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Abstract—New results are presented of an experimental investigation of the spectrum of 36P — 37P two-
photon microwave transition in Rydberg atoms of sodium in a constant electric field. Depending on the condi-
tions of excitation of the initial 36P state (the constant electric field is switched on either before or after the
exciting laser pulse) and polarization of laser radiation, astrong variation is observed of the amplitudes of indi-
vidual two-photon transitions between the fine-structure Stark components of the 36P and 37P states. This
effect isan anal og of the Paschen—Back effect in astrong magnetic field and is due to the break of L—S coupling
and to the variation of the wave functions of Rydberg electronsin an electric field. It isalso found that the break
of L—S coupling affects considerably the shape of double Stark resonance arising upon intersection of the vir-
tual intermediate level of two-photon transition with the rea intermediate 37S level. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION
The double Stark resonance on two-photon
nP — (n+1)P

microwave transitions in Rydberg atoms of Na in a
weak electric field was first observed and investigated
in[1, 2]. It consistsin that the detuning of thereal inter-
mediate level (n + 1)S from the virtual intermediate
level of two-photon transition decreases rapidly when
an electric field is switched on, and, with acertain value
of the field, the two-photon resonance transformsto the
exact double resonance,

nP— (n+1)S— (n+ 1)P.

The probability of transition increases by several orders
of magnitude, which leads to the emergence, in the
absorption spectrum, of awide band instead of separate
narrow peaks corresponding to transitions between the
fine structure components of the P states.

It was demonstrated in [1, 2] that the double Stark
resonance may be used for absolute calibration of the
strength of a weak electric field in vacuum. For each
transition component, the double resonance arisesin a
narrow range of electric field strengths (~0.1 V/cm) if
the intensity of microwave radiation islessthan the sat-
uration intensity of intermediate single-photon transi-
tions. The main advantages of this method are as fol-
lows: first, the experiments are performed with single
Rydberg atoms, and, therefore, one can state that anon-
contact method of measuring weak electric fields is
found; second, the values of the critical fields of double

Stark resonance may be calculated with high accuracy
for any nP — (n + 1)P two-photon transition, and, in
this manner, a set of reference points may be obtained
in awide range of field strengths.

Unfortunately, in [1, 2] some Stark components of
two-photon transitions were identified incorrectly, and
the dependence of the spectrum of double Stark reso-
nance on the conditions of laser excitation was not stud-
ied; the approximate formula of quadratic Stark effect
was used for the absolute calibration of the electric
field. Therefore, we performed new investigations of
the spectrum of double Stark resonance on the 36P —
37P two-photon transition in Rydberg atoms of Na (the
transition frequency of about 72.6 GHz). It has been
found that the spectrum depends substantially both on
the method of excitation of the initial 36P state and on
the polarization of exciting laser radiation. We also per-
formed an exact numerical calculation of transition fre-
guenciesin the electric field and of the critical fields of
double Stark resonance.

2. THEORY

Figure 1 gives a calculated Stark diagram of the
energy levels of Rydberg atoms of Nain the vicinity of
hydrogen-like sets of levelsn = 35, 36. In awesak elec-
tric field E < 10 V/cm, when the shifts of P levels are
much less than the distancesto the nearest D levels (the
lower component of hydrogen-like set), the 36P and
37P states are characterized by the quadratic Stark
effect, because the P states of Na possess a significant
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Fig. 1. A caculated Stark diagram of the energy levels of
Rydberg atoms of Nain the vicinity of hydrogen-like sets
of levels n = 35, 36 for sets with the projection of total
angular momentum [M| = 1/2. The virtual intermediate
level of 36P — 37P two-photon transition is indicated
by the dotted curve. The double arrow corresponds to dou-
ble Stark resonance.

guantum defect (0 = 0.855). The same is true of the
intermediate level 37S (05 = 1.347), which is located
almost midway between the 36P and 37P level s (detun-
ing from the virtual level of two-photon transition
Q = 2.6 GHz; thevirtua level isshown in Fig. 1 by the
dotted curve).

The nP states are split by spin—orbit interaction [3],

~ az
His=—LI[5 (1
2r®

(a is the fine structure constant, r is the distance from
electron to nucleus, L isthe orbital angular momentum
operator, and Sis the electron spin operator), into two
sublevels with the total angular momentum J equal to
1/2 and 3/2. The fine structure intervals are 124 and
114 MHz for 36P and 37P, respectively. The presence
of L-Scoupling in the case of P states complicates the
Stark structure of transition spectra. Thequalitative dia-
gram of behavior of the 36P and 37P levelsin the elec-
tric field is given in Fig. 2. In the absence of the field,
the wave functions of individual fine-structure mag-
netic sublevels W, of the nP state with the angular
momentum J and its projection M are alinear superpo-
sition of undisturbed (disregarding the spin—orbit inter-
action) wave functions @,,, of a Rydberg electron with
the orbital angular momentum | = 1 and its projection
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Fig. 2. The diagram of a break of L—S coupling for the 36P
and 37P statesin Naatomsin aconstant electric field. In the
absence of afield and in aweak field (<1 V/cm), the states
are described by wave functions in the nlJM basis. In a
strong field (>3 V/cm), the wave functions correspond to the
nim basis.

m= 0, £1, multiplied by the respective spin wave func-
tions ¢ with the spin projection s= +1/2 [3],

2 1
Wiooae = Jé¢1 a0i12— /\/;q)l od_1/2,

1 2
Wi 12 = J%¢1 obr12— Jé¢1 a1

Wi 32 = Py 4dap0,

1 2 )
Wao a2 = J%¢1 it Jé¢1 od_1/2,

2 1
Waoi12 = A/::3‘131 obi12+ Jé¢1 a1,

Wioia2 = Prgoo

In afirst approximation, the shift of the center of
gravity and the splitting of these levelsin awesk elec-
tric field are described by the formula [4]

_ 10 3M?—J(J+ 10 o
AW——Z%p(O+0(2 329-1) EE, (3)

where o, and o, denote the scalar and tensor polariz-
abilities, which increase rapidly with the principa
guantum number of the Rydberg state in proportion
to n’. The values of polarizabilities for the 36P and 37P
states were measured in [1, 2, 5]. Note that a, = O for
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the stateswith J=1/2, i.e., theselevelsare not split, and
the degeneracy of levelsby the sign of M ishot removed
by the electric field.

In very weak fields (<1 V/cm), formula (3) isfairly
accurate (the error of <1%). However, in the region of
double Stark resonance at E = 67 V/cm (see Fig. 1), it
proves insufficient for a correct calculation of the criti-
cal fields of each of nine components of two-photon
transition. Thisis associated with the fact that Eq. (3) is
derived using perturbation theory and ignores the vari-
ation of the frequencies of transitions and wave func-
tions of atomic statesin an electric field. In [1, 2], the
values of the critical fields were calculated using for-
mula (3) and, therefore, need to be refined. More exact
formulas may be borrowed from [6, 7]; however, they
are rather complicated and call for measurements of
additional parameters of Rydberg levels.

We used the numerical calculation of the eigenval-
ues of atomic energy in an electric field. The Stark dia-
gram in Fig. 1 for the [M| = 1/2 states was obtained
using the matrix diagonalization of the Hamiltonian of
atom-field interaction [8],

He = —d [E, (4)

where d is the operator of atomic dipole moment. The
basis of unperturbed states was provided by fine-struc-
ture magnetic sublevels of the nlJM states, n = 34-39,
and the exact values of quantum defects were borrowed
from[9]. Thisenabled usto cal cul ate the eigenval ues of
energies and obtain refined data on the critical field of
double Stark resonance for the 36P — 37P transition,
which are given in the table.

The calculation of wave functions and transition
probabilities is a more complicated problem and calls
for determination of the eigenvectors of the interaction
operator matrix. For determining the wave functionsin
an arbitrary electric field, one must solve the problem
of finding the eigenvectors of the matrix of the Hamil-

tonian H.s + He which includes both the spin—orbit
interaction and the atom—electric field interaction.
Therefore, we will restrict ourselves to qualitative
treatment of the behavior of wave functions and tran-
sition probabilities in an electric field in accordance
with Fig. 2.

In the absence of the field, the stationary wave func-
tions of the 36P and 37P states are defined by formulas
(2) and relate to the basis of nlIM states, in which the
Hamiltonian of spin—orbit interaction is diagonal. In a
“weak” electric field (of the order of 1.5 V/cm), the
atom-field interaction energy is compared with the
spin-orbit interaction energy, which brings about a
variation of the expansion coefficients in Eq. (1).
Finaly, in a“strong” field at E = 34 V/cm, an almost
complete break of the L—S coupling occurs, and the
behavior of Rydberg electrons may be described in the
basis of nlm states using the wave functions @, ;. One
should take into account the fact that a further field
growth (>10 V/cm, see Fig. 1) is accompanied by the
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The results of numerical calculation of the critical fields of
double Stark resonance for two-photon transitions between
the Stark sublevels of the 36P and 37P states in Na atoms.
The resonance numbers correspond to their identification in
the experimental records (Figs. 5 and 6)

No. of peak in 36Pym — 37Pypm | Critical field,

Figs.5and 6 transition V/em
6 36P3) 12 —> 37P3 112 6.37
8 36P315 30— 37P3p 112 6.67
9 36Py/5 12 —> 37P32 112 6.73
2 36P3) 12 — 37P3p 31 6.75
1 36P31 12 —> 37Py 112 6.79
4 36P3/; 30 — 37P3 312 7.10
3 36P315 30— 37Pyj2 112 7.15
7 36Py)5 12 —> 37P3p; 312 7.15
5 36Py/5 12 — 37Py2 112 7.20

mixing of states of different parities, and the electron
wave function will be a linear superposition of wave
functions with different values of .

The merit of nP — (n + 1)P two-photon micro-
wave transitions in Rydberg atoms of Na consists in
that they enable one to experimentally investigate the
transition from weak to strong interaction of an atom
with an electric field. Owing to close agreement
between the scalar polarizabilities of the adjacent nP
and (n + 1)P states, their great Stark shifts are partly
compensated, and it turns out possible to determine the
electric field dependences of the probabilities and fre-
guencies of individua transitions by scanning the
microwave generator frequency in afairly narrow fre-
guency range of the order of 1 GHz, rather than several
gigahertz, aswould be the case, for example, for single-
photon nP — n'S transitions [5]. The latter fact is
important from the standpoint of ensuring the invariant
intensity of microwave radiation in the region of inter-
action with Rydberg atoms.

3. EXPERIMENTAL SETUP

The experiments were performed with an effusion
beam of Naatomswith atemperature of 500K in avac-
uum chamber at aresidual gas pressure of 3 x 10~/ Torr
(Fig. 3). The Rydberg states were excited according to
the three-stage scheme of

351/2 - 3P3/2 - 4'51/2 - 36PJ =1/2,3/2

with the beam being transversely illuminated by the
radiation of three synchronized tunable pulsed lasers
with ahigh (5 kHz) pulserepetition rate. Inthefirst and
third stages, Rhodamine 6G and Oxazine 17 dye lasers

were used, and in the second stage, a laser with F,
color centersinalLiF crystal.
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Fig. 3. The diagram of the experimental setup for microwave spectroscopy of Rydberg atoms of Na.

The atomic beam was then directed to the region of
interaction with resonance microwaveradiation at afre-
guency of 72-73 GHz, which was introduced via a
waveguide into the space between two copper plates
producing aconstant electric field. The microwavefield
had the form of astanding wave of complex spatial con-
figuration. Because the radiation wavelength
(~4.2mm) exceeded considerably the atomic beam
diameter (1 mm), the point of interaction with the
standing wave could be selected by varying the point of
laser excitation of Rydberg states, as was demonstrated
in[10].

The radiation source was provided by a G4-142
backward-wave oscillator with the tuning range of 53—
78 GHz. The oscillator frequency was stabilized with
the aid of an external heterodyne which, in turn, was
locked to a quartz frequency synthesizer. The oscillator
line width in the continuous mode was less than 20 kHz.
The pulsed oscillation mode was used in the experi-
mentsin order to separate in time the moments of laser
excitation, interaction with microwave radiation, and
detection of populations of the Rydberg states. The
effective radiation line width of 1 MHz corresponded to
the microwave pulse duration of 1 us.

In scanning the oscillator frequency, two-photon
transitions between the fine-structure levels of the ini-
tial 36P state and the final 37P state were induced,
which resulted in a variation of their populations. The
populations were controlled by the method of selective
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field ionization in a pulsed electric field [11, 12]. The
electrons formed as aresult of ionization were detected
by aVEU-6 vacuum channel secondary-emission mul-
tiplier, and the signal from the output of the latter was
processed in the pulse counting mode in the CAMAC
crate and computer. In order to reduce the effect of ther-
mal background radiation, which causes unwanted
transitions between adjacent Rydberg states and the
reduction of their lifetimes [12], all elements of the
detection system and input of microwave radiation
were cooled down to the liquid nitrogen temperature of
77 K.

Thetimediagram of signalsisgivenin Fig. 4. At the
moment of timet = 0, alaser radiation pulse (Fig. 49)
excited both fine-structure sublevels of the 36P state.
The electric field in the interaction region had a two-
stage shape (Fig. 4b). The first, weak (0 to 10 V/cm),
stage was switched on smoothly either before or imme-
diately after the laser pulse and then reached a steady-
state value prior to the moment of switching on of a
microwave pulse with the duration of 1.2 us (Fig. 4c).
The second, strong, stage of the electric field increasing
linearly to 220 V/cm was switched on after the termina-
tion of the microwave pulse and was used for selective
field ionization of Rydberg atoms. Depending on the
state of the atom, signals separated in time appeared at
the VEU-6 output, which corresponded to the 36P and
37P states (Fig. 4d) ionized at different values of the
electric field. In the pulse counting mode, the frequency
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of each signal is proportional to the population of the
given state. The signals were averaged over approxi-
mately 2000 laser pulses.

4. RESULTS

The spectrum of 36P — 37P two-photon transi-
tion was investigated for different intensities of the first
(“weak”) stage of the electric field and for different
modes of switching this stage on, i.e., before the laser
pulse (for brevity, mode A) or after the laser pulse
(mode B). The polarization of pumping laser radiation
was also varied. The unknown polarization of micro-
wave field E was determined by the spectra of micro-
wave transitions using the known angular parts of
dipole moments of transitions between the S and P
states [13]. It turned out to be linear, and the field con-
tained both the component €, (orthogonal to the elec-
tric field) and the component €, (collinear with the
field), with € ,/€,,= 2. Theradiation intensity was eval-
uated by the power broadening of resonances using the
calculated values of the radia parts of the dipole
moments of transitions [14] and amounted to approxi-
mately 107> W/cm?.

Figure 5 givesrecords of the spectrum obtained with
linear o polarization of pumping laser radiation. The
left-hand column of the records relates to the A mode
when the electric field E is switched on 0.8 us before
the laser pulse, and the right-hand column relates to the
B mode when the field is switched on with a delay of
0.2 s after thelaser pulse. The dotted linesindicate the
calculated positions of resonances, and the numbers
adjacent to them correspond to the resonance numbers
in the table.

In the absence of the field, the spectra coincide and
contain four components of transitions between unper-
turbed fine-structure levels (see Fig. 2). In the electric
field, the spectrum in the general case contains nine
components as a result of Stark splitting of levels with
J = 3/2. All nine components were observed in the B
mode at E = 4.73 V/cm (Fig. 5). With the same field
strength, the spectral components 1, 2, and 6 are absent
in the A mode. We will dwell on thisin more detail.

As was already noted, the field of 4.73 V/cm is a
strong field in which the L—S coupling is broken, and
the transition probabilities must be calculated in the
basis of nim states. Consequently, in such afield, the
selection rules for dipole transitions will likewise be
defined by the quantum number m rather than by M. In
the spectra at E = 4.73 V/cm, one can see how three
groups of resonances are formed, namely, {1-2}, {3—
4-5-6-7}, and {89}, which correspond to the groups
of transitions (see Fig. 2) {36Py-¢q — 37Py-1},
{36Pyy=1 — 37Pyy=1, 36Py_¢ — 37P-o}, and
{36Pyy=1 —= 37Pp-¢}. Intheelectricfield, the micro-
wave radiation may induce all three groups of the
above-identified transitions, because its polarization is
such that the intermediate state 37S,,- ; of two-photon
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Fig. 4. The time diagram for signals. (a) The pulse of laser
radiation exciting the initial 36P Rydberg state. (b) The
electric field of two-stage shape. The first (weak) stage is
switched on either before (A mode) or after (B mode) the
laser pulse. The second (strong) linearly increasing stage is
used for selective field ionization of Rydberg atoms. (c) The
microwave radiation pulse inducing the 36P — 37P two-
photon transition. (d) Signals at the output of VEU-6 chan-
nel secondary-emission multiplier corresponding to popula-
tions of Rydberg states.

trangition is associated both with the sublevels m =0
and with the sublevels |m| = 1 of the P states. However,
it is also necessary to take into account the selection
rules in the case of excitation of Rydberg states by
polarized laser radiation.

If the excitation of the 4S — 36P transition in the
case of o polarization of laser radiation proceedsin the
A mode, i.e, in the presence of an electric field, only
the 36P -, sublevels will turn out to be excited, and
the 36P,,-, sublevel is not populated, because the
o-polarized radiation induces transitions with Am=+1
from theinitial state 4S,,- . It isthisfact that resultsin
the absence of the components 1, 2, and 6 inthe A mode
in the spectrum shown in Fig. 5 a E = 4.73 V/cm,
because these components are associated with transi-
tions from the 36P,,- , state.

If the excitation is effected in the B mode, the situa-
tion changes. Because, at the moment of a laser pulse,
the electric field is absent, the selection rules with
respect toM arevalid; inthis case, AM = +1 for o-polar-
ized radiation. As a result, al fine-structure magnetic
sublevels of the 36P state are populated from the
4S; - 15 v = 12 State. Then, after the adiabatic switching
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Fig. 5. The spectra of the 36P — 37P two-photon transition in Rydberg atoms of Nafor different values of electric field strength
and o polarization of exciting laser radiation. Theleft-hand column of the records correspondsto the A mode when the electric field
E is switched on 0.8 ps before the laser pulse, and the right-hand column relates to the B mode when the electric field is switched

on 0.2 ps after the laser pulse.

on of the first stage of electric field, both the 36P, -,
sublevels and the 36P,,-, sublevel will turn out to be
populated (see Fig. 2). Therefore, in Fig. 5, al nine
components of two-photon transition are present in the
B modeat E=4.73V/cm.

An analogous situation is observed in the case of
E = 2.42 V/cm (Fig. 5), although no clear separation
into three groups of resonancesisobserved so far. Inthe
A mode, peaks 1 and 2 turn out to be severa times
lower than in the B mode. Thisindicates that even such
aweak electric field is sufficient for the breaking of the
L—S coupling in Rydberg states.

We will now turn to the field strength region E = 6—
8V/cm, where, according to the table, the double Stark
resonance arises. The least critical strength is exhibited
by peak 6. However, its amplitude is low compared
with other peaks due to specific polarizations of laser
and microwave radiation. Therefore, in the spectra
recorded at E = 5.76 V/cm, the double Stark resonance
is observed primarily at peaks 8 and 9, which shows up
in their marked power broadening. The asymmetry of
broadening is caused by a dight asymmetry in the
microwave pulse spectrum due to the frequency devia-
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tion under conditions of pulse modulation of the G4-
142 oscillator. This effect does not show up in the
absence of double Stark resonance; however, in the
region of double Stark resonance, the transition proba-
bilities increase by severa orders of magnitude. As a
result, the intensity of even very weak spectral compo-
nents of a microwave pulse is sufficient for the satura-
tion of transition.

When the field strength increases to 6.88 V/cm, the
double resonance includes other spectral components
as well, as aresult of which the spectrum assumes the
form of abroad absorption band without clearly defined
resonances. The formulas for evaluating the spectral
width of double Stark resonance are given in [2]; for
each of the resonances, this width turns out to be of the
order of the Rabi frequency for exact resonance with
single-photon transition (in our experiment, of the
order of 100 MHz). In fields of 7.53 and 7.92 V/cm, a
part of the transitions leave the double Stark resonance
and recover their resonance pattern. Note the differ-
encesin the spectra of double Stark resonance for the A
and B modes, which are associated only with the pres-
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Fig. 6. Same asin Fig. 5, but for 1t polarization of exciting laser radiation.

ence or absence of an eectric field at the moment of
|aser excitation.

A changein the polarization of laser radiation brings
about an even more radical variation of the spectrum
shape. Figure 6 gives spectral records obtained under
conditions of 1t polarization. As before, the left-hand
column corresponds to the A mode, and the right-hand
column, to the B mode.

Now, in the A mode, the |laser radiation excites only
the 36P,,- ( state due to the selection rule Am = 0, and,
in the B mode, the 36P;- 3, -3, Sublevels are not
excited dueto the selection rulesAM = 0. Asaresult, in
Fig. 6 at E = 4.68 VV/cm only three peaks are present in
the A mode and six peaks in the B mode. Accordingly,
in the region of double Stark resonance as well, the
spectra appear much differently than in Fig. 5, espe-
cialy, for the A mode. In particular, in the A mode at
E =6.17 and 6.88 VV/cm, the broad absorption band dis-
appeared from the center of the graph; however, the
band in the left-hand part remained (it corresponds to
double Stark resonance for peaks 1 and 2). For the A
modein the region of fields of 7.5-8V/cm, no signal of
double Stark resonance is observed at al; however,
with a further increase in the strength to 9.37 V/cm,
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peak 6 starts broadening and entering into the double
Stark resonance. The latter fact is unexpected, because
the predicted value of the critical field for this peak is
6.37 V/cm.

5. DISCUSSION OF THE RESULTS

The results indicate that the observed spectrum of
the 36P — 37P two-photon microwave transition in
Rydberg atoms of Na depends significantly on the pres-
ence of the electric field at the moment of laser excita-
tion. This effect is associated with the variation of the
wave functions of Rydberg atoms in the electric field.
In spite of the fact that, in an electric field, the spin—
orbit interaction still shows up as the splitting of com-
ponents of two-photon transition, it may be included as
a perturbation for individua Stark sublevels [3],
because the energy of interaction between an atom and
electric field exceeds considerably the energy of L-S
coupling. In this case, the transition probabilities are
defined by the selection rules with respect to m rather
than to M.

In this regard, a full analogy is observed with the
transition from the Zeeman effect in a weak magnetic
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field to the Paschen—Back effect in a strong magnetic
field [3]. However, for the Paschen-Back effect to be
observed, fields of the order of 10° Oe are required,
which defines the complexity of experiments. At the
sametime, as was demonstrated by our experiment, the
field strength of the order of just several V/cm is
required for the breaking of the L—S coupling by an
electric field in Rydberg atoms. This opens up new pos-
sibilities for investigation of the region of transition
from weak interaction between an atom and electric
field to strong interaction. Note that, for atoms in
weakly excited states, the requisite fields reach values
of hundreds of kV/cm or more.

The break of L—S coupling has a significant effect
on the shape of double Stark resonance in Rydberg
atoms. The disappearance of individual components of
two-photon transition reduces the spectral width in the
region of double resonance. This enables one to sim-
plify the identification of transitions and, thereby, com-
pare the experimental and theoretical values of the crit-
ical fields of double Stark resonance.

Note good agreement in all recordingsin Figs. 5 and
6 between the observed frequencies of two-photon res-
onances and those calculated for the transitions which
do not fit the exact doubl e resonance and do not experi-
ence astrong power broadening. This pointsto the high
accuracy of calculation of the level energies by the
method of Zimmerman et al. [8]; therefore, the values
of the critical fields of double Stark resonance givenin
the table must likewise correspond to the experimen-
tally obtained valueswith alow intensity of microwave
radiation, when the field broadening of resonances is
minor. However, in our experiment, the single-photon
Rabi frequency (of the order of 100 MHz) was compa-
rableto the energy of L—S coupling. It isapparently this
fact that brings about a marked difference between the
experimentally and theoretically obtained values of the
critical field for peak 6. Therefore, one must conclude
that, in order to perform an exact calculation of the crit-
ical fields of double Stark resonance, it is necessary to
simultaneously include both the spin—orbit interaction
and the static and dynamic Stark effects.
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Abstract—The main properties of infrared stimulated electronic Raman scattering (SERS) at the 6°Sy,—

7 Suz 32 transitions in cesium atoms are studied theoretically and experimentally as functions of the atomic
concentration, which was varied from 10 to 10 cm™3. It is found that the efficiency of generation of Stokes
radiation strongly depends on one-photon absorption of the pump radiation tuned near frequencies of the
6°Sy,—7°Py, 3, transitions. By using the equation for the density matrix, which describes the evolution of a
three-level system, thetheory of resonance excitation of IR radiation upon one-photon absorption at an adjacent
transition is devel oped. The theory describes well the main features of IR SERS in alkali-metal vapors. © 2002

MAIK “ Nauka/Interperiodica”

1. INTRODUCTION

Vapors of akali metals, whose atoms have low-
lying narrow energy levels coupled by strong dipole
transitions, are very convenient mediafor exciting res-
onance stimulated el ectronic Raman scattering (SERS)
of light, which allows one to convert comparatively
smply and efficiently laser radiation in the visible
range to the IR spectral region. For example, SERS in
cesium vapors was used for conversion of the visible
radiation from a dye laser to IR radiation tunable from
500 to 5000 cmt (2—20 um) [1-3]. SERSin potassium
vaporswas used for obtaining IR radiation tunable from
2850 t0 3500 cm (2.85-3.5 um), which was employed
for studying the IR absorption spectrum of carbon diox-
ide [4]. We can also mention papers [5-9] in which
picosecond laser pulses in the visible range were effi-
ciently converted to the IR range using SERS in cesium
and potassium vapors.

Theoretical estimates, which were confirmed by
experimental results, show that the SERS efficiency
should increase with increasing pump intensity |, or
upon approach of the pump frequency wy to the fre-
guency of an allowed atomic transition. At the same
time, the IR SERS under quasi-resonance conditions at
highintensities|, can be suppressed dueto the develop-
ment of other nonlinear-optical processes, for example,
multiphoton ionization [10]. The quasi-resonance
action of powerful electromagnetic radiation on an
atomic system should also change the shape of an
absorption line (see, for example, [11-14]). Inthiscase,

if the lifetime [ of one-photon or cascade radiative
transition from an upper level to the ground state is
small compared to the lifetime of stimulated emission
of a Stokes photon of frequency ws, then one-photon
absorption of pump radiation should dominate over
SERS.

The perturbation of the absorption spectrum of a
simplest two-level system in a strong gquasi-resonance
radiation field is well studied both theoreticaly and
experimentally. The same can be said about the main
properties of IR SERS excited near the resonance.
However, the effect of absorption of pump radiation on
the IR SERS under resonance conditions has not been
studied in detail so far, although a decrease in the
energy of Stokes radiation upon approach of wy to the
resonance with frequencies of allowed atomic transi-
tions was observed in some papers (see, for example,
[2]), which was explained by absorption of pump radi-
ation.

This paper is devoted to the experimental and theo-
retical study of the effect of absorption of pump radia-
tion on the efficiency of IR SERS in akali-metal
vapors.

2. EXPERIMENTAL

We studied the IR SERS at the frequency wg by tun-
ing the excitation frequency w, near frequencies of the
6°Sy,—7°Pyy, 4, transitions of a cesium atom (Fig. 1).
Cesium vaporswere produced in aspecial cell of length

1063-7761/02/9404-0685%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Energy level diagram for a cesium atom.
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Fig. 2. Frequency dependences of the IR SERS energy at differ-
ent concentrations of cesium atoms. (m) N; = 8 x 10! cm™3;
(®) N, =4x 108 em™; () N3=5x 10" em™3,

| = 20 cm, which was made of leucosapphire [15]. Sev-
eral grams of cesium of purity 99.9% were introduced
in avacuum of 107 Torr into a cell placed inside a fur-
nace. Due to a special furnace design, the temperature
in the central part of the furnace was somewhat higher
than that at its ends. This eliminated condensation on
optical windows of the cell. The vapor pressure was
varied from 10 to 1 Torr. This corresponded to a
change in the concentration of cesium atoms in the
range N = 10%-10% cm3.

Excitation was performed with a tunable dye laser,
which was pumped by apulsed excimer XeCl laser. The
dye laser was continuously tuned in the spectral range
W, = 21700-22050 cm?, in which the frequencies of
two 62Sy,—72Py, 4, transitions were located. The pulse
duration of the dye laser was 1, = 15 ns, the peak pulse
energy wasW, =5 mJ, and the emission line width was
M /2mc=1cm?
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The dye laser radiation was focused with a long-
focus lens into a cell with cesium vapors so that the
diameter of the laser beam was 5 mm at the cell
entrance and 0.5 mm inside the cell at its center.

We studied simultaneously the dependences of the
energy of visible pump radiation transmitted through
cesium vapors and of the energy of the IR SERS signal
on w, a different concentrations N of cesium atoms.
Thevisible radiation coming from the cell was detected
with aphotodiode. The Stokes signal was focused with
a spherical silver mirror on a liquid-nitrogen-cooled
photoresistor, whose signal was amplified with abroad-
band amplifier mounted in the same housing.

Upon tuning wy_near the 6°Sy,—72Py, 4, transition
frequencies, along with IR SERS three other IR lines
are excited at wavelengths 1.47, 2.39, and 3.09 pm,
which correspond to the atomic transitions 6°P,,,—72S,,
and 72Sy,~7Py, 4, (Fig. 1). However, IR radiation at
2.39 and 3.09 um was generated only when the fre-
guency w, was coincident with an accuracy to the laser
linewidth ' /2mc with the 62Sy,—72Py, 5, transition
frequencies, whereas the wavelength 1.47 um lies out-
side the region of spectral photosensitivity of the pho-
todetector. For this reason, in most experiments the
Stokes radiation was directed to the photodetector with-
out using an IR monochromator.

A system for processing output signals from the
photodiode and photodetector also controls the dye
laser radiation frequency w,. The system consists of
CAMAC ADC and step-motor control modules and of
a controller connecting the CAMAC line with a com-
puter. The ADC operated in the regime of apeak detec-
tor. To avoid disturbances, the coincidence regime was
used. A clock pulse from the excimer laser controlled
the gate for transmitting a signal to the converter input
only simultaneously with the laser pulse. The signal
averaged over ten measurementswas stored in the com-
puter memory together with the current value of wy.
Then, a command was sent for detuning the dye laser
frequency, and the measurement cycle was repeated.
The obtained results were processed and plotted using
standard mathematical programs. The relative error of
measurements did not exceed 3%.

3. EXPERIMENTAL RESULTS

Figure 2 shows the frequency dependences of the
energy Ws of IR SERS in cesium vapors for three con-

centrations of cesium atoms: N; = 8 x 10 cm3, N, =
4 x 10" cmr3, and N3 = 5 x 10' cmr3, The laser radia-
tion energy W, = 0.3 mJwas constant. As expected, for
N, = 8 x 10" cm3, the IR signal energy reaches maxi-
mum valueswhen ), istuned to the resonance with fre-
quencies of the 6°Sy,—72Py;, 4, transitions. As the con-
centration of cesium atoms was increased, both the
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value of the Stokes signal and the tuning region of wy
where IR radiation was excited were increased. How-
ever, aready at N, = 4 x 10® cm3, the IR SERS energy
decreased near the 62S,,—72Py, 3, transitions. A fur-
ther increase in the concentration of cesium atomsup to
N; = 5 x 10 cm resulted in asignificant increase and
broadening of holes near the resonances on the plot of
the frequency dependence of the IR radiation energy.

Figure 3 shows the frequency dependences of the
transmission coefficient of cesium vaporsfor laser radi-
ation. The laser energy W, and concentrations of
cesium atoms N;, N,, and N5 were as in the previous
experiments. One can seethat, at N; = 8 x 10 cm=3, ten
percent of the pump radiation is absorbed only at exact
resonances with the 62S,,,—72P, 3, transition frequen-
cies. As the concentration of cesium atom increases up
to 5 x 10> cm3, absorption of laser radiation substan-
tially increases, and the range of detunings Ay = w,; —
w, (where w,; isthe frequency of the atomic transition
6°S,,,—7°P,, or 6°S,,,—7°P5,) at which the pump radia-
tion is strongly absorbed becomes broader. By compar-
ing the plots shown in Figs. 2 and 3, we can conclude
unambiguously that, when the pump radiation is
strongly absorbed by cesium atoms, a hole appears in
the plot of the frequency dependence of the IR SERS
energy when wy_approaches the 62S,,,—7?Py, 3, transi-
tion frequencies. The width and depth of the hole
increase with increasing absorption of the pump radia
tion.

To optimize the excitation of IR SERS in cesium
vapors near the 62S,,—72Py, 3, transition frequencies,
we studied the dependence of the Stokes emission
energy on the vapor temperature at different pump
energies. The results of these experiments for the case
A, = 0 obtained for W, =1, 0.3, and 0.04 mJ are pre-
sented in Fig. 4 (curves 1, 2, and 3, respectively). One
can see that |5 increases with increasing W,. In this
case, there exists an optimal value of the vapor temper-
ature (T = 130°C, corresponding to the concentration of
cesium atoms N = 7 x 10%3 cm3) at which the efficiency
of excitation of IR SERS was maximum. In our exper-
iments, the excitation quantum efficiency could reach
40%.

4. DISCUSSION OF RESULTS

We restrict the theoretical analysis of the results
obtained to the case when the detuning A, of the pump
frequency from the 62S,,—72Py;, 3, atomic transition
frequenciesis small compared to the fine splitting of the
7P term. In this case, we can use the model of athree-
level atom with the ground (6°S,,), intermediate (72P,,,
or 7°Py,), and fina (72S,,) levels, which we denote
below as |10) [2[Jand |30 This is the well-known A sys-
tem, which was actively studied in recent yearsin con-
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Fig. 4. Dependences of the IR SERS energy on the vapor
temperature for Ay = 0 and pump energiesW =1 (1), 0.3 (2),
and 0.04 mJ (3).

nection with the atomic coherence effects (see, for
example, [16]). However, these effects are manifested
under the conditions that are opposite to those at which
SERS takes place, and, therefore, we will not discuss
them.

Consider the pump and IR radiation pulseswith fre-
guencies wy_ and wg propagating along the z axis in a
medium consisting of three-level atoms under condi-
tions when the pump field resonantly interacts with the
atoms only at the |[1[32ransition and the IR radiation
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field interacts with the atoms at the |2[H3[ltransition.
We represent the fieldsin the form

E, = gE(zt)exp(ikiz—iwt), (D)
where E;(z, t) are dowly varying complex amplitudes
and k; are the wave vectors of thefields,i =L, S

In the resonance approximation, the interaction
Hamiltonian of the system has the form

Hine = Alo|202 + A(Ay—A,) S
+ (Mo B |2 + pysEgl2M3 + H.C.),

where | is the dipole matrix element of thei — k
transition, Ay = w,; —wy and A} = w3 — wsarethe detun-
ings of the fields from the corresponding atomic transi-
tions, and w;,, isthe difference in frequencies of levelsi
and k.

In the general case, the IR radiation consists of two
components: Stokes radiation, which is generated dur-
ing SERS, and stimul ated emission at the atomic |2[H3[]
transition, which is amplified due to the population
inversion for levels |20Cand [3C11n the case of SERS, the
frequency of IR radiation ws = w_ — wy; changes with
changing the pump frequency, whereas the stimulated
emission is generated at the fixed frequency wy
becausein this case the transition of an atom to the state
|[3Coccurs from the real level 2, which is populated due
to atomic collisions and due to the interaction of atoms
with broadband pump radiation. It is obvious that, for
A <T,wherel isthepump linewidth, both radiations
have the same frequency w,; and are described by the
same field Eg. In the case of large detunings (A > T)),
they are already generated at different frequencies, and
in principle we should take into account in Hamiltonian
(3) the contributions from both fields simultaneously,
with different amplitudes. However, as follows from
experimental data [17], which were obtained under
similar conditions in thallium vapors, the stimulated
emission isweaker by more than an order of magnitude
compared to SERS already for A > 3", and the pump
intensity 1, = 1 MW/cm?. For this reason, we will
assume below that, when A > T, only Stokes emission
isgenerated at the frequency ws= Wy, — wy,;, and we will
set A =0y=Ain(3).

Thetime evolution of the system is described by the
following equation for the density matrix p:

@ - —,itl[H,p] +Ap,

at (©)
where A isthe relaxation matrix. In our case, the longi-
tudina relaxation is determined by the spontaneous
decay of levels [200and |30and two-photon resonance
ionization. The width I;,, can be estimated from the
expression

)

I_ion = r]pho-ionv
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where ny, is the photon flux in the pump pulse and
Oion 1S the cross section for one-photon ionization
from the level |30 It follows from this that, for ng, ~
10%-10%* photon/(cm? s), which corresponds to ener-
gies 0.1-1 mJ of afocused laser beam with the cross-
sectional area §, ~ 1073 cm?, and for standard values of
Oion = 107181017 cm?, we have I';,, < 1., where 1, is
thelaser pulse duration. The radiative widths of the lev-

els 72Py, 3, and 7°S, are also small compared to 0
so that the longitudina relaxation can be neglected
below. The transverse relaxation is mainly determined
by the resonance collision broadening with energy
transfer caused by the intrinsic vapor pressure. As
shown in [18, 19], the line width caused by one-photon
resonance collisionsis

[ = 0.021NA%y,,, )

where A is the wavelength and vy,, is the natural line
width of the |2[3{1transition, and N is the vapor den-
sity. According to (4), even at high densities, when N ~
10% cm3, the value of I, /2mc is only = 102 cm,
which is far less than the pump line width ' /21c =
1 cm. The Doppler broadening I'p/21c = 102 cm? is
also small compared to I, which makes the averaging
of final results over atomic velocities unnecessary.
Therefore, only the phase modulation of the pump field
should be taken into account in Eqg. (3). By representing
thefield E_ (z t) in theform

E(zt) = [EL(z t)|exp[-id(1)],

we assume that the phase modulation ¢(t) is a process
proceeding randomly in time t with the correlation
function

Cexp[¢(t)] exp[-i¢(t)]0 = exp[H (t—t)]. (5)

Itiswell known [20, 21] that, intheregion of alarge
gain, the phase of a Stokes wave follows the phase of
the pump field, so that we can write

Es(zt) = |Es(z t)| exp[-id ()]
Then, after the changes
Pa(zt) = puexp[—id(t)]

P23(z 1) = pexp[—id(t)]
and the averaging of Eq. (3) over fluctuations of the
phase ¢(t), taking (5) into account, we obtain the sys-
tem of equations for the elements p;; of the density
matrix

Pu = 2Q,Impy, (6)
P3z = 2QgImpy;, (7)
Pa1 = 1Q, P —i1QsPy, (8)

Por = (HIA+T )Py —1Q (P11 —P2) —1QsPz1, (9)
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P2 = (A +T )Py —iQg(Psz—P2) —1Q P13, (10)

Pz = 1—P1;— P33, (11)

which are solved with theinitial values p;; = §;,9;;. Here,
the red Rabi frequencies for fidldsEi(z, t) (i =L, S are
defined as Q, = Yy |E, /A and Qg = Pys|Eg|/A.

Taking into account that ', > T[l, we can omit
derivativeswith respect totin Egs. (9) and (10) and find

|
P21 = _A——H'L[QL(pll —P2) + QgPal, (12)

[
= ——[Q - +Q . 13
P23 Al rL[ s(Pss—P22) LP13] (13)
The propagation of the pump and IR emission fields
is described by the Maxwell equations

d 21
SE@ Y = TENaImp(z D, (14)
d 21
SIE2 Y] = T Nugimps(z ). (19

It is convenient to pass from (14) and (15) to equations
for Qi2 (z, t), which have the form

d r
Gz ) = aQlE YIm Loz )|, (16)
9032y = agallz vim| Loaz 0], (7)
S
where
_ ATNG, 3, — Wes
hely (‘)Lugl.

We assume that IR emission is generated from the
spontaneous hoise, whose intensity is proportional to
the pump intensity at the entrance to the medium. This
intensity iswritten in the form

1.(z=0,1) = I f(1), (18)

where the dimensionless function f(t) determines the
temporal shape of the pump pulse of duration T, . With-
out the loss of generality, we can assume that the pump
and IR emission pulses have the same temporal shape
over the entire region of interaction, i.e.,

Q% (zt) = QX (9)f(zt), i=L,S (19)

where f(z t) =f(z= 0, t). This approximation is justi-
fied by the fact that the time dependence of the field
Es(z t) in (15) is determined by the function pos(t),
while this function according to (13) changes adiabati-
cally asthe pump field. In addition, this approximation
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allowsusto significantly simplify cal cul ations because,
provided (19) is valid, Egs. (6)—8), (11) have an ana
lytic solution if we introduce the new variable

t

0(zt) = J'f(z, T)dT.

Because these solutions are described by rather cum-
bersome expressions, we present them only for Imp,,;
and Impyg:

V(Z+ 1Y)

X %JLexp(—4V9) + Ugexp(-V0) (20)
O

[COSEVI_GAE+ AsmE}/reAD}

U

g

O
n } U,_rf

m| = = ————exp(-Vve
|:Qsp23 V(Az + rﬁ) p( )

YOI, A g VO
[COSDFLD rLsnDr

(21)
exp(—3V9)}

where

_ Q@
Ui(z) - A2+ri (I

=L,9),

V(2) = U(29) +Us(D).

We measured in our experiments the output radia-
tion energy. Therefore, it is reasonable to pass from
(20) and (21) to the egquations for the quantities

07(2)6..(2)

Wi(2) = r )

i=LS,
- (22)
8.(2) = [f(z by,

which, after multiplication by the cross-sectiond area §
(i=L, 9, coincide with an accuracy to constants with
the energies of the pump and IR radiation pulses. How-
ever, in the case of the pump pulse, care should be
required because the quantity § becomes a function of
the distance z due to the laser beam focusing, and it is
obviousthat even in the absence of activeionsthe pump
intensity is inversely proportional to the beam cross
section S (2). One can easily verify that this depen-
dence in the equation for W (2) is described by the
additional term —(\W,_ (2)/S)dS /dz. By substituting (20)
and (21) into Egs. (16) and (17) and integrating over
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time, we obtain finally the following equations for
W(2):

W
Swi(2) = a——Lt
dz 4(W_ +Wy)

x ELNL[l— exp(~41(2))] (23)

+ 4WS[1 —exp(-1(2)) COSErAL' (Z)%} g_%d%&'

W, W ]
S B+ exp(-41(2))

d
—W¢(2) = ag———;
dZ S() g4(WL+WS) 0

(24)
A 0
—4dexp(-I (z))cos%_—LI (Z)EE

| | |
-10 0 10 20
ATy

Fig. 6. Transmission coefficient of acell with cesium vapors
as a function of the detuning A at the concentration of

cesium vapors N = 102 (1), 10'* (2), and 10'° cm (3).
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where

[W,(2) + Ws(2)IT |
N +T? '

Equations (23) and (24) can be integrated numeri-
cally with the given initial values of W, (0) when the
function S (2) is known. The value of W (0) can be
readily found knowing the initial energy and the laser

beam diameter. For IR emission, which is generated
from spontaneous noise, Ws(0) iswritten in the form

I(2) =

Cr{

Wyg(0) = ——=W,_(0), 25

s(0) o= L(0) (25)
where the coefficient C contains unknown parameters
such as the cross-sectional area of the IR pulse and the
solid angle of scattering. At the same time, there is no
need to know the exact value of C because this coeffi-
cient determines only therelative value of the generated
IR-emission energy. The latter is more sensitive to the

ratio of matrix elements g ~ p5;/p3; , as follows from

Eq. (24). Therefore, g can be used as afitting parameter
when comparing the theoretical resultswith experimen-
tal data We will integrate numericaly Egs. (6)—«11)
and (23), (24) using parameters corresponding to the
6°S,,—7%P;, transition in a cesium atom. In this case,
the absorption coefficient for pump radiation for N =
102 cm~3isa = 102 cm. The cross-sectional areaS(2)
of the pump pulse as a function of z is approximated
taking into account that the laser beam is focused at the
center of the cell of length | = 20 cm and has the diam-
eter d = 0.5 cm at the entrance to the cell and d =
0.05cm in the focal plane. For this reason, the pump
intensity at small distances is so low that no IR emis-
sion is generated. The generation occurs only in the
region of sharp focusing of the laser beam. We chose
the length of this region in our calculations equal
approximately to 2 cm.
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Fig. 7. Output IR emission energy as a function of the
detuning A at N = 1012 (a) and 102 cm3 (b, ¢) for theinitial
pump energy W, (0) = 0.04 (curves 1) and 0.3 mJ(curves 2).
The parameter g in Eq. (24) was chosen equal to 40.

Figure 5 shows the time dependence of the atomic
level populations for different values of the field inten-
sity and detuning A. One can see that, for the zero
detuning A = 0 and weak IR emission (Fig. 5a), the
level populations rapidly become constant, the level |30
being populated weakly, while the levels |10and |20
have approximately the same population. The reverse
Situation takes place for large detunings and strong
amplification of the IR emission (Fig. 5b), when the
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Fig. 8. Dependences of the pump energy on the detuning A for
z=1/2 (wherel = 20 cmisthe cell length) a N = 10 cmi 3 for
theinitial pump energy W, (0) =1(1), 0.3 (2), and 0.1 mJ(3).

Rabi frequency Qgbecomesequa to Q, (here, one should
keep in mind that U(7°S,,~7°P;,) > W(6°S,~7°Py)). In
this case, the time oscillations of the populations of
state |[10and |3Care observed, which represent the Rabi
oscillations upon the two-photon |1[+33rangition. Itis
obvious that these oscillations should also be mani-
fested in the frequency dependence of the IR emission
(see Fig. 10 below). Note the Rabi oscillations are
absent when A < I'| because of a strong dephasing of
atomic polarizations at the |1[3{2CAnd [2[33ransitions
caused by the incoherence of the pump field. Recall
that, under our experimental conditions, I, T, = 4000.

Figure 6 shows the spectrum of transmitted pump
radiation for the input energy of 300 pJ and different
vapor densities. In the region of an exact resonance,
absorption and the width of the spectrum strongly
increase with increasing N, in accordance with the
experimental data. The dependence of the output IR-
emission energy on the pump frequency is shown in
Fig. 7. When N = 10*2 cm~3 (Fig. 7a), a sharp peak was
observed at A = 0 with the width of approximately I,
its amplitude increasing with the pump energy. When
the vapor density is increased up to N = 10 cm3
(Figs. 7b, 7¢), a hole appears at the center of the emis-
sion line, whose depth decreases with increasing input
pump energy. The hole appears because at a high vapor
density and small values of A the pump radiation is
strongly absorbed already at small distances. For this
reason, the generation of IR emission is strongly sup-
pressed for small A and it is observed only for the val-
ues of A at which absorption of the pump radiation is
weak. Asthe pump energy increases, it is still absorbed
at small A. However, as one can see from Fig. 8, this

No. 4 2002



692

T T T T T
3
0.08]- i
£ 0.06} i
=
E; 2
§30.04- ]
0.02]- 1 i
O | | | | |
100 110 120 130 140 150
T,°C

Fig. 9. Dependences of the IR emission energy on the vapor
temperature for A = 0 and the initial pump energy W, (0) =
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Fig. 10. Dependences of the output IR emission energy on
the detuning A at N = 10'® cm™ for theinitial pump energy
W (0) =1 (1) and 0.3 mJ (2) and g = 40. A weak maximum
isobserved at A = 0.

absorption is no longer complete, which results in a
decreasein the depth of theholeinthe IR emission line.
Figure 9 shows the dependences of the IR emission
energy on the vapor temperature for A = 0 and different
pump energies. These results are also in good qualita-
tive agreement with experimental data.

Finally, we discuss the possibility of observing the
IR emission intensity oscillations, which we mentioned
above. These oscillations are determined by the last
term on the right-hand side of Eq. (24), which is propor-
tiond to cos(1(2)A/T" ). Unfortunately, this effect is rather
weak due to the smallness of the factor exp[-(2)]. In par-
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ticular, when N = 10% cm3, aweak maximum of the IR
emission appearsat A = 0 (Fig. 10), which isdifficult to
observe experimentally.

5. CONCLUSIONS

We have studied experimentally and theoretically
the effect of one-photon resonance absorption of pump
radiation on the IR SERS in cesium vapors. This effect
strongly increases with increasing density of cesium
atoms, resulting in a virtually complete suppression of
the Stokes signal near the resonance. We have deter-
mined the optimal temperature of vapors at which the
guantum efficiency of excitation of IR SERS is maxi-
mal and can be as high as 40%.

Based on the three-level atom model, we have
developed the theory of generation of resonance IR
SERS in akali-metal vapors taking into account the
absorption of pump radiation, which describes well the
experimental properties of excitation of IR emission.

The results obtained can be used for developing
compact, highly efficient laser sources based on reso-
nance SERS in akali-metal vapors, which generate
powerful stimulated IR emission tunable in the near-
and mid-IR ranges.
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Abstract—The spectrum of atest field in athree-level Arll A schemein the presence of a strong standing wave
on the adjacent transition was measured. The known light-induced transparency peak was observed; the peak
shifted asthe detuning of the strong field was varied. In addition, anew resonancein the line center arose whose
position was independent of the strong-field frequency. The resonance was caused by the higher spatial coher-
ence harmonics on the test transition. Perturbation theory for alow and numerical calculationsfor ahigh stand-
ing wave intensity give qualitative agreement with experiment and substantiate the nature of the central transi-

tion. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Studies of nonlinear spectral resonancesin the field
of a strong standing wave have been under way since
the 1960s. First, the resonance in the spectrum of spon-
taneous emission in a standing wave field was calcu-
lated [1]. The shape of the spectrum was substantially
different from the ssmple sum of resonance structures
induced by counterrunning waves that form a standing
wave. This difference was caused by spatial standing
wave field inhomogeneity responsible for the appear-
ance of the higher spatial harmonics in both atomic
level populations and medium polarization.

Calculations for atwo-level system interacting with
a standing wave [2, 3] showed that the contour of the
Bennett dip in the velocity distribution of the difference
of level populations was modulated by the higher spa-
tial harmonics. After averaging over velocities and cal-
culations of the Lamb dip shape in the spectrum, the
modulation disappeared, and only asmall changein the
depth of the dip was observed. The effect was maxi-
mum near the center of the line, where the field experi-
enced resonance interactions with particles most sensi-
tiveto spatial field inhomogeneity in the region of zero
velocities. Atoms that occurred in standing wave antin-
odes effectively interacted with the field, and atomsin
wave nodes virtually did not interact with it.

A consideration of the interaction between a strong
running and a comparatively weak counterrunning
wave and atwo-level system with detuning between the
frequency Q and the resonance showed that Bennett
structures arosein the velacity distribution of the differ-
ence of populations if

These Bennett structures were interpreted as multipho-
ton transitions with odd numbers of quantaN =2n + 1
[4]. Multiphoton transitions with even numbers of
guanta, N = 2n, result in the arising of a Bennett struc-
ture at zero velocities (v = 0).

When we pass from velocity distributions to
observed test field spectra, the shape of resonances
becomes more complex because of the influence of
coherent processes. Spectral manifestations of mul-
tiphoton transitions were for the first time experimen-
tally observed in [5]. Structures of the type of inverted
Lamb dipswererecorded in aCO, laser with an absorb-
ing cell when the frequency of an external radiofre-
guency field was scanned. Alongside the principal
peak, additional peaks of a complex shape appeared.
These peaks were related to multiphoton processes. In
[6], multiphoton resonances were also recorded in the
test field spectrum of a two-level system which inter-
acted with a strong standing wave. Asin the preceding
work, an absorbing cell with a molecular gas (CH5F)
was placed into the resonator cavity of a CO, laser, and
the source of the test field was an additional tunable
laser. Alongside the principal Bennett structures at v =
+Q/k, where Q is the detuning of the strong-field fre-
guency, the test field spectrum contained odd subhar-
monics at velocities v = +Q/3k and an even resonance
at zero velocity v = 0. However, a comparison of the
theory [7-9] with the experimental data [6] was only
performed at aqualitative level because of the complex
structure of experimental molecular spectra, on the one
hand, and the impossibility of separating populational
and coherent processes in the theory of two-level sys-
tems, on the other.

Satisfactory quantitative agreement between theory
and experiment was attained in [10, 11] in studying an
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atomic system (Cd'*?) that interacted with two counter-
running waves of different frequencies and amplitudes.
When the frequency of one of the waves was scanned,
a subradiation structure was recorded in the absorption
spectrum. This structure contained up to five lines that
converged to the line center. The structure of the spec-
tra, especially their central part, was very sensitive to
the ratio between the saturating and test wave ampli-
tudes.

New possibilities for studying spectral resonances
induced by a strong standing wave appear in three-level
systems. Numerical calculations of the test field spec-
trum on the adjacent transition show [12] that higher
spatial harmonic effects appear not only in the velocity
distribution of level populationsbut alsointhetest field
spectrum. The analysis performed in [12] also shows
that the resonance of field splitting in the spectrum is
observed for both Stokes and anti-Stokes test waves, as
opposed to strong running field effects. What is more,
we can separate populational and coherent processesin
a three-level system, which simplifies an analysis of
experimental spectra [8, 9] and offers possibilities for
designing new experiments. In particular, it was sug-
gested in [9] to suppress the contribution of coherent
processes by dephasing collisions (or strong field phase
fluctuations), which would alow us to observe purely
populational resonances (multiphoton transitions and a
peak of “dow” atoms). So far as we know, such mea-
surements have not been performed yet.

In recent years, a three-level system with a strong
standing wave tuned in resonance with one of the tran-
sitions was aso studied to increase the efficiency of
generation by molecular lasers with optical pumping in
the far IR region. An increase in output power in the
presence of a standing pumping wave compared with a
running wave was predicted theoretically [13] and
proved experimentally [14]. The effect of electromag-
netically induced transparency in a closed three-level
system with a standing saturating wave was also stud-
ied theoretically [15]. Under certain conditions, the use
of astanding wave for medium bleaching is more effec-
tive than the use of running waves. In addition, trans-
parency oscillations near the center of the transparency
window appear.

In this work, we experimentally studied the spec-
trum of atest field in the presence of a strong standing
wave on the adjacent transition in the three-level argon
ion A\ scheme (Fig. 1). The conditionsfor separating out
the field splitting effect, which is one of the fundamen-
tal coherent effects, were provided by selecting reso-
nance medium parameters k, <k, N, > N, and N, and
M =r,<r,whereN, N, and N, are the populations
and I, I, and ', are the relaxation constants of levels
n, m, and |, respectively. The resonance structures and
populations under the conditions of a gas discharge
plasmawere additionally broadened and suppressed by
Coulomb collisions [16]. It was found experimentally
that an additional resonance formed in the center of the
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Fig. 1. Scheme of energy levels. Relative level widths are
shown by rectangle heights, and level populations, by circle
diameters.

test field spectrum line against the background of the
usual split resonance as the standing wave intensity
increased. This resonance looked like “ splitting of field
splitting” when the standing wave was tuned to the cen-
ter of the line and transformed into an isolated peak in
the center of the line when the standing wave was
detuned from the resonance. We constructed an analytic
model based on expanding the density matrix elements
up to second-order terms with respect to intensity. At
low intensities, this model coincided with the exact
solution in the form of a continued fraction. We sug-
gested a qualitative interpretation of the formation of
the resonance as a result of spatial coherence modula-
tion. We believe this result to be the first observation of
the effect of the higher spatial coherence harmonics.

This work is organized as follows. Section 2
describes the experimental unit and the procedure for
measurements; Section 3 contains the most important
experimental results; in Section 4, perturbation theory
equations are obtained to qualitatively explain the
experimental data; and, in Section 5, the shape of the
resonance is calculated for arbitrary standing wave
intensities. The experimental and theoretical results are
compared and discussed in Section 6.

2. EXPERIMENTAL UNIT

The experimental unit for studying higher spatial
harmonic effects in a standing wave field is shown in
Fig. 2. The discharge tube of argon laser 1 was placed
into a cavity with input 2 and output 3 mirrors opague
to generated radiation but transparent to test radiation.
It follows that two waves were present in the resonator
cavity, namely, the standing linearly polarized gener-
ated wave and the running test wave, also linearly
polarized. Etalon 5 ensured the selection of one longi-
tudinal mode and smooth tuning of generation fre-
guency. Diaphragm 6 was used to select the TEM,
mode. Cavity mirrors selected the 457 nm line; for this
ling, transmission loss in the cavity was about 0.3%,
which ensured high intensity within the cavity. Output
argon laser radiation wasdirected by amirror to grating 8,
from which one order was introduced into Fabry—Perot
scanning interferometer 9 used to control the mode
composition of radiation and determine detuning of the
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Fig. 2. Scheme of experimental unit: (1) discharge tube; (2, 3) mirrors; (4) Brewster plate; (5) etalon; (6) diaphragm; (7) chopper;
(8) grating; (9) scanning interferometer; (10) photodetector; (11) synchronous detector; (12) tunable dye laser; (13) wavelength

meter; (14) oscilloscope; (15) lens; and (16) computer.

strong field from the resonance frequency. Another
order was directed to photodetector 10 whose signal
was the reference signal for synchronous detector 11.

Measurements were performed by the test field
method in thelevel scheme showninFig. 1. The param-
eters of the scheme taken from [17—20] arelisted in the
table. The main characteristic of measurements was a
large difference of both the lifetimes of levels (thel| <
I, << I, inequality was satisfied) and the level popula-
tions (N, > N, = N,, that is, the N, unperturbed level
was strongly populated).

The source of the test field was a tunable DCM 12
dye laser (see Fig. 2), whose generation wavelength
was recorded by wavelength meter 13. The automated
system for frequency tuning and retuning [21] enabled
us to smoothly vary the test field frequency in the fre-
guency range up to 4.5 GHz in steps as small as
20 MHz; the step value was close to the radiation line
width (about 10 MHZz). The spectrum of the dye laser
was recorded by scanning interferometer 9 with a
5-GHz free-dispersion region. The interferometer was
connected to an oscilloscope used to control the mode
composition of radiation.

Relaxation constants and level populations

M M I Amn An units
300 15 8 9 1 10’ st
[\ Nim N, units

=1 =5 =100 10°em=3
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Thetest field that was introduced into the discharge
tube was preliminarily focused by lens 15 to ensure
maximum field uniformity in the cavity. After passing
the discharge tube, atest field beam was reflected from
additional plate 4 and introduced by mirrors to photo-
detector 10 connected to synchronous detector 11. The
angle between test field and generated radiation beams
was about 1078 radians, which prevented feedback.

We used synchronous detection, which allowed the
Doppler backing to be automatically subtracted. For
this purpose, the strong field was remodulated at a fre-
guency of about 1 kHz with the use of light chopper 7.
Synchronous detection at the modulation fregquency
allowed us to identify nonlinear strong-field-induced
additions. Experimental runs and synchronous datacol-
lection and recording were controlled by PC 16, to
which all measuring instruments were connected
through an ADP.

3. RESULTS

A seriesof plots obtained for a135 A discharge cur-
rent isshown in Fig. 3. These plotsillustrate the depen-
dence of the test field spectrum on the strong-field
intensity tuned to the center of the line. The first plot
contains a characteristic structure caused by the field
splitting effect at low intensities, namely, asplit absorp-
tion contour with an about 0.5 GHz splitting. Under
exact resonance conditions, we observe a transmission
peak. Note that the negative values in the plot corre-
spond to a strong-field-induced increase in test field
absorption, and positive values correspond to a
decrease in absorption, which is equivalent to light-
induced transparency. The splitting increases as the
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Fig. 3. Dependences of experimental spectra on strong-
field intensity at Q = 0: G = 25 (a), 50 (b), 75 (c), and
100 MHz (d).

strong-field amplitude becomes larger; the transmis-
sion peak broadens; and, most interestingly, additional
peak splitting, that is, “splitting of field splitting,”
appears. No such additional splitting is observed in the
presence of a strong running wave. The split contour is
dlightly asymmetric. Thisasymmetry depends on inten-
sity and is related to the nonlinear lens effect (e.g., see
[22]); it can be compensated by dlightly detuning the
strong field from the resonance frequency.

A series of plotsin Fig. 4 illustrate the dependence
of the form of the nonlinear addition to the test field
spectrum on strong field detuning (the intracavity
strong field intensity was about 20 W/cm?, which cor-
responded to |G| ~ 100 MHz). An increase in detuning
to Q = 1GHz causes frequency separation of the struc-
tures. At Q = 2 GHz (Fig. 4d), we only observe a
broad populational dip at afrequency of Q, =—k,Q/k=
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Fig. 4. Dependences of experimental spectraon strong-field
detuning at G = 100 MHz: Q = 0 (a), 0.2 (b), 0.7 (c), and
2 GHz (d).

—1.5 GHz for negative detunings and a field-splitting
structure with a transparency peak a Q, = k. Q/k =
1.5 GHz for positive detunings. The characteristic spe-
cial feature of these spectra is a field-splitting reso-
nance shift observed synchronously as strong-field
detuning increases. The resonance, however, remainsin
the center of the test field line. Its amplitude gradually
damps, and it transforms from adip into apeak at large
strong-field detunings. The peak in the line center is
quite discernible up to detunings of |Q| = 2 GHz ~
kv+/2. When the sign of strong-field detuning changes,
the picture of the test field spectrum (Fig. 4) changesto
its reflection in the axis of ordinates. Note also that the
structure in the line center is substantially (more than
two times) narrower than the field-splitting resonance
transparency peak.
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4. PERTURBATION THEORY

Consider the interaction of atoms with an electro-
magnetic field in the three-level A scheme shown in
Fig. 1. Thefield of light wave running along axis x,

E.(x 1) = E exp(ik, X —iwyt),
with detuning
Q

from the Bohr frequency of the test transition tests the
three-level system, which is under the action of the
strong standing wave

E(x,t) = 2Ecos(kx)exp(—iwt)
with an w = Q + wy,, frequency close to the wy,, fre-

guency of the transition under consideration.

The absorption spectrum of the test field in an opti-
cally thin medium is expressed through the off-diago-
nal element of the density matrix p, = p,exp(ik,x —

i),

p = Wy~ Wy

L

— dx
P.(Q,) = Zhque(—'Gu)IdVpru1 @D
0
where
— Eu [dml
Gu = 2%

is the Rabi frequency, d, is the dipole moment of the
transition, and L is the medium thickness in the direc-
tion of light propagation.

The special feature of our scheme of levelsisalarge
N, population of the level unperturbed by the strong
field. This population is more than one order of magni-
tude higher than the populations at the working transi-
tion. We can therefore ignore all effects induced by the
strong standing wave and related to changes in both
populations and coherence at the working transition.
The main nonlinear spectroscopic effect in such a sys-
tem is related to mixing of coherences on both test p,
and forbidden p, transitions by the standing wavefield.
This effect is described by the equations

(rml _i(Qp_kuv) + Vax)pv

+i(G,€" +G_e™)pl = iG,N(v),

| . )
(rnl + I(Q _Qu + kpv) + Vax)pv

+i(Gre™+G*)p, = 0.
Here,
Pin = pvexp(_ikpx_i(w_%)t)v

_ E Ml

G.=6=—

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

BABIN et al.

is the Rabi frequency of standing wave field compo-
nents paralel and antiparallel, respectively, to the
direction of test field propagation; 'y and ', are the
relaxation constants of test (m—1) and forbidden (n—1)
transition coherences,

_ Niexp(=v*/v7)
«/T_TVT

is the Maxwell velocity distribution of unperturbed
level | particles; and 0, is the operator of the differenti-
ation with respect to variable x.

System (2) has no finite analytic solution if the Rabi
frequency of the standing wave is much larger than the
relaxation constants. For this reason, the main tool of
study is numerical calculations. However, at moderate
fields, G < I'\y, [y, the problem can be analyzed using
perturbation theory. The main goal of such an analysis
isto determine spectral resonances in test field absorp-
tion caused by spatial coherence modulation py,(x).
Importantly, such a modulation can only arise when the
three-level system simultaneously interacts with the
standing wave component running in the same direc-
tion G, as the test field and the component running in
the opposite direction G_. Standing wave effects are
therefore absent in first-order perturbation theory and
can only appear starting with its second order with
respect to standing wave intensities (12 O |G, P|G_P).
Indeed, in first-order perturbation theory, the contribu-
tion to spectrum Pff) of interactions between the sys-
tem and the G_ standing wave component vanishes in
the Doppler limit. The nonlinear correction® for the G,
component only appearsin the Stokes case (k, <k) asa
field-splitting resonance [12] with a peak of light-

N (v)

induced transparency of width
ro= kprnl+(k_kp)rml
P k

atan Q, =k, Q/k test field frequency,
APY = PP(0)-PP(G)

N —Q?IKPv?
- zﬁmh|c;u|2ﬁT 'eka(VT u/KuvT) )

2|G,*(k—k,)
k(T —i(Q, —k,Q/K))*
After solving (2) accurate to terms of fourth order in
G, and integrating the result over velocities in the Dop-

pler limit with the use of the theory of residues, we
obtain the equation for the correction to the spectrum of

x Re

1 The difference of the test field absorption coefficientsin the pres-
ence and absence of the strong field, which was measured experi-
mentally.
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absorbed power in second-order perturbation theory
[23]

|2ﬁtN.exp(—Qﬁ/kﬁv$)
" kvt

(2 _
APY = —2hw,|G

2|G.*(k—k,)
k(T —i(Q, —k,Q/K))?

x Re

x[ 3G, |k, (k—k,)
kz(rp—iiQu—ku?/k))z @
|G—| (k — ku)

kz(rp—i(Qu—kuQ/k))(Fm —-i(Q,—Q))

, [G I Ku(2k—k,)
ACT —iQ,)?

+

G Kilk=k,) }
k(M =i(Q —k, Q/K) (M —1Q,))

Thefirst term in square brackets is the second term
of the expansion in |G, J? and describes an increase in
field splitting proportional to |G, |, that is, peak widths
at Q, =k, Q/k [see exact equation (5) given below]. The
second term appears because of spatia coherence mod-
ulation on the p, forbidden transition and resultsin the
arising in the spectrum of anonlinear structurewith for-
bidden transition width I, at the two-photon resonance
frequency (Q, = Q). Lastly, thetwo last terms owe their
existence to spatial modulation of test transition coher-
ence and describe the nonlinear structure of width I
strictly at the line center,? Q, = 0.

In the Stokes case, both spatial modulation reso-
nances arise against the background of a stronger field-
splitting resonance. For this reason, they can only be
well resolved under the condition 'y < Tpor My < T,
In the system that we study, the second inequality isful-
filled, Iy < Ty, [y, The most important spatial modu-
lation effect is therefore a narrow resonance in the line
center described by the third term in square bracketsin
(4). At azero standing wave field detuning (Q = 0), this
resonance hasthe form of splitting I' ; of the field-split-
ting resonance of width I ,. The corresponding nonlin-
ear test field power spectrum [the sum of Egs. (3) and
(4] isshown in Fig. 5 for several Rabi standing wave

2 The possibility of the formation of a higher order resonance of
width I, at the line center was not discussed in [23], because the
opposite situation with I, << Iy, when the effect was exceed-
ingly small, was considered there.
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Fig. 5. Nonlinear resonance APS) + APEIZ) in test field

spectrum as afunction of strong-field amplitude: G = 25(a),
50 (b), 75 (c), and 100 MHz (d). Calculations were per-
formed by (3) and (4) for Q =0, ', =300 MHz, and 'y =
50 MHz.

frequencies. As field intensity increases, the dip in the
center grows quadratically (O12), whereas the peak of
width I, that surrounds this dip increases linearly (CIl).

Thetest field spectrum at large detunings, |Q|> |G|,
is shown in Fig. 6 (G = 100 MHZz). Narrow coherence
resonance p,, in the line center is quite discernible, and

itsamplitude decreases proportionally to 1/Q? as detun-
ing increases. As far as the main field-splitting reso-
nance at the Q, = k,Q/k frequency is concerned, this
resonanceisvirtually insensitive to spatial modulations
at large detunings. The nonlinear test field power spec-
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Fig. 6. Nonlinear resonance APS) + APEIZ) in test field

spectrum as a function of strong field detuning: Q = (a) 0,
(b) 0.2, (c) 0.7, and (d) 2 GHz. Calculations were performed
by (3) and (4) for G =100 MHz, ', =300 MHz, and I,y =
50 MHz.

trum is then (|Q,, |Q| > |G|) determined by the equa-
tion obtained in [12] for a strong running wave (that is,
for G_=0) in the Doppler limit,

TN exp(-Qi/K V' T)

AP, = 21iw,|G,|

kv ®)
E 0
x4 -Re Mo—i(Q,—k,Q/k) :
a A/(rp—i(Qu—k“Q/k))Z+MS
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According to this equation, the transparency peak
width should increase as field amplitude |G| becomes
larger.

5. CALCULATIONS
FOR ARBITRARY INTENSITY

An equation for the work of the test field with a
strong standing wave on the adjacent transition was
obtained by Feldman and Feld [12]. We are interested
in the situation when only finite level | is populated in
the A scheme. In this situation, the work can be written
as

P, ON|GA ML~ |G (u, +u)] ™0 (6)

1
L, u, = , @)
' I<E
Luiles
IG?
LioLes
[k

13Li4

—

X, -Q-(k,tnk)v +ily, n=135,...,(8)
) Eﬁlp—(kutnk)vﬂrm., n=024,...

Here, angle brackets denote averaging over velocities
with aMaxwell distribution. At v > Q/k, I'/k, the frac-
tion rapidly converges, and it sufficesto retain N ~ G/kv
terms.

To prove convergence of the fraction
Py _ 1
Qn 1 pl '

+
1+ P2
Ps

1+...

(9)

1+

asn — oo, note that the numerators and denominators
of the appropriate fractions satisfy the recurrent rela-
tions [24]

Po = Pooit PaPray Q= Qs+ PaQn2 (10)
with theinitial conditions
Po=P1=1 Q=1 Q;=1+p,.
We therefore have
PaQn-1=Pn_1Qn = —Pn(Pn-1Qn_2—Py_2Qn 1),
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and the difference of neighboring appropriate fractions
equals

n

E_Pn—lz (_l)n )
Q. Qs Qa1

A comparison of (9) and (7) for n — oo shows that
p, O(G/kvn)®.

In (10), the main term is the first one, and Q,, becomes
independent of n. Difference (11) therefore decreases
as (n!)=2. To prove convergence, it remains to rewrite
fraction (9) in the form of the sum of the differences

E:EP_“_P“_E-}- +E_P_1_EOD+&

Qn [Qn (gn—l[| Rgl QJ] QO
The series converges uniformly as the series of the
Jo(2G/kv) Bessel function, similarly to the analytic
solution obtained for equal relaxation constants and a
zero detuning [1]. The real and imaginary parts of tran-
sition nm polarization as functions of velocity become
strongly oscillating functionsas v — 0.

The continued fraction was calculated numerically,
and the integration over velocities was performed by
the Simpson’srulein theinterva |v| < 5v+. For conve-
nience of comparison with experiment, field work at
G = 0 was subtracted from its value given by (6). The
calculation results for the Q = 0 resonance are given in
Fig. 7. A comparison with perturbation theory formulas
(5) shows that the depth of the dip between the split
central peak components increases as the saturation
parameter grows at a rate which is, because of satura-
tion, lower than that observed in a comparatively weak
field. Under nonresonance conditions (Fig. 8), the test
field spectrum shifts and becomes asymmetric. The
dimensionless saturation parameter for the spectrum
showninFig. 8is

K = 8/G|°/T [y = 13.

The transparency peak shifts as the detuning between
the strong field and resonance increases, and an alter-
nating contour is formed from the dip in the center of
the line. This contour transforms into a peak as the
detuning increases further. The amplitude of the peak
decreases as the strong-field detuning becomes larger,
but not so fast as in perturbation theory calculations
(Fig. 6).

