer chain starting from which the chain can
be treated as immobile (diffusion in a condensed
medium is an activation process, hence the diffusion
coefficient D depends quite strongly on the molecular
mass, and we can confine the analysis, at least at the
present stage, to model concepts about N0 without
resorting to the more complex dependences of D on N).

Note (see, for example, [6]) that during the polymer-
ization of radicals, long chains appear just for slow
reaction rates, i.e., in the vicinity of the interference
minima in our case.

For low radiation intensities, mainly long chains
(longer than N0) must also appear at the interference
minima. Consequently, the passive volume is found to
be large, but almost uniformly distributed over the grat-
ing interval, and hence the modulation is weak. Con-
versely, only short chains are formed almost every-
where for high intensities; i.e., the passive volume prac-
tically does not exist. In this case also, the modulation
is weak. The formation of long chains at the minima
and short chains at the peaks of the interference pattern
(and hence a strong modulation of the passive volume)
can be expected only in a certain region of intermediate
intensities. Qualitatively, this situation corresponds to
the experimentally observed peak in the dependence of
the diffraction efficiency of the grating on the radiation
intensity.

It follows easily from all that has been said above
that the choice of the fast or slow mode is determined
by the ratio of two time constants, viz., the characteris-

tic reaction time τR ∝   (W0 is the radiation inten-
sity, see below) and the characteristic time of diffusion
over a grating interval τd ∝  Λ2 (Λ is the three-dimen-
sional grating interval). Whichever regime is found to
be optimal according to the results of subsequent anal-
ysis, it is characterized by a certain relation between
these times, and hence the optimal value of W0 must
increase with decreasing Λ. This is also in accord with
the experimental observations [4].

Thus it can be seen that the model proposed here
leads to qualitative conclusions that are in agreement
with the experimental results, and hence merits a quan-
titative analysis in spite of the fact that the mathemati-
cal apparatus used for this purpose is apparently quite
cumbersome.

W0
1/2–
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3. DERIVATION OF THE SYSTEM
OF BASIC EQUATIONS

Let us consider a thin plane-parallel layer of the ini-
tial mixture (Fig. 1) in a field of spatially inhomoge-
neous radiation in coordinate x:

Here, q0 = 2π/Λ is the wave number of the interference
pattern and m is its modulation depth. The rate of poly-
merization as well as the spectrum of the lengths of the
chains formed are different in different volume ele-
ments dV corresponding to the elements dx for various
values of x. Hence the concentration Y [cm–3] of mono-
mer elements included in long chains and thus consti-
tuting the passive volume is found to depend on x. This
results in a modulation of the concentrations CL and M
of LC and monomer molecules, respectively.

For the subsequent analysis, we make the following
assumptions.

(1) The LC molecules are partially expelled from
the passive volume in which only a small residual con-
centration CNS is retained. This concentration corre-
sponds to a saturated solution of LCs in the given poly-
mer, which is an easily measurable parameter in the
experiments. In this work, we do not set out to make a
quantitative comparison of our results with the experi-
mental data and assume that CNS = 0. This does not
make any fundamental changes in the analysis, but con-
siderably simplifies the calculations.

(2) All monomer molecules that do not participate in
a reaction remain in the active volume according to its
definition.

(3) All chemical transformations and mass transfer
occur in the active volume.

(4) The spatial redistribution of the components fol-
lows the conventional Fickian diffusion which, how-
ever, occurs only in the active volume. The equilibrium
distribution corresponds to spatially homogeneous con-
centrations of the mobile components in the active vol-
ume, but not to homogeneous mean concentrations.

W W0 1 m q0x( )sin+( ).=

dx

Y

M

Λ
x

CL0CL

M0

Fig. 1. Illustrating the formation of passive volume.
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(5) The radicals participating in a reaction are con-
sidered to be immobile from the diffusion point of view.
This assumption is justified in view of their short life-
times.

(6) The concentration of the photoinitiator (see [6])
is homogeneous and remains constant in the course of
a reaction. This means, above all, that the initial con-
centration CI of the initiator is assumed to be surplus.
The validity of such an assumption depends on the
mean chain length over a grating interval, and hence on
the radiation intensity. Nevertheless, this assumption is
always valid in a successful experiment on the record-
ing of gratings for the following reason. If the process
occurs with a deficit of the initiator, the “uncured”
monomer remains in the reaction product. However, all
the monomers used in the experiments contain admix-
tures of inhibitors for preventing spontaneous polymer-
ization during storage. Consequently, the radicals
trapped temporarily by the inhibitor will be released at
the end of the controlled photoinduced process, which
is followed by uncontrolled polymerization (postcur-
ing, see [1–3]). This process, which lasts from a few
hours to several days, inevitably spoils the morphology
of the recorded grating. Hence real experiments are
always carried out with mixtures containing an excess
of the inhibitor. Moreover, it follows from our assump-
tion that the initiator molecules are easily trapped in the
passive volume and are not expelled into the active vol-
ume. This is not quite obvious, but can be expected in
view of the small size of the initiator molecules (usu-
ally diphenyl ketone and its derivatives). In any case,
this assumption is required for the purpose of analysis
(see below) and can be treated as a sort of “zeroth
approximation”.

(7) Finally, we disregard the volume occupied by
radicals and initiator molecules, since their concentra-
tions are quite low as compared to M and CN. Although
this assumption is not of fundamental importance, it
considerably simplifies the calculations.

In the light of the above assumptions, we can easily
establish a relation between the mean concentrations of
the components and their concentration in the active
volume (marked by the additional superscript “f ”) and
also write the corresponding relations for the reaction
rates and diffusion fluxes:

(1)

Here Z is the total concentration of molecules:

(the superscript “0” indicates the initial conditions before
the onset of the reaction). For the sake of simplicity, the
ratio of the molecular volumes of the monomer (uncured
or polymerized) and the nematic in Eqs. (1) is put equal

CL
f CL

1
1 Y /Z–
------------------,=

M f M
1

1 Y /Z–
------------------, CI

f CI.= =

Z CL
0 M0+=
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to unity, which is nearly true for real materials. This
assumption is also not fundamental, but simplifies the
calculations. The expression for the diffusion flux
across a unit surface S (see Fig. 1) has the form

(2)

Formula (2) is written for a monomer, but the form of
the expression for flux remains the same for any other
mobile component. Here also, the fact that both the
active volume and the active part of surface S vary upon
an increase in Y is taken into consideration, and hence
the effective value of the diffusion coefficient (or
mobility) depends on Y; D is the true diffusion coeffi-
cient in the active volume, and the expression in the
parenthesis following D describes the modulation of
the effective value. Since we are speaking of diffusion
in the active volume which does not contain long poly-
merized chains, it can be assumed in the model under
consideration that the diffusion coefficient D is inde-
pendent of the degree of polymerization. In the passive
volume, the value of D is determined by the degree of
polymerization and is equal to zero.

For the process of radical polymerization, we use
the following well-established classical scheme (see,
for example, [6]): 

(1) I + hν  I*,

(2) I*  2 ,

(3)  + M  ,

(4)  + M  , 1 < n < ∞,

(5)  +   I,

(6)  +   DN , 1 < N < ∞,

(7)  +   DN + M , 1 < N + M < ∞.

The first two stages describe the photoexcitation of
the initiator and its dissociation into controlling radicals
(chain initiation), stages 3 and 4 describe the growth
of polymer chains (continuation of the chain), while
stages 5–7 describe the extinction of controlling radicals
as a result of their combination with one another and
with polymer chains (rupture of the chain). It should be
noted that in contrast to the ordinary chain reactions,
the end product in our case emerges not at the stage of
chain continuation, but at the stage of its rupture (reac-
tions 6 and 7).

For the purpose of analysis, we traditionally
assume [6] that the constants in the stages of continua-
tion and rupture of chains are independent of the length
of the reacting radical chains. It is true that this assump-
tion is not quite satisfactory (especially for reactions 5
and 7) for a detailed prediction of the results in the case

WD D 1 Y
Z
---– 

  2/3

x∂
∂ M

1 Y /Z–
------------------ 

  .–=

Ṙ

Ṙ k3 Ṗ1

Ṗn
k4
n

Ṗn 1+

Ṙ Ṙ k5

Ṙ ṖN
k6
N

ṖN ṖM
k6

NM
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of certain specific reagents, but it is nevertheless treated
as a traditional assumption in analysis. Thus we obtain

for all n, and

for all N and M.
In this case, we can write the following expression

in the conventional approximation of the quasi-station-
ary concentrations of radicals [6]:

(3)

Here g is the effective constant of photoinduced initia-
tion of a chain. Summing Eqs. (3) and considering that
P∞ = 0, we obtain the expression

(4)

for the sum of concentrations of radicals

.

It follows from formula (4) that X depends only on the
parameters whose values in the active volume coincide
with their mean values. Thus, using the standard equa-
tion

for the rate of depletion of the monomer, we can easily
obtain an expression for the number of elementary acts
in a reaction involving this monomer in the active vol-
ume V – ∆V (and hence in the entire volume V depicted
in Fig. 1):

Here NM is the total number of monomer molecules in the
volume element V. In terms of the mean concentrations,
we can easily write an expression of the same kind:

(5)

k4 k3 k4
n,= =

k7 k5 k6
N k7

NM= = =

0 dṘ
dt
------- gWCI k4ṘCM– k7Ṙ R Ṗm

1

∞

∑+
 
 
 

,–= =

0 dṖn

dt
--------- k4CM Ṗn 1– Ṗn–( ) k7 Ṙ Ṗm

1

∞

∑+
 
 
 

Ṗn,–= =

n 1 … ∞, for n, , 1 Pn 1– P0 Ṙ.≡= = =

gWCI k7X2 X
1
k7
---- k7gW x( )CI,= =

X Ṙ Ṗm

1

∞

∑+=

dM f

dt
----------- k4M f Ṙ Ṗn

1

∞

∑+
 
 
 

–=

=  k4XM f–
k4

k7
---- k7gW x( )CIM f ,–=

dNM
ch k4

k7
---- k7gWCI

NM

V ∆V–
-----------------dt V ∆V–( ).–=

dM
dt

--------
k4

k7
---- k7gWCIM.–=
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It now remains for us to formulate an equation for
the dynamics of growth of the “passive volume concen-
tration” Y. The latter quantity is the sum of concentra-
tions DN of “N-mers” taken from the smallest “immo-
bile” chain length N0, multiplied by the corresponding
chain lengths N:

as described above. The rate of production of such an
N-mer is

(6)

Here we have taken into consideration reactions 6 and 7
by simply taking the sum from m = 0 instead of m = 1, and
putting P0 = R by definition. The ratio of the concentra-
tions of radicals with two successive m’s is the defini-
tion of parameter q and can be obtained easily from the
system of Eqs. (3). Although this ratio depends on time,
it is independent of m. Hence at any given instant of
time, Pm’s form a decreasing geometric progression.
Thus, introducing the relative concentrations of com-
ponents

as well as the dimensionless time and coordinate

,

α0 =  is the reciprocal characteristic reac-
tion time), we arrive at the following system:

(7)

Here

Y x t,( ) NDN ,
N0

∞

∑=

∂DN

∂t
----------

k7

2
---- PmPN m– ,

0

N

∑=

Pm

Pm 1–
------------ 1

1 k7X/k4M+
------------------------------- q,= =

Pm X 1 q–( )qm.=

σ CL/Z , µ M/Z , ν Y /Z ,= = =

a0τ t, q0x ξ= =

gW0CI/k7

∂µ
∂τ
------ B ξ∂

∂
1 ν–( )2/3

ξ∂
∂ µ

1 ν–
------------– 1 m ξsin+ µ+ 0,=

∂ν
∂τ
------

G
2
---- 1 m ξsin+( )=

× N0
2 1 q–( ) N0 1 q+( ) 2q

1 q–
-----------+ + q

N0,

q 1 G 1 m ξsin+( )
µ

--------------------------------------+
1–

.=

B
D q0( )2

α0
---------------

4πD k7

gW0CIΛ
2

---------------------------,= =
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The initial conditions have the form

(8)

We have intentionally omitted the material balance equa-
tion for the LC concentration σ from the system (7), (8)
for the following reasons. First, the system of Eqs. (7),
(8) is self-consistent and can be solved autonomously.
Second, in order to analyze the evolution of the concen-
tration σ with time, we must consider the dynamics of
production and diffusion of short mobile chains in
accordance with the condition of incompressibility, which
makes the problem extremely complicated. On the other
hand, we need to find only the final steady-state distri-
bution σ(ξ) which is defined completely by the final
distribution ν(ξ) through the condition of homogeneity
of the equilibrium concentration in the active volume:

(9)

The normalized integral in (9) is required for defining a
for a given final profile σ(ξ).

Obviously, the nonlinear system of Eqs. (7), (8) can-
not be integrated analytically in the general case. Hence
we will consider possible limiting cases.

4. POSSIBLE REGIMES FOR THE PROCESS

There are two basic parameters G and B governing
the evolution of the concentration distribution. An addi-
tional parameter N0 is determined by the invariable
properties of the given medium, which cannot be affected
by the conditions of the experiment. It can be used as a fit-
ting parameter for a given initial composition of the
mixture (we mean the set of components and not their
initial concentrations).

Parameter G, which is related to the radiation inten-
sity, controls the rate of formation of the passive vol-
ume as well as the length of the chain averaged over the
grating interval (through the initial value q0). The term
in the brackets in the expression for q is just the “recip-
rocal kinetic length of the chain,” i.e., the ratio of the
rates of continuation and rupture of the chain. The
smaller this ratio, the larger the value of q, and hence
the concentration Pm of radicals for large m. Conse-
quently, neither too small (say, of the order of 0.01), nor
too large (say, more than 10) initial values of this
parameter are acceptable in view of the considerations
formulated above during a qualitative analysis of the
problem.

Parameter B, which is associated with the intensity
as well as the three-dimensional grating interval con-
trols the ability of the monomer to diffuse over the grat-
ing interval during the reaction time, i.e., controls the

G
k7α0

k4
2Z

-----------
k7gW0CI

k4
2Z

--------------------------.= =

µ 0 ξ,( ) µ0 M0/Z , ν 0 ξ,( ) 0.= = =

σ a 1 ν ξ( )–( ), σ ξ( ) ξd

0

1

∫ σ0 CL
0 /Z .= = =
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switching of the process from the “fast” mode to the
“slow” mode. Obviously, the “boundary” of these
modes lies in the vicinity of B = 1.

Another circumstance is worth noting. It was men-
tioned above that a large value of B (i.e., a small value
of the characteristic diffusion time) may activate the
diffusion of radicals, leading to a “blurring” of the grat-
ing. Let us estimate the value of B corresponding to this
situation. For this purpose, we carry out the summation
of the system of Eqs. (3) once again, putting M = M0
instead of assuming that the right-hand sides are equal
to zero (we consider the beginning of the process of ini-
tiation, when the monomer is practically unused). In
this case, we arrive at the following expression for the
sum of concentrations X of the radicals:

(10)

where

and

is the standard expression for the steady-state value
of X. It should be observed that the expression for β
coincides with the expression for the reciprocal charac-
teristic time of the reaction except for the large factor
k7/2k4 (k7 @ k4, since the chain rupture reactions are
practically activationless, while the continuation reac-
tions presume the rupture of a double bond). It can eas-
ily be concluded from here that the relaxation time for
the concentration of radicals considered here becomes
commensurate with the diffusion time for

We now observe that B is constant for a constant value

of Λ2 , and assume that a decrease in Λ for a con-
stant optimal value of the intensity leads, for example,
to the value

In this case, the radicals diffuse actively and obstruct
the grating recording. In order to overcome this diffi-
culty for a given value of Λ, i.e., in order to attain the
value

we must increase W0 by four orders of magnitude.
However, this is in contradiction to the requirement of
not-too-large values of G (see above). Thus, a combina-

dX
dt
------- k7X0

2 k7X2 X t( )–=

=  X0
1 βt–( )exp–
1 βt–( )exp+
--------------------------------,

β 1
2
--- k7gWCI

k7

2k4
--------α0 1 m ξsin+= =

X0
gWCI

k7
--------------=

B k7/2k4.=

W0

B 10k7/2k4.=

B 0.1k7/2k4,≈
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tion of the conditions B < k7/2k4 and G < 10 (approxi-
mately) leads to the following constraint:

(11)

where ΛC is the minimum possible value of the grating
interval observed experimentally for the given mixture,
below which the gratings cannot be recorded for any
radiation intensity.

Figure 2 shows schematically the regions of the
parametric plane BG corresponding to the above analy-
sis. In spite of the fact that this is just an approximate
schematic diagram, it can be useful for choosing the
experimental conditions for recording of gratings.

Let us now consider the limiting cases in which the
system of Eqs. (7), (8) can be solved analytically.

4.1. “Fast” Mode

In this case, we assume that B ! 1 and disregard the
diffusion term in the constituent Eq. (7) for the mono-
mer. The equation then assumes a simplified form:

(12)

whence we obtain the following expression for the
monomer concentration:

(13)

We can now explicitly integrate the second equation in (7).
Taking into account the explicit form of

Λ 8π2D
k4Z

------------- ΛC,≈≥

∂µ
∂τ
------ 1 m ξsin+ µ+ 0,=

µ µ0 aτ–( ), aexp a ξ( ) 1 m ξsin+ .= = =

q τ( ) 1 Ga aτ( )/µ0exp+[ ] 1– ,=

1 Bk7/2k4

1
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G
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recording

Slow
recording

Fig. 2. Schematic diagram showing the possible lattice
recording modes.
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we can present it as follows:

As a result, we arrive at the following expression for the
final distribution of ν:

(14)

For a quite small radiation intensity (G/µ0 ! 1), we
obtain

Thus, in accordance with the qualitative analysis pre-
sented above, the modulation of the monomer concen-
tration Y(x) is found to be weak for low radiation inten-
sities. For large radiation intensities (G/µ0 @ 1), the
modulation is also weak in view of a small value of the
concentration Y(x) itself:

Figure 3 shows the dependences of the amplitude of the
concentration modulation ∆ν on parameter G for
µ0 = 0.5 (a typical experimental value [4]) and N0 = 10
(which seems to be a realistic value for the loss of

dν
dq
------

Ga2

2
--------- N0

2q
N0 1–

N0
1 q+
1 q–
------------q

N0 1– 2q
N0

1 q–( )2
------------------+ + .=

ν∞
µ0

2
-----q0

N0 1–
N0 q0 1 N0q0–+ +( ),=

q τ 0=( ) q0, q ∞( ) 0.= =

ν∞ . µ0 1 N0 1–( )Ga
µ0
-------– .

ν∞ . 
µ0

2
----- N0 1–( )

µ0

Ga
------- 

 
N0 1–

.

m = 0.1

m = 0.5

m = 0.9

0 0.1

0.1

0.2

0.3

0.4

0.5

0.2 0.3 0.4 0.5
G

∆v

Fig. 3. Dependence of the amplitude ∆ν of concentration
modulation on the dimensionless intensity G for the “fast”
mode. The initial monomer concentration is µ0 = 0.5. The
curves correspond to three different values of the contrast m
of the interference pattern.
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mobility in a polymer chain), calculated by using the
formula

(15)

Strictly speaking, this amplitude does not determine the
diffraction efficiency K of the obtained grating. The
parameter which actually determines the diffraction
efficiency is the first spatial Fourier component νsin:

Here, nL and nM are the refractive indices of the pure
nematic and monomer respectively. However, the cor-
responding integrals cannot be evaluated analytically,
and formula (15) describes quite accurately the qualita-
tive form of the dependence K(G).

Thus, it can be seen that the qualitative conclusions
for the “fast” mode are in satisfactory agreement with
the experimental results.

In this work, we shall not delve into the details of the
obtained results since a quantitative comparison with
the experimental data requires not only more detailed
computations of the dependences ν∞(G, B, µ0, m), but
also a large number of additional experimental mea-
surements.

4.2. “Slow” Mode

Unfortunately, an analysis (direct solution of the
system of Eqs. (7)) of this mode is not possible in the
general case. We shall consider the simplest case for
determining the quantitative nature of the effect of dif-
fusion on the resulting diffraction efficiency of the grat-
ing (see the qualitative analysis above). Such an
approach is possible only in the framework of perturba-
tion theory. In other words, we assume that

the subscript “F” refers to the solution in the “fast”
mode (B = 0), while µ1 and ν1 = O(B) are the first-order
corrections in perturbation theory. Linearizing system
(7) in µ1, ν1 and B, we can easily obtain the following
equations:

(16)

∆ν
νmax µmin–

2
------------------------- ν∞ G µ0 a 1 m+=, ,( )= =

– ν∞ G µ0 a 1 m–=, ,( ).

νsin
1
π
--- ν ξ( ) ξsin ξ ,d

π–

π

∫=

K  . 
π nL nM–( )νsinL

λ
------------------------------------- 

  .sin
2

B ! 1, µ µF µ1, ν+ νF ν1,+= =

∂µ1

∂τ
-------- a ξ( )µ1+ D̂ µF( ),=

∂ν1

∂τ
-------- δF

δµ
------

µF

µ1 f µF( )µ1.= =
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Here,  is the diffusion operator from the first equation
in system (7), acting on the solutions µ(τ, ξ) and ν(τ, ξ)
in the “fast” mode, and F stands for the right-hand side
of the second equation in (7). The general solution of
the system of Eqs. (16) can obviously be written in the
form

Considering that

we obtain for the final modulation

Integrating this expression by parts (taking into account
the explicit form F(µF) = ∂νF/∂τ and F(∞) = 0), we
obtain

(17)

An analytic evaluation of this integral may not be pos-
sible in the general case because of the complex form

of . For large intensities (G/µ0 @ 1), however, q
is found to be small (q ! 1) from the very beginning of
the process, and hence ν∞ ! µ0. In this case, the expres-

sion for is simplified considerably:

which gives

(18)

Substituting into this equation the explicit form of
∂νF/∂τ, we can easily obtain the expression

(19)

The second integral in (18) is a quantity of the order of
1/N0 as compared to the first integral and can therefore
be disregarded while writing expression (19).

Let us now assume that the modulation depth of the
interference pattern is small, i.e., m ! 1. In this case,
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the corresponding Fourier components can be calcu-
lated easily:

(20)

Here the subscript “sin” indicates the first spatial Fou-
rier component of the quantity in the parentheses pre-
ceding it.

Thus, we arrive at the conclusion (which is certainly
not rigorous in view of a large number of assumptions
made in the above analysis) that the “initiation” of dif-
fusion of the monomer upon approaching the “slow”
mode decreases the diffraction efficiency of the grating
(the quantities (νF∞)sin and (ν1∞)sin in (20) have opposite
signs).

Let us now consider the results of numerical compu-
tations for arbitrary values of m and B.

4.3. Numerical Simulation of the Process

The system of Eqs. (7) and (8) was solved numeri-
cally for the values of the initial monomer concentra-
tion µ0 = 0.5–0.9 and the modulation depth m = 0.9,
which are close to the experimental values (the value of
m in actual experiments was practically equal to unity,
but such a contrast of the pattern is “unacceptable” for
numerical methods on account of the singularities at the
points with zero intensity). Implicit and explicit four-point
diagrams were used for a numerical solution of the system
of equations. Figure 4 shows a typical resultant σ(ξ) pro-
file. As expected, this profile is considerably nonsinusoi-
dal, and hence we shall operate with the amplitude F and
phase ϕ of its first Fourier component. It is this amplitude
that determines the diffraction efficiency of the grating,
while the phase describes the possible spatial grating shift
of the refractive index relative to the interference pattern.
The results are presented in Fig. 5 in the form of depen-
dences of amplitude F and phase ϕ on parameter B for

νF∞( )sin . N0
2 1–( )

µ0m
4

----------
µ0

G
----- 

 
N0 1–

,

ν1∞( )sin . 
B
N0
------ νF∞( )sin.–

0 1

0.1

σ

ξ

0.2

0.3

2 3 4 5 6 7

Fig. 4. A typical σ(ξ) profile obtained as a result of a numer-
ical solution of the system (7), (8).
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various values of parameter G. In accordance with the
preliminary conclusions drawn in the preceding sec-
tion, the dependence F(B) is found to be a decreasing
function. It should be noted in particular that the higher
the value of G, the sharper the decrease in the depen-
dence. Let us compare the curves corresponding to
G = 0.1 and G = 0.2 in Fig. 5a. These curves intersect for
B ≈ 2, which leads to the following qualitative conclusion:
while the lower of the two intensities (corresponding to
the above-mentioned values of G) is preferable from the
point of view of diffraction efficiency for small values
of B (for large grating intervals), the higher intensity is
preferable for large B. This conclusion is in agreement
with the above-mentioned experimental results con-
cerning the increase in optimal intensity upon a
decrease in the grating interval.

As regards the dependence ϕ(B), the nonzero values
of the directed phase shift of the grating relative to the
interference pattern appear rather strange from general
considerations, since the initial formulation of the
problem was symmetric and did not contain polar axes.
However, it must be borne in mind that, first, the system
of Eqs. (7), (8) (whose stability is yet to be tested) is con-
siderably nonlinear and, second, a directional energy-
exchange between the recording waves was observed
experimentally [7] in the course of polymerization. It is
well known that such an energy exchange is typical of
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Fig. 5. Dependence of amplitude F (a) and phase ϕ (b) on
parameter B for various values of parameter G.
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photorefraction (see, for example, [8]), and can occur
only for nonzero values of ϕ. Hence the qualitative
physical reasons behind nonzero grating shifts are not
clear at present, and further investigations must be car-
ried out to resolve this issue.

5. CONCLUSION

Thus, it can be stated that the model of volume-
restricted diffusion proposed by us is qualitatively in
agreement with the observed results. A preliminary
analysis reveals that this model is capable of explaining
all of the main qualitative features of nontrivial experi-
mental dependences of the diffraction efficiency on the
intensity of the recording radiation and grating interval
obtained for polymer composites containing LCs.

Further quantitative comparisons of the predictions
of the model with the experimental results are being made
at present, but additional measurements are required
before specific conclusions can be drawn. It should be
remarked that the model described here is based on the
real kinetics of molecular transformations and mass
transfer, and practically does not contain any abstract
fitting parameters. Hence it can be used effectively not
only for explaining the obtained results, but also for
predicting the optimal conditions for recording of grat-
ings in specific materials.
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Abstract—The radial component of the Coulomb Green’s function (CGF) is written in the form of a double
series in Laguerre polynomials (Sturm’s functions in the Coulomb problem), which contains two free parame-
ters α and α'. The obtained result is applicable both in the nonrelativistic case and for the CGF of the squared
Dirac equation with a Coulomb potential. The CGF is decomposed into the resonance and potential components
(the latter is a smooth function of energy) for α = α'. In the momentum representation, the CGF with the free
parameters is written in the form of an expansion in four-dimensional spherical functions. The choice of the
parameters α and α' in accordance with the specific features of the given problem radically simplifies the cal-
culation of the composite matrix elements for electromagnetic transitions. Closed analytic expressions (in terms
of hypergeometric functions) are obtained for the amplitudes of bound–bound and bound–free two-photon tran-
sitions in the hydrogen atom from an arbitrary initial state |nl〉 , which generalize the known (one-photon) Gor-
don formulas. The dynamic polarizability tensor components αnlm(ω) for an arbitrary n are expressed in terms
of the hypergeometric function 2F1 depending only on l and  and through the polynomial functions fnl( ) of
frequency  = "ω/|En |. The Rydberg (n @ 1) and threshold ("ω ~ |En |) asymptotic forms of polarizabilities are
investigated. © 2001 MAIK “Nauka/Interperiodica”.

ω̃ ω̃
ω̃

1. INTRODUCTION

The probabilities of one- and many-photon pro-
cesses in the framework of perturbation theory in the
interaction with laser fields can be expressed in terms
of the matrix elements of the corresponding transitions
between the initial and final states of an atom. In the
case of many-electron atoms, such matrix elements can
be calculated only approximately, but for hydrogen-
like systems, such calculations can be carried out
exactly. In most problems, the interaction with the field
can be regarded as a dipole interaction. In this case, the
radial matrix elements 〈n'l ' = l ± 1|r |nl〉  of one-photon
transitions between the initial |nl〉  and the final |n'l '〉
state in the discrete spectrum of the hydrogen atom can
be calculated analytically in the form of a combination
of two hypergeometric functions 2F1(a, b; c; z) with
integral negative parameters a and b (hypergeometric
polynomials) and simple algebraic factors (the well-
known Gordon formulas [1]):

(1)

n'l 1 r nl–〈 〉 1–( )n' 1+=

×
n l–( )2l 1+ n' l– 1+( )2l 1–[ ] 1/2

4z 2l 1–( )!
---------------------------------------------------------------------- ξ l 1+

1 ξ–( ) n n'+( )/2
-------------------------------

× F2 1 n– l 1+ + n'– l; 2l; ξ+,( )[

– 1 ξ–( )2F1 n– l 1–+ n'– l; 2l; ξ+,( ) ] ,
1063-7761/01/9201- $21.00 © 0037
where

and (a)k = Γ(a + k)/Γ(a) is the Pochhammer symbol.
Here and below, the formulas are written in atomic
units.

Gordon’s formulas completely describe the emis-
sion and absorption of a photon by an electron bound in
the Coulomb potential, and an analytic continuation of
formula (1) in n' (in the given case, the substitution

n'  i/ ) gives the amplitudes 〈El ' = l ± 1|r |nl〉  of
bound–free transitions (photoionization and recombi-
nation), which are also polynomials. The expressions
for the amplitudes 〈E 'l ' = l ± 1|r |El〉  of free–free transi-
tions (of the bremsstrahlung type) are also well known,
in which an additional singular term with a delta func-
tion δ(E – E') emerges along with the term obtained by
analytic continuation in n and n' and having the form of
a combination of two complete hypergeometric func-
tions 2F1. Such analytical formulas in the theory of
atomic photoinduced processes are of the reference
type: tabulated results as well as numerous approxima-
tions for particular values of n, l, and/or energy E are
widely used in the problem of classical (one-photon)
optical spectroscopy.

