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Abstract—New results are presented of an experimental investigation of the spectrum of 36P  37P two-
photon microwave transition in Rydberg atoms of sodium in a constant electric field. Depending on the condi-
tions of excitation of the initial 36P state (the constant electric field is switched on either before or after the
exciting laser pulse) and polarization of laser radiation, a strong variation is observed of the amplitudes of indi-
vidual two-photon transitions between the fine-structure Stark components of the 36P and 37P states. This
effect is an analog of the Paschen–Back effect in a strong magnetic field and is due to the break of L–S coupling
and to the variation of the wave functions of Rydberg electrons in an electric field. It is also found that the break
of L–S coupling affects considerably the shape of double Stark resonance arising upon intersection of the vir-
tual intermediate level of two-photon transition with the real intermediate 37S level. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The double Stark resonance on two-photon

nP  (n + 1)P

microwave transitions in Rydberg atoms of Na in a
weak electric field was first observed and investigated
in [1, 2]. It consists in that the detuning of the real inter-
mediate level (n + 1)S from the virtual intermediate
level of two-photon transition decreases rapidly when
an electric field is switched on, and, with a certain value
of the field, the two-photon resonance transforms to the
exact double resonance,

nP  (n + 1)S  (n + 1)P.

The probability of transition increases by several orders
of magnitude, which leads to the emergence, in the
absorption spectrum, of a wide band instead of separate
narrow peaks corresponding to transitions between the
fine structure components of the P states.

It was demonstrated in [1, 2] that the double Stark
resonance may be used for absolute calibration of the
strength of a weak electric field in vacuum. For each
transition component, the double resonance arises in a
narrow range of electric field strengths (~0.1 V/cm) if
the intensity of microwave radiation is less than the sat-
uration intensity of intermediate single-photon transi-
tions. The main advantages of this method are as fol-
lows: first, the experiments are performed with single
Rydberg atoms, and, therefore, one can state that a non-
contact method of measuring weak electric fields is
found; second, the values of the critical fields of double
1063-7761/02/9404- $22.00 © 20677
Stark resonance may be calculated with high accuracy
for any nP  (n + 1)P two-photon transition, and, in
this manner, a set of reference points may be obtained
in a wide range of field strengths.

Unfortunately, in [1, 2] some Stark components of
two-photon transitions were identified incorrectly, and
the dependence of the spectrum of double Stark reso-
nance on the conditions of laser excitation was not stud-
ied; the approximate formula of quadratic Stark effect
was used for the absolute calibration of the electric
field. Therefore, we performed new investigations of
the spectrum of double Stark resonance on the 36P 
37P two-photon transition in Rydberg atoms of Na (the
transition frequency of about 72.6 GHz). It has been
found that the spectrum depends substantially both on
the method of excitation of the initial 36P state and on
the polarization of exciting laser radiation. We also per-
formed an exact numerical calculation of transition fre-
quencies in the electric field and of the critical fields of
double Stark resonance.

2. THEORY

Figure 1 gives a calculated Stark diagram of the
energy levels of Rydberg atoms of Na in the vicinity of
hydrogen-like sets of levels n = 35, 36. In a weak elec-
tric field E ≤ 10 V/cm, when the shifts of P levels are
much less than the distances to the nearest D levels (the
lower component of hydrogen-like set), the 36P and
37P states are characterized by the quadratic Stark
effect, because the P states of Na possess a significant
002 MAIK “Nauka/Interperiodica”
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quantum defect (δP ≈ 0.855). The same is true of the
intermediate level 37S (δS ≈ 1.347), which is located
almost midway between the 36P and 37P levels (detun-
ing from the virtual level of two-photon transition
Ω ≈ 2.6 GHz; the virtual level is shown in Fig. 1 by the
dotted curve).

The nP states are split by spin–orbit interaction [3],

(1)

(α is the fine structure constant, r is the distance from
electron to nucleus, L is the orbital angular momentum
operator, and S is the electron spin operator), into two
sublevels with the total angular momentum J equal to
1/2 and 3/2. The fine structure intervals are 124 and
114 MHz for 36P and 37P, respectively. The presence
of L–S coupling in the case of P states complicates the
Stark structure of transition spectra. The qualitative dia-
gram of behavior of the 36P and 37P levels in the elec-
tric field is given in Fig. 2. In the absence of the field,
the wave functions of individual fine-structure mag-
netic sublevels ΨJM of the nP state with the angular
momentum J and its projection M are a linear superpo-
sition of undisturbed (disregarding the spin–orbit inter-
action) wave functions Φlm of a Rydberg electron with
the orbital angular momentum l = 1 and its projection
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Fig. 1. A calculated Stark diagram of the energy levels of
Rydberg atoms of Na in the vicinity of hydrogen-like sets
of levels n = 35, 36 for sets with the projection of total
angular momentum |M| = 1/2. The virtual intermediate
level of 36P  37P two-photon transition is indicated
by the dotted curve. The double arrow corresponds to dou-
ble Stark resonance.
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m = 0, ±1, multiplied by the respective spin wave func-
tions ϕs with the spin projection s = ±1/2 [3],

(2)

In a first approximation, the shift of the center of
gravity and the splitting of these levels in a weak elec-
tric field are described by the formula [4]

(3)

where α0 and α2 denote the scalar and tensor polariz-
abilities, which increase rapidly with the principal
quantum number of the Rydberg state in proportion
to n7. The values of polarizabilities for the 36P and 37P
states were measured in [1, 2, 5]. Note that α2 = 0 for

Ψ1/2 1/2–
2
3
---Φ1 1– ϕ+1/2

1
3
---Φ1 0ϕ 1/2– ,–=

Ψ1/2 +1/2
1
3
---Φ1 0ϕ+1/2

2
3
---Φ1 +1ϕ 1/2– ,–=

Ψ3/2 –3/2 Φ1 1– ϕ–1/2,=

Ψ3/2 –1/2
1
3
---Φ1 1– ϕ+1/2

2
3
---Φ1 0ϕ 1/2– ,+=

Ψ3/2 +1/2
2
3
---Φ1 0ϕ+1/2

1
3
---Φ1 +1ϕ 1/2– ,+=

Ψ3/2 +3/2 Φ1 +1ϕ+1/2.=

∆W
1
2
--- α0 α2

3M2 J J 1+( )–
J 2J 1–( )

-------------------------------------+
 
 
 

E2,–=

Strong fieldWeak field The field is

Electric field

|m| = 0

|m| = 1|M| = 1/2

|M| = 3/2

|M| = 1/2

J = 3/2

J = 1/2

37P

|m| = 0

|m| = 1|M| = 1/2

|M| = 3/2

|M| = 1/2

J = 3/2

J = 1/2

36P

switched off

Fig. 2. The diagram of a break of L–S coupling for the 36P
and 37P states in Na atoms in a constant electric field. In the
absence of a field and in a weak field (<1 V/cm), the states
are described by wave functions in the nlJM basis. In a
strong field (>3 V/cm), the wave functions correspond to the
nlm basis.
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the states with J = 1/2, i.e., these levels are not split, and
the degeneracy of levels by the sign of M is not removed
by the electric field.

In very weak fields (≤1 V/cm), formula (3) is fairly
accurate (the error of <1%). However, in the region of
double Stark resonance at E = 6–7 V/cm (see Fig. 1), it
proves insufficient for a correct calculation of the criti-
cal fields of each of nine components of two-photon
transition. This is associated with the fact that Eq. (3) is
derived using perturbation theory and ignores the vari-
ation of the frequencies of transitions and wave func-
tions of atomic states in an electric field. In [1, 2], the
values of the critical fields were calculated using for-
mula (3) and, therefore, need to be refined. More exact
formulas may be borrowed from [6, 7]; however, they
are rather complicated and call for measurements of
additional parameters of Rydberg levels.

We used the numerical calculation of the eigenval-
ues of atomic energy in an electric field. The Stark dia-
gram in Fig. 1 for the |M | = 1/2 states was obtained
using the matrix diagonalization of the Hamiltonian of
atom–field interaction [8],

(4)

where d is the operator of atomic dipole moment. The
basis of unperturbed states was provided by fine-struc-
ture magnetic sublevels of the nlJM states, n = 34–39,
and the exact values of quantum defects were borrowed
from [9]. This enabled us to calculate the eigenvalues of
energies and obtain refined data on the critical field of
double Stark resonance for the 36P  37P transition,
which are given in the table.

The calculation of wave functions and transition
probabilities is a more complicated problem and calls
for determination of the eigenvectors of the interaction
operator matrix. For determining the wave functions in
an arbitrary electric field, one must solve the problem
of finding the eigenvectors of the matrix of the Hamil-

tonian  +  which includes both the spin–orbit
interaction and the atom–electric field interaction.
Therefore, we will restrict ourselves to qualitative
treatment of the behavior of wave functions and tran-
sition probabilities in an electric field in accordance
with Fig. 2.

In the absence of the field, the stationary wave func-
tions of the 36P and 37P states are defined by formulas
(2) and relate to the basis of nlJM states, in which the
Hamiltonian of spin–orbit interaction is diagonal. In a
“weak” electric field (of the order of 1.5 V/cm), the
atom–field interaction energy is compared with the
spin–orbit interaction energy, which brings about a
variation of the expansion coefficients in Eq. (1).
Finally, in a “strong” field at E ≥ 3–4 V/cm, an almost
complete break of the L–S coupling occurs, and the
behavior of Rydberg electrons may be described in the
basis of nlm states using the wave functions Φlm. One
should take into account the fact that a further field
growth (>10 V/cm, see Fig. 1) is accompanied by the

ĤE d– E,⋅=

ĤLS ĤE
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mixing of states of different parities, and the electron
wave function will be a linear superposition of wave
functions with different values of l.

The merit of nP  (n + 1)P two-photon micro-
wave transitions in Rydberg atoms of Na consists in
that they enable one to experimentally investigate the
transition from weak to strong interaction of an atom
with an electric field. Owing to close agreement
between the scalar polarizabilities of the adjacent nP
and (n + 1)P states, their great Stark shifts are partly
compensated, and it turns out possible to determine the
electric field dependences of the probabilities and fre-
quencies of individual transitions by scanning the
microwave generator frequency in a fairly narrow fre-
quency range of the order of 1 GHz, rather than several
gigahertz, as would be the case, for example, for single-
photon nP  n'S transitions [5]. The latter fact is
important from the standpoint of ensuring the invariant
intensity of microwave radiation in the region of inter-
action with Rydberg atoms.

3. EXPERIMENTAL SETUP

The experiments were performed with an effusion
beam of Na atoms with a temperature of 500 K in a vac-
uum chamber at a residual gas pressure of 3 × 10–7 Torr
(Fig. 3). The Rydberg states were excited according to
the three-stage scheme of

with the beam being transversely illuminated by the
radiation of three synchronized tunable pulsed lasers
with a high (5 kHz) pulse repetition rate. In the first and
third stages, Rhodamine 6G and Oxazine 17 dye lasers

were used, and in the second stage, a laser with 
color centers in a LiF crystal.

3S1/2 3P3/2 4S1/2 36PJ 1/2 3/2,=

F2
–

The results of numerical calculation of the critical fields of
double Stark resonance for two-photon transitions between
the Stark sublevels of the 36P and 37P states in Na atoms.
The resonance numbers correspond to their identification in
the experimental records (Figs. 5 and 6)

No. of peak in 
Figs. 5 and 6

36PJ|M|  37PJ'|M'|
transition

Critical field, 
V/cm

6 36P3/2, 1/2  37P3/2, 1/2 6.37

8 36P3/2, 3/2  37P3/2, 1/2 6.67

9 36P1/2, 1/2  37P3/2, 1/2 6.73

2 36P3/2, 1/2  37P3/2, 3/2 6.75

1 36P3/2, 1/2  37P1/2, 1/2 6.79

4 36P3/2, 3/2  37P3/2, 3/2 7.10

3 36P3/2, 3/2  37P1/2, 1/2 7.15

7 36P1/2, 1/2  37P3/2, 3/2 7.15

5 36P1/2, 1/2  37P1/2, 1/2 7.20
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Fig. 3. The diagram of the experimental setup for microwave spectroscopy of Rydberg atoms of Na.
The atomic beam was then directed to the region of
interaction with resonance microwave radiation at a fre-
quency of 72–73 GHz, which was introduced via a
waveguide into the space between two copper plates
producing a constant electric field. The microwave field
had the form of a standing wave of complex spatial con-
figuration. Because the radiation wavelength
(~4.2 mm) exceeded considerably the atomic beam
diameter (1 mm), the point of interaction with the
standing wave could be selected by varying the point of
laser excitation of Rydberg states, as was demonstrated
in [10].

The radiation source was provided by a G4-142
backward-wave oscillator with the tuning range of 53–
78 GHz. The oscillator frequency was stabilized with
the aid of an external heterodyne which, in turn, was
locked to a quartz frequency synthesizer. The oscillator
line width in the continuous mode was less than 20 kHz.
The pulsed oscillation mode was used in the experi-
ments in order to separate in time the moments of laser
excitation, interaction with microwave radiation, and
detection of populations of the Rydberg states. The
effective radiation line width of 1 MHz corresponded to
the microwave pulse duration of 1 µs.

In scanning the oscillator frequency, two-photon
transitions between the fine-structure levels of the ini-
tial 36P state and the final 37P state were induced,
which resulted in a variation of their populations. The
populations were controlled by the method of selective
JOURNAL OF EXPERIMENTAL
field ionization in a pulsed electric field [11, 12]. The
electrons formed as a result of ionization were detected
by a VEU-6 vacuum channel secondary-emission mul-
tiplier, and the signal from the output of the latter was
processed in the pulse counting mode in the CAMAC
crate and computer. In order to reduce the effect of ther-
mal background radiation, which causes unwanted
transitions between adjacent Rydberg states and the
reduction of their lifetimes [12], all elements of the
detection system and input of microwave radiation
were cooled down to the liquid nitrogen temperature of
77 K.

The time diagram of signals is given in Fig. 4. At the
moment of time t = 0, a laser radiation pulse (Fig. 4a)
excited both fine-structure sublevels of the 36P state.
The electric field in the interaction region had a two-
stage shape (Fig. 4b). The first, weak (0 to 10 V/cm),
stage was switched on smoothly either before or imme-
diately after the laser pulse and then reached a steady-
state value prior to the moment of switching on of a
microwave pulse with the duration of 1.2 µs (Fig. 4c).
The second, strong, stage of the electric field increasing
linearly to 220 V/cm was switched on after the termina-
tion of the microwave pulse and was used for selective
field ionization of Rydberg atoms. Depending on the
state of the atom, signals separated in time appeared at
the VEU-6 output, which corresponded to the 36P and
37P states (Fig. 4d) ionized at different values of the
electric field. In the pulse counting mode, the frequency
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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of each signal is proportional to the population of the
given state. The signals were averaged over approxi-
mately 2000 laser pulses.

4. RESULTS

The spectrum of 36P  37P two-photon transi-
tion was investigated for different intensities of the first
(“weak”) stage of the electric field and for different
modes of switching this stage on, i.e., before the laser
pulse (for brevity, mode A) or after the laser pulse
(mode B). The polarization of pumping laser radiation
was also varied. The unknown polarization of micro-
wave field E was determined by the spectra of micro-
wave transitions using the known angular parts of
dipole moments of transitions between the S and P
states [13]. It turned out to be linear, and the field con-
tained both the component %σ (orthogonal to the elec-
tric field) and the component %π (collinear with the
field), with %σ/%π ≈ 2. The radiation intensity was eval-
uated by the power broadening of resonances using the
calculated values of the radial parts of the dipole
moments of transitions [14] and amounted to approxi-
mately 10–5 W/cm2.

Figure 5 gives records of the spectrum obtained with
linear σ polarization of pumping laser radiation. The
left-hand column of the records relates to the A mode
when the electric field E is switched on 0.8 µs before
the laser pulse, and the right-hand column relates to the
B mode when the field is switched on with a delay of
0.2 µs after the laser pulse. The dotted lines indicate the
calculated positions of resonances, and the numbers
adjacent to them correspond to the resonance numbers
in the table.

In the absence of the field, the spectra coincide and
contain four components of transitions between unper-
turbed fine-structure levels (see Fig. 2). In the electric
field, the spectrum in the general case contains nine
components as a result of Stark splitting of levels with
J = 3/2. All nine components were observed in the B
mode at E = 4.73 V/cm (Fig. 5). With the same field
strength, the spectral components 1, 2, and 6 are absent
in the A mode. We will dwell on this in more detail.

As was already noted, the field of 4.73 V/cm is a
strong field in which the L–S coupling is broken, and
the transition probabilities must be calculated in the
basis of nlm states. Consequently, in such a field, the
selection rules for dipole transitions will likewise be
defined by the quantum number m rather than by M. In
the spectra at E = 4.73 V/cm, one can see how three
groups of resonances are formed, namely, {1–2}, {3–
4–5–6–7}, and {8–9}, which correspond to the groups
of transitions (see Fig. 2) {36Pm = 0  37P|m| = 1},
{36P|m| = 1  37P|m| = 1, 36Pm = 0  37Pm = 0}, and
{36P|m| = 1  37Pm = 0}. In the electric field, the micro-
wave radiation may induce all three groups of the
above-identified transitions, because its polarization is
such that the intermediate state 37Sm = 0 of two-photon
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
transition is associated both with the sublevels m = 0
and with the sublevels |m | = 1 of the P states. However,
it is also necessary to take into account the selection
rules in the case of excitation of Rydberg states by
polarized laser radiation.

If the excitation of the 4S  36P transition in the
case of σ polarization of laser radiation proceeds in the
A mode, i.e., in the presence of an electric field, only
the 36P|m| = 1 sublevels will turn out to be excited, and
the 36Pm = 0 sublevel is not populated, because the
σ-polarized radiation induces transitions with ∆m = ±1
from the initial state 4Sm = 0. It is this fact that results in
the absence of the components 1, 2, and 6 in the A mode
in the spectrum shown in Fig. 5 at E = 4.73 V/cm,
because these components are associated with transi-
tions from the 36Pm = 0 state.

If the excitation is effected in the B mode, the situa-
tion changes. Because, at the moment of a laser pulse,
the electric field is absent, the selection rules with
respect to M are valid; in this case, ∆M = ±1 for σ-polar-
ized radiation. As a result, all fine-structure magnetic
sublevels of the 36P state are populated from the
4SJ = 1/2 |M| = 1/2 state. Then, after the adiabatic switching

(a)

0

37P

t, µs
2 4 6

(b)

(c)

(d)
36P

Fig. 4. The time diagram for signals. (a) The pulse of laser
radiation exciting the initial 36P Rydberg state. (b) The
electric field of two-stage shape. The first (weak) stage is
switched on either before (A mode) or after (B mode) the
laser pulse. The second (strong) linearly increasing stage is
used for selective field ionization of Rydberg atoms. (c) The
microwave radiation pulse inducing the 36P  37P two-
photon transition. (d) Signals at the output of VEU-6 chan-
nel secondary-emission multiplier corresponding to popula-
tions of Rydberg states.
SICS      Vol. 94      No. 4      2002
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Fig. 5. The spectra of the 36P  37P two-photon transition in Rydberg atoms of Na for different values of electric field strength
and σ polarization of exciting laser radiation. The left-hand column of the records corresponds to the A mode when the electric field
E is switched on 0.8 µs before the laser pulse, and the right-hand column relates to the B mode when the electric field is switched
on 0.2 µs after the laser pulse.
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on of the first stage of electric field, both the 36P|m| = 1
sublevels and the 36Pm = 0 sublevel will turn out to be
populated (see Fig. 2). Therefore, in Fig. 5, all nine
components of two-photon transition are present in the
B mode at E = 4.73 V/cm.

An analogous situation is observed in the case of
E = 2.42 V/cm (Fig. 5), although no clear separation
into three groups of resonances is observed so far. In the
A mode, peaks 1 and 2 turn out to be several times
lower than in the B mode. This indicates that even such
a weak electric field is sufficient for the breaking of the
L–S coupling in Rydberg states.

We will now turn to the field strength region E = 6–
8 V/cm, where, according to the table, the double Stark
resonance arises. The least critical strength is exhibited
by peak 6. However, its amplitude is low compared
with other peaks due to specific polarizations of laser
and microwave radiation. Therefore, in the spectra
recorded at E = 5.76 V/cm, the double Stark resonance
is observed primarily at peaks 8 and 9, which shows up
in their marked power broadening. The asymmetry of
broadening is caused by a slight asymmetry in the
microwave pulse spectrum due to the frequency devia-
JOURNAL OF EXPERIMENTAL 
tion under conditions of pulse modulation of the G4-
142 oscillator. This effect does not show up in the
absence of double Stark resonance; however, in the
region of double Stark resonance, the transition proba-
bilities increase by several orders of magnitude. As a
result, the intensity of even very weak spectral compo-
nents of a microwave pulse is sufficient for the satura-
tion of transition.

When the field strength increases to 6.88 V/cm, the
double resonance includes other spectral components
as well, as a result of which the spectrum assumes the
form of a broad absorption band without clearly defined
resonances. The formulas for evaluating the spectral
width of double Stark resonance are given in [2]; for
each of the resonances, this width turns out to be of the
order of the Rabi frequency for exact resonance with
single-photon transition (in our experiment, of the
order of 100 MHz). In fields of 7.53 and 7.92 V/cm, a
part of the transitions leave the double Stark resonance
and recover their resonance pattern. Note the differ-
ences in the spectra of double Stark resonance for the A
and B modes, which are associated only with the pres-
AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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Fig. 6. Same as in Fig. 5, but for π polarization of exciting laser radiation.
ence or absence of an electric field at the moment of
laser excitation.

A change in the polarization of laser radiation brings
about an even more radical variation of the spectrum
shape. Figure 6 gives spectral records obtained under
conditions of π polarization. As before, the left-hand
column corresponds to the A mode, and the right-hand
column, to the B mode.

Now, in the A mode, the laser radiation excites only
the 36Pm = 0 state due to the selection rule ∆m = 0, and,
in the B mode, the 36PJ = 3/2 |M| = 3/2 sublevels are not
excited due to the selection rules ∆M = 0. As a result, in
Fig. 6 at E = 4.68 V/cm only three peaks are present in
the A mode and six peaks in the B mode. Accordingly,
in the region of double Stark resonance as well, the
spectra appear much differently than in Fig. 5, espe-
cially, for the A mode. In particular, in the A mode at
E = 6.17 and 6.88 V/cm, the broad absorption band dis-
appeared from the center of the graph; however, the
band in the left-hand part remained (it corresponds to
double Stark resonance for peaks 1 and 2). For the A
mode in the region of fields of 7.5–8 V/cm, no signal of
double Stark resonance is observed at all; however,
with a further increase in the strength to 9.37 V/cm,
OURNAL OF EXPERIMENTAL AND THEORETICAL PHY
peak 6 starts broadening and entering into the double
Stark resonance. The latter fact is unexpected, because
the predicted value of the critical field for this peak is
6.37 V/cm.

5. DISCUSSION OF THE RESULTS

The results indicate that the observed spectrum of
the 36P  37P two-photon microwave transition in
Rydberg atoms of Na depends significantly on the pres-
ence of the electric field at the moment of laser excita-
tion. This effect is associated with the variation of the
wave functions of Rydberg atoms in the electric field.
In spite of the fact that, in an electric field, the spin–
orbit interaction still shows up as the splitting of com-
ponents of two-photon transition, it may be included as
a perturbation for individual Stark sublevels [3],
because the energy of interaction between an atom and
electric field exceeds considerably the energy of L−S
coupling. In this case, the transition probabilities are
defined by the selection rules with respect to m rather
than to M.

In this regard, a full analogy is observed with the
transition from the Zeeman effect in a weak magnetic
SICS      Vol. 94      No. 4      2002
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field to the Paschen–Back effect in a strong magnetic
field [3]. However, for the Paschen–Back effect to be
observed, fields of the order of 105 Oe are required,
which defines the complexity of experiments. At the
same time, as was demonstrated by our experiment, the
field strength of the order of just several V/cm is
required for the breaking of the L–S coupling by an
electric field in Rydberg atoms. This opens up new pos-
sibilities for investigation of the region of transition
from weak interaction between an atom and electric
field to strong interaction. Note that, for atoms in
weakly excited states, the requisite fields reach values
of hundreds of kV/cm or more.

The break of L–S coupling has a significant effect
on the shape of double Stark resonance in Rydberg
atoms. The disappearance of individual components of
two-photon transition reduces the spectral width in the
region of double resonance. This enables one to sim-
plify the identification of transitions and, thereby, com-
pare the experimental and theoretical values of the crit-
ical fields of double Stark resonance.

Note good agreement in all recordings in Figs. 5 and
6 between the observed frequencies of two-photon res-
onances and those calculated for the transitions which
do not fit the exact double resonance and do not experi-
ence a strong power broadening. This points to the high
accuracy of calculation of the level energies by the
method of Zimmerman et al. [8]; therefore, the values
of the critical fields of double Stark resonance given in
the table must likewise correspond to the experimen-
tally obtained values with a low intensity of microwave
radiation, when the field broadening of resonances is
minor. However, in our experiment, the single-photon
Rabi frequency (of the order of 100 MHz) was compa-
rable to the energy of L–S coupling. It is apparently this
fact that brings about a marked difference between the
experimentally and theoretically obtained values of the
critical field for peak 6. Therefore, one must conclude
that, in order to perform an exact calculation of the crit-
ical fields of double Stark resonance, it is necessary to
simultaneously include both the spin–orbit interaction
and the static and dynamic Stark effects.
JOURNAL OF EXPERIMENTAL 
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Abstract—The main properties of infrared stimulated electronic Raman scattering (SERS) at the 6 2S1/2–
7 2S1/2, 3/2 transitions in cesium atoms are studied theoretically and experimentally as functions of the atomic
concentration, which was varied from 1011 to 1016 cm–3. It is found that the efficiency of generation of Stokes
radiation strongly depends on one-photon absorption of the pump radiation tuned near frequencies of the
62S1/2–72P1/2, 3/2 transitions. By using the equation for the density matrix, which describes the evolution of a
three-level system, the theory of resonance excitation of IR radiation upon one-photon absorption at an adjacent
transition is developed. The theory describes well the main features of IR SERS in alkali-metal vapors. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Vapors of alkali metals, whose atoms have low-
lying narrow energy levels coupled by strong dipole
transitions, are very convenient media for exciting res-
onance stimulated electronic Raman scattering (SERS)
of light, which allows one to convert comparatively
simply and efficiently laser radiation in the visible
range to the IR spectral region. For example, SERS in
cesium vapors was used for conversion of the visible
radiation from a dye laser to IR radiation tunable from
500 to 5000 cm–1 (2–20 µm) [1–3]. SERS in potassium
vapors was used for obtaining IR radiation tunable from
2850 to 3500 cm–1 (2.85–3.5 µm), which was employed
for studying the IR absorption spectrum of carbon diox-
ide [4]. We can also mention papers [5–9] in which
picosecond laser pulses in the visible range were effi-
ciently converted to the IR range using SERS in cesium
and potassium vapors.

Theoretical estimates, which were confirmed by
experimental results, show that the SERS efficiency
should increase with increasing pump intensity IL or
upon approach of the pump frequency ωL to the fre-
quency of an allowed atomic transition. At the same
time, the IR SERS under quasi-resonance conditions at
high intensities IL can be suppressed due to the develop-
ment of other nonlinear-optical processes, for example,
multiphoton ionization [10]. The quasi-resonance
action of powerful electromagnetic radiation on an
atomic system should also change the shape of an
absorption line (see, for example, [11–14]). In this case,
1063-7761/02/9404- $22.00 © 20685
if the lifetime Γ–1 of one-photon or cascade radiative
transition from an upper level to the ground state is
small compared to the lifetime of stimulated emission
of a Stokes photon of frequency ωS, then one-photon
absorption of pump radiation should dominate over
SERS.

The perturbation of the absorption spectrum of a
simplest two-level system in a strong quasi-resonance
radiation field is well studied both theoretically and
experimentally. The same can be said about the main
properties of IR SERS excited near the resonance.
However, the effect of absorption of pump radiation on
the IR SERS under resonance conditions has not been
studied in detail so far, although a decrease in the
energy of Stokes radiation upon approach of ωL to the
resonance with frequencies of allowed atomic transi-
tions was observed in some papers (see, for example,
[2]), which was explained by absorption of pump radi-
ation.

This paper is devoted to the experimental and theo-
retical study of the effect of absorption of pump radia-
tion on the efficiency of IR SERS in alkali-metal
vapors.

2. EXPERIMENTAL

We studied the IR SERS at the frequency ωS by tun-
ing the excitation frequency ωL near frequencies of the
62S1/2–72P1/2, 3/2 transitions of a cesium atom (Fig. 1).
Cesium vapors were produced in a special cell of length
002 MAIK “Nauka/Interperiodica”
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l = 20 cm, which was made of leucosapphire [15]. Sev-
eral grams of cesium of purity 99.9% were introduced
in a vacuum of 10–5 Torr into a cell placed inside a fur-
nace. Due to a special furnace design, the temperature
in the central part of the furnace was somewhat higher
than that at its ends. This eliminated condensation on
optical windows of the cell. The vapor pressure was
varied from 10–5 to 1 Torr. This corresponded to a
change in the concentration of cesium atoms in the
range N = 1011–1016 cm–3.

Excitation was performed with a tunable dye laser,
which was pumped by a pulsed excimer XeCl laser. The
dye laser was continuously tuned in the spectral range
ωL = 21 700–22 050 cm–1, in which the frequencies of
two 62S1/2–72P1/2, 3/2 transitions were located. The pulse
duration of the dye laser was τL = 15 ns, the peak pulse
energy was WL = 5 mJ, and the emission line width was
ΓL/2πc = 1 cm–1.

72P1/2, 3/2

62P1/2, 3/2

1.47 µm

3.09 µm
2.39 µm

ωS

ωL

62S1/2 |1〉

72S1/2 |3〉

|2〉

Fig. 1. Energy level diagram for a cesium atom.

0
21800

W
S,

 r
el

. u
ni

ts

ωL, cm–1

14

21700 21900 22000

62S1/2 – 72P1/2 62S1/2 – 72P3/2
12

10

8

6

4

2

Fig. 2. Frequency dependences of the IR SERS energy at differ-
ent concentrations of cesium atoms. (j) N1 = 8 × 1011 cm–3;

(d) N2 = 4 × 1013 cm–3; (h) N3 = 5 × 1015 cm–3.
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The dye laser radiation was focused with a long-
focus lens into a cell with cesium vapors so that the
diameter of the laser beam was 5 mm at the cell
entrance and 0.5 mm inside the cell at its center.

We studied simultaneously the dependences of the
energy of visible pump radiation transmitted through
cesium vapors and of the energy of the IR SERS signal
on ωL at different concentrations N of cesium atoms.
The visible radiation coming from the cell was detected
with a photodiode. The Stokes signal was focused with
a spherical silver mirror on a liquid-nitrogen-cooled
photoresistor, whose signal was amplified with a broad-
band amplifier mounted in the same housing.

Upon tuning ωL near the 62S1/2–72P1/2, 3/2 transition
frequencies, along with IR SERS three other IR lines
are excited at wavelengths 1.47, 2.39, and 3.09 µm,
which correspond to the atomic transitions 62P1/2–72S1/2

and 72S1/2–72P1/2, 3/2 (Fig. 1). However, IR radiation at
2.39 and 3.09 µm was generated only when the fre-
quency ωL was coincident with an accuracy to the laser
linewidth ΓL/2πc with the 62S1/2–72P1/2, 3/2 transition
frequencies, whereas the wavelength 1.47 µm lies out-
side the region of spectral photosensitivity of the pho-
todetector. For this reason, in most experiments the
Stokes radiation was directed to the photodetector with-
out using an IR monochromator.

A system for processing output signals from the
photodiode and photodetector also controls the dye
laser radiation frequency ωL. The system consists of
CAMAC ADC and step-motor control modules and of
a controller connecting the CAMAC line with a com-
puter. The ADC operated in the regime of a peak detec-
tor. To avoid disturbances, the coincidence regime was
used. A clock pulse from the excimer laser controlled
the gate for transmitting a signal to the converter input
only simultaneously with the laser pulse. The signal
averaged over ten measurements was stored in the com-
puter memory together with the current value of ωL.
Then, a command was sent for detuning the dye laser
frequency, and the measurement cycle was repeated.
The obtained results were processed and plotted using
standard mathematical programs. The relative error of
measurements did not exceed 3%.

3. EXPERIMENTAL RESULTS

Figure 2 shows the frequency dependences of the
energy WS of IR SERS in cesium vapors for three con-
centrations of cesium atoms: N1 = 8 × 1011 cm–3, N2 =
4 × 1013 cm–3, and N3 = 5 × 1015 cm–3. The laser radia-
tion energy WL = 0.3 mJ was constant. As expected, for
N1 = 8 × 1011 cm–3, the IR signal energy reaches maxi-
mum values when ωL is tuned to the resonance with fre-
quencies of the 62S1/2–72P1/2, 3/2 transitions. As the con-
centration of cesium atoms was increased, both the
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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value of the Stokes signal and the tuning region of ωL

where IR radiation was excited were increased. How-
ever, already at N2 = 4 × 1013 cm–3, the IR SERS energy
decreased near the 62S1/2–72P1/2, 3/2 transitions. A fur-
ther increase in the concentration of cesium atoms up to
N3 = 5 × 1015 cm–3 resulted in a significant increase and
broadening of holes near the resonances on the plot of
the frequency dependence of the IR radiation energy.

Figure 3 shows the frequency dependences of the
transmission coefficient of cesium vapors for laser radi-
ation. The laser energy WL and concentrations of
cesium atoms N1, N2, and N3 were as in the previous
experiments. One can see that, at N1 = 8 × 1011 cm–3, ten
percent of the pump radiation is absorbed only at exact
resonances with the 62S1/2–72P1/2, 3/2 transition frequen-
cies. As the concentration of cesium atom increases up
to 5 × 1015 cm–3, absorption of laser radiation substan-
tially increases, and the range of detunings ∆0 = ω21 –
ωL (where ω21 is the frequency of the atomic transition
62S1/2–72P1/2 or 62S1/2–72P3/2) at which the pump radia-
tion is strongly absorbed becomes broader. By compar-
ing the plots shown in Figs. 2 and 3, we can conclude
unambiguously that, when the pump radiation is
strongly absorbed by cesium atoms, a hole appears in
the plot of the frequency dependence of the IR SERS
energy when ωL approaches the 62S1/2–72P1/2, 3/2 transi-
tion frequencies. The width and depth of the hole
increase with increasing absorption of the pump radia-
tion.

To optimize the excitation of IR SERS in cesium
vapors near the 62S1/2–72P1/2, 3/2 transition frequencies,
we studied the dependence of the Stokes emission
energy on the vapor temperature at different pump
energies. The results of these experiments for the case
∆0 ≈ 0 obtained for WL = 1, 0.3, and 0.04 mJ are pre-
sented in Fig. 4 (curves 1, 2, and 3, respectively). One
can see that IS increases with increasing WL. In this
case, there exists an optimal value of the vapor temper-
ature (T ≈ 130°C, corresponding to the concentration of
cesium atoms N ≈ 7 × 1013 cm–3) at which the efficiency
of excitation of IR SERS was maximum. In our exper-
iments, the excitation quantum efficiency could reach
40%.

4. DISCUSSION OF RESULTS

We restrict the theoretical analysis of the results
obtained to the case when the detuning ∆0 of the pump
frequency from the 62S1/2–72P1/2, 3/2 atomic transition
frequencies is small compared to the fine splitting of the
7P term. In this case, we can use the model of a three-
level atom with the ground (62S1/2), intermediate (72P1/2

or 72P3/2), and final (72S1/2) levels, which we denote
below as |1〉 , |2〉 , and |3〉 . This is the well-known Λ sys-
tem, which was actively studied in recent years in con-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nection with the atomic coherence effects (see, for
example, [16]). However, these effects are manifested
under the conditions that are opposite to those at which
SERS takes place, and, therefore, we will not discuss
them.

Consider the pump and IR radiation pulses with fre-
quencies ωL and ωS propagating along the z axis in a
medium consisting of three-level atoms under condi-
tions when the pump field resonantly interacts with the
atoms only at the |1〉–|2〉  transition and the IR radiation
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Fig. 3. Frequency dependences of the transmission coeffi-
cient of a cell with cesium atoms at different concentrations
of cesium atoms: (j) N1 = 8 × 1011 cm–3; (d) N2 = 4 ×
1013 cm–3; (h) N3 = 5 × 1015 cm–3.
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Fig. 4. Dependences of the IR SERS energy on the vapor
temperature for ∆0 ≈ 0 and pump energies WL = 1 (1), 0.3 (2),
and 0.04 mJ (3).
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field interacts with the atoms at the |2〉–|3〉  transition.
We represent the fields in the form

(1)

where Ei(z, t) are slowly varying complex amplitudes
and ki are the wave vectors of the fields, i = L, S.

In the resonance approximation, the interaction
Hamiltonian of the system has the form

(2)

where µik is the dipole matrix element of the i  k
transition, ∆0 = ω21 – ωL and ∆1 = ω23 – ωS are the detun-
ings of the fields from the corresponding atomic transi-
tions, and ωik is the difference in frequencies of levels i
and k.

In the general case, the IR radiation consists of two
components: Stokes radiation, which is generated dur-
ing SERS, and stimulated emission at the atomic |2〉–|3〉
transition, which is amplified due to the population
inversion for levels |2〉  and |3〉 . In the case of SERS, the
frequency of IR radiation ωS = ωL – ω31 changes with
changing the pump frequency, whereas the stimulated
emission is generated at the fixed frequency ω23
because in this case the transition of an atom to the state
|3〉  occurs from the real level 2, which is populated due
to atomic collisions and due to the interaction of atoms
with broadband pump radiation. It is obvious that, for
∆ ≤ ΓL, where ΓL is the pump line width, both radiations
have the same frequency ω23 and are described by the
same field ES. In the case of large detunings (∆ @ ΓL),
they are already generated at different frequencies, and
in principle we should take into account in Hamiltonian
(3) the contributions from both fields simultaneously,
with different amplitudes. However, as follows from
experimental data [17], which were obtained under
similar conditions in thallium vapors, the stimulated
emission is weaker by more than an order of magnitude
compared to SERS already for ∆ > 3ΓL and the pump
intensity IL ≥ 1 MW/cm2. For this reason, we will
assume below that, when ∆ > ΓL, only Stokes emission
is generated at the frequency ωS = ωL – ω31, and we will
set ∆1 = ∆0 = ∆ in (3).

The time evolution of the system is described by the
following equation for the density matrix ρ:

(3)

where Λ is the relaxation matrix. In our case, the longi-
tudinal relaxation is determined by the spontaneous
decay of levels |2〉  and |3〉  and two-photon resonance
ionization. The width Γion can be estimated from the
expression

Ei eiEi z t,( ) ikiz iωit–( ),exp=

H int "∆0 2| 〉 2〈 | " ∆0 ∆1–( ) 3| 〉 3〈 |+=

+ µ21EL 2| 〉 1〈 | µ23ES 2| 〉 3〈 | H.c.+ +( ),

dρ
dt
------ –

i
"
--- H ρ,[ ] Λρ ,+=

Γ ion nphσion,=
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where nph is the photon flux in the pump pulse and
σion is the cross section for one-photon ionization
from the level |3〉 . It follows from this that, for nph ~
1023–1024 photon/(cm2 s), which corresponds to ener-
gies 0.1–1 mJ of a focused laser beam with the cross-
sectional area S0 ~ 10−3 cm2, and for standard values of
σion ≈ 10–18–10–17 cm2, we have Γion ! τL, where τL is
the laser pulse duration. The radiative widths of the lev-

els 72P1/2, 3/2 and 72S1/2 are also small compared to ,
so that the longitudinal relaxation can be neglected
below. The transverse relaxation is mainly determined
by the resonance collision broadening with energy
transfer caused by the intrinsic vapor pressure. As
shown in [18, 19], the line width caused by one-photon
resonance collisions is

(4)

where λ is the wavelength and γ21 is the natural line
width of the |2〉–|1〉  transition, and N is the vapor den-
sity. According to (4), even at high densities, when N ~
1016 cm–3, the value of Γcol /2πc is only ≈ 10–2 cm–1,
which is far less than the pump line width ΓL/2πc ≈
1 cm–1. The Doppler broadening ΓD/2πc ≈ 10–2 cm–1 is
also small compared to ΓL, which makes the averaging
of final results over atomic velocities unnecessary.
Therefore, only the phase modulation of the pump field
should be taken into account in Eq. (3). By representing
the field EL(z, t) in the form

we assume that the phase modulation ϕ(t) is a process
proceeding randomly in time t with the correlation
function

(5)

It is well known [20, 21] that, in the region of a large
gain, the phase of a Stokes wave follows the phase of
the pump field, so that we can write

Then, after the changes

and the averaging of Eq. (3) over fluctuations of the
phase ϕ(t), taking (5) into account, we obtain the sys-
tem of equations for the elements ρij of the density
matrix

(6)

(7)

(8)

(9)

τL
1–

Γ col 0.021Nλ3γ21,≈

EL z t,( ) EL z t,( ) iϕ t( )–[ ] ,exp=

ϕ t( )[ ]exp iϕ t '( )–[ ]exp〈 〉 Γ L t t '–( )–[ ] .exp=

ES z t,( ) ES z t,( ) iϕ t( )–[ ] .exp=

ρ21 z t,( ) ρ21 iϕ t( )–[ ]exp=

ρ23 z t,( ) ρ23 iϕ t( )–[ ]exp=

ρ̇11 2ΩLImρ21,=

ρ̇33 2ΩSImρ23,=

ρ̇31 iΩLρ32 iΩSρ21,–=

ρ̇21 –i∆ Γ L+( )ρ21 iΩL ρ11 ρ22–( )– iΩSρ31,–=
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(10)

(11)

which are solved with the initial values ρij = δi1δj1. Here,
the real Rabi frequencies for fields Ei(z, t) (i = L, S) are
defined as ΩL = µ21 |EL |/" and ΩS = µ23 |ES |/".

Taking into account that ΓL @ , we can omit
derivatives with respect to t in Eqs. (9) and (10) and find

(12)

(13)

The propagation of the pump and IR emission fields
is described by the Maxwell equations

(14)

(15)

It is convenient to pass from (14) and (15) to equations

for (z, t), which have the form

(16)

(17)

where

We assume that IR emission is generated from the
spontaneous noise, whose intensity is proportional to
the pump intensity at the entrance to the medium. This
intensity is written in the form

(18)

where the dimensionless function f(t) determines the
temporal shape of the pump pulse of duration τL. With-
out the loss of generality, we can assume that the pump
and IR emission pulses have the same temporal shape
over the entire region of interaction, i.e.,

(19)

where f (z, t) = f (z = 0, t). This approximation is justi-
fied by the fact that the time dependence of the field
ES(z, t) in (15) is determined by the function ρ23(t),
while this function according to (13) changes adiabati-
cally as the pump field. In addition, this approximation

ρ̇23 –i∆ Γ L+( )ρ23 iΩS ρ33 ρ22–( )– iΩLρ13,–=

ρ22 1 ρ11– ρ33,–=

τL
1–

ρ21
i

∆ iΓ L–
----------------- ΩL ρ11 ρ22–( ) ΩSρ31+[ ] ,–=

ρ23
i

∆ iΓ L–
----------------- ΩS ρ33 ρ22–( ) ΩLρ13+[ ] .–=

d
dz
----- EL z t,( )

2πωL

c
-------------Nµ21Imρ21 z t,( ),=

d
dz
----- ES z t,( )

2πωS

c
-------------Nµ23Imρ23 z t,( ).=

Ωi
2

d
dz
-----ΩL

2 z t,( ) αΩ L
2 z t,( )Im

Γ L

ΩL

-------ρ21 z t,( ) ,=

d
dz
-----ΩS

2 z t,( ) αgΩS
2 z t,( )Im

Γ L

ΩS

------ρ23 z t,( ) ,=

α
4πNωLµ21

2

"cΓ L

-------------------------, g
ωSµ23

2

ωLµ21
2

--------------.= =

IL z 0= t,( ) IL f t( ),=

Ωi
2 z t,( ) Ωi

2 z( ) f z t,( ), i L S,,= =
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allows us to significantly simplify calculations because,
provided (19) is valid, Eqs. (6)–(8), (11) have an ana-
lytic solution if we introduce the new variable

Because these solutions are described by rather cum-
bersome expressions, we present them only for Imρ21
and Imρ23:

(20)

(21)

where

We measured in our experiments the output radia-
tion energy. Therefore, it is reasonable to pass from
(20) and (21) to the equations for the quantities

(22)

which, after multiplication by the cross-sectional area Si

(i = L, S), coincide with an accuracy to constants with
the energies of the pump and IR radiation pulses. How-
ever, in the case of the pump pulse, care should be
required because the quantity SL becomes a function of
the distance z due to the laser beam focusing, and it is
obvious that even in the absence of active ions the pump
intensity is inversely proportional to the beam cross
section SL(z). One can easily verify that this depen-
dence in the equation for WL(z) is described by the
additional term –(WL(z)/SL)dSL/dz. By substituting (20)
and (21) into Eqs. (16) and (17) and integrating over
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time, we obtain finally the following equations for
Wi(z):
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where

Equations (23) and (24) can be integrated numeri-
cally with the given initial values of Wi(0) when the
function SL(z) is known. The value of WL(0) can be
readily found knowing the initial energy and the laser
beam diameter. For IR emission, which is generated
from spontaneous noise, WS(0) is written in the form

(25)

where the coefficient C contains unknown parameters
such as the cross-sectional area of the IR pulse and the
solid angle of scattering. At the same time, there is no
need to know the exact value of C because this coeffi-
cient determines only the relative value of the generated
IR-emission energy. The latter is more sensitive to the

ratio of matrix elements g ~ / , as follows from
Eq. (24). Therefore, g can be used as a fitting parameter
when comparing the theoretical results with experimen-
tal data. We will integrate numerically Eqs. (6)–(11)
and (23), (24) using parameters corresponding to the
62S1/2–72P1/2 transition in a cesium atom. In this case,
the absorption coefficient for pump radiation for N =
1012 cm–3 is α ≈ 10–2 cm–1. The cross-sectional area S(z)
of the pump pulse as a function of z is approximated
taking into account that the laser beam is focused at the
center of the cell of length l = 20 cm and has the diam-
eter d ≈ 0.5 cm at the entrance to the cell and d ≈
0.05 cm in the focal plane. For this reason, the pump
intensity at small distances is so low that no IR emis-
sion is generated. The generation occurs only in the
region of sharp focusing of the laser beam. We chose
the length of this region in our calculations equal
approximately to 2 cm.
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Figure 5 shows the time dependence of the atomic
level populations for different values of the field inten-
sity and detuning ∆. One can see that, for the zero
detuning ∆ = 0 and weak IR emission (Fig. 5a), the
level populations rapidly become constant, the level |3〉
being populated weakly, while the levels |1〉  and |2〉
have approximately the same population. The reverse
situation takes place for large detunings and strong
amplification of the IR emission (Fig. 5b), when the
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pump energy WL(0) = 0.04 (curves 1) and 0.3 mJ (curves 2).
The parameter g in Eq. (24) was chosen equal to 40.
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Rabi frequency ΩS becomes equal to ΩL (here, one should
keep in mind that µ(72S1/2–72P1/2) @ µ(62S1/2–72P1/2). In
this case, the time oscillations of the populations of
state |1〉 and |3〉  are observed, which represent the Rabi
oscillations upon the two-photon |1〉–|3〉  transition. It is
obvious that these oscillations should also be mani-
fested in the frequency dependence of the IR emission
(see Fig. 10 below). Note the Rabi oscillations are
absent when ∆ ≤ ΓL because of a strong dephasing of
atomic polarizations at the |1〉–|2〉  and |2〉–|3〉  transitions
caused by the incoherence of the pump field. Recall
that, under our experimental conditions, ΓLτL ≈ 4000.

Figure 6 shows the spectrum of transmitted pump
radiation for the input energy of 300 µJ and different
vapor densities. In the region of an exact resonance,
absorption and the width of the spectrum strongly
increase with increasing N, in accordance with the
experimental data. The dependence of the output IR-
emission energy on the pump frequency is shown in
Fig. 7. When N = 1012 cm–3 (Fig. 7a), a sharp peak was
observed at ∆ = 0 with the width of approximately ΓL,
its amplitude increasing with the pump energy. When
the vapor density is increased up to N = 1014 cm–3

(Figs. 7b, 7c), a hole appears at the center of the emis-
sion line, whose depth decreases with increasing input
pump energy. The hole appears because at a high vapor
density and small values of ∆ the pump radiation is
strongly absorbed already at small distances. For this
reason, the generation of IR emission is strongly sup-
pressed for small ∆ and it is observed only for the val-
ues of ∆ at which absorption of the pump radiation is
weak. As the pump energy increases, it is still absorbed
at small ∆. However, as one can see from Fig. 8, this
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the initial pump energy WL(0) = 1 (1), 0.3 (2), and 0.1 mJ (3).
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absorption is no longer complete, which results in a
decrease in the depth of the hole in the IR emission line.
Figure 9 shows the dependences of the IR emission
energy on the vapor temperature for ∆ = 0 and different
pump energies. These results are also in good qualita-
tive agreement with experimental data.

Finally, we discuss the possibility of observing the
IR emission intensity oscillations, which we mentioned
above. These oscillations are determined by the last
term on the right-hand side of Eq. (24), which is propor-
tional to cos(I(z)∆/ΓL). Unfortunately, this effect is rather
weak due to the smallness of the factor exp[–I(z)]. In par-
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Fig. 10. Dependences of the output IR emission energy on
the detuning ∆ at N = 1015 cm–3 for the initial pump energy
WL(0) = 1 (1) and 0.3 mJ (2) and g = 40. A weak maximum
is observed at ∆ = 0.
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ticular, when N = 1015 cm–3, a weak maximum of the IR
emission appears at ∆ = 0 (Fig. 10), which is difficult to
observe experimentally.

5. CONCLUSIONS

We have studied experimentally and theoretically
the effect of one-photon resonance absorption of pump
radiation on the IR SERS in cesium vapors. This effect
strongly increases with increasing density of cesium
atoms, resulting in a virtually complete suppression of
the Stokes signal near the resonance. We have deter-
mined the optimal temperature of vapors at which the
quantum efficiency of excitation of IR SERS is maxi-
mal and can be as high as 40%.

Based on the three-level atom model, we have
developed the theory of generation of resonance IR
SERS in alkali-metal vapors taking into account the
absorption of pump radiation, which describes well the
experimental properties of excitation of IR emission.

The results obtained can be used for developing
compact, highly efficient laser sources based on reso-
nance SERS in alkali-metal vapors, which generate
powerful stimulated IR emission tunable in the near-
and mid-IR ranges.
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Abstract—The spectrum of a test field in a three-level ArII Λ scheme in the presence of a strong standing wave
on the adjacent transition was measured. The known light-induced transparency peak was observed; the peak
shifted as the detuning of the strong field was varied. In addition, a new resonance in the line center arose whose
position was independent of the strong-field frequency. The resonance was caused by the higher spatial coher-
ence harmonics on the test transition. Perturbation theory for a low and numerical calculations for a high stand-
ing wave intensity give qualitative agreement with experiment and substantiate the nature of the central transi-
tion. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of nonlinear spectral resonances in the field
of a strong standing wave have been under way since
the 1960s. First, the resonance in the spectrum of spon-
taneous emission in a standing wave field was calcu-
lated [1]. The shape of the spectrum was substantially
different from the simple sum of resonance structures
induced by counterrunning waves that form a standing
wave. This difference was caused by spatial standing
wave field inhomogeneity responsible for the appear-
ance of the higher spatial harmonics in both atomic
level populations and medium polarization.

Calculations for a two-level system interacting with
a standing wave [2, 3] showed that the contour of the
Bennett dip in the velocity distribution of the difference
of level populations was modulated by the higher spa-
tial harmonics. After averaging over velocities and cal-
culations of the Lamb dip shape in the spectrum, the
modulation disappeared, and only a small change in the
depth of the dip was observed. The effect was maxi-
mum near the center of the line, where the field experi-
enced resonance interactions with particles most sensi-
tive to spatial field inhomogeneity in the region of zero
velocities. Atoms that occurred in standing wave antin-
odes effectively interacted with the field, and atoms in
wave nodes virtually did not interact with it.

A consideration of the interaction between a strong
running and a comparatively weak counterrunning
wave and a two-level system with detuning between the
frequency Ω and the resonance showed that Bennett
structures arose in the velocity distribution of the differ-
ence of populations if

kv
Ω

2n 1+
---------------, n 0 1 …., ,= =
1063-7761/02/9404- $22.00 © 20694
These Bennett structures were interpreted as multipho-
ton transitions with odd numbers of quanta N = 2n + 1
[4]. Multiphoton transitions with even numbers of
quanta, N = 2n, result in the arising of a Bennett struc-
ture at zero velocities (v  = 0).

When we pass from velocity distributions to
observed test field spectra, the shape of resonances
becomes more complex because of the influence of
coherent processes. Spectral manifestations of mul-
tiphoton transitions were for the first time experimen-
tally observed in [5]. Structures of the type of inverted
Lamb dips were recorded in a CO2 laser with an absorb-
ing cell when the frequency of an external radiofre-
quency field was scanned. Alongside the principal
peak, additional peaks of a complex shape appeared.
These peaks were related to multiphoton processes. In
[6], multiphoton resonances were also recorded in the
test field spectrum of a two-level system which inter-
acted with a strong standing wave. As in the preceding
work, an absorbing cell with a molecular gas (CH3F)
was placed into the resonator cavity of a CO2 laser, and
the source of the test field was an additional tunable
laser. Alongside the principal Bennett structures at v  =
±Ω/k, where Ω is the detuning of the strong-field fre-
quency, the test field spectrum contained odd subhar-
monics at velocities v  = ±Ω/3k and an even resonance
at zero velocity v  = 0. However, a comparison of the
theory [7–9] with the experimental data [6] was only
performed at a qualitative level because of the complex
structure of experimental molecular spectra, on the one
hand, and the impossibility of separating populational
and coherent processes in the theory of two-level sys-
tems, on the other.

Satisfactory quantitative agreement between theory
and experiment was attained in [10, 11] in studying an
002 MAIK “Nauka/Interperiodica”
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atomic system (Cd113) that interacted with two counter-
running waves of different frequencies and amplitudes.
When the frequency of one of the waves was scanned,
a subradiation structure was recorded in the absorption
spectrum. This structure contained up to five lines that
converged to the line center. The structure of the spec-
tra, especially their central part, was very sensitive to
the ratio between the saturating and test wave ampli-
tudes.

New possibilities for studying spectral resonances
induced by a strong standing wave appear in three-level
systems. Numerical calculations of the test field spec-
trum on the adjacent transition show [12] that higher
spatial harmonic effects appear not only in the velocity
distribution of level populations but also in the test field
spectrum. The analysis performed in [12] also shows
that the resonance of field splitting in the spectrum is
observed for both Stokes and anti-Stokes test waves, as
opposed to strong running field effects. What is more,
we can separate populational and coherent processes in
a three-level system, which simplifies an analysis of
experimental spectra [8, 9] and offers possibilities for
designing new experiments. In particular, it was sug-
gested in [9] to suppress the contribution of coherent
processes by dephasing collisions (or strong field phase
fluctuations), which would allow us to observe purely
populational resonances (multiphoton transitions and a
peak of “slow” atoms). So far as we know, such mea-
surements have not been performed yet.

In recent years, a three-level system with a strong
standing wave tuned in resonance with one of the tran-
sitions was also studied to increase the efficiency of
generation by molecular lasers with optical pumping in
the far IR region. An increase in output power in the
presence of a standing pumping wave compared with a
running wave was predicted theoretically [13] and
proved experimentally [14]. The effect of electromag-
netically induced transparency in a closed three-level
system with a standing saturating wave was also stud-
ied theoretically [15]. Under certain conditions, the use
of a standing wave for medium bleaching is more effec-
tive than the use of running waves. In addition, trans-
parency oscillations near the center of the transparency
window appear.

In this work, we experimentally studied the spec-
trum of a test field in the presence of a strong standing
wave on the adjacent transition in the three-level argon
ion Λ scheme (Fig. 1). The conditions for separating out
the field splitting effect, which is one of the fundamen-
tal coherent effects, were provided by selecting reso-
nance medium parameters kµ < k, Nl @ Nm, and Nn and
Γl & Γm ! Γn, where Nn, Nm, and Nl are the populations
and Γn, Γm, and Γl are the relaxation constants of levels
n, m, and l, respectively. The resonance structures and
populations under the conditions of a gas discharge
plasma were additionally broadened and suppressed by
Coulomb collisions [16]. It was found experimentally
that an additional resonance formed in the center of the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
test field spectrum line against the background of the
usual split resonance as the standing wave intensity
increased. This resonance looked like “splitting of field
splitting” when the standing wave was tuned to the cen-
ter of the line and transformed into an isolated peak in
the center of the line when the standing wave was
detuned from the resonance. We constructed an analytic
model based on expanding the density matrix elements
up to second-order terms with respect to intensity. At
low intensities, this model coincided with the exact
solution in the form of a continued fraction. We sug-
gested a qualitative interpretation of the formation of
the resonance as a result of spatial coherence modula-
tion. We believe this result to be the first observation of
the effect of the higher spatial coherence harmonics.

This work is organized as follows. Section 2
describes the experimental unit and the procedure for
measurements; Section 3 contains the most important
experimental results; in Section 4, perturbation theory
equations are obtained to qualitatively explain the
experimental data; and, in Section 5, the shape of the
resonance is calculated for arbitrary standing wave
intensities. The experimental and theoretical results are
compared and discussed in Section 6.

2. EXPERIMENTAL UNIT

The experimental unit for studying higher spatial
harmonic effects in a standing wave field is shown in
Fig. 2. The discharge tube of argon laser 1 was placed
into a cavity with input 2 and output 3 mirrors opaque
to generated radiation but transparent to test radiation.
It follows that two waves were present in the resonator
cavity, namely, the standing linearly polarized gener-
ated wave and the running test wave, also linearly
polarized. Etalon 5 ensured the selection of one longi-
tudinal mode and smooth tuning of generation fre-
quency. Diaphragm 6 was used to select the TEM00
mode. Cavity mirrors selected the 457 nm line; for this
line, transmission loss in the cavity was about 0.3%,
which ensured high intensity within the cavity. Output
argon laser radiation was directed by a mirror to grating 8,
from which one order was introduced into Fabry–Perot
scanning interferometer 9 used to control the mode
composition of radiation and determine detuning of the

4p2S1/2

4s2P1/2

3s2P3/2

n

l

m

λ = 458 nm λµ = 648 nm

Fig. 1. Scheme of energy levels. Relative level widths are
shown by rectangle heights, and level populations, by circle
diameters.
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Fig. 2. Scheme of experimental unit: (1) discharge tube; (2, 3) mirrors; (4) Brewster plate; (5) etalon; (6) diaphragm; (7) chopper;
(8) grating; (9) scanning interferometer; (10) photodetector; (11) synchronous detector; (12) tunable dye laser; (13) wavelength
meter; (14) oscilloscope; (15) lens; and (16) computer.
strong field from the resonance frequency. Another
order was directed to photodetector 10 whose signal
was the reference signal for synchronous detector 11.

Measurements were performed by the test field
method in the level scheme shown in Fig. 1. The param-
eters of the scheme taken from [17–20] are listed in the
table. The main characteristic of measurements was a
large difference of both the lifetimes of levels (the Γl &
Γm ! Γn inequality was satisfied) and the level popula-
tions (Nl @ Nm * Nn, that is, the Nl unperturbed level
was strongly populated).

The source of the test field was a tunable DCM 12
dye laser (see Fig. 2), whose generation wavelength
was recorded by wavelength meter 13. The automated
system for frequency tuning and retuning [21] enabled
us to smoothly vary the test field frequency in the fre-
quency range up to 4.5 GHz in steps as small as
20 MHz; the step value was close to the radiation line
width (about 10 MHz). The spectrum of the dye laser
was recorded by scanning interferometer 9 with a
5-GHz free-dispersion region. The interferometer was
connected to an oscilloscope used to control the mode
composition of radiation.

Relaxation constants and level populations

Γn Γm Γl Amn Aml units

300 15 8 9 1 107 s–1

Nn Nm Nl units

≈1 ≈5 ≈100 109 cm–3
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The test field that was introduced into the discharge
tube was preliminarily focused by lens 15 to ensure
maximum field uniformity in the cavity. After passing
the discharge tube, a test field beam was reflected from
additional plate 4 and introduced by mirrors to photo-
detector 10 connected to synchronous detector 11. The
angle between test field and generated radiation beams
was about 10–3 radians, which prevented feedback.

We used synchronous detection, which allowed the
Doppler backing to be automatically subtracted. For
this purpose, the strong field was remodulated at a fre-
quency of about 1 kHz with the use of light chopper 7.
Synchronous detection at the modulation frequency
allowed us to identify nonlinear strong-field-induced
additions. Experimental runs and synchronous data col-
lection and recording were controlled by PC 16, to
which all measuring instruments were connected
through an ADP.

3. RESULTS

A series of plots obtained for a 135 A discharge cur-
rent is shown in Fig. 3. These plots illustrate the depen-
dence of the test field spectrum on the strong-field
intensity tuned to the center of the line. The first plot
contains a characteristic structure caused by the field
splitting effect at low intensities, namely, a split absorp-
tion contour with an about 0.5 GHz splitting. Under
exact resonance conditions, we observe a transmission
peak. Note that the negative values in the plot corre-
spond to a strong-field-induced increase in test field
absorption, and positive values correspond to a
decrease in absorption, which is equivalent to light-
induced transparency. The splitting increases as the
AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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strong-field amplitude becomes larger; the transmis-
sion peak broadens; and, most interestingly, additional
peak splitting, that is, “splitting of field splitting,”
appears. No such additional splitting is observed in the
presence of a strong running wave. The split contour is
slightly asymmetric. This asymmetry depends on inten-
sity and is related to the nonlinear lens effect (e.g., see
[22]); it can be compensated by slightly detuning the
strong field from the resonance frequency.

A series of plots in Fig. 4 illustrate the dependence
of the form of the nonlinear addition to the test field
spectrum on strong field detuning (the intracavity
strong field intensity was about 20 W/cm2, which cor-
responded to |G| ~ 100 MHz). An increase in detuning
to Ω * 1GHz causes frequency separation of the struc-
tures. At Ω ≈ 2 GHz (Fig. 4d), we only observe a
broad populational dip at a frequency of Ωµ ≈ –kµΩ/k ≈
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Fig. 3. Dependences of experimental spectra on strong-
field intensity at Ω = 0: G ≈ 25 (a), 50 (b), 75 (c), and
100 MHz (d).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
–1.5 GHz for negative detunings and a field-splitting
structure with a transparency peak at Ωµ ≈ kµΩ/k ≈
1.5 GHz for positive detunings. The characteristic spe-
cial feature of these spectra is a field-splitting reso-
nance shift observed synchronously as strong-field
detuning increases. The resonance, however, remains in
the center of the test field line. Its amplitude gradually
damps, and it transforms from a dip into a peak at large
strong-field detunings. The peak in the line center is
quite discernible up to detunings of |Ω| ≈ 2 GHz ~
kvT/2. When the sign of strong-field detuning changes,
the picture of the test field spectrum (Fig. 4) changes to
its reflection in the axis of ordinates. Note also that the
structure in the line center is substantially (more than
two times) narrower than the field-splitting resonance
transparency peak.
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4. PERTURBATION THEORY

Consider the interaction of atoms with an electro-
magnetic field in the three-level Λ scheme shown in
Fig. 1. The field of light wave running along axis x,

,

with detuning

from the Bohr frequency of the test transition tests the
three-level system, which is under the action of the
strong standing wave

with an ω = Ω + ωmn frequency close to the ωmn fre-
quency of the transition under consideration.

The absorption spectrum of the test field in an opti-
cally thin medium is expressed through the off-diago-
nal element of the density matrix ρml = ρµexp(ikµx –
iωµt),

(1)

where

is the Rabi frequency, dml is the dipole moment of the
transition, and L is the medium thickness in the direc-
tion of light propagation.

The special feature of our scheme of levels is a large
Nl population of the level unperturbed by the strong
field. This population is more than one order of magni-
tude higher than the populations at the working transi-
tion. We can therefore ignore all effects induced by the
strong standing wave and related to changes in both
populations and coherence at the working transition.
The main nonlinear spectroscopic effect in such a sys-
tem is related to mixing of coherences on both test ρµ
and forbidden ρν transitions by the standing wave field.
This effect is described by the equations

(2)

Here,

Eµ x t,( ) Eµ ikµx iωµt–( )exp=

Ωµ ωµ ωml–=

E x t,( ) 2E kx( )cos iωt–( )exp=

Pµ Ωµ( ) 2"ωµRe iGµ*–( ) v
xd

L
-----ρµ,

0

L

∫d∫=

Gµ
Eµ dml⋅

2"
------------------=

Γml i Ωµ kµv–( )– v ∂x+( )ρv

+ i G+eikx G–e i– kx+( )ρν* iGµNl v( ),=

Γnl i Ω Ωµ– kµv+( ) v ∂x+ +( )ρν*

+ i G+*e ikx– G–*eikx+( )ρµ 0.=

ρln ρν ikµx– i ω ωµ–( )t–( ),exp=

G± G
E dmn⋅

2"
----------------= =
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is the Rabi frequency of standing wave field compo-
nents parallel and antiparallel, respectively, to the
direction of test field propagation; Γml and Γnl are the
relaxation constants of test (m – l) and forbidden (n – l)
transition coherences;

is the Maxwell velocity distribution of unperturbed
level l particles; and ∂x is the operator of the differenti-
ation with respect to variable x.

System (2) has no finite analytic solution if the Rabi
frequency of the standing wave is much larger than the
relaxation constants. For this reason, the main tool of
study is numerical calculations. However, at moderate
fields, G ≤ Γml, Γnl, the problem can be analyzed using
perturbation theory. The main goal of such an analysis
is to determine spectral resonances in test field absorp-
tion caused by spatial coherence modulation ρµ(x).
Importantly, such a modulation can only arise when the
three-level system simultaneously interacts with the
standing wave component running in the same direc-
tion G+ as the test field and the component running in
the opposite direction G–. Standing wave effects are
therefore absent in first-order perturbation theory and
can only appear starting with its second order with
respect to standing wave intensities (I2 ∝  |G+ |2|G– |2).
Indeed, in first-order perturbation theory, the contribu-

tion to spectrum  of interactions between the sys-
tem and the G– standing wave component vanishes in
the Doppler limit. The nonlinear correction1 for the G+
component only appears in the Stokes case (kµ < k) as a
field-splitting resonance [12] with a peak of light-
induced transparency of width

at an Ωµ = kµΩ/k test field frequency,

(3)

After solving (2) accurate to terms of fourth order in
G± and integrating the result over velocities in the Dop-
pler limit with the use of the theory of residues, we
obtain the equation for the correction to the spectrum of

1 The difference of the test field absorption coefficients in the pres-
ence and absence of the strong field, which was measured experi-
mentally.

Nl v( )
Nl v 2/v T

2–( )exp

πv T

--------------------------------------=

Pµ
1( )

Γ p

kµΓnl k kµ–( )Γml+
k

----------------------------------------------=

∆Pµ
1( ) Pµ

1( ) 0( ) Pµ
1( ) G( )–=

=  2"ωh Gµ
2 πNl Ωµ

2 /kµ
2v T

2–( )exp
kv T

-----------------------------------------------------

× Re
2 G+

2 k kµ–( )
k Γ p i Ωµ kµΩ/k–( )–( )2
---------------------------------------------------------.
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absorbed power in second-order perturbation theory
[23]

(4)

The first term in square brackets is the second term
of the expansion in |G+ |2 and describes an increase in
field splitting proportional to |G+ |, that is, peak widths
at Ωµ = kµΩ/k [see exact equation (5) given below]. The
second term appears because of spatial coherence mod-
ulation on the ρν forbidden transition and results in the
arising in the spectrum of a nonlinear structure with for-
bidden transition width Γnl at the two-photon resonance
frequency (Ωµ = Ω). Lastly, the two last terms owe their
existence to spatial modulation of test transition coher-
ence and describe the nonlinear structure of width Γml

strictly at the line center,2 Ωµ = 0.

In the Stokes case, both spatial modulation reso-
nances arise against the background of a stronger field-
splitting resonance. For this reason, they can only be
well resolved under the condition Γnl ! Γp or Γml ! Γp.
In the system that we study, the second inequality is ful-
filled, Γml ! Γp, Γnl. The most important spatial modu-
lation effect is therefore a narrow resonance in the line
center described by the third term in square brackets in
(4). At a zero standing wave field detuning (Ω = 0), this
resonance has the form of splitting Γml of the field-split-
ting resonance of width Γp. The corresponding nonlin-
ear test field power spectrum [the sum of Eqs. (3) and
(4)] is shown in Fig. 5 for several Rabi standing wave

2 The possibility of the formation of a higher order resonance of
width Γml at the line center was not discussed in [23], because the
opposite situation with Γnl ! Γml, when the effect was exceed-
ingly small, was considered there.