Note also that similar calculations performed by
Feldman and Feld [12] for athree-level system withk =
2k, and equal relaxation constants of the higher and
lower levels, ', =T, and I, < I, did not predict
transparency peak splitting in the line center, that is, at
Q =0. At alarge strong standing wave frequency detun-
ing from the resonance, the transparency peak was
shifted virtually without distortions, and no singularity
wasformed inthe peak center. In[12], the oppositesign
was selected, and positive values on the axis of ordi-

(11)
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Fig. 7. Test field spectrum under resonance conditions, Q =
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Fig. 8. Test field spectrum under nonresonance conditions,
G/I'mn =04, kVT = 20I'mn, rm/rm = :UG, I'm| = Fn|: strong-
field detuning Q/T ., = (1) 0.7, (2) 2.2, and (3) 6.6.

nates corresponded to an increase in absorption in the
strong field.

We aso performed calculations for the parameters
used in [12]. Indeed, at Q = 0O, no dip (transparency
peak splitting) was formed, because, at the selected
ratio between level widths, the relaxation constants cor-
responding to the test I',,; and forbidden I, transitions
were equal, and all resonancesin (3) and (4) had equal
widths and did not separate at Q = 0. Frequency sepa-
ration of resonances, however, became possible when
strong-field detuning satisfied the inequality |Q|>T, ,, G.
This was substantiated by numerical calculations,
according to which an additional resonance in the line
center Q,, = O wasformed against the background of the
usual field-splitting resonance with atransparency peak
at Q, = k,Q/k; the width of the additional resonance
equaled that of field splitting. The peak in the line cen-
ter decreased in amplitude as strong-field detuning
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increased but remained quite resolvable up to detuning
of Q = 15I,,, for which the calculations in [12] were
performed.

6. DISCUSSION

A comparison of exact cal culation results with those
obtained using perturbation theory and their compari-
son with both theory and experiment shows that, quali-
tatively, the observed resonance behaviors depending
on the (G, Q) strong-field parameters are nearly identi-
cal. Namely, under exact resonance conditions, the
transparency peak width increases as field amplitude G
grows, and a new resonance (a dip) is formed at
GIT ,yy ~ 0.1 characteristic values. This resultsin trans-
parency peak splitting, whose depth increases with G.
The transparency peak in the test field spectrum syn-
chronously shifts as strong-field detuning Q from reso-
nance increases, Q, = +k,Q/k, and the observed reso-
nance remainsin theline center and changes sign while
smoothly decreasing in amplitude.

A quantitative comparison of the shapes of the the-
oretical and experimental spectrareveals differencesin
resonance widths, however, not fundamental in charac-
ter. Consider thispoint in more detail. Infirst-order per-
turbation theory, the width of the transparency peak at
half height is

Deir = Ty = Tk /k+ (1=K /K)T 1y = 230 MHz.

Thisclosely agreeswith the experimental data obtained
at low fieldswith Q = 0 (Fig. 3a). Although perturbation
theory describes transparency peak splitting caused by
anincrease in the field amplitude, the experimental dip
width equal to 150-200 MHz is much larger than that
predicted theoretically (2, = 100 MHz) even in com-
paratively low fields G ~50 MHz ~ 0.1I" .. An increase
in thefield amplitudeto G = 100 MHz (notethat the stand-
ing wave amplitude then amounts to 2G = 200 MH2)
causes dip and main peak broadening by a factor of
152, the ratio between their widths remaining
unchanged.

Anincreasein detuning to |Q|> T, |G| causes com-
plete separation between the resonances from two run-
ning components of the standing wave and the reso-
nance of higher harmonics; the centers of these reso-
nances correspond to frequencies of Q, = k,Q/k and
Q, = 0. The shape of the transparency peak centered at
the Q, = k,Q/k frequency can then be described by
exact formula (5) obtained for a strong running wave.
Calculations show that, at characteristic fields, the peak
broadens insignificantly. The Agt = 250 MHz peak
width at G =100 MHz closely agrees with the results of
both numerical and experimental calculations (Figs. 4c,
4d). The theoretical width of the central peak is, how-
ever, 1.5-2 times smaller compared with the experi-
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_mental value. The radiation width on the test transition
is

ro = %(rm+ r,) =20 MHz,

and, if Stark broadening is taken into account,
Fw = [+ A, =50 MHz

(see [16-18]). In addition, we must take into account
phase fluctuations involved in Coulomb scattering of
ions (see [16]), which cannot be considered a mere
addition to the coherence relaxation constant. This cir-
cumstance may be the reason for quantitative discrep-
ancies between resonance width values. The experi-
mental amplitudes of the transparency peak at Q, =
k,Q/k and the higher harmonic peak at Q, = O closely
agree with numerical calculations; the ratio between
these amplitudes approximately equals 7 at Q = 2GHz
and G =100 MHz. At such fields, perturbation theory is
already inapplicable and gives inaccurate amplitude
values.

7. CONCLUSION

To summarize, we observed a new resonance in the
test field spectrum of a three-level system in a strong
standing light wave field. This resonanceis observed in
the line center independent of strong-field detuning
even in comparatively weak fields G = ', ~ 0.1 ..
Note that, at I, < Iy, the effect may be discernible
even earlier than light-induced transparency peak
broadening, which becomes noticeable at G = I,
Under exact strong-field resonance conditions, the
effect manifests itself as light-induced transparency
peak splitting. Under nonresonance conditions, it takes
the form of an additional isolated transparency peak in
the line center. Perturbation theory including terms of
second order in intensity was constructed to qualita-
tively describe this effect. This theory allows the new
resonance to be interpreted as a manifestation of the
higher coherence spatial harmonics on the transition
with which the test field is in resonance. As spatia
coherence modulation arises under simultaneous
actions of counterrunning standing wave components,
the effect is maximum for particles with zero velocities
independent of the detuning of the standing wave fre-
guency. At a qualitative level, this means that particles
with zero velocities are most sensitive to spatial har-
monics. Atoms that occur in standing wave nodes are
insensitive to the strong field. Accordingly, strong-
field-induced transparency (or absorption) disappears
at zero detunings. Numerical calculations with the use
of a formula in which polarization is described by a
continued fraction allowed us to more accurately
describe the experimental results. Some discrepancy
(by a factor of 2 or less) between the theoretical and
experimental central peak widths in nonresonance
strong fields may be caused by Coulomb collisions of

No. 4 2002



NONLINEAR RESONANCE INDUCED BY THE HIGHER SPATIAL COHERENCE HARMONICS

ions, which result in Doppler coherence dephasing; this
point requires a more detailed study. In this respect,
measurementsin asimilar A schemefor uncharged par-
ticleswould be of use. Note that the effect of the higher
spatial coherence harmonics can be observed in both
Stokes and anti-Stokes spectrain theinterval k < k, < 2k.
The anti-Stokes scheme is of specia interest, because,
at k, > k, the effect of the higher spatial harmonics may
become predominant.
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Abstract—A completely relativistic mechanism for describing polarization bremsstrahlung caused by an elas-
tic collision of a charged particle with a many-electron target was suggested. Multipole expansions for the
amplitude and cross section of the process taking into account radiation lag effects were obtained. Including
higher order multipoles was shown to result in substantial asymmetry of the angular distribution of emitted pho-
tons compared with the dipole case and in a noticeable change in the spectral characteristics of polarization
radiation. The cross section of polarization bremsstrahlung was found to increase logarithmically as the energy
of incident particles grew. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

When charged particles collide with atarget with an
internal electronic structure, bremsstrahlung arisesas a
result of the action of the so-called usual and polariza-
tion mechanisms. In the first mechanism, radiation is
caused by the deceleration of incident particles in the
static field of the target (e.g., see [1, 2]). The second
mechanism is caused by the dynamic polarizability of
the target under the action of the electric field of inci-
dent particles. Photon emission occurs asaresult of vir-
tual excitation (polarization) of target electrons by the
electric field of an incident particle (e.g., see [3]). The
existence of this radiation mechanism was discovered
comparatively recently [4—7]. The purpose of thiswork
was to study the frequency and angular dependences of
the spectrum of polarization bremsstrahlung which
arisesin relativistic collisions between a charged parti-
cle and a many-electron target.

Polarization bremsstrahlung is a more complex pro-
cess than the thoroughly studied usual bremsstrahlung,
because it should be described taking into account the
dynamic response of an atom target to the action of two
fields created by an incident particle and an emitted
photon. As a consequence, the problem acquires an
essentially many-particle character (except when colli-
sions with hydrogen atoms or hydrogen-like ions occur
and ssimpler methods can be used [7-11]).

Polarization bremsstrahlung can be accompanied by
target excitation or ionization in the final state. In what
follows, we use the terms elastic and inelastic with ref-
erence to polarization bremsstrahlung without and with
target excitation in the final state, respectively. In a
wide range of photon frequencies, the elastic polariza-

tion bremsstrahlung channel predominates over the
inelastic channel in scattering of both heavy [12-18]
and light [19] particles on a many-electron atom,
because [13, 20], in elastic polarization bremsstrahl-
ung, atomic electrons radiate coherently (as is charac-
teristic of Rayleigh light scattering). Conversely, in
inelastic polarization bremsstrahlung, the contributions
of separate target electrons to the total emission spec-
trum are incoherent (as in Raman scattering) and pro-
cess cross sections rather than amplitudes should there-
fore be summed. Asaresult, the cross section of inelas-
tic polarization bremsstrahlung is parametrically small
for many-electron (Z > 1) targets. The contributions of
the two process channels are approximately equal for
targets with small Z values[13]. Note that this conclu-
sion remains valid when the scattered (incident) parti-
clehasaninternal structure (atom—atom, ion—-atom, and
ion—on collisions). In thiswork, werestrict our consid-
eration to elastic polarization bremsstrahlung.

A comprehensive review of the theoretica
approaches to and the available experimental data on
polarization bremsstrahlung can be found in [3, 21-24]
and the references cited therein. We will only briefly
mention the methods that were used to describe polar-
ization bremsstrahlung arising in collisions between
charged particles and many-electron atoms. These
methods can conventionally be separated into two
groups, namely, methods for analyzing the scattering
process and approximations used to describe dynamic
atomic response.

Two main approximations are extensively used to
describe the scattering of both light (positron and elec-
tron) and heavy (proton, ion, or atom) incident particles
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on many-electron atoms. These are the Born approxi-
mation (for both relativistic and nonrelativistic colli-
sions) and the approximation based on the use of the
nonrelativistic formalism of the method of distorted
partial waves (DPWA) [25-30]. The Born approxima
tion gives good results for scattering of heavy particles.
The use of the DPWA method, which generalizes the
Born approximation, allows us to determine the bound-
aries of the applicability of the latter and calculate
polarization bremsstrahlung cross sections for compar-
atively low collision energies to which the Born
approximation is inapplicable.

The dynamic response of a target to combined
action of incident particle and emitted electron fieldsis
described in terms of the nonrelativistic dipole approx-
imation applicable to targets with small atomic num-
bers Z and to emission of photons with wavelengths
(~k™) much larger than the size of the target in all
works except the three mentioned below. At higher Z
values (when atomic electron motions become essen-
tialy relativistic in character) and k! < R, (Ry isthe
target radius), this approximation cannot be considered
satisfactory.

In such a description, the amplitude of polarization
bremsstrahlung is expressed through the dipol e polariz-
abilities of the target, which depend on energy w and
absolute momentum q of the virtual photon but are
independent of momentum k of the emitted photon. If
the incident particle is nonreativistic (lag effects are
ignored), the amplitude of polarization bremsstrahlung
is proportional to scalar dipole polarizability ay(w, q),
which takes into account virtual excitation of the atom
target caused by interactions with the Coulomb field of
the incident particle [3, 21-24]. If arelativistic particle
is scattered (lag effects are taken into account), the
polarization bremsstrahlung amplitude contains the
second polarizability, B4(w, ), in addition to a4(w, ).
This polarizability describes the dynamic response of
an atom to the vector part of the virtual photon field
[19]. The two polarizabilities coincide intheq — 0
limit. So far, numerical calculations have only been
performed for the ay(w, q) polarizability.

Outside the framework of the dipole approximation,
polarization bremsstrahlung was considered for colli-
sions of a heavy particle with nonrelativistic many-
electron atoms [31-33] in terms of various approxima-
tions based on the nonrelativistic formalism of the
many-body theory [3, 21-24] and for collisions with
hydrogen atoms, when analytic methods can be applied
directly [7—11]. In addition, atomic response in polar-
ization bremsstrahlung processes was described using
the nonrelativistic unscreened atom approximation
[34]. Recently [35, 36], polarization bremsstrahlung
arising in collisions between fast electrons (positrons)
and many-electron atoms was considered in the local
electron density and static Thomas—Fermi model
approximation.
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The theory of polarization bremsstrahlung resulting
from collisions between relativistic particles has been
developed to a much lesser degree. General equations
for the amplitude and cross section of polarization
bremsstrahlung were obtained in [19] within the frame-
work of the relativistic Born approximation for emis-
sion of soft photons (for which the condition of the
dipole character of radiation, kR, << 1, is satisfied). It
was also predicted in [19] for relativistic collisions that
the contribution of the polarization bremsstrahlung
mechanism to the total bremsstrahlung spectrum
should exceed the corresponding nonrelativistic contri-
bution and should logarithmically increase with
increasing energy of incident particles because of the
lag ofli nteraction between the incident particle and the
atom.

Recently [37], a completely relativistic formalism
was suggested to describe the arising of bremsstrahlung
in elastic collisions between charged particles and
many-electron targets whose states could be described
in terms of the relativistic one-particle self-consistent
field approximation. Both principal bremsstrahlung
mechanisms, usual and polarization, and their interfer-
ence were considered. The motion of the incident parti-
cle was described by the relativistic formalism of the
DPWA method. This approach generalizes simpler
approximations applied earlier and allowed the spectral
and spectral—angular characteristics of bremsstrahlung
to be calculated for various collision conditions (from
nonrelativistic to ultrarel ativistic) with the participation
of nonrelativistic (light) and relativistic (heavy) atoms
and ions.

In this work, we restrict ourselves to consideration
of collisions of heavy incident particles with many-
electron targets within the framework of the approach
developed in [37]. It will be assumed that polarization
bremsstrahlung arises in a collision between an inci-
dent particle whose motion can be described in the rel-
ativistic Born approximation and aspherically symmet-
rical target (atom or ion) whose initial and final states
coincide. According to [37], the characteristics of
polarization bremsstrahlung are then expressed through
generalized multipole target polarizabilities of three
types corresponding to the allowed combinations of the
types (longitudinal, electric, and magnetic) of the vir-
tual and emitted photons in the amplitude of polariza-
tion bremsstrahlung.

LIn considering the polarization bremsstrahlung mechanism, we
must distinguish between the effects that are due to interaction
lag and the emission of high-multipolarity photons. Interaction
lag implies that the incident relativistic particle interacts with the
target not only via the Coulomb field but also (in the ultrarelativ-
istic case, mainly) viathe field of transverse virtual photons (see
[1]). Inthe latter case, the effective interaction radius increases as
the velocity of the incident particle grows. The multipole charac-
ter of radiation is solely determined by the kR, parameter value.
If kRy << 1, radiation is of an essentially dipolar character no
meatter what the velocity of the incident particle.
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Fig. 1. Feynman diagrams for elastic polarization
bremsstrahlung of a structureless charged particle which
experiences scattering on amany-electron atom. Solid lines
are the wave functions of the incident particle satisfying the
Dirac equation (Farry representation). The initial (index
“1") andfinal (index “2") incident particle states are charac-
terized by momenta p; , and polarizations y, . Double
lines depict target states, indices“0” and “n” correspond to
the initial (final) and intermediate (virtual) target states.
Dashed lines correspond to the wave function of the emitted
photon with energy w, momentum k, and polarization vec-
tor e, and dotted lines denote Green's function of the virtual
photon with energy w and momentum q.

The formalism described in this work allows multi-
pole expansions to be obtained for the amplitude and
cross section of polarization bremsstrahlung; these
expansions take into account radiation lag effects and
emission of high-multipolarity photons and can be used
in numerical calculations of the spectral and angular
characteristics of polarization bremsstrahlung. Most
attention is given to polarization bremsstrahlung of tar-
get inner shell electrons. Such a study is expedient for
two reasons. First, inner shell electrons make the major
contribution to the formation of the complete polariza-
tion bremsstrahlung spectrum in avery wide frequency
range [3]. Secondly, the special features of the com-
plete polarization bremsstrahlung spectrum that are due
to inner-shell electrons can be described using simple
approximations (such asthe hydrogen-like and the Har-
tree—Fock-Dirac approximations) without taking into
account many-electron correlations. The use of such
approximations allows the observed effects to be given
simple physical interpretation and substantialy
decreases |aboriousness of calculations.

So far, no detailed numerical analysis of the spectral
and angular distributions has been performed for polar-
ization bremsstrahlung of inner shell electrons (except
several first numerical results published in [37]). We
therefore believe the problem tackled in thiswork to be
fairly topical. The calculation results described below
show that taking into account higher order multipoles
resultsin a substantial asymmetry of the angular distri-
bution of emitted photons compared with the dipole
approximation and in noticeable changesin the spectral
characteristics of polarization radiation. In addition, the
important special feature of the cross section of relativ-
istic polarization bremsstrahlung, namely, its logarith-
mic increase with increasing the energy of the incident
particle, is clearly demonstrated.

Note that such calculations are of special impor-
tance for exact comparison with the recent experimen-
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ta data on bremsstrahlung caused by collisions
between electrons with 10-100 keV energies and vari-
ous solid-state, thin-film, and gaseous targets such as
Al, Cu, Ni, Ag, and Xe [38-40]. The experimental
results reported in these works are indicative of essen-
tial polarization bremsstrahlung mechanism contribu-
tions to the complete radiation spectrum in the energy
range in which arelativistic description of polarization
bremsstrahlung is necessary. In addition, of consider-
ableinterest are calculations related to relativistic colli-
sionsinvolving heavy ionsin view of the attempts made
recently in this direction [41]. In [41], the spectrum of
bremsstrahlung formed in collisions between helium-
like uranium ions with a 223 MeV/nucleon energy and
N, and Ar gas targets was measured.

2. POLARIZATION BREMSSTRAHLUNG
AMPLITUDE AND CROSS SECTION

Consider polarization bremsstrahlung (Fig. 1)
caused by an elastic collision between an incident par-
ticle with charge Z,e and mass m, and a spherically
symmetrical target (atom or ion) accompanied by the
trangition of the particle from initial state (p,, 1) (with

energy &, = ,/pi+m;) to fina state (p, Hp) (with

energy &, = ,/p; + M ). Astheinitial and final states of

the target coi ncide? the law of the conservation of
energy hasthe form

€ = g tw. (D)

The spectra—angular radiation  distribution
d’c/dwdQ,, which is obtained from the differential
cross section by the integration along the scattered par-
ticle momentum p,, direction, the summation over the
polarization of the emitted photon (A ) and the scattered
particle (l1,), and averaging over incident particle polar-
izations |,, iswritten as

dc  _
dwdQ,

iy > [l @)

p Hu H2(4m)

8pl(2T[)

where dQ, and Q, are the solid angle elements of the

emitted photon and scattered particle, respectively. The
amplitude of the process (Jl) is described by two Feyn-
man diagrams (Fig. 1), which correspond to composite
matrix elements of target transitions from initial state
“0” to excited state “n” and back to final state“0” under
the action of emitted photon A, field and the field of

2\We use the relativistic system of units (A = ¢ = 1). For four-
dimensional values, the (+ ——-) metric signature is used.
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the virtual photon characterized by the 4-potentia A’ =
(P, A). The amplitude has the form

_ 2 OOA ) yInHY A, 00
M= e ZE £,(1-i0) —gp—w
n
©)
|:(HVVA\)ln|A(y)’Y|0D:|

€ (1-i0)—g+w

Here, ' = (\°, y) arethe Dirac matrices. The summation
is over the quantum numbers of the complete spectrum
of target excited states and includes the contributions of
intermediate states with both positive (¢, > 0) and neg-
ative (g, < 0) energies. The potential of the emitted pho-
ton field has the form®

N
Ay = z eexp(—ik [T,), 4
a=1
where e is the polarization vector (further, we use e =
e on the assumption of a linear photon polarization).
The summation is over target electrons, r, is the coor-

dinate of the ath electron, and N is the total number of
electrons.

In the relativistic Born approximation, the initial
and final states of an incident particle are described by
the wave functions

Wilr) = e, p)exp(ip ) (5)
with bispinor amplitudes u,(e, p) defined as[2]

0 JE+mx,(ny) 0.
/e —m(o Thy) X, (-
Here and throughout, n, is the unit vector along direc-
tion a, and o are the Pauli matrices. Two-component
spinors x,(n,) satisfy the normalization condition
Xu(Np) Xu(Np) = 1 (symbol T denotes Hermitian conju-
gation).

The four-dimensional potential of the field created
by the incident particle is written as

uy(e, p) = (6)

N
A= 2,03 [ WLV Do 1 W)
©

N
=7e3 [, (1A (7)D;,(0, B (0).

Here, wand g are the energy and the momentum of the
virtual photon, D, (, r —r,) is Green’s function of the

3The /2w normalization factor is not included in the definition
of Any.
)
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photon,4 and the BY;(q) 4-vector is the Fourier trans-
form of theincident particle current,

Bbi(q) = for WOl Yy exp(=ig )W, (1)
= (2)°b"3(p, - p,—q),

where

b = ul (€2 PIY Y U, (€1 P 9)

The & function present in (8) allowsthe integration over
dqg inthelast integral in (7) to be easily performed, and
the virtual photon momentum provesto be equal to the
difference of the initial and final momenta of the inci-
dent particle,

q = P1—P,. (10)
At afixed photon energy, the minimum and maximum
transferred momentum values are q,;, = P, — P, and

qmax = pl + p2-

By analogy with the approach used in the Hartree—
Fock—Dirac approximation (e.g., see [42]), we assume
that target states |00] |nCcan be described by one-elec-
tron wave functions corresponding to states with defi-
nite relativistic energy €, total angular momentum j,
orbital angular momentum | = + 1/2, and total angular
momentum projection m values. Substituting (4)—(7)
into (3) can then be performed with replacing the sum-
mation over target electrons by the summation over
guantum numbersg,, j;, l;, and m (i takes on the values
0 and n) of target subshells in the ground and excited

states. One-electron wave functions W ;;,(r) then
have the following bispinor structure:

1 90NQ;jm(n)

) - _|:| Jilimy |:|
Panm® = TRite)e mQymer Y
Here g(r) = g, ;, (1) andf(r) = f ;, (r) arethelargeand
small relativistic wave function components, respec-
tively, which can be obtained by solving the system of
Hartree—Fock—Dirac radial equations (e.g., see [43]),
and Q;(n) are the spherical spinors defined according
to[44].

It follows that, for a many-electron target, the polar-
ization bremsstrahlung amplitude takes the form

M = Z,eb"D, (w, gM'(w, K, €; ). (12)

4 We use the Coulomb calibration of the photon propagator.
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The dynamic response of the target is described by the
equation
M"(w, k, € Q)

_ 2 v HOe Oye " Inmmjy’e |00
D wno_w

o U (13

N |:myveiqlirlnIel]{—iklirlom:l
Wt W %

Here, wy = £,(1 —i0) — g, is the transition energy, and
the Z summationisover the gy, jo, lo, and my quantum

{0}
numbers of target subshells in the initia (final) state.
All target subshells are assumed to be occupied. We

then havemy=—,, ..., lo. The Z sum istaken over the
{n

€ Im Iy @nd m, transition state quantum numbers and
contains the contributions of states with both positive
(g, > 0) and negative (¢, < 0) energies.

After separating the contributions of the scalar and
vector parts of the A’ potential [see (7)], the amplitude
iswritten as

_ 2
M = (4m)°Z,e(e [F)
= (4m)°Z,ee (FO + FO + ™),

where the F(& & Mterms [the meaning of indices (s, e, m)
is explained below] have the form

(14)

1é

() _ 0
e[~ = 4th2b
(19)
9 [%n(e, —K)Fno(@) |, Fon(@) Fnole, —k)}
Z Who— W Who + W '
{o.n
2
eqE@+pmy - _1_¢€
. )7 I q° (16)
y [%n(e, K Fon(R, q) , Fon(R, D) Fnol®, —k)}
{OZ} Wno— W Wno + W .
The R vector, which is orthogonal to q, is defined as
R = p- (I (17)
q

The % (e, k) matrix element describes target transi-
tion from ground state O to excited (virtual) state n
under the action of the e - yexp(—ik - r) operator,

Fon(e,—k) = [dr Wi (D)

x y'e Gy exp(=ik OF) W m ().

The Fo(q) and F,o(R, q) matrix elements describe the
0 — ntransition caused by interaction between atar-

(18)
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get electron and the scalar [proportiona to YPexp(iq - r)]
and vector [proportional toyexp(iq - r)] partsof thevir-
tual photon field created by the incident particle,

Fao(Q) = for W (D exp(iq W, (), (19)
FrolR, ) = [r W (YR Gy

X exp(l q L ) W80j0|0m0(r) .

The F (e, k), Fon(q), and Fo(R, q) matrix ele-
ments corresponding to the n — 0 virtual transition
can be obtained from (18)—(20) using the substitution
n -—

Substituting the multipole expansions of the
e-yexp(—ik - r) and exp(—q - r) operatorsin spherical
vector Y% Y(n) and spherical Y,(n) =n - Y{(n) har-
monics defined asin [44] and performing the necessary
transformations by the formulas from [44, 885, 7], we
can obtain the multipole expansions for the F& & M vec-
tors given below. The selection rulesfor multipole tran-
sitions of the magnetic [index (m), A = 0], electric
[index (), A = 1], and longitudinal [index (s), A = —1]
types are different,

(20)

dd, A =0,
o+l = 0 (21)
[even, A = 1.

The expression for F©® therefore only contains compo-
nents proportional to the electric multipoles of the emit-
ted photon field, whereas the F©® and F™ terms are
diagonal with respect to the A indices of the virtual and
real photons.

It follows that, for a spherically symmetrical target,
the amplitude of polarization bremsstrahlung is
expressed through partial generalized polarizabilities
of three different types corresponding to the following
combinations of virtual and real photon types: longitu-
dinal—electric, electric—electric, and magnetic—mag-
netic. Each of these polarizabilities depends on photon
energy w and orbital momentum | (these values are
equal for both photons) and on the absolute values of
momenta g and k of the virtual and real photons.

Such a form of representing the polarization
bremsstrahlung amplitude has considerable advantages
of both fundamental and computational character. The
possibility of expressing .l in terms of the polarizabil-
ity types specified above, which contain all necessary
information on the dynamic structure of the many-elec-
tron target, smplifies the problem and all ows computa-
tion time for calculating the characteristics of polariza-
tion bremsstrahlung to be substantially reduced.

The anaytic expressions for F(&© ™ have the form

o - b /d+1)
a & 2+l (22)

X Yie(ng) Y (nd o (e, g, K),
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©_ _1 I(1+1)
F o’ q Z 20+1 (23)
x (b DY [ * () Y (m(n) B (@, 9, K),
Em — l I(1+1)

x (b D«“”(nq)w“’)(nk)s e, q, k).

In (22), it is taken into account that b% = b - q; this
relation follows from the law of conservation of the 4-
vector of incident particle current. The summation over
I isfrom| = 1to infinity. The partial generalized polar-
izabilitiesin the right-hand sides of (22)—(24) are given
by

a(w, q.K) = ZI(;- lez
. 2C5PM) £500< 1) 557 ) (25)
€oolo (l)ﬁo—(lt)z
sI'!jnlﬂ
BM(w g, k) = (21 +1)€’
200,0Con (N Tk N F4(a; 1)
2 o @9

€ololo
En]nln

A =01

The f& (s 1) [A =-1, 0, 1; (b, &) = (0, n); x = (k, )]

radial integrals and the C{)(1) coefficients have the
form

0 1) = jdr(gb<r)ga(r)+ FE() f.(0)ji(xr), (27)

fla(x; 1) = [er(@ ()TN + F50)gur)ii(x0), (28)
0

0 1) = jdrz(gb(r)fa(r)—fb<r)ga(r))"( "

(29)

‘|(?: 1§(g§(r) fa(r) + 15(r)ga(r))

N Fdh(xr) N j.(Xr)} E
X dr xr g
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NI~ E:_
I\)Il—\ >

D
CHXN) = E(1 lA1)N 5
0

[ |

(30)
o, A = #1,

D 2
x E?_(KO+ Kp)
O P(+1)*
Here, j,(2) isaspherical Bessel function,
=10+ -+ -3

isthe relativistic quantum number, the 3j Wigner sym-

bol whose square appears in the expression for C$(1)

[the coefficient in front of braces in (30)] is defined
according to [44], and

N, = J@.+ D@, +1)...
Il +lc+lg+1g
E(100 1) = 22D ;

The right-hand sides of (25) and (26) can be trans-
formed to aform more convenient for computations by
introducing the relativistic one-particle Green’s func-
tion to describe excited electronic states of the target.
The corresponding equations are given in the Appendix.

To determine the spectral—angular distribution of
polarization bremsstrahlung, (14) should be substituted
into (2). Summing over emitted photon polarizations
(taking into account that

k FS*™ Ok DYy = 0),

and representing the dQ, differential in the form

d,ada/(p.p,), we obtain

21 Omax

J’dcpq J’ qdqF CF.

Hi M2 0 Umin

Here, a = e4/#ic = 1/137 is the fine structure constant.

Thefurther transformations of (31) include the sum-
mation (averaging) over incident particle polarizations,
the multipole expansion of the Y,(Ll(nk) Yf?n)*( ny)
quadratic form, and the integration over the dg, angle.

Omitting intermediate calculations, let us write the
final result for cross section (31), which determines the
spectral—angular polarization bremsstrahlung distribu-
tion,

d’c
dwdQ,

Z“az—w

(31)

d’c
dwdQ,

Z(ZI +1)P, (cosek) k, (32)
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q 2 2 2
do ™ .20 _ P19 —(p. [0)
v = 220—2_ rdg’[A +B, +C, +D,], (33) sin"6, = 2 7
d p 2 3 k k k
. _ (@ = %) (G =)
- - ]
A, = 5+ (P My (P2 NP () apiq’
> 2p1 [q = qminqmax + q2,
X z A0+ + 11"+ 1) =1 (,+ 1)) (34) , (39)
LI'=1 2p2|:q = qminqmax_q ’
2
Op g O Ty nCmex + O
x [ kO RE[G (00, q, k)(X*(Q), a, k)] , — - P1 — OminGmax + 9
doood | y =00 =5 2pq 0 O
1 |:q2—002 2. 20 [] qz—()t)2 qrzninc]ﬁ"lax_qz("‘)2
= + = —_—
e a1 7+ (P ) (P2 [hy) el
0 1 . .
i . Itiseasy to seethat the C ; and Dy termsin (36) and
x5 > ENrAIN+ 1)1+ 1) (35) (37) identically equal zero because the corresponding
LI'=1AMA =0 combinations of the Legendre polynomias and their
O i derivatives vanish. The summation over I, in (32) there-
x0 1 g Re[M(w, 4, BN (w0, 0, K], forestartswith = 0for A,_and B, , I, =2for C, , and
U1-100 l,=1for D, .
2.2 YOy The spectral distribution of radiation is obtained
= P1SIN eq22yP|k(y) (e + PG from (32) by the integration over solid angle dQ,,
© (@ =) VU= DL+ D) (1 +2) .
0 1 do _ 2. @ <« I(l+1)
' —_— = a_
x5y EDMEUJIAN)I(+ 1)1+ 1) dw  "PTop2Z 21+1
LI=1aA =0 (36) G .,
-
NSNS x jdqz[éq 5+ 2(p1 (o) (P T Hlan(w, 4, K
di1-10001-210 Arin , (42)
2 2 2 .
)% q —-w +2p;sin’g,
x Re[ (e, q, KB (@, 0, K] NPV
4p,(p, Chy)sin’e,  Pi(Y) 2
le = p:L(p22 q)Z : I X Z |BI(}\)((*J1 q, k)| .
q -w J(l+ 1) 2o
] 1
' TR An important characteristic of the relativistic polar-
x Z SAIADI(I+ 1) V(I + 1) 3 ization bremsstrahlung cross section is its logarithmic
LI'=1r=0 (37) growth as the energy of the incident particle increases
O 00 [ [3]. Qualitatively, the reason for this is as follows.
X DI P DDI e | 0 Unlike anonrelativistic particle, arelativistic one inter-

di1-10000-110

x Re[BM(w, g, k)ajt (w, g, K)] -

In these equations, P, (y) is the derivative of the Leg-

endre polynomial with respect to its argument. Using
the law of conservation of energy [Eq. (1)] and (10), we
can express al kinematic coefficients in (34)—«37)
through variables w, g, Qrin, aNd Oax 8S
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acts with the target not only by its Coulomb field but
aso (inthe ultrarelativistic case, predominantly) by the
field of transverse virtual photons (e.g., see [12]). The
effective radius of this field increases as the energy of
the incident particle grows, ailmost to infinity in the
ultrarelativistic case. As aresult, the distances at which
an incident particle can effectively polarize a target
increase; accordingly, the polarization bremsstrahlung
cross section increases. We will analyze this conclusion
below.
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We assume that the initial and final energies of the
incident particle and the emitted photon energy satisfy
therelation €, = £, > (. It can then be taken that

w
Omin= =1  Omax = 2pl1

Vi

where v, istheinitial velocity of the incident particle.

As an incident relativistic particle effectively polar-
izesthe target even if passes at alarge distance from it,
the characteristic transferred momenta are small, q ~
Umin~ Ror . Formally, the 5% D(q; 1) matrix elements

in (25) and (26) contain arapidly oscillating function at
gR, > 1 and are therefore close to zero.

For brevity, let %> °(cs, g, k) denote the terms

to the right of the klnematic coefficients in (34)—«37),
which are smooth functions of g. The contribution of
the q ~ g, region to integral (33) can then be written

in theform
|:d0'|ki| _ Z do dq
dw lqogy, pd 871 1,[
qmm
2 2
% {Eﬂ 4°° + (P2 [he) (P2 th)g%ﬁ(w, a, k)
q —w :213125'” eq% 0,6, )
2(9" - w)
sin’e
» P00 g6, g 1
(q° - )
+4p1(p2 q)sm eq%l( wa.K |
9 -w -

Here, q, isthe cutoff parameter, which satisfiestheine-
quality Oax = 0o = Qmin andiscloseto qyR, ~ 1inorder
of magnitude.

Let us integrate each of the four termsin (43) with

respect to g assuming that ?&ABCD((», g,k =

%l/: ®CP(0, g k) and rejecting small terms of the
order of w/e; , < 1. Thisgives

doIk 2
T oo, = 29

1
2 %I (w Omins )
€ (JL)

1

2} 5% 6, G INEE
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{mEgoVD_,_ p1D2 Iny—%} (44)

B
2
1

+ w%%ﬁ(w, i k)[lny _Y }

4 1 +vy10
+;-2?€E(w,qmm,k)[l— InDl E}D

2v,y° M -v O
Here, the y = &,/m,c? relativistic parameter is intro-

duced. The spectral radiation distribution takes the
form

%)
dwlq qu.n

+ —5— (W, iy K)

€100

[ﬂoYD P12 o|d
{ Gt 2%2'“'19}%‘

where the #5(w, g, K) and #g(w, g, k) values can be
written in the form

2202 556 (© G L

(45)

o, 0.K) = 22'" Lo ,0.01%

L) 2
D 5 g q

=1 A=0,1

The behavior of the polarization bremsstrahlung
cross section at €, , > wistherefore determined by the

terms proportional to In(q,i,R;) and Iny which cor-
respond to the contributions of the longitudina (Cou-
lomb) and transverse (vector) parts of the electromag-
netic interaction between arelativistic incident particle
and target electrons. The contribution of the terms with
Iny increases as the energy of the incident particle
grows and becomes predominant at y >1, which causes
an increase in the polarization bremsstrahlung cross
section. Thiswas for the first time noted in [19], where
polarization bremsstrahlung caused by a collision
between arelativistic particle and atarget wastreated at
the level of the dipole approximation.

Ho(e, g, k) =

3. CALCULATION DATA ON POLARIZATION
BREMSSTRAHLUNG CROSS SECTIONS

The results described in this section (except those
shown in Fig. 4) refer to proton collisions with the
Al*2 Ag*6, and Au*’® hydrogen-like ions. Because of
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Fig. 2. Spectral dependences of wda/dw for polarization bremsstrahlung arising in collisions of protons with (a, ¢, and €) 1.5 GeV

and (b, d, and f) 3 GeV energies with (aand b) AI*12, (c and d) Ag™®, and (e and f) Au*"8 ions. The thick solid line describes the
behavior of relativistic cross section (42), and the thin solid line corresponds to the nonrel ativistic dipole case. The contributions of

the terms proportiona to the squares of the o (w, g, k) and Bl(l)(oo, g, k) polarizabilities [see (42)] are shown by dashed and dot-

and-dash lines, respectively. The contribution of the term proportional to the square of the modulus of the Bfo)(oo, g, k) polarizabil-

ity issmall and is not shown.

the large mass of the proton, the mechanism of usual

bremsstrahlung is suppressed by the m[,z ~ 1078 factor

and can therefore be excluded from consideration in a
widerange of emitted photon energies[21-24]. In addi-
tion, in the range of emitted photon energiesthat we are
considering, which are closeto theionization potential s of
inner target shells, polarization bremsstrahlung predomi-
nates over the other radiation mechanisms such as second-
ary dectron bremsstrahlung [45], radiation ionization
[46, 13, 20], and molecular orbital radiation [47].
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The polarization bremsstrahlung cross sections
were calculated at the relativistic Born approximation
level by (42) and (32) for spectral and spectral-angular
radiation distributions. The contributions of the first
five multipoles were taken into account. The dynamic
response of targets was described by amethod based on
representing partial polarizabilities with the use of a
relativistic Coulomb Green's function [37]. The curves
that corresponded to the nonrelativistic dipole case
were obtained as described in [28].
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Fig. 3. Dependence of polarization bremsstrahlung cross section wdao/dw on incident proton relativistic y factor in collisions with
(aand b) AI*12, (c and d) Ag**, and (e and f) Au*"® for emitted photon energies w = (a, ¢, and €) 1.5 and (b, d, and f) 4l (here,
| istheionization potential of the 1starget subshell, which approximately equals 2.3, 31, and 93.5 keV for Al*12, Ag™®, and Au*’8,
respectively). The thick solid line depicts relativistic cross section (42). The behavior of the terms proportional to the squares of the

(e g, k), B %(w .k, and BM(w, g, K) polarizabilities [see (42)] is shown by dashed, dotted, and dot-and-dash lines, respec-

tively.

Target inner shell electrons make the major contri-
bution to the formation of the complete polarization
bremsstrahlung spectrum in the region of photon fre-
guencies higher than the ionization potentials of the
corresponding shells (e.g., see [3]). The results given
below can therefore easily be generalized to neutral Al,
Ag, and Au atoms by multiplying the cross sections
obtained for the hydrogen-like ions by a factor of 4,
which takes into account a twofold increase in the
polarizabilities of filled atomic K shells.

The spectral dependences of wdo/dw calculated for
two incident proton energies, €, = 1.5 and 3 GeV, are

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

shown in Fig. 2. Note two special features of these
plots. First, the contribution of the cross section part

proportional to the square of polarizability Bfl) (wq,k)
modulus [see (42)] becomes more noticeable as the
energy of the incident particle increases because of a
relative increase in the contribution of the mechanism
of exchange of transverse virtual photons between tar-
get and incident particle electrons as the energy of the
latter grows, whereas the contribution of the Coulomb
interaction part is only determined by the particle
velocity [see (45)] and is virtually independent of €, at
Vi =C.
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Fig. 4. Angular dependence of polarization bremsstrahlung
cross section (normalized with respect to the cross section
value at 8 = 90°) for scattering of a proton with a 1.5 MeV

kinetic energy on an aluminum atom and emitted photon
energies in the range 5.18-5.67 keV. The thick solid line
correspondsto cross section (32), and thethin solid linewas
obtained using the nonrelativistic dipole approximation.
Solid circles are the experimental data (see [15]).

The second point to be mentioned is the ratio
between the relativistic and nonrelativistic curves. At
intermediate energies £; ~ m,c?, the wdo/dw cross sec-
tion calculated by the nonrelativistic dipole approxima-
tion exceeds the relativistic polarization bremsstrahl-
ung cross section, because, at a given photon energy,
nonrelativistic dipole polarizability ay(w, ) exceeds
the corresponding relativistic component a,(w, g, K),
which makes the largest contribution to the spectral
dependence of polarization bremsstrahlung at medium
incident particle energies (a more detailed analysis of
the contributions of various multipoles to the polariza-
tion bremsstrahlung cross section is given below in this
section). The contribution of the term proportional to

B™(w, g, k)|* becomes more significant as the inci-
dent particle energy increases. The relativistic cross
section therefore begins to increase and exceeds the
nonrelativistic cross section. Such a behavior follows
from the analysis of the integrand in (33) given in the
preceding section.

The wdo/dw cross section and the contributions of
separate cross section parts proportional to the squares
of the moduli of the corresponding polarizabilities are
shownin Fig. 3 asfunctions of they = &,/m,c? rel ativis-
tic factor of the incident proton for two emitted photon
energies specified above and for each of the three ions
under consideration, Al**2, Ag*¢, and Au*’®. These
resultsvisually demonstrate alogarithmic growth of the
polarization bremsstrahlung cross section with increas-
ing the energy of theincident particle.
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Animportant property of the approach suggested in
thiswork istaking into account effects related to radia-
tion lag and radiation of high-multipolarity photons.
The influence of the multipole character of radiation
manifests itself even at low incident particle energies
€, ~ m,c? by asymmetry of the angular radiation distri-
bution. The angular radiation distributions calculated
by (32) are compared with the results obtained using
the nonrelativistic dipole approximation and the exper-
imental data obtained in [15] in Fig. 4. These curves
describe scattering of protons with a 1.5 MeV kinetic
energy on aluminum atoms. The emitted photon ener-
giesarein therange 5.18-5.67 keV, in which polariza-
tion bremsstrahlung predominates over the other radia-
tion mechanisms [15]. The calculations were per-
formed for hydrogen-like wave functions with an
effectivetarget charge of Z; = 12.7 (see[48]). Notethat,
in contrast to the symmetrical curve of the nonrelativis-
tic dipole approximation, the curve corresponding to
cross section (32), which takes into account the multi-
pole character of radiation, reproduces well the
observed radiation shift in the incident particle direc-
tion. This result is already obtained by taking into
account quadrupole corrections, which allows us to
claim the validity of the approach suggested in this
work and recommend it for calculating polarization
bremsstrahlung cross sections.

Anincrease in the incident particle energy not only
causes the appearance of high-multipolarity photon
radiation effects but aso increases the contribution of
relativistic effects related to radiation |ag, which results
in still more substantial differences between the angular
radiation distributions calculated in the relativistic and
nonrelativistic approximations. The importance of tak-
ing these effects into account in considering polariza-
tion bremsstrahlung caused by collisions between rela-
tivistic incident particles and a heavy target follows
from Fig. 5, where we plotted the spectral-angular radi-
ation distribution profiles wd?c/dwdQ, for €, = 3 GeV

proton collisions with the Al*12, Ag*6, and Au*"® ions
and the specified emitted photon energies. Inthese plots
(and dso in Figs. 6 and 7), the length of the segment
connecting the origin and a curve point equals the dif-
ferential polarization bremsstrahlung cross section (in
millibarn units) in the corresponding direction. The
direction along the horizontal axis (8, = 0) isthe direc-
tion of incident particle motion. The curves describing
the contributions of cross section components propor-
tional to the squares of the moduli of the a,(w, q, K),

(w, g,k , and BP(w, g, k) polarizabilities are also
shown in Fig. 5. In contrast to the spectral distribution,
the sum of these curves does not correspond to total
cross section (32), which aso takes into account cross
terms.

The results obtained in this work show that taking
into account rel ativistic effects and the effectsrel ated to
the radiation of high-multipolarity photons noticeably
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Fig. 5. Angular distribution wdzcr/dwko for polarization bremsstrahlung arising in collisions between 3 GeV protons and

(aand b) AI*12, (c and d) Ag™®, and (e and f) Au* "8 ions for two emitted photon energies of (a, ¢, and €) 1.5 and (b, d, and ) 4I
(see Fig. 3). The thick solid line is relativistic cross section (32), and the thin solid line was obtained in the nonrelativistic dipole
approximation. The dashed, dotted, and dot-and-dash lines correspond to the contributions of the terms proportional to the squares

of the moduli of the ay(a g, k), B %(w, g, k) , and B (e, g, k) polarizabilities, respectively [see (32)—(37)].

changes the angular distributions of emitted photons
and makes these distributions appreciably asymmetric
compared with the distributions of the nonrelativistic
dipole approximation, which are typically symmetrical
with respect to the 6, — 11— 6, operation. Therelativ-
istic angular distributions are shifted in the directionin
which the incident particle moves, and the distributions
become more asymmetric as the emitted photon energy
increases.
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The contributions of separate multipoles to the
angular radiation distribution for proton collisions
with the Ag**6 and Au*"8 ions (at the same parameter
valuesasin Fig. 5) areanalyzed in Fig. 6. The curves
shown in Fig. 6 were obtained by Egs. (34)—«37) in

which only the terms with I, I' = 1 for the dipole
approximation, |, I' = 1, 2 for taking into account
guadrupole corrections, and I, I' = 1, 2, 3 for octupole

corrections were retained.
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Fig. 6. Multipole contributions to the angular polarization bremsstrahlung distribution oodzcldoonk formed in collisions between

protons of a3 GeV energy with (a) Ag+*® and (b) Au* "8 for emitted photon energies equal to four times the ionization potentials of
thetarget 1s subshells. The dashed, dotted, and dot-and-dash lines are the angul ar distribution profilestaking into account the dipole,
quadrupole, and octupole radiation contributions, respectively. The thick solid line corresponds to the exact result taking into

account the contributions of the first five multipoles.
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Fig. 7. Angular polarization bremsstrahlung distribution oodzcy/doonk for collisions of 3 GeV protonswith (aand b) Ag

|
-0.5 0 0.5

+46 and (C

and d) Au*"8 and two emitted photon energies of (aand ¢) 1.51 and (b and d) 41 (see Fig. 5). The thick solid line was obtained in
the relativistic dipole approximation by (46), and the thin solid line was obtained in the nonrelativistic dipole approximation. The
dashed lineisthe summed contribution to the cross section of termswith |, = 0 and 2, respectively, in the dipole approximation [see

(46)].

Note that, apart from the contributions of quadru-
pole and octupole corrections, which to a substantial
extent determine asymmetric angular radiation distri-
bution shapes, the curves obtained in the dipol e approx-
imation also have asymmetric shapes substantially dif-
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ferent from those obtained in the nonrelativistic dipole
approximation, because, in contrast to the nonrela-
tivistic approximation, cross section (32) takes into
account cross term contributions. These contributions
are proportional to the products of polarizabilities

AND THEORETICAL PHYSICS Vol. 94 No. 4 2002
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B(w a,K) and Bi’(w g,k and B(w g,k and
o4 (w, g, K) corresponding to interference between radi-
ated photons of different types. Indeed, double differ-
ential cross section (32) for the dipole case can be writ-
ten as

[ d’o ] _ rdap
dwdQy g,  Hdddly, (46)
x (1 +ay(w)P,(cosb,) + ay(w) Py(coshy)),

where a, and a, are the angular anisotropy coefficients
in the dipole approximation. These coefficients can be
obtained in an explicit form from (32)—(37); the corre-
sponding equations are, however, too cumbersome to
be given here. Their dependence on the energy of emit-
ted photons for scattering of 3 GeV protons on the
Agr®and Aut’®ionsisshownin Fig. 8 to shed light on
the reason why the dipole curves shown in Fig. 6 are
asymmetric. Indeed, while the contribution of the terms
related to the a; coefficient is small for low emitted
photon energies (kr < 1), it rapidly grows and becomes
predominant as wincreases. Thisaongside higher mul-
tipole contributionsresultsin the distributions shown in
Fig. 6.

4. CONCLUSION

We suggested a completely relativistic formalism
for describing polarization bremsstrahlung caused by
elastic collisions between charged particles and many-
electron targets. This approach can be used to deter-
mine spectral and angular radiation distributions in
wide ranges of collision energies and emitted photon
frequencies. With dlight modifications, it can also be
applied to describe a wide class of collisiona systems
with internal structuresinwhich relativistic effects play
an important role. For instance, this approach can be
used to describe polarization bremsstrahlung arising in
relativistic collisions of nuclei. The dynamic polariza-
tion of colliding nuclel then causes photon emission by
the polarization bremsstrahlung mechanism, and the
major contribution is made by nondipole radiation
(quadrupole radiation and radiation of higher multipo-
larities).

If the relativistic incident particle possesses an inter-
nal structure, we need not develop a new approach tak-
ing into account the polarization bremsstrahlung of this
particle. The required formulas can be obtained from
those given in thiswork by taking into account the spe-
cia features caused by the Doppler effect and light
aberration, asis done in [49, 50] for relativistic atom—
atom collisions. In these works, the internal structure of
colliding particles was described in the nonrelativistic
dipole approximation.

Theformalism described above was used to develop
an effective method for calculating polarization
bremsstrahlung cross sections. This method isbased on
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Fig. 8. Dependence of angular anisotropy coefficients for
dipole cases a; (dashed line) and a, (solid line) [see (46)]
on the energy of photons emitted in collisions between
3 GeV protons and (a) Ag**® and (b) Au*’8.

the use of the hydrogen-like approximation for describ-
ing the dynamic atomic response. This approach is
advantageous because the hydrogen-like model allows
the polarization bremsstrahlung cross sections to be
determined very accurately at photon frequencies
exceeding the ionization potentials of inner target
shells, which obviates the necessity of complex numer-
ical calculations. Note that various approximations to
the relativistic wave functions of the target can be used
within the framework of the suggested approach. Note
that the Hartree-Fock-Dirac approximation allows
many-electron correlations to be taken into account in
calculating the dynamic polarizabilities of targets. In
addition, an effective approach to calculating polariz-
abilities can be based on the Sternheimer method. In
essence, this method reduces summing over an infinite
number of intermediate atomic states to solving inho-
mogeneous differential equations (e.g., see [51]).

The suggested method was used to calculate the
spectral and angular characteristics of polarization
bremsstrahlung arising when a heavy particle (proton)
isscattered on the Al*2, Ag+#, and Au*"® hydrogen-like
ions, which allowed usto study some general properties
of polarization bremsstrahlung cross sectionsin therel-
ativistic case. Taking into account relativistic and mul-
tipole effects was shown to result in substantial asym-
metry of the angular distributions of emitted photons
compared with the nonrelativistic dipole case and in
noticeable changes in the spectral characteristics of
polarization radiation. We also showed that the polar-
ization bremsstrahlung cross section logarithmically
increased as the energy of the incident particle grew.
The results described in this work may be useful in set-
ting up new polarization bremsstrahlung experiments
and repeating those performed earlier but at anew tech-
nical level.

Aninteresting problem, which deserves special con-
sideration, is an analysis of the asymptotic behavior of
the completely relativistic bremsstrahlung cross section
including the contributions of both the usua and the
polarization mechanism in the region of high photon
energies comparable with the rest mass of the electron.
A nonrelativistic description of atomic response then
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becomes inapplicable, and using more complex
approaches to describe atom electrons excited to the
continuum of negative frequencies becomes necessary.

An analysis of inelastic polarization bremsstrahlung
is outside the scope of thiswork. The development of a
completely relativistic formalism for describing these
processesis of specia interest.
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APPENDIX

The Representation of Generalized Polarizabilities
with the Use of Relativistic Green’s Function

The multipole bispinor structure of the one-particle
relativistic Green’s function is determined by the equa-
tion (e.g., see[52])

Ge(rary) = Z

gjlm

Weiimlr 2) q"Zjlm(r 1)V0 _ 1

E—-¢(1-i0) r, (47)

XZD Ejl(errl)Yll(n21n1) IGE]I(rZ, D Yir(ny, 1)|:J
T BGE s 1) Vi ) ~GET 1) Y1 N
where

j
YNz Ny = Z lelm(nZ)Qjlem(nl)

m=-—j

and the radia parts of the Green's function are
expressed in terms of the radial functions of the large
Qi(r) and small fy(r) excited electron wave function
components

‘é,’l(rz.ro ‘é,’l(rz.rom -y 1
(E31)|(r2’ ry (I;})I(rZ, 1)D € E-e1-10)
(49)
< %gsjl(rz)g:jl(rl) eji(r2) F3i(ry) D
B fa(Agr)  faThD D
Using (48) in (25) and (26), we can write the o, (w,
g, k) and B> (w, q,k) polarizabilities in terms of

GE(r, 1)) asfollows:

oy, g, k) = —(2| 1Y Y Co

€ololo Inln
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> = 1)de1dle|(qf1)(fo(rz) 95 (r2)

|:1,2

(49)

IZ(rZ)GSJ (2, 1) IZ(rZ)GSJ 1 (T2 1) DD go(rl) 0
(r2)G£j 1 (T2 Ty) IZ(rZ)GSJ 1 (T2 Ty) DD folr) D

Pk =@+ Y S Col)

€ololo Jnln

0
0
ol

00 cO

) | drydroji(ara) jikro) (o (ra), g5 (1))

i=1,200

(50)

DGé (r21) G2 (o) Dfo(rl)D

OGE (1) G (1 12) DD Jo(ry) D

P k) = @2 +1) 5 5 Conl)

€oJolo Inln

x Idrldrz( f5(r2), 95(r2))
0

i=120

(51)

BHEN)CY, (1 1) 1)IAICE, (1) B

X
0 e 0
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Here g, =€,— W, & = €5+ w, and the Iiz(r) functionis
defined as
s _ Ko—Kardji(@r) _ ji@r)g, jiar)
WO =D o g ot g 2
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Abstract—It is shown that upon the application of an external magnetic field, a gas of ionized particles may
experience noninversive partial velocity amplification of radiation by ions due to their Larmor rotation. In this
case, virtually all ions may be in the ground state. It may happen that approximately half the number of ionsin
the medium amplify the incident radiation. The integrated absorption coefficient remains positive due to the
enhancement of absorption of radiation by the other half of ions. Noninversive amplification of radiation takes
place when the condition w, = I ?/kvy is satisfied (w is the cyclotron frequency of ionsin the magnetic field;
I" is the homogeneous half-width of the absorption line for ions, and kv is the Doppler width). In the case of
interaction of atomic ionswith radiation in the optical range, this correspondsto magnetic fields B = 600 G (for
the ion mass M ~ 10 amu). Noninversive partia velocity amplification of radiation is a “latent” effect in the
sense that it disappears upon averaging over all velocity directions of ions. This effect is associated with the
emergence of phase incursion of the induced dipole moment oscillations for ions moving in circular cyclotron

orbits, which depends on the ion velocity. © 2002 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

It iswell known that the Larmor rotation of ionsin
a magnetic field may lead to a sharp change in their
absorption line profile [1-3]. Namely, for observation
across the magnetic field and for w, = I (w, is the
cyclotron frequency of ionsand I' is the homogeneous
half-width of the absorption line for ions), the Doppler
profile of theion line splitsinto anumber of equidistant
peaks. The width of each peak is equal to the homoge-
neous absorption line width 2I', and the distance
between adjacent peaks is equal to the cyclotron fre-
guency w, of ions. If the average Larmor radius of an
ion orbit is much smaler than the wavelength, the
absorption line has a Lorentz profile with a homoge-
neous width 2I" which may be much smaller than the
Doppler width [1]. Such a narrowing of the line is due
to the limitation of the spatial displacement of ions
across the magnetic field (which eliminates the nonho-
mogeneous Doppler broadening) and is similar to the
well-known collision-induced narrowing of spectral
lines due to the Dicke effect [4-6].

It is natural to assume that the Larmor rotation of
ionsin amagnetic field also leads to a sharp changein
the radiation absorption by ions with a fixed value of
their velocity v. The corresponding theoretical calcula-
tionslead to acompletely unexpected result. It turns out
that groups of ionswith definite directions of velocities
inamagnetic field amplify the radiation incident on the
medium even when all ions are in the ground state.

The present work is devoted to atheoretical analysis
of this phenomenon.

2. BASIC RELATIONS

Let us consider a gas of ionized particles in a con-
stant uniform magnetic field B. Let radiation in the
form of a running monochromatic wave be resonantly
absorbed during the m-n transition between the ground
(n) and the first excited (m) levels of ions. We will con-
fine our analysis to the simple case when the Zeeman
splitting of the absorption line can be disregarded. For
example, line splitting is absent in the norma Zeeman
effect (the Landé g factors of the combining states m
and n are identical) when radiation linearly polarized
along the magnetic field B propagates at right anglesto
thisfield.

The radiation absorption probability P(v) at the m—
n transition (P(v) is egqual to the number of radiation
absorption acts per unit time for a particle with agiven
velocity v in aunit interval of velocities) is defined by
the nondiagonal element p,,,(v) of the density matrix

[6]:

P(v) = —ﬁRe[iG*pmn(V)]’

T, @)

" AR
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where N is the concentration of ions, B, is the second
Einstein coefficient for the m—n transition, | isthe radi-
ation intensity, wand A arethe frequency and the wave-
length of radiation, and I, is the spontaneous decay
rate for the excited state m. For alow radiation intensity
under steady-state and spatially homogeneous condi-
tions, p,, (V) is determined from the equation [6]

[%m_i(g —k V) + w [V x h] a%}pmn(v)

2
= Spn(v) +IGNW(v),
where
W, = I\G/I_B(_:, Q= W — Wy (3)

h = B/B is the unit vector in the direction of the mag-
netic field, k isthe wave vector of radiation, W(v) isthe
Maxwell velocity distribution, S,,,(v) isthe “nondiago-
nal” collision integral, w is the cyclotron frequency of
ions, e is the elementary electric charge, M is the ion
mass, and wy,, is the frequency of the m-n transition.

For the nondiagonal collision integral S,,(V)
appearing in formula (2), we will use the approxima-
tion conventionally employed in nonlinear spectros-
copy [6],

Sm(¥) =~ ~20,,(v), @

and indicating that collision completely breaks the
phase of the oscillating dipole moment.

We will solve Eq. (2) in a system of coordinates in
which the z axis is directed along the magnetic field B
and the x axis is directed along the wave vector k (we
assume that k [0 B). In the velocity space, it is conve-
nient to go over to the cylindrical system of coordinates
Vo, 9, v, (Vi = vacosd, vy = vising). In these coordi-
nates, Eq. (2) taking into account Eq. (4) assumes the
form

[r ~i(Q —k,v cosd) —wc%}pmn(v)

= IGNW(V).

(%)

Solving this linear nonhomogeneous differential
equation, we obtain the following expression for the
radiation absorption probability P(v) (1):

P(v) = 2|G*W(v)W(v,)

Cexp(=ing)J. ()]  ©
r—i(Q-nw.) |’

n=-—ow

n=

X Re[exp(iBsinq))
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where
D 2
W(vy) = 1 2exp[-l—%,
(,\/1_'[V-|-) 0 vil
(7)
1 OvHo
W(v,) = expd-—,
Jve T Ov

_ kvg [k T
B - wc ’ VT - M 1

Jn(B) isaBessal function of the first kind, W(v;) and
W(v,) arethe Maxwell distributions over the transverse
and longitudinal (relative to the magnetic field B) com-
ponents of velocity v, v+ isthe most probable velocity
of ions, kg is the Boltzmann constant, and T is the tem-
perature. In zero magnetic field (for w, = 0), the radia-
tion absorption probability P(v) is defined by the well-
known formula[6]

P(v) = 2|GI° T W(v)

M+ (Q-—k On)?

(8)

3. ABSORPTION LINE PROFILE

The absorption line profile is defined by the radia-
tion absorption probability integrated over velocities:

PEJ’P(v)dv.

In accordance with the well-known results [1-3], we
obtain the following expression for P from Eq. (6):

n=o

— 2 In(u)
P = 2|G reXp(_u)n:Z_mr2+(Q_nwc)2’ o
_ (kvy)®
H 2

wherel, (1) isamodified Bessel function [7]. It follows
from Eq. (9) that the Larmor rotation of ionsin a mag-
netic field may lead to the emergence of equidistant
peaks (cyclotron resonances) in the absorption line
profile. The distance between adjacent peaksisequal to
the cyclotron frequency . of ions, and the width of an
individual peak is determined by the homogeneous
width 2I" of the absorption line.

In the case of Doppler absorption line broadening and
a moderate magnetic field (kv > I, w.), we can derive
from Eq. (9) the following formula, which isvalid in the
radiation frequency detuning range |Q| < kv [1]:

_ _0Qr
p= Poexp[ o= 15}
y sinh(2mtl/w,)
cosh(2ml/w,) — cos(2nQYw,)’

(10)
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Fig. 1. Radiation absorption probability integrated over velocities as afunction of the radiation frequency detuning for various val-
ues of magnetic field: (a): I''kvt=0.1, w./I" = 10, 5, 2, 0; the values of parameter w./I" correspond to the arrangement of the curves

in descending order near Q = 0; (b) kvt = 1072, the solid curve corresponds to w,/I" = 100 and the dashed curve to w, = 0.

where

p = 2/mG’
0

= S (11)

is the radiation absorption probability at the line center
under Doppler broadening in zero magnetic field. The
absorption line described by formula (10) has the form
of aDoppler profile modulated by the periodic function
of the radiation frequency detuning Q with a period
equal to w,. The oscillating function P (10) has peaks
for Q = nw, and minimafor Q = (n + 1/2)w,. For w, >
I", the Doppler profile distinctly splits into a series of
peaks, while, for w. = I', the shape of the line differs
from the Doppler contour by an exponentialy small
oscillating correction.

In the case of homogeneous absorption line broad-
ening (I > kv;) or strong magnetic fields (for w, > kv
and for an arbitrary relation between I' and kv;), the
line has a Lorentz profile of width 2I" [1]:

2
p = 22|G| FZ.
r+Q
Figure 1 shows the dependence of the velocity
absorption probability P integrated over velocities and
calculated by formula (9) as a function of the radiation

frequency detuning Q for various values of the mag-
netic field.

(12)

4. DEPENDENCE OF RADIATION ABSORPTION
PROBABILITY ON ION VELOCITY

The dependence of the radiation absorption proba-
bility P(v) on the velocity component v, in expression
(6) istrivial and is manifested only through the Max-
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well factor W(v,) (the magnetic field does not affect the
motion of particlesalong thezaxis). For thisreason, we
will beinterested in the integrated characteristics P(v)
and P(¢):

0

P(vo) =P(vp, 9) = IP(V)de,
h (13)

P(¢) = J-P(VD’ d)vodvp.

Here, P(¢) is the number of radiation absorption acts
per unit timein a unit interval of angles per ion with a
given value of ¢ between the direction of radiation k
and the projection of the velocity of ions onto the plane
perpendicular to the magnetic field. The function P(¢)
possesses the property

P(Q,¢) = P(—Q, ¢ £m). (24)

In the case of strong magnetic fields (w, > kvy) or
homogeneous broadening of the absorption line (I' >
kv;), formula(6) for P(v) issimplified considerably. In
these cases, we have

Qk

P(v) = PW(W)[ 1+ —=1() | (15)
P(ve9) = PWv[1+ 2 @)],
vy
P@) = D1+ T2 )] ap)
No. 4 2002
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where

1(9)
_ 2r (% + Q% cosp — w,(3r*+ wz—Q%)sing (18)
[P+ (Q-w)r’+(Q+w)]

In formulas (15)—17), the radiation absorption proba-
bility P integrated over velocitiesis defined by formula
(12). It follows from formulas (15)—17) that the
absorption probahilities P(¢), P(v5,9), and P(v) may
assume negative values. This is manifested most
strongly for high magnetic fields for which w, > T'. In
this case, the dependence of the factor 1(¢) on the radi-
ation frequency detuning Q has a resonant nature and
the factor 1(¢)) attains its maximal value equa to
coso/2I" for |Q| = w:. In this case, the alternating (sec-
ond) term in square brackets in formulas (15)—17) for
the radiation absorption probability is equal to
Qkv+/2I? in order of magnitude and may be consider-
ably greater than unity in magnitude, having the nega-
tive sign. Thus, noninversive partial velocity amplifica-
tion of radiation by ions dueto their rotation in the mag-
netic field may take place. The intensity of radiation
incident on the medium may be indefinitely low in this
case; for this reason, almost all the particles may bein
the ground state.

It should be noted that the sign-alternating term in
square bracketsin formulas (15)—(17), which is respon-
sible for the emergence of noninversive partia velocity
amplification of radiation, makes zero contribution to
the absorption probability P integrated over velocities
that determines the absorption line profile.

Figure 2 shows the P(¢) dependence calculated by
formula (17) for different values of frequency detuning
near the cyclotron resonance (Q = w,) in the case of
Doppler broadening of the absorption line. The absorp-
tion probability P(¢) assumes negative values in the
interval of angles Ad = 1tin the vicinity of ¢ = mt(radi-
ation is amplified by particles moving predominantly
opposite to the direction of radiation). In the case
shown in Fig. 2, the amplitude of positive and negative
values of P(¢) areidentical and equal approximately to
the radiation absorption probability P, at the line center
in zero magnetic field in spite of large values of radia-
tion frequency detuning (Q = 5kvy). At the same time,
the radiation absorption probability P integrated over
velocitiesis low:

P/P,=T/25./Tkv;=23x10™".

In the case presented in Fig. 2, the factor Qkv,/2I? =

2 x 10% consequently, the radiation absorption proba-
bility P(¢) increases upon the application of thefield by
more than four orders of magnitude. Thus, the follow-
ing dramatic situation takes place in the medium.
Approximately half the particles moving in a certain
direction in the medium strongly absorb radiation,
whilethe other half of the particles moving in the oppo-
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Fig. 2. Radiation absorption probability P(¢) integrated
over velocities v and v, as a function of the azimuthal
angle ¢ for various values of radiation frequency detuning;
Mkvy = 10‘2; solid curves correspond to w./kvt = 5; the
dashed curve corresponds to w, = 0 (calculations are based
on formula (8)); we/kvy =4.99 (1), 5 (2, 4), and 5.01 (3).

site direction strongly amplify radiation. However, the
contributions from these two groups of particles to the
integrated absorption probability are compensated
almost completely, and the medium as a whole weakly
absorbs radiation.

Formulas (15)—17) do not describe the most inter-
esting case of moderate magnetic fields with w, <€ kv
for the Doppler line broadening (kv > '), and the
radiation absorption probability in this case must be
calculated by the exact formula (6). The correspond-
ing dependence P(¢) calculated by formula (6) is
shown in Fig. 3. The values of P(¢) were calculated
only for positive values of radiation frequency detuning
Q inview of the fact that the function P(¢) possesses
property (14).

Figures 3a—3c illustrate the emergence of narrow
resonances (in angle ¢) of noninversive amplification
of radiation for w, < kv;. In the cases presented in
Figs.3a and 3b, the absorption probability P(¢)
assumes negative valuesin small angular intervalsA¢ =
0.02 and Ap =1.6 x 1073, respectively. These cases are
also interesting in that the absorption line profile for
w, = I < kv differs from the Doppler profile by a
small oscillating correction; nevertheless, the oscilla-
tions of P(¢) are considerable. An analysis of expres-
sion (9) for P shows that the relative deviation & of the
line profile from the Doppler profile for w, = I < kvt
can be estimated by the formula

2T[r|:| W
& = max 2expD ' (19)
[ U oo, U 5ky ;)2
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Q/kvy=0.5;(e) /M =1,Q=0.

For the cases depicted in Figs. 3aand 3b, the valuesof  ability P, at the center of the Doppler-broadened linein
¢ are equal to 4 x 10 and 1078, respectively; i.e., the  zero magnetic field.

line profile virtually coincides with the Doppler profile. _ _ )

Nevertheless, the amplitude of the negative values of A numerical analysis showsthat, in the case of Dop-
P(¢) islarge and exceeds the radiation absorption prob-  pler broadening (I'/kv < 1), the effect of noninversive
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partial velocity amplification of radiation emerges
when the condition

2

W, = —

= (20)

is satisfied. In other words, the effect may appear in
weak magnetic fieldsfor which w, < I'. Figure 3billus-
trates the emergence of the effect for

w, = 2 (T /kvy) = 0.02r.

L et us estimate the magnitude of the magnetic field
required for the emergence of the effect. For the ion
mass M ~ 10 amu, temperature T ~ 10° K, and radiation
wavelength A ~ 0.5 um, the Doppler linewidthis kv =
1.6 x 10" s*. Assuming that the homogeneous line
width is determined by radiative decay, we set I' ~
108 s*. Then, we obtain the following estimate from
relation (20): B = 600 G.

The number of oscillations N of function P(¢)
depends on the magnitude of the magnetic field and on
the radiation frequency detuning. For |Q| = 2kv; and
w, > I, the number of oscillations can be estimated by
the formula

Q
Nose 02

C

(21)

(see Fig. 3c).

For w, > I, the Doppler absorption line profile dis-
tinctly splitsinto a number of peaks (see Fig. 1b). For
radiation frequencies tuned to the interval between the
central (Q =0) and thefirst side (|]Q|= w,) peaksand for
w, = kv, the dependence P(¢) becomes sinusoidal (see
Fig. 3d).

Inthecaseswhen " > kv or w, > kv, theradiation
absorption probabilities P(¢), P(vy, ¢), and P(v) may
assume negative values, in accordance with formulas
(15)—(17), only for a nonzero radiation detuning fre-
guency Q # 0. However, in the most interesting case
when wy, ' < kv, these absorption probabilities may
assume negative values for Q = 0 also (see Figs. 3e
and 4).

5. QUALITATIVE PATTERN

The effect of noninversive partial velocity amplifi-
cation of radiation considered by us here is associated
with the emergence of the ion-velocity-dependent
phase incursion in the oscillations of theinduced dipole
moment of ions due to their motion in acircular cyclo-
tron orbit.

Indeed, the concepts considered above can be used
to obtain a qualitative estimate for the absorption prob-
ability P(vp) which matches formula (16) for P(vp)
provided that w, > I, |Q|. In order to obtain this esti-
mate, we decompose thetotal velocity v of ionsinto the
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Fig. 4. Radiation absorption probability P(v, ¢) asafunc-
tion of the azimuthal angle ¢ for various values of ion veloc-
ity v; I'kvy = 0.1, Q = 0O; solid curves correspond to
/T = 1; dashed curves correspond to w. = 0; vp/v =
0.5(1) and 1 (2).

velocity v, directed along the magnetic field B and
velocity v perpendicular to B:

V =V, +vp.

Since the magnetic field does not affect the motion of
ions along B, the effect of noninversive partial velocity
amplification of radiation can be due only to singulari-
ties in the dependence of the absorption probability on
velocity vp. Vector v rotates uniformly about the mag-
netic field direction with the angular velocity w,. In a
strong magnetic field (for w, > I), the particle hastime
to describe many turns between collisions (which cause
phase incursion of the dipole moment induced by radi-
ation). The Larmor rotation of ions does not |ead to any
phase incursion of the induced magnetic moment, but
leads to a phase incursion for an ion moving in acircu-
lar cyclotron orbit. We assume that the magnetic field B
is directed along the z axis, while the wave vector k of
radiation is directed along the x axis. The position of an
ion on acircular cyclotron orbit will be defined by the
angle ¢ between the direction k of radiation and veloc-
ity V. The phase incursion for the ion moving in acir-
cular cyclotron orbit from point A(X,, ¢¢) to point B(x, ¢)
(seeFig.5) is

Ay = k(x=xo) = —kpc(sing —sing,),

where p, = v/, isthe Larmor radius of the ion orbit.
The angle ¢ specifying the direction of velocity vy is
fixed, while angle ¢, varies from O to 2mtin this case.
The phase incursion averaged over angle ¢, is

(22)

Y = —kp.sing. (23)
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Fig. 5. Schematic diagram explaining formula (22) for the
phase incursion for an ion moving in a circular cyclotron
orbit.

In view of this phase incursion, the phase shift Y(v) of
oscillations (relative to the radiation field oscillations)
of the macroscopic polarization created by ions moving
at velocity v can be presented as the sum

_ KV oS
B(Vo) = Wo+ A = o YoSN®

W

(24)

where the term U, is independent of velocity.