The introduction of lasers into optical spectroscopic
technique and the experimental investigations of many-

ξ 4nn'/ n n'–( )2,–=

2E
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photon processes stimulated analytical calculations of
the cross sections for many-photon (primarily, two-
photon) transitions in a Coulomb field. Even for the
radial matrix element

(2)

of a two-photon transition, the problem is obviously
complicated basically since the calculation of spectral
sums is necessary in this case. It is clear that even when
calculated in closed form, the matrix element (2) must
have a more complex functional form than expres-
sion (1) since, in addition to the dependence on the
quantum numbers n, n', and l, it depends essentially
(resonantly) on the continuous parameter, viz., the fre-
quency ω of the external monochromatic perturbation.
The history of the analytic calculations of amplitudes
of type (2) for a Coulomb potential runs into nearly 40
(see, e.g., [2]) and includes about one hundred publica-
tions. A number of alternative approaches were used
(including various modifications of the method for inte-
grating inhomogeneous differential equations for the
first-order correction function in transient perturbation
theory and algebraic approaches based on O(4) symme-
try of the Coulomb problem), but the most effective
method for calculating spectral sums is that using the
explicit expression for Green’s function

(3)

and the Schrödinger equation with the Coulomb Hamil-
tonian. For transitions between the initial and/or final
states with a fixed orbital angular momentum, it is most
expedient to use the multipole expansion of GE:

(4)

where Ylm( ) is a spherical function. In this case, the
problem is reduced to the calculation of matrix elements
of type (2) with a radial Green’s function gl(E; r, r').

The effectiveness of the application of the Coulomb
Green’s function (CGF) in the theory of two-photon
processes was demonstrated for the first time in an
analysis of the dynamic polarizability α1s(ω) of the
ground state of hydrogen in a compact analytic form [3]
(see also [4]):

(5)

where

}l; l' l l 2±,=
L l 1±=

n n' E En ω±=, ,( )

=  
n'l' r kL〈 〉 kL r nl〈 〉
Ek En– ω i0–+−

------------------------------------------------ n'l' rgL E; r r',( )r' nl〈 〉 ,≡
k

∑

GE
klm| 〉 klm〈 |

Ek E– i0–
--------------------------

klm

∑ 1

Ĥ E– i0–
-------------------------,= =

GE r r',( ) gl E; r r',( )Ylm r̂( )Ylm* r'ˆ( ),
lm

∑=

r̂

α1s ω( )
1

ω2
------ T E1s ω+( ) T E1s ω–( ) 1–+[ ] ,=

T E( )
η

2 2 η–( )
-------------------- F2 1 1 4; 3 η ; x–,( ),=
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Thus, in the simplest case when n = n' = 1, the matrix
elements (2) can be reduced to the complete hypergeo-
metric function 2F1 with two integral first parameters,
one of which is equal to unity (incomplete beta-func-
tion [5]). Similar analytical results were also obtained
for transitions from the ground state to lower excited
states with n = 2, 3 [6] and also for transitions between
excited energy levels [6, 7] up to n = 4 [8]. In all cases,
the results can be expressed in the form of a combina-
tion of the functions 2F1, but the number of functions
increases rapidly upon an increase in the principal
quantum numbers n and n'. It should be noted that such
functions can in principle be reduced to one of such
functions through recurrence relations in view of
above-mentioned integral values of the parameters.
However, the corresponding algorithm is quite cumber-
some and can be realized only by computer methods
[9]. Along with the calculation of the amplitudes of
two-photon transitions with preset values of n and n',
some authors analyzed the matrix elements (2) for the
general case of arbitrary n and/or n'. In this case, the
results have a simple form only for elastic (n' = n) pro-
cesses. A compact expression was obtained, for exam-
ple, in [10] for the scalar component of the polarizabil-
ity of the state |nl〉 , emerging in the course of the com-
putation of the Bethe logarithm for the Lamb shift (see
also [8] for n ≤ 4 and [11] for the ns-states). In [12],
three independent components of the polarizability ten-
sor for an arbitrary n as well as the amplitude of the
“nondiagonal” transition |nl〉   |nl ' = l ± 2〉  are
expressed in terms of the linear combination ~(nr = n –
l – 1) of the functions 2F1. The expression for the ampli-
tude of inelastic transitions from the ground state,
|1s〉   |nl = 0, 2〉 , was obtained similarly, in the form
of a combination of n hypergeometric functions [13].
The matrix elements (2) for the general case when
n ≠ n' were analyzed in [14, 15], but no closed expres-
sion was obtained in terms of the known special func-
tions. The method of the Sturm expansion of the CGF
used in [14] makes it possible to present the result in the
form of an infinite series of the products of two hyper-
geometric polynomials (similar to those appearing in
the Gordon formula for photoionization), which in
addition is found to be diverging at frequencies exceed-
ing the ionization potential |En | of the initial state |nl〉 .
In [16, 17], the result is written in the form of integrals
that cannot be reduced to known special functions,
while Marian [15], who claims to have obtained the
result in a compact analytic form, presented it as a cum-
bersome sum of several dozens of functions of six
parameters and four arguments of the hypergeometric
type, which were specially introduced for the given
problem. These functions are equivalent to a triple sum
including 2F1 functions.

x
1 η–( )2

4η
-------------------, η–

Z

2E– i0–
--------------------------.= =
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An analysis of the matrix element (2) for bound–
free transitions,|nl〉   |El '〉 , is complicated by the
presence of the Coulomb function of the continuous
spectrum, which itself is a degenerate hypergeometric
series. Nevertheless, the amplitude of two-photon ion-
ization from the ground state can be calculated in a
closed analytic form, but now in terms of complete
hypergeometric functions of two variables, viz.,
Appel’s functions F1 [18, 19] (see also similar results
obtained by Gavrila [20] for Compton’s scattering with
ionization). Although these calculations can easily be
generalized to the case of low-lying excited levels also,
no closed results for the amplitude were obtained in the
general case, and various versions of numerical algo-
rithms for an analytic continuation of the hypergeomet-
ric-type series (see, e.g., [21–23, 10]) are used in spe-
cific calculations for large n (especially for above-
threshold ionization, when ω > |En |). It should also be
noted that matrix elements of type (2) (describing, e.g.,
double bremsstrahlung or Rutherford scattering in the
presence of a light wave) for two-photon transitions
between states of the continuous spectrum with fixed
values of the orbital angular momentum can be
expressed in terms of the integral of the complete func-
tion 2F1 [24].

In the present work, we derive two-photon Gordon’s
formulas, viz., compact analytic expressions for matrix
elements of type (2) with arbitrary n and n' and for
bound–free transitions from the |nl〉  state in a canoni-
cally simple form (to the extent possible in such a gen-
eral case) in terms of the known special functions. All
analytic results obtained earlier for two-photon dipole
transitions in the hydrogen atom are just special cases
of these formulas. It was found that a more complex
form of the results for arbitrary n and n' as compared to
the ground state is associated not with the increase in
the number of hypergeometric functions 2F1 or Appel’s
function F1, as could be expected from the well-known
results for low- lying levels, but with the fact that the
amplitudes can be expressed in the general case in the
form of a simple linear combination of the products of
two functions of the hypergeometric type. One of these
functions is a hypergeometrical polynomial of an order
not exceeding n< = min{nr , }, which is similar to
polynomials in the classical Gordon formula, while the
other is Appel’s function F1. In the case of bound–free
transitions, the latter function is similar to those deter-
mining the amplitude of two-photon ionization from
the ground state. For bound–bound transitions, the
above-mentioned Appel’s function has an integral neg-
ative parameter and is equivalent to a finite sum of
functions 2F1 with a unit first parameter, which are sim-
ilar to those appearing in Eq. (5). Besides, in both cases
the result also contains polynomial terms with products
of hypergeometric polynomials of one (2F1) and two
(F1) variables. The results are simplified radically for
“diagonal” matrix elements (2) with n' = n: in this case,

nr'
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polynomial terms are missing, and (n, n, E = En ±
ω) can be written as a simple product of the sum of two
hypergeometric polynomials and the sum of two com-
plete hypergeometric functions 2F1.

We succeeded in generalizing Gordon’s formulas
to the case of two-photon processes by using the effec-
tive computational method based on a new representation
(generalized Sturm expansion) of the radial CGF
gl(E; r, r') in the form of a double series in Laguerre
polynomials (or Sturm’s functions Snl(x) in Eq. (8) from
the Coulomb problem), which contains two arbitrary
(free) parameters α and α':

(6)

The basic circumstance that renders considerable flexi-
bility to the generalized Sturm expansion in various
applications is the factorized dependence of the terms
of series (6) on r and r' and the energy parameter ν =

1/ . The entire dependence on energy E is

contained in the kernel  which is indepen-
dent of radial variables and can be expressed in terms
of hypergeometric functions. A rational choice of
parameters α and α' in accordance with the specific fea-
tures of a given problem (e.g., α = n and α' = n' in an
analysis of two-photon bound–bound transitions)
makes it possible in some cases to radically simplify
the computation procedure for matrix elements with
gl(E; r, r'). In particular, two-photon Gordon’s formulas
can be presented in the closed analytic form described

above in terms of four functions  with different k
and k'. Thus, the amplitudes of two-photon processes
are as if contained even in representation (6) itself for
gl(E; r, r'). It is essential that expansion (6) is valid for
nonintegral values of the parameter l = γ also. This
allows us to obtain a two-parametric expansion for a
nonrelativistic CGF also in terms of Sturm’s functions
of the squared Dirac equation with the Coulomb poten-
tial. For integral l and α' = α, expansion (6) is trans-
formed into a one-parametric representation of Green’s
function for the nonrelativistic Coulomb problem,
which was obtained earlier by Heller [25] (see also [10]).

In Section 2, we will derive expansion (6) and ana-
lyze some properties of the new representation of the
CGF. Among other things, we will obtain a two-para-
metric representation of the CGF GE(p, p') in the
momentum space, which generalizes the well-known
result obtained by Schwinger, as well as the decompo-
sition of GE(r, r') into the “resonance” component (con-
taining poles for E = En) and the “potential” component
(which is a smooth function of energy and is real-val-
ued for real values of E). In Sections 3 and 4, expansion
(6) will be used for deriving two-photon Gordon’s for-

}l; l'
L

gl E; r r',( ) gkk'
l ν; α α',( )Skl

2r
α
----- 

  Sk'l
2r'
α'
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  .
k k', 0=
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mulas for the amplitudes of inelastic bound–bound
(Section 3) and bound–free (Section 4) transitions. In
Section 5, the case when n' = n will be analyzed in
detail: the Stark matrix elements will be calculated for
an energy level with an arbitrary n, and simple formulas
will be derived for the scalar, vector, and tensor-type
polarizability, which are the most natural generaliza-
tions of expression (5). The Rydberg and threshold
asymptotic forms of polarizabilities will also be inves-
tigated.

Some of the results which will be presented here
were briefly described in [26].

2. GENERALIZED STURM EXPANSION 
OF THE CGF

The existence of a convenient representation of
Green’s function suitable for a given problem is often a
necessary condition for successful analytical or numer-
ical calculations. For this reason, various versions of
such representations have been developed starting from
the middle of the 60s, when intense studies of the effect
of laser radiation on atoms began, to nowadays. We will
briefly consider two such versions (a detailed analysis
of various CGF representations including the relativis-
tic case and peculiarities of their application can be
found, for example, in [27–29]).

In many-photon calculations, the most popular is
the expansion of gl(E; r, r') into series in Sturm’s func-
tion of the Coulomb problem [30]:

(7)

where

(8)

 is a generalized Laguerre polynomial [31], ν = (–2E –
i0)–1/2, and η = Zν. The Sturm expansion is useful for
analytical transformations, but it is most suitable for
direct numerical calculations of radial composite

matrix elements  in higher orders of perturbation
theory. In this case, the results can be presented in the
form of multiple series of hypergeometric polynomials
rapidly converging for subthreshold (E < 0) values of
energy of intermediate states (Green’s functions (3) and
(4)). For above-threshold energies, the series for matrix
elements become diverging since the series in Eq. (7)
diverges for E > 0 (for imaginary ν). However, using an
appropriate transformations of (7), we can extend the
technique of computations with Sturm’s functions to
the given class of problems also [32]. Another method
of the summation of series for matrix elements in the
case of above-threshold energies involves the applica-
tion of the Padé approximation techniques [33] (see
also [34]). The Sturm expansion of a radial CGF (with

gl E; r r',( ) ν
k!Skl 2r/ν( )Skl 2r'/ν( )

Γ k 2l 2+ +( ) k l 1 η–+ +( )
------------------------------------------------------------------

k 0=

∞

∑ ,=

Skl 2r/ν( )
2
ν
--- 2r/ν( )l r/ν–( )Lk

2l 1+ 2r/ν( ),exp=

Ln
α

M fi
N( )
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an appropriate modification of the angular component
in Eq. (4)) is successfully used in relativistic calcula-
tions also. In order to obtain Green’s function gγ(E; r, r')
of the squared Dirac equation from Eq. (7) (or (6)) [35],
we must make the substitution l  γ and put

(where j and l are the total and orbital angular momenta
for electrons, respectively). Green’s function (7) with a
nonintegral parameter l emerges also in calculations
with the model Füss potential (Coulomb potential with
an additional centrifugal term proportional to ∝ r–2 [28]).

Along with representations (4) and (7), the CGF
representations in the momentum space are also used
widely. The most popular is the expansion of GE(p, p')
with E < 0 in the discrete basis of four-dimensional
spherical functions Yklm(ξ) defined on the unit hyper-
sphere S (“Fock’s sphere”) in R(4) [36]:

(9)

where ξ is the unit vector in R(4):

The harmonics Ynlm(ξ) orthonormal on the sphere S
have the form

(10)

where  is the Gegenbauer polynomial [31].
It can easily be verified that representation (9) is a
momentum analog of expansions (4) and (7) in the
coordinate space (see, for example, [27]) Representa-
tion (9) leads to a compact integral representation of the
CGF [36, 37] which is widely used in computations. It
turned out in practice that the effectiveness of coordi-
nate and momentum representations of the CGF is
approximately the same: the application of either of
these representations leads in most cases to results of
equivalent complexity (or just identical results).

ν α

1 e
2–

-----------------, e
E

mc2
---------, α e2

"c
------,= = =

η eZν , γ j
1
2
---+ 

  2

αZ( )2–
s 1–

2
-----------,+= =

s 1 at j± l
1
2
---+−= =

GE p p',( )
16ν5

1 ν2p2+( ) 1 ν2p'2+( )[ ]2
----------------------------------------------------------=

×
Yklm ξ( )Yklm* ξ'( )

1 η /k–
-----------------------------------,

k l 1+=

∞

∑
lm

∑

ξ ϕ ϕ p̂sin,cos{ } , ϕcos
1 ν2p2–

1 ν2p2+
--------------------.= =

Ynlm ξ( ) 2l 1+ l!
n n l– 1–( )!

n l+( )!2π
-----------------------------

1/2

=

× ϕsin( )lCn l– 1–
l 1+ ϕcos( )Ylm p̂( ),

Cm
l 1+ ϕcos( )
 AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001



GENERALIZED STURM EXPANSIONS OF THE COULOMB GREEN’S FUNCTION 41
2.1. Expression for the Kernel 

Our aim is to derive expansion (6) for gl(E; r, r ') in
generalized Sturm functions and arguments containing,
instead of the energy parameter ν, the free parameters
α and α' which can be chosen appropriately in each
specific problem. It should be noted that the idea to
introduce a free parameter in the CGF was successfully
employed earlier. Manakov et al. [32] used a special
form of the one-parametric Sturm expansion of gl(E; r, r')
to continue the matrix elements analytically to the
region of continuous spectrum (E > 0 in the nonrelativ-
istic case and |E| > mc2 in the relativistic case). Heller [25]

derived a one-parametric expansion of (ν; α, α) for
the nonrelativistic case (see relation (17) below) on the
basis of an alternative technique of trinomial recurrent
relations for the reciprocal matrix of the Coulomb
Hamiltonian on the quadratically integrable (L2) basis
Skl(2r/α). The high effectiveness of this expansion in
an analysis of two-photon matrix elements between
identical hydrogen-like states was demonstrated by
Broad [10].

In order to find the kernel  of representation (6),
we will use the formal reexpansion of Sturm’s func-
tions on (7) into a series in the complete system of these
functions with another value of the argument contain-
ing the free parameter α:

(11)

Using the completeness of the functions Snl(2r/α) and
the well-known integral of the product of Laguerre
polynomials, we can express coefficients cnk in terms of
the hypergeometric function with integral negative
upper parameters (hypergeometric polynomial):

Here and below, we use the notation

(12)

Using expansion (11) with the free parameters α
and α' as well as the coefficients cnk(α) and cn'k(α') for
Skl(2r/ν) and Skl(2r '/ν) in expansion (7), we arrive at the
following identity:

(13)
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where the factor f has the form

Presenting the hypergeometric polynomial with the
parameter –n in (13) in differential form [5],

(14)

and using the elementary identity

we can sum up series (13) with the help of the generat-
ing function [5] for 2F1(–n', –k; 2l + 2; z'). After a series
of transformations, we obtain

where

(15)

The differentiation of ϕn(z) again leads the hypergeo-
metric polynomial

The integral In'(z) for z0 = z gives the Appel function F1
[5]:

(16)

It can be seen from (15) that for coinciding free param-
eters α' = α, all the derivatives In'(z) with respect to z
having an order not higher than n' vanish if we put
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z0 = z. Considering also that the argument y = 1 for α' =
α in (16), so that Appel’s function In' is transformed into
2F1, and introducing the notation n< = min{n, n'}, n> =

max{n, n'}, we can write (ν; α, α) in the form

(17)

For α' ≠ α, the derivatives of In'(z) can be calculated
using the generating function for Appel’s functions F1
[38]. The final result has the form

× 

(18)

Here,

and  is the binomial coefficient. Appel’s function in

 is a finite polynomial in both arguments. Conse-
quently, expansion (18) contains two essentially differ-
ent groups of terms: Appel’s function in the first term
has an integral negative parameter –n' and is equivalent
to a linear combination of (n' + 1) hypergeometric func-
tions 2F1 that cannot be reduced to polynomials: the

terms with  are the products of hypergeometric
polynomials in one variable (2F1) and two variables
(F1). It can easily be verified that for α' = α, expression
(18) is transformed into (17). In the above derivation,
we did not use the fact that parameter l is an integer.
Consequently, as was noted above (see also [26]), all
the results are also valid for a radial CGF of the squared
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Dirac equation with a nonintegral l = γ. For integral l,
expression (17) coincides with the result obtained by
Heller [25].

It should be noted that the derivation of expressions

for (ν; α, α') can be carried out by transforming the
second function in (13) instead of the first function 2F1.

In this case, we obtain for (ν; α, α') an expression
that follows from (18) after the substitution (k, α) 
(k ', α'). This result corresponds to the symmetry condi-
tion

(19)

which obviously follows already from the initial expan-
sion (6). Pay attention to the fact that the symmetry
condition (19) and the explicit expression (18) for

 determine the nontrivial identity connect-
ing bilinear forms containing the functions 2F1 and F1

(see formula (A.1) in Appendix A). This identity can be
helpful in transforming the matrix elements calculated
using function (6) (see Subsection 5.1 below).

2.2. Decomposition of the CGF into the Resonant
and Potential Components

The double series for gl(E; r, r') derived above have
a more complex structure as compared to the standard
Sturm expansion (7). Consequently, it would be inter-
esting to verify the fulfillment of the general properties
of Green’s functions for them. On the other hand, for-
mulas (6), (17), and (18) allow us to obtain new results,
in particular, the decomposition of gl(E; r, r') into the
resonant component (containing poles for E = En) and the
potential component (which is a smooth function of E):

(20)

In the simplest case when α' = α, the kernels of the

Sturm expansion (6) for (E; r, r') and (E; r, r')
have the form (see Appendix A)

(21)
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(22)

It can easily be verified that  is a smooth function

of the energy E (of parameter η), while  has poles
at l + 1 – η = –nr = 0, –1, –2. …, corresponding to res-
onances at the energy levels of the discrete spectrum
with E = En.

The resonant term (21) is symmetric and factorized
in k, k', and hence the double sum in an expression of

the type (6) for  can be calculated in closed form
using relation (A.7) from Appendix A:

(23)

Proceeding to the limit η  l + 1 + nr, where nr = 0,
1, …, we can verify that the residues at the poles for E =
En are equal to the product of the corresponding eigen-
functions Rnl(r) and Rnl(r').

Proceeding from formula (22), we can prove by

direct verification that the potential term (E; r, r')
for real-valued α is real for all real-valued E, but this
circumstance can be verified more easily on the basis of
the results obtained by Broad [10]. Let us write expres-

sion (17) for (ν; α, α) in terms of the notation pro-
posed in [25, 10]:

(24)

where

(25)

(26)
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Ck>

p z–( )
p η l–( )p 1–

k> 2l 2 p–+ +( )p

--------------------------------------------
p 1=

k>

∑
× F2 1 k> p l 1 η ; 2l– 2; z+ +,+–( )
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The functions  introduced above and proportional to
the kth degree hypergeometric polynomials 2F1 in z are
also kth degree polynomials in

(Pollaczek polynomials [31]). These polynomials sat-
isfy the trinomial recurrence relation

(27)

with the initial conditions

and belong to the class of so-called nonclassical

orthogonal polynomials [31]. The functions  are
referred to in [25] as Pollaczek functions and can be
treated as the second solution of the recurrence relation

(27), which is linearly independent of . It should be

noted that, in accordance with (26),  = –2(2l)!,
while the hypergeometric function appearing in (23) is

proportional to . We are using here the Pollaczek
polynomials and functions as a convenient notation for
writing Green’s function for α' = α in compact form.
When we solved the Coulomb problem by introducing
the quadratically integrable basis Skl(2r/α), the recur-
rence relation (27) was an analog of the Schrödinger
equation, and Green’s function was constructed using
two linearly independent solutions of (27) [25] (see

also [39]). In the notation , , relation (A.6) from
Appendix A can be written as follows [10]:

(28)

The functions (x, α) introduced here satisfy relation

(27) with the initial conditions  = 0,  = –2(2l)!
(which obviously follow from the initial conditions for

 and ) and are therefore polynomials in x.
Although this fact was established in [10], the polyno-

mial (x, α) was not obtained in an explicit form. For-
mula (A.6) makes it possible to find a closed (although

rather cumbersome) expression for  in the form of a
bilinear sum of hypergeometric polynomials.

Bearing in mind the application of Green’s func-
tions in the form of (18) or (17), (24) to the calculation
of matrix elements of two-photon transitions, we put
the free parameter α = n/Z and write the energy param-
eter of Green’s function in the form E = En ± ω. Then
x = , where  = 2Z–2n2ω is the dimensionless
frequency measured in the units of the ionization poten-

pk
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x
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tial of the state |nl〉  under investigation. It can now be

easily seen from (27) that  and  are real-valued

polynomials in 1/ . In this way, we verify the real-val-
uedness of the potential term (22) in Green’s function,

which is proportional to the product (x, α) (x, α),
and specify the frequency dependence of these polyno-
mials.

The resonant terms (21) and (23) are complex-val-
ued for E > 0. Consequently, in accordance with the
general properties of Green’s function, for a positive
energy, the following relation must hold:

(29)

where REl(r) are the wave functions of the continuous
spectrum, normalized to energy:

(30)

where a = Z/p, p = . The validity of relation (29)
can be verified directly by separating the imaginary

component of  in (23). It should be borne in mind
in this case that for real α, the product of Whittaker’s
functions is real-valued, and the imaginary component
of complex-valued terms can be determined using rela-
tion (A.8) in Appendix A.

Concluding the subsection, we note that a three-
dimensional CGF can also be presented as the sum of
the resonant and potential terms:

(31)

where the expressions for Gres and Gpot obviously fol-
low from (4), (6), (21), and (22). The decomposition of
Green’s functions into the resonant and potential com-
ponents is convenient for some applications, for exam-
ple, in collision problems (see, e.g., [40, 41]). The
decomposition of the meromorphic function GE into the
“pole” and “smooth” components which are complex
functions of energy is ambiguous, and expression (31)
gives only one of such representations (see [41, 42] for
details). The expression for the resonant component of
the CGF gl(E; r, r') in terms of the Whittaker functions
appearing in (23) was derived in [40] (see also [42]) by
using the standard representation of gl(E; r, r') in terms
of Whittaker’s functions with the arguments r>, r<,
where r>(r<) = max{r, r'} (min{r, r'}).

pk
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=  iπREl r( )REl r'( ),
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CEl
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2.3. Two-Parametric Momentum Representation
of CGF

Free parameters can also be introduced in the
momentum representation of the CGF in the form of (9).
It can be done most simply by calculating the Fourier
transform (in the variables r and r') of expression (4)
using expansion (6) for gl(E; r, r'). Evaluating the inte-

gral of the product of the Laguerre polynomials 
and the spherical Bessel function jl(pr) (emerging in the
Fourier transformation) using the generating functions

for  as well as the Gegenbauer polynomials

, and also taking into account the definition
(10) of the hyperspherical harmonic Ynlm, we obtain

(32)

where

and ξ' is determined similarly in terms of p' and α'. The
kernel of expansion (32) has the form

(33)

where (ν; α, α') is defined by relations (17) or (18).
For α' = α = ν, expression (32) is transformed into (9).

3. MATRIX ELEMENTS 
OF INELASTIC TWO-PHOTON TRANSITIONS

The matrix elements of two-photon transitions
between the states |nl〉  and |n'l '〉  of the discrete spectrum
with n' ≠ n must be calculated while analyzing real two-
photon processes (Raman scattering of light by an
atom, two-photon excitation, or the decay of atomic
states) as well as in the case of many-photon transitions
in the presence of two-photon resonances at intermedi-
ate levels (ionization and the generation of higher har-
monics of laser radiation). For example, two-photon
resonance plays a decisive role in experiments on the
generation of mixed frequencies in various schemes of
4-wave mixing under the conditions of the self-induced
transparency of a gaseous medium (see, e.g., [43] as
well as the publication by Zhang et al. [44] on the res-
onant generation of UV radiation according to the
scheme
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 AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001



GENERALIZED STURM EXPANSIONS OF THE COULOMB GREEN’S FUNCTION 45
in the transitions |np〉   |1s〉  with n = 3 to 8 in atomic
hydrogen).

Experience shows that it is most convenient to use in
analytical calculations of two-photon matrix elements
the operator of electron interaction with the field in the
“form of velocity”

where A is the vector potential of the field of the wave
with the electric vector

(34)

In the dipole approximation, the term with A2 makes
zero contribution to the amplitudes of inelastic transi-
tions. After the integration over angular variables, these
amplitudes can be expressed in terms of radial matrix
elements of the form

(35)

where

Note that in the case of inelastic transitions, matrix ele-
ments in the form of “velocity” (35) are connected with
the matrix elements in the form of “length” (2) through
the simple relation

(cf. formula (55) below for inelastic transition), which
can easily be verified by using the commutation rela-
tions between the momentum and coordinate operators.

Using expansion (6) for gL, we can obtain closed

analytic expressions for (n, n', E) which are valid
for any n and n'. For this purpose, we write the result of
the action of operators on the wave functions (35) in the
form

(36)

where
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is the radial wave function of the state|nl〉 , and choose
the following values of the free parameters in (6):

(37)

As a result, the integration with respect to r and r' in
(35) can be reduced to direct application of the orthog-
onality condition for Laguerre polynomials

(38)

the sums in expansion (6) become finite, and (n, n', E)
can be expressed in the form of a simple linear combi-

nation of the four quantities  = (ν; n/Z, n'/Z):

(39)

(40)

(41)

We have introduced the following notation for the dif-
ference and sum of n' and l:

One more matrix element allowed by the dipole
selection rules can be obtained from (41) as a result of
the substitution of indices:

(42)

The same method can be used for calculating matrix
elements of the type

emerging when the operator of dipole interaction is
taken in the form of “length” (m, m' = 1) and when the
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quadrupole, etc. terms (m, m' ≥ 2) are taken into
account in the interaction with the field. When free
parameters are chosen in accordance with (37), the
matrix elements Mm, m' can be expressed through the
integrals of the products of two Laguerre polynomials
with identical arguments. The elementary evaluation of
these polynomials with the help of recurrence relations
again boils down to the application of the orthogonality
condition (38). As a result, the explicit expression for

Mm, m' is a linear combination of the functions  as
before. Pay attention to the peculiarities of calculations
based on the generalized Sturm expansion. If free
parameters are chosen in accordance with (37), the
entire energy dependence of Green’s function (6) (and
hence, the frequency dependence of the matrix ele-

ments) is contained in the functions , which are
known beforehand and are defined by formula (18).
However, the integration with respect to radial vari-
ables makes it possible to determine only the rational

coefficients of , which are functions of the quantum
numbers n, l, n', and l ', in formulas of the type (39)–
(41).

Formulas (39)–(42) are two-photon analogs of Gor-
don’s formulas (1) since they provide exact expressions
for the matrix elements of two-photon dipole transi-
tions in terms of hypergeometric functions. For obvious
reasons, two-photon Gordon’s formulas are much more
complicated than one-photon formulas. First, they can-
not be reduced to polynomials any longer, but contain
Appel’s function F1 with an integral negative super-
script, which is equivalent to a finite linear combination

of the hypergeometric functions 2F1. Besides,  can
be expressed in terms of the products of hypergeomet-
ric functions and hypergeometric polynomials. Never-
theless, formulas (39)–(42) give the simplest expres-
sions for two-photon dipole matrix elements. It should
be noted that earlier [15], matrix elements of type (35)
were expressed in terms of cumbersome hypergeomet-
ric-type functions of four parameters and three argu-
ments, which were specially introduced for this prob-
lem and which are considerably more complicated than
formulas (39)–(42).