∆Pµ
2( ) 2"ωµ Gµ

2 πNl Ωµ
2 /kµ

2v T
2–( )exp

kv T

-----------------------------------------------------–=

× Re
2 G+

2 k kµ–( )
k Γ p i Ωµ kµΩ/k–( )–( )2
---------------------------------------------------------

×
3 G+

2kµ k kµ–( )
k2 Γ p i Ωµ kµΩ/k–( )–( )2
-----------------------------------------------------------

+
G–

2 k kµ–( )2

k2 Γ p i Ωµ kµΩ/k–( )–( ) Γnl i Ωµ Ω–( )–( )
---------------------------------------------------------------------------------------------------

+
G–

2kµ
2 2k kµ–( )

4k3 Γml iΩµ–( )2
---------------------------------------

+
G–

2kµ
2 k kµ–( )

k3 Γ p i Ωµ kµΩ/k–( ) Γml iΩµ–( )–( )
------------------------------------------------------------------------------------- .
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frequencies. As field intensity increases, the dip in the
center grows quadratically (∝ I2), whereas the peak of
width Γp that surrounds this dip increases linearly (∝ I).

The test field spectrum at large detunings, |Ω| @ |G|,
is shown in Fig. 6 (G ≈ 100 MHz). Narrow coherence
resonance ρµ in the line center is quite discernible, and
its amplitude decreases proportionally to 1/Ω2 as detun-
ing increases. As far as the main field-splitting reso-
nance at the Ωµ = kµΩ/k frequency is concerned, this
resonance is virtually insensitive to spatial modulations
at large detunings. The nonlinear test field power spec-
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trum is then (|Ωµ|, |Ω| @ |G|) determined by the equa-
tion obtained in [12] for a strong running wave (that is,
for G– = 0) in the Doppler limit,

(5)
∆Pµ 2"ωµ Gµ

2 πNl Ωµ
2 /kµ

2v T
2–( )exp

kµv T

-----------------------------------------------------=

× 1 Re
Γ p i Ωµ kµΩ/k–( )–

Γ p i Ωµ kµΩ/k–( )–( )2 4kµ k kµ–( ) G 2

k2
------------------------------------+

---------------------------------------------------------------------------------------------------–
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According to this equation, the transparency peak
width should increase as field amplitude |G| becomes
larger.

5. CALCULATIONS 
FOR ARBITRARY INTENSITY

An equation for the work of the test field with a
strong standing wave on the adjacent transition was
obtained by Feldman and Feld [12]. We are interested
in the situation when only finite level l is populated in
the Λ scheme. In this situation, the work can be written
as

(6)

(7)

(8)

Here, angle brackets denote averaging over velocities
with a Maxwell distribution. At v  @ Ω/k, Γ/k, the frac-
tion rapidly converges, and it suffices to retain N ~ G/kv
terms.

To prove convergence of the fraction

(9)

as n  ∞, note that the numerators and denominators
of the appropriate fractions satisfy the recurrent rela-
tions [24]

(10)

with the initial conditions

We therefore have

Pµ Nl Gµ
2Im L0 G 2 u+ u–+( )–[ ] 1–〈 〉 ,∝

L±1u±
1

1

G 2

L±1L±2
----------------

1

G 2

L±2L±3
----------------

1

G 2

L±3L±4
----------------

1 …–
----------------–

-------------------------–

----------------------------------–

--------------------------------------------,=

L±n

=  
Ωµ Ω– kµ nk±( )v– iΓnl, n+ 1 3 5 …,, , ,=

Ωµ kµ nk±( )v– iΓml, n+ 0 2 4 … ., , ,=



Pn

Qn

------
1

1
p1

1
p2

1
p3

1 …+
---------------+

------------------------+
----------------------------------+

-------------------------------------------,=
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and the difference of neighboring appropriate fractions
equals

(11)

A comparison of (9) and (7) for n  ∞ shows that

In (10), the main term is the first one, and Qn becomes
independent of n. Difference (11) therefore decreases
as (n!)–2. To prove convergence, it remains to rewrite
fraction (9) in the form of the sum of the differences

The series converges uniformly as the series of the
J0(2G/kv) Bessel function, similarly to the analytic
solution obtained for equal relaxation constants and a
zero detuning [1]. The real and imaginary parts of tran-
sition nm polarization as functions of velocity become
strongly oscillating functions as v   0.

The continued fraction was calculated numerically,
and the integration over velocities was performed by
the Simpson’s rule in the interval |v | ≤ 5vT. For conve-
nience of comparison with experiment, field work at
G = 0 was subtracted from its value given by (6). The
calculation results for the Ω = 0 resonance are given in
Fig. 7. A comparison with perturbation theory formulas
(5) shows that the depth of the dip between the split
central peak components increases as the saturation
parameter grows at a rate which is, because of satura-
tion, lower than that observed in a comparatively weak
field. Under nonresonance conditions (Fig. 8), the test
field spectrum shifts and becomes asymmetric. The
dimensionless saturation parameter for the spectrum
shown in Fig. 8 is

The transparency peak shifts as the detuning between
the strong field and resonance increases, and an alter-
nating contour is formed from the dip in the center of
the line. This contour transforms into a peak as the
detuning increases further. The amplitude of the peak
decreases as the strong-field detuning becomes larger,
but not so fast as in perturbation theory calculations
(Fig. 6).

Note also that similar calculations performed by
Feldman and Feld [12] for a three-level system with k =
2kµ and equal relaxation constants of the higher and
lower levels, Γm = Γn and Γl ! Γn, m, did not predict
transparency peak splitting in the line center, that is, at
Ω = 0. At a large strong standing wave frequency detun-
ing from the resonance, the transparency peak was
shifted virtually without distortions, and no singularity
was formed in the peak center. In [12], the opposite sign
was selected, and positive values on the axis of ordi-

Pn

Qn

------
Pn 1–

Qn 1–
------------–

1–( )n

QnQn 1–
------------------ pi.

i 1=

n

∏=

pn G/kv n( )2.∼

Pn

Qn

------
Pn

Qn

------
Pn 1–

Qn 1–
------------– 

  …
P1

Q1
------

P0

Q0
------– 

  P0

Q0
------.+ + +=

κ 8 G 2/ΓmΓmn 13.≈=
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nates corresponded to an increase in absorption in the
strong field.

We also performed calculations for the parameters
used in [12]. Indeed, at Ω = 0, no dip (transparency
peak splitting) was formed, because, at the selected
ratio between level widths, the relaxation constants cor-
responding to the test Γml and forbidden Γnl transitions
were equal, and all resonances in (3) and (4) had equal
widths and did not separate at Ω = 0. Frequency sepa-
ration of resonances, however, became possible when
strong-field detuning satisfied the inequality |Ω| > Γµ, ν, G.
This was substantiated by numerical calculations,
according to which an additional resonance in the line
center Ωµ = 0 was formed against the background of the
usual field-splitting resonance with a transparency peak
at Ωµ = kµΩ/k; the width of the additional resonance
equaled that of field splitting. The peak in the line cen-
ter decreased in amplitude as strong-field detuning
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increased but remained quite resolvable up to detuning
of Ω = 15Γmn, for which the calculations in [12] were
performed.

6. DISCUSSION

A comparison of exact calculation results with those
obtained using perturbation theory and their compari-
son with both theory and experiment shows that, quali-
tatively, the observed resonance behaviors depending
on the (G, Ω) strong-field parameters are nearly identi-
cal. Namely, under exact resonance conditions, the
transparency peak width increases as field amplitude G
grows, and a new resonance (a dip) is formed at
G/Γmn ~ 0.1 characteristic values. This results in trans-
parency peak splitting, whose depth increases with G.
The transparency peak in the test field spectrum syn-
chronously shifts as strong-field detuning Ω from reso-
nance increases, Ωµ = ±kµΩ/k, and the observed reso-
nance remains in the line center and changes sign while
smoothly decreasing in amplitude.

A quantitative comparison of the shapes of the the-
oretical and experimental spectra reveals differences in
resonance widths, however, not fundamental in charac-
ter. Consider this point in more detail. In first-order per-
turbation theory, the width of the transparency peak at
half height is

This closely agrees with the experimental data obtained
at low fields with Ω = 0 (Fig. 3a). Although perturbation
theory describes transparency peak splitting caused by
an increase in the field amplitude, the experimental dip
width equal to 150–200 MHz is much larger than that
predicted theoretically (2Γml & 100 MHz) even in com-
paratively low fields G ~ 50 MHz ~ 0.1Γmn. An increase
in the field amplitude to G ≈ 100 MHz (note that the stand-
ing wave amplitude then amounts to 2G ≈ 200 MHz)
causes dip and main peak broadening by a factor of
1.5–2, the ratio between their widths remaining
unchanged.

An increase in detuning to |Ω| > Γnl, |G| causes com-
plete separation between the resonances from two run-
ning components of the standing wave and the reso-
nance of higher harmonics; the centers of these reso-
nances correspond to frequencies of Ωµ = kµΩ/k and
Ωµ = 0. The shape of the transparency peak centered at
the Ωµ = kµΩ/k frequency can then be described by
exact formula (5) obtained for a strong running wave.
Calculations show that, at characteristic fields, the peak
broadens insignificantly. The ∆EIT ≈ 250 MHz peak
width at G ≈ 100 MHz closely agrees with the results of
both numerical and experimental calculations (Figs. 4c,
4d). The theoretical width of the central peak is, how-
ever, 1.5–2 times smaller compared with the experi-

∆EIT Γ p Γnlkµ/k 1 kµ/k–( )Γml+ 230 MHz.≈= =
JOURNAL OF EXPERIMENTAL 
mental value. The radiation width on the test transition
is

and, if Stark broadening is taken into account,

(see [16–18]). In addition, we must take into account
phase fluctuations involved in Coulomb scattering of
ions (see [16]), which cannot be considered a mere
addition to the coherence relaxation constant. This cir-
cumstance may be the reason for quantitative discrep-
ancies between resonance width values. The experi-
mental amplitudes of the transparency peak at Ωµ =
kµΩ/k and the higher harmonic peak at Ωµ = 0 closely
agree with numerical calculations; the ratio between
these amplitudes approximately equals 7 at Ω ≈ 2GHz
and G ≈ 100 MHz. At such fields, perturbation theory is
already inapplicable and gives inaccurate amplitude
values.

7. CONCLUSION

To summarize, we observed a new resonance in the
test field spectrum of a three-level system in a strong
standing light wave field. This resonance is observed in
the line center independent of strong-field detuning
even in comparatively weak fields G * Γml ~ 0.1Γmn.
Note that, at Γml ! Γmn, the effect may be discernible
even earlier than light-induced transparency peak
broadening, which becomes noticeable at G * Γmn.
Under exact strong-field resonance conditions, the
effect manifests itself as light-induced transparency
peak splitting. Under nonresonance conditions, it takes
the form of an additional isolated transparency peak in
the line center. Perturbation theory including terms of
second order in intensity was constructed to qualita-
tively describe this effect. This theory allows the new
resonance to be interpreted as a manifestation of the
higher coherence spatial harmonics on the transition
with which the test field is in resonance. As spatial
coherence modulation arises under simultaneous
actions of counterrunning standing wave components,
the effect is maximum for particles with zero velocities
independent of the detuning of the standing wave fre-
quency. At a qualitative level, this means that particles
with zero velocities are most sensitive to spatial har-
monics. Atoms that occur in standing wave nodes are
insensitive to the strong field. Accordingly, strong-
field-induced transparency (or absorption) disappears
at zero detunings. Numerical calculations with the use
of a formula in which polarization is described by a
continued fraction allowed us to more accurately
describe the experimental results. Some discrepancy
(by a factor of 2 or less) between the theoretical and
experimental central peak widths in nonresonance
strong fields may be caused by Coulomb collisions of

Γml
0 1

2
--- Γm Γ l+( ) 20 MHz,≈=

Γml Γml
0 ∆Γ st+ 50 MHz≈=
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ions, which result in Doppler coherence dephasing; this
point requires a more detailed study. In this respect,
measurements in a similar Λ scheme for uncharged par-
ticles would be of use. Note that the effect of the higher
spatial coherence harmonics can be observed in both
Stokes and anti-Stokes spectra in the interval k ≤ kµ ≤ 2k.
The anti-Stokes scheme is of special interest, because,
at kµ > k, the effect of the higher spatial harmonics may
become predominant.
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Abstract—A completely relativistic mechanism for describing polarization bremsstrahlung caused by an elas-
tic collision of a charged particle with a many-electron target was suggested. Multipole expansions for the
amplitude and cross section of the process taking into account radiation lag effects were obtained. Including
higher order multipoles was shown to result in substantial asymmetry of the angular distribution of emitted pho-
tons compared with the dipole case and in a noticeable change in the spectral characteristics of polarization
radiation. The cross section of polarization bremsstrahlung was found to increase logarithmically as the energy
of incident particles grew. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When charged particles collide with a target with an
internal electronic structure, bremsstrahlung arises as a
result of the action of the so-called usual and polariza-
tion mechanisms. In the first mechanism, radiation is
caused by the deceleration of incident particles in the
static field of the target (e.g., see [1, 2]). The second
mechanism is caused by the dynamic polarizability of
the target under the action of the electric field of inci-
dent particles. Photon emission occurs as a result of vir-
tual excitation (polarization) of target electrons by the
electric field of an incident particle (e.g., see [3]). The
existence of this radiation mechanism was discovered
comparatively recently [4–7]. The purpose of this work
was to study the frequency and angular dependences of
the spectrum of polarization bremsstrahlung which
arises in relativistic collisions between a charged parti-
cle and a many-electron target.

Polarization bremsstrahlung is a more complex pro-
cess than the thoroughly studied usual bremsstrahlung,
because it should be described taking into account the
dynamic response of an atom target to the action of two
fields created by an incident particle and an emitted
photon. As a consequence, the problem acquires an
essentially many-particle character (except when colli-
sions with hydrogen atoms or hydrogen-like ions occur
and simpler methods can be used [7–11]).

Polarization bremsstrahlung can be accompanied by
target excitation or ionization in the final state. In what
follows, we use the terms elastic and inelastic with ref-
erence to polarization bremsstrahlung without and with
target excitation in the final state, respectively. In a
wide range of photon frequencies, the elastic polariza-
1063-7761/02/9404- $22.00 © 20704
tion bremsstrahlung channel predominates over the
inelastic channel in scattering of both heavy [12–18]
and light [19] particles on a many-electron atom,
because [13, 20], in elastic polarization bremsstrahl-
ung, atomic electrons radiate coherently (as is charac-
teristic of Rayleigh light scattering). Conversely, in
inelastic polarization bremsstrahlung, the contributions
of separate target electrons to the total emission spec-
trum are incoherent (as in Raman scattering) and pro-
cess cross sections rather than amplitudes should there-
fore be summed. As a result, the cross section of inelas-
tic polarization bremsstrahlung is parametrically small
for many-electron (Z @ 1) targets. The contributions of
the two process channels are approximately equal for
targets with small Z values [13]. Note that this conclu-
sion remains valid when the scattered (incident) parti-
cle has an internal structure (atom–atom, ion–atom, and
ion–ion collisions). In this work, we restrict our consid-
eration to elastic polarization bremsstrahlung.

A comprehensive review of the theoretical
approaches to and the available experimental data on
polarization bremsstrahlung can be found in [3, 21–24]
and the references cited therein. We will only briefly
mention the methods that were used to describe polar-
ization bremsstrahlung arising in collisions between
charged particles and many-electron atoms. These
methods can conventionally be separated into two
groups, namely, methods for analyzing the scattering
process and approximations used to describe dynamic
atomic response.

Two main approximations are extensively used to
describe the scattering of both light (positron and elec-
tron) and heavy (proton, ion, or atom) incident particles
002 MAIK “Nauka/Interperiodica”
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on many-electron atoms. These are the Born approxi-
mation (for both relativistic and nonrelativistic colli-
sions) and the approximation based on the use of the
nonrelativistic formalism of the method of distorted
partial waves (DPWA) [25–30]. The Born approxima-
tion gives good results for scattering of heavy particles.
The use of the DPWA method, which generalizes the
Born approximation, allows us to determine the bound-
aries of the applicability of the latter and calculate
polarization bremsstrahlung cross sections for compar-
atively low collision energies to which the Born
approximation is inapplicable.

The dynamic response of a target to combined
action of incident particle and emitted electron fields is
described in terms of the nonrelativistic dipole approx-
imation applicable to targets with small atomic num-
bers Z and to emission of photons with wavelengths
(~k–1) much larger than the size of the target in all
works except the three mentioned below. At higher Z
values (when atomic electron motions become essen-
tially relativistic in character) and k–1 ! Rat (Rat is the
target radius), this approximation cannot be considered
satisfactory.

In such a description, the amplitude of polarization
bremsstrahlung is expressed through the dipole polariz-
abilities of the target, which depend on energy ω and
absolute momentum q of the virtual photon but are
independent of momentum k of the emitted photon. If
the incident particle is nonrelativistic (lag effects are
ignored), the amplitude of polarization bremsstrahlung
is proportional to scalar dipole polarizability αd(ω, q),
which takes into account virtual excitation of the atom
target caused by interactions with the Coulomb field of
the incident particle [3, 21–24]. If a relativistic particle
is scattered (lag effects are taken into account), the
polarization bremsstrahlung amplitude contains the
second polarizability, βd(ω, q), in addition to αd(ω, q).
This polarizability describes the dynamic response of
an atom to the vector part of the virtual photon field
[19]. The two polarizabilities coincide in the q  0
limit. So far, numerical calculations have only been
performed for the αd(ω, q) polarizability.

Outside the framework of the dipole approximation,
polarization bremsstrahlung was considered for colli-
sions of a heavy particle with nonrelativistic many-
electron atoms [31–33] in terms of various approxima-
tions based on the nonrelativistic formalism of the
many-body theory [3, 21–24] and for collisions with
hydrogen atoms, when analytic methods can be applied
directly [7–11]. In addition, atomic response in polar-
ization bremsstrahlung processes was described using
the nonrelativistic unscreened atom approximation
[34]. Recently [35, 36], polarization bremsstrahlung
arising in collisions between fast electrons (positrons)
and many-electron atoms was considered in the local
electron density and static Thomas–Fermi model
approximation.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The theory of polarization bremsstrahlung resulting
from collisions between relativistic particles has been
developed to a much lesser degree. General equations
for the amplitude and cross section of polarization
bremsstrahlung were obtained in [19] within the frame-
work of the relativistic Born approximation for emis-
sion of soft photons (for which the condition of the
dipole character of radiation, kRat ! 1, is satisfied). It
was also predicted in [19] for relativistic collisions that
the contribution of the polarization bremsstrahlung
mechanism to the total bremsstrahlung spectrum
should exceed the corresponding nonrelativistic contri-
bution and should logarithmically increase with
increasing energy of incident particles because of the
lag of interaction between the incident particle and the
atom.1

Recently [37], a completely relativistic formalism
was suggested to describe the arising of bremsstrahlung
in elastic collisions between charged particles and
many-electron targets whose states could be described
in terms of the relativistic one-particle self-consistent
field approximation. Both principal bremsstrahlung
mechanisms, usual and polarization, and their interfer-
ence were considered. The motion of the incident parti-
cle was described by the relativistic formalism of the
DPWA method. This approach generalizes simpler
approximations applied earlier and allowed the spectral
and spectral–angular characteristics of bremsstrahlung
to be calculated for various collision conditions (from
nonrelativistic to ultrarelativistic) with the participation
of nonrelativistic (light) and relativistic (heavy) atoms
and ions.

In this work, we restrict ourselves to consideration
of collisions of heavy incident particles with many-
electron targets within the framework of the approach
developed in [37]. It will be assumed that polarization
bremsstrahlung arises in a collision between an inci-
dent particle whose motion can be described in the rel-
ativistic Born approximation and a spherically symmet-
rical target (atom or ion) whose initial and final states
coincide. According to [37], the characteristics of
polarization bremsstrahlung are then expressed through
generalized multipole target polarizabilities of three
types corresponding to the allowed combinations of the
types (longitudinal, electric, and magnetic) of the vir-
tual and emitted photons in the amplitude of polariza-
tion bremsstrahlung.

1 In considering the polarization bremsstrahlung mechanism, we
must distinguish between the effects that are due to interaction
lag and the emission of high-multipolarity photons. Interaction
lag implies that the incident relativistic particle interacts with the
target not only via the Coulomb field but also (in the ultrarelativ-
istic case, mainly) via the field of transverse virtual photons (see
[1]). In the latter case, the effective interaction radius increases as
the velocity of the incident particle grows. The multipole charac-
ter of radiation is solely determined by the kRat parameter value.
If kRat ! 1, radiation is of an essentially dipolar character no
matter what the velocity of the incident particle.
SICS      Vol. 94      No. 4      2002
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The formalism described in this work allows multi-
pole expansions to be obtained for the amplitude and
cross section of polarization bremsstrahlung; these
expansions take into account radiation lag effects and
emission of high-multipolarity photons and can be used
in numerical calculations of the spectral and angular
characteristics of polarization bremsstrahlung. Most
attention is given to polarization bremsstrahlung of tar-
get inner shell electrons. Such a study is expedient for
two reasons. First, inner shell electrons make the major
contribution to the formation of the complete polariza-
tion bremsstrahlung spectrum in a very wide frequency
range [3]. Secondly, the special features of the com-
plete polarization bremsstrahlung spectrum that are due
to inner-shell electrons can be described using simple
approximations (such as the hydrogen-like and the Har-
tree–Fock–Dirac approximations) without taking into
account many-electron correlations. The use of such
approximations allows the observed effects to be given
simple physical interpretation and substantially
decreases laboriousness of calculations.

So far, no detailed numerical analysis of the spectral
and angular distributions has been performed for polar-
ization bremsstrahlung of inner shell electrons (except
several first numerical results published in [37]). We
therefore believe the problem tackled in this work to be
fairly topical. The calculation results described below
show that taking into account higher order multipoles
results in a substantial asymmetry of the angular distri-
bution of emitted photons compared with the dipole
approximation and in noticeable changes in the spectral
characteristics of polarization radiation. In addition, the
important special feature of the cross section of relativ-
istic polarization bremsstrahlung, namely, its logarith-
mic increase with increasing the energy of the incident
particle, is clearly demonstrated.

Note that such calculations are of special impor-
tance for exact comparison with the recent experimen-

1 2

0 n

(ω, k, e)

0

1 2

0 n

(ω, k, e)

0

Fig. 1. Feynman diagrams for elastic polarization
bremsstrahlung of a structureless charged particle which
experiences scattering on a many-electron atom. Solid lines
are the wave functions of the incident particle satisfying the
Dirac equation (Farry representation). The initial (index
“1”) and final (index “2”) incident particle states are charac-
terized by momenta p1, 2 and polarizations µ1, 2. Double
lines depict target states, indices “0” and “n” correspond to
the initial (final) and intermediate (virtual) target states.
Dashed lines correspond to the wave function of the emitted
photon with energy ω, momentum k, and polarization vec-
tor e, and dotted lines denote Green’s function of the virtual
photon with energy ω and momentum q.
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tal data on bremsstrahlung caused by collisions
between electrons with 10–100 keV energies and vari-
ous solid-state, thin-film, and gaseous targets such as
Al, Cu, Ni, Ag, and Xe [38–40]. The experimental
results reported in these works are indicative of essen-
tial polarization bremsstrahlung mechanism contribu-
tions to the complete radiation spectrum in the energy
range in which a relativistic description of polarization
bremsstrahlung is necessary. In addition, of consider-
able interest are calculations related to relativistic colli-
sions involving heavy ions in view of the attempts made
recently in this direction [41]. In [41], the spectrum of
bremsstrahlung formed in collisions between helium-
like uranium ions with a 223 MeV/nucleon energy and
N2 and Ar gas targets was measured.

2. POLARIZATION BREMSSTRAHLUNG 
AMPLITUDE AND CROSS SECTION

Consider polarization bremsstrahlung (Fig. 1)
caused by an elastic collision between an incident par-
ticle with charge Zpe and mass mp and a spherically
symmetrical target (atom or ion) accompanied by the
transition of the particle from initial state (p1, µ1) (with

energy ε1 = ) to final state (p2, µ2) (with

energy ε2 = ). As the initial and final states of
the target coincide, the law of the conservation of
energy has the form2

(1)

The spectral–angular radiation distribution
d2σ/dωdΩk, which is obtained from the differential
cross section by the integration along the scattered par-
ticle momentum p2 direction, the summation over the
polarization of the emitted photon (λp) and the scattered
particle (µ2), and averaging over incident particle polar-
izations µ1, is written as

(2)

where dΩk and  are the solid angle elements of the

emitted photon and scattered particle, respectively. The
amplitude of the process (}) is described by two Feyn-
man diagrams (Fig. 1), which correspond to composite
matrix elements of target transitions from initial state
“0” to excited state “n” and back to final state “0” under
the action of emitted photon A(γ) field and the field of

2 We use the relativistic system of units (" = c = 1). For four-
dimensional values, the (+ – – –) metric signature is used.

p1
2 mp

2+

p2
2 mp

2+

ε1 ε2 ω.+=

d σ2

dωdΩk
------------------

p2

8 p1
-------- ω

2π( )4
------------- Ωp2

} 2
,d

4π( )
∫

µ1 µ2,
∑

λ p

∑=

Ωp2
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the virtual photon characterized by the 4-potential Aν =
(Φ, A). The amplitude has the form

(3)

Here, γν = (γ0, g) are the Dirac matrices. The summation
is over the quantum numbers of the complete spectrum
of target excited states and includes the contributions of
intermediate states with both positive (εn > 0) and neg-
ative (εn < 0) energies. The potential of the emitted pho-
ton field has the form3

(4)

where e is the polarization vector (further, we use e* =
e on the assumption of a linear photon polarization).
The summation is over target electrons, ra is the coor-
dinate of the ath electron, and N is the total number of
electrons.

In the relativistic Born approximation, the initial
and final states of an incident particle are described by
the wave functions

(5)

with bispinor amplitudes uµ(ε, p) defined as [2]

(6)

Here and throughout, na is the unit vector along direc-
tion a, and s are the Pauli matrices. Two-component
spinors χµ(np) satisfy the normalization condition

χµ(np) = 1 (symbol † denotes Hermitian conju-
gation).

The four-dimensional potential of the field created
by the incident particle is written as

(7)

Here, ω and q are the energy and the momentum of the
virtual photon, Dµν(ω, r – ra) is Green’s function of the

3 The  normalization factor is not included in the definition
of A(γ).

} e2 0〈 |A γ( )g n| 〉 n〈 |γν Aν 0| 〉
εn 1 i0–( ) ε0– ω–

---------------------------------------------------




n

∑=

+
0〈 |γν Aν n| 〉 n〈 |A γ( )g 0| 〉
εn 1 i0–( ) ε0– ω+

---------------------------------------------------




.

2π/ω

A γ( ) e ik– ra⋅( ),exp
a 1=

N

∑=

Ψpµ
±( ) r( ) uµ ε p,( ) ip r⋅( )exp=

uµ ε p,( )
ε m+ χµ np( )

ε m– s np⋅( )χµ np( ) 
  .=

χµ
† np( )

Aν Z pe rΨp2µ2

–( )† r( )γµDµν ω r ra–,( )Ψp1µ1

+( ) r( )d∫
a 1=

N

∑=

=  Z pe
qd

2π( )3
------------- iq ra⋅( )Dµν ω q,( )B21

µ q( ).exp∫
a 1=

N

∑
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photon,4 and the  4-vector is the Fourier trans-
form of the incident particle current,

(8)

where

(9)

The δ function present in (8) allows the integration over
dq in the last integral in (7) to be easily performed, and
the virtual photon momentum proves to be equal to the
difference of the initial and final momenta of the inci-
dent particle,

(10)

At a fixed photon energy, the minimum and maximum
transferred momentum values are qmin = p1 – p2 and
qmax = p1 + p2.

By analogy with the approach used in the Hartree–
Fock–Dirac approximation (e.g., see [42]), we assume
that target states |0〉 , |n〉  can be described by one-elec-
tron wave functions corresponding to states with defi-
nite relativistic energy ε, total angular momentum j,
orbital angular momentum l = j ± 1/2, and total angular
momentum projection m values. Substituting (4)–(7)
into (3) can then be performed with replacing the sum-
mation over target electrons by the summation over
quantum numbers εi, ji, li, and mi (i takes on the values
0 and n) of target subshells in the ground and excited
states. One-electron wave functions  then

have the following bispinor structure:

(11)

Here, g(r) ≡ and f(r) ≡  are the large and

small relativistic wave function components, respec-
tively, which can be obtained by solving the system of
Hartree–Fock–Dirac radial equations (e.g., see [43]),
and Ωjlm(n) are the spherical spinors defined according
to [44].

It follows that, for a many-electron target, the polar-
ization bremsstrahlung amplitude takes the form

(12)

4 We use the Coulomb calibration of the photon propagator.

B21
µ q( )

B21
µ q( ) rd Ψp2µ2

–( )† r( )γ0γµ iq– r⋅( )Ψp1µ1

+( ) r( )exp∫=

=  2π( )3bµδ p1 p2– q–( ),

bµ uµ2

† ε2 p2,( )γ0γµuµ1
ε1 p1,( ).=

q p1 p2.–=

Ψεi ji limi
r( )

Ψεi ji limi
r( )

1
r
---

g r( )Ω jilimi
n( )

i f r( ) s n⋅( )Ω jilimi
n( )– 

  .=

gεi ji li
r( ) f εi ji li

r( )

} Z pebµDµν ω q,( )Mν ω k e; q, ,( ).=
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The dynamic response of the target is described by the
equation

(13)

Here, ωn0 = εn(1 – i0) – ε0 is the transition energy, and

the  summation is over the ε0, j0, l0, and m0 quantum

numbers of target subshells in the initial (final) state.
All target subshells are assumed to be occupied. We

then have m0 = –l0, …, l0. The  sum is taken over the

εn, jn, ln, and mn transition state quantum numbers and
contains the contributions of states with both positive
(εn > 0) and negative (εn < 0) energies.

After separating the contributions of the scalar and
vector parts of the Aν potential [see (7)], the amplitude
is written as

(14)

where the F(s, e, m)terms [the meaning of indices (s, e, m)
is explained below] have the form

(15)

(16)

The R vector, which is orthogonal to q, is defined as

(17)

The ^n0(e, –k) matrix element describes target transi-
tion from ground state 0 to excited (virtual) state n
under the action of the e · gexp(–ik · r) operator,

(18)

The Fn0(q) and ^n0(R, q) matrix elements describe the
0  n transition caused by interaction between a tar-

Mν ω k e; q, ,( )

=  e2 0〈 |e ge ik r⋅– n| 〉 n〈 |γνeiq r⋅ 0| 〉⋅
ωn0 ω–

------------------------------------------------------------------




0 n,{ }
∑

+
0〈 |γνeiq r⋅ n| 〉 n〈 |e g ik r⋅– 0| 〉⋅

ωn0 ω+
---------------------------------------------------------------





.

0{ }
∑

n{ }
∑

} 4π( )2Z pe e F⋅( )=

=  4π( )2Z pee F s( ) F e( ) F m( )+ +( ),⋅

e F s( )⋅ 1
4π
------e2

q2
-----b0–=

×
^0n e k–,( )Fn0 q( )

ωn0 ω–
-----------------------------------------

F0n q( )^n0 e k–,( )
ωn0 ω+

-----------------------------------------+ ,
0 n,{ }
∑

e F e( ) F m( )+( )⋅ 1
4π
------ e2

ω2 q2–
-----------------–=

× ^0n e k–,( )^0n R q,( )
ωn0 ω–

--------------------------------------------------
^0n R q,( )^n0 e k–,( )

ωn0 ω+
--------------------------------------------------+ .

0 n,{ }
∑

R b
b q⋅( )q

q2
-------------------.–=

^0n e k–,( ) rΨεn jnlnmn

† r( )d∫=

× γ0e g ik– r⋅( )Ψε0 j0l0m0
r( ).exp⋅
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get electron and the scalar [proportional to γ0exp(iq · r)]
and vector [proportional to gexp(iq · r)] parts of the vir-
tual photon field created by the incident particle,

(19)

(20)

The ^0n(e, –k), F0n(q), and ^0n(R, q) matrix ele-
ments corresponding to the n  0 virtual transition
can be obtained from (18)–(20) using the substitution
n  0.

Substituting the multipole expansions of the
e · gexp(–ik · r) and exp(–iq · r) operators in spherical

vector and spherical Ylm(n) = n ·  har-
monics defined as in [44] and performing the necessary
transformations by the formulas from [44, §§5, 7], we
can obtain the multipole expansions for the F (s, e, m) vec-
tors given below. The selection rules for multipole tran-
sitions of the magnetic [index (m), λ = 0], electric
[index (e), λ = 1], and longitudinal [index (s), λ = –1]
types are different,

(21)

The expression for F(s) therefore only contains compo-
nents proportional to the electric multipoles of the emit-
ted photon field, whereas the F(e) and F(m) terms are
diagonal with respect to the λ indices of the virtual and
real photons.

It follows that, for a spherically symmetrical target,
the amplitude of polarization bremsstrahlung is
expressed through partial generalized polarizabilities
of three different types corresponding to the following
combinations of virtual and real photon types: longitu-
dinal–electric, electric–electric, and magnetic–mag-
netic. Each of these polarizabilities depends on photon
energy ω and orbital momentum l (these values are
equal for both photons) and on the absolute values of
momenta q and k of the virtual and real photons.

Such a form of representing the polarization
bremsstrahlung amplitude has considerable advantages
of both fundamental and computational character. The
possibility of expressing } in terms of the polarizabil-
ity types specified above, which contain all necessary
information on the dynamic structure of the many-elec-
tron target, simplifies the problem and allows computa-
tion time for calculating the characteristics of polariza-
tion bremsstrahlung to be substantially reduced.

The analytic expressions for F (s, e, m) have the form

(22)

Fn0 q( ) rΨεn jnlnmn

† r( ) iq r⋅( )Ψε0 j0l0m0
r( ),expd∫=

^n0 R q,( ) rΨεn jnlnmn

† r( )γ0R g⋅d∫=

× iq r⋅( )Ψε0 j0l0m0
r( ).exp

     

Ylm
0 1,( ) n( ) Ylm

1–( ) n( )

ln l0 l+ +
odd, λ 0,=

even, λ 1.±=



=

F s( ) b q⋅
q

----------- l l 1+( )
2l 1+

----------------------
lm

∑–=

× Ylm* nq( )Ylm
1( ) nk( )α l ω q k, ,( ),
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(23)

(24)

In (22), it is taken into account that b0ω = b · q; this
relation follows from the law of conservation of the 4-
vector of incident particle current. The summation over
l is from l = 1 to infinity. The partial generalized polar-
izabilities in the right-hand sides of (22)–(24) are given
by

(25)

(26)

The (s; l) [λ = –1, 0, 1; (b, a) = (0, n); x = (k, q)]

radial integrals and the  coefficients have the
form

(27)

(28)

(29)

F e( ) 1

ω2 q2–
----------------- l l 1+( )

2l 1+
-----------------

lm

∑=

× b Ylm
1( )* nq( )⋅( )Ylm

1( ) nk( )βl
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(30)

Here, jn(z) is a spherical Bessel function,

is the relativistic quantum number, the 3j Wigner sym-

bol whose square appears in the expression for 
[the coefficient in front of braces in (30)] is defined
according to [44], and

The right-hand sides of (25) and (26) can be trans-
formed to a form more convenient for computations by
introducing the relativistic one-particle Green’s func-
tion to describe excited electronic states of the target.
The corresponding equations are given in the Appendix.

To determine the spectral–angular distribution of
polarization bremsstrahlung, (14) should be substituted
into (2). Summing over emitted photon polarizations
(taking into account that

and representing the d  differential in the form
dφqqdq/(p1p2), we obtain

(31)

Here, α = e2/"c ≈ 1/137 is the fine structure constant.
The further transformations of (31) include the sum-

mation (averaging) over incident particle polarizations,

the multipole expansion of the  · 
quadratic form, and the integration over the dφq angle.

Omitting intermediate calculations, let us write the
final result for cross section (31), which determines the
spectral–angular polarization bremsstrahlung distribu-
tion,

(32)
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(33)

(34)

(35)

(36)

(37)

In these equations, (y) is the derivative of the Leg-
endre polynomial with respect to its argument. Using
the law of conservation of energy [Eq. (1)] and (10), we
can express all kinematic coefficients in (34)–(37)
through variables ω, q, qmin, and qmax as

dσlk

dω
--------- Z p

2α ω
8πp1

2
------------ q2 Alk

Blk
Clk

Dlk
+ + +[ ] ,d

qmin

qmax

∫=

Alk

q2 ω2–
4

----------------- p1 nq⋅( ) p2 nq⋅( )+ 
  Plk

y( )=

× l l 1+( ) l' l' 1+( ) lk lk 1+( )–+( )
l l', 1=

∞

∑

× l' l lk

0 0 0 
 
 

2

Re α l ω q k, ,( )α l'* ω q k, ,( )[ ] ,

Blk

1

q2 ω2–( )2
------------------------ q2 ω2–

2
----------------- p1

2 θqsin
2

+ 
  Plk

y( )=

× ξ lkll'λλ '( )ll' l 1+( ) l' 1+( )
λ λ ', 0=

1

∑
l l', 1=

∞

∑

× l' l lk

1 1– 0 
 
 

2

Re βl
λ( ) ω q k, ,( )βl'

λ'( )* ω q k, ,( )[ ] ,

Clk

p1
2 θqsin

2

q2 ω2–( )2
------------------------

2yPlk
' y( ) lk lk 1+( )Plk

y( )–

lk 1–( )lk lk 1+( ) lk 2+( )
-------------------------------------------------------------=

× 1–( )λλ 'ξ lkll'λλ '( )ll' l 1+( ) l' 1+( )
λ λ ', 0=

1

∑
l l', 1=

∞

∑

× l' l lk

1 1– 0 
 
  l lk l'

1 2– 1 
 
 

× Re βl
λ( ) ω q k, ,( )βl'

λ'( )* ω q k, ,( )[ ] ,

Dlk

4 p1 p2 nq⋅( ) θqsin
2

q2 ω2–
--------------------------------------------

Plk
' y( )

lk lk 1+( )
-------------------------=

× ξ lkll'λ1( )l l 1+( ) l' l' 1+( )
λ 0=

1

∑
l l', 1=

∞

∑

× l' l lk

1 1– 0 
 
  l' lk l

0 1– 1 
 
 

× Re βl
λ( ) ω q k, ,( )α l'* ω q k, ,( )[ ] .

Plk
'

JOURNAL OF EXPERIMENTAL 
(38)

(39)

(40)

(41)

It is easy to see that the C0, 1 and D0 terms in (36) and
(37) identically equal zero because the corresponding
combinations of the Legendre polynomials and their
derivatives vanish. The summation over lk in (32) there-
fore starts with lk = 0 for  and , lk = 2 for , and

lk = 1 for .

The spectral distribution of radiation is obtained
from (32) by the integration over solid angle dΩk,

(42)

An important characteristic of the relativistic polar-
ization bremsstrahlung cross section is its logarithmic
growth as the energy of the incident particle increases
[3]. Qualitatively, the reason for this is as follows.
Unlike a nonrelativistic particle, a relativistic one inter-
acts with the target not only by its Coulomb field but
also (in the ultrarelativistic case, predominantly) by the
field of transverse virtual photons (e.g., see [12]). The
effective radius of this field increases as the energy of
the incident particle grows, almost to infinity in the
ultrarelativistic case. As a result, the distances at which
an incident particle can effectively polarize a target
increase; accordingly, the polarization bremsstrahlung
cross section increases. We will analyze this conclusion
below.
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We assume that the initial and final energies of the
incident particle and the emitted photon energy satisfy
the relation ε1 ≈ ε2 @ ω. It can then be taken that

where v 1 is the initial velocity of the incident particle.

As an incident relativistic particle effectively polar-
izes the target even if passes at a large distance from it,
the characteristic transferred momenta are small, q ~

qmin ~ . Formally, the  matrix elements
in (25) and (26) contain a rapidly oscillating function at
qRat @ 1 and are therefore close to zero.

For brevity, let  denote the terms
to the right of the kinematic coefficients in (34)–(37),
which are smooth functions of q. The contribution of
the q ~ qmin region to integral (33) can then be written
in the form

(43)

Here, q0 is the cutoff parameter, which satisfies the ine-
quality qmax @ q0 @ qmin and is close to q0Rat ~ 1 in order
of magnitude.

Let us integrate each of the four terms in (43) with

respect to q assuming that  ≈
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order of ω/ε1, 2 ! 1. This gives
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(44)

Here, the γ = ε1/mpc2 relativistic parameter is intro-
duced. The spectral radiation distribution takes the
form

(45)

where the  and  values can be
written in the form

The behavior of the polarization bremsstrahlung
cross section at ε1, 2 @ ω is therefore determined by the

terms proportional to  and  which cor-
respond to the contributions of the longitudinal (Cou-
lomb) and transverse (vector) parts of the electromag-
netic interaction between a relativistic incident particle
and target electrons. The contribution of the terms with

 increases as the energy of the incident particle
grows and becomes predominant at γ @1, which causes
an increase in the polarization bremsstrahlung cross
section. This was for the first time noted in [19], where
polarization bremsstrahlung caused by a collision
between a relativistic particle and a target was treated at
the level of the dipole approximation.

3. CALCULATION DATA ON POLARIZATION 
BREMSSTRAHLUNG CROSS SECTIONS

The results described in this section (except those
shown in Fig. 4) refer to proton collisions with the
Al+12, Ag+46, and Au+78 hydrogen-like ions. Because of
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Fig. 2. Spectral dependences of ωdσ/dω for polarization bremsstrahlung arising in collisions of protons with (a, c, and e) 1.5 GeV
and (b, d, and f) 3 GeV energies with (a and b) Al+12, (c and d) Ag+46, and (e and f) Au+78 ions. The thick solid line describes the
behavior of relativistic cross section (42), and the thin solid line corresponds to the nonrelativistic dipole case. The contributions of

the terms proportional to the squares of the αl(ω, q, k) and  polarizabilities [see (42)] are shown by dashed and dot-

and-dash lines, respectively. The contribution of the term proportional to the square of the modulus of the  polarizabil-

ity is small and is not shown.

βl
1( ) ω q k, ,( )

βl
0( ) ω q k, ,( )
the large mass of the proton, the mechanism of usual

bremsstrahlung is suppressed by the  ~ 10–6 factor
and can therefore be excluded from consideration in a
wide range of emitted photon energies [21–24]. In addi-
tion, in the range of emitted photon energies that we are
considering, which are close to the ionization potentials of
inner target shells, polarization bremsstrahlung predomi-
nates over the other radiation mechanisms such as second-
ary electron bremsstrahlung [45], radiation ionization
[46, 13, 20], and molecular orbital radiation [47].

mp
2–
JOURNAL OF EXPERIMENTAL 
The polarization bremsstrahlung cross sections
were calculated at the relativistic Born approximation
level by (42) and (32) for spectral and spectral-angular
radiation distributions. The contributions of the first
five multipoles were taken into account. The dynamic
response of targets was described by a method based on
representing partial polarizabilities with the use of a
relativistic Coulomb Green’s function [37]. The curves
that corresponded to the nonrelativistic dipole case
were obtained as described in [28].
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Fig. 3. Dependence of polarization bremsstrahlung cross section ωdσ/dω on incident proton relativistic γ factor in collisions with
(a and b) Al+12, (c and d) Ag+46, and (e and f) Au+78 for emitted photon energies ω = (a, c, and e) 1.5I and (b, d, and f ) 4I (here,
I is the ionization potential of the 1s target subshell, which approximately equals 2.3, 31, and 93.5 keV for Al+12, Ag+46, and Au+78,
respectively). The thick solid line depicts relativistic cross section (42). The behavior of the terms proportional to the squares of the

αl(ω, q, k), , and  polarizabilities [see (42)] is shown by dashed, dotted, and dot-and-dash lines, respec-

tively.

βl
0( ) ω q k, ,( ) βl

1( ) ω q k, ,( )
Target inner shell electrons make the major contri-
bution to the formation of the complete polarization
bremsstrahlung spectrum in the region of photon fre-
quencies higher than the ionization potentials of the
corresponding shells (e.g., see [3]). The results given
below can therefore easily be generalized to neutral Al,
Ag, and Au atoms by multiplying the cross sections
obtained for the hydrogen-like ions by a factor of 4,
which takes into account a twofold increase in the
polarizabilities of filled atomic K shells.

The spectral dependences of ωdσ/dω calculated for
two incident proton energies, ε1 = 1.5 and 3 GeV, are
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
shown in Fig. 2. Note two special features of these
plots. First, the contribution of the cross section part

proportional to the square of polarizability (ω, q, k)
modulus [see (42)] becomes more noticeable as the
energy of the incident particle increases because of a
relative increase in the contribution of the mechanism
of exchange of transverse virtual photons between tar-
get and incident particle electrons as the energy of the
latter grows, whereas the contribution of the Coulomb
interaction part is only determined by the particle
velocity [see (45)] and is virtually independent of ε1 at
v 1 ≈ c.

βl
1( )
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The second point to be mentioned is the ratio
between the relativistic and nonrelativistic curves. At
intermediate energies ε1 ~ mpc2, the ωdσ/dω cross sec-
tion calculated by the nonrelativistic dipole approxima-
tion exceeds the relativistic polarization bremsstrahl-
ung cross section, because, at a given photon energy,
nonrelativistic dipole polarizability αd(ω, q) exceeds
the corresponding relativistic component α1(ω, q, k),
which makes the largest contribution to the spectral
dependence of polarization bremsstrahlung at medium
incident particle energies (a more detailed analysis of
the contributions of various multipoles to the polariza-
tion bremsstrahlung cross section is given below in this
section). The contribution of the term proportional to

 becomes more significant as the inci-
dent particle energy increases. The relativistic cross
section therefore begins to increase and exceeds the
nonrelativistic cross section. Such a behavior follows
from the analysis of the integrand in (33) given in the
preceding section.

The ωdσ/dω cross section and the contributions of
separate cross section parts proportional to the squares
of the moduli of the corresponding polarizabilities are
shown in Fig. 3 as functions of the γ = ε1/mpc2 relativis-
tic factor of the incident proton for two emitted photon
energies specified above and for each of the three ions
under consideration, Al+12, Ag+46, and Au+78. These
results visually demonstrate a logarithmic growth of the
polarization bremsstrahlung cross section with increas-
ing the energy of the incident particle.

βl
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30°
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Fig. 4. Angular dependence of polarization bremsstrahlung
cross section (normalized with respect to the cross section
value at θk = 90°) for scattering of a proton with a 1.5 MeV
kinetic energy on an aluminum atom and emitted photon
energies in the range 5.18–5.67 keV. The thick solid line
corresponds to cross section (32), and the thin solid line was
obtained using the nonrelativistic dipole approximation.
Solid circles are the experimental data (see [15]).
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An important property of the approach suggested in
this work is taking into account effects related to radia-
tion lag and radiation of high-multipolarity photons.
The influence of the multipole character of radiation
manifests itself even at low incident particle energies
ε1 ~ mpc2 by asymmetry of the angular radiation distri-
bution. The angular radiation distributions calculated
by (32) are compared with the results obtained using
the nonrelativistic dipole approximation and the exper-
imental data obtained in [15] in Fig. 4. These curves
describe scattering of protons with a 1.5 MeV kinetic
energy on aluminum atoms. The emitted photon ener-
gies are in the range 5.18–5.67 keV, in which polariza-
tion bremsstrahlung predominates over the other radia-
tion mechanisms [15]. The calculations were per-
formed for hydrogen-like wave functions with an
effective target charge of ZT = 12.7 (see [48]). Note that,
in contrast to the symmetrical curve of the nonrelativis-
tic dipole approximation, the curve corresponding to
cross section (32), which takes into account the multi-
pole character of radiation, reproduces well the
observed radiation shift in the incident particle direc-
tion. This result is already obtained by taking into
account quadrupole corrections, which allows us to
claim the validity of the approach suggested in this
work and recommend it for calculating polarization
bremsstrahlung cross sections.

An increase in the incident particle energy not only
causes the appearance of high-multipolarity photon
radiation effects but also increases the contribution of
relativistic effects related to radiation lag, which results
in still more substantial differences between the angular
radiation distributions calculated in the relativistic and
nonrelativistic approximations. The importance of tak-
ing these effects into account in considering polariza-
tion bremsstrahlung caused by collisions between rela-
tivistic incident particles and a heavy target follows
from Fig. 5, where we plotted the spectral-angular radi-
ation distribution profiles ωd2σ/dωdΩk for ε1 = 3 GeV
proton collisions with the Al+12, Ag+46, and Au+78 ions
and the specified emitted photon energies. In these plots
(and also in Figs. 6 and 7), the length of the segment
connecting the origin and a curve point equals the dif-
ferential polarization bremsstrahlung cross section (in
millibarn units) in the corresponding direction. The
direction along the horizontal axis (θk = 0) is the direc-
tion of incident particle motion. The curves describing
the contributions of cross section components propor-
tional to the squares of the moduli of the αl(ω, q, k),

, and  polarizabilities are also
shown in Fig. 5. In contrast to the spectral distribution,
the sum of these curves does not correspond to total
cross section (32), which also takes into account cross
terms.

The results obtained in this work show that taking
into account relativistic effects and the effects related to
the radiation of high-multipolarity photons noticeably

βl
0( ) ω q k, ,( ) βl

1( ) ω q k, ,( )
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Fig. 5. Angular distribution ωd2σ/dωdΩk for polarization bremsstrahlung arising in collisions between 3 GeV protons and

(a and b) Al+12, (c and d) Ag+46, and (e and f) Au+78 ions for two emitted photon energies of (a, c, and e) 1.5I and (b, d, and f) 4I
(see Fig. 3). The thick solid line is relativistic cross section (32), and the thin solid line was obtained in the nonrelativistic dipole
approximation. The dashed, dotted, and dot-and-dash lines correspond to the contributions of the terms proportional to the squares

of the moduli of the αl(ω, q, k), , and  polarizabilities, respectively [see (32)–(37)].βl
0( ) ω q k, ,( ) βl

1( ) ω q k, ,( )
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changes the angular distributions of emitted photons
and makes these distributions appreciably asymmetric
compared with the distributions of the nonrelativistic
dipole approximation, which are typically symmetrical
with respect to the θk  π – θk operation. The relativ-
istic angular distributions are shifted in the direction in
which the incident particle moves, and the distributions
become more asymmetric as the emitted photon energy
increases.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The contributions of separate multipoles to the
angular radiation distribution for proton collisions
with the Ag+46 and Au+78 ions (at the same parameter
values as in Fig. 5) are analyzed in Fig. 6. The curves
shown in Fig. 6 were obtained by Eqs. (34)–(37) in
which only the terms with l, l' = 1 for the dipole
approximation, l, l' = 1, 2 for taking into account
quadrupole corrections, and l, l' = 1, 2, 3 for octupole
corrections were retained.
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Fig. 6. Multipole contributions to the angular polarization bremsstrahlung distribution ωd2σ/dωdΩk formed in collisions between

protons of a 3 GeV energy with (a) Ag+46 and (b) Au+78 for emitted photon energies equal to four times the ionization potentials of
the target 1s subshells. The dashed, dotted, and dot-and-dash lines are the angular distribution profiles taking into account the dipole,
quadrupole, and octupole radiation contributions, respectively. The thick solid line corresponds to the exact result taking into
account the contributions of the first five multipoles.
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Fig. 7. Angular polarization bremsstrahlung distribution ωd2σ/dωdΩk for collisions of 3 GeV protons with (a and b) Ag+46 and (c

and d) Au+78 and two emitted photon energies of (a and c) 1.5I and (b and d) 4I (see Fig. 5). The thick solid line was obtained in
the relativistic dipole approximation by (46), and the thin solid line was obtained in the nonrelativistic dipole approximation. The
dashed line is the summed contribution to the cross section of terms with lk = 0 and 2, respectively, in the dipole approximation [see
(46)].
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Note that, apart from the contributions of quadru-
pole and octupole corrections, which to a substantial
extent determine asymmetric angular radiation distri-
bution shapes, the curves obtained in the dipole approx-
imation also have asymmetric shapes substantially dif-
JOURNAL OF EXPERIMENTAL
ferent from those obtained in the nonrelativistic dipole
approximation, because, in contrast to the nonrela-
tivistic approximation, cross section (32) takes into
account cross term contributions. These contributions
are proportional to the products of polarizabilities
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 and  and  and
α1(ω, q, k) corresponding to interference between radi-
ated photons of different types. Indeed, double differ-
ential cross section (32) for the dipole case can be writ-
ten as

(46)

where a1 and a2 are the angular anisotropy coefficients
in the dipole approximation. These coefficients can be
obtained in an explicit form from (32)–(37); the corre-
sponding equations are, however, too cumbersome to
be given here. Their dependence on the energy of emit-
ted photons for scattering of 3 GeV protons on the
Ag+46 and Au+78 ions is shown in Fig. 8 to shed light on
the reason why the dipole curves shown in Fig. 6 are
asymmetric. Indeed, while the contribution of the terms
related to the a1 coefficient is small for low emitted
photon energies (kr ! 1), it rapidly grows and becomes
predominant as ω increases. This alongside higher mul-
tipole contributions results in the distributions shown in
Fig. 6.

4. CONCLUSION

We suggested a completely relativistic formalism
for describing polarization bremsstrahlung caused by
elastic collisions between charged particles and many-
electron targets. This approach can be used to deter-
mine spectral and angular radiation distributions in
wide ranges of collision energies and emitted photon
frequencies. With slight modifications, it can also be
applied to describe a wide class of collisional systems
with internal structures in which relativistic effects play
an important role. For instance, this approach can be
used to describe polarization bremsstrahlung arising in
relativistic collisions of nuclei. The dynamic polariza-
tion of colliding nuclei then causes photon emission by
the polarization bremsstrahlung mechanism, and the
major contribution is made by nondipole radiation
(quadrupole radiation and radiation of higher multipo-
larities).

If the relativistic incident particle possesses an inter-
nal structure, we need not develop a new approach tak-
ing into account the polarization bremsstrahlung of this
particle. The required formulas can be obtained from
those given in this work by taking into account the spe-
cial features caused by the Doppler effect and light
aberration, as is done in [49, 50] for relativistic atom–
atom collisions. In these works, the internal structure of
colliding particles was described in the nonrelativistic
dipole approximation.

The formalism described above was used to develop
an effective method for calculating polarization
bremsstrahlung cross sections. This method is based on

β1
0( ) ω q k, ,( ) β1

1( ) ω q k, ,( ) β1
0( ) ω q k, ,( )

d2σ
dωdΩk
------------------

dip

dσ
dω
------- 

 
dip

=

× 1 a1 ω( )P1 θkcos( ) a2 ω( )P2 θkcos( )+ +( ),
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the use of the hydrogen-like approximation for describ-
ing the dynamic atomic response. This approach is
advantageous because the hydrogen-like model allows
the polarization bremsstrahlung cross sections to be
determined very accurately at photon frequencies
exceeding the ionization potentials of inner target
shells, which obviates the necessity of complex numer-
ical calculations. Note that various approximations to
the relativistic wave functions of the target can be used
within the framework of the suggested approach. Note
that the Hartree–Fock–Dirac approximation allows
many-electron correlations to be taken into account in
calculating the dynamic polarizabilities of targets. In
addition, an effective approach to calculating polariz-
abilities can be based on the Sternheimer method. In
essence, this method reduces summing over an infinite
number of intermediate atomic states to solving inho-
mogeneous differential equations (e.g., see [51]).

The suggested method was used to calculate the
spectral and angular characteristics of polarization
bremsstrahlung arising when a heavy particle (proton)
is scattered on the Al+12, Ag+46, and Au+78 hydrogen-like
ions, which allowed us to study some general properties
of polarization bremsstrahlung cross sections in the rel-
ativistic case. Taking into account relativistic and mul-
tipole effects was shown to result in substantial asym-
metry of the angular distributions of emitted photons
compared with the nonrelativistic dipole case and in
noticeable changes in the spectral characteristics of
polarization radiation. We also showed that the polar-
ization bremsstrahlung cross section logarithmically
increased as the energy of the incident particle grew.
The results described in this work may be useful in set-
ting up new polarization bremsstrahlung experiments
and repeating those performed earlier but at a new tech-
nical level.

An interesting problem, which deserves special con-
sideration, is an analysis of the asymptotic behavior of
the completely relativistic bremsstrahlung cross section
including the contributions of both the usual and the
polarization mechanism in the region of high photon
energies comparable with the rest mass of the electron.
A nonrelativistic description of atomic response then

0.5
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1.5

200 300 400

(a)

0
100
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200 300 400

(b)
0.8

0.4
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Fig. 8. Dependence of angular anisotropy coefficients for
dipole cases a1 (dashed line) and a2 (solid line) [see (46)]
on the energy of photons emitted in collisions between
3 GeV protons and (a) Ag+46 and (b) Au+78.
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becomes inapplicable, and using more complex
approaches to describe atom electrons excited to the
continuum of negative frequencies becomes necessary.

An analysis of inelastic polarization bremsstrahlung
is outside the scope of this work. The development of a
completely relativistic formalism for describing these
processes is of special interest.
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APPENDIX

The Representation of Generalized Polarizabilities 
with the Use of Relativistic Green’s Function

The multipole bispinor structure of the one-particle
relativistic Green’s function is determined by the equa-
tion (e.g., see [52])

(47)

where

and the radial parts of the Green’s function are
expressed in terms of the radial functions of the large
gεjl(r) and small fεjl(r) excited electron wave function
components,

(48)

Using (48) in (25) and (26), we can write the αl(ω,

q, k) and  polarizabilities in terms of

 as follows:
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Abstract—It is shown that upon the application of an external magnetic field, a gas of ionized particles may
experience noninversive partial velocity amplification of radiation by ions due to their Larmor rotation. In this
case, virtually all ions may be in the ground state. It may happen that approximately half the number of ions in
the medium amplify the incident radiation. The integrated absorption coefficient remains positive due to the
enhancement of absorption of radiation by the other half of ions. Noninversive amplification of radiation takes
place when the condition ωc * Γ 2/kvT is satisfied (ωc is the cyclotron frequency of ions in the magnetic field;
Γ is the homogeneous half-width of the absorption line for ions, and kvT is the Doppler width). In the case of
interaction of atomic ions with radiation in the optical range, this corresponds to magnetic fields B * 600 G (for
the ion mass M ~ 10 amu). Noninversive partial velocity amplification of radiation is a “latent” effect in the
sense that it disappears upon averaging over all velocity directions of ions. This effect is associated with the
emergence of phase incursion of the induced dipole moment oscillations for ions moving in circular cyclotron
orbits, which depends on the ion velocity. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the Larmor rotation of ions in
a magnetic field may lead to a sharp change in their
absorption line profile [1–3]. Namely, for observation
across the magnetic field and for ωc * Γ (ωc is the
cyclotron frequency of ions and Γ is the homogeneous
half-width of the absorption line for ions), the Doppler
profile of the ion line splits into a number of equidistant
peaks. The width of each peak is equal to the homoge-
neous absorption line width 2Γ, and the distance
between adjacent peaks is equal to the cyclotron fre-
quency ωc of ions. If the average Larmor radius of an
ion orbit is much smaller than the wavelength, the
absorption line has a Lorentz profile with a homoge-
neous width 2Γ which may be much smaller than the
Doppler width [1]. Such a narrowing of the line is due
to the limitation of the spatial displacement of ions
across the magnetic field (which eliminates the nonho-
mogeneous Doppler broadening) and is similar to the
well-known collision-induced narrowing of spectral
lines due to the Dicke effect [4–6].

It is natural to assume that the Larmor rotation of
ions in a magnetic field also leads to a sharp change in
the radiation absorption by ions with a fixed value of
their velocity v. The corresponding theoretical calcula-
tions lead to a completely unexpected result. It turns out
that groups of ions with definite directions of velocities
in a magnetic field amplify the radiation incident on the
medium even when all ions are in the ground state.
1063-7761/02/9404- $22.00 © 20720
The present work is devoted to a theoretical analysis
of this phenomenon.

2. BASIC RELATIONS

Let us consider a gas of ionized particles in a con-
stant uniform magnetic field B. Let radiation in the
form of a running monochromatic wave be resonantly
absorbed during the m–n transition between the ground
(n) and the first excited (m) levels of ions. We will con-
fine our analysis to the simple case when the Zeeman
splitting of the absorption line can be disregarded. For
example, line splitting is absent in the normal Zeeman
effect (the Landé g factors of the combining states m
and n are identical) when radiation linearly polarized
along the magnetic field B propagates at right angles to
this field.

The radiation absorption probability P(v) at the m–
n transition (P(v) is equal to the number of radiation
absorption acts per unit time for a particle with a given
velocity v in a unit interval of velocities) is defined by
the nondiagonal element ρmn(v) of the density matrix
[6]:

(1)

P v( ) 2
N
----Re iG*ρmn v( )[ ] ,–=

G 2 BnmI
2π

-----------, Bnm

λ2Γm

4"ω
------------,= =
002 MAIK “Nauka/Interperiodica”
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where N is the concentration of ions, Bnm is the second
Einstein coefficient for the m–n transition, I is the radi-
ation intensity, ω and λ are the frequency and the wave-
length of radiation, and Γm is the spontaneous decay
rate for the excited state m. For a low radiation intensity
under steady-state and spatially homogeneous condi-
tions, ρmn(v) is determined from the equation [6]

(2)

where

(3)

h = B/B is the unit vector in the direction of the mag-
netic field, k is the wave vector of radiation, W(v) is the
Maxwell velocity distribution, Smn(v) is the “nondiago-
nal” collision integral, ωc is the cyclotron frequency of
ions, e is the elementary electric charge, M is the ion
mass, and ωmn is the frequency of the m–n transition.

For the nondiagonal collision integral Smn(v)
appearing in formula (2), we will use the approxima-
tion conventionally employed in nonlinear spectros-
copy [6],

(4)

and indicating that collision completely breaks the
phase of the oscillating dipole moment.

We will solve Eq. (2) in a system of coordinates in
which the z axis is directed along the magnetic field B
and the x axis is directed along the wave vector k (we
assume that k ⊥  B). In the velocity space, it is conve-
nient to go over to the cylindrical system of coordinates
v ⊥ , ϕ, v z (v x = v ⊥ cosϕ, v y = v ⊥ sinϕ). In these coordi-
nates, Eq. (2) taking into account Eq. (4) assumes the
form

(5)

Solving this linear nonhomogeneous differential
equation, we obtain the following expression for the
radiation absorption probability P(v) (1):

(6)

Γm

2
------ i Ω k v⋅–( )– ωc v h×[ ] ∂

v∂
-----+ ρmn v( )

=  Smn v( ) iGNW v( ),+

ωc
eB
Mc
--------, Ω ω ωmn,–= =

Smn v( ) Γ
Γm

2
------– 

  ρmn v( ),–=

Γ i Ω k v⊥ ϕcos–( )– ωc
∂
ϕ∂

------– ρmn v( )

=  iGNW v( ).

P v( ) 2 G 2W v ⊥( )W v z( )=

× Re iβ ϕsin( )
inϕ–( )Jn β( )exp

Γ i Ω nωc–( )–
----------------------------------------

n ∞–=

n ∞=

∑exp ,
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where

(7)

Jn(β) is a Bessel function of the first kind, W(v ⊥ ) and
W(v z) are the Maxwell distributions over the transverse
and longitudinal (relative to the magnetic field B) com-
ponents of velocity v, vT is the most probable velocity
of ions, kB is the Boltzmann constant, and T is the tem-
perature. In zero magnetic field (for ωc = 0), the radia-
tion absorption probability P(v) is defined by the well-
known formula [6]

(8)

3. ABSORPTION LINE PROFILE

The absorption line profile is defined by the radia-
tion absorption probability integrated over velocities:

In accordance with the well-known results [1–3], we
obtain the following expression for P from Eq. (6):

(9)

where In(µ) is a modified Bessel function [7]. It follows
from Eq. (9) that the Larmor rotation of ions in a mag-
netic field may lead to the emergence of equidistant
peaks (cyclotron resonances) in the absorption line
profile. The distance between adjacent peaks is equal to
the cyclotron frequency ωc of ions, and the width of an
individual peak is determined by the homogeneous
width 2Γ of the absorption line.

In the case of Doppler absorption line broadening and
a moderate magnetic field (kvT @ Γ, ωc), we can derive
from Eq. (9) the following formula, which is valid in the
radiation frequency detuning range |Ω| & kvT [1]:

(10)

W v ⊥( ) 1

πv T( )2
---------------------

v ⊥
2

v T
2
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 
 
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πv T
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v z

2

v T
2
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 
 
 
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β
kv ⊥
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2kBT
M

------------,= =

P v( ) 2 G 2ΓW v( )
Γ2 Ω k v⋅–( )2+
----------------------------------------.=

P P v( ) v.d∫≡

P 2 G 2Γ µ–( )
In µ( )
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--------------------------------------,
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µ
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2ωc
2
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P P0
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2πΓ/ωc( )sinh
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Fig. 1. Radiation absorption probability integrated over velocities as a function of the radiation frequency detuning for various val-
ues of magnetic field: (a): Γ/kvT = 0.1, ωc/Γ = 10, 5, 2, 0; the values of parameter ωc/Γ correspond to the arrangement of the curves

in descending order near Ω = 0; (b) Γ/kvT = 10–2; the solid curve corresponds to ωc/Γ = 100 and the dashed curve to ωc = 0.
where

(11)

is the radiation absorption probability at the line center
under Doppler broadening in zero magnetic field. The
absorption line described by formula (10) has the form
of a Doppler profile modulated by the periodic function
of the radiation frequency detuning Ω with a period
equal to ωc. The oscillating function P (10) has peaks
for Ω = nωc and minima for Ω = (n + 1/2)ωc. For ωc @
Γ, the Doppler profile distinctly splits into a series of
peaks, while, for ωc & Γ, the shape of the line differs
from the Doppler contour by an exponentially small
oscillating correction.

In the case of homogeneous absorption line broad-
ening (Γ @ kvT) or strong magnetic fields (for ωc @ kvT

and for an arbitrary relation between Γ and kvT), the
line has a Lorentz profile of width 2Γ [1]:

(12)

Figure 1 shows the dependence of the velocity
absorption probability P integrated over velocities and
calculated by formula (9) as a function of the radiation
frequency detuning Ω for various values of the mag-
netic field.

4. DEPENDENCE OF RADIATION ABSORPTION 
PROBABILITY ON ION VELOCITY

The dependence of the radiation absorption proba-
bility P(v) on the velocity component v z in expression
(6) is trivial and is manifested only through the Max-

P0
2 π G

2

kv T

--------------------=

P
2 G 2Γ
Γ2 Ω2+
------------------.=
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well factor W(v z) (the magnetic field does not affect the
motion of particles along the z axis). For this reason, we
will be interested in the integrated characteristics P(v⊥ )
and P(ϕ):

(13)

Here, P(ϕ) is the number of radiation absorption acts
per unit time in a unit interval of angles per ion with a
given value of ϕ between the direction of radiation k
and the projection of the velocity of ions onto the plane
perpendicular to the magnetic field. The function P(ϕ)
possesses the property

(14)

In the case of strong magnetic fields (ωc @ kvT) or
homogeneous broadening of the absorption line (Γ @
kvT), formula (6) for P(v) is simplified considerably. In
these cases, we have

(15)

(16)

(17)

P v⊥( ) P v ⊥ ϕ,( )≡ P v( ) v z,d

∞–

∞

∫=

P ϕ( ) P v ⊥ ϕ,( )v ⊥ v ⊥ .d

0

∞

∫=

P Ω ϕ,( ) P Ω– ϕ π±,( ).=

P v( ) PW v( ) 1
Ωkv ⊥

Γ
--------------τ ϕ( )+ ,=

P v ⊥ ϕ,( ) PW v ⊥( ) 1
Ωkv ⊥

Γ
--------------τ ϕ( )+ ,=

P ϕ( ) P
2π
------ 1

π
2

-------
Ωkv T

Γ
--------------τ ϕ( )+ ,=
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where

(18)

In formulas (15)–(17), the radiation absorption proba-
bility P integrated over velocities is defined by formula
(12). It follows from formulas (15)–(17) that the
absorption probabilities P(ϕ), P(v ⊥ ,ϕ), and P(v) may
assume negative values. This is manifested most
strongly for high magnetic fields for which ωc @ Γ. In
this case, the dependence of the factor τ(ϕ) on the radi-
ation frequency detuning Ω has a resonant nature and
the factor τ(ϕ)) attains its maximal value equal to
cosϕ/2Γ for |Ω| = ωc. In this case, the alternating (sec-
ond) term in square brackets in formulas (15)–(17) for
the radiation absorption probability is equal to
ΩkvT/2Γ2 in order of magnitude and may be consider-
ably greater than unity in magnitude, having the nega-
tive sign. Thus, noninversive partial velocity amplifica-
tion of radiation by ions due to their rotation in the mag-
netic field may take place. The intensity of radiation
incident on the medium may be indefinitely low in this
case; for this reason, almost all the particles may be in
the ground state.