L et us now take into account the fact that the energy
exchange between the field and the ensemble of parti-
cles moving with velocity v, we are interested in is
determined by the polarization component which is
not synphase with the field and is proportional to
sin(vp) (see, for example, [8]). Consequently, the
radiation absorption probability P(vy) for ions with the
fixed velocity v in astrong magnetic field (such that
kv/w, < 1) isgiven by

: KVo s
P(vp) O sing(vp) = %_%%ﬁ

. kVD smd)D
x siny, U %l— @ taanJ]P'

While deriving the last relation in this formula, we took
into account the fact that the radiation absorption prob-
ability P integrated over velocitiesis obviously propor-
tiona to siny,.

(25)

In order to determinetany,, we will use a visua
classical model describing electrons in an atom as
damped harmonic oscillators performing forced vibra-
tionsin the electric field of the wave. It is known from
classical mechanics that the phase shift Y, between the
oscillator vibrations and the externa driving force is
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given by the formula tany, = y/Q, where y is the

damping coefficient (resonance curve half-width) and
Q = w—wy is the detuning of the driving force fre-
guency w relative to frequency wy, of natura vibrations
of the oscillator (see, for example, [9]). In the case of
ions, we havey = I, and the quantity Q hasthe meaning
of radiation frequency detuning relative to the transi-
tion frequency for a stationary particle and may have
any sign. As aresult, we obtain the following estimate
for ionsin amagnetic field from relation (25):

Qkv
P(vo) DL -+
Cc

singP. (26)

The second sign-alternating term on the right-hand side
of thisrelation appears due to the rotation of ionsin the
magnetic field. Its magnitude may be greater than unity,
and, hence P(v;) may be smaller than zero; i.e., ionsin
an external magnetic field may induce noninversive
partial velocity amplification of radiation.

It should be noted that, for w, > T, |Q], relation (18)
leads to

() = —sing/w,
and estimate (26) agrees with formula (16).

6. CONCLUSIONS

The main conclusion of the present work is that the
Larmor rotation of ionsin amagnetic field may lead to
the emergence of noninversive partial velocity amplifi-
cation of radiation by ions. The effect is associated with
the emergence of an ion-velocity-dependent phase
incursion in the oscillations of the induced dipole
moment of ions due to their motion in acircular cyclo-
tron orbit.

We have considered the case of absorption of low-
intensity radiation during the transition between the
ground and the first excited energy levels of ions. The
formulas derived for the radiation absorption probabil-
ity can be easily generalized to the case of transitions
between excited levels of ions. For this purpose, thefol-
lowing substitution must be made in the initial equa-
tion (2) for py (V):

N —» pp— P

where p and p2 are the populations of the lower and

upper levels in the absence of radiation, respectively
(the effect of low-intensity radiation on the population
of the levels can be neglected). Then, the right-hand
side of formula (6) for P(v) (aswell asthe formulasfor
P(vy), P(9), and P following from Eq. (6)) will acquire

an additional factor (p° — p2,)/N which may be positive
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or negative (in the case of population inversion). Since
P(v) may be smaller than zero in the case

Pr—Pm = N>0
investigated by us here, P(v) may also be greater than

zero for pﬂ - pﬁ, < 0. Thus, in the case of population

inversion of operating energy levels (affected by radia-
tion), partial velocity absorption of radiation by ions
may take place due to their Larmor rotation in the mag-
netic field.

In the case of Doppler line broadening (kv << 1)
the effect of noninversive partial velocity amplification
of radiation by ions emerges, in accordance with rela-
tion (20), in magnetic fields B = By, where

_ 107*Mr?

Bo kv

(27)
(M is the ion mass in atomic units). For atomic ions
with amass M ~ 10 amu, homogeneous line half-width
I ~ 108 s%, and Doppler width kv = 1.6 x 101° st
(wavelength A ~ 0.5 um and temperature T ~ 10° K), we
obtain B, = 600 G.

Thethreshold value of the magnetic field B, starting
from which the noninversive amplification effect can be
observed isthelower, the smaller the homogeneousline
width. If the homogeneous width is determined by radi-
ative decay, the minimum values of B, are attained for
radiation absorbed at transitions between the Rydberg
states of atomic ions or for radiation absorption at
vibration-rotation transitions of molecular ions. In
these cases, B, may be smaller than 1 G.

Noninversive partial velocity amplification of radia-
tionisa“latent” effect in the sensethat it vanishesasa
result of averaging over al directions of velocities of
ions:

2n

[P()dé>o0.

However, this does not mean that the latent effect can-
not lead to new properties of spectroscopy and kinetics
of ionsin laser fields. In particular, we can expect that
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such astrong latent effect as the amplification of radia-
tion by half the particles in a medium described in the
present work will strongly affect the absorption of the
test (probing and comparatively weak) field, and we
cannot rule out the possibility of noninversive amplifi-
cation of the test field (due to acomparatively stronger,
but still low-intensity, field which does not change the
population of energy levels) in afrequency range of the
order of the Doppler linewidth. The solution of the cor-
responding theoretical problem isinteresting as regards
the experimental “manifestation” of the effect and
requires separate analysis.
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Abstract—The effect of amagnetic field on theion drift in aweakly ionized gas under the combined action of
the light-induced drift and light pressure is studied theoretically. It is shown that, under the action of light, a
component of ion drift velocity transverse to the direction of propagation of radiation may appear in aweakly
ionized gas upon the application of an external magnetic field. It is shown that the Lorentz force acting on ions
inthe magnetic field radically changes the dependence of theion drift velocity on the radiation frequency detun-
ing. It is predicted that the ion drift velocity component along the direction of radiation must reverse its sign
upon an increase in the magnetic field and an anomalous light-induced drift may be observed. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

After the prediction of light-induced drift [1] and its
first experimental observation [2], a large number of
experimental and theoretical publications appeared on
thissubject (see, for example, [3-13] and thereferences
cited therein). The effect consistsin the emergence of a
directed macroscopic flow of particles absorbing radia-
tioninamixture with buffer particles. The origin of this
effect isasfollows. Asaresult of the Doppler effect, the
radiation produces a selective effect on the absorbing
particles depending on their velocities by creating
effective counterpropagating “beams’ of particlesin an
excited and the ground state. In the buffer gas atmo-
sphere, these beams experience different drags due to
different transport collision frequencies for excited and
nonexcited particles. As a result, the gas of absorbing
particles acquires adirectional motion asasingle entity.
The drift velocity is proportional to the relative differ-
ence (v, — Vu)/Vv, in the transport collision frequencies
of resonant particles with buffer particles in the ground
(vy) and excited (v,,) states. Thisformsthe basis of one
of the main scientific applications of the light-induced
drift effect, viz., the measurement of the relative varia-
tion of transport collision frequencies during the exci-
tation of particles.

The light-induced drift effect is one of the strongest
effects of radiation on the trandational mation of parti-
cles. Theoreticaly, the velocity of the light-induced
drift may attain the value of thermal velocity inthe case
of laser pumping [4]. It has been shown experimentally
that, as aresult of the light-induced drift effect, atoms
may move with avelocity of the order of several tens of
meters per second [6]. Thelight-induced drift effect has
been registered experimentally for nearly two dozen
different objects (atoms and molecules). Light-induced
drift is possible not only for atoms and moleculesin a

gaseous medium, but also for ions in aweakly ionized
gas [14], conduction electrons in solids [15, 16], and
Wannier—Mott excitons in semiconductors [17].

It is clear from simple physical considerations that
an external magnetic field may strongly influence the
light-induced drift of charged particles due to the
Lorentz force acting on particles drifting in amagnetic
field. The force aspect of the effect of a magnetic field
on the light-induced drift of charged particles was not
investigated until recently. This problem was consid-
ered for the first time in [18, 19] for the light-induced
drift of ions. Unfortunately, the results obtained in [18,
19] cannot be considered as reliable since the effect of
a magnetic field on light-induced drift is taken into
account incorrectly in these publications. In a recent
publication [20], the force aspect of the effect of amag-
netic field on the light-induced drift of ions is investi-
gated theoretically in the limiting cases of homoge-
neous broadening of absorption lines (I' > kv, where
I" isthe homogeneous half-width of the absorption line
for ions and kv is the Doppler width) or strong mag-
netic fields (for w, > kv; and for an arbitrary relation
between I"'and kv+; w. isthe cyclotron frequency of ions
inthe magnetic field). In[20], someinteresting features
of the light-induced drift of ions in a magnetic field
were reveal ed, such asthe emergence of adrift velocity
component transverse to the direction of propagation of

in [18, 19], the effect of a magnetic field on the drift velocity
u(r, t) of ions (in the notation adopted in these works) appearing
in the equation of theion flux (Eg. (8) in [18] and Eq. (1) in [19])
is disregarded. The equation for the ion flux analyzed in [18, 19]
isin fact a modified first equation of the system of equations (8)
of the present work (for a = 0 and & = 0) and has the following

formin our notation: v,.J + (Vi —Vp)ig = —(v%/Z)I]N + wJ xh,

where the flux jq is independent of the magnetic field, in contrast
to theflux j,in (8).
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radiation, sign reversal of the drift velocity component
along the direction of radiation upon an increase in the
magnetic field, and aradical change in the dependence
of the drift velocity of ions on the radiation frequency
detuning. However, the most interesting case of moder-
ate magnetic fields (w, < kvy) cannot be described by
the formulas derived in [20] for the Doppler line broad-
ening (kv >T).

The present work aims at a theoretical analysis and
study of the photoinduced ion drift in a magnetic field
of an arbitrary magnitude for an arbitrary relation
between the Doppler and homogeneous absorption line
widths. As compared to [20], we use ancther approach
to calculating the light-induced drift velocity, which
makes it possible to remove the limitations imposed in
[20] on the magnitude of the magnetic field and on the
relation between I' and kv;. The force effect of the
external magnetic field on the light-induced drift of
ions is maximal in the case when the magnetic field is
perpendicular to the drift velocity direction. It is this
case that is analyzed in the present work.

The light-induced drift effect may exceed the well-
known effect of light pressure in its manifestation by
several orders of magnitude even under optimal condi-
tions for this phenomenon. However, for specific
objects and under certain conditions, the combined
analysis of these effects might be required (in the case
when the light-induced drift effect is “suppressed” for
some reason or is comparable to or is even weaker than
the effect of light pressure). For this reason, we will
consider here the combined action of these effects.

2. INITIAL EQUATIONS

Let us consider a three-component weakly ionized
gas consisting of electrons, singly charged positiveions
of one species, and neutral atomsin a constant uniform
magnetic field B. The callisions between charged parti-
clesin aweakly ionized gas are insignificant since the
frequenciesof collisions of electronsand ionswith neu-
tral atoms are much higher than the frequencies of col-
lisions between these particles (this condition assumes
the degree of gas ionization <10 at a temperature of
the order of 0.1 eV [21]). Let us suppose that radiation
in the form of a propagating monochromatic wave is
resonantly absorbed during the m-n transition between
the ground (n) and thefirst excited (m) states of ions. We
will concentrate our attention only on the analysis of the
force effect of the magnetic field on the ion drift; conse-
quently, we confine our analysisto the smplest case when
the Zeeman splitting of the absorption line can be disre-
garded. For example, there is no line splitting in the case
of the smple Zeeman effect (the equality of Landé g fac-
torsof the mixing states mand n) for the transverse (rel-
ative to the magnetic field B) direction of propagation
of radiation polarized linearly along B.

Under these conditions, the interaction between
radiation and two-level particles (ions) taking into
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account therecoil effect can be described by thefollow-
ing equations for the density matrix [9, 22]:

[+ Tn]Pnv) = S(v) + NP(V-8),

E0.(v) = (V) + Fupy(v) ~NP(v +8),
. @
G F-@-K D) o)

= Snn(V) +iG[pn(V=8) —pm(v + &)1,
where
0 0
ar "oy
-
¢ Mc’

_0
_6t+v

Z|® 2le

a = + WV % h,

Fopa(V) = Z2[Pn(v+ 260},
NP(v) = —2Re[iG* p,n(V)],

)

_ hk 2 _ BnmI
S=om 1@ = 2m’
AT
Bnm = W(:)n’ Q = W— Wy

Here, h = B/B is the unit vector in the direction of the
magnetic field; p, (v)is the velocity distribution of ions
at level i = m, n; N is the total concentration of ions;
S, (v), §,(v), and S,,,(v) are the callision integrals for
ions; w, A, and k are the frequency, wavelength, and the
wave vector of radiation; I, is the spontaneous decay

rate for the excited state m; 'mpy,(v) is the integral
operator describing the radiative transition of particles
from the excited level m to the ground level n taking
into account the change in the velocity of particles due
to the recoil effect during spontaneous emission; n, is
the unit vector defining the direction of spontaneous
radiation; w,, is the frequency of the m-n transition;
B, IS the second Einstein coefficient for the m—n tran-
sition; | isthe radiation intensity; P(v) isthe number of
radiation absorption acts per unit time for anion with a
preset velocity v from the unit velocity interval; 2§ is
the recoil velocity of an ion after the absorption of a
photon; « is the cyclotron frequency of ions; e is the
elementary electric charge; M isthe ion mass; B isthe
magnetic induction; and E is the internal electric field
strength in the medium.

The electric field E in the medium may emerge due
to the directional motion of ions as a single entity as a
result of light-induced drift and light pressure effects.
Two different cases are possible here. If the concentra-
tion of charged particlesis not high enough for theion-
ized gas to display the properties of a plasma (the
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Debye radius r characterizing the spatial separation of
charged particles is much larger than the characteristic
size L of the system), electrons do not affect the ion
drift, and field E in Egs. (1) can be neglected.

If, however, the concentration of the charged parti-
clesis high enough for the ionized gas to manifest the
properties of a plasma (ry4 <€ L), the directional motion
of ions must induce the directional motion of electrons
in view of the quasineutrality condition for the plasma.
Thisleadsto the emergence of the electric field E com-
pensating the force of friction between electrons and
buffer particles (neutral atoms).

Thus, under the plasma conditions, the motion of
electrons is matched with the motion of ions through
the electric field E, and Egs. (1) should be supple-
mented with the equation for the electron distribution
function pg(Vv):

9, 0, 0 _
|5+ Var + gy |Pelv) = Siv), ®
where
- _6E_ - €B
ae - m wev X h, we mcf (4)

mis the electron mass, w isthe electron cyclotron fre-
guency, and S,(v) isthe collision integral for electrons.

For the nondiagonal collision integral S,,(v) in
Egs. (1), wewill usethefollowing approximation, which
is conventional in nonlinear spectroscopy [9, 22]:

Su(¥) = - (), ©)

indicating that collisions completely shift the phase of
the oscillating dipole moment (" is the homogeneous
absorption line half-width for ions).

Inelastic collison-related processes  (ionization,
recombination, etc.) areingignificant in the problem under
investigation (the effective frequencies of ionization and
recombination are smaller than the frequencies of elastic
collisions); for this reason, we will confine the subsequent
anaysis to the inclusion of only dastic collisons of ions
and dectrons with buffer particles (neutral atoms).

It is well known [5, 7, 9] that many experimental
results of investigation of light-induced drift are suc-
cessfully described by the relevant “standard” theory
with vel ocity-independent transport frequencies of col-
lisions between resonant and buffer particles. The strong
deviation from the “ standard” theory (the so-called anom-
aouslight-induced drift? is observed only when the differ-

2|n 1992, an unexpectedly strong deviation of the frequency
dependence of the drift velocity from a dispersion-like curve was
discovered [10] during the investigation of the light-induced drift
of CoH, molecules in the buffer gas Kr. An anomalous spectral
profile of the drift velocity was observed with three zeros instead
of one as per the theory of light-induced drift with velocity-inde-
pendent transport collision frequencies prevailing at that time.
The departure from the prediction of the theory was so strong that
the effect was called the “anomalous” light-induced drift.
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ence between the transport collision frequenciesfor reso-
nant particles as a function of velocity v,

AV(V) = Vr(V) =vy(Vv),

at combining levels (not affected by radiation) reverses
its sign [12, 13]. In the present work, we assume that
Av(v) as a function of velocity v does not reverse its
sign; i.e., the light-induced drift of ions is successfully
described by the theory with the vel ocity-independent
transport collision frequencies. In this case, the follow-
ing relation holds for the first moment of the diagonal
collision integrals [9]:

IVS(V)dV = —Viji,
ji = J’vpi(v)dv, i =mn,e,

(6)

where v, is the mean transport frequency of collisions,
jmandj, arethe fluxes of ionsin statesmand n, and j
isthe electron flux. For ions (i = m, n), the mean trans-
port frequency is connected with the diffusion coeffi-
cient D; for ionsin state i through the following simple

formula:
B /2kBT
VT - M ) (7)

where v+ isthe most probable velocity of ions, Tisthe
temperature, and kg is the Boltzmann constant. The dif-
fusion coefficient for electrons (i = €) is given by

2
_ VT

Vi - 2Di1

D, = vZ/2v,,

where v, is the most probable velocity of electrons.

3. EQUATIONS FOR PARTICLE FLUXES

In order to calculate the drift velocity of ions, it is
convenient to go over in the subsequent analysis from
the kinetic equations (1), (3) to the equations for parti-
cle fluxes (hydrodynamic equations). We multiply the
first two equationsin (1) and Eg. (3) by v and then inte-
grate with respect to v. Taking into account Egs. (6), we
obtain

1 0 .
E‘% + V%J + Mzeua_XBPaB + (Vm_Vn)Jm
af

= aN+wJ xh + 2NPg,
[0 0 .1 0 p(m
|$_t+rm+VnE|Jm+MZBe(xa_XBPGmB
a

= aN,+ wj,*xh+NPE + NIVP(v)dv,

(8)

No. 4 2002



LIGHT-INDUCED DRIFT OF IONS IN A MAGNETIC FIELD

0 . ,0pi o1 0 5@
|$_t+VeE|BJe+MZBeaaXBPaB
a

= aNg+wj.xh =0,
where

P :J'P(V)dv, J=Jm*tinm N =N,+N,,

(m 4 pn) ! 0) g ®
m n |
Pus = Pog + Pap:  Pap = MiIvavai(v)dv,

N, = J'pi(v)dv, i = mn,e,

P is the number of radiation absorption acts per unit
timefor anion, Jisthetotal ion flux, N, and N,, arethe
ion concentrations in states m and n, N, is the electron
concentration, €, is the unit vector in the direction of
the coordinate axis x,, v, is the component of velocity

v dong the x, axis, Py} is the momentum flux density
tensor for ionsin states mand n (M; = M) and for elec-
trons (M; = m), a is the acceleration of ions due to the

internal electric field E, and 3 = mYM istheratio of the
electron and ion masses.

In order to smplify the problem, we confine our
analysis to the condition of wesk radiation intensity,
assuming that the rate of induced transitions is smaller
than the rate I',, of the radiative decay of the excited
level m (P < I',). Under these conditions, we can dis-
regard the term aN,, in the second equation from (8),
which is quadratic in the radiation intensity. Under
standard and spatially homogeneous conditions taking
into account the quasineutrality of the plasma (N, = N),
Egs. (8) assumethe form

Vod + (Vi—=Vn)im = aN +w.J x h + 2NPE,
(M + Vim)im = Ocjm* h+NPE + NJ'VP(V)dv, (10)

BvgetaN+wj.xh = 0.

By definition, the drift velocity of ionsisu = J/N and
can be found from the system of equations (10) through

the zeroth (P = (P(v)dv) and first ( J’v P(v)dv)

moments of the probability P(v) of radiation absorption
per unit time by an ion with a preset velocity v.

In the case when the concentration of charged parti-
cles is not sufficiently high for the ionized gas to dis-
play the properties of aplasma (gas conditions, ry > L),
electrons do not affect theion drift, and wecanseta=0
in Egs. (10). In this case, the drift velocity of ions can be
determined from the first two equations of system (10).
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If the concentration of charged particles is high
enough for the ionized gas to display the plasma
properties (plasma conditions, ry < L), the ion accel-
eration a due to the internal electric field E cannot be
disregarded any longer in Egs. (10), and the drift veloc-
ity must be determined from the system of three equa-
tions (10).

The formulas for the drift velocity under the gas
conditions can be easily derived from the formulas for
the drift velocity under the plasma conditions by substi-

tuting the effective collision frequency v, by v, (see

Eq. (18)). Let us therefore consider the drift of ions
under the plasma conditions first.

The continuity equations for ions and electrons
(which follow from Egs. (1) and (3) integrated over v
taking into account the relation

J’S(v)dv =0, i =mn,e,

reflecting the conservation of the number of particlesin
elastic collisions) combined with the quasineutrality
condition for the plasma (N, = N) lead to the condition

divd = divj,, (12)

which indicates the relation between the ion and elec-
tron fluxes flowing into each volume element. In amag-
netic field, condition (11) may also be satisfied for J #
je due to the anisotropy of the mobility and diffusion
coefficients for charged particles.

Let us now determine the relation between fluxes J
and j . for the case of ion drift under the action of aplane
light wave propagating at right angles to the magnetic
field. For this purpose, we consider the following con-
figuration in the cylindrical system of coordinates p, ¢,
z with the z axis directed along the uniform magnetic
field B. Let acylindrical monochromatic wave with the
wave vector k perpendicular to the z axis diverge radi-
ally from aradiation source extended along thezaxisin
a homogeneous unbounded plasma. Then, the light-
induced drift velocity of ions is a function of radius p
only, and Eq. (11) leads to the equality of the radial
components of fluxes, J, =], i.€., thedrift of ionsand
electrons along the vector k isambipolar. Under steady-
state conditions, the internal dectric field E emerging in
the plasma due to the ion drift is vortex-free (curl E = 0)
and, hence, the azimuthal component of the field E, = 0.
Thus, condition (11) and relation E, = 0 in the case
under investigation are equivaent to the conditions
a= Ea

k 1
where the symbol “||" indicates the vector component
directed along k.

Let us now take into account the fact that individual
segments of a cylindrical wave, which are smaller than
the distance from the source of radiation, behave
approximately as plane waves with constant radiation

je|| = ~]||, (12)
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intensity. The light-induced drift of particles in these
regions can be regarded as a drift under the action of a
plane light wave. Thus, conditions (12) also hold for the
ion driftinduced by aplanelight wave, whichisconsid-
ered by us here.

Solving the system of equations (10) under condi-
tions (12), wefind that, for the direction of propagation
of radiation transverse to the magnetic field (for k [ B),
the drift velocity of ions is equal to the sum of two
mutually perpendicular components u; and ug;:

U = u;+up, (13)
where component v, is paralel to the wave vector k,
while component uj is perpendicular to k and B:

U = nNu n_kXB
o o T kB

u, = Eu”, (14

k

The components u, and uy of the drift velocity u
along directions k and n are given by the formulas

_k Ll

u” b _k TG

w; WM+ Vp+v,) O
xﬁl‘vn(rmwm)}q" Tty QH @9

U
0 2 ]
O (Vn—Vm)[l—L}D
+U0r§1+ V(M + Vi) %
2H v+ —H
% B_ Fm+\;m|:| %

Vi, (O } U W
— Qytu 16
|:Vn Vn(rm+vm) I]|:| x n ( )
| - 1l
x Eﬂ'-l- (Vn_Vm)(rm;Vm"'Vn) E,
w,
Z[F +V,,+ - }(I‘ +V,)
O m m rm+Vm m m/[J
where
2¢P
v, + /v,
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2 2 ’
~ w, w,
Vi Mt Vi

2

%Ce, Q= IEVP(v)dv,

(17)

Q= J’n O/P(v)dv.

Formulas (15)—(17) describe the drift of ions under the
plasma conditions (rqy < L).

Under the gas conditions (ry > L), the drift velocity
of ionsis defined by the same formulas (15)—(17) with
the substitution

Vp = V. (18)
Thus, the evaluation of drift velocity boils down to

the caculation of the probability P(v) of radiation absorp-
tion per unit time by an ion with agiven velocity v.

4. PROBABILITY
OF RADIATION ABSORPTION

The probability P(v) of radiation absorption at the
MmN transition is determined by the nondiagonal den-
sity matrix element p,,,(Vv). In the case of alow radia-
tionintensity (P < '), we can disregard the popul ation
of the excited level (p,,(v) = 0) in the equation for
Pm (V) in system (1) and assume that the vel ocity distri-
bution of populations in the ground state is close to
the Maxwell distribution (p,(v) = NW(v)), where
W(V) is the Maxwell distribution). For a low radia-
tion intensity, we can also disregard the internal elec-
tric field E in the equation for p,,, (V) in system (1) and
assumethat a, = w.v x h. Inthis case, under steady-state
and spatialy homogeneous conditions, we obtain from
Egs. (1) taking into account relation (5) the following
expression in the approximation linear in the small
parameter /vy

[r —i(Q -k V) + 0V X ha%}pmn(V)

. iGNW(v)[l " %}

T

(19)

We will solve this equation in a system of coordi-
natesin which the z axisis directed along the magnetic
field B and the x axisis directed along the wave vector
k (we assume that k 0 B). In the velocity space, it is
convenient to go over to the cylindrical system of coor-

No. 4 2002



LIGHT-INDUCED DRIFT OF IONS IN A MAGNETIC FIELD

dinates vy, ¢, v, (v = vcosd, vy, = vgsing). In these
coordinates, Eq. (19) assumes the form

2] —i(cz—kvucosm—wca%ﬁpm(v)
[l ]

(20)
- iGNW(vD)W(vZ)[1+M}
Ve
where
W(vp) = D —EE
(«/T—TVT) D
(21)
W(v, = A/_VTexp[-l——E

W(v) and W(v,) being the Maxwell distributions over
the transverse and longitudinal (relative to the magnetic
field B) components of velocity v.

Solving this linear nonhomogeneous differential
equation, we obtain the following expression for the
radiation absorption probability:

a
P(v) = 2|G*W(v)W(v
0
(22)
- exp(— |n¢)Jng( %[1 niik(:)/ }E
:Z% M—i(Q-nw,) %
0

where J,(X) is a Bessdl function of the firg kind. In zero
magnetic field (for w, = 0), the radiation absorption prob-
ability P(v) is defined by the well-known formula[9, 22]
2|GI*r w(v)
M+(Q-k n)?
For the radiation absorption probability integral
over velocities, P = [P (v)dv, which determines the
profile of the absorption line, we abtain, using Eq. (22),

P = 2|GI°I exp(—)

[1+nZE o 1tk iy @

2
20,

P(v) = (23)

g Z 2+ (Q-nw,)’

n=-ow

where |,,(1) isamodified Bessel function. If we disre-
gard the recoil effects, Eq. (24) leads to the known [23]
expression for the spectral line profilefor ionsin amag-
netic field. It follows from Eq. (24) that the Larmor
rotation of ions in a magnetic field may lead to the
emergence of equidistant peaks (cyclotron resonances)
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in the absorption line profile. The distance between
adjacent peaksisequal to the cyclotron frequency w, of
ions, and the width of an individual peak is determined
by the homogeneous width 2I" of the absorption line.
For kv; > I, the absorption line described by formula
(24) has the form of a Doppler contour modulated by
the periodic function of the radiation frequency detun-
ing Q with aperiod equal to w,. The oscillating function
P (24) has peaks for Q = nw, and minimafor Q = (n +
1/2)w,. For w, > T, the Doppler contour distinctly
splitsinto a series of peaks, while, for w. < I, the shape
of theline differsfrom the Doppler contour by an expo-
nentially small oscillating correction [23].

A nontrivial aspect isthe effect of the magnetic field
on the behavior of the radiation absorption probability
P(v) asafunction of velocity v. An analysis of expres-
sion (22) shows that, for some values of velacity v, the
function P(v) may assume negative values. In addition,
the integral characteristics

P(vi ) = J' P(v)dv,,
-~ (25)

P(d) = IP(VD! d)vadvy
0

may also assume negative values (here, P(¢) is the
number of radiation absorption acts per unit timein a
unit interval of angles per ion with a given value of ¢
between the direction of radiation k and the projection
of the velocity of ions onto the plane perpendicular to
the magnetic field). In other words, in a gas of ionized
particles in an external magnetic field, a partial (in the
directions of velocity) noninversive amplification of
radiation by ions due to their Larmor rotation may
emerge upon the application of the externa magnetic
fidd. In this case, virtualy all ions may be in the ground
state. The partial (in velocities) noninversive amplification
isa“latent” effect in the sensethat it disappears asaresult
of averaging over dl directions of ion velocities (the radi-
ation absorption probability P integrated over velocitiesis
positive). A detailed anadysis of this effect would be of
interest, but it is beyond the scope of thisresearch.

5. DRIFT VELOCITY

Using formula (22), we derive the following expres-
sion for the quantities Q, and Q; defined in Egs. (17) and
appearing in formulas (15) and (16) for drift velocity:

2|G/%w,
Q= K exp(—H)

[1+ nZE }rmn( )

r+ (Q nmc)

(26)

3
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n=oo[1+nz—E w°}(nwc—Q)[(lnl—u)ln(u)+ul\n\+1(u)]

Qg o ep(=H) z

n=—o

This completes the calculation of the drift velocity of
ions. The drift velocity can be determined from formu-
las (15) and (16) by substituting the radiation absorp-
tion probability P from Eq. (24) and the quantities Qi
and Q defined by Egs. (26) and (27).

According to these formulas, the right-hand sides of
expressions (15) and (16) for uj and u; can be writtenin
the form of the sum of two terms:

Uy = Uy + Uy, Ug = UptUg,

(28)

where velocities uy; and u, differ from zero only for
v, # Vyand are independent of the recoil velocity 2 of
an ion upon the absorption of a photon (light-induced
drift), while velocities u, and u,, differ from zero only
for & # 0 (light pressure). Thus, the drift velocity u (13)
can also be presented as the sum of the drift velocities
u_ and u, associated with the effects of light-induced
drift (u,) and light pressure (u,):

u=u_+u,. (29)

Theformulasfor velocitiesu, and u, derived asaresult
of the relevant grouping of terms depending on and
independent of & in Egs. (15) and (16) are obvious and
will not be given here.

In the case of strong magnetic fields (w, > kv;) or
in the case of homogeneous broadening of the absorp-
tion line (I > kvy), the formulas for drift velocity
derived in the present work are simplified considerably
and coincide with the formulas derived earlier in [20]
using the Grad method of solution of kinetic equations
if we disregard the recoil effect.

Figures 1-3 show the results of calculations of drift
velocity obtained from formulas (15) and (16) by sub-
gtituting Egs. (24), (26), and (27) into them. In al the
figures, we choose the unit of velocity equa to the
quantity

_ 28R
=5

2
P, = 2./mg| |

kv (30)

Ur
which is equal to the maximal (for Q = Q) value of the
ion drift velocity u, under the action of light pressurein
zero magnetic field for v, = v,.. The quantity P is the
radiation absorption probability at the center of the line
for Doppler broadening in zero magnetic field. The
ratio of the maximal values of velocities u, and u, in
zero magnetic fields in the case of Doppler broadening
is characterized by the parameter A:

|(uL)wc~O|max: Vi |Vm_Vn| = A
Ug 548 +v,

(31)
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For values of the parameters used for calculating the
curvesinFigs. 1 and 3, thevalue of A= 600; i.e., inzero
magnetic field, the drift velocity u, associated with
light-induced drift effect is 600 times the vel ocity u, of
the drift induced by light pressure.

Figures 1 and 2 illustrate the dependence of the drift
velocity of ions on the detuning of the radiation fre-
guency Q and on the magnetic field under the gas con-
ditions (ry > L). Figure 1a shows that, with increasing
magnetic field, the drift velocity component u, along
the direction of radiation reversesitssign. Sign reversal
occurs in the cyclotron frequency range

W, O V(M + Vi) (32
Since the condition |u,| > |u,| holds for the values of
parameters used for calculating the curves in Fig. la
(and, hence uy; = uyy), the curvesin Fig. lain fact illus-
trate the dependence of the drift velocity u, of the
light-induced drift on the radiation frequency detuning
Q. Curves 1 and 3in Fig. 1acorrespond to the conven-
tiona light-induced drift with a typical dispersion-like
frequency dependence u (Q) of the drift velocity
(which is equal, except for the sign, to the frequency
derivative of the absorption line profile) with a single
zero at the zero value of the radiation frequency detun-
ing. Curve 2 with three zeros in Fig. 1a corresponds to
anomalous light-induced drift [10-13] with a sharp
deviation of the frequency dependence of the drift
velocity u () from a dispersion-like curve. Anoma-
lous light-induced drift and the change in the drift
direction are observed for a cyclotron frequency of
ions, whose order of magnitude is determined by rela-
tion (32). An analysis showsthat theinterval Acw, of the
cyclotron frequency values in which anomalous light-
induced drift takes place is approximately equal to
Aw.=0.1v,,.

It was mentioned above that, in zero externa fields,
the anomalous light-induced drift is completely deter-
mined by the dependence of transport collision fre-
guencies on the velocity v of resonant particles, the
anomaly appearing only when the difference in the
transport frequencies of collisions at mixing levels
reverses its sign as a function of v. The results of the
present work show that anomalous light-induced drift
of ions in an external magnetic field may also appear
for velocity-independent transport collision frequen-
cies.

The physical origin of the change in the direction of
the drift velocity of ions upon an increase in the mag-
netic field can be explained from the following qualita-
tive considerations. In zero magnetic field, theion drift
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Fig. 1. Drift velocity of ions as afunction of the radiation frequency detuning for various values of magnetic field (gas conditions,
rg> L): T/kvy = 0.1, (Vi — V)V = 0.1, v /T = 0.2, T /v, = 0.5, vr/E =5 x 10%; (&) 03, = 0 (1), wo/T" = 0.2485 (w./vy, = 1.2425) (2);
e/l = 0.4 (we/vy = 2) (3); (b) we/T =5 (/v = 25), Yj/ur (1), Up/ur (2); () /T = 0.15 (w/v, = 0.75).

velocity u, is proportional to the difference v, — v, in
the transport frequency of collisions of ions in the
ground and in excited states with buffer particles. Inthe
presence of a magnetic field, the diffusion coefficient
D;g for ionsin state i across the magnetic field is

Dig = V7/2V;s,
where the quantity
2
Vig = Vi + W/,

has the meaning of the effective transport frequency of
collisions of ions in state i with buffer particles in the
presence of a magnetic field [21]. Consequently, in a
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magnetic field perpendicular to the direction of propa-
gation of radiation, we can expect that (approximately)

u|| 0 VnB_vmg| (Vm_Vn)(wi_VmVn)'

It follows hence that, in an increasing magnetic field,
the drift vel ocity component along the direction of radi-
ation reverses its sign. The change in the direction of
the drift is associated with the sign reversal of the dif-
ference v,z — V5 in the effective transport frequencies
of collisions of ions upon an increase in the magnetic
field.

For the case of w, = I depicted in Fig. 1a, the shape
of the absorption line for ions differs from the Doppler
profile by an exponentially small oscillation correction
[23]. Consequently, no oscillations are observed in the
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upfug

Q/kVT

Fig. 2. Drift velocity associated with light pressure as a
function of the radiation frequency detuning (gas condi-
tions, rq > L): ['/kvt = 0.1, v, = vy, /T = 0.2, T /v, =
0.5; /T = 0.2 (W/vy = 1) (1); w /T =5 (we/vy, = 25) (2).

dependence of the drift velocity on Q. For w, > T, the
Doppler profile distinctly splitsinto anumber of peaks
[23], and the drift velocity displays oscillations as a
function of Q (seeFig. 1b).

Figure 1c shows the drift velocity component trans-
verse to the wave vector as afunction of Q. The abso-
lute (in Q and w,) maximum of velocity ug is attained
for w, ~ v, and is close to the absol ute maximum of the
light-induced drift velocity in zero magnetic field (this
can be seen from a comparison of curve 1 in Fig. la
with Fig. 1¢).

In the case of equality of the transport collision fre-
guencies in the ground and excited states (v, = V,), ho
light-induced drift is observed, and ions drift only
under the effect of light pressure. In this case, the
dependence of the drift velocity on Q repeats the shape
of the absorption line (see Fig. 2).

Upon a transition from the gas conditions to the
plasma conditions, the dependence of the drift velocity
component u, along the direction of radiation on Q does
not change, but its magnitude decreases (by afactor of
(Vov, + W)V + w?) in accordance with formula
(15)). This decrease is associated with the ambipolar
nature of the drift along the direction of radiation, lead-
ing to a drag exerted by electrons on the ion drift (in a
strong magnetic field B, the transverse (relative to the
field) diffusion coefficient for electrons is smaller than
the transverse diffusion coefficient for ions by a factor
of v,/Bv, [21]).

The dependence of the drift velocity component ug
transverse to the direction of radiation on Q changes
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Fig. 3. Drift velocity of ions as a function of the radiation
frequency detuning for various values of the magnetic field
(plasmaconditions, ry < L). I'kvy=0.1, (v, —V)/Va = 0.1,
v/l = 0.2, Ty, = 05, vr/€ = 5 x 10%, Bughv, = 1075
/T = 0.3 (/v = 1.5) (1); w /T =5 (w/v, = 25) (2).

upon atransition from the gas conditions to the plasma
conditions. In weak magnetic fields (for w, < I), the
dependence u;(Q) remains virtually the same as under
the gas conditions and is dispersion-like (curve 1 in
Fig. 3). Asthemagneticfieldincreases (for w, > I'), the
form of the u;(Q) dependence changes upon a transi-
tion from the gas conditions to the plasma conditions.
In strong magnetic fields (for w, > I'), the magnitude of
the drift velocity ugy under the plasma conditionsis con-
siderably larger than under the gas conditions (this can
be seen from a comparison of curves 2 in Fig. 1b and
Fig. 3).

L et us now determine the ambipolar electric field E
formed automatically in the plasmafor leveling out the
fluxes of oppositely charged particles along the direc-
tion of radiation. Using Egs. (10) together with condi-
tions (12), wefind that

Uy He U, = e
¢ my,

(33)

where [ is the electron mobility in a direction trans-
verse to the magnetic field [21] and L is the electron
mobility in zero magnetic field.

Let us estimate the value of E. In weak magnetic
fields (w, = Bw, < BV,), the electron mobility Pey = He
and the maximum value of the drift velocity is |u) | =
Aug (see formula (31)). The ambipolar electric field
strength in thiscase is
% = ﬁ_kPOB_VeA

|E| =
He € Vv,

(34)
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This leads to the following estimate for the radiation
waveength A ~ 0.5 um, the radiation absorption probabil-
ity at theline center P, ~ 107 s, and the values of Bv /v, ~
102 and A= 600 (see Eq. (31)): |[E| ~5 % 103V/cm. As
the magnetic field increases (so that w: = By,
which corresponds to v, = v,), the drift velocity
decreases,

2
Uy max T AURBV eV /G,

but the drag effect of electrons becomes stronger,

Moo OHeB?VE 0.

Consequently, the ambipolar electric field strength
increases by a factor of v,/Bv, and may attain values
|E| ~0.5V/cm for v,,/Bv, ~ 100.

CONCLUSIONS

In the present work, we analyzed theoretically the
force action of an external magnetic field on the ion
drift under the combined action of the light-induced
drift and light pressure effects under the conditions
when thisactionismaximal and ismanifestedin “pure”
form (the Zeeman splitting of the absorption line is
absent). The force action attains its maximum value in
the case when the magnetic field is perpendicul ar to the
direction of propagation of radiation; it is precisely in
this casethat it can be singled out in “pure” form (there
is no line splitting in the case of the normal Zeeman
effect with radiation propagating across the magnetic
field and polarized linearly along the magnetic field).
Theformulasfor the drift velocity of ions derived inthe
present work are valid for an arbitrary relation between
the Doppler and homogeneous widths of the absorption
line and for an arbitrary magnitude of the magnetic
field.

Asthe magnetic field increases, theion drift vel ocity
component along the direction of radiation reversesits
sign. It follows from Eq. (32) that this effect can only
be observed in magnetic fields

B 010 M. V(T 1+ V),

where M is the ion mass in atomic units. It follows
hence that the value of the magnetic field required for
observing this effect experimentally is the smaller, the
lower the gas pressure and the rate of spontaneous
decay of the excited state of the ion. For the transport fre-
quency of ion collisionsv,, ~ 10° s (which correspondsto
agas pressure of ~0.01 Torr), the radiation constant I ,, ~
107 s, and the ion mass M ~ 10 amu, we obtain the fol-
lowing estimate from relation (35): B ~ 10° G.

Thedrift velocity component transverseto the direc-
tion of radiation emerges for indefinitely weak mag-

(35)
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netic fields. For w, < v,, its magnitude can be estimated
using the formula

|UD| |:l((’“)c/vn)|ud|v

where uy istheion drift velocity in zero magnetic field.
The magnitude of the transverse drift velocity compo-
nent may attain the value |uy| even in quite weak mag-

netic fields (B ~ 100 G for v,, ~ 10° s** and theion mass
M ~ 10 amu).

Under laboratory conditions, photoinduced ion drift
may be manifested in the form of an electric current
(photoinduced current [14]). A potential difference V ~
|EIL will emerge between the endfaces of a cell with a
weakly ionized gas, where L isthe cell lengthand E is
the ambipolar electric field in the cell, which emerges
duetoiondriftinduced by light. For |[E| ~5 % 10°V/cm
(see the egtimate following formula (34)) and L ~ 10 cm,
a potential difference V ~0.05V emerges between the
endfaces of the cell. A conductor connecting the oppo-
site ends of the cell will carry acurrent | ~ V/R, where
R is the internal resistance of the plasma. Since R ~
L/eNSm;, where S is the cross-sectional area of the
cell, we obtain the following estimate, taking into
account Eq. (33): | ~ |u;|eNS. For the drift velocity
|uy| ~ 10 cm/s, the ion concentration N ~ 10* cm=, and

S~1cm? weobtainl ~107A.

The results obtained in the present work may be
interesting for astrophysical applications in connection
with the phenomenon of chemicaly peculiar stars,
whichiswidely discussed in the literature[24—27]. One
of the main hypotheses explains the anomalies in the
chemical composition of all peculiar stars by the sepa-
ration of chemical elements in their atmospheres
through the mechanism of selective drift of atoms and
ions under the action of radiation emitted by the star
[24-27]. Both light pressure [25-28] and the light-
induced drift [27, 29, 30] were considered as possible
reasons for the drift in the atmospheres of such stars.
Chemically peculiar stars include so-called magnetic
stars [24-27] with strong (up to 3 x 10* G) large-scale
magnetic fields predominantly of adipole nature. It was
shown in the present work that the magnetic field radi-
cally changes the pattern of the light-induced drift and,
hence, may strongly affect the separation of chemical
elements in the atmospheres of magnetic stars.
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Spectra of Second-Order Raman Scattering
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Abstract—Spectra of second-order Raman scattering in porous silicon are investigated. A band shift towards
lower energies in second-order spectrais observed, as well as the correlation between the values of band shift
in first- and second-order spectra. It is demonstrated that the observed effect cannot be interpreted using the
conventional concepts of the mechanisms of scattering in microcrystalline samples. An interpretation of the
revealed effect is suggested. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Porous silicon (por-Si) has been one of the “explo-
sive” subjectsin solid-state physicsinthe 1990s. Inless
than ten years after the publication by Canham [1], the
number of publications devoted to this materia
exceeded by almost an order of magnitude the number
of publications on the subject of high-temperature
superconductivity (see the analysis of the dynamics of
publications by Parkhutik [2]). Quite a few of these
paperswere devoted to the investigation of Raman scat-
tering. The readily observed shift of the scattering band
towards lower energies (compared with the position of
this band in the spectrum of a crystalline materia), the
accepted interpretation of this effect [3], and the possi-
bility of directly relating the observed shift to the size
of small regions defined the high activity in precisely
this direction.

In the majority of studies, the scattering of light in
porous silicon was treated as a particular case of scat-
tering by an aggregate of semiconductor objects of
nanometer size. The adopted qualitative approach con-
sisted in this case in the following: It was assumed that
the smallness of the region in which the scattering
occurs partly removes the prohibition of the light scat-
tering by phonons with k # 0. Moreover, in contrast to
abulk material, the scattering became allowed in some
interval of wave vectors (AK) in the vicinity of the dis-
persion curve maximum (k = 0). The width of the inter-
val Ak was estimated from the uncertainty relation
AxAk < 1, where Ax is the linear dimension of a small
spatia region. For regions several nanometers in size,
thisinterval is of the order of k,,/10; even with therel-
ative slope of the dispersion curve of silicon in the
region of maximum (k = 0), this corresponded to the
energy range from several to severa tens of inverse
centimeters. Therefore, the spectral shift and broaden-
ing were readily detected experimentally.

The quantitative interpretation of this phenomenon
in almost al cases was based on the approach devel-
oped by Campbell and Faucheet [3]. In accordance with
this approach, the vibration excited in a small spatially
bounded element is treated as a wave packet of vibra-
tions of different types allowed for propagation in an
unbounded medium. Because waves of all types with
k # 0 have alower energy than that at the center of the
Brillouin zone, this treatment leads to the same conclu-
sionsasthe qualitative treatment; namely, the scattering
band for nanometer-size objects must be broadened and
shifted towards lower energies. The calculationsin [3]
were performed for two-, one-, and zero-dimensional
objects, and the cal culation results were compared with
the results of experiments in films, thin filaments, and
small spherical samples.

Note that both the above-described qualitative
approach and the quantitative calculation in [ 3] treat the
effect of the smallness of size on the process of scatter-
ing and actually proceed from the assumption of the
invariability of the phonon spectrum of the material in
nanometer-size objects. However, there exist reasons
for which the intrinsic energies of phonon vibrations
and their damping in nanometer-size objects may differ
from the respective parameters for bulk materials.
Some of the mechanisms leading to such differences
were treated by Gorelik et al. [4] for nanoparticles of
diamond and germanium.

In the case of second-order scattering, the small
photon momentum is transferred to a pair of phonons;
the momentum of each one of the latter may be other
than zero. Thisremovesthe restriction Ak = 0 (common
for first-order scattering) and the respective selection
rules. As a result, phonons from the entire Brillouin
zone may be involved in scattering, and the second-
order spectrum largely reflects the entire phonon fre-
guency spectrum of crystal (transferred to the doubled-
frequency region). The clearly defined singularities in
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second-order spectra correspond to the points of the
dispersion curve characterized by a singularity in the
density of states, (dE/dn)(E) — 0. Such singularities,
in particular, show up in spectra at energy values equal
to combinations of energies of phonon branches on the
edges of the Brillouin zone. Results of theoretical anal-
ysis and experimental data for second-order scattering
in crystalline silicon may be found in [5, 6].

Only severa publications are availablein which ref-
erences are made to the observation of two-phonon
scattering in porous silicon. Spectra of two-phonon
scattering were first recorded for samples of porous sil-
icon on silicon substrates (see, for example, [7, 8]).
Because the effect of the substrate on the result
remained unclear, the authors of those papers only
established the fact of the presence of aband character-
istic of two-phonon scattering; they could also point to
a high intensity of this band compared with the corre-
sponding spectra for crystalline silicon. Note that the
nature of one specific mechanism of amplification of
Raman scattering in porous silicon, defined by confine-
ment in an electron subsystem, was treated by usin [9].
Shu-Lin Zhang et al. [10] recorded scattering spectra
for free samples of porous silicon in a wide spectral
region including the spectral region of second-order
scattering. Without giving concrete definitions, Shu-
Lin Zhang et al. [10] restricted themselves to making a
remark that second-order spectra do not correspond to
the existing theory of Raman effect in microcrystaline
objects.

Indeed, as was mentioned above, first- and second-
order scattering spectra are governed by different regu-
larities. Therefore, a comparison of first- and second-
order scattering spectra may produce independent
information about the phonon spectrum of nanometer-
sizesilicon objects. At present, however, it isnot under-
stood which special features must show up in second-
order Raman scattering spectra for porous silicon and
how informative such experiments may be.

2. EXPERIMENTAL PROCEDURE
AND INVESTIGATED SAMPLES

We recorded scattering spectrausing aRAMALOG-5
spectrometer with a triple monochromator. The spectral
width of the dlit in the experiments was 7 cm™. The
spectra were excited by a continuous argon laser (A =
488 nm). In order to identify the contribution made by
weak signals against the noise background, computer
accumulation of spectra was used. The investigations
were performed at room temperature.

Different samples of porous silicon prepared by dif-
ferent production techniques were used in the experi-
ments. Samples on a substrate of crystalline silicon
were prepared from compensated polycrystalline sili-
con by the procedure of [11], i.e., by chemical etching
with preliminary ion bombardment of initial silicon.
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Most of the experiments were performed with free
samples prepared from degenerate n-type silicon with
the initial resistivity of 0.4-0.9 Q cm and anodizing
current density of 50 mA/cm?, and illuminated by the
focused light of a halogen lamp. The etching was per-
formed in an HF : ethanol (1: 1) solution. In the final
phase of etching, the current density was raised by
approximately an order of magnitude, which resulted in
the separation of samples. The thus obtained samples
were fairly large plates (with an area of up to 0.5 cm?)
with aclean bright surface. Under conditions of ultravi-
olet light excitation, the samples exhibited lumines-
cenceinthered-orange spectral region, and the thinnest
samples were further characterized by an appreciable
transparency in the same region.

Itisknown that porous silicon may berealized in the
most diverse morphologies. The structure of the
employed free samples of porous silicon was investi-
gated using the atomic force microscopy. These inves-
tigations revealed, even within a single sample, the
presence of regions with strongly differing characteris-
tics of microrelief on an outwardly uniform surface.
Therefore, in analyzing the results, we do not attempt to
correlate the observed band shifts in the spectra with
the presence of silicon clusters of certain size and
shape. We only believe that, in our experimentsin light
scattering, some inhomogeneous combination of
nanometer-size clusters was investigated for each sam-
ple. However, the use of samples of different typeswith
different scattering spectra enables one to state with
greater assurance that the observed results are typical.

3. EXPERIMENTAL RESULTS

The observed second-order scattering spectra for
porous silicon were similar to second-order scattering
spectrafor crystalline silicon, but differed from the lat-
ter spectra by the shape and position of the bands.

The most pronounced feature of the second-order
spectrum was the characteristic trapezoidal band in the
900-1000 cm ™ range. In all of the obtained second-
order scattering spectra for porous silicon, the position
of thisband was shifted relative to itsposition in acrys-
talline material towards lower energies. Examples of
second-order scattering spectra in the 900-1000 cm
range are given in Fig. 1. Given for comparison in the
top part of the figure is a spectrum for crystaline sili-
con; the remaining spectra are for different samples of
porous silicon. The interpretations of singular points,
given on the top spectrum, are borrowed from [12].

A marked tendency is observed for the obtained
spectra in the case of minor shifts, the band shape is
close to its shape for crystalline silicon; for relatively
large shifts, the band is deformed and loses its charac-
teristic trapezoidal shape. Note that, in al cases, the
spectra for porous silicon samples are broadened and
shifted to the lower energy region.
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Also recorded for the same samples of porous sili-
con were first-order scattering spectra. The position of
the band of fundamental scattering in first-order spectra
(Fig. 2) wastypical of porous silicon: the fundamental
band (in the vicinity of 520 cm™) was also shifted to the
lower energy region relative to the existing bandsin the
spectrum of crystalline material and broadened.

Scattering spectrafor samples of porous and crystal-
line silicon in the region of about 300 cm™ are givenin
Fig. 3. One can see in the figure that, in this case as
well, the characteristic band in the spectrum of two-
phonon absorption is shifted towards lower energies
relative to the position of the respective band for acrys-
talline material.

A new experimental fact was provided by the
observed correlation between the values of the band
shift for first- and second-order scattering. In the case
of samples investigated by us, the band shift in second-
order spectra was observed for samples characterized
by agreater shiftinthefirst-order spectrumaswell. The
positions of peaks in the first-order spectra and singu-
larities in the second-order spectra (givenin Fig. 1) are
compared for four samplesin Fig. 4. Because the band
shape in the demonstrated spectra develops from
amost trapezoidal to bell-shaped, it does not appear
possible to trace the positions of singular points. The
values of the band middle and the spectral positions of
the band edges are given in Fig. 4 for characterization
of the bandsin each spectrum (i.e., in the spectrum of a
concrete sample). The positions of the edges were pro-
vided by the coordinates of the point with the maximal
derivative of intensity along the coordinate; for the top
graph, in which the band edges decrease linearly, this
was the middle of the respective region. The same
graph gives the estimated values of line broadening.
Because the demonstrated band wasinitially a superpo-
sition of several components, the measure of broaden-
ing of the band components was provided by the mini-
mal radius of curvature (in appropriate units) of details
of the bands of a concrete spectrum. The datain Fig. 4
demonstrate clearly that the band shift in the 900—
1000 cm range in the second-order spectrum has the
same sign as the shift of the band of fundamental scat-
tering in the first-order spectrum and correlates with the
latter in magnitude. These data are indicative of another
tendency, namely, that the band shift is accompanied by
the broadening of the components. Thisfact iswell known
for first-order spectra; however, for second-order scatter-
ing spectra, it was recorded for the first time.

4. DISCUSSION OF THE RESULTS

So, we havefound that, in the case of poroussilicon,
the bands in second-order Raman spectra are shifted to
the lower energy region compared with the respective
bands for crystalline silicon, and this shift correlates
with the analogous band shift and broadening for
poroussiliconin afirst-order spectrum. From the stand-
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Fig. 1. The band position in the 900-1000 cm range in
second-order scattering spectra for crystaline silicon (top
curve) and for different samples of porous silicon (I is the
scattered light intensity, and k is the wave number). The band
shift to the lower energy region is clearly discernible for the
spectraof porous silicon. Theinterpretation of the positions of
singular points on the top curve is borrowed from [12].
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Fig. 2. The band position in the region of 440-540 cmt in
the first-order scattering spectra for crystalline silicon (top
curve) and for different samples of porous silicon. The band
shift to lower energiesis clearly discernible for the spectra
of porous silicon.

point of the adopted model, which attributes the known
shift in the first-order spectrum to the effect of spatial
confinement on scattering spectra, this result is unex-
pected and needs to be analyzed. One can further see
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Fig. 3. Comparison of the position of singularities in sec-
ond-order scattering spectrain the vicinity of 300 e for
silicon (top curve) and porous silicon (two bottom curves).
The interpretation of singular points is likewise borrowed
from [12].
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Fig. 4. The correlation between the positions of bands in
first-order scattering spectra (plotted on the horizontal axis)
and the positions of characteristic points in second-order
scattering spectra for the same samples (plotted on the ver-
tical axis). The hollow triangles and circles indicate the
edges and the middle of the band for the spectrum of each
sample, respectively; the solid squares indicate the esti-

mated broadening of the componentsin cm L on the right-
hand vertical scale.

fairly clearly that the band broadening increases, while
the distance between the components does not vary or
variesinsignificantly compared with the observed shift.

We will, first of al, demonstrate that the concepts
that are usually used for interpreting the data on Raman
scattering in porous silicon [3] in no way help to
explain the obtained results for second-order spectra.
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Of course, in the case of light scattering from nanome-
ter objects, an uncertainty of the momentum of a scatter-
ing phonon must exist for any points of the phase diagram.
However, if the phase shift in the 900-1000 cm range
was caused by the phonon momentum uncertainty (i.e.,
the mechanism suggested by Campbell and Faucheet
[3]), the shift would have to have the sign opposite to
that of the band shift in the first order, because the
slopes of the dispersion branches of optical vibrations
have opposite signs at the point k = 0 and on the bound-
aries of the Brillouin zone.

In fact, however, thisis also incorrect. In the case of
second-order scattering, the light scattering by phonons
with k # 0 is not forbidden. Hence, it follows that the
main mechanism providing for the band shift of first-
order scattering, i.e, the violation of the selection rule
Ak=0, is not essentia for the formation of spectra of
second-order scattering. Nevertheless, the experimen-
tal results unambiguously demonstrate similar shifts
and broadenings in both first- and second-order spectra
for porous silicon.

Of other possiblereasons for line shiftsin scattering
spectra, we must, no doubt, discuss the possible defor-
mation of the material being investigated. The effect of
pressure on the position of bandsin second-order spec-
tramay be assumed to be known. For silicon, the band
in the vicinity of 1000 cm™* must shift towards higher
energies with increasing pressure with a coefficient of
approximately 1 cm/kbar. It is difficult to a priori
assume a certain type of deformation of the material in
the case of porous silicon. There is aimost no question
that the deformation must be nonuniform; however, the
experimental spectrum is not simply broadened: the
band is clearly shifted into the lower energy region. In
view of the known correlations [13], this must corre-
spond to the tensile stresses in the material. However,
no such conclusion may be made independently of the
data on the position of other bands.

The effect of deformation on the spectral position of
the band in the first-order spectrum for silicon is also
known. This band (520 cm™) must also shift into the
lower frequency region under tensile stresses [13].
Thereby, the assumption of the existence of tensile
deformation would automatically explain the correla-
tion between the shifts of the above-identified bandsin
first- and second-order spectra.

However, the band in the vicinity of 300 cm™ has
the opposite sign of deformation constant (dk/dP =
-0.4 cm™ kbar?) and would have to shift towards
higher energies in the case of tensile strain. The exper-
imental results demonstrate quite the opposite. Both
bands in the second-order spectrum, in the vicinity of
300 cm™? and 900-1000 cm™, shift into the lower
energy region. It is by virtue of the identical sign of
shift for these two bands that we are forced to eliminate
the deformation of the material from the possible rea-
sons for the observed effect.
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On the other hand, it is the coordinated band shift,
especially, with the conservation of the band width in
the vicinity of 900-1000 cm™, that gives a clue to
understanding the reason for this phenomenon. We will
take into account the fact that a second-order spectrum
isformed in the case of superposition of scattering from
all phonon branches, and the position of singularitiesin
the spectrum is reflective of the energy of singular
points of the phonon diagram. Then, the observed gen-
eral shift towards lower energies must be understood as
a consequence of the decrease (on the average) of the
elagticity of the material for vibrationsin the respective
frequency region. However, the possible general reason
for the reduction of elastic constants of porous material
is almost evident: strictly speaking, this reason liesin
the obvious decrease in the easticity of the porous
material. The elastic forces returning an element of the
medium under vibrations to the initial position are
made up of theforces counteracting the compression on
one side of this element and the forces counteracting
the tension on the opposite side of the element. In the
case of a porous medium, a mgjor part of the material
lies on the surface of pores(or clusters), and, inthe case
of vibrations, the restoring force will act on the surface
layers on only one side; this must unambiguously lead
to the reduction of the natural vibration frequencies. A
gualitative interpretation of this may also be that the
surface modes start being admixed to the volume oscil-
lation in a porous medium. More rigorous assertions
are impossible in this situation because of the inhomo-
geneity of the porous structure; however, by and large,
the suggested reason for the observed uniform shift of
scattering bands to the lower energy region appears
valid.

But now the results for second-order scattering, in
turn, must be fitted to the known data on one-phonon
Raman scattering. The problem is that the variations of
the phonon frequencies, which, according to the
assumption made, are responsible for the band shiftsin
the second order, must have brought about a variation
of the entire dispersion diagram of lattice vibrations;
this, in turn, inevitably must have an effect on the first-
order scattering spectra. However, as was already men-
tioned, the observed band shift in the first-order spec-
trum was aready unambiguously interpreted as a man-
ifestation of phonon confinement [3]. The numerical
values of the observed band shiftsin the first and sec-
ond orders are comparable in magnitude, and this pre-
vents one from manipulating the concepts of the small-
ness of one of the contributions or of their compensa:
tion.

Nevertheless, the formulated problem finds its solu-
tion in view of the pattern of vibrations at the point k =
0 of the phonon diagram. At this point, the optical
vibrations are the vibrations (dw/dk = 0) of one sublat-
tice relative to another. In the case of vibrations of this
type, the macroscopic environment for an individual
element of the medium is of little significance; the
restoring force for each atom is defined by the interac-
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tion with the nearest neighbors. Hence it follows that
the effect of porosity of the medium must not affect
considerably the natural frequencies in the vicinity of
the dispersion curve maximum.

Thevibrations at points on the edges of the Brillouin
zone are not strictly optical. In this case, the vibrations
partly include the combined vibrations of the sublat-
ticesaswell, i.e., the vibrations of the material asasin-
glewhole. In turn, vibrations of this type must be sen-
sitive to the presence of internal boundaries (surfaces)
of the material, as was pointed out above. The natural
frequencies of vibrations of this type must be lower in
the vicinity of the surface.

In total, it is this that brings about the observed
effects. In the case of first-order scattering, scattering
from the region in the vicinity of extremum (k = 0) is
observed. For vibrations of thistype, the porosity of the
material is of small significance, and the natura fre-
guencies in the region in the vicinity of k = 0 remain
unchanged. On the other hand, the very possibility of
one-phonon scattering of light is associated with the
condition k = 0, and a partial violation of the prohibi-
tion of scattering by phonons with k # O leads to the
shift and broadening of the fundamental band of scat-
tering in the spectrum under observation. The singul ar-
ities in second-order scattering spectra correspond to
the frequencies of the phonon branches on the bound-
aries of the Brillouin zone. In this case, there is no
effect of the prohibition of transitionswith k # O; on the
other hand, the phonon frequencies of the material
prove to be sensitive to the presence of pores, and it is
another mechanism that provides for the band shift
towards lower energies. By and large, it turns out that
the mechanisms of band shifts in first- and second-
order spectra are different; however, in both cases, the
mechanisms are “triggered” because the material being
investigated is not a continuous medium but presents a
conglomerate of clustersor aporous medium. Thisgen-
eral reason, while acting via different mechanisms,
leads to the presence of correlation in band shifts,
which was revealed by us.

5. CONCLUSIONS

Thus, as a result of a series of experiments, it has
been demonstrated that the bands in second-order spec-
traof light scattering are shifted towards|ower energies
compared with second-order spectra for a crystaline
material. These results agree with the published results
of separate experiments by other researchers. An expla-
nation of the revealed effect has been suggested. In our
experiments, data on the variation of the spectrum of
phonon frequencies for porous silicon have been
obtained for thefirst time.

We have also found a clearly defined correlation
between the band shifts in first- and second-order scat-
tering spectra and provided an explanation of the hier-

No. 4 2002



744 KOMPAN et al.

archy of mechanisms responsible for band shifts in
spectra of different orders.

ACKNOWLEDGMENTS

We are grateful to I.A. Merkulov for discussions of
the experimental results.

REFERENCES

L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

. V. Parkhutik, J. Porous Mater. 7, 363 (2000).

I. H. Campbell and P. M. Faucheet, Solid State Commun.

58, 739 (1986).

4. V.S. Gorelik, A.V.1go, and S. N. Mikov, Zh. Eksp. Teor.
Fiz. 109, 2141 (1996) [JETP 82, 1154 (1996)].

5. K. Uchinikura, T. Sekine, and E. Matsuura, J. Phys.
Chem. Solids 35, 171 (1974).

6. W. Windl, P. Pavone, K. Karch, et al., Phys. Rev. B 48,

3164 (1993).

wN e

7.

8.

9.

10.

11

12.

13.

H. Munder, C. Andrzejak, M. G. Berger, et al., Thin
Solid Films 221, 27 (1992).

I. Gregora, B. Champagnon, and A. Halimaoui, J. Appl.
Phys. 75, 3034 (1994).

M. E. Kompan, I. I. Novak, V. B. Kulik, and N. A. Kama-
kova, Fiz. Tverd. Tela (St. Petersburg) 41, 1320 (1999)
[Phys. Solid State 41, 1207 (1999)].

Shu-Lin Zhang, Xin Wang, Kouk-san Ho, et al., J. Appl.
Phys. 76, 3016 (1994).

V. |. Beklemishev, V. M. Gontar’, V. V. Levenets, et al.,
Elektron. Prom-st, No. 2, 36 (1994).

B. A. Weinstein, G. J. Piemarini, J. D. Barnett, and
S. Block, Science 176, 284 (1972).

Light Scattering in Solids, Ed. by M. Cardona and
G. Guntherodt (Springer-Verlag, Berlin, 1984; Mir,
Moscow, 1986), Val. IV.

Trandated by H. Bronstein

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94 No.4 2002



Journal of Experimental and Theoretical Physics, Vol. 94, No. 4, 2002, pp. 745-750.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 121, No. 4, 2002, pp. 867-874.

Original Russian Text Copyright © 2002 by Kraihov, Smirnov.

PLASMA,
GASES

Charge Composition of a Cluster Plasma upon Irradiation
of Large Atomic Clusters by the Field
of a Superatomic Femtosecond Laser Pulse

V. P.Krainov®* and M. B. Smirnov®
aMloscow Physicotechnical Institute, Dolgoprudnyi, Moscow oblast, 141700 Russia
bMax-Born Ingtitute, 12489, Berlin, Germany
*e-mail: krainov@online.ru
Received December 22, 2001

Abstract—A theory is developed for calculating the charge composition of a cluster plasma produced upon
irradiation of large atomic clusters by the field of a superatomic femtosecond laser pulse. The theory is based
on the overbarrier process of a successive multiple internal ionization of atomic ionsinside a cluster accompa-
nied by the external field ionization. Collision ionization is also taken into account in the calculations. The the-
ory isillustrated by the example of acluster consisting of 106 xenon atomsirradiated by a50-fs laser pulse with
apeak intensity of 2 x 10 W/cm?. In this case, the Xe?®* ions dominate. The amounts of atomic xenon ions
with multiplicity up to 31 are calculated. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The interaction of superpower laser pulses with large
clusters congisting of noble gas atoms substantially differs
from the interaction of such pulses with isolated atoms.
Upon multiple ionization of atoms in the cluster, a strong
interna field is produced, which itsaf can perform afur-
ther internal ionization of the atomicions.

Thisproblem is rather complicated because theion-
ized cluster is simultaneously expanded (during the
laser pulse) and the electronic component of the cluster
isheated up to several keV. In addition, external ioniza-
tion occurs, i.e., the escape of the produced photoel ec-
tronsfrom thecluster. Asaresult, matter at thefocus of the
laser beam immediately after the laser pulse termination
representsarather homogeneous plasmaconsisting of free
electrons and multiply charged atomicions.

The calculation of the spectral distribution of pro-
duced atomic ions over their charges is an important
theoretical problem. This problem is complicated by
the fact that atomic ions are “stripped” at the leading
edge of the laser pulse not only by the laser-pulse field
but also due to collisions of atomic ions with fast elec-
tronsinsidethe cluster. At the sametime, astandard sta-
tistical approach based on the Sahadistribution [1] can-
not be applied because the laser-pulse duration is sev-
era tens of femtoseconds, and sSlow recombination
processes have no time to proceed during the laser
pulse.

In the initial part of the leading edge of the laser
pulse, a successive overbarrier ionization of atoms [2]
and then of atomic ions by the laser field commonly
takes place. In this case, the collision ionization is
rather weak because the kinetic energy of produced

photoelectrons is small. This ionization is observed
only near the maximum of the laser pulse.

The external ionization of the cluster ismainly field
(cold) ionization. The role of thermal ionization
according to the Richardson—Dashman law is negligi-
ble because of a great positive charge of the ionized
cluster, which prevents the thermal evaporation of elec-
trons from the cluster surface.

The aim of our paper isto determine the charge state
of atomic ions in the cluster plasma upon irradiating
clusters by thefield of asuperatomic femtosecond laser
pulse.

We considered xenon clusters as typical objects.
They are formed during the adiabatic flowing out of
gaseous xenon compressed preliminarily to a pressure
of several tens of atmospheres through a nozzle into
vacuum, which is accompanied by a temperature drop.
The size of the clusters increases with pressure. We
assume that matter in the cluster is in a liquid state.
Thus, the density of liquid xenon is 3.52 g/lcm? (the
temperature of the transition from gaseous to liquid
state is —107.1°C), which significantly differs from the
density of solid xenone: 2.7 g/lcm? (the solidification
temperatureis—111.9°C). The noble gas atomsin clus-
ters are attracted to each other by van der Waals forces.

Therefore, the radius of a liquid xenon cluster
(which is assumed spherical, as confirmed by experi-
ments on Rayleigh scattering of light by clusters) con-
taining a million atoms equals 245 A. The skin depth
exceedsthisvalue, so that we can consider that the elec-
tromagnetic field of the laser pulse freely propagates
through an individual cluster. Of course, when there are
many such clusters in the focus of the laser beam, laser
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Fig. 1. Charged and neutral regions of the ionized cluster
irradiated by alaser pulse.

radiation is strongly absorbed, as was observed experi-
mentally [3].

During the multiple ionization, the concentration of
free electrons inside the cluster plasma becomes rather
high. The penetration of laser radiation inside the
plasma (already at the trailing edge of the laser pulse,
when the clusters virtually disappear and the cluster
plasma becomes homogeneous) ceases because the
laser radiation frequency becomes lower than the

plasma frequency
41'[Nee2
me

Here, N, is the concentration of free electrons in the
plasma.

The above discussion demonstrates a variety of pro-
cesses occurring upon the interaction of superpower
ultrashort laser pulses with large atomic clusters.
Therefore, to analyze these processes, models are
required which would allow the determination of the
charge composition of atomic ions at the leading edge
of the laser pulse and in the cluster plasma with good
accuracy (before the development of recombination
processes). This is important for a further study of the
line electromagnetic emission of multiply charged
atomicionsin the far X-ray range [4].

2. MODEL OF OVERBARRIER MULTIPLE
INTERNAL AND EXTERNAL CLUSTER
IONIZATION

Our approach to the internal multiple ionization of
atoms in large van der Waals clusters by a superstrong
field of alaser field is based on the Bethe model [5] of
overbarrier ionization. Because we often used this
model in our previous papers [6-8], we will describeit
here only briefly. To produce an atomic ion with the
charge Z and ionization potential E, in acluster at some
instant of timet, an electric field of the strength

E;
F(O) = 2 1)
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is required. Hereafter, we use the atomic system of
units, in which the electron charge and mass and the
Planck constant are equal to unity.

However, the electric field inside the ionized cluster
does not coincide with the external field of alaser pulse.
Free electrons inside the cluster (their total number is
ZN, where N is the number of atomsin the cluster) are
rather rapidly displaced by the laser field oppositely to
the field direction (Fig. 1). After ahalf-period, they are
rapidly displaced in the opposite direction due to the
absence of inertia. It isassumed in [9] that the spherical
shape of the electronic subsystem is conserved during
such displacements. This could be observed in the case
of astrong surface tension existing in the system. How-
ever, thereisno reason to assumethisin our case. In our
model, electrons are simply displaced oppositely to the
laser field direction.

Therefore, the ionized cluster consists of two
regions: initsneutral part the electrons and atomic ions
are located, and in the charge part of the cluster only
atomic ions are found (Fig. 1). Let us assume that the
interface between these regionsisflat. Of course, thisis
a certain approximation, because the interface surface
isin fact bent towards the charged region, its convexity
being determined by the condition that the tangential
component of the electric field would be zero over the
entire surface. This condition precludes the movement
of free electrons. However, our aim is to determine an
additional electric field produced by the charged region
at the remotest point of the cluster (point A in Fig. 1),
which will only slightly change upon small bending of
the interface.

We could assume that the electrons are distributed
not as shown in Fig. 1 but over the entire cluster, how-
ever, nonuniformly, their number in the |eft part of the
cluster being greater than that in the right part, asin the
case of volume plasma oscillations. In this case, the
electrically neutral part of the cluster would be absent
atogether. However, such a variant is less probable
than that described above because plasma always tends
to become electrically neutral. In a neutral cluster, sur-
face plasma Mie oscillations would be excited [10].

The electric field strength produced at the point Ain
the charged region of the cluster can be readily calcu-
lated:

= NZy _5e0@ 3a0]
E, = Rﬁ‘ 3cos 5 + 2cos >0 2
Here, Risthe cluster radius, and the angle a is shown
in Fig. 1. The condition

F(t) = Ea ©)

means that the force with which an electron is gected
by the laser field outside is equal to the force with
which this electron is attracted by the positively
charged region of the ionized cluster.
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The electric field strength at the extreme right point
B (Fig. 1) produced by the charged region of the cluster
can bereadily calculated using electrostatic laws:

_ Nz . Q] 20
= E%—animsm > (@]

This field should be added to the external field F(t)
because it enhances the internal ionization of atomic
ions in the cluster in accordance with the well-known
“ignition” model [11].

