Acoustical Physics, Vol. 51, No. 2, 2005, p. 113. Translated from Akusticheskii Zhurnal, Vol. 51, No. 2, 2005, p. 149.

Original Russian Text Copyright © 2005 by the Editoral Board.

Dear Readers!

This issue of Acoustical Physics is devoted to Cor-
responding Member of the Russian Academy of Sci-
ences, Professor Vitalii Anatol’ evich Zverev—a promi-
nent scientist and the author of many original ideas and
designs. His works have initiated the devel opment of a
number of areas of research in physical acoustics and
adjacent fields of science. They include signal process-
ing and image formation, antennas, wave propagation
in inhomogeneous and random media, and nonlinear
acoustics.

Almost all papers presented in thisissue of the jour-
nal and reflecting the problems of modern acoustics are
more or less related to Zverev's works, either in their
topics or ideas or in that they simply develop the
approaches and methods proposed by him. Among the
publications by Zverev in Acoustical Physics, one
should especialy note the pioneering experimental
studies of parametric arraysand receivers of sound. The
subsequent works by Zverev on the development of
new methodsfor the reception and processing of acous-
tic signals resulted in the elaboration of the forward-
scattering location technique and the related acoustic
dark-field method for detecting inhomogeneitiesin the
ocean.

Zverev'swork in science is characterized by enthu-
siasm for new directions of research and also by deep
physical intuition and ingenuity, which help himto find

new approaches in solving complicated problems.
Zverev's professional features are purposefulness and
ability to bring an original idea not only to atest exper-
iment but also to its practical implementation as a new
technical means or instrument.

It is important to note that most of the authors of
publicationsincluded in thisissue are representatives of
the Nizhni Novgorod school in acoustics: the role of
Zverev inits formation was quite important. The edito-
rial board al so decided to include papersthat were writ-
ten by authors from other scientific centers but that
were concerned with subjects close to Zverev’s scien-
tific interests.

For years, Zverev has collaborated with the editorial
board of Acoustical Physics as an author and asamem-
ber of the Editorial Council of thejournal. Not many of
the recent issues have appeared without a paper written
by Zverev. Thisfact testifies to his creative activity and
can be a good example for young scientists. Therefore,
we are especialy glad to congratulate Vitalii Ana
tol’evich Zverev on the anniversary of his interesting
life full of scientific achievements. We wish him good
health and new creative ideas.

Editorial Board

1063-7710/05/5102-0113%$26.00 © 2005 Pleiades Publishing, Inc.
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Abstract—This article reviews the development of nonlinear acoustics in Nizhni Novgorod from the days
when the idea of parametric transmission and reception was conceived until the present time. © 2005 Pleiades

Publishing, Inc.

THE BEGINNING: PARAMETRIC ARRAY S

The history of nonlinear acoustics in Nizhni
Novgorod began as early as in the 1950s. Presumably,
its beginning should be associated with the first study
carried out by V.A. Zverev [1]. The subject of this study
was proposed to Zverev by Professor G.S. Gorelik as
thetopic of Zverev’s candidate dissertation. Zverev the-
oreticaly considered and, most importantly, experi-
mentally implemented a relatively simple but previ-
ously unknown effect of aperiodic transformation of an
amplitude modulation into a phase modulation and vice
versa when a spectral triplet consisting of a strong car-
rier and two weak side components propagates in a
medium with dispersion. The experiment was per-
formed using an ultrasonic wave propagating on a
string [1, 2].

It would be natural to surmise that this study hel ped
Zverev to invent and to implement, together with
A.l. Kalachev, the widely known idea of parametric
arrays. The basic ideaof these arraysis simple and ele-
gant. If a low-frequency (Q) signal is incident on a
high-frequency (w) intense narrow acoustic beam prop-
agating in amedium (in air or in water), their interac-
tion caused by the nonlinearity of the medium givesrise
to side components w + Q and w — Q, which serve as
received signals. This is the so-called parametric
receiver. If, by contrast, the high-frequency signal con-
sists of two or three close frequencies (which form fre-
guency beats in the first case and an amplitude-modu-
lated wave in the second case), the medium serves as a
detector that generates alow-frequency field and emits
it asan end-fire array.

The main advantage of such devices is the possibil-
ity of receiving or transmitting a narrow-beam low-fre-
guency signal without using large antenna arrays.
Indeed, the directivity of the initial high-frequency
beam is formed by medium-size transducers, while the

low-frequency signal is received and transmitted by a
“virtual” antenna of the end-fire array type that is
formed by the high-frequency beam itself, which is suf-
ficiently long to produce directiona radiation. Another
advantage isthat the width of theinitial beamissmaller
than the low-frequency wavel ength, and this beam pro-
duces no side lobes causing stray reflections, e.g., in a
shallow sea. The main disadvantage of such antennasis
their low efficiency and, hence, low signal-to-noise
ratio. The latter fact has imposed limitations on the use
of these devices in ocean acoustics at low frequencies
and long ranges. However, more local applications,
such as sonars used for fishing or bottom profiling,
proved to be rather promising for experimental investi-
gations and for commercial production of parametric
sonars.

The history of parametric arrays is somewhat dra-
matic. The first publication describing the principle of
a parametric radiator belongs to P. Westervelt, who
introduced the term “parametric” for these devices [3].
(Infact, it would be more correct to use the term “non-
linear arrays,” because the word parametric is conven-
tionally associated with the case of a parametric reso-
nance, when low-frequency signals are generated
owing to an instability and may exponentially grow
from noise, whereas, in arrayswhose operation is based
on the principle of nonlinear acoustics, new frequencies
are formed owing to the interaction of waves of other
frequencies.) Later, in the 1960s-1970s, the number of
publications concerned with this subject considerably
increased and many experiments were carried out,
including thosein ocean acoustics. Zverev began study-
ing the problems of the nonlinear interaction of acous-
tic waves as early as in the mid-1950s. His first paper
devoted to this problem appeared in 1955 [4] (co-
authored with G.S. Gorelik), and the second paper, in
1958 (co-authored with A.l. Kalachev). In these papers,
for calculating the effect of the nonlinear interaction of
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two sound waves, the authors used a method based on
taking into account the sound velocity variation caused
by the low-frequency wave in the medium and on cal-
culating the additional phase shift of the high-fre-
guency wave. Work in this area of research continued,
but the next publication did not appear until aslateasin
1967 [6]. The parametric radiator and receiver were
proposed by Zverev and Kaachev in 1959; however,
according to the rules of that time, they were not
allowed to publish the results of their work but only
received a number of secret patents. Finally, in the late
1960s, the idea of the parametric receiver and the cor-
responding laboratory experiment could be disclosed
and published [7, 8]. Nevertheless, today, when dis-
cussing parametric arrays, even acousticians from
western countriesrefer not only to Westervelt’s but also
to Zverev and Kalachev's publications.

Now, we consider the subsequent contribution of the
Nizhni Novgorod scientiststo thisareaof research. One
result was concerned with the limiting modes of opera-
tion of parametric radiators, when an intense pumping
beam forms saw tooth shock waves [9, 10]. This result
is important because the efficiency of such arrays
increases with pumping intensity. The intensity of the
detected signal is proportional to the square of the
pumping amplitude up to the point where shock waves
are formed; then, the pumping signal is strongly atten-
uated. In addition, the formation of shock waves leads
to a broadening of the directivity pattern of the trans-
mitted signal, which removes the main advantage of the
system. The generation of low-frequency noise by para-
metric arrays under the nonlinear limitation of the radi-
ation intensity and the effect of fluctuations on the char-
acteristicsof parametric arrayswerestudiedin[11, 12].
A nonlinear attenuation of the pumping wave also lim-
its the low-frequency signal gain in the parametric
reception. For example, in the degenerate case of para
metric interaction, when the pumping frequency is
twice as great as the frequency wy, of the weak signal,
the maximal gain of the weak signal is equal to 4/t =
1.27. In[13], it was shown that the use of higher com-
bination frequencies w, , ,,m, = Wy(1 + 2m) allows oneto
considerably increase the efficiency of the parametric
interaction of waves for extracting weak acoustic sig-
nals. Thisisrelated to the fact that, at the stage of dis-
continuity, the harmonic amplitudes at these frequen-
ciesareegual to the amplitude of the amplified signal at
the frequency w, for a very large number of combina-
tion frequencies. In this mode of operation, the effect
also occursfor the case when the pumping frequency is
much higher than the frequency of theweak signal [14].
In [15], it was shown that the use of focusing for the
pumping wave also considerably increases the effi-
ciency of the parametric reception. In [16], the effi-
ciency of parametric reception was studied in amoving
medium with velocity fluctuations and a method for
reducing the effect of these fluctuations was proposed.

One more result was obtained for the acoustics of
nonlinear media with dispersion, when the pumping
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energy is not spent for the higher harmonic generation
and one can avoid the formation of shock waves, which
makes the system more efficient. One of these possibil-
ities is to use the interaction of modes in waveguides.
Indeed, a waveguide may contribute to the radiation of
parametric arrays (like any other sources) through the
concentration of radiation in the vertical plane [17].
However, here, we consider the case when the nonlin-
ear process itself is subjected to the influence of the
waveguide as a medium with dispersion in which only
severa specific modesinteract. In the early papers[18,
19], a parametric (in this case, actualy parametric)
sound generator was presented. The use of oceanic
waveguides for selection of individual modes was pro-
posed in [20].

Many of the works published by the representatives
of the Nizhni Novgorod school are devoted to the anal-
ysis of the operation of parametric radiators and receiv-
ers in inhomogeneous media: in a shallow sea and in
refraction waveguides (including those with random
inhomogeneities) [21-28]. These works are partially
reflected in the review [29]. It was shown that, under
specific conditions of waveguide propagation, paramet-
ric radiating arrays can be used to form a preset space—
time structure of the acoustic field, in particular, for a
sel ective excitation of modes of the oceanic waveguide.
In addition to theoretical studies, a series of model
experiments were performed in the tank of the Acous-
tics department of the Nizhni Novgorod State Univer-
sity. In these experiments, the mode composition of the
field produced by aparametric radiator in arange-inde-
pendent waveguide was studied [30, 31] and the forma-
tion of the characteristics of a parametric radiator near
a statistically rough surface was investigated [32]. The
results of experimental studies carried out in field con-
ditions together with the Acoustics Institute are pre-
sented in [33, 34].

Another factor that influences the nonlinear acoustic
effects is the presence of gas bubbles in water. In the
1970s, it became clear that a small concentration of
bubbles may increase the nonlinearity of water by sev-
era orders of magnitude. This suggested the idea of
using bubbles of one size for amplifying the radiation
of parametric arrays, thisideawas put forward by Zab-
olotskaya and Soluyan [35]. Under actual conditions,
bubbles strongly vary in radius, and the main contribu-
tion is made by those bubbles that are resonant at the
given frequencies. In Nizhni Novgorod, a parametric
radiation with the use of abubble layer wasreaized in
a laboratory tank [36]. The problems concerned with
parametric arrays, including those in dispersion sys-
tems, are considered in detail in [37].

NONLINEAR ARRAY S AND BEAMS

Many of the Nizhni Novgorod scientistsinvolved in
research in nonlinear acoustics were educated as spe-
cialistsin electromagnetic or optical studies. In partic-
ular, they carried out research projects in laser physics
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and nonlinear opticsthat were originally related to non-
linear phenomena in wave beams, such as harmonic
generation, self-focusing, etc. Therefore, their interest
in the problems concerned with beams and rays in
acousticsisquite natural. Theinterest in these problems
was also quickened by the popularity of acoustic para-
metric arrays and by some problems of astrophysics.
The main theoretical difficulty in solving these prob-
lemsis the smallness of dispersion in acoustics, which
results in the accumulation of nonlinear deformations
of waves up to the shock-front formation. Thus, the
approximation of quasi-harmonic waves, which is pre-
dominantly used in nonlinear optics (especialy before
the present time, when ultrashort laser pulses have
become feasible), often failsin acoustics.

The early theoretical studiesin this area of research
belonged to nonlinear geometrical acoustics (NGA), in
which diffraction could be ignored and the shape of a
ray and the deformation of the wave profile along the
ray were considered in terms of the short-wave approx-
imation. Actually, the term NGA was introduced by
Gubkin in 1958 [38], athough nonlinear rays and ray
tubes were discussed earlier by Whitham [39]; presum-
ably, these works were concerned with waves from
explosions in the atmosphere. In 1963, one of the
authors of thisreview published a paper on the general-
ization of the NGA approach to the case of nonstation-
ary waves[4Q].

Subsequent studies in this direction, which were
carried out by a group from the Institute of Applied
Physics, were partiadly initiated by the key paper by
Khokhlov and Zabolotskaya [41], who derived a para-
bolic equation for a weakly divergent acoustic beam.
Later, this equation was extended to the case of avis
cous medium by Kuznetsov. This equation is still diffi-
cult for analytical study but iswidely used for numeri-
cal caculations. Our group used another approach,
which is known as the linear-ray method. It assumes
that the accumulation of deformations of the wave pro-
file occurs separately within each ray tube determined
in the approximation of linear geometrical optics of
inhomogeneous media [42]. This approximation was
used in different problems, such as shock-wave propa
gation in the solar chromosphere and heating of the lat-
ter by shock waves[43], shock-wave propagation in the
upper layers of the ocean [44], and the propagation and
attenuation of intense sound waves in an exponential
atmosphere [45].

The linear-ray approximation fails when the effect
of self-refraction manifestsitself because of the depen-
dence of the velocity of a shock wave on its amplitude
(this may occur, e.g., for positive pulses). The geomet-
rical acoustics of shock waves was initially developed
by Whitham [39] for relatively long shock pulses of
arbitrary amplitude, which propagate within ray tubes
as in separate channels. A similar approximation was
used for solitons [46, 47]. In [48], Whitham’s theory,
with the use of the weak-nonlinearity approximation,
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was extended to short pulses, whose nonlinear defor-
mations were of the same order of magnitude as the
amplitude variations due to self-refraction. Note that
another case, namely, the thermal self-refraction of
shock waves, was studied earlier by a group of scien-
tists from the Moscow State University [49, 50].

Simultaneously, a simplified approach suitable for
more than pencil beams was developed. For this pur-
pose, a step-by-step algorithm was elaborated on the
basis of the spatial separation of regions where the dif-
fraction effect is small compared to the NGA effect
(nonlinear deformations along theray tube) and regions
where the diffraction effect isrelatively strong with the
subsequent matching of the respective solutions in the
space between these regions. In fact, this approxima-
tion was used as early as 1972 in the study of the radi-
ation of an intense acoustic source, where, after the for-
mation of the directivity pattern, nonlinear effects due
to diffraction began to accumulate up to a possible
shock formation followed by a rapid attenuation of
waves in afixed direction [51]. Since the wave ampli-
tude is usually maximal at the radiation axis, attenua-
tion begins from the axia direction and continues in
other directions. This leadsto an isotropization of radi-
ation: the radiation intensities in different directions
become approximately equal. Note that, simulta-
neoudly, a similar effect was experimentally observed
by Blackstock et al. [52], which resulted in long-term
contacts between research groups from Nizhni
Novgorod and from the United States.

Another challenge wasto describe the nonlinear dis-
tortions of awave approaching a caustic when the latter
can be described by aHilbert integral without consider-
ing the nonlinearity [53]. After the wave passes the
caustic, the NGA approximation again becomes valid
for its description. It was shown that, in the NGA
approximation, the nonlinear deformations of the wave
remain finite until the caustic is reached in spite of the
infinite growth of the wave amplitude in this approxi-
mation. As a result, a uniform matching with the dif-
fraction zone near the caustic is possible.

Finaly, we note that the step-by-step agorithm
proves to be also valid for narrow beams obeying the
Khokhlov—Zabolotskaya—Kuznetsov  (KhZK) equa-
tion, although the latter still usually requires a numeri-
cal solution. Such beams include the focused intense
acoustic beamsthat are used in remote acoustic surgery
and noninvasive diagnostics of organs. The focusing of
radiation can be considered in terms of NGA, and the
behavior of wavesinthefocal plane, intermsof thethe-
ory of diffraction of a nonharmonic nonlinearly
deformed beam. This method was used in [54], which
made it possible to analyticaly derive the following
conclusions:

(i) in the focal plane, the profile of a focused har-
monic wave becomes asymmetric with positive peaks,
whose shape is close to the time derivative of a conver-
gent steepening wave;
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(ii) owing to the stronger concentration of higher
harmonics, the amplitude of the wave and the mean
intensity are additionally amplified at the focus, as
compared to linear focusing;

(i) in the case of shock formation, the field maxi-
mum is achieved somewhat hearer than the geometrical
focus.

These conclusions were confirmed by numerical
calculations performed by other authors [55] and by
experiments. A similar algorithm was applied to dif-
fracted beams [56]. In the case of diffraction of a plane
nonlinear wave by aholein abaffle, for the wave profile
at the axis, the Kirchhof method yields aprofile close to
that at the axis of afocused beam; in afixed transverse
plane, the diffracted wave is smoothed out away from
the axis.

Note that, for abeam in free space, this approxima
tion yields a result that is only qualitatively correct.
A combination of the linear-ray theory and local dif-
fraction in the direction across the ray was considered
in [57]. A more rigorous derivation of the nonlinear
evolution equations (including the KhZK equation) was
performed in 1974 in [58] (see aso [59]).

In the recent years, the theory of nonlinear acoustic
beams has found wide application, especially in medi-
cine. The applications use more complex numerical
calculations, which are often based on the KhZK equa-
tion, and the results often become more popular than
therelatively simple model s described above. However,
these models remain useful not only for constructing a
clear qualitative model of the process but aso for
obtaining fairly accurate quantitative estimates.

NONCLASSICAL NONLINEAR ACOUSTICS
OF SOLIDS

Historically, “classical” nonlinear acoustics was
formed as a weak-nonlinearity branch of gas dynamics
and elasticity theory. It included acoustic wavesin lig-
uidsand crystalline solidsthat were usually represented
as dispersionless or weakly dispersive media with a
nonlinearity caused by the properties of interatomic
and intermolecular potentials. In such media, the non-
linearity is small (in most cases, quadratic) if the exter-
nal forces produced by pressurein an acoustic wave are
much smaller than the interatomic forces.

However, many media and materials have complex
structures that include grains, pores, cracks, and other
elements suppressing theinternal bonds; as aresult, the
acoustic nonlinearity may considerably increase. Such
a“structural nonlinearity” istypical of awide class of
media with low volume contents of bonds and defects.
A well-known exampleiswater with gas bubbles: when
the volume ratio of bubbles is 1010 or less, the
effective nonlinear parameter of the gas-iquid mixture
may increase by several orders of magnitude. The same
istrue for solids with grains, pores, or cracks.
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Experiments with ultrasound in metals have been
carried out since the 1950s, but, initially, they were
mainly concerned with specific properties of samples
of materials rather than with their acoustic nonlinearity
and the effects related to it. Apparently, the first obser-
vations of nonlinear waves with the aim of studying the
aforementioned effects were performed the Institute of
Applied Physics[60]. A harmonic excitation of an alu-
minum ring resonator resulted in the observation of a
broad spectrum of harmonic and subharmonic frequen-
cies (i.e., a parametric generation). It was shown that
the parametric generation threshold was far below the
estimate obtained from the reference data on the char-
acteristics of the given metal. In addition, the material
exhibited the property of aprolonged relaxation (which
isnow called “slow dynamics’): after an intense acous-
tic impact, the threshold value changed and then recov-
ered within an hour or more.

Intensive experimental and theoretical studies of
these phenomena in metals and, especialy, in rock
were started in the 1980s by two research groups: one
from the Institute of Applied Physicsand the other from
the Los Alamos National Laboratory. Experiments
were mainly carried out with bars made of different
materials, in which resonant longitudinal modes were
excited. Many specific effects were observed and mea-
sured. They included the following:

(i) harmonic generation. In most cases, the third-
harmonic amplitude exceeded the second-harmonic
amplitude. The fact of special importance is that the
typical dependence of the third-harmonic amplitude on
the fundamental signal amplitude was quadratic rather
than cubic. This clearly disagrees with any analytical
equation of state (the stress-strain dependence) that
allows a Taylor series expansion. This fact alone testi-
fies to the presence of singularities in the equation of
state, in particular, to the presence of hysteresis,

(ii) nonlinear frequency shift. The amplitude—fre-
guency characteristic of a single mode is characterized
by a strong dependence of the quality factor on the
wave amplitude, which istypical of mediawith hyster-
esis. The frequency corresponding to the resonance
maximum is shifted (usually to lower frequencies) as
the amplitudeincreases, and this shift isusually propor-
tiona to the amplitude. Note that, for any “normal”
oscillator with a cubic nonlinearity, which is described
by the Duffing equation, the shift is proportional to the
amplitude squared. This difference also testifies to a
nonclassical (nonanalytical) nature of the dependence.

In addition, these phenomena are characterized by a
considerable inertia. For example, under the action of
an intense oscillation packet, the resonant frequency of
a weak (linear) signal decreased and recovered to its
original value within approximately an hour. It isworth
noting that the corresponding frequency shift decreased
with time according to alogarithmic law rather than an
exponential one;
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(iii) modulation. These experiments are of special
interest from the point of view of diagnostics. A sam-
ple is subjected to the effect of signals with two fre-
guencies: a high frequency and a low frequency. The
nonlinearity of the material gives rise to side compo-
nents represented by the sum and difference frequen-
cies; i.e., the high-frequency field is modulated by the
low-frequency one;

(iv) effect of aliquid. Water saturation is known to
affect the linear properties of substances. Studies per-
formed at Los Alamos showed that water saturation
also considerably affects nonlinear phenomena, such as
the nonlinear frequency shift. A 100% saturation
reduces the nonlinearity (which is natural, because
water fills the cavities and makes the material harder),
whereas arelatively low or medium water content (e.g.,
up to 30%) leads to a considerable increase in the non-
linearity. Presumably, this occurs because of the effects
of the surface tension and Van der Waals forces on the
grain coupling.

In Nizhni Novgorod, these effectswere observed for
anumber of materials, including metals [61-63], rock
(sandstone, limestone, etc.) [64], sand [65], ice [66],
and concrete [67].

A theoretical study of acoustical phenomena in
strongly nonlinear mediaand, especially, in mediawith
hysteresis, presents a complex problem, which has not
yet been fully investigated. One of the mechanismsthat
may be responsible for a strong nonlinearity is related
to the interaction between grains, which can be repre-
sented as Hertzian contacts with the displacement
(strain) being proportional to the force (stress) to the
2/3 power. At the Ingtitute of Applied Physics, the
application of such models to acoustic phenomena has
been studied since the early 1990s[68], and the theoret-
ical conclusions derived from these studies were con-
firmed by experiments with lead balls and tufa grains
[69]. Later, this theory was used to obtain estimates in
more redlistic situations, for example, in the case of a
nonideal packing of grains or in the case of depth-
dependent parameters of rock [70—-72]. Another model
refers to the type of cracks with rough edges, where
Hertzian-type contacts occur within acrack and thedis-
tributions of cracks in size and orientation are taken
into account in the derivation of the “macroscopic”
stress—strain dependence [73, 74].

These models account for strong nonlinearity but
not for hysteresis. Most of the existing hysteresis mod-
elsare more or less phenomenol ogical (except possibly
for the Granato—L ucke model proposed in the 1950sfor
describing dislocations in metals). In [62, 64, 75], the
aforementioned experimenta datawere used asabasis
to propose some hysteretic stress—strain dependences
that simultaneously agreed with the results of different
types of measurements (harmonic generation, loss, and
frequency shift). Among the hysteresis models, we
select two main ones: with aloop around the zero point
(the so-caled inglastic hysteresis, whose name origi-
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nates in the residual stress at zero displacement) and
with adouble loop returning to zero (the so-called elas-
tic hysteresis). Since the nonlinearity is still weak (the
nonlinear terms of the equation are much smaller than
the linear ones), any continuous portion of the hystere-
sis curve can be represented by a combination of linear
and quadratic terms. Note that these models can be
obtained by representing a medium in the form of a set
of hysteretic elementswith different parameters and by
averaging their contributionsto the stress—strain depen-
dence [76].

Wave processesthat occur in such systemswere the-
oretically studied with the use of the two aforemen-
tioned basic models. According to [77, 78], a the
beginning, a travelling harmonic wave considered in
the framework of the inelastic model may acquire atri-
angular or saw tooth shape, which radically differs
from the wave profilein a classical medium with aqua-
dratic nonlinearity. Then, on the basis of the classical
“elastic” model, a shock-wave front may be formed in
addition to the singular peaks (jumps of derivative).
This theory was applied to traveling-wave modes in a
ring resonator [79]. However, most of the recent exper-
iments were performed on bars with free ends. This sit-
uation corresponds to a more complex problem of the
interaction of waves propagating in opposite directions.
For aclassical quadratic nonlinearity, this problem was
solved in 1974 [80] (see aso [81]). For hysteretic
media, it was considered in application to a single
example of harmonic oscillations and was only recently
generalized to the case of counter-propagating waves of
arbitrary shape [82, 83].

One of the practically important branches of nonlin-
ear acoustics of solidsisthe nonlinear vibroacoustics of
thin-walled structures (bars, plates, and shells). In
Nizhni Novgorod, these studieswere mainly performed
at the Nizhni Novgorod Branch of the Ingtitute of
Mechanical Engineering, Russian Academy of Sci-
ences, and at the Nizhni Novgorod State University. In
particular, nonlinear processesin athin-walled ring res-
onator were studied with alowance for the self-consis-
tent interaction of longitudinal and flexural waves [84,
85]. It was found that, as a result of decay instability,
energy from an intense longitudinal wave can be trans-
ferred to flexural waves. Processes of acascade transfer
of oscillation energy up and down the spectrum in dis-
tributed elastic systems were considered in the absence
of simple and multiple resonances. Conditions for the
formation of envelope solitons were revealed aong
with the conditions for the resonance interaction of
long and short waves in the presence of a group syn-
chronism and for self-modulation effects [86-88].
Between 1984 and 1986, what were presumably the
first studies of the influence of diffraction effects onthe
nonlinear evolution of quasi-plane longitudinal and
shear waves in a thin plate were carried out; the insta-
bility of nonlinear plane waveswas demonstrated along
with the possibility of the formation of two-dimen-
siona longitudinal-strain solitons in a plate and the
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possibility of the self-focusing of a two-dimensional
shear-wave beam [89].

Research carried out at the Nizhni Novgorod
Branch of the Institute of Mechanical Engineering
included some other aspects of the nonclassical nonlin-
ear acoustics of materials consisting of nonpoint parti-
cles coupled by complex interaction forces. The parti-
clesmay belarge molecules, domains, nanocrystallites,
etc. Historically, one of the first models of a medium to
take into account internal rotations is the Cosserat con-
tinuum consisting of solid undeformable bodies with
not only translational but also rotational degrees of
freedom. In [90-95], the propagation and interaction of
nonlinear waves in such media are investigated and, in
particular, the formation of stationary longitudinal spin
waves and the nonlinear self-modulation of helical
shear waves are studied along with different variants of
resonance interactions between longitudinal, spin, and
shear waves.

The rapid development of nanocrystal technologies
in recent years has attracted considerable interest to
studies of the nonlinear dynamics of complex crysta
lattices, such as molecular polymers or liquid crystals.
In thelong-wave approximation, the theory of such sys-
tems is equivaent to the nonlinear acoustics of media
with amicrostructure. Nonlinear self-consistent models
that describe the propagation and interaction of transla-
tional and spin waves in quasi-one-dimensional and
quasi-two-dimensional crystals with lattices of a
molecular type were considered in [96, 97].

One more remarkabl e achievement was the devel op-
ment of the theory of thermal parametric excitation of
nonlinear transverse vibrations in current-carrying
structures (bars and strings) in the presence of convec-
tive and radiative heat transfer to the surrounding
medium [98, 99]. It should be noted that the formula-
tion of the problem was first put forward by L.I. Man-
del’shtam in thelate 1920s as an exampl e of parametric
instability in an electromechanical system. Similar
effects of flexural vibration excitation in current-carry-
ing bars were observed, in particular, in eectric-arc
melting plants and in experiments with current-carry-
ing tungsten bars simulating the operation of fuel ele-
ments in nuclear reactors.

A keeninterest in the problemsdescribed in this sec-
tion is stimulated by the prospects of using nonlinear
methods for diagnostics of materials and for nonde-
structive testing of structures. Indeed, small defects,
such as cracks, or the fatigue of a material may cause
no considerable effect on the linear properties of a
given material or structure (e.g., the velocity of sound)
but may noticeably (by several orders of magnitude)
increase the manifestation of nonlinear processes.
Some aspects of the use of nonlinear acoustic methods
for the diagnostics of different mediaand materials are
described below.
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STATISTICAL PROBLEMS
OF NONLINEAR ACOUSTICS

Active theoretical studies in statistical nonlinear
acoustics began in the USSR in the mid-1970s, simul-
taneously at the Moscow State University and in
Nizhni Novgorod (Nizhni Novgorod State University
and Institute of Applied Physics, Russian Academy of
Sciences). These studies were concerned with the anal-
ysis of plane intense noise waves described by the Rie-
mann or Burgers equations. In the theory of turbulence,
the Burgers equation is widely used in model descrip-
tions of hydrodynamic turbulence [100], and the solu-
tion to this equation with random initial conditions is
called Burgers turbulence (sometimes, even Burgu-
lence [101]) or acoustic turbulence. Therefore, many of
the papers on the Burgers turbulence that were pub-
lished by the Nizhni Novgorod specialists in nonlinear
waves were closely related to statistical nonlinear
acoustics. The most important results obtained by
Nizhni Novgorod scientists in this area of research
were summarized in the monographs [102-106] and
the reviews [107-110], which contain extensive lists of
references. Some of the original problems were
included in the university manual [111] prepared by the
Acoustics departments of the Moscow and Nizhni
Novgorod universities.

In describing acoustic waves, one can usually ignore
their dispersion in a broad frequency range. In adisper-
sionless medium, an effective interaction occurs
between a great number of harmonics, and this interac-
tion leads to a strong phase coherence of the harmonics
involved in it. Therefore, in this class of problems, one
cannot use the method of slowly varying amplitudes,
which israther efficient in nonlinear optics, whereit is
possibleto limit consideration to asmall number of lin-
ear interacting modes because of strong dispersion. The
strong coherence of spectral components also does not
allow one to use the chaotic phase approximation,
which is used in the weak turbulence theory, where the
description of theinteraction of agreat number of linear
modes can be reduced to kinetic equations for the mode
intensities.

For plane nonlinear waves, the evolution of the par-
ticlevelocity v(t, ) is described by the nonlinear diffu-
sion equation, i.e., the Burgers equation. For acoustic
noise, the statement of the problem is reduced to a
search for the statistical characteristics of thefidd v(t, 2)
in across section zfrom the known statistics of thefield
v,(t) a the source at z = 0. Although the nonlinear
Burgers equation can be reduced, via the Hopf—Cole
substitution, to a linear diffusion equation, a direct
application of the exact solution is of little use for sta-
tistical problems, where averaging over an ensembl e of
realizations is required. This problem becomes espe-
cidly difficult at large Reynolds numbers, when
approaches based on the perturbation method are inap-
plicable. However, when the viscosity coefficient is
small, the dissipation is significant in only a narrow
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vicinity of shock fronts, which, inthelimiting case of a
vanishingly small viscosity, allows one to reduce the
solution of the Burgers equation to the so-called princi-
ple of maximum or principle of particle selection [102,
103]. In this case, the solution of a homogeneous Burg-
ers equation is reduced to a search for the maximum of
afunctional of theinitia field.

In the limiting case of a vanishingly small viscosity,
at the initial stage where the formation of discontinui-
ties can be neglected, the Burgers equation transforms
into the Riemann equation. The latter, in its turn, is
reduced to a set of characteristic equations in terms of
ordinary derivatives, i.e., to the free motion of particles.
Using the statistical relations between the Lagrangian
description (statistics of particles) and the Eulerian
description (statistics of the field at a given space-time
point), exact expressions were determined for the prob-
ability distributions of the Riemann waves [112, 113].
In particular, it was shown that, despite the strong dis-
tortions of the profile, the one-point probability distri-
bution of a Riemann waveis conserved. In the course of
the evolution of a wave with initially Gaussian statis-
tics, the one-dimensiona distribution remains Gauss-
ian, while the higher probability distributions are dis-
torted. The use of higher order spectrain the diagnos-
tics of intense acoustic noise allows one to determine
the direction of the energy flux along the spectrum from
the measurements in a single cross section [114, 115].
In practical applications, an important problem is to
obtain information on the spectrum of arandom acous-
tic wave. Expressions for the energy spectra of Rie-
mann waves were almost simultaneously obtained at
the Moscow State University and a the Nizhni
Novgorod State University [116-118]. On the basis of
these expressions, characteristic features of transforma-
tion of both broadband and quasi-monochromatic sig-
nalswerestudied. In particul ar, it was shown that anon-
linear interaction leads to a universal behavior (propor-
tional to the square of frequency) of the spectruminthe
low-frequency region. For a Riemann wave, the energy
should be conserved; however, from the expressions
obtained for the spectrain [116-118], it followsthat the
energy, when calculated as the integral over the spec-
trum, decreases with distance from the input. This is
related to the fact that, in the case of Gaussian statistics,
the regions of ambiguity of the Riemann wave occur at
arbitrarily small distances, and the passage from the
Eulerian description to the Lagrangian onein the spec-
tral representation is equivaent to the replacement of
the multivalued solution by a single-flux one, which is
obtained by an aternating-sign summation of the
branches of the Riemannian solution [109].

The appearance of discontinuities leads to a univer-
sal asymptotics of the spectrum [ 2 in the high-fre-
guency region. The effect of discontinuities can be ana-
Iytically calculated either for the initial stage, where
their number on the characteristic time scale is small
[119], or for long distances, where, because of the mul-
tiple confluence of discontinuities, the characteristic
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time scale of the wave 1(2) far exceedstheinitial corre-
lation time 1, [102, 103, 120, 121]. At these distances,
the wave represents a sequence of saw tooth pulseswith
the same slope dv/dt [1 —1/z and with random positions
of discontinuities. The confluence of discontinuities
occurs according to the law of coalescence of perfectly
inelastic particles and leads to the growth of the charac-
teristic time scale 1(2). The multiple confluence of dis-
continuities leads to a loss of information on the fine
structure of the initial signal, and, at long distances, a
self-similar spectrum E(w, 20 0T *(2Z2?E(w1(2) is
formed, whose evolution in timeisdetermined by asin-
gletimescae1(z) 0 z2In"%(z) [102, 103, 120]. In the
high-frequency and low-frequency regions, the spec-
trum has universal asymptotics E(w, 2) [w 2z and
E(w, 2) Ow 222, respectively. Because of the conflu-
ence of discontinuities, the energy spectrum is shifted
towards low frequencies and the decay of noise occurs
more slowly, W?[11 1%(2)/22 0 z'!, than that of aperiodic
signal, 00 15/2 O z2. A nonlinear decay of com-
plex deterministic signals (of a fractal type and with a
Weierstrass-Mandelbrot  spectrum), whose behavior

reflects the main features of the noise-field evolution,
was considered in [122, 123].

At finite but rather large Reynolds numbers, the
shock fronts are of a finite width t4,,4(2 U z/t(2) and
the power law describing the spectrum decay, E(w, 2) O
w2232, is replaced by the exponential decay law
E(w, 2) O exp[-WTg.g)*?]. This behavior of the high-
frequency part is related to fluctuations in the width of
discontinuities of the noise wave (for a periodic wave,
E(w, 2 O exp[-nuyTgoul). Because of the multiple
confluence of discontinuities, the distance z;,, at which
the plane noise wave reaches the linear stage is large:

Zin O exp( Reg), where Reg, is the Reynolds number of

theinput noise[102, 103, 120, 124]. The analytical the-
ory adequately explains the results of the field experi-
ments on the propagation of intense acoustic noise
[125]. In [126-128], the decay of noise characterized
by a power law E(w, z= 0) O w" in the low-frequency
region was studied. It was shown that, when 1 <n< 2,
aloss of self-similarity occurs with the evolution of the
energy spectrum, and, when n < 1, the asymptotic
behavior of the spectrum, as well as the behavior of
individual redlizations, only weakly depends on the
high-frequency components.

For applications, it isimportant to study the evolution

of quasi-monochromatic signals v,(t) = a(t)cos(u,t +
(1)) with random amplitude and phase modulations,
and thefirst studieswere carried out for such signals. In
[129], the probability distribution of the discontinuity
development length was determined, and it was found
that discontinuities may appear in a randomly modu-
lated wave earlier than in a deterministic wave with the
same energy. For a quasi-monochromatic signal with
Gaussian statistics and zero spectrum width, the proba-
ACOUSTICAL PHYSICS  Vol. 51
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bility distribution of the field was first calculated by
researchers from the Moscow State University [130]. It
was shown that, for an amplitude-modulated signal, a
nonlinear medium is a perfect limiter and that, at long
distances, the initial Gaussian distribution transforms
into auniform one. In [131-133], it was shown that, in
a nonlinear medium, a frequency modulation of the
input signal is transformed into an amplitude modula
tion of a saw tooth wave, which results in a spread of
the boundaries of the uniform distribution. If the input
spectrum has a finite width, the amplitude modulation
gives rise to motion of the shock fronts, i.e., to an addi-
tional phase modulation of the saw tooth wave. Physi-
cally, the motion of the shock fronts is related to the
interaction of the high-frequency quasi-periodic saw
tooth wave with the low-frequency wave v ((t, 2)
caused by the nonlinear detection of theinput signal. As
the order number of harmonic increases, spectral lines
broaden until a continuous power-law spectrum is
formed. This effect was observed experimentally in
[133]. The same experiments demonstrated the disap-
pearance of the fine structure of intense broadband
acoustic noise. The fundamental difference between the
nonlinear propagation of a quasi-monochromatic wave
and that of atone signal liesin the parametric genera-
tion of dowly decaying low-frequency components
Vie(t, 2). In [131, 132, 134], the statistical characteris-
tics of low-frequency components were studied and, in
particular, it was shown that, for small Reynolds num-
bers, the detected component is characterized by a Ray-
leigh-type distribution, and, for large Reynolds num-
bers, by a Gaussian distribution.

Another class of problemsisrelated to the propaga-
tion of modulated noise, when nonlinear processes lead
to the generation of coherent noise components with
zero mean. In [135-137], it was shown that, as a result
of the multiple confluence of discontinuities, a pulse
with a noise carrier is transformed into an N-wave; if
the time scale of the noise carrier is much smaller than
the pulse duration, the positions of the shock fronts of
the N-wave in different redlizations are virtually deter-
ministic. The generation of a tone signal from noise
with a harmonic intensity modulation was studied in
[138]. It was shown that the efficiency of the generation
of asignal with a noise carrier is higher than that of a
signal with atone carrier.

Pioneering studies of the nonlinear interaction of
noise with regular signals were performed at the Mos-
cow State University (see[117] and the literature cited
therein). A series of publications [14, 139, 140]
reported on the interaction of noise with signals at |ater
stages, when the formation of continuities radically
changes the spectral composition of the wave and, in
particular, noise components appear in a broad fre-
guency range. Here, we limit our consideration to the
example of interaction between an intense high-fre-
quency harmonic wave and low-frequency noise v\(t,
2). Inthis case, one can assume that noise only causesa
guasi-static phase shift of the high-frequency signal. At
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distances at which the nonlinear distortion of noise
V. o(t) can be ignored, the expression for the nth har-
monic of the signa can be represented as v(t, 2) =
A (2cos(nuyt + d(t, 2)), where A(2) isthe amplitude of
the nth harmonic of the regular signal and ¢.(t, 2 =
nuwyZBVy, o(t) is the phase shift. As long as the phase
modulation index is small, for the noise component we
have v, (t, 2) = A(2Nw,ZBVy o(HSin(nat) and, hence,
the spectrum of the nth component reproduces the spec-
trum of the low-frequency noise. At the discontinuity
stage, where A, = 1/nw,z3, the amplitude of the noise
component does not depend on distance z and is equal
to the amplitude of the low-frequency noise for alarge
number of harmonics. This effect can be called the
effect of an anomalous amplification of noise. In its
turn, the noise leads to the decay of the regular signal.
In [142], it was shown that the interaction of a pulse
with intense noise can be described by introducing an
effective viscosity for the mean field. The evolution of
the mean field of a nonlinear wave in a medium with
random inhomogeneities was studied in [143].

The dtatistics of the velocity and density fields for
counter-propagating waves was considered in [144] for
different values of the Mach number.

THE USE OF NONLINEAR ACOUSTIC METHODS
IN DIAGNOSTICS

The discovery of new physical effects usually stim-
ulates aquest for their practical application. Therefore,
it isno wonder that the rapid development of nonlinear
acoustics gaveriseto studiesaimed at the application of
new methods in nondestructive testing and different
types of diagnostics. The advantages of nonlinear
acoustic methods are primarily related to their high sen-
sitivity to structure disturbances in substances, such as
the appearance of bubblesin aliquid or cracks and foli-
ations in solids. The area of application of these meth-
ods is wide and includes diagnostics of liquids, testing
of large-size structures, seismic prospecting, and medi-
cine. Since we cannot consider all aspects of nonlinear
acoustical diagnostics in this section, we dwell on the
main areas of application in which practical achieve-
ments are evident.

Presumably, one of thefirst examplesisthe diagnos-
tics of gas bubblesin liquids. The detection of bubbles
in aliquid and the measurement of their size distribu-
tion is important, e.g., for underwater acoustics and
oceanography, for the operation of power plants
(nuclear reactors), and for the trestment of the decom-
pression disease. In Nizhni Novgorod, research in this
area was mainly carried out at the Institute of Applied
Physics and at the Department of Acoustics of the
Nizhni Novgorod State University. For bubble diagnos-
tics, different methodswere used, including the second-
harmonic method [145-147], the combination-fre-
guency method [148-152], and the subharmonic and
ultraharmonic method [153, 154]. The first two meth-
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ods were successfully applied to measurements of the
bubble distribution in the subsurface layer of the sea.
The second-harmonic method allowed the use of com-
mercial sonars. In this method, the signal was recorded
at the second harmonic frequency of the transmitted
pumping signal . In the combination-frequency method,
the signal was recorded at the sum or difference fre-
guency when abubble fell into arelatively small work-
ing volume of the measuring system. Measurements
carried out in different seas and oceans during expedi-
tions provided information on the bubble distributions
in space and size. In addition to the data on the mean
concentration, it was found that bubbles are nonuni-
formly distributed not only in depth but also in the hor-
izontal direction and form so-called bubble clouds
[147, 150]. On the basis of the difference-frequency
method, an instrument was designed for detecting bub-
bles in the heat-transfer medium of the cooling system
of anuclear reactor [152].

Experiments performed together with colleagues
from Poland in the shallow-water areas of the Baltic
Sea using high-power sonar made it possible to use the
combination-frequency method at a distance of about
10 m for the diagnostics of both the subsurface bubble
layer and the gas-saturated bottom sediments[160]. To
measure the spatial distribution of nonlinear scatterers,
the pulsed tomography method was proposed in [161].

The subharmonic and ultraharmonic methods have
found application in the diagnostics of decompression
states of divers and astronauts [153, 154]. The genera-
tion of subharmonic and ultraharmonicsis of athresh-
old character, asin the case of the classical parametric
effect, and, hence, it requires farly large pumping
amplitudes at the bubble resonance frequencies.

With a certain geometry of two pumping beams
(when they are directed toward each other), the differ-
ence-frequency signal scattered from a moving bubble
acquires aconsiderable Doppler frequency shift, whose
value is mainly determined by the Doppler shifts at the
pumping frequencies[155]. Thisallows oneto measure
the velocities of moving bubbles with a high accuracy
and, hence, to measure the distribution of the velocity
of liquidinaflow [156]. If the concentration of bubbles
is high and prevents the use of the approximation of
preset pumping amplitudes within the whole cross sec-
tion of the liquid flow, the determination of the flow
velocity distribution is made possible by the tomo-
graphic reconstruction method [157, 158].

It should be noted that the use of transmitting or
receiving scanning acoustic systems alows one to
obtain spatial images of the distribution of nonlinear
scatterers. For bubbles in water, this problem was
solved using a scanning focusing system operating at
the difference frequency. With the difference-frequency
method, images of aliquid jet in the cavitation regime
and images of metal sampleswere obtained in [159]. In
the latter case, for the samples to acquire the properties
of nonlinear scatterers, acontrolled voltage was applied
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to them, so that the samples were covered with small
gas bubbles due to electrolysis.

Sometimes, new ideas arise not from theoretical
considerations but from attempts to solve specific prob-
lems encountered in practice. An exampleisthecasein
which specialists from Moscow asked V.A. Zverev to
assist in the development of a method for testing the
strength of the hesat-protection coating of a space vehi-
cle. The conventiona linear high-frequency echo-
sounding method had failed in this case because of the
strong damping of sound. After many attempts were
made to solve this problem, a new idea involving low-
frequency vibrations of samples was put forward, so
that the sizing defects could be detected by their * chat-
ter” manifesting itself in the spectrum as the appear-
ance of higher harmonics[162]. The experiment verify-
ing this idea can be considered as the beginning of the
studies concerned with the development of methods of
the nonlinear acoustical diagnostics of solid materials
and structures at the Institute of Applied Physics. A
major contribution to this area of research was made by
A.M. Sutin. The higher harmonic method and the mod-
ulation method were used to demonstrate the potential -
ities of nonlinear acoustical diagnostics of metals with
cracks and steel samples with fatigue [63, 163, 164].
The higher harmonic method was al so used to test large
graphite electrodes for cracks [165]. The modulation
method is as follows: an acoustic wave isintroduced in
the sample under test conditions, and, simultaneously,
the sample is subjected to low-frequency vibrations.
The presence of cracksin the sample leads to the mod-
ulation of the high-frequency wave by the low-fre-
quency vibrations. Later on, this method was widely
used in nondestructive testing of different structures
(concrete, metal, etc.) [67, 166, 167]. The advantage of
this method is the possibility of exciting fairly intense
vibrations in a structure. In solving the problems of
diagnostics, it is also possible to use other nonlinear
acoustic effects, such as the shift of the resonance fre-
guency of a sample depending on the pumping-field
amplitude [168], the “slow dynamics,” the cross-modu-
lation, etc.