It should be noted that the sign-alternating term in
square brackets in formulas (15)–(17), which is respon-
sible for the emergence of noninversive partial velocity
amplification of radiation, makes zero contribution to
the absorption probability P integrated over velocities
that determines the absorption line profile.

Figure 2 shows the P(ϕ) dependence calculated by
formula (17) for different values of frequency detuning
near the cyclotron resonance (Ω = ωc) in the case of
Doppler broadening of the absorption line. The absorp-
tion probability P(ϕ) assumes negative values in the
interval of angles ∆ϕ ≈ π in the vicinity of ϕ ≈ π (radi-
ation is amplified by particles moving predominantly
opposite to the direction of radiation). In the case
shown in Fig. 2, the amplitude of positive and negative
values of P(ϕ) are identical and equal approximately to
the radiation absorption probability P0 at the line center
in zero magnetic field in spite of large values of radia-
tion frequency detuning (Ω ≈ 5kvT). At the same time,
the radiation absorption probability P integrated over
velocities is low:

In the case presented in Fig. 2, the factor ΩkvT/2Γ2 ≈
2 × 104; consequently, the radiation absorption proba-
bility P(ϕ) increases upon the application of the field by
more than four orders of magnitude. Thus, the follow-
ing dramatic situation takes place in the medium.
Approximately half the particles moving in a certain
direction in the medium strongly absorb radiation,
while the other half of the particles moving in the oppo-

τ ϕ( )

=  
2Γ Γ 2 Ω2+( ) ϕcos ωc 3Γ2 ωc

2 Ω2–+( ) ϕsin–

Γ2 Ω ωc–( )2+[ ] Γ 2 Ω ωc+( )2+[ ]
-----------------------------------------------------------------------------------------------------------.

P/P0 Γ /25 πkv T 2.3 10 4– .×≈ ≈
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site direction strongly amplify radiation. However, the
contributions from these two groups of particles to the
integrated absorption probability are compensated
almost completely, and the medium as a whole weakly
absorbs radiation.

Formulas (15)–(17) do not describe the most inter-
esting case of moderate magnetic fields with ωc ! kvT

for the Doppler line broadening (kv T @ Γ), and the
radiation absorption probability in this case must be
calculated by the exact formula (6). The correspond-
ing dependence P(ϕ) calculated by formula (6) is
shown in Fig. 3. The values of P(ϕ) were calculated
only for positive values of radiation frequency detuning
Ω in view of the fact that the function P(ϕ) possesses
property (14).

Figures 3a–3c illustrate the emergence of narrow
resonances (in angle ϕ) of noninversive amplification
of radiation for ωc ! kvT. In the cases presented in
Figs. 3a and 3b, the absorption probability P(ϕ)
assumes negative values in small angular intervals ∆ϕ ≈
0.02 and ∆ϕ ≈1.6 × 10–3, respectively. These cases are
also interesting in that the absorption line profile for
ωc & Γ ! kvT differs from the Doppler profile by a
small oscillating correction; nevertheless, the oscilla-
tions of P(ϕ) are considerable. An analysis of expres-
sion (9) for P shows that the relative deviation ξ of the
line profile from the Doppler profile for ωc & Γ ! kvT

can be estimated by the formula

(19)ξ max 2 2πΓ
ωc

----------– 
 exp

ωc
2

5 kv T( )2
--------------------, .≈
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Fig. 2. Radiation absorption probability P(ϕ) integrated
over velocities v ⊥  and v z as a function of the azimuthal
angle ϕ for various values of radiation frequency detuning;
Γ/kvT = 10–2; solid curves correspond to ωc/kvT = 5; the
dashed curve corresponds to ωc = 0 (calculations are based
on formula (8)); ωc/kvT = 4.99 (1), 5 (2, 4), and 5.01 (3).
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Fig. 3. Dependence P(ϕ) for various values of the radiation frequency detuning and magnetic field; Γ/kvT = 10–2; the dashed curve
corresponds to ωc = 0; (a) ωc/Γ = 1, Ω/kvT = 0.1; (b) ωc/Γ = 0.02, Ω/kvT = 0.02; (c) ωc/Γ = 10, Ω/kvT = 0.6; (d) ωc/Γ = 100,
Ω/kvT = 0.5; (e) ωc/Γ = 1, Ω = 0.
For the cases depicted in Figs. 3a and 3b, the values of
ξ are equal to 4 × 10–3 and 10–8, respectively; i.e., the
line profile virtually coincides with the Doppler profile.
Nevertheless, the amplitude of the negative values of
P(ϕ) is large and exceeds the radiation absorption prob-
JOURNAL OF EXPERIMENTAL
ability P0 at the center of the Doppler-broadened line in
zero magnetic field.

A numerical analysis shows that, in the case of Dop-
pler broadening (Γ/kvT ! 1), the effect of noninversive
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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partial velocity amplification of radiation emerges
when the condition

(20)

is satisfied. In other words, the effect may appear in
weak magnetic fields for which ωc ! Γ. Figure 3b illus-
trates the emergence of the effect for

Let us estimate the magnitude of the magnetic field
required for the emergence of the effect. For the ion
mass M ~ 10 amu, temperature T ~ 103 K, and radiation
wavelength λ ~ 0.5 µm, the Doppler line width is kvT ≈
1.6 × 1010 s–1. Assuming that the homogeneous line
width is determined by radiative decay, we set Γ ~
108 s–1. Then, we obtain the following estimate from
relation (20): B * 600 G.

The number of oscillations Nosc of function P(ϕ)
depends on the magnitude of the magnetic field and on
the radiation frequency detuning. For |Ω| & 2kvT and
ωc > Γ, the number of oscillations can be estimated by
the formula

(21)

(see Fig. 3c).
For ωc @ Γ, the Doppler absorption line profile dis-

tinctly splits into a number of peaks (see Fig. 1b). For
radiation frequencies tuned to the interval between the
central (Ω = 0) and the first side (|Ω| = ωc) peaks and for
ωc * kvT, the dependence P(ϕ) becomes sinusoidal (see
Fig. 3d).

In the cases when Γ @ kvT or ωc @ kvT , the radiation
absorption probabilities P(ϕ), P(v ⊥ , ϕ), and P(v) may
assume negative values, in accordance with formulas
(15)–(17), only for a nonzero radiation detuning fre-
quency Ω ≠ 0. However, in the most interesting case
when ωc, Γ ! kvT, these absorption probabilities may
assume negative values for Ω = 0 also (see Figs. 3e
and 4).

5. QUALITATIVE PATTERN

The effect of noninversive partial velocity amplifi-
cation of radiation considered by us here is associated
with the emergence of the ion-velocity-dependent
phase incursion in the oscillations of the induced dipole
moment of ions due to their motion in a circular cyclo-
tron orbit.

Indeed, the concepts considered above can be used
to obtain a qualitative estimate for the absorption prob-
ability P(v⊥ ) which matches formula (16) for P(v⊥ )
provided that ωc @ Γ, |Ω|. In order to obtain this esti-
mate, we decompose the total velocity v of ions into the

ωc * 
Γ2

kv T

---------

ωc 2Γ Γ /kv T( ) 0.02Γ .= =

Nosc
Ω
ωc

-------∼
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velocity vz directed along the magnetic field B and
velocity v⊥  perpendicular to B:

Since the magnetic field does not affect the motion of
ions along B, the effect of noninversive partial velocity
amplification of radiation can be due only to singulari-
ties in the dependence of the absorption probability on
velocity v⊥ . Vector v⊥  rotates uniformly about the mag-
netic field direction with the angular velocity ωc. In a
strong magnetic field (for ωc @ Γ), the particle has time
to describe many turns between collisions (which cause
phase incursion of the dipole moment induced by radi-
ation). The Larmor rotation of ions does not lead to any
phase incursion of the induced magnetic moment, but
leads to a phase incursion for an ion moving in a circu-
lar cyclotron orbit. We assume that the magnetic field B
is directed along the z axis, while the wave vector k of
radiation is directed along the x axis. The position of an
ion on a circular cyclotron orbit will be defined by the
angle ϕ between the direction k of radiation and veloc-
ity v⊥ . The phase incursion for the ion moving in a cir-
cular cyclotron orbit from point A(x0, ϕ0) to point B(x, ϕ)
(see Fig. 5) is

(22)

where ρc = v ⊥ /ωc is the Larmor radius of the ion orbit.
The angle ϕ specifying the direction of velocity v⊥  is
fixed, while angle ϕ0 varies from 0 to 2π in this case.
The phase incursion averaged over angle ϕ0 is

(23)

v vz v⊥ .+=

∆ψ k x x0–( ) kρc ϕsin ϕ0sin–( ),–= =

∆ψ kρc ϕ .sin–=
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Fig. 4. Radiation absorption probability P(v ⊥ , ϕ) as a func-
tion of the azimuthal angle ϕ for various values of ion veloc-
ity v ; Γ/kvT = 0.1, Ω = 0; solid curves correspond to
ωc /Γ = 1; dashed curves correspond to ωc = 0; v ⊥ /v T =
0.5 (1) and 1 (2).
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In view of this phase incursion, the phase shift ψ(v⊥ ) of
oscillations (relative to the radiation field oscillations)
of the macroscopic polarization created by ions moving
at velocity v⊥  can be presented as the sum

(24)

where the term ψ0 is independent of velocity.

Let us now take into account the fact that the energy
exchange between the field and the ensemble of parti-
cles moving with velocity v⊥  we are interested in is
determined by the polarization component which is
not synphase with the field and is proportional to
sinψ(v⊥ ) (see, for example, [8]). Consequently, the
radiation absorption probability P(v⊥ ) for ions with the
fixed velocity v⊥  in a strong magnetic field (such that
kv ⊥ /ωc ! 1) is given by

(25)

While deriving the last relation in this formula, we took
into account the fact that the radiation absorption prob-
ability P integrated over velocities is obviously propor-
tional to sinψ0.

In order to determine , we will use a visual
classical model describing electrons in an atom as
damped harmonic oscillators performing forced vibra-
tions in the electric field of the wave. It is known from
classical mechanics that the phase shift ψ0 between the
oscillator vibrations and the external driving force is

ψ v⊥( ) ψ0 ∆ψ+ ψ0

kv ⊥ ϕsin
ωc

---------------------,–= =

P v⊥( ) ψ v⊥( )sin 1
kv ⊥

ωc

--------- ϕsin
ψ0tan

--------------– 
 ≈∝

× ψ0sin 1
kv ⊥

ωc

--------- ϕsin
ψ0tan

--------------– 
  P.∝

ψ0tan
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Fig. 5. Schematic diagram explaining formula (22) for the
phase incursion for an ion moving in a circular cyclotron
orbit.
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given by the formula  = γ/Ω , where γ is the
damping coefficient (resonance curve half-width) and
Ω = ω – ω0 is the detuning of the driving force fre-
quency ω relative to frequency ω0 of natural vibrations
of the oscillator (see, for example, [9]). In the case of
ions, we have γ = Γ, and the quantity Ω has the meaning
of radiation frequency detuning relative to the transi-
tion frequency for a stationary particle and may have
any sign. As a result, we obtain the following estimate
for ions in a magnetic field from relation (25):

(26)

The second sign-alternating term on the right-hand side
of this relation appears due to the rotation of ions in the
magnetic field. Its magnitude may be greater than unity,
and, hence P(v⊥ ) may be smaller than zero; i.e., ions in
an external magnetic field may induce noninversive
partial velocity amplification of radiation.

It should be noted that, for ωc @ Γ, |Ω|, relation (18)
leads to

and estimate (26) agrees with formula (16).

6. CONCLUSIONS

The main conclusion of the present work is that the
Larmor rotation of ions in a magnetic field may lead to
the emergence of noninversive partial velocity amplifi-
cation of radiation by ions. The effect is associated with
the emergence of an ion-velocity-dependent phase
incursion in the oscillations of the induced dipole
moment of ions due to their motion in a circular cyclo-
tron orbit.

We have considered the case of absorption of low-
intensity radiation during the transition between the
ground and the first excited energy levels of ions. The
formulas derived for the radiation absorption probabil-
ity can be easily generalized to the case of transitions
between excited levels of ions. For this purpose, the fol-
lowing substitution must be made in the initial equa-
tion (2) for ρmn(v):

where  and are the populations of the lower and
upper levels in the absence of radiation, respectively
(the effect of low-intensity radiation on the population
of the levels can be neglected). Then, the right-hand
side of formula (6) for P(v) (as well as the formulas for
P(v⊥ ), P(ϕ), and P following from Eq. (6)) will acquire

an additional factor (  – )/N which may be positive

ψ0tan

P v⊥( ) 1
Ωkv ⊥

Γωc

-------------- ϕsin– 
  P.∝

τ ϕ( ) ϕ /ωcsin–=
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0
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or negative (in the case of population inversion). Since
P(v) may be smaller than zero in the case

investigated by us here, P(v) may also be greater than

zero for  –  < 0. Thus, in the case of population
inversion of operating energy levels (affected by radia-
tion), partial velocity absorption of radiation by ions
may take place due to their Larmor rotation in the mag-
netic field.

In the case of Doppler line broadening (Γ/kvT ! 1)
the effect of noninversive partial velocity amplification
of radiation by ions emerges, in accordance with rela-
tion (20), in magnetic fields B * B0, where

(27)

(M is the ion mass in atomic units). For atomic ions
with a mass M ~ 10 amu, homogeneous line half-width
Γ ~ 108 s–1, and Doppler width kvT ≈ 1.6 × 1010 s–1

(wavelength λ ~ 0.5 µm and temperature T ~ 103 K), we
obtain B0 ≈ 600 G.

The threshold value of the magnetic field B0 starting
from which the noninversive amplification effect can be
observed is the lower, the smaller the homogeneous line
width. If the homogeneous width is determined by radi-
ative decay, the minimum values of B0 are attained for
radiation absorbed at transitions between the Rydberg
states of atomic ions or for radiation absorption at
vibration-rotation transitions of molecular ions. In
these cases, B0 may be smaller than 1 G.

Noninversive partial velocity amplification of radia-
tion is a “latent” effect in the sense that it vanishes as a
result of averaging over all directions of velocities of
ions:

However, this does not mean that the latent effect can-
not lead to new properties of spectroscopy and kinetics
of ions in laser fields. In particular, we can expect that

ρn
0 ρm

0– N 0>=

ρn
0 ρm

0

B0
10 4– MΓ2

kv T

---------------------≈

P v( ) ϕd

0

2π

∫ 0.>
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such a strong latent effect as the amplification of radia-
tion by half the particles in a medium described in the
present work will strongly affect the absorption of the
test (probing and comparatively weak) field, and we
cannot rule out the possibility of noninversive amplifi-
cation of the test field (due to a comparatively stronger,
but still low-intensity, field which does not change the
population of energy levels) in a frequency range of the
order of the Doppler line width. The solution of the cor-
responding theoretical problem is interesting as regards
the experimental “manifestation” of the effect and
requires separate analysis.
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Abstract—The effect of a magnetic field on the ion drift in a weakly ionized gas under the combined action of
the light-induced drift and light pressure is studied theoretically. It is shown that, under the action of light, a
component of ion drift velocity transverse to the direction of propagation of radiation may appear in a weakly
ionized gas upon the application of an external magnetic field. It is shown that the Lorentz force acting on ions
in the magnetic field radically changes the dependence of the ion drift velocity on the radiation frequency detun-
ing. It is predicted that the ion drift velocity component along the direction of radiation must reverse its sign
upon an increase in the magnetic field and an anomalous light-induced drift may be observed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

After the prediction of light-induced drift [1] and its
first experimental observation [2], a large number of
experimental and theoretical publications appeared on
this subject (see, for example, [3–13] and the references
cited therein). The effect consists in the emergence of a
directed macroscopic flow of particles absorbing radia-
tion in a mixture with buffer particles. The origin of this
effect is as follows. As a result of the Doppler effect, the
radiation produces a selective effect on the absorbing
particles depending on their velocities by creating
effective counterpropagating “beams” of particles in an
excited and the ground state. In the buffer gas atmo-
sphere, these beams experience different drags due to
different transport collision frequencies for excited and
nonexcited particles. As a result, the gas of absorbing
particles acquires a directional motion as a single entity.
The drift velocity is proportional to the relative differ-
ence (νn – νm)/νn in the transport collision frequencies
of resonant particles with buffer particles in the ground
(νn) and excited (νm) states. This forms the basis of one
of the main scientific applications of the light-induced
drift effect, viz., the measurement of the relative varia-
tion of transport collision frequencies during the exci-
tation of particles.

The light-induced drift effect is one of the strongest
effects of radiation on the translational motion of parti-
cles. Theoretically, the velocity of the light-induced
drift may attain the value of thermal velocity in the case
of laser pumping [4]. It has been shown experimentally
that, as a result of the light-induced drift effect, atoms
may move with a velocity of the order of several tens of
meters per second [6]. The light-induced drift effect has
been registered experimentally for nearly two dozen
different objects (atoms and molecules). Light-induced
drift is possible not only for atoms and molecules in a
1063-7761/02/9404- $22.00 © 20728
gaseous medium, but also for ions in a weakly ionized
gas [14], conduction electrons in solids [15, 16], and
Wannier–Mott excitons in semiconductors [17].

It is clear from simple physical considerations that
an external magnetic field may strongly influence the
light-induced drift of charged particles due to the
Lorentz force acting on particles drifting in a magnetic
field. The force aspect of the effect of a magnetic field
on the light-induced drift of charged particles was not
investigated until recently. This problem was consid-
ered for the first time in [18, 19] for the light-induced
drift of ions. Unfortunately, the results obtained in [18,
19] cannot be considered as reliable since the effect of
a magnetic field on light-induced drift is taken into
account incorrectly in these publications.1 In a recent
publication [20], the force aspect of the effect of a mag-
netic field on the light-induced drift of ions is investi-
gated theoretically in the limiting cases of homoge-
neous broadening of absorption lines (Γ @ kvT, where
Γ is the homogeneous half-width of the absorption line
for ions and kvT is the Doppler width) or strong mag-
netic fields (for ωc @ kvT and for an arbitrary relation
between Γand kvT; ωc is the cyclotron frequency of ions
in the magnetic field). In [20], some interesting features
of the light-induced drift of ions in a magnetic field
were revealed, such as the emergence of a drift velocity
component transverse to the direction of propagation of

1 In [18, 19], the effect of a magnetic field on the drift velocity
u(r, t) of ions (in the notation adopted in these works) appearing
in the equation of the ion flux (Eq. (8) in [18] and Eq. (1) in [19])
is disregarded. The equation for the ion flux analyzed in [18, 19]
is in fact a modified first equation of the system of equations (8)
of the present work (for a = 0 and x = 0) and has the following

form in our notation: νnJ + (νm – νn)j0 = –( /2)∇ N + ωcJ × h,

where the flux j0 is independent of the magnetic field, in contrast
to the flux jm in (8).

v T
2
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radiation, sign reversal of the drift velocity component
along the direction of radiation upon an increase in the
magnetic field, and a radical change in the dependence
of the drift velocity of ions on the radiation frequency
detuning. However, the most interesting case of moder-
ate magnetic fields (ωc ! kvT) cannot be described by
the formulas derived in [20] for the Doppler line broad-
ening (kvT @ Γ).

The present work aims at a theoretical analysis and
study of the photoinduced ion drift in a magnetic field
of an arbitrary magnitude for an arbitrary relation
between the Doppler and homogeneous absorption line
widths. As compared to [20], we use another approach
to calculating the light-induced drift velocity, which
makes it possible to remove the limitations imposed in
[20] on the magnitude of the magnetic field and on the
relation between Γ and kvT. The force effect of the
external magnetic field on the light-induced drift of
ions is maximal in the case when the magnetic field is
perpendicular to the drift velocity direction. It is this
case that is analyzed in the present work.

The light-induced drift effect may exceed the well-
known effect of light pressure in its manifestation by
several orders of magnitude even under optimal condi-
tions for this phenomenon. However, for specific
objects and under certain conditions, the combined
analysis of these effects might be required (in the case
when the light-induced drift effect is “suppressed” for
some reason or is comparable to or is even weaker than
the effect of light pressure). For this reason, we will
consider here the combined action of these effects.

2. INITIAL EQUATIONS

Let us consider a three-component weakly ionized
gas consisting of electrons, singly charged positive ions
of one species, and neutral atoms in a constant uniform
magnetic field B. The collisions between charged parti-
cles in a weakly ionized gas are insignificant since the
frequencies of collisions of electrons and ions with neu-
tral atoms are much higher than the frequencies of col-
lisions between these particles (this condition assumes
the degree of gas ionization &10–4 at a temperature of
the order of 0.1 eV [21]). Let us suppose that radiation
in the form of a propagating monochromatic wave is
resonantly absorbed during the m–n transition between
the ground (n) and the first excited (m) states of ions. We
will concentrate our attention only on the analysis of the
force effect of the magnetic field on the ion drift; conse-
quently, we confine our analysis to the simplest case when
the Zeeman splitting of the absorption line can be disre-
garded. For example, there is no line splitting in the case
of the simple Zeeman effect (the equality of Landé g fac-
tors of the mixing states m and n) for the transverse (rel-
ative to the magnetic field B) direction of propagation
of radiation polarized linearly along B.

Under these conditions, the interaction between
radiation and two-level particles (ions) taking into
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
account the recoil effect can be described by the follow-
ing equations for the density matrix [9, 22]:

(1)

where

(2)

Here, h = B/B is the unit vector in the direction of the
magnetic field; ρi(v)is the velocity distribution of ions
at level i = m, n; N is the total concentration of ions;
Sm(v), Sn(v), and Smn(v) are the collision integrals for
ions; ω, λ, and k are the frequency, wavelength, and the
wave vector of radiation; Γm is the spontaneous decay

rate for the excited state m; ρm(v) is the integral
operator describing the radiative transition of particles
from the excited level m to the ground level n taking
into account the change in the velocity of particles due
to the recoil effect during spontaneous emission; nr is
the unit vector defining the direction of spontaneous
radiation; ωmn is the frequency of the m–n transition;
Bnm is the second Einstein coefficient for the m–n tran-
sition; I is the radiation intensity; P(v) is the number of
radiation absorption acts per unit time for an ion with a
preset velocity v from the unit velocity interval; 2x is
the recoil velocity of an ion after the absorption of a
photon; ωc is the cyclotron frequency of ions; e is the
elementary electric charge; M is the ion mass; B is the
magnetic induction; and E is the internal electric field
strength in the medium.

The electric field E in the medium may emerge due
to the directional motion of ions as a single entity as a
result of light-induced drift and light pressure effects.
Two different cases are possible here. If the concentra-
tion of charged particles is not high enough for the ion-
ized gas to display the properties of a plasma (the

d
dt
----- Γm+ ρm v( ) Sm v( ) NP v x–( ),+=

d
dt
-----ρn v( ) Sn v( ) Γ̂mρm v( ) NP v x+( ),–+=

d
dt
-----

Γm

2
------ i Ω k v⋅–( )–+ ρmn v( )

=  Smn v( ) iG ρn v x–( ) ρm v x+( )–[ ] ,+

d
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----- ∂

t∂
---- v

∂
r∂

----- ai
∂
v∂

-----,+ +≡
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eE
M
------- ωcv h, ωc×+

eB
Mc
--------,= =

Γ̂mρm v( )
Γm

4π
------ ρm v 2ξnr+( ) nr,d∫=

NP v( ) 2Re iG*ρmn v( )[ ] ,–=

x "k
2M
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2π
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4"ω
------------, Ω ω ωmn.–= =

Γ̂m
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Debye radius rd characterizing the spatial separation of
charged particles is much larger than the characteristic
size L of the system), electrons do not affect the ion
drift, and field E in Eqs. (1) can be neglected.

If, however, the concentration of the charged parti-
cles is high enough for the ionized gas to manifest the
properties of a plasma (rd ! L), the directional motion
of ions must induce the directional motion of electrons
in view of the quasineutrality condition for the plasma.
This leads to the emergence of the electric field E com-
pensating the force of friction between electrons and
buffer particles (neutral atoms).

Thus, under the plasma conditions, the motion of
electrons is matched with the motion of ions through
the electric field E, and Eqs. (1) should be supple-
mented with the equation for the electron distribution
function ρe(v):

(3)

where

(4)

m is the electron mass, ωe is the electron cyclotron fre-
quency, and Se(v) is the collision integral for electrons.

For the nondiagonal collision integral Smn(v) in
Eqs. (1), we will use the following approximation, which
is conventional in nonlinear spectroscopy [9, 22]:

(5)

indicating that collisions completely shift the phase of
the oscillating dipole moment (Γ is the homogeneous
absorption line half-width for ions).

Inelastic collision-related processes (ionization,
recombination, etc.) are insignificant in the problem under
investigation (the effective frequencies of ionization and
recombination are smaller than the frequencies of elastic
collisions); for this reason, we will confine the subsequent
analysis to the inclusion of only elastic collisions of ions
and electrons with buffer particles (neutral atoms).

It is well known [5, 7, 9] that many experimental
results of investigation of light-induced drift are suc-
cessfully described by the relevant “standard” theory
with velocity-independent transport frequencies of col-
lisions between resonant and buffer particles. The strong
deviation from the “standard” theory (the so-called anom-
alous light-induced drift2 is observed only when the differ-

2 In 1992, an unexpectedly strong deviation of the frequency
dependence of the drift velocity from a dispersion-like curve was
discovered [10] during the investigation of the light-induced drift
of C2H4 molecules in the buffer gas Kr. An anomalous spectral
profile of the drift velocity was observed with three zeros instead
of one as per the theory of light-induced drift with velocity-inde-
pendent transport collision frequencies prevailing at that time.
The departure from the prediction of the theory was so strong that
the effect was called the “anomalous” light-induced drift.

∂
t∂

---- v
∂
r∂

----- ae
∂
v∂

-----+ + ρe v( ) Se v( ),=

ae –
eE
m
------- ωev h, ωe×–

eB
mc
-------,= =

Smn v( ) Γ
Γm

2
------– 

  ρmn v( ),–=
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ence between the transport collision frequencies for reso-
nant particles as a function of velocity v,

at combining levels (not affected by radiation) reverses
its sign [12, 13]. In the present work, we assume that
∆ν(v) as a function of velocity v  does not reverse its
sign; i.e., the light-induced drift of ions is successfully
described by the theory with the velocity-independent
transport collision frequencies. In this case, the follow-
ing relation holds for the first moment of the diagonal
collision integrals [9]:

(6)

where νi is the mean transport frequency of collisions,
jm and jn are the fluxes of ions in states m and n, and je

is the electron flux. For ions (i = m, n), the mean trans-
port frequency is connected with the diffusion coeffi-
cient Di for ions in state i through the following simple
formula:

(7)

where vT is the most probable velocity of ions, T is the
temperature, and kB is the Boltzmann constant. The dif-
fusion coefficient for electrons (i = e) is given by

where v e is the most probable velocity of electrons.

3. EQUATIONS FOR PARTICLE FLUXES

In order to calculate the drift velocity of ions, it is
convenient to go over in the subsequent analysis from
the kinetic equations (1), (3) to the equations for parti-
cle fluxes (hydrodynamic equations). We multiply the
first two equations in (1) and Eq. (3) by v and then inte-
grate with respect to v. Taking into account Eqs. (6), we
obtain

(8)

∆ν v( ) νm v( ) νn v( ),–≡

vSi v( ) vd∫ ν iji,–=

ji vρi v( ) v, id∫ m n e,, ,= =
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v T
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∂
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1
M
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∂
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--------Pαβ
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=  aNm ωcjm h× NPx N vP v( ) v,d∫+ + +
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where

(9)

P is the number of radiation absorption acts per unit
time for an ion, J is the total ion flux, Nm and Nn are the
ion concentrations in states m and n, Ne is the electron
concentration, eα is the unit vector in the direction of
the coordinate axis xα, vα is the component of velocity

v along the xα axis,  is the momentum flux density
tensor for ions in states m and n (Mi = M) and for elec-
trons (Mi = m), a is the acceleration of ions due to the
internal electric field E, and β = m/M is the ratio of the
electron and ion masses.

In order to simplify the problem, we confine our
analysis to the condition of weak radiation intensity,
assuming that the rate of induced transitions is smaller
than the rate Γm of the radiative decay of the excited
level m (P ! Γm). Under these conditions, we can dis-
regard the term aNm in the second equation from (8),
which is quadratic in the radiation intensity. Under
standard and spatially homogeneous conditions taking
into account the quasineutrality of the plasma (Ne = N),
Eqs. (8) assume the form

(10)

By definition, the drift velocity of ions is u ≡ J/N and
can be found from the system of equations (10) through

the zeroth (P = (v)dv) and first ( P(v)dv)

moments of the probability P(v) of radiation absorption
per unit time by an ion with a preset velocity v.

In the case when the concentration of charged parti-
cles is not sufficiently high for the ionized gas to dis-
play the properties of a plasma (gas conditions, rd @ L),
electrons do not affect the ion drift, and we can set a = 0
in Eqs. (10). In this case, the drift velocity of ions can be
determined from the first two equations of system (10).

∂
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Pαβ
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νnJ νm νn–( )jm+ aN ωcJ h× 2NPx,+ +=

Γm νm+( )jm   =   ω c j m h × NP x N v P v ( ) v , d ∫ + +

βνeje aN ωcje h×+ + 0.=

P∫ v∫
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If the concentration of charged particles is high
enough for the ionized gas to display the plasma
properties (plasma conditions, rd ! L), the ion accel-
eration a due to the internal electric field E cannot be
disregarded any longer in Eqs. (10), and the drift veloc-
ity must be determined from the system of three equa-
tions (10).

The formulas for the drift velocity under the gas
conditions can be easily derived from the formulas for
the drift velocity under the plasma conditions by substi-
tuting the effective collision frequency  by νn (see
Eq. (18)). Let us therefore consider the drift of ions
under the plasma conditions first.

The continuity equations for ions and electrons
(which follow from Eqs. (1) and (3) integrated over v
taking into account the relation

reflecting the conservation of the number of particles in
elastic collisions) combined with the quasineutrality
condition for the plasma (Ne = N) lead to the condition

(11)

which indicates the relation between the ion and elec-
tron fluxes flowing into each volume element. In a mag-
netic field, condition (11) may also be satisfied for J ≠
je due to the anisotropy of the mobility and diffusion
coefficients for charged particles.

Let us now determine the relation between fluxes J
and je for the case of ion drift under the action of a plane
light wave propagating at right angles to the magnetic
field. For this purpose, we consider the following con-
figuration in the cylindrical system of coordinates 

 

ρ, ϕ

 

,

 

z 

 

with the 

 

z 

 

axis directed along the uniform magnetic
field 

 

B

 

. Let a cylindrical monochromatic wave with the
wave vector 

 

k 

 

perpendicular to the 

 

z 

 

axis diverge radi-
ally from a radiation source extended along the 

 

z 

 

axis in
a homogeneous unbounded plasma. Then, the light-
induced drift velocity of ions is a function of radius 

 

ρ

 
only, and Eq. (11) leads to the equality of the radial
components of fluxes,  J ρ  =  j e ρ ; i.e., the drift of ions and
electrons along the vector 

 
k 

 
is ambipolar. Under steady-

state conditions, the internal electric field 

 

E 

 

emerging in
the plasma due to the ion drift is vortex-free (curl 

 

E

 

 = 0)
and, hence, the azimuthal component of the field 

 

E

 

ϕ

 

 = 0.
Thus, condition (11) and relation 

 

E

 

ϕ

 

 = 0 in the case
under investigation are equivalent to the conditions

(12)

where the symbol “

 

||

 

” indicates the vector component
directed along 

 

k

 

.
Let us now take into account the fact that individual

segments of a cylindrical wave, which are smaller than
the distance from the source of radiation, behave
approximately as plane waves with constant radiation

ν̃n

Si v( ) vd∫ 0, i m n e,, ,= =

divJ divje,=

je|| J||, a
k
k
---a,= =
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intensity. The light-induced drift of particles in these
regions can be regarded as a drift under the action of a
plane light wave. Thus, conditions (12) also hold for the
ion drift induced by a plane light wave, which is consid-
ered by us here.

Solving the system of equations (10) under condi-
tions (12), we find that, for the direction of propagation
of radiation transverse to the magnetic field (for k ⊥  B),
the drift velocity of ions is equal to the sum of two
mutually perpendicular components u|| and u⊥ :

(13)

where component u|| is parallel to the wave vector k,
while component u⊥  is perpendicular to k and B:

(14)

The components u|| and u⊥  of the drift velocity u
along directions k and n are given by the formulas

(15)

(16)
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(17)

Formulas (15)–(17) describe the drift of ions under the
plasma conditions (rd ! L).

Under the gas conditions (rd @ L), the drift velocity
of ions is defined by the same formulas (15)–(17) with
the substitution

(18)

Thus, the evaluation of drift velocity boils down to
the calculation of the probability P(v) of radiation absorp-
tion per unit time by an ion with a given velocity v.

4. PROBABILITY 
OF RADIATION ABSORPTION

The probability P(v) of radiation absorption at the
m–n transition is determined by the nondiagonal den-
sity matrix element ρmn(v). In the case of a low radia-
tion intensity (P ! Γm), we can disregard the population
of the excited level (ρm(v) = 0) in the equation for
ρmn(v) in system (1) and assume that the velocity distri-
bution of populations in the ground state is close to
the Maxwell distribution (ρn (v) = NW(v)), where
W(v) is the Maxwell distribution). For a low radia-
tion intensity, we can also disregard the internal elec-
tric field E in the equation for ρmn (v) in system (1) and
assume that ai = ωcv × h. In this case, under steady-state
and spatially homogeneous conditions, we obtain from
Eqs. (1) taking into account relation (5) the following
expression in the approximation linear in the small
parameter ξ/vT:

(19)

We will solve this equation in a system of coordi-
nates in which the z axis is directed along the magnetic
field B and the x axis is directed along the wave vector
k (we assume that k ⊥  B). In the velocity space, it is
convenient to go over to the cylindrical system of coor-

τσ
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dinates v⊥ , ϕ, v z (v x = v ⊥ cosϕ, v y = v ⊥ sinϕ). In these
coordinates, Eq. (19) assumes the form

(20)

where

(21)

W(v ⊥ ) and W(v z) being the Maxwell distributions over
the transverse and longitudinal (relative to the magnetic
field B) components of velocity v.

Solving this linear nonhomogeneous differential
equation, we obtain the following expression for the
radiation absorption probability:

(22)

where Jn(x) is a Bessel function of the first kind. In zero
magnetic field (for ωc = 0), the radiation absorption prob-
ability P(v) is defined by the well-known formula [9, 22]

(23)

For the radiation absorption probability integral

over velocities, P = (v)dv, which determines the

profile of the absorption line, we obtain, using Eq. (22),

(24)

where In(µ) is a modified Bessel function. If we disre-
gard the recoil effects, Eq. (24) leads to the known [23]
expression for the spectral line profile for ions in a mag-
netic field. It follows from Eq. (24) that the Larmor
rotation of ions in a magnetic field may lead to the
emergence of equidistant peaks (cyclotron resonances)

Γ i Ω kv ⊥ ϕcos–( )– ωc
∂
ϕ∂

------–
 
 
 

ρmn v( )

=  iGNW v ⊥( )W v z( ) 1
2ξv ⊥ ϕcos

v T
2

--------------------------+ ,

W v ⊥( ) 1

πv T( )2
---------------------

v ⊥
2

v T
2

------–
 
 
 

,exp=

W v z( ) 1

πv T

--------------
v z

2

v T
2

------–
 
 
 

,exp=

P v( ) 2 G 2W v ⊥( )W v z( )Re i
kv ⊥

ωc

--------- ϕsin 
 exp







=

×
inϕ–( )Jn

kv ⊥

ωc

--------- 
  1 n

2ξ
v T

------
ωc

kv T

---------+exp

Γ i Ω nωc–( )–
-----------------------------------------------------------------------------------

n ∞–=

n ∞=

∑






,

P v( ) 2 G 2ΓW v( )
Γ2 Ω k v⋅–( )2+
----------------------------------------.=

P∫

P 2 G 2Γ µ–( )exp=

×
1 n

2ξ
v T

------
ωc

kv T

---------+ In µ( )

Γ2 Ω nωc–( )2+
------------------------------------------------, µ

n ∞–=

n ∞=

∑ kv T( )2

2ωc
2

----------------,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in the absorption line profile. The distance between
adjacent peaks is equal to the cyclotron frequency ωc of
ions, and the width of an individual peak is determined
by the homogeneous width 2Γ of the absorption line.
For kvT @ Γ, the absorption line described by formula
(24) has the form of a Doppler contour modulated by
the periodic function of the radiation frequency detun-
ing Ω with a period equal to ωc. The oscillating function
P (24) has peaks for Ω = nωc and minima for Ω = (n +
1/2)ωc. For ωc @ Γ, the Doppler contour distinctly
splits into a series of peaks, while, for ωc & Γ, the shape
of the line differs from the Doppler contour by an expo-
nentially small oscillating correction [23].

A nontrivial aspect is the effect of the magnetic field
on the behavior of the radiation absorption probability
P(v) as a function of velocity v. An analysis of expres-
sion (22) shows that, for some values of velocity v, the
function P(v) may assume negative values. In addition,
the integral characteristics

(25)

may also assume negative values (here, P(ϕ) is the
number of radiation absorption acts per unit time in a
unit interval of angles per ion with a given value of ϕ
between the direction of radiation k and the projection
of the velocity of ions onto the plane perpendicular to
the magnetic field). In other words, in a gas of ionized
particles in an external magnetic field, a partial (in the
directions of velocity) noninversive amplification of
radiation by ions due to their Larmor rotation may
emerge upon the application of the external magnetic
field. In this case, virtually all ions may be in the ground
state. The partial (in velocities) noninversive amplification
is a “latent” effect in the sense that it disappears as a result
of averaging over all directions of ion velocities (the radi-
ation absorption probability P integrated over velocities is
positive). A detailed analysis of this effect would be of
interest, but it is beyond the scope of this research.

5. DRIFT VELOCITY

Using formula (22), we derive the following expres-
sion for the quantities Q|| and Q⊥  defined in Eqs. (17) and
appearing in formulas (15) and (16) for drift velocity:

(26)

P v ⊥ ϕ,( ) P v( ) v z,d

∞–

∞

∫=

P ϕ( ) P v ⊥ ϕ,( )v ⊥ v ⊥d

0

∞

∫=

Q||
2 G 2ωc

k
------------------- µ–( )exp=

×
1 n

2ξ
v T

------
ωc

kv T

---------+ ΓnIn µ( )

Γ2 Ω nωc–( )2+
-------------------------------------------------------,

n ∞–=

n ∞=

∑
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(27)Q⊥
2 G 2ωc

k
------------------- µ–( )

1 n
2ξ
v T

------
ωc

kv T

---------+ nωc Ω–( ) n µ–( )In µ( ) µI n 1+ µ( )+[ ]

Γ2 Ω nωc–( )2+
----------------------------------------------------------------------------------------------------------------------------------.

n ∞–=

n ∞=

∑exp=
This completes the calculation of the drift velocity of
ions. The drift velocity can be determined from formu-
las (15) and (16) by substituting the radiation absorp-
tion probability P from Eq. (24) and the quantities Q||
and Q⊥  defined by Eqs. (26) and (27).

According to these formulas, the right-hand sides of
expressions (15) and (16) for u|| and u⊥  can be written in
the form of the sum of two terms:

(28)

where velocities uL|| and uL⊥  differ from zero only for
νm ≠ νn and are independent of the recoil velocity 2ξ of
an ion upon the absorption of a photon (light-induced
drift), while velocities ur|| and ur⊥  differ from zero only
for ξ ≠ 0 (light pressure). Thus, the drift velocity u (13)
can also be presented as the sum of the drift velocities
uL and ur associated with the effects of light-induced
drift (uL) and light pressure (ur):

(29)

The formulas for velocities uL and ur derived as a result
of the relevant grouping of terms depending on and
independent of ξ in Eqs. (15) and (16) are obvious and
will not be given here.

In the case of strong magnetic fields (ωc @ kvT) or
in the case of homogeneous broadening of the absorp-
tion line (Γ @ kvT), the formulas for drift velocity
derived in the present work are simplified considerably
and coincide with the formulas derived earlier in [20]
using the Grad method of solution of kinetic equations
if we disregard the recoil effect.

Figures 1–3 show the results of calculations of drift
velocity obtained from formulas (15) and (16) by sub-
stituting Eqs. (24), (26), and (27) into them. In all the
figures, we choose the unit of velocity equal to the
quantity

(30)

which is equal to the maximal (for Ω = 0) value of the
ion drift velocity ur under the action of light pressure in
zero magnetic field for νm = νn. The quantity P0 is the
radiation absorption probability at the center of the line
for Doppler broadening in zero magnetic field. The
ratio of the maximal values of velocities uL and ur in
zero magnetic fields in the case of Doppler broadening
is characterized by the parameter A:

(31)

u|| uL|| ur||, u⊥+ uL⊥ ur⊥ ,+= =

u uL ur.+=

uR

2ξP0

νn

------------, P0
2 π G 2

kv T

--------------------,= =

uL( )ωc 0→ max

uR

--------------------------------
v T

5.4ξ
----------

νm νn–
Γm νn+
-------------------- A.≡≈
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For values of the parameters used for calculating the
curves in Figs. 1 and 3, the value of A ≈ 600; i.e., in zero
magnetic field, the drift velocity uL associated with
light-induced drift effect is 600 times the velocity ur of
the drift induced by light pressure.

Figures 1 and 2 illustrate the dependence of the drift
velocity of ions on the detuning of the radiation fre-
quency Ω and on the magnetic field under the gas con-
ditions (rd @ L). Figure 1a shows that, with increasing
magnetic field, the drift velocity component u|| along
the direction of radiation reverses its sign. Sign reversal
occurs in the cyclotron frequency range

(32)

Since the condition |uL||| @ |ur||| holds for the values of
parameters used for calculating the curves in Fig. 1a
(and, hence u|| ≈ uL||), the curves in Fig. 1a in fact illus-
trate the dependence of the drift velocity uL|| of the
light-induced drift on the radiation frequency detuning
Ω . Curves 1 and 3 in Fig. 1a correspond to the conven-
tional light-induced drift with a typical dispersion-like
frequency dependence uL||(Ω) of the drift velocity
(which is equal, except for the sign, to the frequency
derivative of the absorption line profile) with a single
zero at the zero value of the radiation frequency detun-
ing. Curve 2 with three zeros in Fig. 1a corresponds to
anomalous light-induced drift [10–13] with a sharp
deviation of the frequency dependence of the drift
velocity uL||(Ω) from a dispersion-like curve. Anoma-
lous light-induced drift and the change in the drift
direction are observed for a cyclotron frequency of
ions, whose order of magnitude is determined by rela-
tion (32). An analysis shows that the interval ∆ωc of the
cyclotron frequency values in which anomalous light-
induced drift takes place is approximately equal to
∆ωc ≈ 0.1νn.

It was mentioned above that, in zero external fields,
the anomalous light-induced drift is completely deter-
mined by the dependence of transport collision fre-
quencies on the velocity v  of resonant particles, the
anomaly appearing only when the difference in the
transport frequencies of collisions at mixing levels
reverses its sign as a function of v. The results of the
present work show that anomalous light-induced drift
of ions in an external magnetic field may also appear
for velocity-independent transport collision frequen-
cies.

The physical origin of the change in the direction of
the drift velocity of ions upon an increase in the mag-
netic field can be explained from the following qualita-
tive considerations. In zero magnetic field, the ion drift

ωc νn Γm νm+( ).∼
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Fig. 1. Drift velocity of ions as a function of the radiation frequency detuning for various values of magnetic field (gas conditions,
rd @ L): Γ/kvT = 0.1, (νm – νn)/νn = 0.1, νn/Γ = 0.2, Γm/νn = 0.5, νT/ξ = 5 × 104; (a) ωc = 0 (1), ωc/Γ = 0.2485 (ωc/νn = 1.2425) (2);
ωc/Γ = 0.4 (ωc/νn = 2) (3); (b) ωc/Γ = 5 (ωc/νn = 25), u||/uR (1), u⊥ /uR (2); (c) ωc/Γ = 0.15 (ωc/νn = 0.75).
velocity u|| is proportional to the difference νn – νm in
the transport frequency of collisions of ions in the
ground and in excited states with buffer particles. In the
presence of a magnetic field, the diffusion coefficient
DiB for ions in state i across the magnetic field is

where the quantity

has the meaning of the effective transport frequency of
collisions of ions in state i with buffer particles in the
presence of a magnetic field [21]. Consequently, in a

DiB v 2/2ν iB,=

ν iB ν i ωc
2/ν i+=
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magnetic field perpendicular to the direction of propa-
gation of radiation, we can expect that (approximately)

It follows hence that, in an increasing magnetic field,
the drift velocity component along the direction of radi-
ation reverses its sign. The change in the direction of
the drift is associated with the sign reversal of the dif-
ference νnB – νmB in the effective transport frequencies
of collisions of ions upon an increase in the magnetic
field.

For the case of ωc & Γ depicted in Fig. 1a, the shape
of the absorption line for ions differs from the Doppler
profile by an exponentially small oscillation correction
[23]. Consequently, no oscillations are observed in the

u|| νnB νmB– νm νn–( ) ωc
2 νmνn–( ).∝ ∝
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dependence of the drift velocity on Ω . For ωc @ Γ, the
Doppler profile distinctly splits into a number of peaks
[23], and the drift velocity displays oscillations as a
function of Ω (see Fig. 1b).

Figure 1c shows the drift velocity component trans-
verse to the wave vector as a function of Ω . The abso-
lute (in Ω and ωc) maximum of velocity u⊥  is attained
for ωc ~ νn and is close to the absolute maximum of the
light-induced drift velocity in zero magnetic field (this
can be seen from a comparison of curve 1 in Fig. 1a
with Fig. 1c).

In the case of equality of the transport collision fre-
quencies in the ground and excited states (νm = νn), no
light-induced drift is observed, and ions drift only
under the effect of light pressure. In this case, the
dependence of the drift velocity on Ω repeats the shape
of the absorption line (see Fig. 2).

Upon a transition from the gas conditions to the
plasma conditions, the dependence of the drift velocity
component u|| along the direction of radiation on Ω does
not change, but its magnitude decreases (by a factor of

( νn + )/(  + ) in accordance with formula
(15)). This decrease is associated with the ambipolar
nature of the drift along the direction of radiation, lead-
ing to a drag exerted by electrons on the ion drift (in a
strong magnetic field B, the transverse (relative to the
field) diffusion coefficient for electrons is smaller than
the transverse diffusion coefficient for ions by a factor
of νn/βνe [21]).

The dependence of the drift velocity component u⊥
transverse to the direction of radiation on Ω changes

ν̃n ωc
2 νn

2 ωc
2

0.8
u⊥ /uR

–2 –1 0 1 2
Ω/kvT

1

2
×100.6

0.4

0.2

0

0.7

0.5

0.3

0.1

Fig. 2. Drift velocity associated with light pressure as a
function of the radiation frequency detuning (gas condi-
tions, rd @ L): Γ/kvT = 0.1, νm = νn , νn/Γ = 0.2, Γm/νn =
0.5; ωc/Γ = 0.2 (ωc/νn = 1) (1); ωc/Γ = 5 (ωc/νn = 25) (2).
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upon a transition from the gas conditions to the plasma
conditions. In weak magnetic fields (for ωc & Γ), the
dependence u⊥ (Ω) remains virtually the same as under
the gas conditions and is dispersion-like (curve 1 in
Fig. 3). As the magnetic field increases (for ωc @ Γ), the
form of the u⊥ (Ω) dependence changes upon a transi-
tion from the gas conditions to the plasma conditions.
In strong magnetic fields (for ωc @ Γ), the magnitude of
the drift velocity u⊥  under the plasma conditions is con-
siderably larger than under the gas conditions (this can
be seen from a comparison of curves 2 in Fig. 1b and
Fig. 3).

Let us now determine the ambipolar electric field E
formed automatically in the plasma for leveling out the
fluxes of oppositely charged particles along the direc-
tion of radiation. Using Eqs. (10) together with condi-
tions (12), we find that

(33)

where µe⊥  is the electron mobility in a direction trans-
verse to the magnetic field [21] and µe is the electron
mobility in zero magnetic field.

Let us estimate the value of E. In weak magnetic
fields (ωc = βωe ! βνe), the electron mobility µe⊥  ≈ µe,
and the maximum value of the drift velocity is |u|||max ≈
AuR (see formula (31)). The ambipolar electric field
strength in this case is

(34)

E
u||

µe⊥
--------, µe⊥–

µe

1 ωe
2/νe

2+
-----------------------, µe

e
mνe

---------,= = =

E
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µe

---------≈
"kP0

e
------------

βνe
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--------A.=
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Fig. 3. Drift velocity of ions as a function of the radiation
frequency detuning for various values of the magnetic field
(plasma conditions, rd ! L). Γ/kvT = 0.1, (νm – νn)/νn = 0.1,

νn/Γ = 0.2, Γm/νn = 0.5, νT/ξ = 5 × 104, βνe/νn = 10–2;
ωc/Γ = 0.3 (ωc/νn = 1.5) (1); ωc/Γ = 5 (ωc/νn = 25) (2).
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This leads to the following estimate for the radiation
wavelength λ ~ 0.5 µm, the radiation absorption probabil-
ity at the line center P0 ~ 107 s–1, and the values of βνe/νn ~
10–2 and A ≈ 600 (see Eq. (31)): |E| ~ 5 × 10–3 V/cm. As

the magnetic field increases (so that  * βνeνn,

which corresponds to  * νn), the drift velocity
decreases,

but the drag effect of electrons becomes stronger,

Consequently, the ambipolar electric field strength
increases by a factor of νn/βνe and may attain values
|E| ~ 0.5 V/cm for νn/βνe ~ 100.

CONCLUSIONS

In the present work, we analyzed theoretically the
force action of an external magnetic field on the ion
drift under the combined action of the light-induced
drift and light pressure effects under the conditions
when this action is maximal and is manifested in “pure”
form (the Zeeman splitting of the absorption line is
absent). The force action attains its maximum value in
the case when the magnetic field is perpendicular to the
direction of propagation of radiation; it is precisely in
this case that it can be singled out in “pure” form (there
is no line splitting in the case of the normal Zeeman
effect with radiation propagating across the magnetic
field and polarized linearly along the magnetic field).
The formulas for the drift velocity of ions derived in the
present work are valid for an arbitrary relation between
the Doppler and homogeneous widths of the absorption
line and for an arbitrary magnitude of the magnetic
field.

As the magnetic field increases, the ion drift velocity
component along the direction of radiation reverses its
sign. It follows from Eq. (32) that this effect can only
be observed in magnetic fields

(35)

where M is the ion mass in atomic units. It follows
hence that the value of the magnetic field required for
observing this effect experimentally is the smaller, the
lower the gas pressure and the rate of spontaneous
decay of the excited state of the ion. For the transport fre-
quency of ion collisions νn ~ 105 s–1 (which corresponds to
a gas pressure of ~0.01 Torr), the radiation constant Γm ~
107 s–1, and the ion mass M ~ 10 amu, we obtain the fol-
lowing estimate from relation (35): B ~ 103 G.

The drift velocity component transverse to the direc-
tion of radiation emerges for indefinitely weak mag-

ωc
2

ν̃n

u|| max AuRβνeνn/ωc
2,∼

µe⊥ µeβ
2νe

2/ωc
2.∼

B 10 4– M νn Γm νm+( ),∼
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netic fields. For ωc & νn, its magnitude can be estimated
using the formula

where ud is the ion drift velocity in zero magnetic field.
The magnitude of the transverse drift velocity compo-
nent may attain the value |ud | even in quite weak mag-
netic fields (B ~ 100 G for νn ~ 105 s–1 and the ion mass
M ~ 10 amu).

Under laboratory conditions, photoinduced ion drift
may be manifested in the form of an electric current
(photoinduced current [14]). A potential difference V ~
|E|L will emerge between the endfaces of a cell with a
weakly ionized gas, where L is the cell length and E is
the ambipolar electric field in the cell, which emerges
due to ion drift induced by light. For |E| ~ 5 × 10–3 V/cm
(see the estimate following formula (34)) and L ~ 10 cm,
a potential difference V ~ 0.05 V emerges between the
endfaces of the cell. A conductor connecting the oppo-
site ends of the cell will carry a current I ~ V/R, where
R is the internal resistance of the plasma. Since R ~
L/eNSme⊥ , where S is the cross-sectional area of the
cell, we obtain the following estimate, taking into
account Eq. (33): I ~ |u|||eNS. For the drift velocity
|u||| ~ 10 cm/s, the ion concentration N ~ 1011 cm–3, and
S ~ 1 cm2, we obtain I ~ 10–7 A.

The results obtained in the present work may be
interesting for astrophysical applications in connection
with the phenomenon of chemically peculiar stars,
which is widely discussed in the literature [24–27]. One
of the main hypotheses explains the anomalies in the
chemical composition of all peculiar stars by the sepa-
ration of chemical elements in their atmospheres
through the mechanism of selective drift of atoms and
ions under the action of radiation emitted by the star
[24–27]. Both light pressure [25–28] and the light-
induced drift [27, 29, 30] were considered as possible
reasons for the drift in the atmospheres of such stars.
Chemically peculiar stars include so-called magnetic
stars [24–27] with strong (up to 3 × 104 G) large-scale
magnetic fields predominantly of a dipole nature. It was
shown in the present work that the magnetic field radi-
cally changes the pattern of the light-induced drift and,
hence, may strongly affect the separation of chemical
elements in the atmospheres of magnetic stars.
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Abstract—Spectra of second-order Raman scattering in porous silicon are investigated. A band shift towards
lower energies in second-order spectra is observed, as well as the correlation between the values of band shift
in first- and second-order spectra. It is demonstrated that the observed effect cannot be interpreted using the
conventional concepts of the mechanisms of scattering in microcrystalline samples. An interpretation of the
revealed effect is suggested. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Porous silicon (por-Si) has been one of the “explo-
sive” subjects in solid-state physics in the 1990s. In less
than ten years after the publication by Canham [1], the
number of publications devoted to this material
exceeded by almost an order of magnitude the number
of publications on the subject of high-temperature
superconductivity (see the analysis of the dynamics of
publications by Parkhutik [2]). Quite a few of these
papers were devoted to the investigation of Raman scat-
tering. The readily observed shift of the scattering band
towards lower energies (compared with the position of
this band in the spectrum of a crystalline material), the
accepted interpretation of this effect [3], and the possi-
bility of directly relating the observed shift to the size
of small regions defined the high activity in precisely
this direction.

In the majority of studies, the scattering of light in
porous silicon was treated as a particular case of scat-
tering by an aggregate of semiconductor objects of
nanometer size. The adopted qualitative approach con-
sisted in this case in the following: It was assumed that
the smallness of the region in which the scattering
occurs partly removes the prohibition of the light scat-
tering by phonons with k ≠ 0. Moreover, in contrast to
a bulk material, the scattering became allowed in some
interval of wave vectors (∆k) in the vicinity of the dis-
persion curve maximum (k = 0). The width of the inter-
val ∆k was estimated from the uncertainty relation
∆x∆k < 1, where ∆x is the linear dimension of a small
spatial region. For regions several nanometers in size,
this interval is of the order of kmax/10; even with the rel-
ative slope of the dispersion curve of silicon in the
region of maximum (k = 0), this corresponded to the
energy range from several to several tens of inverse
centimeters. Therefore, the spectral shift and broaden-
ing were readily detected experimentally.
1063-7761/02/9404- $22.00 © 20739
The quantitative interpretation of this phenomenon
in almost all cases was based on the approach devel-
oped by Campbell and Faucheet [3]. In accordance with
this approach, the vibration excited in a small spatially
bounded element is treated as a wave packet of vibra-
tions of different types allowed for propagation in an
unbounded medium. Because waves of all types with
k ≠ 0 have a lower energy than that at the center of the
Brillouin zone, this treatment leads to the same conclu-
sions as the qualitative treatment; namely, the scattering
band for nanometer-size objects must be broadened and
shifted towards lower energies. The calculations in [3]
were performed for two-, one-, and zero-dimensional
objects, and the calculation results were compared with
the results of experiments in films, thin filaments, and
small spherical samples.

Note that both the above-described qualitative
approach and the quantitative calculation in [3] treat the
effect of the smallness of size on the process of scatter-
ing and actually proceed from the assumption of the
invariability of the phonon spectrum of the material in
nanometer-size objects. However, there exist reasons
for which the intrinsic energies of phonon vibrations
and their damping in nanometer-size objects may differ
from the respective parameters for bulk materials.
Some of the mechanisms leading to such differences
were treated by Gorelik et al. [4] for nanoparticles of
diamond and germanium.

In the case of second-order scattering, the small
photon momentum is transferred to a pair of phonons;
the momentum of each one of the latter may be other
than zero. This removes the restriction ∆k = 0 (common
for first-order scattering) and the respective selection
rules. As a result, phonons from the entire Brillouin
zone may be involved in scattering, and the second-
order spectrum largely reflects the entire phonon fre-
quency spectrum of crystal (transferred to the doubled-
frequency region). The clearly defined singularities in
002 MAIK “Nauka/Interperiodica”
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second-order spectra correspond to the points of the
dispersion curve characterized by a singularity in the
density of states, (dE/dn)(E)  0. Such singularities,
in particular, show up in spectra at energy values equal
to combinations of energies of phonon branches on the
edges of the Brillouin zone. Results of theoretical anal-
ysis and experimental data for second-order scattering
in crystalline silicon may be found in [5, 6].

Only several publications are available in which ref-
erences are made to the observation of two-phonon
scattering in porous silicon. Spectra of two-phonon
scattering were first recorded for samples of porous sil-
icon on silicon substrates (see, for example, [7, 8]).
Because the effect of the substrate on the result
remained unclear, the authors of those papers only
established the fact of the presence of a band character-
istic of two-phonon scattering; they could also point to
a high intensity of this band compared with the corre-
sponding spectra for crystalline silicon. Note that the
nature of one specific mechanism of amplification of
Raman scattering in porous silicon, defined by confine-
ment in an electron subsystem, was treated by us in [9].
Shu-Lin Zhang et al. [10] recorded scattering spectra
for free samples of porous silicon in a wide spectral
region including the spectral region of second-order
scattering. Without giving concrete definitions, Shu-
Lin Zhang et al. [10] restricted themselves to making a
remark that second-order spectra do not correspond to
the existing theory of Raman effect in microcrystalline
objects.

Indeed, as was mentioned above, first- and second-
order scattering spectra are governed by different regu-
larities. Therefore, a comparison of first- and second-
order scattering spectra may produce independent
information about the phonon spectrum of nanometer-
size silicon objects. At present, however, it is not under-
stood which special features must show up in second-
order Raman scattering spectra for porous silicon and
how informative such experiments may be.

2. EXPERIMENTAL PROCEDURE
AND INVESTIGATED SAMPLES

We recorded scattering spectra using a RAMALOG-5
spectrometer with a triple monochromator. The spectral
width of the slit in the experiments was 7 cm–1. The
spectra were excited by a continuous argon laser (λ =
488 nm). In order to identify the contribution made by
weak signals against the noise background, computer
accumulation of spectra was used. The investigations
were performed at room temperature.

Different samples of porous silicon prepared by dif-
ferent production techniques were used in the experi-
ments. Samples on a substrate of crystalline silicon
were prepared from compensated polycrystalline sili-
con by the procedure of [11], i.e., by chemical etching
with preliminary ion bombardment of initial silicon.
JOURNAL OF EXPERIMENTAL
Most of the experiments were performed with free
samples prepared from degenerate n-type silicon with
the initial resistivity of 0.4–0.9 Ω cm and anodizing
current density of 50 mA/cm2, and illuminated by the
focused light of a halogen lamp. The etching was per-
formed in an HF : ethanol (1 : 1) solution. In the final
phase of etching, the current density was raised by
approximately an order of magnitude, which resulted in
the separation of samples. The thus obtained samples
were fairly large plates (with an area of up to 0.5 cm2)
with a clean bright surface. Under conditions of ultravi-
olet light excitation, the samples exhibited lumines-
cence in the red-orange spectral region, and the thinnest
samples were further characterized by an appreciable
transparency in the same region.

It is known that porous silicon may be realized in the
most diverse morphologies. The structure of the
employed free samples of porous silicon was investi-
gated using the atomic force microscopy. These inves-
tigations revealed, even within a single sample, the
presence of regions with strongly differing characteris-
tics of microrelief on an outwardly uniform surface.
Therefore, in analyzing the results, we do not attempt to
correlate the observed band shifts in the spectra with
the presence of silicon clusters of certain size and
shape. We only believe that, in our experiments in light
scattering, some inhomogeneous combination of
nanometer-size clusters was investigated for each sam-
ple. However, the use of samples of different types with
different scattering spectra enables one to state with
greater assurance that the observed results are typical.

3. EXPERIMENTAL RESULTS

The observed second-order scattering spectra for
porous silicon were similar to second-order scattering
spectra for crystalline silicon, but differed from the lat-
ter spectra by the shape and position of the bands.

The most pronounced feature of the second-order
spectrum was the characteristic trapezoidal band in the
900–1000 cm–1 range. In all of the obtained second-
order scattering spectra for porous silicon, the position
of this band was shifted relative to its position in a crys-
talline material towards lower energies. Examples of
second-order scattering spectra in the 900–1000 cm–1

range are given in Fig. 1. Given for comparison in the
top part of the figure is a spectrum for crystalline sili-
con; the remaining spectra are for different samples of
porous silicon. The interpretations of singular points,
given on the top spectrum, are borrowed from [12].

A marked tendency is observed for the obtained
spectra: in the case of minor shifts, the band shape is
close to its shape for crystalline silicon; for relatively
large shifts, the band is deformed and loses its charac-
teristic trapezoidal shape. Note that, in all cases, the
spectra for porous silicon samples are broadened and
shifted to the lower energy region.
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002



        

SPECTRA OF SECOND-ORDER RAMAN SCATTERING IN POROUS SILICON 741

                                               
Also recorded for the same samples of porous sili-
con were first-order scattering spectra. The position of
the band of fundamental scattering in first-order spectra
(Fig. 2) was typical of porous silicon: the fundamental
band (in the vicinity of 520 cm–1) was also shifted to the
lower energy region relative to the existing bands in the
spectrum of crystalline material and broadened.

Scattering spectra for samples of porous and crystal-
line silicon in the region of about 300 cm–1 are given in
Fig. 3. One can see in the figure that, in this case as
well, the characteristic band in the spectrum of two-
phonon absorption is shifted towards lower energies
relative to the position of the respective band for a crys-
talline material.

A new experimental fact was provided by the
observed correlation between the values of the band
shift for first- and second-order scattering. In the case
of samples investigated by us, the band shift in second-
order spectra was observed for samples characterized
by a greater shift in the first-order spectrum as well. The
positions of peaks in the first-order spectra and singu-
larities in the second-order spectra (given in Fig. 1) are
compared for four samples in Fig. 4. Because the band
shape in the demonstrated spectra develops from
almost trapezoidal to bell-shaped, it does not appear
possible to trace the positions of singular points. The
values of the band middle and the spectral positions of
the band edges are given in Fig. 4 for characterization
of the bands in each spectrum (i.e., in the spectrum of a
concrete sample). The positions of the edges were pro-
vided by the coordinates of the point with the maximal
derivative of intensity along the coordinate; for the top
graph, in which the band edges decrease linearly, this
was the middle of the respective region. The same
graph gives the estimated values of line broadening.
Because the demonstrated band was initially a superpo-
sition of several components, the measure of broaden-
ing of the band components was provided by the mini-
mal radius of curvature (in appropriate units) of details
of the bands of a concrete spectrum. The data in Fig. 4
demonstrate clearly that the band shift in the 900–
1000 cm–1 range in the second-order spectrum has the
same sign as the shift of the band of fundamental scat-
tering in the first-order spectrum and correlates with the
latter in magnitude. These data are indicative of another
tendency, namely, that the band shift is accompanied by
the broadening of the components. This fact is well known
for first-order spectra; however, for second-order scatter-
ing spectra, it was recorded for the first time.

4. DISCUSSION OF THE RESULTS

So, we have found that, in the case of porous silicon,
the bands in second-order Raman spectra are shifted to
the lower energy region compared with the respective
bands for crystalline silicon, and this shift correlates
with the analogous band shift and broadening for
porous silicon in a first-order spectrum. From the stand-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
point of the adopted model, which attributes the known
shift in the first-order spectrum to the effect of spatial
confinement on scattering spectra, this result is unex-
pected and needs to be analyzed. One can further see
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Fig. 1. The band position in the 900–1000 cm–1 range in
second-order scattering spectra for crystalline silicon (top
curve) and for different samples of porous silicon (I is the
scattered light intensity, and k is the wave number). The band
shift to the lower energy region is clearly discernible for the
spectra of porous silicon. The interpretation of the positions of
singular points on the top curve is borrowed from [12].
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Fig. 2. The band position in the region of 440–540 cm–1 in
the first-order scattering spectra for crystalline silicon (top
curve) and for different samples of porous silicon. The band
shift to lower energies is clearly discernible for the spectra
of porous silicon. 
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fairly clearly that the band broadening increases, while
the distance between the components does not vary or
varies insignificantly compared with the observed shift.

We will, first of all, demonstrate that the concepts
that are usually used for interpreting the data on Raman
scattering in porous silicon [3] in no way help to
explain the obtained results for second-order spectra.
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Fig. 3. Comparison of the position of singularities in sec-
ond-order scattering spectra in the vicinity of 300 cm–1 for
silicon (top curve) and porous silicon (two bottom curves).
The interpretation of singular points is likewise borrowed
from [12].
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Fig. 4. The correlation between the positions of bands in
first-order scattering spectra (plotted on the horizontal axis)
and the positions of characteristic points in second-order
scattering spectra for the same samples (plotted on the ver-
tical axis). The hollow triangles and circles indicate the
edges and the middle of the band for the spectrum of each
sample, respectively; the solid squares indicate the esti-
mated broadening of the components in cm–1 on the right-
hand vertical scale.
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Of course, in the case of light scattering from nanome-
ter objects, an uncertainty of the momentum of a scatter-
ing phonon must exist for any points of the phase diagram.
However, if the phase shift in the 900–1000 cm–1 range
was caused by the phonon momentum uncertainty (i.e.,
the mechanism suggested by Campbell and Faucheet
[3]), the shift would have to have the sign opposite to
that of the band shift in the first order, because the
slopes of the dispersion branches of optical vibrations
have opposite signs at the point k = 0 and on the bound-
aries of the Brillouin zone.

In fact, however, this is also incorrect. In the case of
second-order scattering, the light scattering by phonons
with k ≠ 0 is not forbidden. Hence, it follows that the
main mechanism providing for the band shift of first-
order scattering, i.e., the violation of the selection rule
∆k = 0, is not essential for the formation of spectra of
second-order scattering. Nevertheless, the experimen-
tal results unambiguously demonstrate similar shifts
and broadenings in both first- and second-order spectra
for porous silicon.

Of other possible reasons for line shifts in scattering
spectra, we must, no doubt, discuss the possible defor-
mation of the material being investigated. The effect of
pressure on the position of bands in second-order spec-
tra may be assumed to be known. For silicon, the band
in the vicinity of 1000 cm–1 must shift towards higher
energies with increasing pressure with a coefficient of
approximately 1 cm–1/kbar. It is difficult to a priori
assume a certain type of deformation of the material in
the case of porous silicon. There is almost no question
that the deformation must be nonuniform; however, the
experimental spectrum is not simply broadened: the
band is clearly shifted into the lower energy region. In
view of the known correlations [13], this must corre-
spond to the tensile stresses in the material. However,
no such conclusion may be made independently of the
data on the position of other bands.

The effect of deformation on the spectral position of
the band in the first-order spectrum for silicon is also
known. This band (520 cm–1) must also shift into the
lower frequency region under tensile stresses [13].
Thereby, the assumption of the existence of tensile
deformation would automatically explain the correla-
tion between the shifts of the above-identified bands in
first- and second-order spectra.