However, we should bear in mind that, first, this
field does not act in the neutral region of the cluster and,
second, it gives only the maximum value of the total
field in the charged region, whereas the total field will
have other values at other points of the charged region.
The first factor is most important. To take this factor
into account, we propose to reduce the “ignition” field
(4) by multiplying it by theratio of the volume V of the
charged region to the cluster volume 4nR%/3. The vol-
ume of the charged regionis

V = %HR3(2—3COSG + cos’a). (5)

The charge of this region (the charge of the ionized
cluster) is

Q= N4z(2—3c050( + cos3a). (6)

By excluding theangle a from Egs. (2), (3), and (6), we
can obtain the universal relation between the external
field strength F(t) (in units of ZN/R?) and the charge Q
of the ionized cluster (in units of NZ). This relation
shown in Fig. 2 alows one to calculate the degree of
external ionization of any cluster for agiven strength of
the electric field of alaser pulse.

Therefore, the effective strength of theignition field
enhancing the internal ionization has the form

NZ 3
Fg = —(2—-3cosa +cos a)
4R

(7
%% Zsm sm—

By adding thisfield to the external field F(t), we obtain
ared field producing the internal ionization of atomic
ions in the ionized cluster, which we should equate to

E2/4Z, according to the Bethe condition, to obtain
finally

E. _ NZ
—= = —(2- +
27" . >(2—3cosa + cos a)

%% Zsm sm— (8
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Fig. 2. Universal dependence of the fraction k = Q/NZ of
electrons escaping from a cluster on the laser-pulse field
strength x = FRE/NZ.

%L 3cos S + 2cos eg%

This equation allows us to calculate the angle a from
the known ionization potential E, of the given atomic
ion and its current radius R(t), which increases with
time due to the Coulomb explosion of the ionized
cluster.

Knowing the angle a, we can find the charge Q of
the ionized cluster from expression (6). Then, using
relations (2) and (3), we can calculate the field
strength F(t),

NZ 30(]
F(t) = %l 3cos = > 9+ 2c0s > 9
and the instant of timet at which the internal ionization
occurred with the formation of atomic ions with the
charge Z. For this purpose, we will use the relation

F(t) = Foexp- ‘D

(10)
with the known values of the Iaser-pulsefi eld amplitude
Fo and the laser pulse duration T.

Now, we calculate the increase in the radius of the
ionized cluster caused by its Coulomb expansion by
using Newton's law for the movement of an atomicion
on the cluster surface

d’R _ Q()Z()

dt® R%(t)
Table 1 presents the results of calculations per-
formed for a xenon cluster containing N = 10° atoms
interacting with a 50-fs (FWHM) Gaussian laser pulse
with a peak intensity of 2 x 10 W/cm?. These values

(11)

No. 4 2002



748

Table 1. Dynamics of theinternal and external ionization of
a xenon cluster containing N = 10° atoms irradiated by a
50-fs laser pulse with a peak intensity of 2 x 10 W/cm?

z E,,eV | ,fs| Fau | Q10° | R au.

1, 5p° 121 | 100 | 0.028 | 0.022 | 464
2, 5p° 21.1 96 | 0.044 | 0.036 | 464
3, 5p* 321 92 | 0026 | 0.054 | 464
4, 5p° 46.7 87 | 0108 | 0.086 | 464
5, 5p? 59.7 85 | 0135 | 0.108| 464
6, 5pt 71.8 83 | 0.162 0.129 | 464
7,58 92.1 79 | 0223 | 0.176 | 465
8,55t | 106 78 | 0.258 | 0.206 | 465
9,4d° | 171 69 | 0535 | 0413 | 473
10, 4d° | 202 66 | 0.653 | 0518 | 478
11, 4d® | 233 64 | 0.777 0.626 | 482
12,4d” | 263 62 | 0894 | 0.731| 487
13,4d® | 294 60 | 1.023 | 0846 | 4%
14,40 | 325 58 | 1.143 | 0.969 | 502
15,4d0* | 358 56 | 1.276 1110 | 512
16,4d® | 390 55 | 1.406 1.270 | 518
17,402 | 421 53 | 1.526 1.400 | 531
18, 4d' | 452 52 | 1.641 1570 | 538
19, 4p® | 549 47 | 2191 | 211 590
20, 4p° | 583 46 | 2285 | 259 603
21,4p* | 618 45 | 2429 | 286 617
22,4p° | 651 44 | 2548 | 3.13 632
23,4p% | 701 42 | 2782 355 667
24, 4pr | 737 41 | 2915 | 4.08 687
25,48 | 819 38 | 3374 | 490 758
26,4s' | 897 35 | 3.770 6.40 846
26,4s' | 897 32 | 4200 | 843 954
26,4s' | 897 29 | 4650 | 10.9 1081
26,4s' | 897 26 | 5100 | 14.0 1228
26,4s' | 897 23 | 5550 | 17.3 1395
26,4s' | 897 20 | 5.940 | 20.7 1580
26,4s' | 897 17 | 6.330 | 237 1782
26,4s' | 897 14 | 6660 | 25.6 2000
26,4s' | 897 11 | 6.950 | 26.0 2230
26,4st | 897 7 | 7230 | 26.0 2470
26,4s' | 897 4 | 7.360 | 26.0 2720
26,4s' | 897 0 | 7.430 | 26.0 3060

of the parameters are typical for experiments [12]. In
this case, the distribution of the envelope of the laser
field strength has the form

2

F(t) = 7.43exp3--1H [au].

2
£ (12)

Here, 1 = 42.47 fs.
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One can seefrom Table 1 that the external ionization
first lags strongly behind theinternal ionization, and the
charge of the ionized cluster slowly increases. How-
ever, aready at the leading edge of the laser pulse, there
comestheinstant of time (—11 fs) when all the electrons
that have escaped from xenon atoms are removed from
the cluster, so that the latter contains only positively
charged xenon ions (mainly with the charge Z = 26).

The cluster size already strongly increases at the
leading edge of the laser pulse due to the Coulomb
expansion. Thus, at the instant of timet = 0, which cor-
responds to the peak value of the laser-pulse intensity,
the cluster diameter is more than six times larger than
itsinitial value. Thetypical distanceto an adjacent clus-
ter is 10-20 cluster diameters. Therefore, clusters
already disappear during the laser pulse, and the cluster
plasma becomes virtually spatially homogeneous.

3. TUNNEL AND COLLISION IONIZATION
OF ATOMIC IONS IN A CLUSTER

We described the internal ionization of atoms and
atomic ions in the previous section within the frame-
work of the overbarrier ionization. For the given value
of the peak intensity of alaser pulse, afurther overbar-
rier ionization is impossible. However, other types of
ionization are possible. Consider first the tunnel ioniza-
tion of xenon ions Xe?%*,

The absolute probahility of tunnel ionization can be
calculated analytically using expressions from [13]:

e t%S’Zﬁ»(ZEZ)Q"‘DlseEg]zzusz-s/z

Z5/2 O ZF O
3/2 (13)
0 2(2E)™"
PO ZE O

Here, t is the time of action of the given electric field
strength F.

By using Eg. (13), one should bear in mind that tun-
nel ionization appears in the tota electric field, which
includes an external field and the Coulomb field of an
ionized cluster (the ignition model that was discussed
in the previous section). The maximum field is achieved
at point B (Fig. 1). Table 2 presents the values of the
total field at different times. One can see that the field
first increases, reaches the maximum equal to Fg =
14.43 au at t = =23 fs, and then decreases. Because the
probability of tunnel ionization exponentially depends
ontheelectricfield strength, it isthisinstant of timeand
the time in its vicinity that are the most important. By
substituting the values Fy = 14.43 au, Z = 26, E; =
33.0 au, and t = 10 fsinto (13), we obtain W= 108,

Such a small ionization probability means that tun-
nel ionization does not result in the production of
atomic xenon ions with multiplicity exceeding 26.

Another mechanism is based on inelastic collisions
of fast electrons with atomic ions inside a cluster,
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resulting in the knocking out of an electron from the
atomic ion. The cross section for collision ionization is
described, with good accuracy, by the Lotz formula
[14]

In(E/E;)

o = 217f, EE
e—=z

(14)
Here, E. isthekinetic energy of acolliding electron (in
au), E, is the bound energy of a multiply charged
atomic ion (in au), and f, is the number of electronsin
the valence shell of the given multiply charged ion.
The amplitude of oscillations of an electron in the

laser field at the leading edge of alaser pulse at thetime
instantt = -35fsis

F

a=— = 1160 au,
w
2

E. = —— = 1090 au.
40

By substituting f, = 10 and E,; = 50.9 au for the first
electron knocked out from the 3d shell, we obtain from
(14) o = 0.012 au. The probability of anionizing colli-
sion per unit time is determined by the expression

w = N.0,/2E,. (15)

Here, N, isthe electron concentration inside the cluster,
whichisegual to

NZ-Q
ATRYI3

By substituting the values presented in Table 1 for the
given instant of time, we find w = 4.3 x 104, By multi-
plying this value by the time t = 10 fs, during which,
according to data presented in Table 1, free electrons
still remain inside the cluster, and by the number of ions
inside the cluster (i.e., by N = 10°), we obtain the num-
ber of ions with the charge 27, N,; = 160000.

The numbers of atomic ionswith charges 28, 29, 30,
and 31 are calculated similarly. They rapidly decrease
because each successive atomic ion is produced due to
ionization of the previousion (the probability of simul-
taneous multiple ionization of an atomic ion with the
charge Z = 26 is negligible). The ionization potentials
of multiply charged xenon ions were taken from [15].
The results are presented in Table 3.

Therefore, our approach allows us to calculate the
charge composition of atomic ions upon irradiation of
large clusters by thefield of a superatomic femtosecond
laser pulse. The charge composition changes at the
leading edge of the laser pulse and becomes fixed near
the pulse maximum. After the pulse termination, only
free expansion of the homogeneous cluster takes place
(for severa nanoseconds).

e

(16)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

749

Table2. Maximum strength of the effectivefield at different
instants of time at the leading edge of alaser pulse

-, fs Fett, aU.
35 12.70
32 13.46
29 13.98
26 14.38
23 14.43
20 14.25
17 13.79
14 13.03
11 12.18

7 11.49
4 10.87

Table 3. Charge composition of atomicionsin axenon clus-
ter containing N = 108 atoms after irradiation by a super-
strong ultrashort laser pulse

z E,, eV N,

26 897 816800
27 1385 160000
28 1491 20800
29 1587 2200
30 1684 190
31 1781 10

4. CONCLUSIONS

The interaction of large xenon clusters with super-
atomic femtosecond laser pulses was experimentally
studied in [3, 12, 16, 17]. In these papers, X-ray radia-
tion of multiply charged xenon ions caused by transi-
tions between the discrete levels of these ions was ana-
lyzed. The energy of these transitions give information
on the charge composition of the cluster plasma.

The authors of [16] observed the following X-ray
trangitions; Xe®*: 3d°4f — 3d1%: Xe&#™: 3dé4f — 3d%;
Xe®+: 3d’4f —» 3d8, and Xe**: 3d°4f — 3d’. The
maximum yield of photons was observed for Xe*%*
ions. The yidd of ions decreased with increasing
degree of ionization. The average number of atomsin a
cluster was about 3 x 10°. This completely agrees with
the results of our calculations presented in Table 3.
Rhodes et al. [18] explain high charge states of xenon
ions by the coherent motion of electron bunches inside
the ionized cluster. In this case, the probability of elec-
tron knocking out from atomic ions increases. How-
ever, itisnot clear in thismodel what confines the elec-
tron bunches together inside a small volume, prevent-
ing them from coming apart due to the Coulomb
repulsion. Another explanation proposed by the group
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of Ditmire [19] is that resonance excitation of surface
plasma electron Mie oscillations occurs, resulting in a
strong heating of electrons in the cluster. However, in
the case of multiply charged ions, aswas pointed out in
[16], the free electron density is so high that the Mie
frequency greatly exceedsthelaser radiation frequency,
so that the resonance cannot exist even upon a signifi-
cant expansion of the cluster.

A recent paper [17] by Rhodes’ group devoted to the
analysis of X-ray transitionsin the L shell of Xe*”* and
Xe?* ionsis based on the model [18].

Finally, the authors of [3, 12] observed Xeionswith
charges from 26 to 29, as well as with lower charges.
The aim of our further calculations is to explain the
intensity of X-ray linesin the spectra of such ions.
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Abstract—The magnetic phase diagrams of 2D and 3D regular lattices formed by nonspherical single-domain
ferromagnetic granules featuring a dipolar magnetic interaction are studied. The energy of a magnetic state of
such systems is calculated using an approximate expression for the pair interaction of nonspherical granules.
The character of the magnetic ground state of the system is determined by three geometric parameters: (i) the
eccentricity of granules; (ii) the ratio of periods of the rectangular (2D) or tetragonal (3D) lattice; and (iii) the
ratio of alattice period to agranule size. In contrast to the case of lattices formed by point (or spherical) mag-
netic moments, in which the ground state is always antiferromagnetic or frustrated (for triangular lattices), the
ground state of a 2D lattice composed of nonspherical granules can be ferromagnetic. The magnetic phase dia-
grams of the systems studied are constructed in the space of the above geometric parameters. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Can ferromagnetism exist at zero temperature in a
system of magnetic moments featuring dipole—dipole
interaction? An answer to this question, requiring exact
calculation of the energy of a long-range magnetic
interaction involving al dipoles in the system, is not
easy to obtain even for a system composed of point
magnetic moments. For a pair of parallel point mag-
netic moments p at a distance of r from each other, the
magnetic interaction energy is given by the formula

2
w = “—3(1—3c0326),
r

where 0 is the angle between the direction of moments
and the line connecting the two points. The sign of this
energy varies depending on the angle 0: for |6|< 6, or

|Tt— 8| < 8,, Where 8, = arccos(1/./3) = 55°, the inter-
action retains parallelism of the magnetic moments
(i.e., favorsferromagnetic ordering), otherwise the anti-
parallel  (antiferromagnetic) dipole configuration
becomes energetically favorable. The state of a system
containing a large number of dipolesis determined by
the competition of these trends. Cal culations show that
the ground magnetic state of one-dimensional chains [1],
two-dimensional (2D) square [2] and rectangular [3]
lattices, and also 3D cubic lattices [4, 5] composed of
point magnetic dipolesisnot ferromagnetic: the dipolar
(non-exchange) ferromagnetism in such systems is
impossible.

This conclusion is also valid for the systems com-
posed of homogeneously magnetized (single-domain)
spherical granules, because the field of each granule

coincides with the field of an equivalent point dipole
placed at the center and the dipolar magnetic interac-
tion energy of a pair of such granules coincides with
that of two equivalent point dipoles[6].

A different situation is observed for homogeneously
magnetized granules possessing a nonspherical shape.
Below, we restrict the consideration to granules having
the shape of an elongated ellipsoid of revolution with a
magnetic moment orientation fixed (due to a signifi-
cantly large shape anisotropy) in the direction of the
major semiaxis.

If the shape of magnetic granules deviates consider-
ably from the sphere, the magnetic field at small dis-
tances from its surface differs significantly from that of
an equivalent dipole placed at the center. For agranule
having the shape of an elongated ellipsoid, this situa-
tionisillustrated in Fig. 1, constructed using formulas
(1) and (2) presented below. As can be seen, the points
close to the equatorial plane (in which the other gran-
ules preferring antiferromagnetic ordering would
occur), the field is significantly smaller than that of the
equivalent dipole. Thisimplies that the system exhibits
a greater tendency to ferromagnetism as compared to
the case of spherical granules. Therefore, we may
expect that an increase in the “nonsphericity” of gran-
ules will inspire a transition from antiferromagnetic to
ferromagnetic ground state of the system. This paper is
devoted to an analysis of this question.

1The latter condition reflects a typical experimental situation,
whereby systems of this type encountered in practice usualy rep-
resent the ordered sets of quasi-ellipsoidal granules with parallel
axes. This circumstance eliminates the necessity of considering
the vortex magnetic states of various types typical of the systems
of free dipoles[2].

1063-7761/02/9404-0751$22.00 © 2002 MAIK “Nauka/Interperiodica’



752

Ho/H,
1.0 T T T T T T T T
e=0
0.8 05 -
0.7
0.6+ 0.8 -
0.9
04 0.99 i
0.2+ _
0
0.2+ -
—0.4}
1 1 1 1 1 1 1 1
0° 20° 40° 60° 80°
0

Fig. 1. The angular distribution of the magnetic field at a
distance R = 2.2a from the center of an ellipsoidal granule
(6 isthe angle between the long axis of the ellipsoid and the
direction to the point of observation, a is the major semi-
axis, and eis the eccentricity of the ellipsoid).

2. THE ENERGY OF PAIR DIPOLAR
INTERACTION OF ELLIPSOIDAL
MAGNETIC GRANULES

A constant magnetic field H(r) can be characterized
by amagnetic potentia Y suchthat H(r) =1 . There-
fore, the problem of a magnetic field created by a
homogeneously magnetized ellipsoid is equivalent to
the problem of a conducting ellipsoid exposed to an
external homogeneous electric field, a solution to
which is known (see, e.g., [7]). For an elongated ellip-
soid of revolution with semiaxesaand b (a> b) and the

eccentricity e= /1 —b’/a’, themagnetic field potential
in the cylindrical coordinates x and p (the x axis coin-
cides with the axis of revolution) is described by the
formulas

_ 3MXx

e
LIJ e il
e’a’

JIHE

where M is the magnetic moment of the ellipsoidal
granule and & is the greater root of the equation

(Artht—t), t = (1)

(pla)® . (xla)® _
1—e2+E+1+E = 1. 2

For astrongly elongated elipsoidal granule (e —» 1),
Egs. (1) and (2) give asimple relationship between the
magnetic field strengths H, and H, at the points situated
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in the equatorial plane and on the axis at a distance R
from the center:

Ho _ Arth(1//1+r%) —(1/J1+T?) 3
H, Arth(L1/r) =[ri(r*=1)]

wherer = R/a. For R> a, thisrelationship yieldsawell-
known result for the point dipole (Hn/H, = -1/2), while
for R = 2a (the case of contacting granules) we obtain
Hp/H,)=-0.29. Thus, the relative magnitude of thefield
in the equatoria plane is significantly smaller for an
ellipsoidal magnetic granule than for the point dipole or
aspherical particle.

Using Egs. (1) and (2), we can determine the mag-
netic energy w of the pair dipole—dipole interaction of
identical homogeneously magnetized ellipsoidal gran-
ules. Let the center of one granule coincide with the
center of coordinates and that of the other occur at the
point with the coordinates (X, Yo, Zo).- Assuming that the
magnetic moments of both granules are oriented along
their major axes parallel to the x axis, we can write

w I 95“—%%—5) dxdydz
(4)

= WXL YL Z)
= J’ Ix dx'dy'dz,
where the integration is performed over the volume of
the second granule (the coordinates X' = X —Xg, y' =y —
Yo, Z = 2— Z, refer to the coordinate system with the ori-
gin at the center of the second granule, obtained by par-
allel transfer of theinitial coordinate system).

Unfortunately, integral (4) cannot be exactly
expressed in an analytical form. This circumstance
practically hinders the possibility of numerically calcu-
lating the magnetic interaction energy for systems con-
taining a large number of granules (as will be seen
below, the numerical values of the interaction energy
can be obtained at a required precision, provided that
the number of pair contacts taken into consideration is
ontheorder of 10%). Therefore, it isimportant to find an
approximate, but still sufficiently accurate, analytical
expression for the energy.

Asis clear from considerations in the Introduction
section, the ground state can be ferromagnetic only in a
system of rather strongly elongated granules (with an
eccentricity e~ 1). Inthiscase, achangeinthe potential
Y(x, Yy, 2) in the direction perpendicular to the major
axisisrelatively small and we can use the correspond-
ing expansion into a Taylor series

op(x,y,z)ox
= Woct [WoX + WGy + W57 -
H(U[Wox" + Woyy ™ + 0,7 ]
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+[WoxWo, X'Y' + WoWo,Y'Z + Wo, Mo, X'Z] + ...,
where
Wox = (OW/OX), - y=2=0
Wox = (0%Q/0X'2) =y=7=0

Wox = (aqu/aX'3)x'=y=z=0
(and analogous expressions for the derivatives with
respect to y' and 7).
Now we can write the integral in the right-hand part
of expression (4) as
MY Z) o = (i1
J’ % dx'dy'dz' = J’S(x)dx,
- (6)

1 a Xl! l! Z' 1 1
S(X ) = J‘%dy adz ,
C
where the integration domain C, represents a circle of

radiusr = ba/1—x"*/a’ centered at the point (x, 0, 0).
By substituting (5) into (6), we check that only terms of
expansion (5) which contain no odd powers of X, vy,
andZ are retained upon integration. Taking into
account the relation Yo, + Yo, = —Woy, We eventually
obtain

WX, ¥ Z) 4o dr
J’ Ix dx'dy'dz

_ ﬂ- ZD]- l.IJ(a., 0! O)_LIJ(_a’ 0’ O) !
= Jrab’cl] - NG

3 ory L 32b7 e O ot o v
- 568 b+ or Vo 1 gy O,

where O(Y) isasum of terms proportional to the fifth

derivatives of the magnetic potential. As can be seen

from expression (7), an increase in the distance
between granules naturally leads to

I wdx-dwdz —= VH(X0, Yo 2) .

4 2
Y 3nab .

Numerical calculations showed that a contribution
of the O(Y) to the representation (7) in all cases of
practical interest is negligibly small (below 1%). Thus,
using expression (7) for the magnetic energy and taking
into account only the explicit terms will ensure an
errors not exceeding 1%.
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Based on the above qualitative considerations, we
may suggest that arelative contribution of the antiferro-
magnetic interaction would decrease for the ellipsoidal
granules approaching each other, and the system of
such granules would exhibit a tendency to transition
from the antiferromagnetic state (characteristic of the
distant granules) to a ferromagnetic state, and eventu-
ally thistransition will take place.

We have used the obtained expression for the mag-
netic energy for checking this hypothesis. The energy
of a certain magnetic state was characterized by the
total energy of interaction between agranule situated at
the center of the system and the surrounding granules,
the number of which was selected sufficiently large to
make the result independent of this number (an exam-
pleillustrating the dependence of the results of calcula
tions on the number of neighbors taken into consider-
ationispresentedin Fig. 5 below). Of course, using this
approach, we can only characterize the magnetic state
energy of asysteminwhich all granules are equivalent
from the standpoint of their environment (i.e., a system
of infinitely large size). Thus, the results presented
below refer to an “infinite” system at zero temperature.?

3. THE GROUND STATE OF A 2D LATTICE
OF NONSPHERICAL MAGNETIC GRANULES

Here, we will consider a 2D lattice of elongated
(ellipsoidal) magnetic granules with parallel magnetic
moments lying in the plane of the lattice.® In a square
lattice of such nonspherical granules, antiferromagnetic
states correspond to the three basic configurations of
magnetic moments: S, structure, representing alternat-
ing (with respect to the magnetization direction) chains
of magnetic moments, which are aligned parallel to the
direction of moments; S, structure, comprising alter-
nating chains perpendicular to the direction of
moments; and S;; structure, representing the chains
paralel to diagonals of thelattice unit cell (Fig. 2). Cal-
culations show that the S;, configuration possesses a
minimum energy among the antiferromagnetic struc-
tures. For this reason, we will restrict the consideration
to asquare 2D lattice of the S, type.

According to the results of numerical calculations,
the energy w, gy Of the antiferromagnetic S, state of a
square lattice composed of ellipsoidal granules is
always lower than the energy W, of the ferromagnetic

2 A nonmonotonic dependence of the energy of an antiferromag-
netic state of the system on the system dimensions (see Fig. 5) is
related to the influence of boundaries. A system can be consid-
ered as virtually “infinite” if the boundary contribution to the
total energy is, for example, below 1%. For a situation illustrated
in Fig. 5, the corresponding effective thickness of a boundary
layer of granulesis on the order of 100 lattice periods. Therefore,
to within a 1% accuracy, a system with linear dimensions on the
order of 1000 lattice periods can be considered as infinite.

3 The ground state of a 2D lattice of granules with the magnetic
moments perpendicular to the plane of the lattice is dways anti-
ferromagnetic.
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Fig. 2. Schematic diagrams of antiferromagnetic configurations of the square (Syg, S1, Sp1), triangular (Tyg, T11, T1g, T41), and

simple cubic (Z4, Zs) lattices of magnetic moments.

state, irrespective of the eccentricity and the ratio of the
lattice period to the major axis. For example, Fig. 3
shows the difference wgy, —Wapy Of the magnetic ener-
gies of agranule with e = 0.95 (b/a=0.31) in asguare
lattice of such granules with ferromagnetic and antifer-
romagnetic ordering plotted versus period of thelattice.
The result obtained by numerical calculations using
relation (7) confirmsthe tendency of thetwo energiesto
leveling. However, the energy difference remains posi-

("‘)FM — ()JAFM, rel. units
T T

lya

Fig. 3. Plots of the magnetic energy difference Wey —Wagm
versuslongitudinal lattice period for the ellipsoidal granules
with the eccentricity e = 0.95 forming rectangular lattices
compressed to various degrees as determined by theratio of
longitudinal and transverse lattice periods I)/lg = 1 (1),
2(2), and 3 (3). The curves were calculated numerically
using relation (7) for the squarelattice samples composed of
50 x 50, 50 x 75, and 50 x 100 granules.
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tive when the lattice period decreases (up to the state of
granules touching one another), which implies that the
antiferromagnetic state is energetically favorable.

Nevertheless, we may “help” the system of mag-
netic moments to change the magnetic state. One pos-
sibleway isto providefor auniaxial compression of the
lattice in the direction perpendicular to the magnetic
moments of granules, whereby we essentially pass to
con% dering arectangular lattice rather than the square
one.

Figure 3 (curves 2 and 3) illustrates the behavior of
the magnetic energy difference wgy, — Wapy for such
compressed rectangular lattices with the transverse
period 1.5 and 2 times smaller than the longitudinal
period. As can be seen, | attices featuring the ground fer-
romagnetic state under these conditions can exist.

The character of the ground magnetic state of the
system under consideration is determined by three geo-
metric parameters: (i) the eccentricity e of the granules;
(ii) theratio I /a of alongitudinal (paralel to the mag-
netic moment) lattice period to the longitudinal granule
size; and (iii) theratio of periods|/I; of the rectangular
lattice.

Figure 4 shows the phase diagrams of the system
under consideration constructed in the space of these
parameters. The ferromagnetic state of a rectangular
lattice of elipsoidal granules appears to be the ground
state inside a quasi-rectangular region on the plane of
parameters (I/ly, 1,/a). The position and area of this
region depend on the eccentricity e of the granules. The

4The transition to a rectangular lattice by no means implies a
change in the sample shape, which is known to affect (via the so-
called demagnetization factor) the magnetic state of a sample [4].
The results presented below refer, in fact, to a spherical sample,
the magnetic state of which can be determined without taking
into account the demagnetization factor.
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upper and right-hand boundaries of the region of ferro-
magnetic states are determined from energy consider-
ations, while the left-hand and bottom boundaries are
determined from the condition of granules touching
each other. It appearsthat, in particular, any rectangular
lattice composed of granules with the eccentricity e <
0.85 is always antiferromagnetic.

Using an example of the lattice type under consider-
ation, one can readily see how important it is to take
into account a sufficiently large number of intergranu-
lar contacts in calculating the ground state energy. Fig-
ure 5 shows the plots of the energies of ferromagnetic
(Wgy) and antiferromagnetic (Wapy) States of a rectan-
gular lattice versus the number of contacts involved in
the calculation. As can be seen, a correct conclusion
concerning the type of magnetic ordering in the given
systemisensured if not lessthan 10* contacts are taken
into account. This kind of check for the adequacy of
numerical calculations should be performed in each
particular case.

The curves presented in Fig. 5 are also well illustra-
tive in another respect, showing that the interaction of
each granule with its surroundings including about
100 nearest neighbors always favors establishment of
an antiferromagnetic order of the magnetic moments
(in this range, Wapm < Wry)- It is only the interaction

with the distant environment (another 10°-10* gran-
ules) that can eventually make the ferromagnetic order
energetically favorable (Wgy < Wapy)- A Similar situa-
tion takes place in the case of a 3D lattice (see below).
This circumstance implies that, despite being energeti-
caly favorable, the ferromagnetic state cannot be
obtained by means of cooling. At a high temperature,
the system possesses no magnetic order; for an ordered
state to appear, the order must be established immedi-
ately within rather large regions (nuclei) containing
about 100 granules, whichisunlikely. Thisfeature basi-
cally distinguishes the long-range dipole—dipole mag-
netism considered in our paper from the short-range
exchange magnetism. A real way to obtaining a ferro-
magnetic state is offered by applying a sufficiently
strong magnetic field, followed by slowly decreasing
the field strength.

The approach described above can also be used to
study the other 2D lattices, in particular, of atriangular
configuration. This case is of interest by offering an
example of afrustrated system degenerate with respect
to energy. Here, the energy of antiferromagnetic states
T, and T3, (seeFig. 2) coincides with the energy of a
ferromagnetic state and is lower than the energies of
frustrated structures T, and Ty;. However, this state-
ment is only valid for a triangular lattice of spherical
granules. In a system of ellipsoidal granules possess-
ing a sufficiently large eccentricity (e > 0.7), the
ground state corresponds to an antiferromagnetic
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Fig. 4. Magnetic phase diagrams for a rectangular |attice of
elipsoida granules. The ferromagnetic (FM) state is ener-
getically favorable inside a closed quasi-rectangular region,
the particular size of which depends on the eccentricity e of
granules. Outside these regions (and anywherefor e< 0.85),
the system is antiferromagnetic (AFM).

(A)FM, wAFM’ rel. units
T LI ) 1 ) s ) e e R

42

vl Lol Ll Ll Ll Ll
ot 10> 100 100 10° 108
Number of contacts
Fig. 5. Plots of the energies of ferromagnetic (wg,) and

antiferromagnetic (wagy) States of arectangular lattice ver-

sus the number of contacts involved in the calculation per-
formed for thefollowing parameters: || /a=2.6; |5/a=2.6/3

(compression factor 1/ = 3); e = 0.99.

structure (T, or Ty). The corresponding phase dia-
grams are depicted in Figs. 6a (for T;o and T,;) and 6b
(for T, and T3,). However, strongly extended lattices
(with the extension coefficient f = 3.6 and 2.7, respec-

tively) remain frustrated for any eccentricity of the
magnetic granules.
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30

10

Fig. 6. Magnetic phase diagrams for adeformed triangular | attice of ellipsoidal granuleswith the magnetic moments (a) perpendic-
ular and (b) parallel to the cell side edge aligned in the direction of extension. The antiferromagnetic (AFM) states (a) T;g and

(b) Toy areenergetically favorable inside quasi-triangul ar regions (bounded by the corresponding curves) outside which the system
isaways frustrated (h and d are the cell height and width, respectively).

4. THE GROUND STATE OF A 3D LATTICE
OF NONSPHERICAL MAGNETIC GRANULES

Here, we will consider a tetragonal lattice of elon-
gated (ellipsoidal) magnetic granules with magnetic
moments parallel to the side edges of a unit cell
obtained by uniaxially extending (or compressing) the
initial simple cubic lattice. Even in this simple case, to

1.00

0.98

0.96

0.94

0.92

0.90

0.881 l”/a = 21 |

1 3 10 30
1/B

Fig. 7. Magnetic phase diagrams for a simple cubic lattice
of ellipsoidal granules. Regions bounded by the curves cor-
respond to the antiferromagnetic phase Z,; regions outside
the curves represent the antiferromagnetic phase Zs.
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which the consideration below is restricted, the system
offersalarge number of various antiferromagnetic con-
figurations.

Asisknown, aminimum energy in the case of asim-
ple cubic lattice of point (or spherical) granules is
offered by an antiferromagnetic configuration Zs (the
result and notation from [5]). This structure comprises
parallel chains of unidirectional magnetic moments,
each being surrounded by the chains in which the
moments are aligned in the opposite direction (Fig. 2).
The same ground state is retained in a cubic lattice
composed of elipsoidal granules. If this structure is
replaced by atetragonal lattice with decreased periodin
the directions perpendicular to the magnetic moments
of granules (with the cubic shape of the sample
retained!), asufficiently large eccentricity will inspirea
magnetic structura transition to another ground state
characterized by the configuration Z,, in which every
chain has only two (of the four) neighboring chains
with the opposite direction of moments (Fig. 2). The
resulting phase diagram of this system is depicted in
Fig. 7.

It should be emphasized that the last result refersto
the sample of cubic shape with a modified lattice. An
aternative possibility is to retain the simple cubic lat-
tice and change the sample shape. For alattice of point
granules, this possibility was considered in [4]. It was
found that the energy of any antiferromagnetic state
remains unchanged, while the energy of a ferromag-
netic configuration depends on the sample shape in a
simple manner: wg, O (4173 — N), where N is the
demagnetization factor in the direction of the magnetic
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moment. As the N value increases (which corresponds
to elongation of the samplein thisdirection), the energy
Wy decreases and the ferromagnetic state may become
energetically favorable. For a ssimple cubic lattice of
point dipoles however, this decrease in wgy, is insuffi-
cient even in strongly elongated samples and the ground
state of such lattices remains antiferromagnetic [4].

However, nonsphericity of the magnetic granules
again basically changesthe situation: calculations show
that sufficiently elongated samples with nonspherical
granules may become ferromagnetic. For example, the
lattice of granules with e = 0.99 and I/a = 2.1 becomes
ferromagnetic in a sample with the length exceeding
thickness by afactor greater than eight. Here, we again
(abeit for different reasons) encounter a situation when
a ferromagnetic structure becomes energetically favor-
able due to the distant environment. In this case, the
principally possible ferromagnetic state can also be
attained only upon removal of the field applied initialy
in order to magnetize the sample to saturation.

Using the same approach, we can study more com-
plicated 3D structures, including face- and body-cen-
tered cubic lattices, the energies of which in the case of
point magnetic moments were determined in [4, 5].

5. FIELD-INDUCED MAGNETIC PHASE
TRANSITION IN LATTICES OF NONSPHERICAL
MAGNETIC GRANULES

The above considerationsreferred to the caseswhen
the magnetic state of a lattice was changed either by
increasing the eccentricity of the magnetic granules or
by straining the lattice. However, thereis one more way
to “help” the system in the passage from antiferromag-
netic to ferromagnetic state, which consist in applying
an external magnetic field Hy,. If an appliedfield is par-
alel to the magnetic moments of the granules, the
energy of each granule acquires the Zeeman increment

5

Wy = -M |:Hext-

The ferromagnetic state becomes favorable for an
applied field strength of

He>He = (Wey —Warm)/M.

In order to study how the critical field strength H,
required for the phase transition depends on the eccen-
tricity of granules (for the same magnetic moment), it
is sufficient to calculate the difference Wy — Wagy Of
energies of the ferro- and antiferromagnetic states of
the system as afunction of e. Figure 8 showstheresults
of such calculations in the form of the ratio H./Hy,
(Hy isthecritical field for the phase transition in asys-
tem of point dipoles with the same moment) plotted
versus eccentricity for ellipsoidal granules forming a
linear chain and a square lattice. In the former case, the
major axes (and, hence, the magnetic moments) of the
granules are perpendicular to the chain direction; in the
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Fig. 8. Plots of the critical field strength versus eccentricity
for the magnetic phase transition in a linear chain of ellip-
soidal granuleswith constant magnetic moment and various
chain | periods. Solid and dashed curves refer to 1D chains
and 2D lattices, respectively.

latter case, the moments are oriented along one side
edge of the unit cell. As can be seen, the critical field
strength significantly decreases with increasing eccen-
tricity of the granules with dimensions (major axis 2a)
comparable with the lattice period |.

Owing to the aforementioned special character of
the dipolar ferromagnetism, it is practically impossible
to abserve a sharp phase transition from antiferromag-
netic to ferromagnetic state in a gradually increasing
magnetic field. However, it is possible to monitor the
reverse transition from ferromagnetic state (obtained
upon application of a significantly stronger field (H >
H.) to antiferromagnetic state with decreasing applied
field strength.

6. CONCLUSION

Thus, we have demonstrated that properties of the
systems featuring dipole—dipole interaction signifi-
cantly change on the passage from point (or spherical)
dipolesto homogeneously magnetized ellipsoidal gran-
ules with significant eccentricity.

An important example of the 2D systems of this
kindis offered by planar regular structures of nonspher-
ical magnetic granules, now extensively studied as
potential mediafor extremely high density datarecord-
ing (patterned media) [8]. Typical structures comprise
planar rectangular lattices formed by single-domain
(almost homogeneously magnetized) granules of elon-
gated shape possessing a uniaxia anisotropic geome-
try. The shape of these granulesis close to an ellipsoid
of revolution with an axial ratio of 3-5 (e = 0.95-0.98),

No. 4 2002



758

whilethelinear dimensions of granules are comparable
with the lattice period. One bit of data is recorded by
orienting the magnetic moment of asingle granule. For
this reason, the parameters of both the granules and the
lattice must be selected so as to ensure that the mag-
netic moment could not change orientation spontane-
ously (under the action of thermal fluctuations and the
magnetic field of surrounding granules).

The system in the initial state (upon data recording)
is metastable, and, sooner or later, it will pass to the
ground state. Under usual conditions, the rate of this
transition is very small (the data can be stored for
years!), but an increase in the temperature would allow
the system to relax more rapidly into the ground state.
The results of our investigation alow the nature of the
final state to be predicted.

Another examplerelevant to the problem under con-
sideration is offered by magnetic dielectric nanocom-
posites. The electric conductivity of such three-dimen-
sional systemsisrelated to the electron tunneling tran-
sitions between granules [9], the probabilities of which
are determined by the mutual orientations of magnetic
moments of the adjacent granules. Therefore, theresis-
tance of this conducting medium directly depends on
the magnetic state. The same is valid for the (giant)
magnetoresistance of the system.

It must be noted, however, that the latter dielectric
nanocomposites differ from the handmade magnetic
recording structures of the patterned media type by the
presence of a certain scatter in the parameters of mag-
netic granules (size, eccentricity, axis orientation, efc.).
In connection with this, there arises a problem of stabil-
ity of the ground state of lattices composed of the fer-
romagnetic granules with respect to such a scatter. We
can briefly mention the following results obtained by
model calculations for 2D rectangular lattices of ellip-
soidal granules. The ground state of a rectangular lat-
tice with along period of |, = 2.5a, composed of gran-
ules with e = 0.95, remains ferromagnetic despite (i) a
uniform distribution of the orientation of granules
within £15° (for the ratio of the lattice periods I/l =
0.5 or 2) and (ii) a uniform distribution of granule
dimensions within +10% (for the ratio of the lattice
periods |5/l = 0.3). At the same time, the ground state
of asquare lattice with along period of | = 3a remains
antiferromagnetic despite (i) a uniform distribution of
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the orientation of granules within +7° (for granules
with e = 0.95) and (ii) a uniform distribution of the
eccentricity of granules within e = 0.90-0.99. These
results are indicative of a certain stability of the ground
state of the magnetic systems under consideration.

Finally, our results provide an answer to the ques-
tion asto whether ferromagnetism can exist in asystem
of particleslinked only by dipolar interactions. We have
principally demonstrated that such systems can exist
and determined particular parameters of some possible
variants.
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Abstract—A molecular dynamics simulation was performed to estimate the effective mass and the diffusion
and friction coefficients of point defectsin macromolecular chains of crystalline polyethylene. The resultswere
compared with theoretical mass and kinetic coefficient predictions for topological solitons, with which these
defects were identified. The results are used to discuss the soliton model of dielectric o, relaxation in weakly
oxidized polyethylene. © 2002 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The relaxation properties and special features of
phase transitions in solids are known to be determined
by the energy characteristics and the type of dynamics
of structural defects. In the past decades, starting with
[1], these defects have been identified with topological
solitons. More precisely, it was shown [1] that, in cer-
tain approximations for the simplest model of acrysta
(for alinear chain of atoms linked by Hooke springsin
a“substrate” potential), the free energy could be repre-
sented in the form of the sum of contributions of
phonons and topol ogical soliton-like excitations, which
did not interact with each other. In the simplest situa-
tions (the sine-Gordon and ¢* models), the anharmonic
contribution to the heat capacity could be calculated
exactly [2, 3]. At the same time, the problem of calcu-
lating the kinetic coefficients, which determine the dif-
fusion mability and friction of solitons, has been stud-
ied in much less detail evenin such simplest model sys-
tems, and the available numerical resultsrequire further
analysis and interpretation (see Section 4 for more
details). However, even such limited information is
absent for more realistic models of crystals.

Among crystalline substances, polymeric crystals
hold a special position because of their strong anisot-
ropy and flexibility of molecular chains. These special
features manifest themselves in the mechanisms of var-
ious physical processes, unusual from the point of view
of standard solid-state physics. Even the types of struc-
tural defects responsible for intracrystalline mobility
with large lattice deformations are peculiar. If we
restrict ourselves to point defects, we must, alongside
vacancies caused by chain breakages, consider vacan-
cies caused by large localized deformations of valence
angles and combined defects of polymeric chain ten-
sion and torsion or contraction and torsion. In addition,

in contrast to their known analogues, point defects in
polymeric crystals can have soliton-type mobility,
which results in special laws governing physical pro-
cesses with their participation (such as dielectric relax-
ation, heat transfer, and premelting).

Dielectric measurements in polymers can be an
effective tool for studying molecular mobility in these
substances. In solid amorphous polymers, whose polar
side groups are rigidly bound with the chain, two
dielectric loss peaks are usually observed (in tempera-
ture scans at one frequency) [4]. The low-temperature
3 peak isusually related to excitation of local torsional
modes, and the high-temperature a, peak, to mobility
of large chain segments. The o, peak indicates vitrifica-
tion [5]. Several amorphous-crystalline polymers of
high crystallinity have one more peak at high tempera-
tures near the melting point. This peak was for the first
time observed by Mikhailov in weakly oxidized poly-
ethylene [6]. This peak (a. relaxation) is also observed
in polytrifluorochloroethylene [7] and polyvinylidene
fluoride [8].

As aresult of analysis of subsequent experiments
(see reviews [4, 9] and references therein), Mansfield
[10] and Skinner and Wolynes [11] in 1980 indepen-
dently advanced the suggestion that this peak could be
caused by the diffusion in crystalline fraction chains of
soliton-like excitations several dozen CH, groupswide,
namely, kinks of chain torsion through 180° with chain
half-period elongation or contraction (for crystallo-
graphic order to be preserved outside the kink region).

This hypothesis explains several observed process
characteristics, which could not be described by the
other theories (see Appendix A). The particular relax-
ation model [12] based on the kink hypothesis, how-
ever, required the introduction of several adjustment
parameters. The value of one of these (the effectivefric-
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(a) (b)

Fig. 1. Model polymeric crystal (polyethylene with united
atoms): (a) plane zigzag chain parameters and (b) cross sec-
tion plane of an equilibrium crystal (each small arrow indi-
cates the direction from the atom of a molecule just below
the planeto the nearest atom of amolecul e above the plane).

tion coefficient of kinks, y) calculated from the avail-
able experimental data was five orders of magnitude
lower than its theoretical estimate (see Section 4) for the
@* model, which can be considered the simplest model
of polymeric chainsin crystals. A subsequent molecu-
lar dynamics simulation of the behavior of kinksin a
simplified model (a chain of atoms bound by Hooke
springs on a sine substrate [13]) substantiated that fric-
tion coefficient y was too large for the kink model [12]
to give at least the correct order for the central fre-
guency of the process. Thus, in the absence of other
hypotheses, theoretical explanations of dielectric a,
relaxation came to a deadlock in the late 1980s.

In this work, we suggest a solution to the problem.
The diffusion of akink of tension with torsion and (for
comparison) avacancy (kink of puretension by achain
period) in a crystal chain is analyzed using a three-
dimensional molecular dynamics model of a simple
polymeric crystal containing zigzag chains. The mass,
friction coefficient, and diffusion coefficient of a ten-
sion-with-torsion kink at temperature T = 300 K and
pressure p = 3.5 kbar are estimated. The results are
compared with theoretical models. It is shown that the
kink hypothesis may be valid for dielectric o, relax-
ation if one of the model [11, 12] assumptionsis aban-
doned.

Model crystal parameters

2. A NUMERICAL MODEL
OF A POLYMERIC CRYSTAL
(POLYETHYLENE WITH “UNITED” ATOMYS)

For our purposes, it is sufficient to use the simplest
three-dimensional dynamic model of apolymeric crys-
tal comprising zigzag chains that can form kinks of tor-
sion with tension (or contraction). Such a model was
developed by us earlier [14] to study the dynamics of
point structural defects[15, 16].

Thisis amodel of polyethylene with united atoms
(see Fig. 1). The chain is a planar trans zigzag; the
bonds between atoms (point particles of mass m) are
absolutely rigid and have length |,; the energies of
deformation of valence 6,, and conformational T, angles
have the form

Us(8,) = 3Ko(8,—80)" M

Uu(1,) = Ko+ Kycos(t,) + Kscos(31,), )

and the atoms separated by more than two neighbors or
Situated in different chains interact by the law

_ UL —U(R),
u(r) = ED (>R

where U, 4(r) = 4e((a/r)*? - (a/r)®) isthe Lennard-Jones
potential with a minimum at r, = 2Y%g. The numerical
constant values that we used are summarized in the
table. The crystal model had periodic boundary condi-
tions in all three directions. The cell for calculations
was a rectangular parallelepiped. The corresponding
classical Lagrange equations of the first kind were
solved using the Verlet leapfrog agorithm [19] taking
into account the restrictions impaosed by rigid bonds
[20]. The periodic boundary conditionsin the direction
of the molecular axis allowed the dynamics of the
defect to be examined indefinitely, and the periodic
boundary conditionsin the cross section plane obviated
the necessity for introducing nonphysical boundary
conditions of the type of arigidly fixed second coordi-
nation sphere.

Asthe length of the projection of the molecule onto
its cross section planewas |, = 0.843 A, and the van der

r<R,

Parameter Value Refs. Parameter Value Refs.
m, au 14 - K1, kImol 1.675 [17]
lo, A 1.53 [17] K3, kJmol 6.695 [17]
0o 113° [17] €, kJmol 0.4937 [18]
Kg, k¥mol 331.37 [17] o, A 3.8 [18]
Kg, kJ/mol 8.370 [17] R 2rg -
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Fig. 2. Wandering of point defects over apolymeric crystal chain: characteristic time dependences of (a) vacancy (defect of tension
by one chain unit) coordinate and (b) the coordinate of the defect of rotation through 180° with tension by half-chain unit. Each
point in the plots was obtained by averaging over a 1-pstime interval.

Waalsradii of the united atomswerer,=4.265A =5,

the packing of such plane zigzagsinthecrystal at T=0
was close to the packing of cylinders (Fig. 1b).

3. DIFFUSION OF KINKS IN A CHAIN
OF A HEATED POLYMERIC CRY STAL:
A MOLECULAR DYNAMICS EXPERIMENT

The cell for calculations contained 30 molecul es, of
which 29 were constructed of 400 CH, groups, and one
molecule, of 398 groups (in studying the diffusion of a
chain unit vacancy) or 399 groups with torsion through
180° (in studying the diffusion of a torsion-with-ten-
sion defect). Such alength of moleculesis sufficient to
prevent soliton action on itself when periodic boundary
conditions are imposed along chains (the defect exten-
sion is of the order of 70 CH, groups).

The sample was heated to the required temperature
with the use of a Berendsen thermostat [19] and relaxed
at this temperature and a constant pressure to the equi-
librium state, when the mean values of cell parameters
ceased to change. The equilibrium cell parametersa, b,
and c (see Fig. 1) at temperature T = 300 K and pres-
sures p = 0 and p = 3.5 kbar were {4.24, 8.00, and

253 A} and {4.12, 7.85, and 2.53 A}, respectively.
After relaxation, the external thermostat was switched
off, and the volume of the isolated sample was fixed.
Further, the diffusion of the point defect in athermally
excited chain was studied; a natural thermostat for the
chain was the heated neighboring crystal chains. We
found that the temperature of the sample remained con-
stant to a satisfactory accuracy.

In the numerical experiment, we monitored changes
in the position Z(t) of the center of mass of aperiodic
fragment (initially situated in the cell for calculations)
of an infinite chain with a defect. This value can easily
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be recalculated to the displacement AZ(t; ty) of the
defect in timet counted from t,,

DZ(t 1) = 3\ (Zanlt + 1) = Zen(t)),  (3)
where N is the number of atoms in a chain without
defects, AN isthe number of particlesremoved from the
chain in defect formation (AN = 1 for a torsion-with-
tension defect and AN = 2 for a pure tension defect).
The time t dependences of the displacement of simple
tension defects AZ g o(t; o) and torsion-with-tension
defects AZ,,i4(t; tp) are shownin Fig. 2.

The mean square displacement of the center of mass
of a chain with a defect [(Z,(t + ty) — Zcm(to))zgo is

shown in Fig. 3 as a function of time t (averaging was
performed along thetrajectory over thet, starting point)
for simple tension and torsion-with-tension defects.
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Fig. 3. Mean square displacement of the center of mass
of amolecule with a defect as a function of time at pres-
sure p = 0: (1) vacancy and (2) torsion-with-tension defect.
Averaging was performed along a trajectory 500 ps long.
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Figure 3 shows that the curves begin to oscillate about
straight lines in time shorter than 1, ~ 2 ps; thisimme-
diately gives a crude lower bound estimate for the kink
friction coefficient, Yuouom ~ 1/T; ~ 0.5 x 102 s, The
diffusion coefficients of both defects calculated from
the dopes of the lines shown in Fig. 3 coincide within
the error of measurements, D(p = 0) = 4 x 1072 cm?/s.
At a p = 3.5 kbar pressure, the diffusion coefficients
estimated by the same procedure were D(p = 3.5 kbar) =
3 x 102 cm?/s. As expected, applying pressure to the
sample decreased the diffusion coefficients.

A description of the dynamics of a simple tension
defect in acold crystal reduces (see [15] and the refer-
ences therein) to the integrable sine-Gordon equation.
The system of equationsfor two coupled fields of chain
torsion with tension in the substrate potential generated
by neighboring chains does not have soliton solutions
inthe classical sense. An approximate analytic solution
for asoliton-like topological excitation, atorsion-with-
tension defect at T =0, was given in [16]. In that work,
the spectrum of the velocities of such waves was also
studied; the upper bound of this spectrum was found to
be four times lower than the upper bound of the spec-
trum for a simple tension defect. Indeed, Fig. 2 shows
that the character of simple tension defect wandering
differs from the dynamics of a torsion-with-tension
defect. InFig. 2a, there are rare extended regions of rec-
tilinear uniform motion of vacancies at comparatively
high velocities; such regions are absent in the trgjectory
of motion of atorsion-with-tension defect (for instance,
a vacancy can run over about 350 CH, groups at an
almost constant vel ocity of about 4.5 km/s, whereasthe
longitudinal sound velocity along the chain in a crystal
a T = 0 equals 14.7 km/s). Nevertheless, in spite of
these differences in the dynamics, the diffusion coeffi-
cients of both defects were found to be virtually identi-
cal. The value obtained in this work gives the upper
estimate of the diffusion coefficient in real polyethyl-
ene.

4. DIFFUSION OF KINKS IN A THERMAL
BATH: THEORETICAL MODELS
AND REAL PHYSICAL SYSTEMS

The diffusion of solitonsisusually considered using
two approaches (see review [21]). In the first approach
(see [22, 23]), amodel of the system (for instance, the
sine-Gordon model) is augmented by a pair of Lan-
gevin terms, namely, additive white noise {,(x, t) and
effective friction with the corresponding coefficient y,,

Qu— VP + 0oSNQ = Y@+ La(% 1), (4)

Here, v, isthe sound velocity in an isolated chain, and
wy is the width of the phonon spectrum gap, which
appears when the chain is placed into a sine substrate
field. Infirst-order perturbation theory, the velocity of a
kink is obtained in the form of the Langevin equation
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with the same friction coefficient y, and white noise.
Sometimes, spatially correlated noise (for instance,
noise with an exponentially decreasing correlation
function) is introduced into (4). The relation between
kink diffusion and friction coefficientsthen differsfrom
the Einstein equation by a factor that depends on the
ratio between the noise correlation length and the kink
width.

In asimilar way, multiplicative white noise {(X, t)
is also introduced:

Q= VP + 0rSINQ = —yu@ + Lu(x t)Sing.  (5)

In first-order perturbation theory, this equation also
leads to the Langevin equation for the kink velocity
[24, 25].

Equations (4) and (5) are the simplest models of
thermostatsin achain with akink. Thefirst one presup-
poses that the role of the thermostat for akink is played
by (small-amplitude) vibrations of chain atoms (that is,
phonons). Equation (5) assigns this role to atomic
vibrations in neighboring chains that form the sub-
strate. Not to mention that there is no single physical
problem that leads to a sine-Gordon-type equation for
which the approximations of both additive and multi-
plicative white noise are warranted, the main problem
is nevertheless first-principles calculations of the fric-
tion coefficient.

The second approach to the diffusion of kinks just
supposes a study of kink diffusion in interaction with
“natural” thermostats, viz., a “bath” of phonons in the
chain and in neighboring chainsthat form the substrate.
Severa steps in this direction were made. The interac-
tion of kinks with a bath of phononsin achain coupled
(for instance, at chain ends) with a thermostat at tem-
perature T was studied by perturbation theory in the
approximation

kgT
S

where kg is the Boltzmann constant and E; is the static
kink energy. It was found that the diffusion of kinksin
the integrable sine-Gordon model qualitatively differed
from the diffusion in the nonintegrable ¢* model. In the
first model, kinks on average preserved their initial
velocity v, and only the coordinates of kinks experi-
enced smearing, because theinteraction between akink
and a phonon was limited to ashift in the position of the
kink caused by phonon passage. Such a diffusion is
called anomalous. Diffusion coefficient D, calculated
from the mean sguare deviation from vt by perturba-
tion theory was [26]

<1, (6)

- Vs 2 g ™
A7 we3nUED

(inearlier work [27], inwhich anomal ous diffusion was
considered on the assumption that kinksinteracted with
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nonoverlapping phonon packets, the diffusion coeffi-
cient was found to be eight times larger than in work
[26] that we cite, where overlapping of phonon packets
was taken into account).

At temperatures of about 320-420 K, phonon spec-
trum gap frequency wy, = 1.6 x 10*3 s%, sound velocity
inanisolated chain v =5 km/s, and effective kink mass
m* =5 x 10" kg (these values are from [12]; all the
further numerical estimates refer to these system
parameters unless otherwise stated), the ratio between
temperature in energy units and the static kink energy

E.=m* v = 18 kcal/mol is

kg T
Es

Provided this value is sufficient for condition (6) to be
satisfied, (7) predicts the value D, ~ (2.14.2) x

10 vy, ~ (3.4-6.7) x 105 cm?/s (compare this with
the diffusion coefficient of sodium chloride in water at

room temperature, 1.1 x 10° cm?/s, and the diffusion
coefficient of hydrogen in oxygen at 0°C, 0.7 cm?/s).

The diffusion coefficient for the ¢* model calculated
in the same approximation of linear interactions
between solitons and phonons differs from (7) by a
small multiplier [28, 29]. It, however, turns out that, in
contrast to the integrable sine-Gordon model, in which
there is no diffusion other than anomalous, nonlinear
interactions between solitons and phonons in the ¢
model result in exchange of momentabetween them. In
the first nonvanishing (fourth) order of perturbation
theory, there arises viscous friction with coefficient v, .
Intimet> 1,

~(3.4-4.5) x 1072, (8)

= _]'_______]_'______DESDZ
W8 x 4.56 x 102k TH

9)
< (2.4-1.4) x 1040)1 ~(1.55-0.88) x 107 s,
0

akink losesmemory of theinitial velocity and performs
diffusion motion with the coefficient [30]

vi 1 (=

Wo8 x 456 x 10 °Kg T
V2
= (8.1-6.1) x 102Q—)S = (13-10) cm®/s,
0

(10)

where the transition from friction coefficient y to diffu-
sion coefficient D is performed according to the Ein-
stein equation

Dm*y

A comparison of the orders of magnitude of (7) and
(20) shows that anomal ous diffusion can be ignored for

= 1.

(11)
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the ¢* model at timest > 1,. Unfortunately, the ques-
tion of possible contributions of higher order perturba-
tion theory termsto the viscosity of akink was not con-
sidered (although the question of the ratio between D,
and Dy, was discussed [31, 32]).

The above comparison of the diffusion coefficients
D, and Dy, for the integrable and nonintegrable models,
respectively, leads us to suggest that the main source of
viscosity in real physical systems should be their devi-
ations from the model integrable system. This sugges-
tion is substantiated by the numerical analysis of anom-
alous diffusion in the sine-Gordon model [33]. The
authors had to resort to artificial quenching of low-fre-
guency short-wave phonons of adiscrete chain, interac-
tions with which resulted in strong normal diffusion
(because of viscosity). The fine anomalous diffusion
effect of the continuous integrable model was simply
indiscernible against the background of normal diffu-
sion. According to [15, 34], a vacancy in a chain of a
cold polymeric crystal differs from the soliton solution
to the continuous sine-Gordon equation precisely by
the type of its dynamics, namely, a vacancy emits
phonons whose phase velocity coincides with the kink
velocity (such phonon modes exist because the disper-
sion curves of phonons in a polymeric crystal and the
dispersion curves calculated for the Frenkel-K ontorova
model do not coincide). As aready mentioned, the
upper boundary of the spectrum of the velocities of tor-
sion-with-tension kinks, which can move along chains
virtually without friction, is four times lower that the
corresponding boundary for simple tension kinks. It
follows that exchange of momenta between kinks and
torsional phonons is still stronger. It appears that pre-
cisely this, the strongest, viscosity mechanism deter-
mines the diffusion coefficient of point defectsin poly-
meric crystal chains. The anomalous diffusion coeffi-
cient of the sine-Gordon model therefore has no
bearing on this value, and the normal diffusion coeffi-
cient in the ¢* model can only serve as a very crude
upper estimate.

Indeed, the diffusion coefficient D(p = 0) value
obtained in Section 3 is almost three orders of magni-
tude smaller than the normal diffusion coefficient of the
¢* model [Eq. (10)]. Accordingly, the curve of the mean
square defect displacement tends to a straight line in
times three order of magnitude shorter than the charac-
teristic time 1y (9) of establishing equilibrium in the
process of normal diffusion in the ¢* moddl. It follows
that friction responsible for viscosity in our model is
indeed much stronger than friction caused by the non-
integrability of the ¢* model.

5. THE AUTOCORRELATION DIPOLE
MOMENT FUNCTION: A MOLECULAR
DYNAMICS EXPERIMENT

The complex permittivity of a“rarefied gas’ of C=0
dipoles fixed in chains is proportional to the Fourier
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Fig. 4. Normalized dipole moment autocorrelation func-
tions according to the molecular dynamics experiment:
(2) for adipolein achainwithout akink and (2) for adipole
in a chain with a kink. Each curve was obtained by averag-
ing over 16 trajectories 500 ps long each. (3) The result of
dividing curve (2) by curve (1): the contribution of kinksto
the autocorrelation function.

transform of the time derivative of normalized autocor-
relation function @(t) of one dipole moment P(t),

[P(t) CP(0)O]
P(0) CP(0)C]

In the model of dielectric relaxation caused by the dif-
fusion of defects that invert dipoles and within the
approach that ignores phonons in the chain, the physi-
cal meaning of the ®(t) function isthe probability that,
in time t, the dipole remains uninverted by a kink that
approachesit. If thelinear kink density in the chain (the
number of kinks per unit chain length) is n, and their
diffusion coefficient equals D, then the asymptotic
behavior of the ®(t) function at long times (obtained
fairly long ago, in [35]) hasthe form

() =

q)oo(t) = exp(_/\/t/Too)! (12)
where
-1

is the mean dipole expectation time for the arrival of a
kink [indeed, the mean distance to the nearest kink is
about 1/(2n,), and the kink path for timet is of the order

of /2Dt ; equating these values yields (13) accurate to
afactor of 102].

Skinner and Park [12] used another, more complex,
expression for the autocorrelation function, which
remained valid at much smaller dty and ty values and
therefore included kink effective mass m*:

KeT /vyt — -
P(t) = eXp%_A/:L;GnO /%«/Vt l+yexp( Vt)% (14)
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Our three-dimensional molecular-dynamics model
of apolymeric crystal alows the validity of (14) to be
directly checked. Indeed, a comparison of the asymp-
totic behavior of (14) at short times,

Py(t) = exp(—t/1y), (15)
where
- mi jm* _ 2
fo = J;no«/ keT A=y’ 1o

with its asymptotic behavior at long times (12) imme-
diately shows that, at low densities n,, time 1., (13) is
the upper estimate of the characteristic time of the pro-

cess. Thistimedecreasesas 1/ ng asthedensity of kinks
Ny grows. At adensity of one kink per 400 CH, groups,

it reaches a value of approximately 130 ps, aready
observable in our molecular dynamics experiment.

The numerical experiment was performed at tem-
perature T = 300 K and pressure p = 3.5 kbar. Time t
averaging of n(t)n(0), where n(t) is the unit vector in
the direction of the bisector of one of the chain valence
angles (see Fig. 1a), gave the normalized dipole
moment autocorrelation function. The results of such a
molecular dynamics experiment for two chains, one
with a single torsion-with-tension kink per 400 CH,
groupswith adipole and the other without akink (recall
that periodic boundary conditions were imposed along
the chain axis; our experiment therefore corresponded
to 1.9 x 10° cm and zero kink densities), are shownin
Fig. 4. For zero kink density, the decrease in the auto-
correlation function with a characteristic time shorter
than 1 ps corresponded to a fast 3 process, which
caused torsional disordering of chain atoms; the mean
angle between bisectors of the valence angles in the
molecule cross section plane approximately equaled
33°, that is, the arc cosine of the constant value that the
curvereached. Inthe presence of akink inthechain, the
experimental curve was formed as a superposition of
the dow o and fast 3 processes,

[cos(@s + @, )
= [tos(@p) cos(@, )I— LEN(@g) sin(@, )01

On the assumption that these processes are mutually
independent and as [$in(@;) (= O, we find that, to deter-

mine the [¢os(@,_)contribution of kinks (for whichwe

have theoretical prediction (14)) to the autocorrelation
function, we must pointwise divide sum curve 2 by
curve 1. The result of this division is also shown in
Fig. 4 (curve 3).

The asymptotic behavior of the autocorrelation
function at short times given by (15) only depends on
the kink mass at a given density of kinks and is inde-
pendent of the kink friction coefficient. The initial
curve portion (more precisely, the [In(®(t))/t]|-o
value) can therefore be used to estimate the mass of the
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kink and then determine the second parameter, the fric-
tion coefficient. However, just in the initia curve por-
tion 0 <t <2 ps, thefast B and ow o, processes are not
independent, and, for this reason, the mass of the kink
can only be determined from the experimental curve

with a very large error, mg,, = (1.5 = 0.3) x 10" kg.
The theoretical estimate of this value from the form of
the approximate analytic solution for a soliton-like
topological excitation (atorsion-with-tension defect) at
T=0 (seeAppendix B), Me.r =1.2% 1027 Kg, isat the
lower boundary of the experimental confidence inter-
val. Accordingly, the friction coefficient can be deter-
mined from the available portion of the curve and mg,,,

as avalue in the range (0.45-0.73) x 10%? s, For rea
sonsthat are clear from the discussion in Section 4, the-
oretical estimates of this value have not been obtained
yet. For our model, thisvalueisof the order that follows
from the lower estimate Vi, qom ~ 0.5 X 10*? s obtained
in Section 3 in analyzing the form of the [{Z..(t + t) —

Z(to))? [, function.

The “kink part” of the dipole moment autocorrela
tion function obtained in the molecular dynamics
experiment is shown in Fig. 5 in comparison with theo-
retical curve (14) constructed for the parameter values

Mpe, = 1.5 % 102" kg and Yi,eq ~ 0.56 x 10 st and its
two asymptotic expressions (15) and (12). We see that,
a t > 3 ps, the experimental curve is very closely
described by theoretical dependence (14). Substituting
the obtained m}., and y,, vValuesand the D(p = 3.5 kbar)

diffusion coefficient independently determined in Sec-
tion 3 gives theratio Dm*y/kgT = 0.6 = 0.5.

6. THE THEORY OF DIELECTRIC
o, RELAXATION: WHAT SHOULD BE CHANGED

We showed in the preceding section that the dipole
moment autocorrelation function at a fixed density of
kinks is very closely described by theoretical formula
(14) with redistic kink mass mj,., = 1.5 x 10" kg and
friction coefficient Vg = 0.56 x 10*? s values. How-
ever, Skinner and Park [12] used friction coefficient
values of (5 x 10°-1 x 10°) s to describe the available
experimental data on dielectric o, relaxation. Thiswas
several orders of magnitude below our estimate. The
diffusion coefficient corresponding to the friction coef-
ficient yg ~5x 10°stisDg ~ 2 x 106 cm?/s, which is
five orders of magnitude larger than the normal diffu-
sion coefficient Dy, [Eq. (10)] and eight orders of mag-
nitude larger than the coefficient obtained in our molec-
ular dynamics experiment.

The reason why the diffusion coefficient was
assigned such a large value can be understood from
physical considerations. Let kinks experience free
Brownian movement described by the Fokker—Planck

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

765

1.0

0.9

0.8

0.7

[ (7 + f)n (7o) Ly

0.6

t, ps

Fig. 5. Comparison of the “kink part” of the normalized
dipole moment autocorrelation function obtained in the
molecular dynamics experiment (uneven curve) with
(1) theoretical curve calculated by (14) and its asymp-
totic expression (2) at short times (15) and (3) at long
times (12).

equation (we study slow processes which correspond to
the roughest time scale dty, ty > 1). The system then
only involvestwo physical parametersin addition to the
linear density of dipoles (ny), namely, the density of
kinks (ng) and their diffusion coefficient (D). The
dielectric relaxation rate should increase as either the
density of kinks or their diffusion coefficient increases.
For this reason, the results only of dielectric measure-
ments cannot be used to independently determine both
parameters. An accurate theoretical consideration sub-
stantiates this conclusion. Indeed, the density of kinks
and the diffusion coefficient appear in Egs. (12) and

(13), which correspond to dty, ty > 1, only asthe Dn;

combination. The shape of curve (14) in principle
allows the parameter

16 |kgT
B = J;no /% = 21,

to be determined from the initial portion of curve (15),
after which they value can be obtained. Precisely inthis
way, we estimated m* and then y at known nyand T in
Section 5. The experimental data [36, 37], however,
cannot be used to construct the initial curve portion
both because of the presence of 3 and o, processes and
because of technical frequency limitations, 10-10° Hz.
It may well be that, for this reason, the formula of the
equilibrium theory of fluctuations as applied to achain
described by the continuous sine-Gordon equation [38]
was used in [12] for the density of kinks,

(f|)
= 2[ PIT .

Subdtituting (17) into (13) yidds an experimentally
observed qualitative dependence of the type ~exp(—WikgT)
for the central process frequency. For our numerical

(17)
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values, (17), however, gives nj ~ (4.2 x 10°5-4.6 x

1072) cm (for one of the temperature and volume val-
ues, Skinner and Park obtained the estimate nygp ~

3.4 x 103 cm™). At such avalue, there are 5.4 x 10710—
6 x 10~ kinks per C=0 dipole (1000 CH, groups)!

In such an anomalously “rarefied gas’ of kinks,
dielectric o, relaxation isnot sufficiently slow to ensure
a decrease in the dipole autocorrelation function in the
necessary time without using an anomalously large
kink diffusion coefficient (and, accordingly, an anoma-
lously small kink friction coefficient).

As mentioned, the diffusion coefficient of kinks in
real polyethylene cannot be larger than in our model
polymeric crystal with united atoms. It follows that the
population of kinks in a polymeric crystal should be
substantially larger than that given by (17). For the dif-
fusion coefficient to be smaller by eight orders of mag-
nitude, it is sufficient to increase the density of kinks by
four orders of magnitude with respect to the value cal-
culated by (17). This still gives a fairly low density,
Ny ~ (4.2 x 1071-4.6 x 10%) cm*, which corresponds to
5.4 x 10°-6 x 102 kinks per C=0 dipole.

The following suggestions can be made to explain
the inapplicability of (17) to the density of kinks in
polyethylene. Thisformulawas obtained in the approx-
imation of “low temperatures’ (6), which is fulfilled
even at temperatures exceeding the melting point [see
(8)]. Itis, however, known, even from the early experi-
ments on dielectric relaxation in polyethylene [39],
that, in the temperature interval corresponding to the
dielectric loss peak, strong asymmetric broadening of
the crystal lattice of polyethylene is observed. More
recent studies[40, 41] substantiated the hypothesis[42]
that polyethylene melting occurred in two stages: first,
the substance experienced the transition to the “rota-
tion” phase (orientation disordering of atoms of all
chains while chain axes remained paralel to each
other) and the lattice changed to hexagonal, and then,
melting proper occurred. If we assume that the first
phase transition is caused by the appearance of pairs of
torsional kinks of opposite topological signs, then the
dielectric o, relaxation process is an indicator of this
phase transition, just as a, relaxation is an indicator of
vitrification. This hypothesis is substantiated by the
observation that the experimental dielectric intensity of
the process at a constant volume [37] decreases as tem-
perature increases much more sharply than 1T,
whereas the Kubo relaxation theory [43] predicts the
dependence d¢ = g, — €,, ~ Ngu%/kgT (here, ng = Ny/V is
the ratio between the number of dipolesin the crystal-
line fraction to the sample volume and | isthe absolute
electric dipole moment value). Hence, it follows that a
part of the dipoles “leaves’ the crystalline phase, in
which only kinks can exist, as temperature increases.
This presupposes at least crystalline fraction disorder-
ing caused by torsion, that is, the phase transition from
the orthorhombic structure to hexagonal. Clearly, the
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density of kinks should then be much higher than that
predicted by (17).

7. CONCLUSION:
ANSWERS AND QUESTIONS

In this work, we, for the first time, determined the
diffusion coefficients of point structural defects by sta-
tistical measurementsin athree-dimensional molecular
dynamics model of a heated polymeric crystal. We
found that, within a 25% error of measurements, the
diffusion coefficients of a simple tension defect (the
dynamics of which reduces to the integrable sine-Gor-
don equation in the continuous model in the approxi-
mation of immabile neighboring chains) and atorsion-
with-tension defect (for which there is no soliton solu-
tion in the same approximation) were equal. A compar-
ison of the obtained value with theoretical estimatesfor
the integrable sine-Gordon model and for the noninte-
grable (but admitting soliton-like solutions) ¢* model
and other numerical simulation results showed that fric-
tion of solitonsin the system under consideration (as, it
appears, in al rea physical systems) is determined by
its difference from the integrable model system (in the
sine-Gordon model, thereis no viscous friction at all).

The determination of the dipole moment autocorre-
lation function in the molecular dynamics experiment
allowed usto directly check the validity of the theory of
0. relaxation in weakly oxidized polyethylene sug-
gested in [12]. In the absence of torsion-with-tension
defects, the dipole moment autocorrelation function
was only indicative of the occurrence of onefast 3 pro-
cess. Inthe presence of akink in the chain, we observed
an additional slow decrease in this function. Its kink
part was well described by the formulaobtained in [11]
at a given kink density without any adjustment of the
m* and y parameters. Namely, we theoretically esti-
mated mass m* for our model, and the y friction coeffi-
cient was cal culated by Einstein equation (11) from the
m* mass value and the diffusion coefficient determined
in an independent molecular dynamics experiment.