Often, it is important not only to determine which
sample has a defect but also to locate the defect in the
sample. Inthiscase, the simplest way isto usethe echo-
sounding method [169-171]. This method is based on
the modulation of the acoustic echo pulsesthat are scat-
tered from the crack by low-frequency vibrations of the
sample. One can use modulation within a single pulse
[170] or modulation of a pulse sequence [169-171]. In
the second case, much shorter pulses are used, which
increases the spatial resolution of the method. In this
method, the echo signals reflected from stable defects
(cavities, saw kerfs, etc.) have no modulation, which
allows one to distinguish them from cracks. However,
if the sample contains several cracks or stable defects,
errorsin their identification are possible.
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Another approach to solving the problem of crack
location is based on the use of the resonant eigenmodes
of the sample. It is evident that the deformation of a
crack under vibrations of the sample depends on the
position of the crack with respect to the nodes and anti-
nodes of the resonant modes, and, hence, the effect of
modulation of the high-frequency wave propagating in
the sample also depends on the crack position. This
method of nonlinear mode modulation tomography
allows one to reconstruct the position of the crack from
measurements of the coefficient of modulation of high-
frequency acoustic waves by low-frequency resonance
vibrations of the samplefor different modes[172, 173].
The advantage of the method is the possibility of using
continuous acoustic signals and relatively low frequen-
cies (compared to the pulsed method), which isimpor-
tant for the diagnostics of materialswith astrong sound
absorption. A further development of this method in
application to complex structures is possible if the
problems of calculation and identification of their
vibrations are solved. Thisactually presents an acoustic
spectroscopy problem. At the Institute of Applied Phys-
ics of the Russian Academy of Sciences, research in
this area is carried out with the aim of achieving the
highest possible measurement accuracy [174].

Studies in the nonlinear acoustical diagnostics of
solid media and materials were being carried out at the
Radiophysical Research I nstitute even before the estab-
lishment of the Institute of Applied Physics. At that
time, the phenomenon of the much stronger depen-
dence of nonlinear elastic parameters, as compared to
the linear ones, on the degree of fatigue of a material
was revealed [175].

The use of the parametric modulation of a high-fre-
guency acoustic wave by alow-frequency field excited
in asolid resonator proved to be an efficient method for
measuring the quadratic nonlinearity parameter. Spe-
cificaly, a strong dependence of the quadratic nonlin-
earity parameter on electric and magnetic externa
fields was revealed and acoustoel ectronic devices with
acontrolled nonlinearity were proposed [176].

Later on, a series of theoretical and experimental
studies of the nonlinear interactions of acoustic waves
in solidswere carried out with allowance for cubic non-
linearity. In particular, the effect of cross-modulation
was experimentally observed [177], and a new method
of measuring the cubic nonlinearity was developed on
the basis of this effect [178]. The Radiophysical
Research Institute and the All-Russia Research Institute
for Standardization and Certification in Mechanical
Engineering in cooperation with the Ingtitute of
Mechanics and Paton Electric Welding Institute of the
Academy of Sciences of Ukraine devel oped a standard
procedure for the determination of the nonlinear elastic
constants of structural materials by the acoustic method
[179].

Since the late 1970s, studies of seismic nonlinear
acoustic effects have been being carried out at the
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Radiophysical Research Ingtitute [180]. The develop-
ment of these studies culminated in the testing of a
number of new nonlinear methods of geological pros-
pecting. In particular, the method of nonlinear interwell
sounding based on the modulation of sound by sound
wasimplemented in aworking pilot system [181-183].
A further development of well technologiesfor the non-
linear diagnostics of geological media resulted in the
design of anew type of well sources, namely, focusing
well arrays [184]. On the basis of the diffraction scat-
tering that occurs at the focus of the pumping field of
the detected signal, a method of studying the nonlinear
characteristics of the near-well region was devel oped.

The phenomenon of acoustoelasticity was experi-
mentally discovered in 1959, and, in the 1970s-1980s,
various nondestructive acoustoelastic methods for
determining mechanical stresses in structures were
developed. The corresponding research was mainly
carried out at the three ingtitutes of Nizhni Novgorod:
the All-Russia Research Institute for Standardization
and Certification in Mechanical Engineering, the
Nizhni Novgorod Branch of the Institute of Mechanical
Engineering, Russian Academy of Sciences, and the
Institute of Applied Physics, Russian Academy of Sci-
ences. Methodical foundations were elaborated for the
pulsed acoustic method of determining biaxial stresses
from measurements of the travel time of longitudinal
and shear elastic waves, and a standard procedure of
determining the residual stresses in elements of com-
mercia structures was developed and approved by the
corresponding State Standard Institute [ 185-187].

Today, research aimed at developing methods of
nonlinear acoustical diagnostics for specific applica
tionsis carried out in many countries and |aboratories.
Twenty years ago, there were only afew places where
such investigations were initiated. One of those places
was Nizhni Novgorod. Unfortunately, for reasons of
space, we cannot consider many other aspects of non-
linear acoustical diagnostics. Therefore, in this review,
we have narrowed the limits of this notion and concen-
trated on practical achievements.

CONCLUSIONS

Even from the brief description of ideas and works
that was given above, one can see the great progressin
nonlinear acousticsthat took place over several decades
and the important role that was played by the scientists
from Nizhni Novgorod in this progress. Today, several
dozen researchers are working in this area of research
at different institutes in Nizhni Novgorod. Unfortu-
nately, for space reasons, it was impossible to mention
all publications and their authorsin this review. There-
fore, above, we tried to outline the main stages of the
development of nonlinear acoustics in  Nizhni
Novgorod, from thefirst ideas to the basic fundamental
and applied studies that are being carried out at the
present time.
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We note that the 80th birthday of Vitalii Ana
tol’ evich Zverev virtually coincides with the 50th anni-
versary of hisfirst ideas and studiesin nonlinear acous-
tics. Within these 50 years, Zverev also worked in other
areas of research and gave much of histime and energy
to solving many other scientific problems, for example,
in underwater acoustics. However, he returned to the
problems of nonlinear acoustics several times, and each
time he made new contributionsto this area of research.
In particular, this occurred when he worked on the
application of superpower parametric systemsin under-
water acoustics (thiswork was carried out in tandem by
scientists from the Institute of Applied Physics and the
Acoustics Institute). The history of nonlinear acoustics
once more confirms the statement that each field of sci-
ence develops on the basis of several key ideas. The
generation of such ideasisthe quality that is character-
istic of Zverev, and it is an inspiring example for
younger scientists.
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Abstract—Results of experimental measurements of acoustic cavitation threshol ds are presented for the waters
of the Atlantic Ocean, Pacific Ocean, Indian Ocean, Arctic Ocean, and some other parts of the World Ocean,
including the Arabian Sea, Baltic Sea, East Siberian Sea, North Sea, Philippine Sea, Black Sea, Sea of Japan,
Sea of Okhotsk, and South China Sea. The measurements were carried out by many oceanic expeditions
between 1963 and 1987. Genera |aws governing the variations in the cavitation strength of sea water over the
World Ocean are revealed. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Cavitation occurs in water or in other liquids
under decreasing pressure and manifests itself as a
discontinuity of the medium. It is conventional to dis-
tinguish between acoustic and hydrodynamic cavita-
tion.

Acoustic cavitation arises in sea water or any other
liquid under the action of an intense acoustic field when
the acoustic pressure amplitude P, exceeds some

threshold value Py, which is commonly called the
acoustic cavitation threshold or the tensile strength of
water. The value of P}, in seawater depends on many
hydrophysical and hydrochemical parameters. The
influence of hydrostatic pressure P, linearly growing
with depth, is an important factor. The quantities P},

and P, arerelated by the formula Py, = P, — P, where
P. is the hydrodynamic cavitation threshold pressure
at which cavitation arises. Cavitation nuclei are usu-
aly represented by microscopic (most often gaseous)
inclusionsin aliquid. For liquids with large cavitation
nuclei, the value of P, isusually equal to the saturated
vapor pressure P,. However, for very pureliquids with
small cavitation nuclei, P, can be much smaller than
P, and in some cases can even be negative. The value
of the acoustic cavitation threshold pressure P} is
always positive.

Hydrodynamic cavitation is induced by the pres-
sure fluctuations arising in sea water due to the rota-

tion of screw propellers or due to flows around dif-
ferent moving bodies. The corresponding threshold

TDeceased.

value of the pressure variation (P, — P.) is conven-
tionally called the hydrodynamic tensile strength or
the cavitation threshold of seawater. This quantity is
virtually equal to the acoustic cavitation strength
when the frequency of the acoustic field is equal or
close to the frequency of hydrodynamic pressure
fluctuations.

The acoustic cavitation threshold Pj, for ocean

water is connected with many hydrophysical parame-
ters of the water medium and with the parameters of
acoustic sources, including the acoustic field fre-
qguency f, which can be much higher than the fre-
guency of hydrodynamic fluctuations caused by flows
around different bodies in sea water. However, at low
frequencies of acoustic cavitation excitation, the fre-
quency f may only slightly differ from characteristic
frequencies of hydrodynamic fluctuations. In this

case, the quantity P measured for acoustic cavita-

tion will be approximately equal to the hydrodynamic
cavitation strength of the same water under the same
conditions. Thisallows oneto use the results of acous-
tic cavitation measurements to determine the cavita-
tion thresholds of sea water for hydrodynamic cavita-
tion.

CAVITATION NUCLEI

Usually, the tensile strength of seawater P, grows

with sea water depth. However, this growth may obey
different laws, which are determined by the depth
dependence of the size and concentration of phase
inclusions serving as cavitation nuclei.

1063-7710/05/5102-0128%$26.00 © 2005 Pleiades Publishing, Inc.
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In the upper seawater layer, the most characteristic
cavitation nuclei are gas bubbles. Their sizes and con-
centration are determined by the surface roughness and
by hydrophysical parameters governing the formation
and dissolution of gas bubbles in water. Depending on
these conditions, gas bubbles in the upper ocean layer
may vary in size from 10 to 10! cm.

Cavitation in seawater can also arise at phaseinclu-
sions represented by zooplankton or phytoplankton.
The sizes of zooplankton range from several microns
for nanoplankton to several centimeters for mac-
roplankton. The sizes of phytoplankton vary over an
even wider range. On thewhole, the size and concentra-
tion of plankton in seawater depends on the biological
condition of the medium in a given region, which is
characterized by both spatial and temporal variability
governed by complex laws and which is an object of
specia studies.

Cavitation can also originate in solid nuclei, which
get into seawater from the atmosphere, fromrivers, and
from other sources, including anthropogenic ones.
Solid nuclei may have different sizes (10-° to 10-2 cm),
shapes, and degrees of wetting with water.

In sea water, cavitation nuclei in the form of small
vapor bubbles may also be generated by high-energy
particles caused by cosmic rays or radioactivity. Pri-
mary cosmic rays composed mainly of protons and
apha particles are transformed into secondary particles
mainly consisting of electrons and p-mesons at the sea
level. Electronsareintensively absorbed in water, while
H-mesons possess a high penetrating power and are
poorly absorbed in water. Electrons and p-mesons
interact with sea water atoms and knock out € ectrons,
thus spending energy for the ionization of the medium.
If the resulting electrons have a sufficiently high
energy, they may in their turn cause ionization. Such
secondary electrons are called & electrons. The local
heat release by & electrons leads to the formation of
vapor bubbles smaller than 10° cm in size. Their life-
timeissmall, but their concentration may vary depend-
ing on the intensity of cosmic rays.

The effect of radioactivity on sea water may mani-
fest itself as a neutron flux, which interacts only with
atomic nuclei on passing through the sea water
medium. Inthis case, freeradicals and atoms of oxygen
and hydrogen can arisein water. They can form bubbles
owing to the coagulation of gas molecules. Similar
effects may be caused by such a primary cosmic parti-
cle as the neutrino.

All the af orementioned cavitation nuclei appear in
the sea water medium under the effect of external
forces and disturbances. However, even in the case of
acompleteisolation from external effects, the forma-
tion of vapor bubbles in water is possible due to the
manifestation of thermodynamic heterophase fluctu-
ations. The size of such cavitation nuclei is deter-
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Fig. 1. Dependence of the initial acoustic signal P, and
cavitation noise signal P,, on the voltage U applied to the
source for different depths: (/) 5and (2) 10 m.

mined by the absolute temperature of the medium
and, for water under normal conditions, does not
exceed 10~ cm. Under usual conditions in sea water,
the effect of these cavitation nuclei is negligibly
small compared to the effects of gas bubbles, plank-
ton, and solid particles.

MEASUREMENT TECHNIQUE

The determination of the tensile strength of sea
water was performed by specially designed technical
means on the basis of measuring the acoustic field

threshold amplitude P}, , the excess over which causes
the development of cavitation.

The measurement technique was first proposed in
[1], and its essence was as follows. Acoustic cavita-
tion was excited by an intense tonal acoustic signal
with a fundamental frequency f and with an increas-
ing amplitude P,. The onset of cavitation corre-
sponded to the rise of an acoustic cavitation noise
signal with a summary pressure P,,, which contained
discrete harmonic spectral components with fre-
guenciesnf, wheren=2, 3, ..., and also acontinuous
spectrum component of the received signal. Theratio
of the acoustic cavitation noise signal P, to the
amplitude of the basic tonal signal P,, determinesthe
coefficient K of nonlinear distortion of the acoustic
signal at the beginning of acoustic cavitation: K =
P/Pm.

Figure 1 shows an example of an experimental mea-
surement of the initial acoustic signa P,,, and the cavi-
tation noise signal P,, in sea water as a function of the
electric voltage V applied to the high-power acoustic
source with an excitation frequency of 10 kHz. Figure 2
shows the summary acoustic signal and the cavitation
noise signal. These measurements were carried out in
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Fig. 2. Summary signal (top) and cavitation noise signal
(bottom) for the case of cavitation excitation at a frequency
of 10 kHz at a depth of 10 m.

September 1982 in the Sea of Japan, at depths of 5 and
10 m, at the point with alatitude of 42° N and alongi-
tude of 132° E.

Experimental studies of the onset of acoustic cavita-
tion in sea water with different physical and chemical
characteristics (temperature, salinity, gas content,

. Spectrum
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_ _ _ _O Hydrophone
— Acoustic
— baffle
Source Cavitation
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PNZ
Power
generator
a2z 0 d?2

Fig. 3. Schematic representation of the system for mea-
suring the acoustic cavitation thresholds with the use of
awater-filled cylindrical piezoceramic acoustic source.
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etc.) at different depths showed that the cavitation
threshold corresponds to the acoustic pressure

amplitude P}, at which the value of the coefficient of

nonlinear distortion due to cavitation is K = 0.1. In
Fig. 1, the pressure values of the fundamental tone
signal P, and cavitation noise P, that correspond to

the acoustic cavitation threshold P}, are marked with
empty circles.

In our measurements of the cavitation strength of
seawater at different depths, we used water-filled cylin-
drical acoustic sources, which in fact were cylindrical
focusing systems and which alowed us to stimulate
cavitation in water at a given distance from the inner
radiating surface without perturbing the physicochemi-
cal characteristics of water. Figures 3 and 4 show two
different systems used for measuring the acoustic cavi-

tation thresholds P}, in seawater.

The system presented in Fig. 3 is based on the appli-
cation of a high-power cylindrical acoustic source.
Usually, such sources are made of piezoceramic active
materials. The resonance frequency f of such an acous-
tic source is connected with the diameter of the cylin-
der d by the formulaf = c,/rd, where ¢, is the speed of
sound in the piezoceramic material. Such sources are
suitable for frequencies f of more than 1 kHz. For mea-
surements at lower frequencies f, an excessive increase
indisrequired, which leadsto technical difficulties. To
excite cavitation in seawater at low frequenciesf on the
order of hundreds of hertz, it is more convenient to
apply sound sources in the form of resonance metal
tubes open at one end and excited at the other by an
acoustic vibrator. Figure 4 shows a scheme of the sys-
tem with a resonance tube for measuring the acoustic

. ectrum
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"~ - — O Hydrophone
L QN
I P %
? Y
/
? Cavitation
P % Resonance
m ’
L o 2 tube
/ meter
’
%
7
2
| % Power
I enerator
Vibrator g

Fig. 4. Schematic representation of the system for measuring
the acoustic cavitation thresholds with the use of aresonance
metal tube excited at one end by an acoustic vibrator.
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cavitation thresholds P}, . In such a system, the coeffi-

cient of nonlinear distortion of the signal and, hence,
the acoustic cavitation threshold is determined by a
cavitation meter. This technique for measuring the
acoustic cavitation thresholds in sea water was sug-
gested in [2]. The resonance frequency of such an
acoustic source f is connected with the tube length L
by the formulaf = ¢,/2L, where ¢, is the sound speed
in sea water. The aforementioned spectral feature of

measuring the acoustic cavitation thresholds P}, can

be successfully used with both piezoceramic cylindri-
cal sources and resonance tubes.

The proposed technique was used by us for measur-
ing the cavitation strength of sea water in different
regions of the ocean [1-3]. Similar techniques were
used later by other researchers[4, 5].

ACOUSTIC CAVITATION THRESHOLDS
IN DIFFERENT REGIONS
OF THE WORLD OCEAN

Below, we present the results of experimental mea-
surements of acoustic cavitation thresholdsin different
regions of the World Ocean. The measurements were
performed between 1963 and 1987.

Figure 5 presents the results of measuring the cavi-
tation thresholds of sea water P} depending on the

depth h according to the data obtained in September
1982 in the Seaof Japan at alatitude of 42° N and alon-
gitude of 132° E. Acoustic sources with different fre-
guenciesfrom 230 Hz to 10 kHz were used to excite the
cavitation. The measurements at a low frequency of
230 Hz were conducted using resonance acoustic steel
tubes in accordance with Fig. 4. The measurements at
other, higher, frequencies were conducted using water-
filled cylindrical piezoceramic acoustic sources in
accordance with Fig. 3.

Asfollowsfrom Fig. 5, the values of acoustic cav-
itation thresholds Py, increase on the average lin-
early with increasing depth h. However, at some
depths h, one can see deviations of P, from the
hydrostatic pressure level P,, which is shown by the
dashed line. In some cases, the acoustic cavitation
thresholds prove to be lower than the hydrostatic
pressure values. According to [6], this may occur
because of the so-called rectified gas diffusion under
the effect of the periodic acoustic field, when the
cavitation nuclei in water grow into bubbles whose
resonance frequency is close to the frequency of the
exciting acoustic field.

In 1968, measurements of acoustic cavitation
thresholds P}, were carried out in the northern part of
the Atlantic Ocean, including the North Sea and the
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Fig. 5. Acoustic cavitation thresholds Py, versus the

depth for different frequenciesf = (1) 230 Hz, (2) 750 Hz,
(3) 4.5 kHz, and (4) 10 kHz.

Baltic Sea. Figure 6 shows the sites of the measure-
ments for two different seasons. The crosses corre-
spond to the spring season (March-April 1968), and
the crossesin circles correspond to the summer season
(June—=July 1968). From general considerations, it fol-
lows that the seasonal variability of weather and the
related variability of both meteorological parameters
in the near-water layer of the atmosphere and hydro-
logical parameters in the upper water layer of the
ocean should be most pronounced away from the
equator, that is, at higher latitudes. Therefore, we
expected that the values of the acoustic cavitation

thresholds P}, measured in the near-equator zone of
the ocean should not noticeably vary from season to

season. However, the results of measurements proved
to be unexpected.

Figure 7 presents the experimental results of acous-
tic cavitation thresholds P}, as afunction of latitudein

the Atlantic Ocean, from the equator to the North Sea
and the Baltic Sea. Cavitation was excited at depths of
10 and 20 m by a continuoustonal signal at afrequency
of 10 kHz. It is seen from Fig. 7 that, in the northern
part of the Atlantic Ocean, cavitation thresholds vary
depending on the latitude. The acoustic cavitation

thresholds P}, have higher values near the equator and

decrease with increasing latitude. This effect is more
pronounced at a depth of 20 m compared to at a depth
of 10 m. In Figs. 6 and 7, the point with a latitude of
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Fig. 6. The measurement sites in the Atlantic Ocean for (+) the spring season (March-April 1968) and (1) the summer season

(June-July 1968).

54°30" N (and alongitude of 4°52' E) corresponds to
the measurements in the North Sea. Two points with
latitude 55°33" N (longitude 15°55" E) and latitude
57°46" N (longitude 20°09' E) correspond to the mea-
surementsin the Baltic Sea. In the North Seaand Baltic

Sea, the thresholds P}, were measured in March and

July with maximum separation in time. From Fig. 7,
one can see that, in the aforementioned high-latitude

seas, the cavitation thresholds P}, in July are higher

than in March. This trend manifests itself to one or
another extent in all high-latitude measurements to
the north of latitude 40° N. To the south of this lati-
tude down to the equator, another trend is observed:
the cavitation thresholds are higher in spring and
lower in summer.

Figure 8 shows the data on temperature, salinity,
and dissolved gas and oxygen at the sites of acoustic

measurements at the aforementioned depths. From
Fig. 7, it follows that the cavitation strength of water
in the equatorial Atlantic proved to be higher in spring
compared to summer. According to Fig. 8, in this part
of the Atlantic Ocean in these seasons no considerable
difference was observed between the measured hydro-
logical parameters. In the regions lying to the north of
40° N, the picture was different. According to Fig. 7,
the cavitation thresholds in summer (in July) proved
to be higher than those in spring (in March). At the
same time, according to Fig. 8, in summer, because of
the increase in temperature, a decrease was observed
in the concentrations of dissolved gas and dissolved
oxygen. The latter decrease may lead to a decreasein
the concentration and size of gaseous cavitation nuclei
in sea water. According to the existing physical con-
cepts [6, 7], such changes in the hydrology should
definitely lead to an increase (see Fig. 7) in the cavita-
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tion strength of water in summer (July) compared to
that in spring (March) in subarctic waters.

A comparison of Figs. 7 and 8 shows that, in the
northern Atlantic, the cavitation strength decreased as
the latitude increased from the equatorial part of the
ocean with tropical waters to high-latitude regions
with subarctic waters. The passage from the equator to
high latitudes was accompanied by the characteristic
temperature decrease, a very small change in salinity
(except for the well-known salinity drop in the Baltic
Sea), and an increase in the concentrations of dis-
solved gas and oxygen.

The tendency towardsthe decreasein acoustic cav-
itation thresholds in ocean water on moving from the
equator to higher latitudes also proved to be typical of
other parts of the World Ocean.

Figure 9 shows the points where acoustic cavitation
thresholds were measured in the Pacific Ocean. The
measurements were carried out in different years from
1964 through 1985. The most extensive measurements
were carried out from September to November 1982,
when data were obtained for both the northern and
southern parts of the Pacific Ocean. At that time, it was
autumn in the northern part and spring season in the
southern part of the ocean. Figure 10 showsthe acoustic

cavitation thresholds P}, as a function of latitude for

the Pacific Ocean, from a latitude of about 49° N near
the Kamchatka Peninsula to latitude 15°30" S in the
Coral Sea. Cavitation was excited at depths of 10 m and
20 m by tone signals at a frequency of 10 kHz. Figure
10 shows that, in the Pacific Ocean, the cavitation
thresholds also vary depending on thelatitude. It turned

out that the acoustic cavitation thresholds P}, were

higher near the equator and decreased with increasing
latitude in the directions from the equator to the north-
ern subarctic waters and to the southern subtropic
waters of the Pacific Ocean. This dependence of the

cavitation strength of water P}, on latitude in the

Pacific Ocean proved to be as clearly pronounced asin
the Atlantic Ocean.

The measurements of acoustic cavitation thresh-
olds in the Indian Ocean were carried out in March—
April 1987. Figure 11 shows the measurement sites
from alatitude of about 20° N in the Arabian Seato a
latitude of about 45° Sin the southern part of the Indian
Ocean. Figure 12 presents the measured cavitation

thresholds P}, as afunction of latitude. Cavitation was

excited at depths of 10 and 20 m by continuous tonal
signals at a frequency of 10 kHz. In the Indian Ocean,
the cavitation thresholds had higher values near the
equator and decreased with increasing latitude in the
northern (toward subtropic waters) and southern
(toward subantarctic waters) directions. The measure-
ments were performed in late autumn in the southern
No. 2
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Fig. 7. Acoustic cavitation thresholds P}, in the Atlantic

Ocean as a function of latitude at depths of 10 and 20 m
for different seasons of 1968: (®) spring and (O) summer.

part of the Indian Ocean. With the passage from the
equator to the south to latitude 45° S, the water temper-
ature decreased from 30°C in the tropical region to
10°C in the subantarctic region. The surface roughness
in the ocean varied in the southern direction from 1 m
near the equator to 6.5 m at the point with latitude
45° S. Anincrease in the sea surface roughness usualy
leads to breaking of surface waves, which, in its turn,
causes an increase in the concentration and characteris-
tic size of gas bubbles serving as cavitation nuclei inthe
upper ocean layer [7]. This explains the decrease in the

cavitation thresholds P}, withincreasing latitude in the
southern part of the Indian Ocean (see Fig. 12).

It should be noted that the increase in the surface
roughness with growing latitude is a general feature of
all oceans except for those regions with an ice cover.
Presumably, it is this feature that explains the decrease

observed in the acoustic cavitation thresholds P}, with
the passage from the equator to higher latitudes in the
Atlantic, Pacific, and Indian oceans.

Measurements in the Arctic Ocean proved to be
important for understanding the relations between
the acoustic cavitation thresholds and the hydrome-
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Fig. 9. Thesites of cavitation measurementsin the Pacific Ocean in different years: (©) September 1964, (+) September—Novem-
ber 1982, () October—November 1983, and () August—October 1985.

teorological and hydrological conditions. These
measurements were carried out in May 1969 from a
drifting block of ice in the East Siberian Sea (one of
the ice bases belonging to the North Pole-18 drifting
arctic station). Figure 13 shows the point (the cross
in the plot) with coordinates 76° N and 164° E where
the measurements of acoustic cavitation thresholds
were carried out. The ice thickness was about 3 m.
The air temperature was —12°C, and the water tem-
perature varied from —1.68°C near the water surface
to —1.55°C at a depth of 50 m. The ice cover pre-
vented surface roughness, and the upper water layer
contained almost no cavitation nuclei in the form of
gas bubbles, which usually occur in the open ocean
dueto the breaking of waves. Presumably, thisfact is
responsible for the very high values of cavitation

strength of water P}, that were obtained under these
conditions, as compared to the values obtained in
other ocean regions.

Table 1 presents the data on the acoustic cavitation
thresholds P}, for the arctic conditions under the ice

ACOUSTICAL PHYSICS Vol.51 No.2 2005
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Fig. 11. The sites of cavitation measurementsin the Indian Ocean (+) in March-April 1987.

cover at a depth of 10 m and for different frequencies
from 2.0 to 15.0 kHz. One can see that, at a frequency
of 10 kHz at adepth of 10 m, the value of the cavitation

threshold P}, is5.6 x 10° Pa, which noticeably exceeds

the values of P}, obtained at the same frequency and

depth in other regions of theWorld Ocean. From Table 1,
it also follows that the acoustic cavitation thresholds

P! increase as the excitation frequency f increases.

This tendency manifests itself to some extent in all
regions of the World Ocean.

Itis of interest to compare the cavitation strength of
seawater in different regions of the World Ocean. This

Table 1. Acoustic cavitation thresholds Py, at different fre-
quenciesf in the Arctic Ocean

6.0
3.8

8.0
4.7

10.0
5.6

15.0
6.9

2.0
19

4.0
2.9

Frequency f, kHz
Cavitation threshold, 10° Pa

problem is not asimple one, because, even at one given
point of the ocean, the cavitation threshold may vary
with time over wide limits depending on weather con-
ditions and on the seasonal and climate variability of
those hydrophysical parameters of the water medium
that determine the threshold and the development of
cavitation, with all other technical conditions being the
same. However, we can specul ate on some average val-

ues of acoustic cavitation thresholds P}, obtained at a

certain frequency f at the same depth in each of the
ocean regions under study.

Table 2 presents the results of measuring the acous-
tic cavitation thresholds P}, in different regions of the

World Ocean within 1963 to 1987. These results refer
to measurements at a standard depth of 10 mand at a
frequency of 10 kHz. The measurements were carried
out in the equatorial parts of the Atlantic Ocean, the
Indian Ocean, and the Pacific Ocean. The values
obtained for the Arctic Ocean correspond to the mea-
surementsin the East Siberian Sea. The lowest acous-
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Fig. 12. Acoustic cavitation thresholds P}, in the Indian Ocean as a function of latitude at depths of 10 and 20 min March—

April 1987.
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Table2. Acoustic cavitation thresholds Py, in different re-
gions of the World Ocean

) Threshold i

Region P 10° Pa Time of measurement
Atlantic Ocean 3.2 April 1968
Indian Ocean 2.8 March 1987
Arctic Ocean 5.6 May 1969
Pacific Ocean 3.6 October 1982
Arabian Sea 2.8 March 1987
Baltic Sea 2.3 June 1968
East Siberian Sea 5.6 May 1969
Sea of Okhotsk 22 September 1964
North Sea 24 June 1968
Philippine Sea 25 October 1985
Black Sea 18 September 1963
South China Sea 24 September 1985
Sea of Japan 2.6 September 1982

tic cavitation thresholds were found to occur in the
Indian Ocean, and the highest, inthe Arctic Ocean. The
cavitation thresholds obtained for waters of different
seas vary over wide limits. The lowest values were
observed inthe Black Sea, and the highest values, in the
East Siberian Sea

CONCLUSIONS

The results presented above show that acoustic cav-
itation thresholds P}, have different valuesin different
regions of the World Ocean. This fact should be taken
into account when using high-power acoustic sources
in sea water. The value of the cavitation threshold P},

determines the limiting level of acoustic intensity J:
that can be emitted by an acoustic source:

Jo = Ko(PR )%,

where K, is the coefficient that determines the type of
the acoustic field; for a plane acoustic wave, K, =
(1/2pc), where p isthe density of seawater and c isthe
sound velocity init.

Moreover, the value of the cavitation threshold P},
allows one to estimate the critical speed V. for bodies
moving in seawater, i.e., the speed limit beyond which
a moving body gives rise to cavitation. For a stream-
lined spheroidal body moving in sea water, the follow-
ing formulaisvalid:

Ve = Ky( PE )1/2,

AKULICHEV, IL’ICHEV

where the coefficient Ky, = (2/pK{K,) " characterizesthe
hydrodynamic flow around the body; here, the coeffi-
cient K; is determined by the shape of the body and the
coefficient K, is determined by the hydrodynamic fluc-
tuations of the flow around the body.

In closing, it should be noted that studies of the cav-
itation strength of sea water in different regions of the
World Ocean began in the early 1960s, when the
authors of this paper worked at the Sukhumi Marine
Research Station of the Acoustics Institute of the Acad-
emy of Sciences of the USSR [1]. Later, in the 1970s
and 1980s, these studies were continued at the Pacific
Oceanological Institute, Far-East Division, Russian
Academy of Sciences[2, 3, 8-15].
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Abstract—A spatially one-dimensional model of a plane active double layer between two homogeneous
elastic half-spacesis studied analytically. The layer synthesizes a preset smooth trajectory of the controlled
boundary between the media without any mechanical support. The outer layer of the coating is a piezoel ec-
tric, and the inner layer is a polymer that is transparent for low-frequency sound and opague for high-fre-
guency sound because of dissipation. An algorithm for controlling the piezoel ectric elements of the layer on
the basis of signals from surface particle-velocity sensors is proposed, and a method for measuring the par-
ticle velocity is devel oped. Conditions of stability and efficiency of the synthesis are formulated. It is shown
that the active layer thickness can be much smaller than the wavel ength corresponding to the minimal time
scale of the boundary trajectory to be formed. The accuracy of the trajectory synthesis depends on the accu-
racy of measuring, computing, and actuating elements of the system but does not depend on the vibroacoustic
characteristics of the half-spaces separated by the active layer or on the presence of smooth waves in these
half-spaces. For the synthesisto be efficient, the operating frequency band and the dynamic range of sensors
and actuators should be many times greater than the frequency band and the dynamic range of the trajectory

to be formed. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Many problems of controlling vibroacoustic fields
are reduced to the formation of apreset space-timedis-

tribution of normal particle displacements uD(?, t) or

velocities (DNPV) {uy(F, t)}, a the boundary S
between two elastic media (or, for instance, at the outer
surface Sof aclosed shell in aliquid, Fig. 1b). One of
these mediaisinside Sand has arbitrary vibroacoustic
properties. The external medium is supposed to be infi-
nite, homogeneous, and isotropic with adensity p,, and
a sound speed c,. The zero DNPV corresponds to the
solution to the problem of soundproofing and suppres-
sion of radiation [1-4]. An arbitrary nonzero DNPV
may be, for example, the solution to the problem of the
formation of a preset radiation field at the boundary S
or the problem of matching the distribution to incident
waves (suppression of scattering) [3]. The instrument
commonly used for solving such problemsis an active
piezoelectric layer [4] (Fig. 1c) of a controlled thick-

ness €(f, t) separating the two media and lying
between the outer surface S, and the inner surface
S, =S The prescribed DNPV u(F, t) should be cre-

ated on the outer surface S,. The solution of the afore-
mentioned problems, as a rule, is complicated by the

fact that uD(F , 1) should be formed in real time, i.e., by
knowing only the past and current values of the pre-
scribed DNPV and the degree of its smoothness in

space and time. For this purpose, exhaustive and peri-
odically updated information on the vibroacoustic char-

acteristics of the boundaries §; and S, separated by the
layer is needed.

In the simplest case, it may be assumed that the sur-
face S; isimmobile, i.e., that this surface is in contact
with a stationary mechanical support. This suggests
that the impedance Z, for waves of normal stresses of
surface S, (in the absence of contact with the external
medium) is negligible compared to the impedance of

(a) (b) (©)

" "

(7,0

Fig. 1. Geometry of a three-dimensional problem of con-
trolling the DNPV u(f, b (a) on the surface Sof ahomoge-
neous elastic body and (b) on ashell surface; Zp and Z are
the impedances for waves of normal and tangential stresses
of the shell and €(F , t) is the thickness of the controlled
layer.

1063-7710/05/5102-0139$26.00 © 2005 Pleiades Publishing, Inc.
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the external medium, which simplifies the solution [5—
7] of noise control problemsfor, e.g., steel shellsin air,
when |Z;] > p,c,. However, for a steel shell in water,

|Z-| < pucy (Fig. 1b); in this case, the surface §; =S

cannot play therole of an acoustically rigid mechanical
support for the active layer. In addition, under the con-
dition of neutral buoyancy of the shell in the liquid,
even a perfect rigidity of the shell does not provide a
sufficient support for the active layer. Such a perfectly
rigid shell should oscillate under the action of the active
layer asamonolithic body whose massislimited by the
condition of neutral buoyancy.

In the general case, it is necessary to determine an
integral impedance operator [3] of the surfaces S; and

Sy because only in this case is it possible to rigorously
formulate the problem of stability and efficiency of the
active system. In the cases of practical interest, the vol-
ume of required information is so large that the process
of learning (or updating the information) for an adap-
tive control system [8] in many cases lags behind the
natural drift of parameters of the boundary-val ue prob-
lem under the effect of changes in temperature, hydro-
static pressure, ageing of materials, and so on. In addi-
tion, the linear operator modeling normal-to-surface
vibrations of a closed shell disregards the factor of
“nonextensibility” of its walls, when the impedance Z;,
of waves of tangential stresses on the shell surface is
much greater in absolute value than the impedance Z
of waves of normal stresses; i.e., || > |Z|. This makes
the fundamental difference between vibrations of a
shell and vibrations of a homogeneous elastic body
(Fig. 18), where || ~ |Z-|. The smallness of changesin
the perimeters of the shell compared to its normal
deformationsimparts nonlinear properties to the model
system and severely complicates the control of its
vibrations. Asaresult, the sound-field control system of
interest cannot be based on the interaction with the
shell.

CHARACTERISTIC SCALES
A fundamental feature of the approach presented in
this paper is the absence of any regquirements imposed
on the rigidity of the surface S; (support) or on any
information about its vibroacoustic characteristics [9].
It is required on the surface S, to form a prescribed

DNPV uD(? , 1), the spectral power of which is mainly
concentrated in the frequency range

wmins |(*)| < Qnax (1)

The DNPV uD(?, t) is characterized by the minimal
Tmin = TVWa @nd maximal T, = TV, time scales and
by the displacement amplitude u; ~ A,. The thickness

€(F, t) of the active layer should be much smaller than
the wavelength corresponding to the upper boundary of
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frequency range (1) and much greater than the displace-
ment amplitude A,; i.e.,

A, < {(r,t) < 21C,/Wey- (2)

To form the DNPV uD(?, t) on S, we use a periodic

stepped change of space distributions u(f , t,) = u.(f )
of normal displacements of surface S, at the instants
t=t,=nT (n=1,2,...)with the period

T < 21 W, . (3)

Thejump like change of distributions u,(t ) takes place
as aresult of impact-control actions of duration

T.<T. 4)

Hence, it is necessary to remove the restriction on pos-
sible radiation in the range |w|> Wy, Thus, we try to
minimize the deviation u — uy of the surface Sfrom the
trajectory uy prescribed in the interval (—oo, t) (but
unknown beforehand) in frequency range (1); i.e.,

|0 — 0| *de> —= min,

‘w‘ O [("“ninV wmax]
where
0= I u(f, t) exp(—ict)dt
and

+o00

i, = J’uD(?, t) exp(—i wt)dt

are the spectra of the actual and prescribed trgectories.
Beyond range (1), it is sufficient to require that the
vibration power be bounded,

|l] - GD|2dw < OO,
‘w‘ o [("%in' wmax]

to provide for the stability of the system. For the one-
dimensional case considered bel ow, this means the for-
mation of a prescribed tragjectory of displacement
u(0, t) = uy(t) of acertain plane boundary, the equilib-
rium position of which corresponds to the point x = 0.
The time derivative u(0, t), of the displacement repre-
sents the particle velocity, whose spectrum should be
made close to the spectrum of the function [ug]; in fre-
guency range (1), while outside this range, it is only
restricted by the finiteness of the displacement.

THE BOUNDARY-VALUE PROBLEM

We consider a one-dimensional problem involving
the displacements u(x, t) of particles in an elastic
medium (- < X < +00) and assume that these displace-
No. 2
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ments are described by the equation u, = c’u,,, where
c is the sound speed in the medium. A homogeneous
medium with density p,, and sound speed ¢, corre-
spondsto the domainsx < —h, —h.and x> 0. Theinter-
vals x 0 [-h,, 0] and x O [-2h,, —h.] (Fig. 2) are sepa-
rated by metallized surfaces, electrically independent
of one another, and filled with longitudinally polarized
piezoelectric with density p., sound speed c, and
Young's modulus E.. The domain -h, — h, < x < -h; is
filled with a polymer material (for example, rubber
with density p = p, and sound speed ¢ = ¢,) transparent
at low frequencies (1) and opaque at high frequencies
|w] > Wy, due to dissipation characterized by the
space attenuation factor ~exp[—a,(w)x] (where a, =

a,lo™* and a,, o, = const = 0). We assume that the
boundaries x = 0, x = -h,, and x = —2h, are sound-
transparent; i.e.,
|prCr - chc|/(chc) < 11
|pWCw_chc|/(chc) < 11 ar(wh) < (*)h/Cr’

where wy, = TUT > W, Some polymer piezoelectric
materials have impedances close to the impedance of
water [10]. The impedances of various types of rubber
may also vary over wide limits. The points x = —h, — h,
and x = 0 are the one-dimensiona analogs of surfaces
S, and S, and the quantity (2h. + h,) is the analog of

the active layer thickness €(f , t).

&)

A RECTANGULAR ELECTRIC PULSE

If, in the absence of incident waves, a constant elec-
tric voltage ¢, is applied to one piezoelectric layer (for
instance, to x [ [-h,, 0]) of thickness h., then the surface
(along the plane x = 0) energy density of mechanical
deformation

Wmech = Echgllpz(oo)/z
and the surface density of electrostatic energy
W,, = gogchc de/2

e

are connected by the electromechanical coupling coef-
ficient N = W en/Wep Characterizing this piezoelectric
material (typically, n ~0.2-0.7), where¢. istherelative
dielectric permittivity of vacuum and g, is the value of
static (compression—tension) deformation of the layer
x O [-h,, 0] of thickness h.. For i(«), we obtain the
expression Y() = (€,en/Ey)?d,,, which isindependent
of the layer thickness. With fixed layer boundaries x [J
[-h,, 0], we obtain the relationship P(x) = pb,
between the piezoeectric pressure P(e) and the

applied voltage d,, where i, = h;* (g,6nE,)'2. Now, we
assume that, during the time interval t 0 [0, T.] and in
the absence of incident waves, the electric voltage
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Pws C

Fig. 2. Modification of the boundary-value problem with
piezoelectric layers—h. < x< 0 and 2h. < x<-h;intheform
of an echelon of thin layers with opposite polarization and
metallized boundaries electrically connected in parallel.

¢(t) = doU(b) is applied to the layer x [I [-h,, 0], where
U)=1fort O[O0, 1], U(t) =0fort [0, 1], and ¢ is
the pulse amplitude. Dueto the symmetry of the bound-
ary-value problem, the displacements u(0, t) and u(-h, t)
of the boundaries x = 0 and x = —h, are connected by the
relation u(0, t) = —u(=h,, t) = Y(t) at P(0) = 0. If, within
the time T, of action of the electric pulse, the displace-
ment Y(t) of the boundaries of the segment x [ [-h,, 0]
ismuch smaller than the staticlimit, i.e., [Y(to)|/|yeo)| < 1,
then the action of all piezoelectric layers is equivalent
to pressure (compression or tension). This pressure is
instantaneously (with the light velocity) and uniformly
distributed over the segment x [ [-h,, 0] and isequal to
zero outside it. According to the Euler equation for a
continuous medium, the particles are subjected to a
force proportional to the gradient of this pressure.
Therefore, the boundary-value problem is reduced to a
simultaneousimpact action of pressure P(t) = pH(t) on
the boundary x = —h. and pressure —P(t) = p$(t) on the
boundary x = 0. In this case, the boundary displacement
Y(t) for 0 <t < 1. isdescribed by the integral

t

W(t) = <aN/2)‘le(z>dz,
0

which yields the “plasticity” of the boundaries x = —h,,
and x = 0 with respect to short pulses (impacts) of local
pressure: after termination of the pulse P(t), the dis-
placement of every boundary under the effect of the
pulse persists until the arrival of waves from the other
boundary. Below, we assume that the duration of the
electric pulses satisfies the condition

1. < hJ/c.. (6)
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Fig. 3. Instantaneous distributions of the particle displace-
ments u(x, t) in the medium at theinstants0 <t; <t, <t3 <

ty <27'heeg " ts = 27hecs, 27 et < t < hec,, and
hcc;1 <ty < tg < tg under the effect of one voltage pulse of

. -1
duration T, < hec, .

Transient processes (and proper time scales) do not
manifest themselves in this system because of condi-
tion (3) of the transparency of the boundariesx =0, x =
-h, and x = -2h..

Figure 3 shows the spatial distributions u(x, t) of
particle displacements in the medium under the effect
of asingle short (see relation (6)) pulse of electric volt-

t=3(h.Jc,.)

ARABADZHI

age ¢(t) within the interval x O [-h, 0] a various
instants of time.

A HUYGENS SOURCE

In the section concerning the scales, the formation
of the trgjectory u(0, t) = un(t) of the boundary x =0
was assumed to occur withinthetime ~T < 2T7/W,, iN
the absence of interaction of the active layer with the

underlying surface S, (support) or with the boundary
X =-h, — 2h.. Therefore, below, we will try to find the
shortest time combination of the voltages b (t) and
b$ (t) (Fig. 4b) applied to the piezoelectric layers
x O [-hg, 0] and x O [-2h,, -] (Fig. 4a) that provides
azerofield u(x, t) = 0inthedomain x < —2h. and anon-
zero field u(x, t) # 0 in the domain x > O for any coeffi-

cients b. We confine the class of desired voltages ¢ (t)
and § (t) to rectangular pulses

Bo(t) = bOU(t—T), $a(t) = bdoU(t—T)

of duration T satisfying condition (4). Now, it iseasy to
make certain that the above-mentioned goals can be
achieved only for T — T =hy/c.=Tyand b =-b, asis
shown in Fig. 4a Trying to provide for u = 0 in the
domain x < —2h,, we obtain a unique combination of
delays T, T and amplitudes b, 5, which, in turn, pro-

duces a bipolar rectangular wave of displacements
propagating rightward in the domain x > 0:

u(x, t) = e[t—(x/cy)].

t=4(h./c.)

t=5(helc,)

(b)
dp(0)
Lo
Ll
X
7

2h, —h, 0 Wylt—(de)]

Fig. 4. (8) Instantaneous spatial distributions of particle displacementsin the medium under the effect of piezoelectric layers: black
pulses are produced by the voltage ¢ (t) across the layer x [ [-h, 0], and gray pulses are produced by the voltage dg (1) across

the layer x O [-2hg, —h¢]; (b) diagrams of the base voltage pulses § 5 (t) and $g (1) and of the base pulse Wg(t) of mechanical dis-
placement u(0, t) of the boundary x = 0.
ACOUSTICAL PHYSICS Vol 51
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Here, Pg(t) ischaracterized by thefollowing properties:
(i) W) =0fort<O;
(if) Yg(t) =const>0for 0O<t<T1y;
(iii) Yg) =0for 1y <t <21y,
(iv) Wg(t) = const < O for 2ty <t < 31y,
(V) Yg(t) = 0for t > 31y, where ty, = hy/c,.
~ The function Wg(t) aso satisfies the integral rela-
tions

Ty 3ty

st(t)dt = +Ty, J'l]JB(t)dt = Yoty
0

21y

inside the finite interval 0 < t < 31, and, outside this

interval, it equals zero. The functions § (t) and $s (t)
satisfy therelation

T Ty + T,

j%mm=—j$dmﬂ=%m
0 Ty

where ¢, = 2p,CuTs Mo W,. The system described
above represents a pulsed version of a classical Huy-
gens wave source [1, 2] characterized by one-sided
radiation with the sound energy concentrated at the
jumps of the function Y. The equality

+00 3TV

_[Llls(t)dt = J’lIJB(t)Olt =0 (7
o 0

is a consequence of the momentum conservation law for
the medium of wave propagation. Note that the wave
radiated only to the right (awavelet [11]) Wg[t — (X/C,)]
of minimal duration 3t,, necessarily has a pause T,
between the maxima of different polarities.