General formulas can be simplified significantly for
the maximum values of the orbital angular momentum
of the initial and/or final states. In this case, the terms

containing  with negative subscripts are missing in
(39)–(42) since the factors of these terms vanish (the
fact that the matrix elements cannot be expressed in

terms of  with k, k' < 0 obviously follows even from
the initial expansion (6)). The simplest case is that of
transition |ns〉   |n's〉  with n = 1, 2, and n' > n. The
matrix elements of such transitions can be written in the

gkk'
l

gkk'
l

gkk'
l

Mll'
L

gkk'
L

gkk'
L
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form of a universal expression

(43)

where n = 1 or 2. The functions  with zero subscript
k or k' can be written in a compact form:

For n = 1, the last term in (43) vanishes, and the result
can be expressed in terms of two Appel’s functions F1.
The expression for the matrix element of the transition
|1s〉   |nd〉  analogous to (43) has the form

The above expressions for the transitions |1s〉   |ns〉
and |1s〉   |nd〉  coincide with the results obtained by
Marian [15] (formulas (34) and (35)).

The cross section of any two-photon transition
between bound states can be expressed in terms of the
matrix elements (35). For example, the cross section for
Raman scattering involving the transition |nl〉  |n'l + 2〉
contains only (n, n', E):

(44)

where α is the fine-structure constant, and e and ω (e'
and ω') are the polarization vector and frequency of an
incident (scattered) photon.

Table 1 contains numerical values of the matrix ele-

ments (n, n', E) and (n, n', E) for n' > n and
E = (En + En')/2. It can be seen from the table that the
value of the relevant matrix element increases with the
orbital angular momentum of the final state, which is
similar to the well-known Bethe rule for one-photon
matrix elements.
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Table 1.  Values of matrix elements (n, n', E) and (n, n', E) where E = (En + En')/2

n l n' (n, n') (n, n') (n, n') (n, n')

3 2 10 3.33409(–1) 7.26967(–1) 9.11768(–1) 5.65901(0)

3 2 15 5.64955(–2) 8.70688(–2) 2.20482(–1) 8.40251(–1)

3 2 20 2.66131(–2) 3.21271(–2) 1.20379(–1) 3.73535(–1)

10 9 15 –2.30971(–2) –4.68375(–1) 5.97962(–2) –4.36418(0)

10 9 20 –3.53832(–3) –1.14158(–1) 5.93551(–2) –5.75417(–1)

10 9 25 6.64088(–3) 2.07508(–2) 1.06041(–1) 8.80864(–1)

Mll 2±
l 1± Mll

l 1±

Mll 2–
l 1– Mll

l 1– Mll
l 1+ Mll 2+

l 1+
4. TWO-PHOTON GORDON FORMULAS
FOR BOUND–FREE TRANSITIONS

A generalization of the results obtained in the previ-
ous section to the case when one of the states belongs
to the continuous spectrum with energy E makes it pos-
sible to obtain closed analytic expressions for the
amplitudes of Compton scattering of a rather hard pho-
ton of frequency ω, involving the ionization of the atom
and the emission of a photon of frequency ω' = En + ω –
E, as well as two-photon ionization of a state with arbi-
trary quantum numbers n and l. The above method of
calculation of amplitudes of transitions between states
of the discrete spectrum, which is actually based of the
orthogonality condition for Laguerre polynomials, can-
not be extended to the present case since there is no
relation similar to (38) for functions of the continuous
spectrum. An analysis shows, however, that in analogy
with the generalization of one-photon Gordon’s formu-
las to the case of photoionization or photorecombina-
tion, expressions (39)–(41) can be continued analyti-
cally in one of the variables n or n' to the region of con-
tinuous energy spectrum. For example, in order to
obtain

(45)

from 〈n'l '| (l ', L)gL(%) (L, l)|nl〉 , we must carry out

the substitution n' n'  iZ/p, where p =  and
introduce an additional factor taking into account the
difference in the normalization of the wave functions of
the discrete and continuous spectra.

For the sake of reference, we will write here all
four radial matrix elements emerging in the calcula-
tion of the amplitude of bound–free transition from
the state |nl〉 :

(46)

Mll'
L n E %, ,( )

=  REl'〈 |D̂ l' L,( )gL %( )D̂ L l,( ) Rnl| 〉

D̂ D̂

2E

Mll
l 1+ n E %, ,( ) il 1+ aCEl

d( )2l 1+[ ]1/2

8nZ1/2
---------------------------–=

× d 1–( ) d 2–( ) l 1 ia–+( ) l 2 ia–+( )gd 3– ia l– 3–,
l 1+[

– s 1+( ) s 2+( ) l 1 ia–+( ) l 2 ia–+( )gd 1– ia l– 3–,
l 1+
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(47)

(48)

(49)

where

It can be seen that the matrix elements are expressed in

terms of the kernel  of expansion (6), which must be
taken for the complex value of the second subscript,
k' = β, and for the following arguments (see (18)):

– d 1–( ) d 2–( ) l 1 ia+ +( ) l 2 ia+ +( )gd 3– ia l– 1–,
l 1+

+ s 1+( ) s 2+( ) l 1 ia+ +( ) l 2 ia+ +( )gd 1– ia l– 1–,
l 1+ ] ,

Mll
l 1– n E %, ,( ) il 1+ aCEl

d( )2l 1+[ ]1/2

8nZ1/2
---------------------------–=

× gd 1– ia l– 1–,
l 1– gd 1+ ia l– 1–,

l 1––[

– gd 1– ia l– 1+,
l 1– gd 1+ ia l– 1+,

l 1–+ ] ,

Mll 2+
l 1+ n E %, ,( ) il 3+ aCEl 2+

d( )2l 1+[ ]1/2

8nZ1/2
---------------------------–=

× d 1–( ) d 2–( )gd 3– ia l– 3–,
l 1+[

– s 1+( ) s 2+( )gd 1– ia l– 3–,
l 1+

– d 1–( ) d 2–( )gd 3– ia l– 1–,
l 1+

+ s 1+( ) s 2+( )gd 1– ia l– 1–,
l 1+ ] ,

Mll 2–
l 1– n E %, ,( ) il 1– aCEl 2–

d( )2l 1+[ ]1/2

8nZ1/2
---------------------------–=

× l 1– ia–( ) l ia–( )gd 1– ia l– 1–,
l 1–[

– l 1– ia–( ) l ia–( )gd 1+ ia l– 1–,
l 1–

– l 1– ia+( ) l ia+( )gd 1– ia l– 1+,
l 1–

+ l 1– ia+( ) l ia+( )gd 1+ ia l– 1+,
l 1– ] ,

a Z/ p, CEl
2 p
π

------eπa/2 Γ l 1 ia–+( ) .= =

gkk'
l

gkβ
l gkβ

l ν; n/Z i/ p,( ).=
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In this case, the first term in (18) contains the complete
Appel function F1 which, in contrast to the case of
bound–bound transitions, cannot be reduced to the
combination of functions 2F1 any longer. It is important

to note that the functions  in formula (18) for

(ν; n/Z, i/p) are expressed, as before, through hyper-
geometric polynomials. Thus, for arbitrary n and l, each

of the four partial amplitudes (n, E, %) is in turn a
combination of four terms each of which is the sum of
not more than nr + 2 (nr = n – l – 1) nonresonant poly-
nomial terms (which are smooth functions of fre-
quency) and a resonant term which is the product of a
hypergeometric polynomial of the order nr or nr + 2 and
the complete Appel function F1 (the first term in (18)).
The numerical calculation of these quantities obviously
does not involve any technical difficulties either for
|En |/2 < ω < |En | or in the above-threshold case ω > |En |.

Strictly speaking, the analytic continuation of
amplitudes from the discrete spectral region to the con-
tinuous energy range could be incorrect, but in our case
no ambiguity emerges when this procedure is carried
out, and the obtained expressions are in accord with the
known analytical and numerical results for some spe-
cial cases. In particular, two-photon Gordon’s formulas
(46)–(49) completely solve the problem of the two-
photon ionization of the hydrogen atom from an arbi-
trary state |nl 〉  since the total cross section, as well as
the angular distribution of photoelectrons, can be

expressed in terms of (n, E, %). For example, the
two- photon ionization cross section integrated with
respect to the angles of emission of a photoelectron in
field (34) with a linear polarization has the form

(50)

where

Similar expressions in the case of the elliptic polariza-
tion of the wave for the parameters of the angular dis-
tribution of photoelectrons are given in [45].

As in the case of bound–bound transitions, the
results are simplified significantly for l ~ n Indeed, if
the initial state has the maximum value of the orbital

Φp
l n' i/ p=,

gkβ
l

Mll'
L

Mll'
L

σnl
π2αF2ω

15 2l 1+( )
------------------------- l 1+( ) 4l2 8l 5+ +( )

2l 1+( ) 2l 3+( )
------------------------------------------------ Mll

l 1+ 2


=

+
l 4l

2
1+( )

2l 1–( ) 2l 1+( )
------------------------------------- Mll

l 1– 2

+
4l l 1+( )

2l 1+
---------------------Re Mll

l 1+( )∗ Mll
l 1–( )

+
2 l 1+( ) l 2+( )

2l 3+
----------------------------------- Mll 2+

l 1+ 2 2l l 1–( )
2l 1–

-------------------- Mll 2–
l 1– 2

+ 
 ,

Mll'
L Mll'

L n E %, ,( ), E En 2ω, %+ En ω.+= = =
JOURNAL OF EXPERIMENTAL 
angular momentum, l = n – 1 (nr = 0), the matrix ele-
ments (46), (48), for example, assume the form

(51)

and can be expressed only in terms of function F1:

For the ground state n = 1, the other two matrix ele-
ments (47) and (49) do not appear in the transition
amplitude, and the results described above completely
coincide with those obtained in [18] (see also [19]).

Relatively simple expressions (46)–(49) for matrix
elements make it possible to calculate the two-photon
ionization cross sections for excited states in a wide fre-
quency range. Figure 1 shows the frequency depen-
dence of cross sections σnl (50) beyond the one-photon
ionization threshold for states with n = 10, l = 0, 5, 9. It
can be seen that the ionization cross section decreases
rapidly upon an increase in ω. The same figures illus-
trate the accuracy of the “resonant” approximation,
which implies the inclusion of only the imaginary com-
ponent of matrix elements in an analysis of the two-
photon ionization cross section:

Our results indicate that the contribution of the imagi-
nary component decreases upon an increase in the
orbital angular momentum and the energy of the final
state.

5. POLARIZABILITIES OF EXCITED STATES

5.1. Exact Analytical Results 
for Polarizability Tensor Components

It is convenient to analyze two-photon transitions
between (degenerate) states with the same energy in the
language of atomic polarizabilities. Polarizability
describes the linear response of an atom to an external

Mn 1– n 1–
n n E %, ,( ) i 1–( )n 2n 1–( )![ ]1/2aCEn 1–

4Z1/2
-----------------=

× n ia–( ) n 1 ia–+( )F 0( )(

– n ia+( ) n 1 ia+ +( )F 2( ) ),

Mn 1– n 1+
n n E %, ,( ) i 1–( )n 1+ 2n 1–( )![ ]1/2=

×
aCEn 1+

4Z1/2
------------------ F 0( ) F 2( )–( ),

F m( )
ν

n 1 η–+
--------------------- 4η( )2n 2+

2n( )!
---------------------- an( )n 1+

n η+( )2n 2+
----------------------------=

× ia η–( )ia n– 2– m+

ia η+( )ia n m+ +
-----------------------------------------F1 n 1 η ;–+(

ia– n 2 m ia n m; n 2 η ; y y',–+ + +,–+ + ),

y
n η–
n η+
------------ ia η+

ia η–
--------------, y'

n η–
n η+
------------ ia η–

ia η+
--------------.= =

Mll'
L n E %, ,( ) ImMll'

L n E %, ,( ).
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monochromatic action (induced dipole moment) and
determines the amplitude of elastic (Rayleigh) scatter-
ing of light as well as the shift, splitting, and ionization-
induced broadening of atomic energy levels in the field
of a light wave. The polarizabilities of highly excited
hydrogen-like states are of special interest in certain
cases, e.g., in astrophysical applications and in the
spectroscopy of Rydberg levels. The polarizabilities of
the hydrogen atom can be calculated analytically, and
such computations were made by dozens of authors. In
this section, the generalized Sturm expansion of the
CGF will be used for deriving analytic expressions for
the polarizabilities of arbitrary hydrogen states, which
are essentially as simple as formula (5) for the polariz-
ability of the ground state.

A general analysis of the second-order perturbation
in F of the spectrum of an atom in the field of an elec-
tromagnetic wave (34) was carried out in [12]. For this
reason, we will confine our analysis to the case of linear
or circular polarization of the wave, for which the states
|nlm〉  with different values of components of the orbital
angular momentum m are not mixed by the field. A spe-
cific feature of the Coulomb problem is the degeneracy
of energy levels in l, the two-photon matrix element
between the states |nlm〉  and |nl 'm〉  with l ' = l ± 2 differ-
ing from zero. For this reason, even in the case of a lin-
ear or circular polarization of the wave, the perturbation
of the spectrum of excited states is determined by a sec-
ular equation with a tridiagonal matrix of rank n – |m |
[46]:

where

(52)

The dependence of the Stark matrix elements 
on the magnetic quantum number m can easily be deter-
mined by the methods of quantum theory of angular
momentum [47]. Matrix elements diagonal in l have the
form

(53)

for circular polarization (ξ = ±1 for right- and left cir-
cular polarizations) and

(54)

for linear polarization. Thus, the elements  are
determined by the three invariant parameters αs(ω),

Qmm
ll' ∆Enδll'– 0,=

Qmm
ll' 1

4
---F2 nl'm〈 | e∗ rGEn ω i0+ + e r⋅⋅{–=

+ e rGEn ω– i0+ e∗ r⋅⋅ } nlm| 〉 .

Qmm
ll'

Qmm
ll 1

4
---–=

× F2 α s ω( ) ξαa ω( )
m
2l
----- α t ω( )

3m2 l l 1+( )–
2l 2l 1–( )

---------------------------------–+

Qmm
ll 1

4
---F2 α s ω( ) α t ω( )

3m2 l l 1+( )–
l 2l 1–( )

---------------------------------+–=

Qmm
ll
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αa(ω), and αt(ω) known as the scalar, vector (antisym-
metric) and tensor (symmetric) polarizabilities. The
dependence on m in nondiagonal matrix elements can
be singled out in a similar way. In the case of the circu-

lar polarization of the wave, the element  has
the form

while the expression for  can be obtained from
this formula through the substitution l  (l – 2). For
a linear polarization of F(t), we have

It can be seen that the nondiagonal elements Ql, l ± 2 are
determined by a single invariant atomic parameter

Qmm
ll' l 2+=

Qmm
ll' l 2+= 1

8
---F2βn l 2+, ω( )=

× l 1+( )2 m2–( ) l 2+( )2 m2–( )
2l 1+( ) 2l 5+( )

----------------------------------------------------------------------,

Qmm
l l, ' l 2–=

Qll'  l( ) 2Qll'  c( ).–=
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Fig. 1. Dependence of the ionization cross section (on loga-

rithmic scale) σnl/αF2 (curve 1) and of the ratio /σnl of

the cross section calculated taking into account only the
imaginary component of matrix elements to the exact
expressions (curve 2) on the frequency  = 2n2ω: (a) n =
10, l = 0; (b) n = 10, l = 5, and (c) n = 10, l = 9.
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, which can be referred to as the “nondiag-
onal” polarizability.

Explicit expressions for the polarizabilities αs, a, t

and β can be written in terms of two-photon radial

matrix elements in r (2) or in  (35), which are con-
nected through the following relation in the case of
elastic transitions:

(55)

We will use below the following expressions for polar-
izabilities in terms of the matrix elements in the form of

“velocity,” i.e., (n, n, E) ≡ (E):

(56)

where

(57)

Instead of (36), it is more convenient to use the follow-

ing auxiliary relations for the action of operators  on
the wave functions for calculating polarizabilities:

(58)

Since the first terms in these formulas differ from the
wave function of the state |n, l + 1〉  only in the factor,

βnl' l 2±= ω( )

D̂

nl'〈 |rgL En ω+( )r nl| 〉 1
ω
---- nl'〈 |r2 nl| 〉–

1

4ω2
--------- nl' nl〈 〉–=

× 2 2L L 1+( ) l l 1+( )– l' l' 1+( )–+[ ]

–
1

ω2
------ nl'〈 |D̂ l' L,( )gL En ω+( )D̂ L l,( ) nl| 〉 .

Mll'
L Mll'

L

αnl
s ω( ) 1

ω2
------–

1

ω2
------ 1

3 2l 1+( )
---------------------- lρl 1–

+( ) l 1+( )ρl 1+
+( )+[ ] ,–=

αnl
a ω( )

1

ω2
------ l

2l 1+
-------------- ρl 1–

–( ) ρl 1+
–( )–[ ] ,–=

αnl
t ω( )

1

ω2
------ l

3 2l 1+( )
---------------------- ρl 1–

+( ) 2l 1–
2l 3+
--------------ρl 1+

+( )+ ,=

βnl' ω( )
1

ω2
------ 1

2l' 1–
--------------- Mll'

L En ω+( ) Mll'
L En ω–( )+[ ] ,–=

L l 1, l'± L 1,±= =

ρL
±( ) Mll

L En ω+( ) Mll
L En ω–( ).±=

D̂

D̂ l 1+ l,( )Rnl r( )
Z
n
--- d 1–

s 1+
------------ 

 
1/2

Rnl 1+ r( )–=

–
4Z5/2

n2 s 1+( ) d( )2l 1+[ ]1/2
-------------------------------------------------ρle ρ/2– Ld 1–

2l 3+ ρ( ) Ld 2–
2l 3+ ρ( )–( ),

D̂ l 1+ l 2+,( )Rnl 2+ r( )
Z
n
--- d 2–

s 2+
------------ 

 
1/2

Rnl 1+ r( )=

+
4Z5/2

n2 d 3–( )2l 5+[ ]1/2
-----------------------------------------ρle ρ/2–

× s 1+( )Ld 3–
2l 3+ ρ( ) d 2–( )Ld 2–

2l 3+ ρ( )–( ).
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the corresponding terms in  can easily be evaluated
using the relation

(59)

In the case under investigation, the energies of the

initial and final states in  are identical, and hence
we can use representation (6) with identical parameters
α' = α = n/Z for Green’s function, and the subsequent
integration with respect to r and r' can be reduced to the
trivial application of the orthogonality condition (38).
As a result, we obtain, for example, the following

expression for :

(60)

Using expression (24) for  as well as the relation
(see formula (A.3) in Appendix A)

we can write expression (60) in the following form:

(61)

Similar expressions for  and  have the form

(62)

(63)

The expression for  can be obtained from (63)
through substitution (42). Note that the elementary

terms in , which are proportional to 1/ , vanish in
the course of evaluating the sum in ρ(+) (57) and the dif-
ference in αa and make no contribution to the polariz-
abilities.

Relations (56) and (61)–(63) completely determine
the invariant components of the dynamic polarizabil-
ity tensor of the n-shell. It can be seen that the general
form of the dependences αs, a, t(ω) and β(ω) on the
parameters of the problem (field frequency ω, quantum

Mll'
L

gl E( ) Rnl| 〉 1
En E–
--------------- Rnl| 〉 .=

Mll'
L

Mll
l 1+

Mll
l 1+ E( )

Z2

n2 En E–( )
-------------------------d 1–

s 1+
------------ d( )2l 1+ s 2+( )2gd 1– d 1–,

l 1+(=

– 2 d 1–( ) s 2+( )gd 1– d 2–,
l 1+ d 1–( )2gd 2– d 2–,

l 1++ ).

gkk'
l

qk
+l pk 1–

l qk 1–
+l pk

l– 2 k 1+( )2l,=

Mll
l 1+ En ω+( ) 2

ω̃
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2n

ω̃ s 1+( )2 d( )2l 1+

----------------------------------------–=
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numbers n and l, and the nuclear charge Z) can be pre-
sented as

(64)

Thus, the “true” frequency ω appears in the polarizabil-
ity in fact only as the common factor in Eqs. (56), and
the details of the frequency dependence are determined
by the quantity . Using relation (28) for Pollaczek

functions  in (61)–(63) and taking into account the

fact that  and  are polynomials in 1/  (see Sub-
section 2.2), we can readily see that the scalar, vector,
and tensor polarizabilities for an arbitrary n have the
following universal structure (cf. Eqs. (5)):

(65)

where

and  can be expressed in terms of  and  (see
Appendix B).

It follows from the results of Subsection 2.2 that the

functions  and  are real-valued polynomials

in , ψs, t containing only even powers of frequency
and ψa, only odd powers. The degree of these polyno-
mials is determined by the radial quantum number nr,
while the coefficients are determined by the values of nr

and of the orbital quantum number l. For the ground
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state (see (5)), we have  = 1/2 and  = 0. Explicit

expressions for  and  for n ≤ 4 are given in
Appendix B.

Formulas (65) show that the polarizabilities of states
with arbitrary n and l can be expressed in terms of the
universal function

(66)

with m = l ± 1, in which the principal quantum number
appears only through the parameter

The possibility of such a representation of polariz-
abilities was noted earlier [12, 29], but explicit formu-
las for arbitrary values of n were not derived. Function
(66) possesses a number of peculiar properties that can
be used in computational algorithms. It should be noted
here that function (66) can be expressed in terms of an
incomplete beta function (the integral on the right-hand
side of (A.4) is the definition of the incomplete beta
function [5]). Moreover, relation (A.8) makes it possi-
ble to separate the imaginary component of TL( ),
which appears for  > 1 and can be reduced to elemen-
tary functions,

(67)

and hence the imaginary component of polarizabilities
also since the remaining quantities appearing in (65)
are real-valued. Since the photoionization cross section
σnl(ω) of the state |nl 〉  is connected with the imaginary
component of the scalar polarizability in accordance
with the optical theorem, i.e.,

(68)

relation (67) makes it possible to express σnl(ω) in
terms of elementary functions:

In particular, for ns states we have

(69)

(in formulas (68) and (69), ordinary units are used, and
a0 is Bohr’s radius). Thus, it is only the polynomials
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 that are connected with the ionization cross sec-
tion. It is interesting to note that in view of the analytic
energy dependence of the scattering amplitude, the

polynomials  through which σnl(ω) is

expressed for  > 1 determine  for  < 1

also, while the polynomials appear in the
matrix elements with Green’s function gl ± 1(En – ω),
which remain real-valued for any .

5.2. Polarizabilities of Rydberg States

The asymptotic properties of the polarizabilities of
states with arbitrary n and l were analyzed by many
authors. The high-frequency asymptotic form, for
example, was studied in [12, 48] (see also [49]). The
low-frequency limit is also considered in [12]. Semi-
classical calculations of the polarizabilities of the n
shell averaged over l were calculated in [50], while
some peculiarities of the polarizabilities of Rydberg s
states were analyzed in [11]. In this subsection, we
determine the Rydberg asymptotic form of polarizabil-
ities (for n @ 1), which holds for any frequency. In this
case, the states with small and large values of the orbital
angular momentum should be distinguished.

5.2.1. Small values of the orbital angular momen-
tum: l ! n. In this case, the asymptotic form of

 and βnl' can be obtained by proceeding to the
limit of n @1 in formulas (61)–(63). The expression for
the hypergeometric polynomial appearing in (25) for
large n can be derived by the term-by-term transition to
the limit

(70)

where Φ is a degenerate hypergeometric function. In
order to find the limiting expression for a hypergeomet-
ric function of the type 2F1(n + a, n + b; n + c; z–1) (see
(26)), in which all the three parameters and the argu-
ment are large for n @ 1, we present it in the integral
form:

(71)

Considering that z ∝  n–1 and proceeding to the limit in
the integrand, we obtain

(72)
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where Ψ(a, c; x) is a degenerate hypergeometric func-
tion which is irregular at zero.

The substitution of the obtained limiting expres-
sions (70), (72) into formulas (61)–(63) leads to the
cancellation of terms principal in 1/n (the possibility of
such cancellations follows even from formulas (36)). In
order to avoid the calculation of the next expansion
terms in 1/n in formulas (70) and (72), we transform
expressions (61)–(63) so that the principal terms of the
asymptotic form cancel out in these initial expressions.
Using the Gauss relation (see formula (2.8.32) in [5])
for transforming the differences of Pollaczek polyno-
mials and the relation

for transforming the differences of Pollaczek functions,
we arrive at the following asymptotic expressions for
matrix elements:

(73)

(74)

(75)

n l 1 η–+ +( ) F2 1 n n 2l 1; n l 1 η ; z 1––+ + + +,( )
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+ n 1 z 1––( ) F2 1 n 1+ n 2l 2; n l 2 η ; z 1––+ + + +,( )
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where

Formulas (73)–(75) lead to the dependence , βnl ∝
n–3 since the terms proportional to ∝ n–2 cancel out
when we evaluate the polarizabilities. Such a depen-
dence corresponds to the factor n–3/2 in the normaliza-
tion of the Rydberg wave functions, but the limit under
consideration cannot be obtained by substituting the
latter functions into (35) since this would lead to a
diverging integral (this circumstance was noted in
[11]).

If we proceed to the limit   m in Eqs. (73)–
(75), the result must obviously coincide with the limit
n  ∞ taken from the corresponding resonant term in
the exact matrix element (35):

(76)

where ∆ = Em – En + ω. The fulfillment of relation (76)
was verified for states with l = 0, 1 in several low-lying
resonances. We have also verified the matching of the
obtained formulas to the high-frequency limit: if we
make ω  ∞ in Eqs. (73)–(75), the result coincides

with that obtained from  for the inverse sequence of
proceeding to the limit: first ω  ∞, and then n  ∞.
In this case, the first two terms of the expansion of Ryd-
berg’s formulas (73) and (74) for the diagonal matrix

elements and in exact expressions for  in powers
of 1/ω coincide:

(77)

(78)

Simple analytic expressions for polarizabilities in the
high-frequency limit are given in [12, 48].

5.2.2. Large values of the orbital angular
momentum: n – l ! n. An analysis of the high-fre-
quency asymptotic form of polarizabilities in [48]
revealed that 1/ωn3 is a parameter of the expansion for
l ~n. This means that the principal terms of the expan-
sion of αnl into a series in ω–1 for a given n also deter-
mine the principal terms of the expansion in n–1 for a
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fixed frequency ω. Using the results obtained in [12, 48],
we get

(79)

Thus, the elements of Stark’s matrix with a small l (~n–3)
in the Rydberg range are larger than the matrix ele-
ments with a large l (∝ n–6), which obviously affects the
form of the spectrum.

Pay attention to the peculiar form of the frequency
dependence of polarizabilities in the limit n  ∞.
Since in this case any fixed value of frequency ω is a
above-threshold value (ω > |En |), the matrix elements
with E = En + ω (which determine the resonant struc-
ture of the polarizabilities of energy levels with a finite
n, which condense to the threshold ω = |En |) turn out to
be nonresonant (and the corresponding parameter η is

purely imaginary). The matrix elements (En – ω)
have poles at frequencies corresponding to resonances
at low-lying energy levels with n' = L + 1, L + 2, …,

 = (n – 1). It can easily be verified that matrix ele-
ments with a large l have no resonances in the above-

threshold region (see (79)), while (En – ω) for l ! n
have a finite number of resonance (for a fixed n), the
separation between which increases with frequency. In
the Rydberg asymptotic forms (73)–(75), the resonant
dependence is associated with the factors Γ(l + 2 – )
and Γ(l – ) so that the position of the poles is shifted
by the binding energy |En | relative to the true values
ωres = En – En' in accordance with the condition n @ 1.
By way of an illustration of the frequency dependence,
Figs. 2 and 3 show the dispersion curves of polarizabil-
ities of states with n = 3 and n = 10 for the minimum
(l = 0) and maximum (l = n – 1) values of the orbital
angular momentum. A peculiar feature of the frequency
dependence of polarizabilities with a small l is the pres-
ence of a negative dispersion region in a narrow range
near resonances. Indeed, it can be seen from Fig. 2 that
as we go over through a resonance, the real component
of polarizability decreases rapidly and attains its mini-
mum value, and then increases monotonically up to the
frequency range near the next resonance. As we go over
through this resonance, the polarizability first
decreases, attaining the minimum (negative) value, and
then increases, approaching zero. Obviously, such a
(quite complicated) frequency dependence cannot be
approximated by elementary formulas. At the same
time, the asymptotic expressions (73)–(75) lead to a
satisfactory agreement with exact expressions even for
low-lying levels, the matching being improved consid-
erably with increasing n. Pay attention to the fact that
“semiasymptotic” formulas which can be obtained
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Fig. 2. Dependence of the scalar polarizability  of states with (a) n = 3 and (b) n = 10, l = 0, calculated using the exact formula

(1) and “semiasymptotic” formulas obtained from (73)–(75) as a result of the substitution   η on the frequency  = 2n2ω.
Resonant frequencies are shown by vertical dashed lines on which the principal quantum number of the corresponding resonant level
is indicated. The scale on the ordinate axis is indicated for each interval between resonances. In (b), curves 1 and 2 in the last two
intervals between resonances coincide.
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Fig. 3. Dependence of the tensor polarizability  of states with (a) n = 3, l = 2 and (b) n = 10, l = 9, calculated using the exact

formula (curve 1) and the approximate formula (79) (curve 2) on the frequency  = 2n2ω. Curves 1 and 2 in (b) coincide.
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from (73)–(75) by substituting the exact value of η
(depending on n) for  lead to more exact results for
polarizabilities, which ensures the correct positions of
resonances. The dependence αs(ω) calculated in this
way is also presented in Fig. 2. The polarizabilities
αs, a, t of states corresponding to large l are monotonic
functions of frequency and their behavior can be cor-
rectly described by the power dependence on ω in the
asymptotic forms (79). In this case, the main contribu-
tion to the scalar polarizability comes from the term
−1/ω2, and the correction to it in the elements of Stark
matrix (53), (54) is determined by the term with αt. The
frequency dependence of the tensor polarizability αt for
n = 3, n = 10, and l = n – 1, which is calculated using
the exact (56) and approximate (79) formulas is pre-
sented in Fig. 3. The imaginary polarizability compo-
nent is not shown in the figures for the sake of compact-

ness. It should be noted that  is a smooth
monotonically decreasing function of frequency, which
is successfully approximated by the Rydberg asymp-

η̃

Imαnl
s a t, ,
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totic form for small l, while for large l, it vanishes in the
limit under consideration.