We showed that the available physical experimental
data [36, 37] were insufficient for independently deter-
mining kink density ny and kink diffusion coefficient D

and could only be used to calculate the D ng product. In
[12], the a priori use of Eq. (17), which predicted an
anomalously small value for the density of kinks,
required assuming an anomalously large D value. The
process under consideration, however, occurred close
to the melting point, where the “approximation of low
temperatures’ used to obtain (17) was inapplicable.
Obtaining redlistic kink diffusion coefficients required
increasing the density of kinks by four orders of mag-
nitude in comparison with the value predicted by (17).
It follows that there is good reason to consider the
hypothesis suggested in [11] valid for dielectric a,
relaxation in weakly oxidized polyethylene provided
assumption (17) is abandoned.
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To completely substantiate the model suggested in
[11], one must theoretically describe the experimental
dependences of the central frequency of the process, the
shape of the dielectric loss curve, and the temperature
T and volume V dependences of dielectric intensity.
This would require constructing the statistical thermo-
dynamics of a polymeric crystal, that is, deriving the
equation of state and calculating the ny(V, T), m*(V, T),
and y(V, T) dependences.

APPENDICES
A. The Soliton Model of o, Relaxation

After the a, peak in polyethylene was detected, sev-
eral molecular models of the process were suggested
and its more detailed experimental study was under-
taken (seereviews [4, 9] and the references therein). It
was found that, in samples with a high degree of orien-
tation of chains, the o, peak was absent if the vector of
the applied electric field was parallel to chains and
appeared when the field was rotated through 90°. It was
noted in studying a. relaxation in samples with differ-
ent chain lengthsin crystallltesthat starting with chain
lengths of approximately 100 A, the relaxation time
(the central dielectric loss peak frequency) was virtu-
ally independent of the length of chains[36].

The mechanism of o, relaxation was therefore asso-
ciated with rotation of dipoles localized in the crystal-
line polymer fraction as aresult of rotation of small (of
the order of 80 CH, groups) chain segments about their
axes. The mechanism of relaxation based on the
hypothesis of diffusion of kinksin chains of the crystal-
line polymer fraction was independently, suggested in
[10, 11].

This hypothesis explains certain special features of
the process which are not described by the other theo-
ries. Indeed, kinks do not exist in crystals with short
chains (the square of their width is proportional to the
ratio between intra- and interchain rigidities), and the
chain should rotate as a whole. Hence, it directly fol-
lows that, in paraffins, the rate of the process should
decrease as chain length increases in short-chain com-
pounds, whereas the central peak frequency should be
independent of the chain length if thislength exceeds a
certain value (kink width). Precisely this is observed
experimentally. A sharp decreasein the dielectric inten-
sity (in the difference of the static and high-frequency
permittivities d¢ = g, — €,,) as temperature increases
[37] can be explained by the onset of crystalline phase
disordering, outside which such kinks also do not exist.
This hypothesis, in contrast to the other, can explain
[44] the observation of the a, peak during dielectric
relaxation of weakly oxidized polyethylene and isotac-
tic polypropylene and its absence in syndiotactic
polypropylene and isotactic polystyrene.

An attempt was made [12] to construct a quantita-
tive model of dielectric a, relaxation in polyethylene
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with the use of this hypothesis. The model was based on
the assumption [11] that a decrease in the dipole
moment autocorrel ation function with time (the Fourier
transform of its derivative was proportional to complex
permittivity €*(w) [43]) takes place at temperature T
due to Brownian movement of kinks with mass m*,
friction coefficient y, and linear density (the number of
kinks per unit chain length) n,. Kinksweretreated as point
objects which did not interact with each other (in confor-
mity to the phenomenological modd of an “ided gas of
phonons and kinks’ suggested in [1]). When a kink
gpproached a dipole, instantaneous dipole inversion
occurred.

Under these assumptions, an analytic equation for
the dipole moment autocorrelation function was
obtained [11]. The equation contained three adjustment

parameters, o€, B=4n,,/kg T/Ttm* , andy, that were not

determined by the suggested theory and depended on
volume V and temperature T of the sample.

B. Theoretical Estimation of the Mass
of a Torsion-with-Tension Kink

The sine-Gordon equation is well known to be
invariant with respect to Lorentz transformations, and
the energy of itskink solutions as a function of velocity
has the form of the energy of a relativistic particle.
Accordingly, the mass of akink is understood to be the
energy of aresting kink divided by the square of the sound
velocity in anisolated chain. Thetotal energy of one chain
of our crystal in the continuous approximation of the
model of immobile nei ghboring chainsis[16]

J-I |: lIJt+K +K lIJx
0So

o 2 92 T2
(18)
+ A(1 - cos@cosy) + B(1— cosZ(p)},

where | isthe displacement of the atom along the chain
axisfrom its equilibrium position divided by the period
of the chain; @isthe angle of theatom in the cylindrical
system of coordinates with the axis that coincides with
the chain axis; and I, 1, and K, K, are the inertial and
rigidity chain parameters, respectively, “torsiona” (with
respect to ¢g) and “longitudinal” (with respect to s). The
relation between these constants and crystal numerical
model parameters was obtained in [16],

_ - doCaf _ oSt
l, = mDTD , Illl = mD?D (19)
(sp = sin(B,/2), ¢, = cos(8,/2));
Ky = 15(Ky + 9K3), (20)
2
K, E?TIS‘D Ke. 1)
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In the same work, the A = 6.54 x 102 kcal/mol and B =
2.07 x 101 kcal/mol values were estimated.

It is easy to see that the ¢ and Y variables are sepa-
rable in the linearized system equations. Two disper-
sion curve branches with two sound velocities corre-
spond to these variables: “torsional” sound velocity

Vo= Kyl = 7.63 km/s and “longitudina” sound
velocity v, = JK/1, = 14.70 km/s, which are maxi-

mum velocities of propagation of small-amplitude per-
turbations along @ and |, respectively.

Substituting the exact solution for the static smple
tension kink into (18),

Q(t) = 4arctanexp(x/Ly)

(Ly = JKy/A = 33.5(c/2) is the half-width of a static
kink), we easily obtain the static kink energy

2
0 8 2[’71—‘98—0V5J

v en? Ly

For the numerical values of our model, we have energy
and mass estimates H , ~ 17.5 kcal/mol and m:Jo =

H qu/ vi = 0.56 x 10" kg (which is approximately two
times smaller than the atomic mass unit), respectively.

Substituting the approximate solution for a static
torsion-with-tension kink obtained in [16] into (18),

- OX0
@, = 2arctanexp—,
' L 22)
L, = /K /4B=5.08(c/2),
VR (23)
_ Marctanexp(x/L,, —Intan(317/8)), x—vt<O0,
- Eﬂfarctanexp(x/LLIJ + Intan(31U/8)) — 11, Xx—Vvt=0,
we obtain the kink energy

Hy.o = Hy—H,,
= 3T .
Hy = Hopl—tanhintanH= 5.13 keal/mol,

8 omA9%,2 <839 keallmol,

 (8s/c)’ Lo

and the kink mass

)

H
2
Vy

= (0.164 + 1.002) x 10" kg = 1.166 x 107" kg.

I

E
Sl
€ Nilg

m* = +
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Abstr act—Spin-attice relaxation times T, were measured for solid 3He at temperatures of 0.22t00.73K ina
44-Oe magnetic field. Anincreasein T; at temperatures higher than approximately 0.4 K wasrelated to switch-
ing on the vacancy mechanism of atomic mobility in the crystal. At amelting curve minimum, in the region of
predominance of exchange mations of atoms in the crystal, measurements of T, were performed in magnetic
fields of 2 to 71 Oe. The data obtained in fields higher than 5 Oe were in agreement with the Cowan—Fardis

theory. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of vacancies in *He crystals has been
studied in many works [1-5]. The data on the concen-
tration of vacancies and their energy of formation
obtained by various methods for *He crystals with high
melting points, higher than approximately 1 K, agree
with each other [6]. For crystals of a lower density,
direct studies of vacancies by X-ray diffraction [1] are
impeded by their low concentration. The energies of
formation of vacancies obtained in [1] for crystalswith
melting points below approximately 0.6 K appear to be
underestimated compared with the data obtained more
recently [2]. In [3], vacancies were studied by measur-
ing the pressure increase caused by heating a crystal of
a constant density. The latest literature data were
obtained by measuring the rate of porous membrane
motion [4] and the mobility of negative charges [5]. A
model that treated motion of chargesin solid 3He from
the point of view of the energy band structure of vacan-
cieswassuggested in[7]. Thereisalarge spread of data
reported by various authors for the mability of vacan-
ciesin the crystal and for the vacanson band width [8].

NMR measurements of crystals alow vacancies to
be recorded by their mobility [9]. The special feature of
solid 3He is the presence of exchange atomic motions
whose rate is independent of temperature and rapidly
increases as the density of the crystal decreases. Mea-
surements of spin-attice relaxation time T, in solid *H
give information about the mobility of atoms in the
crystal lattice and allow vacanciesto be observed either
under “high-temperature” or “low-temperature” condi-
tions [2]. Under low-temperature conditions, at T =
0.2 K, vacancies determinetherate of spinrelaxationin
fairly high fields and interrelate the exchange energy
reservoir and the lattice [2, 6]. An analysis of the data
on T, obtained under low-temperature conditions led

the authors of [10] to conclude that the energy of for-
mation of vacancies decreased to zero in thelimit of the
lowest crystal density; this conclusion was not substan-
tiated in more recent works. It appears that |ow-temper-
ature T, data processing for crystals of a low density
[10] isimpeded because of adecreasein temperature to
the melting point and, probably, because of a nonexpo-
nential (two-time) character of spin-attice relaxation
under these conditions.

At higher temperatures, in the “intermediate” and
“high-temperature” regions, spin relaxation is due to
modulation of dipole—dipoleinteractions by motions of
atomsin the crystal [6]. At temperatures bel ow approx-
imately 0.6 K, the mobility of solid ®He atomsislargely
determined by exchange processes, which are quan-
tum-mechanical tunneling of two or more atoms
through crystal lattice energy barriers. For this reason,
at intermediate temperatures, approximately from 0.2
t0 0.6 K, the spin relaxation timeisindependent of tem-
perature, and an “ exchange plateau” is observed. Under
high-temperature conditions, the rate of atomic
motionsin the crystal caused by the mobility of vacan-
cies exceeds the rate of exchange processes. Spinat-
tice and spin—spin rel axation and spin diffusion arethen
determined by vacancies; Reich [11] has experimen-
tally measured the corresponding characteristics. Infor-
mation about vacancies is usually obtained from spin—
lattice relaxation times T, measured in strong fields[2].
It appears that an analysis of the T, data obtained under
high-temperature conditions in strong magnetic fields
involves difficulties caused by a complex, nhonmono-
tonic temperature dependence of T, [12], which first
decreases and then begins to increase as temperature
rises above the plateau level. So far as we know, the
experimental data on the energy of formation of vacan-
cies obtained under high-temperature conditions are lim-
ited to crystals with melting points above 1.2 K [13, 14].
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For less dense crystals, the region of purely vacancy
high-temperature conditions gradually becomes very
narrow and then compl etely disappears. For thisreason,
we deemed it interesting to perform spin-attice relax-
ation time measurementsin the region of lower temper-
atures corresponding to the onset of the transition from
the exchange plateau to the high-temperature vacancy
conditions. In thiswork, we measured T, in thistransi-
tion temperature region in alow magnetic field for *He
crystals with very low densities.

2. RELAXATION MODEL

The spinrelaxation rate in solids with fast molecular
motion can be described by the Bloembergen—Purcell—
Pound theory equation [2, 6, 15]

-I-—l — ZMZTCD 1 + 4 0
' 3 Bywit? 1+40iiD )
a 1.JM, <1,

where wy, = yH, is the Larmor frequency (yis the gyro-
magnetic ratio), M, is the second van Vlek moment of

the rigid lattice determined by dipole fields, and Tgl is

the frequency of modulation of dipole—dipole interac-
tions by atomic motion. For apolycrystalline body-cen-
tered cubic phase and spin 1/2, we have M, =
3.27y*h2n?, where n is the concentration of spins. In
weak magnetic fields Hy at wgT. << 1, we have

1

T, O'3TCM2' (2
In weak magnetic fields, adecreasein the characteristic
time of atomic motion T, caused by heating the crystal
increases the spin-lattice relaxation time. The Bloem-
bergen—Purcell-Pound model is usualy applied to
solid 3He to describe spin relaxation under high-tem-
perature vacancy conditions [2]. We assume that equa:
tion (2) inthelimit of weak magnetic fieldsisalso valid
in the region of lower temperatures where exchange
processes occur. Atomic motion in crystalline *He is
caused by gquantum-mechanical exchange processes
and the mobility of vacancies,

1.5 = W, +axw,, )

where w, describes the frequency of exchange motions
in the absence of vacancies (for simplicity, we omit the
numerical coefficient of w,, which is of the order of
one), X is the relative concentration of vacancies, and
w, is the frequency of vacancy jumps into one of the
neighboring lattice nodes. These frequencies are of the
order of magnitude of w, ~10% st and w, ~ 10'°s[6].
Coefficient a can be determined within the framework
of aparticular model of vacancy motions; according to
[6, 13], a = 10. We assume that all vacancies randomly
move over the crystal; this assumption ignores the pos-
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sibility that low-energy vacancies near the band bottom
can be localized in the lattice to form a magnetic
polaron [8, 16]. Asin [6], we assume that the motion of
vacanciesin the cubic phase of solid *He occurs by tun-
neling without thermally activated overcoming of the
barrier. The w, frequency is then independent of tem-
perature. We also do not consider possible influence of
vacancies that appear when the crystal is heated on the
rate of exchange atomic motion processes. The deceler-
ation of exchange processes, which might be caused by
an effective increase in crystal density accompanying
the appearance of vacanciesinit, islikely to be propor-
tiona to the concentration of vacancies and can be
included in the last term in (3). The magnetic field can
be considered weak if Hy < w,./y ~ 5 kOe. In low mag-
netic fields, because of the smallness of the heat capac-
ity of the Zeeman energy reservoir compared with the
exchange reservair, the low-temperature vacancy mode
is not observed in the T,(T) dependence, and the
exchange plateau persists even to the lowest tempera-
tures, to the melting point.

We will follow the model of a narrow energy band
of vacancy states, which is usually [13, 14] applied to
consider experimental data obtained under high-tem-
perature vacancy conditions. The width of the energy
band of vacansons expressed in degreesisthen assumed to
be much smaler than the temperature, and the tempera-
ture dependence of the concentration of vacancies is
described by the Arrhenius law x = exp(—®/T), where
activation energy @ equalsthe energy of formation of a
vacancy in the center of the narrow band. In this
approximation, the spin relaxation time is written as

T, = T+ Toexp(—P/T). 4

Thefirst term in (4) is independent of temperature and
corresponds to the region of the low-temperature
exchange plateau. The second term describes an
increase in T, as temperature increases up to the melt-
ing point. The temperature dependences of time T,
obtained in this work are used to determine the activa-
tion energy of vacancies ® and preexponential factor
To, which has the dimension of time. Using T, in the
equation Ty = 0.30w,/M, alows the frequency of
vacancy motions and the width of the energy band cor-
responding to vacancies to be estimated. The T, timein
(4) characterizes exchange processes and only depends
on the density of crystals. According to [10, p. 66; 17,
p. 216], the exchange interaction frequency depends on

the density as w, [ Vf , Where V,,, is the molar volume

of the crystal. The strong power dependence is related
to a rapid deceleration of exchange processes as the

density of solid 3He increases. As M, O V>, we have
T, O Vﬁ? . According to the measurements performed by
Devoret et al. [18], T.= T, O V& " intheregion of the
exchange plateau in a 0.9-kOe magnetic field. In this
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Fig. 1. Scheme of experimenta cell: 1, thermometer on a
capillary for filling; 2, receiving coil of flow transformer;
3, RF field cail; 4, cell screen; 5 copper cold conductor;
6, thermometer; and 7, heater on athermal bridge.

work, we check these data on the crystal density depen-
dence of T..

In Section 6, we describe measurements of the mag-
netic field dependence of T, in the region of the pre-
dominance of exchange processes, at aminimum of the
3He melting curve. The results of these measurements
allow us to check the conclusion drawn in theoretical
work [19] on the presence of a root singularity in the
T,(Ho) dependence in weak magnetic fields, which dif-
fers from dependence (1) predicted by the Bloember-
gen—Purcell-Pound model.

3. EXPERIMENTAL

The cell used in experiments with solid *He is
shown in Fig. 1. The high-pressure chamber vessel was
made of paper-reinforced Stycast-1266 epoxide resin.
The inner cell volume was about 0.3 cm®. A copper
bushing was glued into the top part of the cell; into this
bushing, a capillary for filling was soldered. A copper
cold conductor needle was glued into the bottom part;
the conductor was in thermal contact, provided by a
threaded connection, with the solution chamber of a
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SHe—*He refrigerator. The temperature of the cell was
controlled by aresistance thermometer made of a 70-Q,
0.125-W Matsushita carbon resistor mounted on the
cold conductor of the cell. This thermometer was used
to stahilize temperature of the solution chamber. The
thermometer was calibrated against *He condensation
thermometer readings and the magnetic susceptibility
of cerium—magnesium nitrate. The calibration was
checked by the spin signal of solid *He. The deviations
of the melting points of crystals measured in this work
from the values corresponding to the melting curve of
3He did not exceed 1% of temperature values. The ther-
mometer mounted in the top part of the cell on the cap-
illary for filling was used to determine the beginning
and end of crystal growth. The resistance thermometers
were connected to bridge measuring schemes (cryo-
bridges), the output from which could be written to a
computer. The capillary for filling, 0.14-mm inside
diameter, was made of acopper—nickel alloy and wasin
thermal contact with the cell cold conductor through a
thermal bridge, which was a brass plate with a0.3-mQ
residual resistance. To prevent plugging of the capillary
by crystals, an el ectric heater was mounted on the plate.
Further, the filling line had a similar thermal bridge at
the site of its contact with the evaporation chamber of
the solution refrigerator, whose temperature was about
0.5 K. In some experiments, there was one more ther-
mal bridge at the contact with the solution chamber.

The ®He gas used for growing crystals contained not
more than 0.02% “He. Pressure was controlled by an
electronic pressure gauge and visualy by an arrow
manometer. The noise level of the electronic pressure
gauge did not exceed 1 mbar. The absolute accuracy of
determining pressure, which could be checked by the
pressure at a melting curve minimum, was about
40 mbar.

The longitudina magnetization of *He nuclei was
detected by a magnetometer based on an RF SQUID
[20, 21]. Stationary magnetic field Hy was trapped by a
niobium cell screen tube during cell cooling. Radiofre-
guency (RF) circularly polarized field H; used for
NMR excitation was created by two crossed saddle
superconducting coils. Field H; was calibrated by the
shift of the resonance line frequency under the condi-
tions of applying a strong continuous RF field detuned
from the resonance; this shift was similar to the Bloch—
Siegert shift [22, ch. |1, 81]. An H; = 0.02 Oe continu-
ous RF field at the NMR frequency of protonswas con-
stantly applied during the whole NMR experiment.
Thisfield saturated the proton signal of cell walls. The
output from the SQUID was written to a computer,
which also performed commutation of the RF field and
controlled the RF field frequency sweep near the *He
NMR frequency. The *He resonance NMR line was
usually sequentialy passed many times with signal
accumulation and averaging on a computer.
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Thereceiving SQUID magnetometer coil was glued
directly into a cell wall. For this reason, apart from the
magnetic signal caused by changesin the receiving coil
contour area, the magnetometer was also sensitive to
pressure changes in the cell. This allowed us to control
the stability of pressure inside the cell filled by a crys-
tal. The melting temperature can be determined from a
sharp increase in pressure when the crystal was heated.

4. GROWING CRYSTALS

A 34-bar pressure necessary for growing crystals
was created using a high-pressure chamber (gasifier) of
volume 4 cm?®. The volume of the high-pressure gas
system, which had room temperature and included an
arrow manometer, an electronic pressure gauge, and a
valve, was about 14 cm?®. First, *He (0.08 mol) was con-
densed into the cell and gasifier. The gasifier was then
heated to 3040 K to create the required pressure. Gas-
ifier heating could be controlled automatically by a
computer; the control parameters were electronic pres-
sure gauge output and readings of the resistance ther-
mometer on the capillary for filling the cell. Pressure
could be stabilized or varied at the required rate.

Prior to growing crystals and while pressure was
increased to the required value, cell cold conductor
temperature (further, this temperature point will be
referred to as “A”) was stabilized somewhat above the
T,, melting temperature corresponding to the selected
pressure; the heaters of thermal bridges at thermal con-
tact sites of the capillary for filling the cell were
switched on. Next, pressure was stabilized, and tem-
perature A controller was switched to a value about
T, — 60 mK. The onset of crystal growth was deter-
mined as the moment at which the temperature mea-
sured by the thermometer on the capillary for cell filling
began to increase (further, this thermometer is called
“B") because of inflow of amore heated liquid into the
cell. Usudly, at T,, < 0.6 K, a crystal began to grow
within 4-10 min after cooling the cold conductor of the
cell and stabilizing the specified T, temperature. Apparent

“entry” of liquid *He into the region of the existence of
crystals in the phase diagram with aP — p,,(T,) < 0.5 bar
value (P is the pressure in the cell, and p,,(T,) is the
pressure of crystal melting at temperature T,) cannot be
gtrictly interpreted as a metastable state of the liquid
because of the complexity of heat transfer in liquid *He
closeto the cold conductor needle with possible arising
of convection. It appears that, in separate experiments,
crystals began to grow in the capillary for cell filling
somewhere in the vicinity of thermometer B and
plugged the capillary for a short time. This manifested
itself by Tg and SQUID output jumps caused by pres-
sure oscillations in the cell. At low melting tempera-
tures, T,, < 0.55 K, crystals usually began to grow not
on the cold conductor needle at the bottom of the cell.
The moment when the growing crystal reached the nee-
dle was detected by a short-term cold conductor tem-
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Fig. 2. Solid phase signal during crystal growth. Pressure
P = 34 bar (T;,,= 0.74 K), T = 0.66 K, and arrows indicate
crystal growth beginning and termination.

perature T, rise. After this, the crystal gradualy filled
the cell from bottom to top. Clearly, the rate of crystal
growth was then determined by the removal of the heat
of crystallization from the growth front through the col-
umn of the already grown crystal to the cold conductor
needle. Crystal growth could be monitored by measur-
ing the intensity of the NMR signal from the solid
phase (Fig. 2). The duration of crystal growth from the
onset of the process on the needle was 10 min at T, =
0.5 K to 50 min at T,, = 0.74 K. When crystal growth
stopped, a sharp decrease in Tz was observed. An
increase in the NMR signal at this moment was caused
by crystal cooling to cold conductor temperature T,.

In the early series of experiments, the capillary for
cell filling had three thermal contacts (three bridges and
heaters on them), with the cell cold conductor, with the
solution chamber, and with the evaporation chamber of
the solution refrigerator. The electric heaters connected
to a common circuit were simultaneously switched off
approximately 10 min after crystal growth in the cell
was completed. We found that the pressure in the cell
began to decrease soon afterward. Clearly, this was
caused by plugging of the capillary for cell filling by
crystals; the plug was formed at the contact with the
evaporation chamber. Because the crystals were highly
plastic, adecrease in pressure in the top part of the cell
was transferred to the measuring volume in the center
of the cell. In these experiments, the crystal was first
held at T,,— 70 mK for 1 h to attain pressure stability
and then “annealed” at T,,— 10 mK for one more hour,
which alowed NMR measurements at various temper-
atures to be performed under constant density condi-
tions. The total decrease in pressure in the cell after
crystal growth amounted to 50—70 mbar. Further, dur-
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Fig. 3. SQUID output records for resonance passage. Hg =
44 Oe, Hy = 16 mOe, RF field frequency sweep rate
3.27 kHz/s. Curves 1 and 2 correspond to liquid SHeat T=
0.53 K, P = 30.3 bar, dP/dt = 1 mbar/s; curve rises are
caused by an increase in pressure within the cell. Record 2
was made 1.5 min after record 1, and a decrease in signal
intensity was caused by incomplete rel axation of spins after

passage 1. Curve 3 corresponds to solid 3He at T = 0.50 K
and P = 30.5 bar; this curve was obtained by averaging over
20 passages through the resonance line. Time T, was deter-

mined from the curve portion to the right of vertical lines.

ing NM R measurements, temperature was decreased in
stepsto its lowest value (about 0.25 K). The stability of
the output from the SQUID was evidence of a constant
crystal density in the measuring volume of the cell. In
these experiments, pressure usually again began to
decrease when crystals were heated after cooling.

In a later series of experiments, controlled crystal
growth conditions were created using only two thermal
contactsin thefilling line, between the capillary for fill-
ing and the cell and the evaporation chamber. The
heater at the heating place of the contact with the evap-
oration chamber was constantly switched on. About
0.5 h after crystal growth was completed, at T, = T, —
55 mK, current through the el ectric heater at the contact
between the filling line and the cell cold conductor was
smoothly decreased from the initial power of 5 pW
with the use of a capacitor bank with a 1-h time con-
stant. In 1 h, the heater was switched off, the cell was
heated to T,,— 10 mK, and the crystal was held at this
temperature (“annealed”) for 0.5 h. After such a proce-
dure for crystal preparation, pressure remained stable
during NMR measurements in cooling to the lowest
temperature and subsequent heating to T,,,. The T,,, melt-
ing point was determined in all experiments from the
onset of asharp increasein pressurein the cell whenthe
crystal was heated.
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Experiments with solid He at a melting curve min-
imum in the phase diagram are described in Section 6.
In these experiments, cold conductor temperature T,
was stabilized at a minimum point temperature (0.315 K)
prior to growing crystals, and pressure was increased at
a rate of 0.14 mbar/s. Crystals began to grow at P —
Pm(T,) = 0.10-0.15 bar. Crystalsfilled the experimental
cell in about 3 min (from the beginning of growth on
the cold conductor needle to a decrease in Tg); during
growth, pressure was noticeably higher than at the min-
imum point. Pressure was then decreased, and crystals
melted almost fully. The absence of the solid phase in
the central measuring cell part was controlled by mea-
suring the NMR signal. A small crystal still remained
on the cell bottom on the cold conductor needle. Fur-
ther, the temperature of the gasifier began to increase
under computer control; used as the control parameter
was the Tg temperature. The crystal began to grow and
filled the whole cell in about 20 min; pressure during
growth did not exceed minimum point pressure by
more than 1-2 mbar.

5. T, MEASUREMENTS.
THE CONTRIBUTION OF VACANCIES

The excitation of the spin system after which spin-
|attice rel axation was observed was performed by adia-
batic fast passage of the NMR line. RF field H; and the
rate of frequency sweep were selected to fulfill the adi-
abatic passage condition (yH;)? > dw/dt, which
ensured magnetization inversion (spin flip) during the
passage[22, Ch. I1]. Thetime of passage of the order of
yH/(dw/dt) was much shorter than T;. It follows that
fast adiabatic inversion of spins occurred during line
passage. Thisinversion was followed by comparatively
slow relaxation of spin magnetization to its equilibrium
value. The computer-controlled measuring cycle
involved switching on circularly polarized RF field H;
of 11 to 16 mOe at a frequency about 2 kHz below the
resonance frequency, sweeping the RF field frequency
through the resonance line at an about 3-kHz/s fre-
guency during a period of about 4 s, and, finaly,
switching the RF field off. The SQUID output records
describing the evolution of longitudinal *He spin mag-
netization during one cycle are shown in Fig. 3. In
experiments with growing crystal's, when theliquid and
solid phases coexisted in the cell, fast spin relaxation of
solid 3He allowed us to identify the signal from He
nuclel in the solid phase. The T; values in solid *He
under our experimental conditionsequaled 0.3t00.5s,
and the spin system returned to the equilibrium state by
the end of the measuring cycle. When T, was measured

for solid *He, this cycle was repeated many times with
computer signal accumulation; usualy, cycles were
repeated every 6 s. T, measurements described in this
section were performed in a stationary magnetic field
H, = 44 Oe (the resonance frequency equaled 142 kHz).
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In this field, the magnetic moments of nuclei were
fairly large, and, at a 10-min time of signal accumula-
tion, we were able to measure T, with an accuracy of
0.1% or higher. Prior to T, measurements, crystalswere
held at the required temperature for 4 min or longer.

The T, times were determined by approximating
St) SQUID outputs recorded about 0.2 s after inversion
timet; with the use of the equation

S(t) = const — Msexpt'T—t. ()

1

The M, value corresponds to twice the magnetic
moment of solid ®He nuclei equilibrium at agiven tem-
perature (in arbitrary units of SQUID outputs). The
subtraction of adjustment curve (5) from the experi-
mental time dependences of SQUID outputs allowed us
to check whether or not spinHattice relaxation was
exponential.

The T, times obtained for the crystal with T, = 0.51 K
at various temperatures are shown in Fig. 4. At temper-
atures below approximately 0.4 K, times T, did not
depend on temperature. In this temperature region,
relaxation was determined by exchange processes of
atomic motionsin the crystal. We described the experi-
mental temperature dependences of T, by (4). The T,
time, which characterized exchange processes, only
depended on the density of the crystal. The obtained

density dependence of time T,, T, 0 V2, wasin agree-
ment with the density dependence of exchange interac-

tion frequency w, 0 V= [10, 17] and the results of T,
measurements in field Hy = 0.9 kOe [18].

Anincrease in time T, observed when crystals were
heated above 0.4 K was evidence of acceleration of
atomic motionsin crystals. It wasinterpreted as switch-
ing on the vacancy mechanism of motion. The adjust-
ment parameters of (4) that describe the contribution of
vacancies are preexponential factor T, and activation
energy ®. Time T, was independent of crystal density
within the accuracy of our measurements (Fig. 5a); its
mean value for eight samples with melting points of
0.51t00.735 K was T, =59 + 12 s. The densities of the
crystals with melting points of 0.51 and 0.735 K dif-
fered by about 2%. In what follows, we neglect a possi-
ble dependence of time T, on crystal density. To deter-
mine the activation energy, the experimental T,(T)
dependenceswere again treated by Eq. (4), inwhichthe
T, parameter was fixed at the mean value given above.
This procedure allowed us to decrease the statistical
spread of activation energy values and reveal its depen-
dence on the density of crystals. The obtained ® values
are shown in Fig. 5b. The activation energies of vacan-
ciesincreased as the density of crystals grew.

The AT, = Ty(T) — T, values for the crystal with the
highest density, T,, = 0.735 K, are shown in Fig. 6 in
semilogarithmic coordinates as functions of reciprocal
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Fig. 4. Temperature dependence of spin relaxation time T,
for acrystal with T,, = 0.51 K (crystal growth pressure was
30.5 bar); (0) cooling and (@) crystal heating at the final
stage of measurements.
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Fig. 5. (a) Preexponential factor obtained in treating T1(T)
dependences by (4) asafunction of crystal melting temper-
ature. (b) Activation energies of vacancies. These values
were determined using the mean preexponential factor
value shown by dashes in Fig. 5a. For the T,;, = 0.735 K
point, the error caused by inaccuracy of determining Ty is

shown; (O) the data [3] obtained from the temperature
dependence of pressure.

temperature. The T, value for this crystal (0.30 s) was
determined by averaging T, timesmeasured & T < 0.4 K.
The dlope of this dependence gives the activation
energy of vacancies @ for the crystal with a given den-
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Fig. 6. (O0) T, — Tg values for the densest crystal with Ty, =
0.735 K studied in this work; (0) increase in T, from the

exchange plateau region to the melting point as a function
of reciprocal melting temperature. The solid curve was
obtained using the mean Ty value and the ®(T,,,) depen-

dence shown in Fig. 5b.

sity. Opencirclesin Fig. 6 are the T, (T,,,) — T, values as
functions of the reciprocal melting temperature for
each separate crystal for which the temperature depen-
dence of T, was measured. The T, (T,,,) value wasfound
by extrapolating the T,(T) dependence for each crystal
to its melting temperature. This curve describes an
increase in T, from the exchange plateau region to the
melting point and shows how the vacancy contribution
to T, at this point decreases as the melting temperature
lowers. The smaller slope of this dependence is caused
by a decrease in the activation energy with decreasing
crystal density. The solid curve in Fig. 6 describes the
Toexp(—®/T,,) value, it was obtained using the
smoothed dependence of the activation energy on the
melting temperature of crystals shown in Fig. 5b and
the mean preexponential factor T, value. The d®/dT,,
derivative value can be used to calculate the derivative
of the activation energy of vacancies with respect to
crystal density. According to our measurements,
do/dV,, = -1.4 K/(cm¥mol).

These results can be compared with the data on the
activation energy of vacancies obtained by various
authors taking into account that equations of type (4)
within the framework of band models of vacansons
often contain power preexponential temperature fac-
tors. The activation energies obtained in this work are
higher than those reported in [2—4] for V,, > 24 cm3/mol
by about 0.4 K. Our ® values are approximately 0.5 K
lower than the values extrapolated to larger molar vol-
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umes from the data on crystalswith T,,> 1.2 K (see[6,
Fig. 3.13] and [13, Fig. 2]).

The obtained T, [ preexponential factor in (4)] value
can be used to estimate the characteristic frequency of
vacancy movements and the width of the energy band of
vacancies. Set coefficient a in (3) equal to 10[6, 13]. Ca-
culations of the band width of vacansons by [2, 13]

A = 4(z-1)"?hw, ks (6)

(here, zisthe number of nearest neighbors and kg isthe
Boltzmann constant) then give A = 0.6 K. The authors
of [13] analyzed the data on T, that they obtained under
high-temperature vacancy conditions to determine the
frequency of vacancy motions, w, = 0.5 x 10 s?;
according to (6), this corresponded to the vacanson
band width A = 0.4 K. In [4], the vacanson band width
in solid ®He was found to be A = 3.5-4 K at the lowest
densities; this result was obtained from the data on
porous membrane motions. Estimates of A show that,
under our experimental conditions, A = T; it appears
that our analysis of the T,(T) dependences within the
framework of the narrow band model is not absolutely
correct and should be considered a phenomenological
approach. At the same time, the ambiguous situation
with the development of a general band model of
vacancies in solid *He prevents us from performing a
rigorous analysis of the experimental data.

Note that time T, (which may be treated asthe spin—
lattice relaxation time of the hypothetical crystal with
the concentration of vacancies of the order of one) is
close to the volume spin relaxation timein liquid *Hein
the vicinity of the melting curve; this value is about
100 s [23]. Similar closeness was noted by Reich [11]
for the preexponential factor in the equation for the spin
diffusion coefficient in solid He in the vacancy mode.

6. THE MAGNETIC FIELD DEPENDENCE
OF T,

The Bloembergen—Purcell-Pound model [15] is
usually applied to describe spin relaxation in liquids
and solids with fast molecular motions. For low mag-
netic fields, this model predicts a quadratic increase in
T, asthefield growsfrom the T, value in zero magnetic
field [see (1)]. Under the conditions of our experiments,
at T, = wy/w, = 1072, thisincrease in T, by (1) does
not exceed a value of the order of 10 T,, which is
within the error of measurements. The Bloembergen—
Purcell-Pound model, which considers spin relaxation
in terms of fluctuations of dipole fields, actually takes
into account mutual displacements only of the nearest
neighbors and describes these displacements by one
correlation time. Comparatively recently, Cowan and
Fardis [19] considered the region of exchange atomic
motion processes to analyze the behavior of dipole cor-
relation functions at long times. An asymptotic behav-
ior proportional to t=%2 was caused by dipole interac-
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tions between spins spaced ~(Dt)Y? apart, where D is
the spin diffusion coefficient. The spectral density func-
tions contained terms proportiona to w'?, and the T,
time in low magnetic fields contained a root term addi-
tiona to its valuein zero magnetic field [19],

nﬁ2y4

32
D

Ty(p) = T4(0) +0.70—=L-(T,(0)’wp > (7)

The available experimental data [19, 24] substantiate
the existence of such adependence. The corresponding
measurements were, however, performed in fairly high
magnetic fields, higher than 150 Oe, and the additional
termin (7) exceeded 10% of T,(0). In our view, testing
the model suggested in [19] required T;(Hy) depen-
dence measurements in the weakest magnetic fields
possible.

Under our experimental conditions, changing mag-
netic field H, required heating the experimental cell and
the destruction of crystals. For this reason, the T,(Ho)
dependences were measured with different crystals
grown at the same phase diagram point, namely, at a
melting curve minimum. Our goal was to obtain the
most accurate absolute T, values in these experiments.
Numerical simulations of resonance passage by the
Bloch equations with T, = T, were performed to deter-
minethe shift of the experimental T, valuerelated to the
“wing” of the resonance line at a given RF field H;
value. We also took into account the speed of SQUID
magnetometer operation. The obtained correction was
taken into account in determining T,; its value in Hg =
5 Oefields did not exceed 0.9 ms. The T, values found
for H, fields of 2 to 71 Oe are shown in Fig. 7 as func-
tions of the square root of the magnetic field. In fields
Hy > 5 Oe, in which T, could be measured fairly accu-

rately, a linear dependence of T, on Hg' 2, which satis-

fied (7), was observed. The spin diffusion coefficient
calculated from the slope of the dependence by (7) was
D =1.3x 107 cm?/s. Thiswas close to the D value that
could be obtained by extrapolating the experimental D
values measured for low-density *He crystals [6, 19] to
the density at the melting curve minimum. Such an
extrapolation gives approximately (1.5-2) 10~ cm?/s.

Consider the question of a possible influence of the
magnetic field dependence of T, on the vacancy contri-
bution to T;. As D = 1/(n?3t,), the second term in (7),
which describes an increase in T, in field H,, can be
written as

AT (o) = T1(0) (woTe)? = (1/M,) (we/1c) 2.

Thisvalue increases when vacancies appear in the crys-
tal. Theratio between AT, (wy,) changes and changesin
T,(0) given by (2) as afunction of 1. isabout 2%. This
allows us to ignore the dependence of T, on H in con-
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Fig. 7. Dependence of spin relaxation time on the square

root of magnetic field for solid 3He at a melting curve min-
imum. The slope of the dependence at Hp > 5 Oe allows D
to be estimated.

sidering the vacancy contribution to T, under the condi-
tions of our experiments.

7. CONCLUSIONS

In this work, we measured spin-attice relaxation
times T, of nuclei in *He crystals with melting temper-
aturesbelow 0.735 K inlow magnetic fields. At temper-
atures above =0.4 K, T, values increased, which was
explained by switching on the vacancy mechanism of
atomic motions in crystals. The measurement results
were treated using the activation law. The preexponen-
tial factors and activation energies of vacancies were
obtained, and the derivative of the activation energy
with respect to the density of crystals was estimated.
The activation energy found within the framework of
the narrow vacanson band model equaled 5.0 + 0.15 K
for the crystal with a 0.6 K melting point and was
approximately 0.4 K higher than the most recent litera-
ture activation energy values [2, 4]. The obtained
dependence of T, on magnetic field H, in the range
from about 5 to 71 Oe, which was the highest magnetic
field used in our experiments, was in agreement with
the conclusion [19] of aroot singularity in the T,(Hg)
dependence in low magnetic fields. Predictions of this
theory were in close quantitative agreement with our
experimental data.
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Abstract—L ong-term relaxations (of the logarithmic type) are revealed in the tunnel magnetoresistance of
Fe/SiO, nanocomposites, which are due to variation of the magnetization of the nanocomposites. Good quali-
tative agreement between experimental results and the recently developed concepts of the behavior of magne-
tization of granular ferromagnets [7] proves that the revealed relaxations are associated with the spin-glass
nature of the magnetic state of such systems. It is further demonstrated that it is, in principle, impossible to
observe such relaxations using the anomalous Hall effect (proportional to magnetization) because of physical
reasons, i.e., mesoscopic fluctuations of the Hall voltage as aresult of the magnetic field effect and variation of

magnetization. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The fundamental nature of physical phenomenaand
the possibility of important practical applications pro-
moted significant progress in the investigation and
understanding of the physical nature of the effect of
giant magnetoresistance in most diverse systems,
among which one of the first places is taken by disor-
dered magnetic nanocomposites (granular ferromag-
nets). They consist of small (1 to 10 nm) ferromagnetic
particles located in a dielectric matrix. With the metal
content x below some critical value x. = 0.5-0.6, such
systems develop a percolation transition from metallic
conductivity to conductivity of the tunneling type,
under conditions of which the maximal (“giant”) mag-
netoresistance defined by the magnetization of the sys-
temisattained [1]. Also unusual in such systems proved
to be the behavior of the nondiagonal component of
magnetoresistance (under conditions of the Hall effect).
As was found by Pakhomov and Yan [2], of basic
importance in magnetic nanocomposites (including the
mode of tunneling conduction [3]) is, as in the case of
homogeneous ferromagnets, the so-called anomalous
Hall effect under conditions of which the Hall resis-
tance R, is proportional to the system magnetization M
rather than to the magnetic induction. Note that, in the
vicinity of the threshold (x = x.), the value of R; may
exceed that in the homogeneous case (x = 1) by four
orders of magnitude. For this reason, the Hall effect
was also referred to as giant [2].

On the other hand, even before the giant magnetore-
sistance and Hall effect were revealed, systems of small
ferromagnetic particles in a dielectric matrix were

known as objects with unusual kinetics of relaxation of
magnetization (see[4] and the references cited therein).
In particular, repeated reports were made of observa-
tions of the long-term relaxation of the magnetization
of such systems, described by alogarithmic law (M O
const — Int, where t isthe time) which is usually attrib-
uted to the spin-glass nature of these objects [4, 5].

Therefore, the systems being treated are “bearers’
of two out-of-the-ordinary physical phenomena, each
of which is associated with the magnetic properties of
these systems. It is therefore of interest to investigate
the simultaneous manifestation and interference of the
respective processes. Such processes include the mani-
festation of magnetic relaxations in the electrical prop-
erties of systems with giant magnetic reluctance. In
addition, this approach isimportant because, in a num-
ber of existing models of electrical conductivity of
nanocomposites [6], their characteristic magnetic fea
tures are, as arule, of no significance. Moreover, some
of those models are based on the concepts of the signif-
icant part played by a strong fluctuation potential [6],
when the relaxation of resistance is largely associated
with Coulomb, rather than magnetic, effects.

In this paper, experimental proof is given of the
existence of long-term (logarithmic-type) relaxations
of the longitudinal resistance of Fe/SiO, nanocompos-
ites, which are due to changes in the magnetization of
the nanocomposites. In addition, it was found that the
potential possibility of observation of such relaxations
using the Hall effect could not be realized in practice
for a number of fundamental physical reasons. As was
revealed, an important part in this case is played by the
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fluctuations of the longitudinal resistance between Hall
probes, which arise due to the asymmetry of their effec-
tive position; these fluctuations are the stronger, the
greater the correlation radius L of the percolation clus-
ter. The part played by the magnetic field consists in
that it brings about a perturbation of the percolation net.
Note that the possibility of “rearrangement” of the per-
colation net under the effect of amagnetic field is usu-
ally ignored, because the magnetoresi stance of a nano-
composite amounts usually to just asmall fraction of its
total resistance.

To the best of our knowledge, no one has previously
analyzed the manifestation of magnetic relaxations in
the conductivity of magnetic nanocomposites, as was
done by usin this study. Thismay be dueto several rea-
sons. First, the variations of magnetoresistance
observed in the time range of interest from the experi-
mental standpoint (usually, from several seconds to
severa tens of minutes) are much less than the respec-
tive variations of magnetization. In this casg, it is hard
to reveal the law of relaxation and, therefore, to judge
the nature of the state of a magnet [4]. Second, no sim-
ple and adequate models of relaxation of magnetization
of the systems being treated were available that would
be suitable for processing the results of concrete exper-
iments [4]. Such a model describing the spin-glass
behavior of magnetic nanocomposites was developed
only recently [7]. This model predicts the range of
experimental conditions in which it is possible to
observe the logarithmic relaxation in the given materi-
alsand enables one to determine anumber of character-
istic parameters of such systems. It was the notion of
nanocomposite as glass, on which this model was
based, that defined our approach to formulating and
performing relaxation experiments.

2. NANOCOMPOSITE AS SPIN GLASS

Different glasses are often described within a model
of two-level systems, i.e, a set of microscopic sub-
systems with two energy states each, the transitions
between which (activated and/or tunneling) are con-
trolled by the energy barrier. Usually, the times of tran-
sitions between these states are distributed randomly in
a fairly wide range, which is the main reason for the
long-term (not exponential) relaxation of the respective
physical parameter [8].

A one-domain granule of nanocomposite is aso a
two-level system, because, by virtue of magnetic
anisotropy, it may have two stable states of magnetic
moment relative to its easy magnetization axis. The
magnetic anisotropy may be due both to crystalline
anisotropy and to geometric (associated with the asym-
metric shape of granules) anisotropy; in the case of
iron, preference must be given to the latter [7]. Indeed,
the energy W required for the reorientation of the mag-
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netic moment of aniron granulein the presence of crys-
talline or geometric anisotropy is

Wﬁf):%Klv or WY =

%l W,
respectively, where K, = 5 x 10° erg/cm? is the crystal-
line anisotropy constant, V is the granule volume, I =
1700 G is the saturation magnetization, and v is the
form factor dependent on the nonsphericity of the gran-
ules. Note that, even with a small nonsphericity of a
granule, when the ratio of its axes is just 1.25, the
parameter v is equal to approximately unity (the maxi-
mal value of v for highly extended ellipsoidal granules
is about six). Then, for granules 5 nm in size, we find
W97k =80 K and W¥/k = 700K at v = 1 (k isthe Boltz-
mann constant). In other words, the magnetic anisot-
ropy of iron granulesisfully defined by the nonspheric-
ity of their shape. Note further that the times of transfer
of magnetic moment that are convenient for measure-
ments, T> 1 s, are usualy attained with the measure-
ment temperature T < W/20k. The foregoing estimate
indicates that, for nonspherical granules, this condition
may be realized at nitrogen temperatures.

When the crystalline anisotropy is ignored, the
problem concerning magnetization of granular ferro-
magnets is simplified [7]. We assume that the granules
have the shape of dlipsoids of revolution with semiaxes
a>b=c(Fig. 19 and derive, for the magnetic energy W
of the granule in the external magnetic field H,

W_llz

L2
Vo> vsin“(B—y) —Hlcosy,
wherey is the angle between the magnetic field and the
magnetic moment of the granule, B isthe angle between
the magnetic field and the mgjor axis of the ellipsoid,
and v inthiscaseisthe difference between the ellipsoid
demagnetization coefficients along the b and a axes.
The dependence of the energy W on the angle y of ori-
entation of the magnetic moment relative to the mag-
netic field for the granules whose long axes form the
angles 3 = 4 and 3 = 3174 with the magnetic field is
givenin Fig. 1b for different values of the reduced field
h, = 2H/Iv. One can see that, in the region of weak
fields (h, < 1), the W(y) dependence has two energy
minima; in strong fields (h, > 1), only one minimum
remains. If the initial (at H = 0) magnetic moment is
directed at an acute angle to the magnetic field (in this
case, 74), then (at T=0K) it will alwaysremain at the
right-hand energy minimum (Fig. 1b). The equilibrium
angle y of the magnetic moment orientation tends
monotonically to zero with increasing H. If the initial
angle is obtuse (3174), the angle y varies in jumps with
the sign variation, which corresponds to the jump of
magnetic moment from the left-hand energy minimum
to the right-hand minimum. Hence follows a simple
method of observation of the maximal variation of
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(a)

Y, rad

Fig. 1. (a) An ellipsoidal granule and (b) the dependence of its magnetic energy W on the angle y of orientation of the magnetic

moment relative to the magnetic field at 3 = 317/4.

magnetization in a granular ferromagnet in relaxation
experiments.

We will place asample at afinite temperature into a
fairly high field H = Hy, which corresponds to h, > 1
(for iron granules, this condition isvalid at Hy > 1v/2,
i.e., infieldsof 5to 10 kOe). The magnetic moments of
the majority of granuleswill find themselves at one and
the same energy minimum (for definiteness, at the
right-hand minimum) and will be oriented mainly
along the field. We will then switch over the field (with
a change of its direction) to a small value of H = —H;
at which the angular dependence of energy W(y) has
two minima. It is apparent that, at the initial moment of
time, the magnetic moments of granuleswill be located
at the right-hand minimum, which is positioned ener-
getically above the left-hand minimum and separated
from the latter by the energy barrier A. Such a state is
nonequilibrium, and the respectivetransition to equilib-
rium will be accompanied by the relaxation of the mag-
netic moment with the characteristic time

_ A(H, B)
T Toexp[ T }

where 1, is the period of magnetic moment precession
(foriron granules, T, ~ 107° s[9]). Note that the height
of the barrier A depends on the angle 3 (initial orienta-
tion of the magnetic moment of granules relative to the
field); in particular, the maximal value of A is attained
a B =12and t[7]. In other words, even in asystem of
randomly oriented but identical granules, the parameter
T may exhibit afairly strong spread, and the relaxation
of magnetization may be a strong nonexponential func-
tion of time. However, detailed analysis reveal s that the
spread of the shape of granules must be additionally
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taken into account in order to obtain the relaxation of
the logarithmic type in the actual range of time (10 to
10%s) [7]. Figure 2 givestheresults of calculation of the
dependence M(t) for granules 5 nm in size, the values
of whose form factor v are uniformly distributed in the
range from 0.5 to 3 (which corresponds to ellipsoidal
granules with the axis ratio a/b ranging from 1.1 to 2).
It follows from Fig. 2 that M(t) may vary logarithmi-
cally inawiderange of time; with the observation times
of up to 10°-10° s (t/1, = 10%2-10%), the relaxation ter-
minates under conditions when the parameter T, =

KT/0.512V = 0.1 and h, = 0.25, which corresponds to the
temperature T = 70 K and magnetic field H = 210 Oe.

hy =025

02 1 1 1 1 1 1 1
100 1010

101

1
1014
A
Fig. 2. Calculated curves of magnetization relaxation of a

system of randomly oriented ellipsoidal granuleswith aran-
dom form factor for different temperatures.
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Fig. 3. The relaxation of magnetoresistance at T = 77 and
80 K. The inset gives the temperature dependence of the
sample conductance.

3. MAGNETORESISTANCE RELAXATION

We investigated Fe/SIO, samples prepared by com-
bined ion-beam sputtering of Fe and SIO, from a com-
posite target, which made it possible to vary their vol-
ume ratio. The film thickness was varied in the range
from 0.2to 0.6 um. The samples had the shape of adou-
ble Hall “cross’ with the conducting channel width w =
2mm and length L = 7 mm. The precision of alignment
of Hall probeswas approximately 10 um. The electron-
microscopic investigations revealed that the character-
istic size of granules (with arelatively low iron content
x = 0.1) was 3-5 nm [10]. The percolation transition in
these objects was observed at x. = 0.6, where the maxi-
mal value of the effect of giant magnetoresistance was
attained (3-4% at T =77 K) [11]. Notethat it isdifficult
to analyze the shape of granules under these conditions
using an electron microscope, because the granules
“shield” one another in the case of small distance
between them. It is clear, however, that in this case
extended metallic formations of two or more granules
are very likely to emerge, which are often used to
explain the high coercive forcein systems of small one-
domain nanoparticles [12]. In addition, the results of
our investigations of “well” -conducting samples (x = 0.8)
using scanning tunneling microscopy aso confirm the
presence of extended (ellipsoidal) formations of gran-
ules.

The initial magnetic field H, was developed by an
electromagnet which made possible the switching off
of the field of 10* Oe during a period of time of the
order of 1 s; thiswas accomplished by deenergizing the
electromagnet, after which it was “discharged” via a
back-biased diode (relative to the polarity of the sup-
ply) connected to the electromagnet winding. The
oppositely directed residual field H; was preinduced by
a bias winding and varied within 100400 Oe. For the
field within the film to coincide in magnitude with the
external field, aHall probe was used to orient the sam-
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ple plane normally to the direction of the electromagnet
field (precision of orientation of 1° or better).

Preliminary experiments revealed that the results of
measurements of long-term relaxation of magnetoresis-
tance could be significantly distorted by the tempera-
ture drift. This is due to a fairly strong temperature
dependence of the longitudina resistance R,, of the
objects being investigated (in the region of nitrogen
temperatures, the temperature sensitivity of nanocom-
posites is usually higher than, for example, in the case
of frequently used carbon temperature sensors). Figure 3
illustrates the effect of temperature during investiga-
tions of the magnetoresistance relaxation.! One can see
that, as the temperature varies by 4%, the variation of
the resistance R, is approximately two orders of mag-
nitude higher than the amplitude of its relaxation
AR, = Ry (t = 0) — R (t = o) after the magnetic field is
switched over. Therefore, the basic measurements were
performed at liquid nitrogen temperature. In order to
preclude temperature drifts, the chamber in which the
sample was placed was filled with helium gas.

The data on the resistance relaxation after the switch-
ing over of the magnetic field are given in Fig. 4a The
value of the final field H; was selected such that the
relaxations would decay with the observation times
ranging from several minutes to approximately 20 min.
One can seein Fig. 4athat (in accordance with [7]) this
occurs in fields of about 200 Oe. The results of [7]
relate to the relaxation of magnetization M(t); there-
fore, the experimentally measured variation of resis-
tance AR, (t) must be recalculated to the variation of
magnetization with due regard for the fact that
AR (t) O M?(t). The recalculation results are given in
Fig. 4b. Note good qualitative agreement between the
curvesin Fig. 4b and the calculated curvesin Fig. 2 (see
also the calculated curve in Fig. 4b shown by the
dashed curve). Some difference between the tempera-
tures of observation of logarithmic relaxation (up to the
moment of decay) may be attributed to anumber of fac-
tors which were not taken into account. On the one
hand, it isthe model character of the calculationsin [7],
which, in particular, fails to account for the possible
correlation of the magnetic moments of granules; on
the other hand, it isthe inaccuracy of orientation of the
sample plane relative to the magnetic field and the pos-
sible effect of its longitudinal component on the relax-
ation of magnetoresi stance (according to the estimation
made in [7], the magnetic field must be perpendicular
to the sample plane with an accuracy of much better
than 1°).

Nevertheless, adequate qualitative agreement
between experiment and the calculation results clearly
indicates that the revealed relaxations of resistance are

1The inset to Fig. 3 demonstrates the temperature dependence
G(T) of the conductance of the given sample in semilog coordi-
nates. It is described well by the known 1/2 law [13]: G(T) O

exp[«(Ty/T)Y3 (in this case, To = 98 K).
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Fig. 4. The relaxation of magnetoresistance (a) after the switching over of the field with a variation of its direction from theinitial
value Hg = 8.1 kOeto thefinal value Hs, and (b) recal culated to magnetization. The dashed curveiscaculated at T = 0.1 (T = 70 K)
and hy = 0.25 (H; = —210 Oe) with due regard for the scatter of the shape of granules (v = 0.5 to 3).

associated with the spin-glass nature of the magnetic
state of nanocomposite.

4. FLUCTUATIONS DURING MEASUREMENTS
OF THE HALL EFFECT

Regular variations or fluctuations of the magnetiza-
tion &M show up during measurements of the Hall
effect aswell. First of al, the Hall effect in a magnetic
nanocomposite is anomalous; therefore, the potential
difference V, between the Hall probes contains a com-
ponent proportional to M. Secondly, in an inhomoge-
neous system such as the percolation medium being
treated, an appreciable voltage is aways present
between the Hall probes even in the absence of the
field. It is proportional to the asymmetry resistance R,
(the resistance arising due to asymmetry of the percola-
tion net) and to the current |, through the sampl e, whose
fluctuations are proportiona to dM?2. In order to deter-
mine the contribution made by the Hall resistance R,
the measurements are performed for two opposite
directions of the magnetic field. In this case, R, =

(Ry — Ry)/2, and R, = (R}, + R,,)/2, where R}, and

R, are the transverse resistances R,, = V|/I, corre-
sponding to the positive and negative directions of the
magnetic field, respectively.

Here, it is implicitly assumed that the behavior of
the asymmetry resistance in the magnetic field is the
same as that of the total sample resistance R,,. How-
ever, the results of our experiments demonstrate that
thisis not the case: the quantity R, experiences unusual
fluctuations.

Figure 5 gives the dependences R,(H) for a dielec-
tric sample (see Fig. 3) at temperatures T = 77 and
300 K. Given in the same figure for comparison are the
dependences R, (H) of magnetoresistance between
potential probes located at adistance |, = 2.5 mm from
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one another. This sample was characterized by afairly
low asymmetry resistance: R, = 16 Q with the resis-
tance R, = 3700 Q (for T = 77 K). This corresponds to
the effective distance between the Hall probes |, =
|,R/R = 11 um. Note the essentially nonmonotonic
pattern of the dependences R,(H) and their difference
from the field dependences of magnetoresistance
R«(H). It is important that the pattern of fluctuations
recurs; at T = 300 K, the fluctuations are much lower
thanat T= 77K (cf. curves3and 4). The observed devi-
ations of the dependences R,(H) from R (H) could be
interpreted as the effective shift of the Hall probes
through the distance

1,Ra(0) [ Ra(H) R (0)
Al 022 [ 2l ) -1}
* 7 R(0) LR,(0)R(H)

1.000 - .
5 ool |
g 0.992
X

0.984 [ 7

0.976 1 1 1 1 1 1

0 2 4 6 8 10
H,kE

Fig. 5. The magnetic-field dependences of the longitudinal
resistance R, (curves 1 and 2) and of the asymmetry resis-
tance Ry (curves3and 4) at T = (1, 3) 77 and (2, 4) 300 K.
The symbols 0 and O in the case of curve 3 relate to differ-
ent series of measurements and demonstrate the reproduc-
ibility of this curve.
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We recal culate the fluctuations R,(H) to fluctuations Al ,
in accordance with the latter relation to find that Al
amountsto 200 and 30 nm at T =77 and 300 K, respec-
tively. It must be emphasized that we refer to the varia-
tion of the effective, rather than rea, distance between
the Hall probes.

We aobserved such fluctuations previously during
investigation of quasi-two-dimensional semiconductor
objects with hopping conductivity, in which the perco-
lation cluster structure varied under conditions of the
field effect. It was demonstrated that the characteristic
scale Al, of the effective “shift” of the Hall probes was
defined by the correlation radius (cell size) L, of the
percolation cluster [14].

We believe that in the case being treated, the differ-
ences in the behavior of R,(H) and magnetoresistance
R«(H) arelikewise associated with the perturbations of
the percolation cluster net. However, the mechanism of
this strong effect of the magnetic field on the current
paths is not fully clear, because the magnetic field
causes the sample resistance to vary by only severa
percent. However, one can assume that, on mesoscopi-
caly small scales, this effect may be much stronger
because of the presence of “weak” (sensitive to the
magnetic field) spotsin the percolation cluster, such as,
in particular, micronarrowings with ballistic transport,
where the magnetoresistance may reach hundreds of
percent [15] (notethat the sampleiscloseto percolation
transition).

It is natural to attribute the decrease in fluctuations
of R,(H) with increasing temperature to the fact that, as
the temperature rises, the cell size of the percolation
cluster in a nanocomposite decreases. If we proceed
from the 1/2 law for the temperature dependence of
conductivity [13], the quantity L, must vary approxi-
mately as 1/T; i.e., it must decrease by a factor of four
as the temperature increases from nitrogen to room
temperature.

Therefore, the magnetic disorder of nanocomposites
and the spin-glass pattern of their behavior may mani-
fest themselves in two ways, namely, in terms of the
variation of the conductivity of the percolation cluster
(longitudinal magnetoresistance) and in terms of the
variation of the topology of the current paths in this
cluster (fluctuations of Hall resistance).
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Abstract—The changesin binding energy and oscillator strength of the exciton state due to the screening by a
quasi-two-dimensional electron gas are calculated self-consistently in the approximation of noninteracting
electrons and in the local field approximation. It is shown that the collapse of the bound state occurs at very low
concentrations, Ng= 5 x 10° cm2, which is a consequence of the inclusion of the nonlinearity of the response
of the system to a Coulomb perturbation. The temperature dependence of the exciton collapse is investigated.
The phase diagram of the dissociation of the given bound state is constructed, and the region in which it is pos-
sible to observe experimentally the temperature dependence of the exciton collapse isindicated. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Mobile electrons in selectively doped GaAgAIGaAs
guantum wells directly participate in the screening of
the Coulomb interaction in 2D structures. Thus, such
electrons considerably affect both the stability of the
Coulomb centers and the nature of large-scale fluctua-
tionsin quantum wells. In spite of the fact that the spec-
trum of electrons in quantum wells, for which the
experiments were made, is indeed size-quantized and
may be treated as a purely 2D spectrum, these struc-
tures are quasi-two-dimensional as applied to the prob-
lem of the screening of Coulomb interaction since the
width of typical quantum wells, which rangesfrom 200
to 300 A, exceeds the exciton Bohr radius. For thisrea-
son, the screening of the Coulomb interaction in real
quantum wellsis of a mixed type, varying from purely
2D screening at large distances (much longer than the
guantum well width) to virtually 3D screening at small
distances. The screening effects can be observed in the
luminescence and reflection spectra[1-4].

It was shown experimentally in [3, 4] that the thresh-
old concentration for which the rearrangement of exci-
ton states takes place strongly depends on the quality of
the structure and is observed for most perfect structures
at extremely low concentrations N, =5 x 10° cm. This
corresponds to the dimensionless parameter r describ-
ing the mean distance between electrons in the gas in

the units of Bohr radius ag, rs= 1/(ag /21N, ) = 8. This

value is several times higher than that observed earlier
in experiments on structures having a worse quality
(see, for example, [2]), in which the rearrangement of
exciton states was observed for order-of-magnitude

higher electron gas concentrations. A theoretical analy-
sis of the Coulomb interaction screening by a 2D elec-
tron gas was carried out by Bauer [5] in the framework
of the theory of dielectric screening and by Kleinman
[6] in the approximation of alinear dielectric response
for a purely 2D electron gas. However, both these
approaches lead to considerably higher values of the
threshold concentration as compared to those observed
in perfect GaAs/AlGaAs structures.

In the present work, amethod of self-consistent cal-
culation of the screening of the Coulomb interaction by
aguasi-two-dimensional electron gasisdeveloped both
in the approximation of noninteracting electronsand in
the local field approximation. This method allowed us
to take into account, to a certain extent, the nonlinearity
of screening; asaresult, the threshold values of concen-
tration shifted from r ~ 3 to the range of values of r,~ 8,
which is in qualitative agreement with the results of
recent experiments. We also analyzed the screening at a
nonzero temperature. In this case, the “blurring” of the
Fermi step lowersthe efficiency of screening of aquasi-
two-dimensional electron gas, leading to anincreasein
thethreshold value of concentration. We also cal culated
the thermal dissociation of the exciton state. The corre-
sponding phase diagram is presented in the last section
of thisresearch.

Henceforth, we will be interested in the binding
energy of the exciton state in the presence of a quasi-
two-dimensional electron gas with concentration N.. It
iswell known [7, 8] that the problem of determining the
binding energy of alarge-radius exciton can be reduced
to the problem of a Coulomb center with aparticle mass
equal to the reduced mass of the exciton, p =
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mym,/(m, + m,), where m, and m, are the planar masses
of the electron and hole in the quantum well, respec-
tively.

2. FORMULATION OF THE PROBLEM

Let us consider aquantum well of width I, with infi-
nitely high walls, so that the electron wave function in
thezdirectionisstrictly limited by itssize. It was stated
above that, as amodel of an exciton, we can consider a
positively charged Coulomb center located at the mid-
dle of a quantum well for z= 0 and an electron having
the mass equal to the reduced mass | of an exciton and
bound to this center. The Hamiltonian of such a center
in the cylindrical system of coordinates has the form

. 52
H = —EA+U(p, 2), (D)

where

2

U(p, 2) = _Ee—p +F(2). )

Here, p= Jr*+ 2", F(2) = 0, < |1,/2], and F(2) = o,
2> lo/2).

We will seek the ground-state energy by using the
Ritz variational method with atest wave function of the
bound state in the form

0 't +qu:|

WY(r,2z) = NcosDI exp[-l——D (©)]

In this function, there are two variable parameters:. the
effective radius r of the Coulomb center (exciton) in
the (X, y) plane and the parameter y taking into account
the anisotropy associated with the restriction of the
motion in the z direction. Such a wave function cor-
rectly describes the behavior of the system in narrow
quantumwellswithl, < r, (inthiscase,y — 0 and the
function coincideswith apurely 2D function) aswell as
in wide quantum wells with |, = r,. In the latter case,
vy~ 1 and the function is spherically symmetric as for
3D systems.

For variational calculations, it isconvenient to intro-
duce the effective 2D potential U (r) which can be
written in the adiabatic approximation? in the form

Ug(r) = J’ILIJ(r, 2)|°U(r, 2)dz. )

1 The condition that the separation between the exciton levels is
much smaller than the characteristic size-quantization energy of

e (which is equal approximately to T242/2my|2) in the quantum

well is sufficient for the applicability of the adiabatic approxima-
tion in the given problem.
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The Fourier transform of this potential is
Uar(@) = [ Uar(r)ar

= ZHIJO(qr)Ueff(r)rdr,

where Jy(X) is aBessel function of the first kind.

The ground-state energy of a gquasi-two-dimen-
siona exciton can be determined from the minimum of
the functional F:

)

F= BP(r,z)|—§T1A|W(r,z)|D+ Ua(D ()

in the parametersryandy.

We will take into account the screening of the effec-
tive potential U (r) by a quasi-two-dimensional elec-
tron gas through the dielectric function e(Q):

Ugr (r) = JJoar)(Uer(a)/e(q))qda. (7)

3. LINDHARD THEORY OF SCREENING

The response function, or the susceptibility x(q, w)
of the system, of a quasi-two-dimensional electron gas
with potential Ug(q) for the external perturbation

V&Y{(q, w) can written, by definition, as

3n(g, w) = (g, W)V(q, ), )
where dn(g, w) is the change in the density due to the
interaction with the external perturbation.

The polarization operator (¢, w) is defined as the
susceptibility of the system to the already induced
potential V"(qg, w) which is the sum of the externa
potential and the effective interaction potential,
Vin(g, w) = VeU(d, ) + Ugs (0):

3n(g, w) = M(g, w)V™(q, w). 9)

Formulas (8) and (9) lead to the following depen-
dence between the susceptibility and polarization of the
system:

ICED)
1-Ug(a)M (g, w)’

By definition, the dielectric function is the ratio of
the external perturbation to the induced potential and,
hence, can be written in the form

1 _ 4, Yas(@3n(q w)

X(g, w) = (10)

€(0, w) V(g ) (11)
=1+ U(g)x(q, w)
or
€(g, w) = 1-Ugk(q)N(qg, w). (12

In the Hartree—Fock approximation (HFA), elec-
trons “respond” to the external field as free particles;
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conseguently, the quantity x(qg, w) for a homogeneous
system can be approximated by the polarization of free
electrons (Lindhard approximation of noninteracting
electrons) MN%q, w); i.e.,

XHFA

(9 w) = N%gq, w),

3
-1+ Ug@NY ). D
o)

1

€HFA(

The expression for M°(q, w) was derived using the first
order of perturbation theory in the externa potential

[9:
n%aq, w) =

1. fo(E) = fo(Ex+ )
_“EnOZE - ; ) (14)

LZC( k+q—Ek—ﬁw—iﬁG’

wheref, isthe Fermi—Dirac distribution function and L?
isthe area of the system.

In the random-phase approximation (RPA), elec-
trons respond to the induced field as free electrons, so
that

RPA
N

_ 0
on (q1 (A)) =T (q1 (*))1 (15)

g, ) = 1-Ug(a)N°(q, w).

For T = 0 and for the Fermi wave vector k- = ,/2TIN,,

the static dielectric function in the RPA can be written
(see, for example, [10]) as

RPA

me
€ (q) = 1+Ueff(Q)E2

x [1-0(q—2ke) 1 - (2ke/0)7],

where U (q) is defined by formula (5).
The ground-state energy of an exciton in the effec-

tive screened potential U (r) obtained through the

numerical solution of the integral equation (7) was cal-
culated by varying functional (6) in the parametersr,,

and y. Since potential U (r) isitself afunction of the
wave function parametersr, and y, successiveiterations
led to self-consistent values of ry and y and of the poten-

tial U (r) depending on them. It should be noted that

such a procedure of self-consistent calculations makes
it possible to go beyond the linear response of the elec-
tron subsystem and to take into account, to a certain
extent, the nonlinear nature of screening of the 3D Cou-
lomb potential by a 2D gas.

In al our calculations, we operate with quantum
wells based on GaAs/AlGaAs. This means that we will
use the values of the planar masses of electron m, =
0.067m,, hole m, = 0.26my,, and the static permittivity
€ = 12.8. Figure 1 shows the results of numerical calcu-
lations of the dependence of the exciton binding energy
on the dimensionless parameter r. It can be seen that,

(16)
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Fig. 1. Binding energy Eg of the exciton state in
GaAg/AlGaAs quantum wells of widths 50 (1), 100 (2),
200 (3), and 300 A (4) as a function of the dimensionless
parameter rq. Calculations were made using the values of
planar masses of electron (m, = 0.067my) and hole (my, =
0.26mg) and the static permittivity e = 12.8.
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ZO,

Fig. 2. Dependence of the critical parameter rg at which the

exciton states collapse on the width of a GaAgAlIGaAs
quantum well.

as the concentration of a quasi-two-dimensional elec-
tron gasincreases, the exciton binding energy decreases
abruptly, in athreshold manner. For a quantum well of
width I, =300 A, the sharp decrease (rearrangement) of
the binding energy occursin the region of r = 8. Asthe
well width decreases, the val ue of the threshold concen-
tration for which the screening of the exciton states
increases strongly is shifted towards the region of
smaller values of rg (higher concentrations) (curves1-4in
Fig. 1). Assuming, for the sake of definiteness, that the
threshold concentration is that for which the binding
energy decreases by a factor of e, we can plot the

dependence of the critical parameter rg on the quantum
well width (Fig. 2).

The results of our calculations show that the rear-
rangement of exciton states emerges for much lower
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Fig. 3. Oscillator strength S of the exciton transition as a
function of the dimensionless parameter rg calculated for a

GaAs/AlGaAs quantum well of width 200 A.

concentrations of the electron gas (rs = 8) than in the
previous cal culations made by Bauer [5] (r;=1.8), who
considered the dielectric screening of the Coulomb
interaction, or by Kleinman [6] (r, = 2.8), who made
calculationsfor apurely 2D casein thelinear screening
approximation.

Several aspects which areimportant in this problem
are worth noting. First, we must take into account the
dependence of the dielectric function on the parameters
of effective interaction Ug(r), i.e, the nonlinear
approximation for the system response. If we confine
our analysisto the linear response approximation in the
procedure of self-consistent calculation, the value of
the threshold concentration for which the screening of
exciton states is observed is shifted to the region of
higher concentrations, corresponding to the parameter
rs=3.5, whichiscloseto theresultsabtained in [6, 11].
Second, the singularity in the dielectric function (10)
for q = 2k leads to Friedel oscillations of the quasi-
two-dimensional electron gas concentration as in the
3D case. In contrast to 3D systems, the effect of these
oscillations is significant since the asymptotic form of
the screening potential in the 2D case is of the power
type, and the contribution from the oscillatory behavior
of local concentration in the vicinity of a Coulomb cen-
ter is noticeable, leading to a more effective potential
screening.

In experiments on the screening of exciton states by
a quasi-two-dimensiona electron gas, information on
the change in the dependence of the binding energy of
exciton states on the density of this gasis not available
as arule since the knowledge of the energy of uncorre-
lated electron and hole, which have no specific features
in the luminescence and absorption spectra, is required
in this case. At the same time, a threshold variation in
the exciton-transition oscillator strength is clearly man-
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ifested in optical experiments as the density of the
guasi-two-dimensional electron gas attains a certain
threshold value. For convenience of comparison with
the experiments, we calculated, apart from the binding
energy, the behavior of the exciton-transition oscillator
strength ST |pg, P8’ |W(r =0, z= 0)]2 [6] asafunction
of the electron gas concentration in quantum wells
(Fig. 3). It can be seen that the exciton transition inten-
sity decreases upon an increase in the density of the
quasi-two-dimensional electron gas less sharply than
the binding energy of the exciton state. As aresult, the
exciton absorption line can be observed in optical
experiments even for relatively high electron concen-
trations, when the binding energy of excitons has
aready been decreased significantly as a result of
screening by a quasi-two-dimensional electron gas.