It isimportant to note that, in the effect of one-sided
radiation, a role of fundamental significance is played
by the wave deformations of the layersx [J [-h., 0] and
x O [-2h,, —h.]. For example, in the case of p.C. > p,Cu
(unlike relations (5)), the layers x O [-h,, 0] and x O
[-2h., —h.] are perfectly rigid bodies, into which no
waves penetrate from the external medium (x < —2h,,
x > 0). Such bodies (layers) have the given thicknesses
d(t) = |u(-=2he, t) —u(-he, )] and d (@) = Ju(hy, 1) —u(0, 1)|
and acommon boundary u(—h,, t). In this case, none of

the combinations of the functions d (z) and é(r) can
provide the desired effect of one-sided radiation.

BASE PULSES

As was shown above, in the absence of incident
waves, the displacement u(0, t) = Yg(t) of the boundary

x=0isaresult of the action of the voltage pulses ¢ (t)
and §& (t) connected by the relation

¢s(t) = —Bp(t-T1y) (8)
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and applied to the layersx [ [-h,, 0] and x I [-2h,, —h].
Now, we represent the current voltages

() =y Biba(t—nT), §(t) = Bfa(t—nT) ()

across the layers x U [-h, 0] and x O [-2h., —h.] as a
sum of base voltage, pulses §g(t) and §&(t), where
T = 21y is the pulse repetition period. The current dis-
placement of the controlled boundary x = 0,

(1) = u(0.) = Y Bus(t-nT),  (10)

is represented as a sum of base pulses of displacement
Yg(t). The coefficients B, of expansions (9), (10) (or the

amplitudes of pulses g, s, and Yg) are determined
by the control algorithm.

THE ALGORITHM FOR CONTROLLING
THE BOUNDARY PROBLEM

The purpose of the algorithm for controlling the
piezoelectric layers is the synthesis of the prescribed
trajectory u(t) of displacement of the boundary x = 0
on the basis of a sequence of bipolar antisymmetric
pulses Pg(t) with the left third part of every subsequent
pulse being superimposed on the right third part of
every preceding pulse. The novelty of the proposed
approach isdetermined by thefact that, usually, the pre-
scribed trajectory is approximated by a sequence of
nonoverlapping pulses with nonzero mean value of
every pulse (for example, by a sequence of delta
pulses), whereas, in the algorithm described below,
intersecting (Figs. 5a-5c) bipolar base pulses with zero
mean (see Eq. (7)) are used to synthesi ze the prescribed
trajectory.

The algorithm averages the difference u(0, t) — uy(t)
between the desired u(t) and actual u(0, t) displace-
ments of the boundary x = 0 over the time interval
t O [ty(n - 0), Tyn] and tends to compensate for this
error signal on the average within the interval t [
[nT, (n+ 1)T]. For thispurpose, at theinstant t = nT, the
algorithm begins to generate the base pulse Yg(t — nT)
of displacement of the boundary x = 0 with the ampli-
tude

TN

B, = (WoTv/2)™ [ Flus —ug]dt,

wn-Ty

(11)

where F isthe operator of action of one differentiating
network (seebelow), € isapositiveinteger (seeinequal-
ity (16)), us(t) is the measured displacement of the

boundary x = 0, ux(t) isthe prescribed trgjectory of the
boundary x=0, Y, = T\_,l ;V Yg (Hdt, and T, isthe dura

tion of theinterval of averaging.
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Fig. 5. Examplesof synthesisof the prescribed displacement trajectory of the boundary x = 0 by means of controlling the amplitudes

By, of sequence (10) of base pulses at zero noiseand 0 = 1:

(@), (b), (c) successive superposition in time of the base pulses Yg(t) with the amplitudes B, _ |, By, B, ; 1

(d) the desired displacement up(t) with a nonzero mean value;
(e) amplitudes B,, of sequence (10) of the base pulses Pg(t) that
X=0;

() the resulting displacement u(0, t) of the boundary x = 0;

(9) the desired displacement uy(t) with azero mean value;

(h) amplitudes B, of sequence (10) of the base pulses Yg(t) that
x=0; and

(i) the resulting displacement u(0, t) of the boundary x = 0.

STABILITY OF THE SYSTEM

Let us formulate the stability condition for a damp-
ing system to prevent the unlimited growth of the
impact amplitude. The origin of instability may be both
internal (connected with the compensation for the sys-
tem’s own inevitable random errors) and external (con-
nected with the special features of the synthesized tra-
jectory ug(t) preset from outside).

(i) Internal source of instability. We assume that, for
azero preset displacement uy(t) =0, one “wrong” base
pulse of displacement Yg(t) with the amplitude &, # 0
accidentally appears at the instant t = O; then, algo-
rithm (11) tends to provide for u(0, t) = 0. Sequence of
pulses (9), which serves to compensate for the distur-
bance of the form &, Wg(t) according to algorithm (11),
has the amplitude distribution

Ba(€1) = &(Wo0/2)(-1)"07, (12)
where 0 =T/(31y) = 1, 2, 3, .... From Eq. (12) it fol-
lows that, for

01, (13)

the conditions lim|B,| =0 and lim ZE:1|BK| <oware
n - o n - o

satisfied and the system is stable. The value of the aver-
aging interval being a multiple of 31y, is needed for the
most efficient suppression of the oscillating component
in the error signal u; — ug.

approximates the prescribed displacement u(t) of the boundary

approximates the prescribed displacement up(t) of the boundary

(i) External source of instability. Assume that noise
in the system is absent, O = 1, and u;(t) # 0. Thetime
average value of every base pulse Yg(t — nT) equals
zero. Then, for the synthesis of a constant displacement
A, (Fig. 5d), during the characteristic maximum inter-

val Ta = TVW,, Of sign constancy of the function u(t),
the amplitude of base pulses B,, should increase linearly

from A, W5 att=0to

(Br)max = (1+ T Tv) AW

a t = T, (See Fig. 5€). In addition, after the termina-
tion of algorithm (10), (i.e,a B,=0and t > 1,,), @
powerful reverse displacement (Fig. 5f) of the bound-
ary with the amplitude

|U(O, Tmax T TV)|max = |Bn| maxLIJO

= (14 TaTV)A > A,
isinevitable.

The large amplitude of reverse displacement is
caused by the necessity of obtaining the zero value of

theintegral ™ "™ (0, tydt = 0, where the function u(0, t)

consists of the pulses Yg(t — NT) with zero mean in time.
The presence of a nonzero constant component in the
signal ug(t) is equivalent to the tendency T, — ©
and, correspondingly, |u(0, Ty + TWlmex — © and

(14)

(15)
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[Brlmax — ©0, which implies instability of the system.
Figures 5d-5f illustrate the incorrectness of the synthe-
sis of afunction with nonzero mean using the function
combination Yg(t — nT) (Fig. 5d) with a zero time-aver-
aged value. Figures 5d-5f al so show the process of syn-
thesis of the trajectory u(t) with azero mean value by
algorithm (11). In this case, the result of synthesis
(Fig. 5i) and the sequence of amplitudes B, (Fig. 5h) of
base pulses are fully adequate to the stated problem.
The prescribed rectangular trgjectories u; shown in
Fig. 5 are not smooth (as was supposed above) but, all
the more, they demonstrate the efficiency of algo-
rithm (11). For 1y, < T, the amplitude of the nth base
pulse may be approximately evaluated as

TN

B, = (WoTy/2)™ .f ug (t)dt,
0

which yields an unlimited increase in B, with n — oo,
Therefore, for stability of the system (or, for the finite-
ness of the quantities|B,| < 0 and |u(0, t)| < ), itisnec-
essary to exclude a constant component from the signal
u(t) — ug(t). For thispurpose, it issufficient at theinput
of algorithm (11) to insert

e=>1 (16)

series-connected differentiating RC networks with a
time constant Ty > T, Which are described by the

operator F (see Eg. (11)). Such networks with large
time constants suppress the Fourier components in the
error signal u-(t) — uy(t) in a narrow frequency band
|w|< 21715 near the zero frequency but do not distort
the signal at the frequencies 2171, < |W|< W ASWaS
mentioned above (seerelation (1)), we consider thetra
jectories uy(t) with a zero power at zero frequency.
Estimates (14) and (15) of the quantities (B,,)ma @nd
[U(0, Trmax + Tv)|max IMpPlY Stronger requirements on the
dynamic range of compression (expansion) of the
piezoelectric material. However, if, instead of one
homogeneous piezoelectric layer of thickness h,, we
use an echelon (Fig. 2) of N, > 1 layers that have a
thickness h,/N, and opposite polarizations and are el ec-
trically connected in parallel, then, their static expan-
sion (compression) under the action of the same voltage
will be N, times greater. This is possible because the
absolute value of linear expansion (compression) of a
piezoelectric is proportional to the applied electric volt-
age but does not depend on the layer thickness. How-
ever, in this multilayer piezoelectric system, the
recharging current is greater by afactor of N..

THE EFFICIENCY OF CONTROL

If conditions (13) and (16) determining the stability
of the system are satisfied, the efficiency of the system
is characterized by the closeness of the measured coor-
dinate ug(t) of the displacement of the boundary x =0
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to the prescribed trgjectory up(t). We take into account
such disturbing factors as the following: (i) random
noise (an additive factor) with the relative value §, < 1
in measuring and actuating units of the system and (ii)
hardware distortions (a multiplicative dynamic factor)
with the relative value 8, << 1 in measuring and actuat-
ing units.

(i) Random noise. We consider a sequence of
“improper” (to be suppressed by the algorithm) pulses
& Wg(t — nT) with the random amplitudes &, where —
< n< +oo, We assume that the amplitudes §,, have azero
mean value [§ ,[= 0 and are uncorrelated; i.e., [§ & ,[ =
X*0,m Wherex =const > 0, §,,,=0forn#z m, and 8, =
1 for n = m. Every nth pulse beginning at the instant
t = nT generates a sequence ZL B (€ Wg(t — mT)
of compensating base pulses with the coefficients
Bn(&n) = En(Wo0/2) (=DM ™ (m=0, 1, 2, ...) (see
Eg. (12)). Then, we obtain the estimate of total average
noise power (1 )= (1 — OF2)~'x2 of thetrgjectory u(0, t)
at the instant T due to the random errors &, of ampli-

tudes of the base pulses started at theinstants—oo < t <
without taking into account the averaging over the
interval T — Ty, < t < T. With allowance for the interval
T, of time averaging in agorithm (11), the relative
noise error 9, of the trgjectory synthesisis

&< (1-07) "0, < 1,
where & = X/A,, << 1 isthetotal relative error of mea-
suring and actuating units of the system (see the next
section).

(ii) Hardware distortions. With the increase in T,
(or 0), the noise error 8, decreases, but therelativeiner-
tial dynamic distortion &, = T\/T,,;, << 1 of thetrajectory
ug(t) grows. If both 3, and &, are small, then the total
relative error [Os] of the synthesis can be represented as
the sum o; = §, + &,. Anincrease in T, leads to a
decreasein d, and anincreasein &,. Then, thereisacer-

tainvalue of Ty for which (8;); =0and s isminimal.

MEASUREMENT OF THE COORDINATE
OF THE CONTROLLED BOUNDARY

We represent the measured coordinate u(t) of the
boundary x = 0intheform

t

up = W(1) +J'dZI¢(E)dE,

where @(t) ~ M{u(-2h.— h,, t)}; isthe signal of aniner-
tial accelerometer with a mass M (Fig. 2) and with a
sensing element located at the point x = —2h.— h;;
Y(t) ~ u(0, t) — u(-2h.— h,, t) isthe signal of the sen-
sor measuring the distance between the boundaries
x =-2h.—h, and x = 0 (for instance, aminiature optical
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interferometer). A rather large mass of the inertial body
of the accelerometer providesfor its sensitivity to arel-
atively weak slow signal @(t). A powerful component
of the signal uy(t) at technological frequencies cannot
be represented adequately by the accelerometer
because of the propagation of sound waves in its iner-
tial body. However, the source of high-frequency radia-
tion is positioned at the point x = —2h, at a distance h,
from the accelerometer and, owing to the high-fre-
guency attenuation factor

0, = exp[-a(r/ty)h] < 1, (17)
influences the signal @(t) much less than ug(t). Condi-
tion (17) is compatible with smallness (2) of the active
layer thickness

€ = h +2h, < c,Tmn
only when
h, > c1y.

It is easy to see that neither the inertial accelerome-
ter nor the optical interferometer taken separately can
provide the measurement of displacement of the bound-
ary x=0relativeto theinertial reference systemin such
awide frequency band and in the absence of a mechan-
ical support.

CONCLUSIONS

We considered a one-dimensional system consisting
of piezoelectric layers x O [-h,, 0], x O [-2h., —h.] and
a layer of a high-frequency absorbing polymer in a
homogeneous elastic isotropic medium occupying the
regions x < —2h.— h, and x > 0. The boundaries x = 0,
x = -h,, and x = —2h, were assumed to be transparent to
sound.

The minimal-duration configuration of voltage

pulses §g (t) and $& (t) applied to the layersx O [-h, 0]
and x [ [-2h,, —h ] is determined, for which the field at
the left (for x < —2h.— h,) is absent and, at the right (for
x > 0), a wave (wavelet) of particle displacements
u(x, t) = Yglt—(X/c,)] propagatesin the medium with an
amplitude proportional to the amplitude of the electric

pulses $g and ¢s. The function Yg(t) has the duration
3h,/c. and consists of two rectangular pulses of differ-
ent polarity and the same duration h,/c, separated by a
pause of the same length h./c.. The momentum conser-
vation law for the medium in the absence of thefield at
the left determines the zero mean value of this wave.

A wavelet approximation of the prescribed smooth
trajectory uq(t) of the boundary x = 0 by bipolar pulses

ARABADZHI

B, Wg(t — nT) of displacement with a repetition period
T=2h/c.(n=1,2,...), which are produced by the cor-
responding sequence of eectric pulsesB,$g (t—nT) and

B, P& (t—NT), isconsidered. Every pulse of the sequence
is partialy superimposed on the preceding one.

A control algorithm determining the amplitudes B,
of the pulses Y(t — nT) on the basis of the error signal
measurement within the preceding time interval T, is
formulated. It is shown that, for stability of the synthe-
Sis, itisnecessary to do thefollowing: (a) to average the
error signal over theinterval T, that isamultiple of the
duration 3hy/c. of the function Wg(t) (to suppress the
oscillatory component) and (b) to eliminate the zero
frequency from the error signal. The accuracy of the
trajectory synthesisis evaluated.

A technique for measuring the displacement of the
boundary x = 0 with respect to an inertial reference sys-
tem in a wide frequency range in the absence of
mechanical support is suggested.

The system of synthesis of a prescribed trajectory of
acontrolled boundary isaversion of a Huygens source
[1, 2]; it hastheform of athin continuous active coating
on the protected surface and is considered in the tempo-
ral (pulse) representation.
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Abstract—The results of research into the design and optimization of laboratory sources of intense airborne
ultrasound are reported. Two types of sources are studied: multielement arrays of small-size piezoelectric radi-
atorsand single membrane transducers of a capacitor type. The measured characteristics of the ultrasound fields
and the audible sound fields generated in air due to the nonlinear interaction of high-frequency waves are pre-
sented. Applications of nonlinear acoustic problemsin air are discussed. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Ideas about the possibility of a directional low-fre-
guency radiation caused by the interaction of intense
high-frequency waves and the possibility of receiving
low-frequency signals modulating an intense high-fre-
guency beam were put forward by V.A. Zverev
(together with A.l. Kalachev) and P. Westervelt more
than 40 years ago. The history of these ideas and their
experimental verification and implementation in the
original devices was described by Zverev in a historic
essay under the title “How the ldea of a Parametric
Acoustic Array Was Conceived” [1].

Parametric arrays operating in a fluid were studied
in detail and, owing to their unique characteristics, have
found wide application in underwater acoustics [2].
Arrays operating in air [3—7] appeared later than their
underwater analogs and could not find wide application
for along time. Presumably, this was related to the fact
that nonlinear problems of airborne acoustics were not
astopica (at that time) and, hence, the devel opment of
sources of intense coherent airborne ultrasound was of
no particular interest.

Today, interest in the problem of nonlinear radiation
of airborne sound has quickened in connection with
some applications. These primarily include the possi-
bility of detecting inhomogeneities in the atmosphere
by sounding the latter with a narrow-beam sound signal
of tunablefrequency [3, 4]. Considerableinterest isalso
being expressed in “parametric” loudspeakers [5-7],
which produce unusua acoustic effects (e.g., selec-
tively transmit a speech signal to an individual listener
or form amoving localized source of sound) and offer
commercial success to the designers of the correspond-
ing audio systems. The advantages of parametric
microphones are described in [1].

From our point of view, the use of intense sources of
narrow-beam sound and ultrasound offers considerable

promise for acoustic diagnostics and nondestructive
testing. As is known, the ratio of the energy flux
through a boundary between gas and a condensed
medium to the incident energy flux is fairly small:
about 103-10* (see, e.g., [8]). This means that, for a
reliable detection of the scattered signal in the remote
nondestructive testing of solid articles, it isnecessary to
use high-intensity ultrasound. In this case, the signal
may have a combination frequency and originate from
astructural inhomogeneity (e.g., near thetip of aninter-
nal crack, whose vicinity is characterized by strongly
nonlinear properties[9]). The use of such narrow-beam
tunable sources as parametric radiators provides the
possibility to determine the frequency response of a
scattering inhomogeneity. In addition, one can selec-
tively excite specific types of vibrations, for example,
Lamb waves or Brillouin modes, in a plane-parallel
plate by irradiating it with a narrow beam incident
under a certain angle to the surface [10, 11].

ANTENNA ARRAYS

In view of the aforementioned applications, we
developed multidlement antenna arrays for the excita-
tion of intense airborne ultrasound.

Each array consisted of small-size radiators repre-
sented by stock-produced radio-electronic devices. The
active element of each of these devices was a bimorph
piezoelectric plate 10.6 mm in diameter. At the center
of each plate, where the displacement was maximal, a
conic horn made of a light metal with a diameter of
7 mm was welded to provide a better matching with air.
The whole structure was placed in a cylindrical casing
and emitted radiation through the end of the cylinder,
which was closed by an acoustically transparent net.

The measured amplitude—frequency response of a
singleradiator isshownin Fig. 1. The frequency depen-

1063-7710/05/5102-0147$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Amplitude—frequency response of a single radiator.
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Fig. 2. Directiona patterns of two vertical rows of smal-size

radiators for different distances between the rows: (a) 36,
(b) 72, and (c) 108 mm. The difference frequency is4 kHz.

dence of the acoustic pressure level exhibits many res-
onance maxima. The highest of them is observed at a
frequency of 39850 Hz. Therefore, we choose the oper-
ating frequenciesin the vicinity of 40 kHz with theaim
of providing for an efficient generation of ultrasonic
waves and, hence, of nonlinear signals in the audible
frequency range. The radiator operated in the linear
mode when the amplitudes of the aternating voltage
supplied to it varied from 1 to 20 V. At the maximum
voltage of 20V, the ultrasound level measured at adis-
tance of 30 cm was 120 dB.

In the first series of experiments, the frame of the
array was a rectangular fabric-based laminate plate, in
which holesweredrilled to fix the small-size piezoel ec-
tric radiators. On this plate, it was possible to mount
49 radiatorsforming a7 x 7 square pattern. Inthis case,
the radiators were almost immediately adjacent to each
other, with the distance between their centers being
equal to 18 mm. The experiments were carried out with
an array completely filled with radiators and also with
an array containing only two vertical rows of seven
radiators each. In the latter case, the rows were spaced
at different distances from each other, specifically, from
18 to 108 mm.

The signal supplied to the radiators of the array was
atwo-frequency one formed as a sum of two harmonics
with frequencies close to 40 kHz and amplitudes up to
10V. We studied the directional patternsin the horizon-
tal plane for the difference-frequency wave (DFW)
generated by such an array. The measurements were
performed at a distance of 3.3 m from the plane of the
plate.

Figures 2a—2c show the directiona patterns obtained
for the DFW signal of frequency 4 kHz that was pro-
duced by two vertical rows of radiators spaced at 36,
72, and 108 mm, respectively. Calculations were per-
formed by representing each radiator as a point source
with a directional pattern approximating the one mea-
sured for a single radiator in the angular range from
—60° to +60°. Figure 2 demonstrates a fairly good
agreement between the calculated and measured pat-
terns near the axis. For large angles, the accuracy of the
main |lobe approximation increases with the distance
between the rows of radiators.

Directional patterns obtained with the completely
filled plate (with 49 small-size piezoelectric radiators)
are shown in Figs. 3a and 3b for DWF frequencies of
500 Hz and 4 kHz.

The second series of measurements was carried out
with aring-shaped array. It consisted of a fabric-based
laminate ring 360 mm in diameter with 48 small-size
radiators fixed on it at regular intervals. Figures 4a and
4b show the angular dependences of the DFW ampli-
tude measured for difference frequencies of 500 Hz and
3 kHz at a distance of 4 m from the ring. At this dis-
tance, the ultrasound pressure level remained relatively
high (124 dB), while the DFW divergence law was
closeto spherical.
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Fig. 3. Directional patterns of asquare array. The difference
frequency is (a) 500 Hz and (b) 4 kHz.

Thethird series of experiments was carried out with
afocusing array. It consisted of a disk with groups of
small-size radiators fixed on it. The groups were
arranged as rings whose radii approximately corre-
sponded to the boundaries of the Fresnel zones. The
electric signals supplied to neighboring rings had a
phase shift of 1t between them. The structure was care-
fully optimized to obtain the maximal intensities of
ultrasound in the focal region for a given focal length
and the limitationsimposed on the diameter of the array
and the number of radiators. In addition, it was neces-
sary to obtain a sufficiently smooth field distribution
along the beam axis.

Two identical arrays containing 90 radiators each
were manufactured. We plan to later use these arrays at
different but close frequencies in the confocal position
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Fig. 4. Directiona patterns for the DFW obtained with a
ring-shaped array. The frequency of the signa is (a) 500 Hz
and (b) 3kHz.

to obtain apronounced nonlinearity and to generate low
(audio) frequencies near their common focus.

The focus of each of these arrays was at a distance
of about 32 cm from the plane of the source of radia-
tion, and the diameter of the focal spot was 2—-3 cm. At
reasonable loads allowing for an almost infinitely long
operation of the device, the maximal intensity level
near the focusreached 152 dB. However, for safety rea
sons, the experiments were performed with lower inten-
Sities.

We measured the profile of the ultrasonic signal
immediately before the focus and behind it. We
observed typical nonlinear diffraction distortions asso-
ciated with the formation of steep wave fronts and the
asymmetric distortion of half-periods of different
polarity. A detailed comparison of the experimental
data with the theory is planned to be performed later.
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Here, we note only that the evolution of the profiles
and spectra of waves produced by the arrays differs
from the well-investigated evolution of periodic sig-
nals excited in a nonlinear medium by single radia-
tors.
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MEMBRANE TRANSDUCERS

Along with the radiating arrays, we fabricated a
family of radiating membrane transducers of the type
described in [12]. The principle of their operation is as
follows. A light metallized polymer film (membrane) is
dlightly stretched over a rough surface of a conducting
disk. A constant voltage component induces charges of
opposite signs on the membrane and on the disk. As a
result, the membrane is pressed to the rough surface.
Under the action of an alternating voltage component,
parts of the membrane that lie over depressions of the
surface begin to vibrate. In this case, the air in the
depressions plays the role of an elastic load, and each
of these small areas operates as a small capacitor-type
radiator.

First, we studied the amplitude—frequency
responses with the use of four disks of different diame-
ters. Grooves on their surfaces were scratched by a
rough abrasive cloth. The polarization voltage was
equal to 200 V, and the amplitude of the alternating
voltage was 50 V. A microphone was placed at the axis,
at a distance of 1 m from the membrane surface. The
dependences obtained in the experiment are shown in
Fig. 5. The curves corresponding to different diameters
have the same shape with two smooth maxima and a
minimum between them. The positions of the extrema
on the frequency axis are approximately the same for
al curves. The sound pressure level increases with
increasing diameter because of the increase in the
working area of the radiator and, hence, in theradiation
power.

In the next experiment, we measured the ultrasound
pressure levels at the maxima of the amplitude—fre-
guency response for three disks with the same diameter
of 30 mm but with grooves scratched by different abra-
sive cloths: rough, intermediate, and fine. The frequen-
cies corresponding to the extremavaried within narrow
limits, but the radiator with rough grooves proved to be

Angle, deg
-90 -60-30 0 30 60 90

~70%
Relative amplitude, dB

—o— Experiment
—— Cadlculation

Fig. 7. Angular dependences of the radiation levels for ultrasound modulation frequencies of (a) 3 and (b) 4 kHz.
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the most efficient one: it provided a 10-dB-higher pres-
sure level compared to the two other radiators.

Then, wemeasured the level of thefirst maximum as
afunction of the groove depth (from 0.2 to 0.6 mm) for
groovesthat were cut by amilling machine at aconstant
step. The highest ultrasound pressure level was
obtained for the smallest groove depth (0.2 mm). This
level dso was 18 dB higher than the pressure level
achieved with the disk with grooves made by the rough
abrasive cloth. Thus, we determined the parametersthat
provided for the generation of ultrasound with maximal
intensity by the membrane transducers of the afore-
mentioned type.

In thefollowing experiments, we used alarge source
20 cmin diameter with 0.1-mm-deep grooves. Figure 6
showsthe angular dependences of the normalized ultra-
sound level obtained with this source of radiation at dis-
tances of 1 and 4 m at the first maximum (62 kHz). For
comparison, in the same figure, we present the corre-
sponding dependence obtained for a disk 35 mm in
diameter at afrequency of 48 kHz at a distance of 1 m.
In the latter case, the diffraction length is about 14 cm;
i.e., we have a completely formed directiona pattern at
this distance. Itsangular width is evidently much greater
than that for the disk with the diameter of 20 cm.

Thelarge source (20 cm) was loaded with an electric
signal generated at afrequency of 62 kHz (correspond-
ing to the first resonance) and modulated at afrequency
of 34 kHz. In air, a nonlinear demodulation takes
place, which results in the generation of an audio-fre-
guency wave. At adistance of 1 m, itslevel was 55 dB
for the frequency of 3 kHz and 60.5 dB for the fre-
guency of 4 kHz. Thelevel of the high frequency signal
was 130 dB at the same distance. The angular depen-
dences of the sound pressure levels measured at a dis-
tance of 4 m for frequencies of 3 and 4 kHz are shown
in Figs. 7aand 7b.

CONCLUSIONS

Arrays of small-size piezoelectric radiators and
membrane transducers generating intense airborne
ultrasound have a number of characteristic features,
which include both advantages and drawbacks. There-
fore, their use in experiments and applications may be
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advantageous or inappropriate, depending on the spe-
cific problem to be solved.

The sound pressure levels that were achieved in the
experiments described above can be noticeably
increased with the use of more advanced materials and
technologies.
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Abstract—Results of laboratory experiments aimed at studying the spatial distribution of the difference-fre-
guency acoustic wave field in a shallow-water waveguide with a sloping bottom are presented. It is shown that,
in an inhomogeneous waveguide, the direction toward the radiation maximum in the angular spectrum of the
low-frequency wave continuously varies as the rib of the wedge is approached, whereas, in a homogeneous
waveguide, the angular spectrum is shaped. A spatial filtering of low-frequency modes produced by a paramet-
ric radiator and reflected from the coastal wedge is experimentally realized. The results of the experiment are
confirmed by numerical modeling. Problems of the physical adequacy of the experimental results obtained

under actual and laboratory conditions are discussed. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

The study of acoustic wave propagation in shelf
zones of the ocean presents a fairly complex problem
because of the difficultiesinvolved in the determination
of the sound field characteristics when the parameters
of the medium depend not only on the depth of the
waveguide but also on the horizontal coordinates. For
the first time, the solution to the problem of wave dif-
fraction by a wedge was obtained in a general form by
Sommerfeld. However, this solution often does not
allow one to represent the physical picture of the field
without intricate additional transformations. Therefore,
at present, the problems of sound propagation in almost
stratified media, i.e., in media whose properties slowly
vary in the horizontal direction, arein most cases theo-
retically solved by using one of the two following
approaches.

One of them is based on the well-known theory of
horizontal rays and vertical modes [1, 2] with the
assumption that no interaction occurs between them. In
this method, taking into account the variations of both
sound velocity and waveguide depth in both space and
time, a combination of norma modes and horizontal
raysisused. The other approach isbased on theray rep-
resentations of high-frequency sound fields in media
whose parameters depend on three coordinates. For
example, in[3], an approximate relationship (called ray
invariant or Weston invariant) was derived, which then
was used in [4] to construct horizontal projections of
ray paths with multiple reflections from the bottom and
the surface of the sea. Expressionsfor “horizontal rays’
were obtained in the form of definite integrals for the
case of a sea depth depending on a single horizontal
coordinate. Using the relations between rays and
modes, Weston al so considered the possibility of apply-

ing Snell’slaw to describing the “ horizontal refraction”
of rays multiply reflected from the bottom and the sur-
face. In connection with this, one should note the pub-
lications by Komissarova[5, 6]: in addition to theoreti-
cal studies, she gave detailed descriptions of numerical
and field experiments on sound propagation in actual
oceanic conditions, where the depth of the water layer
depended on both horizontal coordinates in an arbi-
trary way.

The experiments described in [5, 6] were performed
with linear point sources of sound. A selective control
over the mode composition of the sound field can be
achieved with the use of horizontal and vertical phased
linear transmitting arrays of considerable length or with
the use of parametric sources of sound. The latter pos-
sibility is of special interest for oceanographic investi-
gations. Thisisrelated to the unique properties of para-
metric radiators, specifically, to the extremely narrow
directional pattern at alow radiation frequency. The use
of intense sourcesthat have afairly long region of inter-
action of the initial pumping waves makes it necessary
to take into account the waveguide nature of sound
propagation and the inhomogeneities of the mediumin
the region where the difference-frequency wave is
formed.

However, inthe literature available to us, we did not
encounter any information on experimental studies of
parametric sound radiation in waveguides whose
parameters smoothly vary along the sound propagation
path. With the aim of partialy filling this gap, we car-
ried out experimental studies of the sound fields pro-
duced by parametric sound sources in waveguides that
modeled a shelf zone of the ocean.

Thelaboratory modeling of nonlinear acoustic wave
propagation has some distinctive features compared to

1063-7710/05/5102-0152$26.00 © 2005 Pleiades Publishing, Inc.
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the scaled physical modeling of linear wave propaga
tion. Let us consider thisissue in more detail [7].

SPECIFIC FEATURES OF THE SCALED
PHYSICAL MODELING OF NONLINEAR
ACOUSTIC WAVE PROPAGATION

A method often used at the Department of Acoustics
of the Nizhni Novgorod State University for studying
the propagation of sound in an oceanic medium is lab-
oratory physical modeling. The department’'s wide
experience in the physical modeling of sound propaga-
tion in the ocean was summarized in a monograph by
Professor A.N. Barkhatov, which was published in
1982 [8]. Since the mid-1980s, this method has been
successfully used in studying the nonlinear effects that
manifest themselves in the underwater propagation of
intense acoustic waves [9-11].

The physical modeling of linear problems in the
acoustics of ideal inhomogeneous media should be per-
formed with a retention of the similarity between the
model and the phenomenon under study. Thisis possi-
ble when the condition kL = const is satisfied for the
field and laboratory experiments, where k is the wave
number and L isthe respective spatial scale. In addition,
the so-called modeling parameter Q isintroduced [8]:

L/l =f/F=NA=Q,

where L; represents the microscales of thefield physical
experiment (the characteristic size of inhomogeneities,
the ocean depth, the propagation path, etc.), |; repre-
sents the corresponding scales of the laboratory exper-
iment, f and A are the frequency and wavelength in the
laboratory experiment, and F and A are the correspond-
ing parameters of the field experiment.

Asisknown, the velocity of sound in the ocean var-
ies much faster with depth than in the horizontal direc-
tion. This alows one to approximately describe the
ocean as a horizontally layered medium, whose param-
eters vary only dightly along the horizontal [12].

For a correct scaled physical modeling of the under-
water sound channel, it is necessary to leave the same
absolute velocity drop but scale down the macroscopic
parameters of the problem (the waveguide depth) and
increase the radiation frequency by a corresponding
factor. However, under laboratory conditions, it is not
always possible to observe the formation of conver-
gence zones (zones of enhanced illumination) that lie at
distances of 50-70 km from the source in field condi-
tions. For example, when the modeling parameter is
Q = 10* and the depth of the underwater sound channel
axisisz,. = 1.5 km under field conditions, the distance
to the first convergence zone under laboratory condi-
tionsisL,,, = 5-7 m, which exceeds the size of our |ab-
oratory tanks. Therefore, in the laboratory experiments,
it is necessary to reduce the cycle length of sound rays
by a disproportionate increase in the vertical gradients
of sound velocity.
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It should also be noted that, in modeling the sound
propagation in a shallow sea under laboratory condi-
tions, it is impossible to retain the same value of the
parameter D/H, where D is the aperture of the sound
source and H is the depth of the waveguide. This vio-
latesthe similarity of the angular characteristicsof radi-
ation in the field and laboratory experiments.

In the modeling of nonlinear effects in an ideal
medium, the processes will be physically identical if
the similarity parameter Q holds for the characteristic
nonlinear length L, = 1/keM, where € is the nonlinear
parameter and M isthe Mach number. This conditionis
satisfied if M has a constant value in the field and labo-
ratory experiments.

In the case of studying the propagation of acoustic
waves in linear dissipative media, the method of a
scaled physical modeling is, generally speaking, unre-
alizable, because the sound absorption coefficient non-
linearly depends on frequency. This leads to a dispro-
portionately high attenuation in the modeling of sound
propagation under laboratory conditions. However, for
linear problems, it is possible to introduce corrections
compensating for the attenuation and then take into
account this difference in the numerical processing of
experimental results [8].

In analyzing nonlinear problems, the relative role of
nonlinear and dissipative effects is also characterized
by asimilarity number represented by the acoustic Rey-
nolds number Re, which isinversely proportional to the
radiation frequency [13]. This does not allow one to
obtain a simultaneous equality of the similarity num-
bers M and Re in the laboratory and field experiments
when considering the nonlinear interaction of sound
waves in inhomogeneous dissipative media. In particu-
lar, since the attenuation is one of the decisive factorsin
the formation of the directional patterns of parametric
radiators [14], the physical modeling gives only aqual-
itative picture of the parametric source operation in an
oceanic medium.

However, despite these circumstances, the method
of laboratory modeling allows one to carry out unique
experimental studies in physical underwater acoustics
under strictly controlled laboratory conditions. With all
the aforementioned disadvantages, it remains a power-
ful instrument for studying sound fields in the ocean.

LABORATORY ACOUSTIC SYSTEM

The physical modeling was performed using the
acoustic system of the Department of Acoustics of
Nizhni Novgorod University. Earlier, this system was
used to study the nonlinear generation and scattering of
sound waves in a homogeneous space and under the
conditions of waveguide propagation [15] and also to
study the diffraction of sound waves by smooth and dis-
crete inhomogeneities of amedium [16]. In addition, a
physical modeling of the low-frequency sound propa-
gation in an oceanic medium was carried out [17] and
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Fig. 1. Flow chart of the experimental system.

methods for the acoustical diagnostics of the underly-
ing surfaces of shallow-water oceanic waveguideswere
developed [18].

The experiments were performed in a laboratory
tank (W) with anechoic walls. The tank was 500 cm in
length with a width of 65 cm and a depth of 55 cm. It
was filled with water (characterized by sound velocity
¢ and the density p) and had a suspended bottom (with
a sound velocity ¢, and a density p,), which could be
moved by screwsin the vertical planefrom 0to 17 cm,
the desired depth being set with an accuracy of £2 mm.
Thus, it was possible to model aplane waveguide and a
waveguide with a sloping bottom.

A simplified flow chart of the experimental system
is shown in Fig. 1, where the relative positions of the
source and receiver are indicated.

Below, we briefly describe the operation of themain
parts of the experimental system.

High-frequency oscillations were produced by two
high-power amplifiers (>, and ©>,), to the inputs of
which continuous sinusoidal signals of frequencies f,
and f, were supplied from the reference frequency unit
(=). Toreducethelevel of reverberation noise dueto the
boundaries of the volume under study, a pulsed radia-
tion mode was used in the experiments. The duration of
the pulses 1, satisfied the condition f,t, > 21, which
ensured the quasi-monochromatic radiation mode.

The modulation pulses were produced by a genera-
tor (T,) of rectangular video pulses with a controlled
duration 1, and a repetition rate F, = 64 Hz. These
pulses, via a pulse amplifier (M,), were supplied to the
modulation inputs of the amplifiers (>, and>,), where
the formation and amplification of radio pulses took
place. The signal formed in thisway was supplied to the
acoustic transducer of pumping waves (S).

Thesource of thesignal (S) wasacircular piston-type
piezoceramic transducer with diameter D = 2.8 cm,
which formed a weakly divergent acoustic beam at the
frequency F, = 200 kHz (the pumping frequencieswere
f, = 3.2 MHz and f, = 3.0 MHZz). With this transducer,
the angular width a of the low-frequency beam of the
difference-frequency wave was 1.5°. The transducer
was mounted on a rod that allowed for the positioning
of the source in depth z, (with an error no greater than
1 mm), as well as for the orientation of the axis of the
parametric sourceradiationin thevertical plane (angle3)
with an accuracy of 1° or better.

To determine the mode of operation of the pumping
transducer, we performed preliminary experiments in
the unbounded space. The attenuation length deter-
mined experimentaly was |, = 1.47 m. As is known
[14], the mode of operation of a parametric source is

L2200
R0
the diffraction divergence length of the transducer at a

determined by the parameter n = where R is
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high frequency, Q,= 21, and wy = 21t; (j = 1, 2). In our
case, wehad n < 1, so that the formation of the charac-
teristics of the difference-frequency wave radiation was
close to the Westervelt regime.

The synchronization of the operation of the whole
system was provided by a sync pulse produced by the
same generator (T)).

When it had been transmitted through the medium
under study, the signal was received by an omnidirec-
tional piezoceramic receiver (R). The distribution of
acoustic fields (in al three coordinates (r, y, 2)) was
measured by a piezoceramic receiver whose size was
small compared to the wavelength. The receiver was
mounted on a carriage that could uniformly move in
three perpendicular directions (along the length, width,
and depth of the tank). The velocity of the receiver
motion along the hydroacoustic tank was 'V = 1.8 cm/s
in al experiments. The uncontrolled velocity fluctua-
tions did not exceed +£0.005 cm/s. In Fig. 1, the initial
distance between the source and the receiver of sound
is denoted R, and the base of the receiver motion, L.
The accuracy of the receiver positioning along any of
the coordinate axes was within 1 mm.

After two-stage amplification and filtering per-
formed by an amplifier (*>;), the pulsed received signal
was supplied to the gate unit (M,) controlled by the gate
pulse generator (T,). Pulses produced by this generator,
which were characterized by a duration 1, and a con-
trolled delay time with respect to the onset of the trans-
mitted pulse, alowed us, first, to suppress the pulsed
reverberation noise and, second, to measure the ampli-
tude at any point of thereceived signal. The gated pulse
was supplied in paralel to both inputs of a multiplier
(%), which made it possible to measure the intensity of
the signal. As a result, at the output of the multiplier
(%), video pulses were formed with a duration 1, and
an amplitude depending on the amplitude of the
received signal. The transformed signal was supplied to
an integrator (not shown in Fig. 1) controlled by the
pulse from the gate generator. Thus, the voltage formed
at the output of the integrator had an amplitude propor-
tional to the square of the amplitude of the pulsed input
signal. This voltage, in itsturn, was converted to adig-
ital code by an A/D converter and recorded on the disk
of a PC for a further processing. The sampling rate in
the A/D conversion was 50 Hz for all experiments.

Now, let us discuss the experimental results.

EXPERIMENTAL STUDY
OF THE ANGULAR CHARACTERISTICS
OF THE DIFFERENCE-FREQUENCY WAVE FIELDS
IN A PLANE WAVEGUIDE AND IN A WAVEGUIDE
WITH A SLOPING BOTTOM

In the experiment, we compared the angular (in the
horizontal plane) dependences of the difference-fre-
guency wave field in a plane waveguide and in a
waveguide with asloping bottom at different fixed dis-
tances R, between the source and the receiver.
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The waveguide under study is schematically rep-
resented in Fig. 2. It has the form of a homogeneous
water layer of variable depth with sound velocity ¢ =
1475 m/s and density p = 1 g/cm?. The water layer lies
on a doping aluminum substrate with longitudina wave
velocity ¢, = 6200 m/s and density p, = 2.72 g/cn?’; the
wedge angle @ is approximately equal to 0.78°. The
depth at the source site was the same as that in the ref-
erence waveguide and was equal to 38 mm. The dis-
tance r, between the source and the rib of the wedge
was 280 cm.

The plane reference waveguide has the form of a
homogeneous water layer of thicknessH = 38 £ 2 mm,
which overliesametal substrate parallel to the free sur-
face of the layer.

The orientation of the axis of the parametric source
radiationinthevertical plane,i.e., theangle 3, provided
the best excitation of the first three propagating modes.
The experimental studies of the mode structure of
acoustic field in the plane waveguide with the same bot-
tom model showed that the vertical structure of thelow-
number mode field virtually corresponds to the field in
awaveguide with two acoustically soft boundaries. The
eigenmodes of thiswaveguide are described in terms of
the simplest Pekeris model, namely, a waveguide with
aliquid bottom [9].

In [19], directiona patterns of single modes of the
difference-frequency wave in the horizontal plane were
calculated for an ideal waveguide with afree surface and
arigid bottom. An expression was obtained for the main
maxima of the directional pattern of the mth mode:

emmax O+ }ilHB_(B_Zm)Zf (1)

where K is the wave number of the difference-fre-
guency wave, H is the depth of the plane waveguide,
and ¢, = {(H) isthe grazing angle of Brillouin waves
of the mth mode. From Eqg. (1), it follows that, at some
preset slope angle of the source 3, thefield isformed by
different modes whose radiation maxima correspond to
different angles in the azimuth plane. This theory
agrees well with the results of the model experiment
carried out for arange-independent waveguide [9].
The analysis of Eg. (1) in the adiabatic approxima-
tion showsthat the angle 6,,,,.. characterizing the direc-
tion toward the radiation maximum of the mth mode
should increase if the depth of the waveguide decreases
along the path of sound propagation. Hence, in study-
ing the horizontal distributions of acoustic fields in
range-dependent waveguides, one should expect a
broadening of the angular spectrum of the fields gener-
ated by the source, as compared to the corresponding
characteristics measured in the plane waveguide.

The source depth z, and the angle 3 were fixed and
were the samein both experiments; in addition, z, = H/2.

The technique used for the measurements in the
waveguide with a variable depth is worth noting. In the
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Fig. 2. Geometry of the experimental problem.

experiments with the reference waveguide, the source
depth was fixed (z= H/2) for al distances R,, at which
the field sections were considered. The position of the
receiver in the middle of the water layer ensured the
reception of thefirst and third modes of thiswaveguide.

y
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Fig. 3. Directions toward the difference-frequency wave
radiation maximum determined experimentally in the plane
waveguide and in the waveguide with a sloping bottom.

In the waveguide with variable depth, the receiver
depth varied from section to section with distance from
the source toward the rib of the wedge in such a way
that the quantity zH = 1/2 remained constant; here, H
is the depth of the waveguide (wedge) at a distance r
from therib. As one can see from Fig. 2, this depth lin-

early dependsonr: H = HsrL , where H, is the depth of
0

the wedge at the source site. This technique was used
with the aim of retaining the amplitude ratios between
the normal modes forming the difference-frequency
wave field at different distances from the wedge rib.
The relative contributions of individual normal modes
to the resulting field remained invariable at different
distances from the source.

Figure 3 shows the experimental data on the spatial
positions of the radiation maxima of the difference-fre-
guency wave produced by the parametric radiator oper-
ating in the plane waveguide (crosses) and in the
waveguide with alinearly varying depth (asterisks) for
different source—receiver distances. The solid line
showsthetheoretically determined direction toward the
radiation maxima of the first propagating mode of the
waveguide with variable depth. The calculations were
performed using formula (1).
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From Fig. 3, one can see that the angular spectrum
of radiation in the plane waveguide is shaped, whereas,
in the wedge, the angular distribution of the maxima
noticeably broadens as therib is approached.

Thus, the experiment confirmed the assumption
that, in a waveguide with a sloping bottom in the case
of difference-frequency wave propagation in the direc-
tion of decreasing thickness of the water layer, the
angular spectrum of parametric radiation broadens
compared to the angular spectrum of thefield in theref-
erence waveguide.