5.3. Threshold Asymptotic Form of Polarizabilities

Let us now consider the asymptotic form of polariz-
abilities at the threshold frequencies ω ~ |En |. For fixed
values of n and frequencies ω  Z2/2n2 (η  ∞),

the matrix element (En – ω) is a smooth function,

while (En + ω) has poles condensing at the Ryd-
berg levels. Using a special representation of Green’s
function in the threshold region, Khristenko and
Vetchinkin [51] showed that the asymptotic expression

for (En + ω) has the form

(80)

and calculated coefficients A and B for the ground state
n = 1. The coefficient B1s of the resonance cotangent
was expressed in terms of Laguerre polynomials, while
the expression for A1s was obtained in the form of a con-

Mll'
L

Mll'
L

Mll'
L

Mll'
L En ω+( ) Anll'

L π πηBnll'
L ,cot+=
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Table 2.  Values of coefficients  and  from formula (82) for states with n ≤ 5

n l

1 0 –4.310(0) –4.910(0)

2 0 –6.045(1) –4.605(1)

1 –9.827(1) –4.221(1) 8.773(1) 5.756(1) 1.255(1) 5.372(0)

3 0 –3.473(2) –1.765(2)

1 –5.122(2) –1.825(2) 5.707(2) 2.305(2) 1.457(2) 2.690(1)

2 –8.371(2) –1.268(2) 1.478(3) 2.421(2) 4.159(2) 3.788(1)

4 0 –8.596(2) –4.648(2)

1 –8.746(2) –4.912(2) –2.593(2) 5.762(2) –1.911(2) 8.124(1)

2 –7.937(2) –4.457(2) –7.571(2) 8.225(2) –4.156(2) 1.372(2)

3 –2.876(2) –2.378(2) –2.344(3) 5.206(2) –9.699(2) 1.007(2)

5 0 –2.387(3) –9.930(2)

1 –2.583(3) –1.052(3) 5.531(2) 1.151(3) 1.744(1) 1.904(2)

2 –2.872(3) –1.041(3) 1.151(3) 1.852(3) 9.012(1) 3.304(2)

3 –2.937(3) –7.981(2) 1.104(3) 1.717(3) –1.968(–2) 3.413(2)

4 –2.149(3) –3.411(2) –1.272(3) 8.040(2) –7.713(2) 1.750(2)

Anl
i Bnl

i

Anl
s Bnl

s Anl
a Bnl

a Anl
t Bnl

t

tour integral, which can be subsequently evaluated

numerically. Approximate expressions for  for
arbitrary n, l, and l' were obtained by us earlier [12] in
the form of a cumbersome combination of finite (triple)

sums. Using asymptotic expressions for  and  for
η  ∞ (we omit the details of such computations), we
can derive analytic expressions for A and B for arbitrary
n, l, and l', but only in the form of an infinite series for
the logarithmic derivative of the Γ-function, ψ(x):

(81)

For k = 0, the infinite series can be expressed through
the integral exponential function Ei(x):

Bnll'
L

pk
l qk

l

pk
l 1–( )kLk

2l 1+ 4n( ),

qk
+l 2 1–( )k 1+ 4n( )2l 1+ e 4n– Lk

2l 1+ 4n( )

× π πη 4nln+cot( ) 2 1–( )k 4n( )2l 1++

×
k 1+( )p 2l 1+ +

p! p 2l 1+ +( )!
------------------------------------ 4n–( )p ψ p 2l 2+ +( )(

p 0=

∞

∑
+ ψ p 1+( ) ψ p k 2l 2+ + +( )– )

+ 2 1–( )k 2l p–( )! k 1+( )p

p!
---------------------------------------- 4n( )p.

p 0=

2l

∑

q0
+l 2 4n( )2l 1+ e 4n––

× π πηcot Ei 4n( )+( ) 2 2l p–( )! 4n( )p,
p 0=

2l

∑+
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which leads to the results obtained in [3] for the ground
state.

Using expressions (80) and (81), we can present the

polarizabilities  (i = s, a, t) for ω  |En | – 0 in
the form

(82)

In order to obtain the asymptotic form of the matrix ele-

ment (En + ω) for the frequency approaching the
ionization potential from above, ω  |En | + 0, we
must make the substitution   –i in (82).

Table 2 shows, by way of an example, the values of

 and  for states with n ≤ 5. For n = 1, our results
for A1s and B1s coincide with those obtained in [51].

6. CONCLUDING REMARKS

The application of the generalized Sturm expansion
of the CGF (6) has made it possible to derive closed
analytic expressions (two-photon Gordon formulas) for
the matrix elements of two-photon transitions from an
arbitrary state |nl〉  of a hydrogen-like atom to the bound
state |n'l '〉 , (39)–(42) and (61)–(63), as well as the con-
tinuous spectrum, (46)–(49). In all cases, the result can

be expressed through the kernel  of representation (6),
which contains only one complete hypergeometric
function 2F1 or Appel’s function F1. Consequently, we
can hope that in spite of the cumbersome nature of the
obtained results, they provide complete information on

αnl
i ω( )

αnl
i ω( ) Anl

i πηBnl
i .cot+=

Mll'
L

πηcot

Anl
i Bnl

i

gkk'
l
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the atomic parameters required in the problems of the
two-photon spectroscopy of hydrogen-like atomic
energy levels in the simplest possible analytic form and
conclude the protracted history of the analytical calcu-
lations of two-phonon transitions in the Coulomb field
for particular values of quantum numbers of the initial
and/or final states. The application of the asymptotic
expressions of hypergeometric functions for particular
values of parameters and/or arguments can obviously
simplify the general results in various limiting cases
(like the analysis of polarizabilities in Subsections 5.2
and 5.3). It should be noted that the two-photon Gordon
formulas (39)–(42) cannot be extended to the region of
continuous spectrum in both variables n and n' (since
the variable associated with the upper limit of summa-
tion in (18) must be an integer). Consequently, two-
photon transition in the continuous spectrum requires a
separate analysis.

The case of two-photon transitions considered by us
here does not exhaust the possible applications of para-
metric representation of the CGF GE(r, r') and GE(p,
p'). The effectiveness of expansions of type (4), (6), and
(32) is determined by the following two circumstances.
First, an appropriate choice of free parameters consid-
erably simplifies the integration procedure in some
cases and makes it possible to present the results in the
simplest analytical form (see above). Since the matrix
elements with Green’s functions for an arbitrary energy
E can be expressed, as a rule, in terms of quite compli-
cated special functions, the application of an inade-
quate computational algorithm either leads to much
more cumbersome constructions (see, for example,
[15]), or makes it impossible altogether to present the
result in an analytical form. The other even more
important circumstance is the possibility of using free
parameters for extending the method of direct numeri-
cal calculations of a Sturm series of type (6) to matrix
elements with Green’s functions for E > 0, which
emerge, for example, in collision problems, in the the-
ory of self-ionization states, and in an analysis of
above-threshold many-photon transitions. It was men-
tioned above that expansions (7) and (9) are inapplica-
ble for E > 0, and the corresponding series for matrix
elements diverge (apart from exceptional cases when
the result can be expressed in terms of known special
functions that can be continued analytically in E, e.g.,
formula (5) or two-photon Gordon formulas). The cor-
responding generalization of representations (9) and
(7) to the region E > 0 were obtained in [52] and [53],
and the relativistic CGF for |E | > mc2 was considered in
[54]. However, as a result of such a generalization, the
summation over the discrete index k in (7) and (9) is
replaced by the integration with respect to continuous
parameters of special functions, which considerably
complicates the application of such representations in
actual numerical calculations (the choice of a modified
Sturm basis with a discrete spectrum for an expansion
of Green’s functions with E > 0 is considered in [55]).
The application of an expansion of type (6) and a ratio-
JOURNAL OF EXPERIMENTAL
nal choice of parameters α and α' can ensure the con-
vergence of Sturm series in direct numerical calcula-
tions of the matrix elements for E > 0 (and also accel-
erate their convergence considerably for energies E < 0).
Thus, the generalized Sturm representation makes it
possible in fact to carry out a numerical analytical con-
tinuation of the results obtained by using the ordinary
Sturm expansion (7) to the energy range in which
series (7) diverges.

At the present time, the method of complex scaling
(or complex coordinates) [56] is used as one of the most
effective numerical methods in problems with a contin-
uous spectrum and with resonance (quasi-stationary)
states in atomic and molecular processes. It involves a
non-Hermite extension (complex dilatation) of the ini-
tial Hamiltonian of the problem through the substitu-
tion r  reiα and “continuum discretization” [57] by
introducing the basis of quadratically integrable func-
tions depending on a (complex) parameter α for deter-
mining the complex eigenvalues, i.e., the energies of
resonances. For example, Maquet et al. [58] used the
system of Sturm’s functions Snl(2r/α) with a complex
parameter α as the basis for the numerical calculation
of complex quasi-energies of the hydrogen atom with-
out employing perturbation theory in the interaction
with a high-intensity laser field (see also the review in
[59]), while Gersbacher and Broad [60] applied this
method for an analysis of self-ionization resonances in
the photoionization of helium. The application of gen-
eralized Sturm representations of the CGF is essentially
an analytic implementation of the complex scaling and
continuum discretization methods in problems with the
Coulomb Green’s function for a positive (or complex-
valued) energy E.

The effectiveness of representation (6) in calcula-
tions of matrix elements in the higher orders of pertur-
bation theory (when the result cannot be presented in
terms of known special functions) was verified by us in
numerical calculations of the hyperpolarizabilities of
highly excited states of the hydrogen atom in the field
of laser radiation, which contain matrix elements with
three Green’s functions for E > 0 [61]: with an appro-
priate choice of (complex) parameters α and α', the
series for the matrix elements converge rapidly at fre-
quencies ω exceeding the ionization potential |En | of
the state |nl〉 under investigation by more than an order
of magnitude. The possibility to ensure the conver-
gence of Sturm-type series for the composite matrix
elements of electromagnetic transitions for above-
threshold energies justifies the application of expan-
sions of type (6) in relativistic problems, also, e.g., for
calculating the Rayleigh and Compton scattering cross
sections of X-rays and γ-radiation by multiply charged
ions or inner shells of atoms with large values of Z as
well as in problems of the quantum electrodynamics of
bound states, which require a nonperturbative (in
parameter αZ) analysis of a strong Coulomb field act-
ing on an electron in virtual states.
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APPENDIX A

1. The symmetry conditions (19) and expression
(18) lead to the identity connecting the “bilinear forms”
which contain functions 2F1 and F1:

(A.1)

A special case emerges when the free parameters coin-
cide: α' = α. Proceeding to the limit α'  α in (A.1),
we arrive at a relation which has the following form in
terms of Pollaczek polynomials and functions:

(A.2)
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where n< = min{n, n'}, n> = max{n, n'}.
In the simplest case when n< = n = n> – 1, (A.2) leads

to the relation

(A.3)

corresponding to the particular case of the symmetry
condition (19):

Note that Broad [10, formula (A.18)] interpreted rela-
tion (A.3) as the “Wronskian” of the solutions of the tri-
nomial recurrence relation (27).

2. We transform the function 2F1(k + 1, k + 2l + 2;
k + l + 2 – η; x) appearing in (17) by using the well-
known relations [5]:

(A.4)

This gives

(A.5)

Expressing the derivatives in (A.5) in terms of hyper-
geometric polynomials (see (14)) and going over to the
reciprocal argument of these polynomials,

we arrive at the following expansion:

l 2 η n< p; α ν+( )2/4αν–+ + + ),

qn
+l pn 1–

l qn 1–
+l pn

l– 2 n 1+( )2l,=

gkk 1–
l ν; α α,( ) gk 1k–

l ν; α α,( ).=

dk

dxk
-------- F2 1 1 2l 2; l 2 η ; x–+ +,( )

k! 2l 2+( )k

l 2 η–+( )k

---------------------------=

× F2 1 k 1 k 2l 2; k l 2 η ; x–+ + + +,+( ),

F2 1 1 2l 2; l 2 η ; x–+ +,( ) l 1 η–+( )xη l– 1–=

× 1 x–( ) η– l– 1– tl η– 1 t–( )l η+ t.d

0

x

∫

l 1 η–+( ) 1– F2 1 k 1+ k 2l 2; k l 2 η ; x–+ + + +,( )

=  
l 2 η–+( )k

2l 2+( )kk!
--------------------------- Ck

p dk p–

dxk p–
-------------- x l– 1– η+ 1 x–( ) l– 1– η–( )

p 1=

k

∑

× d p 1–

dxp 1–
-------------- xl η– 1 x–( )l η+( )

+
dk

dxk
-------- x l– 1– η+ 1 x–( ) l– 1– η–( ) tl η– 1 t–( )l η+ td

0

x

∫ .

F2 1 k k– 2l– 1; k– l– η ; x+–,–( )
2l 2+( )k

l 1 η–+( )k

---------------------------=

× x–( )k F2 1 k 1 l η ; 2l– 2; x 1–+ +,–( ),

F2 1 k 1 k 2l 2; k l 2 η ; x–+ + + +,+( )

=  
l 2 η–+( )k

k!
--------------------------- 1 x–( ) k– F2 1 k l 1 η ; 2l– 2; x 1–+ +,–( )
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(A.6)

Substituting (A.6) into (17), we obtain expressions (21)
and (22).

3. Formula (23) can be derived using the following
expansion of the Whittaker function Mη, l + 1/2(2r/ν) in
the complete system of Sturm’s functions Snl(2r/α):

(A.7)

which can be obtained in analogy with expansion (11).
In fact, (A.7) is the expansion of the solution of the
Coulomb problem with an (arbitrary) energy E in the
quadratically integrable basis Skl(2r/α), which is regu-
lar at zero. A detailed analysis of such expansions
(including the case of a irregular solution) is given in
[10, 62].

4. In order to separate the imaginary component of
Green’s function gl(E; r, r') for E > 0, we will use the
following relation:

(A.8)

If z is determined by formula (12), α is real-valued, and
ν and η are imaginary, the terms on the left-hand side
are complex conjugates, which allows us to single out
the imaginary component in (23).

APPENDIX B

The expressions for  in terms of  and 
have the form

× F2 1 1 2l 2; l 2 η ; x–+ +,( )

–
l 1 η–+( )k 1+

2l 2+( )kk!
--------------------------------- 1 x–( ) k– Ck

p 2l 2+( )k p–

p 1=

k

∑

× η l–( )p 1– x–( ) p– F2 1 k– p l 1 η 2l 2 x 1–,+,–+,+( )

× F2 1 p– 1 2l 2 p; l– 2 η– p; x–+ +,+( ).

α ν–
α ν+
------------- 

 
k

F2 1 k l 1 η ; 2l– 2; z+ +,–( )Skl 2r/α( )
K 0=

∞

∑

=  
ν2 α2–

4αν
----------------- 

 
l 1+ ν α+

ν α–
------------- 

 
η1

r
---Mη l 1/2+, 2r/ν( ),

F2 1 1 2l 2 l 2 η ; z 1––+,+,( )
l 1 η–+

-----------------------------------------------------------------

+
F2 1 1 2l 2 l 2 η ; 1 z 1––+ +,+,( )

l 1 η+ +
---------------------------------------------------------------------------

=  
Γ l 1 η–+( )Γ l 1 η+ +( )

Γ 2l 2+( )
--------------------------------------------------------- z2l 2+

z 1–( )η l 1+ +
-----------------------------.

ψnl
s a t, , pk

l qk
l

ψnl
s l

3 2l 1+( )
---------------------- f l 1– ω̃( ) f l 1– ω̃–( )+[ ]=

+
l 1+

3 2l 1+( )
---------------------- f l 1+ ω̃( ) f l 1+ ω̃–( )+[ ] ,
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where

The explicit form of the polynomials  and

 appearing in expression (65) for polarizabilities
is given below for states with the principle quantum
number n ≤ 4:

ψnl
a l

2l 1+( )
------------------- f l 1– ω̃( ) f l 1– ω̃–( )+( )[=

– f l 1+ ω̃( ) f l 1+ ω̃–( )–( ) ] ,

ψnl
t l

3 2l 1+( )
---------------------- f l 1– ω̃( ) f l 1– ω̃–( )+[ ]=

+ 
l

3 2l 1+( )
----------------------2l 1–

2l 3+
-------------- f l 1+ ω̃( ) f l 1+ ω̃–( )+[ ] ,

f l 1+ ω̃( )
2n

ω̃ s 1+( )2 d( )2l 1+

----------------------------------------=

× pd 1–
l 1+ pd 2–

l 1+–[ ] qd 1–
l 1+ qd 2–

l 1+–[ ] ,

f l 1– ω̃( )
2n

ω̃ d( )2l 1+

--------------------- s 1–( ) pd 1–
l 1– d pd

l 1––[ ]=

× s 1–( )qd 1–
l 1– dqd

l 1––[ ] .

ϕnl
±( )

ψnl
s a t, ,

ϕ10
+( ) 1

2
---, ψ10

s 0,= =

ϕ20
+( ) 1, ψ20

s 0,= =

ϕ21
+( ) 5

12
------, ψ21

s ψ21
t–

32

27ω̃2
------------,= = =

ϕ21
–( ) 8

9ω̃2
---------, ψ21

a 4
3ω̃
-------,–= =

ϕ30
+( ) 3

2
--- 1 4

3ω̃
-------+ 

  2

, ψ30
s 16

ω̃2
------,= =

ϕ31
+( ) 5

3
---, ψ31

s ψ31
t–

16

9ω̃2
--------- 1 8

ω̃2
------+ 

  ,= = =

ϕ31
–( ) 32

9ω̃2
--------- 1 2

ω̃
----+ 

  2

, ψ31
a 8

ω̃
---- 1 4

ω̃2
------– 

  ,–= =

ϕ32
+( ) 7

18
------, ψ32

s ψ32
t–

16

25ω̃2
------------,= = =

ϕ32
–( ) 4

15ω̃2
------------, ψ32

a 8
5ω̃
-------,–= =

ϕ40
+( ) 2 1 4

ω̃
---- 8

3ω̃2
---------+ + 

  2
,=
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Abstract—The probability of the spontaneous emission of electromagnetic radiation of an arbitrary multipo-
larity in an infinite homogeneous isotropic nonabsorbent condensed medium with constant permittivity and per-
meability is determined using the perturbation theory for quantum electrodynamics. The local field inside a
sphere is calculated for fields of arbitrary configuration in the medium with the help of the real and virtual
cavity models. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The probability of the spontaneous emission of
dipole radiation by atoms and molecules depends on
the electronic properties of the surrounding medium. It
has been proved experimentally that an infinite homo-
geneous nonabsorbent dielectric medium with refrac-
tive index n at the radiation frequency accelerates the
electric dipole (E1) transitions approximately by a fac-
tor of n [1, 2] and the magnetic dipole (M1) transitions
by a factor of n3 [1] in comparison with the analogous
transitions in vacuum.

It was also found that in the case of E1-radiation, the
local electric field Eloc acting on an atom emitting radi-
ation slightly differs from the mean value of the electric
component of the macroscopic electric field Em in the
medium and is connected with it through the relation
Eloc = f(n)Em . The function f(n) obtained in the frame-
work of the “real” or “empty” cavity model studied in
detail by Glauber and Lewenstein [3] is in good agree-
ment with the experimental data presented in [1, 2].
Another popular model of “virtual” or Lorentz cavity
[4] (see Chapter 2 in [5] for details) has also received a
certain experimental substantiation [6]. A fairly com-
plete description of both approaches to the problem of
local field and the corresponding lists of references can
be found in [7–10].

The dependence of the probability of spontaneous
dipole transitions on the dielectric properties of the
medium, which was predicted earlier in [3, 11], was con-
firmed by the experimental results obtained in [1, 2].
A large number of theoretical works [3, 7–25] published
in recent years were devoted to various aspects of this
problem, including the quantization of an electromagnetic
field in absorbing and nonabsorbing insulators, the
spontaneous decay of excited states, the dipole–dipole
interaction, Einstein’s coefficients, etc. Significant results
were also obtained from the investigations of the effect of
the periodic structure of an unbounded dielectric on its
optical properties. Such materials, which were termed
1063-7761/01/9201- $21.00 © 20061
as “photon crystals”, are described in detail in [26–33].
Finally, the effect of a homogeneous isotropic dielectric
medium on the probability of spontaneous nuclear emis-
sion in the optical range as a result of the decay of the
anomalously low-lying level 3/2+ (3.5 ± 1.0 eV) in the
229Th nucleus was studied theoretically in our recent
publications [34, 35].

Optical transitions E2 [36] and even E3 [37, 38]
were detected quite recently in singly charged ions. The
present paper is devoted to a derivation of the formulas
for the probability of the emission of radiation of an
arbitrary multipolarity in a nonabsorbing homogeneous
isotropic medium with permittivity e and permeabil-
ity µ. A relation between the mean field of an arbitrary
configuration in a medium and the local field inside a
sphere with permittivity and permeability differing
from the values e and µ for the medium is derived for
the real and virtual cavity models in the near radiation
band. In this case, the medium is assumed to be
unbounded, and the separation between the atoms of
the substance is much smaller than the radiation wave-
length. In the system of units adopted in this work, " =
c = 1.

2. NONINTERACTING FIELDS APPROXIMATION

In order to calculate the probability of spontaneous
emission, we make use of the perturbation theory for
quantum electrodynamics (QED), developed in the
approximation of noninteracting fields.

The first-order S-matrix element corresponding to
the process of photon emission from a bounded system
(atom, ion, molecule, nucleus, etc.) has the form

(1)

where Hint(t) is the interaction Hamiltonian in the inter-
action representation. It is connected with the density of
the Lagrangian function +int(x), where x = (t, r), describ-

S 1( ) i H int t( ) t,d∫–=
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ing the interaction between the electron current  of
a transition and the photon field Aν(x), i.e.,

(2)

through the relation (see, for example, [39, 40])

(3)

When speaking of the interaction of a photon with an
electron of an atom or an ion, we can take the current
density operator in the interaction representation from
Eq. (2), for example, in the one-particle approximation,
and write it in the form

where e is the electron charge, γν are the Dirac matrices,
and ψ(x) are the operators of Dirac spinors. On the
other hand, this can also be the nuclear current describ-

ing a certain collective transition. In any case,  is
an extraneous current [41] whose properties do not
depend significantly on the parameters of the medium
in the given approximation.

In the interaction representation, the operators ψ(x)
and Aν(x) of the electron and photon fields appearing
in (2) satisfy the same equations of motion and the same
permutation relations as the operators of free (not inter-
acting with one another) electron and photon fields in
the Heisenberg representation [39, 40]. Hence we fol-
low the standard procedure for deriving an equation for
the electromagnetic field operator to be used for con-
structing the Lagrangian +int(x) in (2). We first use the
Maxwell equation to derive the classical equation of
motion for the vector potential of an electromagnetic
field in a medium in the presence of extraneous cur-
rents, and construct the Lagrangian of the system. After
this, we obtain a homogeneous equation for the opera-
tor Aν(x) using the formal coincidence of the classical
equations with the equations of motion for the field
operators in the Heisenberg representation. The solu-
tion of this equation will depend on the given properties
of the spatial region of field propagation. This could be
the above-mentioned periodicity, resulting in the for-
mation of an optical band structure [26, 27], or the
boundaries of the region at which a certain relation
between the wavelength and the size of the region can
lead to effects such as a sharp deceleration of the decay
or a considerable increase in the probability of sponta-
neous emission [42–44], as well as some other effects.
In the present work, we will be interested in the depen-
dence of Aν(x) on e and µ, i.e., on the electronic proper-
ties of the medium itself.

The evolution of the vector of state of the system in
the interaction representation is determined by the

j fi
ν x( )

+int x( ) j fi
ν x( )Aν x( ),=

H int t( ) +int t r,( ) r3 .d∫–=

j fi
ν x( ) eψ f x( )γνψi x( ),=

j fi
ν x( )
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S-matrix. When written in the general form in terms of
the T-exponent [39, 40], i.e.,

the S-matrix can be expanded into a series in perturbation
theory. The first-order element (1) of the S-matrix
describes the emission (absorption) of photons by a
bounded system.

The probability of the emission of a photon per unit
time can be calculated by using the formula [45]

, (4)

where we have carried out averaging and summation
respectively over the initial and final states of the emitting
system, as well as summation over polarizations and inte-
gration with respect to the photon momentum. In the
above equation, t is a large but finite time interval. It can-
cels out with the analogous time interval appearing in the
numerator during the computation of |S(1)|2 [45].

Thus, the electromagnetic field, which is connected
with the transition current in the initial equations of
motion in the Heisenberg representation, is trans-
formed in the interaction representation into the free
field Aν(x) satisfying the homogeneous equation of
motion. Here, the field Aν(x) carries complete informa-
tion about the electronic properties of the medium.
Moreover, the emission probability is also found to
depend on these properties through formulas (1)–(4).

The above explanation is probably the simplest of
all those proposed so far in the publications. Neverthe-
less, this explanation is quite sufficient to reveal, even
before the derivation of any formulas, that the sponta-
neous emission probability depends on e and µ. Almost
every textbook on quantum electrodynamics contains
such an explanation in its introductory chapters in one
form or another. The quantitative laws governing the
process of photon emission by a bounded system were
calculated using the approximation of noninteracting
fields even in the first order of the perturbation theory for
QED. On the other hand, it has been well known for a long
time that the components of a free electromagnetic field in
a condensed medium differ from those in a vacuum [41].
Hence, in view of formulas (2) and (4), we can expect
the dependence of the emission probability on e and µ
beforehand, even as a result of calculations of the first-
order diagram. Higher orders of perturbation theory
lead to corrections that are important for studying vari-
ous types of fine effects, but are insignificant for the
case being considered here.

3. ELECTROMAGNETIC FIELD IN A MEDIUM

The equation

(5)

S T i +int x( ) x4d∫ 
  ,exp=

W
1

2Ji 1+
----------------- S 1( ) 2

t
------------- k3d

2π( )3
-------------∫

Mi M f λ, ,
∑=

∆A t r,( ) eµ∂t
2A t r,( )– µj–=
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for the vector part of the electromagnetic field potential
A(t, r) follows directly from Maxwell’s equations for
the electromagnetic filed in a homogeneous medium with
permittivity e and permeability µ in the presence of a cur-
rent j that is extraneous with respect to the medium [41].
Equation (5) was derived by using the standard defini-
tion of the electric field and magnetic induction in
terms of Aν = (A0, A):

(6)

under the condition A0 = 0 and the Coulomb calibration
div A = 0. Here the electric and magnetic inductions D
and B are defined as D = eE and B = µH.

It can be verified easily as a result of direct compu-
tation that Eq. (5) follows from the Lagrangian (see, for
example, [23])

The term j · A describes the interaction of the extrane-
ous current with the electromagnetic field in the medium.
In the potential calibration used here and in the absence of
extraneous charges, this expression coincides with the
interaction Lagrangian in formula (2).

Pursuing the approach outlined above, we now con-
sider the equation for a free electromagnetic field in a
medium. This equation coincides with Eq. (5) except
for the right-hand side. The classical solution of such a
homogeneous equation in the form of an expansion in
plane waves is quantized by replacing the Fourier coef-
ficients by the photon creation and annihilation opera-

tors  and , for which the standard permutation
relations must be obeyed. As a result, we can present
the vector potential in the form

(7)

where the functions

(8)

constitute the fundamental set of solutions of the Helm-
holtz vector equation

(9)

with the supplementary condition divA = 0. In Eq. (9),
we have introduced the notation

(10)

Momentum k, used above for describing plane waves,
is associated with parameter k introduced here through
the relation k = knk, where nk is the unit vector along the
direction of k. In Eq. (8), ek, λ is the unit polarization vector

E ∂tA gradA0, B–– curlA,= =

+
1
2
--- e ∂tA( )2 1

µ
--- curlA( )2– j A.⋅+=

âk λ,
+ âk λ,

Â r t,( )

=  âk λ, Ak λ, r( )e iωt– âk λ,
+ Ak λ,

* r( )e iωt–+[ ] ,
λ 1 2,=

∑
k

∑

Ak λ, r( ) ek λ,
2π
eω
-------eik r⋅=

∆A r( ) k2A r( )+ 0=

k2
eµω2.=
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of the plane wave, and nk · ek, λ = 0. In Eq. (7), 

indicates summation over two photon polarizations.
The normalized volume is taken as equal to unity.

The factor  in the plane wave (8) can be
obtained during the calculation of the electromagnetic
field energy

in the medium with the help of formula (6) and the clas-
sical solution of Eq. (5) with the right-hand side equal
to zero.

The emitter wave functions in the expression for the

transition current  in formula (2) are bound states.
Such wave functions are not eigenfunctions of the
momentum operator. The quantum number being con-
served is the square of the angular momentum. Hence, in
order to calculate the corresponding matrix elements, we
expand the plane wave (8) in multipoles [46]:

(11)

The functions  and  are called the
electric and magnetic multipoles respectively and,

together with the longitudinal multipole , con-
stitute another fundamental set of solutions of Eq. (9). In

Eq. (11),  is Wigner’s D-function, and
ϑk and ϕk are the angles defining the direction of k in
the given coordinate system.

The explicit form of the fields  is
known and can be written as follows:

(12)

(13)

(14)

λ 1 2,=∑

2π/eω

%
1

8π
------ ED HB+( ) r3d∫=

j fi
ν x( )

Ak λ, r( ) 2π
eω
-------λ 2π 2L 1+( )iL

Lm

∑=

× Dmλ
L ϕk ϑ k 0, ,( ) ALm

M k r,( ) iλALm
E k r,( )+[ ] .