However, the band in the vicinity of 300 cm–1 has
the opposite sign of deformation constant (dk/dP ≈
−0.4 cm–1 kbar–1) and would have to shift towards
higher energies in the case of tensile strain. The exper-
imental results demonstrate quite the opposite. Both
bands in the second-order spectrum, in the vicinity of
300 cm–1 and 900–1000 cm–1, shift into the lower
energy region. It is by virtue of the identical sign of
shift for these two bands that we are forced to eliminate
the deformation of the material from the possible rea-
sons for the observed effect.
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On the other hand, it is the coordinated band shift,
especially, with the conservation of the band width in
the vicinity of 900–1000 cm–1, that gives a clue to
understanding the reason for this phenomenon. We will
take into account the fact that a second-order spectrum
is formed in the case of superposition of scattering from
all phonon branches, and the position of singularities in
the spectrum is reflective of the energy of singular
points of the phonon diagram. Then, the observed gen-
eral shift towards lower energies must be understood as
a consequence of the decrease (on the average) of the
elasticity of the material for vibrations in the respective
frequency region. However, the possible general reason
for the reduction of elastic constants of porous material
is almost evident: strictly speaking, this reason lies in
the obvious decrease in the elasticity of the porous
material. The elastic forces returning an element of the
medium under vibrations to the initial position are
made up of the forces counteracting the compression on
one side of this element and the forces counteracting
the tension on the opposite side of the element. In the
case of a porous medium, a major part of the material
lies on the surface of pores (or clusters), and, in the case
of vibrations, the restoring force will act on the surface
layers on only one side; this must unambiguously lead
to the reduction of the natural vibration frequencies. A
qualitative interpretation of this may also be that the
surface modes start being admixed to the volume oscil-
lation in a porous medium. More rigorous assertions
are impossible in this situation because of the inhomo-
geneity of the porous structure; however, by and large,
the suggested reason for the observed uniform shift of
scattering bands to the lower energy region appears
valid.

But now the results for second-order scattering, in
turn, must be fitted to the known data on one-phonon
Raman scattering. The problem is that the variations of
the phonon frequencies, which, according to the
assumption made, are responsible for the band shifts in
the second order, must have brought about a variation
of the entire dispersion diagram of lattice vibrations;
this, in turn, inevitably must have an effect on the first-
order scattering spectra. However, as was already men-
tioned, the observed band shift in the first-order spec-
trum was already unambiguously interpreted as a man-
ifestation of phonon confinement [3]. The numerical
values of the observed band shifts in the first and sec-
ond orders are comparable in magnitude, and this pre-
vents one from manipulating the concepts of the small-
ness of one of the contributions or of their compensa-
tion.

Nevertheless, the formulated problem finds its solu-
tion in view of the pattern of vibrations at the point k =
0 of the phonon diagram. At this point, the optical
vibrations are the vibrations (dω/dk = 0) of one sublat-
tice relative to another. In the case of vibrations of this
type, the macroscopic environment for an individual
element of the medium is of little significance; the
restoring force for each atom is defined by the interac-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion with the nearest neighbors. Hence it follows that
the effect of porosity of the medium must not affect
considerably the natural frequencies in the vicinity of
the dispersion curve maximum.

The vibrations at points on the edges of the Brillouin
zone are not strictly optical. In this case, the vibrations
partly include the combined vibrations of the sublat-
tices as well, i.e., the vibrations of the material as a sin-
gle whole. In turn, vibrations of this type must be sen-
sitive to the presence of internal boundaries (surfaces)
of the material, as was pointed out above. The natural
frequencies of vibrations of this type must be lower in
the vicinity of the surface.

In total, it is this that brings about the observed
effects. In the case of first-order scattering, scattering
from the region in the vicinity of extremum (k = 0) is
observed. For vibrations of this type, the porosity of the
material is of small significance, and the natural fre-
quencies in the region in the vicinity of k = 0 remain
unchanged. On the other hand, the very possibility of
one-phonon scattering of light is associated with the
condition k = 0, and a partial violation of the prohibi-
tion of scattering by phonons with k ≠ 0 leads to the
shift and broadening of the fundamental band of scat-
tering in the spectrum under observation. The singular-
ities in second-order scattering spectra correspond to
the frequencies of the phonon branches on the bound-
aries of the Brillouin zone. In this case, there is no
effect of the prohibition of transitions with k ≠ 0; on the
other hand, the phonon frequencies of the material
prove to be sensitive to the presence of pores, and it is
another mechanism that provides for the band shift
towards lower energies. By and large, it turns out that
the mechanisms of band shifts in first- and second-
order spectra are different; however, in both cases, the
mechanisms are “triggered” because the material being
investigated is not a continuous medium but presents a
conglomerate of clusters or a porous medium. This gen-
eral reason, while acting via different mechanisms,
leads to the presence of correlation in band shifts,
which was revealed by us.

5. CONCLUSIONS

Thus, as a result of a series of experiments, it has
been demonstrated that the bands in second-order spec-
tra of light scattering are shifted towards lower energies
compared with second-order spectra for a crystalline
material. These results agree with the published results
of separate experiments by other researchers. An expla-
nation of the revealed effect has been suggested. In our
experiments, data on the variation of the spectrum of
phonon frequencies for porous silicon have been
obtained for the first time.

We have also found a clearly defined correlation
between the band shifts in first- and second-order scat-
tering spectra and provided an explanation of the hier-
SICS      Vol. 94      No. 4      2002
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archy of mechanisms responsible for band shifts in
spectra of different orders.
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Abstract—A theory is developed for calculating the charge composition of a cluster plasma produced upon
irradiation of large atomic clusters by the field of a superatomic femtosecond laser pulse. The theory is based
on the overbarrier process of a successive multiple internal ionization of atomic ions inside a cluster accompa-
nied by the external field ionization. Collision ionization is also taken into account in the calculations. The the-
ory is illustrated by the example of a cluster consisting of 106 xenon atoms irradiated by a 50-fs laser pulse with
a peak intensity of 2 × 1018 W/cm2. In this case, the Xe26+ ions dominate. The amounts of atomic xenon ions
with multiplicity up to 31 are calculated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of superpower laser pulses with large
clusters consisting of noble gas atoms substantially differs
from the interaction of such pulses with isolated atoms.
Upon multiple ionization of atoms in the cluster, a strong
internal field is produced, which itself can perform a fur-
ther internal ionization of the atomic ions.

This problem is rather complicated because the ion-
ized cluster is simultaneously expanded (during the
laser pulse) and the electronic component of the cluster
is heated up to several keV. In addition, external ioniza-
tion occurs, i.e., the escape of the produced photoelec-
trons from the cluster. As a result, matter at the focus of the
laser beam immediately after the laser pulse termination
represents a rather homogeneous plasma consisting of free
electrons and multiply charged atomic ions.

The calculation of the spectral distribution of pro-
duced atomic ions over their charges is an important
theoretical problem. This problem is complicated by
the fact that atomic ions are “stripped” at the leading
edge of the laser pulse not only by the laser-pulse field
but also due to collisions of atomic ions with fast elec-
trons inside the cluster. At the same time, a standard sta-
tistical approach based on the Saha distribution [1] can-
not be applied because the laser-pulse duration is sev-
eral tens of femtoseconds, and slow recombination
processes have no time to proceed during the laser
pulse.

In the initial part of the leading edge of the laser
pulse, a successive overbarrier ionization of atoms [2]
and then of atomic ions by the laser field commonly
takes place. In this case, the collision ionization is
rather weak because the kinetic energy of produced
1063-7761/02/9404- $22.00 © 20745
photoelectrons is small. This ionization is observed
only near the maximum of the laser pulse.

The external ionization of the cluster is mainly field
(cold) ionization. The role of thermal ionization
according to the Richardson–Dashman law is negligi-
ble because of a great positive charge of the ionized
cluster, which prevents the thermal evaporation of elec-
trons from the cluster surface.

The aim of our paper is to determine the charge state
of atomic ions in the cluster plasma upon irradiating
clusters by the field of a superatomic femtosecond laser
pulse.

We considered xenon clusters as typical objects.
They are formed during the adiabatic flowing out of
gaseous xenon compressed preliminarily to a pressure
of several tens of atmospheres through a nozzle into
vacuum, which is accompanied by a temperature drop.
The size of the clusters increases with pressure. We
assume that matter in the cluster is in a liquid state.
Thus, the density of liquid xenon is 3.52 g/cm3 (the
temperature of the transition from gaseous to liquid
state is −107.1°C), which significantly differs from the
density of solid xenone: 2.7 g/cm3 (the solidification
temperature is −111.9°C). The noble gas atoms in clus-
ters are attracted to each other by van der Waals forces.

Therefore, the radius of a liquid xenon cluster
(which is assumed spherical, as confirmed by experi-
ments on Rayleigh scattering of light by clusters) con-
taining a million atoms equals 245 Å. The skin depth
exceeds this value, so that we can consider that the elec-
tromagnetic field of the laser pulse freely propagates
through an individual cluster. Of course, when there are
many such clusters in the focus of the laser beam, laser
002 MAIK “Nauka/Interperiodica”
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radiation is strongly absorbed, as was observed experi-
mentally [3].

During the multiple ionization, the concentration of
free electrons inside the cluster plasma becomes rather
high. The penetration of laser radiation inside the
plasma (already at the trailing edge of the laser pulse,
when the clusters virtually disappear and the cluster
plasma becomes homogeneous) ceases because the
laser radiation frequency becomes lower than the
plasma frequency

Here, Ne is the concentration of free electrons in the
plasma.

The above discussion demonstrates a variety of pro-
cesses occurring upon the interaction of superpower
ultrashort laser pulses with large atomic clusters.
Therefore, to analyze these processes, models are
required which would allow the determination of the
charge composition of atomic ions at the leading edge
of the laser pulse and in the cluster plasma with good
accuracy (before the development of recombination
processes). This is important for a further study of the
line electromagnetic emission of multiply charged
atomic ions in the far X-ray range [4].

2. MODEL OF OVERBARRIER MULTIPLE 
INTERNAL AND EXTERNAL CLUSTER 

IONIZATION

Our approach to the internal multiple ionization of
atoms in large van der Waals clusters by a superstrong
field of a laser field is based on the Bethe model [5] of
overbarrier ionization. Because we often used this
model in our previous papers [6–8], we will describe it
here only briefly. To produce an atomic ion with the
charge Z and ionization potential EZ in a cluster at some
instant of time t, an electric field of the strength

(1)

4πNee
2

me

------------------.

F t( )
EZ

2

4Z
------=

+
++
+
+++

+

+
++
+
+++

+

α
R

A B
EB

F

EA

Fig. 1. Charged and neutral regions of the ionized cluster
irradiated by a laser pulse.
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is required. Hereafter, we use the atomic system of
units, in which the electron charge and mass and the
Planck constant are equal to unity.

However, the electric field inside the ionized cluster
does not coincide with the external field of a laser pulse.
Free electrons inside the cluster (their total number is
ZN, where N is the number of atoms in the cluster) are
rather rapidly displaced by the laser field oppositely to
the field direction (Fig. 1). After a half-period, they are
rapidly displaced in the opposite direction due to the
absence of inertia. It is assumed in [9] that the spherical
shape of the electronic subsystem is conserved during
such displacements. This could be observed in the case
of a strong surface tension existing in the system. How-
ever, there is no reason to assume this in our case. In our
model, electrons are simply displaced oppositely to the
laser field direction.

Therefore, the ionized cluster consists of two
regions: in its neutral part the electrons and atomic ions
are located, and in the charge part of the cluster only
atomic ions are found (Fig. 1). Let us assume that the
interface between these regions is flat. Of course, this is
a certain approximation, because the interface surface
is in fact bent towards the charged region, its convexity
being determined by the condition that the tangential
component of the electric field would be zero over the
entire surface. This condition precludes the movement
of free electrons. However, our aim is to determine an
additional electric field produced by the charged region
at the remotest point of the cluster (point A in Fig. 1),
which will only slightly change upon small bending of
the interface.

We could assume that the electrons are distributed
not as shown in Fig. 1 but over the entire cluster, how-
ever, nonuniformly, their number in the left part of the
cluster being greater than that in the right part, as in the
case of volume plasma oscillations. In this case, the
electrically neutral part of the cluster would be absent
altogether. However, such a variant is less probable
than that described above because plasma always tends
to become electrically neutral. In a neutral cluster, sur-
face plasma Mie oscillations would be excited [10].

The electric field strength produced at the point A in
the charged region of the cluster can be readily calcu-
lated:

(2)

Here, R is the cluster radius, and the angle α is shown
in Fig. 1. The condition

F(t) = EA (3)

means that the force with which an electron is ejected
by the laser field outside is equal to the force with
which this electron is attracted by the positively
charged region of the ionized cluster.

EA
NZ
R2
-------- 1 3 α

2
--- 2 α

2
---cos

3
+cos

2
– 

  .=
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The electric field strength at the extreme right point
B (Fig. 1) produced by the charged region of the cluster
can be readily calculated using electrostatic laws:

(4)

This field should be added to the external field F(t)
because it enhances the internal ionization of atomic
ions in the cluster in accordance with the well-known
“ignition” model [11].

However, we should bear in mind that, first, this
field does not act in the neutral region of the cluster and,
second, it gives only the maximum value of the total
field in the charged region, whereas the total field will
have other values at other points of the charged region.
The first factor is most important. To take this factor
into account, we propose to reduce the “ignition” field
(4) by multiplying it by the ratio of the volume V of the
charged region to the cluster volume 4πR3/3. The vol-
ume of the charged region is

(5)

The charge of this region (the charge of the ionized
cluster) is

(6)

By excluding the angle α from Eqs. (2), (3), and (6), we
can obtain the universal relation between the external
field strength F(t) (in units of ZN/R2) and the charge Q
of the ionized cluster (in units of NZ). This relation
shown in Fig. 2 allows one to calculate the degree of
external ionization of any cluster for a given strength of
the electric field of a laser pulse.

Therefore, the effective strength of the ignition field
enhancing the internal ionization has the form

(7)

By adding this field to the external field F(t), we obtain
a real field producing the internal ionization of atomic
ions in the ionized cluster, which we should equate to

/4Z, according to the Bethe condition, to obtain
finally

(8)
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This equation allows us to calculate the angle α from
the known ionization potential EZ of the given atomic
ion and its current radius R(t), which increases with
time due to the Coulomb explosion of the ionized
cluster.

Knowing the angle α, we can find the charge Q of
the ionized cluster from expression (6). Then, using
relations (2) and (3), we can calculate the field
strength F(t),

(9)

and the instant of time t at which the internal ionization
occurred with the formation of atomic ions with the
charge Z. For this purpose, we will use the relation

(10)

with the known values of the laser-pulse field amplitude
F0 and the laser pulse duration τ.

Now, we calculate the increase in the radius of the
ionized cluster caused by its Coulomb expansion by
using Newton’s law for the movement of an atomic ion
on the cluster surface

(11)

Table 1 presents the results of calculations per-
formed for a xenon cluster containing N = 106 atoms
interacting with a 50-fs (FWHM) Gaussian laser pulse
with a peak intensity of 2 × 1018 W/cm2. These values
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Fig. 2. Universal dependence of the fraction k = Q/NZ of
electrons escaping from a cluster on the laser-pulse field
strength x = FR2/NZ.
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of the parameters are typical for experiments [12]. In
this case, the distribution of the envelope of the laser
field strength has the form

(12)

Here, τ = 42.47 fs.

F t( ) 7.43 t2

τ2
----– 

   [au].exp=

Table 1.  Dynamics of the internal and external ionization of
a xenon cluster containing N = 106 atoms irradiated by a
50-fs laser pulse with a peak intensity of 2 × 1018 W/cm2

Z EZ, eV –t, fs F, au. Q, 106 R, au.

1, 5p6 12.1 100 0.028 0.022 464
2, 5p5 21.1 96 0.044 0.036 464
3, 5p4 32.1 92 0.026 0.054 464
4, 5p3 46.7 87 0.108 0.086 464
5, 5p2 59.7 85 0.135 0.108 464
6, 5p1 71.8 83 0.162 0.129 464
7, 5s2 92.1 79 0.223 0.176 465
8, 5s1 106 78 0.258 0.206 465
9, 4d10 171 69 0.535 0.413 473

10, 4d9 202 66 0.653 0.518 478
11, 4d8 233 64 0.777 0.626 482
12, 4d7 263 62 0.894 0.731 487
13, 4d6 294 60 1.023 0.846 494
14, 4d5 325 58 1.143 0.969 502
15, 4d4 358 56 1.276 1.110 512
16, 4d3 390 55 1.406 1.270 518
17, 4d2 421 53 1.526 1.400 531
18, 4d1 452 52 1.641 1.570 538
19, 4p6 549 47 2.191 2.11 590
20, 4p5 583 46 2.285 2.59 603
21, 4p4 618 45 2.429 2.86 617
22, 4p3 651 44 2.548 3.13 632
23, 4p2 701 42 2.782 3.55 667
24, 4p1 737 41 2.915 4.08 687
25, 4s2 819 38 3.374 4.90 758
26, 4s1 897 35 3.770 6.40 846
26, 4s1 897 32 4.200 8.43 954
26, 4s1 897 29 4.650 10.9 1081
26, 4s1 897 26 5.100 14.0 1228
26, 4s1 897 23 5.550 17.3 1395
26, 4s1 897 20 5.940 20.7 1580
26, 4s1 897 17 6.330 23.7 1782
26, 4s1 897 14 6.660 25.6 2000
26, 4s1 897 11 6.950 26.0 2230
26, 4s1 897 7 7.230 26.0 2470
26, 4s1 897 4 7.360 26.0 2720
26, 4s1 897 0 7.430 26.0 3060
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One can see from Table 1 that the external ionization
first lags strongly behind the internal ionization, and the
charge of the ionized cluster slowly increases. How-
ever, already at the leading edge of the laser pulse, there
comes the instant of time (–11 fs) when all the electrons
that have escaped from xenon atoms are removed from
the cluster, so that the latter contains only positively
charged xenon ions (mainly with the charge Z = 26).

The cluster size already strongly increases at the
leading edge of the laser pulse due to the Coulomb
expansion. Thus, at the instant of time t = 0, which cor-
responds to the peak value of the laser-pulse intensity,
the cluster diameter is more than six times larger than
its initial value. The typical distance to an adjacent clus-
ter is 10–20 cluster diameters. Therefore, clusters
already disappear during the laser pulse, and the cluster
plasma becomes virtually spatially homogeneous.

3. TUNNEL AND COLLISION IONIZATION 
OF ATOMIC IONS IN A CLUSTER

We described the internal ionization of atoms and
atomic ions in the previous section within the frame-
work of the overbarrier ionization. For the given value
of the peak intensity of a laser pulse, a further overbar-
rier ionization is impossible. However, other types of
ionization are possible. Consider first the tunnel ioniza-
tion of xenon ions Xe26+.

The absolute probability of tunnel ionization can be
calculated analytically using expressions from [13]:

(13)

Here, t is the time of action of the given electric field
strength F.

By using Eq. (13), one should bear in mind that tun-
nel ionization appears in the total electric field, which
includes an external field and the Coulomb field of an
ionized cluster (the ignition model that was discussed
in the previous section). The maximum field is achieved
at point B (Fig. 1). Table 2 presents the values of the
total field at different times. One can see that the field
first increases, reaches the maximum equal to Feff =
14.43 au at t = –23 fs, and then decreases. Because the
probability of tunnel ionization exponentially depends
on the electric field strength, it is this instant of time and
the time in its vicinity that are the most important. By
substituting the values Feff = 14.43 au, Z = 26, EZ =
33.0 au, and t = 10 fs into (13), we obtain W = 10–8.

Such a small ionization probability means that tun-
nel ionization does not result in the production of
atomic xenon ions with multiplicity exceeding 26.

Another mechanism is based on inelastic collisions
of fast electrons with atomic ions inside a cluster,

W t
e
π
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resulting in the knocking out of an electron from the
atomic ion. The cross section for collision ionization is
described, with good accuracy, by the Lotz formula
[14]

(14)

Here, Ee is the kinetic energy of a colliding electron (in
au), EZ is the bound energy of a multiply charged
atomic ion (in au), and fi is the number of electrons in
the valence shell of the given multiply charged ion.

The amplitude of oscillations of an electron in the
laser field at the leading edge of a laser pulse at the time
instant t = –35 fs is

By substituting fi = 10 and E27 = 50.9 au for the first
electron knocked out from the 3d shell, we obtain from
(14) σ = 0.012 au. The probability of an ionizing colli-
sion per unit time is determined by the expression

(15)

Here, Ne is the electron concentration inside the cluster,
which is equal to

(16)

By substituting the values presented in Table 1 for the
given instant of time, we find w = 4.3 × 10–4. By multi-
plying this value by the time t = 10 fs, during which,
according to data presented in Table 1, free electrons
still remain inside the cluster, and by the number of ions
inside the cluster (i.e., by N = 106), we obtain the num-
ber of ions with the charge 27,  N27 = 160000.

The numbers of atomic ions with charges 28, 29, 30,
and 31 are calculated similarly. They rapidly decrease
because each successive atomic ion is produced due to
ionization of the previous ion (the probability of simul-
taneous multiple ionization of an atomic ion with the
charge Z = 26 is negligible). The ionization potentials
of multiply charged xenon ions were taken from [15].
The results are presented in Table 3.

Therefore, our approach allows us to calculate the
charge composition of atomic ions upon irradiation of
large clusters by the field of a superatomic femtosecond
laser pulse. The charge composition changes at the
leading edge of the laser pulse and becomes fixed near
the pulse maximum. After the pulse termination, only
free expansion of the homogeneous cluster takes place
(for several nanoseconds).

σ 2.17 f i

Ee/EZ( )ln
EeEZ
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a
F

ω2
------ 1160 au,= =

Ee
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4ω2
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w Neσ 2Ee.=
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NZ Q–
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4. CONCLUSIONS

The interaction of large xenon clusters with super-
atomic femtosecond laser pulses was experimentally
studied in [3, 12, 16, 17]. In these papers, X-ray radia-
tion of multiply charged xenon ions caused by transi-
tions between the discrete levels of these ions was ana-
lyzed. The energy of these transitions give information
on the charge composition of the cluster plasma.

The authors of [16] observed the following X-ray
transitions: Xe26+: 3d94f  3d10; Xe27+: 3d84f  3d9;
Xe28+: 3d74f  3d8, and Xe29+: 3d64f  3d7. The
maximum yield of photons was observed for Xe26+

ions. The yield of ions decreased with increasing
degree of ionization. The average number of atoms in a
cluster was about 3 × 106. This completely agrees with
the results of our calculations presented in Table 3.
Rhodes et al. [18] explain high charge states of xenon
ions by the coherent motion of electron bunches inside
the ionized cluster. In this case, the probability of elec-
tron knocking out from atomic ions increases. How-
ever, it is not clear in this model what confines the elec-
tron bunches together inside a small volume, prevent-
ing them from coming apart due to the Coulomb
repulsion. Another explanation proposed by the group

Table 2.  Maximum strength of the effective field at different
instants of time at the leading edge of a laser pulse

–t, fs Feff, au.

35 12.70

32 13.46

29 13.98

26 14.38

23 14.43

20 14.25

17 13.79

14 13.03

11 12.18

7 11.49

4 10.87

Table 3.  Charge composition of atomic ions in a xenon clus-
ter containing N = 106 atoms after irradiation by a super-
strong ultrashort laser pulse

Z EZ, eV NZ

26 897 816800

27 1385 160000

28 1491 20800

29 1587 2200

30 1684 190

31 1781 10
SICS      Vol. 94      No. 4      2002
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of Ditmire [19] is that resonance excitation of surface
plasma electron Mie oscillations occurs, resulting in a
strong heating of electrons in the cluster. However, in
the case of multiply charged ions, as was pointed out in
[16], the free electron density is so high that the Mie
frequency greatly exceeds the laser radiation frequency,
so that the resonance cannot exist even upon a signifi-
cant expansion of the cluster.

A recent paper [17] by Rhodes’ group devoted to the
analysis of X-ray transitions in the L shell of Xe27+ and
Xe28+ ions is based on the model [18].

Finally, the authors of [3, 12] observed Xe ions with
charges from 26 to 29, as well as with lower charges.
The aim of our further calculations is to explain the
intensity of X-ray lines in the spectra of such ions.
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Abstract—The magnetic phase diagrams of 2D and 3D regular lattices formed by nonspherical single-domain
ferromagnetic granules featuring a dipolar magnetic interaction are studied. The energy of a magnetic state of
such systems is calculated using an approximate expression for the pair interaction of nonspherical granules.
The character of the magnetic ground state of the system is determined by three geometric parameters: (i) the
eccentricity of granules; (ii) the ratio of periods of the rectangular (2D) or tetragonal (3D) lattice; and (iii) the
ratio of a lattice period to a granule size. In contrast to the case of lattices formed by point (or spherical) mag-
netic moments, in which the ground state is always antiferromagnetic or frustrated (for triangular lattices), the
ground state of a 2D lattice composed of nonspherical granules can be ferromagnetic. The magnetic phase dia-
grams of the systems studied are constructed in the space of the above geometric parameters. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

Can ferromagnetism exist at zero temperature in a
system of magnetic moments featuring dipole–dipole
interaction? An answer to this question, requiring exact
calculation of the energy of a long-range magnetic
interaction involving all dipoles in the system, is not
easy to obtain even for a system composed of point
magnetic moments. For a pair of parallel point mag-
netic moments µ at a distance of r from each other, the
magnetic interaction energy is given by the formula 

where θ is the angle between the direction of moments
and the line connecting the two points. The sign of this
energy varies depending on the angle θ: for |θ| < θ0 or

|π – θ| < θ0, where θ0 = arccos(1/ ) ≈ 55°, the inter-
action retains parallelism of the magnetic moments
(i.e., favors ferromagnetic ordering), otherwise the anti-
parallel (antiferromagnetic) dipole configuration
becomes energetically favorable. The state of a system
containing a large number of dipoles is determined by
the competition of these trends. Calculations show that
the ground magnetic state of one-dimensional chains [1],
two-dimensional (2D) square [2] and rectangular [3]
lattices, and also 3D cubic lattices [4, 5] composed of
point magnetic dipoles is not ferromagnetic: the dipolar
(non-exchange) ferromagnetism in such systems is
impossible. 

This conclusion is also valid for the systems com-
posed of homogeneously magnetized (single-domain)
spherical granules, because the field of each granule

w
µ2

r3
----- 1 3 θcos

2
–( ),=

3
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coincides with the field of an equivalent point dipole
placed at the center and the dipolar magnetic interac-
tion energy of a pair of such granules coincides with
that of two equivalent point dipoles [6]. 

A different situation is observed for homogeneously
magnetized granules possessing a nonspherical shape.
Below, we restrict the consideration to granules having
the shape of an elongated ellipsoid of revolution with a
magnetic moment orientation fixed (due to a signifi-
cantly large shape anisotropy) in the direction of the
major semiaxis.1 

If the shape of magnetic granules deviates consider-
ably from the sphere, the magnetic field at small dis-
tances from its surface differs significantly from that of
an equivalent dipole placed at the center. For a granule
having the shape of an elongated ellipsoid, this situa-
tion is illustrated in Fig. 1, constructed using formulas
(1) and (2) presented below. As can be seen, the points
close to the equatorial plane (in which the other gran-
ules preferring antiferromagnetic ordering would
occur), the field is significantly smaller than that of the
equivalent dipole. This implies that the system exhibits
a greater tendency to ferromagnetism as compared to
the case of spherical granules. Therefore, we may
expect that an increase in the “nonsphericity” of gran-
ules will inspire a transition from antiferromagnetic to
ferromagnetic ground state of the system. This paper is
devoted to an analysis of this question. 

1 The latter condition reflects a typical experimental situation,
whereby systems of this type encountered in practice usually rep-
resent the ordered sets of quasi-ellipsoidal granules with parallel
axes. This circumstance eliminates the necessity of considering
the vortex magnetic states of various types typical of the systems
of free dipoles [2].
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2. THE ENERGY OF PAIR DIPOLAR 
INTERACTION OF ELLIPSOIDAL 

MAGNETIC GRANULES 

A constant magnetic field H(r) can be characterized
by a magnetic potential ψ such that H(r) = –∇ψ . There-
fore, the problem of a magnetic field created by a
homogeneously magnetized ellipsoid is equivalent to
the problem of a conducting ellipsoid exposed to an
external homogeneous electric field, a solution to
which is known (see, e.g., [7]). For an elongated ellip-
soid of revolution with semiaxes a and b (a > b) and the

eccentricity e = , the magnetic field potential
in the cylindrical coordinates x and ρ (the x axis coin-
cides with the axis of revolution) is described by the
formulas 

(1)

where M is the magnetic moment of the ellipsoidal
granule and ξ is the greater root of the equation 

(2)

For a strongly elongated ellipsoidal granule (e  1),
Eqs. (1) and (2) give a simple relationship between the
magnetic field strengths H⊥  and H|| at the points situated

1 b2/a2–

ψ 3Mx

e3a3
----------- Artht t–( ), t

e

1 ξ+
----------------,= =

ρ/a( )2

1 e2– ξ+
---------------------- x/a( )2

1 ξ+
---------------+ 1.=

–0.4

0°

H⊥ /H||

θ
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0

0.2

0.4
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e = 0
0.5
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0.8
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Fig. 1. The angular distribution of the magnetic field at a
distance R = 2.2a from the center of an ellipsoidal granule
(θ is the angle between the long axis of the ellipsoid and the
direction to the point of observation, a is the major semi-
axis, and e is the eccentricity of the ellipsoid). 
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in the equatorial plane and on the axis at a distance R
from the center: 

(3)

where r = R/a. For R @ a, this relationship yields a well-
known result for the point dipole (H⊥ /H|| = –1/2), while
for R = 2a (the case of contacting granules) we obtain
H⊥ /H|| = –0.29. Thus, the relative magnitude of the field
in the equatorial plane is significantly smaller for an
ellipsoidal magnetic granule than for the point dipole or
a spherical particle. 

Using Eqs. (1) and (2), we can determine the mag-
netic energy w of the pair dipole–dipole interaction of
identical homogeneously magnetized ellipsoidal gran-
ules. Let the center of one granule coincide with the
center of coordinates and that of the other occur at the
point with the coordinates (x0, y0, z0). Assuming that the
magnetic moments of both granules are oriented along
their major axes parallel to the x axis, we can write 

(4)

where the integration is performed over the volume of
the second granule (the coordinates x' = x – x0, y' = y –
y0, z' = z – z0 refer to the coordinate system with the ori-
gin at the center of the second granule, obtained by par-
allel transfer of the initial coordinate system). 

Unfortunately, integral (4) cannot be exactly
expressed in an analytical form. This circumstance
practically hinders the possibility of numerically calcu-
lating the magnetic interaction energy for systems con-
taining a large number of granules (as will be seen
below, the numerical values of the interaction energy
can be obtained at a required precision, provided that
the number of pair contacts taken into consideration is
on the order of 104). Therefore, it is important to find an
approximate, but still sufficiently accurate, analytical
expression for the energy. 

As is clear from considerations in the Introduction
section, the ground state can be ferromagnetic only in a
system of rather strongly elongated granules (with an
eccentricity e ~ 1). In this case, a change in the potential
ψ(x', y', z') in the direction perpendicular to the major
axis is relatively small and we can use the correspond-
ing expansion into a Taylor series 

(5)

H ⊥

H ||
-------

Arth 1/ 1 r2+( ) 1/ 1 r2+( )–

Arth 1/r( ) r/ r2 1–( )[ ]–
-------------------------------------------------------------------------,=

w
ψ x y z, ,( )∂

x∂
-------------------------- xd yd zd∫∝

=  
ψ x ' y ' z ', ,( )∂

x '∂
------------------------------ x 'd y 'd z ',d∫

ψ x ' y ' z ', ,( )/ x '∂∂

=  ψ0x' ψ0x'' x ' ψ0y'' y ' ψ0z'' z '+ +[ ]+

+ 1/2( ) ψ0x'''x '2 ψ0y'''y '2 ψ0z'''z '2+ +[ ]
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where 

 = (∂ψ/∂x')x' = y' = z' = 0,

 = (∂2ψ/∂x' 2)x' = y' = z' = 0,

 = (∂3ψ/∂x'3)x' = y' = z' = 0

(and analogous expressions for the derivatives with
respect to y' and z'). 

Now we can write the integral in the right-hand part
of expression (4) as 

(6)

where the integration domain Cr represents a circle of

radius r = b  centered at the point (x', 0, 0).
By substituting (5) into (6), we check that only terms of
expansion (5) which contain no odd powers of x', y,
and z' are retained upon integration. Taking into

account the relation  +  = – , we eventually
obtain 

(7)

where O(ψV) is a sum of terms proportional to the fifth
derivatives of the magnetic potential. As can be seen
from expression (7), an increase in the distance
between granules naturally leads to 

Numerical calculations showed that a contribution
of the O(ψV) to the representation (7) in all cases of
practical interest is negligibly small (below 1%). Thus,
using expression (7) for the magnetic energy and taking
into account only the explicit terms will ensure an
errors not exceeding 1%. 
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Based on the above qualitative considerations, we
may suggest that a relative contribution of the antiferro-
magnetic interaction would decrease for the ellipsoidal
granules approaching each other, and the system of
such granules would exhibit a tendency to transition
from the antiferromagnetic state (characteristic of the
distant granules) to a ferromagnetic state, and eventu-
ally this transition will take place. 

We have used the obtained expression for the mag-
netic energy for checking this hypothesis. The energy
of a certain magnetic state was characterized by the
total energy of interaction between a granule situated at
the center of the system and the surrounding granules,
the number of which was selected sufficiently large to
make the result independent of this number (an exam-
ple illustrating the dependence of the results of calcula-
tions on the number of neighbors taken into consider-
ation is presented in Fig. 5 below). Of course, using this
approach, we can only characterize the magnetic state
energy of a system in which all granules are equivalent
from the standpoint of their environment (i.e., a system
of infinitely large size). Thus, the results presented
below refer to an “infinite” system at zero temperature.2 

3. THE GROUND STATE OF A 2D LATTICE 
OF NONSPHERICAL MAGNETIC GRANULES 

Here, we will consider a 2D lattice of elongated
(ellipsoidal) magnetic granules with parallel magnetic
moments lying in the plane of the lattice.3 In a square
lattice of such nonspherical granules, antiferromagnetic
states correspond to the three basic configurations of
magnetic moments: S10 structure, representing alternat-
ing (with respect to the magnetization direction) chains
of magnetic moments, which are aligned parallel to the
direction of moments; S01 structure, comprising alter-
nating chains perpendicular to the direction of
moments; and S11 structure, representing the chains
parallel to diagonals of the lattice unit cell (Fig. 2). Cal-
culations show that the S10 configuration possesses a
minimum energy among the antiferromagnetic struc-
tures. For this reason, we will restrict the consideration
to a square 2D lattice of the S10 type. 

According to the results of numerical calculations,
the energy wAFM of the antiferromagnetic S10 state of a
square lattice composed of ellipsoidal granules is
always lower than the energy wFM of the ferromagnetic

2 A nonmonotonic dependence of the energy of an antiferromag-
netic state of the system on the system dimensions (see Fig. 5) is
related to the influence of boundaries. A system can be consid-
ered as virtually “infinite” if the boundary contribution to the
total energy is, for example, below 1%. For a situation illustrated
in Fig. 5, the corresponding effective thickness of a boundary
layer of granules is on the order of 100 lattice periods. Therefore,
to within a 1% accuracy, a system with linear dimensions on the
order of 1000 lattice periods can be considered as infinite.

3 The ground state of a 2D lattice of granules with the magnetic
moments perpendicular to the plane of the lattice is always anti-
ferromagnetic.
SICS      Vol. 94      No. 4      2002
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S11S01S10

T11T10 T '10

Z4 Z5

T '11

Fig. 2. Schematic diagrams of antiferromagnetic configurations of the square (S10, S01, S11), triangular (T10, T11, , ), and

simple cubic (Z4, Z5) lattices of magnetic moments. 

T10' T11'
state, irrespective of the eccentricity and the ratio of the
lattice period to the major axis. For example, Fig. 3
shows the difference wFM – wAFM of the magnetic ener-
gies of a granule with e = 0.95 (b/a = 0.31) in a square
lattice of such granules with ferromagnetic and antifer-
romagnetic ordering plotted versus period of the lattice.
The result obtained by numerical calculations using
relation (7) confirms the tendency of the two energies to
leveling. However, the energy difference remains posi-

1

2 5

ωFM – ωAFM, rel. units

l||/a
10

2

0

–1

3 2

1

Fig. 3. Plots of the magnetic energy difference wFM – wAFM
versus longitudinal lattice period for the ellipsoidal granules
with the eccentricity e = 0.95 forming rectangular lattices
compressed to various degrees as determined by the ratio of
longitudinal and transverse lattice periods l||/l⊥  = 1 (1),
2 (2), and 3 (3). The curves were calculated numerically
using relation (7) for the square lattice samples composed of
50 × 50, 50 × 75, and 50 × 100 granules. 
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tive when the lattice period decreases (up to the state of
granules touching one another), which implies that the
antiferromagnetic state is energetically favorable. 

Nevertheless, we may “help” the system of mag-
netic moments to change the magnetic state. One pos-
sible way is to provide for a uniaxial compression of the
lattice in the direction perpendicular to the magnetic
moments of granules, whereby we essentially pass to
considering a rectangular lattice rather than the square
one.4 

Figure 3 (curves 2 and 3) illustrates the behavior of
the magnetic energy difference wFM – wAFM for such
compressed rectangular lattices with the transverse
period 1.5 and 2 times smaller than the longitudinal
period. As can be seen, lattices featuring the ground fer-
romagnetic state under these conditions can exist. 

The character of the ground magnetic state of the
system under consideration is determined by three geo-
metric parameters: (i) the eccentricity e of the granules;
(ii) the ratio l||/a of a longitudinal (parallel to the mag-
netic moment) lattice period to the longitudinal granule
size; and (iii) the ratio of periods l⊥ /l|| of the rectangular
lattice. 

Figure 4 shows the phase diagrams of the system
under consideration constructed in the space of these
parameters. The ferromagnetic state of a rectangular
lattice of ellipsoidal granules appears to be the ground
state inside a quasi-rectangular region on the plane of
parameters (l⊥ /l||, l||/a). The position and area of this
region depend on the eccentricity e of the granules. The

4 The transition to a rectangular lattice by no means implies a
change in the sample shape, which is known to affect (via the so-
called demagnetization factor) the magnetic state of a sample [4].
The results presented below refer, in fact, to a spherical sample,
the magnetic state of which can be determined without taking
into account the demagnetization factor.
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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upper and right-hand boundaries of the region of ferro-
magnetic states are determined from energy consider-
ations, while the left-hand and bottom boundaries are
determined from the condition of granules touching
each other. It appears that, in particular, any rectangular
lattice composed of granules with the eccentricity e <
0.85 is always antiferromagnetic. 

Using an example of the lattice type under consider-
ation, one can readily see how important it is to take
into account a sufficiently large number of intergranu-
lar contacts in calculating the ground state energy. Fig-
ure 5 shows the plots of the energies of ferromagnetic
(wFM) and antiferromagnetic (wAFM) states of a rectan-
gular lattice versus the number of contacts involved in
the calculation. As can be seen, a correct conclusion
concerning the type of magnetic ordering in the given
system is ensured if not less than 104 contacts are taken
into account. This kind of check for the adequacy of
numerical calculations should be performed in each
particular case. 

The curves presented in Fig. 5 are also well illustra-
tive in another respect, showing that the interaction of
each granule with its surroundings including about
100 nearest neighbors always favors establishment of
an antiferromagnetic order of the magnetic moments
(in this range, wAFM < wFM). It is only the interaction
with the distant environment (another 103–104 gran-
ules) that can eventually make the ferromagnetic order
energetically favorable (wFM < wAFM). A similar situa-
tion takes place in the case of a 3D lattice (see below).
This circumstance implies that, despite being energeti-
cally favorable, the ferromagnetic state cannot be
obtained by means of cooling. At a high temperature,
the system possesses no magnetic order; for an ordered
state to appear, the order must be established immedi-
ately within rather large regions (nuclei) containing
about 100 granules, which is unlikely. This feature basi-
cally distinguishes the long-range dipole–dipole mag-
netism considered in our paper from the short-range
exchange magnetism. A real way to obtaining a ferro-
magnetic state is offered by applying a sufficiently
strong magnetic field, followed by slowly decreasing
the field strength. 

The approach described above can also be used to
study the other 2D lattices, in particular, of a triangular
configuration. This case is of interest by offering an
example of a frustrated system degenerate with respect
to energy. Here, the energy of antiferromagnetic states
T11 and  (see Fig. 2) coincides with the energy of a
ferromagnetic state and is lower than the energies of
frustrated structures T10 and T01. However, this state-
ment is only valid for a triangular lattice of spherical
granules. In a system of ellipsoidal granules possess-
ing a sufficiently large eccentricity (e > 0.7), the
ground state corresponds to an antiferromagnetic

T11'
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structure (T10 or T01). The corresponding phase dia-
grams are depicted in Figs. 6a (for T10 and T11) and 6b

(for T01 and ). However, strongly extended lattices
(with the extension coefficient β ≥ 3.6 and 2.7, respec-
tively) remain frustrated for any eccentricity of the
magnetic granules. 

T11'

2.0

0.1

l||/a

l⊥ /a
0.3 1.0

2.2

2.4

2.6 e = 0.99 0.95

0.9

FM

AFM

Fig. 4. Magnetic phase diagrams for a rectangular lattice of
ellipsoidal granules. The ferromagnetic (FM) state is ener-
getically favorable inside a closed quasi-rectangular region,
the particular size of which depends on the eccentricity e of
granules. Outside these regions (and anywhere for e < 0.85),
the system is antiferromagnetic (AFM). 
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Fig. 5. Plots of the energies of ferromagnetic (wFM) and
antiferromagnetic (wAFM) states of a rectangular lattice ver-
sus the number of contacts involved in the calculation per-
formed for the following parameters: l||/a = 2.6; l⊥ /a = 2.6/3
(compression factor 1/β = 3); e = 0.99. 
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Fig. 6. Magnetic phase diagrams for a deformed triangular lattice of ellipsoidal granules with the magnetic moments (a) perpendic-
ular and (b) parallel to the cell side edge aligned in the direction of extension. The antiferromagnetic (AFM) states (a) T10 and
(b) T01 are energetically favorable inside quasi-triangular regions (bounded by the corresponding curves) outside which the system
is always frustrated (h and d are the cell height and width, respectively). 
4. THE GROUND STATE OF A 3D LATTICE
OF NONSPHERICAL MAGNETIC GRANULES 

Here, we will consider a tetragonal lattice of elon-
gated (ellipsoidal) magnetic granules with magnetic
moments parallel to the side edges of a unit cell
obtained by uniaxially extending (or compressing) the
initial simple cubic lattice. Even in this simple case, to
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1 10
1/β
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0.90

0.92

0.94

0.96

0.98

1.00
e

2.6

2.5

2.3 Z5Z4

l||/a = 2.1

Fig. 7. Magnetic phase diagrams for a simple cubic lattice
of ellipsoidal granules. Regions bounded by the curves cor-
respond to the antiferromagnetic phase Z4; regions outside
the curves represent the antiferromagnetic phase Z5. 
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which the consideration below is restricted, the system
offers a large number of various antiferromagnetic con-
figurations. 

As is known, a minimum energy in the case of a sim-
ple cubic lattice of point (or spherical) granules is
offered by an antiferromagnetic configuration Z5 (the
result and notation from [5]). This structure comprises
parallel chains of unidirectional magnetic moments,
each being surrounded by the chains in which the
moments are aligned in the opposite direction (Fig. 2).
The same ground state is retained in a cubic lattice
composed of ellipsoidal granules. If this structure is
replaced by a tetragonal lattice with decreased period in
the directions perpendicular to the magnetic moments
of granules (with the cubic shape of the sample
retained!), a sufficiently large eccentricity will inspire a
magnetic structural transition to another ground state
characterized by the configuration Z4, in which every
chain has only two (of the four) neighboring chains
with the opposite direction of moments (Fig. 2). The
resulting phase diagram of this system is depicted in
Fig. 7. 

It should be emphasized that the last result refers to
the sample of cubic shape with a modified lattice. An
alternative possibility is to retain the simple cubic lat-
tice and change the sample shape. For a lattice of point
granules, this possibility was considered in [4]. It was
found that the energy of any antiferromagnetic state
remains unchanged, while the energy of a ferromag-
netic configuration depends on the sample shape in a
simple manner: wFM ∝  (4π/3 – N), where N is the
demagnetization factor in the direction of the magnetic
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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moment. As the N value increases (which corresponds
to elongation of the sample in this direction), the energy
wFM decreases and the ferromagnetic state may become
energetically favorable. For a simple cubic lattice of
point dipoles however, this decrease in wFM is insuffi-
cient even in strongly elongated samples and the ground
state of such lattices remains antiferromagnetic [4]. 

However, nonsphericity of the magnetic granules
again basically changes the situation: calculations show
that sufficiently elongated samples with nonspherical
granules may become ferromagnetic. For example, the
lattice of granules with e = 0.99 and l/a = 2.1 becomes
ferromagnetic in a sample with the length exceeding
thickness by a factor greater than eight. Here, we again
(albeit for different reasons) encounter a situation when
a ferromagnetic structure becomes energetically favor-
able due to the distant environment. In this case, the
principally possible ferromagnetic state can also be
attained only upon removal of the field applied initially
in order to magnetize the sample to saturation. 

Using the same approach, we can study more com-
plicated 3D structures, including face- and body-cen-
tered cubic lattices, the energies of which in the case of
point magnetic moments were determined in [4, 5]. 

5. FIELD-INDUCED MAGNETIC PHASE 
TRANSITION IN LATTICES OF NONSPHERICAL 

MAGNETIC GRANULES 

The above considerations referred to the cases when
the magnetic state of a lattice was changed either by
increasing the eccentricity of the magnetic granules or
by straining the lattice. However, there is one more way
to “help” the system in the passage from antiferromag-
netic to ferromagnetic state, which consist in applying
an external magnetic field Hext. If an applied field is par-
allel to the magnetic moments of the granules, the
energy of each granule acquires the Zeeman increment
[5] 

The ferromagnetic state becomes favorable for an
applied field strength of 

In order to study how the critical field strength Hc

required for the phase transition depends on the eccen-
tricity of granules (for the same magnetic moment), it
is sufficient to calculate the difference wFM – wAFM of
energies of the ferro- and antiferromagnetic states of
the system as a function of e. Figure 8 shows the results
of such calculations in the form of the ratio Hc/Hc0
(Hc0 is the critical field for the phase transition in a sys-
tem of point dipoles with the same moment) plotted
versus eccentricity for ellipsoidal granules forming a
linear chain and a square lattice. In the former case, the
major axes (and, hence, the magnetic moments) of the
granules are perpendicular to the chain direction; in the

wH M– Hext.⋅=

He Hc> wFM wAFM–( )/M.=
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latter case, the moments are oriented along one side
edge of the unit cell. As can be seen, the critical field
strength significantly decreases with increasing eccen-
tricity of the granules with dimensions (major axis 2a)
comparable with the lattice period l. 

Owing to the aforementioned special character of
the dipolar ferromagnetism, it is practically impossible
to observe a sharp phase transition from antiferromag-
netic to ferromagnetic state in a gradually increasing
magnetic field. However, it is possible to monitor the
reverse transition from ferromagnetic state (obtained
upon application of a significantly stronger field (H @
Hc) to antiferromagnetic state with decreasing applied
field strength. 

6. CONCLUSION 

Thus, we have demonstrated that properties of the
systems featuring dipole–dipole interaction signifi-
cantly change on the passage from point (or spherical)
dipoles to homogeneously magnetized ellipsoidal gran-
ules with significant eccentricity. 

An important example of the 2D systems of this
kind is offered by planar regular structures of nonspher-
ical magnetic granules, now extensively studied as
potential media for extremely high density data record-
ing (patterned media) [8]. Typical structures comprise
planar rectangular lattices formed by single-domain
(almost homogeneously magnetized) granules of elon-
gated shape possessing a uniaxial anisotropic geome-
try. The shape of these granules is close to an ellipsoid
of revolution with an axial ratio of 3–5 (e = 0.95–0.98),
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0.7 0.8 0.9 1.0

l/a = 10

10
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2 53

Fig. 8. Plots of the critical field strength versus eccentricity
for the magnetic phase transition in a linear chain of ellip-
soidal granules with constant magnetic moment and various
chain l periods. Solid and dashed curves refer to 1D chains
and 2D lattices, respectively. 
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while the linear dimensions of granules are comparable
with the lattice period. One bit of data is recorded by
orienting the magnetic moment of a single granule. For
this reason, the parameters of both the granules and the
lattice must be selected so as to ensure that the mag-
netic moment could not change orientation spontane-
ously (under the action of thermal fluctuations and the
magnetic field of surrounding granules). 

The system in the initial state (upon data recording)
is metastable, and, sooner or later, it will pass to the
ground state. Under usual conditions, the rate of this
transition is very small (the data can be stored for
years!), but an increase in the temperature would allow
the system to relax more rapidly into the ground state.
The results of our investigation allow the nature of the
final state to be predicted. 

Another example relevant to the problem under con-
sideration is offered by magnetic dielectric nanocom-
posites. The electric conductivity of such three-dimen-
sional systems is related to the electron tunneling tran-
sitions between granules [9], the probabilities of which
are determined by the mutual orientations of magnetic
moments of the adjacent granules. Therefore, the resis-
tance of this conducting medium directly depends on
the magnetic state. The same is valid for the (giant)
magnetoresistance of the system. 

It must be noted, however, that the latter dielectric
nanocomposites differ from the handmade magnetic
recording structures of the patterned media type by the
presence of a certain scatter in the parameters of mag-
netic granules (size, eccentricity, axis orientation, etc.).
In connection with this, there arises a problem of stabil-
ity of the ground state of lattices composed of the fer-
romagnetic granules with respect to such a scatter. We
can briefly mention the following results obtained by
model calculations for 2D rectangular lattices of ellip-
soidal granules. The ground state of a rectangular lat-
tice with a long period of l|| = 2.5a, composed of gran-
ules with e = 0.95, remains ferromagnetic despite (i) a
uniform distribution of the orientation of granules
within ±15° (for the ratio of the lattice periods l⊥ /l|| =
0.5 or 2) and (ii) a uniform distribution of granule
dimensions within ±10% (for the ratio of the lattice
periods l⊥ /l|| = 0.3). At the same time, the ground state
of a square lattice with a long period of l = 3a remains
antiferromagnetic despite (i) a uniform distribution of
JOURNAL OF EXPERIMENTAL 
the orientation of granules within ±7° (for granules
with e = 0.95) and (ii) a uniform distribution of the
eccentricity of granules within e = 0.90–0.99. These
results are indicative of a certain stability of the ground
state of the magnetic systems under consideration. 

Finally, our results provide an answer to the ques-
tion as to whether ferromagnetism can exist in a system
of particles linked only by dipolar interactions. We have
principally demonstrated that such systems can exist
and determined particular parameters of some possible
variants. 
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Abstract—A molecular dynamics simulation was performed to estimate the effective mass and the diffusion
and friction coefficients of point defects in macromolecular chains of crystalline polyethylene. The results were
compared with theoretical mass and kinetic coefficient predictions for topological solitons, with which these
defects were identified. The results are used to discuss the soliton model of dielectric αc relaxation in weakly
oxidized polyethylene. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The relaxation properties and special features of
phase transitions in solids are known to be determined
by the energy characteristics and the type of dynamics
of structural defects. In the past decades, starting with
[1], these defects have been identified with topological
solitons. More precisely, it was shown [1] that, in cer-
tain approximations for the simplest model of a crystal
(for a linear chain of atoms linked by Hooke springs in
a “substrate” potential), the free energy could be repre-
sented in the form of the sum of contributions of
phonons and topological soliton-like excitations, which
did not interact with each other. In the simplest situa-
tions (the sine-Gordon and φ4 models), the anharmonic
contribution to the heat capacity could be calculated
exactly [2, 3]. At the same time, the problem of calcu-
lating the kinetic coefficients, which determine the dif-
fusion mobility and friction of solitons, has been stud-
ied in much less detail even in such simplest model sys-
tems, and the available numerical results require further
analysis and interpretation (see Section 4 for more
details). However, even such limited information is
absent for more realistic models of crystals.

Among crystalline substances, polymeric crystals
hold a special position because of their strong anisot-
ropy and flexibility of molecular chains. These special
features manifest themselves in the mechanisms of var-
ious physical processes, unusual from the point of view
of standard solid-state physics. Even the types of struc-
tural defects responsible for intracrystalline mobility
with large lattice deformations are peculiar. If we
restrict ourselves to point defects, we must, alongside
vacancies caused by chain breakages, consider vacan-
cies caused by large localized deformations of valence
angles and combined defects of polymeric chain ten-
sion and torsion or contraction and torsion. In addition,
1063-7761/02/9404- $22.00 © 20759
in contrast to their known analogues, point defects in
polymeric crystals can have soliton-type mobility,
which results in special laws governing physical pro-
cesses with their participation (such as dielectric relax-
ation, heat transfer, and premelting).

Dielectric measurements in polymers can be an
effective tool for studying molecular mobility in these
substances. In solid amorphous polymers, whose polar
side groups are rigidly bound with the chain, two
dielectric loss peaks are usually observed (in tempera-
ture scans at one frequency) [4]. The low-temperature
β peak is usually related to excitation of local torsional
modes, and the high-temperature αa peak, to mobility
of large chain segments. The αa peak indicates vitrifica-
tion [5]. Several amorphous-crystalline polymers of
high crystallinity have one more peak at high tempera-
tures near the melting point. This peak was for the first
time observed by Mikhailov in weakly oxidized poly-
ethylene [6]. This peak (αc relaxation) is also observed
in polytrifluorochloroethylene [7] and polyvinylidene
fluoride [8].

As a result of analysis of subsequent experiments
(see reviews [4, 9] and references therein), Mansfield
[10] and Skinner and Wolynes [11] in 1980 indepen-
dently advanced the suggestion that this peak could be
caused by the diffusion in crystalline fraction chains of
soliton-like excitations several dozen CH2 groups wide,
namely, kinks of chain torsion through 180° with chain
half-period elongation or contraction (for crystallo-
graphic order to be preserved outside the kink region).

This hypothesis explains several observed process
characteristics, which could not be described by the
other theories (see Appendix A). The particular relax-
ation model [12] based on the kink hypothesis, how-
ever, required the introduction of several adjustment
parameters. The value of one of these (the effective fric-
002 MAIK “Nauka/Interperiodica”
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tion coefficient of kinks, γ) calculated from the avail-
able experimental data was five orders of magnitude
lower than its theoretical estimate (see Section 4) for the
φ4 model, which can be considered the simplest model
of polymeric chains in crystals. A subsequent molecu-
lar dynamics simulation of the behavior of kinks in a
simplified model (a chain of atoms bound by Hooke
springs on a sine substrate [13]) substantiated that fric-
tion coefficient γ was too large for the kink model [12]
to give at least the correct order for the central fre-
quency of the process. Thus, in the absence of other
hypotheses, theoretical explanations of dielectric αc

relaxation came to a deadlock in the late 1980s.

In this work, we suggest a solution to the problem.
The diffusion of a kink of tension with torsion and (for
comparison) a vacancy (kink of pure tension by a chain
period) in a crystal chain is analyzed using a three-
dimensional molecular dynamics model of a simple
polymeric crystal containing zigzag chains. The mass,
friction coefficient, and diffusion coefficient of a ten-
sion-with-torsion kink at temperature T = 300 K and
pressure p = 3.5 kbar are estimated. The results are
compared with theoretical models. It is shown that the
kink hypothesis may be valid for dielectric αc relax-
ation if one of the model [11, 12] assumptions is aban-
doned.

a

b

(b)(a)

c

l0

θ0

n

Fig. 1. Model polymeric crystal (polyethylene with united
atoms): (a) plane zigzag chain parameters and (b) cross sec-
tion plane of an equilibrium crystal (each small arrow indi-
cates the direction from the atom of a molecule just below
the plane to the nearest atom of a molecule above the plane).
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2. A NUMERICAL MODEL 
OF A POLYMERIC CRYSTAL 

(POLYETHYLENE WITH “UNITED” ATOMS)

For our purposes, it is sufficient to use the simplest
three-dimensional dynamic model of a polymeric crys-
tal comprising zigzag chains that can form kinks of tor-
sion with tension (or contraction). Such a model was
developed by us earlier [14] to study the dynamics of
point structural defects [15, 16].

This is a model of polyethylene with united atoms
(see Fig. 1). The chain is a planar trans zigzag; the
bonds between atoms (point particles of mass m) are
absolutely rigid and have length l0; the energies of
deformation of valence θn and conformational τn angles
have the form

(1)

(2)

and the atoms separated by more than two neighbors or
situated in different chains interact by the law

where ULJ(r) = 4e((σ/r)12 – (σ/r)6) is the Lennard-Jones
potential with a minimum at r0 = 21/6σ. The numerical
constant values that we used are summarized in the
table. The crystal model had periodic boundary condi-
tions in all three directions. The cell for calculations
was a rectangular parallelepiped. The corresponding
classical Lagrange equations of the first kind were
solved using the Verlet leapfrog algorithm [19] taking
into account the restrictions imposed by rigid bonds
[20]. The periodic boundary conditions in the direction
of the molecular axis allowed the dynamics of the
defect to be examined indefinitely, and the periodic
boundary conditions in the cross section plane obviated
the necessity for introducing nonphysical boundary
conditions of the type of a rigidly fixed second coordi-
nation sphere.

As the length of the projection of the molecule onto
its cross section plane was l⊥  ≈ 0.843 Å, and the van der

U3 θn( ) 1
2
---Kθ θn θ0–( )2,=

U4 τn( ) K0 K1 τn( ) K3 3τn( ),cos+cos+=

U r( )
ULJ r( ) ULJ R( ), r R,≤–

0, r R,>



=

Model crystal parameters

Parameter Value Refs. Parameter Value Refs.

m, au 14.000 – K1, kJ/mol 1.675 [17]

l0, Å 1.53 [17] K3, kJ/mol 6.695 [17]

θ0 113° [17] e, kJ/mol 0.4937 [18]

Kθ, kJ/mol 331.37 [17] σ, Å 3.8 [18]

K0, kJ/mol 8.370 [17] R 2r0 –
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Fig. 2. Wandering of point defects over a polymeric crystal chain: characteristic time dependences of (a) vacancy (defect of tension
by one chain unit) coordinate and (b) the coordinate of the defect of rotation through 180° with tension by half-chain unit. Each
point in the plots was obtained by averaging over a 1-ps time interval.
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Waals radii of the united atoms were r0 ≈ 4.265 Å ≈ 5l⊥ ,
the packing of such plane zigzags in the crystal at T = 0
was close to the packing of cylinders (Fig. 1b).

3. DIFFUSION OF KINKS IN A CHAIN 
OF A HEATED POLYMERIC CRYSTAL: 

A MOLECULAR DYNAMICS EXPERIMENT

The cell for calculations contained 30 molecules, of
which 29 were constructed of 400 CH2 groups, and one
molecule, of 398 groups (in studying the diffusion of a
chain unit vacancy) or 399 groups with torsion through
180° (in studying the diffusion of a torsion-with-ten-
sion defect). Such a length of molecules is sufficient to
prevent soliton action on itself when periodic boundary
conditions are imposed along chains (the defect exten-
sion is of the order of 70 CH2 groups).

The sample was heated to the required temperature
with the use of a Berendsen thermostat [19] and relaxed
at this temperature and a constant pressure to the equi-
librium state, when the mean values of cell parameters
ceased to change. The equilibrium cell parameters a, b,
and c (see Fig. 1) at temperature T = 300 K and pres-
sures p = 0 and p = 3.5 kbar were {4.24, 8.00, and
2.53 Å} and {4.12, 7.85, and 2.53 Å}, respectively.
After relaxation, the external thermostat was switched
off, and the volume of the isolated sample was fixed.
Further, the diffusion of the point defect in a thermally
excited chain was studied; a natural thermostat for the
chain was the heated neighboring crystal chains. We
found that the temperature of the sample remained con-
stant to a satisfactory accuracy.

In the numerical experiment, we monitored changes
in the position Zcm(t) of the center of mass of a periodic
fragment (initially situated in the cell for calculations)
of an infinite chain with a defect. This value can easily
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
be recalculated to the displacement ∆Z(t; t0) of the
defect in time t counted from t0,

(3)

where N is the number of atoms in a chain without
defects, ∆N is the number of particles removed from the
chain in defect formation (∆N = 1 for a torsion-with-
tension defect and ∆N = 2 for a pure tension defect).
The time t dependences of the displacement of simple
tension defects ∆Ztensile(t; t0) and torsion-with-tension
defects ∆Ztwist(t; t0) are shown in Fig. 2.

The mean square displacement of the center of mass
of a chain with a defect 〈(Zcm(t + t0) – Zcm(t0))2  is
shown in Fig. 3 as a function of time t (averaging was
performed along the trajectory over the t0 starting point)
for simple tension and torsion-with-tension defects.

∆Z t; t0( ) N
∆N
-------- Zcm t t0+( ) Zcm t0( )–( ),–=

〉 t0

0.4

0 10

〈(
Z c

m
(t

 +
 t 0

) 
– 

Z c
m

(t
0)

)2 〉
t 0

, Å
2

t, ps

0.6

0.8

1.0

0.2

1.2

20 30 40 50

1

2

Fig. 3. Mean square displacement of the center of mass
of a molecule with a defect as a function of time at pres-
sure p = 0: (1) vacancy and (2) torsion-with-tension defect.
Averaging was performed along a trajectory 500 ps long.
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Figure 3 shows that the curves begin to oscillate about
straight lines in time shorter than τ1 ~ 2 ps; this imme-
diately gives a crude lower bound estimate for the kink
friction coefficient, γbottom ~ 1/τ1 ~ 0.5 × 1012 s–1. The
diffusion coefficients of both defects calculated from
the slopes of the lines shown in Fig. 3 coincide within
the error of measurements, D(p = 0) ≈ 4 × 10–2 cm2/s.
At a p = 3.5 kbar pressure, the diffusion coefficients
estimated by the same procedure were D(p = 3.5 kbar) ≈
3 × 10–2 cm2/s. As expected, applying pressure to the
sample decreased the diffusion coefficients.

A description of the dynamics of a simple tension
defect in a cold crystal reduces (see [15] and the refer-
ences therein) to the integrable sine-Gordon equation.
The system of equations for two coupled fields of chain
torsion with tension in the substrate potential generated
by neighboring chains does not have soliton solutions
in the classical sense. An approximate analytic solution
for a soliton-like topological excitation, a torsion-with-
tension defect at T = 0, was given in [16]. In that work,
the spectrum of the velocities of such waves was also
studied; the upper bound of this spectrum was found to
be four times lower than the upper bound of the spec-
trum for a simple tension defect. Indeed, Fig. 2 shows
that the character of simple tension defect wandering
differs from the dynamics of a torsion-with-tension
defect. In Fig. 2a, there are rare extended regions of rec-
tilinear uniform motion of vacancies at comparatively
high velocities; such regions are absent in the trajectory
of motion of a torsion-with-tension defect (for instance,
a vacancy can run over about 350 CH2 groups at an
almost constant velocity of about 4.5 km/s, whereas the
longitudinal sound velocity along the chain in a crystal
at T = 0 equals 14.7 km/s). Nevertheless, in spite of
these differences in the dynamics, the diffusion coeffi-
cients of both defects were found to be virtually identi-
cal. The value obtained in this work gives the upper
estimate of the diffusion coefficient in real polyethyl-
ene.

4. DIFFUSION OF KINKS IN A THERMAL 
BATH: THEORETICAL MODELS 

AND REAL PHYSICAL SYSTEMS

The diffusion of solitons is usually considered using
two approaches (see review [21]). In the first approach
(see [22, 23]), a model of the system (for instance, the
sine-Gordon model) is augmented by a pair of Lan-
gevin terms, namely, additive white noise ζA(x, t) and
effective friction with the corresponding coefficient γA,

(4)

Here, v s is the sound velocity in an isolated chain, and
ω0 is the width of the phonon spectrum gap, which
appears when the chain is placed into a sine substrate
field. In first-order perturbation theory, the velocity of a
kink is obtained in the form of the Langevin equation

φtt v s
2φxx– ω0

2 φsin+ γAφt– ζ A x t,( ).+=
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with the same friction coefficient γA and white noise.
Sometimes, spatially correlated noise (for instance,
noise with an exponentially decreasing correlation
function) is introduced into (4). The relation between
kink diffusion and friction coefficients then differs from
the Einstein equation by a factor that depends on the
ratio between the noise correlation length and the kink
width.

In a similar way, multiplicative white noise ζM(x, t)
is also introduced:

(5)

In first-order perturbation theory, this equation also
leads to the Langevin equation for the kink velocity
[24, 25].

Equations (4) and (5) are the simplest models of
thermostats in a chain with a kink. The first one presup-
poses that the role of the thermostat for a kink is played
by (small-amplitude) vibrations of chain atoms (that is,
phonons). Equation (5) assigns this role to atomic
vibrations in neighboring chains that form the sub-
strate. Not to mention that there is no single physical
problem that leads to a sine-Gordon-type equation for
which the approximations of both additive and multi-
plicative white noise are warranted, the main problem
is nevertheless first-principles calculations of the fric-
tion coefficient.

The second approach to the diffusion of kinks just
supposes a study of kink diffusion in interaction with
“natural” thermostats, viz., a “bath” of phonons in the
chain and in neighboring chains that form the substrate.
Several steps in this direction were made. The interac-
tion of kinks with a bath of phonons in a chain coupled
(for instance, at chain ends) with a thermostat at tem-
perature T was studied by perturbation theory in the
approximation

(6)

where kB is the Boltzmann constant and Es is the static
kink energy. It was found that the diffusion of kinks in
the integrable sine-Gordon model qualitatively differed
from the diffusion in the nonintegrable φ4 model. In the
first model, kinks on average preserved their initial
velocity v 0 and only the coordinates of kinks experi-
enced smearing, because the interaction between a kink
and a phonon was limited to a shift in the position of the
kink caused by phonon passage. Such a diffusion is
called anomalous. Diffusion coefficient DA calculated
from the mean square deviation from v 0t by perturba-
tion theory was [26]

(7)

(in earlier work [27], in which anomalous diffusion was
considered on the assumption that kinks interacted with

φtt v s
2φxx– ω0

2 φsin+ –γMφt ζM x t,( ) φ.sin+=

kBT
Es

--------- ! 1,

DA

v s
2

ω0
------ 2

3π
------

kBT
Es

--------- 
 

2

=
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nonoverlapping phonon packets, the diffusion coeffi-
cient was found to be eight times larger than in work
[26] that we cite, where overlapping of phonon packets
was taken into account).

At temperatures of about 320–420 K, phonon spec-
trum gap frequency ω0 = 1.6 × 1013 s–1, sound velocity
in an isolated chain v s = 5 km/s, and effective kink mass
m* = 5 × 10–27 kg (these values are from [12]; all the
further numerical estimates refer to these system
parameters unless otherwise stated), the ratio between
temperature in energy units and the static kink energy

Es = m*  ≈ 18 kcal/mol is

(8)

Provided this value is sufficient for condition (6) to be
satisfied, (7) predicts the value DA ~ (2.1–4.2) ×
10−4 /ω0 ~ (3.4–6.7) × 10–5 cm2/s (compare this with
the diffusion coefficient of sodium chloride in water at
room temperature, 1.1 × 10–5 cm2/s, and the diffusion
coefficient of hydrogen in oxygen at 0°C, 0.7 cm2/s).