It is also interesting to note that the rearrangement
of exciton statesis accompanied by amanifold increase
in the effective Bohr radius of an exciton state. The
effective radius of an exciton along the well is many
timeslarger than the quantum well width even for broad
quantum wellswith |, = 300 A for high densities of the
electron gas; consequently, the exciton becomes virtu-
aly two-dimensional. At the same time, at low densi-
ties, the effective radius of an exciton is considerably
smaller than the well width and the exciton wave func-
tion in the well differs insignificantly from a 3D wave
function. Thus, the screening of the exciton state in
broad quantum wells is accompanied, in addition to a
decrease in the binding energy and the oscillator
strength, by the exciton “crossover” 3D —» 2D, i.e., a
transition of the exciton state from three to two dimen-
sions. This may be an additional reason for the sharp-
ness of the observed rearrangement of the exciton state
in broad quantum wells.

It should also be noted that, since the problem has
become purely two-dimensional after the introduction
of the effective potential Ug(r) [4], the bound state
always existsin this case (see, for example, [8]). How-
ever, the binding energy of this state (see Fig. 1) in the
case of a high concentration (small rg) is found to be
exponentially small:

# 2 h?
E, 0% ex [——},
BT
where

P= {Ueﬁ(r)dr

is the power of the potential well.

4. LOCAL FIELD APPROXIMATION
In this procedure, we used the Lindhard susceptibil-
ity approximation corresponding to the situation of
noninteracting electronsin the gas. To a certain extent,
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the Coulomb interaction between electronsat small dis-
tances can be taken into account in the loca field
approximation [12] by replacing the polarization oper-
ator (9) with a more complex operator taking into
account more adequately the interaction at small dis-
tances, which has the following form [13, 14]:

n°(q, w)
1-fo(@)N°(q 0)
where M9%qg, w) isthe polarization operator in the RPA,

which is defined by formula (14), and f,(w) isthe local
field factor. Then, formulas (10) and (17) give

Nn°(q,
X(6,©)) = S
1—(Ugr(a) + fo(w))N7(q, w)
_ N°(q, w)
1-Ver(g, 0)N°(q, )
where v (g, w) = Ug(q) + fy(w) isthe effective inter-
action potentia in the local field approximation. The

dielectric function corresponding to this polarization
operator hasthe form

M(g, w) =

(17)

(18)

Uar(@)1°(q, @)
1-f4(0)M°%(q, w)
The formulafor the effective static potential v (r) can
be presented in the form (see [15] and the Appendix)

vur) = ~[arg(n =),

STLS
(

e (qw) = 1- (19

(20)

whereg(r) = g,, (r) +g,, (r) isthe pair correlation func-
tion. Obvioudly, if g(r) = 1 (this corresponds to nonin-
teracting electrons), we have vg(r) = Ug(r). This
returns us again to the Lindhard limit. In analogy with
formula (7), we can now obtain the following expres-
sion for the screened effective static interaction poten-
tial in the local field approximation:

va(r) = po(qrxveﬁ<q)/es”s<q))rdr,

where €5-5(q) is the static dielectric function calcu-
lated by formula (19) for w = 0.

Thus, we calculate the static form factor (A.4) and,
hence, the pair correlation function (A.2) in the initial
approximation of noninteracting electrons. Further, we
assume that the following changesin U (r) do not lead
to considerable changes in the static form factor and in
the pair correlation function. In this case, the local field
factor can be written in the form (see [13]) f, =
G(q)Ugt(a), where G(q) = 1 —g(0) + o(1/f). Conse-
guently, in order to determine the effective static poten-
tial v (r), we must evaluate integral (20), and then the

effective screened potential v (r) of the interaction

(21)
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Fig. 4. Binding energy Eg of the exciton state in

GaAg/AlGaAs quantum wells of width 200 A as afunction
of the dimensionless parameter rg in the local-field (1) and
random phase (2) approximations.

between a positively charged Coulomb center and an
electron bound to it will be obtained from the numerical
solution of theintegral equation (21), the changesinthe
dielectric function €5™-5(q) being determined only by
the changesin the effective 2D potential Uy (Q).

L et us now determine the binding energy of an exci-
ton directly in the local field approximation. We will
use the procedure of variational self-consistent calcula

tions described in Section 3, replacing Ug; (r) by

v (r) init. Thus, we will calculate the ground-state
energy of the exciton by varying functional (6) with the

effective screened potential v (r) in parameters r,
and y. Figure 4 presents the results of such a numerical
calculation of the binding energy of an exciton for
quantum wells of width 200 A as a function of the
dimensionless parameter r.. It can be seen that, when
the correlation corrections are taken into account, the
exciton state collapses in the region of lower values of
r (as compared to those observed in the random phase
approximation), which corresponds to an increase in
the threshold concentration of a quasi-two-dimensional
electron gas and to a deteriorated screening. In order to
explain this effect, we consider the compressibility as
one of the parameters of the system.

5. COMPRESSIBILITY OF THE SYSTEM

The compressibility of the system is connected with
the response function through the formula[16]

_ 1.
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Fig. 5. Theratio of the compressihility K of the electron sys-
tem in the local field approximation to the compressibility
Ko of the system of noninteracting electronsat T=0K asa

function of the two-dimensional electron gas concentration
N, for aquantum well of width 200 A. The inset shows the

dependence of Kgon Ng.

We denote by K, the compressibility of a system of
free electrons. In the Lindhard approximation, we obvi-
ously have

NZK, = —limn°(q, 0).
q-0
Using the frequency sum rule[13, 16, 17] and formula

(19) for the dielectric function, we obtain the compress-
ibility in the local field approximation:

J-__Im[ STLS(OO.)]

Q—'OT[Ueff( )
- limRe—N(2.0) (23)
a-0 1-f,(0)"(q,0)
2
= —Ilm—N—}SO—-———=—N§K.
a-01 + f (0)NZK,
It follows hence that
Ko_ gy lim f,(0)N2Ko. (24)
K q-0

Using the above formulas, we can easily prove that (see
Fig. 5) the compressibility of an electron system calcu-
lated in thelocal field approximation is smaller than the
compressibility of a system in the random phase
approximation for the same electron density in the sys-
tems. This result was obtained experimentally in [18].
This means that the system becomes more rigid<; i.e

the average electron spacing increases due to the short-
range interaction. The changein thelocal concentration

2 Zero compressibility corresponds to an absolutely incompressible
liquid.
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in this case turns out to be smaller than in a system of
noninteracting electrons. This leads to a worse screen-
ing and, hence, to an increase in the threshold concen-
tration for which the rearrangement of the exciton state
takes place.

It should be noted that, strictly speaking, the local
field approximation is applicable only for r, < 6 (see
[12]); consequently, the results obtained in the last
two sections are rather qualitative by nature and are
presented here to explain qualitatively the behavior
of the system in the range of values of r, ~ 8 we are
interested in.

6. TEMPERATURE DEPENDENCE
OF THE THRESHOLD CONCENTRATION
OF A QUASI-TWO-DIMENSIONAL
ELECTRON GAS

An analysis of the temperature dependence of the
threshold concentration of a quasi-two-dimensional
€l ectron gas at which exciton rearrangement takes place
is an important experimental problem. In this section,
we will analyze this problem theoretically. As before,
we will use the approximation of noninteracting elec-
trons. In order to cal culate the screening effect at anon-
zero temperature, we will use atemperature-dependent
dielectric function. In the high-temperature limit (T ~
Erermi), it hasthe following analytic expression [19]:

RPA

(a) = 1+ Ug(q)as(a), (25)

9s(a) = Tgl(qA) (26)

Here, we have

21h _
A= /ka 6.(x) =

_ -2 E:Zi
d(y) =1 :[dzy_z

2«/1_T¢D X O
Dy it

At low temperatures, the dielectric function can be
obtained numerically.

It should be noted that the formula describing the
change dn(q) in the local electron concentration for a
classic gas (see formula (8)) can be written in the form
(see, for example, [20])

E')n(q)stexpD ;ﬁ(Tq)E N
27
N (27)
= kTUeff(q)
No. 4 2002
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! ! ! ! ! !
2 4 6 8 10 12 14 16 18
T,K

Fig. 6. Temperature dependence of the threshold concentra-
tion Ng of a quasi-two-dimensional electron gas for a
GaAg/AlGaAs quantum well of width 300 A in the random
phase approximation (1) and in the Debye-Hickel approx-
imation (classical limit) (2).

This leads to a formula of the type (25), but now we

have

classic N

A" (a) = =

(28)

Thus, if the temperature of an electron system is of the
order of the Fermi temperature, the quantum-mechanical
formula (26) for the screening parameter g.(q) is trans-
formed into the Debye—-Hiickdl classical formula (28).

Using now the temperature-dependent dielectric
function (25) in self-consistent variational calculations,
we obtain the dependence of the critical concentration

N; of a quasi-two-dimensional electron gas as a func-
tion of temperature for a quantum well of width |, =
300 A. These dependences are presented in Fig. 6. As
the temperature increases, the Fermi step is “blurred”
and, hence, the concentration of electrons with small
values of q becomes|lower. Thisleadsto a considerable
decrease in the screening parameter gq(q) for values of
momenta q < 2k: (see Fig. 7). Since the screening is
mainly accomplished by electrons with g < 2k, the
effect of screening by the quasi-two-dimensiona elec-
tron gas becomes weaker, and the value of the threshold
concentration increases (see Fig. 6). On the other hand,
at temperatures above 15 K, when the quasi-two-
dimensional electron gas can be regarded as classic, we
arrive at compl ete agreement between the results of cal-
culations based on the quantum-mechanical Lindhard
(solid curve in Fig. 6) and the classica Debye-Hiickel
(dashed line in Fig. 6) dielectric functions.

Another interesting problem emerging at a nonzero
temperature is associated with the calculation of the
phase diagram of dissociation of the exciton state. By
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Fig. 7. Theretio of the effective screening parameter g¢(q, T)
toitsvaluegg(0, 0) at T = 0 K on the wave vector q (in units
of 2kg) at different temperatures, K: 0 (1), 0.1 (2), 0.5 (3),
1(4), and 2.5 (5).
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Fig. 8. Phase diagram of thermal dissociation of the exciton
state in a GaAs/AlGaAs quantum well of width 300 A.

definition (see[21]), the dissociation energy isthe exci-
ton binding energy. In analogy with [22], we obtain the
following condition for the phase transition:

meT }

(29)

T = E(T, Ns)lln[ =

S

where In[m.T/174?N,] is a quantity describing the effect
of ionization of the given exciton.2 The result of calcu-

SFora high electron concentration, the ionization effect can be dis-
regarded; consequently, In[meT/TrﬁzNS] = 1. Conversely, for
Ng — 0, we obtain In[mT/m#iNg] — oo, and the ionization
effect becomes predominant in the system.
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lation of the phase diagram for a quantum well of width
300 A isshown in Fig. 8. It can be seen that the screen-
ing effect reducing the binding energy and, hence, lead-
ing to dissociation of the exciton state can be observed
for Ny> 3 x 10° cm2. For lower concentrations, theion-
ization effect becomes predominant.

Thus, the temperature dependence of the exciton
collapse determined above (see Fig. 6) is observed in
the region of system parameters for which the phase
transition is not yet observed. Consequently, it can be
investigated experimentally.

7. CONCLUSIONS

In the present work, we have calculated the
changes in the binding energy and oscillator strength
for an exciton state which emerge asaresult of screen-
ing by a quasi-two-dimensional electron gas in
GaAs/AlGaAs quantum wells of width 50-300 A. Itis
shown that the inclusion of the nonlinear response
leads to a stronger screening of the Coulomb interac-
tion as compared to that in the linear approximation
and, as a result, shifts the threshold concentration for
which the exciton states are rearranged towards lower
densities of aquasi-two-dimensional electron gasand,
accordingly, higher values of r¢ (r, = 8.3 for awell of
width 300 A). This concentration considerably
exceeds the values calculated in the framework of
dielectric screening (Mott transition) or in the frame-
work of the linear screening by a quasi-two-dimen-
sional electron gas. As the quantum well width
decreases, the threshold electron concentration for
which the transition takes place is displaced towards
lower values of parameter rq.

It isshown that theinclusion of correlation effectsin
the framework of the local field approximation makes
the system more rigid and | ess capable of screening the
introduced charged perturbation. This leads to an
increase in the threshold concentration of the quasi-
two-dimensional electron gas.

We haveinvestigated the temperature dependence of
the critical parameter r¢. As the temperature increases,
the effectiveness of screening becomes lower and the
critical parameter r¢ decreases. This is a consequence
of the decrease in the density of electrons with small

KULAKOVSKII et al.

values of g, which make the main contribution to the
given effect. We have also demonstrated the transition
from a purely quantum to the classical system upon an
increase in temperature. We have constructed the phase
diagram of the exciton state dissociation and indicated
the region in which the temperature dependence of the
exciton collapse can be observed experimentally.
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APPENDIX

In the local field approximation, the effective poten-
tial v (r) can bewritten in terms of the pair correlation
function [15, 23]:

dU ()
dar

Ver(r) = —fdra(r) (A1)

The expression for the pair correlation function
9(r) =g, (r) + g;, (r) hastheform

[

g(r)-1 = k—lzpo(qr)[S(q)—ll qdg,  (A2)
Fo

where §q) is the static form factor, which can be
expressed using the fluctuation-dissipative theorem
[17] through the following formula:

00

- _2
S(q) = I(i‘(l)'doolm)((q, w). (A.3)

In the initial approximation, the static form factor can
be calculated proceeding from the Lindhard suscepti-
bility defined by formulas (11) and (16). After evaluat-
ing the integrals, we abtain

%_arccos(q/ZkF) +qA/l—(q/2kF)2 i q< 2K
S(a) =0 Tt 21K ’ = onE (A.4)
L if q> 2k,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94 No. 4 2002



N

w

o U

10.
11

12.

PROPERTIES OF EXCITON STATES IN GaAg/AlGaAs QUANTUM WELLS

REFERENCES
R. C. Miller, D. A. Kleinman, W. T. Tsang, and
A. C. Gossard, Phys. Rev. B 24, 1134 (1981).
G. Finkelstein, H. Strikman, and I. Bar-Josef, Phys. Rev.
Lett. 74, 976 (1995).
V. Huard et al., Phys. Rev. Lett. 84, 187 (2000).
S. |. Gubarey, I. V. Kukushkin, S. V. Tovstonog, et al.,
Pis'ma Zh. Eksp. Teor. Fiz. 72, 469 (2000) [JETP Lett.
72, 324 (2000)].
G. E. W. Bauer, Phys. Rev. B 45, 9153 (1992).
D. A. Kleinman, Phys. Rev. B 32, 3766 (1985).
R. J. Elliot, Polarons and Excitons (Oliver and Boyd,
Edinburgh, 1963).
L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New
York, 1977, 3rd ed.).
H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786
(1959).
F. Stern, Phys. Rev. Lett. 18, 546 (1967).
E. A. Andryushinand A. L. Silin, Fiz. Tverd. Tela(Len-
ingrad) 21, 219 (1979) [Sov. Phys. Solid State 21, 129
(2979)].
K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjdlander,
Phys. Rev. 176, 589 (1968).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

13
14

15.

16.

17.
18.

19.
20.

21.

22.

23.

793

K. Morawetz, cond-mat/0104229.

N. Iwamoto, E. Kroatscheck, and D. Pines, Phys. Rev. B
29, 3936 (1984).

H. V. daSilvera, M. H. Degani, and K. S. Singwi, Phys.
Rev. B 46, 2995 (1992).

D. Pines and P. Noziéres, The Theory of Quantum Lig-
uids (Addison-Wesley, New York, 1968), Val. 1.

R. Puff, Phys. Rev. 137, A406 (1965).

J. P Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.
Rev. Lett. 68, 674 (1992).

A. L. Fetter, Phys. Rev. B 10, 3739 (1974).

J. M. Ziman, Principles of the Theory of Solids (Cam-
bridge Univ. Press, London, 1972; Mir, Moscow, 1974).

L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 5: Satistical Physics (Nauka, Moscow,
1995; Pergamon, Oxford, 1980), Part 1.

L. V. Kulik, A. . Tartakovskii, A. V. Larionov, €t al., Zh.
Eksp. Teor. Fiz. 112, 353 (1997) [JETP 85, 195 (1997)].

K. S. Singwi and M. P. Tosi, in Solid Sate Physics, Ed.
by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1981), Vol. 36.

Translated by N. Wadhwa

No. 4 2002



Journal of Experimental and Theoretical Physics, Vol. 94, No. 4, 2002, pp. 794-801.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 121, No. 4, 2002, pp. 925-932.

SOLIDS

Original Russian Text Copyright © 2002 by Elesin.

Electronic Properties

High-Frequency Response
of Two-Barrier Nanostructures

V. F.Elesin
Moscow Engineering Physics Institute (Technical University), Kashirskoe sh. 31, Moscow, 115409 Russia
e-mail: VEF@supercon.mephi.ru
Received December 13, 2001

Abstract—The linear rf response for a resonance-tunnel diode with asymmetric barriersis calculated analyti-
caly in the framework of a consistent quantum-mechanical model. It is shown that the response current is
extremely sensitive to the asymmetry of the barriers. For example, if the “power” a4 of the collector barrier
becomes |ower than the “power” o, of the emitter barrier (say, on account of bias voltage), the current reverses
its sign at a certain frequency depending on the structure parameters. In the opposite case (a4 = d5,), the sign of
the current is preserved in the entire frequency range. This makes it possible to match, in principle, the experi-
mental results obtained earlier with the theoretical results. At the same time, the quantum rf lasing mode of a
resonance-tunnel diode, which was predicted earlier for a4 = a,, isrealized for al values of a; and a,. In this
mode, high values of power can be attained at frequencies considerably higher than the resonance level width.
It isalso shown that the coherent amplification mechanism in resonance-tunnel diodesisclosely connected with
the quantum interference of resonantly tunneling electrons and differs significantly from the conventionally
assumed mechanism. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The rf properties of two-barrier nanostructures
including resonance-tunnel diodes still remain an
unsolved theoretical problem. In spite of intense studies
and an obvious practical interest in thisfield, no gener-
ally accepted theory of rf response and generation in
resonance-tunnel diode has been proposed so far.
Moreover, the publications contain contradictory
results on the frequency dependence of the response
even in an approximation linear in the field.

For example, it has been mentioned in the theoreti-
cal works [1-3] (numerical methods), [4] (analytical
model), and [5, 6] (tunnel Hamiltonian method) that the
polarization current (linear response) describing the
amplification in a resonance-tunnel diode may reverse
its sign at a certain frequency which is approximately
equal to the resonance level width I'. The sign reversal
is also reported in some experimental works [7]. This
leads to the conclusion about the existence of alimiting
frequency of amplification and lasing for a resonance-
tunnel diode. This is a widely accepted point of view
(see, for example, [8]).

On the other hand, the experimentally attained las-
ing frequency 10™? s? [9] and the theoretical results
[10-14] point to the contrary. Indeed, it is shown ana
Iytically and numerically [10-14] (see also [15]) that
the current does not change its sign over a wide fre-
quency range.

Leaving aside the publications [1-3] which are
based on numerica methods (see the Conclusions
below and [10]), it can be mentioned that either the

above publications make use of the tunnel Hamiltonian
method, or the Schrddinger equation is not solved
explicitly in them. However, a consistent quantum-
mechanical description and open boundary conditions
are required for a system of electrons tunneling coher-
ently in a resonance-tunnel diode and interacting with
an electromagnetic field. Thisis due to quantum inter-
ference of electrons, which is quite sensitive to the
energy of electrons supplied by the collector and to the
boundary conditions. In our opinion, the approach
developed in [4—6] does not satisfy the above require-
ments. On the contrary, the model used in [10-14] is
quite rigorous.

However, the authors of [10-14] presumed com-
plete symmetry of the barriers. It turned out that the
asymmetry of the emitter and collector barriers (which
is always observed in experiments and, apparently, in
the numerical calculations [1-3] due to the bias field)
may radically change the frequency dependence.

The present work aims at generalizing the results
obtained in [10] to more general boundary conditions
with aview to explain consistently the known theoreti-
cal and experimental data. The model [10] will be used
to obtain an exact analytic solution and simple expres-
sions for polarization currents. It will be shown that the
response is extremely sensitive to the difference in the
barrier parameters. For example, if the“intensity” a; of
the collector barrier becomes smaller than the intensity
o, of the emitter barrier (i.e., a; < d,), the current
reverses its sign at a certain frequency determined by
barrier parameters. In the opposite case (o, = a,), the
current preservesits sign in the entire frequency range.

1063-7761/02/9404-0794%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Thus, it becomes possible (at least in principle) to
match the experimental results [7, 8] with numerical
([1-3, 11-13]) and analytical [10] theoretical results.
Note that, according to [4-6], the response displays a
weak dependence on the difference a, — a;, thus dem-
onstrating once again that the approach used for
describing the coherent generation is not applicable
(see the Conclusions for detail).

It isalso shown that the mechanism of amplification
in aresonance-tunnel diodeisclosely linked with quan-
tum interference and differs significantly from the gen-
erally assumed mechanism.

2. WAVE FUNCTIONS
OF A RESONANCE-TUNNEL DIODE
IN THE FIELD-LINEAR APPROXIMATION

We will study a model of coherent tunneling in a
resonance-tunnel diode, similar to the one used in [10].
Let us consider a 1D quantum well with &-functional
barriers at the points x = 0 and x = a (see figure). A
steady-state electron flux proportional to g? with an
energy € approximately equal to the energy € of the
resonance level is supplied to the quantum well from
the left (x — —0). A varying electric field E(t) with
potential U(x, t) actsin the region of the quantum well:

U(x,t) = U(x)coswt,
ExUG(X),

U(X) = AU x>a,
U = —eE/2.

X<a,

(D

The wave function W(x, t) satisfies the Schrodinger
equation
oW _ o'W
ot 0X2 (2)
+[a,0(X) + a;0(x—a)]¥ + U(x, t)WP.

Here, we have set 2 = 2m = 1. The steady-state solution
to Eq. (2) issought in the form [2, 10, 16]

WY(x,t)
= & [Wo(x) + €W, (x) + € Wy (X)].

The partia wave functions y, and Y, (n = £1) describe
electrons with quasienergies € and € + nw, respectively.

The varying field induces polarization (response)
currents

©)

J°(x, 1) = J°(X)coswt, JI%(x,t) = J*(X)sinwt.

Here, J¢isthe current synphase with the field and JSis
the reactive current. These currents can be expressed
through the functions Y, and ,.:

JE(x) = I51(x) + 355 (x),
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Jo(x) = e[ (Wgwn+ yrwg) —c.cl,

S S S (4)
F(x) = 3500 - 34(x),

B = el Wiwh-wsw) +ocl, w=SL

Intheinterval 0 < x < a, the zeroth-order approximation
function Y, (x) satisfies the equation

ePo(X) + Wo(x) = 0 ©)
and the boundary conditions (see [8])
Wo(0)(1—B;) + We(0)/ip = q,
Wo(a)(1—Py1) —Wo(a)/ip = 0, (6)

B; = aj/ip, i=12
The corresponding equations and the boundary condi-

tionsfor the functions Y, (x) have the following formin
the field-linear approximation:

Pawn(X) + Wn(x) = U(X)Wo(X),
Yn(0) _

p’ = e,

P2 = p’+nw, (7)

llJn(O)(l—an) + |p 0;
' U
b@0-p) YD = TN @
B = o 1= 1.2

Itisassumed in Egs. (5)—(8) that Y, < Y,. The solution
of this system of equations can be presented in theform

Wo(x) = Aexp(ipx) + Bexp(-ipx)
= y,CoSpX +id,Sinpx, 9
A, = g(2—-B,)exp(-2ipa), BA, = afy,
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Dy = (2—-B1)(2-B,) exp(-2ipa) —B1B,

2 o (10)
r(|6 M),

%‘
=
N

5=¢e-g, [ =M+r, [ =2
an
qJn = Anexp(i an) + Bnexp(_i an) (11)
xU 2U
—EHUJO—EUJO,
AnAn = qn(2 - Bln) exp(_2| pna) + BZnan’
BnAn = anln+ (2_B2n)am (*)n = -nw, (12)

By= —2—[i(3+nw)—T],

NAEUP

2Ui
q, = =3¢
w,

n

[A(z— Bon) + BanB + — (A + B)},
ap

n

G, = Zulp{ﬁlnA‘*‘(Z—Bln)Be_Zipna (13)

n

W’ ioa | i
+ 4'1:71(A+ Be—2|pa):|e|(P—Pn)a.

Formulas (9)—(13) give an exact solution to the prob-
lem, which is unfortunately cumbersome and hard to
visualize. It was shown in [10], however, that the gen-
eral formulasfor Y, and currents J¢ and J® can be trans-
formed to simple and physically visual expressions by
using the natural small parameter w/sg for aresonance-
tunnel diode. Indeed, the smallness of frequency w in
comparison with the energy i isinherent in agenerator
based on a resonance-tunnel diode.

In order to carry out this transformation, we present
the quantitiesy,, = A, + B, and 6, = A, — B, in the form
of the sums of components

— v (2) (3)
yn - yn +yn +yn '

5 = 6(1) + 6(2) +6(3). (14)

We set p = p, in the exponents of the components y"

and 6%1) and form the difference between the exact and

(2.3)

isolated expressionsin y?® and 8> . Compensating

anumber of termsin y” and 3" and canceling out the
determinant in the denominator, we obtain
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2Ui 2Ui
y(l) = 2p60! 6&11) = 2py0'

n

(15)

n O‘)H

Note that vV and 8" diverge for w —~ 0. The

remaining terms are found to be finite in the low-fre-
guency limit and are given by

4Ui 2P
@ = Prp, Az, +(2-B,,)Be "], (16)

& = V' (Ban—1), 2 = exp(ipa-ip,a)~1.(17)

In these equations, we have omitted small terms of the
order of w/eg and I'/eg. We will consider the most inter-
esting case of a quantum well with “powerful” barriers
inwhich I'eg < 1 and p/a; < 1. The remarkable prop-
erties of quantum wells are realized just in this limit.
Taking into account the smallness of w/eg and I/eg,
Eqg. (16) can befinally transformed as

4Ua’a A

@ _ 1

no= . (18)
p A,

It can be seen that the expression y*? and (in accor-

dance with Eq. (17)) 8 arefinitefor w — O.

Partition of y, and &, (and, hence, of A, and B,)
allows us to write the wave function i, (X) in asimpler
form

W, = y?cosp,x +id sinp,x. (19)

Indeed, it can be shown that the expressionsin ,,(X)
diverging for w — O neutralize each other. Thus, the
wave functions U, (X) are finite in the low-frequency

limit and assume the following values at the boundaries
of thewell:

P, (0) = yo(a) = y&.

It should be noted that the functions y,(x) diverge for
w — 0in the publications [4—6] mentioned above. At
the same time, it can be verified directly (by setting
w=0in Eq. (1) from the very beginning) that the func-
tion Y, must not have singularitiesfor w= 0. It is quite
possible that this circumstance is responsible for the
divergence of the frequency dependences of polariza-
tion currents.

(20)

Using Egs. (9) and (20), we abtain thefollowing lin-
ear-approximation criterion for w << I': Ua/l' < 1. This
criterion differs significantly from the corresponding
criterion in [4-6]: Ua/w < 1. This difference is associ-
ated with the behavior of ,(x) for w — 0.
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3. RF RESPONSE
IN A RESONANCE-TUNNEL DIODE

To begin with, let us find the active component of
the current J¢. Substituting Yy, from Eq. (9) and s, from
Eqg. (19) into Eq. (4), we obtain

Jr(x) = ep{(K,+c.c)
X [sinp,XsSinpXx + cosp,Xcospx]

—i(F,—c.c.)[sinpxcosp,Xx—sinp,xcospx]} (21)

=ep{ (K, +c.c.)cos(p—p,)x
_i(Fn_C-C-)Sin(p_ pn)X},

Ky = 85yn +¥58 s Fo = 8587 +Ysyn - (22)

The contribution to the current J; (X) comes from
four types of components. field-induced transition
between states with wave functions sinpx and sinp,x

with theweight 5 8\ ; between cospx and cosp,x with

the weight v; y(z) between sinpx and cosp.x with the

weight &5 yff) ; and, finally, between cospx and sinp,x

with theweight y* 8. It should be noted that the term

in the current, which is proportional, for example, to
sinpxcosp,X, appears as aresult of atransition between

the states sinpx and sinpx since J;, O (Y*Y' — c.c.).
Thisterm correspondsto a*“laser” -type transition since
the wave functions sinpx and sinp,x coincide with the
eigenfunctions of anisolated quantum well. True, inthe
case under investigation, the momenta p and p, differ
by a small quantity w,/2p. (For alaser, we have p—p, =

+17a). Since the coefficients &, 0 By, and 82 ~By?,
the contribution from thisterm islarger as compared to

that from the second term vyj y(z) (between cospx and
cospx ) in the parameter a?/p? > 1.

Theterms between the“ mixed” states (typical of the
current state in aresonance-tunnel diode and vanishing
in an isolated well) sinpx and cospx, sinpx and cosp,x

*,(2)

appear with approximately equal weights &y, and

Yo 6512), which permits the effective interference
between these terms. It is precisely these transitions

that lead to the peculiar frequency dependence J; (X)
and to exceptional sensitivity of current to the differ-
ence a, — 0, between the “powers’ of the emitter (a.)
and collector (a,) barriers of the resonance-tunnel
diode.
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Substituting Eg. (18) into Eqg. (22), we arrive at the
expression for K,,,

@y O _ * 4 B*Y _ SRk
o= SvPe, b= pa(ace-28r, @
b = Bo(2+B,)exp(2ipa) — BB, + 2B, (24)

= Aj —2Ag,exp(ipa),

disregarding, as before, the terms of the order of w/ek.
Here, A, is defined by Eq. (10), and Ay, is a“truncated
determinant”:

Do = (2-By)exp(-ipa) + B,exp(ipa).

Thefunction ¢ from (24) describesthe superposition of
the above-mentioned “nonlaser-type” trangitions and
strongly depends on the differencesd =€ —egand a, —aj.
Here, e is the energy of the resonance level, which is
determined from the equation

ReAy(eg) = 0.

(25)

(26)

In the vicinity of the resonance and for I'/eg < 1, the
function ¢ can be presented in the form

o = _ialazaé g:x_l_oLﬂ
B p’ sz alt
For a, = a; = a, expression (23) is transformed to the
corresponding expression for K,,, derived in [10].

Let us first consider the situation when a, = a. It
can be seen from Eq. (27) that, at the resonance (when
€ = gg), we have ¢ = 0. This means that the contribu-

tionsto current J; for cos(p — p,)x (which are virtually

independent of the coordinate and are the main contri-
butions for w < IN) are equal to zero separately (both

JS, and J%). If 32 0, both currents J$, and J°; differ
from zero and have the same sign. It will be shown
below that this corresponds to emission for & > 0 and
absorption for & < 0. However, it is usually assumed

that JS, leads to absorption and JS, to emission
[4-6, 8], and the resultant sign of the responseis deter-
mined by their difference. By the way, thismade it pos-
sible to obtain finite expressions for current for w —» 0
in [4-6], although the wave functions diverge (see Sec-
tion 2).

On the other hand, in accordance with Egs. (23),
(27), and (18), the signs of the low-frequency contribu-

tions to J; are identical and are determined by the
interference of “nonlaser-type” transitions, which
depends on the resonance conditions (i.e., on d).

Let us now consider the effect of the boundaries. It
follows from Eq. (27) that the difference between o,
and a, leads to the emergence of an imaginary correc-

(27)
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tion to &, which is a function of the difference a,/a, —
0,/0:

o = [5+| /rlr%2 alm]

NI
Substituting the values of y from Eq. (18) and ¢

into Eq. (22), we arrive at the following expression for
K, +c.c.:

(28)

4U 1 10
yroe = -2 0L, L
T e U, T

(29)
+i(r1r2)1/2U1_1_%jDi_iDi|.

Ch, A, At

Similarly, we can find the expression for “laser-
type” transitions

ELESIN

which depends on the difference a, — a; only dlightly.

We can also prove that the contribution to J; from

(F,, — c.c.) gives absorption for n = +1 and emission for
n = -1 in accordance with the conventional concepts.

Substituting A, and 4, into Egs. (29) and (30) and
summing up the results, we find the final expression for

the current J5(x) = J5; (X) + J°; (X) and the reduced cur-
rent J¢

e’EaqQrT,d
(@ +T)[(5+ @)+ [(G —w)*+T7]

F(x) =

a3 —as
xﬁ(aﬁr%wz)— : O(2(52+r2—w2) (31)
2

a,

e =_8Up [l 1p xcosﬂx—ﬂ)sinﬂx%
F.—cCcC. AT, AT (30) 2p” a  2p'f
2 2 2 rl_|_2 2 2 2
eEaQI‘I’zé[(F +8) + (F2+3 —w)}
.+,

R
J = =(J(x)dx =
a!()

The contribution from the “laser” term (F,, — c.c) to

the reduced current J;, which is proportional to o?, is
completely compensated by the corresponding term
(K,, + c.c). Consequently, the resultant expression (32)
is of interference origin and stems from (K, + c.c).

For identical barriers™; =T, = /2, we arrive at the
result which was obtained for the first time in [10]:
2 2
3¢ = 2e Ee;QF o) — (33)
2[(0+ )"+ ][0 —w)" +T]
(after correcting the misprint: the denominator of
expression (33) must contain 2 instead of 4). It can eas-
ily be seen that the current J¢(8, w) does not change its
signintheentire frequency range. In the low-frequency
limit, w << I, the quantity J¢ can be expressed in terms
of the static differential conductivity:

. 2Eaddy(5
35,0) = %‘ Jdé ), (34)
__Qr°
Jo(9) 2B AT (35)

where J, () is the static resonance current.

It was shown in [10] that, in addition to the conven-
tional mode in which J¢ has a peak for w = 0 (and for
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(MF2+8)[(3+ W)+ [ —w)*+T7]

Q = pq’. (32)

0 <T), the so-called quantum mode dso existsfor 6 > T.
It corresponds to the peak of J¢ at afrequency w,,;

W, =d-I% 3>T. (36)

Emission (absorption) occurs owing to quasi-resonant
transitions between the states with energies € and €. It
follows hence that for identical barriers (a, = a,), las-
ing is possible at frequencies considerably exceeding I
if we choose the electron energy (an analogue of the
constant bias voltage) € = €z + w outside the region of
the maximum negative differential conductivity (where
o<r).

Note that the results described above were con-
firmed to a high degree of accuracy by the numerical
solution of the system of equations (5)—8) and aso
directly by the solution to the time-dependent equation (2)
in[12-14].

In the case of different barriers (I'; # I',), the fre-
guency dependence of current J¢ may changeradically.
For example, for 'y > I, the current changes its sign
for a certain value of frequency wy:

o = 2r,(8°+1?)
0 a rl_r2 ’

At the same time, the “quantum” mode is realized for
any values of 'y and I,. In particular, for ', > I, the

(37)
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current peak is attained at the frequency wfn =2(& +
2)—(&*+ 1082+ 9r4)¥2, (If > r, we have w, = d.)
If the oppositeinequality I'; < I, issatisfied, the cur-
rent is preserved for any frequency value. In the limit-
ing case, when ', > I',, the frequency dependence
becomes unusual for a resonance-tunnel diode:

. e’EaQradw’
(M2 +3%)[(8+ )+ T3] [ —w)*+ T3]

Indeed, for w — 0, the current vanishes and cannot be
expressed intermsof differential conductivity. Only the
guantum mode remains, the peak of J%d, w) being
attained for frequency

(38)

Wy = 8+ (39)
for any 6> 0.

Let us also determine the reactive current. After
some calculations, we obtain

Jo(x) = epli(K,~c.c.)cos(p— py)X

(40)
+(Fn+c.c.)sin(p—py)x]

and the following expression for the reduced reactive
current:

o €’EaQr,0w] & —w’ — 32+ 4(M5—TI3)] “1)
2(r?+8)[(3+ W+ -w)*+T7

For ', =T, thisexpression is transformed into the cor-
responding expression derived in [10] after the appro-
priate sign reversal.

4. COMPARISON WITH THE RESULTS
OBTAINED BY OTHER AUTHORS

It was proved by adetailed analysisin [10] and men-
tioned above in the Introduction that no unified
approach to the limitation of the lasing frequency of a
resonance-tunnel diode has been worked out. Accord-
ing to the conventionally used hypothesis (see, for
example, [4, 8]), the lasing frequency (i.e., the fre-
guency at which the current reverses its sign and the
gain vanishes) is limited by a quantity equal toT".

This concept is based, among other things, on the
results of theoretical works [14] in which the
Schrédinger equation was solved as well as on the
results of publications using the tunnel Hamiltonian
method [5, 6].

Unfortunately, it is difficult to carry out a direct
comparison with the results of numerical calculations,
which are themselves contradictory (see, for example,
[8, 17]). It was mentioned by usearlier in Section 3 that
apossiblereason for the sign reversal of theresponsein
[1-3] is the asymmetry of the barriers due to the bias
voltage.
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Itisimportant, in our opinion, to carry out acompar-
ison with the theoretical results obtained analytically in
the simplest formulation of the problem in order to
eliminate the effect of nonessential complications. In
doing so, we assume (as before) that the el ectron distri-
bution function for the emitter is &-shaped; i.e., elec-
trons are assumed to be monoenergetic with energy .
Then we carry out a comparison for other distribution
functions.

In respect of the formulation of the problem, the
work by Lju [4], who considered an analytical model of
a resonance-tunnel diode on the basis of the
Schrddinger equation, isthe closest to our research (see
also the references to previous publications cited in
[4]). However, in contrast of the present work and [10],
Lju [4] could not find an explicit solution of the
Schrodinger equation in the quantum well region. He
describes the wave function at the collector boundary
(x=a) intheform

—ip, Xx—iwt

W = [te P +t,,.e

—ip_x—iwt

+t e ]

iVsnwt]

(42)
xexszt— 5 O

wheret, and t,; arethe amplitudes of electron transition
through a well in zero field and in the first order in
the field, respectively (analogues of our Y, and y,,).
The structure was assume to have identical values of
rl = r2.

The amplitudes were determined by summing the
transmitted and refl ected waves (the Fabry—Perrot reso-
nator model) and were found to be

_ OV P8+ w2)®+ 17
2 (324 T2)[(5+ )2 +TY

These amplitudes differ considerably from our ampli-
tudes (see Egs. (18) and (20))

|tr]®

(43)

2 _ |,® 2 - (Va)2F2
|w11(a)| |yt 16(62 + |_2)[(5i (.0)2 + |-2] !

which were calculated according to the exact solution
of the Schrédinger equation (2) with the boundary con-
ditions (6) and (8). The basic difference lies in the
divergence of t,; for w — 0. The expression for cur-

rent J¢ from [4] has the form
¢ epVI23(& + ' — w)

Jo= 2 2 2 2 2 2-(45)
(M+3)[(d+ w)" + ][0 -—w)" +T]

(44)

This expression implies the sign reversal for wj = 8 +
2, the existence of the limiting frequency, and the
absence of the quantum mode. The reasons for the dif-
ference between this relation and (33) are apparently
associated with the approximations used in [4] (see for
details the analysis in [10]). The remaining theoretical
publications using the Schrodinger equation and known
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to us do not give closed expressions for currents J¢
and Js.

In a large number of theoretical publications
devoted to the calculation of the rf response in a reso-
nance-tunnel diode, the method of tunnel Hamiltonian
isused (see, for example, [5, 6] and the references cited
therein).

The expression for current i, (analogue of J°)
derived in [5, 6] for a &-shaped electron distribution
function has the form

_ 26’V ,3(8 + M —w’) 46)
TG ) TG -w) T

In deriving this expression, we assumed that a varying
field is applied only to the emitter. It should be noted
aboveall that theresponsei, weakly dependson the dif-
ference; — I, and is similar to expression (45) from
[4] for ;=T ,. It should berecalled that it was assumed
in [4] that thefield is applied to the entire well.

In order to carry out a comparison with [5, 6], we
solved the Schrodinger equation (2) with the local
potential

U(x,t) = Ud(x)coswt. (47)

The expression for the reduced current has the form
JC
8U(I,I,)¥?5/p[&° + I+ w’(3r/2r,—1)] (49
a(M*+8)[(5+ W)+ [G-w)*+T7

It can be seen that, in contrast to Egs. (46) and (32), the
current does not reverseits sign in the entire frequency
range and weakly depends on the difference ", —I,. In
addition, current (48) is of the order of smallness I'/eg
as compared to expressions (46) and (32). The reason
for thisisobviousand liesin the following. Anincrease
in function |, by the factor €x/I" due to the resonance
in the well with the field applied to the entire well is
absent if the field U(x, t) in (47) islocal. Thus, in the
tunnel Hamiltonian method, the response weakly
depends on U(x, t) in contrast to the exact result. In
addition, note that the wave functions divergeas w —» 0
bothin[5, 6] andin [4].

Let us a'so compare the responses for the electron
energy distribution with the quasi-equilibrium function
f(e/T) (T is the temperature). In the high-temperature
limit, when w, ' < T, we obtain the following expres-
sioninstead of (46) for M, =T, =T/2:

T2 20M(ER) VIn
2 Os 4(002_1_ r2)'

(49)
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It can be seen that the amplification is limited by the
frequency w=T". Carrying out asimilar integration for
Eqg. (33), we obtain

e’EaQrmof(eg).
4 os '

i.e., there is no limitation on the amplification in fre-
guency. Apparently, the above contradictions are asso-
ciated with the fact that the interference phenomenon
and the open boundary conditions are taken into
account incorrectly in the tunnel Hamiltonian method.
Indeed, this method assumes the existence of a reso-
nance level, and the jump between the well and the
emitter (collector) is introduced phenomenologically.
In fact, the tunnel Hamiltonian method described inco-
herent tunneling. The proof of this statement (at least,
forw<T)isgivenin[1§].

)= (50)

5. CONCLUSIONS

The expressions obtained for the polarization cur-
rentsfor asymmetric barriers make it possiblein princi-
ple to explain consistently the experimentally obtained
results aswell asthe results of numerical and analytical
solution of the Schrédinger equation. Indeed, we can
assume that the asymmetry in the barriers appeared in
[1-3] and in [7] due to a constant electric bias field,
which lowers the collector barrier (i.e., increases the
value of ). A detailed comparison requires specia
computations and experiments with controllablel; and
I, i.e., withreal valuesof the emitter and collector bar-
riers. It should also be interesting to verify the amplifi-
cation in a resonance tunnel diode for I', > I';, when
the low-frequency amplification must tend to zero as
«?. Obviously, thisresult will remain valid for any form
of the electron distribution function f(g). It is aso
important to emphasi ze that the quantum lasing modeis
preserved for all valuesof I'; and I',. The frequency for
which the amplification satisfies the quasi-resonance
conditions w,,= d most closely isequal to w> I'. Thus,
according to our earlier results [12, 13], high lasing
powers can be attained for ultrahigh frequencies.

A confirmation of the results predicted by the theory
would serve as proof of a specific emission and absorp-
tion mechanism in structures with coherent resonance
tunneling, which is connected with the purely quantum
phenomenon of superposition of various types of radi-
ative transitions.

As regards the tunnel Hamiltonian method, the cor-
rectness of its application for computing the rf response
in resonance-tunnel-diode-type systems seems to be
disputable. These systems are exceptionally sensitive to
the boundary condition, the actual form of the variable
field potential, and the correct description of the spatial
guantization phenomenon. The tunnel Hamiltonian
method is essentially phenomenol ogical since the reso-
nance level and the boundary conditions (replaced by
the electron jump) are postulated.
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Abstract—The effect of a strong magnetic field (B < 55 T), applied perpendicularly to the basal plane of a
Bi,Sr,CaCu,0, (BSCCO-2212) crystal with T, > 91 K, on the out-of-plane electric conductivity of the sample
was studied under the conditions of controlled ohmic crystal response and negligibly small induction overheat-
ing. The character of the field and temperature dependences of the sample resistance was studied in the region
of the resistive state formation, in the flux flow regime, in the normal state, and under the conditions of super-
conductivity suppression by a strong magnetic field. Regular methods are proposed for estimating the interlayer
resistance in the absence of superconductivity (Ry (O, T)) and the critical field for a superconducting nucleus
formation (H.,(T)). The results show a satisfactory agreement with published data. In particular, the He, (T/T,)
estimates exhibit quantitative correlation in a broad range of dopant concentrations; the He,(T) dependences
determined by the proposed regular method using the plane and interlayer resistances of BSCCO-2201 show
gualitative agreement. It is demonstrated that a self-consistent description of the whole body of experimental
data can be provided within a restricted class of theoretical models. A new interpretation of the origin of the
“quasiparticle” resistance of BSCCO-2212 is proposed, and it is established that the experimental H.,(T) curve
can be satisfactorily described in terms of a one-parametric dependence predicted for the second critical field
in the bosonic limit. An alternative explanation of the results, based on the theory of interlayer tunneling of the
Cooper pairs and quasiparticles in a layered superconductor with d coupling, is analyzed in detail, and it is
shown that the main conclusions of this model contradict the observed experimenta facts. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The H-T diagram of cuprate high-temperature
superconductors (HTSCs) combining high critical tem-
peratures T, of the superconducting transition and small
coherence lengths & significantly differs from that of
the “conventional” type Il superconductors. The former
phase diagram contains, in addition to the lines of crit-
ical fieldsH,(T) and H.,(T), aline corresponding to the
so-caled irreversibility field H;(T), which lies far
away from the upper critical field H,(T) and separates
the region of existence of a vortex lattice and a non-
damping supercurrent from alarge domain of fieldsand
temperatures featuring the state of a vortex fluid with
ohmic response. Theirreversibility field, like other fea-
tures of the vortex system, was thoroughly studied both
experimentally and theoretically for various HTSCs
[1]. The experimental data indicate, in particular, that
the lattice melting in perfect crystals of Bi,Sr,CaCu,O,
(BSCCO-2212) proceeds as a first-order phase transi-
tion[2, 3].

In contrast to the H;,(T) value, the magnitude of the
upper critical field in HTSC and the character of its
temperature variation are till under discussion. For
example, some researchers believe that thisfield is not
manifested experimentally because of the fluctuation

effects [4, 5]. This notion is usualy justified by the
character of the magnetic field effect upon the super-
conducting transition smearing. As is known, a mag-
netic field applied to a conventional type Il supercon-
ductor shifts the transition curve as a whole, while the
initial part of the temperature dependence of magneti-
zation is well approximated by a linear relationship,
M(T, B) O H(T) — B, thus admitting the direct mea-
surement of Hy,. In contrast, the experiments with
HTSC cuprates revea a pronounced “rounding” of the
curves, which increases with the field. Moreover, for
the most ani sotropic compounds such asBSCCO-2212,
it was established that the M(T) curves measured in the
mixed state possess a common point of intersection
(M*, T*) in a broad range of magnetic fields (102 T <
B<5T)[6].

A satisfactory character of the approximation of a
fragment of the experimental M(T) curve provided, ina
narrow temperature interval near T, by a three-para-
metric relationship predicted within the framework of
the Bardeen—Cooper—Schrieffer (BCS) theory for a
fluctuation contribution [7] to the magnetization of a
layered quasi-two-dimensional superconductor in the
normal stateisfrequently considered as direct evidence
for adequacy of thismodel. Based on this opinion, most
of the known estimates for H,(0) were obtained from
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an analysis of the fluctuation contribution to the magne-
toresistance and magnetization in the vicinity of the
critical temperature [6, 8, 9]. At the same time, it was
noted [6, 8, 9] that the coefficients of such an approxi-

mation (£2,(0), £2(0), and T(H)) turn out to be field-

dependent, so that each curve corresponds to an indi-
vidual set of parameters,; the values reported usually
correspond to selecting a certain field, typically about
10-15 kOe. This choice is probably determined by the
possibility of matching to the results of extrapolation
[10, 11] of the T.(H) curve at T, (obtained in the course
of the above analysis) to zero temperature. Such a
matching procedure is very sensitive to the value of T,
(the transition temperature in a zero field) and requires
thistemperature to be overstated by 3-5 K as compared
to the measured value (see, e.g., [8]).

Moreover, it was established for a large number of
compounds representing various classes of HTSC
cuprates that the results of a consistent analysis of the
fluctuation corrections to the magnetization [12], ther-
mal conductivity [13], and resistivity [14] contradict
the BCStheory underlying all variants of the aforemen-
tioned analysis—both classical and those specialy
adapted to features of the HTSC materials studied [7,
15, 16].1 For example, in a most thorough (to the
author’s knowledge) investigation of the magnetization
of BSCCO-2212 crystals [6], the correlation lengths
€., (0) and &.(0) turned out to be on the order of the lat-
tice parameter, the H,,(0) value proved to be close to or
higher than the theoretical paramagnetic threshold, and

the asymptotic dependences of He,(T)|+ .+, exhibited

a significantly nonlinear character in that very temper-
ature interval where the best agreement with the theory
(predicting the linear dependence) could be anticipated.
Thus, the discrepancies between the results of experi-
mental data treatment and theoretical premises appar-
ently indicated inapplicability of the BCS theory to
description of the properties of HTSC cuprates.

This conclusion is corroborated by the results of
experimental determination of the upper critical field
from variations of the magnetoresistance. By analogy
with conventional superconductors, H,, was estimated
from a change in the superconducting transition tem-
perature caused by an applied magnetic field. The tem-
perature dependence of H., determined for a
TI,Ba,Cu,O, crystal exhibited anegative curvaturein a
record-wide temperature interval, 103 < T/T, < 1[17],
which disagrees with predictions of both the BCS the-
ory and the tight binding model. Later [18-20], the
same anomalous character of the H(T) curves was
reproduced in overdoped representatives of some other
groups of HTSC cuprates. It should be noted that, in
order to increase the experimentally accessible T/T,

T when applied to the interpretation of experimental data, the
model proposed in [15] requires (besides leading to the afore-
mentioned discrepancies) significantly (by approximately 30%)
overstated values of the interlayer distance.
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range, these experiments were performed on the sam-
ples with suppressed critical temperature, athough the
employed method of doping still alowed the phases
with different T, to coexist. As was theoretically
demonstrated using an idealized model [21], this
inhomogeneity can, in principle, lead to analogous
experimental dependencesin the BCStheory aswell.
Such ascenario was a priori inapplicable to interpre-
tation of the results obtained with optimum doped
crystals [22]; however, a large number of assump-
tions and complexity of amultistep empirical extrap-
olation procedure employed in [22] required at least
amore direct verification.

An attempt at such a verification is made in this
study. Based on an analysis of the temperature-induced
transformation of the magnetoresistance of a BSCCO-
2212 crystal, the character of the sample magnetoresis-
tance is determined in the vortex (fluxoid) flow regime,
in the normal state, and under the conditions of super-
conductivity suppression by a strong magnetic field.
From this analysis, the contribution of the supercon-
ducting state to the magnetoresistance at T < T, was
separated, the temperature dependence of the charac-
teristic fields (identified with the field of formation of a
superconducting nucleus and the irreversibility line)
was determined, and the interlayer resistance in the
absence of superconductivity was estimated. The
obtained data show a satisfactory agreement with the
results of independent investigations. A comparison to
the theory allowed the class of models applicable to
description of the properties of BSCCO-2212 crystals
to be significantly reduced. The results presented bel ow
were partly reported in[23-25]. A systematic character
of the present analysis, based on the data obtained for a
large number of crystals, suggeststhat the resultsreflect
the properties of the compound studied, rather than the
individual features of particular samples. Thefield of a
superconducting nucleus formation was evaluated
using the point of intersection of the approximated
curves representing the asymptotic behavior of the
sample magnetoresistance in the regions of H < H,
and H > H,,, which eliminates to a certain extent the
uncertainty related to the fluctuational smearing of the
transition.

The paper is organized as follows. The Introduction
is followed by Section 2, describing the methods of
measurement using pulsed magnetic fields. The main
attention is devoted to the resi stance measurements, the
problem of the sample heating by the eddy currents,
and the methods of controlling linearity of the system
response. For a convenient presentation of the experi-
mental results in Section 3, data on the properties of
samplesin the normal state, the features of the resistive
response formation, and the flux flow region are
described in separate subsections. Section 4 is devoted
to acomparison of the obtained resultsto the published
data, both experimental and theoretical; thefinal part of
this section addresses the experimental verification of
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Fig. 1. Typical temperature dependences of the out-of-plane
resistance for three BSCCO-2212 crystals measured in a
zero magnetic field.

1
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applicability of the theory of interlayer transport in a
superconductor featuring nontrivial coupling.

2. EXPERIMENTAL METHODS
2.1. Samples and Contacts

We have studied the samples of crystalswith a stoichi-
ometric  composition  Bi,Sr,CaCu,O, (BSCCO-2212)
possessing T, > 91 K. The high critical temperature,
conventionally related to an optimum level of hole dop-
ing [26], was provided by partially substituting yttrium
for calcium in the crystal lattice sites [27] immediately
inthe course of solid state synthesi s.2In order to reduce
the crystal overheating by the induction currents gener-
ated in a pulsed field, the experiments were performed
on small samples cut from large crystals selected by the
criteria of macroscopically homogeneous composition
and the absence of blocks. The main results were
obtained for a series of seven samples with thicknesses
(along the c axis) from 0.8 to 5 um. The samples were
prepared by mechanically splitting large crystals along
the (0 0 1) cleavage plane, followed by cutting almost
rectangular fragments with dimensions in the basa
plane varying from 26 x 28 to 32 x 60 um?.

The current and potential leads were glued to each
freshly cleaved plane ab of the samples with the aid of
a DuPont 6838 conducting composite. The geometric
misfit of the contact areas on the opposite crystal faces

2 This method eliminated the problem of the sample surface degra-
dation unavoidably encountered in the conventional method,
whereby the doping level is adjusted to compensate for a change
in the oxygen concentration as aresult of prolonged high-temper-
ature annealing of the crystal.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

ZAVARITSKY

did not exceed 5 um. Upon the subsequent short-time
(not exceeding 5 min) annealing of the conducting
composite at 500-520°C in the oxygen flow, the contact
resistance was 1-10 Q at room temperature and exhib-
ited a metal-type behavior with the temperature varia-
tion, with a (1.5-2.5)-fold drop on the sample cooling
from room temperature to liquid nitrogen temperature.
The crystal position relative to the quartz substrate was
fixed with the aid of the current and potential |eads made
of a 5-um-thick gold wire. This method ensured a quite
satisfactory fixation of the samples during measurements
in the pulsed magnetic field: each sample admitted 200 to
500 pul ses (about quarter of which exceeded 50 T in mag-
nitude) without significant changes in the contact ress-
tance or any sign of mechanical displacement.

In the preliminary stage, al crystals were character-
ized by the temperature dependence of the out-of-plane
resistance in a zero magnetic field. These potentiomet-
ric measurements were conducted using a standard ac
bridge technique at 25-77 Hz; the heating/cooling rate
was selected so asto ensure that the maximum temper-
ature difference between the control gauge and the sam-
ple did not exceed 10 mK. The crystals selected for
experiments in the pulsed fields exhibited coinciding
R(T) curves measured upon commutation of the con-
tacts; the character of the temperature dependence and
the values of the out-of-plane resistance (p.(100 K) =
7-15 Q cm) showed evidence of the absence of shunts.
The temperature of the superconducting transition in a
zero field (T) was determined as the temperature cor-
responding to aresistance drop by four orders of mag-
nitude as compared to the value at 100 K. The sample
crystals possessed close Ty values varying within
91-93.3 K. The temperature widths of the supercon-
ducting transitions were also dlightly varying, not
exceeding 1 K. At the same time, possessing qualita-
tively similar shapes, the R(T) curves of variouscrystals
exhibited a quantitative scatter within the limits indi-
cated by solid curvesin Fig. 1.

2.2. Method of the Crystal Resistance Measurement
in a Pulsed Magnetic Field

The resistance measurements were performed for
the most part on the setup for low-temperature investi-
gations of the de Haas—van Alphen effect created at the
Bristol University (United Kingdom), specialy
adapted for the potentiometric measurements in an
extended temperature range (1.4 to 350 K). The field
was generated by discharge of a high-voltage capacitor
bank (C = 12 mF) viaaliquid-nitrogen-cooled solenoid
coil with R.(78 K) = 20-25 mQ and L. = 450-500 pH.
In order to increase the pulse duration (on reaching a
maximum current in the solenoid), the coil outputs
were shorted with an additional diode section. There-
fore, it was expected apriori that thefield on theleading
(rise) and trailing (fall) fronts of the pulse would vary

according to the sinusoidal B = B,sin(t/./LC) and
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Fig. 2. Experimental verification of the effect of induction overheating at T = 25 K on the resistance of BSCCO-2212 crystals of
different area: () S= 53 x 42 umz, Binax = 10, 20, 36, and 50 T (indicated by arrows); (b) S= 110 x 85 umz, Bnax =14 and 46 T

(R* isthe sample resistance at maximum of the curves).

exponential B = B, ,exp(—R.t/L.) laws, where B, iS
thefield amplitude. Thereal pulse shape somewhat dif-
fered from that anticipated: the field variation on the
trailing front deviated from an exponential, and the
total pulse duration (on an 0.1B,,,,, level) depended on
Bax 1N the zero approximation as Aexp(—B,,/By) With
By =29 T and a preexponential factor A of about 51 ms.
At the same time, the B, value produced a negligibly
small effect on the shape and duration of both the lead-
ing front (risetime, 3-3.5 ms) and the top plateau, where
the field was approximately constant (to within 0.02%)
over about 80 ps. All these deviations were probably
related to the Joule hesting of the coil by current pulses,
which dightly change the inductance on the background
of a strong increase in the resistance. In order to provide
for a correct solution of this problem, the shape of each
B(t) pulse was experimentaly determined by integrating
the signa taken from a probing coil; the absolute calibra-
tion was performed using the results of auxiliary measure-
ments of the quantum oscillations of magnetization in a
reference gold single crystd.

A high rate of the field variation during the pulse,
together with unavoidably induced spurious signal s and
mechanical vibrations, poses additional reguirements
on the methods of measurements, setup design, and
sample dimensions. In the experiments, a directly
induced spurious signal in the measuring circuit was
eliminated in two steps. First, the spurious emf induced
by a field pulse was partly compensated by the signal
from a probing coil placed near the sample; finally, the
contributionswere separated and the useful signal (with
a working frequency) was determined by a specia
numerical processing of the data array. Obviously, the
induction currents are generated not only in the measur-
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ing circuit, but in the sasmple aswell, thus leading to an
additional heat dissipation in the sampler volume and
its overeating relative to the thermostat. In a rough
approximation, the overheating is proportiona to
(SDB/ot)%/p, where 0B/ot is the rate of the field varia-
tion, Sisthe sample cross section area perpendicular to
the field, and p isthe crysta resigtivity in this plane. This
circumstance shows the need in using small samples. At
the same time, a quadratic dependence of the heating
effect on dB/0t can be used both for experimentally evalu-
ating the degree of overheating in each particular experi-
ment [28] and for estimating the admissble sample
dimensions [24]. In the experiments reported here, the
induction heating of a crysta was systematicaly moni-
tored by comparing the R(B) curves measured at eachtem-
perature using a series of pulses with various amplitudes
differing by afactor of 3-20.

In a preliminary methodological stage, a series of
BSCCO-2212 crystals of various dimensions were
studied. These experiments revealed a strong increase
in the effect with decreasing temperature of the sample
and showed that the sample overheating induced by a
55-T pulse at T = 10-15 K was below the experimental
detection threshold for acrystal areareduced to approx-
imately 2 x 10° um? (Fig. 2). These results determined
the upper admissible area of the sample, thus posing
restrictions on the dimensions of crystals selected for
subsequent investigations. It should be noted that, by
systematically using the results of measurements on
both (leading and trailing) fronts of the magnetic field
pulses, it was experimentally established that even the
absence of hysteresis on the curves does not ensure that
the induction overheating is negligibly small. This con-
clusion isillustrated in Fig. 2b showing virtualy hys-
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Fig. 3. A schematic diagram of the working part of the cryo-
genic insert: (1) crystal; (2) plastic insert; (3) inner surface
of the Dewar vessel stem; (4) probing coil; (5, 6) heater
winding and frame, respectively; (7) heater-fit part of inset;
(8, 9) temperature sensors; (10) cotton tissue winding.

teresis-free plots with evident manifestations of the
overhesating.

The sample resistance was measured using a multi-
step procedure. Immediately during the magnetic field
pulse, the kinetics of the magnetic field variation rate
and the total voltage drop across the sample were mon-
itored, and the resulting dependence of the sample
resistance on the field was determined from these data
by the numerical lock-in detection of the useful signal
at aworking frequency of the probing current.

The main measurements in the pulsed magnetic
field were performed in the ac mode at a frequency
selected according to the characteristic times of the
field variation and the condition of minimum noise. The
amplified signal from the potential contacts of asample
and asignal of the voltage drop in the probing coil were
simultaneously processed by a high-speed (500 kHz)
digital-to-analog converter with four independent
channels. The useful signal V(t) separated at a work-
ing frequency was determined at the stage of data pro-
cessing upon numerically approximating elements of
the experimental data, array by a function of the type
V(t)sin(wt + @) + A(t).2 The resulting field dependence
V(B) was restored by combining these data with the
magnetic field pulse profile B(t). The method was
developed using the results of a series of preliminary

3 We used a modification of the standard software intended for an
analysis of the de Haas-van Alphen oscillations. As a rule, the
size of the sinusoidal fitting interval was selected so that a change
in the induction signal was approximated by a quadratic polyno-
mial. It was empirically established that five periods of the mea
suring frequency ensure a satisfactory dynamic range at an

acceptable rms deviation (about 107°R*, where R* is the resis-
tance at maximum of the curve, see Fig. 2). A relatively weak
sensitivity of the method with respect to the fitting interval size
was confirmed by perfect agreement between the R(B) curves
determined upon fitting over 1-12 periods. Coincidence of the
results of analysis using significantly different windows was used
in a regular manner for controlling the correctness of measure-
ments.
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measurements employing calibrated RuO,-based film
microtransducers (Dale RSWP-575-40).

The experiments were conducted in an all-glass cry-
ostat, the finger of which occurred on the axis of asole-
noid coil through which the capacitor bank was dis-
charged to generate the magnetic field. A sample crystal 1
(see Fig. 3) was mounted on the edge of a plastic
(Melinex) cryogenic insert 2 placed into Dewar vessel
stem 3, so that the samplewas located at a point of max-
imum field (to within 0.5 mm, which was ensured by
measuring asignal from probing coil 4 used asthe posi-
tion sensor). The estimated accuracy of the sample ori-
entation with the ab plane perpendicular to thefield was
not worse than 5°. The electric leads in the cryostat
were made of bifilar manganin wires tightly set inside
longitudinal channels sealed with an epoxy compound.
In designing and assembling the cryogenic insert, spe-
cial attention was paid to minimizing the area of wire
loops. Heating coil 5 was also wound by a bifilar man-
ganin wire onto amultilayer frame 6 made of insulated
copper foil, tightly fit to flange 7 of the cryogenicinsert.
As aresult, sample 1 and temperature sensors 8 and 9
were inside an additional shell providing for mechani-
cal protection and temperature leveling. A tight fit of
the plastic insert to the Dewar vessel stem 3 was
ensured by a cotton-tissue winding 10, which fixed the
sample position relative to the solenoid, decreased the
amplitude of vibrations, and provided for a thermal
insulation making the measurements possible in atem-
perature range from 1.4 to 350 K in a cryostat filled
with liquid helium.

The temperature was stabilized and monitored with
the aid of two resistance detectors (copper and Cernox,
with positive and negative temperature resi stance coef-
ficients, respectively). The temperature sensors were
calibrated using a reference metrological thermometer
(Lake Shore) mounted in place of a sample. The active
temperature stabilization was provided by a standard

LTC-21 controller (Neocera).4 The temperature was
stabilized prior to each field pulse application, at aleve of
not worse than 10, the temperature variation during the
pulse was not monitored, and the conclusion about a neg-
ligibly smal instability is made taking into account a
strong temperature dependence of the crystal resistanceR,
the absence of hysteresis on the V(B) curves, and the
results of checksfor the induction heating.

4 This temperature controller model was chosen because its proces-
sor is inherently suited to work with thermometers of any type,
requiring no special interfaces. It was found a posteriori that the
temperature stabilization in the experimental range studied
requires a minimum adjustment of the control parameters.

5 The statement concerni ng coincidence of the experimental curves
is obviously valid to within the experimental uncertainty. In these
experiments, the upper limit of the possible temperature varia-
tion during a field pulse was estimated from a maximum scat-
ter of points on the Ry(T) curve (see subsection 3.1). In fact,
the scatter of experimental data obtained with various samples
indicates that the temperature was constant with a relative accu-

racy of 5 x 1035 x 1074,
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The experimenta data presented below were
obtained using ac resistance measurements a a fre-
guency of 77.7 kHz; the working current densities used
for various samples dlightly varied within the interval
j = 1-5 mA/cm?. Note that the lower boundary of the
current densities used in anal ogous measurements usu-
ally exceeds the values reported here by at least one
order of magnitude[29, 30]. The amplitude of the prob-
ing alternating current was selected within the ohmic
response of the crystals studied, which is confirmed by
applicability of the sinusoidal approximation to the
“raw” measured data. Linearity of the response was
additionally verified by the R(B) curves measured at
various fixed temperatures using four or five current
amplitudes differing by one to one and half orders
(sometimes up to two orders) of magnitude. The cur-
rent—voltage characteristics constructed by these data
could be approximated by a power law V O 1Y withy =
1.01 = 0.01 for the fields within 0.1 T < B < 55T.
Finally, the conclusion concerning the ohmic response
of the crystals in the resistive state was confirmed by
direct measurements of the out-of-plane current—volt-
age characteristics in a constant magnetic field [31].

In order to compare the obtained data to the results
of low-frequency measurements and to evaluate the
frequency dependence of the resistance for each sam-
ple, a series of control measurements of the R(B)
curves were performed at several temperatures with
the probing current frequency varied from 7 to 111
kHz. The observed coincidence of these curves (to
within random scatter of the experimental points in
one experiment) and a quantitative correlation of the
results of dc and pulsed (low-field limit) measure-
ments were indicative of insignificant frequency
dependence of the resistance.

3. EXPERIMENTAL RESULTS

Figure 4 shows atypical dependence of the inter-
layer ohmic resistance of a BSCCO-2212 crystal on
the external field. As can be seen from these data, the
magnetoresistance below T, contains contributions
with different signs, reflecting the influence of various
physical mechanisms. In a strong field, the system is
characterized by a quasilinear negative magnetoresis-
tance, while the region of weak fields shows an initia
power increase in the resistance followed by alinear
portion. The position of the maximum (B*) of this
curve, determined by the competition of two contribu-
tions, and the amplitude (R*) of this maximum
strongly increase with deviation from the critical tem-
perature T, and, on the contrary, decrease on approach-
ing this point. A contribution related to the positive
magnetoresistance component drops sharply on reach-
ing the critical temperature of the crystal and com-
pletely disappears when the temperature increases
5-7 K above T,. Asthe temperature grows further, the
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Fig. 4. Typica dependences of the out-of-plane resistance
of aBSCCO-2212 crystals on the magnetic field at T < T,

The measurements were performed at T = 56.6 K using
three pulses with the amplitudes By5 = 2.7, 9.7, and 47 T.

The dash-dot and dash lines show approximations of the
magnetoresistance under the conditions of field-suppressed
superconductivity and flux flow, respectively; Ry(0) and
Hc, are estimates of the crystal resistance in the absence of

superconductivity and the upper critical fields, respectively,
obtained by extrapolation. The inset shows the same data
plotted against a double logarithmic scale; here, the dashed
line shows approximation of theinitial (low-field) region by
apower law R(B) O BP.

system exhibits a negative magnetoresistance in the
entire range of magnetic fields.

Based on the results of these observations, it was
natural to consider the positive magnetoresistance as a
manifestation of the resistive state of the crystal, while
the contribution of the opposite sign was attributed to
properties of the normal state. It will be demonstrated
in the subsequent subsections that (i) within the frame-
work of these assumptions, one can separate strongly
temperature dependent contributions to the resistance
related to the normal and resistive state, and (ii) addi-
tionally assuming that the field dependence of the mag-
netoresistance in the normal state remains functionally
unchanged, it is possible to evaluate the temperature
variation of the upper critical field in BSCCO-2212
crystals and their resistance in the absence of supercon-
ductivity. In the following sections, a self-consistent
physical mechanism is described which is responsible
for the functionally different asymptotic behaviors
observed in the experiment.

3.1. Longitudinal Magnetoresistance
in the Normal Sate

The principal purpose of this study was to evaluate
the upper critical field assuming that the formation of
superconducting nuclei leads to deviation of the mag-
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Fig. 5. Evolution of the normalized experimental plots of
R(B)/Rn(0) constructed by the data measured both above

and below T, Curves 1-5 refer to T = 56.6, 78.0, 90.05,
101.6, and 125 K, respectively.

netoresistance from a behavior typical of the normal
state. It was suggested that the region of superconduct-
ing fluctuations is anomalously large; therefore, the
characteristics of the normal state were studied in an
extended temperature range. For each crystal, the field
dependence of the out-of-plane resistance was mea-
sured in the temperature interval of 300-350 K and
below; in all these experiments, the field was oriented
perpendicularly to the basa plane of the crystal and
parallel to thedirection of the probing current (to within
an accuracy estimated as 5°).

According to [23, 24], it was established that the
longitudinal magnetoresistance of the crystal studied is
negative and, to a first approximation, is satisfactorily
approximated by alinear relationship. A special exper-
iment showed that the effect is even with respect to
reversal of the external field direction. The scatter of
experimental data |eft a certain freedom in description
of the asymptotic behavior of the magnetoresistance as
B — 0, admitting both linear and a quadratic approx-
imation [32].% As the temperature decreased, the mag-
netoresistance increased more rapidly than did the
zero-field out-of-plane resistance Ry (0). The normal-

ized slope S = —Ry (0)0R/AB revealed an approxi-
mately 500-fold growth upon decreasing the tempera-
ture from 200 to 87 K, which can be satisfactorily
described by the relation S O exp(Ty/T) with T, =
820+ 70K.

6 Previously [32], the effect was reported to exhibit a quadratic
growth in aquasistationary field of up to 14 T, but the direct com-
parison or results is hindered both by a significant difference in
the levels of crystal doping and by the possibility that the depen-
dence observed in [32] was distorted by a systematic temperature
drift in the course of the field sweep.
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It should be emphasized that, albeit the character of
temperature variation of the resistance was qualita-
tively the same for al samples, there were significant
differences in the absolute values of characteristics for
various crystals. Indeed, the normalized slope S exhib-
ited an almost fivefold scatter, while the estimated rela-
tive zero-field resistance growth ARy (0)/Ry (0, 300 K)
showed a threefold change when the temperature
decreased from 300 to 50 K. These variations probably
reflect individual features of the microstructure of
samples. Taking into account that all crystals had very
close values of the critical temperature (T, = 91-93 K),
the observed experimental scatter is additional evi-
dence for the correctness of attributing the quasilinear
negative magnetoresistance to properties of the nor-
mal state.

As was mentioned above, the character of the
asymptotic behavior of the longitudinal magnetoresis-
tance for the temperature approaching the critical tem-
perature from above was retained in strong magnetic
fields, while the low-field portion of the data showed
deviations from a simple linear dependence. The devi-
ations increased upon decreasing the temperature, and,
aT-Ty<2-25K, aregion of the field appeared in
which the initial portion of the field dependence exhib-
ited a positive slope and the R(B) curve acquired amax-
imum R*. Asthe temperature decreased below the crit-
ical temperature, the region of a positive magnetoresis-
tance expanded and the interval of fields appeared in
which no resistive response at all was observed. A typ-
ical R(B) plot for thistemperature interval is presented
intheinset to Fig. 4.