MODE COMPOSITION OF THE REFRACTED
DIFFERENCE-FREQUENCY WAVE FIELD
IN A WAVEGUIDE WITH A SLOPING BOTTOM

According to the method of solving the problem of
sound propagation in an almost stratified medium,
which is called horizontal rays-vertical modes [2], the
field in the wedge can be represented as a superposition
of normal modes. The distribution of the field of a nor-
mal made in the plane ¢ = const in the waveguide zone
is determined by the two-dimensional wave equation
for alayered inhomogeneous medium:

2 2
OW  IW, r?(rw = 0. @)
or oy

From Eg. (2), it follows that the field of a single normal
mode in the horizontal plane (r, y) can be studied by the
methods developed in the waveguide problems for
smoothly inhomogeneous media, e.g., by the methods
of geometrical acoustics. In this case, the refraction
index of the medium can be represented in the form

2
~ _ Hm(r)
Np(r) = /1— 27 (3)

where mis the order number of the norma mode and
the quantity W, depends on r according to the transcen-
dental equation

P1 Hm
P ert-n) -
where n = ¢/c, and k = wy/c.

From Eq. (3), it follows that each single mode prop-
agates in the medium with a varying refraction index,
and each of the refracted mode rays hasits own path in
the horizontal plane. As the wedge rib is approached,
the effective propagation velocity of the mth mode
increases. With respect to the normal mode of a given
order m, the whole wedge region falls into two subre-
gions separated by the straight line

(2m-1)m
2kd /1 —n?

tanpy, @ = 4)

M =

)
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Fig. 4. Horizontal distribution of the refracted sound field in
the waveguide.

In the subregion wherer > r, I, the quantity p,, takes
on real values. In this subregion, the waveguide propa
gation of sound takes place. As the wedge rib is
approached, Y, decreases and the maximum of the nor-
mal mode profile moves toward the lower boundary. At
the same time, the exponential part of the profile grows
within the limits of the half-space. The normal mode
seemsto be gradually immersed in the half-space. This
phenomenon was called the vertica refraction of nor-
mal modes.

Thus, in the given acoustic waveguide, along with
the refraction of anormal mode in the horizontal plane,
which is determined by Helmholtz equation (2), adis-
placement of the norma mode in the vertical plane
takes place; under certain conditions, this displacement
leads to the emission of the wave energy into the half-
space. However, in this paper, we investigate only the
horizontal refraction of individual mode rays in the
waveguide zone.

The waveguide under study is an isovelocity liquid
wedge of angle @ = 5.07° overlying a metal substrate.
The parameters of the waveguide layer and the bottom
were described in the previous section. The depth of the
waveguide at the source site was 40 mm. The paramet-
ric radiator was placed at a distance of 45 cm from the
wedge rib. The axis of its radiation in the horizontal
plane made an angle 6, = 34° with the normal to the
wedgerib. In the experiment, we measured the distribu-
tion of the sound field intensity by areceiver uniformly
moving parallel to thewedgerib (they coordinate). The
distance between the wedge rib and the receiver varied
from 20 to 36 cm for different experiments. The
receiver depth was three-fourths of the waveguide
depth at a given distance from the rib for al measure-
ments. This configuration of the transmitting—receiving
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Fig. 5. Vertical intensity distributions for the first, second, and third modes.

system ensured the reception of all three propagating
modes.

Figure 4 shows the experimental results for the case
of thefield intensity measurement by areceiver moving
at adistance of 36 cm from thewedgerib. The samefig-
ure shows the paths of the refracted mode rays in the
horizontal plane for the first three propagating
waveguide modes of the difference-frequency wave.
Theseray paths (marked with numbers 7, 2, and 3 inthe
plot) were determined with the help of a computer pro-
gram using the MatLab package and the vertical
modes—horizontal rays computational algorithm [2].
The horizontal lines (marked as I, I1, and 111) indicate
the boundaries of the waveguide and nonwaveguide
zones for modes of respective numbers. One can see
from Fig. 4 that different modes with the same launch
angle B, inthe horizontal plane arerefracted in different
ways. The highest order modeisthefirst to be reflected,
and mode number one is reflected last.

The theory describes the propagation of monochro-
matic waves in the linear approximation. However, in
the experiments, we use a nonlinear traveling-wave
source. Evidently, the presence of soft boundariesinthe
region of interaction of high-frequency pumping waves
should distort the angular characteristics of the sound
field produced by the parametric radiator. In addition,
the sloping boundaries of the waveguide lead to a situ-
ation where each of the propagating modes of the dif-
ference-frequency wave, as well as the high-frequency
pumping waves, propagate over their own paths in the
horizontal plane. Naturally, in this case, the synchro-
nism between the pumping wave and the difference-fre-
guency wave characterized by alimited mode composi-
tionisviolated. The synchronism is affected by the loss
of collinearity of the initial pumping beam and the
modes parametrically generated at the difference fre-
guency. This mechanism deteriorates the directional
properties of the parametric radiator.

However, experimental studies have shown that, in
the waveguide under study, the directivity of the para-
metric source at the difference frequency remained suf-
ficiently high so asto alow for the selection of normal
modes in the refracted sound field with respect to the
gpatia y coordinate. At thetop right of Fig. 4, theinten-
sity distributions experimentally measured at distances
of 90 to 150 cm from the source are represented. One

can see that the spatial positions of the field intensity
maxima that correspond to individual refracted mode
rays agree well with the theoretical calculations. At
each of these maxima, the intensity of the difference-
frequency wave field was measured aong the depth of
the waveguide. The results of these measurements are
shown in Fig. 5. One can see that the vertical distribu-
tion of the sound field intensity measured at each of the
detected maxima (/, 2, and 3) correspondsto the inten-
sity distribution of the first three propagating modes.

Thus, the application of the narrow-beam low-fre-
guency radiation produced by anonlinear sound source
allowed us to demonstrate the filtering properties of
smoothly inhomogeneous media.

CONCLUSIONS

In conclusion, we will formul ate the main results of
this study:

(i) We discussed the problems of the physical ade-
quacy of the experimental results obtained under actual
and laboratory conditions. We noted that, in modeling
the nonlinear effectsin dissipative media, the method of
scaled physical modeling is, strictly speaking, unrealiz-
able, becauseit isimpossible to achieve a simultaneous
equality of the Reynolds and Mach similarity numbers
in the laboratory and field experiments.

(i) We presented experimental results on the spatial
distributions of difference-frequency sound wave fields
in awaveguide with a sloping bottom. We showed that,
in awaveguide of variable depth, the angular spectrum
differs from that in a plane reference waveguide. In an
inhomogeneous waveguide, the direction toward the
radiation maximum in the angular spectrum of the dif-
ference-frequency wave continuously varies as the rib
of the wedge is approached, whereas, in a homoge-
neous waveguide, the angular spectrum is shaped.

(iii) A spatia filtering of the difference-frequency
wave modes reflected from the coasta wedge was
experimentally realized. The results of the experiment
were confirmed by numerical modeling.
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Abstract—Optoacoustic conversion in diluted suspensions under the effect of nanosecond laser pulses is
considered. The mode of operation with moderate values of the laser fluence is studied theoretically and
experimentally. In this mode, a competition of the thermooptical and cavitation mechanisms of sound con-
version is observed, which leads to considerable fluctuations of the acoustic response from one laser pulse
to another. Analytical expressions for the basic characteristics of the acoustic signal are obtained. A simula-
tion of the statistical characteristics of the cavitation contribution to the signal is performed using the Monte
Carlo method. The experiment is based on the use of second harmonic pulses of aYAG laser and test suspen-
sions. The histograms of the amplitudes of acoustic signals can be used to discriminate between the mecha-
nisms of optoacoustic conversion and also can serve as the basis for diagnosing alow content of aninsoluble

phasein aliquid. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

In studying sound generation by laser radiation, one
sometimes has to deal with the probabilistic nature of
the effect. For example, studies of the random acoustic
field generated in the sea by laser irradiation of arough
sea surface were conducted in the presence of a ran-
domly inhomogeneous heterophase subsurface layer
[1,2].

A striking example of the statistical nature of optoa-
coustic conversion isthe effect of sound generation due
toirradiation of liquid suspensions and inhomogeneous
solutions by laser pulses. This effect is the subject of
the present paper. We restrict our consideration to
strongly diluted suspensions, and, hence, the effect is
considered under the approximation of a single scatter-
ing of light (the optoacoustics of strongly scattering
heterogeneous media is another rapidly developing
area of research [3)]).

Studying the dtatistical characteristics of the mecha
nisms underlying the optoacoustic conversion in diluted
suspensions is important from both fundamental and
applied points of view. For example, it is possibleto give
at least two examples of important medical suspensions,
the application of optoacoustic diagnostics to which is
very promising: suspensions of lipopolysaccharides (the
particle size is about several microns) [4] and suspen-
sions of gold nanoparticles[5].

FORMULATION OF THE PROBLEM

Apparently, the first studies of the probabilistic
nature of optoacoustic conversion in weakly absorbing

inhomogeneous liquids were conducted about 15 years
ago[6, 7]. At that time, optoacoustic spectroscopy basi-
cally provided an opportunity to attain a record sensi-
tivity in the determination of small admixture concen-
trationsin biological and medical solutions and suspen-
sions. The basis for the spectroscopy was the effect of
linear thermooptical generation of sound in liquids,
which were considered to be homogeneous solutions.
The quantitative basis of the measurements was the
well-known formula[8] for the peak level of the sound
signa observed in the direction perpendicular to the
beam axis in the case of liquid excitation by a short
(usually nanosecond) laser pulse:

3/2 1/2
)

Pn= (KBC'E)/(Ti8g “c,r ), (1)
where 1 isthe coefficient of optical absorption, Bisthe
coefficient of cubic thermal expansion, ¢ is the sound
velocity, E is the energy of the laser pulse, a, is the
diameter of the beam cross section, r is the distance
from the beam axis to the observation point, and C is
the specific heat of the solvent. This formula played an
important role in the analysis of homogeneous solu-
tions.

Experiments with optoacoustic conversion in inho-
mogeneous liquids reveal ed the nonstationary nature of
the sound response even at very moderate values of the
laser fluence. The intense signals arising in the series
and exceeding the thermooptical contribution sug-
gested that a new contribution from cavitation nature
appeared because of the heating of inhomogeneities.

1063-7710/05/5102-0160$26.00 © 2005 Pleiades Publishing, Inc.
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A
Optoacoustic cell

[N Y|

P

Piezoelectric receiver To an oscilloscope

161

The evaporating layer

Fig. 1. Simplified scheme of the experiment. Scheme A is agenera geometry. A laser beam is focused in an optoacoustic cell with
a low-concentration suspension of particles. Circles show the particles constituting the suspension. Stars are for the particles for
which the threshold of boiling of the surrounding liquid is attained at a given pulse. Scheme B demonstrates what happens around
a particle satisfying the threshold condition. The expanding vapor layer is an effective source of sound.

Thus, the question of the applicability of Eq. (1) to
the optoacoustic analysis of suspensions is mainly a
guestion of the optical contrast of the inhomogeneities
present in asample against the surrounding liquid. Inits
turn, this optical contrast depends on the wavel ength of
the laser radiation and on the characteristics of both the
solvent and the solid phase. If thiscontrast ishigh, then,
starting from a certain energy of the laser pulse, Eq. (1)
describes only the regular component of the overall sig-
nal at best. It ispossibleto assume the presence of acer-
tain competition between the common thermooptical
and the nonstationary cavitation contributions to the
optoacoustic conversion in suspensions. It is evident
that the investigation into the nature of thisrandom pro-
cess primarily implies taking into account the threshold
of the energy that any particle should receive to stimu-
late the growth of asingle cavitation cavity.

A simplified scheme of laser generation of sound in
suspensionsis given in Figs. laand 1b. Theinteraction
of a laser beam with a weakly absorbing inhomoge-
neous liquid containing suspended absorbing particles
initiates an optoacoustic conversion within the region
shaped as an elongated cylinder. An emitted acoustic
signal isusually detected in the direction perpendicular
to the axis of the laser beam (below, we consider just
this signal). The liquid itself (solvent) is almost trans-
parent to the radiation, but the suspended particles are
heated effectively by thelaser pulse. Inthe case of alow
laser fluence, the acoustic signal is caused by the ther-
mal expansion of theliquid, whichis(a) directly heated
by the laser beam and (b) receives thermal energy from
heated particles.

The role of particles increases when the energy of
the laser pulse reaches a certain threshold value. Single
particles are heated over the boiling temperature of the
liquid. Such a particle is surrounded by a rapidly
expanding vapor layer. The energy of the laser pulse
that is evolved into the expanding region is converted
into both the energy of cavity fluctuations and the
energy entrained by an acoustic wave. Under these con-
ditions, the total signa has a random amplitude and

ACOUSTICAL PHYSICS Vol. 51
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profile, since the sources with different intensities and
positions changing from one pulse to another contribute
toit.

The analysis of the absolute amplitude value of the
cavitation contribution is a difficult problem. However,
for a qualitative statistical analysis of the contribution
of the cavitation signal component, it is possible,
according to [7], to assume that the amplitude of the
signal emitted by an elementary cavity is proportional
to the difference between the absorbed energy and the
energy necessary to heat a particle to the boiling tem-
perature of the liquid.

Experiments demonstrate that, in the case of a fur-
ther growth of the laser fluence, the signal again
becomes stable (the mode of a developed laser spark).
Historically, this mode was investigated in the 1960s
and 1980s in paralel with the study of thermooptical
sound generation [9]. For example, shadow pictures of
bubble fluctuations were obtained in [10], and, in [11],
a description of acoustical—-hydrodynamic phenomena
under alaser breakdown in aliquid is given. No inter-
esting statistical effects were revealed in this case.

Thus, the amplitude instability of the sound signal
under irradiation of real liquids characterizes only a
limited range of laser fluence. As was demonstrated in
the aforementioned papers [6, 7], the amplitude histo-
grams are an important instrument for studying the
acoustic responses in the instability range. In [12], the
histogram method was studied from the point of view
of itsdiagnostic potential by using latex suspensions as
test objects.

In the present paper, detailed amplitude histograms

are obtained, first, asthe result of computer simulations
and, second, as an experimental result.

THEORY

The phenomenological model described above is
taken asthe basisfor studying the nonstationary cavita-
tion component of the acoustic signal. From the quan-
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Fig. 2. Determination of the focal region configuration that
is used for the calculations. The curves define the regions
with the energy flux density € satisfying therelation g, < € <

emfor{=¢eyep=(1) 1.1, (2) 1.5 (3 e(=272...), (4 5,
(5) 10, and (6) 50, where g,,isthe energy flux density at the
focal spot center.

titative point of view, it is based on the following
assumptions.

First, the suspension is assumed to be monodis-
perse, and only the cavitation component of the signal
is taken into account. The amplitude of the signal from
one particle isnonzero only if the density of the optical
energy flux € at the point of the particle position is
higher than the threshold density of the energy flux &,
necessary for the formation of an expanding bubble.
The signal amplitude is assumed to be proportional to
the difference between the absorbed and threshold
energies [7]. We normalize the signal amplitude to the
signal amplitude of the particle that has absorbed twice
the threshold energy. In this case, the normalized
(dimensionless) signal amplitude p(€) is given by the
expression

p(e) = (e—&y)/en. ()

Second, we assume that the total amplitude of the
cavitation contribution to the signal generatedin amon-
odisperse suspension is the sum of the signal ampli-
tudes from single particles. Thisistrueif the difference
of the arrival times of sound pulses at the receiver is
small in comparison to the characteristic length of asig-
nal from one particle, which is determined by the upper
frequency of the reception band.

Third, we simulate atypical experimental situation,
where the longitudina dimension of the focal spot | is
greater than the transverse dimension of the focal spot a
(the dimension of the beam waist).

EGEREV et al.

Moreover, we assume that the suspension has a
small concentration, so that the influence of absorption
and scattering of optical radiation by particles on the
density distribution of the energy flux is negligible. In
this case, the density distribution of the energy flux in
the vicinity of the focus can be calculated within the
framework of the quasi-optical approximation. In the
cylindrical coordinatesr and z, it has the form [13]

o Er (r/a)’ D,
O 1+(z/|)%

where €, is the density of the energy flux at the center
of the focal spot.

Within the model under consideration, it is possible
to calculate such important characteristics of the pro-
cess of signal generation as the average number of par-
ticles above the threshold N,,[land the average value of
the signal amplitude [pyCin aseries of testswith irradi-
ation of amonodisperse suspension containing N parti-
cles.

Let us preliminarily calculate an important quantity,
namely, the volume of the region V(g,) where the den-
sity of the radiation energy flux exceeds e, (€,< €< €.
The boundary of thisregion is determined by the equa-
tion

g(zr) = Em

= 3
1+ (21)? )

12 = (1+2)In——, 4)
1+7

where { = g,/g, and the longitudina and transverse
coordinates are measured in the units of the longitudi-
nal and transverse dimensions of the focal spot, respec-
tively. The shape of the boundary depends on the ratio
between the value of the parameter { and the number e
(see Fig. 2). When { > €, the boundary point most dis-

tant from the axisislocated at the point z=+./{/e—1

at the distancer = J/{/e. After simple integration, we
obtain the following expression for the desired volume:

V(ey)

5
- 8, Dl‘(c ~1)*?+ Jg—1-arctan./g— IDD. ©)
3706

Since the particles are distributed over the volume
randomly and independently of each other, the average
number of particles above the threshold is determined
by the product of the particle concentration n by the
volume V(g;,) of the region where the density of the
radiation energy flux exceeds the threshold:

Ny = nV(gy,)
_8m 2 il 312 _
= 3na IEB(AS) + /e arctan@, ©

— Em—En
€ih

Ae

ACOUSTICAL PHYSICS Vol.51 No.2 2005



OPTOACOUSTIC CONVERSION IN SUSPENSIONS

Let us note useful asymptotic relations following
from Eq. (6):

[N, J= —3—na 1(0e)¥?, Ne <1,
_4n 3/2
[N, [= g na ’I(Ag) Ag > 1.

The signal amplitude is represented by the sum of
independent responses from single particles; therefore,
the relation

[ = Ip(sb)ndv(eb) (7

€m

isvalid. Using Egs. (2) and (5), from Eq. (7) we obtain
an equation for the average value of the signal ampli-
tude:

[pyJ = —naI (As)slz—A/Ecﬁ arctan@. (8)
The following asymptotic forms are valid:

[pND~ naI(As)E”Z Ae < 1,

CpyO= %na 1(ae)¥?, ne > 1.

In the case where only one particle occursin a sam-
ple, it iseven possibleto obtain an analytical expression
for the density of the probability distribution for the
normalized signal amplitude p,, which takes on random
values p determined by Eq. (2), depending on the parti-
cle position at the instant of irradiation. Let thisparticle
be present in acell with volume V. In this case, the dis-
tribution density ¢, (p) is determined by the expres-

sion

0,,(p) = 05

where d(p) is the delta function and V, = V(g is the
volume of the region where the density of the energy
flux exceeds the threshold value. We assume that
€m = &, and, in addition, that the* over-threshold” range
€n = €2 &y isfully contained in the cell region. Thedis
tribution given by Eq. (9) is of a discrete—continuous
character. The first addend formally determines the
finite probability of the fact that the signal amplitude
acquires a zero value; i.e., the particle is located in the
region where the density of the energy flux is below the
threshold. The second addend describesthe distribution
density intherange 0 < p <y- 1, corresponding to the
situation where the particle is in the “over-threshold”
region.

‘ ,19V(e,)
Vdp(ey)|

©))
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Substituting Egs. (2) and (5) into Eqg. (9), wefinally
obtain

05,(P) = FL—15(P)
2ra’lg, vy _opth_y gy g a0
+3V%+p+1 yD(p+1)2q)+1 g '
O<p<y-1,

where the parameter y = €,/¢y, is the density of the
energy flux at the center of the focal spot when normal-
ized to the threshold density of the energy flux. It is
interesting to note that, at y > 1, there is a sufficiently
broad range of values of the signal amplitudep <y-1
within which the distribution density is of apower char-

acter: ¢, (p) O (p+ D)7~

NUMERICAL SIMULATION
WITH THE MONTE CARLO METHOD

To verify the analytical results obtained above and
to analyzethe statistical characteristics of the cavitation
component of the sound signal formed by alarge num-
ber of particles, we conducted a simulation with the
Monte Carlo method. The simulation was based on the
assumption that N, particles of equal size were distrib-
uted randomly in acyllndrlcal cell with diameter D and
length L. The distribution of the density of the energy
flux in the cell was described by Eq. (3). Inthiscase, the
center of the focal spot was located at the cell center,
and the density of the energy flux €, at this center was
given in the units of the threshold energy density &,
which was the same for all particles (i.e., the dimen-
sionless parameter y was preset). We performed N,
tests, which corresponded to the actual experimental
situation of sample irradiation by a series of laser
pulses. In each new test, the particle coordinates had
new random values.

The normalized signal amplitude for each of the N,
tests was cal culated as the sum of the normalized signal
amplitudes from each of N, particles, which were
described by Eq. (2).

Theratio of the focal spot dimensions corresponded
to atypical experimental situation, wherein the longitu-
dinal dimension of the spot exceeds the transverse one
by afactor of 10 to 100. To simplify calculations, asthe
cell dimensions, we used the minimal dimensions satis-
fying the condition that, in the range of interest of the
energy density of optica radiation (y = €,/&, varies
from 1to 10%), outside the cell, the density of the energy
flux of optical radiation was below the threshold. Cor-
respondingly, the following dimensions of the focal
spot and the cylinder (in the units of the transverse
dimension of the focus) were adopted: a= 1, | = 30,
L = 6000, and D = 125.
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Fig. 3. Cavitation component of the signal. The probability
distribution density of the normalized signal amplitude in
double logarithmic coordinates for the series obtained with
the values of the energy parameter y = (1) 1.1, (2) 3, (3) 30,
and (4) 300. The number of particlesis N, = 100. The aver-
age number of particles above the threshold is less than
unity. The solid curves correspond to analytical calculation
by Eg. (10), and the diamonds correspond to numerical sim-
ulation.

Two situations were considered, and, for each situa-
tion, several series of irradiation experimentswere sim-
ulated. The number of tests in each series was N, =
300000.

Probability density
104

102

0% 102 102 107" 10° 10" 102 10° 10%
Normalized signal amplitude

Fig. 4. Cavitation component of the signal (results of numer-
ica simulation). The probability distribution density of the
normalized signal amplitude in double logarithmic coordi-
nates for the series obtained with the values of the energy
parameter y = (1) 1000, (2) 3000, and (3) 10*. The number of
particlesis N, = 100. The average number of particles above
the threshold'is 1.8, 9.4, and 57.

First, we investigated the form of the probability
distribution density for the amplitude of the sound sig-
nal at afixed particle concentration and different val-
ues of the density of laser energy. The number of par-
ticles was taken to be 100, and the normalized density
of the energy flux at the center of the focal spot, y=
€/€n varied from one series to another within the
range 3—10%.

Second, the form of the same function at a fixed
energy and different values of particle concentration in
the suspension was studied. The value of y was fixed at
10*, and the number of particles varied from 10 to 10*.

For each series of tests, we calculated the probabil-
ity distribution density for different values of the signal
amplitude. To do this, from the array of amplitude val-
ues we excluded the zero values with nonzero probabil-
ity, which were only formally described by the proba
bility density (the first addend in Eq. (2)). Then, the
array of amplitude values was nonuniformly broken
into several intervals, and the distribution density was
approximated by the quantity (An(i)/N)/Ap(i), where
An(i) was the number of events with amplitudes falling
within theith interval of width Ap(i).

Figures 3 and 4 show the results obtained by simu-
lating the energy dynamics of the signal amplitude dis-
tribution for a suspension with 100 particles for differ-
ent densities of the energy flux of optical radiation. Fig-
ure 3 presents the results of numerical simulation for
the range of the energy densities corresponding to the
case where the average number of particles above the
threshold is smaller than unity. The results of calcula-
tions according to Eg. (10), where only the second
addend was taken into account, are also presented in
this figure. The results of analytical calculations coin-
cided with the results of numerical simulations. At
small values of the energy parameter y, the distribution
density is ailmost constant within the whole range and
sharply decreasesto zero at p =y — 1. Asy grows, a
region appears where, as was mentioned above, the dis-
tribution has a power-law character with an index of
7/2. The results of numerical simulations at large ener-
giesy, when the average number of particles above the
threshold is greater than unity, are given in Fig. 4. In
this case, the distribution density becomes nonmono-
tonic and is not described by Eqg. (10). More illustra-
tively, the change in the form of the distribution density
with the growth of the average number of particles
above the threshold is demonstrated by the simulation
results for the concentration dynamics of the amplitude
distribution, which are shownin Fig. 5. Thus, when the
average number of particles above the threshold
becomes greater than unity, alocal maximum arisesin
the distribution density in the range of small values of
p, and a long power tail persistsin this case. When the
average number of particles above the threshold is
small, the distribution density has a complex form and
may have a local minimum apart from the maximum
(curve I in Fig. 5). If the average number of particles
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above the threshold grows, the distribution density
acquires the form of anormal distribution.

EXPERIMENT

In contrast to the model situation considered above,
in experimental practice, in the case of irradiation of
suspensions, one has to deal with several competing
mechanisms of optoacoustic conversion simulta
neously. The experiment consisted in the irradiation of
samples by the focused second harmonic radiation of a
YAG laser with a pulse energy from 0.3 to 20 mJand a
pulselength of 10 ns. A cell with avolume of 80 ml was
used as the sample container. The cell was equipped
with apiezoel ectric pressure sensor with asensitivity of
30 uV/Pain ameasuring band of 1 MHz. The geometry
of optoacoustic conversion corresponded to Fig. 1, and
the distance from the beam axis to the pressure receiver
was 7 mm. The beam diameter before the focusing lens
was 10 mm. The irradiation was conducted in several
series of 2000 pulses with a subsequent statistical pro-
cessing. Within each series, the energy of the laser
pulses was constant.

The signal from the receiver output was fed to the
first channel of a 12-digit two-channel A/D converter
(with a maximum sampling frequency of 40 MHz).
A signal from a photodiode wasfed to the second chan-
nel to monitor the energy of laser pulses. The amplitude
of each sound signal was multiplied by the ratio of the
laser pulse energy averaged over the series to the cur-
rent energy. As the result of processing, the histograms
demonstrating the amplitude distribution of sound
pulses in a series were plotted.

Figure 6 shows histograms in double logarithmic
coordinates, which correspond to optoacoustic conver-
sioninthe case of irradiation of singly purified distilled
water. Such water can be considered as a model of a
diluted suspension.

Figure 7 demonstrates the histograms obtained in
the case of irradiation of the same water sample with
the addition of particles of black Indian ink with atyp-
ical diameter of 3 um. Here, the thermooptical sound
generation is more pronounced in comparison with
Fig. 6. The histogram shape is approximately the same;
however, to observe the realizations corresponding to
different mechanisms (sections 2 and 3), it was neces-
sary to increase to a certain extent the focal length of
the lensin this situation as well.

The presence of rectilinear sections in the plots in
both Figs. 6 and 7, which was predicted in the theoreti-
cal part of the paper, is evidence of the fact that the flat
“tails’ of the distributions are characterized by decreas-
ing power functions, with the indices depending on the
energy in a series and on the particle concentration.
Thisisespecially characteristic of the realizations with
prevailing cavitation contributions. In section 2, the
values of these indices vary from 1 to 4.5 (remember
that, in the theoretical part of this paper, we obtained a
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cal smulation). The probability distribution density of the nor-
malized signal amplitudein doublelogarithmic coordinatesfor
the series obtained with the values of the energy parameter y =
10* and the number of particlesin the suspension N,, = (1) 10,
(2) 30, (3) 1000, and (4) 10*. The average number of particles
above thethreshold is 5.7, 17, 570, and 5700.

Probability density
100

1 0—1 +1
102
1073

107

107

11 11l
102 10°
Pressure amplitude in the signal, Pa

106 el
100 10!

Fig. 6. Experiment. The density of the probability distribu-
tion for the amplitudein aseries of sound pulses. Two series
of irradiation of singly purified distilled water with energy
values of 0.3 mJ(crosses) and 1 mJ (squares). Thefocal dis-
tance of the lensis equal to 10 cm. (1) Realizations where
the thermooptical mechanism of sound generation prevails,
(2) realizationswhere the main contribution into sound gen-
eration belongs to the cavitation phenomena with a rela
tively small number of “participant” particles, and (3) real-
izations where the threshold is exceeded for alarge number
of particles (in these realizations, luminescence is observed
in the focal region).
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Fig. 7. Experiment. The density of the probability distribu-
tion for the amplitude of sound signals. Two series of irradia-
tion of a suspension with Indian ink particles (volume con-
centration of 107%) with the energy values of 13 mJ (crosses)
and 17 mJ (squares). The focal distance of the lensis 14 cm.
Notations are the same asin the previous figure.

value of 7/2 for the analogous index in the case of irra-
diation of a monodisperse suspension). Sharp bends of
rectilinear sections clearly indicate the realizations cor-
responding to the change of the optoacoustic conver-
sion mechanisms.

CONCLUSION

Theflat tails of the amplitude distributions observed
in the optoacoustics of suspensions are apparently man-
ifestations of both the fractal nature of phase transfor-
mationsin disperse media[14] and certain fractal prop-
erties of wave processes [15]. In particular, it is known
that fractal effectsin radiation may occur already in the
case of an aggregate of independent point radiators
with afractal distribution in space (which corresponded
to the conditions of optoacoustic experiments with low-
concentration suspensions).

The shapes of the histograms for the amplitude of
the acoustic signals obtained by irradiating the test
samples of suspensions with severa series of laser
pulses demonstrate the change of the competing con-

EGEREV et al.

version mechanisms and, in a certain way, depend on
the energy density of a laser pulse and on the concen-
tration of the suspension particles, which opens up pos-
sibilities for an optoacoustic diagnostics suitable for
very small particle concentrations.
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Acoustic Testing of the Vortex Structure Produced
by an Air Flow about an Array of Cylinders
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Abstract—Results of experiments on the scattering of a plane ultrasonic wave from a vortex wake formed in
an air flow behind alattice of vertical cylinders are presented. The lattice is periodic in the direction perpen-
dicular to the oncoming flow. The experiments are performed in awind tunnel for two values of the Reynolds
number, namely, Re = 75 and 500, and for | attices with different numbers of cylinders and with different lat-
tice periods g = (2.5-15)d (where d isthe diameter of the cylinders). The measured parameters of the scattered
waves are used to estimate the degree of transverse correlation between the vortex wakes formed behind the
cylindersfor flowswith different Reynolds numbers. The results obtained from an analysis of the characteristics
of the scattered sound are compared with the results of direct hot-wire anemometer measurements and with the

data obtained by other researchers. © 2005 Pleiades Publishing, Inc.

By now, remote acoustic testing of vortex and tem-
peraturefluctuationsin air flows has been demonstrated
on alaboratory scale for a number of well-known flow
types: aKarman vortex street behind acircular cylinder
[1-3], vortex rings [4, 5], vortices behind a heated cyl-
inder [6], buoyancy-driven heated gas flows [7], and a
heated jet [8]. The experiments determined the param-
eters of hydrodynamic flows that could be extracted
from the characteristics of scattered sound. The basic
idea of these experiments consisted in the comparison
between the experimental data obtained for flows with
controlled parameters and the theoretical calculations
based on models with small numbers of parameters,
such as the circulation of vortices, the velocity of their
motion, and the amount of heat transferred by them (in
the case of vortices behind a heated cylinder).

In the recent years, the object of intensive studies
has been the wake behind an array of circular cylinders
placed in a plane-parallel air (or water) flow [9-14].
From a practical point of view, the interest taken in
these problems can be explained by the fact that sets of
such arrays placed in air or water flows are often used
as efficient cooling systems in different kinds of reac-
tors. Visuaization of such flows (see[9] and the litera-
ture cited there) has shown that the vortex wakes
formed behind different cylinders may interact with
each other. Thisinteraction may lead to a synchroniza-
tion of oscillations in the flow and to the formation of
different kinds of flows [9-11], depending on the
parameters of the array (the number of cylinders and
the distance g between them) and on the Reynolds num-
ber (Re=U,d/v, where U, isthe velocity of the oncom-
ing flow and v isthe kinematic viscosity of air).

Studies of the vortex structures formed behind
arrays of cylinders show that the control parameter of

the flow (at a constant Re of the oncoming flow) is the
distance g between the cylinders in the direction per-
pendicular to the oncoming flow. Depending on the
value of this parameter, the vortex wakes can be condi-
tionaly divided into weakly coupled (g = 4.5d) and
strongly coupled (g < 2.5d).

For weakly coupled wakes (see, e.g., [9, 11, 12]), the
formation of an individual Karman street behind
every cylinder is typical. From visualization experi-
ments, it was found that the vortex streets behind dif-
ferent cylinders may be either in phase or in antiphase.
However, according to [9], only the state in which
AP = (2n — D1Y2 (Where A is the phase difference
between vortices characterized by the same sign of cir-
culation and belonging to neighboring vortex streets
andn=1,2,3...) isstable and can persist downstream
as long as one likes. A flow with Ad = 2nTt persists
within only 1-2 spatial periods of the vortex structure
downstream from the cylinders; then, vorticesthat have

the same sign of circulation " (wherel™ = odl and 0

is the vortex velocity field) but belong to neighboring
streets merge forming a single “consolidated” periodic
vortex structure behind every pair of cylinders. A visu-
aization of the flow behind an array of 16 cylinders
with g = 5d and Re = 75 was described in [16]. The
wake behind the cylinders was found to exhibit a spa-
tiotemporal chaos with randomly formed “disloca
tions” or amplitude holestypical of thisregime and also
with phase jumps by 1Tin the direction perpendicular to
the flow.

Strongly coupled flows are characterized by astrong
spatial inhomogeneity acrosstheflow (along the array).
For example, the visualization of a wake behind two
cylinderswith g =2.5d [11] revealed a strong asymme-

1063-7710/05/5102-0167$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic diagram of the experiment.

try of vortex streets behind different cylinders. One
more important feature of such awakeisthe possibility
of “switching” between the asymmetric states [10],
when the width of the wake becomes alternately greater
behind the first and the second cylinder. The lifetime of
the flow in one of the statesisinversely proportional to
the Reynolds number and may reach 10? time periods

——1 -5 —4—10
0.5

0.4

0.3

10 20 30
0, deg

L 1 1
-30 =20 -10 0

Fig. 2. Amplitudes of scattering into the harmonics of num-
bers +1 and —1 versus the scattering angle 6 for the cases
of one, five, and ten cylinders at Re = 75.

of the vortex structure at Re=70. A visualization of the
flow behind an array of 21 cylinders was performed in
[13] for the case of a strong coupling and for different
Reynolds numbers. In this experiment, a smooth
increasein the Reynolds number resulted in therecircu-
lation zones behind different cylinders beginning to
deviate from their positions and combining into the so-
called clusters. Then, as the Reynolds number drasti-
cally increased to Re = 100, oscillations with the Strou-
hal frequency (fy = fd/U,, where f is the vortex separa-
tion frequency) were initiated in each of these clusters.
Theflow inside each of the clusterswas fully synchro-
nized and represented a set of Karman streets with
Ad = 2n1, the number of these streets was approxi-
mately two times smaller than the number of cylinders
behind which the given cluster was formed. The width
of a cluster and the place of its formation varied in a
random way depending on the initial conditions. The
global modes of oscillation in different clusterswerein
antiphase, and the flow between them had the form of
an alternating mode.

All aforementioned studies of the synchronization
of vortex wakes in air or water flows were mainly
purely experimental. To prove the presence of synchro-
nization, researchers used instantaneous photographs
of the flows. However, from instantaneous photo-
graphs, one cannot quantitatively estimate the degree of
the flow synchronization behind an array of cylinders.
We managed to obtain a quantitative characteristic of
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this effect with the help of remote acoustic testing.
Varying the number of cylinders and the distance
between them, as well as the velocity of the oncoming
flow, we studied the scattering from both weakly and
strongly coupled flows. We compared the experimental
results on sound scattering with the results of direct
measurements of vortex fluctuations by hot-wire ane-
mometers. In particular, we measured the coherence
length of a vortex wake in the transverse direction for
different parameters of the vortex flow. The results of
these measurements agree well with the data from
acoustic testing.

EXPERIMENTS ON SOUND SCATTERING

Experiments were performed in an air flow pro-
duced in the low-turbulence (the turbulent vel ocity fluc-
tuation level of the oncoming flow was below 0.4%)
wind tunnel of the Institute of Applied Physics of the
Russian Academy of Sciences with a working section
of 30 x 30 x 120 cm. A schematic diagram of the exper-
iment is shown in Fig. 1 (top view).

We studied the scattering of ultrasound of frequency
f, = 122.1 kHz (with wavelength A, = 2.7 mm) by the
vortex flow formed behind an array of vertically ori-
ented cylinders with diameter d = 2 mm and alength of
30 cm. The cylinders were rigidly fixed in symmetric
holes made in the upper and lower walls of the working
section of the wind tunnel in such away that they were
positioned at regular intervalsin arow across the flow
with the array period g = 2-24d (this value was varied
depending on the experimental conditions), at a dis-
tance of 30 cm from the confuser outlet. The velocity of
the oncoming flow was varied so asto study the scatter-
ing of both laminar (Re = 75) and turbulent (Re = 500)
vortex flows. The number of cylinders was varied from
one to ten. The source of ultrasound was a piezocer-
amic transducer placed behind a baffle with a square
opening of side a = 2 cm. The transducer was placed at
adistance of 65 cm from the center of the vortex street
to provide for the validity of the Fraunhofer zone
approximation (Dg, ~ A%/A, ~ 30 cm, where A isthesize
of the transducer). To measure the parameters of the
ultrasound, we used a B&K 4135 high-frequency
microphone, whose signal was heterodyned to a fre-
guency range of 0—20 kHz (the operating range of the
A/D converter). The microphone was mounted on a
moving rod at afixed distance of 1.6 m from the center
of the scattering region, and its position was varied in
the angular range from 45° to —45° with respect to the
direction toward the source of ultrasound. The spectral
characteristics of the scattered signal were measured
using a computer.

Asisknown (see, e.g., [1]), the amplitude of sound
scattered from an “ideal” infinite Karman vortex street
is represented by a set of harmonics propagating sym-
metrically about the direction of incident sound. The
amplitude of each of these harmonicsis proportional to
the vortex circulation T in the vortex street. The fre-
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guency of each harmonic is shifted with respect to the
frequency of incident sound f, by a quantity that is a
multiple of the vortex separation frequency (i.e., the
Strouhal frequency fg): Af, = nfy, wheren=+1, 2....

Since every single vortex mainly scatters sound in
the forward direction, experimental observation is usu-
ally possible only for harmonic nos. +1 and —1. In our
experiments, we measured the directional patterns of
harmonic nos. +1 and —1 for different numbers of cyl-
inders and for two different values of the Reynolds
number. Figure 2 shows the rms amplitudes of these
harmonics obtained in a 3-Hz frequency band for the
cases of one, five, and ten cylindersat Re= 75. One can
See a certain asymmetry in the amplitudes and angles
that occurs for the scattering into harmonic nos. +1 and
—1 irrespective of the number of cylindersin the array.
Thisasymmetry is caused by the fact that, in our exper-
iment, the angle between the direction of incident

sound I><o and the direction of the vortex mation differs
from 192 by <3°. Calculations show (see, e.g., [1]) that
this deviation leads to the asymmetry observed in the
experiment.

An increase in the number of cylindersin the array
(i.e.,, an increase in the number of Karman streets)
leads to an increase in the scattered signal amplitude.
Figure 3 shows the dependence of the mean amplitude

. : A+ AL
of the first harmonic (= lTl where A,, and A |

are the amplitudes of harmonic nos. +1 and -1,
respectively) on the number of cylinders in the array
at aconstant array period g = 4d and a Reynolds num-
ber Re = 75.

The same figure shows two approximations of the

aforementioned dependence by power laws (./n, where
n is the number of cylinders in the array). Curve I is
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plotted according to theformulaa, = a, /n, wherea, is
the experimentally measured amplitude of sound scat-
tered from the wake behind a single cylinder and curve

2 follows the formula a, = a,,./n/10, where a,, is the
experimentally measured amplitude of sound scattered
from the wake behind ten cylinders. From comparison
of the experimental results and the theoretical depen-
dence, it follows that, in our experiment, the scattered
signal amplitude grows more slowly than the root of the
number of scatterers (i.e., the number of vortex wakes).
Thistendency ismost pronounced for small values of n:
curve2 givesamuch better approximation of the exper-
imental datafor the large number of cylindersthan does
curve /.

When the Reynolds number is Re = 500, the depen-
dence of the scattered sound amplitude on the number
of cylinders exhibits adifferent behavior. The results of
measuring the characteristics of scattered sound in this
case are shown in Figs. 4 and 5. Figure 4 represents the
directional patterns of harmonic nos. +1 and —1.

One can seethat, asin the case of Re = 75, the scat-
tering into harmonic nos. +1 and —1 exhibits an asym-
metry. However, at certain conditions, this effect is
much weaker. According to the analytical calculation
performedin[1], anincreaseinthe flow velocity (in the
experiment, Re was varied by varying the flow velocity
at a constant viscosity and a constant diameter of the
cylinders) leads to an increase in the scattering ampli-
tude because of the growing circulation I' of vorticesin
the vortex streets. Unlike the case of Re = 75, the scat-
tering amplitudeis proportional to the number of cylin-
dersin the array.

Figure 5 shows the mean spectral amplitude charac-
terizing the scattering into the first harmonic versusthe
number of cylinders in the array. This dependence is

almost perfectly approximated by afunction ~./n.

EZERSKIT et al.

ST
’ —a—b(N) —=<—bI(N)

1.8}
1.6
14r
121
1.0

© <
SRS
T T

Fig. 5. First harmonic amplitude versus the number of cyl-
inders at Re = 500.

To reveal the origin of the difference in the depen-
dences of the sound amplitude on the number of cylin-
ders, we performed detailed measurements of the
velocity fieldsin the vortex wakes behind the arrays of
cylinders.

MEASUREMENTS OF THE VORTEX VELOCITY
FIELD BY HOT-WIRE ANEMOMETERS

Direct measurements of the vortex velocity field
were performed by two hot-wire anemometers. The
positions of the sensors along and across the flow could
be varied by atraverse gear. The signal from the sensors
was amplified and filtered and then supplied to a com-
puter, where it was analyzed by a data-processing code.
In the experiment, we measured the following charac-
teristics:

(i) the velocity fluctuation profiles in the wake at
fixed numbers of cylinders for different distances
between them and for Re= 75 and 500 (Figs. 6 and 7);

(if) the dependence of the velocity fluctuation
amplitude on the coordinate across the flow for differ-
ent numbers of cylinders at a fixed distance between
them for two Reynolds numbers Re = 75 and 500
(Figs. 8 and 9); and

(iii) the coherence function obtained with two sen-
sors and the phase difference as functions of the dis-
tance between the sensors in the direction perpendicu-
lar to the flow for two Reynolds numbers Re = 75 and
500 (Figs. 10-13).

Figure 6a shows the velocity field in the wake
behind asingle cylinder at Re = 75. Figures 6b—6d rep-
resent the dependence of the vel ocity fluctuation profile
in the wake behind three cylinders on the distance
between them in the direction across the flow. As
seen from the velocity fluctuation profiles obtained
for Re = 75 (Fig. 6), when the cylinders become fairly
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Fig. 6. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (&) one cylinder
and (b—d) three cylinders for different distances g between
them at Re = 75.

close to each other, the vortex streets merge and, at
g = 4d, two vortex streets are present instead of three.
These plots agree well with the visualization of the con-
fluence of vortex streets formed behind different cylin-
derswith the same parameters of the array and the same
Reynolds numbers as in our experiment [8]. For large
distances between the cylinders, g = 9d and 14d, the
vortex streets do not merge and the number of maxima
in the fluctuation profileistwice as great as the number
of cylinders.

Similar measurements (see Fig. 7) performed for the
case of Re =500 show that an increase in the Reynolds
number suppresses the effect of the vortex street conflu-
ence. For all three periods of the array (g = 4d, g = 9d,
and 14d), velocity fluctuation profilestypical of asingle
Karman street are observed behind each of the three
cylinders of the array.

From the comparison of the vel ocity fluctuation pro-
files obtained for the vortex wakes behind three and ten
cylindersat Re= 75 (Fig. 8), it followsthat the effect of
a pairwise confluence of vortex streets at g = 4d also
occursin extended arrays (see Fig. 8, where 11 maxima
and 10 vortex wakes are observed).
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Fig. 7. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (a) one and (b—d)
three cylinders for different distances g between them at
Re = 500.

The corresponding measurements performed for
Re = 500 (Fig. 9) show that, in this case, the vortex
streets do not merge. At Re = 500, the width of every
vortex street is much smaller then that observed at Re=
75, and the velocity maxima corresponding to different
rows of vortices in a single Karman street are much
closer to each other (see Figs. 9aand 9b) than at Re = 75.
The number of vel ocity fluctuation maximaobservedin
Fig. 9cisequal to the number of cylinders; i.e., anindi-
vidual Karman vortex street is formed behind each of
the cylinders.

The fact that vortex streets may merge into pairs or
persist separately does not give any definite informa:
tion on the degree of coherence of the whole vortex
wake. To determine the degree of synchronization of
the vortex wakes, we measured the coherence function
of the signals obtained from two different hot-wire ane-
mometers. The measurements were performed in the
wakes behind one, three, and ten cylinders for two val-
ues of the Reynolds number, namely, Re = 75 and 500.
At first, we determined the maximum of the velocity
field fluctuations, which, in our case, was achieved
when the sensor position exactly coincided with one of
thetwo vortex rows of the Karman street formed behind
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any of the cylinders. Then, one of the sensors was
placed at this maximum and remained fixed, while the
other sensor was placed above thefirst one (the distance
along the cylinder axis between the two sensors was
less than 2 mm) and then was moved across the wake.
We measured the coherence function and the cross-
spectrum phase as functions of the distance between the
sensors. Such measurements were performed in the
wakes behind one, three, and ten cylinders with the
same invariable position of the fixed sensor.