The diffusion coefficient for the φ4 model calculated
in the same approximation of linear interactions
between solitons and phonons differs from (7) by a
small multiplier [28, 29]. It, however, turns out that, in
contrast to the integrable sine-Gordon model, in which
there is no diffusion other than anomalous, nonlinear
interactions between solitons and phonons in the φ4

model result in exchange of momenta between them. In
the first nonvanishing (fourth) order of perturbation
theory, there arises viscous friction with coefficient γV .
In time t @ τV ,

(9)

a kink loses memory of the initial velocity and performs
diffusion motion with the coefficient [30]

(10)

where the transition from friction coefficient γ to diffu-
sion coefficient D is performed according to the Ein-
stein equation

(11)

A comparison of the orders of magnitude of (7) and
(10) shows that anomalous diffusion can be ignored for

v s
2

kBT
Es

--------- ~ 3.4–4.5( ) 10 2– .×

v s
2

τV
1
ω0
------ 1

8 4.56 10 3–××
------------------------------------

Es

kBT
--------- 

 
2

=

≈ 2.4–1.4( ) 104 1
ω0
------ 1.55–0.88( ) 10 9–  s,×≈×

DV

v s
2

ω0
------ 1

8 4.56 10 3–××
------------------------------------

Es

kBT
---------=

≈ 8.1–6.1( ) 102v s
2

ω0
------ 13–10( ) cm2/s,≈×

Dm*γ
kBT

--------------- 1.=
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the φ4 model at times t @ τV. Unfortunately, the ques-
tion of possible contributions of higher order perturba-
tion theory terms to the viscosity of a kink was not con-
sidered (although the question of the ratio between DA

and DV was discussed [31, 32]).
The above comparison of the diffusion coefficients

DA and DV for the integrable and nonintegrable models,
respectively, leads us to suggest that the main source of
viscosity in real physical systems should be their devi-
ations from the model integrable system. This sugges-
tion is substantiated by the numerical analysis of anom-
alous diffusion in the sine-Gordon model [33]. The
authors had to resort to artificial quenching of low-fre-
quency short-wave phonons of a discrete chain, interac-
tions with which resulted in strong normal diffusion
(because of viscosity). The fine anomalous diffusion
effect of the continuous integrable model was simply
indiscernible against the background of normal diffu-
sion. According to [15, 34], a vacancy in a chain of a
cold polymeric crystal differs from the soliton solution
to the continuous sine-Gordon equation precisely by
the type of its dynamics; namely, a vacancy emits
phonons whose phase velocity coincides with the kink
velocity (such phonon modes exist because the disper-
sion curves of phonons in a polymeric crystal and the
dispersion curves calculated for the Frenkel–Kontorova
model do not coincide). As already mentioned, the
upper boundary of the spectrum of the velocities of tor-
sion-with-tension kinks, which can move along chains
virtually without friction, is four times lower that the
corresponding boundary for simple tension kinks. It
follows that exchange of momenta between kinks and
torsional phonons is still stronger. It appears that pre-
cisely this, the strongest, viscosity mechanism deter-
mines the diffusion coefficient of point defects in poly-
meric crystal chains. The anomalous diffusion coeffi-
cient of the sine-Gordon model therefore has no
bearing on this value, and the normal diffusion coeffi-
cient in the φ4 model can only serve as a very crude
upper estimate.

Indeed, the diffusion coefficient D(p = 0) value
obtained in Section 3 is almost three orders of magni-
tude smaller than the normal diffusion coefficient of the
φ4 model [Eq. (10)]. Accordingly, the curve of the mean
square defect displacement tends to a straight line in
times three order of magnitude shorter than the charac-
teristic time τV (9) of establishing equilibrium in the
process of normal diffusion in the φ4 model. It follows
that friction responsible for viscosity in our model is
indeed much stronger than friction caused by the non-
integrability of the φ4 model.

5. THE AUTOCORRELATION DIPOLE 
MOMENT FUNCTION: A MOLECULAR 

DYNAMICS EXPERIMENT

The complex permittivity of a “rarefied gas” of C=O
dipoles fixed in chains is proportional to the Fourier
SICS      Vol. 94      No. 4      2002
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transform of the time derivative of normalized autocor-
relation function Φ(t) of one dipole moment P(t),

In the model of dielectric relaxation caused by the dif-
fusion of defects that invert dipoles and within the
approach that ignores phonons in the chain, the physi-
cal meaning of the Φ(t) function is the probability that,
in time t, the dipole remains uninverted by a kink that
approaches it. If the linear kink density in the chain (the
number of kinks per unit chain length) is n0 and their
diffusion coefficient equals D, then the asymptotic
behavior of the Φ(t) function at long times (obtained
fairly long ago, in [35]) has the form

(12)

where

(13)

is the mean dipole expectation time for the arrival of a
kink [indeed, the mean distance to the nearest kink is
about 1/(2n0), and the kink path for time t is of the order

of ; equating these values yields (13) accurate to
a factor of π/2].

Skinner and Park [12] used another, more complex,
expression for the autocorrelation function, which
remained valid at much smaller dtγ and tγ values and
therefore included kink effective mass m*:

(14)

Φ t( ) P t( ) P 0( )⋅〈 〉
P 0( ) P 0( )⋅〈 〉

---------------------------------.=

Φ∞ t( ) t/τ∞–( ),exp=

τ∞
π
16
------ 1

Dn0
2

---------=

2Dt

Φ t( ) 16
π
------n0

kBT
m*
---------

γt 1– γt–( )exp+
γ

----------------------------------------------– 
  .exp=

0 1

〈n
(t

 +
 t 0

)n
(t

0)
〉 t 0
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Fig. 4. Normalized dipole moment autocorrelation func-
tions according to the molecular dynamics experiment:
(1) for a dipole in a chain without a kink and (2) for a dipole
in a chain with a kink. Each curve was obtained by averag-
ing over 16 trajectories 500 ps long each. (3) The result of
dividing curve (2) by curve (1): the contribution of kinks to
the autocorrelation function.
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Our three-dimensional molecular-dynamics model
of a polymeric crystal allows the validity of (14) to be
directly checked. Indeed, a comparison of the asymp-
totic behavior of (14) at short times,

(15)

where

, (16)

with its asymptotic behavior at long times (12) imme-
diately shows that, at low densities n0, time τ∞ (13) is
the upper estimate of the characteristic time of the pro-

cess. This time decreases as 1/  as the density of kinks
n0 grows. At a density of one kink per 400 CH2 groups,
it reaches a value of approximately 130 ps, already
observable in our molecular dynamics experiment.

The numerical experiment was performed at tem-
perature T = 300 K and pressure p = 3.5 kbar. Time t
averaging of n(t)n(0), where n(t) is the unit vector in
the direction of the bisector of one of the chain valence
angles (see Fig. 1a), gave the normalized dipole
moment autocorrelation function. The results of such a
molecular dynamics experiment for two chains, one
with a single torsion-with-tension kink per 400 CH2
groups with a dipole and the other without a kink (recall
that periodic boundary conditions were imposed along
the chain axis; our experiment therefore corresponded
to 1.9 × 105 cm–1 and zero kink densities), are shown in
Fig. 4. For zero kink density, the decrease in the auto-
correlation function with a characteristic time shorter
than 1 ps corresponded to a fast β process, which
caused torsional disordering of chain atoms; the mean
angle between bisectors of the valence angles in the
molecule cross section plane approximately equaled
33°, that is, the arc cosine of the constant value that the
curve reached. In the presence of a kink in the chain, the
experimental curve was formed as a superposition of
the slow αc and fast β processes,

On the assumption that these processes are mutually
independent and as 〈sin(φβ)〉  = 0, we find that, to deter-
mine the 〈cos( )〉  contribution of kinks (for which we
have theoretical prediction (14)) to the autocorrelation
function, we must pointwise divide sum curve 2 by
curve 1. The result of this division is also shown in
Fig. 4 (curve 3).

The asymptotic behavior of the autocorrelation
function at short times given by (15) only depends on
the kink mass at a given density of kinks and is inde-
pendent of the kink friction coefficient. The initial
curve portion (more precisely, the [ln(Φ(t))/t]|t = 0
value) can therefore be used to estimate the mass of the

Φ0 t( ) t/τ0–( ),exp=

τ0
π
8
---

1
n0
----- m*

kBT
--------- τ∞

2
γ
---= =

n0
2

φβ φαc
+( )cos〈 〉

=  φβ( ) φαc
( )coscos〈 〉 φβ( )sin φαc

( )sin〈 〉 .–

φαc
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kink and then determine the second parameter, the fric-
tion coefficient. However, just in the initial curve por-
tion 0 < t < 2 ps, the fast β and slow αc processes are not
independent, and, for this reason, the mass of the kink
can only be determined from the experimental curve
with a very large error,  = (1.5 ± 0.3) × 10–27 kg.
The theoretical estimate of this value from the form of
the approximate analytic solution for a soliton-like
topological excitation (a torsion-with-tension defect) at
T = 0 (see Appendix B),  ≈ 1.2 × 10–27 kg, is at the
lower boundary of the experimental confidence inter-
val. Accordingly, the friction coefficient can be deter-
mined from the available portion of the curve and 
as a value in the range (0.45–0.73) × 1012 s–1. For rea-
sons that are clear from the discussion in Section 4, the-
oretical estimates of this value have not been obtained
yet. For our model, this value is of the order that follows
from the lower estimate γbottom ~ 0.5 × 1012 s–1 obtained
in Section 3 in analyzing the form of the 〈(Zcm(t + t0) –
Zcm(t0))2 function.

The “kink part” of the dipole moment autocorrela-
tion function obtained in the molecular dynamics
experiment is shown in Fig. 5 in comparison with theo-
retical curve (14) constructed for the parameter values

 = 1.5 × 10–27 kg and γbest ~ 0.56 × 1012 s–1 and its
two asymptotic expressions (15) and (12). We see that,
at t > 3 ps, the experimental curve is very closely
described by theoretical dependence (14). Substituting
the obtained  and γbest values and the D(p = 3.5 kbar)
diffusion coefficient independently determined in Sec-
tion 3 gives the ratio Dm*γ/kBT = 0.6 ± 0.5.

6. THE THEORY OF DIELECTRIC
αc RELAXATION: WHAT SHOULD BE CHANGED

We showed in the preceding section that the dipole
moment autocorrelation function at a fixed density of
kinks is very closely described by theoretical formula
(14) with realistic kink mass  = 1.5 × 10–27 kg and
friction coefficient γbest = 0.56 × 1012 s–1 values. How-
ever, Skinner and Park [12] used friction coefficient
values of (5 × 102–1 × 105) s–1 to describe the available
experimental data on dielectric αc relaxation. This was
several orders of magnitude below our estimate. The
diffusion coefficient corresponding to the friction coef-
ficient γSP ~ 5 × 103 s–1 is DSP ~ 2 × 106 cm2/s, which is
five orders of magnitude larger than the normal diffu-
sion coefficient DV [Eq. (10)] and eight orders of mag-
nitude larger than the coefficient obtained in our molec-
ular dynamics experiment.

The reason why the diffusion coefficient was
assigned such a large value can be understood from
physical considerations. Let kinks experience free
Brownian movement described by the Fokker–Planck

mexp*

mtheor*

mexp*

〉 t0

mbest*

mbest*

mbest*
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equation (we study slow processes which correspond to
the roughest time scale dtγ, tγ @ 1). The system then
only involves two physical parameters in addition to the
linear density of dipoles (nd), namely, the density of
kinks (n0) and their diffusion coefficient (D). The
dielectric relaxation rate should increase as either the
density of kinks or their diffusion coefficient increases.
For this reason, the results only of dielectric measure-
ments cannot be used to independently determine both
parameters. An accurate theoretical consideration sub-
stantiates this conclusion. Indeed, the density of kinks
and the diffusion coefficient appear in Eqs. (12) and

(13), which correspond to dtγ, tγ @ 1, only as the D
combination. The shape of curve (14) in principle
allows the parameter

to be determined from the initial portion of curve (15),
after which the γ value can be obtained. Precisely in this
way, we estimated m* and then γ at known n0 and T in
Section 5. The experimental data [36, 37], however,
cannot be used to construct the initial curve portion
both because of the presence of β and αc processes and
because of technical frequency limitations, 10–105 Hz.
It may well be that, for this reason, the formula of the
equilibrium theory of fluctuations as applied to a chain
described by the continuous sine-Gordon equation [38]
was used in [12] for the density of kinks,

(17)

Substituting (17) into (13) yields an experimentally
observed qualitative dependence of the type ~exp(–W/kBT)
for the central process frequency. For our numerical

n0
2

B
16
π
------n0

kBT
m*
--------- 2/τ0= =

n0
fl( ) 2 2

π
---

ω0

v s

------
Es

kBT
---------

Es

kBT
---------– 

  .exp=

0 1

〈n
(t

 +
 t 0

)n
(t

0)
〉 t 0

t, ps
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0.7
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3

Fig. 5. Comparison of the “kink part” of the normalized
dipole moment autocorrelation function obtained in the
molecular dynamics experiment (uneven curve) with
(1) theoretical curve calculated by (14) and its asymp-
totic expression (2) at short times (15) and (3) at long
times (12).
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values, (17), however, gives  ~ (4.2 × 10–5–4.6 ×
10−2) cm–1 (for one of the temperature and volume val-
ues, Skinner and Park obtained the estimate n0SP ~
3.4 × 10−3 cm–1). At such a value, there are 5.4 × 10–10–
6 × 10–7 kinks per C=O dipole (1000 CH2 groups)!

In such an anomalously “rarefied gas” of kinks,
dielectric αc relaxation is not sufficiently slow to ensure
a decrease in the dipole autocorrelation function in the
necessary time without using an anomalously large
kink diffusion coefficient (and, accordingly, an anoma-
lously small kink friction coefficient).

As mentioned, the diffusion coefficient of kinks in
real polyethylene cannot be larger than in our model
polymeric crystal with united atoms. It follows that the
population of kinks in a polymeric crystal should be
substantially larger than that given by (17). For the dif-
fusion coefficient to be smaller by eight orders of mag-
nitude, it is sufficient to increase the density of kinks by
four orders of magnitude with respect to the value cal-
culated by (17). This still gives a fairly low density,
n0 ~ (4.2 × 10–1–4.6 × 102) cm–1, which corresponds to
5.4 × 10–6–6 × 10–3 kinks per C=O dipole.

The following suggestions can be made to explain
the inapplicability of (17) to the density of kinks in
polyethylene. This formula was obtained in the approx-
imation of “low temperatures” (6), which is fulfilled
even at temperatures exceeding the melting point [see
(8)]. It is, however, known, even from the early experi-
ments on dielectric relaxation in polyethylene [39],
that, in the temperature interval corresponding to the
dielectric loss peak, strong asymmetric broadening of
the crystal lattice of polyethylene is observed. More
recent studies [40, 41] substantiated the hypothesis [42]
that polyethylene melting occurred in two stages: first,
the substance experienced the transition to the “rota-
tion” phase (orientation disordering of atoms of all
chains while chain axes remained parallel to each
other) and the lattice changed to hexagonal, and then,
melting proper occurred. If we assume that the first
phase transition is caused by the appearance of pairs of
torsional kinks of opposite topological signs, then the
dielectric αc relaxation process is an indicator of this
phase transition, just as αa relaxation is an indicator of
vitrification. This hypothesis is substantiated by the
observation that the experimental dielectric intensity of
the process at a constant volume [37] decreases as tem-
perature increases much more sharply than 1/T,
whereas the Kubo relaxation theory [43] predicts the
dependence δε = ε0 – ε∞ ~ ndµ2/kBT (here, nd = Nd/V is
the ratio between the number of dipoles in the crystal-
line fraction to the sample volume and µ is the absolute
electric dipole moment value). Hence, it follows that a
part of the dipoles “leaves” the crystalline phase, in
which only kinks can exist, as temperature increases.
This presupposes at least crystalline fraction disorder-
ing caused by torsion, that is, the phase transition from
the orthorhombic structure to hexagonal. Clearly, the

n0
fl
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density of kinks should then be much higher than that
predicted by (17).

7. CONCLUSION: 
ANSWERS AND QUESTIONS

In this work, we, for the first time, determined the
diffusion coefficients of point structural defects by sta-
tistical measurements in a three-dimensional molecular
dynamics model of a heated polymeric crystal. We
found that, within a 25% error of measurements, the
diffusion coefficients of a simple tension defect (the
dynamics of which reduces to the integrable sine-Gor-
don equation in the continuous model in the approxi-
mation of immobile neighboring chains) and a torsion-
with-tension defect (for which there is no soliton solu-
tion in the same approximation) were equal. A compar-
ison of the obtained value with theoretical estimates for
the integrable sine-Gordon model and for the noninte-
grable (but admitting soliton-like solutions) φ4 model
and other numerical simulation results showed that fric-
tion of solitons in the system under consideration (as, it
appears, in all real physical systems) is determined by
its difference from the integrable model system (in the
sine-Gordon model, there is no viscous friction at all).

The determination of the dipole moment autocorre-
lation function in the molecular dynamics experiment
allowed us to directly check the validity of the theory of
αc relaxation in weakly oxidized polyethylene sug-
gested in [12]. In the absence of torsion-with-tension
defects, the dipole moment autocorrelation function
was only indicative of the occurrence of one fast β pro-
cess. In the presence of a kink in the chain, we observed
an additional slow decrease in this function. Its kink
part was well described by the formula obtained in [11]
at a given kink density without any adjustment of the
m* and γ parameters. Namely, we theoretically esti-
mated mass m* for our model, and the γ friction coeffi-
cient was calculated by Einstein equation (11) from the
m* mass value and the diffusion coefficient determined
in an independent molecular dynamics experiment.

We showed that the available physical experimental
data [36, 37] were insufficient for independently deter-
mining kink density n0 and kink diffusion coefficient D

and could only be used to calculate the D  product. In
[12], the a priori use of Eq. (17), which predicted an
anomalously small value for the density of kinks,
required assuming an anomalously large D value. The
process under consideration, however, occurred close
to the melting point, where the “approximation of low
temperatures” used to obtain (17) was inapplicable.
Obtaining realistic kink diffusion coefficients required
increasing the density of kinks by four orders of mag-
nitude in comparison with the value predicted by (17).
It follows that there is good reason to consider the
hypothesis suggested in [11] valid for dielectric αc

relaxation in weakly oxidized polyethylene provided
assumption (17) is abandoned.

n0
2
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To completely substantiate the model suggested in
[11], one must theoretically describe the experimental
dependences of the central frequency of the process, the
shape of the dielectric loss curve, and the temperature
T and volume V dependences of dielectric intensity.
This would require constructing the statistical thermo-
dynamics of a polymeric crystal, that is, deriving the
equation of state and calculating the n0(V, T), m*(V, T),
and γ(V, T) dependences.

APPENDICES

A. The Soliton Model of αc Relaxation

After the αc peak in polyethylene was detected, sev-
eral molecular models of the process were suggested
and its more detailed experimental study was under-
taken (see reviews [4, 9] and the references therein). It
was found that, in samples with a high degree of orien-
tation of chains, the αc peak was absent if the vector of
the applied electric field was parallel to chains and
appeared when the field was rotated through 90°. It was
noted in studying αc relaxation in samples with differ-
ent chain lengths in crystallites that, starting with chain
lengths of approximately 100 Å, the relaxation time
(the central dielectric loss peak frequency) was virtu-
ally independent of the length of chains [36].

The mechanism of αc relaxation was therefore asso-
ciated with rotation of dipoles localized in the crystal-
line polymer fraction as a result of rotation of small (of
the order of 80 CH2 groups) chain segments about their
axes. The mechanism of relaxation based on the
hypothesis of diffusion of kinks in chains of the crystal-
line polymer fraction was independently, suggested in
[10, 11].

This hypothesis explains certain special features of
the process which are not described by the other theo-
ries. Indeed, kinks do not exist in crystals with short
chains (the square of their width is proportional to the
ratio between intra- and interchain rigidities), and the
chain should rotate as a whole. Hence, it directly fol-
lows that, in paraffins, the rate of the process should
decrease as chain length increases in short-chain com-
pounds, whereas the central peak frequency should be
independent of the chain length if this length exceeds a
certain value (kink width). Precisely this is observed
experimentally. A sharp decrease in the dielectric inten-
sity (in the difference of the static and high-frequency
permittivities δε = ε0 – ε∞) as temperature increases
[37] can be explained by the onset of crystalline phase
disordering, outside which such kinks also do not exist.
This hypothesis, in contrast to the other, can explain
[44] the observation of the αc peak during dielectric
relaxation of weakly oxidized polyethylene and isotac-
tic polypropylene and its absence in syndiotactic
polypropylene and isotactic polystyrene.

An attempt was made [12] to construct a quantita-
tive model of dielectric αc relaxation in polyethylene
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
with the use of this hypothesis. The model was based on
the assumption [11] that a decrease in the dipole
moment autocorrelation function with time (the Fourier
transform of its derivative was proportional to complex
permittivity ε*(ω) [43]) takes place at temperature T
due to Brownian movement of kinks with mass m*,
friction coefficient γ, and linear density (the number of
kinks per unit chain length) n0. Kinks were treated as point
objects which did not interact with each other (in confor-
mity to the phenomenological model of an “ideal gas of
phonons and kinks” suggested in [1]). When a kink
approached a dipole, instantaneous dipole inversion
occurred.

Under these assumptions, an analytic equation for
the dipole moment autocorrelation function was
obtained [11]. The equation contained three adjustment

parameters, δε, B = 4n0 , and γ, that were not
determined by the suggested theory and depended on
volume V and temperature T of the sample.

B. Theoretical Estimation of the Mass 
of a Torsion-with-Tension Kink

The sine-Gordon equation is well known to be
invariant with respect to Lorentz transformations, and
the energy of its kink solutions as a function of velocity
has the form of the energy of a relativistic particle.
Accordingly, the mass of a kink is understood to be the
energy of a resting kink divided by the square of the sound
velocity in an isolated chain. The total energy of one chain
of our crystal in the continuous approximation of the
model of immobile neighboring chains is [16]

(18)

where ψ is the displacement of the atom along the chain
axis from its equilibrium position divided by the period
of the chain; φ is the angle of the atom in the cylindrical
system of coordinates with the axis that coincides with
the chain axis; and Iφ, Iψ and Kφ, Kψ are the inertial and
rigidity chain parameters, respectively, “torsional” (with
respect to φ) and “longitudinal” (with respect to ψ). The
relation between these constants and crystal numerical
model parameters was obtained in [16],

(19)

(20)

(21)

kBT /πm*
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In the same work, the A ≈ 6.54 × 10–2 kcal/mol and B ≈
2.07 × 10–1 kcal/mol values were estimated.

It is easy to see that the φ and ψ variables are sepa-
rable in the linearized system equations. Two disper-
sion curve branches with two sound velocities corre-
spond to these variables: “torsional” sound velocity

vφ =  ≈ 7.63 km/s and “longitudinal” sound

velocity vψ =  ≈ 14.70 km/s, which are maxi-
mum velocities of propagation of small-amplitude per-
turbations along φ and ψ, respectively.

Substituting the exact solution for the static simple
tension kink into (18),

(Lψ =  ≈ 33.5(c/2) is the half-width of a static
kink), we easily obtain the static kink energy

For the numerical values of our model, we have energy
and mass estimates  ~ 17.5 kcal/mol and  =

/  ≈ 0.56 × 10–27 kg (which is approximately two

times smaller than the atomic mass unit), respectively.

Substituting the approximate solution for a static
torsion-with-tension kink obtained in [16] into (18),

(22)

(23)

we obtain the kink energy

and the kink mass

Kφ/Iφ

Kφ/Iφ

ψ t( ) 4 x/Lψ( )exparctan=

Kψ/A

H
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2π( )2
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2l0s0
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H
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H
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2
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≈ 0.164 1.002+( ) 10 27–  kg× 1.166 10 27–  kg.×≈
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Abstract—Spin–lattice relaxation times T1 were measured for solid 3He at temperatures of 0.22 to 0.73 K in a
44-Oe magnetic field. An increase in T1 at temperatures higher than approximately 0.4 K was related to switch-
ing on the vacancy mechanism of atomic mobility in the crystal. At a melting curve minimum, in the region of
predominance of exchange motions of atoms in the crystal, measurements of T1 were performed in magnetic
fields of 2 to 71 Oe. The data obtained in fields higher than 5 Oe were in agreement with the Cowan–Fardis
theory. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of vacancies in 3He crystals has been
studied in many works [1–5]. The data on the concen-
tration of vacancies and their energy of formation
obtained by various methods for 3He crystals with high
melting points, higher than approximately 1 K, agree
with each other [6]. For crystals of a lower density,
direct studies of vacancies by X-ray diffraction [1] are
impeded by their low concentration. The energies of
formation of vacancies obtained in [1] for crystals with
melting points below approximately 0.6 K appear to be
underestimated compared with the data obtained more
recently [2]. In [3], vacancies were studied by measur-
ing the pressure increase caused by heating a crystal of
a constant density. The latest literature data were
obtained by measuring the rate of porous membrane
motion [4] and the mobility of negative charges [5]. A
model that treated motion of charges in solid 3He from
the point of view of the energy band structure of vacan-
cies was suggested in [7]. There is a large spread of data
reported by various authors for the mobility of vacan-
cies in the crystal and for the vacanson band width [8].

NMR measurements of crystals allow vacancies to
be recorded by their mobility [9]. The special feature of
solid 3He is the presence of exchange atomic motions
whose rate is independent of temperature and rapidly
increases as the density of the crystal decreases. Mea-
surements of spin–lattice relaxation time T1 in solid 3H
give information about the mobility of atoms in the
crystal lattice and allow vacancies to be observed either
under “high-temperature” or “low-temperature” condi-
tions [2]. Under low-temperature conditions, at T .
0.2 K, vacancies determine the rate of spin relaxation in
fairly high fields and interrelate the exchange energy
reservoir and the lattice [2, 6]. An analysis of the data
on T1 obtained under low-temperature conditions led
1063-7761/02/9404- $22.00 © 20770
the authors of [10] to conclude that the energy of for-
mation of vacancies decreased to zero in the limit of the
lowest crystal density; this conclusion was not substan-
tiated in more recent works. It appears that low-temper-
ature T1 data processing for crystals of a low density
[10] is impeded because of a decrease in temperature to
the melting point and, probably, because of a nonexpo-
nential (two-time) character of spin–lattice relaxation
under these conditions.

At higher temperatures, in the “intermediate” and
“high-temperature” regions, spin relaxation is due to
modulation of dipole–dipole interactions by motions of
atoms in the crystal [6]. At temperatures below approx-
imately 0.6 K, the mobility of solid 3He atoms is largely
determined by exchange processes, which are quan-
tum-mechanical tunneling of two or more atoms
through crystal lattice energy barriers. For this reason,
at intermediate temperatures, approximately from 0.2
to 0.6 K, the spin relaxation time is independent of tem-
perature, and an “exchange plateau” is observed. Under
high-temperature conditions, the rate of atomic
motions in the crystal caused by the mobility of vacan-
cies exceeds the rate of exchange processes. Spin–lat-
tice and spin–spin relaxation and spin diffusion are then
determined by vacancies; Reich [11] has experimen-
tally measured the corresponding characteristics. Infor-
mation about vacancies is usually obtained from spin–
lattice relaxation times T1 measured in strong fields [2].
It appears that an analysis of the T1 data obtained under
high-temperature conditions in strong magnetic fields
involves difficulties caused by a complex, nonmono-
tonic temperature dependence of T1 [12], which first
decreases and then begins to increase as temperature
rises above the plateau level. So far as we know, the
experimental data on the energy of formation of vacan-
cies obtained under high-temperature conditions are lim-
ited to crystals with melting points above 1.2 K [13, 14].
002 MAIK “Nauka/Interperiodica”
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For less dense crystals, the region of purely vacancy
high-temperature conditions gradually becomes very
narrow and then completely disappears. For this reason,
we deemed it interesting to perform spin–lattice relax-
ation time measurements in the region of lower temper-
atures corresponding to the onset of the transition from
the exchange plateau to the high-temperature vacancy
conditions. In this work, we measured T1 in this transi-
tion temperature region in a low magnetic field for 3He
crystals with very low densities.

2. RELAXATION MODEL

The spin relaxation rate in solids with fast molecular
motion can be described by the Bloembergen–Purcell–
Pound theory equation [2, 6, 15]

(1)

where ω0 = γH0 is the Larmor frequency (γ is the gyro-
magnetic ratio), M2 is the second van Vlek moment of

the rigid lattice determined by dipole fields, and  is
the frequency of modulation of dipole–dipole interac-
tions by atomic motion. For a polycrystalline body-cen-
tered cubic phase and spin 1/2, we have M2 =
3.27γ4"2n2, where n is the concentration of spins. In
weak magnetic fields H0 at ω0τc ! 1, we have

(2)

In weak magnetic fields, a decrease in the characteristic
time of atomic motion τc caused by heating the crystal
increases the spin-lattice relaxation time. The Bloem-
bergen–Purcell–Pound model is usually applied to
solid 3He to describe spin relaxation under high-tem-
perature vacancy conditions [2]. We assume that equa-
tion (2) in the limit of weak magnetic fields is also valid
in the region of lower temperatures where exchange
processes occur. Atomic motion in crystalline 3He is
caused by quantum-mechanical exchange processes
and the mobility of vacancies,

(3)

where ωe describes the frequency of exchange motions
in the absence of vacancies (for simplicity, we omit the
numerical coefficient of ωe, which is of the order of
one), x is the relative concentration of vacancies, and
ωv is the frequency of vacancy jumps into one of the
neighboring lattice nodes. These frequencies are of the
order of magnitude of ωe ~ 108 s–1 and ωv ~ 1010 s–1 [6].
Coefficient α can be determined within the framework
of a particular model of vacancy motions; according to
[6, 13], α ≈ 10. We assume that all vacancies randomly
move over the crystal; this assumption ignores the pos-
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sibility that low-energy vacancies near the band bottom
can be localized in the lattice to form a magnetic
polaron [8, 16]. As in [6], we assume that the motion of
vacancies in the cubic phase of solid 3He occurs by tun-
neling without thermally activated overcoming of the
barrier. The ωv frequency is then independent of tem-
perature. We also do not consider possible influence of
vacancies that appear when the crystal is heated on the
rate of exchange atomic motion processes. The deceler-
ation of exchange processes, which might be caused by
an effective increase in crystal density accompanying
the appearance of vacancies in it, is likely to be propor-
tional to the concentration of vacancies and can be
included in the last term in (3). The magnetic field can
be considered weak if H0 ! ωe/γ ~ 5 kOe. In low mag-
netic fields, because of the smallness of the heat capac-
ity of the Zeeman energy reservoir compared with the
exchange reservoir, the low-temperature vacancy mode
is not observed in the T1(T) dependence, and the
exchange plateau persists even to the lowest tempera-
tures, to the melting point.

We will follow the model of a narrow energy band
of vacancy states, which is usually [13, 14] applied to
consider experimental data obtained under high-tem-
perature vacancy conditions. The width of the energy
band of vacansons expressed in degrees is then assumed to
be much smaller than the temperature, and the tempera-
ture dependence of the concentration of vacancies is
described by the Arrhenius law x = exp(–Φ/T), where
activation energy Φ equals the energy of formation of a
vacancy in the center of the narrow band. In this
approximation, the spin relaxation time is written as

(4)

The first term in (4) is independent of temperature and
corresponds to the region of the low-temperature
exchange plateau. The second term describes an
increase in T1 as temperature increases up to the melt-
ing point. The temperature dependences of time T1
obtained in this work are used to determine the activa-
tion energy of vacancies Φ and preexponential factor
T0, which has the dimension of time. Using T0 in the
equation T0 = 0.3αωv /M2 allows the frequency of
vacancy motions and the width of the energy band cor-
responding to vacancies to be estimated. The Te time in
(4) characterizes exchange processes and only depends
on the density of crystals. According to [10, p. 66; 17,
p. 216], the exchange interaction frequency depends on

the density as ωe ∝  , where Vm is the molar volume
of the crystal. The strong power dependence is related
to a rapid deceleration of exchange processes as the

density of solid 3He increases. As M2 ∝  , we have

Te ∝  . According to the measurements performed by

Devoret et al. [18], Te ≈ T1 ∝   in the region of the
exchange plateau in a 0.9-kOe magnetic field. In this

T1 Te T0 Φ/T–( ).exp+=
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work, we check these data on the crystal density depen-
dence of Te.

In Section 6, we describe measurements of the mag-
netic field dependence of T1 in the region of the pre-
dominance of exchange processes, at a minimum of the
3He melting curve. The results of these measurements
allow us to check the conclusion drawn in theoretical
work [19] on the presence of a root singularity in the
T1(H0) dependence in weak magnetic fields, which dif-
fers from dependence (1) predicted by the Bloember-
gen–Purcell–Pound model.

3. EXPERIMENTAL

The cell used in experiments with solid 3He is
shown in Fig. 1. The high-pressure chamber vessel was
made of paper-reinforced Stycast-1266 epoxide resin.
The inner cell volume was about 0.3 cm3. A copper
bushing was glued into the top part of the cell; into this
bushing, a capillary for filling was soldered. A copper
cold conductor needle was glued into the bottom part;
the conductor was in thermal contact, provided by a
threaded connection, with the solution chamber of a

1 cm

1

2
3

4

5

6

H1

H0

7

Fig. 1. Scheme of experimental cell: 1, thermometer on a
capillary for filling; 2, receiving coil of flow transformer;
3, RF field coil; 4, cell screen; 5 copper cold conductor;
6, thermometer; and 7, heater on a thermal bridge.
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3He–4He refrigerator. The temperature of the cell was
controlled by a resistance thermometer made of a 70-Ω,
0.125-W Matsushita carbon resistor mounted on the
cold conductor of the cell. This thermometer was used
to stabilize temperature of the solution chamber. The
thermometer was calibrated against 3He condensation
thermometer readings and the magnetic susceptibility
of cerium–magnesium nitrate. The calibration was
checked by the spin signal of solid 3He. The deviations
of the melting points of crystals measured in this work
from the values corresponding to the melting curve of
3He did not exceed 1% of temperature values. The ther-
mometer mounted in the top part of the cell on the cap-
illary for filling was used to determine the beginning
and end of crystal growth. The resistance thermometers
were connected to bridge measuring schemes (cryo-
bridges), the output from which could be written to a
computer. The capillary for filling, 0.14-mm inside
diameter, was made of a copper–nickel alloy and was in
thermal contact with the cell cold conductor through a
thermal bridge, which was a brass plate with a 0.3-mΩ
residual resistance. To prevent plugging of the capillary
by crystals, an electric heater was mounted on the plate.
Further, the filling line had a similar thermal bridge at
the site of its contact with the evaporation chamber of
the solution refrigerator, whose temperature was about
0.5 K. In some experiments, there was one more ther-
mal bridge at the contact with the solution chamber.

The 3He gas used for growing crystals contained not
more than 0.02% 4He. Pressure was controlled by an
electronic pressure gauge and visually by an arrow
manometer. The noise level of the electronic pressure
gauge did not exceed 1 mbar. The absolute accuracy of
determining pressure, which could be checked by the
pressure at a melting curve minimum, was about
40 mbar.

The longitudinal magnetization of 3He nuclei was
detected by a magnetometer based on an RF SQUID
[20, 21]. Stationary magnetic field H0 was trapped by a
niobium cell screen tube during cell cooling. Radiofre-
quency (RF) circularly polarized field H1 used for
NMR excitation was created by two crossed saddle
superconducting coils. Field H1 was calibrated by the
shift of the resonance line frequency under the condi-
tions of applying a strong continuous RF field detuned
from the resonance; this shift was similar to the Bloch–
Siegert shift [22, ch. II, §1]. An H1 = 0.02 Oe continu-
ous RF field at the NMR frequency of protons was con-
stantly applied during the whole NMR experiment.
This field saturated the proton signal of cell walls. The
output from the SQUID was written to a computer,
which also performed commutation of the RF field and
controlled the RF field frequency sweep near the 3He
NMR frequency. The 3He resonance NMR line was
usually sequentially passed many times with signal
accumulation and averaging on a computer.
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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The receiving SQUID magnetometer coil was glued
directly into a cell wall. For this reason, apart from the
magnetic signal caused by changes in the receiving coil
contour area, the magnetometer was also sensitive to
pressure changes in the cell. This allowed us to control
the stability of pressure inside the cell filled by a crys-
tal. The melting temperature can be determined from a
sharp increase in pressure when the crystal was heated.

4. GROWING CRYSTALS

A 34-bar pressure necessary for growing crystals
was created using a high-pressure chamber (gasifier) of
volume 4 cm3. The volume of the high-pressure gas
system, which had room temperature and included an
arrow manometer, an electronic pressure gauge, and a
valve, was about 14 cm3. First, 3He (0.08 mol) was con-
densed into the cell and gasifier. The gasifier was then
heated to 30–40 K to create the required pressure. Gas-
ifier heating could be controlled automatically by a
computer; the control parameters were electronic pres-
sure gauge output and readings of the resistance ther-
mometer on the capillary for filling the cell. Pressure
could be stabilized or varied at the required rate.

Prior to growing crystals and while pressure was
increased to the required value, cell cold conductor
temperature (further, this temperature point will be
referred to as “A”) was stabilized somewhat above the
Tm melting temperature corresponding to the selected
pressure; the heaters of thermal bridges at thermal con-
tact sites of the capillary for filling the cell were
switched on. Next, pressure was stabilized, and tem-
perature A controller was switched to a value about
Tm – 60 mK. The onset of crystal growth was deter-
mined as the moment at which the temperature mea-
sured by the thermometer on the capillary for cell filling
began to increase (further, this thermometer is called
“B”) because of inflow of a more heated liquid into the
cell. Usually, at Tm < 0.6 K, a crystal began to grow
within 4–10 min after cooling the cold conductor of the
cell and stabilizing the specified TA temperature. Apparent
“entry” of liquid 3He into the region of the existence of
crystals in the phase diagram with a P – pm(TA) ≤ 0.5 bar
value (P is the pressure in the cell, and pm(TA) is the
pressure of crystal melting at temperature TA) cannot be
strictly interpreted as a metastable state of the liquid
because of the complexity of heat transfer in liquid 3He
close to the cold conductor needle with possible arising
of convection. It appears that, in separate experiments,
crystals began to grow in the capillary for cell filling
somewhere in the vicinity of thermometer B and
plugged the capillary for a short time. This manifested
itself by TB and SQUID output jumps caused by pres-
sure oscillations in the cell. At low melting tempera-
tures, Tm ≤ 0.55 K, crystals usually began to grow not
on the cold conductor needle at the bottom of the cell.
The moment when the growing crystal reached the nee-
dle was detected by a short-term cold conductor tem-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
perature TA rise. After this, the crystal gradually filled
the cell from bottom to top. Clearly, the rate of crystal
growth was then determined by the removal of the heat
of crystallization from the growth front through the col-
umn of the already grown crystal to the cold conductor
needle. Crystal growth could be monitored by measur-
ing the intensity of the NMR signal from the solid
phase (Fig. 2). The duration of crystal growth from the
onset of the process on the needle was 10 min at Tm =
0.5 K to 50 min at Tm = 0.74 K. When crystal growth
stopped, a sharp decrease in TB was observed. An
increase in the NMR signal at this moment was caused
by crystal cooling to cold conductor temperature TA.

In the early series of experiments, the capillary for
cell filling had three thermal contacts (three bridges and
heaters on them), with the cell cold conductor, with the
solution chamber, and with the evaporation chamber of
the solution refrigerator. The electric heaters connected
to a common circuit were simultaneously switched off
approximately 10 min after crystal growth in the cell
was completed. We found that the pressure in the cell
began to decrease soon afterward. Clearly, this was
caused by plugging of the capillary for cell filling by
crystals; the plug was formed at the contact with the
evaporation chamber. Because the crystals were highly
plastic, a decrease in pressure in the top part of the cell
was transferred to the measuring volume in the center
of the cell. In these experiments, the crystal was first
held at Tm – 70 mK for 1 h to attain pressure stability
and then “annealed” at Tm – 10 mK for one more hour,
which allowed NMR measurements at various temper-
atures to be performed under constant density condi-
tions. The total decrease in pressure in the cell after
crystal growth amounted to 50–70 mbar. Further, dur-
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Fig. 2. Solid phase signal during crystal growth. Pressure
P = 34 bar (Tm ≈ 0.74 K), TA = 0.66 K, and arrows indicate
crystal growth beginning and termination.
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ing NMR measurements, temperature was decreased in
steps to its lowest value (about 0.25 K). The stability of
the output from the SQUID was evidence of a constant
crystal density in the measuring volume of the cell. In
these experiments, pressure usually again began to
decrease when crystals were heated after cooling.

In a later series of experiments, controlled crystal
growth conditions were created using only two thermal
contacts in the filling line, between the capillary for fill-
ing and the cell and the evaporation chamber. The
heater at the heating place of the contact with the evap-
oration chamber was constantly switched on. About
0.5 h after crystal growth was completed, at TA ≈ Tm –
55 mK, current through the electric heater at the contact
between the filling line and the cell cold conductor was
smoothly decreased from the initial power of 5 µW
with the use of a capacitor bank with a 1-h time con-
stant. In 1 h, the heater was switched off, the cell was
heated to Tm – 10 mK, and the crystal was held at this
temperature (“annealed”) for 0.5 h. After such a proce-
dure for crystal preparation, pressure remained stable
during NMR measurements in cooling to the lowest
temperature and subsequent heating to Tm. The Tm melt-
ing point was determined in all experiments from the
onset of a sharp increase in pressure in the cell when the
crystal was heated.

32
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Fig. 3. SQUID output records for resonance passage. H0 =
44 Oe, H1 = 16 mOe, RF field frequency sweep rate

3.27 kHz/s. Curves 1 and 2 correspond to liquid 3He at T =
0.53 K, P = 30.3 bar, dP/dt = 1 mbar/s; curve rises are
caused by an increase in pressure within the cell. Record 2
was made 1.5 min after record 1, and a decrease in signal
intensity was caused by incomplete relaxation of spins after
passage 1. Curve 3 corresponds to solid 3He at T = 0.50 K
and P = 30.5 bar; this curve was obtained by averaging over
20 passages through the resonance line. Time T1 was deter-
mined from the curve portion to the right of vertical lines.
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Experiments with solid 3He at a melting curve min-
imum in the phase diagram are described in Section 6.
In these experiments, cold conductor temperature TA

was stabilized at a minimum point temperature (0.315 K)
prior to growing crystals, and pressure was increased at
a rate of 0.14 mbar/s. Crystals began to grow at P –
pm(TA) = 0.10–0.15 bar. Crystals filled the experimental
cell in about 3 min (from the beginning of growth on
the cold conductor needle to a decrease in TB); during
growth, pressure was noticeably higher than at the min-
imum point. Pressure was then decreased, and crystals
melted almost fully. The absence of the solid phase in
the central measuring cell part was controlled by mea-
suring the NMR signal. A small crystal still remained
on the cell bottom on the cold conductor needle. Fur-
ther, the temperature of the gasifier began to increase
under computer control; used as the control parameter
was the TB temperature. The crystal began to grow and
filled the whole cell in about 20 min; pressure during
growth did not exceed minimum point pressure by
more than 1–2 mbar.

5. T1 MEASUREMENTS. 
THE CONTRIBUTION OF VACANCIES

The excitation of the spin system after which spin-
lattice relaxation was observed was performed by adia-
batic fast passage of the NMR line. RF field H1 and the
rate of frequency sweep were selected to fulfill the adi-
abatic passage condition (γH1)2 @ dω/dt, which
ensured magnetization inversion (spin flip) during the
passage [22, Ch. II]. The time of passage of the order of
γH1/(dω/dt) was much shorter than T1. It follows that
fast adiabatic inversion of spins occurred during line
passage. This inversion was followed by comparatively
slow relaxation of spin magnetization to its equilibrium
value. The computer-controlled measuring cycle
involved switching on circularly polarized RF field H1
of 11 to 16 mOe at a frequency about 2 kHz below the
resonance frequency, sweeping the RF field frequency
through the resonance line at an about 3-kHz/s fre-
quency during a period of about 4 s, and, finally,
switching the RF field off. The SQUID output records
describing the evolution of longitudinal 3He spin mag-
netization during one cycle are shown in Fig. 3. In
experiments with growing crystals, when the liquid and
solid phases coexisted in the cell, fast spin relaxation of
solid 3He allowed us to identify the signal from 3He
nuclei in the solid phase. The T1 values in solid 3He
under our experimental conditions equaled 0.3 to 0.5 s,
and the spin system returned to the equilibrium state by
the end of the measuring cycle. When T1 was measured
for solid 3He, this cycle was repeated many times with
computer signal accumulation; usually, cycles were
repeated every 6 s. T1 measurements described in this
section were performed in a stationary magnetic field
H0 = 44 Oe (the resonance frequency equaled 142 kHz).
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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In this field, the magnetic moments of nuclei were
fairly large, and, at a 10-min time of signal accumula-
tion, we were able to measure T1 with an accuracy of
0.1% or higher. Prior to T1 measurements, crystals were
held at the required temperature for 4 min or longer.

The T1 times were determined by approximating
S(t) SQUID outputs recorded about 0.2 s after inversion
time ti with the use of the equation

(5)

The Ms value corresponds to twice the magnetic
moment of solid 3He nuclei equilibrium at a given tem-
perature (in arbitrary units of SQUID outputs). The
subtraction of adjustment curve (5) from the experi-
mental time dependences of SQUID outputs allowed us
to check whether or not spin–lattice relaxation was
exponential.

The T1 times obtained for the crystal with Tm = 0.51 K
at various temperatures are shown in Fig. 4. At temper-
atures below approximately 0.4 K, times T1 did not
depend on temperature. In this temperature region,
relaxation was determined by exchange processes of
atomic motions in the crystal. We described the experi-
mental temperature dependences of T1 by (4). The Te

time, which characterized exchange processes, only
depended on the density of the crystal. The obtained

density dependence of time Te, Te ∝  , was in agree-
ment with the density dependence of exchange interac-

tion frequency ωe ∝   [10, 17] and the results of T1

measurements in field H0 = 0.9 kOe [18].
An increase in time T1 observed when crystals were

heated above 0.4 K was evidence of acceleration of
atomic motions in crystals. It was interpreted as switch-
ing on the vacancy mechanism of motion. The adjust-
ment parameters of (4) that describe the contribution of
vacancies are preexponential factor T0 and activation
energy Φ. Time T0 was independent of crystal density
within the accuracy of our measurements (Fig. 5a); its
mean value for eight samples with melting points of
0.51 to 0.735 K was T0 = 59 ± 12 s. The densities of the
crystals with melting points of 0.51 and 0.735 K dif-
fered by about 2%. In what follows, we neglect a possi-
ble dependence of time T0 on crystal density. To deter-
mine the activation energy, the experimental T1(T)
dependences were again treated by Eq. (4), in which the
T0 parameter was fixed at the mean value given above.
This procedure allowed us to decrease the statistical
spread of activation energy values and reveal its depen-
dence on the density of crystals. The obtained Φ values
are shown in Fig. 5b. The activation energies of vacan-
cies increased as the density of crystals grew.

The ∆T1 = T1(T) – Te values for the crystal with the
highest density, Tm = 0.735 K, are shown in Fig. 6 in
semilogarithmic coordinates as functions of reciprocal
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temperature. The Te value for this crystal (0.30 s) was
determined by averaging T1 times measured at T < 0.4 K.
The slope of this dependence gives the activation
energy of vacancies Φ for the crystal with a given den-
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Fig. 4. Temperature dependence of spin relaxation time T1
for a crystal with Tm = 0.51 K (crystal growth pressure was
30.5 bar); (s) cooling and (d) crystal heating at the final
stage of measurements.

4
0.4

TM, K

5

6

0.5 0.6 0.7 0.8

(b)

10

100

(a)
50

20

T 0
, s

î
, K

Fig. 5. (a) Preexponential factor obtained in treating T1(T)
dependences by (4) as a function of crystal melting temper-
ature. (b) Activation energies of vacancies. These values
were determined using the mean preexponential factor
value shown by dashes in Fig. 5a. For the Tm = 0.735 K
point, the error caused by inaccuracy of determining T0 is
shown; (s) the data [3] obtained from the temperature
dependence of pressure.
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sity. Open circles in Fig. 6 are the T1(Tm) – Te values as
functions of the reciprocal melting temperature for
each separate crystal for which the temperature depen-
dence of T1 was measured. The T1(Tm) value was found
by extrapolating the T1(T) dependence for each crystal
to its melting temperature. This curve describes an
increase in T1 from the exchange plateau region to the
melting point and shows how the vacancy contribution
to T1 at this point decreases as the melting temperature
lowers. The smaller slope of this dependence is caused
by a decrease in the activation energy with decreasing
crystal density. The solid curve in Fig. 6 describes the
T0exp(–Φ/Tm) value; it was obtained using the
smoothed dependence of the activation energy on the
melting temperature of crystals shown in Fig. 5b and
the mean preexponential factor T0 value. The dΦ/dTm

derivative value can be used to calculate the derivative
of the activation energy of vacancies with respect to
crystal density. According to our measurements,
dΦ/dVm = –1.4 K/(cm3/mol).

These results can be compared with the data on the
activation energy of vacancies obtained by various
authors taking into account that equations of type (4)
within the framework of band models of vacansons
often contain power preexponential temperature fac-
tors. The activation energies obtained in this work are
higher than those reported in [2–4] for Vm > 24 cm3/mol
by about 0.4 K. Our Φ values are approximately 0.5 K
lower than the values extrapolated to larger molar vol-
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Fig. 6. (h) T1 – Te values for the densest crystal with Tm =
0.735 K studied in this work; (s) increase in T1 from the
exchange plateau region to the melting point as a function
of reciprocal melting temperature. The solid curve was
obtained using the mean T0 value and the Φ(Tm) depen-
dence shown in Fig. 5b.
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umes from the data on crystals with Tm > 1.2 K (see [6,
Fig. 3.13] and [13, Fig. 2]).

The obtained T0 [preexponential factor in (4)] value
can be used to estimate the characteristic frequency of
vacancy movements and the width of the energy band of
vacancies. Set coefficient α in (3) equal to 10 [6, 13]. Cal-
culations of the band width of vacansons by [2, 13]

(6)

(here, z is the number of nearest neighbors and kB is the
Boltzmann constant) then give ∆ = 0.6 K. The authors
of [13] analyzed the data on T1 that they obtained under
high-temperature vacancy conditions to determine the
frequency of vacancy motions, ωv . 0.5 × 1010 s–1;
according to (6), this corresponded to the vacanson
band width ∆ ≈ 0.4 K. In [4], the vacanson band width
in solid 3He was found to be ∆ = 3.5–4 K at the lowest
densities; this result was obtained from the data on
porous membrane motions. Estimates of ∆ show that,
under our experimental conditions, ∆ * T; it appears
that our analysis of the T1(T) dependences within the
framework of the narrow band model is not absolutely
correct and should be considered a phenomenological
approach. At the same time, the ambiguous situation
with the development of a general band model of
vacancies in solid 3He prevents us from performing a
rigorous analysis of the experimental data.

Note that time T0 (which may be treated as the spin–
lattice relaxation time of the hypothetical crystal with
the concentration of vacancies of the order of one) is
close to the volume spin relaxation time in liquid 3He in
the vicinity of the melting curve; this value is about
100 s [23]. Similar closeness was noted by Reich [11]
for the preexponential factor in the equation for the spin
diffusion coefficient in solid 3He in the vacancy mode.

6. THE MAGNETIC FIELD DEPENDENCE
OF T1

The Bloembergen–Purcell–Pound model [15] is
usually applied to describe spin relaxation in liquids
and solids with fast molecular motions. For low mag-
netic fields, this model predicts a quadratic increase in
T1 as the field grows from the T1 value in zero magnetic
field [see (1)]. Under the conditions of our experiments,
at ω0τc ≈ ω0/ωe & 10–2, this increase in T1 by (1) does
not exceed a value of the order of 10–4 T1, which is
within the error of measurements. The Bloembergen–
Purcell–Pound model, which considers spin relaxation
in terms of fluctuations of dipole fields, actually takes
into account mutual displacements only of the nearest
neighbors and describes these displacements by one
correlation time. Comparatively recently, Cowan and
Fardis [19] considered the region of exchange atomic
motion processes to analyze the behavior of dipole cor-
relation functions at long times. An asymptotic behav-
ior proportional to t–3/2 was caused by dipole interac-

∆ 4 z 1–( )1/2
"ωv /kB=
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tions between spins spaced ~(Dt)1/2 apart, where D is
the spin diffusion coefficient. The spectral density func-
tions contained terms proportional to ω1/2, and the T1
time in low magnetic fields contained a root term addi-
tional to its value in zero magnetic field [19],

(7)

The available experimental data [19, 24] substantiate
the existence of such a dependence. The corresponding
measurements were, however, performed in fairly high
magnetic fields, higher than 150 Oe, and the additional
term in (7) exceeded 10% of T1(0). In our view, testing
the model suggested in [19] required T1(H0) depen-
dence measurements in the weakest magnetic fields
possible.

Under our experimental conditions, changing mag-
netic field H0 required heating the experimental cell and
the destruction of crystals. For this reason, the T1(H0)
dependences were measured with different crystals
grown at the same phase diagram point, namely, at a
melting curve minimum. Our goal was to obtain the
most accurate absolute T1 values in these experiments.
Numerical simulations of resonance passage by the
Bloch equations with T1 = T2 were performed to deter-
mine the shift of the experimental T1 value related to the
“wing” of the resonance line at a given RF field H1
value. We also took into account the speed of SQUID
magnetometer operation. The obtained correction was
taken into account in determining T1; its value in H0 ≥
5 Oe fields did not exceed 0.9 ms. The T1 values found
for H0 fields of 2 to 71 Oe are shown in Fig. 7 as func-
tions of the square root of the magnetic field. In fields
H0 > 5 Oe, in which T1 could be measured fairly accu-

rately, a linear dependence of T1 on , which satis-
fied (7), was observed. The spin diffusion coefficient
calculated from the slope of the dependence by (7) was
D ≈ 1.3 × 10–7 cm2/s. This was close to the D value that
could be obtained by extrapolating the experimental D
values measured for low-density 3He crystals [6, 19] to
the density at the melting curve minimum. Such an
extrapolation gives approximately (1.5–2) 10–7 cm2/s.

Consider the question of a possible influence of the
magnetic field dependence of T1 on the vacancy contri-
bution to T1. As D ≈ 1/(n2/3τc), the second term in (7),
which describes an increase in T1 in field H0, can be
written as

This value increases when vacancies appear in the crys-
tal. The ratio between ∆T1(ω0) changes and changes in
T1(0) given by (2) as a function of τc is about 2%. This
allows us to ignore the dependence of T1 on H0 in con-

T1 ω0( ) T1 0( ) 0.70
n"

2γ4

D3/2
-------------- T1 0( )( )2ω0

1/2.+=

H0
1/2

∆T1 ω0( ) T1 0( ) ω0τc( )1/2 1/M2( ) ω0/τc( )1/2.≈ ≈
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sidering the vacancy contribution to T1 under the condi-
tions of our experiments.

7. CONCLUSIONS

In this work, we measured spin–lattice relaxation
times T1 of nuclei in 3He crystals with melting temper-
atures below 0.735 K in low magnetic fields. At temper-
atures above ≈0.4 K, T1 values increased, which was
explained by switching on the vacancy mechanism of
atomic motions in crystals. The measurement results
were treated using the activation law. The preexponen-
tial factors and activation energies of vacancies were
obtained, and the derivative of the activation energy
with respect to the density of crystals was estimated.
The activation energy found within the framework of
the narrow vacanson band model equaled 5.0 ± 0.15 K
for the crystal with a 0.6 K melting point and was
approximately 0.4 K higher than the most recent litera-
ture activation energy values [2, 4]. The obtained
dependence of T1 on magnetic field H0 in the range
from about 5 to 71 Oe, which was the highest magnetic
field used in our experiments, was in agreement with
the conclusion [19] of a root singularity in the T1(H0)
dependence in low magnetic fields. Predictions of this
theory were in close quantitative agreement with our
experimental data.
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Abstract—Long-term relaxations (of the logarithmic type) are revealed in the tunnel magnetoresistance of
Fe/SiO2 nanocomposites, which are due to variation of the magnetization of the nanocomposites. Good quali-
tative agreement between experimental results and the recently developed concepts of the behavior of magne-
tization of granular ferromagnets [7] proves that the revealed relaxations are associated with the spin-glass
nature of the magnetic state of such systems. It is further demonstrated that it is, in principle, impossible to
observe such relaxations using the anomalous Hall effect (proportional to magnetization) because of physical
reasons, i.e., mesoscopic fluctuations of the Hall voltage as a result of the magnetic field effect and variation of
magnetization. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The fundamental nature of physical phenomena and
the possibility of important practical applications pro-
moted significant progress in the investigation and
understanding of the physical nature of the effect of
giant magnetoresistance in most diverse systems,
among which one of the first places is taken by disor-
dered magnetic nanocomposites (granular ferromag-
nets). They consist of small (1 to 10 nm) ferromagnetic
particles located in a dielectric matrix. With the metal
content x below some critical value xc = 0.5–0.6, such
systems develop a percolation transition from metallic
conductivity to conductivity of the tunneling type,
under conditions of which the maximal (“giant”) mag-
netoresistance defined by the magnetization of the sys-
tem is attained [1]. Also unusual in such systems proved
to be the behavior of the nondiagonal component of
magnetoresistance (under conditions of the Hall effect).
As was found by Pakhomov and Yan [2], of basic
importance in magnetic nanocomposites (including the
mode of tunneling conduction [3]) is, as in the case of
homogeneous ferromagnets, the so-called anomalous
Hall effect under conditions of which the Hall resis-
tance RH is proportional to the system magnetization M
rather than to the magnetic induction. Note that, in the
vicinity of the threshold (x ≈ xc), the value of RH may
exceed that in the homogeneous case (x = 1) by four
orders of magnitude. For this reason, the Hall effect
was also referred to as giant [2].

On the other hand, even before the giant magnetore-
sistance and Hall effect were revealed, systems of small
ferromagnetic particles in a dielectric matrix were
1063-7761/02/9404- $22.00 © 20779
known as objects with unusual kinetics of relaxation of
magnetization (see [4] and the references cited therein).
In particular, repeated reports were made of observa-
tions of the long-term relaxation of the magnetization
of such systems, described by a logarithmic law (M ∝
const – lnt, where t is the time) which is usually attrib-
uted to the spin-glass nature of these objects [4, 5].

Therefore, the systems being treated are “bearers”
of two out-of-the-ordinary physical phenomena, each
of which is associated with the magnetic properties of
these systems. It is therefore of interest to investigate
the simultaneous manifestation and interference of the
respective processes. Such processes include the mani-
festation of magnetic relaxations in the electrical prop-
erties of systems with giant magnetic reluctance. In
addition, this approach is important because, in a num-
ber of existing models of electrical conductivity of
nanocomposites [6], their characteristic magnetic fea-
tures are, as a rule, of no significance. Moreover, some
of those models are based on the concepts of the signif-
icant part played by a strong fluctuation potential [6],
when the relaxation of resistance is largely associated
with Coulomb, rather than magnetic, effects.

In this paper, experimental proof is given of the
existence of long-term (logarithmic-type) relaxations
of the longitudinal resistance of Fe/SiO2 nanocompos-
ites, which are due to changes in the magnetization of
the nanocomposites. In addition, it was found that the
potential possibility of observation of such relaxations
using the Hall effect could not be realized in practice
for a number of fundamental physical reasons. As was
revealed, an important part in this case is played by the
002 MAIK “Nauka/Interperiodica”
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fluctuations of the longitudinal resistance between Hall
probes, which arise due to the asymmetry of their effec-
tive position; these fluctuations are the stronger, the
greater the correlation radius Lc of the percolation clus-
ter. The part played by the magnetic field consists in
that it brings about a perturbation of the percolation net.
Note that the possibility of “rearrangement” of the per-
colation net under the effect of a magnetic field is usu-
ally ignored, because the magnetoresistance of a nano-
composite amounts usually to just a small fraction of its
total resistance.

To the best of our knowledge, no one has previously
analyzed the manifestation of magnetic relaxations in
the conductivity of magnetic nanocomposites, as was
done by us in this study. This may be due to several rea-
sons. First, the variations of magnetoresistance
observed in the time range of interest from the experi-
mental standpoint (usually, from several seconds to
several tens of minutes) are much less than the respec-
tive variations of magnetization. In this case, it is hard
to reveal the law of relaxation and, therefore, to judge
the nature of the state of a magnet [4]. Second, no sim-
ple and adequate models of relaxation of magnetization
of the systems being treated were available that would
be suitable for processing the results of concrete exper-
iments [4]. Such a model describing the spin-glass
behavior of magnetic nanocomposites was developed
only recently [7]. This model predicts the range of
experimental conditions in which it is possible to
observe the logarithmic relaxation in the given materi-
als and enables one to determine a number of character-
istic parameters of such systems. It was the notion of
nanocomposite as glass, on which this model was
based, that defined our approach to formulating and
performing relaxation experiments.

2. NANOCOMPOSITE AS SPIN GLASS

Different glasses are often described within a model
of two-level systems, i.e., a set of microscopic sub-
systems with two energy states each, the transitions
between which (activated and/or tunneling) are con-
trolled by the energy barrier. Usually, the times of tran-
sitions between these states are distributed randomly in
a fairly wide range, which is the main reason for the
long-term (not exponential) relaxation of the respective
physical parameter [8].

A one-domain granule of nanocomposite is also a
two-level system, because, by virtue of magnetic
anisotropy, it may have two stable states of magnetic
moment relative to its easy magnetization axis. The
magnetic anisotropy may be due both to crystalline
anisotropy and to geometric (associated with the asym-
metric shape of granules) anisotropy; in the case of
iron, preference must be given to the latter [7]. Indeed,
the energy W required for the reorientation of the mag-
JOURNAL OF EXPERIMENTAL
netic moment of an iron granule in the presence of crys-
talline or geometric anisotropy is

respectively, where K1 = 5 × 105 erg/cm3 is the crystal-
line anisotropy constant, V is the granule volume, Is ≈
1700 G is the saturation magnetization, and ν is the
form factor dependent on the nonsphericity of the gran-
ules. Note that, even with a small nonsphericity of a
granule, when the ratio of its axes is just 1.25, the
parameter ν is equal to approximately unity (the maxi-
mal value of ν for highly extended ellipsoidal granules
is about six). Then, for granules 5 nm in size, we find

/k ≈ 80 K and /k ≈ 700 K at ν = 1 (k is the Boltz-
mann constant). In other words, the magnetic anisot-
ropy of iron granules is fully defined by the nonspheric-
ity of their shape. Note further that the times of transfer
of magnetic moment that are convenient for measure-
ments, τ > 1 s, are usually attained with the measure-
ment temperature T < W/20k. The foregoing estimate
indicates that, for nonspherical granules, this condition
may be realized at nitrogen temperatures.

When the crystalline anisotropy is ignored, the
problem concerning magnetization of granular ferro-
magnets is simplified [7]. We assume that the granules
have the shape of ellipsoids of revolution with semiaxes
a > b = c (Fig. 1a) and derive, for the magnetic energy W
of the granule in the external magnetic field H,

where γ is the angle between the magnetic field and the
magnetic moment of the granule, β is the angle between
the magnetic field and the major axis of the ellipsoid,
and ν in this case is the difference between the ellipsoid
demagnetization coefficients along the b and a axes.
The dependence of the energy W on the angle γ of ori-
entation of the magnetic moment relative to the mag-
netic field for the granules whose long axes form the
angles β = π/4 and β = 3π/4 with the magnetic field is
given in Fig. 1b for different values of the reduced field
hν = 2H/Isν. One can see that, in the region of weak
fields (hν ! 1), the W(γ) dependence has two energy
minima; in strong fields (hν > 1), only one minimum
remains. If the initial (at H = 0) magnetic moment is
directed at an acute angle to the magnetic field (in this
case, π/4), then (at T = 0 K) it will always remain at the
right-hand energy minimum (Fig. 1b). The equilibrium
angle γ of the magnetic moment orientation tends
monotonically to zero with increasing H. If the initial
angle is obtuse (3π/4), the angle γ varies in jumps with
the sign variation, which corresponds to the jump of
magnetic moment from the left-hand energy minimum
to the right-hand minimum. Hence follows a simple
method of observation of the maximal variation of
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Fig. 1. (a) An ellipsoidal granule and (b) the dependence of its magnetic energy W on the angle γ of orientation of the magnetic
moment relative to the magnetic field at β = 3π/4.
magnetization in a granular ferromagnet in relaxation
experiments.

We will place a sample at a finite temperature into a
fairly high field H = H0, which corresponds to hν > 1
(for iron granules, this condition is valid at H0 > Isν/2,
i.e., in fields of 5 to 10 kOe). The magnetic moments of
the majority of granules will find themselves at one and
the same energy minimum (for definiteness, at the
right-hand minimum) and will be oriented mainly
along the field. We will then switch over the field (with
a change of its direction) to a small value of H = –Hf

at which the angular dependence of energy W(γ) has
two minima. It is apparent that, at the initial moment of
time, the magnetic moments of granules will be located
at the right-hand minimum, which is positioned ener-
getically above the left-hand minimum and separated
from the latter by the energy barrier ∆. Such a state is
nonequilibrium, and the respective transition to equilib-
rium will be accompanied by the relaxation of the mag-
netic moment with the characteristic time

where τ0 is the period of magnetic moment precession
(for iron granules, τ0 ~ 10–10 s [9]). Note that the height
of the barrier ∆ depends on the angle β (initial orienta-
tion of the magnetic moment of granules relative to the
field); in particular, the maximal value of ∆ is attained
at β = π/2 and π [7]. In other words, even in a system of
randomly oriented but identical granules, the parameter
τ may exhibit a fairly strong spread, and the relaxation
of magnetization may be a strong nonexponential func-
tion of time. However, detailed analysis reveals that the
spread of the shape of granules must be additionally

τ τ 0
∆ H β,( )

kT
------------------- ,exp=
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taken into account in order to obtain the relaxation of
the logarithmic type in the actual range of time (10 to
103 s) [7]. Figure 2 gives the results of calculation of the
dependence M(t) for granules 5 nm in size, the values
of whose form factor ν are uniformly distributed in the
range from 0.5 to 3 (which corresponds to ellipsoidal
granules with the axis ratio a/b ranging from 1.1 to 2).
It follows from Fig. 2 that M(t) may vary logarithmi-
cally in a wide range of time; with the observation times
of up to 102–103 s (t/τ0 = 1012–1013), the relaxation ter-
minates under conditions when the parameter T1 =

kT/0.5 V ≈ 0.1 and h1 = 0.25, which corresponds to the
temperature T ≈ 70 K and magnetic field H = 210 Oe.
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Fig. 2. Calculated curves of magnetization relaxation of a
system of randomly oriented ellipsoidal granules with a ran-
dom form factor for different temperatures.
SICS      Vol. 94      No. 4      2002



782 RYLKOV et al.
3. MAGNETORESISTANCE RELAXATION

We investigated Fe/SiO2 samples prepared by com-
bined ion-beam sputtering of Fe and SiO2 from a com-
posite target, which made it possible to vary their vol-
ume ratio. The film thickness was varied in the range
from 0.2 to 0.6 µm. The samples had the shape of a dou-
ble Hall “cross” with the conducting channel width w =
2 mm and length L = 7 mm. The precision of alignment
of Hall probes was approximately 10 µm. The electron-
microscopic investigations revealed that the character-
istic size of granules (with a relatively low iron content
x ≈ 0.1) was 3–5 nm [10]. The percolation transition in
these objects was observed at xc ≈ 0.6, where the maxi-
mal value of the effect of giant magnetoresistance was
attained (3–4% at T = 77 K) [11]. Note that it is difficult
to analyze the shape of granules under these conditions
using an electron microscope, because the granules
“shield” one another in the case of small distance
between them. It is clear, however, that in this case
extended metallic formations of two or more granules
are very likely to emerge, which are often used to
explain the high coercive force in systems of small one-
domain nanoparticles [12]. In addition, the results of
our investigations of “well”-conducting samples (x ≈ 0.8)
using scanning tunneling microscopy also confirm the
presence of extended (ellipsoidal) formations of gran-
ules.

The initial magnetic field H0 was developed by an
electromagnet which made possible the switching off
of the field of 104 Oe during a period of time of the
order of 1 s; this was accomplished by deenergizing the
electromagnet, after which it was “discharged” via a
back-biased diode (relative to the polarity of the sup-
ply) connected to the electromagnet winding. The
oppositely directed residual field Hf was preinduced by
a bias winding and varied within 100–400 Oe. For the
field within the film to coincide in magnitude with the
external field, a Hall probe was used to orient the sam-
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Fig. 3. The relaxation of magnetoresistance at T = 77 and
80 K. The inset gives the temperature dependence of the
sample conductance.
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ple plane normally to the direction of the electromagnet
field (precision of orientation of 1° or better).

Preliminary experiments revealed that the results of
measurements of long-term relaxation of magnetoresis-
tance could be significantly distorted by the tempera-
ture drift. This is due to a fairly strong temperature
dependence of the longitudinal resistance Rxx of the
objects being investigated (in the region of nitrogen
temperatures, the temperature sensitivity of nanocom-
posites is usually higher than, for example, in the case
of frequently used carbon temperature sensors). Figure 3
illustrates the effect of temperature during investiga-
tions of the magnetoresistance relaxation.1 One can see
that, as the temperature varies by 4%, the variation of
the resistance Rxx is approximately two orders of mag-
nitude higher than the amplitude of its relaxation
∆Rxx = Rxx(t = 0) – Rxx(t = ∞) after the magnetic field is
switched over. Therefore, the basic measurements were
performed at liquid nitrogen temperature. In order to
preclude temperature drifts, the chamber in which the
sample was placed was filled with helium gas.