ALm
E k r,( ) ALm

M k r,( )

ALm
Y k r,( )

Dmλ
L ϕk ϑ k 0, ,( )

ALm
E M Y, , k r,( )

ALm
M k r,( ) jL kr( )YLL; m nr( ),=

ALm
E k r,( ) L 1+

2L 1+
---------------- jL 1– kr( )YLL 1; m– nr( )=

– L
2L 1+
---------------- jL 1+ kr( )YLL 1; m+ nr( ),

ALm
Y k r,( ) L

2L 1+
---------------- jL 1– kr( )YLL 1; m– nr( )=

+ L 1+
2L 1+
---------------- jL 1+ kr( )YLL 1; m+ nr( ).
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Here, jL(kr) are spherical Bessel functions [47], and
YJL; m(nr) are spherical vector harmonics defined by the
relations [46]

where  are the Clebsch–Gordan coefficients and
YLm(nr) are spherical functions.

The potentials  appearing in the expan-
sion (11) of a plane wave satisfy the condition [46]

The longitudinal potential  in (14) is calcu-
lated with the help of the gradient formula [46] pro-
ceeding from the definition

(15)

Hence the transversality condition is not satisfied for
this potential [46].

In the problem under consideration, the properties

of the extraneous current  depend weakly on the
parameters of the medium. Hence, as will be shown
below, the corresponding matrix elements in the long-
wave approximation can be expressed in terms of the
matrix elements of the transition in a vacuum. It is not
necessary to specify the origin (atomic, nuclear, etc.) of
the transition current inducing the emission of radia-
tion. The only important thing is that, like the electro-
magnetic current, this current must also satisfy the con-
tinuity equation

(16)

where ωfi is the transition energy.

4. ELECTRIC-TYPE RADIATION

The interaction Hamiltonian for EL-radiation can be
obtained from formulas (2), (3) by substituting expres-
sions (7) and (11) into them:

(17)

Using the long-wave approximation kr ! 1, which
is obviously valid in the optical region of photon
energy, we transform the part of the Hamiltonian in the
integrand of (17). For this purpose, we discard in for-

YJL; m nr( ) CLm'1λ
Jm YLm' nr( )eλ ,

m'λ
∑=

CLm'1λ
Jm

ALm
E M, k r,( )

divALm
E M, k r,( ) 0.=

ALm
Y k r,( )

ALm
Y k r,( )

1
k
---grad jL kr( )YLm nr( )[ ] .=

j fi
ν t r,( )

div j fi r( ) iωfi j fi
0 r( ),=

H int
EL t( ) e

i ω ωfi–( )t 2π
eω
------- 2π 2L 1+( ) i–( )L 1+=

× Dmλ
L∗ ϕk ϑ k 0, ,( ) ALm

E∗
k r,( ) j fi r( ) r.3d∫

m

∑
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mulas (13) and (14) the terms containing jL + 1(kr),
which are small compared to the terms with jL – 1(kr) in
view of the familiar behavior of the Bessel functions for
kr ! 1 [47]. Further, taking into account formula (15),
we obtain for the electric potential the expression

(18)

Using expressions (18) and (16) and integrating by
parts, we can easily transform the part of the Hamilto-
nian under consideration to:

(19)

Further, expanding the Bessel function in (19) [47]

and substituting the obtained result into (17), we obtain a

relation between the interaction Hamiltonian  in

the medium and the interaction Hamiltonian  in
a vacuum. Taking formula (10) into account, we obtain

The phase volume also depends on e and µ. The
expression for d3k in Eq. (4) leads to the multiplier e3/2µ3/2

in contrast to the analogous expression for a vacuum.

Let us formally take into account the effect of the
local field mentioned in the Introduction. For this pur-
pose, we express the local electric field (EL)loc acting on
the emitting object in terms of the mean field (EL)m in
the medium through the relation

(20)

without specifying the explicit form of the function
fL(e) for the time being (see below for the exact deriva-
tion of this function).

Let us substitute the obtained expression into (4).
The final formula connecting the probability of sponta-
neous decay with the emission of an EL-type photon in
the medium and in a vacuum can be presented in the
form

(21)

ALm
E k r,( ) L 1+

L
------------ALm

Y k r,( )≈

=  L 1+
L

------------
1
k
---grad jL kr( )YLm nr( )[ ] .

ALm
E∗

k r,( ) j fi r( ) r3d∫
≈ i

ω
k
---- L 1+

L
------------ jL kr( )YLm nr( ) j fi

0 r( ) r3 .d∫–

jL kr( )
kr( )L

2L 1+( )!!
-------------------------≈

Hint
EL( )m

H int
EL( )vac

H int
EL( )m e

L 3–( )/2µ L 1–( )/2 H int
EL( )vac.=

EL( )loc f L e( ) EL( )m,=

Wm
EL f L

2
e( )e

L 1/2– µL 1/2+ Wvac
EL .=
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5. MAGNETIC-TYPE RADIATION

The interaction Hamiltonian for the ML-radiation

can be constructed in analogy with . Carrying
out appropriate substitutions, we obtain

We use formula (12) for the vector potential .
Expanding the Bessel function jL(kr) in the small argu-
ment, we obtain in the long-wave approximation a rela-
tion between the interaction Hamiltonians in the
medium and in a vacuum:

Further, using formula (4) for the emission probability,
we express the probability of spontaneous decay with
the emission of an ML-type photon in the medium in
terms of the probability of emission in a vacuum:

(22)

The function fL(µ) for the magnetic medium introduced
in this expression connects the local magnetic field with
the mean magnetic field in the medium, and is in com-
plete analogy with the function fL(e) for a dielectric.

Formulas (21) and (22) are not symmetric relative to
the substitution e  µ and to the multipolarities of
the transition E  M. This is due to the well-known
fact that the magnetic induction Bm, and not the mag-
netic field strength Hm, is the analog of the electric field
strength Em in the medium [41].

The expression obtained from (22) for the probabil-
ity of the spontaneous emission of magnetic dipole
radiation coincides with the results obtained in [11],
and is transformed into the expression for M1-radiation
in a dielectric medium derived in [34], but differs from
the expression obtained by Glauber and Lewenstein
[3]. The reasons behind the discrepancy with the

results of [3], where the dependence /  = e1/2

instead of e3/2 was obtained for a dielectric, are dis-
cussed in detail in [34].

6. LOCAL FIELD IN THE REAL
AND VIRTUAL CAVITY MODELS

The local field, i.e., the field acting on the emitting
object in a condensed medium, differs in magnitude
from the field of an electromagnetic wave propagating
in the given medium [1, 2]. The concept of the local
field and its connection with the electric field in a
dielectric was touched upon to a certain extent, or

H int
EL t( )

H int
ML t( ) i ω ωfi–( )t[ ] 2π

eω
------- 2π 2L 1+( )exp=

× λ i–( )L Dmλ
L∗ ϕk ϑ k 0, ,( ) ALm

M∗
k r,( ) j fi r( ) r3 .d∫

m

∑

ALm
M k r,( )

H int
ML( )m e

L 1–( )/2µL/2 H int
ML( )vac.=

Wm
ML f L

2 µ( )e
L 1/2+ µL 3/2+ Wvac

ML.=

     
     

Wm
M1 Wvac

M1
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served as the main subject of investigations, in a num-
ber of theoretical works {1–5, 7–10, 13–15, 18, 22, 48, 49].

In the computations of transition probabilities or
dipole–dipole interaction energies in a medium, the effect
of the local field is usually taken into consideration
through formula (20). Recent experimental investiga-
tions [1, 2] have shown that the results of the measure-
ments of E1-transition probabilities in atoms and ions
can be best described through the function

An exactly identical function f(e) is obtained in the real
cavity model [3, 41]. It was found that f(e) = 1 for
M1-transition in a dielectric [1]. This result is quite nat-
ural: the magnetic component of the electromagnetic field
is not renormalized by the dielectric medium. In this con-
nection, it should be remarked that the function fL(e) for
electric-type transitions may not depend on the perme-
ability µ of the medium. Conversely, the function fL(µ)
for magnetic-type transitions may not depend on e.

Thus, let us assume that the emitting object is
located inside a real spherical cavity of a small radius,
built in a dielectric. The inside of the cavity is evacu-
ated, and the radius of the sphere is large compared to
the linear size of the emitting object, but much smaller
than the radiation wavelength.

In the real cavity model, it is assumed that electro-
magnetic fields satisfying Maxwell’s equations and quan-
tized in accordance with the general rules exist inside and
outside the cavity. The solution of the local field problem
is obtained by joining the corresponding components of
the field at the boundary of the cavity and the medium.
The resulting steady-state field in the medium differs
from the mean electromagnetic field existing before the
formation of the cavity (i.e., the initial field in the
medium varies in the course of cavity formation).

Let us define the function fL(e) for electric-type radi-
ation of an arbitrary polarity. The solution of the Helm-
holtz equation (9) outside the spherical cavity can be
written in the form

where the vector potential  corresponds to the
initial unperturbed field in the medium, and the poten-

tial  describes the variation introduced by the

small cavity. The vector potential  differs

from  in Eq. (13) in the replacement of the
spherical Bessel function jL(kr) of the first kind by the
spherical Neumann function nL(kr) (which is a Bessel
function of the second kind) [47]. The momentum k is
defined, as before, by formula (10).

We shall seek the solution of Eq. (9) inside the evac-
uated spherical cavity in the form

where the photon momentum |p | ≡ p = ω.

f e( ) 3e/ 2e 1+( ).=

A r( ) ALm
E k r,( ) bBLm

E k r,( ),+=

ALm
E k r,( )

BLm
E k r,( )

BLm
E k r,( )

ALm
E k r,( )

A r( ) aALm
E p r,( ),=
SICS      Vol. 92      No. 1      2001



66 TKALYA
The electric field of a multipole is defined in accor-
dance with Eqs. (6) as

which leads to the expression [46]

(23)

According to the conditions of the problem, the entire
spherical cavity is situated in the near (or static) radia-
tion band. Taking formulas (18) and (23) into consider-

ation, we can introduce the potential  so that
the following condition is satisfied:

The potentials inside and outside the cavity have the
form

The first equation for coefficients a and b follows from
the condition of the continuity of potential at the
boundary of the region [41]:

Expanding the Bessel and Neumann functions in the
small parameter, we obtain

(24)

Apart from the potential, the radial component of
the electric induction vector is also continuous at the
boundary [41]:

Using the recurrent relations for the derivatives of
the spherical Bessel functions [47], i.e.,

and neglecting jL + 1(x) and nL – 1(x) in comparison with
jL – 1(x) and nL + 1(x) respectively, we arrive at the fol-

ELm
E t k r, ,( ) ∂t iωt–( )ALm

E k r,( ),exp–=

ELm
E k r,( ) iωALm

E k r,( ).=

ϕLm
E k r,( )

ELm
E k r,( ) gradϕLm

E k r,( ).–=

ϕLm
E k r,( ) iω L 1+

L
------------

1
k
---YLm nr( ) jL kr( ) bnL kr( )+[ ] ,–=

r R,≥

ϕLm
E p r,( ) iω L 1+

L
------------

1
p
---YLm nr( ) ajL pr( )[ ] ,–=

r R.≤

ϕLm
E k R,( ) ϕLm

E p R,( ).=

a eµ( ) L 1–( )/2=

–
b

ωR( )2L 1+
----------------------- 2L 1–( )!! 2L 1+( )!!

eµ( ) L 2+( )/2
-------------------------------------------------.

DLm
E k r,( )( )r e ELm

E k r,( )( )r e∂rϕLm
E k r,( ).–= =

2L 1+( )
dφL x( )

dx
--------------- LφL 1– x( ) L 1+( )φL 1+ x( ),–=
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lowing expressions for the radial components of the
electric induction vector:

(25)

(26)

Resorting once again to the expansion of jL – 1(x) and
nL + 1(x) in (25) and (26), we obtain the second equation
for coefficients a and b:

(27)

The solution of the joining equations (24) and (27)
gives

(28)

In the near radiation band, the potential and the elec-
tric field strength of the unperturbed field (i.e., in the
absence of a cavity) in the medium have the form

(29)

Comparing formula (29) for  with the expres-
sion for the electric field in the cavity

we obtain the following relation connecting these two
quantities:

Using (28), we obtain from here the relation

where

(30)

DLm
E k r,( )( )r ieω L 1+

L
------------YLm nr( )=

× L
2L 1+
---------------- jL 1– kr( ) b

L 1+
2L 1+
----------------nL 1+ kr( )– , r R,≥

DLm
E p r,( )( )r iω L 1+

L
------------YLm nr( ) a

L
2L 1+
---------------- jL 1– pr( ) ,=

r R.≥

a
1
µ
--- eµ( ) L 1+( )/2 b

ωR( )2L 1+
-----------------------+=

× L 1+
L

------------ 2L 1–( )!! 2L 1+( )!!
eµ( )L/2

------------------------------------------------- .

a eµ( ) L 1–( )/2 e 2L 1+( )
e L 1+( ) L+
------------------------------.=

ϕ̃Lm
E k r,( ) i

L 1+
L

------------YLm nr( )
ωr( )L

2L 1+( )!!
------------------------- eµ( ) L 1–( )/2,–=

ẼLm
E

k r,( ) iωL L 1+
L

------------=

× eµ( ) L 1–( )/2

2L 1+( )!!
-------------------------grad rLYLm nr( )[ ] .

ẼLm
E

k r,( )

ELm
E p r,( ) iωL L 1+

L
------------

a
2L 1+( )!!

-------------------------grad rLYLm nr( )[ ] ,=

ELm
E p r,( )

a

eµ( ) L 1–( )/2
-------------------------ẼLm

E
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ELm
E p r,( ) f L e( )ẼLm

E
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Obviously, the field  inside the sphere is just
the local field interacting with the transition current. It
can easily be seen that the function f1(e) from Eq. (30)
coincides with the expression for f(e) which was pre-
sented at the beginning of this section and whose valid-
ity has been confirmed experimentally [1, 2]. In conclu-
sion, let us make a remark concerning the derivation of
formula (30). While calculating the fields, we used the
continuity of the potential and not of the tangential
components of the electric field at the boundary
between the medium and the region. This was done
intentionally. The problem of a dielectric sphere in a
constant external electric field was discussed in [41]
(see Chapter 2). The result (30) can be treated as a gen-
eralization of the above-mentioned problem to a field of
an arbitrary configuration. (Indeed, solutions (12)–(14)
form a complete set and can be used to simulate any
field.) Hence we followed a line of reasoning as close
as possible to that adopted by Landau and Lifshitz [41].
It should also be noted that if the sphere were filled with
a dielectric medium of permittivity e', formula (30)
would assume the form

The function fL(µ), which connects the magnetic
field in the medium having a permeability µ differing
from unity with the field in a nonmagnetic real spheri-
cal cavity, is calculated in a manner analogous with that
described in [41] and has the form

(31)

Let us now briefly consider the model of a “virtual”
cavity. This model differs from the one considered
above in that the formation of a cavity in a dielectric
medium in which a mean field Em already exists does
not lead to a change in the field Em outside the cavity.

Various methods are known for calculating the func-
tion f1(e) in the framework of the virtual cavity model
[5, 7]. For example, the method of “auxiliary” configu-
ration is used in [5] (see Chapter 2): the field inside the
cavity is calculated with the help of an auxiliary poten-
tial generated in a vacuum by a polarized dielectric
sphere. The expression for the local field in the case of
a uniform polarization Pm presented in [5] has the form

This expression can be easily generalized to the case of
an arbitrary polarization by using the method described

in [5]. In terms of the function  sought by us, we
can write

ELm
E p r,( )

f L e e',( )
e 2L 1+( )

e L 1+( ) e'L+
----------------------------------.=

f L µ( )
µ 2L 1+( )

µ L 1+( ) L+
-------------------------------.=

Eloc Em 4π/3( )Pm.+=

f L
virt

e( )

f L
virt

e( )
eL L 1+ +

2L 1+
-------------------------.=
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Apparently, this formula is transformed into the famil-

iar expression for the function  in the virtual
cavity model [7–10].

7. CONCLUSION

It is well known that E1-transitions and, in particu-
lar, electric dipole radiation, dominate in atoms, ions
and molecules. M1-transitions are rarely encountered
in such systems, and considerable efforts are needed for
their investigation. It is even more difficult to create
conditions conducive for observing, say, E2- and
E3-transitions. However, such studies are being carried
out at present. An E2-transition with a wavelength of
411 nm was observed in 172Yb+ ions in 1995 [36]. A few
years later, an E3-transition with a wavelength of 467 nm
was observed in 171, 172Yb+ ions [37, 38]. Hence, even
though a verification of expressions (21) and (22) for the
EL- and ML-transition widths, as well as formulas (30)
and (31) for the functions fL(e) and fL(µ), may not be an
easy task, it cannot be given up as futile. An investiga-
tion of optical transitions (including spontaneous emis-
sion) in magnetic materials and, in particular, in mag-
netic dielectrics, may turn out to be another prospective
direction.

Multipole radiation exists in atomic nuclei. How-
ever, the energies of nuclear transitions are as a rule so
high that it is impossible to establish a relation between
the decay probability and the electronic properties of
the medium. However, there does exist an exception,
viz., the optical transition in the nucleus 229Th. The
energy of isomeric transition between the first excited
level and the ground state of the nucleus 229Th lies in
the range 3.5 ± 1.0 eV [50], and the dominant multipo-
larity of radiation is M1 (the probability of E2-radiation
is about eleven orders of magnitude lower). The pos-
sibility of detecting the n3-dependence of the decay
probability of the above-mentioned low-lying isomer
229Thm (3/2+, 3.5 ± 1.0 eV) in the dielectric 229ThO2 was
discussed in [34, 35]. The refractive index of thorium
dioxide is n = 2 [51] for photons with energies ω = 3.1 eV.
The anticipated half-life of the isometric state lies in the
interval between 10 min and one hour, depending on
the wavelength [34, 35]. In the framework of the
approximations used in this work, there is apparently
no fundamental difference between this radiation and
the radiation emitted by an atom in a transparent dielec-
tric medium. Nevertheless, a comparison with between
the local fields acting on an atom and a nucleus may
even lead to unexpected results.
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Abstract—The thermonuclear gain G for bulk and spark ignitions are calculated using a mathematical simula-
tion of thermonuclear combustion in a DT plasma of laser targets for various parameters of the target plasma
and (isobaric and isochoric) ignitors. The critical parameters of ignitors at which an effective nuclear burst
occurs with G ~ 100 are calculated. It is shown that a further increase in the temperature and size of the ignitors
virtually does not affect the efficiency of DT fuel burnup. Irrespective of the ignition technique, the value of G
can be estimated with the help of a simple asymptotic formula. At the same time, the critical parameters of igni-
tors are determined to a considerable extent by the mode of ignition and by the target parameters. Spark ignition
with an isochoric ignitor corresponding to the fast ignition mode is considered in detail. It is shown that the
main critical parameter for optimal isochoric ignitors is their thermal energy liberated upon absorption of an
auxiliary ultrashort laser pulse. The critical values of this energy are calculated. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The effectiveness of thermonuclear combustion in
setups with the inertial confinement of plasma is deter-
mined primarily by the values of the temperature T and
density ρ attained in the course of target compression.
An important role in this case is played not only by the
average values of these parameters, but also the temper-
ature and density distribution in the target plasma at the
instant of its maximum compression. High-intensity
thermonuclear combustion emerging in a compara-
tively small high-temperature region (ignitor) can heat
a region of cold plasma and involve it in the combustion
process. The thermonuclear combustion wave gener-
ated in the course of this process may lead to thermo-
nuclear burst of the plasma with a relatively low aver-
age temperature. This forms the basis of the spark igni-
tion mechanism [1, 2]. The present work aims at the
mathematical simulation, classification, and analysis of
the effectiveness of plasma burnup in laser targets with
various distributions of densities and temperatures at
the instant of maximum compression. The results of
this research can be used to formulate the requirements
imposed on the parameters of laser-induced fusion
(LIF) setups and to estimate the applicability and the
effectiveness of various methods of target plasma igni-
tion.

In our previous publications [3, 4], the relation
between the parameters of the ignitor and the efficiency
1063-7761/01/9201- $21.00 © 20069
of combustion of the target was studied using semiana-
lytical methods. We obtained qualitative estimates for
the critical parameters of ignitors at which a thermonu-
clear burst occurs. For the ignition criterion, we used
the instantaneous jump in the ignitor temperature Tf [3]
or the increase in the ratio Tf /T0 of the ignitor and the
surrounding plasma temperatures [4]. (Here and below,
the subscript f marks the parameters of the ignitor and
0 the parameters of the surrounding DT fuel at the
instant of maximum compression.)

It was found later that this criterion is unreasonably
stringent and reduces significantly the range of the ini-
tial states of a plasma leading to an effective thermonu-
clear burst. The mathematical simulation of the gener-
ation of a thermonuclear combustion wave in a plasma,
which was carried out by us earlier [5, 6], proved that
the evolution of thermonuclear combustion can pro-
ceed in two stages. The first, “subsonic” stage is char-
acterized by a decreasing or slowly increasing temper-
ature of the initial ignition region. The ignitor “glows,”
increasing slowly in size and preparing the initial con-
ditions for the second, “ultrasonic” stage of intense
combustion leading to an almost instantaneous thermo-
nuclear burst in the surrounding plasma. For a spark
ignition, it suffices to have an ignitor with parameters
ensuring that the duration of the subsonic stage is much
shorter than the time of thermal disintegration of the
plasma. An analysis of the potentialities of such a
method of ignition involves the mathematical simula-
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tion of the thermonuclear combustion processes in a
plasma of laser targets and is one of the goals of this
research.

Taking into account the increasing interest in the
fast ignition of targets and the potentialities of the avail-
able experimental laser fusion setups, we consider here
various versions of spark ignition of spherically sym-
metric targets with a central ignitor. It is well known
that the ignitor in a fast ignition mode is created with
the help of an auxiliary ultrashort laser pulse over a
time shorter than the characteristic time of hydrody-
namic processes [7]. The pressure in this case has no
time to level out, and the plasma density remains virtu-
ally unchanged in the course of creation of the high-
temperature region; i.e., the isochoric conditions are
met. Here, we consider two limiting cases of spark igni-
tion: with an isobaric ignitor (pf = p0) emerging in the
course of direct hydrodynamic compression of the tar-
get [1, 2], and with an isochoric ignitor (ρf = ρ0) corre-
sponding to the fast ignition mode.

The calculations of the gain factors for laser targets
were made on the basis of the mathematical simulation
of thermonuclear combustion from the instant of maxi-
mum compression to disintegration with the help of the
software package TEPA [5, 6]. Its distinguishing fea-
ture is that the method of direct statistical simulation of
the kinetics of transfer of energy, momentum, and mass
by fast particles, which are the products of primary and
secondary nuclear fusion reaction, and recoil nuclei
from elastic neutron scattering, as well as by thermal x-
rays, are used at each time step of the transient differ-
ence algorithm for the solution of hydrodynamic equa-
tions for two-temperature plasmas.

The main difficulty encountered in an analysis and
classification of the results of calculations of gain fac-
tors is associated with a large number of initial param-
eters characterizing the state of the target plasma. An
analysis of characteristic features of the thermonuclear
combustion processes in plasmas and the evaluation of
the most important variables close to scaling parame-
ters determining the combustion efficiency make it pos-
sible to present the result in a generalized form by
reducing successively the number of parameters under
investigation.

Isobaric (as well as isochoric) ignitors can be char-
acterized by two parameters: the thickness ρRf and the
initial temperature Tf. (Henceforth, the product ρR will
be treated as a single physical parameter characterizing
the thickness of the spherical target plasma as a mea-
sure of its transparency for fusion product particles. In
this notation, ρRf = (ρR)f). The results of calculations
show that if an effective thermonuclear burst has
occurred in the plasma of the DT target, the extent of
burnup weakly depends on the ignition method. Thus,
the analysis of the combustion efficiency boils down to
determining the critical (minimal) values of the ignitor
parameters ensuring stable ignition of the target
plasma. In the present work, the critical curves deter-
JOURNAL OF EXPERIMENTAL 
mining the boundaries of stable spark ignition regions
have been determined for the first time. Calculations for
the fast ignition mode demonstrated that the relation
between the critical parameters ρRf and Tf for small iso-
choric ignitors can be substantiated from the physical
point of view and can be expressed in analytic form. In
fact, we are dealing with only one critical parameter,
viz., the thermal energy of the ignitor acquired as a
result of the absorption of an auxiliary laser pulse. The
values of the critical energies of ignitors are obtained
for target plasmas with various values of ρR0 and T0.

It is shown that spark ignition is possible only in tar-
gets with a sufficiently large and relatively hot region of
the main plasma at the instant of maximum compres-
sion. It can be explained by the fact that a compara-
tively low energy liberated by the ignitor must be suffi-
cient for heating the neighboring layers of the main
plasma of the target to fusion temperatures over the
time much shorter than the time of the target disintegra-
tion. We also determine the boundaries of admissible
values of ρR0 and T0 of the main plasma at the instant
of maximum compression for carrying out isobaric and
isochoric spark ignitions.

2. PHYSICAL AND MATHEMATICAL MODEL

2.1. System of Equations

The mathematical model of thermonuclear combus-
tion of an inhomogeneous spherically symmetric
plasma is described by a system of equations of conti-
nuity, motion, energy transfer, and state of the plasma
together with the kinetic equations for fast thermonu-
clear particles. In order to describe hydro- and thermo-
dynamics, we use the approximation of a one-liquid
two-temperature (Te , Ti) plasma, taking into account the
electronic and ionic thermal conductivities and elec-
tron–ion energy transfer in the ideal gas approximation.

In terms of the standard variables of the Lagrangean
system of coordinate

where ρ(r) is the density of the plasma and V = 1/ρ is
its specific volume, the generalized system of equations
has the form [5, 6]

(1)

dm ρ r( )r2dr,=

∂V
∂t
-------

m∂
∂

r2u( ) V2S,+=

∂u
∂t
------ r2 ∂P

∂m
------- VF,+–=
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∂Te

∂t
-------- Pe

∂V
∂t
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  ∂qe

∂m
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ρτ

----------------+ + + Qe Q f ,+=
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∂Ti

∂t
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∂V
∂t
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  ∂qi

∂m
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Te Ti–
ρτ

----------------–+ + Qi,=
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Here, u(r, t) is the local flow rate of the substance,
P(r, t) = Pi + Pe is the total pressure of ions and elec-
trons, F(r, t) is the force of pressure exerted by fast ther-
monuclear particles, S(r, t) describes the balance of the
substance due to burnup and thermalization of thermo-
nuclear particles, ci and ce are the specific heats for ions
and electrons, qe and qi are the electronic and ionic ther-
mal conductivity fluxes, Q(r, Te , Ti) is the specific
energy transferred by ions and electrons to the plasma,
τ(r, Te) is the characteristic time of energy transfer
between ions and electrons, fj and Wj are the distribu-
tion functions and the generalized source of fast parti-
cles of the jth species, µ is the cosine of the angle
between the radius vector and the velocity of a particle v,
and a is the Coulomb drag coefficients for a fast particle.

A more detailed description of each equation from
this system, explaining the physical and mathematical
meaning of all the quantities appearing in it, is given in
our previous article [6]. It was proved that the processes
of transport of energy, momentum, and mass, which
make the main contribution to the propagation of the
combustion wave, are characterized by high gradients
of density and temperature over the mean free path of
fast thermonuclear particles, by the spatial anisotropy
of distribution functions for these particles, by a com-
plex energy dependence of Coulomb drag losses, and
by the presence of a number of coupled channels of
thermonuclear reactions.

Under these conditions, the Monte Carlo method is
most adequate for simulating the kinetics of fast ther-
monuclear particles. Since the time of flight for rapid
thermonuclear particles is considerably shorter than the
characteristic time of variation of hydrodynamic param-
eters of the plasma, we can solve quasistationary kinetic
equations at each time step of a time-dependent system
of difference equations for a continuous medium used
for a stochastic simulation of the kinetics. This algo-
rithm of joint solution of hydrodynamic and kinetic
equations is employed in a modified package of pro-
grams TEPA, which is used by us here.

2.2. Initial Conditions

It should be noted at the very outset that the package
of programs TEPA can be used to simulate the evolu-
tion of a spherical laser-induced plasma with any radial
temperature and density distributions at the instant of
maximum compression. However, it is expedient to
carry out a series of computations for simplified model
configurations of a laser plasma in order to reveal gen-
eral regularities and to provide limiting relations for
rough estimates. For example, in model calculations,
we assume that at the instant of maximum compression
the plasma is inhomogeneous except for a small high-
temperature region at the center, i.e., the ignitor. We

v µ
r∂

∂ 1 µ2–
r

--------------
µ∂
∂

+ 
  f j

∂
v 2∂v
------------- v 2a f j( )+ W j.=
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consider homogeneous isobaric (ρT = const) and isoch-
oric (ρ = const) ignitors corresponding to direct hydro-
dynamic compression and fast ignition, respectively, in
the limiting cases. With such a formulation, the isobaric
as well as isochoric ignitors possess only two indepen-
dent parameters: the radius Rf and the temperature Tf .
Henceforth, we will use the relative quantities ∆t =
Tf /T0 and ∆r = Rf /R0 characterizing the extent of target
inhomogeneity as the main parameters of the ignitor.

In our previous publication [4], we took into
account the fact that possible values of temperature
inhomogeneity ∆t for an isobaric ignitor belong to the
interval 2 < ∆t < 10. It is difficult to attain higher values
under direct hydrodynamic compression. For lower
values, the target is virtually homogeneous and we are
dealing with a bulk ignition rather than a spark ignition.
According to similar considerations, the relative size of
the ignitor is limited to the interval 0.1 < ∆r < 0.5.

A higher degree of thermal inhomogeneity can also
be attained in the course of fast ignition, but a further
increase in temperature inhomogeneity weakly affects
the combustion efficiency of targets with an isochoric
ignitor (see below). The ignitor size increases rapidly
due to thermal conduction, and the temperature
decreases until the inhomogeneity attains values which
are optimal from the point of view of spark ignition and
lie in the above-mentioned intervals.