The character of transformation of the experimental
curves observed on going through the critical tempera-
ture region is illustrated in Fig. 5 showing the R(B)
plots measured at several temperatures above and
below T, of the crystal studied. A comparison of these
data unambiguously showsthat the deviationsfrom lin-
earity observed in weak magnetic fields are related to
the resistive state of the sample. The fact that the char-
acter of behavior in the high fields remains unchanged
give groundsto believe that an approximate description
of the field dependence of the magnetoresi stance deter-
mined at high temperatures can also be used for esti-
mating Ry (O, T) from the results of R(B) measurements
below T.. According to this approach, the experimental
data were treated assuming that the region with a nega-
tive slope is related to the longitudina magnetoresis-
tance Ry(B, T) under conditions of field-suppressed
superconductivity, and Ry (0, T) was determined by the
linear extrapolation of this branch to B = 0. A typical
result of such data treatment is presented in Fig. 6
together with the temperature dependence of the inter-
layer resistance of the same crystal measured on a
direct current in a zero magnetic field. A satisfactory
agreement between the data obtained by two methods
a T > T, indicates, in particular, a weak effect of the
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probing current frequency change on the results of
the out-of-plane resistance measurements. Accord-
ing to these data, a strong increase in the interlayer
resistance of BSCCO-2212 observed with decreasing
temperature in the region above T, continues at tempera-
tures well below T, not showing pronounced tendency to
weakening.

Unfortunately, the range of fields employed in this
study was insufficient to trace the Ry (0, T) dependence
down to very low temperatures. Thus, the asymptatic
behavior of the magnetoresistance as T — 0 remains
undetermined, insistently requiring additional investi-
gation. In fact, the lower temperature boundary of the
region of validity of the extrapolated estimate obtained
for Ry (0, T) isdetermined by the character of evolution
of the R(B) curves. According to Fig. 5, as the temper-
ature decreases, the (B*, R*) maximum exhibits a cer-
tain broadening and shifts toward higher fields, thus
reducing the experimentally accessible region of alin-
ear negative magnetoresistance and posing a natura
restriction from below on the temperature interval in
which a correct estimate of Ry (0, T) can be obtained.
As can be seen from Fig. 6, the (B*, R*) maximum as
such can be reliably detected to much lower tempera-
tures. Although the amplitude and position of this max-
imum are determined by the interplay of contributions
due to resistive and normal states, the absence of pro-
nounced features in the R*(T) behavior (as well as the
lack of essential grounds for such features to exist)
admits using these data for estimating the Ry (0, T) val-
ues at low temperatures. The dashed line in Fig. 6
shows the extrapolation R*(T) — Ry(0, T) obtained
assuming the validity of the empirical relationship
Ry(0, T)-R*(T) U exp(—aT), which satisfactorily
described the results in a broad range of temperatures
where both Ry(0, T) and R*(T) values are reliably
determined. As seen in Fig. 6, the extrapolation con-
verts the saturated curve of R*(T) into Ry(0, T), retain-
ing the tendency to rapid growth with decreasing tem-
perature. The obtained results agree with a presumably
different origin of the Ry and R* quantities. Nevertheless,
vdidity of such an extrapolation requires experimental
verification.

Unfortunately, data on the behavior of Ry(0, T)
available in the literature are rather restricted. For this
reason, the abtained relationship can be compared to
the results of investigation of the magnetic field effect
on R(T) and with the experimental dependence of resis-
tance of the BSCCO-2212 crystal in a zero field under
the conditions of superconductivity broken by strong
current pulses of microsecond duration [33]. It was
found that the character of the Ry (0O, T) curve quaita-
tively agreeswith the shape of envel ope of the family of
R(T) curves measured in various fields [29]. The latter
envelope was originaly attributed to a quasiparticle
tunneling viaa Josephson medium [29], but the fact that
this shape was retained at temperatures well above the
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Fig. 6. Typical results of the experimental data processed as
described in the text: triangles denote the values of resis-
tance Ry (0, T) measured in the absence of superconductiv-
ity; solid curve represents the R(0, T) obtained by dc mea-
surements; crosses show the values of resistance at maxi-
mum R*(T); and the dashed line shows the Ry (0, T) curve
empirically reconstructed from R*(T).
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Fig. 7. A comparison of the experimentally determined
Ry (0, T) values (solid curve) to the published data. Dashed
curve shows the resistance of a crystal sample measured in
afield of 2T at high current density (50 A/cmz) [36]; trian-
gles represent the Ry (T) values measured using a series of

microsecond current pulses in the absence of applied field
[33]; squares represent the Ry, values determined for the

return branch of the current—voltage characteristic in a zero
field [35].

critical temperature showed this interpretation to be
inadequate, after which the notions were revised in
favor of normal resistance [22]. In addition, the data
presented in Fig. 7 show that, while the Ry(0, T)
curve satisfactory agrees with the results obtained by
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Fig. 8. The current—voltage characteristic (right-hand volt-
age scale) of aBSCCO-2212 crystal reconstructed from the
data reported in [36]: symbols connected by dashed curve
correspond to the values determined for 30 K (m) and
40K (¢) fromthe R(T) curvesfor H=2T. Solid curveswith
indexes at the first three direct (0, 1, 2) and return (20)
branches represent a multibranch current—voltage charac-
teristic measured in the regime of the internal Josephson
effectinazerofield at 5.6 K. Nonconnected symbols repre-
sent a current-voltage characteristic measured using a
seriesof current pulsesforH=1T at 30K (m) and 40K ().
Solid curvereferred to the left-hand voltage scale showsthe
results of thorough measurements [31] of the current—volt-
age characteristic in the region of weak currentsforH=3T
at 35K.

Yasudaet al. [33] for T/T. > 0.55, asignificantly differ-
ent behavior is observed on further decreasein the tem-
perature. Neverthel ess, the discrepancy seems not to be
as important, since the saturation observed in [33] was
attributed by the authors to a possible overheating of
the sample.

It should also be noted that the results obtained in
this study confirm an interesting observation made pre-
viously [34] in the course of investigation of the inter-
nal Josephson effect in BSCCO-2212 crystals. In that
study, a quantitative correlation was observed between
the resistance R, (determined under the conditions
when superconductivity was suppressed by a strong
magnetic field) and a “quasiparticle” resistance Ry, =
(UN), . o (estimated for the return branch of the cur-
rent—voltage characteristic at the same temperature but
inazero field). As can be seen from Fig. 7, the curve of
Ry (0, T) isinfact correlated with Ry, from [35] (where
the measurements analogous to those originally per-
formed in [34] were reproduced in awider temperature
range). As will be demonstrated below, an analysis of
the whole body of recent results gives grounds for a
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new interpretation of the origina results reported
in[34].

Until recently, a comparison between the results of
resistance measurements and the aforementioned cur-
rent—voltage characteristics was hindered by different
scales of the current densities: the maximum current
densities used in the former measurements rarely
reached even 1 A/cm?2, whereas minimum current den-
sities involved in the measurement of the interna
Josephson effect were greater by one to two orders of
magnitude. The gap was filled to a certain extent by
Suzuki et al. in [36], where determination of the stan-
dard current—voltage characteristic was supplemented
by measurements of the sample resistance at various
current densitiesin therangefrom 0.1 to 50 A/cm?. Fig-
ure 8 plots together the current—voltage characteristic
constructed by using the R(T) datafrom [36], a charac-
teristic of the internal Josephson effect, and the results
of pulsed measurements performed by the same
researchers. Despite nonideal matching of these data,
which is related to different experimental conditions,
Fig. 8 provides for an insight into the true character of
variation of the current—voltage characteristicin awide
range of currents.

An important fact, which can hardly be explained
proceeding from the Josephson effect considerations, is
the presence of alinear initial portion on the current—
voltage characteristic. This fact was confirmed by
direct measurements of the current—voltage characteris-
tics [31] which are also presented in Fig. 8. As can be
seen from this figure, a specific feature of the develop-
ment of nonlinearity in the current—voltage characteris-
tic is a strong growth in the voltage observed within a
narrow region of currents, followed by a less pro-
nounced increase and a tendency to still weaker varia-
tion with increasing distance from this region. This
behavior can be explained taking into account a charac-
teristic scale of currents, poor thermal conductivity,
high contact resistance, and negative temperature coef-
ficient of the normal resistance of BSCCO-2212. Asis
known, the main problem complicating the measure-
ments of the current—voltage characteristics is the
uncontrolled Joule heat evolving in the sample, the
amount of which is determined by the thermal flux den-
sity WIS through the crystal surface. For a convenient
analysis, Fig. 9 presents the same datafrom [36] plotted
as resistance R= V/I versus AT O WIS = VI/S (with
neglect of the heat dissipated in the contacts). Similar-
ity of the descending parts of this plot and the curve
representing the results of direct resistance measure-
ments is indicative of the “overheating” nature of the
effect observed for the thermal flux densities exceeding
10 W/cm?. Additional evidence for the adequacy of this
interpretation is offered by experimental data [37]
revealing quantitative coincidence of the current—volt-
age characteristics of the samples possessing different
areas, represented in terms of the current density.
Finally, a significant overheating in the near-contact
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region of the sample at W/'S= 50 W/cm? was revealed
in the course of direct measurements [38] performed in
the regime of the internal Josephson effect at 24 K.
Within the framework of the “overheating” concept, it
is possible to explain a bell-like shape of the return
branch of the current—voltage characteristic (curve 20
in Fig. 9), the transition to which takes place at a ther-
mal flux density exceeding 1000 W/cm?. Since the
overhesating drops when the current decreases, the
right-hand part of the characteristic reflects the temper-
ature dependence of resistancein the normal state of the
sample. A maximum in this dependence is apparently
related to thermalization of the crystal and the electron
subsystem, because the region of positive sope (usu-
aly omitted in published papers) evidently follows a
nonlinear part of the current—voltage characteristic
under weakly nonequilibrium conditions.

Based on the above considerations, the similarity of
presumably dissimilar dependences presented in Fig. 7
is naturally explained by the fact that, in the zero-order
approximation, the quasiparticle resistance Ry, corre-
sponds to nonequilibrium conditions of the supercon-
ductivity breakage by the transport current and is
implicitly related to the Ry value. Obviously, additional
experimental and theoretical investigations are
required, in particular, for refining the proposed rela-
tionship between R,, and Ry. At the same time, the
results of comparison of the current—voltage character-
istics in Fig. 7 indicate that R,,(T) can be used as a
rough estimate of Ry(T) when direct measurements of
the latter value are inaccessible.

3.2. Temperature-Activated Flux Flow

As was mentioned in the Introduction, it is a wide-
spread conviction that a characteristic field determined
from the resistance measurements reflects certain fea-
tures in the behavior of the vortex system, but does not
correspond to the upper critical field. The features of
vortex dynamics in BSCCO-2212 depending on vari-
ous possible factors were thoroughly studied both the-
oreticaly and experimentally [1]. It was established
that, at sufficiently low temperatures, the compound
occurs in amore or less ordered state, crystal or glass,
depending on the degree of perfection. A significant
difference of the HTSC cuprates from conventional
superconductors consists in that there are wide regions
of fields and temperatures featuring the state of flux
flow with ohmic response. This region is separated
from the region of ordered states by the so-called irre-
versibility line. Additional lines, occurring between
H;(T) and H(T), reflect fine features of the ordered
state of the vortex system [1, 3]. On the contrary, the
vortex fluid contains (as does any fluid) no structural
features. For this reason, a comparison of the irrevers-
ibility field and the “resistive” critical field determined
in the same experiment isimportant for elucidating that
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Fig. 9. The data from [36] (same asin Fig. 8) replotted in
the coordinates of R=V/I versus AT 0 W/S= VI/Sand sup-
plemented by the experimental curve of R(T) for the same
sample measured in afield of 2 T at alarge current density

of 50 A/cm? (top temperature axis). Other notation same as
inFig. 8.

there is much in common in the origin of these charac-
teristics.

Thus, the problem to which this investigation was
devoted required experimentally determining the irre-
versibility field of the crystal studied, which implied a
thorough study of the character and origin of the dissi-
pative response. An additional argument for such a
study isthe need for experimentally separating the con-
tributions from various factors to the measured value.
Indeed, although the character of transformation of the
R(B) value on going viathe critical temperature region
allows the region of positive magnetoresistance to be
unambiguoudly related to the superconducting state,
the experimental curves observed in this region exhibit
a complicated behavior, apparently reflecting a change
inthe regime of charge carrier transfer. The results con-
sidered in this subsection, while providing an estimate
for H;,(T), dlow theinitial part of the region under con-
sideration to berelated to the thermally activated vortex
motion and significantly reduce the class of theoretical
models applicable to description of the vortex state in
BSCCO-2212.

The character of development of the resistive state
inthe crystal studied isillustrated in the inset to Fig. 4,
where the curves from the main panel are replotted on
a double logarithmic scale. As can be seen, the initia
portion of this dependence (extending over a broad
range of resistances up to R/R* < 10-!) admits approxi-
mation by a simple power law R [0 BP with a tempera-
ture-dependent exponent y (see the main panel of
Fig. 10). It was experimentally established that this
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behavior is observed in the entire temperature range
(0.15 < T/T, < 1) of the resistive state of the crysta
studied.” Taking into account that the temperature depen-
dence of resistance in the same interval exhibits atemper-
ature-activated character, R(B, T) O exp[-U(B)/T], the
above effect is naturally identified with the tempera-
ture-activated flux flow regime. The development of
this regime implies the appearance of an ohmic resis-
tance. Therefore, in order to check for the correctness,
it is necessary to study the character of the system
response under these conditions.

The specific features of investigations in the pulsed
field hinder direct measurement of the current—voltage
characteristic. However, the absence of detectable devi-
ations of the signal shape from sinusoidal and the coin-
cidence of the results of resistance measurements using
the current densities differing by one order of magni-
tude are indicative of linearity of the system response
under these conditions. Additional evidence for thisis
provided by the results of direct measurement of the
current—voltage characteristic in a steady field with a
strength below 8 T, where the characteristic was linear
in the range of current variation over several orders of
magnitude (see Fig. 8). Note that the ohmic resistance
determined from the initial part of these current—volt-
age characteristics (Fig. 11) is also satisfactorily
approximated by the power law, in aquantitative agree-
ment with the results of measurements in the pulsed
field.

The experimentally confirmed linearity of the sys-
tem response, together with the temperature-activated
character of the R(T) curve, is explicitly indicative of
the fact that this part of the temperature dependence of
the resistance reflects the regime of temperature-acti-
vated flux flow in the crystal studied. Moreover, the
obtained results allow one to significantly reduce the
class of theoretical models applicable to description of
the vortex system in BSCCO-2212 crystals, since a
power law describing the field dependence of theresis-
tance is evidence for validity of the models developed
in [39, 40], which predict alogarithmic dependence of
the barrier height for this process: U = UyIn(H,/B) and,

accordingly, R O exp(-U/T) O B™'" . Additional evi-
denceinfavor of thisinterpretationisoffered by Fig. 12
showing an experimental plot of U(B)—the barrier
height versus applied field—which, according to the
results of these measurements admits a logarithmic
approximation in the region of strong fields with the
parametersU,= 100 + 20K and H,=200+ 30 T, which
are close to the values reported by Skvortsov and Gesh-
kenbein [41]. At the same time, the obtained results
demonstrate (in contrast to [41]) a significant increase

7 It should be noted that the range of fields used in these experi-
ments was insufficient to detect the resistive stateat T < 10-12 K.
This fact provides for an estimate from below for H;,(4.2 K) and
presents additional evidence for an essentially “overheating” ori-
gin of the internal Josephson effect parameters measured for the
most part in azerofield at 4 K.
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in the barrier height in the region of weak fields, never-
theless also admitting a logarithmic approximation but
with a different set of parameters: U, = 1500 + 500 K
andHy,=04-0.7T.

The U, values, determined within the framework of

this approach using the R(B) [ BT approximation of
the field dependence of the out-of-plane resistance
measured at varioustemperatures are shown in the inset
to Fig. 10. As can be seen, there is a satisfactory quan-
titative agreement of the results of high-frequency mea-
surements in a pulsed magnetic field and the data
obtained from quasistationary measurements in a con-
stant field [42]. To the first approximation, the “resis-
tive” value of Uy isvirtualy constant in awide temper-
ature interval from 20 to 60-70 K and agrees with the
estimate obtained above from the logarithmic approxi-
mation of the temperature-activated process barrier. At
the same time, the values outside this interval exhibit a
systematic growth with the temperature increasing
above 60—70 K and a tendency to sharp drop with the
temperature decreasing below 16-18 K.

A comparison of the results presented in Fig. 10
(main panel) to the data on the crystal magnetic
moment relaxation measured using a SQUID magne-
tometer [43] (presented in theinset to Fig. 10) revedlsa
gualitatively similar behavior. Thisisaremarkablefact,
the more so that we compare the characteristics of the
resistive and critical states occurring on different sides
of theirreversibility line representing, in the opinion of
many researchers, a real phase boundary [44]. A pro-
nounced correlation between characteristics of the
resistive and critical states is a clear indication of a
common mechanism involved in these phenomena. A
guantitative discrepancy between the results of the
magnetic relaxation and resistance measurements pre-
sented in the inset to Fig. 10 is probably related to dif-
ferences in the experimental conditions. Taking into
account that (i) the scale of fields involved in the resis-
tance measurements is higher by one to two orders of
magnitude than that used in the magnetic relaxation
experiments and (ii) acharacteristic timet; of theresis-
tance measurements is several orders of magnitude
smaller than the corresponding time of the magneto-
metric experiments [45], the systematically greater val-
ues of the “magnetic” barrier can probably be related
[45] to alogarithmic dependence of the barrier on B and
t; values: U [0 In(t,/ty), where t, is the characteristic
time of the system studied.

3.3. Flux Flow Region and the Upper Critical Field

Let usreturn to the field dependence of the magne-
toresistance of a crystal in the resistive state (Fig. 4).
Note that, as the field increases, the system exhibits
deviation from the power asymptotic behavior at
R/Ry(0) = 0.05-0.1. By virtue of the notions described
in the previous subsection and by analogy with the case
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Fig. 12. The plot of barrier height U versus applied field for
U values determined using the temperature activation
approximation of the experimental R(T) curves for two
BSCCO-2212 crystals.
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Fig. 13. A semilogarithmic plot of resistance versus field
(data from Fig. 4) illustrating applicability of the R O InB
approximation (dashed line).

of “conventional” superconductors, thisbehavior isnat-
uraly related to achange in the flux flow regimein the
crystal from temperature-activated to viscous. As can
be seen from Figs. 4 and 13, the field dependence of the
resistance in this region can be approximated both by a
linear relationship R 0 B and (in somewhat stronger
fields) by alogarithmic law RO InB.

An analysisof the experimental dataobtained inthis
region is complicated by the temperature dependence
of the magnetoresistance under the conditions of field-
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Fig. 14. Temperature evolution of the field dependence of the interlayer resistance of a BSCCO-2212 crystal in the mixed state:
(8) normalized curves of R(B)/Ry(B) measured at T = 16 (1), 20 (2), 30 (3), 45 (4), 57.5(5), and 88.7 K (6); (b) the same data plotted

on a semilogarithmic scale (curve 5' refersto T = 78 K).

suppressed superconductivity. Taking into account the
results of magnetoresistance measurements in the nor-
mal state, presented in Subsection 3.1, we can separate
the temperature-dependent contributions from the nor-
mal and superconducting states. As a result, it was
established that the effect of the temperature on the
shape of the R(B) curves describing the mixed state of
BSCCO-2212 crystals significantly differs from that
observed for typical low-temperature superconductors:
instead of an almost parallel shift with decreasing tem-
perature, the curves exhibit a decrease in the slope,
while the initial point remains virtually undisplaced.
This behavior is illustrated in Fig. 14a, where the
results of R(B) measurements at various temperatures
are normalized to the corresponding field dependences
of the magnetoresistancein the normal state. Asisseen,
the family of R(B) curves exhibits a pattern different
from that characteristic of a canonical superconductor
in the magnetic field, although something like that is
observed when the data are presented on a semiloga-
rithmic scale (Fig. 14b).

The unusual character of evolution of the supercon-
ducting transition in Fig. 14 can be explained assuming
that a linear positive magnetoresistance in the vortex
fluid flow regime obeys the Bardeen—Stephen relation-
ship Rer O RyB/H,,. Inthis case, the character of evolu-
tion of the R(B) curves measured at various tempera-
turesis directly determined by the anomalous behavior
of H(T). However, at first glance, applicability of this
formula is not evident because the experiments were
conducted under formally Lorentz force free configura-
tions (the field parallel to the current). Thisformal dis-
crepancy isremoved by taking into account the layered
structure of BSCCO-2212, according to which the vor-
tex comprises a system of Abrikosov vortices in super-
conducting layers connected by the coreless Josephson
segments. Since the positional correlation of vorticesin
the adjacent planesisreadily violated (e.g., by thermal
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fluctuations), this leads to the appearance of a perpen-
dicular component of the Josephson string perpendicu-
lar to the field and subject to the Lorentz force action.
In the absence of theoretical calculations for these
experimental conditions, these considerations give
some grounds for using the Bardeen—Stephen formula,
although the resistive response (in this experimental
geometry) significantly depends on the character of
interaction between the string and the core component
of the vortex.

In any case, a strong temperature dependence of the
slope of the linear part of the R(B) curve is an experi-
mental fact. A typical result is presented in Fig. 15,
from which it is seen that the slope dR./0B exponen-
tialy increases with the temperature in the low-temper-
ature region and then exhibits a much stronger depen-
dence on approaching the critical temperature. The lat-
ter dependence obviously controls behavior of the
“resistive” critical field, which is determined from the
Bardeen—Stephen relationship as

Ru(0.T)
9R./10B"

Indeed, as can be seen from Fig. 15, the slope varies
over three orders of magnitude, while the normal resis-
tance in the same temperature interval changes only by
one order of magnitude (see Figs. 6 and 7).

In the course of a regular data processing, three
approaches to determination of the characteristic field

%, were employed (below, the notation H, is used

irrespective of the method employed for determining
the “resistive upper critical field). The first method is
based on the Bardeen—Stephen formula in which the
Ry (0, T) was determined either by alinear extrapolation
of the negative magnetoresistance to B = 0 under the con-
ditions of field-suppressed superconductivity or by a
resistance rescaling at the maximum of R(B). Typical

Heo(T) =
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results of the upper critical field evaluation for BSCCO-
2212 by thismethod are presented in Fig. 16. Ascan be
seen from these data, the resulting dependence differs
from that predicted for the upper critical field withinthe
framework of the BCS theory and shows a perfect
quantitative agreement with the H,(T) values obtained
by the second method (the empirical determination of
the upper critical field as a point of intersection of
extrapolated linear approximations of the negative
magnetoresistance in the normal state and the positive
magnetoresistance in the flux flow region). Note that
the second method differs only slightly from the con-
ventional method, according to which the “resistive”
critical field H,, istaken equal to avalue corresponding
to acertain decrease in the sample resistance relative to
that inthenormal state. At the sametime, the aforemen-
tioned quantitative coincidence of the results in the
low-temperature region, where the extrapolation of the
linear approximation of Re(B) to R=0leadsto asig-
nificantly nonzero field, is not atrivial result.

The third method used to evaluate the H,, value in
this study was based on the empirical approximation of
the field dependence R(B) U InB, which aso provides
for a satisfactorily fit to experiment in the flux flow
regime for the interval 0.2-0.3 < R/R, < 0.7-0.8. By
anal ogy with the above construction, the H,, value was
determined by extrapolating this approximation to
either (i) R(B)/R* = 1 or (ii) R(B)/Ry(0) = 1. Inthelatter
case, the Ry (0) value at low temperatures was obtained
by extrapolating the simplest empirical approximation
Ry (0) O exp(=T/T,). Asis evident from the scheme of
construction, the estimates of H,, obtained in this way
must quantitatively differ from those obtained by the
first two methods. However, it was found that the differ-
ences can be eliminated by simple rescaling (using a
temperature-independent coefficient closeto two), after
which the results obtained by the third method coincide
(to within the experimental scatter of points) with the
H,(T) curve constructed by the first two methods.

This result can be considered as directly indicating
that several functionally different empirical approxima-
tions of the experimental data obtained in the flux flow
region are apparently related to the same physical
mechanism. Unfortunately, to the author’s knowledge,
no theory has been developed so far that could be used
for interpretation of the experimental data reported
here. Therefore, selecting a reasonable scenario will
require additional theoretical calculations. The avail-
able experimental data are insufficient for unambigu-
ously identifying the characteristic field determined in
this study with the thermodynamic value of H,. How-
ever, aqualitative agreement between the shapes of the
temperature dependences H.,(T) determined by various
methods, together with a quantitative coincidence of
the results obtained by the same method for various
crystals with close T, values but significantly different
characteristics of the norma state, indicates that the
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Fig. 15. A typical plot of 0Rgr/0B (the slope of alinear por-
tion of the R(B) curve) versus temperature in the flux flow
regime.
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Fig. 16. Temperature variation of the characteristic fields of
a BSCCO-2212 crystal determined by various methods:
vertical crosses represent H;,(T) determined by the resis-
tance drop to a fixed level of R(B)/Ry(0) = 1072 squares
show the H, values determined by the method illustrated

Fig. 4; oblique crosses correspond to the values determined
from the Bardeen—Stephen relationship; thin solid curve
shows the results of fitting to the one-parametric depen-
dence [46]; dashed line represents “pseudo-Hg," values

[21]; long-dash line shows the H;,, approximation.

H(T) curves reflect the characteristics of the given
condensed state, rather than individual features of the
sampl es studied.

Thelatter statement requires additional justification,
for example, by a comparative analysis of the H(T)
values estimated using various components of the crys-
tal resistance tensor. Such a comparison would be of
special interest because essentialy different character
of the temperature dependences of the resistance mea-
sured in the basal plane (R,,) and in the out-of-plane
direction (R, implies significantly different mecha-
nisms of the charge transfer in the normal state of the
crystal. This situation poses a problem of correctly
measuring the R,, values in BSCCO-2212 crystals,

No. 4 2002



816

25

20

15

Hy,, T

10

. IIT. .

Fig. 17. A comparison of various estimates of the“resistive’
upper critical field H(T), obtained from the temperature
dependences of resistivities p,, and p, for the same crystal

of BSCCO-2201 (solid and dashed lines connect points rep-
resenting the H, values determined using p(T) and pg,(T)

curves, respectively): (1) an overdoped crystal with T, =
13K [28]; (2) an underdoped film with T, = 24.3 K [47];
(3) estimates of the characteristic field for the latter film,
determined on alevel of R/IRy = 0.3.

which is an extremely difficult task because it requires
using samples containing virtually no steps on the sur-
face. Unfortunately, no such crystals have been pre-
pared so far. Moreover, a thorough analysis of al
papers reporting on the R, measurements in BSCCO-
2212 revealed a dominating contribution of R, which
makes these data absolutely useless for the purpose of
this study. An almost equally unfavorable situation
takes place for the study of BSCCO-2201, another rep-
resentative of the class of strongly anisotropic layered
cuprates characterized by significantly lower critical
temperatures (T, < 27 K). It was only quite recently that
both components of the resistance tensor were studied
for thin single crystal films of BSCCO-2201 grown on
vicinal substrates [47]. At first glance, the results
reported in [47] are free from the problem of intermix-
ing of theresistance tensor components. The anisotropy
of resistance in the films studied (about 6000) fals
within the interval of values typical of the single crys-
tals of this HTSC family, which confirms ahigh quality
of the samples.

Figure 17 shows the estimates of the “resistive”
upper critical field H.,(T) obtained in [48] (by analogy
with [22]) using the R,,(T) and R.(T) datafrom[47]. As
can be seen, there is more than satisfactory agreement
between the values determined from various compo-
nents of the resistance tensor. Moreover, there is no
anomalous influence of the doping level on the result-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

ZAVARITSKY

ing temperature dependence H.,(T). This conclusion
follows from a comparison of the curves constructed
using the datafor slightly underdoped films[47] and an
overdoped single crystal [28]. Finally, a good coinci-
dence (in the scale of Fig. 17) is observed between the
H(T) curves for the former films possessing close T,
values but significantly different parameters of the vor-
tex system (as evidenced by a twofold difference in
activation energies). In the absence of the results of
direct measurementsfor BSCCO-2212, the above com-
bination of datareported for asimilar compound (Fig. 17)
isindirect evidence in favor of the correctness of con-
clusions and estimates made in this paper based on an
analysis of the interlayer resistance.

4. DISCUSSION OF RESULTS

The estimates of the upper critical field obtained in
this study are well correlated with the results obtained
previously [22]. This correlation confirms the adequacy
of the assumptions and correctness of a complicated
multistep extrapolation procedure proposed for evalu-
ating Hy(T) [22]. In addition, the H,(T) dependence
presented in Fig. 16 was indirectly confirmed by the
experiments of Suzuki et al. [36], which demonstrated
that the current—voltage characteristic in this region is
ohmic and showed dependences of the ohmic resistance
on the magnetic field which qualitatively agree with
Fig. 14 and allow the H,, valuesto be estimated. Ascan
be seen from the datain Fig. 18, the temperature depen-
dence of the upper critical field determined from the
curves reported in [36] quantitatively agrees with the
results obtained in this study. It should be noted that,
despite a rather unsatisfactory agreement between
experiment and a theoretical approximation adopted in
[36], the authors interpreted the R(B) curves within the
framework of amodel relating theinterlayer dissipation
to fluctuations of the phase difference between layers.

As can be seen from Fig. 16, the obtained H.,(T)
dependence exhibits a negative curvature in the entire
range of temperaturesfar from T, and in therange of the
magnetic field variation over four orders of magnitude.
This behavior contradicts the BCS theory but, to the
first approximation, agrees qualitatively with theresults
of determination of the resistive upper critical field for
compounds belonging to various families representing
the so-called exotic superconductors (including HTSC
cuprates) [20]. Although alimited range of the accessi-
ble magnetic fields did not alow the resistance of
BSCCO-2212 to be studied at low temperatures,
extrapolation of the empirical low-temperature asymp-
totics behavior as Hy, = Ho(0)exp(=T/T*) with T* =
18 + 2 K provides for arough estimate of H,(0) = 220 +
30 T (close to the paramagnetic threshold in the BCS
model) and &,,(0) = 12 A. The latter value is on the
order of a characteristic distance between charge carri-
ers, which is also indicative of inapplicability of the
canonical BCS theory. It is interesting to note that the
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above estimates fall within the interval of values, H,, =
22-400 T and &,,(0) = 9-38 A, obtained for BSCCO-
2212 by means of the extrapolation to T — 0 pro-
posed by Werthamer et al. [11] for the results of the
fluctuation analysis of the magnetoresi stance and mag-
netization in the vicinity of the critical temperature.

It should be noted that the anomal ous dependence of
the upper critical field obtained from the results of
resistance measurements in overdoped HTSCs was
attributed by some researchers (see, e.g., [4]) to the so-
calledirreversibility line separating the regions of exist-
ence of nondamping supercurrents and vortex fluids. In
this study, the irreversibility field was determined on a
fixed level of R(H)/Ry(0) = 1072, which provides for a
very rough estimate from above for the true H;,, value
[42]. With this circumstance borne in mind, evident
guantitative and qualitative discrepancies between
H;(T) and H(T) for the same crystal (see Fig. 16)
indicate that it would be incorrect to identify the “resis-
tive" upper critical field H,(T) with characteristics of
the vortex ensemble.

As was noted above, the elegant construction [21]
gave grounds for a more sophisticated interpretation of
the anomal ous behavior of H,(T) in overdoped HTSC
cuprates. Figure 16 shows the results of fitting our results
to atwo-parametric relaionship for “pseudo-H,,” values
He, O Tlexp(=T/T,) derived in [21] within the frame-
work of the aforementioned model description of a
superconducting matrix containing a system of small
inclusionswith ahigher T.. Asisseen from Fig. 16, the
agreement between theory and experiment is far from
satisfactory, especially at high temperatures. In addi-
tion, the experimental R(T, B) curves obtained for the
BSCCO-2212 crystals studied exhibited no significant
features above T., as might be expected if the above
model were applicable. Thus, the experimental results
indicate that conclusions of thistheory are inapplicable
to the subject of investigation.

At the same time, the observed dependence can be
satisfactorily approximated by a number of other rela-
tionships, in particular, by a two-parametric depen-
dence predicted for the melting of avortex lattice. This
is apparently an accidental coincidence, sincethe exist-
ence of avortex crystal under the condition of nonneg-
ligible resistive response comparable with Ry is hardly
probable. In addition, theinitial portion of the observed
H(T) curve satisfactorily agrees with a behavior pre-
dicted within the framework of a 3D-XY model stipu-
lating a dominating contribution of the critical fluctua-
tions near T, [50]. Note, however, that the latter con-
clusion was obtained in [50] using an unreasonably
overstated value of T, which, in the author’s opinion,
decreasesthe reliability of thisresult. Finally, an H,(T)
curve with anegative curvature wasrecently reportedin
[51], where calculations using a 2D Hubbard model
with strong repulsion were performed assuming that
the van Hove singularity coincideswith the Fermi level.
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Fig. 18. Estimates of the H,(T) values obtained in this
work (solid curve) for a BSCCO-2212 crystal with T =
93.2 K compared to the published data for overdoped crys-
talswith T, = 87 K [36] (squares), 67 K [49] (open circles),
and 78 K [49] (black circles). Crosses present the data for
an underdoped sample [49] with T, = 68 K; dashed curve
shows an approximation of these data within the framework
of the model [46].

Unfortunately, no indications concerning applicability
of the derived formulas were provided in [51]. Thiscir-
cumstance somewhat decreases the significance of the
generally satisfactory agreement between athree-para-
metric theoretical asymptotics and the experimental
variation of dH./dT observed in wide temperature
interval (T/T;<0.9).

A markedly better agreement between experiment
and theory is observed, as can be seen from Fig. 16,
when the experimental data are approximated by a one-
parametric relationship Hg, = Ho (Tt — 1V2)%2 predicted
within theframework of thelocal pair theory [46] (here,
T=T/Ty, Hy O ®y/&?, &, isthe vortex quantum, and
& is a correlation length). Taking into account that the
parameter variation reduces to a trivial rescaling, the
observed agreement can be considered as evidence for
applicability of the theory [46].

In connection with this, it is expedient to mention
the results of recent measurements of the resistance of
BSCCO-2212 crystals with different levels of doping
[49]. It was established that the curves of H.,(T), deter-
mined as described above for two overdoped crystals
with T, closeto 78 and 67 K [49], not only qualitatively
agree with our data (see Fig. 18), but virtually coincide
with each other and with the results of Suzuki et al. [36]
(being plotted against reduced temperature). Thus, the
results reported in [49] can be considered as additional
and independent evidence for adequacy of the model
[46], which not only approximates the experimental
data, but provides a qualitative description of the non-
trivial resultin Fig. 18. Indeed, aweak sensitivity to the
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level of doping isinherent in the model [46] due to the
smallness of exponent at theratio I/n (1 isthe mean free
path length, and n is the carrier concentration) in the
parameter of the theory: & = (I/n)%?5. In addition, the
screening of impurity centers by carriers can, in princi-
ple, lead to agrowth of | with an increasein the level of
doping. In this hypothetical case, the I/n ratio will be
virtually independent of n, which probably explains
both the coincidence of results (Fig. 18) and a signifi-
cant difference of data observed for an underdoped
sample [49].

It should be noted that, besides a quite satisfactory
description of the characteristics of superconductivity,
the local pair approximation [46] (even specialy
refined for application to the system studied here) only
qualitatively agrees with the experiment in description
of the normal state [25]. At the sametime, aquasilinear
character of the longitudinal negative magnetoresis-
tance in the normal state of the crystal, which is one of
the most interesting results of this study, is worth a
more detailed analysis. In this context, of special inter-
est is the investigation performed by Morozov et al.
[30] in Los Alamos, where the measurements and
results of [23] were partly reproduced and an alterna-
tive explanation of the observed effect was proposed
based on an analysis of the tunneling of Cooper pairs
and quasiparticles in a layered superconductor with d
coupling. According to [30], the maximum of R(B)
revealed in [23] results from a competition of these two
contributions. A principal (and experimentally verifi-
able) conclusion from the description proposed in [30]
was an essentially nonlinear character of the current—
voltage characteristic in the regime of Josephson tun-
neling (in contrast to the linear character in the case the
tunneling of quasiparticles and for the flux flow
regime). It was believed [30] that direct proof of the
response nonlinearity was provided by the observation
of a strong distortion of the R(B) curve observed upon
atwofold increase in the probing current.

However, the above conclusion contradicts both the
results of this study and the data reported by other
researchers (see, e.g., [36]), which showed linearity of
the system response in the region of small currents. The
discrepancy between the results of apparently similar
experiments could not be explained by features of the
shape of the current—voltage characteristic (see Fig. 8),
because the parameters for which deviations from the
linearity were experimentally observed exceed the val-
ues employed in [30] by 1.5-2.5 orders of magnitude.8
At the sametime, it cannot be excluded that the discrep-

8A crystal with Tog =89 K and p.(100 K) =20 Q cm [30] occupies
an intermediate position between the samples studied in thiswork
(Teo > 91 K and p(100 K) = 15 Q cm) and the crystal used in
[36] (Teg = 87 K and p(100 K) = 33 Q cm. Taking into account
that a characteristic level of the current densities at which the cur-
rent—voltage characteristic deviates from ohmic in this study and

[36] was 10-50 A/cm?, there are no grounds to believe that the val-
ues lower by two orders of magnitude are sufficient in LosAlamos.
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ancies are related to the specific features of measure-
ments in a pulsed field, complicated by the uncon-
trolled overheating of a sample by the induction cur-
rents (see Subsection 2.2). Indeed, athough a
maximum rate of the field buildup in [30] was almost
60 times lower than the (0B/0t ), Value in this study,
the sample crystal area in [30] was about 60 times as
great asthat of the sample exhibiting pronounced man-
ifestations of the induction overheating in the experi-
mental setup employed here (Fig. 2) and 500 times as
great as the samples on which the main results were
obtained in this study. Although the data reported in
[30] do not allow a regular verification of the role of
induction overheating (see Subsection 2.2), the coinci-
dence of B* values determined using the field pulses
with B, =30T a50K and 60 T at 42 K (with afour-
fold differencein power dissipated in the crystal) is cer-
tainly indicative of a significant influence of overheat-
ing. An additional indication of therole of this phenom-
enon is adecrease in R*(T) and B*(T) below 40-50 K
observed in [30].

It is obvious that, under the conditions of overheat-
ing, any additional dissipation would unavoidably
increase this effect. This must be manifested, in partic-
ular, by a correlated decrease in the R* and B* values
with increasing current, which was in fact observed in
[30]. Within the framework of this scenario, an addi-
tional overheating of the crystal caused by a twofold
growth of the current was quantitatively estimated [48]
from achangein the position and amplitude of the R(B)
maximum [30]. Reduced to the measurements at the
same current density, the crystal temperature was inde-
pendently determined from both B*(T) and R*(T)
experimental curves. Consistent estimates of the degree
of overheating (3+ 0.5K and 2.1 + 0.7 K) obtained in
this way for the nominal temperatures of 35 and 55 K,
respectively, offer convincing evidence for the “over-
heating” nature of the effect and provide for a reason-
able explanation of the aforementioned discrepancy,
thusmaking trivial the key experimental result obtained
in[30].

Thus, it is highly probable that a discrepancy
between the results obtained in this study and those
reported in [30] arerelated to the determining influence
of overheating in the |atter experiment. This conclusion
removes the experimental basis from interpretation of
the negative magnetoresistance in terms of the tunnel-
ing of quasiparticles in a superconductor with nontriv-
ial coupling. Asaconsequence, the approach to the sep-
aration of the Josephson and quasiparticle tunneling
contributions proposed in [30] appears to be meaning-
less.

5. CONCLUSION
The interlayer magnetoresistance of a layered
Bi,Sr,CaCu,O, (BSCCO-2212) single crystal, repre-
senting aquasi-two-dimensional HTSC with T, > 91 K,
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was studied in the normal and mixed states. A self-con-
sistent description is provided for the experimental
results obtained under the conditions of controlled
ohmic crystal response and negligibly small induction
overheating.

The character of the longitudinal magnetoresi stance
is determined for the crystal in the normal state and
under the conditions of superconductivity suppression
by astrong magnetic field. An estimate of Ry (0, T), the
interlayer resistance in the absence of superconductiv-
ity, obtained by extrapolation agrees well with the
results of investigation of the superconductivity break-
down by a pulsed current. Based on these results and
recently published data, an interpretation of the origin
of the “quasi-particle” resistance of BSCCO-2212 is
proposed. The character of variation of the ohmic resis-
tance as afunction of the magnetic field and the temper-
aturein the region of the resistive state was experimen-
tally determined, and it is demonstrated that a self-con-
sistent description of the whole body of experimental
data can be provided within arestricted class of theoret-
ical models of the vortex state in HTSCs. A correlation
is found between the effective barrier heights deter-
mined on the two sides of theirreversibility line H;(T),
and it suggested that the two barriers may be of acom-
mon origin. It is established that a change in the char-
acter of the resistance variation above the level of
(0.05-0.1)Ry reflects the transition from temperature-
activated to viscous vortex (fluxoid) flow; the character
of the field dependence of the sampleresistance R(B) in
the latter state was determined. A method is proposed
for separating the temperature-dependent contributions
from the normal and resistive states to the total magne-
toresistance of acrystal. An anomalous character of the
temperature upon the shape of the superconducting
transition in amagnetic field was established. A critical
field H,(T) for the formation of a superconducting
nucleus in BSCCO-2212 was determined, and a quan-
titative correlation between various estimates of
H(T/T,) was found in a broad range of the doping
level. A systematic analysis of the results of investiga-
tion of BSCCO-2201 crystals revealed a quantitative
agreement between H, values determined using planar
and interlayer resistances, which is evidence for ade-
quacy of the method of H(T) determination used in
this study.

The experimental results are compared to theoreti-
cal dependences for the upper critical field; inapplica-
bility of the BCS theory to this case is demonstrated.
The experimental H,(T) is satisfactorily described by a
one-parametric relationship predicted for H,(T) in the
bosonic approximation.

An alternative explanation of the results, based on
the theory of interlayer tunneling of the Cooper pairs
and quasiparticles in a layered superconductor with d
coupling, is analyzed in detail, and it is shown that the
main conclusions of this model contradict the known
experimental facts.
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Abstract—Noise-induced escape from the basin of attraction of a quasi-hyperbolic chaotic attractor in the
Lorenz system is considered. The investigation is carried out in terms of the theory of large fluctuations by
experimentally analyzing the escape prehistory. The optimal escape trajectory is shown to be unique and deter-
mined by the saddle-point manifolds of the Lorenz system. We established that the escape process consists of
three stages and that noise plays afundamentally different role at each of these stages. The dynamics of fluctu-
ational escape from a quasi-hyperbolic attractor is shown to differ fundamentally from the dynamics of escape
from a nonhyperbolic attractor considered previously [1]. We discuss the possibility of analytically describing
large noise-induced deviations from a quasi-hyperbolic chaotic attractor and outline the range of outstanding
problemsin thisfield. © 2002 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Chaotic oscillations are observed in many fields of
physics. At least in two of these fields, hydrodynamics
and laser physics, chaotic dynamicsis described by the
same differential equations, the Lorenz system [2]. A
minimum set of equations for Benard—Rayleigh con-
vection (the Lorenz system) was derived by Salzman
[3]. Subsequently, Haken [4] showed that the Lorenz
system also describes the generation of alasing transi-
tion in asingle-mode laser with a uniformly broadened
spectral line when the cavity eigenfrequency is exactly
equal to the lasing transition frequency [5, 6]. The
Lorenz system is a classical model of low-dimension
chaos. It isused to study such fundamental problems of
nonlinear dynamics [7] as synchronization, chaos con-
trol, hidden information transmission, invariant recon-
struction from time series, and the like; whence the
unremitting interest of scientists in this system.
Increased interest in the Lorenz system also stems from
the fact that it exhibits quasi-hyperbolic chaos under
certain conditions. Since this chaos can be described
mathematically [8, 9], the results of numerical experi-
ments can be checked on the basis of arigorous theory.
Such a situation is not typical of systems with chaotic
attractors; the principal and virtually the only tools for
investigating the latter are the various numerical meth-
ods of solving differential equations and numerical
bifurcation analysis.

In attempting to relate the L orenz system to physical
experiments, it is essential to make alowance for the
influence of fluctuations on its dynamical regimes and
transitions. Note that the influence of fluctuations on

the fluctuational regimes of the Lorenz system was
studied in considerable detail both theoretically [10,
11] and experimentally [12, 13]. However, despite a
large number of studies, there are currently no answers
to many questions, including the key ones. What is the
dynamics of the Lorenz system during large noise-
driven deviations of thetrgjectory from achaotic attrac-
tor? Can the attractor quasi-potential be constructed?
What is the mechanism of noise-induced escape from
the basin of attraction of a quasi-hyperbolic attractor?
The latter question, related to the problem of noise-
induced transitionsin nonequilibrium systems, isafun-
damental problem in the fluctuation theory of nonequi-
librium systems [14]. It is of broad interdisciplinary
interest in terms of practical applications, for example,
for Josephson junctions connected in series [15], bio-
logical transport [16], and laser systems[17], aswell as
in controlling transitions between attractors in multi-
stable systems [18-20].

Recent progress in solving the problem of noise-
induced transitions in nonequilibrium systems driven
by colored noise [21-25] and a nongradient [26-29] or
periodic external force [30-32], aswell asin self-oscil-
lating systems [33, 34], has been achieved through the
use of Hamiltonian formalism [35] or its equivalent
formalism in terms of path integrals. The idea of opti-
mal trgjectories along which the system fluctuates to
states far removed from equilibrium [36] underliesthe
Hamiltonian approach. A mathematical variant of
these physical conceptsis embodied in the asymptotic
formulas for solving the Fokker—Planck equation
written in terms of rays (i.e., the solutions of the
Hamilton equations) or fronts (i.e., the solutions of the
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Hamilton—Jacobi equation). Since the Hamiltonian for-
malism is successfully used to solve many problems of
the nonequilibrium fluctuation theory, the question of
how it can be generalized to a broader class of dissipa-
tive systems, including chaotic ones, now acquires par-
ticular urgency. The difficulty of this generalization
complicates the direct application of analytical meth-
ods. Recently, however, a new experimental approach
to investigating optimal trgjectories [37] has been pro-
posed. It isbased on the Hamiltonian formalism and on
measurements of the so-called probability distribution
of the fluctuational prehistory. This method basically
involves continuously tracking the system dynamics
and constructing the distribution of all realizations of
the fluctuational tragjectories that bring the system from
equilibrium to a given remote state. The advantages of
this approach were demonstrated [38—41] by studying
some fundamental properties of the symmetry of opti-
mal trgjectories and singularitiesin their distribution. It
has recently been shown [1, 20] that based on a statisti-
cal analysis of the dynamics of fluctuational trajecto-
ries, the method can be used to find the optimal trajec-
tory for the noise-induced escape from the domain of
attraction of a chaotic attractor in anonlinear oscillator
driven by a periodic external force. Beyond the bound-
aries of the chaotic attractor, this trajectory was shown
to be unique and formed by the coalescence of several
equally probable tragjectories that emerge from the cha
otic attractor. In [1, 20], we studied escape from a non-
hyperbolic attractor. Here, we investigate noise-induced
escape from a quasi-hyperbolic chagtic attractor in the
Lorenz system and, thus, answer the question of how
the mechanism of escape from a chaotic attractor
depends on its structure.

The paper consists of three sections. In Section 2,
we consider the Lorenz system and the structure of its
phase space. The basics of the theoretical approach in
terms of the Hamiltonian formalism and the experimen-
tal approach based on measuring the fluctuational pre-
history are presented in Section 3. In this section, we
also consider the influence of fluctuations on the prob-
ability measure of a chaotic attractor. Our results are
presented and discussed in Section 4. In the Conclu-
sion, we summarize our conclusions and outline the
range of outstanding problems.

2. THE LORENZ SYSTEM

TheLorenz system was originally obtained asasim-
plified model to describe the convection of a fluid
between two planes with different temperatures, with
the temperature and gravitational gradients being
directed oppositely [3]. Thismodel can be written as

4, = 0(02—0qy),
G, = rd;—0g,—0q;0s,

. ()
ds = 0,0, —bags +&(1),
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[E()0 =0,

or, in vector form,
q = K(q) +f(1),
K = {K;, K;K3

LE(D)E(0)d = Da(t),

={0(9,-qy),rq; -0, —0,0s, 914, —bagd , (2
f(t) = {0,0,&(t)},
Dfi(t)fj(o)D = DQijé(O),

00 = 0,
Qij = 6i36j3-

Here, 0;, Oy, 03 are the dynamical variables; and o, r, b
are the parameters that have the following physical
meaning in the context of fluid convection: o is the
Prandtl number (theratio of kinematic viscosity to ther-
mal diffusivity), r = R/R; isthe reduced Rayleigh num-
ber (R is the Rayleigh number and R, is the critica Ray-
leigh number at which convection arises), b = 41¢/(T¢ + k?)
is a constant that characterizes the physical size of the
system, k is a dimensionless number related to the spa-
tial periodicity in the arrangement of fluid waves, q; is
proportional to the intensity of the convective motion,
g, isproportional to the temperature difference between
therising and sinking fluid flows, and g5 is proportional
to the deviation of the vertical temperature profile
between the planes from the linear one. To simplify our
analysis, we add a white-noise source &(t) only to the
third equation of system (1), which does not break
down the system mirror symmetry; D isthe noiseinten-
sity; 9(t) is the delta function; and &;; and & are the
Kronecker symbols.

Equations (1) also describe traveling waves excited
in aring cavity filled with two-level atoms with a uni-
formly broadened spectral line [4]. With respect to a
laser system, the variables and parameters of system (1)
can beinterpreted as follows: g, and g, are the normal-
ized amplitude and polarization of the electric field,
respectively; s is the normalized population inversion
in the atomic system; o = kfy;, r = A+ 1, and b = y,/y;,
where kis the field relaxation rate in the cavity, y; and
Y, are the polarization and inversion constants, respec-
tively, and A is the pumping parameter. Note that an
infrared laser was suggested as a realization of the
Lorenz system [12].

The Lorenz equations are simple in structure and
contain only two nonlinear terms. Let us briefly con-
sider the main bifurcations in system (1).1 We fix o =
10 and b = 8/3 and vary the parameter r. In this case,
there are two global bifurcations. Their diagram is
shown in Fig. 1. A supercritical pitchfork bifurcation
(triple-equilibrium bifurcation) [7] isobserved at r = 1;

1 A more detailed and rigorous bifurcation analysis of the Lorenz
system can be found in [8, 9].
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the equilibrium position &t the coordinate origin O(0, 0, 0)
becomes unstable and two stabl e states appear:

P,(/b(r=1), J/b(r=1),r -1)

and

Po(=/b(r —1), =/b(r -1),r - 1).

There are two stable equilibrium positions (stable foci)
P, and P,, asaddle equilibrium position O, and its one-
dimensional unstable and two-dimensional stable man-
ifolds in the phase space of the system. The two
branches of the unstable manifold are the separatrices
of the saddle point O.

The second bifurcation is observed at

_0(o+b+3) _
== = 2474, (3)
when the foci P, and P, lose their stability and the cha-
otic attractor becomes the only attractor in the system.

In addition, we note two local bifurcations.

A biasymptotic homoaclinic contact of the separa-
trices of the saddle point O (not shown in Fig. 1) takes
placeat r = 13.926. When r passes through this bifurca-
tion value, two saddle cycles, L, and L,, are generated
and aone-dimensional (in Poincaré section) hyperbolic
chaotic set Q, appears. Since this set is not attracting,
the foci P, and P, that the separatrices of point O
approach remain the system attractors. The second
local bifurcation takes place at r = 24.06. The separa-
trices of the saddle point O are no longer closed at P,
and P, but approach the unstable manifolds of the sad-
dle cycles L, and L,. As aresult, a stable two-dimen-
siona (in Poincaré section) chaotic set Q,, the Lorenz
attractor, emerges at the location of the unstable set Q,
for r > 24.06. The rough saddle cycles with their stable
manifolds transverse to the attractor are everywhere
dense in the chaotic Lorenz attractor. Apart from the
saddle cycles, the set Q, contains the separatrices and
the saddle point O. Thelatter isdetermined by the exist-
ence of two (because the Lorenz system is symmetric)
trajectories, T, and T, (Fig. 2), which emerge from the
chaotic attractor, fall on the stable manifold Ws of the
saddle point at some point A, and then approach point
O and, hence, separatrices ', and I',. The existence of
a saddle point in the chaotic attractor defines the non-
hyperbolicity of the Lorenz attractor and the prefix
“guasi” in the definition of a quasi-hyperbolic chaotic
attractor [9]. The equilibrium positions P; and P,
remain stable.

Thus, the two stable equilibrium positions and the
chaotic attractor coexist in the phase space of the
Lorenz system for r [0 [24.06; 24.74]. Let us fix r =
24.08 in this range and consider noise-induced escape
from the chaotic attractor to the basin of attraction of
the equilibrium states. In other words, we consider
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One | Two equilibrium positions d
equilibrium Chaotic
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Fig. 1. A bifurcation diagram of the Lorenz system for ¢ =
10 and b = 8/3. The dashed and solid lines indicate unstable
and stable states, respectively.
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Fig. 2. Separatrices ', and I' , and the two-dimensional sta-
ble manifold W* of the saddle equilibrium position O. The
saddlecyclesL and L, areindicated by circles. Trajectories
T, and T, (see the text) are represented by the heavy lines.

large noise-induced deviations from the chaotic attrac-
tor.

Let us first investigate the structure of the phase
space of system (1) for the coexisting stable equilib-
rium positions P, and P, and chaotic attractor at thefol-
lowing parameters. 0 = 10, b=8/3, and r = 24.08 (Fig. 3).
The equilibrium positions P, and P, have three negative
eigenvalues (—13.627, —0.020 + i9.504, and —0.020 —
19.504), with the last two being complex conjugate.
This implies that the two eigendirections of points P,
and P, form a two-dimensional surface: the rate of
attraction on this surface is much smaller than the rate
of attraction in the first eigendirection.

The saddle cycles L; and L, surround the states P,
and P, and lie at the intersection of the two-dimensional
unstable and stable manifolds [42]. The unstable mani-
fold on one side goes to the equilibrium positions and
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Fig. 3. Structure of the phase space for the Lorenz system.
The thin solid line is the trajectory of the chaotic attractor,
the dashed line indicates separatrices ™y and ', and theini-

tial segment of one of the escape trajectories is represented
by filled circles.

is closed there, but on the other side it goes to the cha-
otic attractor. The stable manifold forms a tube near the
equilibrium positions [42]. Since the saddle cycles have
the multipliers (1.0000, 1.0280, 0.0001), the trgecto-
ries slowly go away from the cycles along the unstable
manifold and rapidly approach aong the stable mani-
fold.

The boundaries of the chaotic attractor are specified
by the initial segments of the separatrices that closely
approach the saddle cycles L; and L, (see Fig. 2) and
theoretically [9] belong to the attractor. However,

ANISHCHENKO et al.

numerical studies show that the probability of the tra-
jectory falling in the neighborhood of the separatricesis
exponentially small compared to the probahility of its
being in other segments of the chaotic attractor. Indeed,
this probability is determined by the probability of
motion in the neighborhood of trgjectories T, and T,
(Fig. 2). Computations indicate that, for the system tra-
jectory to fall within e = 0.1 of the separatrix, it must
pass in the close neighborhood of T, and T,, € = 107,
which isunlikely.

Based on the calculated time during which a trajec-
tory staysin a given neighborhood of the attractor, we
computed the probability measure of the chaotic attrac-
tor for the Poincaré section g; = r — 1. The form of the
Lorenz attractor in the sectionisknown [8] to be similar
to a one-dimensional curve in the g;—q, plane. This
allows us to pass from the two-parameter to the one-
parameter probability measure [43] and to consider the
probability measure p(q;) for one coordinate. The prob-
ability measure p(q,) in the Poincaré sectiong; =r —1
(trajectories crossing the g; = r — 1 plane from the bot-
tom upward were taken into account) has the form
shownin Fig. 4a. We see that the probability of the cha-
otic-attractor trajectory falling in the neighborhood of
separatrices ', and I, is exponentialy small, and the
typical trgjectory rarely visits the neighborhood of the
unstable manifolds of the saddle point O with a proba-
bility much larger than zero. The probability measure
changes only dightly in the presence of noise, as previ-
ously shown theoretically in [10, 11]. In the presence of
noise, however, the probability of the trgjectory falling
in the neighborhood of the separatrix increases (Fig. 4b).
Thus, the probability measure of the chaotic attractor
has a smooth structure without singularities, p(q,) is

(d)
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Fig. 4. (8) The logarithm of probability measure p(q;) for q; > 0 computed in the absence (solid curve) and presence (dots) of noise
of intensity D = 0.001. The logarithm of probability measure p(q,) for g; < 0 has the same form, and it can be obtained by substi-
tuting —q, for g;. The solid vertical lines mark the coordinates that correspond to the intersection of the gz = r — 1 plane with the
separatrices of the saddle point O from the bottom upward. (b) Thetail [an enlarged part of panel (8)] of probability measure p(d;)

computed in the absence (thin solid curve) and presence (dash—dotted curve) of noise of intensity D = 0.001. The solid and dashed
vertical lines mark the coordinates that correspond to the intersection of the gz =r — 1 plane with the separatrix and the optimal escape

trgjectory from the bottom upward. The heavy solid curve represents the distribution of escape trgjectories in Poincaré section.
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nonuniformly distributed over the attractor, there are
regions with an exponentially small probability of the
trajectory falling within them, and the presence of noise
does not change qualitatively the distribution structure
but increases the probability of the trgjectory being in
the neighborhood of the separatrices.

Our analysis of the basins of attraction of the sta-
tionary points P, and P, in three-dimensiona space
shows that the separatrices lie virtually at the bound-
ariesof thebasinsof atractionintheinterval 0<g;<5.1n
addition, the separatrices come close to the basin
boundaries of P, and P, in the neighborhood of the sad-
dle cycles L, and L,. Thus, within a large region of
phase space, the separatrices and, hence, the chaotic
attractor come close to the boundaries of the basins of
attraction of the stationary points. Therefore, we may
assume that escape from the chaotic attractor can be
observed at any location where the separatrices come
close to the boundaries.

Thus, we see that, in the presence of noise, thereis
a finite probability of fluctuational escape from the
basin of attraction of the quasi-hyperbolic attractor in
the L orenz system. Before discussing the mechanism of
fluctuational transitions and the possibility of analyti-
cally estimating the escape probability in the Lorenz
system, we briefly describe the experimental methods
for investigating the fluctuational dynamicsin nonequi-
librium systems.

3. THE FLUCTUATIONAL PREHISTORY
PROBABILITY DISTRIBUTION
AND ANALY SIS OF NONEQUILIBRIUM
FLUCTUATIONAL TRANSITIONS

The probability characteristics of the Lorenz system
in the presence of white Gaussian noise are described
by the solution of the Fokker—Planck equation

p__0
3 aq,K i(a)p

D 9°
Zaq,aq,

which is written for the corresponding Langevin equa-
tions (2); here, p = p(q, t) isthe probability density that
the system will bein state g at time t. In principle, the
solution of the Fokker—Planck equation provides the
most compl ete information on the dynamics of the dis-
tribution function for system (2). However, for systems
far from thermal equilibrium, for which the detailed
balance condition is not satisfied [in particular, for our
Lorenz system, the detailed balance condition [11] is
not satisfied, because the vector field of system (2) is
not potential], there are no general methods for solving
(4). Therefore, various approximate approaches are
used to describe the fluctuational dynamics of such sys-
tems. Thus, the idea of optimal trgjectories and the con-
cept of the fluctuational prehistory probability distribu-

4
(Qup) Qij = 6

i35j3a
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tion proveto be very useful. By definition [37], thefluc-
tuational prehistory probability distribution p,,(q;, t;; g,
t; q;, t;) specifies the probability that the system is at
point g at time t, provided that the system was at point
g; a initial timet; and that its position at final timet; is
at point g; (t; <t <t). Thus, p, describes the dynamics
of the distribution function during the system transition
from state (q;, t;) to state (g, t;) normalized to the prob-
ability of thetransition between these states. This quan-
tity differs from the ordinary conditional probability,
because both the initial and the final state of the system
are fixed in the definition of py, (see[37, 44] for details).
Note also that the definition of p,, imposes no constraints
either on thetimest; and t; or on the noise intensity D.

It was shown in [37] that direct experimental mea-
surements of p;, can reveal important information on the
fluctuational dynamics of the system. Such measure-
ments are of particular importance in investigating
noise-induced transitions in nonequilibrium systemsin
the weak-noise limit. It turns out that the prehistory
probability distribution p,, for D — 0 hasasharp peak
along some deterministic trajectoriesin the system con-
figuration space. The trgjectories determined in this
way are called optimal trgjectories. In general, thereis
only one optimal trgjectory that couples the specified
initial and final states of the system.

To determine the optimal trgjectories, we must turn
to an asymptotic analysis of the solution to the Fokker—
Planck equation for D — 0 (see, e.g., [21-41, 43—
59]). In this approximation, D is a small parameter of
the equation and, by analogy with the WKB approxi-
mation, the stationary (for t —» o) probability density
can be written as (see, e.g., [35])

p(a)=C)epF2 for 00, (9

The quantity §q] is the activation energy of the fluctu-
ations near point g [11, 47], and C(q) is the preexpo-
nential factor. Substituting (5) in (4) and collecting the
terms proportional to D, we obtain [35] the Hamilton—
Jacobi equation for §q] (see also [11, 29, 33, 45, 46])

0S 0S]
5t " H aq
Lo OH g oH g 1. 0
q_apl p_ aq1 _Zp’ p_aq
Here, H is the Wenzel—Freidlin Hamiltonian [35], and
Jq] can beinterpreted asthe classical action of system
(6) that determines the energy spent on the system
switching from state g; to state g;. In general, §q] isa
multivalued function of g;. However, the minimum acti-
vation energy min §q] has a physical meaning (i.e,, is
a physically observable quantity). The optimal force
Popt (t) and optimal trajectory g, (t) of system motion
from q; to g; calculated from (6) corresponds to this
energy. If the initial time corresponds to —o, then

=0, H= %pr+pK(q),
(6)
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mingq] defines the quasi-potential of the nonequilib-
rium system (2) [11, 43, 47]:

p(@)=C@epT el 14 0. ()

Thus, in the weak-noise limit, the stochastic dynam-
ics of the system is described in terms of motion along
the optimal (in terms of energy expenditure) trajecto-
ries qoy (ti, Ois t; i, gf); here, g; istheinitial state of the
system and ¢ is the specified point in the space of sys-

tem states located at distances much larger than /D
from the attractor.

It isworth noting that the Hamiltonian in (6) issim-
ilar to the Pontryagin Hamiltonian, which corresponds
to the problem of switching system (2) from state g; to
state g; while minimizing the energy of the additive
control function [20] in the absence of constraints on
the form of the function and on the switching time.

If we choose the initia state g; on the attractor and
the final state g; at the attractor boundary, then the
extreme tragjectories described by Hamiltonian (6) corre-
spond to the paths of escape from the attractor and the vec-
tor p, which tendsto zero whent, —» —o0 and t; —» oo,
determines the fluctuational force that switchesthe sys-
tem from one state to the other along a given escape
path [40, 48].

This formalism corresponds to the following physi-
cal picture of noise-induced escape from the basin of
attraction of an attractor: the system spends most of the
time in fluctuating near the attractor but executes rare
fluctuations that cross the attractor boundary. When
such rare fluctuations take place, the system moves
along amost a deterministic (optimal) trajectory. In
general, the trajectory of escape from the domain of
attraction is unigque (or there are several such trajecto-
ries, because the system is symmetric) [30, 49-51]. For
regular fixed-point and limit-cycle attractors, this phys-
ical picture of noise-induced escape was confirmed
numerically [14, 15, 39, 46].

Notethat the optimal trajectoriesin equilibrium sys-
temsare symmetric in timeto the system relaxation tra-
jectories [36] and, hence, these can be determined, at
least in principle, asthe time-reversed rel axation trajec-
tories of a deterministic system. Since there is no such
symmetry in nonequilibrium systems, investigating the
fluctuational prehistory is of fundamental importance
in understanding the mechanism of fluctuational escape
from an attractor.

An experimental method proposed by Dykman [37],
in which information on all trajectories in close neigh-
borhood of the chosen state g; outside the attractor is
gathered, can be used to study the dynamics of large
deviations from the attractor and to determine the
optimal escape path. In this experimental method, the
behavior of the dynamical variables q(t) and the ran-
dom force f(t) istracked continuously until the system
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makes a transition from the attractor to the neighbor-
hood of state g;. Escape trajectories g=(t) of the

required duration and noise redlizations f (t) of the
same duration are then conserved; subsequently, the
system forcefully returns to the basin of attraction of
the attractor, with the initial conditions in the basin
being chosen randomly. Thisis how an ensemble of tra-
jectories is collected and how the fluctuational prehis-
tory probability distribution p,(q, t; g;, t;) is con-
structed for thetimeinterval during which the systemis
observed. This distribution contains al the information
on the temporal evolution of the system immediately
before the trgjectory arrives at g;. The existence of an
optimal path of escape from the attractor is diagnosed
from theform of p,,: if thereisno optimal escape trajec-
tory, then p;, a a given time has a sharp peak at point
qopt(t; t;, gs). Thus, when experimentally studying py, it
ispossibleto find aregion in the phase space of the sys-
tem within which the optimal path is clearly seen, i.e.,

the region with a distinct, narrow (of the order of /D

[37, 52]) peak of the distribution. In this case, the opti-
mal fluctuational force that movesthe system tragjectory
outside the attractor along the optimal path can be esti-
mated by averaging the noise realizations f *°(t) over
the ensemble. Note that investigating the fluctuation
prehistory also allows us to verify the concept of opti-
mal fluctuations and to determine the ranges of system
parameters for which optimal paths exist. We used this
experimental approach to study the escape from a
quasi-hyperbolic Lorenz attractor.

By studying large noise-induced deviations, we can
judge the system stability against noise perturbations
and can develop ways of controlling the system dynam-
ics in the absence and presence of noise [20, 48, 55].
Thus, for example, it was shown in [20, 55] that the
problem of deterministic optimal (from an energetic
point of view) control of the system transition from a
chaotic state to aregular state can be solved by deter-
mining the optimal escape paths and the optimal fluctu-
ational force. It was also shown in these papers that an
experimental determination of the optimal trajectories
based on the theory of large fluctuationsis currently the
only approach to solving the deterministic problem of
optimal control of transitions between attractors in a
chaotic system. The investigation of large fluctuations
istherefore of importance in practical applications.

The Hamiltonian formalism presented above makes
it possible to theoretically describe the fluctuational
transitions in nonequilibrium systems. However, direct
application of thisapproach to chaotic systemsinvolves
several fundamental difficulties. These difficulties are
primarily related to the uniqueness of the solution, to
the uncertainty of the boundary condition g; on a cha-
otic attractor, and to the determination of the probabil-
ity measure on the attractor itself. In general, when the
chaotic attractor has fractal boundaries of its domains
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of attraction, the problem of determining the second
boundary condition g; arises.

As yet no theoretical procedure has been devel oped
to calculate the probability of fluctuational escape from
the basin of attraction of achaotic attractor. Previously,
however, (see, eg., [14, 45, 53, 54] it was shown that
the Hamiltonian formalism can be generalized to cha-
otic systems. In this case, studying the uniqueness of
the solution and boundary conditions becomes of cur-
rent interest and importance. One possible approach to
their solution is the experimental method described
above. It alows us to find an approximate solution to
the problem of fluctuational transitionsin systems with
chaotic attractors by dtatistically analyzing direct
observations of the transition dynamics. We demon-
strated the efficiency of statistical analysis of the exper-
imentally measured fluctuation prehistoriesin[1, 20] in
relation to the problem of escape from a chaotic attrac-
tor through a nonfractal boundary for a periodically
driven nonlinear oscillator. Below, we present the
results of our study of fluctuational transitions in the
Lorenz system.

4. AN EXPERIMENTAL STUDY
OF THE FLUCTUATION PREHISTORY

Let us consider fluctuational escape from the cha-
otic attractor of system (1) by using the experimental
approach described above. Before analyzing the results
of our studies, we note two fundamental paints.

(1) The method described above allows the trajec-
tory corresponding to a global minimum of the escape
energy to be determined if the relaxation time to an
equilibrium distribution on the attractor, t.4, is much
shorter than the time of the system fluctuational escape
from the basin of attraction of a given attractor, t.:
ta <<t The fluctuational escape time exponentially
increases with decreasing noise intensity D as te, U
exp(SD), where Siis the escape “energy”. Since D is
always finite in practice (because the observing times
are necessarily finite), the satisfaction of the condition
ty <<t iSprimarily relatedtot,y, i.e., to the properties
of the equilibrium distribution on the attractor.

It was shown in [1, 20, 55] that, for a chaotic attrac-
tor in a periodically driven nonlinear oscillator, the
noise intensity can be chosen in such a way that the
condition t,4 << t. issatisfied. In this case, the optimal
trajectory found does not depend on the initial condi-
tions on the attractor or on the noise intensity.

For the Lorenz system, the situation is different. As
was pointed out above, the probability of the system
being in the neighborhood of the manifolds of the sad-
die point O is exponentialy small. It may be said that
the equilibrium distribution function on the attractor
has tails similar to the tails of a Gaussian distribution
and the trgjectory falls on these tails rarely. Moreover,
our reasoning that the trajectory must come arbitrarily
close to the saddle-point manifolds whent — oo is
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based on a theoretical analysis of the Lorenz system,
while numerical studies show that this probability is
zero for sufficiently long but finite computational times
(of the order of two weeks). Thisimpliesthat the relax-
ation time to an equilibrium distribution on a quasi-
hyperbolic chaotic attractor is much longer than the
realisticaly feasible observing times. Consequently,
for the Lorenz system, we have to investigate the
dynamics of fluctuational escape within a finite time
interval. In this case, the question of how the solution
obtained depends on theinitial conditions on the attrac-
tor and on the noiseintensity for the Lorenz attractor is
till an open question (cf. the studies of nonequilibrium
trajectories [56, 57]). However, the experimentaly
found escape scenario (see below) suggests that a
decrease in hoise intensity cannot result in qualitative
changes of the escape trajectory.

(2) The prehistory probability distribution was ini-
tially derived in [37] to investigate the motion of trajec-
tories far from the attractor. The results presented in
Section 2 show that the boundaries of the Lorenz attrac-
tor (separatrices I'; and I',) come very close to the
boundaries of the basin of attraction; the attractor has a
highly nonuniform distribution, and no motion along
some parts of the attractor is observed in the absence of
noise. Therefore, we extend the approach based on an
experimental study of the fluctuational prehistory [37]
to investigate the fluctuational deviations within the
Lorenz attractor.

We investigated the fluctuational escape by numeri-
cally solving the stochastic differential equations of
system (1) using the Heun method (equivalent to the
Runge—Kutta method) [60] and a high-speed pseudo-
random sequence generator [61]. The noise intensity
was D = 0.01. For definiteness, we consider the transi-
tion from the chaotic attractor to state P; (see Fig. 3).
Since the system is symmetric, the mechanism of the
transition to state P, is the same and the quantitative
characteristics of the transition can be obtained by
changing the variables (g, 0, Gs) to (—0y, 0, Gg)-
According to the experimental approach described
above, we gathered the ensemble of escape trajectories
{(au(t), (1), as(t))i}, i = 1, N and the corresponding
ensemble of noisereadizations{((t));},1 =1, N; here, i
is the realization number and N is the number of real-
izations (in our studies, N = 1000).