The data on the resistance relaxation after the switch-
ing over of the magnetic field are given in Fig. 4a. The
value of the final field Hf was selected such that the
relaxations would decay with the observation times
ranging from several minutes to approximately 20 min.
One can see in Fig. 4a that (in accordance with [7]) this
occurs in fields of about 200 Oe. The results of [7]
relate to the relaxation of magnetization M(t); there-
fore, the experimentally measured variation of resis-
tance ∆Rxx(t) must be recalculated to the variation of
magnetization with due regard for the fact that
∆Rxx(t) ∝  M2(t). The recalculation results are given in
Fig. 4b. Note good qualitative agreement between the
curves in Fig. 4b and the calculated curves in Fig. 2 (see
also the calculated curve in Fig. 4b shown by the
dashed curve). Some difference between the tempera-
tures of observation of logarithmic relaxation (up to the
moment of decay) may be attributed to a number of fac-
tors which were not taken into account. On the one
hand, it is the model character of the calculations in [7],
which, in particular, fails to account for the possible
correlation of the magnetic moments of granules; on
the other hand, it is the inaccuracy of orientation of the
sample plane relative to the magnetic field and the pos-
sible effect of its longitudinal component on the relax-
ation of magnetoresistance (according to the estimation
made in [7], the magnetic field must be perpendicular
to the sample plane with an accuracy of much better
than 1°).

Nevertheless, adequate qualitative agreement
between experiment and the calculation results clearly
indicates that the revealed relaxations of resistance are

1 The inset to Fig. 3 demonstrates the temperature dependence
G(T) of the conductance of the given sample in semilog coordi-
nates. It is described well by the known 1/2 law [13]: G(T) ∝
exp[–(T0/T)1/2] (in this case, T0 = 98 K).
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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Fig. 4. The relaxation of magnetoresistance (a) after the switching over of the field with a variation of its direction from the initial
value H0 = 8.1 kOe to the final value Hf , and (b) recalculated to magnetization. The dashed curve is calculated at T1 = 0.1 (T ≈ 70 K)
and h1 = 0.25 (Hf = –210 Oe) with due regard for the scatter of the shape of granules (ν = 0.5 to 3).
associated with the spin-glass nature of the magnetic
state of nanocomposite.

4. FLUCTUATIONS DURING MEASUREMENTS 
OF THE HALL EFFECT

Regular variations or fluctuations of the magnetiza-
tion δM show up during measurements of the Hall
effect as well. First of all, the Hall effect in a magnetic
nanocomposite is anomalous; therefore, the potential
difference Vy between the Hall probes contains a com-
ponent proportional to δM. Secondly, in an inhomoge-
neous system such as the percolation medium being
treated, an appreciable voltage is always present
between the Hall probes even in the absence of the
field. It is proportional to the asymmetry resistance Ra

(the resistance arising due to asymmetry of the percola-
tion net) and to the current Ix through the sample, whose
fluctuations are proportional to δM2. In order to deter-
mine the contribution made by the Hall resistance RH,
the measurements are performed for two opposite
directions of the magnetic field. In this case, RH =

(  – )/2, and Ra = (  + )/2, where  and

 are the transverse resistances Rxy = Vy/Ix corre-
sponding to the positive and negative directions of the
magnetic field, respectively.

Here, it is implicitly assumed that the behavior of
the asymmetry resistance in the magnetic field is the
same as that of the total sample resistance Rxx. How-
ever, the results of our experiments demonstrate that
this is not the case: the quantity Ra experiences unusual
fluctuations.

Figure 5 gives the dependences Ra(H) for a dielec-
tric sample (see Fig. 3) at temperatures T = 77 and
300 K. Given in the same figure for comparison are the
dependences Rxx(H) of magnetoresistance between
potential probes located at a distance lp = 2.5 mm from

Rxy
+ Rxy

– Rxy
+ Rxy

– Rxy
+

Rxy
–
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one another. This sample was characterized by a fairly
low asymmetry resistance: Ra ≈ 16 Ω with the resis-
tance Rxx ≈ 3700 Ω (for T = 77 K). This corresponds to
the effective distance between the Hall probes la ≈
lpRa/Rxx ≈ 11 µm. Note the essentially nonmonotonic
pattern of the dependences Ra(H) and their difference
from the field dependences of magnetoresistance
Rxx(H). It is important that the pattern of fluctuations
recurs; at T = 300 K, the fluctuations are much lower
than at T = 77 K (cf. curves 3 and 4). The observed devi-
ations of the dependences Ra(H) from Rxx(H) could be
interpreted as the effective shift of the Hall probes
through the distance

∆la

lpRa 0( )
Rxx 0( )
------------------

Ra H( )Rxx 0( )
Ra 0( )Rxx H( )
-------------------------------- 1– .∼

1.000

0.992

0.984

0.976

R
/R

(0
)

0 2 4 6 8 10
H, kE

1

2

3

4

Fig. 5. The magnetic-field dependences of the longitudinal
resistance Rxx (curves 1 and 2) and of the asymmetry resis-
tance Ra (curves 3 and 4) at T = (1, 3) 77 and (2, 4) 300 K.
The symbols h and s in the case of curve 3 relate to differ-
ent series of measurements and demonstrate the reproduc-
ibility of this curve.
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We recalculate the fluctuations Ra(H) to fluctuations ∆la

in accordance with the latter relation to find that ∆la

amounts to 200 and 30 nm at T = 77 and 300 K, respec-
tively. It must be emphasized that we refer to the varia-
tion of the effective, rather than real, distance between
the Hall probes.

We observed such fluctuations previously during
investigation of quasi-two-dimensional semiconductor
objects with hopping conductivity, in which the perco-
lation cluster structure varied under conditions of the
field effect. It was demonstrated that the characteristic
scale ∆la of the effective “shift” of the Hall probes was
defined by the correlation radius (cell size) Lc of the
percolation cluster [14].

We believe that in the case being treated, the differ-
ences in the behavior of Ra(H) and magnetoresistance
Rxx(H) are likewise associated with the perturbations of
the percolation cluster net. However, the mechanism of
this strong effect of the magnetic field on the current
paths is not fully clear, because the magnetic field
causes the sample resistance to vary by only several
percent. However, one can assume that, on mesoscopi-
cally small scales, this effect may be much stronger
because of the presence of “weak” (sensitive to the
magnetic field) spots in the percolation cluster, such as,
in particular, micronarrowings with ballistic transport,
where the magnetoresistance may reach hundreds of
percent [15] (note that the sample is close to percolation
transition).

It is natural to attribute the decrease in fluctuations
of Ra(H) with increasing temperature to the fact that, as
the temperature rises, the cell size of the percolation
cluster in a nanocomposite decreases. If we proceed
from the 1/2 law for the temperature dependence of
conductivity [13], the quantity Lc must vary approxi-
mately as 1/T; i.e., it must decrease by a factor of four
as the temperature increases from nitrogen to room
temperature.

Therefore, the magnetic disorder of nanocomposites
and the spin-glass pattern of their behavior may mani-
fest themselves in two ways, namely, in terms of the
variation of the conductivity of the percolation cluster
(longitudinal magnetoresistance) and in terms of the
variation of the topology of the current paths in this
cluster (fluctuations of Hall resistance).
JOURNAL OF EXPERIMENTAL 
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Abstract—The changes in binding energy and oscillator strength of the exciton state due to the screening by a
quasi-two-dimensional electron gas are calculated self-consistently in the approximation of noninteracting
electrons and in the local field approximation. It is shown that the collapse of the bound state occurs at very low
concentrations, Ns ≈ 5 × 109 cm–2, which is a consequence of the inclusion of the nonlinearity of the response
of the system to a Coulomb perturbation. The temperature dependence of the exciton collapse is investigated.
The phase diagram of the dissociation of the given bound state is constructed, and the region in which it is pos-
sible to observe experimentally the temperature dependence of the exciton collapse is indicated. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Mobile electrons in selectively doped GaAs/AlGaAs
quantum wells directly participate in the screening of
the Coulomb interaction in 2D structures. Thus, such
electrons considerably affect both the stability of the
Coulomb centers and the nature of large-scale fluctua-
tions in quantum wells. In spite of the fact that the spec-
trum of electrons in quantum wells, for which the
experiments were made, is indeed size-quantized and
may be treated as a purely 2D spectrum, these struc-
tures are quasi-two-dimensional as applied to the prob-
lem of the screening of Coulomb interaction since the
width of typical quantum wells, which ranges from 200
to 300 Å, exceeds the exciton Bohr radius. For this rea-
son, the screening of the Coulomb interaction in real
quantum wells is of a mixed type, varying from purely
2D screening at large distances (much longer than the
quantum well width) to virtually 3D screening at small
distances. The screening effects can be observed in the
luminescence and reflection spectra [1–4].

It was shown experimentally in [3, 4] that the thresh-
old concentration for which the rearrangement of exci-
ton states takes place strongly depends on the quality of
the structure and is observed for most perfect structures
at extremely low concentrations Ns = 5 × 109 cm–2. This
corresponds to the dimensionless parameter rs describ-
ing the mean distance between electrons in the gas in

the units of Bohr radius aB, rs = 1/(aB ) ≈ 8. This
value is several times higher than that observed earlier
in experiments on structures having a worse quality
(see, for example, [2]), in which the rearrangement of
exciton states was observed for order-of-magnitude

2πNs
1063-7761/02/9404- $22.00 © 20785
higher electron gas concentrations. A theoretical analy-
sis of the Coulomb interaction screening by a 2D elec-
tron gas was carried out by Bauer [5] in the framework
of the theory of dielectric screening and by Kleinman
[6] in the approximation of a linear dielectric response
for a purely 2D electron gas. However, both these
approaches lead to considerably higher values of the
threshold concentration as compared to those observed
in perfect GaAs/AlGaAs structures.

In the present work, a method of self-consistent cal-
culation of the screening of the Coulomb interaction by
a quasi-two-dimensional electron gas is developed both
in the approximation of noninteracting electrons and in
the local field approximation. This method allowed us
to take into account, to a certain extent, the nonlinearity
of screening; as a result, the threshold values of concen-
tration shifted from rs ~ 3 to the range of values of rs ~ 8,
which is in qualitative agreement with the results of
recent experiments. We also analyzed the screening at a
nonzero temperature. In this case, the “blurring” of the
Fermi step lowers the efficiency of screening of a quasi-
two-dimensional electron gas, leading to an increase in
the threshold value of concentration. We also calculated
the thermal dissociation of the exciton state. The corre-
sponding phase diagram is presented in the last section
of this research.

Henceforth, we will be interested in the binding
energy of the exciton state in the presence of a quasi-
two-dimensional electron gas with concentration Ns. It
is well known [7, 8] that the problem of determining the
binding energy of a large-radius exciton can be reduced
to the problem of a Coulomb center with a particle mass
equal to the reduced mass of the exciton, µ =
002 MAIK “Nauka/Interperiodica”
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memh/(me + mh), where me and mh  are the planar masses
of the electron and hole in the quantum well, respec-
tively.

2. FORMULATION OF THE PROBLEM

Let us consider a quantum well of width l0 with infi-
nitely high walls, so that the electron wave function in
the z direction is strictly limited by its size. It was stated
above that, as a model of an exciton, we can consider a
positively charged Coulomb center located at the mid-
dle of a quantum well for z = 0 and an electron having
the mass equal to the reduced mass µ of an exciton and
bound to this center. The Hamiltonian of such a center
in the cylindrical system of coordinates has the form

(1)

where

(2)

Here, ρ = , F(z) = 0, z ≤ |l0/2|, and F(z) = ∞,
z > |l0/2|.

We will seek the ground-state energy by using the
Ritz variational method with a test wave function of the
bound state in the form

(3)

In this function, there are two variable parameters: the
effective radius r0 of the Coulomb center (exciton) in
the (x, y) plane and the parameter γ taking into account
the anisotropy associated with the restriction of the
motion in the z direction. Such a wave function cor-
rectly describes the behavior of the system in narrow
quantum wells with l0 ! r0 (in this case, γ  0 and the
function coincides with a purely 2D function) as well as
in wide quantum wells with l0 ≥ r0. In the latter case,
γ ~ 1 and the function is spherically symmetric as for
3D systems.

For variational calculations, it is convenient to intro-
duce the effective 2D potential Ueff(r) which can be
written in the adiabatic approximation1 in the form

(4)

1 The condition that the separation between the exciton levels is
much smaller than the characteristic size-quantization energy of

e– (which is equal approximately to π2"2/2me ) in the quantum

well is sufficient for the applicability of the adiabatic approxima-
tion in the given problem.

Ĥ –
"

2

2µ
------∆ U ρ z,( ),+=

U ρ z,( ) –
e2

eρ
------ F z( ).+=

r2 z2+

Ψ r z,( ) N
πz
l0
----- 

  r2 γ2z2+
r0

------------------------–
 
 
 

.expcos=

l0
2

Ueff r( ) Ψ r z,( ) 2U r z,( ) z.d∫=
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The Fourier transform of this potential is

(5)

where J0(x) is a Bessel function of the first kind.
The ground-state energy of a quasi-two-dimen-

sional exciton can be determined from the minimum of
the functional F:

(6)

in the parameters r0 and γ.
We will take into account the screening of the effec-

tive potential Ueff(r) by a quasi-two-dimensional elec-
tron gas through the dielectric function e(q):

(7)

3. LINDHARD THEORY OF SCREENING

The response function, or the susceptibility χ(q, ω)
of the system, of a quasi-two-dimensional electron gas
with potential Ueff(q) for the external perturbation
V ext(q, ω) can written, by definition, as

(8)

where δn(q, ω) is the change in the density due to the
interaction with the external perturbation.

The polarization operator Π(q, ω) is defined as the
susceptibility of the system to the already induced
potential V ind(q, ω) which is the sum of the external
potential and the effective interaction potential,
V ind(q, ω) = V ext(q, ω) + Ueff(q):

(9)

Formulas (8) and (9) lead to the following depen-
dence between the susceptibility and polarization of the
system:

(10)

By definition, the dielectric function is the ratio of
the external perturbation to the induced potential and,
hence, can be written in the form

(11)

or

(12)

In the Hartree–Fock approximation (HFA), elec-
trons “respond” to the external field as free particles;

Ueff q( ) eiqrUeff r( ) rd∫∫=

=  2π J0∫ qr( )Ueff r( )rdr,

F Ψ r z,( ) "
2

2µ
------∆ Ψ r z,( )–〈 〉 Ueff r( )〈 〉+=

Ueff
scr r( ) J0 qr( ) Ueff q( )/e q( )( )q q.d∫=

δn q ω,( ) χ q ω,( )V ext q ω,( ),=

δn q ω,( ) Π q ω,( )V ind q ω,( ).=

χ q ω,( ) Π q ω,( )
1 Ueff q( )Π q ω,( )–
----------------------------------------------.=

1
e q ω,( )
----------------- 1

Ueff q( )δn q ω,( )
V ext q ω,( )

---------------------------------------+=

≡ 1 Ueff q( )χ q ω,( )+

e q ω,( ) 1 Ueff q( )Π q ω,( ).–=
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consequently, the quantity χ(q, ω) for a homogeneous
system can be approximated by the polarization of free
electrons (Lindhard approximation of noninteracting
electrons) Π0(q, ω); i.e.,

(13)

The expression for Π0(q, ω) was derived using the first
order of perturbation theory in the external potential
[9]:

(14)

where f0 is the Fermi–Dirac distribution function and L2

is the area of the system.
In the random-phase approximation (RPA), elec-

trons respond to the induced field as free electrons, so
that

(15)

For T = 0 and for the Fermi wave vector kF = ,
the static dielectric function in the RPA can be written
(see, for example, [10]) as

(16)

where Ueff(q) is defined by formula (5).
The ground-state energy of an exciton in the effec-

tive screened potential (r) obtained through the
numerical solution of the integral equation (7) was cal-
culated by varying functional (6) in the parameters r0

and γ. Since potential (r) is itself a function of the
wave function parameters r0 and γ, successive iterations
led to self-consistent values of r0 and γ and of the poten-

tial (r) depending on them. It should be noted that
such a procedure of self-consistent calculations makes
it possible to go beyond the linear response of the elec-
tron subsystem and to take into account, to a certain
extent, the nonlinear nature of screening of the 3D Cou-
lomb potential by a 2D gas.

In all our calculations, we operate with quantum
wells based on GaAs/AlGaAs. This means that we will
use the values of the planar masses of electron me =
0.067m0, hole mh = 0.26m0, and the static permittivity
e = 12.8. Figure 1 shows the results of numerical calcu-
lations of the dependence of the exciton binding energy
on the dimensionless parameter rs. It can be seen that,

χHFA q ω,( ) Π0 q ω,( ),=

1

e
HFA q ω,( )

------------------------- 1 Ueff q( )Π0 q ω,( ).+=

Π0 q ω,( ) 1

L2
-----

f 0 Ek( ) f 0 Ek q+( )–
Ek q+ Ek– "ω– i"α–
----------------------------------------------------∑α 0→

lim ,=

ΠRPA q ω,( ) Π0 q ω,( ),=

e
RPA q ω,( ) 1 Ueff q( )Π0 q ω,( ).–=

2πNs

e
RPA q( ) 1 Ueff q( )

me

π"
2

---------+=

× 1 Θ q 2kF–( ) 1 2kF/q( )2––[ ] ,

Ueff
scr

Ueff
scr

Ueff
scr
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as the concentration of a quasi-two-dimensional elec-
tron gas increases, the exciton binding energy decreases
abruptly, in a threshold manner. For a quantum well of
width l0 = 300 Å, the sharp decrease (rearrangement) of
the binding energy occurs in the region of rs ≈ 8. As the
well width decreases, the value of the threshold concen-
tration for which the screening of the exciton states
increases strongly is shifted towards the region of
smaller values of rs (higher concentrations) (curves 1–4 in
Fig. 1). Assuming, for the sake of definiteness, that the
threshold concentration is that for which the binding
energy decreases by a factor of e, we can plot the

dependence of the critical parameter  on the quantum
well width (Fig. 2).

The results of our calculations show that the rear-
rangement of exciton states emerges for much lower

rs
c

0

EB/Ry*

rs

0.2

0.4

0.6

0.8
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2 4 6 8 10 12

T = 0 K

1 2 3 4

Fig. 1. Binding energy EB of the exciton state in
GaAs/AlGaAs quantum wells of widths 50 (1), 100 (2),
200 (3), and 300 Å (4) as a function of the dimensionless
parameter rs. Calculations were made using the values of
planar masses of electron (me = 0.067m0) and hole (mh =
0.26m0) and the static permittivity e = 12.8.
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Fig. 2. Dependence of the critical parameter  at which the

exciton states collapse on the width of a GaAs/AlGaAs
quantum well.
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concentrations of the electron gas (rs ≈ 8) than in the
previous calculations made by Bauer [5] (rs = 1.8), who
considered the dielectric screening of the Coulomb
interaction, or by Kleinman [6] (rs = 2.8), who made
calculations for a purely 2D case in the linear screening
approximation.

Several aspects which are important in this problem
are worth noting. First, we must take into account the
dependence of the dielectric function on the parameters
of effective interaction Ueff(r), i.e., the nonlinear
approximation for the system response. If we confine
our analysis to the linear response approximation in the
procedure of self-consistent calculation, the value of
the threshold concentration for which the screening of
exciton states is observed is shifted to the region of
higher concentrations, corresponding to the parameter
rs = 3.5, which is close to the results obtained in [6, 11].
Second, the singularity in the dielectric function (10)
for q = 2kF leads to Friedel oscillations of the quasi-
two-dimensional electron gas concentration as in the
3D case. In contrast to 3D systems, the effect of these
oscillations is significant since the asymptotic form of
the screening potential in the 2D case is of the power
type, and the contribution from the oscillatory behavior
of local concentration in the vicinity of a Coulomb cen-
ter is noticeable, leading to a more effective potential
screening.

In experiments on the screening of exciton states by
a quasi-two-dimensional electron gas, information on
the change in the dependence of the binding energy of
exciton states on the density of this gas is not available
as a rule since the knowledge of the energy of uncorre-
lated electron and hole, which have no specific features
in the luminescence and absorption spectra, is required
in this case. At the same time, a threshold variation in
the exciton-transition oscillator strength is clearly man-

0.2

0

S, rel. units

rs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2 4 6 8 10 12 14

T = 0 K

Fig. 3. Oscillator strength S of the exciton transition as a
function of the dimensionless parameter rs calculated for a
GaAs/AlGaAs quantum well of width 200 Å.
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ifested in optical experiments as the density of the
quasi-two-dimensional electron gas attains a certain
threshold value. For convenience of comparison with
the experiments, we calculated, apart from the binding
energy, the behavior of the exciton-transition oscillator

strength S ∝  |pcv |2 |Ψ(r = 0, z = 0)|2 [6] as a function
of the electron gas concentration in quantum wells
(Fig. 3). It can be seen that the exciton transition inten-
sity decreases upon an increase in the density of the
quasi-two-dimensional electron gas less sharply than
the binding energy of the exciton state. As a result, the
exciton absorption line can be observed in optical
experiments even for relatively high electron concen-
trations, when the binding energy of excitons has
already been decreased significantly as a result of
screening by a quasi-two-dimensional electron gas.

It is also interesting to note that the rearrangement
of exciton states is accompanied by a manifold increase
in the effective Bohr radius of an exciton state. The
effective radius of an exciton along the well is many
times larger than the quantum well width even for broad
quantum wells with l0 = 300 Å for high densities of the
electron gas; consequently, the exciton becomes virtu-
ally two-dimensional. At the same time, at low densi-
ties, the effective radius of an exciton is considerably
smaller than the well width and the exciton wave func-
tion in the well differs insignificantly from a 3D wave
function. Thus, the screening of the exciton state in
broad quantum wells is accompanied, in addition to a
decrease in the binding energy and the oscillator
strength, by the exciton “crossover” 3D  2D, i.e., a
transition of the exciton state from three to two dimen-
sions. This may be an additional reason for the sharp-
ness of the observed rearrangement of the exciton state
in broad quantum wells.

It should also be noted that, since the problem has
become purely two-dimensional after the introduction
of the effective potential Ueff(r) [4], the bound state
always exists in this case (see, for example, [8]). How-
ever, the binding energy of this state (see Fig. 1) in the
case of a high concentration (small rs) is found to be
exponentially small:

where

is the power of the potential well.

4. LOCAL FIELD APPROXIMATION
In this procedure, we used the Lindhard susceptibil-

ity approximation corresponding to the situation of
noninteracting electrons in the gas. To a certain extent,

aB
2–

EB
"

µr0
2

--------∼
2 "

2

µP
-------– ,exp

P Ueff r( ) rd

0

∞

∫=
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the Coulomb interaction between electrons at small dis-
tances can be taken into account in the local field
approximation [12] by replacing the polarization oper-
ator (9) with a more complex operator taking into
account more adequately the interaction at small dis-
tances, which has the following form [13, 14]:

(17)

where Π0(q, ω) is the polarization operator in the RPA,
which is defined by formula (14), and fq(ω) is the local
field factor. Then, formulas (10) and (17) give

(18)

where v eff(q, ω) = Ueff(q) + fq(ω) is the effective inter-
action potential in the local field approximation. The
dielectric function corresponding to this polarization
operator has the form

(19)

The formula for the effective static potential v eff(r) can
be presented in the form (see [15] and the Appendix)

(20)

where g(r) = g↑↑ (r) + g↑↓ (r) is the pair correlation func-
tion. Obviously, if g(r) = 1 (this corresponds to nonin-
teracting electrons), we have v eff(r) ≡ Ueff(r). This
returns us again to the Lindhard limit. In analogy with
formula (7), we can now obtain the following expres-
sion for the screened effective static interaction poten-
tial in the local field approximation:

(21)

where eSTLS(q) is the static dielectric function calcu-
lated by formula (19) for ω = 0.

Thus, we calculate the static form factor (A.4) and,
hence, the pair correlation function (A.2) in the initial
approximation of noninteracting electrons. Further, we
assume that the following changes in Ueff(r) do not lead
to considerable changes in the static form factor and in
the pair correlation function. In this case, the local field
factor can be written in the form (see [13]) fq =
G(q)Ueff(q), where G(q) = 1 – g(0) + o(1/q2). Conse-
quently, in order to determine the effective static poten-
tial v eff(r), we must evaluate integral (20), and then the

effective screened potential (r) of the interaction

Π q ω,( ) Π0 q ω,( )
1 f q ω( )Π0 q ω,( )–
----------------------------------------------,=

χ q ω, )( ) Π0 q ω,( )
1 Ueff q( ) f q ω( )+( )Π0 q ω,( )–
--------------------------------------------------------------------------=

=  
Π0 q ω,( )

1 v eff q ω,( )Π0 q ω,( )–
-------------------------------------------------------,

e
STLS q ω,( ) 1

Ueff q( )Π0 q ω,( )
1 f q ω( )Π0 q ω,( )–
----------------------------------------------.–=

v eff r( ) drg r( )
Ueff r( )d

dr
-------------------,

r

∞

∫–=

v eff
scr r( ) J0 qr( ) v eff q( )/eSTLS q( )( )r r,d∫=

v eff
scr
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between a positively charged Coulomb center and an
electron bound to it will be obtained from the numerical
solution of the integral equation (21), the changes in the
dielectric function eSTLS(q) being determined only by
the changes in the effective 2D potential Ueff(q).

Let us now determine the binding energy of an exci-
ton directly in the local field approximation. We will
use the procedure of variational self-consistent calcula-

tions described in Section 3, replacing (r) by

(r) in it. Thus, we will calculate the ground-state
energy of the exciton by varying functional (6) with the

effective screened potential (r) in parameters r0

and γ. Figure 4 presents the results of such a numerical
calculation of the binding energy of an exciton for
quantum wells of width 200 Å as a function of the
dimensionless parameter rs. It can be seen that, when
the correlation corrections are taken into account, the
exciton state collapses in the region of lower values of
rs (as compared to those observed in the random phase
approximation), which corresponds to an increase in
the threshold concentration of a quasi-two-dimensional
electron gas and to a deteriorated screening. In order to
explain this effect, we consider the compressibility as
one of the parameters of the system.

5. COMPRESSIBILITY OF THE SYSTEM

The compressibility of the system is connected with
the response function through the formula [16]

(22)

Ueff
scr

v eff
scr

v eff
scr

K
1

Ns
2

------ χ q 0,( )
q 0→
lim .–=

0

EB/Ry*

rs

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

T = 0 K

1 2

Fig. 4. Binding energy EB of the exciton state in
GaAs/AlGaAs quantum wells of width 200 Å as a function
of the dimensionless parameter rs in the local-field (1) and
random phase (2) approximations.
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We denote by K0 the compressibility of a system of
free electrons. In the Lindhard approximation, we obvi-
ously have

Using the frequency sum rule [13, 16, 17] and formula
(19) for the dielectric function, we obtain the compress-
ibility in the local field approximation:

(23)

It follows hence that

(24)

Using the above formulas, we can easily prove that (see
Fig. 5) the compressibility of an electron system calcu-
lated in the local field approximation is smaller than the
compressibility of a system in the random phase
approximation for the same electron density in the sys-
tems. This result was obtained experimentally in [18].
This means that the system becomes more rigid2; i.e.,
the average electron spacing increases due to the short-
range interaction. The change in the local concentration

2 Zero compressibility corresponds to an absolutely incompressible
liquid.

Ns
2K0 Π0 q 0,( )

q 0→
lim .–=

2
πUeff q( )
--------------------

q 0→
lim

ω'd
ω'
--------Im e

STLS ω'( )[ ]
0

∞

∫–

=  Re
Π0 q 0,( )

1 f q 0( )Π0 q 0,( )–
-------------------------------------------

q 0→
lim

=  
Ns

2K0

1 f q 0( )Ns
2K0+

------------------------------------
q 0→
lim– Ns

2K .–≡

K0

K
------ 1 f q 0( )Ns

2K0.
q 0→
lim+=

1
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Ns × 109, cm–2
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2

3
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0 

× 
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Fig. 5. The ratio of the compressibility K of the electron sys-
tem in the local field approximation to the compressibility
K0 of the system of noninteracting electrons at T = 0 K as a
function of the two-dimensional electron gas concentration
Ns for a quantum well of width 200 Å. The inset shows the
dependence of K0 on Ns.
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in this case turns out to be smaller than in a system of
noninteracting electrons. This leads to a worse screen-
ing and, hence, to an increase in the threshold concen-
tration for which the rearrangement of the exciton state
takes place.

It should be noted that, strictly speaking, the local
field approximation is applicable only for rs ≤ 6 (see
[12]); consequently, the results obtained in the last
two sections are rather qualitative by nature and are
presented here to explain qualitatively the behavior
of the system in the range of values of rs ~ 8 we are
interested in.

6. TEMPERATURE DEPENDENCE
OF THE THRESHOLD CONCENTRATION 

OF A QUASI-TWO-DIMENSIONAL
ELECTRON GAS

An analysis of the temperature dependence of the
threshold concentration of a quasi-two-dimensional
electron gas at which exciton rearrangement takes place
is an important experimental problem. In this section,
we will analyze this problem theoretically. As before,
we will use the approximation of noninteracting elec-
trons. In order to calculate the screening effect at a non-
zero temperature, we will use a temperature-dependent
dielectric function. In the high-temperature limit (T ~
EFermi), it has the following analytic expression [19]:

(25)

(26)

Here, we have

At low temperatures, the dielectric function can be
obtained numerically.

It should be noted that the formula describing the
change δn(q) in the local electron concentration for a
classic gas (see formula (8)) can be written in the form
(see, for example, [20])

(27)

e
RPA q( ) 1 Ueff q( )qs q( ),+=

qs q( )
Ns

kBT
---------g1 qλ( ).=

λ 2π"
2

mekBT
---------------, g1 x( ) 2 π

x
----------Φ x

4 π
---------- 

  ,= =

Φ y( ) π 1/2– z
e z

2–

y z–
-----------.d

∞–

∞

∫=

δn q( ) Ns

Ueff q( )
kBT

-----------------– 
  Ns–exp≈

≈ –
Ns

kBT
---------Ueff q( ).
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This leads to a formula of the type (25), but now we
have

(28)

Thus, if the temperature of an electron system is of the
order of the Fermi temperature, the quantum-mechanical
formula (26) for the screening parameter qs(q) is trans-
formed into the Debye–Hückel classical formula (28).

Using now the temperature-dependent dielectric
function (25) in self-consistent variational calculations,
we obtain the dependence of the critical concentration

 of a quasi-two-dimensional electron gas as a func-
tion of temperature for a quantum well of width l0 =
300 Å. These dependences are presented in Fig. 6. As
the temperature increases, the Fermi step is “blurred”
and, hence, the concentration of electrons with small
values of q becomes lower. This leads to a considerable
decrease in the screening parameter qs(q) for values of
momenta q ≤ 2kF (see Fig. 7). Since the screening is
mainly accomplished by electrons with q ≤ 2kF, the
effect of screening by the quasi-two-dimensional elec-
tron gas becomes weaker, and the value of the threshold
concentration increases (see Fig. 6). On the other hand,
at temperatures above 15 K, when the quasi-two-
dimensional electron gas can be regarded as classic, we
arrive at complete agreement between the results of cal-
culations based on the quantum-mechanical Lindhard
(solid curve in Fig. 6) and the classical Debye–Hückel
(dashed line in Fig. 6) dielectric functions.

Another interesting problem emerging at a nonzero
temperature is associated with the calculation of the
phase diagram of dissociation of the exciton state. By

qs
classic q( )

Ns

kBT
---------.=

Ns
c

1

0 2

Ns × 109, cm–2

T, K

2

3

4

5

6

7

8

9

4 6 8 10 12 14 16 18

1

2

Fig. 6. Temperature dependence of the threshold concentra-
tion Ns of a quasi-two-dimensional electron gas for a
GaAs/AlGaAs quantum well of width 300 Å in the random
phase approximation (1) and in the Debye–Hückel approx-
imation (classical limit) (2).
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definition (see [21]), the dissociation energy is the exci-
ton binding energy. In analogy with [22], we obtain the
following condition for the phase transition:

(29)

where ln[meT/π"2Ns] is a quantity describing the effect
of ionization of the given exciton.3 The result of calcu-

3 For a high electron concentration, the ionization effect can be dis-
regarded; consequently, ln[meT/π"2Ns] ≈ 1. Conversely, for

Ns  0, we obtain ln[meT/π"2Ns]  ∞, and the ionization
effect becomes predominant in the system.

T EB T Ns,( )/
meT

π"
2Ns

--------------- ,ln=

0 0.5

qs(q, T)/qs(0, 0)

q/(2kF)
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1.0
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5 4 3
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2kF = 4 × 105 cm–1

Fig. 7. The ratio of the effective screening parameter qs(q, T)
to its value qs(0, 0) at T = 0 K on the wave vector q (in units
of 2kF) at different temperatures, K: 0 (1), 0.1 (2), 0.5 (3),
1 (4), and 2.5 (5).
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Fig. 8. Phase diagram of thermal dissociation of the exciton
state in a GaAs/AlGaAs quantum well of width 300 Å.
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lation of the phase diagram for a quantum well of width
300 Å is shown in Fig. 8. It can be seen that the screen-
ing effect reducing the binding energy and, hence, lead-
ing to dissociation of the exciton state can be observed
for Ns > 3 × 109 cm–2. For lower concentrations, the ion-
ization effect becomes predominant.

Thus, the temperature dependence of the exciton
collapse determined above (see Fig. 6) is observed in
the region of system parameters for which the phase
transition is not yet observed. Consequently, it can be
investigated experimentally.

7. CONCLUSIONS

In the present work, we have calculated the
changes in the binding energy and oscillator strength
for an exciton state which emerge as a result of screen-
ing by a quasi-two-dimensional electron gas in
GaAs/AlGaAs quantum wells of width 50–300 Å. It is
shown that the inclusion of the nonlinear response
leads to a stronger screening of the Coulomb interac-
tion as compared to that in the linear approximation
and, as a result, shifts the threshold concentration for
which the exciton states are rearranged towards lower
densities of a quasi-two-dimensional electron gas and,
accordingly, higher values of rs (rs = 8.3 for a well of
width 300 Å). This concentration considerably
exceeds the values calculated in the framework of
dielectric screening (Mott transition) or in the frame-
work of the linear screening by a quasi-two-dimen-
sional electron gas. As the quantum well width
decreases, the threshold electron concentration for
which the transition takes place is displaced towards
lower values of parameter rs.

It is shown that the inclusion of correlation effects in
the framework of the local field approximation makes
the system more rigid and less capable of screening the
introduced charged perturbation. This leads to an
increase in the threshold concentration of the quasi-
two-dimensional electron gas.

We have investigated the temperature dependence of

the critical parameter . As the temperature increases,
the effectiveness of screening becomes lower and the

critical parameter  decreases. This is a consequence
of the decrease in the density of electrons with small

rs
c

rs
c
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values of q, which make the main contribution to the
given effect. We have also demonstrated the transition
from a purely quantum to the classical system upon an
increase in temperature. We have constructed the phase
diagram of the exciton state dissociation and indicated
the region in which the temperature dependence of the
exciton collapse can be observed experimentally.
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APPENDIX

In the local field approximation, the effective poten-
tial v eff(r) can be written in terms of the pair correlation
function [15, 23]:

(Α.1)

The expression for the pair correlation function
g(r) = g↑↑ (r) + g↑↓ (r) has the form

(Α.2)

where S(q) is the static form factor, which can be
expressed using the fluctuation-dissipative theorem
[17] through the following formula:

(Α.3)

In the initial approximation, the static form factor can
be calculated proceeding from the Lindhard suscepti-
bility defined by formulas (11) and (16). After evaluat-
ing the integrals, we obtain

v eff r( ) rg r( )d
Ueff r( )d

dr
-------------------.

r

∞
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g r( ) 1–
1
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2

----- J0 qr( ) S q( ) 1–[ ] q q,d

0
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Abstract—The linear rf response for a resonance-tunnel diode with asymmetric barriers is calculated analyti-
cally in the framework of a consistent quantum-mechanical model. It is shown that the response current is
extremely sensitive to the asymmetry of the barriers. For example, if the “power” α1 of the collector barrier
becomes lower than the “power” α2 of the emitter barrier (say, on account of bias voltage), the current reverses
its sign at a certain frequency depending on the structure parameters. In the opposite case (α1 ≥ α2), the sign of
the current is preserved in the entire frequency range. This makes it possible to match, in principle, the experi-
mental results obtained earlier with the theoretical results. At the same time, the quantum rf lasing mode of a
resonance-tunnel diode, which was predicted earlier for α1 = α2, is realized for all values of α1 and α2. In this
mode, high values of power can be attained at frequencies considerably higher than the resonance level width.
It is also shown that the coherent amplification mechanism in resonance-tunnel diodes is closely connected with
the quantum interference of resonantly tunneling electrons and differs significantly from the conventionally
assumed mechanism. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The rf properties of two-barrier nanostructures
including resonance-tunnel diodes still remain an
unsolved theoretical problem. In spite of intense studies
and an obvious practical interest in this field, no gener-
ally accepted theory of rf response and generation in
resonance-tunnel diode has been proposed so far.
Moreover, the publications contain contradictory
results on the frequency dependence of the response
even in an approximation linear in the field.

For example, it has been mentioned in the theoreti-
cal works [1–3] (numerical methods), [4] (analytical
model), and [5, 6] (tunnel Hamiltonian method) that the
polarization current (linear response) describing the
amplification in a resonance-tunnel diode may reverse
its sign at a certain frequency which is approximately
equal to the resonance level width Γ. The sign reversal
is also reported in some experimental works [7]. This
leads to the conclusion about the existence of a limiting
frequency of amplification and lasing for a resonance-
tunnel diode. This is a widely accepted point of view
(see, for example, [8]).

On the other hand, the experimentally attained las-
ing frequency 1012 s–1 [9] and the theoretical results
[10–14] point to the contrary. Indeed, it is shown ana-
lytically and numerically [10–14] (see also [15]) that
the current does not change its sign over a wide fre-
quency range.

Leaving aside the publications [1–3] which are
based on numerical methods (see the Conclusions
below and [10]), it can be mentioned that either the
1063-7761/02/9404- $22.00 © 20794
above publications make use of the tunnel Hamiltonian
method, or the Schrödinger equation is not solved
explicitly in them. However, a consistent quantum-
mechanical description and open boundary conditions
are required for a system of electrons tunneling coher-
ently in a resonance-tunnel diode and interacting with
an electromagnetic field. This is due to quantum inter-
ference of electrons, which is quite sensitive to the
energy of electrons supplied by the collector and to the
boundary conditions. In our opinion, the approach
developed in [4–6] does not satisfy the above require-
ments. On the contrary, the model used in [10–14] is
quite rigorous.

However, the authors of [10–14] presumed com-
plete symmetry of the barriers. It turned out that the
asymmetry of the emitter and collector barriers (which
is always observed in experiments and, apparently, in
the numerical calculations [1–3] due to the bias field)
may radically change the frequency dependence.

The present work aims at generalizing the results
obtained in [10] to more general boundary conditions
with a view to explain consistently the known theoreti-
cal and experimental data. The model [10] will be used
to obtain an exact analytic solution and simple expres-
sions for polarization currents. It will be shown that the
response is extremely sensitive to the difference in the
barrier parameters. For example, if the “intensity” α1 of
the collector barrier becomes smaller than the intensity
α2 of the emitter barrier (i.e., α1 < α2), the current
reverses its sign at a certain frequency determined by
barrier parameters. In the opposite case (α1 ≥ α2), the
current preserves its sign in the entire frequency range.
002 MAIK “Nauka/Interperiodica”
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Thus, it becomes possible (at least in principle) to
match the experimental results [7, 8] with numerical
([1–3, 11–13]) and analytical [10] theoretical results.
Note that, according to [4–6], the response displays a
weak dependence on the difference α2 – α1, thus dem-
onstrating once again that the approach used for
describing the coherent generation is not applicable
(see the Conclusions for detail).

It is also shown that the mechanism of amplification
in a resonance-tunnel diode is closely linked with quan-
tum interference and differs significantly from the gen-
erally assumed mechanism.

2. WAVE FUNCTIONS
OF A RESONANCE-TUNNEL DIODE

IN THE FIELD-LINEAR APPROXIMATION

We will study a model of coherent tunneling in a
resonance-tunnel diode, similar to the one used in [10].
Let us consider a 1D quantum well with δ-functional
barriers at the points x = 0 and x = a (see figure). A
steady-state electron flux proportional to q2 with an
energy ε approximately equal to the energy εR of the
resonance level is supplied to the quantum well from
the left (x  –∞). A varying electric field E(t) with
potential U(x, t) acts in the region of the quantum well:

(1)

The wave function Ψ(x, t) satisfies the Schrödinger
equation

(2)

Here, we have set " = 2m = 1. The steady-state solution
to Eq. (2) is sought in the form [2, 10, 16]

(3)

The partial wave functions ψ0 and ψn  (n = ±1) describe
electrons with quasienergies ε and ε + nω, respectively.

The varying field induces polarization (response)
currents

Here, Jc is the current synphase with the field and Js is
the reactive current. These currents can be expressed
through the functions ψ0 and ψn:

U x t,( ) U x( ) ωt,cos=

U x( )
xUθ x( ), x a,<
aU x a,>
U eE/2.–=




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i
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t∂

------- ∂2Ψ
x2∂

----------–=

+ α2δ x( ) α1δ x a–( )+[ ]Ψ U x t,( )Ψ.+
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=  e iεt– ψ0 x( ) e iωt– ψ+1 x( ) eiωtψ–1 x( )+ +[ ] .
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(4)

In the interval 0 < x < a, the zeroth-order approximation
function ψ0(x) satisfies the equation

(5)

and the boundary conditions (see [8])

(6)

The corresponding equations and the boundary condi-
tions for the functions ψn(x) have the following form in
the field-linear approximation:

(7)

(8)

It is assumed in Eqs. (5)–(8) that ψn ! ψ0. The solution
of this system of equations can be presented in the form

(9)
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(10)

(11)

(12)

(13)

Formulas (9)–(13) give an exact solution to the prob-
lem, which is unfortunately cumbersome and hard to
visualize. It was shown in [10], however, that the gen-
eral formulas for ψn and currents Jc and Js can be trans-
formed to simple and physically visual expressions by
using the natural small parameter ω/εR for a resonance-
tunnel diode. Indeed, the smallness of frequency ω in
comparison with the energy εR is inherent in a generator
based on a resonance-tunnel diode.

In order to carry out this transformation, we present
the quantities γn = An + Bn and δn = An – Bn in the form
of the sums of components

(14)

We set p = pn in the exponents of the components 

and  and form the difference between the exact and

isolated expressions in  and . Compensating

a number of terms in  and  and canceling out the
determinant in the denominator, we obtain

∆0 2 β1–( ) 2 β2–( ) 2ipa–( ) β1β2–exp=

≈ 2

Γ1Γ2

---------------- iδ Γ–( ),

δ ε εR, Γ– Γ1 Γ2, Γ j+
2 p3

aα j
2

---------,= = =

ψn An i pnx( ) Bn i pnx–( )exp+exp=

–
xU
ωn

-------ψ0
2U

ωn
2

-------ψ0' ,–

An∆n qn 2 β1n–( ) 2i pna–( ) β2nq̃n,+exp=

Bn∆n qnβ1n 2 β2n–( )q̃n, ωn+ nω,–= =

∆n
2

Γ1Γ2

---------------- i δ nω+( ) Γ–[ ] ,≈

qn
2Uip

ωn
2

------------- A 2 β2n–( ) β2nB
ωn

2

4 p4
-------- A B+( )+ + ,=

q̃n
2Uip

ωn
2

------------- β1nA 2 β1n–( )Be
2i pna–

+–=

+
ωn

2

4 p4
-------- A Be 2ipa–+( ) e

i p pn–( )a
.

γn γn
1( ) γn

2( ) γn
3( ),+ +=

δn δn
1( ) δn

2( ) δn
3( ).+ +=

γn
1( )

δn
1( )

γn
2 3,( ) δn

2 3,( )

γn
1( ) δn

1( )
JOURNAL OF EXPERIMENTAL 
(15)

Note that  and  diverge for ω  0. The
remaining terms are found to be finite in the low-fre-
quency limit and are given by

(16)

(17)

In these equations, we have omitted small terms of the
order of ω/εR and Γ/εR. We will consider the most inter-
esting case of a quantum well with “powerful” barriers
in which Γ/εR ! 1 and p/αj ! 1. The remarkable prop-
erties of quantum wells are realized just in this limit.
Taking into account the smallness of ω/εR and Γ/εR,
Eq. (16) can be finally transformed as

(18)

It can be seen that the expression  and (in accor-

dance with Eq. (17))  are finite for ω  0.

Partition of γn and δn (and, hence, of An and Bn)
allows us to write the wave function ψn(x) in a simpler
form

(19)

Indeed, it can be shown that the expressions in ψn(x)
diverging for ω  0 neutralize each other. Thus, the
wave functions ψn(x) are finite in the low-frequency
limit and assume the following values at the boundaries
of the well:

(20)

It should be noted that the functions ψn(x) diverge for
ω  0 in the publications [4–6] mentioned above. At
the same time, it can be verified directly (by setting
ω = 0 in Eq. (1) from the very beginning) that the func-
tion ψn  must not have singularities for ω = 0. It is quite
possible that this circumstance is responsible for the
divergence of the frequency dependences of polariza-
tion currents.

Using Eqs. (9) and (20), we obtain the following lin-
ear-approximation criterion for ω ! Γ: Ua/Γ ! 1. This
criterion differs significantly from the corresponding
criterion in [4–6]: Ua/ω ! 1. This difference is associ-
ated with the behavior of ψn(x) for ω  0.

γn
1( ) 2Uip

ωn
2

-------------δ0, δn
1( ) 2Uip

ωn
2

-------------γ0.= =

γn
1( ) δn

1( )

γn
2( ) 4Uip

ωn
2∆n

------------- β1nAzn 2 β1n–( )Be
2i pna–

zn*+[ ] ,–=

δn
2( ) γn

2( ) β2n 1–( ), zn ipa i pna–( )exp 1.–= =

γn
2( ) 4Ua2α1A

p2∆n

-----------------------.–=

γn
2( )

δn
2( )

ψn γn
2( ) pnxcos iδn

2( ) pnx.sin+=

ψn 0( ) ψn a( ) γn
2( ).= =
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3. RF RESPONSE
IN A RESONANCE-TUNNEL DIODE

To begin with, let us find the active component of
the current Jc. Substituting ψ0 from Eq. (9) and ψn from
Eq. (19) into Eq. (4), we obtain

(21)

(22)

The contribution to the current (x) comes from
four types of components: field-induced transition
between states with wave functions sinpx and sinpnx

with the weight ; between cospx and cospnx with

the weight ; between sinpx and cospnx with the

weight ; and, finally, between cospx and sinpnx

with the weight . It should be noted that the term
in the current, which is proportional, for example, to
sinpxcospnx, appears as a result of a transition between

the states sinpx and sinpnx since  ∝  (ψ*ψ' – c.c.).
This term corresponds to a “laser”-type transition since
the wave functions sinpx and sin pnx coincide with the
eigenfunctions of an isolated quantum well. True, in the
case under investigation, the momenta p and pn differ
by a small quantity ωn/2p. (For a laser, we have p – pn =

±π/a). Since the coefficients δ0 ∝  βγ0 and  ~ β ,
the contribution from this term is larger as compared to

that from the second term  (between cospx and
cospnx ) in the parameter α2/p2 @ 1.

The terms between the “mixed” states (typical of the
current state in a resonance-tunnel diode and vanishing
in an isolated well) sinpnx and cospx, sinpx and cospnx

appear with approximately equal weights  and

, which permits the effective interference
between these terms. It is precisely these transitions

that lead to the peculiar frequency dependence (x)
and to exceptional sensitivity of current to the differ-
ence α2 – α1 between the “powers” of the emitter (α2)
and collector (α1) barriers of the resonance-tunnel
diode.

Jn
c x( ) ep Kn c.c.+( ){=

× pnx pxsinsin pnx pxcoscos+[ ]

– i Fn c.c.–( ) px pnxcossin pnx pxcossin–[ ] }

≡ ep Kn c.c.+( ) p pn–( )xcos{

– i Fn c.c.–( ) p pn–( )xsin } ,

Kn δ0*γn
2( ) γ0*δn

2( ), Fn+ δ0*δn
2( ) γ0*γn

2( ).+= =

Jn
c

δ0*δn
2( )

γ0*γn
2( )

δ0*γn
2( )

γ0*δn
2( )

Jn
c

δn
2( ) γn

2( )

γ0*γn
2( )

δ0*γn
2( )

γ0*δn
2( )

Jn
c
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Substituting Eq. (18) into Eq. (22), we arrive at the
expression for Kn ,

(23)

(24)

disregarding, as before, the terms of the order of ω/εR.
Here, ∆0 is defined by Eq. (10), and ∆01 is a “truncated
determinant”:

(25)

The function ϕ from (24) describes the superposition of
the above-mentioned “nonlaser-type” transitions and
strongly depends on the differences δ = ε – εR and α2 – α1.
Here, εR is the energy of the resonance level, which is
determined from the equation

(26)

In the vicinity of the resonance and for Γ/εR ! 1, the
function ϕ can be presented in the form

(27)

For α2 = α1 = α, expression (23) is transformed to the
corresponding expression for Kn, derived in [10].

Let us first consider the situation when α2 = α1. It
can be seen from Eq. (27) that, at the resonance (when
ε = εR), we have ϕ = 0. This means that the contribu-

tions to current  for cos(p – pn)x (which are virtually
independent of the coordinate and are the main contri-
butions for ω ! Γ) are equal to zero separately (both

 and ). If δ ≠ 0, both currents  and  differ
from zero and have the same sign. It will be shown
below that this corresponds to emission for δ > 0 and
absorption for δ < 0. However, it is usually assumed

that  leads to absorption and  to emission
[4−6, 8], and the resultant sign of the response is deter-
mined by their difference. By the way, this made it pos-
sible to obtain finite expressions for current for ω  0
in [4−6], although the wave functions diverge (see Sec-
tion 2).

On the other hand, in accordance with Eqs. (23),
(27), and (18), the signs of the low-frequency contribu-

tions to  are identical and are determined by the
interference of “nonlaser-type” transitions, which
depends on the resonance conditions (i.e., on δ).

Let us now consider the effect of the boundaries. It
follows from Eq. (27) that the difference between α1
and α2 leads to the emergence of an imaginary correc-

Kn
q

∆0*
------γn

2( )ϕ ,
ϕ
∆0*
------ β2n A* B*+( ) 2B*,–= =

ϕ β2 2 β1+( ) 2ipa( ) β1β2– 2β1+exp=

=  ∆0* 2∆01* ipa( ),exp–

∆01 2 β1–( ) ipa–( ) β1 ipa( ).exp+exp=

Re∆0 εR( ) 0.=

ϕ –
iα1α2aδ

p3
-------------------- 2

α1

α2
-----

α2

α1
-----– 

  .+=

Jn
c

J+1
c J 1–

c J+1
c J 1–

c

J+1
c J 1–

c

Jn
c
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tion to δ, which is a function of the difference α1/α2 –
α2/α1:

(28)

Substituting the values of  from Eq. (18) and ϕ
into Eq. (22), we arrive at the following expression for
Kn + c.c.:

(29)

Similarly, we can find the expression for “laser-
type” transitions

(30)

ϕ 2i

Γ1Γ2

---------------- δ i Γ1Γ2
α1

α2
-----

α2

α1
-----– 

 + .–=

γn
2( )

Kn c.c.+
4Ua

∆0
2Γ1

3/2Γ2
1/2

------------------------------ δ 1
∆n

----- 1
∆n*
------+ 

 –=

+ i Γ1Γ2( )1/2 α1

α2
-----

α2

α1
-----– 

  1
∆n

----- 1
∆n*
------– 

  .

Fn c.c. = 
8iUp

∆0
2Γ1

3/2Γ2
1/2

------------------------------ 1
∆n

----- 1
∆n*
------– 

  ,–
JOURNAL OF EXPERIMENTAL 
which depends on the difference α2 – α1 only slightly.

We can also prove that the contribution to  from
(Fn − c.c.) gives absorption for n = +1 and emission for
n = –1 in accordance with the conventional concepts.

Substituting ∆n and ∆0 into Eqs. (29) and (30) and
summing up the results, we find the final expression for

the current Jc(x) = (x) + (x) and the reduced cur-
rent Jc:

(31)

Jn
c

J+1
c J 1–

c

Jc x( )
e2EaQΓΓ 2δ

δ2 Γ2+( ) δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]
------------------------------------------------------------------------------------------------–=

× δ2 Γ2 ω2+ +( )
α1

2 α2
2–

α1
2 α2

2+
------------------ δ2 Γ2 ω2–+( )–





× ω
2 p
------xcos

4ωp
a

---------- π
2 p
------xsin–





,

(32)Jc 1
a
--- Jc x( ) xd

0

a

∫
e2EaQΓΓ 2δ Γ2 δ2+( )

Γ1 Γ2–
Γ1 Γ2+
----------------- Γ2 δ2 ω2–+( )+

Γ2 δ2+( ) δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]
---------------------------------------------------------------------------------------------------------------------, Q– pq2.= = =
The contribution from the “laser” term (Fn – c.c) to

the reduced current , which is proportional to ω2, is
completely compensated by the corresponding term
(Kn + c.c). Consequently, the resultant expression (32)
is of interference origin and stems from (Kn + c.c).

For identical barriers Γ1 = Γ2 = Γ/2, we arrive at the
result which was obtained for the first time in [10]:

(33)

(after correcting the misprint: the denominator of
expression (33) must contain 2 instead of 4). It can eas-
ily be seen that the current Jc(δ, ω) does not change its
sign in the entire frequency range. In the low-frequency
limit, ω ! Γ, the quantity Jc  can be expressed in terms
of the static differential conductivity:

(34)

(35)

where J0(δ) is the static resonance current.
It was shown in [10] that, in addition to the conven-

tional mode in which Jc  has a peak for ω = 0 (and for

Jn
c

Jc e2EaQΓ2δ
2 δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]
-----------------------------------------------------------------------------–=

Jc δ 0,( ) e2Ea
2

------------
dJ0 δ( )

dδ
----------------,=

J0 δ( ) QΓ2

2 δ2 Γ2+( )
-------------------------,=
δ < Γ), the so-called quantum mode also exists for δ > Γ.
It corresponds to the peak of Jc  at a frequency ωm:

(36)

Emission (absorption) occurs owing to quasi-resonant
transitions between the states with energies ε and εR. It
follows hence that for identical barriers (α2 = α1), las-
ing is possible at frequencies considerably exceeding Γ
if we choose the electron energy (an analogue of the
constant bias voltage) ε = εR + ω outside the region of
the maximum negative differential conductivity (where
δ < Γ).

Note that the results described above were con-
firmed to a high degree of accuracy by the numerical
solution of the system of equations (5)–(8) and also
directly by the solution to the time-dependent equation (2)
in [12–14].

In the case of different barriers (Γ1 ≠ Γ2), the fre-
quency dependence of current Jc may change radically.
For example, for Γ1 > Γ2, the current changes its sign
for a certain value of frequency ω0:

(37)

At the same time, the “quantum” mode is realized for
any values of Γ1 and Γ2. In particular, for Γ1 @ Γ2, the

ωm
2 δ2 Γ2, δ Γ.>–=

ω0
2 2Γ1 δ2 Γ2+( )

Γ1 Γ2–
-------------------------------.=
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current peak is attained at the frequency  = 2(δ2 +
Γ2) – (δ4 + 10δ2Γ2 + 9Γ4)1/2. (If δ @ Γ, we have ωm ≈ δ.)

If the opposite inequality Γ1 < Γ2 is satisfied, the cur-
rent is preserved for any frequency value. In the limit-
ing case, when Γ2 @ Γ1, the frequency dependence
becomes unusual for a resonance-tunnel diode:

(38)

Indeed, for ω  0, the current vanishes and cannot be
expressed in terms of differential conductivity. Only the
quantum mode remains, the peak of Jc(δ, ω) being
attained for frequency

(39)

for any δ > 0.
Let us also determine the reactive current. After

some calculations, we obtain

(40)

and the following expression for the reduced reactive
current:

(41)

For Γ1 = Γ2, this expression is transformed into the cor-
responding expression derived in [10] after the appro-
priate sign reversal.

4. COMPARISON WITH THE RESULTS 
OBTAINED BY OTHER AUTHORS

It was proved by a detailed analysis in [10] and men-
tioned above in the Introduction that no unified
approach to the limitation of the lasing frequency of a
resonance-tunnel diode has been worked out. Accord-
ing to the conventionally used hypothesis (see, for
example, [4, 8]), the lasing frequency (i.e., the fre-
quency at which the current reverses its sign and the
gain vanishes) is limited by a quantity equal to Γ.

This concept is based, among other things, on the
results of theoretical works [1–4] in which the
Schrödinger equation was solved as well as on the
results of publications using the tunnel Hamiltonian
method [5, 6].

Unfortunately, it is difficult to carry out a direct
comparison with the results of numerical calculations,
which are themselves contradictory (see, for example,
[8, 17]). It was mentioned by us earlier in Section 3 that
a possible reason for the sign reversal of the response in
[1–3] is the asymmetry of the barriers due to the bias
voltage.

ωm
2

Jc e2EaQΓ2
2δω2

Γ2 δ2+( ) δ ω+( )2 Γ2
2+[ ] δ ω–( )2 Γ2

2+[ ]
------------------------------------------------------------------------------------------------.–=

ωm
2 δ2 Γ2+=

Jn
s x( ) ep i Kn c.c.–( ) p pn–( )xcos[=

+ Fn c.c.+( ) p pn–( )xsin ]

Js e2EaQΓ2δω δ2 ω2– 3Γ2– 4 Γ2
2 Γ1

2–( )+[ ]
2 Γ2 δ2+( ) δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]
----------------------------------------------------------------------------------------------------.–=
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It is important, in our opinion, to carry out a compar-
ison with the theoretical results obtained analytically in
the simplest formulation of the problem in order to
eliminate the effect of nonessential complications. In
doing so, we assume (as before) that the electron distri-
bution function for the emitter is δ-shaped; i.e., elec-
trons are assumed to be monoenergetic with energy ε.
Then we carry out a comparison for other distribution
functions.

In respect of the formulation of the problem, the
work by Lju [4], who considered an analytical model of
a resonance-tunnel diode on the basis of the
Schrödinger equation, is the closest to our research (see
also the references to previous publications cited in
[4]). However, in contrast of the present work and [10],
Lju [4] could not find an explicit solution of the
Schrödinger equation in the quantum well region. He
describes the wave function at the collector boundary
(x = a) in the form

(42)

where t0 and t±1 are the amplitudes of electron transition
through a well in zero field and in the first order in
the field, respectively (analogues of our ψ0 and ψ±1).
The structure was assume to have identical values of
Γ1 = Γ2.

The amplitudes were determined by summing the
transmitted and reflected waves (the Fabry–Perrot reso-
nator model) and were found to be

(43)

These amplitudes differ considerably from our ampli-
tudes (see Eqs. (18) and (20))

(44)

which were calculated according to the exact solution
of the Schrödinger equation (2) with the boundary con-
ditions (6) and (8). The basic difference lies in the
divergence of t±1 for ω  0. The expression for cur-
rent Jc from [4] has the form

(45)

This expression implies the sign reversal for  = δ2 +
Γ2, the existence of the limiting frequency, and the
absence of the quantum mode. The reasons for the dif-
ference between this relation and (33) are apparently
associated with the approximations used in [4] (see for
details the analysis in [10]). The remaining theoretical
publications using the Schrödinger equation and known

Ψ t0e ipx– t+1e
i p+1x– iωt–

t 1– e
i p 1– x– iωt–

+ +[ ]=

× iεt
iV ωtsin

ω
--------------------– 

  ,exp

t 1±
2 V

2ω
------- 

 
2 Γ2 δ ω/2±( )2 Γ2+[ ]

δ2 Γ2+( ) δ ω±( )2 Γ2+[ ]
-----------------------------------------------------------.=

ψ 1± a( ) 2 γ±
2( ) 2 Va( )2Γ 2

16 δ2 Γ2+( ) δ ω±( )2 Γ2+[ ]
-----------------------------------------------------------------,= =

Jc epVΓ2δ δ2 Γ2 ω2–+( )
Γ2 δ2+( ) δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]

------------------------------------------------------------------------------------------------.–=

ω0
2
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to us do not give closed expressions for currents Jc

and Js.

In a large number of theoretical publications
devoted to the calculation of the rf response in a reso-
nance-tunnel diode, the method of tunnel Hamiltonian
is used (see, for example, [5, 6] and the references cited
therein).

The expression for current i2 (analogue of Jc)
derived in [5, 6] for a δ-shaped electron distribution
function has the form

(46)

In deriving this expression, we assumed that a varying
field is applied only to the emitter. It should be noted
above all that the response i2 weakly depends on the dif-
ference Γ1 – Γ2 and is similar to expression (45) from
[4] for Γ1 = Γ2. It should be recalled that it was assumed
in [4] that the field is applied to the entire well.

In order to carry out a comparison with [5, 6], we
solved the Schrödinger equation (2) with the local
potential

(47)

The expression for the reduced current has the form

(48)

It can be seen that, in contrast to Eqs. (46) and (32), the
current does not reverse its sign in the entire frequency
range and weakly depends on the difference Γ1 – Γ2. In
addition, current (48) is of the order of smallness Γ/εR

as compared to expressions (46) and (32). The reason
for this is obvious and lies in the following. An increase
in function ψn by the factor εR/Γ due to the resonance
in the well with the field applied to the entire well is
absent if the field U(x, t) in (47) is local. Thus, in the
tunnel Hamiltonian method, the response weakly
depends on U(x, t) in contrast to the exact result. In
addition, note that the wave functions diverge as ω  0
both in [5, 6] and in [4].

Let us also compare the responses for the electron
energy distribution with the quasi-equilibrium function
f(ε/T) (T is the temperature). In the high-temperature
limit, when ω, Γ ! T, we obtain the following expres-
sion instead of (46) for Γ1 = Γ2 = Γ/2:

(49)

i2

2e2VΓ1Γ2δ δ2 Γ2 ω2–+( )
Γ2 δ2+( ) δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]

------------------------------------------------------------------------------------------------.–=

U x t,( ) Uδ x( ) ωt.cos=

Jc

=  –
8U Γ1Γ2( )3/2δ/ p δ2 Γ2 ω2 3Γ /2Γ1 1–( )+ +[ ]

a Γ2 δ2+( ) δ ω+( )2 Γ2+[ ] δ ω–( )2 Γ2+[ ]
-----------------------------------------------------------------------------------------------------------.

i2 e2 f εR( )∂
ε∂

---------------- VΓ3π
4 ω2 Γ2+( )
--------------------------.=
JOURNAL OF EXPERIMENTAL 
It can be seen that the amplification is limited by the
frequency ω ≈ Γ. Carrying out a similar integration for
Eq. (33), we obtain

(50)

i.e., there is no limitation on the amplification in fre-
quency. Apparently, the above contradictions are asso-
ciated with the fact that the interference phenomenon
and the open boundary conditions are taken into
account incorrectly in the tunnel Hamiltonian method.
Indeed, this method assumes the existence of a reso-
nance level, and the jump between the well and the
emitter (collector) is introduced phenomenologically.
In fact, the tunnel Hamiltonian method described inco-
herent tunneling. The proof of this statement (at least,
for ω < Γ) is given in [18].

5. CONCLUSIONS

The expressions obtained for the polarization cur-
rents for asymmetric barriers make it possible in princi-
ple to explain consistently the experimentally obtained
results as well as the results of numerical and analytical
solution of the Schrödinger equation. Indeed, we can
assume that the asymmetry in the barriers appeared in
[1–3] and in [7] due to a constant electric bias field,
which lowers the collector barrier (i.e., increases the
value of Γ). A detailed comparison requires special
computations and experiments with controllable Γ1 and
Γ2, i.e., with real values of the emitter and collector bar-
riers. It should also be interesting to verify the amplifi-
cation in a resonance tunnel diode for Γ2 @ Γ1, when
the low-frequency amplification must tend to zero as
ω2. Obviously, this result will remain valid for any form
of the electron distribution function f(ε). It is also
important to emphasize that the quantum lasing mode is
preserved for all values of Γ1 and Γ2. The frequency for
which the amplification satisfies the quasi-resonance
conditions ωm ≈ δ most closely is equal to ω @ Γ. Thus,
according to our earlier results [12, 13], high lasing
powers can be attained for ultrahigh frequencies.

A confirmation of the results predicted by the theory
would serve as proof of a specific emission and absorp-
tion mechanism in structures with coherent resonance
tunneling, which is connected with the purely quantum
phenomenon of superposition of various types of radi-
ative transitions.

As regards the tunnel Hamiltonian method, the cor-
rectness of its application for computing the rf response
in resonance-tunnel-diode-type systems seems to be
disputable. These systems are exceptionally sensitive to
the boundary condition, the actual form of the variable
field potential, and the correct description of the spatial
quantization phenomenon. The tunnel Hamiltonian
method is essentially phenomenological since the reso-
nance level and the boundary conditions (replaced by
the electron jump) are postulated.

Jc e2EaQΓπ
4

------------------------
f εR( )∂

ε∂
----------------;=
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Abstract—The effect of a strong magnetic field (B ≤ 55 T), applied perpendicularly to the basal plane of a
Bi2Sr2CaCu2Oy (BSCCO-2212) crystal with Tc > 91 K, on the out-of-plane electric conductivity of the sample
was studied under the conditions of controlled ohmic crystal response and negligibly small induction overheat-
ing. The character of the field and temperature dependences of the sample resistance was studied in the region
of the resistive state formation, in the flux flow regime, in the normal state, and under the conditions of super-
conductivity suppression by a strong magnetic field. Regular methods are proposed for estimating the interlayer
resistance in the absence of superconductivity (RN(0, T)) and the critical field for a superconducting nucleus
formation (Hc2(T)). The results show a satisfactory agreement with published data. In particular, the Hc2(T/Tc)
estimates exhibit quantitative correlation in a broad range of dopant concentrations; the Hc2(T) dependences
determined by the proposed regular method using the plane and interlayer resistances of BSCCO-2201 show
qualitative agreement. It is demonstrated that a self-consistent description of the whole body of experimental
data can be provided within a restricted class of theoretical models. A new interpretation of the origin of the
“quasiparticle” resistance of BSCCO-2212 is proposed, and it is established that the experimental Hc2(T) curve
can be satisfactorily described in terms of a one-parametric dependence predicted for the second critical field
in the bosonic limit. An alternative explanation of the results, based on the theory of interlayer tunneling of the
Cooper pairs and quasiparticles in a layered superconductor with d coupling, is analyzed in detail, and it is
shown that the main conclusions of this model contradict the observed experimental facts. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

The H–T diagram of cuprate high-temperature
superconductors (HTSCs) combining high critical tem-
peratures Tc of the superconducting transition and small
coherence lengths ξ significantly differs from that of
the “conventional” type II superconductors. The former
phase diagram contains, in addition to the lines of crit-
ical fields Hc1(T) and Hc2(T), a line corresponding to the
so-called irreversibility field Hirr(T), which lies far
away from the upper critical field Hc2(T) and separates
the region of existence of a vortex lattice and a non-
damping supercurrent from a large domain of fields and
temperatures featuring the state of a vortex fluid with
ohmic response. The irreversibility field, like other fea-
tures of the vortex system, was thoroughly studied both
experimentally and theoretically for various HTSCs
[1]. The experimental data indicate, in particular, that
the lattice melting in perfect crystals of Bi2Sr2CaCu2Oy

(BSCCO-2212) proceeds as a first-order phase transi-
tion [2, 3]. 

In contrast to the Hirr(T) value, the magnitude of the
upper critical field in HTSC and the character of its
temperature variation are still under discussion. For
example, some researchers believe that this field is not
manifested experimentally because of the fluctuation
1063-7761/02/9404- $22.00 © 20802
effects [4, 5]. This notion is usually justified by the
character of the magnetic field effect upon the super-
conducting transition smearing. As is known, a mag-
netic field applied to a conventional type II supercon-
ductor shifts the transition curve as a whole, while the
initial part of the temperature dependence of magneti-
zation is well approximated by a linear relationship,
M(T, B) ∝  Hc2(T) – B, thus admitting the direct mea-
surement of Hc2. In contrast, the experiments with
HTSC cuprates reveal a pronounced “rounding” of the
curves, which increases with the field. Moreover, for
the most anisotropic compounds such as BSCCO-2212,
it was established that the M(T) curves measured in the
mixed state possess a common point of intersection
(M*, T*) in a broad range of magnetic fields (10–3 T <
B < 5 T) [6]. 

A satisfactory character of the approximation of a
fragment of the experimental M(T) curve provided, in a
narrow temperature interval near Tc, by a three-para-
metric relationship predicted within the framework of
the Bardeen–Cooper–Schrieffer (BCS) theory for a
fluctuation contribution [7] to the magnetization of a
layered quasi-two-dimensional superconductor in the
normal state is frequently considered as direct evidence
for adequacy of this model. Based on this opinion, most
of the known estimates for Hc2(0) were obtained from
002 MAIK “Nauka/Interperiodica”
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an analysis of the fluctuation contribution to the magne-
toresistance and magnetization in the vicinity of the
critical temperature [6, 8, 9]. At the same time, it was
noted [6, 8, 9] that the coefficients of such an approxi-

mation ( (0), (0), and Tc(H)) turn out to be field-
dependent, so that each curve corresponds to an indi-
vidual set of parameters; the values reported usually
correspond to selecting a certain field, typically about
10–15 kOe. This choice is probably determined by the
possibility of matching to the results of extrapolation
[10, 11] of the Tc(H) curve at Tc (obtained in the course
of the above analysis) to zero temperature. Such a
matching procedure is very sensitive to the value of Tc0
(the transition temperature in a zero field) and requires
this temperature to be overstated by 3–5 K as compared
to the measured value (see, e.g., [8]). 