The range of initial parameters (ρR0, T0) of the main
target plasma is chosen so that no thermonuclear burst
occurs in a homogeneous target. If self-sustained ther-
monuclear combustion takes place even in the absence
of an ignitor, such a case corresponds to bulk ignition,
and the concept of spark ignition loses its physical
meaning. Thus, the upper boundary of the temperatures
we are interested in and the sizes of laser targets can be
established from preliminary calculations aimed at the
simulation of thermonuclear combustion of plasma in
various homogeneous targets without an ignitor and at
establishing critical minimal temperatures of bulk igni-
tion for various values of ρR0.

3. RESULTS OF MATHEMATICAL SIMULATION

3.1. Thermonuclear Combustion
of Homogeneous Confined Plasma

The starting point of our analysis is the study of
thermonuclear combustion of the plasma of homoge-
neous targets. It was mentioned in the previous section
that simulation of combustion under homogeneous
conditions allows us to set a limit on the initial param-
eters of the plasma in the case of spark ignition.
Besides, calculations show that plasma parameters in
the course of combustion in any effectively burning tar-
get after a thermonuclear burst approach the combus-
tion parameters for a homogeneous plasma. Conse-
quently, the calculations of the combustion efficiency
of plasmas in homogeneous targets may form the basis
SICS      Vol. 92      No. 1      2001
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for a comparative analysis of the combustion efficiency
of the plasma for various initial radial distributions of
plasma parameters.

We will use the thermonuclear fusion gain factor
G = ETN/E0 as the principal measure of the combustion
efficiency, where ETN is the thermonuclear energy liber-
ated before the plasma burst and E0 is the internal ther-
mal energy of the plasma at the instant of maximum
compression. Figure 1 presents the results of a series of
calculations based on Eq. (1) which establish the
dependence of the gain factor G on the initial tempera-
ture T0 of the plasma of homogeneous DT targets with
various values of ρR0 (0.5 g/cm2 ≤ ρR0 ≤ 4 g/cm2) at the
instant of maximum compression. It can be seen from
the figure that for each value of ρR0 of a homogeneous
plasma in the range of relatively low temperatures,
there exists an optimal (from the point of view of the
combustion efficiency) initial temperature T0 corre-
sponding to the peak on the curve. The presence of a
clearly manifested peak on each curve in this tempera-
ture range is associated with the dependence of the total
liberated energy ETN on T0. The dynamics of energy lib-
eration is determined by a complex combination of two
opposite factors: a thermodynamic burst resulting in
plasma cooling and thermonuclear combustion leading
to plasma heating and partial burnup. As we approach
the peak, the increase in ETN is much faster than the
increase in E0 owing to an increasing role of self-heat-

Fig. 1. Dependence of the gain factor G for a homogeneous
DT plasma of laser targets on the initial temperature T0 for

various values of ρR0 in g/cm2 (figures on the curves) at the
instant of maximum compression.
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ing, and the value of ETN in the peak region attains sat-
uration to a certain extent.

The most interesting result of calculations is that
large maximum values of G > 100 for targets with
ρR0 * 1 g/cm2 are attained at temperatures T ~ 3 to
5 keV, which are much lower than the temperatures
corresponding to the peak of the DT fusion reaction
rate (T ~ 20 keV). This is due to the fact that, at the ini-
tial stage of combustion, such targets are opaque for
fast charged particles, and a considerable fraction of the
liberated thermonuclear energy remains in the target,
heating it to high temperatures corresponding to large
values of the DT fusion reaction rates. It can also be
seen that, for targets with ρR0 > 1 g/cm2, the gain factor
increases abruptly from G ~ 1 to Gmax in a narrow range
of initial temperatures. The sharp steepening of the
temperature dependence of G with increasing ρR0 is a
consequence of the increasing role of nonlinear pro-
cesses in the evolution of a thermonuclear burst. This
narrow interval of initial temperatures will be referred
to as the unstable ignition zone. The instability should
be interpreted in the sense that insignificant fluctuations
of the initial temperature may lead to radical changes in
the combustion efficiency. All the initial temperatures
T0 of the plasma lead to the formation of thermonuclear
bursts starting from weak bursts terminating with glow
to effective bursts, at which the self-heating tempera-
ture has time to attain values close to optimal values for
DT fusion. A further increase in T0 for the plasmas of
such targets leads to self-sustained bulk combustion.
According to calculations, in the case of an effective
thermonuclear burst, the plasma parameters in the
course of combustion and, hence, the energy yield ETN

are determined by the dynamics of the burst itself and
are virtually independent of the initial conditions. Thus,
uniform heating of plasma to higher temperatures (T0 ~
15–20 keV) directly in the course of implosion leads to
a decrease in the gain factor:

G ~ 1/T0.

In targets with ρR0 < 1 g/cm2, the heating by charged
thermonuclear particles is ineffective, which in turn
leads to relatively low (G ≤ 10) values of the gain factor
and its smooth dependence on T0 in a wide range of ini-
tial temperatures. The emerging property of smooth
controllability of the gain factor G in the case of bulk
ignition of such targets might prove helpful for devel-
oping hybrid subcritical nuclear reactors with laser ini-
tiation [8, 9].

The behavior of gain factors in the region of unsta-
ble ignition can hardly be described analytically. At the
same time, a qualitative description of the results of our
calculations of thermonuclear combustion in a homo-
geneous spherical plasma in the case of bulk combus-
tion at temperatures above the optimal (critical) tem-
perature can be generalized to obtain results convenient
for practical applications and simplified analytical esti-
mates of the gain factor G.
AND THEORETICAL PHYSICS      Vol. 92      No. 1      2001
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Let us consider the dependence of the thermonu-
clear gain factor on the initial values ρR0 and T0 for a
homogeneous plasma, i.e., at the instant of maximum
compression. By definition, the expression for G can be
written in the form

(2)

where 〈σv〉  is the characteristic of the thermonuclear
reaction rate per unit volume averaged over a burst and
∆t is the characteristic time of fusion plasma burst.

The quantity 〈σv〉  averaged according to Maxwell at
a fixed temperature has a clearly pronounced peak at
T ~ 20 keV and varies insignificantly as the temperature
increases subsequently to T ~ 1000 keV [10]. Conse-
quently, if a thermonuclear burst has occurred, the aver-
aged value 〈σv〉  weakly depends on the initial condi-
tions and is nearly constant. The burst time ∆t can be
presented as the ratio of the radius to the sound velocity
in the plasma averaged over the burst:

According to the results of our calculations, the temper-
ature in targets with ρR0 * 1 g/cm2 during combustion
attains hundreds of kilolectronvolts due to self-heating.
This leads to a decrease in the combustion time and,
hence, to a slower increase in the gain factor G with
increasing ρR0 (this factor was usually discarded).
Since the thermonuclear energy liberated in such tar-
gets is much higher than the initial internal energy and
its considerable fraction remains in the plasma, we can
assume that the characteristic temperature of the
plasma at the thermonuclear combustion stage is 〈T 〉  ~
GT0. In this case, the thermonuclear gain factor can be
presented in the form

(3)

The function F(ρR0, T0), which depends on the param-
eters ρR0 and T0 only slightly when self-sustained bulk
combustion is attained, will be referred to as the
reduced gain factor.

The values of the reduced gain factors obtained by
processing the results of calculations presented in Fig. 1
are shown in Fig. 2. It follows from Fig. 2 that the
dependence F(ρR0, T0) on the initial parameters of tar-
get plasmas with ρR0 * 1 g/cm2 in the region of their
effective bulk ignition is weak and is close to the scal-
ing dependence: F(ρR0, T0) = 370 to within ~10%.
Consequently, the thermonuclear gain factor for a
homogeneous plasma of thick targets can be estimated
using the following simple expression:

(4)

where (ρR)0 is measured in g/cm2 and T0 in keV.

G
ETN

E0
--------- σv〈 〉 ρ∆t

T0
-----------------------,∼=

∆t
R0

v sound
-------------

R0

T〈 〉 1/2
--------------.∼ ∼

G F ρR0 T0,( ) ρR( )0
2/3/T0.=

G 370 ρR( )0
2/3/T0,=
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For targets with ρR0 < 1 g/cm2, plasma is not heated
during combustion and the characteristic plasma tem-
perature in the course of combustion is independent of
G. The same considerations as those used in the deriva-
tion of formula (3) lead to the following dependence for
such targets:

The numerical simulation of plasma combustion in thin
targets in the vicinity of the peak temperature (T ~
20 keV), which was carried out by using the TEPA soft-
ware package, gives the values of G ~ 20ρR0 for the
maximum gain factors of these targets. These values
are in good accord with the well-known approximate
estimate of the maximum burnup fraction for the DT
fuel [7]:

;

in the intermediate region of ρR0 ~ 1 g/cm2, these val-
ues are close to that specified by Eq. (4).

3.2. Thermonuclear Combustion 
of Inhomogeneous Plasma in Laser Targets 

under Hydrodynamic and Fast Spark Ignition

It was shown above that irrespective of the initial
temperature, no self-heating takes place during thermo-
nuclear combustion of plasma in homogeneous targets
with ρR0 < 1 g/cm2 since almost the entire thermonuclear
energy liberated in the plasma is carried away from the
target by fast particles and X-rays. Consequently, spark

G ρR0/T0
3/2.∼

∆m/m ρR0/7∼

4
2 1
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F
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Fig. 2. Dependence of the reduced gain factor F =

GT0/  for a homogeneous DT plasma on the initial

temperature T0 for various values of (ρR)0 in g/cm2 (figures
on the curves) at the instant of maximum compression.

ρR( )0
2/3
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ignition is also impossible for such targets. On the con-
trary, for targets with ρR0 * 1 g/cm2, we can expect that
a self-sustained thermonuclear combustion wave formed
in the high-temperature ignitor may cause a thermonu-
clear burst in a plasma with an initial temperature T0
which is considerably lower than the critical tempera-
ture of bulk ignition.

In order to study the effect of ignitor parameters on
the efficiency of plasma combustion in the case of spark
ignition, we studied a number of targets whose param-
eters are in the interval ρR0 * 1 g/cm2. Mathematical
simulation of thermonuclear combustion was carried
out for each fixed value of ρR0 for several values of the
initial temperature T0 below the critical temperature for
bulk ignition. For each chosen temperature T0, series of
model configurations with isobaric and isochoric igni-
tors with the parameters in the intervals 0.1 ≤ ∆r ≤ 0.5
and 2 ≤ ∆t ≤ 10 were considered. The evolution of target
plasma up to the burst was simulated for each configu-
ration in accordance with the system of Eqs. (1), and
the gain factor G was calculated. In order to obtain reli-
able dependences, we investigated more than 400 vari-
ous configurations of target plasmas, for which thermo-
nuclear combustion was simulated.

We will consider the results of calculation of the
gain factor G for a typical target with ρR0 = 2 g/cm2.
Figure 3 shows the values of G calculated for isochoric
conditions of ignition as a function of the relative size
∆r of the ignitor for various initial distributions of tem-

10 25
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2

5

102

101

100

10–1

10–2

0 0.1 0.2 0.3 0.4 0.5

G

∆r

Fig. 3. Dependence of the fusion gain factor G on the rela-
tive size ∆r of the ignitor for various values of the parameter ∆t
(figures on the curves) for an isochoric target with (ρR)0 =

2 g/cm2. Solid, dashed, and dot-and-dash curves correspond
to targets with the initial temperature of the main plasma
T0 = 3, 2, and 1 keV, respectively.
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perature (the values of ∆t are presented as parameters of
the family of curves) and for various initial tempera-
tures T0 of the main plasma (various types of curves).
The values of all parameters are given most completely
in figure captions. Figure 4 shows for comparison the
results of similar calculations for isobaric targets.

It can be seen from these figures that, for various
values of the temperature inhomogeneity ∆t = Tf /T0,
there exist critical values of ignitor sizes, ∆r = Rf /R0,
near which the efficiency of thermonuclear combustion
increases abruptly both for isobaric and isochoric igni-
tions. The narrow interval ∆r in which the value of G
increases abruptly to the maximum is the ignition insta-
bility interval. The position and width of this interval
are determined to a considerable extent by the initial
temperature of the main plasma. A similar form of the
dependences is also observed for other values of ρR0.

The physical nature of this phenomenon is that the
time of propagation of a thermonuclear combustion
wave to the outer boundary of the plasma approxi-
mately coincides with the time of target burst for values
of parameters close to critical. For smaller values of ∆r ,
the plasma has time to disintegrate without a nuclear
burst. As ∆r and ∆t pass through the critical values, a
nuclear burst of the plasma occurs, which is accom-
panied by high-efficiency thermonuclear burnup with
G ~ 100. If the effective thermonuclear burst has occurred
for any target configuration, G attains approximately
the same maximum value. In other words, the past his-
tory of the process weakly affects the burnup efficiency.
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Fig. 4. Dependence of the thermonuclear gain factor G of
the target on the relative size ∆r of the ignitor for various
values of the parameter ∆t (figures on the curves) for an iso-

baric target with (ρR)0 = 2 g/cm2. Solid, dashed, and dot-
and-dash curves correspond to targets with the initial tem-
perature of the main plasma T0 = 3, 2, and 1 keV, respec-
tively.
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According to the results of quantitative analysis, the
values of the gain factor G can be approximately
described by formula (4) in the limit of large values of
∆r and ∆t. The intermediate values of 1 < G < 100 are
observed in a narrow interval of ignitor parameters near
the critical values. The higher the values of ρR0 for the
main plasma of the target, the narrower the unstable
ignition interval, and the more effective the plasma
combustion.

Having chosen the attainment of the gain factor G = 10
as the criterion of spark ignition, we obtain the bound-
aries of the regions in which an isochoric spark ignition
of the plasma may be realized from stripped targets
with various values of ρR0 and T0 on the plane of the
ignitor parameters ∆r and ∆t. These boundaries are
shown in Fig. 5. Similar dependences for the critical
parameters of isobaric ignitors are shown in Fig. 6. It
should be noted that the choice of the criterion G = 10
is conditional, but in view of the sharp increase in the
gain factor in the vicinity of the critical parameters of
ignitors, the specific choice of the criterion weakly
affects the position of the boundaries of the spark igni-
tion region.

A comparison of Figs. 5 and 6 shows that for iden-
tical initial parameters of the target plasma, the critical
size of isobaric ignitors is several time larger than that
for isochoric ignitors. Moreover, the range of admissi-
ble parameters of the targets with isochoric ignitors in
which spark ignition is possible in principle is much
broader than for targets with isobaric ignitors. For
example, calculations show that isobaric ignition of a
target with ρR0 = 1 g/cm2 is impossible for the initial
temperature T0 < 10 keV, while in the case of an iso-
choric target, effective combustion can be realized for
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Fig. 5. Boundaries for the parameters of an isochoric ignitor,
above which a thermonuclear burst of targets with various
parameters T0 and (ρR)0 of the main plasma at the instant of
maximum compression is possible. The curves are marked
by the values of T0 in keV. Solid and dashed curves corre-

spond to (ρR)0 = 2 and 1 g/cm2, respectively.
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T0 = 1 keV. Consequently, the ignition according to the
fast ignition mode is more rational. This is a natural
consequence of the fact that the internal energy of an
isochoric ignitor is ∆t times higher than the energy of an
isobaric ignitor for the same parameters ∆r and ∆t.

Since we studied the isobaric spark ignition earlier
[11, 12], we will consider in greater detail the combus-
tion of a plasma with an isochoric ignitor. In contrast to
the isobaric case, the energy density in the isochoric
ignitor is much higher than in the remaining plasma.
Consequently, instead of the target inhomogeneity
parameters ∆r and ∆t , which were introduced by us ear-
lier, it is more expedient to use another pair of dimen-
sionless parameters for describing isochoric ignition,
viz., the relative mass ∆m = mf /(m0 + mf) of the ignitor
and the ratio ∆E = Ef /E0 of the supplementary thermal
energy of the isochoric ignitor to the total energy stored
in the homogeneous plasma of the target. The latter
parameter is directly connected with the energy of the
supplementary laser pulse. The parameters ∆m and ∆E

can be easily recalculated in terms of the target inho-
mogeneity parameters ∆r and ∆t:

(5)

Figure 7 shows the boundaries of the regions of iso-
choric spark ignition for various targets (see Fig. 5) in
terms of the variables ∆m and ∆E. It can be seen from the
figure that the critical value of the parameter ∆E for
small ignitors with a mass less than 1% of the total
mass of the target is virtually independent of the size of
the ignitor and is determined only by the size and tem-
perature of the target plasma. In other words, in the case
of fast ignition, there exists a minimum value of supple-

∆E ∆r
3 ∆t 1–( ), ∆m ∆r
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Fig. 6. Boundaries for the parameters of an isobaric ignitor,
above which a thermonuclear burst of targets with various
parameters T0 and (ρR)0 of the main plasma at the instant of
maximum compression is possible. The curves are marked
by the values of T0 in keV. Solid and dashed curves corre-

spond to (ρR)0 = 4 and 2 g/cm2, respectively.
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mentary absorbed laser energy corresponding to an
optimal ignitor. The optimal ignitor is found to be quite
small in size. As the size of the ignitor increases, its
heating requires a large amount of supplementary
energy, while for decreasing the size of the ignitor the
supplementary energy is rapidly smeared due to ther-
mal conduction over the volume corresponding to the
optimal size of the ignitor.

Quantitative dependences of the minimum value of
the fraction of the supplementary energy ∆E required
for isochoric ignition on the temperature of a plasma
with two different values of ρR0 are presented in Fig. 8.
The obtained curves make it possible to estimate the
minimal energy of an auxiliary laser pulse, which is
required for fast ignition of the plasma of specific tar-
gets.

4. CONCLUSION 

The results of our investigations allow us to formu-
late the following characteristic features of thermonu-
clear combustion of plasma in stripped laser targets.

The simulation of plasma combustion in homoge-
neous laser targets of a fixed thickness with various ini-
tial temperatures shows that bulk ignition becomes
optimal in a very narrow range of initial temperatures.
If the effective thermonuclear burst has occurred, the
liberated energy is practically independent of the initial
temperature, and the gain factor G decreases in propor-
tion to 1/T0 upon subsequent heating (see Fig. 1). The
values of the initial parameters of the target plasma,
which correspond to the maximum gain factor G, form
on the (ρR0, T0) plane a line bounding the region of bulk
ignition. This boundary is presented in Fig. 9 (line 1).
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Fig. 7. Dependence of the relative value of the supplemen-
tary thermal energy ∆E = Ef /E0 corresponding to critical
values of the parameters of isochoric ignitor, its relative
mass ∆m = mf /(m0 + mf). The curves are marked by the val-
ues of T0 in keV.
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For the targets whose parameters lie outside the
region of bulk ignition, we can consider the process of
spark ignition. For fixed parameters of the target, there
exist critical parameters of the ignitor at which a ther-
monuclear combustion wave can be formed during a
time much shorter than the burst time. Only in this case
is the thermonuclear combustion highly effective. For
stripped targets with various values of ρR0 and T0, the
corresponding boundaries of the critical parameters ∆r

and ∆t of the ignitor are presented in Figs. 5 and 6 for
isochoric and isobaric ignitors, respectively.

Since there exist technical limitations imposed on
the maximum extent of inhomogeneity attainable dur-
ing direct hydrodynamic compression, an isobaric
spark ignition cannot be realized if the target has a tem-
perature too low or a thickness too small. Mathematical
simulation of fusion in most inhomogeneous targets
with the ignitor parameters ∆t = 10 and ∆r = 0.5 makes
it possible to establish the relevant lower boundaries of
plasma temperature and thickness in laser targets in the
case of isobaric ignition. This boundary is also shown
in Fig. 9 (line 2). The range of target plasma parameters
in which isobaric ignition is possible lies between
curves 1 and 2 in Fig. 9.

For an isochoric ignitor corresponding to fast igni-
tion mode, the dependence of the gain factor of the tar-
get on the parameters of the ignitor does not differ qual-
itatively from the isobaric case. However, the critical
parameters of isochoric ignitors are quantitatively
much lower than the corresponding parameters for iso-
baric ignitors. It is shown that the relative value of the
supplementary thermal energy of the ignitor, which is
directly related to the energy of an auxiliary laser pulse,
is a convenient parameter for an analysis of isochoric
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Fig. 8. Dependence of the minimal values of the relative
supplementary thermal energy ∆E = Ef /E0 of an isochoric
ignitor on the plasma temperature at the instant of maximum
compression for different targets. The curves are marked by
the values of (ρR)0 of the target plasma in g/cm2.
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ignition. According to the results of calculations, the
critical (minimum) value of this quantity required for
spark ignition with a small ignitor does not depend on
its size and is determined only by the initial tempera-
ture and ρR0 of the target. The corresponding quantita-
tive dependences are presented in Fig. 8.

As in the case of isobaric ignitors, isochoric ignition
cannot be realized if the target has an initial tempera-
ture too low or a thickness too small. However, the
range of target plasma parameters in which isochoric
ignition can be realized in principle is much wider than
the corresponding range for isobaric ignition. The
boundary of this region is also shown in Fig. 9 (line 3).

Irrespective of the ignition mode, the value of the
gain factor for an effectively burning target can be esti-
mated with an admissible accuracy using the following
simple relation:

G 370 ρR( )0
2/3/T0.=

1

2

3

101

100

10–1

10–1 100 101

T0, keV

pR0, g/cm2

Fig. 9. Boundaries of the parameters of main target plasma
at the instant of maximum compression, above which a ther-
monuclear burst is possible for various ignition mecha-
nisms: bulk ignition (curve 1), spark ignition with an iso-
baric ignitor (curve 2), and spark ignition wit an isochoric
ignitor (curve 3).
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Spark ignition makes it possible to extend the range
of application of this expression to a wider range of ini-
tial temperatures and thicknesses of the target.
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Abstract—A stationary discharge in the form of a filament about 1 mm in diameter is produced in a quartz tube
16 mm in diameter passed through the wider wall of a standard waveguide and field with argon at a pressure of
300 mm Hg at a microwave power of 50 W on a frequency of 7 GHz. The number of filaments increases grad-
ually from one to seven as the power and pressure are increased. The filaments are parallel and oriented along
the electric field of the wave. They are arranged symmetrically relative to the equatorial plane of the tube. The
distance between the filaments decreases as their number increases. The stationary filaments arising due to ion-
ization-overheating instability may be explained qualitatively using the interference-equilibrium model and
assuming that a discharge is organized such as to provide for the maximal power absorption. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is known that a microwave discharge in gas at a
high pressure is structured. A wide variety of structures
is observed; however, two structures may be regarded
as basic, namely, spherical and filamentary. Such struc-
tures gained wide recognition following the studies by
P.L. Kapitza, who, in particular, used the capacity of
microwave discharge in the atmosphere to assume a
spheroidal shape for interpreting the natural phenome-
non of ball lightning [1]. Allison et al. [2] were appar-
ently the first to observe a filamentary structure of
microwave discharge. More than ten long parallel
brightly glowing filaments were observed on the walls
of a spherical bulb filled with argon and placed in the
microwave field of a radar. The beauty of the observed
phenomenon and lack of its explanation caused Howat-
son to include a picture of the discharge from [2] in his
monograph on the theory of gas discharge [3]. Later,
filaments were observed by numerous researchers deal-
ing with pulsed microwave discharges (see references
cited in [4–6]).

The emergence of filaments may be due to two rea-
sons. The first reason is associated with the develop-
ment of ionization-overheating instability (IOI), which
leads immediately to the formation of long filaments. The
second reason is associated with the development of
microwave streamers, when a filament is drawn gradually.
The latter reason is characteristic of high-power pulsed
discharges and is not associated with the stationary low-
power discharges to which this paper is devoted.

The linear stage of IOI was studied theoretically by
Gil’denburg and Kim [7]. They have demonstrated that
small perturbations against a homogeneous background in
a microwave discharge start increasing at gas pressure
1063-7761/01/9201- $21.00 © 20078
values at which the electromagnetic wave frequency ω
become less than the collision frequency ν between
electrons and neutral gas particles. The characteristic
spatial scale of instability was estimated to be of the
order of the geometric mean of the wavelength in vac-
uum and the characteristic diffusion length. The initial
nonlinear stage of IOI exhibits an explosive behavior
[8]. More complex and totally uninvestigated is the
problem of the existence of a steady-state solution cor-
responding to a multifilament structure. The results of
experiments described in [2] and discussed by us dem-
onstrate the existence of such solutions.

Section 2 contains a description of the experimental
facility and diagnostics employed. In Section 3, exper-
imental results are given; in our opinion, the most inter-
esting results include the facts of obtaining a stationary
solitary filament and of observing an abrupt increase in
the number of stationary filaments with increasing
argon pressure and microwave power. In so doing, the
filaments are almost parallel and oriented along the
electric field of the wave. The arrangement of filaments
relative to the equatorial plane of the discharge tube
(see below) proves to be symmetric. In Section 4, the
obtained results are discussed using the equilibrium
theory of microwave discharges in the atmosphere and
invoking the hypothesis of self-organization. In reality,
the plasma in the filaments is nonequilibrium, but we
assume that some qualitative features of the experiment
may be interpreted using the equilibrium model.

2. EXPERIMENTAL FACILITY

Figure 1 illustrates the waveguide scheme of the facil-
ity and the design of the discharge chamber. The steady-
state microwave radiation with a frequency of 7 GHz
001 MAIK “Nauka/Interperiodica”
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and maximal power of 0.5 kW was delivered to the dis-
charge chamber via a standard waveguide of 15 × 35 mm2.
The discharge chamber was made as a hermetically
sealed quartz tube with an inside diameter of 16 mm,
wall thickness of 1.5 mm, and length of 160 mm and
was passed through the wider wall of the waveguide at
equal distances from the narrow walls in the direction
of the electric field of the wave. Outside of the waveguide,
the quartz tube was placed in a water-cooled copper tube
with an inside diameter of 19.2 mm. Numerous small
holes were provided in the copper tube for visual obser-
vation of plasma glow outside of the waveguide. Air-
tight optical ports were provided at the ends of the
quartz tube for photographing the discharge, as well as
openings for pumping out and bleeding in of gas. An
intense flow of air was delivered into the waveguide for
cooling down the quartz tube section located inside the
waveguide. The discharge was effected in still argon at
a pressure from 0.05 to 1 atm.

The experiments described herein involved the mea-
surements of the incident, absorbed, and reflected micro-
wave power using directional couplers and M3-47 and
M3-71 calorimetric microwave-power meters. The glow
was recorded by a general-purpose videocamera with
subsequent frame-by-frame digitizing of the obtained
images. The filming was performed with 1/2000 expo-
sure and a high degree of stopping to eliminate flare
spots and increase the depth of focus. The temporal
behavior of the discharge was monitored with the aid of
a crystal detector and a photomultiplier.

3. EXPERIMENTAL RESULTS

Figure 2 gives the power absorbed in the plasma and
the coefficient of reflection as functions of argon pres-
sure. The numerals indicate the moments of emergence
of the respective number of filaments. The frame-by-
frame scanning of continuous video records has
revealed that, within one or two frames (20 to 50 ms),
the number of filaments always remains constant. As
the pressure increases, the number of filaments in dif-
ferent frames may be different. The presence in Fig. 2
of two numerals placed side by side indicates that, at
different moments of time, different numbers of fila-
ments are observed with approximately equal probabil-
ity. Given in brackets is the number of filaments that is
seldom observed.

The moment of emergence of filaments with rising
pressure is in good agreement with the prediction of the
IOI theory, ω ~ ν, if one takes into account the decrease
in the density of gas inside a filament due to heating.
The number of filaments increases with pressure. In so
doing, the absorption and reflection of waves vary little.
Note that the measurements of transmitted power using
a fast crystal detector failed to reveal the disappearance
of absorption during temporal “jumpovers” from one
number of filaments to another.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Figure 3 gives the absorbed power, the coefficient of
reflection, and the number of filaments as functions of
the klystron power. For the maximal power, the maxi-
mal number of seven filaments was observed.
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(b)

(c)

1234
567

7 6 5 4 3
2 1

1
245

3
g

Fig. 1. (a) The waveguide scheme of the facility: (1) klystron,
(2) attenuator, (3) ferrite circulator, (4) reverse coupler with a
calorimetric power meter, (5) discharge chamber, (6) transmit-
ted-wave coupler with a crystal detector, (7) calorimetric
meter of transmitted power. (b) The waveguide scheme of
the discharge chamber: (1) end port and direction of video
filming, (2) pumping out, (3) direction of the electric field of
the wave, (4) standard waveguide, (5) copper tube, (6) her-
metically sealed quartz tube, (7) bleeding in of gas. A view
is given of a discharge containing three filaments. (c) A view
of the end port: (1) direction of propagation of microwave
power from the klystron, (2) equatorial plane of the dis-
charge chamber, (3) waveguide, (4) three filaments of the
discharge, (5) quartz tube; g, gravity direction.
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Fig. 2. The absorbed power P and the coefficient of reflec-
tion R as functions of argon pressure. The klystron power,
325 W. The arrows on the axes indicate the moment of emer-
gence of filaments and the coefficient of reflection without
plasma. The numerals at the bottom indicate the number of
filaments at respective values of pressure.
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Figure 4 is a collection of individual frames of video
filming with the number of filaments ranging from two
to seven. The filming was performed via optical port
(see Fig. 1b) at an angle of 10° to the direction shown
in Fig. 1c. One can see that the filaments are arranged
symmetrically relative to the equatorial plane shown in
Figs. 1c and 4; in the case of an odd number of fila-
ments, the central filament is always located on the
equatorial plane. The filaments go a little beyond the
waveguide limits and disappear while diverging some-
what. As the number of filaments increases, they come
to be arranged ever more closely to one another over the
perimeter of the tube side facing the incident micro-
wave power. Figure 5 is a frame with six filaments,
filmed at an angle of 0°, i.e., strictly along the tube axis.
The radiation is incident on the plasma from the right.
The doubling of filament image is caused by the effect
of reflection from the walls of the quartz tube. On ana-
lyzing Figs. 4 and 5, one can obtain the following char-
acteristic geometric parameters of filaments: diameter,
1 to 1.5 mm; length, 15 to 25 mm; distance between fil-
aments, 3 to 10 mm; the filaments are oriented along
the electric field and spaced from the wall at a distance
of the order of the filament diameter.