The square of the coherence function, yiy, of two
signals x(t) and y(t) is determined as (see, e.g., [14])
y2=|sw(f)|2

Y S()S(F)
spectrum densities of the corresponding signals and S(f)

is the cross-spectrum density function of the two signds,
X(t) and y(t). Thelatter function is understood as the quan-

fity Syf) = X(OF* () = [X(OIg(f)|e O,
where X (f) and ¥ (f) are the Fourier transforms of the
corresponding signals and the asterisk denotes complex
conjugation. In elementary statistics, an analog of the
coherence function isthe square of the correlation coef-
ficient.

where S(f) and S(f) are the power

The results of measuring the coherence function and
the phase difference for the wakes behind one, three,
andtencylindersat Re=75areshowninFigs. 10and 11.
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Fig. 9. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (a) one, (b) three,
and (c) ten cylinders at Re = 500.

Asone can seefrom Fig. 10a, for one cylinder, the coher-
ence function has two maxima, where it is equal to
unity. These maxima exactly correspond to two vortex
rows forming the Karman street. As one would expect,
the phase difference between the two signalsis exactly
equal to 180° when the sensors arein two different vor-
tex rows (see, e.g., [19]).

In the case of athree-cylinder lattice, the coherence
function broadens and exhibits a single clearly pro-

nounced maximum with yiy =1 and two local maxima
with yg, =0.85and 0.45 on both sides of the maximum

Ya = 1. At each of the local maxima, the phase differ-

ence between the signas of the two sensors has a con-
stant value (see Fig. 11). Presumably, the broadening of
the coherencefunctionisrelated to the confluence-syn-
chronization effect, which was described in the papers
reporting on the visualization of wakes.

In the case of aten-cylinder lattice, the coherence
function is symmetric about itsmaximum at y5, = 1.1n
addition to the centra maximum, the coherence func-
tion exhibitsfour local maximawith yiy =0.65and 0.4,
which are positioned symmetrically about the point of

yiy = 1. Each of thelocal maximacorrespondsto apla-

teau in the dependence of the cross-spectrum phase on
the transverse coordinate (see Fig. 11). These measure-
ACOUSTICAL PHYSICS  Vol. 51
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Fig. 10. Coherence function of the signalsfrom two veloc-
ity sensors versus the distance between the sensors across
the wake for the cases of (a) one, (b) three, and (c) ten cyl-
inders at Re = 75. The cylinders are represented by col-
umns.
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Fig. 11. Phase difference between the signals from two
velocity sensors versus the distance between the sensors
across the wake for the cases of (a) one, (b) three, and
(c) ten cylinders at Re = 75. The cylinders are represented
by columns.
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the wake for the cases of (a) one, (b) three, and (c) ten cyl-
inders a Re = 500. The cylinders are represented by col-
umns.
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Fig. 13. Phase difference between the signals from two
velocity sensors versus the distance between the sensors
across the wake for the cases of (a) one, (b) three, and
(c) ten cylinders at Re = 500. The cylinders are represented
by columns.
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ments allow usto estimate the characteristic correlation
length of the velocity fields in the direction perpendic-
ular to the oncoming flow at Re = 75. Specifically, in
the wake behind the ten-cylinder lattice, this length is
about 10-11d. Hence, in the case of awake with atotal
width of 50d, we deal with approximately five uncorre-
lated scatterers (“enlarged” Karman streets), which
fully agrees with the result obtained by us at Re = 75
with the use of remote acoustic testing (see Fig. 3).

Figures 12 and 13 show similar results for the
case of Re = 500. The main difference from the case
of Re=75isthat all coherence functions are much nar-
rower (in the direction perpendicular to the flow). Spe-
cifically, when the lattice consists of ten cylinders, the
coherence function has only two closely spaced max-

ima with y;, = 0.82. In this case, the characteristic

coherence length is only 5-6d, which corresponds to
ten uncorrel ated scatterersfitting within the wake width
of 50d. As a result, at Re = 500, the scattered signal

amplitude grows according to thelaw ~ ,/n (seeFig. 5).

Thus, for both Re = 75 and Re = 500, the synchroni-
zation is actualy possible only between the vortex
streets that are closest to each other, because the coher-
ence function has afinite length in both cases. The dif-
ferenceisonly inthat, at Re= 75, the vortex streets can
merge and, hence, the increase in amplitude with grow-
ing n occurs more slowly than in the case of Re = 500.

CONCLUSIONS

The results reported in this paper show that remote
acoustic testing allows one to quantitatively estimate
the degree of synchronization of the vortex flow formed
behind a lattice of cylinders. Thus, this method can be
used as an aternative to taking instantaneous photo-
graphs of a vortex flow, which is the conventiona
method of proving the presence of synchronization
without any quantitative estimates.

For the future, we plan to construct a model of such
a vortex flow with allowance for the interaction
between the vortex streets. A comparison between the-
oretical and experimental results should give insight

EZERSKIT et al.

into the manifestation of synchronization effects in
scattered sound.
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Abstract—A possihility of determining the mode composition of the sound field in ashallow seais considered.
The procedure involves the transmission of a short pulse by a point source and the subsequent reception of this
pulse at asingle point. It is shown that the problem can be solved by using linearly frequency-modul ated broad-
band pulses at relatively short distances (about 20 km), where the attenuation of the signal is rather weak. To
take into account the intramode dispersion, it is proposed to use the value of the dispersion typical of a perfect
Pekeris waveguide with a stiff bottom. With the use of the calculations and the experimental data obtained in
the Barents Sea, it is shown that the proposed approximation is sufficient to determine the mode composition

of the sound field. © 2005 Pleiades Publishing, Inc.

Thelocation of objectsin ashallow searequires spe-
cial methods of signal processing to be used [1-6]. This
problem becomes easier if the mode structure of the
wavefield isknown. A major portion of monograph [1]
deal swith the technique of determining the mode com-
position in a shallow sea. In solving this problem, two
quite different methods can be used [1]. With the first
one, the modes can be selected by a distributed vertical
antenna array covering the entire waveguide. Another
method consistsin separating the modes by their arrival
timesin view of the fact that the modes propagate with
different group velocities. The second method does not
imply using along array, because the separation in time
can be implemented with a single hydrophone serving
asthe signal receiver.

For the signals to be separable in time, they must be
localized within a short time interval. Such alocaliza-
tion can be implemented by either using short pulses or
compressing a complex signal in time. Both methods
imply a broad frequency band. The use of broadband
probing signals requires taking into account the intra-
mode dispersion, which causes an initially short pulse
to spread, in addition to the intermode dispersion. To
avoid such a necessity, the authors of monograph [1]
propose to use long sequences of complex (with ahigh
product of the duration and the frequency bandwidth)
but sufficiently short pulses. The detailed calculations
and experimental data of [1] argue that long distances
should be traveled by the wave in the waveguide for the
modes to be reliably separated if the intramode disper-
sion is neglected. Such distances can be impracticable
because of the high attenuation of sound waves in a
shallow sea.

In this paper, we study the possibility of determining
the modes of the waveguides by transmitting and
receiving linearly frequency-modulated (LFM) signals,
which are characterized by a high value of the product
of the duration and the frequency bandwidth because of
the large bandwidth. The latter, in turn, offers an
opportunity to reach a high time resolution in the sig-
nal processing. With such a signal propagating in the
waveguide, the processing procedure should necessar-
ily include the intramode dispersion.

It is known [1] that taking into account and even
compensating for the intramode dispersion are desir-
able and, in principle, feasible. However, the difficulty
of doing so for the natural waveguide is also well
understood. Such a waveguide has too many parame-
ters governing the intramode dispersion for one to be
able to estimate them in advance. Furthermore, it is not
quite clear how the parameters of the medium (the sea
depth varying along the path, the characteristics of the
layered bottom, the properties of internal waves, etc.)
can be related to the parameters of the waveguide gov-
erning the intramode dispersion. In addition, it is
unlikely that all the parameters could or should be mea-
sured in practice.

In view of the aforementioned considerations, this
paper uses an approximation that facilitates the solution
of the problem with allowance for theintramode disper-
sion in an LFM signal. As such an approximation, the
value of the intramode dispersion is used that corre-
sponds to the simplest Pekeris waveguide (SPW) with
astiff bottom in the absence of sound absorption. In the
SPW, the group velocity of the modesis determined by
several parameters: the ordinal number of the mode, the
distance, the sound speed, and the thickness of the

1063-7710/05/5102-0175$26.00 © 2005 Pleiades Publishing, Inc.
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waveguide. The sameistrue for the propagation time of
the pulse components with different frequencies. In
addition, all of these parameters influencing the mode
group velocity can be combined into a single coeffi-
cient. This coefficient can be easily fitted by analyzing
the experimental data, and one can drop the assumption
of the bottom stiffness.

It was found that the aforementioned approxima-
tion can be used to satisfactorily interpret the experi-
ment performed in a shallow sea at a distance much
shorter than that required for the intramode dispersion
to be neglected in transmitting pulsed CW signals.
The study showed that, with allowance for the intra-
mode dispersion, one could not select the modes by
simply separating them in their arrival times, even in
the SPW, where the intramode dispersion can be com-
pletely compensated for. To determine the set of
modes of the sound field received by a single hydro-
phone, a special technique of processing and repre-
senting the data is required. Such a technique is pro-
posed here.

The experiments on the signal propagation were
carried out in the Barents Sea. The sound signalswere
produced by a broadband transmitter deployed from a
drifting research vessel. The hydrophones positioned
at different depths operated as self-contained units.
The signal received by a single hydrophone was
recorded by the digital system [7] with allowance for
its amplitude and phase. The distance between the
transmitter and the receiver (the path length) varied
from 2-3 to 20 km. The transmitted signals were the
LFM pulseswith afrequency deviation of about 30 Hz/s
and afrequency band from 100 to 350 Hz.

The processing of the received signals recalled a
preceding modeling of the signal propagation in the
SPW similar to a natural waveguide (the distance R=
17 km, the waveguide thickness H = 120 m, and the
sound speed ¢ = 1500 m/s). In view of the frequency
dependence of the group velocity, the arrival time of a
mode in the SPW is determined by the formula[1, 2]

T Re(m—0.5)°

T(w) =
20w°H?

ey

where wisthe cyclic frequency and misthe mode num-
ber.

The LFM wave can be represented as
A(t) = cos[P(1)], (2)

where the phase ®(t) is given by the expression

1:2
¢(t)=a)0t+a§. 3)

To take into account the dispersion of waves in the
waveguide, one should introduce delay (1) into Eq. (2).

ZVEREV et al.

A problem arises even at this step. If the delay isintro-
duced formally, so that oscillation (2) is delayed
according to Eq. (1),

AD(t) = Acos[d(t — T(w))], “4)

the oscillation will be extended in time. Such an exten-
sion influencesthe spectrum of the oscillation in aman-
ner opposite to the delay introduced. Figure 1a shows
the running spectrum of the oscillation for m= 9. This
spectrum is obtained by introducing the delay accord-
ing to Eq. (4).

To correctly calculate the frequency-modulated
oscillation with alowance for the dispersion in the
waveguide, one should proceed in the following way.
The variation in the frequency of the LFM signa is
defined as

w=wy+at 5)

for thetimeinterval [0, t].

Into this time dependence, the delay is introduced
according to Eq. (1):

W= 0wy + a(t - T(w)). (6)

From Eq. (6), the frequency w(t) and phase ®(t) of
the oscillation is found by integrating the frequency
w(t) over timefrom O to t:

t

eD(t) = Iw( €)de. (M
0

Thus, an oscillation is obtained that models the
amplitude and phase of the LFM signal transmitted
through the Pekeris waveguide:

AD(t) = cos[®PD(t)]. ®)

Figure 1b showsthe running spectrum of Eq. (8). As
one would expect, the lower frequencies correspond to
greater delays, as compared to higher frequencies.

Figure 1 displays the dispersion in an explicit form.
This suggests the conclusion that the dispersion can be
directly extracted from the experimental running spec-
trum of the oscillation. It seems that the shape of the
curves carries some information on the mode composi-
tion of oscillations. However, this is not true, because,
for low mode numbers, short distances, and shallow
depths (these being the factors that govern the disper-
sion), the offset of the frequency deviation from thelin-
ear law isso small that it cannot be detected in the run-
ning spectrum.

Figure 2 confirms the above statement. This figure
shows the time dependences of the frequency in the
LFM oscillations transmitted through the SPW in view
of the dispersion given by Eq. (6). The curves shown
are not the current spectraasin Fig. 1 but rather the cal-
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Fig. 1. Dependence of the signal frequency (vertical axis, in hertz) on time (horizontal axis, in seconds) without (straight lines) and
with (curves) allowance for the dispersion. The dispersion is taken into account by (&) selectively delaying the entire LFM signal
and (b) by delaying the time dependence of the frequency with a subsequent reconstruction of the signal. The distanceis 17 km.
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Fig. 2. Dependence of the signal frequency (vertical axis, in hertz) on time (horizontal axis, in seconds) for the LFM signal (solid
line) and the LFM signal with allowancefor theintramode dispersion of (a) modes 1 to 3 and (b) modes7to 9. Thedistanceis 17 km.

culated dependences of the frequency on time. With
such avisualization of variations (6) in the frequency of
the oscillations, the resolution is incomparably higher
than with the analysis of the running spectra. However,
in Fig. 2a, which showsthe threeinitial modes, the off-
set fromthelinear law isalso nearly unnoticeable. Such
an offset is clearly pronounced in Fig. 2b, which corre-
sponds to higher modes. Thus, the analysis of the run-
ning spectrum (or the running correlation function)
cannot lead to the desired result, that is, to the selec-
tion of modes with low ordinal numbers at short dis-
tances.

The processing of the experimental datamay consist
in cross-correlating the oscillation received by the
ACOUSTICAL PHYSICS  Vol. 51

No. 2 2005

hydrophone with areference oscillation. The latter can
be obtained by using a mathematical model allowing
for the dispersion of the velocities of the waves propa-
gating in thewaveguide. Theinclusion of the dispersion
in the reference oscillation alows one to compensate
for the spread of the maximum in the cross-correlation
function of the LFM signal with the reference one and
thereby to more accurately measure the arrival time of
the signal for each waveguide mode.

To analyze the set of modes, we use the cross-corre-
lation between the received oscillation and the refer-
ence one obtained with allowance for the dispersion of
waves in the waveguide. At thefirst stage, a mathemat-
ical model of the SPW is used. To do so, we combine
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Fig. 3. Coefficients of correlation (vertical axis) of the modeled signal with the LFM signal (a) without and (b—d) with allowance
for the dispersion of modes (b) 1, (c) 2, and (d) 3. The horizonta coordinate istime (in milliseconds). The distanceis 8 km.

oscillations (8) with a single mode in each summand.
For instance, the sum of the second and third modes has
the form

E(t) = AD(t, 2) + AD(t, 3), )

where the characters in parentheses denote the mode
numbers used to allow for the dispersion.

Then, the reference oscillation (RO) is constructed.
It is advantageous to represent the RO in the form of
Eq. (8), where the number m of the mode, whose dis-
persion istaken into account, can bevaried. For brevity,
the RO is assigned a subscript denoting the mode num-
ber. The cross-correlation functions of signal (9) with
theRO, 5, RO,, RO,, and RO; are shown in Figs. 3a-3d,
respectively.

The mode with subscript 0.5 corresponds to the
LFM signal that isnot disturbed in its propagation. Fig-
ure 3a shows the cross-correlation for this signal. In
Fig. 3a, a correlation response can be seen that mani-
festsitself as a peak spread in time (to the left of zero,
with negative delays). The negative delay time corre-
sponds to a lag of signal (9) relative to the reference
one. Such alag indicates that the signal contains higher
modes arriving later than the RO, . The response is
spread, because signal (9) and the RO, 5 differ in their
frequency deviations. Figure 3b is quite similar to
Fig. 3a, because the RO, dlightly differsfrom the RO, 5
used as reference in Fig. 3a. In Fig. 3c, two responses
can be seen, one of which is spread asin previous fig-
ures and the other of which looks like a narrow well-
developed correlation peak. This peak corresponds to
the second mode, because the RO, is the signal of the
second mode, which is aso present in signa (9). The
spread peak is the response to the higher third mode;
therefore, itisat theleft of zero. Two responsesare also
present in Fig. 3d. The first one is a well-pronounced
correlation peak at zero. This peak is the correlation of

the RO; with the third mode, while the spread response
results from the correlation of the RQ; with the second
mode. The latter mode has alower number, and, hence,
the corresponding response advances the correlation
peak (thisisthe only responsein Fig. 3 that existsto the
right of zero).

The following general conclusion can be drawn
from Fig. 3. Cross-correlating the signal and the RO
containing a single known mode allows one to deter-
mine the amplitude of the mth mode from the concen-
trated-in-time response. At the same time, the left- and
right-hand spread responses carry information on the
presence of modes with numbers higher and lower than
min the signal.

The aforementioned situation of the strong intra-
mode dispersion differs from that considered in [1],
where each mode has its correlation maximum
observed simultaneously with the maximum of another
mode. In our case, one cannot focus the responses on
two modes arriving at different times, because these
modes correspond to different frequency deviations
depending on the intramode dispersion.

Nevertheless, a method exists that allows one to
focus all the modes and to represent them in the same
plot, even if the intramode dispersion is taken into
account. For simultaneously visualizing all the modes
existing in the signal, one can calcul ate the cross-cor-
relation function of the received or modeled signal
and the reference one for asingle instant and then use
the numbers of the modesin thereference signal asthe
variable required to obtain a plot. In doing so, the
mode number m takes not only integral but also frac-
tional values.

The possibility of varying the mode number in the
reference signal instead of performing tuning in time
is offered by the fact that Eq. (8) automatically sepa-
rates the LFM signals with different mode numbersin
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Fig. 4. Coefficients of correlation (vertical axis) between the mathematical model of the LFM oscillation in the form of the sum of
modes 1, 2, and 3 and the LFM oscillation constructed with allowance for the SPW dispersion at a zero delay versus the number of
the mode taken into account (horizontal axis). The distances are (a) 8 and (b) 17 km.

time. Therefore, if the distance, the parameters of the
path, and the initial time are correctly fitted, the max-
imum of the cross-correlation function of the RO and
the signal will correspond to the same instant t for all
the modes.

Figure 4 illustrates the results obtained with the pro-
posed technique for the signal numerically modeled as
asum of three modes (signal (9) is complemented with
the first mode). The curves shown correspond to dis-
tances of 8 and 17 km. In Fig. 4a, three maximacan be
seen. Their horizontal coordinates are 1, 2, and 3,
according to the ordinal numbers of the modes present
in the signal. For other mode numbers, the responses
are noticeably lower. As the distance increases, the dif-
ference in propagation conditions for different modes
becomes greater, and one can expect that, at long dis-
tances, the modes will be distinguished better than in
Fig. 4b.

The plot shown in Fig. 4 accentuates the difference
in the shapes of the correlation functions for different
modes, i.e., the difference that could be noticed from
Fig. 3. It istrue that, in Fig. 4, all the modeled modes
are clearly pronounced, and a distance of 8 km is suffi-
cient for the modes to be reliably separated. Thus, the
necessary part of the problemis solved: it is shown that
the set of modes can be determined for the numerically
modeled signal.

In anin-seaexperiment, theinitial delay time can be
estimated from the instant corresponding to the maxi-
mum in the correlation response at some mode if such
aresponseispresentinthesignal. An error in determin-
ing this instant leads to both a shift of the mode num-
bersin the plot and a decrease in the correlation coeffi-
cient.

The results of Fig. 4 do not lead to the conclusion
that the same situation will take place in an experi-
ment. The reason is not only that, in numerical model-
ing, a“pure” signal isobtained without noise and inter-
ference. The point is also that the natural waveguide
differs from the SPW used in generating the reference
signal.

An experimental curve plotted with the same tech-
nigue as Fig. 4 should exhibit individual maximacorre-
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sponding to mode numbers indicated on the horizontal
axis. However, the dispersion characteristic is governed
by both the mode number and the value of the coeffi-
cient appearing in Eq. (1). This coefficient depends on
the waveguide thickness, which is not known along the
path, and on the impedance of the bottom in the natural
waveguide (again, along the path). In addition, an
uncertainty is caused by the error in measuring the
instant of the zero delay between the arrivals of differ-
ent modes; thisdelay is determined by the maximum in
the cross-correlation of the signal and the RO. The nat-
ural waveguide does not have a perfectly stiff bottom,
and, hence, the mode numbers can take nonintegral val-
ues[1].

The signals received in the experiment were pro-
cessed with the parameter H = 136.1 m, while the sea
depth in the vicinity of the receiver was about 120 m.
Such avalue of H was chosen for the maximum in the
figure to correspond to the 3rd mode at a distance of
17 km. Infact, thismode can be number 2, 2.5, or some
other. Accordingly, the characters on the horizontal axis
in Fig. 5 should be treated as the numbers of modesin
the reference signal (NMRS) rather than the mode
numbers themselves.

Figure 5 illustrates the results of processing the
experimental signals with the aforementioned tech-
nigue. To obtain the plotsin Fig. 5, the same reference
signals were used as in Fig. 4. According to Fig. 5, the
results obtained are noticeably different for different
distances and reception depths. It is characteristic that
the maxima are noticeable at certain values of the
NMRSin all the plots. However, these maximaare pro-
nounced to different extent. In Fig. 5a (a distance of
8 km, reception near the surface), a well-pronounced
maximum exists at NMRS = 3 and less pronounced
maxima occur at the NMRS values of 1, 4.5, and 5. In
Fig. 5¢c (the same distance but a different depth), a
strong and well-pronounced maximum corresponds to
thevicinity of NMRS = 1, while the noticeabl e peak that
correspondsto NMRS = 3 in Fig. 5ais nearly absent in
Fig. 5c. At deeper horizons of reception (Fig. 5e), the
highest maximum corresponds to NMRS = 5. The
sharpness of the maxima in Figs. 5a, 5¢, and 5e is
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Fig. 5. Coefficients of correlation (vertical axis) between the received LFM oscillation and the LFM oscillation constructed with
allowance for the SPW dispersion at a zero delay versus the number of the mode taken into account (horizontal axis). The dis-
tancesare(a, c, €) 8and (b, d, f) 17 km. Thereceivers are (a, b) near the surface, (c, d) at the half-depth of the sea, and (e, f) near

the bottom.

nearly the same asin Fig. 4a, corresponding to the same
distance.

In Figs. 5b, 5d, and 5f, corresponding to a distance
of 17 km, much more pronounced and narrower max-
ima exist than in Figs. 5a, 5c and 5e. This fact fully
agrees with Fig. 4, which also shows a much clearer
pattern at a distance of 17 km than at 8 km. At 17 km,
there are nearly no maxima at NMRS values greater
than 3. Such asituation can be explained by thefact that
higher modes attenuate more rapidly than lower ones as
the distance increases. Thisresult confirms the fact that
the actual modes of the waveguide are observed in
Fig. 5. The most pronounced mode is the one that cor-
responds to an NMRS value of about 3 at a distance of
17 km. Thismodeis easily detectable at all depths. The
main justification of the statement that Fig. 5 yieldsthe
actual individual modes of the signal consists in the
existence of the pronounced maximain this figure and
in the agreement of their shapes with the results of
numerical modeling (Fig. 4).

The comparison of Figs. 5 and 4 shows that the
separation of modes also takes placein the experiment
and that this separation is almost as definite asin mod-
eling, although the experimental values of the cross-

correlation coefficients are substantialy lower. The
decrease in the experimental cross-correlation coeffi-
cients is governed by both factors responsible for the
difference between the experiment and the calcula-
tions. These are the existence of noise and interfer-
ence and the difference between the modeled refer-
encesignal andthe LFM signal propagating in the nat-
ural waveguide. The reliable separation of modes in
the experiment shows that, for solving the problem at
hand (that is, for determining the mode compositionin
ashallow seawith an intramode dispersion), it is suf-
ficient to use the approximation of a perfect Pekeris
waveguide.

Thus, the approximation of a perfect Pekeris
waveguide allows one to take into account the intramode
dispersion and to determine the approximate mode com-
position of the broadband oscillation at a distance where
the modes can be separated due to the broad frequency
band. It is also shown that, to obtain a higher correlation
coefficient (and, hence, to increase the noise immunity),
the transmitted LFM signal should be correlated with a
signa that, in the first approximation, alows for sound
propagation in the waveguide rather than with theinitial
LFM signal.
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Abstract—Possibilities for the observation of randomly distributed and spatially localized inhomogeneitiesin
ashallow sea by the method of low-frequency low-mode pulsed diffraction tomography are discussed. Results
of computer simulations and experimental studies of the emission and reception of low-frequency low-mode
acoustic signalsin ashallow seaare presented. © 2005 Pleiades Publishing, Inc.

In this paper, we analyze the potential of low-mode
pulsed tomography of a shallow sea using echol ocation
(multistatic in the general case) schemes of observation
in shallow water [1, 4, 5, 8-15]. The structure of the sig-
nals diffracted by spatialy localized inhomogeneities
in a waveguide, as applied to the problem of tomo-
graphic observations in oceanic underwater channels,
was analyzed for thefirst timein[1, 2] and also in many
subsequent publications cited in [13]. In thefirst part of
this paper, we analyze the basic idea of the method and
demonstrate the potential of low-mode pul sed tomogra-
phy for reconstructing the parameters of some specific
types of inhomogeneities in a shallow sea on the basis
of a computer model developed for this purpose. An
important condition for the implementation of low-
mode pul sed tomography is the selection of waveguide
modes. In the second part, we briefly describe the
equipment and some results of experimental studies
aimed at the determination of the abilities of selective
excitation and reception of waveguide modes. The
employment of vertically developed receiving systems
in shallow water has its own history. In particular, it is
necessary to note the joint experimenta studies of the
Genera Physics Institute and the Institute of Applied
Physics of the Russian Academy of Sciences that were
conducted in 1990 [3]. However, a combined employ-
ment of vertical multielement radiating and receiving
arrays in the low-frequency tomographic observations
on long tracks in a shallow sea was considered for the
first time only in [4, 5]. In [6, 7], the abilities of such
arrays were examined in application to phase conjuga-
tion in an acoustic waveguide for short tracks within a
higher frequency range.

BASIC PROPERTIES
OF LOW-MODE PULSED TOMOGRAPHY

The idea of the low-mode pulsed tomography is as
follows: pulsed signals corresponding to the nth mode

and characterized by an ambiguity function that is suf-
ficiently narrow in the frequency—time plane are
excited with the help of a set of vertically developed
araysS(i=1,..., |, wherel isthe number of radiating
arrays). Here, we assume that the waveguide and mode
structures are known. It is necessary to note that it is
practically impossible to excite just one mode because
of the finiteness of the radiating array aperture and the
impossibility of placing the radiator in the soil. We will
call asignal low-modeif it is emitted so that all modes
are much smaller than one produced by matched exci-
tation [8-12]. The pul ses scattered by the inhomogene-
ity under investigation, which correspond to the modes
with the numbers m= 1, ..., M, where M is the totd
number of modes propagating in the waveguide, are
received by a set of vertically developed receiving
arraysR; (j=1, ..., J, where Jisthe number of receiving
arrays). A matched filtration of pulses with sweeping
delays 1 and Doppler frequency shifts Q is performed
for each of the modes selected at the reception. The
number and positions of the sources and receiving sys-
tems and the number of the mode tomographic projec-
tions corresponding to each source—receiving system
pairs may vary. Thus, the received signal for each pair
of radiating and receiving arraysisafunction of severa
variables: the numbers of excited and received modes,
the delays, and the Doppler frequency shifts. Asaresult
of combined processing of all spatial mode and fre-
guency tomographic projections, the spatial and tempo-
ral parameters of inhomogeneities are determined.

Far from the source, in plane-layered waveguides,
the field is a finite sum of N propagating modes (for
horizontal homogeneous waveguides, the number of
modes near the source and the receiver is the same and
N = M). A mode is characterized by the eigenfunctions
0,2 and the complex eigenvalues h,(w), with the
imaginary parts determined by the mode damping fac-
tors d,(w). Each ith source of a tomographic system,
which isan array of radiators with alength L, emitsa

1063-7710/05/5102-0182$26.00 © 2005 Pleiades Publishing, Inc.
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sequence of narrowband probe pulses fy(t) with the
pulse spectrum F(w — wy,), where wy, is the carrier fre-
guency. If the depth and dimensions of the radiating
arrays are selected optimally, the emitted low-mode
signal consists of a mode of number n whose level far
exceeds the levels of all other modes [8-12]. In this
case, under the assumption of the smallness of theintra-
mode dispersion effects (thisimposes limitations on the
frequency band of radiated pulses and on the distances
at which they are observed), after matched filtration, a
direct (nonscattered) pulsed signal from the jth receiv-
ing array of length L; can be represented in the form

PI(ry, T Q™) = ALALexpli(hor —TU4)]

M
(har) PFa(tih QD+ Y AAL (D)

n#n
p#EMm

x expli (hyryy = TU4)] (hyry) ™ *Fu (i, QiF"),
where h, = hy(wy); T = r;/V(y) is the delay of the
pulse corresponding to the mode with number n in the
reception channel that corresponds to the mode with
number m; v, (&) isthe group velocity of the mode with

number n; Q™ is the Doppler frequency arising due to
the scatterer motion; A} = 0"jgir;’jm (20, m(2dzarethe
coefficients of mode excitation by the radiating and

receiving arrays, respectively; gi,;,jm(z) are the weight
factors along the apertures of the arrays; Fy(T, Q) =

1/21TJ“:°oo dw F(w)Fy(w— Q)expli(w— Q)1] isthe ambi-

guity function of probe pulses; and Fy(w) is the spec-
trum of the replica of the probing signal. In the case of
an ideal spatid filtration, where the conditions of mode
orthogonalization are satisfied at the array apertures,
the second termin Eq. (1) in the form of asum of small-
value interfering modes vanishes and only the compo-
nent corresponding to the illuminating field in the form
of asingle emitted mode remains.

In the course of tomographic observation, the probe
pulses subjected to diffraction by waveguide inhomo-
geneities are measured. In the framework of the mode
description, the complex amplitudes of diffracted
waveguide modes are determined by the scattering
matrix. The matrix depends on the internal structure,
shape, and positions of inhomogeneities (for example,
see [13-15]). When inhomogeneities are illuminated
with a pulsed signal corresponding to the mode with
number n, the amplitude of each pulse of the diffracted
modeswith index misformed asaresult of signal scat-
tering from all inhomogeneities located within a corre-
sponding pulse volume, the pointsr' of which satisfy the

condition ft—ry vy" +ry v | <AT/2, wherer; = ||
andry = |r' — r;| are the distances from a scatterer to the
ACOUSTICAL PHYSICS  Vol. 51
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source and the receiver, respectively. In the genera
case, the inhomogeneities are moving and, hence, the
scattered pulses have a Doppler shift. In the case of nar-
rowband illuminating pulses and relatively small veloci-
ties of the scatterers V,, all scattarers satisfying the con-
dition e V(r')(vy' cosay(r, ') — v cosBi(r;, )| < AQ
fall in a separate channel on the axis of the Doppler
shifts. Here, aj(r;, r') and By(r;, r') are, respectively, the
angles between the direction of the velocity vector of
the velocity for an elementary scatterer at the point r'
and the radius vectors constructed from the point of the
scatterer position to the source and the receiving sys-
tem. The quantities AT and AQ are determined by the
width of the ambiguity function F(t, Q) of the probe
pulses, respectively, on the axes of time delays and
Doppler frequency shifts. In the digital signal process-
ing, in each of the delay-Doppler shift planes corre-
sponding to the pair of radiated modes with the number
n and received modes with the number m, it is possible
to introduce a set of channels for each source—receiver
pair (i, j), which correspond to the interval of the time

delays oti”jm +(-DAT<tf" < Ot{}m + A1, and the Dop-

pler frequency shifts (k ¥ 1AQ < Q" < kAQ, where
=1,2,...,Land k=+1, 2..., £K are the channel num-

0,nm

bersand 't aretheinitial valuesof timedelays, which
are fixed for each tomographic projection {i, j, n, m}.
After processing consisting of the matched filtration of
received mode pulses, taking into account the discreti-
zation determined above, we have in the general case
{IxIXNxMxKxL} tomographic projections, the signals
of which are the integral characteristics of all inhomo-
geneities|ocated within each projection. The combined
processing of the signals of these projections yields a
reconstruction of the differential characteristics of the
inhomogeneities observed, i.e., the distribution of their
parameters in the observation region.

Under the assumption of the smallness of multiple
scattering effects, the amplitudes of the modes scat-
tered by single elements of the pulse volume are deter-
mined by the components of the spatial spectrum of
inhomogeneities, which satisfy the condition of reso-

nance scattering kij® = hyryi/ry — hyty/ry [16]. The
observed pressure amplitudes of the acoustic field are
the sum of theilluminating field °p[", the components

ag_nm

p; of thefield scattered by the inhomogeneity under

R_nm

observation, the field "p;; " scattered by al interfering
inhomogeneities, and the field of the sources of the

additive oceanic noise Np}". In the general case, each

component of the received field must be considered as
arandom signal with certain inherent statistical proper-
ties. Inthiscase, it isnecessary to assumethat the direct
illuminating field and the diffracted components of the
field are partialy coherent, which leads to their inter-
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ference. This effect can be used for the reconstruction
of inhomogeneities, in particular, in the case of obser-
vation of the fields diffracted through small angles. In
the scheme of low-maode pul sed tomography, this situa-
tion takes place within the first pulsed volume, when
the direct pulse and the diffracted pulses are not
resolved. A detailed consideration of the influence of
the interference effects arising in this case and their use
can be found in [1, 13-15]. In this paper, we consider
situations where interference effects between the direct
illuminating field and the diffracted fields are small;
i.e., we analyze the specific features of the tomographic
reconstruction of the inhomogeneities located in the
pulse volumes, where | > 1 and k > £1. Assuming the
interference effects to be small, we have, for the
received signal intensity [13, 14],

0P} (x", Qi D
+ 0PI (™, QM) T )

ij o

gPIm(™, Q™[0 =

1

+ 0PI, i o VPN, oM
The averaging in Eq. (2) is performed over the statistical
ensembles of the corresponding random inhomogene-
ities and noise. If random inhomogeneities are relatively
weak or the length of the tomographic tracksissmall, the
illuminating field can be considered as approximately
coherent: [DOP T, QPC= | P,] (T, QP In
the case of |IIum| nation Wlth the nth mode, the intensi-
ties of the signal components from the output of a
matched filter, which correspond to the diffracted (by
observed (with index o) and interfering (with index R)

inhomogeneities) pulses of the received mode with the
number m, are determined by the matrix of mode scat-

tering (* A n#])ij :

[I]a RPIJ (Tln]m, Qnm)| I

= [A A Ry, ) 3)
+ Z AAALALC R (T T, QI Q).

VZ£n
uzm

It is necessary to note that, in the case of observation of
spatially restricted inhomogeneities, the interferenceis
represented by randomly distributed surface, bottom,
and bulk inhomogeneitiesin the ocean. The intensity of

the additive noise [1'P" (1], Qf™)POcan be repre-
sented in the form

[I] P (Tmm Qmm)| =

.,, AN (™, ™)

ij

N HM A pm “
+ ZA ALNE) (T4, 94T,

p#EM
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where the function (N{)I(tj", Q") determines the

intensity of the output signal from a matched filter in
the absence of the illuminating field, when the receiv-
ing array with theindex j detects the signals of additive
noise in the process of reception of the mode with the
number m.

The scattering matrix in Eq. (3) isdetermined by the
spectrum of inhomogeneities [13, 16],

(c R vu)”( nm vu Qnm Qvu) - 8/T[hg

ij o i » 855

0

1
*J
I1iloj

—o0

exp[i(h, —hy)ry; +i(h,—hp)ry)]

e it hory hy+hry
J’R\Nan 2 1y 2 1y

'l
w,rD 4)

—o0

nm g nm
X Fu(Tij =1yl Vo =ro/vy o —Qj)

x FL(T —rylv, —rylv,; o = Qi) dwd T,

where h, isthe value of the wave number at the channel

axis for the carrier frequency, "W (k, w, r) are the

corresponding components of the local spectrum for
the correlation function of inhomogeneities with
respect to differential variables for the sum of the sur-
face, bottom, bulk, and spatially restricted inhomoge-
neities, and the integration is performed over the hori-
zontal coordinates, the depth of inhomogeneity posi-
tions being taken into account in the process of
calculation of the components of the local spectrum for
inhomogeneities [13, 14, 16, 19].

Tomographic reconstruction of an object consistsin
the evaluation of the observed parameters of the model
describing the object. In particular, in the case of a spa-
tidly restricted inhomogeneity, its coordinates, shape,
and velocity and direction of motion can be the
observed parameters. In the case of wind waves, the
parameters of an observed object model can be the
velocity and direction of the wind inducing the waves.
L et us denote the set of the observed parametersfor the
object model by the vector p. The components of the
vector of observed parameters are evaluated by the
method of statistical verification of hypotheses deter-
mined by the solution of the direct problem by using
apriori information in the form of models of the
medium, observation object, interference and noise,
and configuration of the observation system. The solu-
tion corresponds to the global extremum of residual

W) =|lg - g®|p — min between the vectors of the

p
measured parameters g and the corresponding sorted
hypotheses g®. The rule of decision making on the
ACOUSTICAL PHYSICS Vol. 51
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Fig. 1. Block diagram of the algorithm of acoustic observation by the method of low-mode pulsed tomography in a shallow sea.

validity of ahypothesis concerning the value of the vec-
tor g = q® usually has the form

lg-q®|" <o, (6)

wherethenorm |||, its power index n, and the threshold
values ¢ in the general case are determined by the dis-
tribution of the probability density for the vector of
measured parameters, preset probabilities of errors of
the first and second kinds in the process of decision
making, noise and interference, and other factors, in
particular, the evaluation algorithm for the vector of the
conditional probability for the decision on the approval
of a hypothesis by an employed measuring device.
Under the assumption that the value distributions are
normal, using the quadratic metrics n = 2 and taking
into account Eqg. (2), for the components of the vector
of measuring parameters q the hypothesis is approved
if the difference of the useful signal level and the level
of interference and noise exceeds the threshold deter-
mined (at the required probabilities of errors) by the
statistical distribution of values[17]. In this case, the
observation algorithm is determined by the succes-
sion of the operations given in Fig. 1, where just two of
the {1 xJ x N x M} of jointly processed tomographic
projections are given. As follows from Eg. (2) with
allowancefor Egs. (1), (3), (4), and (5), the components
of the vector of aperture factors for each tomographic
projection are determined by the dimensions and posi-
tions of the receiving arrays L;, the frequency band of
measurements, the shape of probe pulses, the structure
of ahydroacoustic waveguide, and other factors, which
are determined by a priori information in the form of
models of the medium, object, interference, noise, and
configuration of the observation system (blocks M1-M4
inFig. 1). In particular, the aperture factors provide the
filtration of mode channels, which is matched to the
waveguide, and the compression of probe pulses
(blocks 11, 12, P1, and P2). The search for the solution
corresponds to the search for hypotheses and, in our
case, to the search for discrete channels in the planes

ACOUSTICAL PHYSICS Vol. 51
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(ti", Q") of separate tomographic projections
(blocks G). For each hypothesis, the decision for each
tomographic projection is made by the blocks PU, and
the resulting solution, obtained by combined process-
ing of all projectionsin the form of the evaluation of the
true values of the observation vector p = p, is formed
by the block Z. In the case of a change in the observa-
tion conditions, the models are corrected (block M4),
which can be done by using oceanological models and
the hydrological and acoustic data bank for the region
of observations. Let us analyze in more detail the spe-
cific features of the operation of low-mode pulsed
tomography using the examples of observation of wind
waves and a spatially restricted inhomogeneity.

RECONSTRUCTION OF THE PARAMETERS
OF WIND WAVES

As follows from Eg. (5), the intensity of diffracted
low-mode acoustic pul ses from the output of amatched
filter is determined by the integral equation of convolu-
tion of thelocal spectrum componentsfor inhomogene-
ities with the sguared modulus of the ambiguity func-
tion of probing signals. Variation of the delays and
Doppler shiftsallows usto obtain aset of integral tomo-
graphic projections for the spectrum of inhomogene-
itiesand to evaluate their spatial distribution with ares-
olution determined by the configuration of separate
pulse volumes. For different pairs of modes{n, m}, the
spatial structure of pulse volumes may change. Fig-
ure 2a showsthe structure of these pulse volumesinthe
horizontal plane (X, y) for n=1and m= 3 for ashallow-
water waveguide with a depth of 300 m. In the process
of simulation, we adopt the model of a shallow-water
sea whose bottom is in the form of two layers of sedi-
ments, which lie on an el astic base with the dependence
of sound velocity on depth that istypical of winter con-
ditions [4, 5]. The model parameters are conditional
and can be easily changed. Selection of mode projec-
tionsis performed by the blocks 1 and P1 shown in the
block diagramin Fig. 1. The positions of radiatingi = 1
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and recelving | = 1 arrays located at a distance of 100 km
from each other are denoted in Fig. 2a by the letters S
and R, respectively, and the digitsindicate the positions
of pulse volumes with respective numbers. The shapes
of pulse volumes, generally speaking, depend on the
time of pulse arrival. Their vertical structure is deter-
mined by the product of the eigenfunctions ¢,, (2) of
the modes used.

Let us assume that phase-shift-keyed pulses with a
length of 10 s and the modulation law in the form of an
M sequence with a carrier frequency of 250 Hz and a
frequency band of 10 Hz are used as probing signals[4,
5]. In the case of such probing signals, the central peak
of the response in the process of matched filtration per-
formed by the blocks 12 and P2 (Fig. 1) islocalized in
a narrow interval of the Doppler frequencies and
delays. To describe the structure of bottom reverbera-
tion, we use the smplest Lommel—-Seelinger model
[17]. We &l so assume that nonisotropic wind waves are
described by the JONSWAP model [18]. This model
can be characterized by the vector of observed param-
eters, whose components are the wind velocity V and
the angle x determining its direction in the horizontal
plane, p = pr= {p; =V, p, = X}. Further, we assume
that the waves are induced by wind with avelocity V
= 5 m/s directed at an angle x = 5174 (the wind direc-
tionisindicated in Fig. 2aby an arrow). Calculating the
matrices of scattering of waveguide modes from waves
at the surface, we use a two-scale model of surface
waves, where acoustic field scattering is performed by
the resonance harmonic of the waves. The phase veloc-
ity of the harmonic is modulated by higher waves[19].

The shape of such a spectrum isshownin Fig. 2bin
the form of a brightness distribution on a logarithmic
scale. The anisotropy of the spatial spectrum of wind
waves causes the shape asymmetry of the matched filter
response on the axis of the Doppler frequencies. Since,
in each element of the pulse volume, the scattering is
performed by acorresponding spatial harmonic satisfy-
ing the condition of resonance scattering, a spatial
pulse volume can be associated with a pulse volumein
the plane of wave numbers. Whitelinesin Fig. 2b show
the structure of such volumesin the case of illumination
with the first mode and reception of the third mode and
the af orementioned parameters of the wind velocity and
the shallow-water waveguide. Pulsed volumesfor | =1
have the shape of two adjoining circles and, in particu-
lar, for | = 20, they take on the form of a circle shaped
like adumb bell. The shape of pulse volumeswith high
numberstendsto acircular ring with the radius 2k. Note
the importance of mutual orientation of pulse volumes
and the symmetry axis of the wave spectrum in the
space of wave numbers in the process of formation of
the response structure of a matched filter, which is evi-
dent when comparing the corresponding structures of
pulse volumes in the horizontal plane and the wave-
number space of (Figs. 2a and 2b). As the analysis
shows, a change in the wind direction causes arisein
the asymmetry of the dependence of the matched filter

LUCHININ, KHIL’'KO

response (Eq. (5)) at the axis of the Doppler frequency
shifts. Figure 2c demonstrates such a response in the
brightness form on a logarithmic scale (for a clearer
perception of the signal structure, the isolines corre-
sponding to the levels of 80 and 90 dB are given in the
brightnessfield). The search for the values of the delays
and Doppler frequency shiftsis performed by the block
for the verification of hypotheses (block G in Fig. 1).
The response values in separate channels of delays
from the output of a matched filter correspond to the
pulse volumes with the structures shown in Figs. 2aand
2b. The interval of delays that corresponds to the
20th pulse volume is shown in Fig. 2c by two vertical
dashed lines. The summary signal in all Doppler fre-
quenciesfor afixed value of T isdetermined by the dis-
tance from all scattering elements of a corresponding
pulse volume. The decreasein the response level s of the
signals scattered by bottom inhomogeneities located in
the resolution elements with a zero Doppler shift
(Fig. 2c) isdetermined by the structure of the model for
the spectrum of bottom inhomogeneities and mode
decay that is used for calculations.

For each pulse volume, it is possible to construct a
dependence of signal decay on the position of a scatter-
ing element. Such tranglational characteristics[20] cal-
culated for the first and third modes demonstrate that
there are spatial regions where the signals scattered by
relatively low spatial frequencies are weak. This depen-
dence is explained by the fact that the low-frequency
spatial components satisfying the conditions of spatial
synchronism are located in the elements of the pulsed
volumes that are at large distances from the source and
the receiver, which leads to their relatively large atten-
uation because of decay. It is evident that these regions
(the pulse volumes and wave-number intervals corre-
sponding to them) must be excluded in the process of
solving the inverse problem that correspondsto the reg-
ularization of measured data and that is performed by
the optimal selection of the components of the vector of
the measured parametersq = g (block M2inFig. 1) [4,
19, 20].