Moreover, it was established for a large number of
compounds representing various classes of HTSC
cuprates that the results of a consistent analysis of the
fluctuation corrections to the magnetization [12], ther-
mal conductivity [13], and resistivity [14] contradict
the BCS theory underlying all variants of the aforemen-
tioned analysis—both classical and those specially
adapted to features of the HTSC materials studied [7,
15, 16].1 For example, in a most thorough (to the
author’s knowledge) investigation of the magnetization
of BSCCO-2212 crystals [6], the correlation lengths
ξab(0) and ξc(0) turned out to be on the order of the lat-
tice parameter, the Hc2(0) value proved to be close to or
higher than the theoretical paramagnetic threshold, and
the asymptotic dependences of Hc2(  exhibited

a significantly nonlinear character in that very temper-
ature interval where the best agreement with the theory
(predicting the linear dependence) could be anticipated.
Thus, the discrepancies between the results of experi-
mental data treatment and theoretical premises appar-
ently indicated inapplicability of the BCS theory to
description of the properties of HTSC cuprates. 

This conclusion is corroborated by the results of
experimental determination of the upper critical field
from variations of the magnetoresistance. By analogy
with conventional superconductors, Hc2 was estimated
from a change in the superconducting transition tem-
perature caused by an applied magnetic field. The tem-
perature dependence of Hc2 determined for a
Tl2Ba2Cu1Oy crystal exhibited a negative curvature in a
record-wide temperature interval, 10–3 ≤ T/Tc ≤ 1 [17],
which disagrees with predictions of both the BCS the-
ory and the tight binding model. Later [18–20], the
same anomalous character of the Hc2(T) curves was
reproduced in overdoped representatives of some other
groups of HTSC cuprates. It should be noted that, in
order to increase the experimentally accessible T/Tc

1 When applied to the interpretation of experimental data, the
model proposed in [15] requires (besides leading to the afore-
mentioned discrepancies) significantly (by approximately 30%)
overstated values of the interlayer distance.

ξab
2 ξc

2

T ) T Tc→
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
range, these experiments were performed on the sam-
ples with suppressed critical temperature, although the
employed method of doping still allowed the phases
with different Tc to coexist. As was theoretically
demonstrated using an idealized model [21], this
inhomogeneity can, in principle, lead to analogous
experimental dependences in the BCS theory as well.
Such a scenario was a priori inapplicable to interpre-
tation of the results obtained with optimum doped
crystals [22]; however, a large number of assump-
tions and complexity of a multistep empirical extrap-
olation procedure employed in [22] required at least
a more direct verification. 

An attempt at such a verification is made in this
study. Based on an analysis of the temperature-induced
transformation of the magnetoresistance of a BSCCO-
2212 crystal, the character of the sample magnetoresis-
tance is determined in the vortex (fluxoid) flow regime,
in the normal state, and under the conditions of super-
conductivity suppression by a strong magnetic field.
From this analysis, the contribution of the supercon-
ducting state to the magnetoresistance at T < Tc0 was
separated, the temperature dependence of the charac-
teristic fields (identified with the field of formation of a
superconducting nucleus and the irreversibility line)
was determined, and the interlayer resistance in the
absence of superconductivity was estimated. The
obtained data show a satisfactory agreement with the
results of independent investigations. A comparison to
the theory allowed the class of models applicable to
description of the properties of BSCCO-2212 crystals
to be significantly reduced. The results presented below
were partly reported in [23–25]. A systematic character
of the present analysis, based on the data obtained for a
large number of crystals, suggests that the results reflect
the properties of the compound studied, rather than the
individual features of particular samples. The field of a
superconducting nucleus formation was evaluated
using the point of intersection of the approximated
curves representing the asymptotic behavior of the
sample magnetoresistance in the regions of H ! Hc2
and H @ Hc2, which eliminates to a certain extent the
uncertainty related to the fluctuational smearing of the
transition. 

The paper is organized as follows. The Introduction
is followed by Section 2, describing the methods of
measurement using pulsed magnetic fields. The main
attention is devoted to the resistance measurements, the
problem of the sample heating by the eddy currents,
and the methods of controlling linearity of the system
response. For a convenient presentation of the experi-
mental results in Section 3, data on the properties of
samples in the normal state, the features of the resistive
response formation, and the flux flow region are
described in separate subsections. Section 4 is devoted
to a comparison of the obtained results to the published
data, both experimental and theoretical; the final part of
this section addresses the experimental verification of
SICS      Vol. 94      No. 4      2002
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applicability of the theory of interlayer transport in a
superconductor featuring nontrivial coupling. 

2. EXPERIMENTAL METHODS 

2.1. Samples and Contacts

We have studied the samples of crystals with a stoichi-
ometric composition Bi2Sr2CaCu2Oy (BSCCO-2212)
possessing Tc > 91 K. The high critical temperature,
conventionally related to an optimum level of hole dop-
ing [26], was provided by partially substituting yttrium
for calcium in the crystal lattice sites [27] immediately
in the course of solid state synthesis.2 In order to reduce
the crystal overheating by the induction currents gener-
ated in a pulsed field, the experiments were performed
on small samples cut from large crystals selected by the
criteria of macroscopically homogeneous composition
and the absence of blocks. The main results were
obtained for a series of seven samples with thicknesses
(along the c axis) from 0.8 to 5 µm. The samples were
prepared by mechanically splitting large crystals along
the (0  0  1) cleavage plane, followed by cutting almost
rectangular fragments with dimensions in the basal
plane varying from 26 × 28 to 32 × 60 µm2. 

The current and potential leads were glued to each
freshly cleaved plane ab of the samples with the aid of
a DuPont 6838 conducting composite. The geometric
misfit of the contact areas on the opposite crystal faces

2 This method eliminated the problem of the sample surface degra-
dation unavoidably encountered in the conventional method,
whereby the doping level is adjusted to compensate for a change
in the oxygen concentration as a result of prolonged high-temper-
ature annealing of the crystal.
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Fig. 1. Typical temperature dependences of the out-of-plane
resistance for three BSCCO-2212 crystals measured in a
zero magnetic field. 
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did not exceed 5 µm. Upon the subsequent short-time
(not exceeding 5 min) annealing of the conducting
composite at 500–520°C in the oxygen flow, the contact
resistance was 1–10 Ω at room temperature and exhib-
ited a metal-type behavior with the temperature varia-
tion, with a (1.5–2.5)-fold drop on the sample cooling
from room temperature to liquid nitrogen temperature.
The crystal position relative to the quartz substrate was
fixed with the aid of the current and potential leads made
of a 5-µm-thick gold wire. This method ensured a quite
satisfactory fixation of the samples during measurements
in the pulsed magnetic field: each sample admitted 200 to
500 pulses (about quarter of which exceeded 50 T in mag-
nitude) without significant changes in the contact resis-
tance or any sign of mechanical displacement. 

In the preliminary stage, all crystals were character-
ized by the temperature dependence of the out-of-plane
resistance in a zero magnetic field. These potentiomet-
ric measurements were conducted using a standard ac
bridge technique at 25–77 Hz; the heating/cooling rate
was selected so as to ensure that the maximum temper-
ature difference between the control gauge and the sam-
ple did not exceed 10 mK. The crystals selected for
experiments in the pulsed fields exhibited coinciding
R(T) curves measured upon commutation of the con-
tacts; the character of the temperature dependence and
the values of the out-of-plane resistance (ρc(100 K) ≈
7−15 Ω cm) showed evidence of the absence of shunts.
The temperature of the superconducting transition in a
zero field (Tc0) was determined as the temperature cor-
responding to a resistance drop by four orders of mag-
nitude as compared to the value at 100 K. The sample
crystals possessed close Tc0 values varying within
91−93.3 K. The temperature widths of the supercon-
ducting transitions were also slightly varying, not
exceeding 1 K. At the same time, possessing qualita-
tively similar shapes, the R(T) curves of various crystals
exhibited a quantitative scatter within the limits indi-
cated by solid curves in Fig. 1. 

2.2. Method of the Crystal Resistance Measurement 
in a Pulsed Magnetic Field

The resistance measurements were performed for
the most part on the setup for low-temperature investi-
gations of the de Haas–van Alphen effect created at the
Bristol University (United Kingdom), specially
adapted for the potentiometric measurements in an
extended temperature range (1.4 to 350 K). The field
was generated by discharge of a high-voltage capacitor
bank (C ≈ 12 mF) via a liquid-nitrogen-cooled solenoid
coil with Rc(78 K) ≈ 20–25 mΩ and Lc ≈ 450–500 µH.
In order to increase the pulse duration (on reaching a
maximum current in the solenoid), the coil outputs
were shorted with an additional diode section. There-
fore, it was expected a priori that the field on the leading
(rise) and trailing (fall) fronts of the pulse would vary

according to the sinusoidal B = Bmaxsin(t/ ) andLC
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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Fig. 2. Experimental verification of the effect of induction overheating at T ≈ 25 K on the resistance of BSCCO-2212 crystals of
different area: (a) S ≈ 53 × 42 µm2, Bmax ≈ 10, 20, 36, and 50 T (indicated by arrows); (b) S ≈ 110 × 85 µm2, Bmax ≈14 and 46 T
(R* is the sample resistance at maximum of the curves). 
exponential B = Bmaxexp(–Rct/Lc) laws, where Bmax is
the field amplitude. The real pulse shape somewhat dif-
fered from that anticipated: the field variation on the
trailing front deviated from an exponential, and the
total pulse duration (on an 0.1Bmax level) depended on
Bmax in the zero approximation as Aexp(–Bmax/B0) with
B0 ≈ 29 T and a preexponential factor A of about 51 ms.
At the same time, the Bmax value produced a negligibly
small effect on the shape and duration of both the lead-
ing front (rise time, 3–3.5 ms) and the top plateau, where
the field was approximately constant (to within 0.02%)
over about 80 µs. All these deviations were probably
related to the Joule heating of the coil by current pulses,
which slightly change the inductance on the background
of a strong increase in the resistance. In order to provide
for a correct solution of this problem, the shape of each
B(t) pulse was experimentally determined by integrating
the signal taken from a probing coil; the absolute calibra-
tion was performed using the results of auxiliary measure-
ments of the quantum oscillations of magnetization in a
reference gold single crystal. 

A high rate of the field variation during the pulse,
together with unavoidably induced spurious signals and
mechanical vibrations, poses additional requirements
on the methods of measurements, setup design, and
sample dimensions. In the experiments, a directly
induced spurious signal in the measuring circuit was
eliminated in two steps. First, the spurious emf induced
by a field pulse was partly compensated by the signal
from a probing coil placed near the sample; finally, the
contributions were separated and the useful signal (with
a working frequency) was determined by a special
numerical processing of the data array. Obviously, the
induction currents are generated not only in the measur-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ing circuit, but in the sample as well, thus leading to an
additional heat dissipation in the sampler volume and
its overeating relative to the thermostat. In a rough
approximation, the overheating is proportional to
(S∂B/∂t)2/ρ, where ∂B/∂t is the rate of the field varia-
tion, S is the sample cross section area perpendicular to
the field, and ρ is the crystal resistivity in this plane. This
circumstance shows the need in using small samples. At
the same time, a quadratic dependence of the heating
effect on ∂B/∂t can be used both for experimentally evalu-
ating the degree of overheating in each particular experi-
ment [28] and for estimating the admissible sample
dimensions [24]. In the experiments reported here, the
induction heating of a crystal was systematically moni-
tored by comparing the R(B) curves measured at each tem-
perature using a series of pulses with various amplitudes
differing by a factor of 3–20. 

In a preliminary methodological stage, a series of
BSCCO-2212 crystals of various dimensions were
studied. These experiments revealed a strong increase
in the effect with decreasing temperature of the sample
and showed that the sample overheating induced by a
55-T pulse at T ≥ 10–15 K was below the experimental
detection threshold for a crystal area reduced to approx-
imately 2 × 103 µm2 (Fig. 2). These results determined
the upper admissible area of the sample, thus posing
restrictions on the dimensions of crystals selected for
subsequent investigations. It should be noted that, by
systematically using the results of measurements on
both (leading and trailing) fronts of the magnetic field
pulses, it was experimentally established that even the
absence of hysteresis on the curves does not ensure that
the induction overheating is negligibly small. This con-
clusion is illustrated in Fig. 2b showing virtually hys-
SICS      Vol. 94      No. 4      2002
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teresis-free plots with evident manifestations of the
overheating. 

The sample resistance was measured using a multi-
step procedure. Immediately during the magnetic field
pulse, the kinetics of the magnetic field variation rate
and the total voltage drop across the sample were mon-
itored, and the resulting dependence of the sample
resistance on the field was determined from these data
by the numerical lock-in detection of the useful signal
at a working frequency of the probing current. 

The main measurements in the pulsed magnetic
field were performed in the ac mode at a frequency
selected according to the characteristic times of the
field variation and the condition of minimum noise. The
amplified signal from the potential contacts of a sample
and a signal of the voltage drop in the probing coil were
simultaneously processed by a high-speed (500 kHz)
digital-to-analog converter with four independent
channels. The useful signal V(t) separated at a work-
ing frequency was determined at the stage of data pro-
cessing upon numerically approximating elements of
the experimental data array by a function of the type
V(t)sin(ωt + φ) + A(t).3 The resulting field dependence
V(B) was restored by combining these data with the
magnetic field pulse profile B(t). The method was
developed using the results of a series of preliminary

3 We used a modification of the standard software intended for an
analysis of the de Haas–van Alphen oscillations. As a rule, the
size of the sinusoidal fitting interval was selected so that a change
in the induction signal was approximated by a quadratic polyno-
mial. It was empirically established that five periods of the mea-
suring frequency ensure a satisfactory dynamic range at an
acceptable rms deviation (about 10–3R*, where R* is the resis-
tance at maximum of the curve, see Fig. 2). A relatively weak
sensitivity of the method with respect to the fitting interval size
was confirmed by perfect agreement between the R(B) curves
determined upon fitting over 1–12 periods. Coincidence of the
results of analysis using significantly different windows was used
in a regular manner for controlling the correctness of measure-
ments.
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Fig. 3. A schematic diagram of the working part of the cryo-
genic insert: (1) crystal; (2) plastic insert; (3) inner surface
of the Dewar vessel stem; (4) probing coil; (5, 6) heater
winding and frame, respectively; (7) heater-fit part of inset;
(8, 9) temperature sensors; (10) cotton tissue winding. 
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measurements employing calibrated RuO2-based film
microtransducers (Dale RSWP-575-40). 

The experiments were conducted in an all-glass cry-
ostat, the finger of which occurred on the axis of a sole-
noid coil through which the capacitor bank was dis-
charged to generate the magnetic field. A sample crystal 1
(see Fig. 3) was mounted on the edge of a plastic
(Melinex) cryogenic insert 2 placed into Dewar vessel
stem 3, so that the sample was located at a point of max-
imum field (to within 0.5 mm, which was ensured by
measuring a signal from probing coil 4 used as the posi-
tion sensor). The estimated accuracy of the sample ori-
entation with the ab plane perpendicular to the field was
not worse than 5°. The electric leads in the cryostat
were made of bifilar manganin wires tightly set inside
longitudinal channels sealed with an epoxy compound.
In designing and assembling the cryogenic insert, spe-
cial attention was paid to minimizing the area of wire
loops. Heating coil 5 was also wound by a bifilar man-
ganin wire onto a multilayer frame 6 made of insulated
copper foil, tightly fit to flange 7 of the cryogenic insert.
As a result, sample 1 and temperature sensors 8 and 9
were inside an additional shell providing for mechani-
cal protection and temperature leveling. A tight fit of
the plastic insert to the Dewar vessel stem 3 was
ensured by a cotton-tissue winding 10, which fixed the
sample position relative to the solenoid, decreased the
amplitude of vibrations, and provided for a thermal
insulation making the measurements possible in a tem-
perature range from 1.4 to 350 K in a cryostat filled
with liquid helium. 

The temperature was stabilized and monitored with
the aid of two resistance detectors (copper and Cernox,
with positive and negative temperature resistance coef-
ficients, respectively). The temperature sensors were
calibrated using a reference metrological thermometer
(Lake Shore) mounted in place of a sample. The active
temperature stabilization was provided by a standard
LTC-21 controller (Neocera).4 The temperature was
stabilized prior to each field pulse application, at a level of
not worse than 10–4; the temperature variation during the
pulse was not monitored, and the conclusion about a neg-
ligibly small instability is made taking into account a
strong temperature dependence of the crystal resistance R,
the absence of hysteresis on the V(B) curves, and the
results of checks for the induction heating.5 

4 This temperature controller model was chosen because its proces-
sor is inherently suited to work with thermometers of any type,
requiring no special interfaces. It was found a posteriori that the
temperature stabilization in the experimental range studied
requires a minimum adjustment of the control parameters.

5 The statement concerning coincidence of the experimental curves
is obviously valid to within the experimental uncertainty. In these
experiments, the upper limit of the possible temperature varia-
tion during a field pulse was estimated from a maximum scat-
ter of points on the RN(T) curve (see subsection 3.1). In fact,
the scatter of experimental data obtained with various samples
indicates that the temperature was constant with a relative accu-
racy of 5 × 10–3–5 × 10–4.
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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The experimental data presented below were
obtained using ac resistance measurements at a fre-
quency of 77.7 kHz; the working current densities used
for various samples slightly varied within the interval
j = 1–5 mA/cm2. Note that the lower boundary of the
current densities used in analogous measurements usu-
ally exceeds the values reported here by at least one
order of magnitude [29, 30]. The amplitude of the prob-
ing alternating current was selected within the ohmic
response of the crystals studied, which is confirmed by
applicability of the sinusoidal approximation to the
“raw” measured data. Linearity of the response was
additionally verified by the R(B) curves measured at
various fixed temperatures using four or five current
amplitudes differing by one to one and half orders
(sometimes up to two orders) of magnitude. The cur-
rent–voltage characteristics constructed by these data
could be approximated by a power law V ∝  Iγ with γ =
1.01 ± 0.01 for the fields within 0.1 T < B ≤ 55 T.
Finally, the conclusion concerning the ohmic response
of the crystals in the resistive state was confirmed by
direct measurements of the out-of-plane current–volt-
age characteristics in a constant magnetic field [31]. 

In order to compare the obtained data to the results
of low-frequency measurements and to evaluate the
frequency dependence of the resistance for each sam-
ple, a series of control measurements of the R(B)
curves were performed at several temperatures with
the probing current frequency varied from 7 to 111
kHz. The observed coincidence of these curves (to
within random scatter of the experimental points in
one experiment) and a quantitative correlation of the
results of dc and pulsed (low-field limit) measure-
ments were indicative of insignificant frequency
dependence of the resistance. 

3. EXPERIMENTAL RESULTS 

Figure 4 shows a typical dependence of the inter-
layer ohmic resistance of a BSCCO-2212 crystal on
the external field. As can be seen from these data, the
magnetoresistance below Tc contains contributions
with different signs, reflecting the influence of various
physical mechanisms. In a strong field, the system is
characterized by a quasilinear negative magnetoresis-
tance, while the region of weak fields shows an initial
power increase in the resistance followed by a linear
portion. The position of the maximum (B*) of this
curve, determined by the competition of two contribu-
tions, and the amplitude (R*) of this maximum
strongly increase with deviation from the critical tem-
perature Tc and, on the contrary, decrease on approach-
ing this point. A contribution related to the positive
magnetoresistance component drops sharply on reach-
ing the critical temperature of the crystal and com-
pletely disappears when the temperature increases
5−7 K above Tc. As the temperature grows further, the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
system exhibits a negative magnetoresistance in the
entire range of magnetic fields. 

Based on the results of these observations, it was
natural to consider the positive magnetoresistance as a
manifestation of the resistive state of the crystal, while
the contribution of the opposite sign was attributed to
properties of the normal state. It will be demonstrated
in the subsequent subsections that (i) within the frame-
work of these assumptions, one can separate strongly
temperature dependent contributions to the resistance
related to the normal and resistive state, and (ii) addi-
tionally assuming that the field dependence of the mag-
netoresistance in the normal state remains functionally
unchanged, it is possible to evaluate the temperature
variation of the upper critical field in BSCCO-2212
crystals and their resistance in the absence of supercon-
ductivity. In the following sections, a self-consistent
physical mechanism is described which is responsible
for the functionally different asymptotic behaviors
observed in the experiment. 

3.1. Longitudinal Magnetoresistance
in the Normal State

The principal purpose of this study was to evaluate
the upper critical field assuming that the formation of
superconducting nuclei leads to deviation of the mag-
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Fig. 4. Typical dependences of the out-of-plane resistance
of a BSCCO-2212 crystals on the magnetic field at T < Tc0.
The measurements were performed at T = 56.6 K using
three pulses with the amplitudes Bmax ≈ 2.7, 9.7, and 47 T.
The dash-dot and dash lines show approximations of the
magnetoresistance under the conditions of field-suppressed
superconductivity and flux flow, respectively; RN(0) and
Hc2 are estimates of the crystal resistance in the absence of
superconductivity and the upper critical fields, respectively,
obtained by extrapolation. The inset shows the same data
plotted against a double logarithmic scale; here, the dashed
line shows approximation of the initial (low-field) region by
a power law R(B) ∝  Bβ. 
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netoresistance from a behavior typical of the normal
state. It was suggested that the region of superconduct-
ing fluctuations is anomalously large; therefore, the
characteristics of the normal state were studied in an
extended temperature range. For each crystal, the field
dependence of the out-of-plane resistance was mea-
sured in the temperature interval of 300–350 K and
below; in all these experiments, the field was oriented
perpendicularly to the basal plane of the crystal and
parallel to the direction of the probing current (to within
an accuracy estimated as 5°). 

According to [23, 24], it was established that the
longitudinal magnetoresistance of the crystal studied is
negative and, to a first approximation, is satisfactorily
approximated by a linear relationship. A special exper-
iment showed that the effect is even with respect to
reversal of the external field direction. The scatter of
experimental data left a certain freedom in description
of the asymptotic behavior of the magnetoresistance as
B  0, admitting both linear and a quadratic approx-
imation [32].6 As the temperature decreased, the mag-
netoresistance increased more rapidly than did the
zero-field out-of-plane resistance RN(0). The normal-

ized slope S = – (0)∂R/∂B revealed an approxi-
mately 500-fold growth upon decreasing the tempera-
ture from 200 to 87 K, which can be satisfactorily
described by the relation S ∝  exp(T0/T) with T0 ≈
820 ± 70 K. 

6 Previously [32], the effect was reported to exhibit a quadratic
growth in a quasistationary field of up to 14 T, but the direct com-
parison or results is hindered both by a significant difference in
the levels of crystal doping and by the possibility that the depen-
dence observed in [32] was distorted by a systematic temperature
drift in the course of the field sweep.
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Fig. 5. Evolution of the normalized experimental plots of
R(B)/RN(0) constructed by the data measured both above
and below Tc0. Curves 1–5 refer to T = 56.6, 78.0, 90.05,
101.6, and 125 K, respectively. 
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It should be emphasized that, albeit the character of
temperature variation of the resistance was qualita-
tively the same for all samples, there were significant
differences in the absolute values of characteristics for
various crystals. Indeed, the normalized slope S exhib-
ited an almost fivefold scatter, while the estimated rela-
tive zero-field resistance growth ∆RN(0)/RN(0, 300 K)
showed a threefold change when the temperature
decreased from 300 to 50 K. These variations probably
reflect individual features of the microstructure of
samples. Taking into account that all crystals had very
close values of the critical temperature (Tc0 ≈ 91–93 K),
the observed experimental scatter is additional evi-
dence for the correctness of attributing the quasilinear
negative magnetoresistance to properties of the nor-
mal state. 

As was mentioned above, the character of the
asymptotic behavior of the longitudinal magnetoresis-
tance for the temperature approaching the critical tem-
perature from above was retained in strong magnetic
fields, while the low-field portion of the data showed
deviations from a simple linear dependence. The devi-
ations increased upon decreasing the temperature, and,
at T – Tc0 ≤ 2–2.5 K, a region of the field appeared in
which the initial portion of the field dependence exhib-
ited a positive slope and the R(B) curve acquired a max-
imum R*. As the temperature decreased below the crit-
ical temperature, the region of a positive magnetoresis-
tance expanded and the interval of fields appeared in
which no resistive response at all was observed. A typ-
ical R(B) plot for this temperature interval is presented
in the inset to Fig. 4. 

The character of transformation of the experimental
curves observed on going through the critical tempera-
ture region is illustrated in Fig. 5 showing the R(B)
plots measured at several temperatures above and
below Tc of the crystal studied. A comparison of these
data unambiguously shows that the deviations from lin-
earity observed in weak magnetic fields are related to
the resistive state of the sample. The fact that the char-
acter of behavior in the high fields remains unchanged
give grounds to believe that an approximate description
of the field dependence of the magnetoresistance deter-
mined at high temperatures can also be used for esti-
mating RN(0, T) from the results of R(B) measurements
below Tc. According to this approach, the experimental
data were treated assuming that the region with a nega-
tive slope is related to the longitudinal magnetoresis-
tance RN(B, T) under conditions of field-suppressed
superconductivity, and RN(0, T) was determined by the
linear extrapolation of this branch to B = 0. A typical
result of such data treatment is presented in Fig. 6
together with the temperature dependence of the inter-
layer resistance of the same crystal measured on a
direct current in a zero magnetic field. A satisfactory
agreement between the data obtained by two methods
at T > Tc indicates, in particular, a weak effect of the
 AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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probing current frequency change on the results of
the out-of-plane resistance measurements. Accord-
ing to these data, a strong increase in the interlayer
resistance of BSCCO-2212 observed with decreasing
temperature in the region above Tc continues at tempera-
tures well below Tc, not showing pronounced tendency to
weakening. 

Unfortunately, the range of fields employed in this
study was insufficient to trace the RN(0, T) dependence
down to very low temperatures. Thus, the asymptotic
behavior of the magnetoresistance as T  0 remains
undetermined, insistently requiring additional investi-
gation. In fact, the lower temperature boundary of the
region of validity of the extrapolated estimate obtained
for RN(0, T) is determined by the character of evolution
of the R(B) curves. According to Fig. 5, as the temper-
ature decreases, the (B*, R*) maximum exhibits a cer-
tain broadening and shifts toward higher fields, thus
reducing the experimentally accessible region of a lin-
ear negative magnetoresistance and posing a natural
restriction from below on the temperature interval in
which a correct estimate of RN(0, T) can be obtained.
As can be seen from Fig. 6, the (B*, R*) maximum as
such can be reliably detected to much lower tempera-
tures. Although the amplitude and position of this max-
imum are determined by the interplay of contributions
due to resistive and normal states, the absence of pro-
nounced features in the R*(T) behavior (as well as the
lack of essential grounds for such features to exist)
admits using these data for estimating the RN(0, T) val-
ues at low temperatures. The dashed line in Fig. 6
shows the extrapolation R*(T)  RN(0, T) obtained
assuming the validity of the empirical relationship
RN(0, T)–R*(T) ∝  exp(–αT), which satisfactorily
described the results in a broad range of temperatures
where both RN(0, T) and R*(T) values are reliably
determined. As seen in Fig. 6, the extrapolation con-
verts the saturated curve of R*(T) into RN(0, T), retain-
ing the tendency to rapid growth with decreasing tem-
perature. The obtained results agree with a presumably
different origin of the RN and R* quantities. Nevertheless,
validity of such an extrapolation requires experimental
verification. 

Unfortunately, data on the behavior of RN(0, T)
available in the literature are rather restricted. For this
reason, the obtained relationship can be compared to
the results of investigation of the magnetic field effect
on R(T) and with the experimental dependence of resis-
tance of the BSCCO-2212 crystal in a zero field under
the conditions of superconductivity broken by strong
current pulses of microsecond duration [33]. It was
found that the character of the RN(0, T) curve qualita-
tively agrees with the shape of envelope of the family of
R(T) curves measured in various fields [29]. The latter
envelope was originally attributed to a quasiparticle
tunneling via a Josephson medium [29], but the fact that
this shape was retained at temperatures well above the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
critical temperature showed this interpretation to be
inadequate, after which the notions were revised in
favor of normal resistance [22]. In addition, the data
presented in Fig. 7 show that, while the RN (0, T)
curve satisfactory agrees with the results obtained by
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Fig. 6. Typical results of the experimental data processed as
described in the text: triangles denote the values of resis-
tance RN(0, T) measured in the absence of superconductiv-
ity; solid curve represents the R(0, T) obtained by dc mea-
surements; crosses show the values of resistance at maxi-
mum R*(T); and the dashed line shows the RN(0, T) curve
empirically reconstructed from R*(T). 
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Fig. 7. A comparison of the experimentally determined
RN(0, T) values (solid curve) to the published data. Dashed
curve shows the resistance of a crystal sample measured in
a field of 2 T at high current density (50 A/cm2) [36]; trian-
gles represent the RN(T) values measured using a series of
microsecond current pulses in the absence of applied field
[33]; squares represent the Rqp values determined for the
return branch of the current–voltage characteristic in a zero
field [35]. 
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Yasuda et al. [33] for T/Tc > 0.55, a significantly differ-
ent behavior is observed on further decrease in the tem-
perature. Nevertheless, the discrepancy seems not to be
as important, since the saturation observed in [33] was
attributed by the authors to a possible overheating of
the sample. 

It should also be noted that the results obtained in
this study confirm an interesting observation made pre-
viously [34] in the course of investigation of the inter-
nal Josephson effect in BSCCO-2212 crystals. In that
study, a quantitative correlation was observed between
the resistance RN (determined under the conditions
when superconductivity was suppressed by a strong
magnetic field) and a “quasiparticle” resistance Rqp ≡
(U/I )I → 0 (estimated for the return branch of the cur-
rent–voltage characteristic at the same temperature but
in a zero field). As can be seen from Fig. 7, the curve of
RN(0, T) is in fact correlated with Rqp from [35] (where
the measurements analogous to those originally per-
formed in [34] were reproduced in a wider temperature
range). As will be demonstrated below, an analysis of
the whole body of recent results gives grounds for a
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Fig. 8. The current–voltage characteristic (right-hand volt-
age scale) of a BSCCO-2212 crystal reconstructed from the
data reported in [36]: symbols connected by dashed curve
correspond to the values determined for 30 K (j) and
40 K (e) from the R(T) curves for H = 2 T. Solid curves with
indexes at the first three direct (0, 1, 2) and return (20)
branches represent a multibranch current–voltage charac-
teristic measured in the regime of the internal Josephson
effect in a zero field at 5.6 K. Nonconnected symbols repre-
sent a current–voltage characteristic measured using a
series of current pulses for H = 1 T at 30 K (j) and 40 K (e).
Solid curve referred to the left-hand voltage scale shows the
results of thorough measurements [31] of the current–volt-
age characteristic in the region of weak currents for H = 3 T
at 35 K. 
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new interpretation of the original results reported
in [34]. 

Until recently, a comparison between the results of
resistance measurements and the aforementioned cur-
rent–voltage characteristics was hindered by different
scales of the current densities: the maximum current
densities used in the former measurements rarely
reached even 1 A/cm2, whereas minimum current den-
sities involved in the measurement of the internal
Josephson effect were greater by one to two orders of
magnitude. The gap was filled to a certain extent by
Suzuki et al. in [36], where determination of the stan-
dard current–voltage characteristic was supplemented
by measurements of the sample resistance at various
current densities in the range from 0.1 to 50 A/cm2. Fig-
ure 8 plots together the current–voltage characteristic
constructed by using the R(T) data from [36], a charac-
teristic of the internal Josephson effect, and the results
of pulsed measurements performed by the same
researchers. Despite nonideal matching of these data,
which is related to different experimental conditions,
Fig. 8 provides for an insight into the true character of
variation of the current–voltage characteristic in a wide
range of currents. 

An important fact, which can hardly be explained
proceeding from the Josephson effect considerations, is
the presence of a linear initial portion on the current–
voltage characteristic. This fact was confirmed by
direct measurements of the current–voltage characteris-
tics [31] which are also presented in Fig. 8. As can be
seen from this figure, a specific feature of the develop-
ment of nonlinearity in the current–voltage characteris-
tic is a strong growth in the voltage observed within a
narrow region of currents, followed by a less pro-
nounced increase and a tendency to still weaker varia-
tion with increasing distance from this region. This
behavior can be explained taking into account a charac-
teristic scale of currents, poor thermal conductivity,
high contact resistance, and negative temperature coef-
ficient of the normal resistance of BSCCO-2212. As is
known, the main problem complicating the measure-
ments of the current–voltage characteristics is the
uncontrolled Joule heat evolving in the sample, the
amount of which is determined by the thermal flux den-
sity W/S through the crystal surface. For a convenient
analysis, Fig. 9 presents the same data from [36] plotted
as resistance R = V/I versus ∆T ∝  W/S = VI/S (with
neglect of the heat dissipated in the contacts). Similar-
ity of the descending parts of this plot and the curve
representing the results of direct resistance measure-
ments is indicative of the “overheating” nature of the
effect observed for the thermal flux densities exceeding
10 W/cm2. Additional evidence for the adequacy of this
interpretation is offered by experimental data [37]
revealing quantitative coincidence of the current–volt-
age characteristics of the samples possessing different
areas, represented in terms of the current density.
Finally, a significant overheating in the near-contact
AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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region of the sample at W/S ≈ 50 W/cm2 was revealed
in the course of direct measurements [38] performed in
the regime of the internal Josephson effect at 24 K.
Within the framework of the “overheating” concept, it
is possible to explain a bell-like shape of the return
branch of the current–voltage characteristic (curve 20
in Fig. 9), the transition to which takes place at a ther-
mal flux density exceeding 1000 W/cm2. Since the
overheating drops when the current decreases, the
right-hand part of the characteristic reflects the temper-
ature dependence of resistance in the normal state of the
sample. A maximum in this dependence is apparently
related to thermalization of the crystal and the electron
subsystem, because the region of positive slope (usu-
ally omitted in published papers) evidently follows a
nonlinear part of the current–voltage characteristic
under weakly nonequilibrium conditions. 

Based on the above considerations, the similarity of
presumably dissimilar dependences presented in Fig. 7
is naturally explained by the fact that, in the zero-order
approximation, the quasiparticle resistance Rqp corre-
sponds to nonequilibrium conditions of the supercon-
ductivity breakage by the transport current and is
implicitly related to the RN value. Obviously, additional
experimental and theoretical investigations are
required, in particular, for refining the proposed rela-
tionship between Rqp and RN. At the same time, the
results of comparison of the current–voltage character-
istics in Fig. 7 indicate that Rqp(T) can be used as a
rough estimate of RN(T) when direct measurements of
the latter value are inaccessible. 

3.2. Temperature-Activated Flux Flow

As was mentioned in the Introduction, it is a wide-
spread conviction that a characteristic field determined
from the resistance measurements reflects certain fea-
tures in the behavior of the vortex system, but does not
correspond to the upper critical field. The features of
vortex dynamics in BSCCO-2212 depending on vari-
ous possible factors were thoroughly studied both the-
oretically and experimentally [1]. It was established
that, at sufficiently low temperatures, the compound
occurs in a more or less ordered state, crystal or glass,
depending on the degree of perfection. A significant
difference of the HTSC cuprates from conventional
superconductors consists in that there are wide regions
of fields and temperatures featuring the state of flux
flow with ohmic response. This region is separated
from the region of ordered states by the so-called irre-
versibility line. Additional lines, occurring between
Hirr(T) and Hc1(T), reflect fine features of the ordered
state of the vortex system [1, 3]. On the contrary, the
vortex fluid contains (as does any fluid) no structural
features. For this reason, a comparison of the irrevers-
ibility field and the “resistive” critical field determined
in the same experiment is important for elucidating that
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
there is much in common in the origin of these charac-
teristics. 

Thus, the problem to which this investigation was
devoted required experimentally determining the irre-
versibility field of the crystal studied, which implied a
thorough study of the character and origin of the dissi-
pative response. An additional argument for such a
study is the need for experimentally separating the con-
tributions from various factors to the measured value.
Indeed, although the character of transformation of the
R(B) value on going via the critical temperature region
allows the region of positive magnetoresistance to be
unambiguously related to the superconducting state,
the experimental curves observed in this region exhibit
a complicated behavior, apparently reflecting a change
in the regime of charge carrier transfer. The results con-
sidered in this subsection, while providing an estimate
for Hirr(T), allow the initial part of the region under con-
sideration to be related to the thermally activated vortex
motion and significantly reduce the class of theoretical
models applicable to description of the vortex state in
BSCCO-2212. 

The character of development of the resistive state
in the crystal studied is illustrated in the inset to Fig. 4,
where the curves from the main panel are replotted on
a double logarithmic scale. As can be seen, the initial
portion of this dependence (extending over a broad
range of resistances up to R/R* ≤ 10–1) admits approxi-
mation by a simple power law R ∝  Bβ with a tempera-
ture-dependent exponent γ (see the main panel of
Fig. 10). It was experimentally established that this

Fig. 9. The data from [36] (same as in Fig. 8) replotted in
the coordinates of R = V/I versus ∆T ∝  W/S ≈ VI/S and sup-
plemented by the experimental curve of R(T) for the same
sample measured in a field of 2 T at a large current density
of 50 A/cm2 (top temperature axis). Other notation same as
in Fig. 8. 
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Fig. 10. Temperature variation of the approximation expo-
nent in the relationship R ∝  Bβ: vertical crosses represent
the results of determination in the pulsed field; cross-
hatched region represents the dc measurements [42];
squares refer to the β values determined from dc current–
voltage characteristics (Figs. 8 and 11). The inset shows the
barrier U0 = βT versus temperature plot constructed by data
from the main panel, supplemented by the values U0 =
−T∂ln t/∂Mrem determined from the measurements of loga-
rithmic relaxation of the magnetic moment Mrem of the
crystal (oblique crosses). 
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behavior is observed in the entire temperature range
(0.15 ≤ T/Tc ≤ 1) of the resistive state of the crystal
studied.7 Taking into account that the temperature depen-
dence of resistance in the same interval exhibits a temper-
ature-activated character, R(B, T) ∝  exp[–U(B)/T], the
above effect is naturally identified with the tempera-
ture-activated flux flow regime. The development of
this regime implies the appearance of an ohmic resis-
tance. Therefore, in order to check for the correctness,
it is necessary to study the character of the system
response under these conditions. 

The specific features of investigations in the pulsed
field hinder direct measurement of the current–voltage
characteristic. However, the absence of detectable devi-
ations of the signal shape from sinusoidal and the coin-
cidence of the results of resistance measurements using
the current densities differing by one order of magni-
tude are indicative of linearity of the system response
under these conditions. Additional evidence for this is
provided by the results of direct measurement of the
current–voltage characteristic in a steady field with a
strength below 8 T, where the characteristic was linear
in the range of current variation over several orders of
magnitude (see Fig. 8). Note that the ohmic resistance
determined from the initial part of these current–volt-
age characteristics (Fig. 11) is also satisfactorily
approximated by the power law, in a quantitative agree-
ment with the results of measurements in the pulsed
field. 

The experimentally confirmed linearity of the sys-
tem response, together with the temperature-activated
character of the R(T) curve, is explicitly indicative of
the fact that this part of the temperature dependence of
the resistance reflects the regime of temperature-acti-
vated flux flow in the crystal studied. Moreover, the
obtained results allow one to significantly reduce the
class of theoretical models applicable to description of
the vortex system in BSCCO-2212 crystals, since a
power law describing the field dependence of the resis-
tance is evidence for validity of the models developed
in [39, 40], which predict a logarithmic dependence of
the barrier height for this process: U = U0ln(H0/B) and,

accordingly, R ∝  exp(–U/T) ∝  . Additional evi-
dence in favor of this interpretation is offered by Fig. 12
showing an experimental plot of U(B)—the barrier
height versus applied field—which, according to the
results of these measurements admits a logarithmic
approximation in the region of strong fields with the
parameters U0 ≈ 100 ± 20 K and H0 = 200 ± 30 T, which
are close to the values reported by Skvortsov and Gesh-
kenbein [41]. At the same time, the obtained results
demonstrate (in contrast to [41]) a significant increase

7 It should be noted that the range of fields used in these experi-
ments was insufficient to detect the resistive state at T ≤ 10–12 K.
This fact provides for an estimate from below for Hirr(4.2 K) and
presents additional evidence for an essentially “overheating” ori-
gin of the internal Josephson effect parameters measured for the
most part in a zero field at 4 K.

B
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in the barrier height in the region of weak fields, never-
theless also admitting a logarithmic approximation but
with a different set of parameters: U0 ≈ 1500 ± 500 K
and H0 = 0.4–0.7 T. 

The U0 values, determined within the framework of

this approach using the R(B) ∝   approximation of
the field dependence of the out-of-plane resistance
measured at various temperatures are shown in the inset
to Fig. 10. As can be seen, there is a satisfactory quan-
titative agreement of the results of high-frequency mea-
surements in a pulsed magnetic field and the data
obtained from quasistationary measurements in a con-
stant field [42]. To the first approximation, the “resis-
tive” value of U0 is virtually constant in a wide temper-
ature interval from 20 to 60−70 K and agrees with the
estimate obtained above from the logarithmic approxi-
mation of the temperature-activated process barrier. At
the same time, the values outside this interval exhibit a
systematic growth with the temperature increasing
above 60–70 K and a tendency to sharp drop with the
temperature decreasing below 16–18 K. 

A comparison of the results presented in Fig. 10
(main panel) to the data on the crystal magnetic
moment relaxation measured using a SQUID magne-
tometer [43] (presented in the inset to Fig. 10) reveals a
qualitatively similar behavior. This is a remarkable fact,
the more so that we compare the characteristics of the
resistive and critical states occurring on different sides
of the irreversibility line representing, in the opinion of
many researchers, a real phase boundary [44]. A pro-
nounced correlation between characteristics of the
resistive and critical states is a clear indication of a
common mechanism involved in these phenomena. A
quantitative discrepancy between the results of the
magnetic relaxation and resistance measurements pre-
sented in the inset to Fig. 10 is probably related to dif-
ferences in the experimental conditions. Taking into
account that (i) the scale of fields involved in the resis-
tance measurements is higher by one to two orders of
magnitude than that used in the magnetic relaxation
experiments and (ii) a characteristic time t1 of the resis-
tance measurements is several orders of magnitude
smaller than the corresponding time of the magneto-
metric experiments [45], the systematically greater val-
ues of the “magnetic” barrier can probably be related
[45] to a logarithmic dependence of the barrier on B and
t1 values: U ∝  ln(t1/t0), where t0 is the characteristic
time of the system studied. 

3.3. Flux Flow Region and the Upper Critical Field 

Let us return to the field dependence of the magne-
toresistance of a crystal in the resistive state (Fig. 4).
Note that, as the field increases, the system exhibits
deviation from the power asymptotic behavior at
R/RN(0) ≥ 0.05–0.1. By virtue of the notions described
in the previous subsection and by analogy with the case

B
U0/T
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of “conventional” superconductors, this behavior is nat-
urally related to a change in the flux flow regime in the
crystal from temperature-activated to viscous. As can
be seen from Figs. 4 and 13, the field dependence of the
resistance in this region can be approximated both by a
linear relationship R ∝  B and (in somewhat stronger
fields) by a logarithmic law R ∝  lnB. 

An analysis of the experimental data obtained in this
region is complicated by the temperature dependence
of the magnetoresistance under the conditions of field-

1000

U
, K

B, T
0.1 1 10

2000

0

Fig. 12. The plot of barrier height U versus applied field for
U values determined using the temperature activation
approximation of the experimental R(T) curves for two
BSCCO-2212 crystals. 
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Fig. 13. A semilogarithmic plot of resistance versus field
(data from Fig. 4) illustrating applicability of the R ∝  lnB
approximation (dashed line). 
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suppressed superconductivity. Taking into account the
results of magnetoresistance measurements in the nor-
mal state, presented in Subsection 3.1, we can separate
the temperature-dependent contributions from the nor-
mal and superconducting states. As a result, it was
established that the effect of the temperature on the
shape of the R(B) curves describing the mixed state of
BSCCO-2212 crystals significantly differs from that
observed for typical low-temperature superconductors:
instead of an almost parallel shift with decreasing tem-
perature, the curves exhibit a decrease in the slope,
while the initial point remains virtually undisplaced.
This behavior is illustrated in Fig. 14a, where the
results of R(B) measurements at various temperatures
are normalized to the corresponding field dependences
of the magnetoresistance in the normal state. As is seen,
the family of R(B) curves exhibits a pattern different
from that characteristic of a canonical superconductor
in the magnetic field, although something like that is
observed when the data are presented on a semiloga-
rithmic scale (Fig. 14b). 

The unusual character of evolution of the supercon-
ducting transition in Fig. 14 can be explained assuming
that a linear positive magnetoresistance in the vortex
fluid flow regime obeys the Bardeen–Stephen relation-
ship RFF ∝  RNB/Hc2. In this case, the character of evolu-
tion of the R(B) curves measured at various tempera-
tures is directly determined by the anomalous behavior
of Hc2(T). However, at first glance, applicability of this
formula is not evident because the experiments were
conducted under formally Lorentz force free configura-
tions (the field parallel to the current). This formal dis-
crepancy is removed by taking into account the layered
structure of BSCCO-2212, according to which the vor-
tex comprises a system of Abrikosov vortices in super-
conducting layers connected by the coreless Josephson
segments. Since the positional correlation of vortices in
the adjacent planes is readily violated (e.g., by thermal
JOURNAL OF EXPERIMENTAL
fluctuations), this leads to the appearance of a perpen-
dicular component of the Josephson string perpendicu-
lar to the field and subject to the Lorentz force action.
In the absence of theoretical calculations for these
experimental conditions, these considerations give
some grounds for using the Bardeen–Stephen formula,
although the resistive response (in this experimental
geometry) significantly depends on the character of
interaction between the string and the core component
of the vortex. 

In any case, a strong temperature dependence of the
slope of the linear part of the R(B) curve is an experi-
mental fact. A typical result is presented in Fig. 15,
from which it is seen that the slope ∂RFF/∂B exponen-
tially increases with the temperature in the low-temper-
ature region and then exhibits a much stronger depen-
dence on approaching the critical temperature. The lat-
ter dependence obviously controls behavior of the
“resistive” critical field, which is determined from the
Bardeen–Stephen relationship as 

Indeed, as can be seen from Fig. 15, the slope varies
over three orders of magnitude, while the normal resis-
tance in the same temperature interval changes only by
one order of magnitude (see Figs. 6 and 7). 

In the course of a regular data processing, three
approaches to determination of the characteristic field

 were employed (below, the notation Hc2 is used
irrespective of the method employed for determining
the “resistive upper critical field). The first method is
based on the Bardeen–Stephen formula in which the
RN(0, T) was determined either by a linear extrapolation
of the negative magnetoresistance to B = 0 under the con-
ditions of field-suppressed superconductivity or by a
resistance rescaling at the maximum of R(B). Typical

Hc2 T( )
RN 0 T,( )

RFF/ B∂∂
---------------------.=

Hc2*
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results of the upper critical field evaluation for BSCCO-
2212 by this method are presented in Fig. 16. As can be
seen from these data, the resulting dependence differs
from that predicted for the upper critical field within the
framework of the BCS theory and shows a perfect
quantitative agreement with the Hc2(T) values obtained
by the second method (the empirical determination of
the upper critical field as a point of intersection of
extrapolated linear approximations of the negative
magnetoresistance in the normal state and the positive
magnetoresistance in the flux flow region). Note that
the second method differs only slightly from the con-
ventional method, according to which the “resistive”
critical field Hc2 is taken equal to a value corresponding
to a certain decrease in the sample resistance relative to
that in the normal state. At the same time, the aforemen-
tioned quantitative coincidence of the results in the
low-temperature region, where the extrapolation of the
linear approximation of RFF(B) to R = 0 leads to a sig-
nificantly nonzero field, is not a trivial result. 

The third method used to evaluate the Hc2 value in
this study was based on the empirical approximation of
the field dependence R(B) ∝  lnB, which also provides
for a satisfactorily fit to experiment in the flux flow
regime for the interval 0.2–0.3 ≤ R/RN ≤ 0.7–0.8. By
analogy with the above construction, the Hc2 value was
determined by extrapolating this approximation to
either (i) R(B)/R* = 1 or (ii) R(B)/RN(0) = 1. In the latter
case, the RN(0) value at low temperatures was obtained
by extrapolating the simplest empirical approximation
RN(0) ∝  exp(–T/T0). As is evident from the scheme of
construction, the estimates of Hc2 obtained in this way
must quantitatively differ from those obtained by the
first two methods. However, it was found that the differ-
ences can be eliminated by simple rescaling (using a
temperature-independent coefficient close to two), after
which the results obtained by the third method coincide
(to within the experimental scatter of points) with the
Hc2(T) curve constructed by the first two methods. 

This result can be considered as directly indicating
that several functionally different empirical approxima-
tions of the experimental data obtained in the flux flow
region are apparently related to the same physical
mechanism. Unfortunately, to the author’s knowledge,
no theory has been developed so far that could be used
for interpretation of the experimental data reported
here. Therefore, selecting a reasonable scenario will
require additional theoretical calculations. The avail-
able experimental data are insufficient for unambigu-
ously identifying the characteristic field determined in
this study with the thermodynamic value of Hc2. How-
ever, a qualitative agreement between the shapes of the
temperature dependences Hc2(T) determined by various
methods, together with a quantitative coincidence of
the results obtained by the same method for various
crystals with close Tc values but significantly different
characteristics of the normal state, indicates that the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Hc2(T) curves reflect the characteristics of the given
condensed state, rather than individual features of the
samples studied. 

The latter statement requires additional justification,
for example, by a comparative analysis of the Hc2(T)
values estimated using various components of the crys-
tal resistance tensor. Such a comparison would be of
special interest because essentially different character
of the temperature dependences of the resistance mea-
sured in the basal plane (Rab) and in the out-of-plane
direction (Rc) implies significantly different mecha-
nisms of the charge transfer in the normal state of the
crystal. This situation poses a problem of correctly
measuring the Rab values in BSCCO-2212 crystals,
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Fig. 15. A typical plot of ∂RFF/∂B (the slope of a linear por-
tion of the R(B) curve) versus temperature in the flux flow
regime. 
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Fig. 16. Temperature variation of the characteristic fields of
a BSCCO-2212 crystal determined by various methods:
vertical crosses represent Hirr(T) determined by the resis-

tance drop to a fixed level of R(B)/RN(0) = 10–2; squares
show the Hc2 values determined by the method illustrated
Fig. 4; oblique crosses correspond to the values determined
from the Bardeen–Stephen relationship; thin solid curve
shows the results of fitting to the one-parametric depen-
dence [46]; dashed line represents “pseudo-Hc2” values
[21]; long-dash line shows the Hirr approximation. 
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which is an extremely difficult task because it requires
using samples containing virtually no steps on the sur-
face. Unfortunately, no such crystals have been pre-
pared so far. Moreover, a thorough analysis of all
papers reporting on the Rab measurements in BSCCO-
2212 revealed a dominating contribution of Rc, which
makes these data absolutely useless for the purpose of
this study. An almost equally unfavorable situation
takes place for the study of BSCCO-2201, another rep-
resentative of the class of strongly anisotropic layered
cuprates characterized by significantly lower critical
temperatures (Tc ≤ 27 K). It was only quite recently that
both components of the resistance tensor were studied
for thin single crystal films of BSCCO-2201 grown on
vicinal substrates [47]. At first glance, the results
reported in [47] are free from the problem of intermix-
ing of the resistance tensor components. The anisotropy
of resistance in the films studied (about 6000) falls
within the interval of values typical of the single crys-
tals of this HTSC family, which confirms a high quality
of the samples. 

Figure 17 shows the estimates of the “resistive”
upper critical field Hc2(T) obtained in [48] (by analogy
with [22]) using the Rab(T) and Rc(T) data from [47]. As
can be seen, there is more than satisfactory agreement
between the values determined from various compo-
nents of the resistance tensor. Moreover, there is no
anomalous influence of the doping level on the result-
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Fig. 17. A comparison of various estimates of the “resistive”
upper critical field Hc2(T), obtained from the temperature
dependences of resistivities ρab and ρc for the same crystal
of BSCCO-2201 (solid and dashed lines connect points rep-
resenting the Hc2 values determined using ρc(T) and ρab(T)
curves, respectively): (1) an overdoped crystal with Tc ≈
13 K [28]; (2) an underdoped film with Tc ≈ 24.3 K [47];
(3) estimates of the characteristic field for the latter film,
determined on a level of R/RN = 0.3. 
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ing temperature dependence Hc2(T). This conclusion
follows from a comparison of the curves constructed
using the data for slightly underdoped films [47] and an
overdoped single crystal [28]. Finally, a good coinci-
dence (in the scale of Fig. 17) is observed between the
Hc2(T) curves for the former films possessing close Tc
values but significantly different parameters of the vor-
tex system (as evidenced by a twofold difference in
activation energies). In the absence of the results of
direct measurements for BSCCO-2212, the above com-
bination of data reported for a similar compound (Fig. 17)
is indirect evidence in favor of the correctness of con-
clusions and estimates made in this paper based on an
analysis of the interlayer resistance. 

4. DISCUSSION OF RESULTS 

The estimates of the upper critical field obtained in
this study are well correlated with the results obtained
previously [22]. This correlation confirms the adequacy
of the assumptions and correctness of a complicated
multistep extrapolation procedure proposed for evalu-
ating Hc2(T) [22]. In addition, the Hc2(T) dependence
presented in Fig. 16 was indirectly confirmed by the
experiments of Suzuki et al. [36], which demonstrated
that the current–voltage characteristic in this region is
ohmic and showed dependences of the ohmic resistance
on the magnetic field which qualitatively agree with
Fig. 14 and allow the Hc2 values to be estimated. As can
be seen from the data in Fig. 18, the temperature depen-
dence of the upper critical field determined from the
curves reported in [36] quantitatively agrees with the
results obtained in this study. It should be noted that,
despite a rather unsatisfactory agreement between
experiment and a theoretical approximation adopted in
[36], the authors interpreted the R(B) curves within the
framework of a model relating the interlayer dissipation
to fluctuations of the phase difference between layers. 

As can be seen from Fig. 16, the obtained Hc2(T)
dependence exhibits a negative curvature in the entire
range of temperatures far from Tc and in the range of the
magnetic field variation over four orders of magnitude.
This behavior contradicts the BCS theory but, to the
first approximation, agrees qualitatively with the results
of determination of the resistive upper critical field for
compounds belonging to various families representing
the so-called exotic superconductors (including HTSC
cuprates) [20]. Although a limited range of the accessi-
ble magnetic fields did not allow the resistance of
BSCCO-2212 to be studied at low temperatures,
extrapolation of the empirical low-temperature asymp-
totics behavior as Hc2 = Hc2(0)exp(–T/T*) with T* =
18 ± 2 K provides for a rough estimate of Hc2(0) ≈ 220 ±
30 T (close to the paramagnetic threshold in the BCS
model) and ξab(0) ≈ 12 Å. The latter value is on the
order of a characteristic distance between charge carri-
ers, which is also indicative of inapplicability of the
canonical BCS theory. It is interesting to note that the
AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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above estimates fall within the interval of values, Hc2 =
22–400 T and ξab(0) ≈ 9–38 Å, obtained for BSCCO-
2212 by means of the extrapolation to T  0 pro-
posed by Werthamer et al. [11] for the results of the
fluctuation analysis of the magnetoresistance and mag-
netization in the vicinity of the critical temperature. 

It should be noted that the anomalous dependence of
the upper critical field obtained from the results of
resistance measurements in overdoped HTSCs was
attributed by some researchers (see, e.g., [4]) to the so-
called irreversibility line separating the regions of exist-
ence of nondamping supercurrents and vortex fluids. In
this study, the irreversibility field was determined on a
fixed level of R(H)/RN(0) = 10–2, which provides for a
very rough estimate from above for the true Hirr value
[42]. With this circumstance borne in mind, evident
quantitative and qualitative discrepancies between
Hirr(T) and Hc2(T) for the same crystal (see Fig. 16)
indicate that it would be incorrect to identify the “resis-
tive” upper critical field Hc2(T) with characteristics of
the vortex ensemble. 

As was noted above, the elegant construction [21]
gave grounds for a more sophisticated interpretation of
the anomalous behavior of Hc2(T) in overdoped HTSC
cuprates. Figure 16 shows the results of fitting our results
to a two-parametric relationship for “pseudo-Hc2” values
Hc2 ∝  T–1exp(–T/T0) derived in [21] within the frame-
work of the aforementioned model description of a
superconducting matrix containing a system of small
inclusions with a higher Tc. As is seen from Fig. 16, the
agreement between theory and experiment is far from
satisfactory, especially at high temperatures. In addi-
tion, the experimental R(T, B) curves obtained for the
BSCCO-2212 crystals studied exhibited no significant
features above Tc, as might be expected if the above
model were applicable. Thus, the experimental results
indicate that conclusions of this theory are inapplicable
to the subject of investigation. 

At the same time, the observed dependence can be
satisfactorily approximated by a number of other rela-
tionships, in particular, by a two-parametric depen-
dence predicted for the melting of a vortex lattice. This
is apparently an accidental coincidence, since the exist-
ence of a vortex crystal under the condition of nonneg-
ligible resistive response comparable with RN is hardly
probable. In addition, the initial portion of the observed
Hc2(T) curve satisfactorily agrees with a behavior pre-
dicted within the framework of a 3D-XY model stipu-
lating a dominating contribution of the critical fluctua-
tions near Tc0 [50]. Note, however, that the latter con-
clusion was obtained in [50] using an unreasonably
overstated value of Tc0 which, in the author’s opinion,
decreases the reliability of this result. Finally, an Hc2(T)
curve with a negative curvature was recently reported in
[51], where calculations using a 2D Hubbard model
with strong repulsion were performed assuming that
the van Hove singularity coincides with the Fermi level.
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Unfortunately, no indications concerning applicability
of the derived formulas were provided in [51]. This cir-
cumstance somewhat decreases the significance of the
generally satisfactory agreement between a three-para-
metric theoretical asymptotics and the experimental
variation of dHc2/dT observed in wide temperature
interval (T/Tc ≤ 0.9). 

A markedly better agreement between experiment
and theory is observed, as can be seen from Fig. 16,
when the experimental data are approximated by a one-
parametric relationship Hc2 = H0(τ–1 – τ1/2)3/2 predicted
within the framework of the local pair theory [46] (here,
τ = T/Tc0, H0 ∝  Φ0/ξ2, Φ0  is the vortex quantum, and
ξ is a correlation length). Taking into account that the
parameter variation reduces to a trivial rescaling, the
observed agreement can be considered as evidence for
applicability of the theory [46]. 

In connection with this, it is expedient to mention
the results of recent measurements of the resistance of
BSCCO-2212 crystals with different levels of doping
[49]. It was established that the curves of Hc2(T), deter-
mined as described above for two overdoped crystals
with Tc close to 78 and 67 K [49], not only qualitatively
agree with our data (see Fig. 18), but virtually coincide
with each other and with the results of Suzuki et al. [36]
(being plotted against reduced temperature). Thus, the
results reported in [49] can be considered as additional
and independent evidence for adequacy of the model
[46], which not only approximates the experimental
data, but provides a qualitative description of the non-
trivial result in Fig. 18. Indeed, a weak sensitivity to the
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Fig. 18. Estimates of the Hc2(T) values obtained in this
work (solid curve) for a BSCCO-2212 crystal with Tc0 ≈
93.2 K compared to the published data for overdoped crys-
tals with Tc ≈ 87 K [36] (squares), 67 K [49] (open circles),
and 78 K [49] (black circles). Crosses present the data for
an underdoped sample [49] with Tc ≈ 68 K; dashed curve
shows an approximation of these data within the framework
of the model [46]. 
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level of doping is inherent in the model [46] due to the
smallness of exponent at the ratio l/n (l is the mean free
path length, and n is the carrier concentration) in the
parameter of the theory: ξ = (l/n)0.25. In addition, the
screening of impurity centers by carriers can, in princi-
ple, lead to a growth of l with an increase in the level of
doping. In this hypothetical case, the l/n ratio will be
virtually independent of n, which probably explains
both the coincidence of results (Fig. 18) and a signifi-
cant difference of data observed for an underdoped
sample [49]. 

It should be noted that, besides a quite satisfactory
description of the characteristics of superconductivity,
the local pair approximation [46] (even specially
refined for application to the system studied here) only
qualitatively agrees with the experiment in description
of the normal state [25]. At the same time, a quasilinear
character of the longitudinal negative magnetoresis-
tance in the normal state of the crystal, which is one of
the most interesting results of this study, is worth a
more detailed analysis. In this context, of special inter-
est is the investigation performed by Morozov et al.
[30] in Los Alamos, where the measurements and
results of [23] were partly reproduced and an alterna-
tive explanation of the observed effect was proposed
based on an analysis of the tunneling of Cooper pairs
and quasiparticles in a layered superconductor with d
coupling. According to [30], the maximum of R(B)
revealed in [23] results from a competition of these two
contributions. A principal (and experimentally verifi-
able) conclusion from the description proposed in [30]
was an essentially nonlinear character of the current–
voltage characteristic in the regime of Josephson tun-
neling (in contrast to the linear character in the case the
tunneling of quasiparticles and for the flux flow
regime). It was believed [30] that direct proof of the
response nonlinearity was provided by the observation
of a strong distortion of the R(B) curve observed upon
a twofold increase in the probing current. 

However, the above conclusion contradicts both the
results of this study and the data reported by other
researchers (see, e.g., [36]), which showed linearity of
the system response in the region of small currents. The
discrepancy between the results of apparently similar
experiments could not be explained by features of the
shape of the current–voltage characteristic (see Fig. 8),
because the parameters for which deviations from the
linearity were experimentally observed exceed the val-
ues employed in [30] by 1.5–2.5 orders of magnitude.8

At the same time, it cannot be excluded that the discrep-

8 A crystal with Tc0 = 89 K and ρc(100 K) ≈ 20 Ω cm [30] occupies
an intermediate position between the samples studied in this work
(Tc0 > 91 K and ρc(100 K) ≈ 15 Ω cm) and the crystal used in
[36] (Tc0 = 87 K and ρc(100 K) ≈ 33 Ω cm. Taking into account
that a characteristic level of the current densities at which the cur-
rent–voltage characteristic deviates from ohmic in this study and
[36] was 10–50 A/cm2, there are no grounds to believe that the val-
ues lower by two orders of magnitude are sufficient in Los Alamos.
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ancies are related to the specific features of measure-
ments in a pulsed field, complicated by the uncon-
trolled overheating of a sample by the induction cur-
rents (see Subsection 2.2). Indeed, although a
maximum rate of the field buildup in [30] was almost
60 times lower than the (∂B/∂t )max value in this study,
the sample crystal area in [30] was about 60 times as
great as that of the sample exhibiting pronounced man-
ifestations of the induction overheating in the experi-
mental setup employed here (Fig. 2) and 500 times as
great as the samples on which the main results were
obtained in this study. Although the data reported in
[30] do not allow a regular verification of the role of
induction overheating (see Subsection 2.2), the coinci-
dence of B* values determined using the field pulses
with Bmax = 30 T at 50 K and 60 T at 42 K (with a four-
fold difference in power dissipated in the crystal) is cer-
tainly indicative of a significant influence of overheat-
ing. An additional indication of the role of this phenom-
enon is a decrease in R*(T) and B*(T) below 40–50 K
observed in [30]. 

It is obvious that, under the conditions of overheat-
ing, any additional dissipation would unavoidably
increase this effect. This must be manifested, in partic-
ular, by a correlated decrease in the R* and B* values
with increasing current, which was in fact observed in
[30]. Within the framework of this scenario, an addi-
tional overheating of the crystal caused by a twofold
growth of the current was quantitatively estimated [48]
from a change in the position and amplitude of the R(B)
maximum [30]. Reduced to the measurements at the
same current density, the crystal temperature was inde-
pendently determined from both B*(T) and R*(T)
experimental curves. Consistent estimates of the degree
of overheating (3 ± 0.5 K and 2.1 ± 0.7 K) obtained in
this way for the nominal temperatures of 35 and 55 K,
respectively, offer convincing evidence for the “over-
heating” nature of the effect and provide for a reason-
able explanation of the aforementioned discrepancy,
thus making trivial the key experimental result obtained
in [30]. 

Thus, it is highly probable that a discrepancy
between the results obtained in this study and those
reported in [30] are related to the determining influence
of overheating in the latter experiment. This conclusion
removes the experimental basis from interpretation of
the negative magnetoresistance in terms of the tunnel-
ing of quasiparticles in a superconductor with nontriv-
ial coupling. As a consequence, the approach to the sep-
aration of the Josephson and quasiparticle tunneling
contributions proposed in [30] appears to be meaning-
less. 

5. CONCLUSION 

The interlayer magnetoresistance of a layered
Bi2Sr2CaCu2Oy (BSCCO-2212) single crystal, repre-
senting a quasi-two-dimensional HTSC with Tc > 91 K,
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was studied in the normal and mixed states. A self-con-
sistent description is provided for the experimental
results obtained under the conditions of controlled
ohmic crystal response and negligibly small induction
overheating. 

The character of the longitudinal magnetoresistance
is determined for the crystal in the normal state and
under the conditions of superconductivity suppression
by a strong magnetic field. An estimate of RN(0, T), the
interlayer resistance in the absence of superconductiv-
ity, obtained by extrapolation agrees well with the
results of investigation of the superconductivity break-
down by a pulsed current. Based on these results and
recently published data, an interpretation of the origin
of the “quasi-particle” resistance of BSCCO-2212 is
proposed. The character of variation of the ohmic resis-
tance as a function of the magnetic field and the temper-
ature in the region of the resistive state was experimen-
tally determined, and it is demonstrated that a self-con-
sistent description of the whole body of experimental
data can be provided within a restricted class of theoret-
ical models of the vortex state in HTSCs. A correlation
is found between the effective barrier heights deter-
mined on the two sides of the irreversibility line Hirr(T),
and it suggested that the two barriers may be of a com-
mon origin. It is established that a change in the char-
acter of the resistance variation above the level of
(0.05–0.1)RN reflects the transition from temperature-
activated to viscous vortex (fluxoid) flow; the character
of the field dependence of the sample resistance R(B) in
the latter state was determined. A method is proposed
for separating the temperature-dependent contributions
from the normal and resistive states to the total magne-
toresistance of a crystal. An anomalous character of the
temperature upon the shape of the superconducting
transition in a magnetic field was established. A critical
field Hc2(T) for the formation of a superconducting
nucleus in BSCCO-2212 was determined, and a quan-
titative correlation between various estimates of
Hc2(T/Tc) was found in a broad range of the doping
level. A systematic analysis of the results of investiga-
tion of BSCCO-2201 crystals revealed a quantitative
agreement between Hc2 values determined using planar
and interlayer resistances, which is evidence for ade-
quacy of the method of Hc2(T) determination used in
this study. 

The experimental results are compared to theoreti-
cal dependences for the upper critical field; inapplica-
bility of the BCS theory to this case is demonstrated.
The experimental Hc2(T) is satisfactorily described by a
one-parametric relationship predicted for Hc2(T) in the
bosonic approximation. 

An alternative explanation of the results, based on
the theory of interlayer tunneling of the Cooper pairs
and quasiparticles in a layered superconductor with d
coupling, is analyzed in detail, and it is shown that the
main conclusions of this model contradict the known
experimental facts. 
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Abstract—Noise-induced escape from the basin of attraction of a quasi-hyperbolic chaotic attractor in the
Lorenz system is considered. The investigation is carried out in terms of the theory of large fluctuations by
experimentally analyzing the escape prehistory. The optimal escape trajectory is shown to be unique and deter-
mined by the saddle-point manifolds of the Lorenz system. We established that the escape process consists of
three stages and that noise plays a fundamentally different role at each of these stages. The dynamics of fluctu-
ational escape from a quasi-hyperbolic attractor is shown to differ fundamentally from the dynamics of escape
from a nonhyperbolic attractor considered previously [1]. We discuss the possibility of analytically describing
large noise-induced deviations from a quasi-hyperbolic chaotic attractor and outline the range of outstanding
problems in this field. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Chaotic oscillations are observed in many fields of
physics. At least in two of these fields, hydrodynamics
and laser physics, chaotic dynamics is described by the
same differential equations, the Lorenz system [2]. A
minimum set of equations for Benard–Rayleigh con-
vection (the Lorenz system) was derived by Salzman
[3]. Subsequently, Haken [4] showed that the Lorenz
system also describes the generation of a lasing transi-
tion in a single-mode laser with a uniformly broadened
spectral line when the cavity eigenfrequency is exactly
equal to the lasing transition frequency [5, 6]. The
Lorenz system is a classical model of low-dimension
chaos. It is used to study such fundamental problems of
nonlinear dynamics [7] as synchronization, chaos con-
trol, hidden information transmission, invariant recon-
struction from time series, and the like; whence the
unremitting interest of scientists in this system.
Increased interest in the Lorenz system also stems from
the fact that it exhibits quasi-hyperbolic chaos under
certain conditions. Since this chaos can be described
mathematically [8, 9], the results of numerical experi-
ments can be checked on the basis of a rigorous theory.
Such a situation is not typical of systems with chaotic
attractors; the principal and virtually the only tools for
investigating the latter are the various numerical meth-
ods of solving differential equations and numerical
bifurcation analysis.