A special experiment was performed in order to obtain
a single filament, because a discharge was required at the
threshold of extinction under conditions of low argon
pressure and low klystron power. The experimental proce-
dure was as follows. A discharge was ignited at a pressure
of 300 mm Hg, and the klystron power was reduced to
49 W. After that, the gas was slowly pumped out and
the recording was performed continuously until the
extinction of the discharge. Figure 6 illustrates the
result of such an experiment. For a period of 20 s, one
could observe a solitary filament located in the equato-
rial plane. In so doing, one can observe an almost com-
plete agreement between the discharge chamber and
incident microwave radiation and a stepped rise of
absorption at the moment of doubling of filaments. The
increase in absorption during the tripling of filaments is
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Fig. 3. The absorbed power P and the coefficient of reflec-
tion R as functions of the klystron power Pkl . The argon
pressure, 660 mm Hg.
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Fig. 4. Individual frames showing filaments. The filming
was performed at an angle of 10° to the direction shown in
Fig. 1c; the straight line indicates the equatorial plane of the
waveguide and discharge chamber, and two vertical arcs
indicate the edge of the waveguide.

Fig. 5. A frame filmed at an angle of 0° (see Fig. 1c). The
curvature radius is equal to the tube radius of 8 mm.
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Fig. 6. The variation of the absorbed power, the coefficient
of reflection, and the number of filaments during the time of
experiment. The arrows indicate the moments of variation of
the number of filaments and the coefficient of reflection from
the discharge chamber without plasma. Argon, 300 mm Hg,
50 W.
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pronounced less clearly. An absorbed microwave power
of 20–30 W is sufficient for the existence of a single fil-
ament. An enlarged photograph of a single filament is
shown in Fig. 7. The results of measurement of the tem-
poral dynamics of intensity of glow of a single filament
with the aid of a photomultiplier demonstrated a com-
plete stationarity of the filament.

4. DISCUSSION

The experimental results prove the existence of a
stationary discharge in the form of thin filaments
extended along the electric field E of the wave and
located in the vicinity of the wall onto which the micro-
wave is incident. The IOI is known as the original cause
of the emergence of these filaments. However, one
needs to explain the reason for the stability of filaments,
their visually observed geometric characteristics, i.e.,
to describe, at least qualitatively, a stationary filamen-
tary microwave discharge.

The strong spatial nonuniformity of the parameters
of the plasma of filamentary microwave discharge gives
no grounds to apply the equilibrium theory of micro-
wave discharges; nevertheless, we will try to derive
from this latter theory a qualitative explanation of the
observed phenomena while leaving the exact quantita-
tive analysis to the nonequilibrium theory.

The orientation of filaments along the electric field
is explained by the need for the flow of the filament-
heating current. In our experiment, the current at the
ends of filaments is closed by the bias currents to the
waveguide walls via capacitors formed by the quartz
tube. Therefore, the electric field intensity and the cur-
rent along the filament are constant. Indicative of this is
the constancy of the glow intensity along the filament
within the waveguide. Therefore, we use in discussion
the model of an infinite filament in the field of a plane
microwave with linear polarization along the filaments.

4.1. Homogeneous Cylinder in the Field
of a Plane Wave

Is the equilibrium model of discharge capable of
predicting any characteristic dimension for a filament
on the threshold of extinction? In order to answer this
question, we will analyze the problem of heating and
cooling down of an infinite and homogeneous cylinder
in the field of a plane electromagnetic wave polarized
along the cylinder.

The heating may be analyzed using the long-solved
classical problem of scattering from an infinite cylinder
(see, for example, monographs [9–11]). The specific
nature of our problem is characterized only by the prop-
erties of the medium, that is, the plasma which forms
the cylinder. The complex refractive index is fully
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
defined by the equilibrium temperature of the plasma
cylinder [12].

We will represent the power of heating the cylinder
per unit length as

(1)

where S is the flux of incident power in the plane wave,
(σt – σs) is the absorption cross section, and σs is the
scattering cross section. The following expressions
were derived for the cross sections:

(2)

where k is the vacuum wave vector and

(3)

In (3), N is the refractive index; Jn and Nn denote the
Bessel and Neumann functions, respectively; ξ = ka;
a is the cylinder radius; and the prime indicates the
derivative with respect to argument.

We will apply the derived formulas to the calculation
of heating of argon plasma. We will use for this purpose
the following equilibrium correlations required to
derive N: the frequency of electron-neutral collisions

the cylinder temperature T and the temperature outside
the cylinder T0 in 103 K, the gas pressure p in mm Hg,
and the electron concentration [12]
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Fig. 7. An enlarged image of a solitary filament at an angle
of 0°. The line indicates the position of the internal wall of
the quartz tube. The halo on the right is the effect of reflec-
tion from the walls. The parameters are as in Fig. 6.
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Figure 8 gives the calculated temperature depen-
dence of the dimensionless absorption cross section

and that of the parameter |Nka| = |k1a|, which character-
izes the penetration of the field deep into the cylinder,
with the fixed value of the cylinder radius a = 2 mm for
the wavelength of 4.2 cm used in the experiment (fre-
quency of 7 GHz). One can see that the heating maxi-
mum is attained at a temperature at which the penetra-
tion parameter is of the order of unity; i.e., the distance
of field decrease inside the cylinder is equal to the
radius. We determine the maximal value of q and the
respective value of temperature at every value of the
cylinder radius a to construct the dependence given in
Fig. 9. The same figure gives the values of the penetra-
tion parameter for the maximal values of q. One can see

q
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2a
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Fig. 8. The calculated dependence of the dimensionless
cross section of power absorption in a cylinder and of the
parameter of field penetration in this cylinder on the tempera-
ture with the cylinder radius of 0.2 cm; Ar, 300 mm Hg, 7 GHz.
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Fig. 9. The calculated dependence of the maximal absorp-
tion cross section q on the cylinder radius a. The tempera-
ture and the skinning parameter are given, which correspond
to the maximal value of q. The parameters are as in Fig. 8.
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that, as the radius decreases, the temperature and the
absorption cross section increase, with the penetration
parameter remaining close to unity.

The flux density of heat from a cylinder surrounded
by a wall of radius R0 with a fixed temperature T0 is

where λ[erg/cm s K] = 4 × 10–4  is the thermal
conductivity coefficient of argon. It is clear that a fila-
ment may be in thermal equilibrium qS = Q only in the
vicinity of the wall, when an adequate heat sink is pos-
sible. As the power S of incident wave decreases, i.e., as
the threshold of extinction is approached, the heat bal-
ance may be satisfied by way of reducing the cylinder
radius. In so doing, no restrictions on the filament
diameter arise in the model being treated. This situation
differs radically from the situation in the case of spher-
ical microwave discharge, where such a model brings
about a characteristic radius of plasma formation [13]
coinciding with that predicted previously by Kapitza [1].

4.2. Inhomogeneous Cylinder in the Field
of a Cylindrical Wave

Self-consistent solutions of the thermal and electro-
dynamic problems are required for determining the
minimal radius of cylinder during extinction of a dis-
charge. In this case, one can make use of the fact that,
for a thin cylinder (ξ ! 1), it is sufficient to include only
zero harmonic (n = 0) in (3), i.e., solve a problem with
cylindrical symmetry.

The set of equations has a standard form

(4)

where

is the plasma conductivity,

is the permittivity, and ωpe is the plasma frequency. It is
assumed that the electric field is directed along the dis-
charge. The heat equation may be replaced by the con-
dition of cancellation of the heat flux and of the electro-
magnetic energy flux defined by Poynting’s vector,
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where λ is the thermal conductivity, r is the radial coor-
dinate, and Sr is the radial energy flux. The boundary
conditions for the set of equations (4) are provided by
the temperature T0 on the wall of radius R0 and the flow
of cylindrical electromagnetic wave incident from
infinity [14]. On the discharge axis, ∇ rT = Sr = 0.

Figure 10 illustrates the result of characteristic cal-
culation in the vicinity of the threshold of extinction,
which demonstrates the existence of steady-state solu-
tions of the problem with a filament less than a millime-
ter thick. Figure 11 gives the filament radius and the
coefficient of reflection from the filament as functions
of incident power at different distances from the wall.
One can see the existence of the threshold of extinction,
where the filament radius may be close to that which is
observed. The level of threshold power likewise proves to
be close to the experimentally obtained value. As the
threshold is approached, the agreement between plasma
and incident power is improved, which is also observed
experimentally. Therefore, the simplest model predicts
fairly well the qualitative characteristics of a discharge
with a single filament provided the distance from the fil-
ament to the wall is preassigned. Apparently, the ques-
tion of self-consistent setting of this distance cannot be
resolved within the framework of equilibrium theory.

4.3. Multiplicity of Filaments

The most complicated question is what causes the
variation of the number of filaments. We believe that
this effect is caused by the interference of electromag-
netic fields scattered by the filaments.

We will treat an example with two filaments. Unlike
the situation with one filament, each of two filaments is
heated both by the incident wave and by the wave scat-
tered from the neighboring filament. In so doing, the vari-
ation of the distance between the filaments leads to a vari-
ation of the phase with which these two waves interfere on
the filament. Therefore, a distance must exist between the
filaments, at which the power absorbed by two fila-
ments proves to be maximal. One can estimate this dis-
tance fairly easily. In view of the fact that the necessary
phase difference must be 2π and that, during scattering, a
phase variation by approximately π occurs, the distance
between the filaments must be half the wavelength in vac-
uum. It is important to note that, in this case, the absorp-
tion power exceeds the power that would result from a
simple doubling of the power absorbed by a single fila-
ment. Therefore, given a certain level of microwave power
input, the state with two filaments proves to be more
advantageous energetically than the state with one fila-
ment. We will demonstrate that the same situation is
observed for a larger number of filaments.

The diffraction of a linearly polarized plane electro-
magnetic wave on homogeneous infinite cylinders of
radius a, spaced at equal distances L from one another
in a plane perpendicular to the incident wave, is well
studied [10]. We will use a simplified expression which
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
may be derived from general formulas in the approxi-
mation of thin cylinders (ka ! 1) spaced at fairly large
distances from one another (a ! L). In so doing, we
will take into account only the zeroth harmonic (n = 0
in formula (3)) and the first order of diffraction; i.e., we
will ignore the scattering of scattered waves. We derive
the following relation for the coefficient K by which
the dimensionless absorption cross section q for single
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Fig. 10. The predicted profiles of the plasma electron den-
sity n and temperature T in the space from the axis to the
wall (R0 = 0.3 cm) at room temperature; Ar, 760 mm Hg,
incident power per unit filament length 100 W/cm, 7 GHz.
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Fig. 11. The coefficient of reflection R and the filament
radius a as functions of incident power W per unit filament
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(3) 0.3 cm. The rest of the parameters are as in Fig. 10.
SICS      Vol. 92      No. 1      2001



84 SKOVORODA, ZVONKOV
filament must be multiplied:

(5)

Here, ε = 0 at i = j, and ε = 1 in all of the remaining

cases; m is the number of filaments; and  is zero-
order Hankel function. Figure 12 illustrates an example
of calculation of the coefficient K as a function of the
distance between filaments for different number of fil-
aments. One can see that the maximal value Kmax is
much higher than unity. The value Kmax increases with
the number of filaments. The distance between fila-
ments at which Kmax is realized decreases considerably
as the number of filaments increases. This is in qualita-
tive agreement with experiment, as is demonstrated by
Fig. 13 which illustrates a comparison of the calculated
and measured values of relative variation of the dis-
tance between filaments with increasing number of fil-
aments. A fairly good agreement is attained in the case
of three to five filaments. The agreement is disturbed in
the case of two filaments and in the case of a large num-
ber of filaments, because, in the latter case, the calcula-
tion by formula (5) is less accurate due to violation of
the a ! L approximation.

Figure 12 enables one to produce a qualitative inter-
pretation of the observed phenomena. As the energy input
to the plasma increases with increasing incident micro-
wave power or with decreasing conduction (increasing gas
pressure), the increase in the number of filaments accom-
panied with the reduction of the distance between them
results in the possibility of absorbing more power.
Because, given a sufficiently large number of filaments,
the difference in the “advantageousness” for discharges
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Fig. 12. The coefficient K (5) as a function of distance
between filaments: the number of filaments, from one to
five; Ar, 300 mm Hg, 7 GHz, T = 6500 K, a = 0.2 cm.
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with close numbers of filaments proves to be insignifi-
cant (the curves in Fig. 12 intersect), “jumpovers” may
be observed.

In order to obtain the quantitative characteristics,
one must completely solve the electrodynamic and ther-
mal problems with due regard for the nonequilibrium state
of plasma and for the geometry of the discharge chamber,
i.e., for the presence of a waveguide and a fairly thick
quartz tube. We hope that this will help us explain the sub-
stantial difference between the distance between two fil-
aments predicted by formula (5) (approximately 2 cm)
and the distance observed experimentally (about 0.8 cm).
The mechanisms that cause the plasma front to propagate
in the direction of the power source are well known
[12]. In view of this, it is natural that the filaments con-
centrate in the vicinity of the surface which obstructs
their motion. A complete solution of the problem for
nonequilibrium discharge will enable one to self-con-
sistently determine the distance from the filament to the
wall.

5. CONCLUSION

A stationary microwave discharge in argon in a
quartz tube passing through a waveguide assumes the
shape of parallel filaments oriented along the electric
field of the wave. Stationary filaments are obtained in
the still atmosphere of argon in the vicinity of the wall
facing the source of microwave power. In the case of
convective motion of gas, a discharge of the “ball of fil-
aments” type is formed inside the discharge tube.

A stationary filament has a diameter of about 1 mm.
The number of stationary filaments increases from one to
seven with increasing pressure (starting with 100 mm Hg)
and increasing incident power (starting with 20 W). As
the number of filaments increases, the distance between
them decreases. The filaments are arranged symmetri-
cally relative to the equatorial plane of the discharge tube.
For rough estimation of the power absorbed by the
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Fig. 13. Comparison of the calculated and measured values
of the relative variation of the distance between filaments.
The numerals indicate the number of filaments. The normal-
ization is performed for three filaments.
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plasma, the number of observed filaments may be multi-
plied by 30 W. Experiments in the air proved to be impos-
sible under conditions of high gas pressure because of
the melting of the quartz tube.

Some properties of a stationary filamentary discharge
in argon at high pressure may be explained qualitatively
using the interference-equilibrium model and invoking the
hypothesis that a discharge is organized such as to provide
for the maximal power absorption. In order to obtain a
quantitative agreement between the model and experi-
ment, one must solve completely the self-consistent
electrodynamic and thermal problems with due regard
for the nonequilibrium state of the discharge and for the
geometry of the waveguide.
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Abstract—An experimental investigation is performed of the effect of the neutral gas temperature gradient on
plasma-dust formations in the positive column of a glow discharge. It is demonstrated that the thermophoretic
forces arising due to the temperature gradient are comparable with radial electric fields and define the condition
of formation and different shapes of plasma-dust structures, in particular, the formation of rings in the vicinity
of tube walls. A model description of this effect is given. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of ordered structures of micron-sized
dust particles was observed under different conditions
in a low-pressure plasma and in radio-frequency and
glow discharges [1, 4–6], as well as in thermal and
nuclear-excited plasmas [1–3]. In so doing, microparti-
cles acquire a high negative charge q = (104–105)e
(where e is the electron charge), corresponding to the
floating plasma potential, and the structures proper
resemble Coulomb crystals [1–4]. The possibility of
formation and the stability of ordered dust structures in
a plasma depend on temperature. The nonideality
parameter γ is proportional to the square of charge on
particles,

where nd is the concentration of dust particles, and
defines the temperatures at which a stable crystal struc-
ture of charged dust particles will be formed, the tem-
perature at which structures of the liquid type will be
formed, and the temperature at which no structures will
be formed [1]. In addition to the value of the tempera-
ture proper, the formation of ordered dust structures
must be further affected by forces associated with the
temperature gradient. These forces are also capable of
having decisive effect both on the conditions of emer-
gence of ordered structures and on their geometric
shape and arrangement in space. A plasma system is
always characterized by the presence of sources of
energy release and by the presence of boundaries;
therefore, there always exist both the temperature gra-
dient and the forces it causes. Up to now, the forces
associated with fluxes and with interaction of charged
components of plasma were largely included in the
analyses and investigations of ordered dust formations

γ q2nd
1/3/kT ,=
1063-7761/01/9201- $21.00 © 20086
[2, 3, 7, 8], while the forces due to the temperature gra-
dient were disregarded.

Ordered plasma-dust formations in a dc glow dis-
charge are formed in strata in which a fairly strong lon-
gitudinal electric field exists, which that makes it pos-
sible to contain particles in the field of gravity [1, 4–6].
Experimental results demonstrate [6] that plasma-dust
structures of different shapes may form in a glow dis-
charge. The shape and structure of dust formations
depend on the conditions of equilibrium in the radial
direction [6]. In the radial direction, the particles of a
plasma-dust formation are acted upon by various forces
directed towards the axis and the wall of the discharge
tube. The force directed toward the axis is defined by
the radial electric field and by the dust-particle charge.
The forces urging the dust particles towards the walls
may be caused by the motion of ions to the wall under
conditions of ambipolar diffusion and by the neutral
gas temperature gradient. The effect of temperature
gradients due to Joule heating on ordered plasma struc-
tures has not been taken into account up to date. It is the
objective of this study to investigate the effect of the
temperature gradient on the formation of dust struc-
tures in the positive column of a glow discharge.

2. EXPERIMENT

Ordered dust structures were developed in the posi-
tive column of a glow discharge in discharge tubes 1
and 2 cm in diameter and 30 cm long. The experimental
scheme is given in Fig. 1. Two metal rings 1 were glued
into the tube walls at distances of 10 and 15 cm from
the cathode for measuring the voltage drop in the posi-
tive column and for stabilizing the strata. Air at a pres-
sure from 0.2 to 0.8 torr served as the working gas. The
positive column was stratified, and the first stratum
001 MAIK “Nauka/Interperiodica”
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emerged in the vicinity of the first ring. Introduced
from above into the discharge were particles of alumina
3 to 10 µm in diameter and particles in the form of hol-
low glass spheres 20 to 60 µm in diameter. The dis-
charge current varied from 0.1 to 3 mA.

The current-voltage characteristic of the positive
column of a discharge in air is given in Fig. 2; also
shown in this figure are the shapes assumed by dust
structures at different values of current. At a low current
of 0.1 to 0.3 mA, ordered filaments of particles approx-
imately 1 cm long were observed, concentrated in the
vicinity of the tube center. When the discharge current
increased to 0.6–1 mA, we observed the formation of
an ordered structure in the form of a cylinder with the
diameter of approximately one-third or one-fourth of
the tube diameter. The diameter of the ordered structure
increased with current and reached two-thirds of the
tube diameter at a current of 1–2 mA. The structure
thickness decreased as the current increased, and, at a
current from 1.5 to 2 mA, plane structures were
observed consisting of several (five to ten) layers of
particles. A further increase of current resulted in the
formation of a ring structure whose diameter increased
and the width decreased with increasing current. No
particles were present in the axial region. The values of
the current at which transitions occurred between dif-
ferent shapes of ordered structures decreased with
increasing size of dust particles.

The following experiments were performed to
check the effect of the temperature gradient on the
structures.

1. After an ordered structure was formed, a rod 3
heated to 100°C (Fig. 1) was brought close to the side
wall of the tube (opposite the ordered structure). After
a period of 2–3 s, particles started to leave the structure
and move away from the rod, and, after a short time,
all particles from the structure moved over to the
wall (Fig. 3). Approximately 10–20 s after this, if the
rod was removed, the structure started to be built up
gradually from the particles that came from the walls.
In so doing, the center of localization of particles was
first biased toward the cold wall and then shifted slowly
toward the center.

2. If the wall was touched by the cooled (to –10°C)
rod, the structure was set up in the form of a cone with
the vertex at the point of contact between the cold rod
and the wall and flowed down slowly (15 s) onto the
wall (Fig. 4). After the rod was removed, the structure
was built up in the same manner as that described for
the case of heating.

3. In the third experiment, a heating coil 2 (Fig. 1)
0.5 cm wide was wound at a distance of 1 cm above the
bottom metal ring. Under the experimental conditions,
the heating largely affected the region between the
metal rings. Because the heater width was small, it gen-
erated both the longitudinal and radial components of
the temperature gradient. The discharge was ignited
such that two strata were located between the metal
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rings above the heater. After switching on the heater at
a power of 0.5 W (in so doing, the mean heat release in
the discharge per unit length was 0.01–0.02 W/cm), the
dust structure diameter in the stratum nearest to the
heater decreased, and it was observed that particles
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Fig. 1. Experimental scheme: (1) metal rings, (2) heater,
(3) heated or cooled rod, (4) video camera, (5) laser, (6) mir-
ror, (7) glass window, (8) discharge supply source,
(9) heater supply source; R, ballast resistor.

Fig. 2. The mean intensity of longitudinal electric field
between rings as a function of the discharge current. Shown
schematically at the bottom are the configurations of
plasma-dust structures in the longitudinal cross section, cor-
responding to the above-identified values of current.
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occasionally flew from this stratum to the top one and
back. When the heater power was increased to 1 W, par-
ticles from the bottom stratum were scattered into the
region between the strata and occupied almost the
entire volume. In so doing, the particles in the axial
region were motionless and the distance between them
increased; closer to the wall, the particles moved chaot-
ically. Between these two regions, chaotically moving
particles were observed among the motionless ones.
This effect is possibly associated with the presence of
particles of different sizes. In the vicinity of the wall
closer to the heater, the particles performed circular
motion. In the vicinity of the walls, they descended to
the heater and then departed to the center, after which
they ascended and moved towards the wall. This
motion may be attributed to the presence of strong tem-
perature gradients in the vicinity of the heater. When
the power of heating increased to 2 W, the particles
moved away from the heater and took up the top part of

t, s

0
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16

21

–1 0 1 R, Òm

Fig. 3. Photographs of variation of the cross section of a dust
structure upon contact of a heated rod with the discharge
tube wall (on the left); O, tube center; R, tube radius; T, time
of stimulation in seconds.
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the region between the heater and the top ring. With a
further increase of the heater power, the particles left
the discharge. The effect of the rotation of particles was
also observed in the case of contact between the wall
tube and the cooled rod below the stratum with ordered
structure. In so doing, the particles shifted towards the
cooled spot (sideways and down), and the direction of
particle rotation was opposite to that observed during
heating.

Therefore, the presence of even insignificant tem-
perature gradients may define the geometric shape of a
dust structure, as well as fully distort or destroy the lat-
ter. The observed transition of an ordered dust structure
from a disk or cylindrical shape to a ring shape with
increasing discharge current may also be caused by a
radial temperature gradient when the gas in the tube is
heated by the flowing current.

3. CALCULATION MODEL

We will treat the steady state of a ring-shaped dust
structure. The shape of the structure in the radial direc-
tion depends on the equilibrium position of dust parti-
cles, which is defined by the balance of radial forces.

t, s

0

14

–1 0 1 R, Òm

Fig. 4. Photographs of variation of the cross section of a dust
structure upon contact of a cooled rod with the discharge
tube wall (on the left); O, tube center; R, tube radius; T, time
of stimulation in seconds.
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The attracting force of the radial electric field of ambi-
polar diffusion is directed toward the center of the dis-
charge tube, while the forces of entrainment by ambi-
polar ion and electron fluxes and the force caused by
the temperature gradient are directed from the center to
the wall of the tube. In calculating these forces, use was
made of the model of the positive column of the plasma
of a low-pressure glow discharge undisturbed by dust
particles. The forces were calculated per single particle.
Included in the calculations were the dependences of
the reduced electric field intensity E/P (the values were
borrowed from experiment, Fig. 2) and of the coeffi-
cients of diffusion and mobility of electrons and ions on
the pressure and the tube radius [9]. In strata in the air,
the longitudinal field intensity is high and the electron
attachment is almost fully compensated by detachment;
therefore, the concentration of negative ions in the
strata is low compared with that of electrons. The elec-
tron temperature was taken to be 3 eV [10], because its
variation has little effect on the calculation results. As
was demonstrated by Nedospasov [11], a stratified col-
umn of a glow discharge is described by the ionization-
diffusion model, and the radial distribution of the elec-
tron concentration in a stratum is the same as in a
homogeneous column and is close to the Bessel func-
tion J0(r/Λ) with the boundary condition

where Λ = R/2.4 and R is the tube radius. The loss of
charged particles at the values of pressure P = 0.2–
0.4 torr employed by us is largely defined by ambipolar
diffusion, as a result of which a radial electric field
arises. Because the drift velocity of electrons in the
radial direction is low compared with their thermal
velocity, the electron distribution over the discharge tube
cross section satisfies the Boltzmann equation [12]:

(1)

where ϕ(r) is the field potential at the space point being
treated and, on the tube axis, ϕ(0) = 0. In view of the
fact that in the diffusion approximation the radial distri-
bution of electrons is described by the Bessel function,
one can determine the potential at the preassigned
space point,

(2)

and then find the radial electric field Er = –dϕ/dr and
calculate the force acting on charged microparticles.
This approach enables one to simplify the computation
of radial electric field and avoid significant errors occur-
ring when the field is found directly from an ambipolar
flux of ions and electrons. Expression (2) is valid if
the distance from the point being treated to the wall
tube considerably exceeds the electron free path λe.

We expand the Bessel function in the vicinity of the
wall at R @ λe into a Taylor series to derive from (2) the

ne R( ) 0,=

eϕ r( ) kTe ne r( )/ne 0( )( ),ln=

eϕ r( ) kTe J0 r/Λ( )( ),ln=
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potential difference between the axis and the wall of the
discharge tube,

(3)

Formula (3) is valid within a numerical factor on the
order of unity under the logarithm sign.

Such distributions of the electron and ion concentra-
tion and of the radial electric field are distorted in the
vicinity of the discharge tube walls where the value of
excess space charge becomes comparable with that of
ion concentration, as a result of which the quasi-neu-
trality of plasma is disturbed. Therefore, in calcula-
tions, we restricted the field in the vicinity of the tube
walls where the quasi-neutrality was disturbed and
allowed for the fact that the dust particles lost their
charge in the vicinity of the tube walls and left the dis-
charge.

In order to find the radial distribution of the gas tem-
perature, we solved the heat-conduction problem for a
plasma column with known sources of heat release that,
in our case, were proportional to the concentration of
electrons and to the longitudinal intensity of electric
field.

Given below are predicted correlations for the main
radial forces acting on dust particles, namely, the force
of radial electric field, the force due to the temperature
gradient, and the force of entrainment arising as a result
of the ionic drift to the tube walls.

3.1. Force of Radial Electric Field

This force is equal to the product of particle charge
by radial electric field,

(4)

where

is the equilibrium charge of a microparticle, and a is its
radius. The dust particle charge is equal to 1.2 × 104e.
Figure 5 gives the radial electric force FE as a function
of distance.

3.2. Force of Temperature Gradient

If a temperature gradient is present in a gas, the
body placed in this gas is acted upon by the force FT

which is proportional to the temperature gradient and
caused by the sum of momenta imparted to a particle by
bombarding molecules of gas. A microparticle moves
along the line of temperature field toward a decrease in
temperature. When the molecular free path of gas is

eϕW kTe R/λ e( ).ln=

FE qEr– qkTe

∇ ne

ne

---------,= =

q aTe 0.4 mi/me( )ln=
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much longer than the dust particle size, this thermo-
phoretic force is defined by the formula [13]

(5)

where P is the gas pressure and L is the molecular free
path. Given the current density and the longitudinal
electric field, one can find the correlation for local heat
release and then the temperature distribution and the
thermophoretic force.

Because the longitudinal intensity of electric field is
independent of radius, the radial heating of neutral gas
is defined by the heat equation

(6)

with nonuniform heat release, where the heat release on
the discharge axis is Q0 = j(0)E, j(0) is the density of
electric current on the axis, and λ is the thermal con-
ductivity coefficient of gas. Convective heat transfer is
negligibly small, because the Rayleigh criterion is
invalid due to the low density of gas and insignificant
temperature gradients. The solution of Eq. (6) may be
written as

(7)

where i is the total current of the discharge and Tw is the
wall temperature. For the conditions of our experiment,
the temperature on the axis exceeds the wall tempera-
ture by 5 to 15 K.

The T(r) profile in this case coincides with the pro-
file of heat release and defines the radial thermo-
phoretic force acting on a microparticle (Fig. 5). In
treating thermophoresis, we did not include the heat
release associated with charged particle fluxes attracted
by the dust cloud, because, in our case, these fluxes are
much lower than both the radial ambipolar flux to the
wall and the conduction current. One can see in Fig. 5
that the forces FE and FT are comparable in magnitude,

FT
4PL

T
----------a2dT

dr
------,–=

λ∆T Q0J0 r/Λ( )–=

T r( )
1
8
--- iE

λ
-----J0 r/Λ( ) Tw,+≈

FE

FT

16

12

8

4

0 0.2 0.4 0.6 0.8 1.0
r, Òm

F, 10–12 H

Fig. 5. The force of radial electric field and the thermo-
phoretic force as functions of distance to the tube center at
P = 0.5 torr and I = 1 mA; particle diameter, 10 µm.
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act in different directions, and exhibit different depen-
dences on the radius.