Using the minimization of the rmsresidual as acri-
terion, the solution pg = pr corresponding to the global

extremum in a two-parameter space (Fig. 3) is deter-
mined with the help of the iteration parameters opti-
mized on the basis of a priori information concerning
the iteration algorithms [4, 20], in particular, using the
ravine character of the space of residuals. Since, in the
case of bistatic observation, a symmetry axis exists, an
observation system consisting of just one tomographic
projection is incapable of distinguishing the positive
angles of the wind direction from the negative angles.
The true position of the global extremum is invariant
with respect to the power of theilluminating source and
the noise level that represents interference in the pro-
cess of reconstruction of the parameters of wind waves.
However, if the level of additive noise increases and a
preset power of the illuminating source is used, the dis-

ACOUSTICAL PHYSICS  Vol. 51
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(a)

(b)

110 ©
-100

Fig. 2. Formation of the space of residualsin the process of evaluation of the parameters of wind-wave observations. (a) Pulse vol-
umes in the horizontal plane for the first and third modes; (b) the wave spectrum (in a brightness form) and the structure of pulse
volumes in the space of wave numbers; and (c) the structure of the matched filter response to reverberation signals from surface

waves and the bottom in the process of sorting the hypotheses (t = Tﬁ ,Q= Qﬁ ).
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Fig. 3. Space of residuals in the process of evaluation of
wind parameters.

persion and the shift of the evaluation of the wind wave
parameters grow. At a preset required precision of
reconstruction, the observation becomes impossible
starting from a certain value of the noise level. Using
the waveguide model and setting the noise levels, it is
possible to indicate a priori the regions of the parame-
terswhere the reconstruction is possible. These regions
can be called the system field of view in the space of the
observation parameters pg.

RECONSTRUCTION OF SPATIALLY
LOCALIZED INHOMOGENEITIES

A spatially restricted inhomogeneity in the general
case can be characterized by the vector of observation
parameters p = {R, o, V, o}, including, respectively,
the three-dimensional vectors of position, orientation,
velocity, and extension. Let us consider some specific
features of the reconstruction of spatialy restricted
inhomogeneities for the case of the observation condi-
tions adopted in the previous example. As an observed
spatially restricted inhomogeneity, we consider an ice-
berg, whichis simulated by a perfectly rigid body mov-
ing aong the waveguide surface and partly immersedin
the waveguide. To describe diffraction of mode pulses,
we assume that the iceberg is shaped like a vertically
oriented cylinder with a finite height and dimensions
far exceeding the wavelength for the central part of the
spectrum of the probe pulse [14, 21]. We assume that
the iceberg moves along rectilinear tragjectories with
equal inclinations with respect to the line between the
source and the receiver. The levels and the Doppler
shifts of the mode pulses diffracted by this inhomoge-
neity vary, which determines the efficiency of recon-
struction depending on the ratio of useful signalsto the
level of interference and noise. We assume that, apart
from additive noise, the competing scatterers in the
form of the wind waves examined in the previous
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example also exist. For the observation conditions
adopted in the previous section, the pulses scattered by
theiceberg are observed after matched filtration against
the background of reverberation interference with the
structure shown in Fig. 2c. Let us assume that useful
signals and interference have a normal statistics. We
assume the probability of correct reception of asigna
and the probability of falsealarmsto be set. Inthiscase,
the decision on the presence of an iceberg in one of the
spatial pulse volumes shown in Fig. 2a, i.e., in acorre-
sponding channel in the plane of time delays and Dop-
pler shifts, is made by a decision device (block PU in
Fig. 1). Since the velocity of the moving inhomogene-
ity issmall (0.5-2 m/s), auseful signal islocated within
theinterval of small values of the Doppler shifts, where
the interference level is sufficiently high (see Fig. 2c).
This situation is mainly characteristic of the iceberg
positions near the source—receiver line. In this case, the
evaluation of the components of the vector of iceberg
parameters, in particular, its coordinates, can be hin-
dered. To increase the spatial resolution, it is necessary
to perform observations using several tomographic pro-
jections. Let us consider a simple scheme of low-mode
pulsed tomography with one illuminating source and
two receiving systems, one of them being located near
the source, and the other, at a certain distance from it.
In this case, one of the tomographic projections corre-
sponds to the monostatic scheme of observation, where
all back-scattered signals are detected. The spatial
pulsed volumes shaped like concentric circular rings,
which correspond to it, are formed by the blocks 11, 12,
P1, and P2, and also by the block M1 from the mode! of
the medium (Fig. 1). Verification of hypotheses on the
position of the observed inhomogeneity in one of the
pulse volumesis performed by the blocks G and PU by

searching the channelsinthe (133, Q1) and (113, Q13)
planes corresponding to the monostatic and bistatic

projectionsin the case of using the model of reverbera-
tion interference and noise (block M3in Fig. 1).

Let us use the numerical model of observation to
analyzethe efficiency of iceberg observation inthe case
when some components of the vector of observed
parameters, in particular, the velocity and direction of
motion, arefixed. In this case, observation isreduced to
evaluation of the iceberg position. We assume that the
iceberg moves with avelocity of 1.5 m/s along a set of
trajectories. Each trgjectory makes an angle of 174 with
the line between the source and the second receiver,
located at adistance of 100 km. Calculation of theratio
of the levels of the signal diffracted by the inhomoge-
neity observed to the level of reverberation from wind
waves and the bottom, as well as additive noise, allows
us to estimate the probability of the observed object
position. Figure 4 gives the spatial distributions
obtained in this way for the probability of the approval
of ahypothesis on theiceberg coordinates, which deter-
mine the fields of view for the monostatic (Fig. 4a) and
bistatic (Fig. 4b) projections of low-mode pulsed
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Fig. 4. Structure of the field of view in the case of iceberg observation for the (a) monostatic and (b) bistatic observation schemes
and alsofor (c) acombined processing of two projections. Thewhitelinein the lower plot shows one of thetrajectories of theiceberg

motion.

tomography and also for the case of combined process-
ing of two projections (Fig. 4c). The term “field of
view” israther conditional. We consider it expedient to
represent the observation capability of the described
tomographic scheme in the form of a brightness distri-
bution of the probability of correct reception in the hor-
izontal plane, to which werelate this concept. The com-
bined processing of the signals from separate tomo-
graphic projections, which is performed by the block

ACOUSTICAL PHYSICS Vol. 51

No. 2 2005

(Fig. 1), consists in the logical accumulation of the
probabilities of separate projections. In the process of
calculation, we assume that the iceberg has the shape of
acylinder with adiameter of 200 m, which isimmersed
in the waveguide for 50 m. The level of additive noise
is taken to be equal to 70 dB relative to 1 pPa. The
power of the illuminating source is selected to be equal
to 100 W. In the case of monostatic observation, the
level of the signals back-scattered by the observed
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inhomogeneity only depends on the observation dis-
tance. The value of the Doppler shift for the reflected
pulsesis determined by the angle between the direction
of motion and the radius vector from the observation
point to the point of the inhomogeneity position (apart
from the velocity). The relationship of the values of the
Doppler shifts corresponding to iceberg motion with a
small velocity and the val ue of the frequency resolution
in the model under consideration is such that the field
of view isbroken into five pul se volumes corresponding
to five channels of the Doppler frequency shifts with
different levels of reverberation noise from wind waves
and random inhomogeneities of the bottom (Fig. 2c). At
small values of the Doppler shifts, the reverberation
level is determined mainly by scattering from the bot-
tom. The probability of iceberg observation in the corre-
sponding spatia pulse volumesis close to zero (Fig. 4).
Theiceberg isaso lessvisible in the case of its motion
to the observation point, since, in these regions, the
interference is formed by the most intense components
of wind waves (Fig. 4a). An analogous structure of the
field of view is aso formed for a bistatic tomographic
projection (Fig. 4b). The maximum interference is
formed at small values of Doppler shifts (see Fig. 2c).
However, in contrast to the monostatic case, the useful
signal level depends on both the illumination angle and
on the angle of observation, which leadsto anonunifor-
mity of thefield of view (Fig. 4b). In the case of small-
angle scattering, where the iceberg is located between
the source and the receiving system, the signal level is
high, so that theiceberg isvisible even against the back-
ground of largeinterference. The spatial distribution of
the signal from the iceberg at small scattering anglesis
of the character of a clearly pronounced interference
determined by the scattering pattern of the iceberg,
which manifests itself in an irregularity of the field of
view in the region between the source and the receiver.
The asymmetry of the distribution of interference peaks
that is observed in this region is determined by differ-
encesin the scattering of modes with different numbers
at different angles. Figure 4c showsthe field of view in
the case of iceberg observation by a tomographic sys-
tem consisting of two tomographic projections, i.e., the
monostatic and bistatic ones. As follows from calcula-
tion, the resulting field of view, i.e., the region where it
is possible to observe the iceberg, is considerably
gresater.

The structure of the field of view depends on the
observation conditions, such as the level and structure
of noise and interference, the waveguide structure, and
the parameters of motion of the observed inhomogene-
ity, which requires the adaptation of the parameters of
the observation system to their variation. This adapta-
tionisperformed by the block M4 showninFig. 1. Most
frequently, the external boundary of thefield of view is
determined by additive noise, while the reverberation
interference from random inhomogeneities in the
waveguide causes a nonuniformity of the field of view
and forms the regions of bad visibility within it. In the
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case of variation of the parameters of motion, thetrgec-
tory of the observed inhomogeneity, and the wave
parameters, the field of view may noticeably change. In
particular, if the iceberg moves aong the track of
bistatic observation, the regions where bottom rever-
beration hinders observation are located at right angles
to the source—receiver line.

SELECTIVE EXCITATION AND RECEPTION
OF LOW-MODE SIGNALS

An important condition for observation of inhomo-
geneities in a shallow sea by the method of low-mode
pulsed tomography is the selection of mode signals.
When implementing low-mode pulsed tomography in
practicein shallow water, it isimpossible to provide for
an ideal selection of waveguide modes, since real radi-
ating and receiving vertically developed arrays aways
have finite dimensions. Moreover, array deviations
fromthevertical line are possible, for example, because
of the influence of underwater currents, which also
affects their selective properties[8, 9, 11, 12].

To verify the possibilities of selective excitation and
reception of waveguide modes, a corresponding set of
equipment was developed and field experiments were
conducted. A radiating array immersed to a preset
depth from a research vessel provided the opportunity
to emit tone, tone-pulsed, and complex signals with dif-
ferent durations within the frequency range 234-254 Hz.
The distance between singleradiatorsin the array (their
total number was 16) was 3 m. The position of the radi-
ating array was varied depending on the bottom profile.
Two receiving systems were installed at a distance of
1.5 km from each other and operated autonomously.
The distance between the hydrophones of each receiv-
ing array was 3 m, and the total number of hydrophones
in each array was 32. The receiving arrayswere held in
avertical position with the help of an anchor and using
their flotation ability. The depth at the array sites was
125 m. The level of the signals detected by the receiv-
ing arraysin the process of measurements exceeded the
noise level by 60-80 dB. The duration of continuous
reception was over 48 h. The distance between the
source and the receiving systems varied because of the
drift of the research vessel from 1 to 22 km. The
underwater waveguide depth varied along the trgjectory
of the vessel motion from 125 to 90 m. A hydrology
close to an isovelocity one was observed in the course
of measurements. When cal cul ating the mode structure,
we adopted the values of the acoustic parameters of the
bottom that were characteristic of the region. Effective
matching of emitted low-frequency signals, which cor-
respond to the waveguide modes, with awaveguide can
be reached by setting the amplitude—phase distribution
of pressure at each receiver. Creating such a distribu-
tion, it is fundamentally important to take into account
the mutual influence of the sources. The preset ampli-
tude—phase distributions were implemented using spe-
cia iteration algorithms [11]. In the process of mea-
2005
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Fig. 5. Mode spectrum of a signal received at a distance of
10 km from a radiating array with a uniform amplitude—
phase distribution; the array is positioned in the depth inter-
val from 44 to 89 m.

surements, the distribution that was uniform over the
aperture and the distributions corresponding to the first
three modes of the waveguide were implemented.

Because of thefiniteness of the radiating array aper-
ture, as was indicated before, it isimpossible to excite
only one specified mode. The level of “parasitic”’
modesin experiments was determined by the ambiguity
in the determination of waveguide parameters and by
uncontrolled changes of the array position because of
rocking, vessel drift, and currents. One can judge the
level of mode selection reached in experiments in the
case of combined operation of radiating and receiving
arrays by the measured mode spectrum given in Fig. 5.

The measurements demonstrate that the vertical dis-
tributions of the acoustic field in both cases are sub-
jected to noticeable time variations caused by the hori-
zontal variability of the parameters of the underwater

Depth, m
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sound channel along thetrack of signal propagation and
the spatial variations of the radiating array in the pro-
cess of research-vessel motion. As a result of these
effects and a so because of the insufficient track length,
it turned out to be impossible to measure with sufficient
accuracy the mode attenuation coefficients and some
other important parameters of the mode content for dif-
ferent regimes of radiation. At the sametime, the acous-
tic field power summarized over al hydrophones was a
very stable quantity at the aperture of the receiving
arrays. Figure 6 presents the time variability of the ver-
tical distribution of the field in two radiation regimes.
One can seethat this distributionismuch more stablein
the course of the array formation.

In free space or deep ocean, the concentration factor
is commonly used as the measure of the array effi-
ciency. Inthe case of shallow waters, thisfactor is prac-
tically useless, since a layered bottom and surface
affect thefield formation in the far wave zone. It is sug-
gested to use the ratio of total powers at the aperture of
areceiving array covering almost the whole water layer
in the case of the field excitation by an array and asin-
gleradiator as the measure for the efficiency of averti-
cal radiating array. Figure 7 shows the dependence of
the total powers on the distance for these two radiation
regimes in decibels relative to the radiation level of
1 pPaat adistance of 1 m. Thedifferencein these values
characterizes the efficiency of an array in awaveguidein
comparison with a single radiator. In the described
experiment, this value was approximately 7 dB, which
agrees well with the calculated data. It corresponds to
the array gain at equal radiated powers of asingle radi-
ator and an array of radiators. The real level of array
radiation can be estimated by adding 10logN to the
given data, where N is the number of radiators in the
array. Sometimes, the so-called transition distance, i.e.,
the distance, starting from which the spherical law of
field decay changesto acylindrical one, isused in engi-
neering calculations. To acertain degree by convention,
on the basis of the given experimental data, itsvaluefor
a single radiator positioned at the array center and for

60"
Depth, m 40" 0

Fig. 6. Field distribution in depth as a function of time in the cases of (a) radiation of a monopole included in the array and
(b) auniform amplitude—phase distribution at the aperture of the radiating array. The observation distanceis 4 km.
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an array with 16 radiators can be estimated as 100 and
20 m, respectively.

The acoustic field fluctuationsin the described mea-
surements were caused by several factors. Low-fre-
guency fluctuations with characteristic scales of about
10 min were apparently connected with the instability
of the track length because of the vessel drift. Thisis
confirmed by acomparison of the spectraof signal fluc-
tuations with the fluctuation spectrum of the track
length obtained from GPS data. Internal waves as a
source of fluctuations can be excluded, since they were
not detected in the accompanying measurements by an
ADCP Doppler acoustic profiler and an STD probe.
The high-frequency fluctuations caused by scattering
from surface waves are of most interest. The peak orig-
inating from signal modulation by surface waves and
fluctuations of the array shape and position is clearly
seen in the measured fluctuation spectra of the signal
(Fig. 8) from a single source. A comparison of the sin-
gle source fluctuations with an array demonstrates that
the level of the spectral components connected with
surface waves in the case of radiation by a verticaly
distributed source is 10 dB lower than the levels
observed in the case of sound radiation by a point
source. The major part of the energy of these spectra
components is concentrated in the modes with high
numbers. These results are explained by the fact that a
distributed source almost immediately forms an acous-
tic field within the water layer, and itsregion of interac-
tion with the surface decreases, whereas, in the case of
asingle source, thisregion is much greater. As aresullt,
the received reverberation level for a single radiator is
much higher than the reverberation level observed in
the case of radiation by an array of radiators.
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Thanks to the experiments conducted up to now, it
was possible to establish that the focusing of the acous-
tic energy flux with the help of a vertically oriented
array of radiatorsin the direction of the waveguide axis
reduces the losses connected with the excitation of
high-number modes strongly interacting with the lay-
ered bottom and, therefore, that are characterized by
higher attenuation factors. On account of this effect, in
the measurement conditions, it was possible to obtain a
gain of about 7 dB in the level of the excited field rela
tive to the case of the field excitation by asingle radia-
tor of the same power, which coincides with the theo-
retical estimates obtained earlier. Moreover, it was
experimentally demonstrated that the level of the field
fluctuationsin the course of the array operationis much
lower than in the case of the operation of asingle radi-
ator. This is caused by the weaker interaction of the
field with the bottom and surface and by the lower sen-
sitivity of the excited low-mode field to variations of
the radiating system due to the rocking of the vessel. It
was also experimentally found that the level of surface
reverberation is more than 10 dB lower in the case of
the use of aradiating array with 16 elementsin compar-
ison with the use of a single radiator. Thus, the experi-
mental results on the whole confirm the efficiency of
selective excitation and reception of low-mode pulsed
signals in a shallow sea with the help of vertically
developed antenna arrays and alow us to make a con-
clusion about the possibility of the implementation of
low-mode pulsed tomography for solving practical
problems. At the same time, the necessity of a station-
ary mounting of aradiating array followsfrom the same
results.

The experimental studies described above demon-
strate that the use of vertical radiating and receiving
arrays for low-mode excitation and reception with a
subsequent spectral-time processing provides an
opportunity to increase the efficiency of tomographic
reconstruction and to perform measurements with a
comparatively small number of spaced sources and
receivers.
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Abstract—A review of research concerned with adaptive noise and vibration control systemsand performed under
the supervision of Corresponding Member of the Russian Academy of SciencesV.A. Zverev at Nizhni Novgorod
State University inthe 1980sand 1990sis presented. The history of the subject isbriefly outlined, and the theoretical
foundations of the design of adaptive active control systemsfor random wavefields are considered. The main exper-
imental studies performed in this area of research at the Department of Bionics and Statistical Radiophysics of
Nizhni Novgorod State University are described. Promising lines of research in this area are indicated, and exam-
ples of the practical application of adaptive control systems are given. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

This paper is areview of research conducted at the
Radiophysical Faculty of Lobachevski State Univer-
sity, Nizhni Novgorod (NNSU) in the field of adaptive
active noise and vibration control systems within the
last 20 years. The investigations were performed as
research and development works for enterprises and
industrial R&D institutes in close collaboration with
the Ingtitute of Applied Physics, Russian Academy of
Sciences. The supervisor of this work from the Acad-
emy of Scienceswas Vitalii Anatol’ evich Zverev. It can
be unquestionably stated that the emergence of thisnew
areaof researchitself isclosely associated with the gen-
eral approach to the solution of avariety of problemsin
acoustics, optics, and radio physics that Zverev devel-
oped and supported in his publications and reports at
seminars. This approach consists in the development
and application of ideas and methods elaborated in one
branch of radio physics to solving problems that arise
in its other branches. Studies carried out by Zverev [1—
3] are brilliant examples of the efficiency of the mutual
interpenetration of ideas that appeared in radio engi-
neering, optics, and acoustics. We believe that the series
of works reviewed hereisan illustration of the applica-
tion of Zverev's approach.

It should be noted that the development of adaptive
active control systems (AACSs) was preceded by
numerous studies of systems providing for sound and
vibration control in a given spatial region by creating a
canceling field with the help of active radiators without
using the adaptation principle (automatic adjustment of
the suppressing radiators). As long ago as in the early
1970s, apossibility of suppressing wavefieldsof differ-
ent physical natures by creating a canceling field with
the help of a continuous system of monopole or dipole
radiators, which realize the Huygens surfaces, was the-
oretically shown in [4, 5]. Foundations of the theory
and experiment concerning nonadaptive systemsfor the

active control of wavefieldswerelaid in 1971-1982 by
G.D. Mayuzhinets, M.V. Fedoryuk, B.D. Tartakovskif,
A.A. Mazannikov, V.V. Tyutekin, M. Jessel, G. Man-
giante, and other researchers in Russia and abroad [6—
14]. The fullest list of publications related to this sub-
ject for the period up to 1982 inclusiveis given in [15].

However, the practical implementation of the active
sound and vibration control technique proved to be
rather difficult. Particularly, real active suppression sys-
tems encountered computational difficulties in the cal-
culation of Green’s operator and in its optimal approx-
imation by discrete radiators [7, 8]. Also, even the first
experiments on active sound control in waveguides [9,
10, 13] showed that the system that controlsthe cancel-
ing radiators must be tuned to a very high accuracy. To
overcome these difficulties, an adaptive (self-tuning)
active wave control system was proposed. This system
operates as follows: the adaptive system collects infor-
mation from sensors of the primary and residual fields
and uses it to control the characteristics of the radiators
S0 as to minimize the average power of the residual
field.

BASICS OF THE THEORY OF ADAPTIVE
CONTROL OF RANDOM WAVE FIELDS

The first publications on AACSs were those by
J.C. Burgess [16], S.N. Arzamasov, A.N. Maakhov,
A.A. Md'tsev, and |I.E. Pozumentov [17-19], which
actually appeared at the same time in 1981 and 1982.
The first of the cited papers [16] considered the sim-
plest adaptive canceller containing one active element
for solving the one-dimensional sound control problem
in a singleemode waveguide. This scheme may be
regarded as a straightforward development of the con-
cept of adaptive filters and adaptive cancellers, which
was successfully implemented in radar in the late
1960s and early 1970s. For the sake of comparison,

1063-7710/05/5102-0195$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 2. (8) Adaptive antenna array, which operates by the minimal root-mean-square error criterion, and (b) multidimensional adap-
tive wave field control system, which operates by the criterion of the minimizing the root-mean-square residual field at several test

points.

Fig. 1 shows a structural diagram of adaptive systems
used to cancel interferencein radar (Fig. 1a) and to sup-
press a single-mode acoustic field in a waveguide
(Fig. 1b). The similarity of these schemes is evident.
Their main physical difference isthat the radar cancel-
ler eliminates interference in the electric circuit (in a
wire), while the acoustic adaptive canceller must sup-
press the field in a certain nonzero region in space (in
this example, in the right-hand part of the waveguide).

Adaptive Suppression
of Narrowband Random Wave Fields

A more general problem of developing multidimen-
sional AACSs that cancel sound in space and multi-
mode waveguides was considered in [17-19]. In this
formulation, the problem can be regarded as a general-
ization of the structural scheme of an adaptive antenna
array to the cancellation of wave fields in space. Since
the early 1980s, adaptive arrays have been widely used
for spatia signal processing in radar and communica-
tions. For the sake of comparison, Fig. 2 shows struc-
tural diagrams of signal processing in a narrowband
adaptive array, which operates by the minimum root-
mean-square (rms) criterion, and in a narrowband

AACS that suppresses acoustic field in space. The nar-
rowband antenna array processes signals produced by

field sensors by multiplying them by a vector \7V of
weighting coefficients and then summing the results so
asto minimizethermserror between the adaptive array
output and the required (training) signal. As shown in
Fig. 2b, the main elements of the AACS are the sensors
(monopoles and dipoles) of the primary field at L points
on the surface S;, M contral radiators (monopoles and
dipoles) on the surface S, characterized by their inten-

sity vector Ié(t), and Q sensors (monopoles and

dipoles) of the residua field E(t) on the surface S,.
Based on the information collected by the primary field
sensors, the adaptive system adjusts the complex
weights (entries of the M x L matrix W) so as to mini-
mize the total power (a sum of mean sguares) of the
residual field at the points where the secondary mea-
surements are taken.

It can also be seen from the structural diagrams
shown in Fig. 2 that, apart from the evident increase in
dimension (the number of controlled weights and feed-
back circuits), the AACS differsfrom the adaptive array
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Comparison of formulas that describe narrowband adaptive arrays and AACSs

Adaptive array

AACS

Performance criterion

(W) = (E@)PO

Q
W)= 3 ()| D
q=1

Adaptive tuning algorithm

dw

o = WA (DEQ

Optimal weights

- 12
Wopt =R PVd

dw., Q
— - YWvi (t)qZIGEmEq(t)

Without the wave feedback: W o, = (G*G) 'GP R
With allowance for the wave feedback: Wy = (I =W o Grg)W gt

Residual steady-state power

- S+ >
J(Wopt) = [P0 WopPyq

IWop) = OV*VI - [P} G(G'G)G*P R ]

Stability of the steady-state solution

Global |

Local: matrix B =1 —WGrg must be positive-definite

in that it possesses the following fundamentally new
features: it contains a signal transformation (described
by the Green’s function matrix G) on the path between
the suppressing radiators and residual field sensors, and
wave feedback (described by the Green's function
matrix Ggg) is possible between the canceling radiators
and sensors of the primary field. Due to the wave feed-

back, thevector Vs (t) = {V,(t), Vs(t), ..., V,(H)}T of sig-
nal s produced by the primary field sensors (for the nar-
rowband system, all signals are represented by their
complex amplitudes) is actually a superposition of the
signal produced by the primary field and the feedback
signals produced by the canceling radiators. Thus, in
the presence of the wave feedback, adaptive algorithms
used in active control systems and the optimal weights
W, which minimizethetotal power of theresidual field,
depend on elements of the Green’s matrices G and Gg.
It is of interest to compare the main anaytic expres-
sions that describe operation of narrowband adaptive
arrays and AACSs presented in the table.

These expressions use the following designations:
9
E(rq) =Ey(t) istheresidual (total) field or its derivative

at the sites of secondary sensors ?q ; W, is the weight
(element of matrix W), which determines the contribu-
tion of thetotal signal V|(t) produced by thelth primary
field sensor to the signal of the mth canceling radiator;
y is a constant factor, which determines the conver-

gence rate of the gradient adaptive algorithm; Bvq is
vector of cross-correlation coefficients between the pri-

3 . . .
mary wave field V (t) and the required signal d(t); Py is
the cross-correlation matrix between the primary ran-
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dom fields at the sites of the primary and secondary
(monitor) sensors; and R is the correlation matrix
between the random fields at the sites of the primary
sensors. The remaining designations are clear from the
structural diagrams shown in Fig. 2. The anaytica
expressions demonstrate a close similarity of the adap-
tivearray and AACStheories. For example, Fig. 3 com-
pares the block diagrams that implement the gradient
algorithm that tunes one weight of the adaptive array to
that for the AACS. Note that, unlike the adaptive array,
to provide stability of the narrowband AACS, the feed-
back circuit between each gth residua field sensor and
the contral circuit of each mth canceling radiator must

contain acorrection filter Gg,. It can easily be seen that

thisfilter compensates for phase advances of the waves
traveling from the mth canceling radiator to the gth con-
trol receiver, thereby providing for the stability of the
multidimensional control system asawhole. It is clear
that, in the narrowband AACS, the correction filters can
easily be realized with the help of phase shifters and
amplifiers.

Papers [17-19] were the first to report fundamental
theoretical results on the narrowband AACSs. Adaptive
algorithms for tuning the weights were derived, stabil-
ity conditions were studied, and analytical expressions
for the optimal weights were obtained. It was shown
that the wave feedback reduces the convergence rate of
the adaptive algorithms and may cause the system as a
whole to lose its stability. However, operating by the
criterion of the minimum power of the residual field at
the sites of the secondary sensors, the AACS automati-
cally accounts for the wave feedback and, with the sta-
bility condition of the adaptive algorithm being satis-
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fied, the averagetotal power of theresidual field isinde-
pendent of the wave feedback.

The analytical results have shown that al averaged
AACS characteristics can be expressed through auto-
and cross-correlation matrices of the primary field and
through the Green’s function matrices. Thus, it became
possible to analytically study the characteristics of the
AACSsin anumber of model theoretical problems. Let
usillustrate this by two classical theoretical problems.

Cancellation of a Plane Wave Transmitted
through a Chaotic Screen [17]

Consider a two-dimensional problem of the active
cancellation of random waves behind an infinite cha-
otic planar screen. Let a monochromatic plane wave
p(X, Z t) = expj(kz— wyt), z< 0 (see Fig. 4) be normally
incident on a screen lying in the plane z = 0. Let an

Fig. 4. Arrangement of elements of the AACS for suppress-
ing the plane wave transmitted through an infinite chaotic
screen: primary field sensors (open circles), canceling
dipole radiators (closed figure-eight-shaped symbols), and
monopole monitor receivers (open circles with dots).

active sound control system be used to cancel the ran-
dom narrowband field p(x, z, t) = P(X, 2)exp(—jwyt),
which is modulated by the screen, in the half-space
z > 0. Let the primary sensors (monopoles) be arranged
uniformly, at a distance d, from each other, in the plane
z=0just behind the screen and measure the modul ated
field p(x, 0, t) a L points. To eliminate the wave feed-
back, the canceling radiators (dipoles) are aso placed
inthe plane z=0 at M points, and Q secondary sensors
(monopoles) of the residual field are located in the far-
field zonein the plane z= z,. We assume that the chaotic
screen does not affect the field produced by the cancel-
ing radiatorsin theregion z> 0. For the sake of definite-
ness, let the number of radiators be equal to the number
of secondary sensors: M = Q. To obtain analytical
expressions and numerically estimate the efficiency of
the AACS, assume that the random field in the plane
z =0 (just behind the chaotic screen) is stationary, sta-
tistically homogeneous, and zero-mean [P(x, 0)[0= 0,
and that its spatial correlation function is exponential:

W, (X4, Xz, 0,0)

Tk —x (1)
= [P(x,, 0)P*(x,, 0)0=0 2 74",

where o = [[P(x, 0)]2[is the variance and |, is the cor-

relation radius of the boundary field behind the chaotic
screen. In the case of the large-scale boundary field
inhomogeneity (kl, > 1), which is most interesting for
applications, expressions for the spatial correlation
matrix of the initial field R and the cross-correlation
matrix P,, can easily be found. This alows usto derive
analytical expressions for the matrix W, of optimal
weights, to find the minimum value of the perfor-
mance criterion functional J(W,,) and the residual
power of the random field at the sites of the monitor
sensors, and, thus, to perform a complete analysis of
this model problem.
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For example, consider the structure of the residual
field in the simplest case, when the system consists of a
large number of primary sensors arranged in a uniform
array of elements spaced a sufficiently small distance
apart (d/l, < 1), one canceling radiator at the point with
the coordinate x;, and one secondary sensor at the point
with the coordinate x,. Figure 5 shows the theoretical

relative power of the residual field [IE(X)FMGi in the
plane z = z, versus the transverse coordinate x for two
relative positions of the secondary sensor placed at the
point (x,, Z,) and the canceling radiator placed at the
point (x;, 0). Asfollows from this plot, the power at the
site of the secondary sensor is always zero in this
approximation, and the maximum cancellation region
(about 2l long) occurs when the radiator is exactly
opposite to the monitor receiver (X, = X%,). When [x, —x;| >
AoZ/(4l), intensity oscillations are observed in the
residual field, which, presumably, are due to the inter-
ference between the spherical wave of the suppressing
radiator and the quasi-plane wave of the random field.
It is clear that, at long distances [x — X,| > |, from the
monitor sensor, thefield of the suppressing radiator and
the primary field areincoherently combined and, asone
would expect, the total field intensity istwice as high.

This exampl e thus shows that, to efficiently cancel
the random field with the help of an active array of
adaptively controlled radiators, it is necessary that peri-
ods of arrays of the primary and secondary sensors be
smaller than the transverse correlation radius |, of the
primary random wave. If the sensors (primary and sec-
ondary) and canceling radiators are sufficiently dense,
a shadow region is formed behind the active array of
radiators (in the far zone with respect to |,), whose
boundariesfor different suppression levelsareshownin
Fig. 6 as a function of dimensionless parameter x' =
27,/(KI,D), which is proportional to the distance z,
between the plane of the canceling radiators and the
secondary sensors.

Cancellation of the Random Wave Field
behind a Sot in a Planar Screen [ 20]

Let a plane wave with the random complex ampli-
tude P(x, 2) be incident in the two-dimensional space
(x, 2) from the region z< 0 onto an infinite rigid screen
lying in the plane z= 0 and containing aslot (x| < a/2),
asshowninFig. 7. Let us specify thefield and its deriv-
ative 0P(x, 2)/0z in the plane z = 0 behind the screen in
terms of Kirchhoff’s approximation. It is necessary to
cancel the diffraction field P4(x, 2) at z> 0. To thisend,
we place L primary dipole receivers oriented along the
z axis, which measure the normal derivative dP(X, z)/0z
Let us relate the intensity vector F = {F,, ..., Fy}T of
the canceling dipole radiators also placed in the plane
of the slot z = 0 to the readings of the primary sensors
through the matrix W of adaptive weights (see Fig. 2b).
Applying the technique of calculating the optimal
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Fig. 5. Power of theresidual field near the monitor receiver
located at the point (x,, Z;) when the system contains one
suppressing radiator located at the point (x;, 0): (1) (X, —X;) =
3ZpA /Al and (2) X = X;.
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Fig. 6. Boundaries of the shadow zone behind the active
array of adaptively controlled radiators.

Fig. 7. Arrangement of elements of the adaptive active sys-
tem, which cancels a random wave field behind a slot in a
rigid screen: primary dipole sensors (open figure-eight-
shaped symbols), canceling monopole radiators (closed cir-
cles), and monopole monitor receivers (open circles with
dots).
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Fig. 9. Angular power spectra of the (1) diffraction and
(2, 3) residual fields versus the arrangement of the sec-
ondary sensors at a high coherence of the incident wave

(Ip=10°aM=Q=6,L'=5).

weighting coefficients and the average power of the
resdual field described above, we can analyticaly
study the characteristics of the AACS in this model
problem with any parameters of the random wave inci-
dent on the slot and with adifferent number of elements
in the active system.

To illustrate how the degree of canceling the diffrac-
tion field depends on the accuracy to which the spatial
structure of a weakly coherent incident wave is mea-

MAL'TSEV et al.

sured, Fig. 8 represents the power of the diffraction and
residual fields with the number of primary sensorsas a
parameter (the power of the diffraction field on the z
axis is taken as reference). The secondary sensor posi-
tions were specified by the sine of angle 0 and are indi-
cated on the abscissa axis by open triangles. The posi-
tions and number of the canceling radiators and second-
ary sensors were fixed (M = Q = 6). A comparison of
curves 2-6 shows that the residua field power
decreases with an increasing number of primary sensors
(and correspondingly decreasing spacing d, between
them). However, even detailed measurements of the spa-
tial structure of aweakly coherent incident wave (d,/l, =
0.18, curve 6) do not reduce the residua field power in
the shadow region |sinB| < 0.15 below —23 dB.

Figure 9 shows the power of the diffraction and
residual fields at | /a= 10° with the number of radiators
equal to the number of secondary sources (M = Q = 6).
It can be seen that, due to the high spatial coherence of
the primary field, the cancellation of the diffraction
field in this case is more efficient. Towards the second-
ary sensors, the residual field power decreases by 52 dB.
However, when the secondary sensors are widely
spaced (curve 2; al six sensors are in the sector of the
main lobe and first side lobes of the angular spectrum
of the diffraction field), interference maxima appear
between them. To reduce the amplitude of these max-
ima and to create a region of deep shadow (of about
—52 dB) over the entire angular sector, the secondary
sensors should be placed closer (curve 3; al sensorsare
in the sector of the main lobe of the diffraction field) or
both their number and the number of suppressing radi-
ators should be increased.

The examples presented above show the efficiency
of applying the analytical formalism developed in
[17-22] to the analysis of main characteristics of adap-
tive active systems that cancel random fields. It is well
known that direct numerical investigation of solutions
to such problems, for example, by the finite element
method, requires much computational effort and long
processor time.

Adaptive Control of Broadband Wave Fields:
Fpace- and Time-Domain Adaptation [ 23]

In problems of the active control of broadband ran-
dom fields in waveguides, it is necessary to model
Green's function in both space and time (frequency)
domains. One of the methods for approximating the
required transfer functions relies on transversal filters.
An agorithm based on a multidimensional transversal
filter was derived, and characteristics of a broadband
adaptive active control system for broadband random
wave fields were studied in [23].

Let sources of a broadband random field p(? , 1) be
located in a finite space region. Let it be necessary to
suppress the primary field p(?, t) in a certain region

ACOUSTICAL PHYSICS Vol.51 No.2 2005
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Fig. 10. Block diagram of atuning circuit of one weighting coefficient of a broadband AACS (preemphasis filters are on the left in

the circuits of signals picked up from the primary sensors).

outside a closed surface that includes the sources. To do
this, let us use the active control system, the arrange-
ment of the elements of which isillustrated in Fig. 2b.
Thesurface S, carries L monopol e and dipol e sensors of
the primary field, and M monopole and dipole can-
celing radiators lie on the surface S,. The residual
field is measured on the surface S; by Q monopole
and dipole sensors. All elements of the active control
system are assumed to be broadband and perfectly
transparent.

L et the broadband device that controlsthe canceling
radiators be an N-stage multidimensional transversal
filter, whose inputs are the signals produced by the pri-
mary field sensors and whose output signals control the
canceling radiators. The structure of the device that
controls the weights of this transversal filter can be
derived by an element-by-element analysis of the
matrix gradient adaptive algorithm. A block diagram of
the device that tunes one weight of the matrix adaptive
filter isshown in Fig. 10. Note that signals produced by
the sensors and radiators of the broadband active con-
trol system (output v,(t) of the Ith primary field sensor,
output f,(t) of the mth canceling radiator, and output
&y(t) of the gth monitor sensor of the residual field) are
real. As shown in Fig. 10, the weight W, (in the
nth tap of the transversal filter that links the Ith pri-
mary field sensor to the mth canceling radiator) is pro-
portional to the current estimate of the cross-correla-
tion function between signals produced by the moni-
tor sensors and primary field sensors, which are
preprocessed by linear preemphasis filters. The
impulse-response functions Gg.(t, t') of these filters
are equal to the Green's functions of the wave equa-
tion at the corresponding points of the surfaces S, and
S;. The purpose of the preemphasis filtersis to trans-
form the outputs of the primary field sensors so as to
increase their correlation with the corresponding com-
2005
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ponents of the error signal e,(t) and to provide for the
stability of the system as awhole.

It isof interest to compare the block diagrams of the
weight-control circuits of the narrowband and broad-
band systems (see Figs. 3b and 10). It can be seen that
a significant difference between the narrowband and
broadband systems is that the broadband system uses
preemphasis filters in the circuits of primary field sen-
sors instead of correction filters (phase shifters) in cir-
cuits of the monitor sensors. As aresult, the complica-
tion of the control system isnot simple (about N/2-fold,
taking into account that weights of the narrowband sys-
tem are complex) but rather more complex, because
each real weight W,,,, is how not produced by one mul-
tiplier but rather represents a sum of outputs of Q mul-
tipliers. Thus, for narrowband fields, when the lag of
the envelope of the narrowband signal traveling along
the path from a canceling radiator to a control sensor
can be neglected, the structure of the adaptive control
system can be significantly simplified (in terms of the
number of multipliers).

Note that, to implement the gradient adaptive con-
trol agorithms, one must specify the elements of the
Green'smatrix Gy, or Gyy(t, t)) (see Figs. 3b and 10) as
a priori information about the propagation medium.
When the relative positions of canceling radiators and
monitor sensors are fixed and the characteristics of the
medium do not change, the elements of the Green's
matrix can be calculated beforehand or measured
experimentally and subsequently used to tune the pre-
emphasis or correction filters. If the functions G, or
Gyn(t, t) are unknown or slowly change with time, one
can use more complex identification adaptive algo-
rithms or search gradient algorithmsinstead of the gra-
dient algorithms described by the above block dia-
grams. The search gradient algorithms use the system
that controlsthe canceling radiatorsto directly estimate
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Fig. 11. Acoustic pressure amplitude distribution along the tank axis: (1) primary field, (2) residua field with one monitor sensor,

and (3) residua field with four monitor sensors.

the gradient of the goal function through incrementing
the weights and measuring the residual field power
[24]. Apart from fluctuations in the weighting coeffi-
cients and search oscillations, the analysis of AACSs
that employ the usual and search adaptive gradient
algorithms is compl etely the same.

It should be noted that results concerning the theory
of adaptive random wave field control systems obtained
in [17-23] were later repeated in a number of works
abroad. Among these, we should primarily mention
paper [25], in which the adaptive a gorithm for tuning a
multiel ement active sound and vibration control system
was derived for the second time. After this paper, a
great number of publications on the application of
adaptive methods to this problem were published. For
example, the fullest Guicking's (1995) reference bibli-
ography of foreign works on the active control included
more than 2000 entries [26].

EXPERIMENTAL INVESTIGATIONS
OF ADAPTIVE ACTIVE WAVE FIELD
AND VIBRATION CONTROL SYSTEMS

Adaptive System for the Active Control
of a Single-Mode Narrowband Acoustic Field
in a Rectangular Tank

Thefirst adaptive active acoustic control system was
intended for laboratory studies of the tuning algorithms
and to refine the physical model of processes that
evolve therein [27]. The experiment used a tank made
of organic glass with 11-mm-thick side walls, a
30-mm-thick bottom, and 118 x 30 x 29 cm inner
dimensions; the tank was filled with water to adepth of
16 cm. Piezoceramic radiators and sensors were placed
along the axis near the bottom: the source field radiator
(a100-mm diameter disk), canceling radiator (a50-mm
sphere), four residual field monitor sensors (cylinders
30 mm in diameter and 25 mm high), and a monitor
hydrophone (a cylinder 5 mm in diameter and 7 mm

high) for measuring the spatia field structure in the
tank. The control signal for the canceling radiator was
synthesized in the adaptive control unit from signals
produced by the four monitor sensors and a harmonic
reference signal. The experiment studied the cancella-
tion of harmonic and narrowband noise signalsin afre-
guency band about 100 Hz wide (between 3-dB points).
As an example, Fig. 11 shows the pressure amplitude
measured along the tank axis at a depth of 14 cm:
(1) primary field, (2) residual field obtained using one
(the rightmost) monitor sensor, and (3) residual field
obtained using all four monitor sensors. The arrange-
ment of the radiators and monitor sensors on the z axis
is shown schematically. The plots show that, when the
control system ison, thefield in the cancellation region
(behind the canceling radiator) sharply (by 15to 20 dB)
falls off; the amplitude of the standing wave in the
region between the source and canceling radiators
changes little, but its zeroes and maxima are shifted;
and a deep minimum appears in the residual field near
the canceling radiator. The changes in the spatial phase
structure of the standing wave observed in the region
between the radiators allow us to regard the canceling
monopol e radiator used in this experiment as an equiv-
alent soft wall. A comparison of curves 2 and 3 shows
that anincrease in the number of monitor sensors (from
one to four) makes the residual field smoother and
dlightly reduced. On the whole, it should be noted that
the use of several residua field monitor sensors placed
at various points of the cancellation region improved
the stability of theAACS and rendered it actually insen-
sitive to positions of the monitor sensors. In contrast,
with one monitor sensor placed near a minimum of the
primary standing wave, the degree of field cancellation
is significantly lower due to the lower correlation feed-
back factor and signal-to-noise ratio. One should also
note that the results of these experiments were actually
independent of the type of the radiators and sensors.
With one suppressing radiator and one monitor sensor,
the adaptive control system canceled thefield at the site
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Fig. 12. Block diagram of an experimental setup for studying the possibility of active suppression of intense acoustic radiation by

asystem of light acoustic radiators.

of the monitor sensor very well. In particular, the signal
from the monitor sensor placed near a maximum of the
primary field decreased by 45-50 dB when the control
system was switched on. We also studied the suppres-
sion factor at the site of the monitor sensor asafunction
of frequency and parameters of the adaptive system for
frequency-modulated and narrowband noise acoustic
fields in both off line and on line modes of operation.

Adaptive Active Control System
for a Two-Mode Acoustic Field in a Closed Air Space

To study the possibility of the active control of
intense acoustic fields with the use of adaptive systems,
a special experimental setup was developed [28]. This
setup made it possible to experimentally study the can-
cellation of a two-mode two-frequency acoustic field
by a system of light active radiators. A general block
diagram of the experimental setup is presented in
Fig. 12. The acoustic resonator consisted of two sections:
free-propagation region (4) and cancellation region (6).
The source of primary field (3) was placed at the end of
the free propagation region (4). We used nine canceling
radiators 5: one central radiator and eight small-size
radiators combined into a circular array necessary for
suppressing high-frequency modes with a complex
transverse structure. Four monitor sensors (7) were
placed in the cancellation region. The radiator was fed
by a superposition of two harmonic signals at frequen-
ciesf, and f, produced by signal source (8); these sig-
nalswere a so used asreference ones. The adaptive pro-
cessor (1) assembled from analog multipliers and
adders was used to control three pairs of quadrature cir-
cuits of the adaptive gradient algorithm. Two pairs of
the circuits fed the central loudspeaker with two refer-
ence signals at the frequenciesf, and f,. One pair of the
circuits independently controlled the circular array at
the frequency f,. Three monitor sensors were placed in
the cancellation region. The effective acoustic pressure
measured along the axis in the cancellation region is
shown in Fig. 13. The experiments showed that an
increase in the number of degrees of freedom of the
adaptive active control system makes it possible to vir-
tually independently and simultaneously cancel two
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modes at two different frequencies. The cancellation
efficiency was approximately the same as that obtained
for each mode separately.