Figure 5a shows several numerically simulated
escape trajectories. We see that two narrow bundles of
trajectories come close to the saddle point O from the
neighborhood of points Sand then slightly diverge and
fall into the neighborhood of the saddle cycle L, while
moving along separatrix I, (see also Fig. 3). The two
bundles of trajectories from points Sto point A exist,
because the Lorenz system is symmetric, suggesting
the only path along which the trgjectories move in the
neighborhood of point A. Note that the trajectories also
approach the neighborhood of point S by narrow bun-
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Fig. 5. (8) Ten trajectories of escape from a chaotic attractor in state P4 obtained by numerically simulating system (1). The filled
circlesindicate separatrix 2; the saddle cycle L, isindicated by open circles. (b) Ten trajectories of escape from a chaotic attractor
(solid lines) and ten deterministic trajectories (dashed lines) with theinitial conditions coincident with the coordinates of the escape

trajectories near points S,

dles, suggesting that the behavior of the trajectories for
the Lorenz system is predictable on long time scales.

The next step must be a statistical analysis of the
ensemble of redlizations. constructing the prehistory
probability distribution p,(q;, 9,, 9;, t) and the ensem-
ble-averaged fluctuational force, which is an estimate
of the momentum p4(t) and, accordingly, an estimate of
theaction §q] for system (6) [20]. Thisrequires match-
ing the ensembles of realizations at some characteristic
point. Strictly speaking, this characteristic point must
be a point near the boundaries of the basins of attrac-
tion. However, because of the slow diffusion of the sys-
tem near the attractor boundaries, an averaging over the
initial conditions takes place (cf. [58, 59]), the fluctua-
tiona trajectories cross the basin boundary in a fairly
wide region, and one point cannot be fixed in the neigh-
borhood of the basin. In [1, 20], we chose a character-
istic segment of the escape trajectory instead of a char-
acteristic point. Based on the pattern of escape shown
in Fig. 5a, we can choose a segment near point A, where
the bundle of tragjectoriesis narrow, asthe characteristic
segment. The statistical characteristics constructed for
this characteristic segment are shown in Figs. 6a, 7a,
and 7c. The prehistory probability distribution has a
distinct and unique peak in the time interval 50 < t/h <
250 (the region between the dashes in Fig. 6a). In this
interval, the fluctuational force p; is zero (Fig. 7a) and
the dispersion D,, of the distribution decreasesto amin-
imum (Fig. 7c¢). Subsequently, the distribution peak
spreads, the fluctuational force becomes nonzero, and
the dispersion increases sharply. We see (Fig. 6a) that
after passing point A, the escape trajectories diverge
and there is no longer any distinct peak in the distribu-
tion p,(gs, t). All trajectories after point A fal in the
neighborhood of the saddle cycle L; but the times of
system motion along different trgjectories in this seg-
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ment are different. Thisbehavior of the escape trajecto-
riesis determined by the stable manifold of the saddle
point O: the time of motion to point O along the stable
manifold itself tends to infinity. If the trgjectory runs
alongside the manifold, then the time of motion along
it isfinite; the further the point isfrom the manifold, the
larger isthistime. For this reason, the trajectories near
the saddle point O are therefore very sensitiveto fluctu-
ations; the escape tragjectories traverse the segment
from point A to cycle L, in different times, and, there-
fore, the peak of the fluctuation prehistory probability
distribution spreads. This implies that choosing the
neighborhood of point A as the characteristic segment
allows us to analyze the behavior of the escape trajec-
tories only up to point A. For the subsequent analysis,
we must choose a different characteristic segment
located after the saddle point O, for example, the neigh-
borhood of point B (see Fig. 5a). Since the gz coordi-
nate reaches its maximum in this segment, which can
be easily diagnosed by the time series of the system, it
will suffice to bring the escape trajectories into coinci-
dence to construct the distribution p,(q;, 0, 0s, t). The
statistical characteristics for point B are shown in Figs.
6b, 7b, and 7d. We see that the situation is opposite for
point B: a distinct peak of the distribution p;,(gs, t) is
observed at t/h > 230 (the region to the right of the dot-
ted linein Fig. 6b), at which the fluctuational forcep;is
nonzero (Fig. 7b) and the dispersion D, of the distribu-
tion reaches a minimum (Fig. 7d). Consequently, there
is only one optimal escape trajectory along which the
system moves from point O into the neighborhood of
the saddle cycleL;.

Our analysis of the prehistory probability and fluc-
tuational force shown in Figs. 6 and 7 suggests the fol-
lowing scenario for the escape from a quasi-hyperbolic
attractor. The escape trajectory can be broken down
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Fig. 6. Projections of the escape prehistory probability distributions onto the gz coordinate axis for the characteristic points (a) A
and (b) B. The horizontal axes are normalized to the integration step h = 217200. The zero times for distributions (a) and (b) are

different.

into three segments (Fig. 8). Segment 1 corresponds to
the motion within the attractor, which requiresno noise.
The escapetrgjectory starts at some characteristic point
of the chaotic attractor (point Sin Fig. 5a). This point
belongsto atypical attractor trajectory. The probability
of the system trgjectory being in a close neighborhood
of point Sin the absence of noise is much larger than
zero. After point S, the escape trgjectory falls into the
neighborhood of the stable manifold (point Ain Fig. 5a)
of the saddle point O, where the dispersion of the pre-
history probability distribution is at aminimum (Fig. 7c).
At this time, the fluctuational force is close to zero
(Fig. 7a). The motion in the segment from point S to
point A is completely deterministic, and noise does not
change qualitatively the trajectory behavior [10, 11].
Indeed, if the noise sourceis removed at the time when
the trajectories pass point S then the trajectories will
fall into the neighborhood of point A in a deterministic
way; the bundlewill remain narrow (see Fig. 5b). How-
ever, after passing point A, the trgectories in the
absence of noise arelocated far from the saddle point O
and separatrices; and I,
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Subsequently, under the action of the fluctuational
force, the escape trajectory approaches the saddle point
O along the stable manifold of point O and then recedes
from it along separatrix I, and falls into the neighbor-
hood of the saddle cycleL,. Thetrajectory motion from
the neighborhood of the stable manifold of the saddle
point O to the saddle cycle L, correspondsto segment 2
(Fig. 8; seedso Fig. 1). Inthis part of the path, the fluc-
tuational force follows the trgjectory of the system g,
coordinate; the force and the system trajectory may be
said to be in phase. The escape trajectories in the sec-
ond segment form a broad bundle (Figs. 5a and 6a)
around some most probabl e escape path, which can be
understood as follows. A narrow bundle of trgjectories
comes to point A, but this bundle has afinite width. As
was aready pointed out above, thereis alarge sensitiv-
ity to small deviationsin the neighborhood of the man-
ifolds of point O and the trgjectories therefore diverge
in a wide fan in the absence of a certain fluctuational
force (see Fig. 5b). Under the action of fluctuations,
however, the bundle width significantly decreases, but
it remains much larger than the bundle size in the
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neighborhood of point A. Thus, the fluctuational
force begins to act after the trajectories passed point A

(segment 1).

In segment 3, the escape trgjectory moves along the
unstable manifold of the saddle cycle L; and crosses

P3
50
q3
40 {
20

1025 ]

500 1000 1500 2000 2500

t/h

Fig. 8. The typica escape trgjectory obtained by numeri-
cally simulating system (1). The horizontal dash—dotted
lines indicate the boundaries of cycle L. The horizontal
axis is normalized to the integration step h = 217200. The
averaged fluctuational force is shown at the top.
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cycle L,. The escape trajectory and the fluctuational
forcearein antiphase, whiletheforceitself showsadis-
tinct oscillatory behavior, with its period being close to
the system oscillation period (Fig. 7d). We also seethat
the fluctuational force does not vanish for along time.
The oscillatory behavior and long duration of the fluc-
tuational force can be explained as follows. In the
absence of fluctuations, the system trajectories go away
from the saddle cycle aong the unstable manifold very
slowly, because the corresponding multiplicator is only
dightly larger than unity. In this case, the fluctuational
force can produce weak pushes during a long period
toward the saddle cycle against the direction of trajec-
tory motion along the unstable manifold. After the tra-
jectory crosses the cycle, it also slowly relaxes to the
equilibrium position P;.

Thelong duration of segment 3 in the escape trajec-
tory leads us to conclude that thereis no close relation-
ship between this segment and the two preceding ones.
Therefore, the escape process may be broken down
into two independent stages. the trgjectory expulsion
into the neighborhood of the saddle cycle L, and its
crossing.

AND THEORETICAL PHYSICS Vol. 94
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5. CONCLUSION

Thus, the escape trajectory is unique and lies on the
manifolds of system (1) that belong to the chaotic
Lorenz attractor. The role of fluctuations is, first, to
deliver the system trgjectory to ararely visited region of
the attractor and, second, to induce the saddle-cycle
crossing—the escape trgjectory lies on the unstable
manifold of the saddle cycle. Our results show that the
most probable escape trgjectory may be broken down
into three segments (Fig. 8). The mation in thefirst seg-
ment is completely deterministic, while the tragjectory
path in the second and third segments is determined by
anonzero fluctuational force. Therefore, the probability
of escape from a chagtic attractor can be calculated as
a product of the probabilities of successive transitions,
P1, P2, and ps, where p, isthe probability of the chaotic
trajectory faling into the neighborhood of point Sinthe
absence of noise, p, is the probability of the trajectory
expulsion from the neighborhood of point A into the
neighborhood of the saddle cycle L, and p5 isthe prob-
ability of crossing the saddle cycle L;.

The probabilities p; and p, can be theoretically esti-
mated by constructing the probability measure for a
quasi-hyperbolic attractor using the technique from
[11] but with allowance made for the finite noise inten-
sity. Note that only the trgjectories that are in a close
neighborhood of cycle L, have a finite probability of
escaping from the Lorenz attractor. Therefore, estimat-
ing the probability p, isrelated to solving the problem
of a trgjectory falling within a specified region when
moving along the flux of a vector field in a finite time
interval. The probability p, can be estimated with a
high accuracy by using the attractor probability mea-
sure in the absence of noise, because noise in the first
segment induces only diffusive motion around a deter-
ministic trgectory (see Fig. 5a).

The probability p;isdetermined by the fluctuational
dynamics on the two-dimensional unstable manifold of
the saddle cycle L,. Estimating p; is related to solving
a problem similar to the problem of the fluctuational
crossing of an unstable cycle into the domain of attrac-
tion of astationary point in aVan der Pol oscillator with
hard excitation. The trgjectory motion near the saddle
cycle (see Fig. 8) resembles periodic oscillations of
slowly varying amplitude. In the absence of fluctua-
tions, the oscillation amplitude increases and the rol e of
fluctuations is to overcome the slow increase in ampli-
tude and to cross the saddle cycle.

As we see, estimating each of the probabilities (p;,
P2, P3) IS a separate serious problem that requires addi-
tional theoretical and experimental study.

Therolesof noisein each of the escape segmentsare
different. As was aready mentioned above, in the
absence of fluctuations, the probability of the trgjectory
falling into a close neighborhood of the separatrices
and, hence, the saddle cycle is small but nonzero; i.e.,
the first and second segments can also be theoretically
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observed in a noiseless system: this is the system
motion along trajectories T, and T, (see Fig. 2). In the
presence of noise, the motion must take place in the
tube formed around these trgjectories. As our studies
show, in the first segment (Fig. 8), the escape trajecto-
ries actually run in a close neighborhood of the trajec-
tories T; and T,. In the second segment, after point A
(seeFigs. 2 and 5), we observe the following: since the
noisy escape trajectories differ from T, and T,, the
escape trajectories tend to go away from them, but,
under the action of fluctuational force, they remain in
the neighborhood of the stable manifold W* and separa-
trix I",. In other words, fluctuations hold the trajectory
near the manifolds of the saddle point O. In the third
segment, the escape from the basin of attraction of a
chaotic attractor takes place precisely under the action
of fluctuations.

As was pointed out above, an experimental
approach based on investigation of the fluctuation pre-
history was used in [1, 20] to study the fluctuational
escape from a nonhyperbolic attractor in a periodically
driven nonlinear oscillator. In these papers, the problem
was solved in terms of the Hamiltonian formalism
without reformulating the boundary conditions, which
wedid for aquasi-hyperbolic chaotic attractor by intro-
ducing a finite transition time. In [1, 20], we showed
that the escape from a nonhyperbolic attractor is
accomplished through successive transitions between
saddle cycles and that no additional forceisrequired to
deliver thetrgectory to the cycle from which the escape
begins. For the quasi-hyperbolic attractor considered
here, the situation isfundamentally different: the saddle
cycles embedded in the attractor are not involved in the
escape, and an additional fluctuational forceisrequired
to move the chaotic trajectory into a rarely visited
region of the attractor. Thus, the dynamics of fluctua-
tional escape depends significantly on the type of cha-
otic attractor.

Our analysis shows that the behavior of the trajec-
tory of escape from the basin of attraction of a quasi-
hyperbolic chaotic attractor is completely determined
by the manifolds of the saddle point O at the coordinate
origin and by the unstable manifold of the saddle cycle
L,. Therefore, the problem of escape from a chaotic
attractor may be reformulated as the problem of trgjec-
tory motion along one- or two-dimensional manifolds
in the presence of fluctuations. In other words, to get a
more detailed picture of the escape from the attractor of
athree-dimensional system, we must consider asimilar
problem in systems of lower dimension.

In Section 3, we noted that investigating large devi-
ationsfrom a chaotic attractor isimportant from a prac-
tical point of view and is related to the problem of
attractor stability in the presence of fluctuations and to
solving the problem of controlling the system dynam-
ics. Our results, from the viewpoint of their applica
tions to actual systems described by the Lorenz model,
imply the following. First, the chaotic regime to which
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a quasi-hyperbolic attractor corresponds is stable
againgt fluctuations. Second, the noise-induced devia-
tions from the chaotic regime of the system, i.e., large
fluctuations, are extremely rare events, because these
are related to the trgectory visit to exponentially
unlikely regions of phase space. Third, the control of
the system dynamics to switch it from the chaotic
regime is implemented by a perturbation of a certain
shape (see Fig. 8) in the time interval when the system
isinaclose neighborhood of the equilibrium state O. In
other words, to realize or suppress transitions from the
chaotic regime to a different regime requires keeping
track of the system behavior in aclose neighborhood of
the system variables. The latter considerably simplifies
the control procedure.

In conclusion, we note once again that the noise-
induced escape from a quasi-hyperbolic attractor was
investigated in terms of the theory of large fluctuations
by experimentally analyzing the fluctuation prehistory
[37]; here, we extended the experimental approach [37]
to study the motion along the attractor itself.
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Abstract—We investigate the semiclassical limit for the nonlinear Schrédinger equation in the case of a defo-
cusing medium under oscillating nonperiodic initial conditions specified on the entire x axis. We formulate a
system of integral conservation laws in terms of an infinite number of spatialy averaged densities explicitly
calculated from theinitia conditions. We study the direct scattering problem and show that the scattering phase
isauniformly distributed random variable. The evolution of this system leads to the devel opment of nonlinear
oscillations, which become statistical in nature on long time scales. A modified inverse scattering method based
on constructing a maximizer of the N-soliton solution in the continuum limit for N — oo is used to obtain an
asymptotic solution. Using the maximizer, we found an infinite set of conserved averaged densitiesin the sta-
tigtical state. This allowed us to couple the initial state with the limiting statistical steady (for t — o) state
and, thus, to unambiguously determine the level spectrum in the statistical limit. © 2002 MAIK “ Nauka/ I nter-

periodica” .

1. INTRODUCTION

We consider the nonlinear Schrodinger equation
(NSE) with defocusing,

iu + U, —2/u’u = 0. (1)

This equation is known to be completely integrable. Its
solution for the classical problem with a rapidly
decreasing initia potential u(x, 0),

+o00

Ilu(x, 0)|dx < oo, 2

was first obtained by Zakharov and Shabat [1]. Condi-
tion (2) imposed on theinitial function u(x, 0) is of fun-
damental importance in the theory of integration by the
inverse scattering method [2]. It ensures that the initial
potential u(x, 0) isanalytic for | x| — co. This makesit
possible to obtain a complete solution of the scattering
problem, i.e., to accurately determine the system of ini-
tial phases. The phase shift in time is described by a
simple ordinary differential equation, and the transfor-
mation to u(x, t) is described by the linear inverse scat-
tering problem (see [2], p. 36). This procedure forms
the basis for the classical inverse scattering method. It
allows one to solve the Cauchy problem for anonlinear
equation (e.g., the NSE), i.e., to unambiguoudly deter-

mine the strictly deterministic value of u(x) at any instant
intimet for agiven u(x, 0).

Our statement of the problem differs fundamentally
from the classical one. We consider the initial function

u(x, 0) = ug(x), ©)

where uy(X) is an oscillating, nonperiodic, large-scale,
bounded function specified on the entire x axis. The
properties of this function are discussed in more detall
below (in Section 2), while here an important fact is
that it does not satisfy condition (2). As a result, the
function uy(x) loses its analyticity when |x| — oo.
Moreover, it has an essential singularity here: the value
of uy(X) proves to be indeterminate; it is only known to
vary within specified limits [because uy(X) is bounded].
Thus, the solution of the scattering problem becomes
fundamentally new in nature; it leads to random scatter-
ing phases. Asaresult, the purely dynamic evolution of
the function u(x, t) for uniquely determined initial
potential (3) loses dynamical properties in the asymp-
totic limit t — oo and tends to the statistical limit. In
other words, in the course of time, the solution takesthe
form of nonlinear oscillations with random phases.
Such a system is statistical in nature and can be
described in terms of a continuous random process.
More specifically, the strictly deterministic value of
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u(x, t) losesits meaning inthe asymptotic limitt —» oo,
and we can only speak about the function f(u, x, t), the
probability density to find agiven value of u at point (X,
t), or the correlation functions. The problem isto deter-
mine the specific form of these functions and their
dependence on the initial potential uy(x).

For the NSE with defocusing, this problem is stated
for thefirst time. Previoudly [3, 4], we considered such
a problem for the Korteweg—de Vries equation. In [3],
we used the method of Whitham multiphase equations
to show the development of a statistical structurein the
solution with time, which becomes completely statisti-
cal in natureinthe asymptotic limitt — co. In [4], we
developed as asymptotic method of solving the above
problem for the Korteweg—de Vries equation, which
was called a modified inverse scattering method. The
initial function uy(x) isassumed to be spatially homoge-
neous (ergodic). In this case, the probability density f
depends on the velocity u adone, f=f(u), and the spatia
correlation function K = K(x, X') depends on the difference
|x—x|&one. In[3, 4], we determined the form of these
functions for a specific initial potential ug(x).

In this paper, we devel op the modified inverse scat-
tering method for the NSE with defocusing. Note that
the NSE describes the propagation of electromagnetic
waves in nonlinear media, for example, in the Earth’s
ionosphere [5] and optical fibers [6]. The Gross—Pitae-
vskii equation, which describes the behavior of excita-
tionsin agasin the state of a Bose—Einstein condensate
[7], issimilar in form.

Our paper has the following structure. In Section 2,
we briefly describe the salient features of the NSE and
formulate the initial-value problem in general form. In
Section 3, we investigate the conservation laws. The
NSE isknown to have aninfinite set of differential con-
servation laws. In the classical statement of the prob-
lem, these can be represented in integral form as time-
independent integrals,

[

J, = IRndx, n=12...,

where R, are the polynomials of the function u(x) and
its derivatives [2]. Under condition (3), however, the
initial function uy(x) does not rapidly decrease with
[X| —= oo and the integrals J,, diverge. In Section 3, we
introduce the averaged integral conservation lawsor, in
other words, the conservation laws represented as the
invariant densities R,[] The latter take on fixed, finite
values determined by the ergodic initia function uy(x)
for each n. In contrast to [4], we used the multitime
technique and the Hamiltonian formalism to derive
them. The values of [R,Care shown to be conserved as
the solution develops with time. We emphasize that
there is no unique relationship between the invariant
densities and the spectral function in the NSE, in con-
trast to the Korteweg—de Vries equation.
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In Section 4, we solve the scattering problem. The
scattering phases for the initial potential uy(x) under
consideration are shown to be distributed randomly and
uniformly. On the one hand, this rules out the direct
application of the classical inverse scattering method
but, on the other hand, serves as the basis for using the
modified inverse scattering method to determine the
asymptotic behavior of the solution for t — . To this
end, based on the N-soliton solution, we construct a
maximizer for the system of interacting solitons speci-
fied on the spatial scale L with uniformly distributed
random phasesin Section 5. We show that, for N — o
and L — oo, there is a continuum limit to the phase-
averaged maximizer described by a linear integra
equation. It is important to note that this equation
includes the level spectrum in phase space py(A). Here,
the fundamental difference between our problem and
the classical problem again becomes significant. In the
classical problem, the solitons go to infinity in the
asymptotic limitt — oo and becomefree. For free soli-
tons, the level spectrum in phase space is identical to
the level spectrum in ordinary space p(A). Since the
spectrum does not depend on timet, the following rela-
tion always holdsin the classical statement of the prob-
lem:

Ps(A) = p(A). 4)

In our problem, the solitons never become free: they
remain interacting onesat any t, evenfort —» co. Here,
an essential singularity at infinity again shows up. In
thiscase, p4A), the level spectrum in phase space, does
not match the level spectrum in ordinary space; i.e., in
our case, there is no relation (4). In Section 6, we use
the modified inverse scattering method to determine
ps(A). It consistsin the following. Using the maximizer
calculated in the continuum limit, we determine the
averaged invariant densitiesin the statistical state, (IR [J.
Based on the multitime hierarchy of the NSE, we prove
that the maximizer determines the entire infinite set of
invariant densities. Since the invariant densities do not
vary with time, they match [R,Ospecified by the initial
condition

R, = IRy ()

Thus, the unique relationship between the statistical
state and the deterministic initial state can be estab-
lished by using an infinite set of conservation laws (5).
The one-to-one relationship between the spectra pJ(A)
and p(A) can be derived from relations (5). After the
steady-state spectrum py(A) has been determined, we
can calculate all the necessary parametersin the statis-
tical state by using the maximizer.

In contrast to the solution of the Korteweg—de Vries
equation in [4], where we initially considered only two
conservation laws, here, we managed to prove that all
conservation laws hold in the statistical state by using
the multitime hierarchy.
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2. STATEMENT OF THE PROBLEM
The NSE with defocusing hasthe form (1). With the
change of variables

u=pexp(ig), v=aq, T=2t,

Eqg. (1) transformsto an equivalent system of dispersion
hydrodynamic equations,

P+ (PV)x = 0,

Jp

We study the case where the hydrodynamic variables
vary smoothly: p = p(ex, €1), v = v(gx, €1), € < L.
Expanding the scale, x — x/e and t — t/g, we can
then explicitly separate out the small parameter of the
dispersion term with higher derivativesin the hydrody-
namic equations:

pT+(pV)X = l

- _p+le [w}” ©)

The system of equations (6) describes, in particular,
the propagation of electromagnetic waves in a nonlin-
ear defocusing medium. In contrast to the Korteweg—de
Vriesequation, it isacomplete wave equation. Thedis-
persion relation for system (6) linearized relative to a
steady hydrodynamic flow withp = pgand v = U, is

Vit W, = —p+ [

Vet vy,

w—-kU, = +kp0 %L+4p33

It thus follows that the NSE describes two oppositely
propagating waves. Accordingly, there are aso two
oppositely traveling systems of stationary waves, in
particular, solitons

_ Pot (v /2—|k) exp(2kX)
Po (1 + exp(2kX))

(7)

Xt vt
=

We emphasize that, as follows from (7), the soliton of
the defocusing NSE isa“well” in the background den-

sity po:
K> 12
P=Po-———, V5= 2(py—K)
cosh™ (kX)

When |X| — o, p — po. At pg = 0, Eq. (1) has no
solitons. Note that the soliton velocity decreases with
increasing depth of the well proportionaly to (py —
k?)V2, The soliton stops at k? = py; in this case, its veloc-
ity is equal to the steady-flow velocity U,. Note also
that the dispersion in the NSE is positive; i.e., both the
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wave phase and the group velocities in the medium
increase with wave number k.

Let us now discuss the statement of the initial-value
problem. We study the solution to the nonlinear equa
tion (1) in the semiclassical limit. Thisimplies that the
solution to system (6) is considered for € — O; theini-
tial hydrodynamic perturbations p(x, 0) and v(x, 0) do
not contain the scale € and are bounded on the entire x
axistogether with all derivatives. In addition, theinitia
functions p(x, 0) = 0 and v(x, 0) are assumed to be non-
periodic functions oscillating about some means.

We restrict our analysis to initial conditions in the
form

- —X
3 i,

v(x,0) = z vmg( ex i

m= —o

P(X0) = po—
(8)

where py >0, (&), and v,(&) arefinite functions equal
to zero outside theinterval a,,< & <, (0, <0, B,,> 0,
Bn— 0, =1). Inside thisinterval, f,(&) is positive and
has one maximum at & = 0 that does not exceed p,. The
latter condition ensures that p(x, 0) is nonnegative. The
intervals (X,, + 0,8m Xm + BB ONthe x axis, in which
different termsin (8) are nonzero, do not overlap. For
brevity, the separate term f,, v, which represents a
localized perturbation of the homogeneous p = p,,
U, = 0 background, is called awell. Consider, for sim-
plicity, specific initial conditions in the form of a
sequence of wells with the same shape and depth,

P(%,0) = po— D 9 D’
o )
—X
v(x,0) = z gg(e ”H

The initial conditions are nonperiodic if, for example,
the difference X, 1 — Xy =1 in (9) is constant and the
well width varies as

0, = 0[1+gsin(om)], (20)

where g/mtis an irrational number and g < 1.

Note that the initial conditions (10) we consider are
ergodic; i.e., these are described by spatially homoge-
neous functions, for example, by quasi-periodic or
almost periodic ones (see, e.g., [8] for an exact defini-
tion of ergodic functions).

Apart from the form of f(x) and g(x) and the back-
ground density p,, theinitial conditions (9) can be char-
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acterized by the mean distance | between the wells and
the mean well depth 8. Theratio

y = ol (11)

defines the well packing density, i.e., the mean hydro-
dynamic perturbation of the homogeneous background.

3. INTEGRAL CONSERVATION LAWS

The NSE isintegrable[2, 9]. In an exact integration
of the nonlinear equation (1) and its equivalent hydro-
dynamic system (6), an auxiliary linear problem is the
scattering problem for the system of the second order

[9]

ed =~ +ay®,
. (12)
ep® = lé)\qJ(z)Jr e

Here, A isthe spectral parameter of the problem, and T
is the function complex conjugate to u.

3.1. Differential Conservation Laws

Because of its complete integrability, the NSE is
known to have an infinite set of independent differential
conservation laws

3P, +d,W, = 0. (13)

For the initial-value problem under consideration, asin
the solution of the Korteweg—de Vries equation [4], the
conservation laws must be rewritten in an averaged
form. This will be done in the present section. The
Hamiltonian representation and the multitime tech-
niguet —t,, m=1,2, ... areused (in contrast to [4])
to derive the averaged integral conservation laws.

The densities of the conserved quantities P,, in (13)
can be determined by expanding the logarithm of the
transmission coefficient for the linear system (12) in
powers of /A for A — . This allows a recurrence
formulato be derived for P,. Indeed, after eliminating

Y@ and substituting

 _ 10 A
g = exp[ls 75X +J’Pd>%},
system (12) transforms to the Riccati equation

AP = |u®+ P2—isﬂax%.

For the expansion coefficients of the solution to this
equation with A —» oo

P = ler,)\‘” , (14)
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we derive the recurrence system [9, pp. 37, 39]
n-1
P.., = —icad, L0+ S PP,
1 ol mzl (15)

n=12...,

with the initial recurrence condition being P, = |uf*.
The densities in the differential conservation laws (13)
can be successively determined from system (15):

- 2_ 4
P, = —ielu,, P3; = —€Ou,, +|u”,

P, = i[’Tu,,, —&lu®(4Tu, +un)], ....

These are the polynomials of u(x) and G(x) and their
derivatives.

Recurrence (15) gives a definite set of polynomial
densities P,,, but, in general, these densities are deter-
mined ambiguously. Clearly, we can make any linear
combination of these or add an arbitrary constant.
Moreover, adding the total derivative of the polynomial
of u(x) and t(x) and their derivativesto P, again leads
to the density of the conserved quantity.

3.2. Integral Conservation Laws
and the Hamiltonian Form

If the function u(x) and al its derivatives rapidly
converge to zero when |x| — oo so that the integrals

I = IPn(X)dX (16)

exist, then the time independence of theseintegralsfol-
lows from relations (13).

Equation (1) can be represented in the Hamiltonian
form[9] by using (16). If the functionals of u(x) defined
by integrals (16) with n = 3, 4, ... are taken as the
Hamiltonians, then we derive the hierarchy of equa
tions

ou _ .0l

(—3? = -l 50" (17)
We have Eq. (1) at n = 3 and the so-called higher NSEs
forn>3.

Theinitial condition (8) or (9) that we consider isa
nonperiodic sequence of isolated localized perturba
tions (wells). Therefore, the total spectrum of problem
(12) can be obtained in the semiclassical limit by asim-
ple superposition of the spectra for individua wells.
Accordingly, when studying the contribution of each
well, we used the theory developed in [9] for Eq. (1)
under the condition of afinite density: when |x| —» oo,

lu(x, t)|> —= py % 0. (18)

Subsequently, these contributions were combined (for
details, see the next section). Under condition (18), itis
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convenient to transform Eq. (1) [by adding the phase
factor u —= uexp(-2ip,t)] to the form [9]

iU+ Uy —2(Ju® = po)u = 0. (19)

In this case, the hydrodynamic form (6) remains
unchanged.

It is important to note that the Hamiltonian form
(17) holds only when u(x) rapidly decreases together
with its derivatives, because only in this case are the
functionals 1,, determinate and do their variational
derivatives rapidly decrease as |x| — 0. For afinite
density, to ensure the convergence of the conserved
integrals, it will suffice to subtract the following con-
stants[9, p. 72] from the densities P,(X):

Prs = 5(-1) o™, Ph=0, k=12,

where w=2,/p, and by, arethe coefficients defined by
the expansion

Z brx.

k=0

However, apart from the existence of functionals, the
integrals with infinite limits of

Qn(x) = Pn(x) - P:1

it isalso necessary to ensure that their variational deriv-
atives rapidly decrease with |x| — oo in order to rep-
resent Eq. (19) and the corresponding higher equations
in the Hamiltonian form. As was shown in [9, pp. 73,
193], certain linear combinations R,(x) of the densities
Qy(X) related to the asymptotic expansion of the loga
rithm of the transmission coefficient in negative powers

of the variable 4/A%— &’ may be used instead of expan-
sion (14).
Denoting

(1+x)" =

N=g (-l =,

we have

&n) = n(2+wn’ ™.
The generating function of (14), i.e.,

PE) = 3 P&

correspondsto an infinite series of the densitiesP,,; sim-
ilarly, we define

Q) = Y QE"
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According to [9], the densities R, are specified by the
generating function

> R.n" = RM) = QEM)). (20)

The following expansion is used to establish the
relationship between R, and Q,, that follows from (20):

€ =n"% Bu@n”, (21)
p=0

where the coefficients 3,, are known; these can be

expressed in terms of binomial coefficients and even

powers of w, some of which are zero. As a result, we
obtain the relation

n-1

Rn = z Bn—p, p((*))Qn—p- (22)
p=0

Substituting
Q= P—F}

into this relation yields a formula that expresses R, in
terms of P,. Given the explicit form of ,(w) and the
constants P, it ismore convenient to write thisformula
separately for odd and even numbers:

k m_2m
Rok+1(X) = (Zk_l)!![z 2mml((;|1-)—§|).3—2m)"

m=0

-1 k+ 1002k +2
xP%ﬂ44m+%F%?:ﬁﬂ, (23)
R
Ry o(X) = k! mzom Pors2_om(X).
Clearly, the differential conservation laws
o.R +a WP =0, (24)

which follow from (13), hold for new combinations R,.
If we now take the integrals

J, = J’Rn(x)dx (25)

as the Hamiltonians, then we derive the hierarchy of
NSEsfor afinite density:

ou _ .0J, _
TR TL n=34,... (26)
It beginswith Eq. (19).
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Below, we give the first several densities R, calcu-
lated with the recurrence formula (15) and relations
(23):

= |U|2—p0, R2 = —iSUUX,

R3 = —EZUUXX+ (|u|2_p0)2, (27)
R, = i[€’Tu,,, — 4e(|ul*— py)Tu, —€|ul®u,] .

The expressions of these quantities in terms of the
hydrodynamic variablesp and v are

1.
Ri=p-pp R = pV—"pr,

2 12

Rs = pv2+(po—p)° —ie(pv)—&°p"*(p"%)xx,
(28)
Ry = pv°+(3p—4p,)pV

, 3
—|£E§pv2 + épZ—ZpOpHX +0O(e?).

The densities of the conserved quantities

p:w:p\/:ReRz,
2i
h = efu®+ (po—Iu®)’ (29)

= pvZ+(po—p)° + 1£2p§p = ReRﬁ%sszx

are physically interpreted as the momentum and energy
densities, respectively. As we see from (29) and (27),
the differences p — R, and h — R; are the total deriva
tives.

3.3. Multitime Formalism

Note an important property of the hierarchy of
NSEs:. any finite number of Egs. (26) may be consid-
ered as the overdetermined system

ou _ 6‘]m+2 _
atm 50 m=12,... (30)
for the function of several variables
u = uxty,t,,...). (31)

The nontrivial property of the NSE attributable to its
complete integrability is that fluxes (30) commute:
_ %

ot,ot,,’

d°u
ot ot,

i.e., system (30) is compatible and actually defines the
function of many “times’ (31). Each of the functionals
J, with n = 3 is the Hamiltonian for the corresponding
timet,_,.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

839

The conservation laws (24) aso apply to all higher
times:

IR, aw‘n'fn’

at 0x =0

(32)

Relations (32) at n = 1 are of particular importance,
because these are used in Section 6. In this case, the
fluxes can be represented as

m+1

Wi = zksk+1m+1 Qcto(), (33

where 3, are defined in (21) and d,(...) denotes a total
derivative. To derive formula (33), let us determine
OR,/0t,, from the general rule of the Hamiltonian
dynamics by using the Poisson brackets [9]:

OR, _ 083 6Jm+3]
at,, Hmea R = IB" du O

Hence, relation (22) yields

R, _ "o ] 51
M m+2-p 9Im+2-
ot,, 'ZOBM_’)"’ 5 U501 (39
p:
where I, = _ Qndx arethefunctionals defined for the

functions u(x) that satisfy the finite-density condition.
Sincethe density Q, differsfrom the density P, only by

the constant P, , we have
dou ou’ du ou’

which allows the combination of variational derivatives

in (34) to be expressed in terms of P,;:

5|n 5Tn _

6u ou

Substituting Q,,_; for P,_; under the derivative sign
and using the derived relation in (34) yields expression
(33).

i0,[(N=1)Py_; +0,(...)].

3.4. Averaged Integral Conservation Laws

For our problem with the restricted ergodic initial
conditions (9), it would be natural, asin [4], to pass to
anintegral form of the conservation lawsin termsof the
averaged densities of conserved quantities. Consider
the mean quantities

L/2
RO= lim2 [ R(xdx.
L > ooL

-L/2

(35)
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Sincethe functions R, (x) are bounded, limits (35) exist.
In view of the local conservation laws (24),

L/2
I 0,R,dx

-L/2

AR _ i
dt _L—’ooL

L/2
= —lim 2wR(x)
L- ol

’

-L2

and the fluxes WP(+L/2) through the segment ends

are bounded; therefore, dIR,[Zdt = 0. Consequently, the
means (35) do not depend on time and are conserved
guantities. This is the complete system of averaged
integral conservation laws for our initial-value prob-
lem.

Theinvariant densities IR, [tan be easily determined
at initial timet = 0 from the specified f(x) and g(x) and
y = 6/ by using the fact that the initial conditions (9)
are semiclassical. Using expressions (28) and (29), we
obtain

00

(RO= J’ f(x)dx,

(=)

(RO= [pd=y J’(po— f(x))g(x)dx,

RO = 0]

0

=V [l(po- f(x))g7(x) + £°()] dx + O(€?).

Similarly, by expressing (23) in terms of the hydrody-
namic variables p and v, we can caculate IR,[Jin the
initial statefor any n. Below, we will seethat theinvari-
ants R,[Jasin the case of the Korteweg—de Vries equa-
tion [4], are uniquely related to the level density of the
scattering problem. These play an important role in
determining the spectrum in a statistical state.

4. THE DIRECT SCATTERING PROBLEM
IN THE SEMICLASSICAL LIMIT

Let us study the spectral problem for the linear sys-
tem (12) in the semiclassical limit, when € — 0. Let
us first consider one localized initial perturbation of
p(X) and v(X) to which

0., O
u= Jﬁexpu's‘lfvdm
O O

corresponds and then investigate the more general ini-
tial condition (9) composed of a large (infinite, in the
limit) number of such localized perturbations with non-
overlapping carriers.
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For our “hydrodynamic” initial-value problem (9), it
is convenient to pass from system (12) to an equation of
the second order, which allows the standard formul as of
the Wentzel-K ramers—Brillouin (WKB) approximation
to be used. After eliminating Y® and substituting Y@ =

W Ju to remove the first derivative, we derive the equa-
tion

EWn +T(XA; €)Y = 0,
where

-1l 2.1
r= 4)\ Ul +2|s)\(lnu)X

¥ 82[%(Inu)xx—2—'1(lnu)§]

Expressing r in terms of the hydrodynamic variables p
and v helps to ascertain the actual orders of the terms
of expansion in powers of €, given that
(Inu), = L(Inp), +Lv
x = 2 P)x e "
Disregarding the small terms O(g) and O(e?) in the
coefficient T (x, A; €) in the principal order of the WKB
approximation, we obtain a simpler equation,

W +1(X, Y = 0, (36)

where

1
rA) = = vl ~p(x). (37)
It is convenient to explicitly separate out the trivial
dependence of (9) on well width 8 in (37) (considering
one well, we omit the subscript m). Taking into account
(9), we have

r(x, A; ) = rlD—(, J,
o (38)

rA) = Z1A - 9091~ po + F(¥).

Let us describe the spectrum of problem (36) in the

semiclassical limit € —» 0. Denote w = 2,/p, . Let the

velocity perturbation be small enough for the overall
pattern of variationin the function r(x, A) to bethe same
asthat for v(x) = 0. More specifically, r(x, A) ispositive
for |A] > w and either changes sign with increasing x
according to the scheme —, +, —or remains always neg-
ativefor |A| < w (Fig. 1a). In that case, problem (36) has
acontinuous spectrum with a zero reflection coefficient
(in the semiclassical approximation under consider-
ation) for |A| > w and a discrete spectrum with closely
spaced eigenvalues |\, . 1 —A,| ~ € for |A|<w. Thereare
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no eigenvalues in the interval between m, = minA,(x)
and m. = maxA_(x), where

A(X) = v(X) = 2Jp(x)
are the roots of the equation r(x, A) = 0. The restriction

—2(JPo—pP(¥) <V(X) <2(/po—+/P(¥)  (39)

is the condition of sufficient smallness for v(x). If itis
satisfied, then A, (X) < wand A_(X) = —w for al x.

4.1. The Discrete Spectrum

The discrete spectrum of problem (36) is described
(in our approximation) by an equation similar to the
Bohr—Sommerfeld quantization condition:

o) = TE+f n=01... @
where
X0
SA) = I Jra(x A)dx, (41)
X_(N)

and x_(A\) < x,(A) aretheroots of the equation r,(x, A) =
0. Since SA) is a nonmonatonic function (Fig. 1b),

Eq. (40) describes two sequences of spectral levels: A,,,

n=0,1, .., N—1lintheinterva (o m)and A, ,n=
0,1, ...,N =1intheinterval (m,, w).
In the limit € — O, the discrete spectrum is quasi-

continuous. It can be described by the density d(A) with
the normalization condition

w

[dnar = 1. (42)

Thus, the number of eigenvaluesin the interval (A, A +
d\) isNd(A)dA, where N ~ e isthe total number of dis-
crete levels, which is calcul ated below.

Clearly, the spectral density d(A) is inversely pro-
portional to the interval |A,.; — A,| between adjacent
levels. Therefore, taking into account (40), we have

d(n) = A4S, 43
o ‘ & (43)
where the proportionality coefficient
A = [S(-) + S(@)] ™ (44)
is specified by the normalization condition (42).
The total number of levelsis
- -9
N =N+N, = —, (45)
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Fig. 1. (8) Thedomains of constant sign of thefunction r(x, A);
(b) the Bohr—Sommerfeld integral S(A).

because it follows from (40) that

N_ = 6(em) "S-w) + O(1)
levelsliein the range (—w, M) and

N. = 8(em)"S(w) + O(1)

levelsliein therange (m,, w).

The above semiclassical description of the scatter-
ing problem (12) can now be used to characterize the
spectral datafor the potential u(x, O) that correspondsto
the infinite sequence of wells (8).

We emphasi ze that an accurate determination of the
spectrum for the Schrdodinger equation with a nonperi-
odically oscillating potential specified onthex axisisa
complex mathematical problem [10]. In our case, the
problem is simplified, because we are interested not in
the detailed structure of the spectrum but only in the
density of discrete levelsin the semiclassical limit € <
1. The density d(A\) can be determined from the part of
the spectrum for the potential u(x, 0) that refers to a
finite segment L > L, where L, is the characteristic
homogeneity scale of u(x, 0). Since the initial function
is ergodic, we may assume that the normalized density
d(A) does not depend on L and tends to a definite func-
tionasL —» oo,

Each eigenvalue in the (everywhere) dense point
spectrum for the infinite sequence of wells (8) refersto
acertain well in accordance with the localization of the
eigenfunction ,(x) that belongs to this eigenvalue.
Therefore, if we take a sufficiently long interval with
many wells, then we can determine the total number
N(L) of spectral levels A, each referring to a particular
well in this interval. Because of the ergodicity of
u(x, 0), the total linear level density N(L)/L has alimit
for L — oo. Since the number of levels for each indi-
vidual well is inversely proportional to the dispersion
parameter €, it is convenient to normalize this limit:

N(L)

C = ¢elim——=. (46)
Lo o L
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The dimensionless density C of discrete levels defined
in thisway no longer depends on €.

Thefraction in the density C of spectral levelsinthe
interval (A, A +dA),

dc
T = dndh,

(47)
determines the spectral density d(A), which is clearly
normalized according to (42).

Let uscalculatethelinear level density Cfor our ini-
tial conditions (9) composed of wells with the same
shape and depth. According to (45), N, = 6,/eTA dis-
crete levels correspond to each individual well. The
total number of levelsdivided by the length of theinter-
val L containing alarge number (M > 1) of wellsis

NL) - 28 M1 50

L LemA LemA M

Here, the summation is performed over those values of
m from (8) and (9) for which the point x,, lies in the
above interval L. Substituting this expression into (46)
and passing to the limit, we obtain using (11)

c=X Ig.

ot 49

y =

In our case, the spectral density d(A\) can also be eas-
ily calculated. Since there are no resonances between
the levelsin different wells for a nonperiodic variation
in their width (10), the total spectrum can be obtained
by a simple superposition of the spectra for individual
wells with the same d(A), because formulas (43) and
(44) do not contain the well width 8. Thus, for an infi-
nite sequence of wells, the spectral density d(A) isgiven
by the same expressions (43) and (44).

Let us establish an important relationship between
the conserved densities IR, [0from (35) and the spectral
density d(A). For theinitial perturbation (9), theintegral
in definition (35) can be represented as

L/2
LI R,(X)dx = ZJnm,
—L/2

where the summation is performed over the well num-
berswithin theinterval (-L/2, L/2) and

(49)

L

_ 1
Jnm - ZLIan(X)dX

is the conserved integral calculated for the individual
mth well.

Theinvariant J,,, for alocalized perturbation can be
represented not only asan integral over the x coordinate
but also as a spectral decomposition. This is the so-
called trace identity [9]. In the semiclassical case,
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wheretheintegral over the continuous spectrum may be
disregarded, it reducesto

Ny—1

Y &™),

i=0

Here, A"™ i =0, ..., N,,— 1 arethediscrete spectral lev-
elsin the mth well, and €j,(A\) are the conserved inte-
gralsfor an isolated soliton (7) propagating at velocity
Vs = A. The factor € appears, because the soliton linear
sizeisof the order of € on the scale under consideration.

The trace identity means that the calculated invari-
ant J, for alocalized perturbation is represented as the
sum of itsvalues for individual solitonsinto which this
perturbation breaks up in the limit t —»= co and its part
that corresponds to the continuous spectrum and that
scatters over the entire x axis for t — oo. In the semi-
classical case under study, this part is negligible com-
pared to the soliton component.

The functions j,(A) are given by the formulas [9,
p. 79]

(50)

Jnm =

2k+1

v
k+1’

o) = (D)5
(51)

( k+12(k+1)z( 1)pb— 2p 2(k- p)

wherek=0, 1, ...; v = Jw’—A% and b, are the coef-
ficients from the expansion

Jakeo(A) =

(1+x)™% = > bxP.
p=0

Thefirst three functionsin (51) are

3
W) = v, ) = A ) =%

Substituting theintegral for the sumin (50) in the semi-
classical limit, when A;, ; —A; ~€ < 1, yields

w

Jom = ENin [ 1o(A)A(A) dA.

Sincethe spectral density d(A) for the sequence of wells
that differ only in width does not depend on m, we
obtain integral (49) in the form

L/2 w

J' R,(X)dx = sN(L)J’Jn()\)d()\)d)\

-L/2
where N(L) = N,, is the total number of spectral
levels in the interval L. Using the latter expression in
the definition of invariant densities (35) and taking into
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account (46), we find the sought-for relationship
between [R,Oand the spectral parameters in the initial
state:

w

RA= C[jMNdA)d. (52)

The simple relation (52) between the mean invariant
densities and the spectrum of the scattering problem is
a remarkable general property of our “hydrodynamic”
initial-value problem (6) and (9) under the ergodicity
conditions (cf. [4]).

4.2. The Scattering Phase

Let us now describe the set of scattering phases.
Since the spectral eguation (36) in the semiclassica
limit is analogousto the spectral equation in the case of
the Korteweg—de Vries equation, the result of our scat-
tering-phase study matchesthat from [4]. Recall briefly
how the parameters of the shift

s = 3 Inlby, (53)

n

where b, = C,.,/C,_istheratio of the coefficientsin the
asymptotic expressions of eigenfunctions ,, for x —
+oo, are calculated. Let us determine the phase shift for
the general case of M wells. To this end, lets us ascer-
tain how the phase of the wave function localized inthe
well under consideration changes when passing the jth
well to which the turning pointsx, and X, ., (r =2j —1)
refer. We separated three domains in the passage of this
well (see Fig. 1in[4]). In domain |, we have an expo-
nentially decreasing solution of the initial wave func-
tion with an amplitude A, _;:

o = Atep (o (54)
' /p DSJ 0
Here, p= /—r(X, A).
In domain 1, the wave function is
A o
gy, = ——'—expa |pldx]
I @ @-}[ 0
' (55)

X

Jp

Going around the point X, in the complex domain from
above, we derive from (54) and (55) the relationship
between the coefficients

+ By El—i | IdX%
—exp3-- [|pldx].
U 8;!‘ U

Op 1. . 0O
= i_ 2
Ar - Ar—lexpg4 S;!-lpld)%
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Hence, up to the point X5, we have the solution
Xz X
= - + -
N Ar—leXp%4 sIlpldX 8J‘|pld)%'
Xl XZ
Similarly, going around the point X5, we obtain
01 O On 1.
1 _ It 1
Ar+1exp%§jlpld>% = Ar_lexp%4 8J'||0|dx
X3 Xy (56)

X3 X
ol |p|dx—1' |p|deL
8,[ SI O
XZ x3

Only the absolute value of the amplitude ratio is of
interest in determining the shifts. From (56), we derive
the following relation between the amplitudes when
passing the jth potential well, the levels of which do not

coincide with the levels in the first well because of the
nonperiodic variation in well width (10):

Ar+1

r—1

0.2 O

1

= expEF=[|pldxd.
DSJ 0

Repeating this procedure M times and taking into
account the integrals over the segments (-, Xx;) and
(Xu, t0), we have

E M—1%2j+1
C A 1
=t = eXp= (X + Xu) — = |pldx
C_ QFS stl;[
(57)
Boo +oo|:| |:|
10 O Oy =2
+5EJ +IDEE_|p|DdXE
1 XMD 0

The integration in (57) is performed over the ranges
where the wave function exponentially decays. Using
(57) and (53), wefinally abtain

M—1%2j+1

1
Sk, M) = (X1+XM)_X_21 I |pldx
] = Xp;
58
E-oo +oo[| ( )

ig O 0
+)\%!’+ Etﬁ_lplﬂdx'

It isimportant to emphasi ze that the minus sign in front
of the sum in expressions (57) and (58) implies that we
found the corrections to the shifts from the wells to the
right from the well under consideration. If we perform
asimilar procedure for the wells to the left, then [here,
the amplitudes B, (55) are significant) formulas (57)
and (58) retain their form; only the sign in front of the
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sum changes to plus. Formula (58) is similar to expres-
sion (40) from [4], where it was shown that the sum has
no finitelimit for M — oo and, consequently, the phase
uniformly fillstheinterval of length | between the min-
ima of the potential wellsat points x, and x;. Thefilling
of this interval is quite similar to the generation of
chaosin dynamical systems[11].

For the “nonsymmetric” passagetoM — o, i.e, in
asituation where the numbers of wellsto theleft and to
the right differ by a value proportional to M, all of the
above properties are preserved but theinterval in which
the phase is smeared shifts proportionally to an arbi-
trary parameter M.

Thus, under theinitial conditions(8) and (9), i.e., for
an infinite number of potential wells, the scattering
phase of the wave function localized in any initial well
randomly and uniformly fills any of the segments [x,,
Xm+1]- 1t was shown in [3, 4] that alowance for the
mutual influence of an infinite number of initial wells
corresponds to the asymptotic limit t — oo, Conse-
guently, in the asymptotic limit t — oo, our initial-
value problem is described by an infinite system of soli-
tons with random phases.

5. THE STATISTICAL LIMIT OF THE N-SOLITON
SOLUTION WITH RANDOM PHASES

Let us now describe an infinite system of solitons
with random phases. According to statistical physics
[12], to do this requires separating out an arbitrary sub-
system of N solitons located in some segment and then
averaging over an ensemble of states with random
phases s by assuming the segment length to indefinitely
increase as the number N increases proportionally (the
statistical limit). In this case, it would be natural to use
the standard exact solution for N interacting solitons
[9], which is convenient to transform to

un(x, t) = A/a,DDl((::t;) .

(59)

Here, D and D, are the sums over the binary multi-indi-
CESU=Hy, -.., Iy (M =0o0r 1):

D= Y ep(®), D= Y exp(i6,)exp(®,), (60)
H H

where

N
cDu = e—lz Unvn(x_)\nt_sn)
n=t (61)

N
0, = s_lz 1,0,
n=1

N N
+ z Z Himkol s

m=1n=1
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The quantities v,,, 6,, and |,,, are determined by the
spectrum A,;:

Vp = J0T=A2>0, A <w, o = 4p,,

exp(i6,) = Z/z,, 2z, = Ay +ivy, (62)
0<0,<2m,
2
_ ) W -
lpn = In[Zm "% = %ln""2 mn—Yatn - (g3)
Zm—Z_n W _)\m}\n+vmvn

S, ..., Syisthe set of shift parameters. Note an anal ogy
between expressions (59)—(63) and the standard Kay—
Moses—Hirota formulas [13] for the N-soliton solution
of the Korteweg—de Vries equation that we used in [4].

The absolute value of the N-soliton solution (59) is

given by therelation

Ry = [u*~po = —£°0,,InD, (64)
which is similar to the N-soliton formula for the
Korteweg—de Vries equation. Expression (64) derived
by the Hirota method (see, e.g., [14]) is used in the
next section to construct similar formulas for all den-
sitiesR,.

The properties of the multisoliton solutions
described by formulas (59)«61) are illugtrated in Fig. 2.
Wetook p, = 1. In Fig. 2a, |u] is plotted against x; the
arrowsindicate the direction of soliton motion. Solitons
4 and 5 arein collision. The flow velocity distribution
isshown in Fig. 2b. Figure 2c shows the hodograph of
the complex function u(x), i.e., the parametrically spec-
ified dependence of Imu(x) on Reu(x). Since [u(X)]* < po
for solitons, the hodograph is located with the circle
|u] < 1. Each isolated soliton isindicated by arectilin-
ear segment with the ends on the circumference |u| = 1.
The curve corresponds to the colliding solitons 4 and 5.

Let us return to the problem of the statistical limit
for the N-soliton solution (59)—(63). In accordance with
the solution of the scattering problem (Section 4), we
assumethe parameterss,, ..., sy determined by the soli-
ton initia phases to be random, i.e., uniformly and
independently distributed over theinterval (—L4/2, LJ/2).
Expressions (59)—(63) establish a one-to-one corre-
spondence between the set of pointsin S space with the
coordinates s,(t) = s, + At, which, according to (61),
move uniformly, i.e., do not interact, and the set of
interacting solitons. It would be natural to describe the
former set by its mean concentration C, = eN/L, where
L is the length of the interval in which points s, are
located. Thus, we arrive at a problem of the stetistical
properties for function (59)—«63) similar to that consid-
ered in [4] in which the shift parameters s;, ..., sy are
random variables uniformly and independently distrib-
uted over the interval of length L, Ly — oo is propor-
tiona to N, so theratio eN/L, = C, is constant.

No. 4 2002



A STATISTICAL LIMIT IN THE SOLUTION OF THE NONLINEAR SCHRODINGER EQUATION

The problem is also to describe the asymptotic state
that arises when t —= o through the evolution of the
initial conditions (9) in terms of the random functions
uy(X, 1) in the statistical limit. It may be called soliton
turbulence. The soliton spectrum is specified by the
known function d(A) from (47); the soliton spatial den-
sity C (46) is aso known. At the same time, the linear
concentration C, of pointsin the S set and their distri-
bution in A, i.e., the density py(A) of the set of A, in
(61)—(63), are unknown; these have to be calculated.
We define the normalization of pg(A), asin (42), by the
condition

w

j pP(A)dN = 1. (65)

Thisimplies that the densities C, and C are related by

C.=cLt cL=eN,
Ls

whereL isthe scale on the x axison which N interacting
solitons are distributed. Here, we took into account the
conservation laws for the number of solitons and the
one-to-one correspondence between the solitons and
the points of S space.

By analogy with the N-soliton solution of the
Korteweg—de Vries equation [4], we seek a maximum
of the exponent @, in . The corresponding quantity
without allowance for the interacting solitons,

N
SCDEJO) = z p-nvn(an_Sﬁ)v a, = X_)\nta
n=1

is exactly maximized for

B _ [, x<0,
b= n@-s), =0 (69)

A good approximate maximizer 1 of the total o, a

large N in which the “invalid” elements [1,, constitute

only a small fraction (see [4] for a detailed estimation
of the error) may be sought in aform similar to (66):

Ho = n(by—sy), (67)
where b, are to be determined.
If only one nth index varies in the multi-index {1,
ﬁp" up = ﬁp"'o-nénp’

. ; (69)
0, = 1-2fi, = (1),
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1.0

0.8

0.6

0.4 .

0.2+ -

Fig. 2. An example of a multisoliton solution. (a) The den-
sity p(x) = |u]© and direction of soliton motion; the soliton
amplitudes are 0.27 (1), 0.15 (2), 0.18 (3), 0.46 (4), 0.12 (5),
0.03 (6), and 0.04 (7); the soliton velocities are 1.46 (1),
-1.70 (2), -1.65 (3), —1.08 (4), 1.75 (5), —1.94 (6), and
-1.91 (7). (b) The hydrodynamic flow velacity v(x). (c) The
hodograph of the complex function u(x).

then the increment of e®, is

N
A, = e(q)u_cbﬂ) = o-n|:vn(an _Sn) +2¢ Z Inpﬁpi|

p=1

O 2¢ N O -
= Vno-nlzan_sn-{-jz Inpljiplll-i-An
0 Vin & 0
p=1
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Here, 01,0 isthe mean value of {1 ,, which, in view of
(67), depends on b,

1[ _D_Lg} _ bn+1

= =[b, (69)

and A, is the random component of A, with a zero
mean. The following linear system of equations is the
condition that the “ systematic” part of theincrement A,
be negativefor aln:

28 Z Inpgip_l_ bn’

If we calculate b,, ..., b, fromthissystem, then, in view
of (67) and (68), we have for any n

n=1..N. (70

An = Vncn(bn_sn) +An = _anbn_sn| +An’
i.e, A, < 0 except for those cases where the random

increment A, ispositive and exceeds the absol ute value
of the systematic part of A,;:

An>v b, —s.
Following [4], we can show that this condition for

N — oo issatisfied only for an infinitesimal fraction of

al N eements in the multi-index p (67). In other
words, condition (70) exactly determines the maxi-
mizer inthe limit N — oo.

Givenrelation (69), the system of equations (70) can
be replaced with an equivalent system for the
unknowns Y™ = [, [J. We will aso use an explicit
expression of a, interms of x, t and therelation of v, to
A, As aresult, we obtain the system of equati ons

Z looy™.

L (k) )\np 1

X t

AT

(n)

1
y© =357 (71)

Substituting theintegral for the sumwhen N —» o [the
number of spectral levels A, in theinterval (A, A + dA)
isNpJ(A)dA], we derive an integral equation of the sec-

ond kind (X/Lg= &, t/Lg =T, N/Lg= €1CJ) from (71):
Y & 1) = 3 HE-AT
@ (72)

C, |
S0 [ ML £ D

where

VA) = Jw’ =A%,

1, @ = A =VA)V()

I(A, A
AAY =30 0’ —AA"+VQA)VA)
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In the next section, we will need to generalize the
multisoliton solution (59)—(63) to the entire hierar-
chy of higher NSEs (30) to calculate the invariant den-
sities OR,LI

To obtain the “multitime” N-soliton solution, it will
suffice to substitute the combination vi(A)t; +
Vo(At, + ... for A tin (61). Here, v (A) isthe velocity
of the soliton of the mth equation in hierarchy (30) that
corresponds to the discrete spectral level A. These
velocities are determined by the dynamics of the transi-
tion coefficients of the discrete spectrum for a finite
density [9, pp. 240, 241] and can be calculated from the
formulas(k=0,1, 2, ...)

Vae 1A = (1) A

) 3
val) = (1) (1) e, "

where v = v(A\) and b; are the coefficients for the
expansion of (1 + X)¥2 in powers of x. In particular,
v1(A\) = A isthe soliton velocity for Eq. (19). The set of
soliton velocities v, vy, ... is supplemented here with
the element v, = 1, which is convenient in writing the
general formulas.

All the reasoning that leads to the integral equa-
tion (72) remains valid and gives an equation for the

generalized averaged maximizer y(A; &, T4, Ty, ...) that
depends on many times:
1
YA) = 5+ &= ViA1=V (NTo—
C ® (74)
[N, A PN )Y(A) AN
(MI( XN

Att,=tand1,=13=... =0, we have the special case
(72). The solution of Eq. (74) isalinear combination,

o) = B+ - S, (79)
n>0
of the solutions to the equations
YeA) = vi(A) + gm|(A A)PN) YA dN'
k' k V()\)J. ’ S| k 1 (76)

k=012...
Theidentity used below follows from relations (76):

w w

JY@PMYMdN = [VA)RLAVi(A)Yo(A)dA, 7

k=12,...
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To prove it, we must multiply Eq. (76) by
VA)PsA)Y(A) at k=0 and by v(A)pg(A)yo(A) for non-
zero k and, subsequently, integrate the derived relations
over A from —w to w and subtract one from the other.

6. CALCULATING THE CONSERVED DENSITIES
IN A STATISTICAL STATE
USING THE AVERAGED MAXIMIZER

In Section 4, we established relation (52) between
the conserved quantities [R,Cand the spectral densities
C and d(A). Let us derive similar formulas for 0R,[via
the spectral parameters C, and py(A) of the statistical
soliton state described in the preceding section. To this
end, we use the averaged maximizer constructed above.

Asthe starting point, we make use of the local rela-
tions between the density of the conserved quantities
(23) and the sum D (60), which underlies the N-soliton
solution. Denote

Gy = —04InD,

_ 0°InD
ot ,0x

The following relation holds:

G, for m= 1.

2
€

Rn=n

Z b,wPG_1_sp N =1,2,.., (78)

0<2p<n

where the coefficients b, are defined above [see (51)]
and the summation is performed over all integer p that
satisfy the above inequality. For brevity, the inessential
additional termsthat arethetotal derivativeswere omit-
tedin (78). Thevalidity of thefirst formulain (78), i.e.,
expressions (64), has already been established. To
prove (78) for n > 1, we use the conservation laws in
higher times (32) at n = 1 and the generating functions
(20).
Differentiating (64) withrespecttot,,(m=1, 2, ...)
yields the relation
0R, ,0G, _
o, fax O
which is the conservation law (32) for n = 1. In this
case, theflux isgiven by formula (33), which allows G,

to be related to the invariant densities Q,: to within the
total derivative with respect to x, we have

m+1
eGn = Y KB s mri-kQu (79)
k=1
wherem =1, 2, ... . When deriving this relation, we

took into account the fact that the function G(x), as
well asthe densities Q,(X), tendsto zero as |[X| — oo.

It isimportant to note that (79) also holdsfor m=0.
This follows from (64), given that R, = Q; (22) and
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Bro=1(21). Inthis case, system (79) becomes triangu-
lar and allows us to successively calculate Q, as linear
combinations of Gy, Gy, ..., G,,_; and then derive for-
mulas (78) for R, using (22). To efficiently perform this
procedure, let us define the generating function

GM) = Y Gmn™
m=0

The relation between G(n) and Q(§) that follows from
the system of equations (79) withm=20, 1, 2, ... is

2dQ _ 2 2
Ed—E—SHG(ﬂ)-

This can be easily established by calculating the expan-
sion of the derivative dQ/d¢ in powers of n using
expansions (21). Since & = n(1 + w’n?2, we obtain

dQ _ n°dr

dg¢  g3dn
and derive the sought-for relation between the generat-
ing functions R(n) and G(n) from (80):

dR 2 2 _2\-12
gn = €@+ a’n) o),
whence follows relation (78) for the coefficients of the
expansions R(nN) = RN + Rn%2 + ... and G(n) = G, +
Gn+....

Let us average the quantities (78). We make use of
the equality established in [4] for the sums

D = Zexp(CDH)
u

(80)

in the continuum limit when N — o between the
mean quantities

<6xln%exp(q>u)> = <6Xm§x¢p>. (81)

This relation alows the above averaged maximizer
[0 = y™ to be used: according to (61),
N
axmfnxq:“ = s"lz HaV,
n=1
and we have for N — oo

N
<6Xml?x¢“> = s_lnzly(”)vn. (82)

Substituting the integral for the latter sum in the contin-
uum limit and combining (81) and (82) yields

w

@ InD0 = ¢ N [YOVR) P (83)
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Based on formulas (78) and the averaging rule for
(83), we can derive an expression for the mean R, [that
contains a linear combination of the derivatives of the
generalized averaged maximizer y(A; X, t;, t,, ...) with
respect to x, ty, t,, ... under the integral. These deriva
tives can be easily calculated from (75):

oy _

ay _ L 1
Ly, 3= -5y,

X

which alows the following expression for the mean
densities to be derived by using identity (77):

Ri= —=
n
© (84)
x J’ z bV i_1 s YoM)VA) psA)dX.

—_w0<2p<n

The soliton velocities v,, and the conserved integrals
for an isolated soliton j,, are related by the relations that
follow from (51) and (73):

V(A _
W0 =25 Wy, M, n=12...
0<2p<n
Given these identities, formulas (84) reduce to

w

|:Rn[| = CSI J n()\) ps()\)yo()\) d)\ .

-0

(85)

These are the sought-for expressions for the conserved
densitiesin terms of the soliton-gas parameters.

L et us compare expressions (85) with formulas (52),
which give the conserved densities [R,Jin the initial
state. Together with the condition for the satisfaction of
all conservation laws for the mean densities (52) and
(85), this allows the relationship between CpyA) and
the analogous parameter of the initial spectrum to be
unambiguously determined:

Cd(A) = CopsA)Yo(A).- (86)

One cannot but note the remarkabl e fact that the identi-
cal equality of an infinite set of conserved densitiesin
the initial and statistical states is satisfied when only
one relation (86) holds [using only the transformation
function y,(A)].

Give relation (86), we can find the solution of
Eq. (76) at k=0, i.e., the equations

w

2C, , o
Yo(A o {) IO\, AP VoA AN

We have
Yo(A) = 1+2& 0 J’I()\ AN AN, (87)
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wherethelinear level density C and the spectral density
d(\) are specified by theinitial conditions(9), i.e., these
arefixed. Taking into account normalization (65) of the
density pJ(A), we determine the linear concentration of
soliton phases from (86):

c.=C .[ d()‘)d)\ (88)

Yo(A)

Once C, and yy(A\) have been calculated, the spectral
density in soliton gas can be determined from (86):

C dn
CsYo()

The transformation function y,(A) is the key element
that relates the spectral parameters of the initial and
asymptotic statistical states of the system. A similar
formula was derived in [4] for the Korteweg—de Vries
equation.

P{A) = (89)

6.1. The Transformation Function

Expression (87) for yy(A) can be simplified by
directly expressing yo(A) in terms of the functions f(x)
and g(x) that describe the shape of the local hydrody-
namic perturbations of which the initial condition (9)
consists. Note that

d(A) = AF'(A),

where the function

+SA) for —w<A<m,
FQA) = Ep for m.<A<m,,
%S()\) for msA<w.

Therefore, through integration by parts, (87) trans-
formsto

F(S)
S— )\)A/ -5

where the integral has the meaning of the Cauchy prin-
cipa value. Before integrating by parts, we must
exclude the & neighborhood of the singularity A' = A
from the range of integration and then let 8 — 0.
Using expression (41) in (90) with allowance for the
difference in sign between the functions F(A) and S(A\)
and changing the order of integration, we obtain

a(x, 9).Jr.(x, ) ds

Yo(A) = 1-2CA I ds, (90)

Yo(A) = 1— 2CAJ’ dx

. (91)
2, D{x)(s—xwwz—sz
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wherer, (X, ) isgiven by (38) and

+1 for —w< A< A(X),

SN =0 o A <A <o

The range of integration in the inner integral is the
range wherer,(x, s) > 0:

D.(¥) = (-, A(¥) O (A(X), w).

The inner integral in formula (91) can be calculated
explicitly. To this end, we use the relation

Imt1>(s+|0)d

Re®(A+i0) = nf —

—00

between the real and imaginary parts of the function of
complex variable ®(z) on the real axis, which is ana-
lytic in the upper half-plane and hasthe limit ®(e) = 0.
If we are be able to choose a function ®(2) for which

ima(s+i0) = 29N
w -5
at sinthedomain D, and theimaginary part is zero out-
side D, (the argument x acting as a parameter here was
omitted), then the inner integral in (91) will be

nRed(\ +i0).

It iseasy to see that

_1z=A)(z-A) 1

D =5 o)) 2
[here, we took into account the fact that r; = (L/4)(A —
A)(A —=A,)]. The constant 1/2 was added to satisfy the
condition ®(e) = 0 and the branch of the root must be
chosen in such a way that the imaginary part of ®(2)

had the correct sign of a(s) on the real axis. We then
obtain

Re®(A +i0) =

NI

for A in the domain D, and

1

ceops+10 = 33 (100

_ 1 J A

1_
2 02— \2

for A_LSA <AL
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Substituting the derived expressions for the inner
integral in (91) yieldsthe sought-for explicit expression
for yo(A). Finally, we have

w - [
Yo(A) = l—2nCAI%_@DdX
Zoo w’ =AU

intheinterval m_.<A <m, and

Yo(A) = 1-mCA[X.(A) —x_(A)]

_ A% A r1(X, A) D
/ D
outside the interval m_< A < m, (but for -w < A < W),

where A_()A) is the range outside the segment [X_(A),
X,(A\)] inwhichr, <0.

92
—21nCA (92)

AN

6.2. The Maximum Soliton Density

The existence of the upper limit C,, follows from
relations (92) and (88). It cannot exceed the linear level
density C, because, when C approaches C,,, from below,
C4C) indefinitely increases. Indeed, the function y,(A)
reaches a minimum at the ends of the interval |A| < w,
with its derivative being finite at A = £w. The values of
Yo(xw) can easily be determined from (92) by taking
into account the fact that x, (xw) —x_ (zw) = 1, according
to the definition of r,(x, A) (38), and that the integral in
(92) vanishes at A = £w. We have

miny,(A) = 1-mCA.

As C increases, min y, decreases, which, in view of
(88), causestheincrease in C(C) to accelerate. Findlly,
min y, becomes zero at C = C,, = (T1A) %, theintegral in
(88) diverges, and C(C) — o when C — C,,. Note
that asimilar divergence of C(C) and, accordingly, the
maximum density C,, al'so arise in the solution of the
Korteweg—de Vries equation [4].

The limiting linear spectral density C,,, = (TA)~ cor-
responds to a dense packing of wellsin theinitial state.
It follows from the well nonoverlapping condition that

the mean distance | between the well centers must be

larger than the mean well width 6, i.e.,y= 0/1 <1; the
limiting value y = 1 corresponds to a dense packing of
wells. Taking into account relation (48), we see that y
tends to unity when C — C,,

6.3. An Example of a Numerical Computation

We tested the equality of the invariant densities in
theinitia state (9) and in the statistical limit on thefirst
three densities by means of anumerical experiment. As
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Fig. 3. (8) Comparison of theinvariant densitiesin theinitial
(horizontal straight lines) and statistical (circles) states.
(b) The scatter of means for one realization of u(x) relative
to the means for all realizations.

the specific model for our computation, we took the ini-
tial condition (9) with p, = 1 and the functions

%(1—4x2) for |x|s%,
fx) =0

Eb for |x| >%,

9 = 2a(1—/1-F(x).

The nonnegative parameter a < 1 characterizesthe well
depth relative to the background level p,. The parame-
ter o describesthe velacity perturbation; for—1<a <1,
condition (39), which provides the structure of the
semiclassical spectrum described in Section 4, is satis-
fied.

According to (52), [IR,[are proportional to thelinear
spectral density C. The proportionality coefficients
were computed for the above model (93) with a = 0.8
anda =-0,8a n=1, 2, 3. These are represented in
Fig. 3aasthe horizontal straight lines.

The circles in Fig. 3a indicate the ratios [R,[JC at
n=1, 2, 3at which [R,[Jwere determined by averaging
the local densities R, (27) for the N-soliton solution
(59) with randomly chosen parameters s, over x. The
N-soliton solution itself was computed by using an
algorithm that allows for the existence of a maximizer.
Using the maximizer significantly reduces the compu-
tational time by discarding the overwhelming majority

(93)
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=50 50

Fig. 4. A typical portion of a specific realization. The first
three densities of the conserved quantities are shown: (a) p,
(b) momentum density p = pv, and (c) energy density h. The

coordinate xisnormalizedto e/, [p; the quantities p, p, and

h are normalized to py, pg/z' and pg , respectively.

of the 2N terms that constitute sum (60). The algorithm
isdetailed in [4]. In our computation, we took N = 200.
By way of illustration, Fig. 4 shows plots of the densi-
tiesp=p, + R;, aswell aspand h (29) at C = 0.2 for
one specific set of numbers s,. The correspondence of
the statistical N-soliton solution (59)—63) to the initial
condition (9) and (93) was achieved by using formulas
(88) and (89) to determine C,and A,

To obtain statistically significant results, we per-
formed an additional averaging over the many (40 in
Fig. 3a) redizations (59) determined by a random
choice of the set of parameters s;, ..., sy. Figure 3b
shows the scatter of means (normalized to C) computed
for individual realizations relative to the means for all
realizations.

We see from Fig. 3a that there is good agreement
between the conserved densities computed for the sta-
tistical state and their values in the initial hydrody-
namic state. The agreement holds up to C close to the
limiting value C,, = 0.4157. This shows that using the
maximizer to compute the statistical parameters of a
turbulent state proves to be very efficient even at maxi-
mum densities of the gas of interacting solitons.
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