3.3. Ionic Drift and Its Effect on Particles

An ambipolar diffusion of electrons and ions occurs
in a diffusion-controlled glow discharge. In so doing,
the fluxes of ions and electrons and, consequently, their
drift velocities coincide in the radial direction. Ion and
electron fluxes affect a dust particle. The main contri-
bution to this force is made by the ion momentum. The
momentum transfer from ions to dust particles is
defined by the velocity of ions in the vicinity of the sur-
face of a charged particle, and the difference between
ion fluxes affecting the particle is defined by the drift
velocity of ions in a radial ambipolar field; therefore,
the force with which a particle affected is

(8)

where ni is the concentration of ions in a stratum, mi is
the mass of ions, vr is the radial drift velocity, vi is the
ion velocity in the vicinity of a particle, and σ is the
effective cross section of capture of ions by a charged
microparticle [7].

The force of ionic entrainment (8) is an order of
magnitude less than the force of radial electric field (4)
and the thermophoretic force (5). Because the thermo-
phoretic and ionic entrainment forces exhibit the same
dependences on the particle size and on the discharge
tube radius, one can assume that a dust structure is
largely affected by the temperature gradient force. The
thermophoretic force attempts to pull the particles held
at the stratum center to the tube walls; however, it is
inhibited by the force of radial ambipolar electric field.

3.4. Particle Energy

The motion of a dust particle in the radial direction
is defined by its potential energy. Because the radial
forces are proportional to the respective gradients, one
can introduce the concept of potential energy for each
one of these forces,

(9)

Then, the total potential energy is

(10)

In our experiments, Joule loss is small, and the tem-
perature on the tube axis T(0) only slightly exceeds the
wall temperature, T(0) – Tw ! Tw; therefore,

(11)

Fi nimiv rv iσ,=

F r( )
dU
dr
-------.–=

U r( ) FT r( ) FE r( )+[ ] rd

0

r

∫–=

=  4PLa2 T 0( )
T r( )
---------- qeϕ r( ).–ln–

U r( ) α 1 J0 r/Λ( )–( )– β J0 r/Λ( )( ),ln–=
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where

(12)

In the vicinity of the axis, where r/Λ ! 1,

If α/β ≥ 1, the root of J0(rm/Λ) = β/α defines the min-
imum of the function U(r) (11),

(13)

At the minimum, the value of U(rm) is always nega-
tive, U(rm) < 0. In the vicinity of the axis, the potential
energy is U(r) < 0, and then passes through the mini-
mum. The value of potential energy (11) in the vicinity
of the wall in view of ϕW is

(14)

In the case when the electric forces prevail over the
thermophoretic forces, β > α, the potential energy
U(r) > 0 has no local minimum, and the particles
assemble in the vicinity of the axis. The behavior of the
function U(r) depending on r defines the region of finite
motion of dust particles or departure to the wall. There
are two characteristic regions, namely, U(r) > 0 and
U(r) < 0. The particles go to the wall if their total
energy is

(15)

The summation is made over all particles in the layer in
the entire region of motion. For finite motion, the total
energy (15) is negative, and U(rm) < ε < UW . The parti-
cles “slide down” to the potential minimum.

Hence, it follows that two options are possible of
radial structures of dust clouds in a glow discharge,
namely,

(1) the particles take up either the central region or
the entire cross section of the discharge tube, except for
a small region of ~λe in the vicinity of the tube walls,
and

(2) the particles are located at the potential mini-
mum and form a space structure in the form of a ring in
the neighborhood of the wall.

4. ANALYSIS AND COMPARISON 
WITH EXPERIMENT

We will determine the dependence of the forces of
radial electric field and temperature gradient on the
conditions of discharge, gas pressure, tube radius, cur-
rent, and particle size. The force of radial electric field
depends on the particle charge (proportionally), elec-
tron temperature, and radial electric field which
increases with radius. The temperature gradient force is
proportional to the cross-sectional area of particles and

α 1
2
---PLa2iE

λTW

------------------, β qkTe.= =

U r( ) β α–( )r2/Λ2.∼

U rm( ) β 1 β/α( )ln–( ) α .–=

UW α– β R/λ e( ).ln+=

ε
miv i

2

2
------------ U r( ) UW .>+

i

∑=
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increases with current and pressure, because the longi-
tudinal electric field and heat release increase with
pressure and decrease as the tube radius increases.

We will treat an ordered dust structure under condi-
tions of variation of the discharge conditions. Figure 6
shows the variation of the potential energy of particles
10 µm in diameter as a function of discharge current. In
the case of currents of up to 1 mA, it is advantageous
for the particles to be in the central region of the tube,
because a potential well is present at the tube center, as
is observed in the experiment: the particles take up
mainly the central part of the tube and form well-ordered
structures. When the current increases (1–2 mA), the
minimum of potential well shifts toward the walls;
however, the potential energy of particles in the vicinity
of the tube walls is higher than that at the center. In so
doing, the particles may both form ring structures and
take up almost the entire cross section of the tube
except for the region in the vicinity of the tube walls. In
this case, the size of the region taken up by the particles
depends on the number of horizontal layers of dust par-
ticles that may be contained by the longitudinal electric
field in a stratum. In order to calculate the space dimen-
sion of a dust structure, one must take into account the
number of layers that may be contained in a stratum
and, accordingly, solve a two-dimensional problem.
The characteristic depth of potential well in the axial
direction is defined by the potential drop on the stratum
and, in our case, amounts to 20–40 V, and the radial
potential drop eϕW does not exceed several values of Te.
Therefore, the depth of potential well in the longitudi-
nal direction is much greater than that in the radial
direction. In the case of weak fields in a stratum, the
number of layers is small, and particles are absent from
the central region; i.e., a wide ring structure is formed
with the particles absent from a very narrow central part
of the tube. In the case of fairly strong longitudinal
fields in a stratum, when the number of layers is large,
the particles take up almost the entire cross section of
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Fig. 6. The potential energy of charged dust particles 10 µm
in diameter as a function of the distance from the tube center
for different values of discharge current (0.5, 1, 1.5, and
3 mA).
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the tube. In so doing, excess particles from the structure
spill down. As the current continues to rise, the thermo-
phoretic forces start playing the decisive part, the
potential energy of particles at the tube center starts
exceeding the energy in the vicinity of the tube walls, and
the particles form only ring structures. The departure of
excess particles also depends on the longitudinal electric
field, and the particles either spill down or depart to the
walls. The higher the current, the narrower the ring formed
and the greater its inside diameter. At some value of the
current, the potential barrier in the vicinity of the tube wall
disappears and all particles in the stratum depart to the
wall. The disintegration of a structure in the vicinity of the
wall may occur because of a different reason. In the vicin-
ity of the tube wall, the concentration of ions exceeds con-
siderably that of electrons; this leads to a reduction of the
particle charge, and the particles are not contained by the
longitudinal field.

When the particle size changes, the values of critical
current at which the structure disintegrates vary approxi-
mately inversely proportionally to the particle size. One
can say that the less the particle size, the less the effect
of the thermophoretic forces on the particles in the
structure. The structure becomes more stable, the num-
ber of particles in the structure increases, and the range
of currents at which the structure exists becomes wider.
The effect of the gas pressure on the structure is defined
by the variation of longitudinal field in the stratum and
by heat release. The higher the pressure, the stronger
the longitudinal electric field and, accordingly, the nar-
rower the range of current values at which the structure
may exist. At values of the gas pressure that are too low,
the structure may not exist either, because a decrease in
pressure leads to a reduction of the longitudinal field
necessary to contain particles and to a reduction of the
electron concentration in the discharge. Therefore, an
optimal range of pressure exists for a “good” ordered
structure, which depends on the tube radius and on the
particle size.

The suggested model describes qualitatively all of
the experimentally observed transitions between differ-
ent forms of plasma-dust formations for dust particles
of different sizes. A numerical comparison of predicted
and experimentally obtained values of current, at which
the observed transitions occur, has revealed a good
agreement at a pressure of 0.8 to 1 torr. At a pressure
from 0.3 to 0.5 torr, the qualitative pattern is main-
tained; however, a numerical discrepancy is observed.
The numerical difference between experiment and the-
ory is associated with other effects observed in the
strata of a glow discharge, such as an inhomogeneity of
electric and thermal fields along the tube axis, end
effects, and the effect made on the plasma by the struc-
ture of dust particles proper. We are inclined to attribute
the discrepancy between the prediction and experimen-
tal data to the effect of the cuplike shape of the stratum
and, accordingly, to the presence of stronger radial
fields than those in our calculations. In this case, the
problem is two-dimensional. This assumption is
JOURNAL OF EXPERIMENTAL 
favored by the fact that a transition to a ring structure
was observed for particles 5 µm in size with a close-to-
predicted value of current only at a pressure on the
order of 1 torr when the shape of stratum became flatter.

5. CONCLUSION

In a bounded plasma with current, the thermo-
phoretic forces associated with heat release may be of
the same order of magnitude as the electric forces and,
together with the electric forces, play the main part in
the construction, stability, and disintegration of plasma-
dust structures; in numerous cases, they define the
structure and shape of dust formations and the condi-
tions of their existence. The effect of thermophoresis
may be used for removal and deposition (for example,
onto a substrate) of charged particles and ordered struc-
tures, for separation of particles, in microelectronics,
and for other applications. The forces of temperature
gradient may be used in developing traps for contain-
ment of charged microparticles, for example, under
conditions of microgravitation.
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Abstract—We propose to describe the impurity heat capacity of solid 3He–4He mixtures both below and above
the phase separation temperature Ts by an extension of the Bethe–Guggenheim approximation for the lattice gas
model. It is shown that at T > Ts, the temperature behavior of the heat capacity is completely defined by corre-
lation effects in the impurity subsystem. The developed theory enables us to explain from the common stand-
point the experimental data by Edwards, McWilliams, and Daunt for all concentrations of 4He and make some
conclusions about the structure of second phase nuclei. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Solid mixtures of helium isotopes are known [1–3]
to decompose into two (3He-rich and 4He-rich) phases
on cooling below the phase separation temperature Ts,
which depends on both the pressure and the mixture com-
position. The separation at T = Ts is a first-order transition
occurring with mass transport. It is clear that structure
transformations of this type significantly affect thermody-
namic properties of solid mixtures. In particular, a major
contribution to the total heat capacity at T < Ts is due to
additional degrees of freedom of a heterophase system.

The heat capacity of separating solid 3He–4He mix-
tures has been experimentally investigated in close
detail by several groups [1, 2, 4–7]. The most complete
experimental results for a wide range of temperatures
and concentrations n0 of 4He were reported by
Edwards, McWilliams, and Daunt (EMD) [1, 2, 4].
Other concentrations were measured in [5–7].

In all the experiments, temperature dependences of
the total heat capacity C(T) are similar in character. At
T < Ts, the experimental data for all impurity concentra-
tions fall on a common curve. In this temperature
region, C(T) increases with the temperature. The total heat
capacity drops sharply just above Ts and is completely
determined by the lattice term Clat ∝  T 3 at T > 0.3 K. For
Ts < T < 0.3 K, a deviation from the Debye T3 law has
been observed.

It is known that at T < Ts (in the two-phase region),
the thermodynamics of solid helium mixtures can be
described very successfully within the regular solution
model (the mean field approximation, MFA) [2, 8], but
the behavior of C(T) at T > Ts cannot be explained by
this model. In [9], an effort was made to take fluctua-
tions of the local concentration n into account and an

¶This article was submitted by the authors in English.
1063-7761/01/9201- $21.00 © 20093
expression for the heat capacity of 3He–4He mixtures
above Ts was obtained. The theory in [9] is in agreement
with some experimental data in [1, 2], but the approach
used in this work is not quite consistent. It has been crit-
ically discussed in great detail by Edwards and Pet-
tersen (see [4]). Recently, the contribution of fluctua-
tions to the heat capacity was calculated [10] in the
framework of the random phase approximation (RPA)
[11]. This allowed an adequate interpretation of the
behavior of the concentrated mixtures in the entire tem-
perature range. However, some additional consider-
ations have been used to treat the limit of dilute solu-
tions in a proper way [10]. Thus, it is clear that further
improvements in the theoretical description of the ther-
modynamics of quantum solid 3He–4He mixtures
remain urgent.

The purpose of the present work is to develop a rig-
orous theory that describes the temperature depen-
dences of the heat capacity of separating helium solid
solutions with arbitrary concentrations both below and
above Ts. The proposed method is based on the qua-
sichemical approximation [12, 13]. It enables us to
properly take the contribution of fluctuations into
account and make some conclusions about the structure
of the second-phase nuclei. As shown in Section 4, our
theory is in good agreement with the experimental data
[1, 2]. It is significant that this agreement can be
obtained without invoking any additional concepts
about extraneous centers of a new phase nucleation
such as dislocations, grain boundaries, and other lattice
defects. We note that suggestions of this type were used
in [14] to explain experimental results in [7].

2. GENERAL FORMALISM

The basis of the present theory is the lattice gas model
[12]. Some simplifications can be made in applying this
001 MAIK “Nauka/Interperiodica”
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model to quantum solid mixtures of helium isotopes
(which is in contrast to classical systems). First, we are
interested in effects that occur at temperatures consid-
erably below the Debye temperature ΘD. This allows us
to neglect thermal vibrations of helium atoms and con-
sider parameters of the interaction between impurities
as temperature independent. Second, despite the low
temperatures, the system approaches the thermody-
namic equilibrium rather rapidly because of an intense
quantum motion of helium atoms.

A. Hamiltonian

For definiteness, we hereafter treat the 4He compo-
nent as an impurity subsystem in the mixture. The
Hamiltonian of the system has the form

(1)

where nf is the occupation number of 4He impurity
atoms at a lattice site f, ε0 is the energy of a 4He atom in
the 3He matrix, and Vff ' = V(|f – f ' |) is the interaction
energy of impurities placed at the sites f  and f '. Hamil-
tonian (1) can be represented in a somewhat different
form for the following reason. In the n0 versus T coor-
dinates, where n0 is the average 4He concentration, the
phase separation curve of solid 3He–4He mixtures is
practically symmetrical about n0 = 0.5 (see [4]) and has
the maximum Tc at this point. The critical temperature
Tc is the highest temperature at which phase separation
occurs [3]. This means that the Hamiltonian must be
explicitly invariant under the replacement nf  1 – nf ,
and we can therefore rewrite Eq. (1) as

(2)

As can be seen from (2), it is irrelevant whether 3He or
4He is chosen as the impurity subsystem. We also note
that Hamiltonian (2) can be reduced to the Ising model
with the spin 1/2 [12].

B. Interaction between Impurities

Because of a difference in the atomic volumes of
helium isotopes, a 4He impurity is the dilatation center
in the 3He matrix [4]. It is known [15] that the interaction
between two dilatation centers is long-range; at a large
separation r, it decreases as 1/r3 for cubic and hexagonal
lattices. Moreover, it is anisotropic with a complicated
angular dependence [16–18]. If many impurities exist
in the matrix, their elastic fields overlap and the effective
interaction becomes essentially isotropic but remains
long-range. To describe the interaction Vff ' in the mix-
tures with arbitrary concentrations of 4He, we use a
rather simple model well known in the literature [11].
Namely, the interaction of an impurity atom placed at a

H ε0 nf

f

∑ 1
2
--- V f f 'nfnf ' ,

f f '

∑–=

H 1
2
--- V f f 'nf 1 nf '–( ), ε0

f f '

∑ 1
2
--- V f f ' .

f

∑= =
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lattice site f with another impurity atom is assumed to be
constant (equal to V0) if the distance between them is less
than R0 and equal to zero otherwise. Thus,

(3)

We introduce the effective coordination number z that
can be considered as the number of impurities interact-
ing with the given impurity atom. The effective radius
R0 of the impurity–impurity interaction is related to z as,
R0 = (3ω0z/4π)1/3 (where ω0 is the volume per atom). In
the present theory, z is considered as a fitting parameter.

C. Quasi-Chemical Approximation

Although the exact solution for the lattice gas model
is not available in the three-dimensional case, there are
several rather efficient approximate methods for its
analysis. To analyze the model, we use the Bethe–
Guggenheim method [12, 13], also known as the quasi-
chemical approximation (QCA). It provides a suffi-
ciently accurate description for the system under study.
In this approximation, the lattice symmetry is of signif-
icance and the final results only depend on the effective
coordination number z. This method is precise in the
limit of dilute solutions. It also gives an accurate result
for artificial models of the Bethe lattice type.

In the QCA framework, a two-component solid mix-
ture involving A-type and B-type atoms can be repre-
sented as a set of independent atomic pairs of the AA, BB,
and AB types. The partition function has the form [12]

(4)

where @ is the total number of lattice sites, N is the
number of sites occupied by A-type atoms (4He impu-
rities), y = exp(µ/T), and µ is the chemical potential of
the impurity subsystem. We choose the units such that
the Boltzmann constant kB = 1. The function g(N, NAB, @)
is the number of configurations containing N impurities
and NAB pairs. Each of these configurations has the
energy

Within the QCA, the function g is assumed to be

(5)

where

V f f '

V0 if f f '– R0≤
0 otherwise.
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are the respective total numbers of the AA-type and
BB-type pairs. The constant G is determined by the
obvious relation

Setting the number of unlike pairs NAB entering Eqs.
(4) and (5) equal to its average value in the mixture, we
obtain the well-known mean-field approximation [12].
In the limit of @, N, NAB  ∞ with N/@ and NAB/@
constant, the sum in Eq. (4) can be replaced by its max-
imum term. We let

The quantities n and a are chosen such that they vary
from zero to unity. We now introduce the long-range
order parameter σ related to the local impurity concen-
tration n by σ = 1 – 2n. We note that the quantity a is
related to the short-order parameter x introduced in [19]
by a = (1 + x)/2.

Using the Stirling formula, we obtain the thermody-
namic potential Ω0 (per site) as

(6)

where E is the internal energy per site and S is the
entropy per site. In accordance with the above-men-
tioned approximations, we find

(7)

(8)

The parameters σ and a satisfy the set of equations

(9)

(10)

If we put µ = 0, the system of Eqs. (9) and (10) is
invariant under the inversion σ  –σ, which means that
the two-phase mixture occurs. One phase (4He-weak) cor-
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responds to σ > 0 (0 < n < 1/2) and the other (4He-rich), to
σ < 0 (1/2 < n < 1). It follows from Eq. (10) that

(11)

Inserting (11) in (9), we obtain

(12)

where y is equal to unity for all temperatures below Ts.
As the temperature is increased, the long-range

order parameter decreases and becomes equal to σ0 =
1 – 2n0 at T = Ts, where n0 is the equilibrium concentra-
tion given by the coexistence curve. It follows from
(12) that the phase separation temperature Ts is given by

(13)

For z  ∞, V0  0, and V0z  const, Eq. (13)
reduces to a well-known expression for Ts resulting
from the regular solution model [11]. At T > Ts, the mix-
ture becomes homogeneous with the constant long-
range order parameter σ0. Equations (9) and (10) then
determine the temperature dependences of the chemi-
cal potential µ and the parameter a.

3. FLUCTUATION EFFECTS

To make the results of the quasi-chemical approxi-
mation more precise, spatially inhomogeneous fluctua-
tions in parameters σ and a must be taken into account.
Assuming that the spatial scale of fluctuations is much
larger than the lattice parameter, we consider these fluc-
tuations in the continuum approximation. We let

(14)

where the variations η(r) and α(r) are functions of the
coordinate r satisfying the conditions

(15)

Assuming that the variations of the long-range order
parameter and the parameter a from their equilibrium
values are sufficiently small, we expand (6) in η(r) and
α(r). The partition function of the system can then be
written as

where Z0 is the partition function in the QCA given by
Eq. (4). The contribution from fluctuations Zfl is given
by the functional integral

(16)

a
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where the normalization factor A is determined below.
The quantity δΩ consists of two terms,

(17)

The first one is the series expansion of (6) to the sec-
ond order in η(r) and α(r). It is given by

(18)

where

(19)

and b = (1 – a)2 – σ2. The second term in (17), δΩ2, was
introduced for the following reason. Because of spatial
inhomogeneity, an expansion of the thermodynamic
potential must contain not only powers of η(r) and α(r)
but also their spatial derivatives. These latter are intro-
duced by δΩ2 to suppress short-wave spatial fluctua-
tions that have no physical meaning. To understand the
structure of δΩ2, we confine ourselves to the simplest
case. Namely, assuming that the form of δΩ2 is identi-
cal to the MFA one, we obtain

(20)

However, nonlocal term (20) written in this form
gives a nonzero contribution to δΩ in the spatially
homogeneous case, i.e., for η(r) = const. Thus, expres-
sion (16) includes fluctuations of the homogeneous sys-
tem that have already been taken into account in deriv-
ing formulas of Section 2. In Eq. (20), we must there-
fore separate the part that vanishes at η(r) = const and,
consequently, contains the contribution from spatially
inhomogeneous fluctuations only. Thus, δΩ2 can finally
be written as

(21)

We note that fluctuations of the long-order and
short-order parameters are related to each other. There-
fore, although Eq. (21) only describes nonlocality in
the long-range order parameter, the spatial fluctuations of
the short-order parameter are also smoothed out. Because
of conditions (15), δΩ does not contain linear terms in
η(r) and α(r).

In view of (18) and (21), the right-hand side of Eq. (16)
represents a Gaussian functional integral, which can be
easily evaluated [20]. The integration yields

(22)
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where v(q) is the Fourier transform of V(r) and we have
introduced the notation

(23)

For z @ 1, Eq. (22) goes into the well-known expres-
sion for Zfl corresponding to the random-phase approxi-
mation [11]. This allows us to determine the factor A
in (22) as

We thus obtain the contribution to the thermody-
namic potential ∆Ω related to fluctuations,

The contribution of fluctuations to the internal
energy is given by

(24)

In writing Eq. (24), we used the condition (q) =
0 to eliminate the terms that are responsible for the self-
action of impurities.

In our model of the impurity–impurity interaction,
the Fourier transform v(q) is given by

On the interval from 0 to the fist zero of f (x), this
function can be approximated to a sufficient accuracy
as

and f(x) = 0 otherwise. This gives

(25)

The quantity q0 is related to the effective coordina-
tion number z by

(26)
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Replacing summation by integration in Eq. (24) and
using (25) and (26), we obtain

(27)

where λ is defined by Eq. (23).

4. RESULTS AND DISCUSSION

The total heat capacity of the mixture is equal to

where

(28)

is the heat capacity in the quasi-chemical approxima-
tion. The contribution of fluctuations ∆C is given by

(29)

Using (12), we find

To obtain C(T), we have added two terms to the impu-
rity contribution Cimp. The first term is the lattice heat
capacity Clat = (12π4/5)(T/ΘD)3, and the second term is
associated with the exchange interaction between 3He
atoms. It can be represented as [21]

(30)

where I is the exchange integral. Term (30) is only
essential at very low temperatures. In comparing our
results with the experimental data, we always take Clat
and Cex into account. We note that because term (30) is
small, we neglect the pressure dependence of I and set I
equal to its maximum value ≈1 mK at the molar volume
24.2 cm3/mol (see [21]). In addition, we neglect the
temperature dependence of ΘD because the correspond-
ing correction is inessential for the temperature range
where the relevant effects take place. We put ΘD = 17.3 K
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in accordance with [21]. This value of ΘD provides the
best agreement with the experimental data [1, 2] above
T ≈ 0.3 K, where the contribution Clat prevails.

The present calculations are compared with the
EMD experimental data in Figs. 1 and 2. As can be seen
from the figures, the agreement between the theory and
experiment is very good. To make the theory fit the data
in [1, 2], the parameters of potential (3) must be speci-
fied. The potential is determined by the intensity V0 and
the effective interaction radius R0 (or by z directly

0.1

0.1

T, K

0.01

0.001

C/R

Experimental
data [1, 2]:

n0 = 0.11%
n0 = 0.28%

Fig. 1. Heat capacity of dilute 3He–4He mixtures as a func-
tion of temperature. The solid curves correspond to the
present theory.

0.1

0.1

0.01

C/R

Experimental
data [1, 2]:

n0 = 4.7%
n0 = 21%

1

1
T, K

n0 = 50%

Fig. 2. Heat capacity of concentrated 3He–4He solid mix-
tures as a function of temperature. The solid curves corre-
spond to the present theory.
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related to R0). Both quantities must be treated as adjust-
able parameters. We note, however, that it is appropri-
ate to choose the first fitting parameter as the product
V0z = v(0) rather than V0. This choice is dictated by the
following reasons. At low temperatures, the impurity
heat capacity can be obtained as a low-temperature
series expansion [12, 22] without using any theoretical
approximations. The leading term of this expansion is
given by 

(31)

Expression (31) is valid for all the mixtures irre-
spective of their concentration. It follows from Eq. (31)
that the quantity Cimp depends only on the product V0z.
Furthermore, as shown in [1, 2], the thermodynamics of
the system at T < Ts can be satisfactorily described
within the MFA, which corresponds to the limit as
z  ∞ and V0  0 with V0z  const (see, e.g.,
[11, 12]). In this approximation, the quantity V0z is also
the only parameter determining the behavior of the sys-
tem at T < Ts. Thus, it is evident that the product V0z
plays the role of a universal parameter of the theory.1

For all the mixtures, the value V0z is assumed to be
equal to 1.51 K, which is determined by the condition
that the impurity heat capacity (31) fit the experimental
data. The magnitude of V0z is in complete agreement with
the Edwards–Balibar constant A = V0z/2 that was found
empirically to be 0.76 K [2–4]. The theoretical value of
A and its pressure dependence were calculated by Mul-
lin [8].

As the second independent adjustable parameter, we
choose the value z. Precisely this parameter character-
izes the spatial correlation scale between impurities.
Numerical analysis shows that the heat capacity
Cimp(T) is highly sensitive to the magnitude of z in the
fluctuation region (at T > Ts). This makes it possible to
unambiguously determine the value of the effective
coordination number for both dilute and concentrated
mixtures.

Our analysis shows that the entire concentration inter-
val (n0 ≤ 50%) considered in [1, 2] can be conveniently
divided into two parts: large concentrations n0 ≥ 4.7%
and small concentrations n0 = 0.11%, 0.28%. The fit-
ting parameter z is equal to 250 for all mixtures of the
first group. This implies that the nearest neighbor
approximation is inadequate for interpreting the ther-
modynamics of mixtures with large concentrations. In
this case, the long-range interaction is therefore very
significant. The value z = 250 implies that the radius of
interaction between impurities spreads over four or five

1 It is remarkable that in considering various approximations for
the theory of solid mixtures, Fowler and Guggenheim introduce
the parameter T = V0z/2 (called The energy of unmixing) from the
outset. They denote the pair interaction energy by 2w/z (see [13,
p. 570]).

Cimp

V0z
2T
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2 V0z

2T
--------– 

  .exp≈
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coordination spheres. Within the QCA, the critical tem-
perature Tc is equal to [12]

which is in excellent agreement with the experimental
value.

For mixtures with small concentrations, the agree-
ment between the theory and the experimental data can
be reached for a unique choice of z, namely z = 3 for n =
0.11% and z = 5 for n = 0.28%. We note that these val-
ues of z do not correspond to any regular three-dimen-
sional crystal structure. This suggests that solid 3He–
4He mixtures with small n0 separate to yield the second
(4He-rich) phase in the form of a fractal (dendritic)
structure.

There are several arguments supporting this assump-
tion. The analysis shows that for low-concentration mix-
tures, the contribution ∆C of fluctuations is negligible.
Thus, the heat capacity C0(T) obtained in the QCA can be
considered as a rather accurate result for these mixtures.
On the other hand, QCA is a precision method for struc-
tures of the Bethe lattice (or Cayley tree) type [11, 12]. It
is therefore reasonable to assume that at low concentra-
tions, the separation of the mixture occurs with forma-
tion of a new phase in the form of a fractal structure.
For concentrated mixtures, the second phase nuclei are
formed as three-dimensional precipitates.

In our opinion, this is not surprising because the dif-
ference between the effective coordination numbers z
corresponding to the mixtures with small and large con-
centrations is related to the specific character of the
impurity–impurity interaction. As mentioned above,
the potential V(r) decreases as 1/r3 at large distances r
and has a complicated angular dependence [16–18]. In
particular, it is attractive along some directions and
repulsive along others. For small n0, with the average
distance between impurities by far exceeding the lattice
parameter, the new phase can therefore grow as a frac-
tal structure of the Cayley tree type such that the order of
a node is determined by both the concentration and the
number of crystallographic directions along which attrac-
tion occurs. In the opposite case of concentrated mixtures,
elastic fields of impurities overlap and the effective inter-
action becomes essentially isotropic. As the result, the
nuclei of the new phase grow in a compact form.

5. CONCLUSIONS

The results of the present work clearly demonstrate
that thermodynamic properties of quantum solid 3He–
4He mixtures can be successfully interpreted within the
quasi-chemical approximation. The QCA has an essen-
tial advantage over the MFA because it accounts for the
details of short-range correlations along with the long-
range order. The QCA is therefore of primary impor-
tance for the description of the temperature region

Tc

V0

2 1 2/z–( )ln
------------------------------–

V0z
4

-------- 0.38 K,≈ ≈=
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above Ts, where the main contribution to the heat capac-
ity is due to fluctuations in the impurity subsystem.
Another important point of the theory is that it takes the
long-range nature of the impurity–impurity interaction
into account, which is crucial for understanding the
behavior of the system. It is significant, however, that
we must not know this interaction in every detail.
Rather simple model (3) is quite sufficient to properly
describe the thermodynamics of solid 3He–4He mix-
tures.

The theory is in good agreement with the experi-
mental data in [1, 2] for both dilute and concentrated
solutions. Unfortunately, we do not know works where
the heat capacity of mixtures with intermediate concen-
trations (0.3% < n0 < 5%) has been measured. The
availability of these results would provide more distinc-
tive conclusions about the change of nucleation mech-
anisms as a function of the solid mixture composition.

We would like to express our thanks to Prof.
D.O. Edwards for discussions that led to the appear-
ance of this work. We are indebted to Prof. G. Frossati,
Prof. A.F. Andreev, Prof. V.N. Grigor’ev, and Prof.
E.Ya. Rudavskiœ for helpful conversations.
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