Adaptive Control System
with an Additional |dentification Channel

As we noted above, the preemphasis filters in an
AACS with the gradient algorithm must preliminarily
be tuned in accordance with values of the Green’sfunc-
tion of the wave equation at the sites of the canceling
radiators and residual field monitor sensors. If charac-
teristics of the acoustic channels vary in time over a
wide range, stable operation of the AACS may only be
provided for with the use of acompletely adaptive con-
trol system with an additional identification unit [29—
31]. Figure 14 shows an experimental setup that studies

|Pl, mV

10° F @

X, cm

Fig. 13. Acoustic pressure amplitude distribution of a two-
mode field (at frequencies of 1020 and 2820 Hz) along the
axis of an acoustic resonator: (a) primary two-mode field
and (b) theresidua field with the control system switched on
((1) total two-frequency residua field, (2) 1020-Hz residual
field component, and (3) 2820-Hz residud field component;
on the average, thefield is suppressed by 17 dB).
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Fig. 14. Block diagram of an adaptive control system with an additional identification channel for suppressing narrowband acoustic

fieldsin aclosed air space.

the characteristics of such a completely adaptive nar-
rowband AACS. The narrowband AACS consisted of
one canceling radiator and one residual field monitor
sensor placed in apipe 2.5 m long with an inner diam-
eter of 45 mm. The end source radiator wasfed with the
help of a narrowband (1.5%) noise generator. The
nonstationary behavior of the acoustic channel
(Green'sfunction) between the canceling radiator and
monitor sensor was simulated by a variable phase
shifter. The entire electronic control system was built
around a TM S320C26 signal processor and contained
an adaptive control unit for the canceling radiator
(with the reference-signal generator of the cancella-
tion channel and the preemphasis filter) and adaptive
identification unit with the reference-signal generator
of the identification channel. The adaptive unit that
controlled the canceling radiator formed the signal
through the quadrature weighting of the harmonic ref-
erence signal at a frequency equal to the average fre-
guency of the primary acoustic field. To determine the
characteristics of the acoustic-signal propagation
channel, a small identification signal (harmonic or
phase-shift keyed) was additively applied to the can-
celing radiator. The active control system was capable
of achieving ageneral field cancellation ratio of about
12 dB; the identification channel was fast enough to
follow phase variations in the acoustic channel at a
rate of about 6 deg/s without disrupting stable opera-
tion of the system as awhole.

Adaptive System of Control
over Boundary Conditions in a Waveguide

Reflection of the hydroacoustic wave from the
active boundary at the end of the waveguide was stud-
ied experimentally in [32]. These studies were used to
develop an adaptive active control system over bound-
ary conditions that employed a search gradient tuning

algorithm. The experiments were performed in water-
filled duraluminum pipe with a length | = 2.2 m, an
external diameter D = 50 mm, and awall thicknessd =
6 mm. As the canceling radiators (used to realize the
specified boundary conditions), the system used spe-
cialy designed acoustically transparent el ectronic radi-
ators. The signals induced by the incident and reflected
waves were separated by digitally processing the sig-
nals picked up from two spaced monitor transducers.
The adaptive system that controlled the canceling radi-
ators alowed the system to realize the specified bound-
ary conditions (matched, compliant, or rigid bound-
aries) in the presence of a passive boundary with an
arbitrary reflection coefficient slowly varying in time.
The tuning accuracy achieved in the experiments was
20to 25 dB relativeto theinitial value of the parameter
being minimized at atuning timeof 0.5t0 1.5s.

Active Control of a Broadband Acoustic Field Produced
by a Turbulent Jet

In 1991-1993, a series of studies [33-35] on the
cancellation of arandom broadband acoustic field pro-
duced by aturbulent jet in a pipe with unmatched ends
were performed at the Department of Statistical Radio-
physics of NNSU and experiments were conducted
under conditions close to the field conditions. The
major part of the hydroacoustic noise was above the
critical frequency, and only the waves with a homoge-
neous cross-sectional structure could be excited in the
pipe. A block diagram of the experimental setup is
shown in Fig. 15. The pipe was made of stainless stedl,
had an inner diameter of 100 mm, was 4.7 m long, and
was filled with water. The water jet was fed into the
pipe by a centrifugal pump through a nozzle mounted
on the left end flange. The adaptive control system con-
sisted of two primary field sensors, two canceling radi-
ators, two residual field monitor sensors, wave selectors
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(WSs), and awave former (WF), which were capabl e of
receiving and exciting unidirectional hydroacoustic
waves. The systems of receivers and radiators together
with the WSs and WF provided for the cancellation
(isolation) of waves traveling in the opposite direction
by 20 dB in the frequency range from 700 to 2000 Hz.
The control signal for the canceling radiators was
synthesized by a digital adaptive transversal filter
with 32 variabl e coefficients built around a digital sig-
nal processor. The system’s efficiency criterion was
the power of the residual wave traveling from left to
right in the right-hand part of the pipe behind the can-
celing radiators. The system was tuned by the search
gradient algorithm, and, therefore, it was not neces-
sary to additionally identify the signal-propagation
channels. Parameters of the adaptive algorithm were
optimal in terms of stability, convergence rate, and
cancellation efficiency. Characteristics of the adaptive
hydroacoustic noise canceling system were studied in
the most efficient design version with unidirectional
reception and unidirectional radiation (from left to
right) of the canceling wave. Figure 16 shows typical
power spectrum densities of the primary (curve 1) and
residual (curve 2) fields in the right-hand part of the
pipe. The highest cancellation ratio, about 10 to 25 dB,
was achieved over the frequency range from 850 to
2200 Hz. The lower cancellation at the ends of the fre-
guency range is apparently due to the action of inho-
mogeneous waves on the primary field sensors (at
lower frequencies) and due to the degradation of the
WS and WF characteristics outside the range 700—
2000 Hz. The integral cancellation ratio of the broad-
band hydroacoustic noise in the frequency band from
500 to 2500 Hz was 12 to 14 dB.

Adaptive Active Vibration Canceling Systems

Along with research into the active acoustic field
cancellation, model experiments were also performed
on the active suppression of vibrationsin various mech-
anisms. As the active elements (canceling radiators),
these experiments used controlled vibrators (linear
motors).

One of these model problems was formulated as
cancellation of the field produced by a ship due to low-
frequency vibrations of its mechanisms. A block dia-
gram of such asystem isshown in Fig. 17. The system
has no primary field sensors, because the primary
vibration signal is a combination of harmonic signals
whose frequencies can be directly measured. The sec-
ondary sensors were vibration detectors placed on the
ship’s hull. As the canceling radiators, the system used
12 active vibrators with inertial masses:. three vibrators
for each of the four passive supports to cancel their
vibrationsin three perpendicular directions. In this|ab-
oratory prototype, harmonic vibrations were canceled
with aratio of about 20 to 30 dB.

Another problem was to reduce the effect of vibra-
tions produced by the base (ship’s hull) on precision
ACOUSTICAL PHYSICS Vol. 51
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Fig. 15. Block diagram of an experimental setup for the
active cancellation of broadband acoustic fields produced
by aturbulent jet (WSisthetraveling wave selector and WF
isthe unidirectional wave former).
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Fig. 16. Power spectrum density of (1) the primary hydroa-
coustic field and (2) the residual field. The Reynolds num-
ber is above the critical value (Re 005000). The average
cancellation ratio within the frequency range from 500 to
2500 Hz is12to 14 dB.

Adaptive
processor

Fig. 17. Block diagram of aprototype canceller of anarrow-
band vibration field (at a frequency of about 100 Hz) with
an independent harmonic reference signal (12 active vibra-
tors with inertial masses and 9 residual field monitor sen-
sors; the field cancellation ratio is 20 to 40 dB).
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Fig. 18. Block diagram of an active canceling system that protects the inner container from vibrations of the base.

mechanical and electronic devices[36]. In thiscase, the
active e ements were linear motors, which allowed the
system to eiminate low-frequency resonances in al
possible degrees of freedom. A block diagram of the
active vibration control system used to suppress the
vibrationsin one degree of freedomisshownin Fig. 18.
For the sake of comparison, Fig. 19 shows the transfer
functions of the vibration control system that uses
purely passive elements and of the active canceling
System.

The reader interested in the experimental works on
these problems conducted abroad in the 1980s in paral-

Cancellation ratio, dB
20
----- Passive cancellation "
Active cancellation
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¢
i
i
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‘

—10+
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10! Frequency, Hz

Fig. 19. Transfer functions of the active and passive cancel-
ing systems.

lel to our works should be referred to the review [37]
published in 1990.

CONCLUSIONS

Research performed in the 1980s and 1990s showed
that modern computers possess enough computational
power to allow for the design of adaptive active systems
for canceling and suppressing narrowband multimode
acoustic and vibration fields of acomplex spatia struc-
ture or broadband fields of a sufficiently simple spatial
structure (for example, a single-mode wave in a pipe).
An active planar control system operating on the basis
of the extraction and cancellation of particular spatial
acoustic modes was devel oped theoretically in[38—40].
A prototype of this system was built and successfully
tested in canceling two horizontal harmonics in a
hydroacoustic tank [41]. However, the realization of
adaptive control systemsfor broadband fields of acom-
plex spatial structure described by the above block dia-
gramsis difficult because of the complexity of the sen-
sor—radiator system and due to the very high processor
burden imposed by the adaptive control algorithms.
Therefore, presently, one of the most promising
research directions is the development of so-called
local adaptive active control systems, which combine a
sensor and a radiator in one element (whose size is
about a wavelength), so as to actively absorb the inci-
dent waves [42].

Experiments on the active control of the surface
acoustic impedance with the help of tile like active ele-
ments were performed at one of the US Navy laborato-
ries [43]. Each such tile consisted of several layers,
which included a piezoel ectric radiating transducer and
a piezoelectric pressure sensor, and was supplied with
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an integrated surface velocity meter. Tests of this sys-
tem showed that atwo-dimensional array of such active
elements is capable of controlling the surface imped-
ance in afreguency band from 0.5 to 3.5 kHz.

Theoretical and experimental research into the
development of thin (in terms of the incident wave-
length) active absorbing coatings based on nonresonant
parametric microstructures has been carried out in
recent years [44-46]. This approach does not measure
the parameters of the wave field being absorbed but
transforms its energy into high-frequency oscillations
of the active microstructure.

A chalenging and rapidly developing area of
research is the use of adaptive active vibration control
systems for protecting the variety of electronic equip-
ment deployed on ships and other vehicles and sub-
jected to high vibrations and shocks. This idea has
recently been embodied in the development of dedi-
cated protective racks for computers and other radio
electronic devices that do not comply with specia
requirementsin terms of vibrations and shocks. In spite
of their rather high cost, the cost efficiency of these pro-
tective racksis very high, because they alow for multi-
ple updates of the equipment and eliminate the neces-
sity of developing expensive electronic devices consis-
tent with special requirements. Realizations of these
protective racks based only on passive insulators are
vulnerable to unwanted low-frequency resonances and
suffer from large shock displacements. Therefore, mod-
ern designs usually combine active and passive vibra-
tion control elements.
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Abstract—On the basis of anumerical solution to the equation of radial oscillations of agasbubbleinaliquid,
the abilities of nonlinear acoustic methods in detecting gas bubbles in biological tissues with the use of pulsed
acoustic location are analyzed. It isdemonstrated that, with moderate amplitudes of the probing signal, it is pos-
sible to detect bubbles whose size is close to resonance. An improved version of the method of paired pulsesis
proposed, along with a method for detecting the bubbles and measuring their dimensions on the basis of a non-
linear excitation of their natural oscillations. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

The problem of detecting gas bubbles and measur-
ing their concentration and dimensionsin blood andin
biological tissues is important for aviation and space
medicine, for ensuring the safety of underwater and
pneumatic works, and also for other human activities
under extreme conditions, where aworking individual
is subjected to strong variations in the external pres-
sure. The detection of gas bubblesin human biological
tissues at the stage of their nucleation is important
from the point of view of investigating the mecha-
nisms of their formation, as well as for predicting the
risk of the decompression disease. Lately, interest has
been generated in the employment of contrasts in
ultrasonic testing. The basis for these contrastsis par-
ticles containing gas bubbles. Another important
problem is the monitoring of the nucleation of cavita-
tion bubbles under the effect of intense ultrasonic
radiation on biological tissues.

At the same time, the common linear acoustic tech-
niques for bubble detection are efficient only in the case
of thelocation of moving bubbles by the Doppler method
[1, 2] or the echolocation of very large bubbleswith scat-
tering cross sections sufficiently large to insure their
selection against the background of biological tissuelay-
ers[3, 4].

One of the problems to be solved is the detection
and localization of bubbles with awide range of radii
(1-100 um). The resonance frequencies for the bub-
blesin the upper part of thisrange are so low that it is
necessary to apply very low probe frequencies. Asis
known, the relationship of the resonance frequency of
a bubble to its size in a liquid is determined by the
expression [5]

JSVPO , (By=1)20
fo= Po PoR
fes 21R ’

ey

where y = 4/3 is the adiabatic exponent for the air in a
bubble, a isthe coefficient of surface tension of thelig-
uid, p, is the density of the liquid, and R is the bubble
radius. According to Eq. (1), a bubble with aradius of
100 um has a resonance frequency of about 32 kHz
(A =5 cm). Thus, the necessity of detecting relatively
large bubbles is at odds with the possibility of their
localization.

Another problem involved in detecting motionless
bubbles consists in that a bubble is surrounded by lay-
ers of biological tissues with different acoustic imped-
ances, which cause a strong reverberation. In the case
of thelinear pulsed location of biological tissues, acon-
tinuous sequence of pulses reflected from the layered
structure is recorded, and the pulses from gas bubbles
may be indistinguishable against their background.
Therefore, of most interest is the development of loca-
tion techniques based on the nonlinear acoustic proper-
ties of bubbles. At the same time, nonlinear effects
manifest themselves not only in the signal scattered by
a bubble but also in the wave propagation through bio-
logical tissues[6].

This paper is devoted to an analysis of the abilities
of nonlinear acoustic methods to detect gas bubblesin
biological tissues. The techniques based on the second-
harmonic generation [7], combination (difference and
sum) frequencies (for example, see[7, 8]), subharmon-
ics and ultraharmonics [9, 10], and location by paired
pulses with phase keying and alternate-period compen-
sation for the reflected signals [11, 12] will be consid-
ered.

1063-7710/05/5102-0209$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Dependence of the second-harmonic amplitude on
distance at the reflection from alayer with K. = 0.1. The

initial pressure amplitude is (1) 0.25 x 10° and (2) 10° Pa.

The basis for all the aforementioned detection tech-
niques is pulsed probing, because, first, a spatial local-
izationisdesirableand, in theideal case, soisthe map-
ping of bubble positionsin biological tissues, and, sec-
ond, the implementation of a nonlinear mode of
operation is possible only with the use of location by
high-amplitude probe signals while maintaining the
average value of radiation intensity at the level permit-
ted for medical diagnostic equipment.

A pulsed location mode has its own special fea
tures. As will be demonstrated below, in some cases,
the presence of the transient processes inherent in the
pulsed location mode leads to the generation of quali-
tatively different signals, depending on the ratios
between the parameters of bubbles and probe pulses.
One more specific feature of the techniques under
consideration is the use of a single (two at maximum,
for the technique with combination frequencies) car-
rier frequency of location, which corresponds to
actual location abilities when it is necessary to detect
bubbles in awide range of sizes.

SECOND-HARMONIC GENERATION

First, let us consider the location of gas bubbles by
the method of second-harmonic reception [7]. The
major negative factor in this caseistheintrinsic nonlin-
earity of biological tissues, which also leads to the
appearance of the second harmonic in the signal propa-
gating through biological tissues. Let us evaluate the
amplitude of the signal caused by the intrinsic nonlin-
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earity of the medium and reflected from the boundary
of the tissue layers.

Let a boundary between different soft tissues with
the reflection coefficient K4 = 0.1 (for example, the
boundary between muscle and fat [6]) lie at a distance
r from the tissue surface. For estimates, we use the
Burgers equation under the condition of the smallness

PoViA

of the Reynolds number Re = >

< 1 [13], where

P
V, = p—g istheinitial amplitude of particle velocity, P,
o~0
is the pressure amplitude of the emitted wave, A isthe
ultrasonic wavelength, ¢, is the sound velocity in the

medium, € isthe nonlinear parameter with avalue of 4—
6 for different biological tissues [6], b = pocg 0/2T112,
and a is the coefficient of ultrasonic absorption at the
location frequency f. The absorption coefficient in this
case includes both viscous and thermal losses (the
classical mechanism of absorption) and the relaxation
mechanism characteristic of biological tissues. At a
frequency of 1 MHz, it is equal to oy, = 11.2 m™!
[6]. At the pressure amplitude in the incident wave
P, = 10° Pa, Re ~ 1.6 x 10-2. For the wave at the sec-
ond-harmonic frequency in the case of reflection from
alayer located at a distance r from the biological tis-
sue surface, the pressure amplitude is determined by
the equation [13]

2
K. €P. T

— p —201

2 = —— (7 -

4—4Gr . (2)
2p,Caoa )

Figure 1 shows the dependence of the pressure
amplitude P,; on the distance r for two amplitudes of
the probe signal at € = 6.

To evaluate the possibility of bubble detection, we
numerically simulate the location processfor amedium
with gas bubbles by solving the equation for bubble
oscillations under the action of a high-frequency (HF)
pumping pulse (the frequency f = 10° Hz and the dura-
tion T = 10 ps), calculating the time dependence of bub-
ble radius oscillations and (according to it) the pressure
in the wave reradiated by a bubble, and simulating the
filtration of the acoustic signal by afrequency-selective
receiving system. The equation describing the bubble
radius oscillations R(t) has the form [14]

oo FORME - R 3y - R0
(3)

= () + "Wp,
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Fig. 2. Dependence of the signal amplitude at the second-harmonic frequency on the radius of a bubble positioned at the distance
of 1 cm from the radiator in the case of its excitation by a pulse with an amplitude of 0.25 x 10° Pa.

20 R 20

where P(t) = BDO + ROROD m _

PO + Pac(t) -

R(t)
4p R()’
the bubble radius, P, isthe static pressure in the liquid,
P,.(t) isthe pressurein the incident acoustic wave, and
is the viscosity of the liquid. The values p = 2 mN g/n?
and o = 52 N/m used here and below in the calculations
related to biol ogical tissues are selected as being typical
of theintercellular fluid, and the density p, for theinter-
cellular fluid is approximately equal to the density of
water.

R(t) is the current radius of the bubble, R, is

A solution to Eqg. (3) with the initial conditions

R0) = R, and R(0) = 0 is tried by the Runge—Kutta
method of the fourth order. According to the solution
determined for the bubble radius, the bulk velocity

V() = J’J’%ds is calculated, where Sis the area of

the bubble surface. Then, we calculate the pressure at

the distance r from the bubble, P(t) = ‘%% .

After that, we perform the filtration of the pressure
signal reflected from the bubblein afrequency band of
+100 kHz with respect to the central reception fre-
guency (i.e., the second-harmonic frequency, the sub-
harmonic, etc.)

Figure 2 shows the dependence of the second-har-
monic amplitude on the bubble radius. Note that, in the
case of asmall amplitude of the probe signal (Fig. 2a),
two resonance peaks are observed at the bubble size
corresponding to the resonance at the probing fre-
guency (the right peak, R = 3.7 um) and to the reso-
nance at the second-harmonic frequency (the left peak,
2005
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R = 2 um). When the probing-signa amplitude
increases, the pronounced resonance peaks vanish
(Fig. 2b).

Comparing the curves (Figs. 1 and 2), it is possible
to conclude that reliable detection of abubble is possi-
ble only in the case of its excitation near the fundamen-
tal resonance. Outside the resonance, in the case of
large-size bubbles, the amplitude P,; is small, although
it is sufficient for bubble detection in a homogeneous
medium. At the same time, at this distance, the second-
harmonic signal reflected from the boundary of tissues
is on the order of 40 Pa. As the pumping amplitude
increases, both the amplitude of the signal reflected
from the layer and the amplitude of the signal reflected
from a bubble grow. The ratio of these amplitudes con-
siderably increases for the bubbles located at a smaller
distance from the surface. For example, when the depth
of abubble in the tissue decreases to 1 mm, the ampli-
tude of the signal from the bubble at the second-har-
moni c frequency increases tenfold, while the amplitude
of the signal from the tissue layers at this frequency
noticeably decreases. Thus, using the method of the
second harmonic, it is possible to detect bubbles,
including nonresonance ones, that occur near the sur-
face of abiological tissue.

COMBINATION FREQUENCY GENERATION

This method is based on the irradiation of the
medium under investigation by two HF pulses of differ-
ent frequencies with the help of radiators positioned at
a certain angle to each other and the signal detection at
the sum and difference frequencies[8]. Signals at com-
bination frequencies, which are associated with the
nonlinearity of the medium, should not be generated in
the course of the propagation of probe pulses because
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Fig. 3. Dependence of the signal amplitude on the bubble radius at the (a) difference and (b) sum frequencies for a pumping ampli-
tude of 0.25 x 10° Pa, apulse length of 10 pis, and probing frequencies of 1 and 1.6 MHz.
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Fig. 4. Degendence of the signal amplitude on the bubble radius at the (a) difference and (b) sum frequencies for a pumping ampli-
tude of 10° Pa, apulse length of 10 ps, and probing frequencies of 1 and 1.6 MHz.

of the very weak dispersion in biological tissues. The
possibility of signal detection at the difference fre-
guency, where big bubbles resonate, could also be con-
sidered to be an advantage of this method. However, in
areal experiment, acertain interaction of probing fields
is dtill observed because of the existence of the col-
linear components of wave vectors, and detection at the
low difference frequency requiresthe use of long probe
pulses. Asfor the mgjor disadvantages of the combina-
tion method, they are the awkwardness of the antenna
system (four antennas are needed: two radiating and
two receiving antennas tuned to the sum and difference
frequencies) and a small location region determined by
the zone of intersection of the ultrasonic beams. The

last fact makes it amost impossible to map large
regions of tissues, which reduces the probability of
bubble detection. It is also possible to demonstrate that,
in the case of two-frequency probing, one can reliably
detect only those bubbles with dimensions close to the
resonance ones at the frequencies of probing or recep-
tion. The dependences of the pressure amplitude on the
bubble size, which are obtained by numerically solving
Eq. (3) at asmall pumping pressure P, = 0.25 x 10° Pa,
are given in Fig. 3. The results qualitatively coincide
with theresults obtained in [ 7] under the approximation
of asmall quadratic nonlinearity. It is necessary to note

the presence of three marked peaks corresponding to
2005
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Fig. 5. Dependence of the signal amplitudes on the bubble radius at the (a) subharmonic and (b) ultraharmonic frequencies. The
pumping amplitudeis 10° Pa, the pulse length is 10 pis, and the probing frequency is 1 MHz.

resonances at the pumping, difference, and sum fre-
guencies.

GENERATION OF SUB- AND ULTRAHARMONICS

Let us evaluate the abilities of the detection tech-
nique based on the reception of sub- and ultraharmon-
ics at the frequencies f(2n + 1)/2 (n = 0). Since the
presence of sub- and ultraharmonic signals is con-
nected only with abubble and is not observed in tissues,
this technique suggests a considerable increase in con-
trast for bubble detection in biological tissues. A possi-
bility of detecting gas bubblesin apulsed mode of oper-
ation at subharmonic and ultraharmonic frequencies
was demonstrated experimentally in [9, 10]. The best
detection was achieved, as in the case of the second-
harmonic generation, when the resonance frequencies
of bubbles coincided with the pumping or detection fre-
quencies. The results of numerical calculation by
Eq. (3) for the cases of subharmonic and an ultrahar-
monic (5/2f,) detection are shown in Fig. 5. The signal
amplitudes outside the resonances are small, which
makes it difficult to detect nonresonance bubbles with
this location method.

It is necessary to note that the amplitude of the
pressure signal at ultraharmonics can be comparable
with the amplitude of the pressure signal at a subhar-
monic. Thisis connected with the fact that pressureis
proportional to the second time derivative of the bub-
ble radius and that the frequency of the ultraharmonic
isin this case five times higher than the subharmonic
frequency.

Asin the case of the employment of the second har-
monic, in location at a subharmonic, the detection con-
trast is determined by the ratio of the useful signal and
the level of noise not connected with the bubble but
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caused by the fact that, in a pulsed testing mode, the
parasitic signal till canfall within the reception band if
the spectral components at the subharmonic frequency
are present in the radiated pul se with abroad spectrum;
in addition, if these components are suppressed in the
radiated pulse, they may reappear due to the propaga
tion of awideband signal through an acoustically non-
linear medium [13].

We implemented and tested the method of bubble
detection at sub- and ultraharmonics in experiments
invivo. The device constructed for this purpose used
probe pulses with a frequency of 1 MHz, a length of
10 us, and an amplitude of 103 Pa with a cosine enve-
lope; reception was performed at frequencies of
0.5+0.1 and 2.5 + 0.1 MHz. Figure 6a shows, as an
illustration, the results of bubble location in soft tissues
of a dog, which was subjected to a pressure change
from 10 to 1 atm in a pressure chamber. Figure 6b pre-
sents analogous results obtained by locating soft tis-
sues of a human in a pressure chamber under a pres-
sure decrease from 1 to 0.7 atm. As one can see from
these figures, signals from bubbles appear for a short
time. This is connected with the change in their
dimensions (their growth, in this case) and, hence,
with a shift of their resonance frequency from the
location frequency.

An increase in the amplitude of the probe signal,
on the one hand, does not lead to a considerable
increase in the signal from nonresonance bubbles; on
the other hand, it may lead to an increase in the admis-
sible radiation level for ultrasonic diagnostic devices.
It is necessary to note that a probe pulse in medical
diagnostic equipment contains only two or three oscil-
lations of the carrier frequency with a total duration
not exceeding 1-2 ps. Nonlinear methods of detection
by the second harmonic, combination frequencies,
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Fig. 6. Appearance of signals from bubbles in the decompression process with signal reception at the ultraharmonic (upper half-
frames) and the subharmonic (lower half-frames) frequencies: (a) an experiment with adog under a pressure drop from 10 to 1 atm
and (b) an experiment with ahuman under a pressure drop from 1to 0.7 atm. The horizontal axis represents the timewithin 0-30s. In

the vertical axis, the probing depth is 0-5 cm in each half-frame.

and subharmonics require the employment of longer
pulses to “excite” the bubbles at the resonance fre-
guency. Therefore, to maintain the energy of the prob-
ing signal at the level permitted for diagnostics, one
should make its amplitude smaller than in ordinary
medical diagnostic devices.

LOCATION BY PAIRED PULSES

The method of location by paired pulses is based
on alternate testing by HF pulses with different initial
phases or different types of modulation, storing of the
testing results, and their alternate-period subtraction.
Asaresult of this operation, the signal s reflected from

P, Pa
1200
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1 1 T T —t
0 20 40 60 80 100
R, um

Fig. 7. Dependence of the uncompensated signal amplitude at
the location frequency on the bubble radius in the nonreso-
nance range in the case of dternate testing by pulses with a
phase shift of Tt The amplitude of the probe pulseis4 x 10° Pa,
the probing frequency is 1 MHz, the pulse length is 3 ps, and
the distance to the bubblein thetissueis 1 cm.

tissue layers must be completely compensated for,
while the signals scattered by gas bubbles, because of
their nonlinear distortion, are not compensated for.
This method is described in [11, 12] and is intended
for visualization of contrast particlesintroduced into a
blood vessel. An essential role here is played by the
amplitude dependence of the phase shift between the
excitation signal and the natural oscillations of a bub-
ble. Naturally, this dependence is most pronounced
near the bubble resonance, but the presence of a small
amplitude-dependent phase shift, as will be demon-
strated bel ow, provides an opportunity to also obtain a
certain level of the difference signal outside the reso-
nance.

In [11], the alternate testing of a medium by
pulses with initial phases differing by 1 and with a
subsequent summation of the received echo signals
was performed to implement the method. Owing to
the change in phase relations in signals due to non-
linearity, the sum signal is nonzero. In [12], an anal-
ogous alternate location method by the use of three
pulses with initial phases differing by 120° and a
subsequent summation of echo signals was sug-
gested. In this case, abetter suppression of the signal
from linear reflectors is achieved. The distinctive-
ness of our version of such a system consists in that
we compare not directly received signals but rather
selected signals in the reception band at either the
carrier frequency of the locator or the second-har-
monic frequency. The results of calculation for the
amplitude of the uncompensated signal scattered by
bubbles are shown in Fig. 7. One can see that, in the
nonresonant region, the signal is sufficient for bubble
detection in awider range of bubble sizesthan in the
case of other nonlinear methods. It is necessary to
note that this compensation method can also be
applied in the case of using comparatively short
pulses, which provide a higher spatial resolution. A
disadvantage of this method is the possible loss of
contrast in the case of tissue motion. In this case, no
complete compensation of the signals reflected from
tissue layers can be achieved.
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Fig. 8. (a) Oscillogram and (b) the spectral power density of a pressure signal reflected from a bubble with a radius of 25 pum
(apulse amplitude of 5 x 10°Pa, a pulselength of 3 s, and afrequency of 1 MHz, which corresponds to a bubble resonance radius

of 3.7 yum).

NONLINEAR EXCITATION OF NATURAL
OSCILLATIONS OF A BUBBLE

Let us consider one more possible version of detec-
tion and evaluation of the size of gas bubbles. Location
is performed by short HF pulses containing several
periods of oscillations. As the result of pulse detection,
the natural oscillations of a bubble are excited because
of its nonlinear response. Their frequency is directly
connected with the bubble size according to Eg. (1). To
providefor acontrast against the tissue background, the
frequency components faling within the reception
band are suppressed in the pumping signal, while, on
the contrary, in the signal reflected from a bubble and
received from the medium, the signals at thetesting fre-
guency are suppressed. For example, in the case of the
numerical simulation, the frequencies lower than
500 kHz were suppressed with the help of an HF filter
in the spectrum of the probe pulse with the carrier fre-
quency f, = 1 MHz. As one can see from Fig. 8a, after
the end of the pumping pulse, the natural oscillations at
the frequency determined by the resonance frequency
of the bubble are observed in the pressure oscillogram.
Figure 8b shows the spectrum of the received signal. A
similar procedure is proposed in [16], where spectros-
copy based on the excitation of natural low-frequency
oscillations of a bubble by high-frequency pulses is
suggested. The digtinctive feature of the method pro-
posed by us is as follows. In the method described in
[16], the driving force contains frequency components
at the resonance frequency of a bubble, and, in this
case, signals from linear reflectors will not be sup-
pressed. In the version proposed by us, natural oscilla
tions result from the effect produced on the bubble by a
“detected” pulse, which results from the acoustic non-
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linearity of the bubble. By measuring the frequency of
natural oscillations (for example, with the help of a
spectrum analysis), it is possible to determine the bub-
blesize. To do this, it is necessary to suppress the prob-
ing frequency inthereceived signal to eliminate signals
from linear scatterers (see Fig. 9a). Then, it is possible
to analyzethereceived signal, for example, to dternately
calculate the convolution of the received signalswith the
calibration signals of natura oscillations of bubbles for
different dimensions. Figure 9b gives an example of
such a convolution, where the solution to Eq. (3) with
the suppressed spectrum region around the probing fre-
guency is taken as the basic signal. The first peak is
connected with the resonance at the probing frequency
(the carrier frequency isfiltered out insufficiently), and
the second peak is connected with the resonance of the
bubble itself.

Substituting functions with different centra fre-
guencies and damping factors characteristic of different
bubble dimensions into the expression for the convolu-
tion, it is possible to determine the resonance frequen-
ciesof bubblesand to determine the bubble size accord-
ing to them. Applying this technique, it is necessary to
provide a monotonic frequency characteristic for the
receiving antenna in a wide frequency range. This is
possible, for example, if oneusesareceiving transducer
operating within a band lower than the natural reso-
nance.

It is necessary to note that the described procedure
of analysisisjust amodel. Applying the recently devel-
oped methods of local time-frequency analysis of
pulsed signas (for example, the wavelet analysis or
nonlinear spectrum analysis [17]), it is possible to
speed up the processing and improve the space-time
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Fig. 9. (a) Filtered response of asignal (the band of the probe signal is suppressed) from a bubble with aradius of 25 um and
(b) the convolution of the solution to Eq. (3) for bubbles 1-100 pum in size with the response from a bubble with a radius of
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resolution for both the vertical localization of bubbles
and for improving the accuracy of the determination of
their size.

CONCLUSION

According to the results of the numerical experi-
ments, it is possible to conclude that the nonlinear
acousti c detection methods based on the generation and
reception of the second harmonic, combination fre-
guencies, and sub- and ultraharmonics in the signal
reflected from agas bubblein biological tissues provide
for a high reliability of detection only for the bubbles
with dimensions close to the resonance ones at the
probing or reception frequencies. The bubbles of other,
nonresonance, dimensions at moderate probing ampli-
tudes are almost undetectable by similar techniques
because of either echo signalsfrom thelayers of biolog-
ical tissues or reflected signals. Somewhat better capa-
bilities are possessed by the method of paired pulses,
which allows one to expand the range of detectable
bubbles with a high contrast against the surrounding
layers of biological tissues.

The proposed method of nonlinear excitation of
natural oscillations provides an opportunity to detect
gas bubbles and to measure their sizesin awide range.
Evidently, the echo-signal contrast against the noise
from biological tissuesin this case must also be high,
because the resonance properties of the layers mani-
fest themselves weakly. The application of modern
achievements in the field of signal processing will
make it possible to improve the localization character-
istics of gas bubbles. The described technique evi-

dently needs further study and experimental verifica-
tion.
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Abstract—Several procedures are proposed that allow one to determine the parameters of motion of an inho-
mogeneity crossing the propagation path between a source of an acoustic signal and areceiving array without
the use of any detailed description of the medium (the sound vel ocity profile, the bottom parameters, etc.). The
potentialities and characteristic features of the proposed approach are analyzed within the framework of a one-
dimensional waveguide propagation model. A comparative analysis of the reliability of inhomogeneity obser-
vationsis performed on the basis of a representative experimental data set obtained from a lake experiment for
the cases of using the procedures of coherent space-time processing of signals in antenna arrays and the pro-
cedures with a spatial and temporal incoherent accumulation. © 2005 Pleiades Publishing, Inc.

INTRODUCTION:
STATEMENT OF THE PROBLEM

Together with the pulsed location method, which
mainly uses backscattered echo signals for the observa-
tion of inhomogeneities, the observation method using
the forward scattering, where the scattering cross sec-
tion considerably increases and provesto be closeto the
geometric area of the inhomogeneity under observa-
tion, has been under consideration for arather long time
[1-5]. Observation schemes of this type can be classed
with tomographic ones, since the source of acoustic
field “illuminates’ a certain region of the medium,
whilethereceiver detectsthe signal variation indicating
that the source—receiver path is crossed by an inhomo-

geneity.! By now, aseries of sufficiently effective meth-
ods have been proposed for inhomogeneity observation
against the background of the direct signal fluctuations
due to scattering by wind waves and by volume inho-
mogeneities of the refractive index with the use of both
vertical and horizontal receiving arrays [6-8]. More-
over, it was demonstrated that an inhomogeneity can be
clearly observed not only at the instant of crossing the
source—receiver path but also in a broader region,
including the closest sidel obes of the scattering pattern.

1 We have often encountered the criticism of this classification on
the basis of the fact that a certain set of projections is commonly
used in tomography, whereas, in the scheme under consideration,
only one projection exists (with one source and one receiver).
Although, as will follow from the further discussion, thereiis still
acertain set of projectionsin this scheme, which appears because
of the motion of inhomogeneities in a certain vicinity of the
source—receiver path, we do not insist on the fact that the term
“tomographic” is the most suitable one. It is also possible to use
the term “transmission scheme of observation,” which is used in
practical applications, not only in underwater acoustics but also
in radar techniques.

This possibility, in particular, results from the specific
features of the behavior of the fluctuation spectrum of a
direct signal [8]. Naturally, the problem of comparing
the efficiencies of different observation methods,
including a direct comparison in experiments, seemsto
be important. The present paper is devoted to this prob-
lem.

As the experimental material, we used the data
obtained from the lake experiments of 1997-1999 [8].
In these experiments, several types of inhomogeneities
with alength of several metersand heightsof upto 1 m
were towed under the water surface approximately
across the sound propagation path between a source (a
monopol e-type radiator installed near the bottom or a
vertical radiating phased array) and a receiver (a verti-
cal or horizontal 64-element equidistant array with a
length of 12 m). In the experiment, several (up to five)
tone signals were emitted simultaneoudy in the fre-
guency range of 1-3 kHz. Over one hundred signal
records were made, which included the moments of
crossing the path 300450 km in length under identical
and different weather conditions, which made it possi-
ble to compare different methods. A detailed descrip-
tion of the lake experiment is given in [8].

In the next section, the models of direct and dif-
fracted signals in a plane-layered waveguide are con-
sidered from the point of view of the synthesis of sig-
nal-processing algorithms in receiving arrays and the
understanding of the particular features of inhomoge-
neity observation in a shallow sea. Below, on the basis
of models taking into account the characteristic space—
time properties of the interference (first of all, fluctua-
tionsof thedirect signal), we formulate four methods of
inhomogeneity observation: the methods of observa-
tion of forward scattering, which employ (a) the combi-

1063-7710/05/5102-0218$26.00 © 2005 Pleiades Publishing, Inc.
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nations of coherent time and incoherent space process-
ing for a vertical array, and (b) space-time coherent
processing for a horizontal receiving array and the
methods of observation of a scattered signal beyond the
main lobe of the scattering pattern, i.e., in the near
bistatic region with the use of (c) the space-time pro-
cessing within a floating time window and (d) incoher-
ent accumulation in time. The last two methods are
developed for a horizontal receiving array. The second-
to-last section gives the comparison of the efficiencies
of methods (a)—d) on the basis of experimental data,
and, in the last section, we formulate our conclusions.

MODELS OF DIRECT
AND DIFFRACTED SIGNALS IN A REGULAR
PLANE-LAY ERED WAVEGUIDE

Figure 1 shows the observation scheme correspond-
ing to the given signal models. The trgjectory of inho-
mogeneity motion lies between the source and the
antennaarray. The center O of the Cartesian coordinate
system (X, Y, 2) in Fig. 1 is positioned at the water sur-
face. The receiving elements of a vertica array are
positioned on thezaxis, and, for the case of ahorizontal
array, they are arranged paralel tothex axis. The zaxis
crosses the center of the horizontal antenna array. The
source emits a continuous tone signal e 2ot

The sound pressure p measured by an nth element of
the array can be described in the form of the sum of the
direct field p, observed in the absence of the scatterer
and the diffracted (scattered) field py for the current
position of the source:

P = Po* Pa- (1

In a regular plane-layered waveguide, the direct field
has the form

iKn(r—x,sinag)

——, 2
@

where z; and z, are the depths of the source and the nth
element of the array, respectively; r is the length of the
propagation path OS x, is the position of the nth ele-
ment of the array on thex axis; a, isthe source bearing;
¢(2 is the mth vertical depth eigenfunction corre-
sponding to the mth wave number K, K, = 1; and M

is the total number of propagating modes; the factor

2Tl i s omitted.

A diffracted field can be represented with the hel p of
the Kirchhoff approximation. We assume for definite-
nessthat aplaneinhomogeneity has arectangular shape
with length |, and height |,. The integration over the
inhomogeneity aperture performed for Green's func-
tionintheform of Eq. (2) and its derivative with respect
to the normal to the aperture by taking into account k.|,

po = (211)"* S Gn(2)pn(20)°

ACOUSTICAL PHYSICS Vol.51 No.2 2005

219
" ()
)
®
©
c
o
&
!
c
o]
N
T S
trajectory Souc e
b
O, Water surface ®)

5‘ y
% X Scatt -
E erer
g Ls

z Source

Bottom

Fig. 1. Experimental geometry in the (a) horizontal and
(b) vertical planes.

k., > 1 leadsto thefollowing representation of the dif-
fracted component:

M M
Kot + Kpy
Pa =
T Sdrdomzlmz_lA/K Ko
X (I)m(zs)q)m (Zn)fm' mch (3)
(K SiNQ; + KypSina )%e("m"“n
where D = IhI ,C0s0 is the area of the “shadow” of the

inhomogeneity and @, is the section of the scattering
pattern in the horizontal plane:

h/2
J’ e '¥dx = sinc(El,/2m),  (4)
T
/2
sincx = sSinT/Tx. The main lobe of the scattering pat-
tern (Eq. (4)) describes the forward scattering, and the
sidel obes correspond to the region of bistatic scattering.

The matrix f; - describes the mode coupling, whichis
determined by the vertical dimension of the scatterer:

z4+1,12

=5 [ t@bn@dz )

v
z4—1,12

(pm', m', n = Kylsg + Kl go —

D'_h
EQT[

fm‘, m"

Ky X SN, ©6)
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where a is the current bearing of the inhomogeneity.
Thedistancesrgandr g, andtheanglesa;, a,, and a are
determined from elementary geometrical construc-
tions:

2 : 2
lgg = Jrl—Zrlusnad+u ;

)

2 . 2
Mgo = Jr2+2r2usmad+u ;

. u-—r,sna . u+r,sna
sing = ———— ¢, sna, = —r2 5
sd' do

r,sinag,+ ucos(ay—0ag)

®)

sna =

r.d'o

where u = V(t - t;), V is the velocity of the inhomoge-
neity, t, isthe instant of its crossing theline OS and r,
and r, arethe distances between the source and the scat-
terer trgjectory and between the scatterer trajectory and
the origin of coordinates, respectively, r, +r, =r.Inthe
vicinity of the instant of crossing, the first three terms
of the expansions of Egs. (7) and (8) in u can be used
instead of the full expressions. The diffracted compo-
nent reaches the global maximum when the inhomoge-
neity crossesthe propagation path, i.e., at theinstant t =
t,. Thisistrue, however, only in the case where the scat-
terer trgjectory is perpendicular to the propagation path
OS (a4 = 0°). At ay # 0°, the global maximum can be
located in acertain vicinity of the instant of crossing.

The use of Eq. (3) as areplicawhile processing the
received signals leads to serious difficulties, because
Eq. (3) strongly depends on the propagation conditions.
Equation (3) can be simplified under the assumption
that the difference between the wave numbers K, is
negligible; i.e., it is possible to assume that Kk, = K for
alm=1, ..., M, wherek isacertain average wave num-
ber. In the vicinity of the crossing instant, this approxi-
mation takes on the form

D —iKX,sina(t)
pa= pf = —=a,S(t-to)e ,

A/r']_rlz

sina(t) = sina,+

)

COS0 4 COSA 4,

V(t—ty)
r

2

where phase (9) characterizes the constant and time-
variable components of the source bearing for a hori-
zontally positioned antenna array and the function

Su(t) = O (T )e" (10)
describes the time shape of the diffracted component,
which can be considered as alinearly frequency-modu-
lated pulse with duration Ty and frequency deviation y:

n(Vcosa,)®

Y= (11)

_Arg
Ta Arg

= —
VI, cos oy
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where A = 217K isthewavelength, r.=r,r,/r isthe effec-
tive distance, and

M M

an - Z Z ¢m'(zs)¢m"(zn)fm.ym,,ei(Km'rl'*'km-vl’z). (12)

m=1m"'=1

In the case of ahorizontal antenna array, all amplitudes
a,areequd: a, =a, = ... = a. Thus, in aplane-layered
waveguide, the approximate space-time form of the
diffracted signal does not depend on the propagation
conditions except for the value of the average wave
number; i.e., the form of the approximation given by
Eqg. (9) coincides with the case of free space with acon-
stant sound velocity. In the case of a vertical antenna
array, the dependence of the amplitudes a,, on the pro-
file of sound velocity and the acoustic parameters of the
bottom is significant, and only the time shape of dif-
fracted signal component (10) does not depend on the
propagation conditions,

Using Eg. (3), it is possible to investigate two basic
effects of multimode propagation that affect the obser-
vation characteristics. The first effect consists in that
the value of the maximum of the diffracted component
considerably varies depending on the position of the
inhomogeneity trajectory and the depths of the source
and the receiving array. In some cases, the diffracted
components cannot be observed, namely, when the
inhomogeneity is located at the minimum of the inci-
dent field or the receiver is located at the minimum of
the diffracted field. The second effect consists in the
mismatch of the time or space-time shapes (Egs. (3)
and (9)). To describe both these effects qualitatively, it
is possible to use a simplified model for an underwater
sound channel, e.g., a Pekeris waveguide [9].

The above effects can be illustrated with the help of
anumerical simulation for a set of parameters approxi-
mately corresponding to the conditions of the lake
experiment [8]: r = 450 m, depth H = 15 m, sound
velocity in the water layer ¢ = 1450 m/s, sound velocity
in the bottom ¢, = 1700 m/s, density of the bottom p,, =
1.5 (bottom reflection coefficient K, = 0.28), z.= 13 m,
zy=6m,l,=5m,and |, =1 m. Figure 2 shows the
dependence of the diffracted component maximum at
the instant t = t, for afrequency of 3 kHz and a source
amplitude of 1 Pa at a distance of 1 m. The upper plot
demonstrates the variation of the maximum for one
array element located at the depth z, = 6 m, and the

lower plot represents the amplitude py averaged over

the elements of a vertical antenna array, which are
located at the depths z, = 2.0 + (n - 1)d, where n = 1,
... N,N=64,d=0.19m,

(13)

N
_ 1
Pa = /\/N lepd(zm to)|2-
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Fig. 2. Dependences of the maximum amplitude of the dif-
fracted component on the distance r, determining the posi-
tion of the trajectory of the inhomogeneity between the
source and the receiver (a) for a single receiving element
at adepth of 6 m and (b) the result of averaging the ampli-
tudes over the elements of the vertical array at the depths
2-14 m. The frequency is 3 kHz, and the scaleis linear.

One can see that the maximum of the diffracted compo-
nent is subjected to considerable variation aready in
the case of achangein r, by ~5 m. The swing of these
oscillations is reduced (from ~47 dB to ~18 dB) as a
result of averaging over the elements of the vertical

array.
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The mismatch of the time shape of diffracted com-
ponent models (3) and (9) can be characterized by the
correlation coefficient C:

‘Z pd(tj)S’jr (t)

i

3 IBaF Y 8
j ]

for thetime instantst; in the interval +2T at t, = 0. Fig-
ure 3 presents the dependences of |C| and the maximum
of the diffracted component on the depth of areceiving
element z, and the distance r,. As follows from Fig. 3,
the maximum of the diffracted component is subjected
to strong variation in the range of ~20 dB, while the
modulus of the correlation coefficient varies mainly
within ~0.9-1.0 and decreases only in the deepest min-
ima |pgyl. Precisely this fact provides an opportunity to
perform matched signal processing based on model (9).
The latter is characterized by just one parameter deter-
mined by the propagation medium, namely, the mean
wave number or the average sound velocity in the
waveguide c. Calculations for the above group of
parameters demonstrated that, in the case of variation
of cinthewiderange of 1250-1650 m/s, the correlation
coefficient may vary within 0.88-1.0 in the frequency
range of 1-3 kHz; i.e., for processing, it is sufficient to
use an approximate value of sound velocity. The last
geometrical parameter that can affect the correlation
coefficient is the angle a4 (see Fig. 1). Numerical sim-
ulations demonstrated that the correlation coefficient

ICl = (14)

1Pl

r2,m

1 2 3
x 1073

Fig. 3. Dependences of the modulus of the correlation coefficient (at the left) and the maximum amplitude of the diffracted compo-
nent (at the right) on the distance r, and the receiving-element depth z;. The frequency is 1 kHz.
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Fig. 4. Examples of the time dependences of the diffracted signal for theinhomogeneity moving perpendicularly to the propagation
path (ag = 0, at the left) and at an angle of oy = 45° to the propagation path (at the right). The solid curve represents exact depen-

dence (3), and the dashed line shows approximation (9).

noticeably decreases with an increase in this angle: for
the given set of parameters, the correlation coefficient
remains within 1.0-0.8 at |04 < 25° and decreases to
~0.4 a a4 = 60°. The time dependences of the ampli-
tude and phase of the diffracted signalsthat were cal cu-
lated according to Egs. (3) and (9) for ay = 0° and 45°
aregivenin Fig. 4 asan example.

It is necessary to note that the influence of muilti-
mode propagation on the form of the diffracted signal
for a horizontal antenna array in a plane-layered
waveguideisthe sameasfor asinglereceiving element,

(K Tsq + Ko gre)

since the factors ® e in Eq. (3) areidenti-

cal for al elements. Additional influence of multimode
propagation on the precision of the bearing estimate is
well-studied (for example, see[10]). It isinessential for
comparatively short arrays and the directions close to
the normal to the array.

If the inhomogeneity moves away from the path OS
(see Fig. 1), the diffracted component is determined by
the sidel obes of the scattering pattern. Their description
(in contrast to the main lobe) is difficult within the
Kirchhoff approximation; it is necessary to take into
account the shape of the scatterer edges, the boundary
conditions at its surface, etc. Therefore, one has to use
acruder model asareplicain theregion of bistatic scat-
tering. For a horizontal array, it can be the time varia-
tion of the signal phase that is determined by the Dop-
pler frequency shift and the inhomogeneity bearing,
which synchronously vary in time. This approximation
can be represented in the form

i[@4(t) — KX, sina(t)]

a, i
pi? = Ay(t)e ,

where @,(t) = K[rg(t) + rgq(D]; Agt) is acertain quasi-
random complex-valued function determined by both
the sidelobes of the scattering pattern and the interfer-
ence structure of the field in the waveguide; K is the

(15)

average wave number, asin Eq. (9); and the distances
rg and ry, and the sine of the scatterer bearing are
determined according to Egs. (7) and (8). The first
derivative of @ isacurrent Doppler frequency shift:
Wy = dgy/dt = kV(sina, + sina;). (16)
The properties of the diffracted component in the
region of bistatic scattering can be illustrated by the
current estimates for theinhomogeneity bearing, which
are obtained using a common procedure of the scatter-
ing pattern formation:

iKX,sina

B(sina,t) = , (17)

N

1

53 Palxa e
n=1

where py is determined by Eq. (3). The two-dimen-
sional representation given by Eq. (17) that is obtained
by numerical simulationisgivenin Fig. 5b for thetime
interval t,+ 4T <t<t,+4T4+ 250 sand the parameters
f,=2kHz, V=0.6 m/s, a, = 10°, and a4 = 0°. Figure 5a
demonstrates the current estimates of the bearing for
free space, where Eq. (15), with Ay = D®y(kl(Sina; +

SiNOL)/2TY/(Arg /g 40 ), 1S taken as py. The rate of the

diffracted field decrease in this case was taken to be the
same as in a waveguide with the transition range r,
(~12 m). One can see from Fig. 5athat the estimate for
the inhomogeneity bearing in the case of free spaceis
modulated by sidelobes (4). This modulation becomes
irregular for waveguide propagation (Fig. 5b), sincethe
inhomogeneity also crosses interference maxima and
minima in the course of motion. Such irregular modu-
lation can be considered, however, as a positive factor
in the case of a sufficiently long trgjectory of the inho-
mogeneity. As we have noted above, in the case of
observation of forward scattering, the maximum of the
diffracted signal strongly varies depending on the loca-
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Fig. 5. Time and scan-angle dependences of the amplitude at the output of a horizontal scanning antenna array in the bistatic scat-
tering region for the case of an inhomogeneity moving away from the point of crossing the propagation path (a) in free space and
(b) in awaveguide; (c) the spectrum of the complex amplitude of the signal at the array output in the case of monitoring the inho-

mogeneity by the main lobe of the scattering pattern.

tion of the inhomogeneity trgectory between the
source and the receiving array (see Fig. 2), so that, at
certain values of the distance r,, the inhomogeneity
may be unobservable. Although the average amplitude
of the diffracted signal in the region of bistatic scatter-
ing is smaller in comparison with the forward scatter-
ing, the observation of a moving scatterer becomes
more stable at the trajectory length comparable to the
length of the propagation path. At least several max-
ima of the diffracted signal can be observed for any
distancer,.

The spectrum of the function A4(t) determined from
Eqg. (3) isshown in Fig. 5¢ for the same parameters as
in Fig. 5b. The width of this spectrum determines the
admissible duration of the tempora coherent process-
ing of asignal in the region of bistatic scattering (in the
given example, this duration is ~20 s).

The models of replicas given above (Egs. (9) and
(15)) will be used below for the synthesis of signal-pro-
cessing procedures aimed at the detection and estima-
tion of the parameters of moving inhomogeneities.

ACOUSTICAL PHYSICS  Vol. 51
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ESTIMATION OF THE PARAMETERS
OF A MOVING INHOMOGENEITY

As we have mentioned above, inhomogeneities are
characterized by a sufficiently large number of param-
eters, which, as arule, are unknown: the time of cross-
ing t,, the velocity V, the distance r,, the length I,,, and
the angle a4 between the trajectory and the normal to
the propagation path. Therefore, the observation proce-
dure itself must consist in the estimation of these
parameters with allowance for the fact that the dif-
fracted signal is observed against a noise background.
Assuming that the observation is conducted with an
antennaarray, the set of signal snapshots, i.e., the vector
p(t) with the dimension N x 1, where N is the number
of receiving elements, after acomplex demodulation at
the radiated signal frequency, low-pass filtration, and
decimation, can be represented according to Eq. (1) in
the form

P(t) = pa(t, 0) + po(t) + (1),

where the vector 8 denotes the set of the unknown
parameters listed above and &(t) is the noise back-
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ground. In a natural underwater channel, both the dif-
fracted component and the direct signal fluctuate dueto
scattering by random inhomogeneities. We assume that
these fluctuations are comparatively small; e.g., for the
direct signal, the average value is much greater than the
fluctuating part. At the same time, because of the small-
ness of the diffracted component in comparison with
the direct signal, the fluctuating part of the direct signal
is comparable with the diffracted component and inter-
feres with its observation. At least in the lake experi-
ment [8], precisely the fluctuations of the direct signal
were the major interference in the observation of the
diffracted component. Under this approximation, the
diffracted component can be treated as aregular signa
with a known structure, and the direct signal together
with the background noise, as a random additive inter-
ference ¢(t) = py(t) + &(1).

Asis known, a classical method for the determina-
tion of the unknown parameters of a deterministic sig-
nal observed against the background of additive noise
is the maximum likelihood technique (for example,
see [11]). Further, we assume that interference is a
process stationary in time; i.e., its covariance matrix K
can be represented in the form [4(t,)cH(t,) (= K(t, - t,),
where () means Hermitian transpose. We represent
the diffracted component model (areplica) intheform
Pq(t, 8) = B,84(t, 8,), where 6, is an unknown complex
amplitude and 0, = (t,, V, ...)T is the vector of the
parameters nonlinearly involved in the diffracted com-
ponent model. The components of the vector s;, for
example, in the case of ahorizontal receiving array and
observation of forward scattering, are determined
according Eq. (9):

sa(t, 01) = S(t-tp)a(t, 8,), . (18)

In this case, the maximum likelihood estimate of
unknown parametersin the case of the normal distribu-
tion of noise is determined in the form [12]
0, = argmaxF(0,);
8,
fJ2 2

[ ug (f, 0,)W™(f)q(f)df
F(8,) = 775 ,
I ul (f, 0 )W (f)uy(f, 8,)df

—f42

where ug, q, and the matrix of the cross-spectral densi-
ties of interference W are the discrete Fourier trans-
formsof thereplicas,, theinput signal vector p, and the
matrix of interference covariance K, respectively; f. is
the sampling rate. It is necessary to note that Eq. (19) is
also a detection procedure: according to the excess of
max F over a certain threshold, it is possible to judge
the presence of a moving inhomogeneity.

In the case of a vertical receiving array, the replica
isrepresented in theform s; = §y(t - ty)a, whereaisthe

—iKX,sina(t)

a, = e

(19)
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constant vector characterizing the diffracted field distri-
bution over the array aperture. Aswas noted before, its
structure depends on the propagation conditions; there-
fore, thesimplest way isto consider it to be an unknown
parameter. A maximization of Eq. (19) with respect to
this vector leads to the replacement of Eq. (19) by a
guadratic form:

F(0,) = v'Qy, (20)

where
/2
ve Ui (f,0)W(f)q(f)df,

—fy2
f 2

Q= J’ |Uqg(f, 8,)]°W(f)df,
—fJ2

and Uy is the discrete Fourier transform of Syt — t,).
However, the experiment demonstrated that the struc-
ture of processing algorithms (19) and (20) can be con-
siderably simplified. Figure 6 shows one of the experi-
mental dependences of the cross-spectrum density
matrix averaged along the diagonals.

N-1

1
Wn(f) = mzwu_n(f), n=20.. N-1
I=n

21

As follows from Fig. 6, the cross-spectrum density
matrix has a complex spatial structure in a narrow fre-
guency range with awidth of several tens of millihertz,
but, asthe frequency grows, the spatial correlation van-
ishes (the correlation scale becomes ~A/2). Since
Egs. (19) and (20) include inverse filtration, it is evi-
dent that this narrow frequency interval will be “cut
out” by theinversefilter. In this case, the spatial struc-
ture of the matrix within the “cut-out” range does not
play a significant role. This structure of interference
provides an opportunity to use the diagonal represen-
tation of the cross-spectrum density matrix in Egs. (19)
and (20). Taking into account the fact that the shape of
the power spectral densities (diagonal elements) is
almost the same, it is possible to proceed to the repre-
sentation W(f) — | - W(f), where | is the unit
matrix and W( f ) isthe spectral density of the interfer-
ence power that is averaged over the array elements.
In this case, Egs. (19)—21) transform into Egs. (22)—
(24), respectively:

fJ2 2

[ u?(f,el)q(f)v%
F(0,) = 157 . ()
H df
I ud(f,ﬂl)ud(f,ﬂl)m
—fJ2
F(0,) = v'v/Q(f), (23)
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Fig. 6. An example of (a) the power cross-spectrum density for a fluctuating direct signal in the lake experiment as a function of
frequency and distance between receiving elements on alogarithmic scale in decibels and (b) its section at zero frequency and fre-
quencies of 0.1 and 1.2 Hz on a linear scale with normalization by W (f) (correlation coefficients) as a function of the distance

between receiving elements. The wavelength is 0.59 m.

where

f42
v = jua*(f,el)q(f)\,%,
e f42 (24)
_ 2 df
Q(f) = J' |Uq(f,0,)] Wi

—fJ2

Expressions (22)—24) determine the procedures of
detection and estimation of the parameters of motion of
an inhomogeneity according to the forward-scattering
data in the case of the use of a horizontal or vertical
receiving array, respectively. The practical implementa-
tion of Egs. (22) and (23) basically depends on the
selection of the inverse filter W-!( ). For example, the
time sequence of p(t) can beinitially high-passed using
a finite impulse response filter, which has coefficients
determined with the help of the estimation of the power
spectral density within the framework of the autore-
gressive model of afixed order (for example, see [11]).
This adaptivefiltration is sufficiently convenient from a
practical point of view, since it does not need any pre-
liminary estimation of the parameters of the high-pass
filter. In processing the results of the lake experiment,
we used filter orders lying within the range 5-12. For
other techniques of filtration of upper frequencies in
estimating the parameters of asignal scattered forward,
see |5, 6].

As has been noted above, in the case of the estima-
tion of inhomogeneity parameters in the region of
bistatic scattering with ahorizontal receiving array, two
strategies were used.

ACOUSTICAL PHYSICS Vol. 51

No. 2 2005

The first was based on the fact that, when the inho-
mogeneity passes along the trgjectory approximately
equal in length to the propagation path, clear peaks of
the diffracted signal may form on one or several local
sections of the trgjectory. In this case, it is possible to
conduct matched processing within a certain time win-
dow by simultaneously moving this window in such a
way that the maximum of the function F(0,, t,),

F(8,, 1)

2
~i gyt 0,) (25)

“Tol2<tj—t,<Ty/2

(see Egs. (7), (8), (15), and (18)), is achieved with
respect to the parameters 0, and the position of thetime
window center t.. Here, T, isthelength of thetime win-
dow, and p‘f(t) is the time sequence of signal vectors
after a high-pass filter. As has been shown in the previ-
ous section, the length of the time window must be
selected for each specific waveguide and dimensions of
theinhomogeneity proceeding from the spectrum width
of the time factor Aq(t) in Eq. (15), as follows from
Fig. 5c. For the lake data, this value was determined
experimentally. The cut off band of the high-pass filter
was taken to be approximately equal to the minimum
Doppler frequency shift (Eg. (16)) corresponding to the
preset variability range of the parameters0,. It also was
assumed that, in the range of the Doppler frequency
shifts, which is determined by the dimension of the
time window, the fluctuation spectrum of the direct sig-
nal can be taken as approximately constant (asis dem-
onstrated in [8], this spectrum flattens out with fre-
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guency growth); therefore, the operation of interference
“whitening” was not included in Eq. (25).

The second strategy consisted in the accumulation
of Eq. (25) in time windows with a certain weight. In
this case, the dimension of the time window was
selected in such a way that, within each Ith window
with the center t, |, it was possible to consider the bear-
ing o, and the Doppler frequency shift wy, to be con-
stant. The calculation in this case was reduced to the
determination of the function

F(9,) = Z g
to, O[to—At, to+ Af]

(26)

2

—i(.ody,(el)tj +iKx,sina,(0,)
X Z Z pjn,le ’

noj

where n is the element number and j is the snapshot
number within the window. In the process of summa
tion, we excluded the windows adjoining the current
value of theinstant of crossing t,. Thetermsin Eq. (26)
have different dispersions, because the two-dimen-
sional spectral power density of direct signal fluctua-
tions P(w, ksina) determining the dispersion of each
term changes noticeably in the variation range of wy
and a, used; this fact was taken into account with the

help of the weights g,. While processing, we assumed

g = 1/P (wy \, kSinay), where P is the estimate of the
two-dimensional spectral power density P, which is
made according to the realization of thereceived signal.
Selecting the statistical weight, we took into account
the fact that responses to the diffracted component for
different windows decrease on the average with an
increase in the Doppler frequency shift and the bearing
(it is possible to demonstrate rigorously that, for con-
stant responses, in the case of the Gaussian fluctuations,
the dispersion F is minima at g = 1/P?). Explicit
dependences of the Doppler frequency shift and the
bearing on the parameters 0, = (t,, V, ...)" are deter-
mined by Egs. (7), (8), and (16).

Examples of the experimental dependences (22),
(23), (25), and (26) on the parameter t,, i.e., the instant
of crossing the propagation path by an inhomogeneity,
aregivenin Fig. 7. Other parameters (the inhomogene-
ity velocity, the distance r,, etc.) in this case were
assumed to be known. In the case of using Eq. (25), the
time window was taken to be equal to 40 s, according
to the preliminary experimental estimation of the opti-
mal value for this parameter. The procedure of Eq. (22)
was implemented using adaptive time filtration.
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COMPARISON OF THE CHARACTERISTICS
OF OBSERVATIONS PERFORMED
BY DIFFERENT METHODS

In total, according to the results of the experiments
conducted in 1997-1998, the analysis of more than 120
crossings of the signal propagation path by different
inhomogeneities was carried out. Signals from a verti-
cal and/or horizontal receiving array were recorded
usually during ~10 min, while an inhomogeneity
moved from one shore of the lake to another. Signals
were detected simultaneously at several (from three to
five) discrete radiation frequencies from the range 0.6
3.5 kHz. Inhomogeneities of four types were used. The
first and second types were hollow metal cylinderswith
adiameter of 0.45m and lengths of 6 and 3.5 m, respec-
tively; the third type was a short cylinder equipped with
an additional plastic foam screen of 0.7 x 2 m. A plastic
foam screen with dimensionsof 5 x 1 mwas used asthe
fourth-type inhomogeneity. The inhomogeneities were
most often towed at a depth of 6 m with a velocity of
0.6 m/s. The processing of these data demonstrated
that, asarule, in the case of observation by vertical and
horizontal arrays, the crossing was detected for al
types of inhomogeneities at at least one frequency.
However, the crossing was not always observed at all of
the radiated frequencies. In al series, for a vertical
receiving array, the resultswere more stable, which al'so
follows from Fig. 2.

The estimation of a successful observation of the
crossing of the signal propagation path by an inhomo-
geneity was performed proceeding from the noticeable
prevalence of the global maximum over the fluctuating
background in the process of estimation of the crossing
instant (seeFig. 7). Itisnatura to use awell-known cri-
terion, namely, the signal-to-noise ratio after process-
ing, as the quantitative characteristic of the success in
the observation of crossing:

max{F} —F
~/disp{ F}

where F is the average value of the random back-
ground beyond the vicinity of the global maximum and
disp{F} isthe background variance in the sameregion.
Thevalue of Eq. (27) for each experiment can be deter-
mined empirically from the realizations of F. In this
case, we assume that, beyond a certain vicinity of the
globa maximum F, the ambiguity function rapidly
decreases and does not contribute to the estimation of
the background mean and variance. Note that, in com-
paring the results obtained by different methods, the
use of Eq. (27) is not quite correct, since, for coherent
processing (22), (25) and procedures (23), (26) using
incoherent accumulation, the random quantity F has
different probability-density distributions and, there-
fore, different detection probabilities at the same sig-
nal-to-noise ratio. Therefore, a more correct quantity
for the comparison is the difference Aqr between the

SNR = 10log [dB], 27)
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empiricaly determined signal-to-noise ratio SNR and
its threshold value SNR, corresponding to the fixed
probabilities of detection of the diffracted component
Pp and false alarm Pg. The threshold value SNR, was
determined theoretically for the normal interference
distribution g(t) and, correspondingly, the central or

noncentral distribution xﬁ for F in the presence or

absence of the diffracted component [12]. For the
coherent processing, the number of the degrees of free-
dom n was taken to be equal to two. For the procedures
with incoherent accumulation, the number of degrees
of freedom must correspond to twice the number of
independent accumulated blocks. Its precise estimation
for experimental conditions is difficult, but we demon-
strated that, for sufficiently large P, and Pz = 10107,
the difference in NR, at n = 16-128 for fixed Py and
Pr does not exceed 1 dB, which corresponds to the
accuracy of the empirical estimation of SNR. In what
follows, for the coherent processing, we took SNR, =
11.5 dB and, for incoherent processing, SNR, = 8 dB,
which corresponds to P, = 0.95 and Pg = 10-3.

A detailed comparison of the above-mentioned dif-
ferences Aqr Was conducted for the most representa-
tive series of experiments with the inhomogeneity of
the third type (a cylinder with an additional screen).
The series included 18 crossings observed simulta-
neously with the help of vertical and horizontal arrays
positioned at a small distance from each other. Figure 8
shows four frequency dependences of Agqk for proce-
dures (22), (23), (25), and (26), respectively. It is nec-
essary to note that the results for a horizontal receiving
array (procedures (22), (25), and (26)) were obtained
with the same initial data.

From Fig. 8 and from the results of processing of
other experiments, we draw the following conclusions:

(i) At given characteristics of the fluctuations of the
direct signal and a uniform rectilinear motion of the
inhomogeneity, the methods developed for estimating
the parameters of the diffracted signal in the bistatic
region provide a dlightly higher signal-to-noise ratio in
comparison with the estimation of the parameters for
forward scattering. Method (26) using incoherent accu-
mulation along the whole mation trgjectory, on the
average, gives higher values of SNRin comparisonwith
purely coherent space-time processing (25), designed
for detecting “bright” spots of the diffracted signal
along the trgjectory of the inhomogeneity motion. It is
necessary to note that bistatic methods use alonger rec-
tilinear section of the trgjectory, as compared to the
methods based on forward-scattering observations.

(ii) The estimation of the parameters of forward
scattering with the help of a vertica receiving array
yields a smaller variation of Agqg, Whereas, in the case
the use of ahorizontal array, greater values of Agz may
be observed.

(iii) The detection characteristics for al methods
deteriorate at the edges of the sel ected frequency range.
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This may be cased by both technical factors (the fre-
guency dependencesin Fig. 8 closely coincide with the
frequency characteristic of the radiator used in the
experiment) and the existence of a certain optimal fre-
guency range for inhomogeneity observation: at low
frequencies, the target strength decreases, and, at high
frequencies, the correlation between the replicaand the
actual shape of the diffracted signal is reduced. The
experiments gave no definite answer to this question.

The experiment also demonstrated that, at least in
the case of a horizonta receiving array, it is expedient
to use a group of processing methods in parallel, by
analogy with many applications where the filter-bank
technique is used.

CONCLUSIONS

Several methods for estimating the parameters of
motion of an inhomogeneity from its field scattered
both forward and in the bistatic region are developed
for the case of observation by antenna arrays and a
simultaneous emission of several tone signals at differ-
ent frequencies. A sufficiently representative experi-
mental sample is obtained, which allows one to draw a
conclusion concerning the statistical characteristics of
the observation results for signals scattered by a mov-
ing inhomogeneity under the conditions of waveguide
propagation of sound and fluctuations of the direct sig-
nal because of random scattering by wind waves and
volume inhomogeneities of the refraction index. In par-

ticular, it isdemonstrated that the reliability of observa-
tions strongly depends not only on the fluctuations of
the direct field but also on the interference effects,
which are regular but poorly predictable because of the
indeterminacy in the description of the propagation
medium. The after fact must be taken into account in
the theoretical estimation of the reliability of inhomo-
geneity observations under preset conditions together
with such characteristics as the space-time scales and
the values of fluctuations of the direct signal.
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Abstract—The nonlinear propagation of an initially harmonic acoustic wave in a microinhomogeneous medium
containing defectswith quadratic hysteretic nonlinearity and relaxation is studied by the perturbation method. The
frequency dependences of the effective nonlinearity parameters are determined for the self-action of the quasi-har-
monic acoustic wave and the higher harmonic generation processes. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Hysteretic equations of state are commonly used to
explain the phenomenon of amplitude-dependent inter-
na friction (ADIF) in solid materials with imperfect
eadticity. Earlier [1-7], different types of inertialess
hysteretic equations, i.e., dependences of the type of

0 = O(g, sgne) (whereo isthe stressand € isthe strain),
were obtained to describe the deformation of such mate-
rials at low frequencies. The absence of inertiain these
equations means that the stress ¢ at a given point of the
medium at agiven ingtant t is determined by the strain €

and the sign of the strain rate € at the same point at the
same instant of time. For media with inertialess nonlin-
earity, the effective nonlinearity parameters (which, gen-
erally speaking, are different for different wave pro-
cesses) are constant and independent of the frequencies
of the interacting acoustic waves. The results of experi-
mental studies of the ADIF effects (such as nonlinear
loss, resonance frequency shift, and higher harmonic
generation) tegtify that the nonlinearity parameters of
some polycrystalline metals and rocks are frequency-
dependent. To explain these results, a rheological model
of a microinhomogeneous medium was proposed and
studiedin[8, 9]. Themodel had theform of aone-dimen-
siond chain of linear elastic elements and relatively soft
nonlinear viscoelastic (relaxation) defects. In the cited
publications, three-wave processes in media containing
defectswith aquadratic elastic nonlinearity were consid-
ered and it was shown that, because of the nonlinear
relaxation of defectsat the frequenciesof initial and non-
linearly generated waves, the quadratic nonlinearity
parameters of microinhomogeneous media are fre-
quency dependent; i.e., such media exhibit a dispersion
of their nonlinear elasticity. Evidently, rheology alone
cannot completely ducidate the physical nature of this
phenomenon: its mechanisms may be different for differ-
ent media. However, the proposed rheological model
adequately describesthe behavior of linear and nonlinear
acoustic properties of a wide class of microinhomoge-

neous media (in particular, polycrystalline metals and
rocks) and qualitatively accounts for the results obtained
from the experimental studies of nonlinear effects in
such media. For each specific medium, the amplitude—
frequency characteristics of nonlinear effects manifest
themselves in an individua manner, and, therefore,
along with the nonlinear properties, the relaxation prop-
erties of microinhomogeneous media can also be used
for their classification and diagnosis.

In this paper, we present a theoretical analysis of
nonlinear effects accompanying the propagation of an
initially harmonic acoustic wave in a microinhomoge-
neous medium containing defects with a quadratic hys-
teretic nonlinearity and relaxation. We determine the
frequency dependences of the effective nonlinearity
parameters for the wave self-action and higher har-
monic generation processes.

EQUATION OF STATE
OF A MICROINHOMOGENEOUS MEDIUM
WITH QUADRATIC HYSTERETIC
NONLINEARITY AND RELAXATION

Asinthe previous publications [8, 9], we consider a
rheological model of a medium in the form of a one-
dimensional chain of linear elastic elements and rela-
tively soft nonlinear viscoelastic defects characterized
by a hysteretic stress—strain (0— &) dependence:

o(E, song, &) = ZE[E-f(E, soné)] +n&, (1)
f(&, sgng)

HhEs €50, £>0;
CACVE(tEE E50, E<0 @)
_Zg—vaiz, £<0, £<0;

VL& + (Va+ va)EnE, €<0, €>0.
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Here, E isthe elastic modulus of stiff elements, { isthe
relative elasticity of adefect with respect to the elastic-
ity of alinear stiff element ( < 1), n is the viscosity

coefficient, &, and & are the strain amplitude and the
strain rate, y,_, are the hysteretic nonlinearity parame-
ters, |Viulém <€ 1, and |y,_4| > 1. For definiteness, we
consider defects described by aquadratic elastic hyster-
esis [10] (or the separation hysteresis [3]), but the
expressions obtained below for the nonlinearity coeffi-
cients Ay(w) and B,(w) arealso valid for defectswith an
inelastic but also quadratic hysteresis[10] (or afriction
hysteresis[3]).

When the concentration of defects is small, the
equation of state of a microinhomogeneous medium
hasthe form [8, 9]

ol

o(e) = E{s —J’IR(S) N(Z, W)dZdw
00

3)
0l
- [JERUf(Ree), sgnR(e))IN(Z, W)dZdW},
00
[[ERIF(RE), sgnR(e))IN(Z, W)dZdW‘
00 (4)

01
< JO’{R(s)N(Z,W)dZdW‘ < g,

where R(g) = V?VJ:OS(T)GWGT)dT, W = (E/n is the
defect relaxation frequency, and N = N(Z, W) is the
function describing the defect distribution in the param-
eters and W.

Equation of state (3) takes into account the relax-
ation and contains both linear and nonlinear relaxation
terms. The linear and nonlinear relaxations of this
medium are caused by the relaxation of defects, and the
nonlinear relaxation manifestsitself twice: first, owing
to the linear relaxation, because the nonlinear correc-
tion is determined by the linear response of the defects,
and, second, owing to the relaxation of the nonlinear
correction itself. In the low-frequency approximation,
i.e, for W < 1 (where w is the frequency of the
acoustic wave), Eq. (3) is reduced to a simple inertia-
less equation:

a(g)
_ [ B Na B ND | O
= E[s%ﬂ. { 7 ZD f (g, sgne)f dz}
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The propagation of aquasi-harmonic wavein amedium
with inertialess hysteretic nonlinearity (2) was studied
in[10, 11].

NONLINEAR PROPAGATION
OF A QUASI-HARMONIC WAVE

We set a boundary condition in the form of
e(x =0, t) = g;sinwt and consider the nonlinear effects
that accompany the propagation of a longitudinal
(along the x axis) acoustic wave in the medium. Substi-
tuting equation of state (3) into the equation of motion
pU, = o, (wheree = U,, U isthedisplacement, and p is
the density) and solving the latter by the perturbation
method, we obtain expressions for the wave (in the
form of a Fourier series), the nonlinear damping decre-
ment &(€,), and the nonlinear variation of the propaga-
tion velocity AC(g,)/C of the wave at the fundamental
frequency w:

g(x 1) = z gp(x)sinfw,t —k,x— ,(X)],
p=1

" (6)
T £,(0) < .0,
p=2
£,(x) = Asoexp[_Al,lle] ,
1+ A_lso[ 1-exp(-A, 1kX)]
1
(7

d,(X) = B 1k
In%”i+
£p(X) = JA?+ BieskyX,

dp(X) = pdi(X)— pB, kyx + arctan(B,/A,), (8)
|9p(X) —pd(X)| < Tt

5(e) = Adwe), S =

50[1 exp(—Ay 1K, X)]D,

= Bi(w)e(x), 9)

A, (@) = U PWWN(E W) 7 gy,

)27 (p°w’ + W) )
T WANEW)
B| p(w) J.IZZ( 2 2+W) ZdW,
0 A D L NEW)

5 By(w) O H J 211+ (wiw)]™*

(11)

x {E a5 (ww)q £ 20 > E(w/W)}dZdW,
0b, 0 0a,0
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o1
- ey
00

XE cos[ p¥ + arctan(b,/a,)] EdZdW
0 sin[pW¥ + arctan(b,/a,)] O

where w, = pw, k, = w/C, C = (Ep)'% ¥ =
2 arctan(w/W) ,

1
a = ET(V1+V2+V3+V4)ZO'

1 1
b, = E(Vl +YotYstY,) t 6‘1?[(\/1—\/2 TVYs —VA)(vB)

1
=—=(Y1+Y2—Y3s—VYa),

% = 2an

1 1
by = 5= (Vi*¥2a=Ya=Va) * 55 (V1 =V2=Vs +Va),

and Aj(w)e5(x) and By(w)e3(x) are the Fourier coeffi-
cients of the nonlinear function of equation of state (3).
(Expressions for the coefficients a, and by, for media
with elastic and inelastic hysteresisare givenin [11].)

From Egs. (7)—(12), it follows that the relaxation of
hysteretic defects has two consequences: first, the coef-
ficients Ay(w) and By(w), which determine the nonlin-
ear loss, thewave velocity variation, and the higher har-
monic amplitudes and phases in the microinhomoge-
neous medium, become frequency-dependent (with any
sign); second, each of these coefficientsisalinear com-
bination of the coefficients a, and b,. From Egs. (8) and
(12), one can see that the excitation of a harmonic
wave of frequency w in a microinhomogeneous
medium with hysteretic nonlinearity and relaxation
gives rise to waves with frequencies pw. The ampli-
tude of each of these higher harmonics exhibits a qua-
dratic dependence on both the initial wave amplitude
and the distance traveled by the wave and is propor-
tiona to the effective nonlinearity parameter D(w) =

2 2 . ey
NAL(w) + By(w), which depends on the initial wave

frequency w and the number p of a given harmonic:

Fig. 1. Frequency dependences of the coefficients (@)
A (w/Wp)/B1(0) and (b) B;(w/W)/B;(0) and (c) the param-
eter r(w/W) for amedium containing identical defects; ry =
(1)0.5,(2) 1,and (3) 2.
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Dy(w) = Jas+b
N(¢ W)

w1 (14)
'U CI1+ (WW)T[1+ (P W)

dddw.

1/2

In the quasi-static approximation, i.e., for oyW — 0,
expressions (7)—(12) and (14) are smplified by trans-
forming to expressionsfor amedium with aninertialess
(i.e., frequency-independent) hysteretic nonlinearity
[10, 11]. Inthis case, the nonlinearity coefficients A,(0)
and B,(0) are determined by the coefficients a, and by,
(separately) and the defect concentration:

1
1A Da, 0Ny
0B,(0)0 Ob,H ¢

Now, we determine the parameter r = r(w) repre-
senting the ratio of the damping decrement &(g,) to the
relative variation of the wave velocity, AC(¢g,)/C. This
dimensionless parameter, which is independent of the
wave amplitude, is an important characteristic of the
ADIF[1-3, 5]:

(15)
0

(16)

In the low-freguency region (w < W*, where W* isthe
effective frequency of defect relaxation), we have
r(0) = r, = a,/b, = const, while for w = W, the param-
eter r(w) may be arbitrary in the genera case. Itsvalue
and sign are determined by the wave frequency w and
the defect distribution function N = N({, W). Below, to
simplify the calculations, we consider different distri-
butions of defectsin relaxation frequencies W under the
assumption that { = const.

FREQUENCY DEPENDENCES
OF NONLINEAR COEFFICIENTS
FOR IDENTICAL AND DISTRIBUTED DEFECTS

The simplest expressions for the coefficients Ay(w)
and B(w) and the parameter r(w) are obtained in the
case of amonodisperse distribution of defectsin relax-
ation frequencies: N(W) = N,o(W — W,). For example,
the expression for r(w/W,) has the form

Fo(1— (0/W,)?) + 2(0/Wo)

r(w/W,) = .
(0 Wo) 1 — (I W,)? = 2r (0 W,)

Fig. 2. Frequency dependences of the coefficients
(@) Aj(wW,)/B(0) and (b) B;(wyW,;)/B;(0) and (c) the
parameter r(w/W,) at ro = 1 for media with different distri-

butions of defects in relaxation frequencies: W, = 10% s~
and W, = (1) 10°, (2) 10* and (3) 10°s72.
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From Eq. (11), it follows that (for r, > 0) the coeffi-
cients A,(w) and B,(w) are positive in the frequency

regions W, < [, = - + (1 + rg’ )2 and /W, < 1, =

—ro+ (1 + )12 <, respectively, so that the parameter
r(w/W,) is positive at low frequencies (w/W, < |1,) and
at high frequencies (w/W, > ), whilein the frequency
range W, < wyW, < J,, itisnegative. Figures 1la—1c show
the coefficients A, (w/W,)/B,(0) and B, (w/W,)B,(0) and
the parameter r(w/W,), respectively, asfunctions of the
ratio wyW, for amedium containing identical defects;
the curves are plotted for different values of r,. From
these plots, one can see that, in the low-frequency
range (w < W), we have A (w/W,)/B,(0) = r, and
B, (YW,)B,(0) = 1; in the high-frequency range (w >
W,), these coefficients tend to zero (as w=); and in the
intermediate frequency region (w = W), the coeffi-
cient A,(w/W,)/B,(0) slightly exceeds r,, while the
coefficient B,(w/W,)/B,(0) decreases to zero and
changes sign. The parameter r(w/W,) exhibitsa corre-
sponding behavior: at low and high frequencies,
r(w/W, = r, while at intermediate frequencies, it
exhibits changesin its value and sign.

Figures 2a—2c show the coefficients A, (w/W,)/B,(0)
and B, («yW,)/B,(0) and the parameter r(w/W,), respec-
tively, as functions of the ratio w/W, for amedium with
defects distributed in relaxation frequencies (at r, = 1):

No

NW) = oW wWow'

W, sW<W,.  (18)

NAZAROQV, RADOSTIN

With this distribution of defects in relaxation frequen-
cies, the medium possesses a frequency-independent
linear damping decrement in the frequency range W, <
w < W,. Inthis case, the frequency dependences of the
coefficients A, (w/W,)/B,(0) and B, (wyW,)/B,(0) and the
parameter r(wyW,) quaitatively coincide with those
showninFig. 1.

Figure 3 represents the dependences of the normal-
ized quadratic nonlinearity coefficient 'y(w/W,) =
Do(W/Wy)

D,(0)
(W, = W,) and with defects distributed according to law
(18). In the low-frequency region, this coefficient is
equal to unity, and, as the frequency increases, it
decreases and tends to zero. If the upper bound W, of
distribution function (18) increases, the aforemen-
tioned decrease in the nonlinearity coefficient becomes
slower because of the increase in the effective relax-
ation frequency W*. Similar frequency dependences
occur for other nonlinearity coefficients I' ,(w/W,) =
D, (w/W,)

D,(0)

on w/W, for media with identical defects

, Wherep > 2.

CONCLUSIONS

Thus, in this paper, in terms of the rheological
model of a microinhomogeneous medium containing
viscoelastic defects with quadratic hysteretic nonlin-
earity, we studied the effects of both the self-action of
an initially harmonic wave and the higher harmonic
generation. We derived analytical expressions for the
nonlinear coefficients A(w) and By(w) responsible for
these processes. We have shown that, unlike the
medium with the same hysteretic nonlinearity but with-
out relaxation, where the nonlinearity of the medium
does not depend on the frequency of the acoustic wave,
the hysteretic nonlinearity of a microinhomogeneous
medium with relaxation is frequency-dependent; as the
frequency of the acoustic wave increases, the effective
nonlinear parameters of such a medium asymptotically
tend to zero. Although, in this paper, we considered a
definite class of mediawith a quadratic elastic hystere-
sis, the expressions obtained for the nonlinearity coef-
ficients Ay(w) and B,(w) are also valid for media with
an indastic quadratic hysteresis [10], because the
dependences of the nonlinear effects on the wave
amplitude are determined by the degree of the nonlin-
ear equation of state of asingle defect (for both types of
hysteresis, the degreeisequal to two), while the depen-
dences on the wave frequency are determined by the
distribution of defects in relaxation frequencies (and
elasticities).

We believe that the study described above and the
analysis of the measured amplitude—frequency depen-
dences of different nonlinear effects accompanying the
propagation and interaction of elastic wavesin arelax-
ing microinhomogeneous medium demonstrate the
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possibility of determining the general form of the non-
linear equation of state of this medium, the parameters
of this equation, and the distribution function describ-
ing the distribution of defectsin relaxation frequencies
and elasticities.
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CHRONICLE

Vitalii Anatol’evich Zverev
(On His 80th Birthday)

November 3, 2004, marked the 80th birthday of the
prominent scientist, Corresponding Member of the
Russian Academy of Sciences, Doctor of Physics and
Mathematics, Professor Vitalii Anatol’ evich Zverev.

Zverev is a well-known specialist in radiophysics
and acoustics. He is the author of more than 200 scien-
tific works, including four monographs and 30 inven-
tions. He made a substantial contribution to the devel-
opment of acoustics, he was one of the first to lay the
foundations of nonlinear acoustics, which has become
arapidly developing area of research.

Zverev's youth fell within the period of the Second
World War. From 1942 to Victory Day in 1945, he
served in the army, specifically in the air-defense
forces. Asayoung soldier, Zverev demonstrated histal-
ent for research and invention: he successfully fixed
and tuned new complicated radar systems that were
appearing at that timein air defenses. Zverev’s occupa-
tion in the army determined his civilian profession. In

1945, he left the army and became a student in the
newly founded Radiophysical Faculty of Gorki State
University. In 1950, Zverev graduated from the univer-
sity and became a postgraduate student of Professor
G.S. Gorelik.

Zverev'sfirst research project was based on the idea
put forward by M.A. Isakovich regarding the dispersion
of acoustic wavesin emulsions. Toimplement thisidea,
Zverev studied the characteristic features of the propa-
gation of modulated waves in dispersive media. He
found that the propagation of a modulated wave in a
dispersive medium can be described by a single param-
eter—the phase invariant. Zverev developed a method
for measuring this parameter and designed the corre-
sponding equipment. This work resulted in his candi-
date dissertation, which he defended in 1953. The fur-
ther development of these studies offered the possibil-
ity of using the same approach and equipment for
studying the spatial spectra of random inhomogene-
ities. This possibility was realized in acoustics.

In the following years, Zverev's scientific activity
was related to the formation of images by wave fields.
All four monographs written by Zverev are devoted to
this subject. Thefirst of them, entitled Optical Analyzers,
was published in 1971 (in co-authorship with E.F. Orlov),
and the second, Radio-Optics, in 1975. The last two
monographs were written in recent years. Physical
Foundations of the Formation of Images by Wave
Fieldsappeared in 1998, and Extraction of Sgnalsfrom
Noise by Numerical Methods was published in 2001 (in
co-authorship with A.A. Stromkov). Zverev was one of
the first to propose and develop the optical methods of
spectral and correlation analysis. Based on these meth-
ods, unique instruments for spectral and correlation
analysis were designed under his supervision. The
instruments have found applicationsin radar, acoustics,
and medicine.

The book Radio-Optics published by Zverev in
1975 and his monographs published in 1998 and 2001
are unique editions that contain a unified description of
all known features of image formation. To consider all
possible cases, it was necessary to combine optics,
acoustics, and radiophysics, because no single area
covers the whole variety of image-formation condi-
tions.

The simplest and most illustrative example of the
image formation by wave fields is our vision. Waves
arriving at the pupil of the eye are processed so as to
allow us to reconstruct (to see) their sources. To see
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objects, we do not need to understand the mechanism of
the phenomenon. However, to see objects with some
other waves, e.g., acoustic ones that cannot be per-
ceived with our eyes or ears, a corresponding scientific
description of the phenomenon is necessary with allow-
ances made for the specific conditions of theimage for-
mation. The variety of the image-formation conditions
can beillustrated by hearing and sight. We perceive the
imageswith our earsin acompletely different way than
with our eyes. Zverev proposed a mathematical model
describing how we “see” with our ears. The proposed
procedure was close to the aperture synthesis widely
used in radio astronomy. The determination of this pro-
cedure allowed Zverev to explain the characteristic fea-
tures of the perception of monophonic and stereo-
phonic sound and to propose an original method of vol-
ume sound reproduction. This method is now
successfully used in industry.

Zverev's studies in nonlinear acoustics were aso
related to the problems of acoustic vision. Zverev pro-
posed and implemented the parametric transmission
and reception of sound. Parametric antennas possess
some specific features of image formation. A paramet-
ric acoustic array has a directional pattern close to an
ideal one. Similar systemswere proposed by Westervelt
two years later, and his publications marked the begin-
ning of nonlinear acoustics in Western countries. For
their studiesin nonlinear acoustics, Zverev and his col-
leagues received a USSR State Award in 1985.

Currently, Zverev isinvolved in both scientific and
tutorial activities. In the past five years, he has submit-
ted for publication 19 scientific works, including one
monograph. Most of his papers were published in the
Akusticheskii Zhurnal (Acoustical Physics). Zverev
continues working on the problems of vision in acous-
tic fields. Many mediathat are opaque to other types of
waves prove to be transparent to acoustic waves. How-
ever, conventional ways of image formation are not
always appropriate in acoustics. The factors that hinder
image formation and ways to overcome these difficul-
ties are currently studied by Zverev. In the last ten
years, he has proposed and developed the acoustic
dark-field method, which allows one to select the
objects of interest against scattered and direct intense
radiation. Zverev's most recent studies are concerned
with the problems of acoustic vision by the so-called
time-reversal method. This subject is now being
actively investigated by M. Fink and other scientists
from Western countries. In this area of research, Zverev
has found a number of new solutions, which, in partic-
ular, have made it possible to interpret some experi-
mental results.

Zverev developed original lecture courses on statis-
tical radiophysics, acoustics, and physical foundations
of the image formation by wave fields (radio-optics).
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For years, these lectures were delivered to the students
of Nizhni Novgorod State University.

Zverev'sworking activity has always been related to
Nizhni Novgorod. Over a period of seven years, he
chaired the department of General Physicsat the Radio-
physical faculty of Nizhni Novgorod State University.
Starting in 1956, he headed the department of Statisti-
cal Radiophysics and Acoustics of the Radiophysical
Research Institute, and, in 1977, he became head of the
department of Physical Acoustics at the newly estab-
lished Institute of Applied Physics of the Russian Acad-
emy of Sciences. Today, Zverev iscouncilor of the Rus-
sian Academy of Sciences.

In 1964, Zverev defended his doctoral dissertation,
which included the results of his research in modulated
waves, optical signal processing, nonlinear acoustics,
and some applications. In 1979, he was elected as cor-
responding member of the Russian Academy of Sci-
ences for the Division of General Physics and Astron-
omy. For his achievements in science, Zverev was
awarded an Order of the Red Banner of Labor and sev-
eral medals.

While celebrating his 80th birthday, Zverev is
deeply involved in his creative endeavors. As aways,
heisfull of new ideas and plans. He spends much of his
time working with his personal computer verifying new
concepts and algorithms of signal selection against
background noise. In the aforementioned monograph
published in 2001, Zverev considered some character-
istic features of programming for wave problems and
included a great number of specific computer codes,
which clarify the principles of image formation under
different conditions. He shares his enthusiasm for work
with his students and colleagues. Zverev is an interest-
ing story teller; he has written memoirs about different
people and about his childhood, studies, and work. Part
of the stories were written as lectures for schoolchil-
dren with the aim of showing them the attractiveness of
scientific studies.

Zverev's hobby is classical music, which he has
loved since childhood. At the age of 23, he started play-
ing piano, and, today, he can easily play his favorite
pieces by Liszt, Beethoven, Rachmaninov, Schubert,
and other composers. Though 80 years old, Zverev
remains tireless in his many-sided activities and cre-
ative abilities, with which nature has generously
endowed him. He demonstrates awonderful example of
vitality and devotion to science and human ideals.

Thefriends, students, and colleagues of Vitalii Ana-
tol’ evich Zverev wish him good health and further suc-
cessin his creative endeavors.

Trandated by E. Golyamina
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