In attempting to relate the Lorenz system to physical
experiments, it is essential to make allowance for the
influence of fluctuations on its dynamical regimes and
transitions. Note that the influence of fluctuations on
1063-7761/02/9404- $22.00 © 20821
the fluctuational regimes of the Lorenz system was
studied in considerable detail both theoretically [10,
11] and experimentally [12, 13]. However, despite a
large number of studies, there are currently no answers
to many questions, including the key ones: What is the
dynamics of the Lorenz system during large noise-
driven deviations of the trajectory from a chaotic attrac-
tor? Can the attractor quasi-potential be constructed?
What is the mechanism of noise-induced escape from
the basin of attraction of a quasi-hyperbolic attractor?
The latter question, related to the problem of noise-
induced transitions in nonequilibrium systems, is a fun-
damental problem in the fluctuation theory of nonequi-
librium systems [14]. It is of broad interdisciplinary
interest in terms of practical applications, for example,
for Josephson junctions connected in series [15], bio-
logical transport [16], and laser systems [17], as well as
in controlling transitions between attractors in multi-
stable systems [18–20].

Recent progress in solving the problem of noise-
induced transitions in nonequilibrium systems driven
by colored noise [21–25] and a nongradient [26–29] or
periodic external force [30–32], as well as in self-oscil-
lating systems [33, 34], has been achieved through the
use of Hamiltonian formalism [35] or its equivalent
formalism in terms of path integrals. The idea of opti-
mal trajectories along which the system fluctuates to
states far removed from equilibrium [36] underlies the
Hamiltonian approach. A mathematical variant of
these physical concepts is embodied in the asymptotic
formulas for solving the Fokker–Planck equation
written in terms of rays (i.e., the solutions of the
Hamilton equations) or fronts (i.e., the solutions of the
002 MAIK “Nauka/Interperiodica”
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Hamilton–Jacobi equation). Since the Hamiltonian for-
malism is successfully used to solve many problems of
the nonequilibrium fluctuation theory, the question of
how it can be generalized to a broader class of dissipa-
tive systems, including chaotic ones, now acquires par-
ticular urgency. The difficulty of this generalization
complicates the direct application of analytical meth-
ods. Recently, however, a new experimental approach
to investigating optimal trajectories [37] has been pro-
posed. It is based on the Hamiltonian formalism and on
measurements of the so-called probability distribution
of the fluctuational prehistory. This method basically
involves continuously tracking the system dynamics
and constructing the distribution of all realizations of
the fluctuational trajectories that bring the system from
equilibrium to a given remote state. The advantages of
this approach were demonstrated [38–41] by studying
some fundamental properties of the symmetry of opti-
mal trajectories and singularities in their distribution. It
has recently been shown [1, 20] that based on a statisti-
cal analysis of the dynamics of fluctuational trajecto-
ries, the method can be used to find the optimal trajec-
tory for the noise-induced escape from the domain of
attraction of a chaotic attractor in a nonlinear oscillator
driven by a periodic external force. Beyond the bound-
aries of the chaotic attractor, this trajectory was shown
to be unique and formed by the coalescence of several
equally probable trajectories that emerge from the cha-
otic attractor. In [1, 20], we studied escape from a non-
hyperbolic attractor. Here, we investigate noise-induced
escape from a quasi-hyperbolic chaotic attractor in the
Lorenz system and, thus, answer the question of how
the mechanism of escape from a chaotic attractor
depends on its structure.

The paper consists of three sections. In Section 2,
we consider the Lorenz system and the structure of its
phase space. The basics of the theoretical approach in
terms of the Hamiltonian formalism and the experimen-
tal approach based on measuring the fluctuational pre-
history are presented in Section 3. In this section, we
also consider the influence of fluctuations on the prob-
ability measure of a chaotic attractor. Our results are
presented and discussed in Section 4. In the Conclu-
sion, we summarize our conclusions and outline the
range of outstanding problems.

2. THE LORENZ SYSTEM

The Lorenz system was originally obtained as a sim-
plified model to describe the convection of a fluid
between two planes with different temperatures, with
the temperature and gravitational gradients being
directed oppositely [3]. This model can be written as

(1)

q̇1 σ q2 q1–( ),=

q̇2 rq1 q2– q1q3,–=

q̇3 q1q2 bq3– ξ t( ),+=
JOURNAL OF EXPERIMENTAL 
or, in vector form,

(2)

Here, q1, q2, q3 are the dynamical variables; and σ, r, b
are the parameters that have the following physical
meaning in the context of fluid convection: σ is the
Prandtl number (the ratio of kinematic viscosity to ther-
mal diffusivity), r = R/Rc is the reduced Rayleigh num-
ber (R is the Rayleigh number and Rc is the critical Ray-
leigh number at which convection arises), b = 4π2/(π2 + k2)
is a constant that characterizes the physical size of the
system, k is a dimensionless number related to the spa-
tial periodicity in the arrangement of fluid waves, q1 is
proportional to the intensity of the convective motion,
q2 is proportional to the temperature difference between
the rising and sinking fluid flows, and q3 is proportional
to the deviation of the vertical temperature profile
between the planes from the linear one. To simplify our
analysis, we add a white-noise source ξ(t) only to the
third equation of system (1), which does not break
down the system mirror symmetry; D is the noise inten-
sity; δ(t) is the delta function; and δi3 and δj3 are the
Kronecker symbols.

Equations (1) also describe traveling waves excited
in a ring cavity filled with two-level atoms with a uni-
formly broadened spectral line [4]. With respect to a
laser system, the variables and parameters of system (1)
can be interpreted as follows: q1 and q2 are the normal-
ized amplitude and polarization of the electric field,
respectively; q3 is the normalized population inversion
in the atomic system; σ = k/γ1, r = Λ + 1, and b = γ2/γ1,
where k is the field relaxation rate in the cavity, γ1 and
γ2 are the polarization and inversion constants, respec-
tively, and Λ is the pumping parameter. Note that an
infrared laser was suggested as a realization of the
Lorenz system [12].

The Lorenz equations are simple in structure and
contain only two nonlinear terms. Let us briefly con-
sider the main bifurcations in system (1).1 We fix σ =
10 and b = 8/3 and vary the parameter r. In this case,
there are two global bifurcations. Their diagram is
shown in Fig. 1. A supercritical pitchfork bifurcation
(triple-equilibrium bifurcation) [7] is observed at r = 1;

1 A more detailed and rigorous bifurcation analysis of the Lorenz
system can be found in [8, 9].

ξ t( )〈 〉 0, ξ t( )ξ 0( )〈 〉 Dδ t( ),= =

q̇ K q( ) f t( ),+=

K K1 K2K3,{ }=

=  σ q2 q1–( ) rq1 q2– q1q3– q1q2 bq3–, ,{ } ,

f t( ) 0 0 ξ t( ), ,{ } , f〈 〉 0,= =

f i t( ) f j 0( )〈 〉 DQijδ 0( ), Qij δi3δj3.= =
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the equilibrium position at the coordinate origin O(0, 0, 0)
becomes unstable and two stable states appear:

and

There are two stable equilibrium positions (stable foci)
P1 and P2, a saddle equilibrium position O, and its one-
dimensional unstable and two-dimensional stable man-
ifolds in the phase space of the system. The two
branches of the unstable manifold are the separatrices
of the saddle point O.

The second bifurcation is observed at

(3)

when the foci P1 and P2 lose their stability and the cha-
otic attractor becomes the only attractor in the system.

In addition, we note two local bifurcations.
A biasymptotic homoclinic contact of the separa-

trices of the saddle point O (not shown in Fig. 1) takes
place at r ≈ 13.926. When r passes through this bifurca-
tion value, two saddle cycles, L1 and L2, are generated
and a one-dimensional (in Poincaré section) hyperbolic
chaotic set Ω1 appears. Since this set is not attracting,
the foci P1 and P2 that the separatrices of point O
approach remain the system attractors. The second
local bifurcation takes place at r ≈ 24.06. The separa-
trices of the saddle point O are no longer closed at P1
and P2 but approach the unstable manifolds of the sad-
dle cycles L1 and L2. As a result, a stable two-dimen-
sional (in Poincaré section) chaotic set Ω2, the Lorenz
attractor, emerges at the location of the unstable set Ω1
for r > 24.06. The rough saddle cycles with their stable
manifolds transverse to the attractor are everywhere
dense in the chaotic Lorenz attractor. Apart from the
saddle cycles, the set Ω2 contains the separatrices and
the saddle point O. The latter is determined by the exist-
ence of two (because the Lorenz system is symmetric)
trajectories, T1 and T2 (Fig. 2), which emerge from the
chaotic attractor, fall on the stable manifold Ws of the
saddle point at some point A, and then approach point
O and, hence, separatrices Γ1 and Γ2. The existence of
a saddle point in the chaotic attractor defines the non-
hyperbolicity of the Lorenz attractor and the prefix
“quasi” in the definition of a quasi-hyperbolic chaotic
attractor [9]. The equilibrium positions P1 and P2
remain stable.

Thus, the two stable equilibrium positions and the
chaotic attractor coexist in the phase space of the
Lorenz system for r ∈  [24.06; 24.74]. Let us fix r =
24.08 in this range and consider noise-induced escape
from the chaotic attractor to the basin of attraction of
the equilibrium states. In other words, we consider

P1 b r 1–( ) b r 1–( ) r 1–, ,( )

P2 b r 1–( )– b r 1–( )– r 1–, ,( ).

r
σ σ b 3+ +( )

σ b– 1–
------------------------------- 24.74,≈=
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large noise-induced deviations from the chaotic attrac-
tor.

Let us first investigate the structure of the phase
space of system (1) for the coexisting stable equilib-
rium positions P1 and P2 and chaotic attractor at the fol-
lowing parameters: σ = 10, b = 8/3, and r = 24.08 (Fig. 3).
The equilibrium positions P1 and P2 have three negative
eigenvalues (–13.627, –0.020 + i9.504, and –0.020 –
i9.504), with the last two being complex conjugate.
This implies that the two eigendirections of points P1
and P2 form a two-dimensional surface: the rate of
attraction on this surface is much smaller than the rate
of attraction in the first eigendirection.

The saddle cycles L1 and L2 surround the states P1
and P2 and lie at the intersection of the two-dimensional
unstable and stable manifolds [42]. The unstable mani-
fold on one side goes to the equilibrium positions and

P1L1

L2 P2

O

1.0 13.926 24.06 24.74

Two equilibrium positions
Chaotic

One
r

position
equilibrium

attractor

Fig. 1. A bifurcation diagram of the Lorenz system for σ =
10 and b = 8/3. The dashed and solid lines indicate unstable
and stable states, respectively.

40

–20

20

10

0

30

–10 0 10 20 –20 –10 0 10 20

L1
L2

T2 T1

É1
É2

WsO

A

q2
q1

q 3

Fig. 2. Separatrices Γ1 and Γ2 and the two-dimensional sta-
ble manifold Ws of the saddle equilibrium position O. The
saddle cycles L1 and L2 are indicated by circles. Trajectories
T1 and T2 (see the text) are represented by the heavy lines.
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is closed there, but on the other side it goes to the cha-
otic attractor. The stable manifold forms a tube near the
equilibrium positions [42]. Since the saddle cycles have
the multipliers (1.0000, 1.0280, 0.0001), the trajecto-
ries slowly go away from the cycles along the unstable
manifold and rapidly approach along the stable mani-
fold.

The boundaries of the chaotic attractor are specified
by the initial segments of the separatrices that closely
approach the saddle cycles L1 and L2 (see Fig. 2) and
theoretically [9] belong to the attractor. However,

É2
É1

P2

P1

L1

L2

O

40

30

20

10

0

q 3

–20 –10 0 10 20 –20
–10 0 10 20

q2

q1

Fig. 3. Structure of the phase space for the Lorenz system.
The thin solid line is the trajectory of the chaotic attractor,
the dashed line indicates separatrices Γ1 and Γ2, and the ini-
tial segment of one of the escape trajectories is represented
by filled circles.
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numerical studies show that the probability of the tra-
jectory falling in the neighborhood of the separatrices is
exponentially small compared to the probability of its
being in other segments of the chaotic attractor. Indeed,
this probability is determined by the probability of
motion in the neighborhood of trajectories T1 and T2
(Fig. 2). Computations indicate that, for the system tra-
jectory to fall within e = 0.1 of the separatrix, it must
pass in the close neighborhood of T1 and T2, e ≈ 10–7,
which is unlikely.

Based on the calculated time during which a trajec-
tory stays in a given neighborhood of the attractor, we
computed the probability measure of the chaotic attrac-
tor for the Poincaré section q3 = r – 1. The form of the
Lorenz attractor in the section is known [8] to be similar
to a one-dimensional curve in the q1–q2 plane. This
allows us to pass from the two-parameter to the one-
parameter probability measure [43] and to consider the
probability measure p(q1) for one coordinate. The prob-
ability measure p(q1) in the Poincaré section q3 = r – 1
(trajectories crossing the q3 = r – 1 plane from the bot-
tom upward were taken into account) has the form
shown in Fig. 4a. We see that the probability of the cha-
otic-attractor trajectory falling in the neighborhood of
separatrices Γ1 and Γ2 is exponentially small, and the
typical trajectory rarely visits the neighborhood of the
unstable manifolds of the saddle point O with a proba-
bility much larger than zero. The probability measure
changes only slightly in the presence of noise, as previ-
ously shown theoretically in [10, 11]. In the presence of
noise, however, the probability of the trajectory falling
in the neighborhood of the separatrix increases (Fig. 4b).
Thus, the probability measure of the chaotic attractor
has a smooth structure without singularities, p(q1) is
–15

9 10

L
n

p

11 12 13 14 15 16
–20

–10

–5
É2 É1 –12

9.4
q1

9.7
–20

9.69.5 9.8

–14

–16

–18

q1

(a) (b)

Fig. 4. (a) The logarithm of probability measure p(q1) for q1 > 0 computed in the absence (solid curve) and presence (dots) of noise
of intensity D = 0.001. The logarithm of probability measure p(q1) for q1 < 0 has the same form, and it can be obtained by substi-
tuting –q1 for q1. The solid vertical lines mark the coordinates that correspond to the intersection of the q3 = r – 1 plane with the
separatrices of the saddle point O from the bottom upward. (b) The tail [an enlarged part of panel (a)] of probability measure p(q1)
computed in the absence (thin solid curve) and presence (dash–dotted curve) of noise of intensity D = 0.001. The solid and dashed
vertical lines mark the coordinates that correspond to the intersection of the q3 = r – 1 plane with the separatrix and the optimal escape
trajectory from the bottom upward. The heavy solid curve represents the distribution of escape trajectories in Poincaré section.
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nonuniformly distributed over the attractor, there are
regions with an exponentially small probability of the
trajectory falling within them, and the presence of noise
does not change qualitatively the distribution structure
but increases the probability of the trajectory being in
the neighborhood of the separatrices.

Our analysis of the basins of attraction of the sta-
tionary points P1 and P2 in three-dimensional space
shows that the separatrices lie virtually at the bound-
aries of the basins of attraction in the interval 0 < q3 < 5. In
addition, the separatrices come close to the basin
boundaries of P1 and P2 in the neighborhood of the sad-
dle cycles L1 and L2. Thus, within a large region of
phase space, the separatrices and, hence, the chaotic
attractor come close to the boundaries of the basins of
attraction of the stationary points. Therefore, we may
assume that escape from the chaotic attractor can be
observed at any location where the separatrices come
close to the boundaries.

Thus, we see that, in the presence of noise, there is
a finite probability of fluctuational escape from the
basin of attraction of the quasi-hyperbolic attractor in
the Lorenz system. Before discussing the mechanism of
fluctuational transitions and the possibility of analyti-
cally estimating the escape probability in the Lorenz
system, we briefly describe the experimental methods
for investigating the fluctuational dynamics in nonequi-
librium systems.

3. THE FLUCTUATIONAL PREHISTORY 
PROBABILITY DISTRIBUTION 

AND ANALYSIS OF NONEQUILIBRIUM 
FLUCTUATIONAL TRANSITIONS

The probability characteristics of the Lorenz system
in the presence of white Gaussian noise are described
by the solution of the Fokker–Planck equation

(4)

which is written for the corresponding Langevin equa-
tions (2); here, ρ = ρ(q, t) is the probability density that
the system will be in state q at time t. In principle, the
solution of the Fokker–Planck equation provides the
most complete information on the dynamics of the dis-
tribution function for system (2). However, for systems
far from thermal equilibrium, for which the detailed
balance condition is not satisfied [in particular, for our
Lorenz system, the detailed balance condition [11] is
not satisfied, because the vector field of system (2) is
not potential], there are no general methods for solving
(4). Therefore, various approximate approaches are
used to describe the fluctuational dynamics of such sys-
tems. Thus, the idea of optimal trajectories and the con-
cept of the fluctuational prehistory probability distribu-

ρ∂
t∂

------
∂
qi∂

-------Ki q( )ρ–=

+
D
2
---- ∂2

qi q j∂∂
--------------- Qijρ( ), Qij δi3δj3,=
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tion prove to be very useful. By definition [37], the fluc-
tuational prehistory probability distribution ph(q f , tf; q,
t; qi , ti) specifies the probability that the system is at
point q at time t, provided that the system was at point
qi at initial time ti  and that its position at final time tf  is
at point q f  (ti < t < tf). Thus, ph describes the dynamics
of the distribution function during the system transition
from state (qi , ti) to state (qf , tf) normalized to the prob-
ability of the transition between these states. This quan-
tity differs from the ordinary conditional probability,
because both the initial and the final state of the system
are fixed in the definition of ph (see [37, 44] for details).
Note also that the definition of ph imposes no constraints
either on the times ti  and tf  or on the noise intensity D.

It was shown in [37] that direct experimental mea-
surements of ph can reveal important information on the
fluctuational dynamics of the system. Such measure-
ments are of particular importance in investigating
noise-induced transitions in nonequilibrium systems in
the weak-noise limit. It turns out that the prehistory
probability distribution ph for D  0 has a sharp peak
along some deterministic trajectories in the system con-
figuration space. The trajectories determined in this
way are called optimal trajectories. In general, there is
only one optimal trajectory that couples the specified
initial and final states of the system.

To determine the optimal trajectories, we must turn
to an asymptotic analysis of the solution to the Fokker–
Planck equation for D  0 (see, e.g., [21–41, 43–
59]). In this approximation, D is a small parameter of
the equation and, by analogy with the WKB approxi-
mation, the stationary (for t  ∞) probability density
can be written as (see, e.g., [35])

(5)

The quantity S[q] is the activation energy of the fluctu-
ations near point q [11, 47], and C(q) is the preexpo-
nential factor. Substituting (5) in (4) and collecting the
terms proportional to D–1, we obtain [35] the Hamilton–
Jacobi equation for S[q] (see also [11, 29, 33, 45, 46])

(6)

Here, H is the Wenzel–Freidlin Hamiltonian [35], and
S[q] can be interpreted as the classical action of system
(6) that determines the energy spent on the system
switching from state qi to state qf. In general, S[q] is a
multivalued function of qi. However, the minimum acti-
vation energy min S[q] has a physical meaning (i.e., is
a physically observable quantity). The optimal force
popt (t) and optimal trajectory qopt (t) of system motion
from qi to qf calculated from (6) corresponds to this
energy. If the initial time corresponds to –∞, then
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H∂
q∂

-------, Ṡ–
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minS[q] defines the quasi-potential of the nonequilib-
rium system (2) [11, 43, 47]:

(7)

Thus, in the weak-noise limit, the stochastic dynam-
ics of the system is described in terms of motion along
the optimal (in terms of energy expenditure) trajecto-
ries qopt(ti , qi; t; tf , qf); here, qi is the initial state of the
system and qf is the specified point in the space of sys-

tem states located at distances much larger than 
from the attractor.

It is worth noting that the Hamiltonian in (6) is sim-
ilar to the Pontryagin Hamiltonian, which corresponds
to the problem of switching system (2) from state qi to
state qf while minimizing the energy of the additive
control function [20] in the absence of constraints on
the form of the function and on the switching time.

If we choose the initial state qi on the attractor and
the final state qf at the attractor boundary, then the
extreme trajectories described by Hamiltonian (6) corre-
spond to the paths of escape from the attractor and the vec-
tor p, which tends to zero when ti  –∞ and tf  ∞,
determines the fluctuational force that switches the sys-
tem from one state to the other along a given escape
path [40, 48].

This formalism corresponds to the following physi-
cal picture of noise-induced escape from the basin of
attraction of an attractor: the system spends most of the
time in fluctuating near the attractor but executes rare
fluctuations that cross the attractor boundary. When
such rare fluctuations take place, the system moves
along almost a deterministic (optimal) trajectory. In
general, the trajectory of escape from the domain of
attraction is unique (or there are several such trajecto-
ries, because the system is symmetric) [30, 49–51]. For
regular fixed-point and limit-cycle attractors, this phys-
ical picture of noise-induced escape was confirmed
numerically [14, 15, 39, 46].

Note that the optimal trajectories in equilibrium sys-
tems are symmetric in time to the system relaxation tra-
jectories [36] and, hence, these can be determined, at
least in principle, as the time-reversed relaxation trajec-
tories of a deterministic system. Since there is no such
symmetry in nonequilibrium systems, investigating the
fluctuational prehistory is of fundamental importance
in understanding the mechanism of fluctuational escape
from an attractor.

An experimental method proposed by Dykman [37],
in which information on all trajectories in close neigh-
borhood of the chosen state qf outside the attractor is
gathered, can be used to study the dynamics of large
deviations from the attractor and to determine the
optimal escape path. In this experimental method, the
behavior of the dynamical variables q(t) and the ran-
dom force f(t) is tracked continuously until the system

ρ q( ) C q( )
S qopt[ ]–

D
------------------- 

  for D 0.exp≈

D
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makes a transition from the attractor to the neighbor-
hood of state qf. Escape trajectories qesc(t) of the
required duration and noise realizations f esc(t) of the
same duration are then conserved; subsequently, the
system forcefully returns to the basin of attraction of
the attractor, with the initial conditions in the basin
being chosen randomly. This is how an ensemble of tra-
jectories is collected and how the fluctuational prehis-
tory probability distribution ph(q, t; qf , tf) is con-
structed for the time interval during which the system is
observed. This distribution contains all the information
on the temporal evolution of the system immediately
before the trajectory arrives at qf. The existence of an
optimal path of escape from the attractor is diagnosed
from the form of ph: if there is no optimal escape trajec-
tory, then ph at a given time has a sharp peak at point
qopt(t; tf , qf). Thus, when experimentally studying ph, it
is possible to find a region in the phase space of the sys-
tem within which the optimal path is clearly seen, i.e.,

the region with a distinct, narrow (of the order of 
[37, 52]) peak of the distribution. In this case, the opti-
mal fluctuational force that moves the system trajectory
outside the attractor along the optimal path can be esti-
mated by averaging the noise realizations f esc(t) over
the ensemble. Note that investigating the fluctuation
prehistory also allows us to verify the concept of opti-
mal fluctuations and to determine the ranges of system
parameters for which optimal paths exist. We used this
experimental approach to study the escape from a
quasi-hyperbolic Lorenz attractor.

By studying large noise-induced deviations, we can
judge the system stability against noise perturbations
and can develop ways of controlling the system dynam-
ics in the absence and presence of noise [20, 48, 55].
Thus, for example, it was shown in [20, 55] that the
problem of deterministic optimal (from an energetic
point of view) control of the system transition from a
chaotic state to a regular state can be solved by deter-
mining the optimal escape paths and the optimal fluctu-
ational force. It was also shown in these papers that an
experimental determination of the optimal trajectories
based on the theory of large fluctuations is currently the
only approach to solving the deterministic problem of
optimal control of transitions between attractors in a
chaotic system. The investigation of large fluctuations
is therefore of importance in practical applications.

The Hamiltonian formalism presented above makes
it possible to theoretically describe the fluctuational
transitions in nonequilibrium systems. However, direct
application of this approach to chaotic systems involves
several fundamental difficulties. These difficulties are
primarily related to the uniqueness of the solution, to
the uncertainty of the boundary condition qi on a cha-
otic attractor, and to the determination of the probabil-
ity measure on the attractor itself. In general, when the
chaotic attractor has fractal boundaries of its domains

D
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of attraction, the problem of determining the second
boundary condition qf arises.

As yet no theoretical procedure has been developed
to calculate the probability of fluctuational escape from
the basin of attraction of a chaotic attractor. Previously,
however, (see, e.g., [14, 45, 53, 54] it was shown that
the Hamiltonian formalism can be generalized to cha-
otic systems. In this case, studying the uniqueness of
the solution and boundary conditions becomes of cur-
rent interest and importance. One possible approach to
their solution is the experimental method described
above. It allows us to find an approximate solution to
the problem of fluctuational transitions in systems with
chaotic attractors by statistically analyzing direct
observations of the transition dynamics. We demon-
strated the efficiency of statistical analysis of the exper-
imentally measured fluctuation prehistories in [1, 20] in
relation to the problem of escape from a chaotic attrac-
tor through a nonfractal boundary for a periodically
driven nonlinear oscillator. Below, we present the
results of our study of fluctuational transitions in the
Lorenz system.

4. AN EXPERIMENTAL STUDY
OF THE FLUCTUATION PREHISTORY

Let us consider fluctuational escape from the cha-
otic attractor of system (1) by using the experimental
approach described above. Before analyzing the results
of our studies, we note two fundamental points.

(1) The method described above allows the trajec-
tory corresponding to a global minimum of the escape
energy to be determined if the relaxation time to an
equilibrium distribution on the attractor, trel, is much
shorter than the time of the system fluctuational escape
from the basin of attraction of a given attractor, tesc:
trel ! tesc. The fluctuational escape time exponentially
increases with decreasing noise intensity D as tesc ∝
exp(S/D), where S is the escape “energy”. Since D is
always finite in practice (because the observing times
are necessarily finite), the satisfaction of the condition
trel ! tesc is primarily related to trel, i.e., to the properties
of the equilibrium distribution on the attractor.

It was shown in [1, 20, 55] that, for a chaotic attrac-
tor in a periodically driven nonlinear oscillator, the
noise intensity can be chosen in such a way that the
condition trel ! tesc is satisfied. In this case, the optimal
trajectory found does not depend on the initial condi-
tions on the attractor or on the noise intensity.

For the Lorenz system, the situation is different. As
was pointed out above, the probability of the system
being in the neighborhood of the manifolds of the sad-
dle point O is exponentially small. It may be said that
the equilibrium distribution function on the attractor
has tails similar to the tails of a Gaussian distribution
and the trajectory falls on these tails rarely. Moreover,
our reasoning that the trajectory must come arbitrarily
close to the saddle-point manifolds when t  ∞ is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
based on a theoretical analysis of the Lorenz system,
while numerical studies show that this probability is
zero for sufficiently long but finite computational times
(of the order of two weeks). This implies that the relax-
ation time to an equilibrium distribution on a quasi-
hyperbolic chaotic attractor is much longer than the
realistically feasible observing times. Consequently,
for the Lorenz system, we have to investigate the
dynamics of fluctuational escape within a finite time
interval. In this case, the question of how the solution
obtained depends on the initial conditions on the attrac-
tor and on the noise intensity for the Lorenz attractor is
still an open question (cf. the studies of nonequilibrium
trajectories [56, 57]). However, the experimentally
found escape scenario (see below) suggests that a
decrease in noise intensity cannot result in qualitative
changes of the escape trajectory.

(2) The prehistory probability distribution was ini-
tially derived in [37] to investigate the motion of trajec-
tories far from the attractor. The results presented in
Section 2 show that the boundaries of the Lorenz attrac-
tor (separatrices Γ1 and Γ2) come very close to the
boundaries of the basin of attraction; the attractor has a
highly nonuniform distribution, and no motion along
some parts of the attractor is observed in the absence of
noise. Therefore, we extend the approach based on an
experimental study of the fluctuational prehistory [37]
to investigate the fluctuational deviations within the
Lorenz attractor.

We investigated the fluctuational escape by numeri-
cally solving the stochastic differential equations of
system (1) using the Heun method (equivalent to the
Runge–Kutta method) [60] and a high-speed pseudo-
random sequence generator [61]. The noise intensity
was D = 0.01. For definiteness, we consider the transi-
tion from the chaotic attractor to state P1 (see Fig. 3).
Since the system is symmetric, the mechanism of the
transition to state P2 is the same and the quantitative
characteristics of the transition can be obtained by
changing the variables (q1, q2, q3) to (–q1, –q2, q3).
According to the experimental approach described
above, we gathered the ensemble of escape trajectories
{(q1(t), q2(t), q3(t))i}, i = 1, N and the corresponding
ensemble of noise realizations {(ξ(t))i}, i = 1, N; here, i
is the realization number and N is the number of real-
izations (in our studies, N ≈ 1000).

Figure 5a shows several numerically simulated
escape trajectories. We see that two narrow bundles of
trajectories come close to the saddle point O from the
neighborhood of points S and then slightly diverge and
fall into the neighborhood of the saddle cycle L1 while
moving along separatrix Γ2 (see also Fig. 3). The two
bundles of trajectories from points S to point A exist,
because the Lorenz system is symmetric, suggesting
the only path along which the trajectories move in the
neighborhood of point A. Note that the trajectories also
approach the neighborhood of point S by narrow bun-
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Fig. 5. (a) Ten trajectories of escape from a chaotic attractor in state P1 obtained by numerically simulating system (1). The filled
circles indicate separatrix 2; the saddle cycle L1 is indicated by open circles. (b) Ten trajectories of escape from a chaotic attractor
(solid lines) and ten deterministic trajectories (dashed lines) with the initial conditions coincident with the coordinates of the escape
trajectories near points S.
dles, suggesting that the behavior of the trajectories for
the Lorenz system is predictable on long time scales.

The next step must be a statistical analysis of the
ensemble of realizations: constructing the prehistory
probability distribution ph(q1, q2, q3, t) and the ensem-
ble-averaged fluctuational force, which is an estimate
of the momentum p3(t) and, accordingly, an estimate of
the action S[q] for system (6) [20]. This requires match-
ing the ensembles of realizations at some characteristic
point. Strictly speaking, this characteristic point must
be a point near the boundaries of the basins of attrac-
tion. However, because of the slow diffusion of the sys-
tem near the attractor boundaries, an averaging over the
initial conditions takes place (cf. [58, 59]), the fluctua-
tional trajectories cross the basin boundary in a fairly
wide region, and one point cannot be fixed in the neigh-
borhood of the basin. In [1, 20], we chose a character-
istic segment of the escape trajectory instead of a char-
acteristic point. Based on the pattern of escape shown
in Fig. 5a, we can choose a segment near point A, where
the bundle of trajectories is narrow, as the characteristic
segment. The statistical characteristics constructed for
this characteristic segment are shown in Figs. 6a, 7a,
and 7c. The prehistory probability distribution has a
distinct and unique peak in the time interval 50 < t/h <
250 (the region between the dashes in Fig. 6a). In this
interval, the fluctuational force p3 is zero (Fig. 7a) and
the dispersion Dp of the distribution decreases to a min-
imum (Fig. 7c). Subsequently, the distribution peak
spreads, the fluctuational force becomes nonzero, and
the dispersion increases sharply. We see (Fig. 6a) that
after passing point A, the escape trajectories diverge
and there is no longer any distinct peak in the distribu-
tion ph(q3, t). All trajectories after point A fall in the
neighborhood of the saddle cycle L1 but the times of
system motion along different trajectories in this seg-
JOURNAL OF EXPERIMENTAL 
ment are different. This behavior of the escape trajecto-
ries is determined by the stable manifold of the saddle
point O: the time of motion to point O along the stable
manifold itself tends to infinity. If the trajectory runs
alongside the manifold, then the time of motion along
it is finite; the further the point is from the manifold, the
larger is this time. For this reason, the trajectories near
the saddle point O are therefore very sensitive to fluctu-
ations; the escape trajectories traverse the segment
from point A to cycle L1 in different times, and, there-
fore, the peak of the fluctuation prehistory probability
distribution spreads. This implies that choosing the
neighborhood of point A as the characteristic segment
allows us to analyze the behavior of the escape trajec-
tories only up to point A. For the subsequent analysis,
we must choose a different characteristic segment
located after the saddle point O, for example, the neigh-
borhood of point B (see Fig. 5a). Since the q3 coordi-
nate reaches its maximum in this segment, which can
be easily diagnosed by the time series of the system, it
will suffice to bring the escape trajectories into coinci-
dence to construct the distribution ph(q1, q2, q3, t). The
statistical characteristics for point B are shown in Figs.
6b, 7b, and 7d. We see that the situation is opposite for
point B: a distinct peak of the distribution ph(q3, t) is
observed at t/h > 230 (the region to the right of the dot-
ted line in Fig. 6b), at which the fluctuational force p3 is
nonzero (Fig. 7b) and the dispersion Dp of the distribu-
tion reaches a minimum (Fig. 7d). Consequently, there
is only one optimal escape trajectory along which the
system moves from point O into the neighborhood of
the saddle cycle L1.

Our analysis of the prehistory probability and fluc-
tuational force shown in Figs. 6 and 7 suggests the fol-
lowing scenario for the escape from a quasi-hyperbolic
attractor. The escape trajectory can be broken down
AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002
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Fig. 6. Projections of the escape prehistory probability distributions onto the q3 coordinate axis for the characteristic points (a) A
and (b) B. The horizontal axes are normalized to the integration step h = 2π/200. The zero times for distributions (a) and (b) are
different.
into three segments (Fig. 8). Segment 1 corresponds to
the motion within the attractor, which requires no noise.
The escape trajectory starts at some characteristic point
of the chaotic attractor (point S in Fig. 5a). This point
belongs to a typical attractor trajectory. The probability
of the system trajectory being in a close neighborhood
of point S in the absence of noise is much larger than
zero. After point S, the escape trajectory falls into the
neighborhood of the stable manifold (point A in Fig. 5a)
of the saddle point O, where the dispersion of the pre-
history probability distribution is at a minimum (Fig. 7c).
At this time, the fluctuational force is close to zero
(Fig. 7a). The motion in the segment from point S to
point A is completely deterministic, and noise does not
change qualitatively the trajectory behavior [10, 11].
Indeed, if the noise source is removed at the time when
the trajectories pass point S, then the trajectories will
fall into the neighborhood of point A in a deterministic
way; the bundle will remain narrow (see Fig. 5b). How-
ever, after passing point A, the trajectories in the
absence of noise are located far from the saddle point O
and separatrices Γ1 and Γ2.
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Subsequently, under the action of the fluctuational
force, the escape trajectory approaches the saddle point
O along the stable manifold of point O and then recedes
from it along separatrix Γ2 and falls into the neighbor-
hood of the saddle cycle L1. The trajectory motion from
the neighborhood of the stable manifold of the saddle
point O to the saddle cycle L1 corresponds to segment 2
(Fig. 8; see also Fig. 1). In this part of the path, the fluc-
tuational force follows the trajectory of the system q3

coordinate; the force and the system trajectory may be
said to be in phase. The escape trajectories in the sec-
ond segment form a broad bundle (Figs. 5a and 6a)
around some most probable escape path, which can be
understood as follows. A narrow bundle of trajectories
comes to point A, but this bundle has a finite width. As
was already pointed out above, there is a large sensitiv-
ity to small deviations in the neighborhood of the man-
ifolds of point O and the trajectories therefore diverge
in a wide fan in the absence of a certain fluctuational
force (see Fig. 5b). Under the action of fluctuations,
however, the bundle width significantly decreases, but
it remains much larger than the bundle size in the
SICS      Vol. 94      No. 4      2002
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neighborhood of point A. Thus, the fluctuational
force begins to act after the trajectories passed point A
(segment 1).

In segment 3, the escape trajectory moves along the
unstable manifold of the saddle cycle L1 and crosses
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Fig. 8. The typical escape trajectory obtained by numeri-
cally simulating system (1). The horizontal dash–dotted
lines indicate the boundaries of cycle L1. The horizontal
axis is normalized to the integration step h = 2π/200. The
averaged fluctuational force is shown at the top. 
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cycle L1. The escape trajectory and the fluctuational
force are in antiphase, while the force itself shows a dis-
tinct oscillatory behavior, with its period being close to
the system oscillation period (Fig. 7d). We also see that
the fluctuational force does not vanish for a long time.
The oscillatory behavior and long duration of the fluc-
tuational force can be explained as follows. In the
absence of fluctuations, the system trajectories go away
from the saddle cycle along the unstable manifold very
slowly, because the corresponding multiplicator is only
slightly larger than unity. In this case, the fluctuational
force can produce weak pushes during a long period
toward the saddle cycle against the direction of trajec-
tory motion along the unstable manifold. After the tra-
jectory crosses the cycle, it also slowly relaxes to the
equilibrium position P1.

The long duration of segment 3 in the escape trajec-
tory leads us to conclude that there is no close relation-
ship between this segment and the two preceding ones.
Therefore, the escape process may be broken down
into two independent stages: the trajectory expulsion
into the neighborhood of the saddle cycle L1 and its
crossing.
AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002



FLUCTUATIONAL ESCAPE FROM A QUASI-HYPERBOLIC ATTRACTOR 831
5. CONCLUSION

Thus, the escape trajectory is unique and lies on the
manifolds of system (1) that belong to the chaotic
Lorenz attractor. The role of fluctuations is, first, to
deliver the system trajectory to a rarely visited region of
the attractor and, second, to induce the saddle-cycle
crossing—the escape trajectory lies on the unstable
manifold of the saddle cycle. Our results show that the
most probable escape trajectory may be broken down
into three segments (Fig. 8). The motion in the first seg-
ment is completely deterministic, while the trajectory
path in the second and third segments is determined by
a nonzero fluctuational force. Therefore, the probability
of escape from a chaotic attractor can be calculated as
a product of the probabilities of successive transitions,
ρ1, ρ2, and ρ3, where ρ1 is the probability of the chaotic
trajectory falling into the neighborhood of point S in the
absence of noise, ρ2 is the probability of the trajectory
expulsion from the neighborhood of point A into the
neighborhood of the saddle cycle L1, and ρ3 is the prob-
ability of crossing the saddle cycle L1.

The probabilities ρ1 and ρ2 can be theoretically esti-
mated by constructing the probability measure for a
quasi-hyperbolic attractor using the technique from
[11] but with allowance made for the finite noise inten-
sity. Note that only the trajectories that are in a close
neighborhood of cycle L1 have a finite probability of
escaping from the Lorenz attractor. Therefore, estimat-
ing the probability ρ2 is related to solving the problem
of a trajectory falling within a specified region when
moving along the flux of a vector field in a finite time
interval. The probability ρ1 can be estimated with a
high accuracy by using the attractor probability mea-
sure in the absence of noise, because noise in the first
segment induces only diffusive motion around a deter-
ministic trajectory (see Fig. 5a).

The probability ρ3 is determined by the fluctuational
dynamics on the two-dimensional unstable manifold of
the saddle cycle L1. Estimating ρ3 is related to solving
a problem similar to the problem of the fluctuational
crossing of an unstable cycle into the domain of attrac-
tion of a stationary point in a Van der Pol oscillator with
hard excitation. The trajectory motion near the saddle
cycle (see Fig. 8) resembles periodic oscillations of
slowly varying amplitude. In the absence of fluctua-
tions, the oscillation amplitude increases and the role of
fluctuations is to overcome the slow increase in ampli-
tude and to cross the saddle cycle.

As we see, estimating each of the probabilities (ρ1,
ρ2, ρ3) is a separate serious problem that requires addi-
tional theoretical and experimental study.

The roles of noise in each of the escape segments are
different. As was already mentioned above, in the
absence of fluctuations, the probability of the trajectory
falling into a close neighborhood of the separatrices
and, hence, the saddle cycle is small but nonzero; i.e.,
the first and second segments can also be theoretically
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observed in a noiseless system: this is the system
motion along trajectories T1 and T2 (see Fig. 2). In the
presence of noise, the motion must take place in the
tube formed around these trajectories. As our studies
show, in the first segment (Fig. 8), the escape trajecto-
ries actually run in a close neighborhood of the trajec-
tories T1 and T2. In the second segment, after point A
(see Figs. 2 and 5), we observe the following: since the
noisy escape trajectories differ from T1 and T2, the
escape trajectories tend to go away from them, but,
under the action of fluctuational force, they remain in
the neighborhood of the stable manifold Ws and separa-
trix Γ2. In other words, fluctuations hold the trajectory
near the manifolds of the saddle point O. In the third
segment, the escape from the basin of attraction of a
chaotic attractor takes place precisely under the action
of fluctuations.

As was pointed out above, an experimental
approach based on investigation of the fluctuation pre-
history was used in [1, 20] to study the fluctuational
escape from a nonhyperbolic attractor in a periodically
driven nonlinear oscillator. In these papers, the problem
was solved in terms of the Hamiltonian formalism
without reformulating the boundary conditions, which
we did for a quasi-hyperbolic chaotic attractor by intro-
ducing a finite transition time. In [1, 20], we showed
that the escape from a nonhyperbolic attractor is
accomplished through successive transitions between
saddle cycles and that no additional force is required to
deliver the trajectory to the cycle from which the escape
begins. For the quasi-hyperbolic attractor considered
here, the situation is fundamentally different: the saddle
cycles embedded in the attractor are not involved in the
escape, and an additional fluctuational force is required
to move the chaotic trajectory into a rarely visited
region of the attractor. Thus, the dynamics of fluctua-
tional escape depends significantly on the type of cha-
otic attractor.

Our analysis shows that the behavior of the trajec-
tory of escape from the basin of attraction of a quasi-
hyperbolic chaotic attractor is completely determined
by the manifolds of the saddle point O at the coordinate
origin and by the unstable manifold of the saddle cycle
L1. Therefore, the problem of escape from a chaotic
attractor may be reformulated as the problem of trajec-
tory motion along one- or two-dimensional manifolds
in the presence of fluctuations. In other words, to get a
more detailed picture of the escape from the attractor of
a three-dimensional system, we must consider a similar
problem in systems of lower dimension.

In Section 3, we noted that investigating large devi-
ations from a chaotic attractor is important from a prac-
tical point of view and is related to the problem of
attractor stability in the presence of fluctuations and to
solving the problem of controlling the system dynam-
ics. Our results, from the viewpoint of their applica-
tions to actual systems described by the Lorenz model,
imply the following. First, the chaotic regime to which
ICS      Vol. 94      No. 4      2002
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a quasi-hyperbolic attractor corresponds is stable
against fluctuations. Second, the noise-induced devia-
tions from the chaotic regime of the system, i.e., large
fluctuations, are extremely rare events, because these
are related to the trajectory visit to exponentially
unlikely regions of phase space. Third, the control of
the system dynamics to switch it from the chaotic
regime is implemented by a perturbation of a certain
shape (see Fig. 8) in the time interval when the system
is in a close neighborhood of the equilibrium state O. In
other words, to realize or suppress transitions from the
chaotic regime to a different regime requires keeping
track of the system behavior in a close neighborhood of
the system variables. The latter considerably simplifies
the control procedure.

In conclusion, we note once again that the noise-
induced escape from a quasi-hyperbolic attractor was
investigated in terms of the theory of large fluctuations
by experimentally analyzing the fluctuation prehistory
[37]; here, we extended the experimental approach [37]
to study the motion along the attractor itself.
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Abstract—We investigate the semiclassical limit for the nonlinear Schrödinger equation in the case of a defo-
cusing medium under oscillating nonperiodic initial conditions specified on the entire x axis. We formulate a
system of integral conservation laws in terms of an infinite number of spatially averaged densities explicitly
calculated from the initial conditions. We study the direct scattering problem and show that the scattering phase
is a uniformly distributed random variable. The evolution of this system leads to the development of nonlinear
oscillations, which become statistical in nature on long time scales. A modified inverse scattering method based
on constructing a maximizer of the N-soliton solution in the continuum limit for N  ∞ is used to obtain an
asymptotic solution. Using the maximizer, we found an infinite set of conserved averaged densities in the sta-
tistical state. This allowed us to couple the initial state with the limiting statistical steady (for t  ∞) state
and, thus, to unambiguously determine the level spectrum in the statistical limit. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

We consider the nonlinear Schrödinger equation
(NSE) with defocusing,

(1)

This equation is known to be completely integrable. Its
solution for the classical problem with a rapidly
decreasing initial potential u(x, 0),

(2)

was first obtained by Zakharov and Shabat [1]. Condi-
tion (2) imposed on the initial function u(x, 0) is of fun-
damental importance in the theory of integration by the
inverse scattering method [2]. It ensures that the initial
potential u(x, 0) is analytic for |x |  ∞. This makes it
possible to obtain a complete solution of the scattering
problem, i.e., to accurately determine the system of ini-
tial phases. The phase shift in time is described by a
simple ordinary differential equation, and the transfor-
mation to u(x, t) is described by the linear inverse scat-
tering problem (see [2], p. 36). This procedure forms
the basis for the classical inverse scattering method. It
allows one to solve the Cauchy problem for a nonlinear
equation (e.g., the NSE), i.e., to unambiguously deter-

iut uxx 2 u 2u–+ 0.=

u x 0,( ) xd

∞–

+∞

∫ ∞,<
1063-7761/02/9404- $22.00 © 20834
mine the strictly deterministic value of u(x) at any instant
in time t for a given u(x, 0).

Our statement of the problem differs fundamentally
from the classical one. We consider the initial function

(3)

where u0(x) is an oscillating, nonperiodic, large-scale,
bounded function specified on the entire x axis. The
properties of this function are discussed in more detail
below (in Section 2), while here an important fact is
that it does not satisfy condition (2). As a result, the
function u0(x) loses its analyticity when |x |  ∞.
Moreover, it has an essential singularity here: the value
of u0(x) proves to be indeterminate; it is only known to
vary within specified limits [because u0(x) is bounded].
Thus, the solution of the scattering problem becomes
fundamentally new in nature: it leads to random scatter-
ing phases. As a result, the purely dynamic evolution of
the function u(x, t) for uniquely determined initial
potential (3) loses dynamical properties in the asymp-
totic limit t  ∞ and tends to the statistical limit. In
other words, in the course of time, the solution takes the
form of nonlinear oscillations with random phases.
Such a system is statistical in nature and can be
described in terms of a continuous random process.
More specifically, the strictly deterministic value of

u x 0,( ) u0 x( ),=
002 MAIK “Nauka/Interperiodica”
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u(x, t) loses its meaning in the asymptotic limit t  ∞,
and we can only speak about the function f(u, x, t), the
probability density to find a given value of u at point (x,
t), or the correlation functions. The problem is to deter-
mine the specific form of these functions and their
dependence on the initial potential u0(x).

For the NSE with defocusing, this problem is stated
for the first time. Previously [3, 4], we considered such
a problem for the Korteweg–de Vries equation. In [3],
we used the method of Whitham multiphase equations
to show the development of a statistical structure in the
solution with time, which becomes completely statisti-
cal in nature in the asymptotic limit t  ∞. In [4], we
developed as asymptotic method of solving the above
problem for the Korteweg–de Vries equation, which
was called a modified inverse scattering method. The
initial function u0(x) is assumed to be spatially homoge-
neous (ergodic). In this case, the probability density f
depends on the velocity u alone,  f = f(u), and the spatial
correlation function K = K(x, x') depends on the difference
|x – x'| alone. In [3, 4], we determined the form of these
functions for a specific initial potential u0(x).

In this paper, we develop the modified inverse scat-
tering method for the NSE with defocusing. Note that
the NSE describes the propagation of electromagnetic
waves in nonlinear media, for example, in the Earth’s
ionosphere [5] and optical fibers [6]. The Gross–Pitae-
vskii equation, which describes the behavior of excita-
tions in a gas in the state of a Bose–Einstein condensate
[7], is similar in form.

Our paper has the following structure. In Section 2,
we briefly describe the salient features of the NSE and
formulate the initial-value problem in general form. In
Section 3, we investigate the conservation laws. The
NSE is known to have an infinite set of differential con-
servation laws. In the classical statement of the prob-
lem, these can be represented in integral form as time-
independent integrals,

where Rn are the polynomials of the function u(x) and
its derivatives [2]. Under condition (3), however, the
initial function u0(x) does not rapidly decrease with
|x |  ∞ and the integrals Jn diverge. In Section 3, we
introduce the averaged integral conservation laws or, in
other words, the conservation laws represented as the
invariant densities 〈Rn〉 . The latter take on fixed, finite
values determined by the ergodic initial function u0(x)
for each n. In contrast to [4], we used the multitime
technique and the Hamiltonian formalism to derive
them. The values of 〈Rn〉  are shown to be conserved as
the solution develops with time. We emphasize that
there is no unique relationship between the invariant
densities and the spectral function in the NSE, in con-
trast to the Korteweg–de Vries equation.

Jn Rn x, nd

∞–

∞

∫ 1 2 …,, ,= =
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In Section 4, we solve the scattering problem. The
scattering phases for the initial potential u0(x) under
consideration are shown to be distributed randomly and
uniformly. On the one hand, this rules out the direct
application of the classical inverse scattering method
but, on the other hand, serves as the basis for using the
modified inverse scattering method to determine the
asymptotic behavior of the solution for t  ∞. To this
end, based on the N-soliton solution, we construct a
maximizer for the system of interacting solitons speci-
fied on the spatial scale L with uniformly distributed
random phases in Section 5. We show that, for N  ∞
and L  ∞, there is a continuum limit to the phase-
averaged maximizer described by a linear integral
equation. It is important to note that this equation
includes the level spectrum in phase space ρs(λ). Here,
the fundamental difference between our problem and
the classical problem again becomes significant. In the
classical problem, the solitons go to infinity in the
asymptotic limit t  ∞ and become free. For free soli-
tons, the level spectrum in phase space is identical to
the level spectrum in ordinary space ρ(λ). Since the
spectrum does not depend on time t, the following rela-
tion always holds in the classical statement of the prob-
lem:

(4)

In our problem, the solitons never become free: they
remain interacting ones at any t, even for t  ∞. Here,
an essential singularity at infinity again shows up. In
this case, ρs(λ), the level spectrum in phase space, does
not match the level spectrum in ordinary space; i.e., in
our case, there is no relation (4). In Section 6, we use
the modified inverse scattering method to determine
ρs(λ). It consists in the following. Using the maximizer
calculated in the continuum limit, we determine the
averaged invariant densities in the statistical state, 〈Rn〉 s.
Based on the multitime hierarchy of the NSE, we prove
that the maximizer determines the entire infinite set of
invariant densities. Since the invariant densities do not
vary with time, they match 〈Rn〉  specified by the initial
condition

〈Rn〉 s = 〈Rn〉 . (5)

Thus, the unique relationship between the statistical
state and the deterministic initial state can be estab-
lished by using an infinite set of conservation laws (5).
The one-to-one relationship between the spectra ρs(λ)
and ρ(λ) can be derived from relations (5). After the
steady-state spectrum ρs(λ) has been determined, we
can calculate all the necessary parameters in the statis-
tical state by using the maximizer.

In contrast to the solution of the Korteweg–de Vries
equation in [4], where we initially considered only two
conservation laws, here, we managed to prove that all
conservation laws hold in the statistical state by using
the multitime hierarchy.

ρs λ( ) ρ λ( ).≡
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2. STATEMENT OF THE PROBLEM

The NSE with defocusing has the form (1). With the
change of variables

,

Eq. (1) transforms to an equivalent system of dispersion
hydrodynamic equations,

We study the case where the hydrodynamic variables
vary smoothly: ρ = ρ(εx, ετ), v  = v(εx, ετ), ε ! 1.
Expanding the scale, x  x/ε and t  t/ε, we can
then explicitly separate out the small parameter of the
dispersion term with higher derivatives in the hydrody-
namic equations:

(6)

The system of equations (6) describes, in particular,
the propagation of electromagnetic waves in a nonlin-
ear defocusing medium. In contrast to the Korteweg–de
Vries equation, it is a complete wave equation. The dis-
persion relation for system (6) linearized relative to a
steady hydrodynamic flow with ρ = ρ0 and v  = U0 is

It thus follows that the NSE describes two oppositely
propagating waves. Accordingly, there are also two
oppositely traveling systems of stationary waves, in
particular, solitons

(7)

We emphasize that, as follows from (7), the soliton of
the defocusing NSE is a “well” in the background den-
sity ρ0:

When |x |  ∞, ρ  ρ0. At ρ0 = 0, Eq. (1) has no
solitons. Note that the soliton velocity decreases with
increasing depth of the well proportionally to (ρ0 –
k2)1/2. The soliton stops at k2 = ρ0; in this case, its veloc-
ity is equal to the steady-flow velocity U0. Note also
that the dispersion in the NSE is positive; i.e., both the

u ρ1/2 iφ( ), vexp φx, τ 2t= = =

ρτ ρv( )x+ 0,=

v τ vv x+ ρx–
1
2
--- ρ( )xx

ρ
----------------

x

.+=

ρτ ρv( )x+ 0,=

v τ vv x+ ρx–
1
2
---ε2 ρ( )xx

ρ
----------------

x

.+=

ω kU0– kρ0
1/2 1 k2

4ρ0
--------+ 

 
1/2

.±=

u
ρ0 v s/2 ik–( )2 2kX( )exp+

ρ0
1/2 1 2kX( )exp+( )

-----------------------------------------------------------------,=

X
x v st±

ε
----------------.=

ρ ρ0
k2

kX( )cosh
2

-------------------------, v s– 2 ρ0 k2–( )1/2
.= =
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wave phase and the group velocities in the medium
increase with wave number k.

Let us now discuss the statement of the initial-value
problem. We study the solution to the nonlinear equa-
tion (1) in the semiclassical limit. This implies that the
solution to system (6) is considered for ε  0; the ini-
tial hydrodynamic perturbations ρ(x, 0) and v(x, 0) do
not contain the scale ε and are bounded on the entire x
axis together with all derivatives. In addition, the initial
functions ρ(x, 0) ≥ 0 and v(x, 0) are assumed to be non-
periodic functions oscillating about some means.

We restrict our analysis to initial conditions in the
form

(8)

where ρ0 > 0, fm(ξ), and vm(ξ) are finite functions equal
to zero outside the interval αm < ξ < βm (αm < 0, βm > 0,
βm – αm = 1). Inside this interval, fm(ξ) is positive and
has one maximum at ξ = 0 that does not exceed ρ0. The
latter condition ensures that ρ(x, 0) is nonnegative. The
intervals (xm + αmθm, xm + βmθm) on the x axis, in which
different terms in (8) are nonzero, do not overlap. For
brevity, the separate term fm, vm, which represents a
localized perturbation of the homogeneous ρ = ρ0,
U0 = 0 background, is called a well. Consider, for sim-
plicity, specific initial conditions in the form of a
sequence of wells with the same shape and depth,

(9)

The initial conditions are nonperiodic if, for example,
the difference xm + 1 – xm = l in (9) is constant and the
well width varies as

(10)

where σ/π is an irrational number and q < 1.

Note that the initial conditions (10) we consider are
ergodic; i.e., these are described by spatially homoge-
neous functions, for example, by quasi-periodic or
almost periodic ones (see, e.g., [8] for an exact defini-
tion of ergodic functions).

Apart from the form of f(x) and g(x) and the back-
ground density ρ0, the initial conditions (9) can be char-

ρ x 0,( ) ρ0 f m

x xm–
θm

-------------- 
  ,

m ∞–=

∞

∑–=

v x 0,( ) v m

x xmm–
θm

----------------- 
  ,

m ∞–=

∞

∑=

ρ x 0,( ) ρ0 f
x xm–

θm

-------------- 
  ,

m ∞–=

∞

∑–=

v x 0,( ) g
x xm–

θm

-------------- 
  .

m ∞–=

∞

∑=

θm θ 1 q σm( )sin+[ ] ,=
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acterized by the mean distance  between the wells and

the mean well depth . The ratio

(11)

defines the well packing density, i.e., the mean hydro-
dynamic perturbation of the homogeneous background.

3. INTEGRAL CONSERVATION LAWS

The NSE is integrable [2, 9]. In an exact integration
of the nonlinear equation (1) and its equivalent hydro-
dynamic system (6), an auxiliary linear problem is the
scattering problem for the system of the second order
[9]

(12)

Here, λ is the spectral parameter of the problem, and 
is the function complex conjugate to u.

3.1. Differential Conservation Laws

Because of its complete integrability, the NSE is
known to have an infinite set of independent differential
conservation laws

(13)

For the initial-value problem under consideration, as in
the solution of the Korteweg–de Vries equation [4], the
conservation laws must be rewritten in an averaged
form. This will be done in the present section. The
Hamiltonian representation and the multitime tech-
nique t  tm, m = 1, 2, … are used (in contrast to [4])
to derive the averaged integral conservation laws.

The densities of the conserved quantities Pn in (13)
can be determined by expanding the logarithm of the
transmission coefficient for the linear system (12) in
powers of 1/λ for λ  ∞. This allows a recurrence
formula to be derived for Pn. Indeed, after eliminating
ψ(2) and substituting

,

system (12) transforms to the Riccati equation

For the expansion coefficients of the solution to this
equation with λ  ∞

, (14)

l

θ

γ θ/= l

εψx
1( ) i

2
---λψ 1( )– uψ 2( ),+=

εψx
2( ) i

2
---λψ 2( ) uψ 1( ).+=

u

∂tPn ∂xWn+ 0.=

ψ 1( ) iε 1– –
λ
2
---x P xd∫+ 

 exp=

λP u 2 P2 iεu∂x
P
u
--- 

  .–+=

P Pnλ
n–

n 1=

∞

∑=
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we derive the recurrence system [9, pp. 37, 39]

(15)

with the initial recurrence condition being P1 = |u |2.
The densities in the differential conservation laws (13)
can be successively determined from system (15):

These are the polynomials of u(x) and  and their
derivatives.

Recurrence (15) gives a definite set of polynomial
densities Pn, but, in general, these densities are deter-
mined ambiguously. Clearly, we can make any linear
combination of these or add an arbitrary constant.
Moreover, adding the total derivative of the polynomial
of u(x) and  and their derivatives to Pn again leads
to the density of the conserved quantity.

3.2. Integral Conservation Laws
and the Hamiltonian Form

If the function u(x) and all its derivatives rapidly
converge to zero when |x |  ∞ so that the integrals

(16)

exist, then the time independence of these integrals fol-
lows from relations (13).

Equation (1) can be represented in the Hamiltonian
form [9] by using (16). If the functionals of u(x) defined
by integrals (16) with n = 3, 4, … are taken as the
Hamiltonians, then we derive the hierarchy of equa-
tions

(17)

We have Eq. (1) at n = 3 and the so-called higher NSEs
for n > 3.

The initial condition (8) or (9) that we consider is a
nonperiodic sequence of isolated localized perturba-
tions (wells). Therefore, the total spectrum of problem
(12) can be obtained in the semiclassical limit by a sim-
ple superposition of the spectra for individual wells.
Accordingly, when studying the contribution of each
well, we used the theory developed in [9] for Eq. (1)
under the condition of a finite density: when |x|  ±∞,

(18)

Subsequently, these contributions were combined (for
details, see the next section). Under condition (18), it is

Pn 1+ –iεu∂x

Pn

u
----- 

  PmPn m– ,
m 1=

n 1–

∑+=

n 1 2 …,, ,=

P2 iεuux, P3– ε2uuxx u 4,+–= =

P4 i ε3uuxxx ε u 2 4uux uux+( )–[ ] , … .=

u x( )

u x( )

In Pn x( ) xd

∞–

∞

∫=

∂u
∂t
------ i

δIn

δu
-------.–=

u x t,( ) 2 ρ0 0.≠
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convenient to transform Eq. (1) [by adding the phase
factor u  uexp(–2iρ0t)] to the form [9]

(19)

In this case, the hydrodynamic form (6) remains
unchanged.

It is important to note that the Hamiltonian form
(17) holds only when u(x) rapidly decreases together
with its derivatives, because only in this case are the
functionals In determinate and do their variational
derivatives rapidly decrease as |x |  ∞. For a finite
density, to ensure the convergence of the conserved
integrals, it will suffice to subtract the following con-
stants [9, p. 72] from the densities Pn(x):

where ω = 2  and  are the coefficients defined by
the expansion

However, apart from the existence of functionals, the
integrals with infinite limits of

it is also necessary to ensure that their variational deriv-
atives rapidly decrease with |x |  ∞ in order to rep-
resent Eq. (19) and the corresponding higher equations
in the Hamiltonian form. As was shown in [9, pp. 73,
193], certain linear combinations Rn(x) of the densities
Qn(x) related to the asymptotic expansion of the loga-
rithm of the transmission coefficient in negative powers

of the variable  may be used instead of expan-
sion (14).

Denoting

we have

The generating function of (14), i.e.,

corresponds to an infinite series of the densities Pn; sim-
ilarly, we define

iut uxx 2 u 2 ρ0–( )u–+ 0.=

P2k 1–
∞ 1

2
--- 1–( )k 1+ ω2kbk

+, P2k
∞ 0, k 1 2 …,, ,= = =

ρ0 bk
+

1 x+( )1/2 bk
+xk.

k 0=

∞

∑=

Qn x( ) Pn x( ) Pn
∞,–=

λ2 ω2–

λ 1– ξ , λ2 ω2–( ) 1/2– η ,= =

ξ η( ) η 1 ω2η2+( )–1/2
.=

P ξ( ) Pnξ
n,

n 1=

∞

∑=

Q ξ( ) Qnξ
n.

n 1=

∞

∑=
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According to [9], the densities Rn are specified by the
generating function

(20)

The following expansion is used to establish the
relationship between Rn and Qn that follows from (20):

(21)

where the coefficients βnp are known; these can be
expressed in terms of binomial coefficients and even
powers of ω, some of which are zero. As a result, we
obtain the relation

(22)

Substituting

into this relation yields a formula that expresses Rn in
terms of Pn. Given the explicit form of βnp(ω) and the
constants Pn, it is more convenient to write this formula
separately for odd and even numbers:

(23)

Clearly, the differential conservation laws

(24)

which follow from (13), hold for new combinations Rn.

If we now take the integrals

(25)

as the Hamiltonians, then we derive the hierarchy of
NSEs for a finite density:

. (26)

It begins with Eq. (19).

Rnη
n

n 1=

∞

∑ R η( ) Q ξ η( )( ).= =

ξn ηn βnp ω( )η p,
p 0=

∞

∑=

Rn βn p– p, ω( )Qn p– .
p 0=

n 1–

∑=

Q j P j P j
∞–=

R2k 1+ x( ) 2k 1–( )!! 1–( )mω2m

2mm! 2k 1– 2m–( )!!
--------------------------------------------------

m 0=

k

∑=

∫ × P2k 1 2m–+ x( ) 1–( )k 1+ ω2k 2+

2k 2+ k 1+( )!
---------------------------------+ ,

R2k 2+ x( ) k!
1–( )mω2m

m! k m–( )!
--------------------------P2k 2 2m–+ x( ).

m 0=

k

∑=

∂tRn ∂xWn
R( )+ 0,=

Jn Rn x( ) xd

∞–

∞

∫=

∂u
∂t
------ i

δJn

δu
--------, n– 3 4 …, ,= =
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Below, we give the first several densities Rn calcu-
lated with the recurrence formula (15) and relations
(23):

(27)

The expressions of these quantities in terms of the
hydrodynamic variables ρ and v  are

(28)

The densities of the conserved quantities

(29)

are physically interpreted as the momentum and energy
densities, respectively. As we see from (29) and (27),
the differences p – R2 and h – R3 are the total deriva-
tives.

3.3. Multitime Formalism

Note an important property of the hierarchy of
NSEs: any finite number of Eqs. (26) may be consid-
ered as the overdetermined system

(30)

for the function of several variables

(31)

The nontrivial property of the NSE attributable to its
complete integrability is that fluxes (30) commute:

i.e., system (30) is compatible and actually defines the
function of many “times” (31). Each of the functionals
Jn with n ≥ 3 is the Hamiltonian for the corresponding
time tn – 2.

R1 u 2 ρ0, R2– iεuux,–= =

R3 ε2uuxx u 2 ρ0–( )2
,+–=

R4 i ε3uuxxx 4ε u 2 ρ0–( )uux ε u 2uux––[ ] .=

R1 ρ ρ0, R2– ρv
1
2
---iερx,–= =

R3 ρv 2 ρ0 ρ–( )2 iε ρv( )x– ε2ρ1/2 ρ1/2( )xx,–+=

R4 ρv 3 3ρ 4ρ0–( )ρv+=

– iε 3
2
---ρv 2 3

2
---ρ2 2ρ0ρ–+ 

 
x

O ε2( ).+

p
ε uxu – uux( )

2i
------------------------------ ρv ReR2,= = =

h ε2 ux
2 ρ0 u 2–( )2

+=

=  ρv 2 ρ0 ρ–( )2 1
4
---ε2ρx

2ρ 1–+ + ReR3
1
2
---ε2ρxx+=

∂u
∂tm

-------- i
δJm 2+

δu
---------------, m– 1 2 …, ,= =

u u x t1 t2 …, , ,( ).=

∂2u
∂tm∂tn

---------------
∂2u

∂tn∂tm

---------------,=
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The conservation laws (24) also apply to all higher
times:

(32)

Relations (32) at n = 1 are of particular importance,
because these are used in Section 6. In this case, the
fluxes can be represented as

(33)

where βnp are defined in (21) and ∂x(…) denotes a total
derivative. To derive formula (33), let us determine
∂R1/∂tm from the general rule of the Hamiltonian
dynamics by using the Poisson brackets [9]:

Hence, relation (22) yields

(34)

where  =  are the functionals defined for the

functions u(x) that satisfy the finite-density condition.
Since the density Qn differs from the density Pn only by

the constant , we have

which allows the combination of variational derivatives
in (34) to be expressed in terms of Pn:

Substituting Qn – 1 for Pn – 1 under the derivative sign
and using the derived relation in (34) yields expression
(33).

3.4. Averaged Integral Conservation Laws

For our problem with the restricted ergodic initial
conditions (9), it would be natural, as in [4], to pass to
an integral form of the conservation laws in terms of the
averaged densities of conserved quantities. Consider
the mean quantities

(35)

∂Rn

∂tm

---------
∂Wnm

R( )

∂x
--------------+ 0.=

W1m
R( ) kβk 1+ m 1 k–+, Qk ∂x …( ),+

k 1=

m 1+

∑=

∂R1

∂tm

--------- Jm 2+ R1,{ } i u
δJm 2+

δu
--------------- u

δJm 2+

δu
---------------– 

  .= =

∂R1

∂tm

--------- i βm 2 p–+ p, u
δĨm 2 p–+

δu
-------------------- u

δĨm 2 p–+

δu
--------------------– 

  ,
p 0=

m 1+

∑=

Ĩn Qn xd
∞–

∞∫

Pn
∞

δĨn

δu
-------

δIn

δu
-------,

δĨn

δu
-------

δIn

δu
-------,= =

u
δĨn

δu
------- u

δĨn

δu
-------– i∂x n 1–( )Pn 1– ∂x …( )+[ ] .=

Rn〈 〉 1
L
--- Rn x( ) x.d

L/2–

L/2

∫L ∞→
lim=
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Since the functions Rn(x) are bounded, limits (35) exist.
In view of the local conservation laws (24),

and the fluxes  through the segment ends
are bounded; therefore, d〈Rn〉/dt = 0. Consequently, the
means (35) do not depend on time and are conserved
quantities. This is the complete system of averaged
integral conservation laws for our initial-value prob-
lem.

The invariant densities 〈Rn〉  can be easily determined
at initial time t = 0 from the specified f(x) and g(x) and
γ =  by using the fact that the initial conditions (9)
are semiclassical. Using expressions (28) and (29), we
obtain

Similarly, by expressing (23) in terms of the hydrody-
namic variables ρ and v, we can calculate 〈Rn〉  in the
initial state for any n. Below, we will see that the invari-
ants 〈Rn〉 , as in the case of the Korteweg–de Vries equa-
tion [4], are uniquely related to the level density of the
scattering problem. These play an important role in
determining the spectrum in a statistical state.

4. THE DIRECT SCATTERING PROBLEM
IN THE SEMICLASSICAL LIMIT

Let us study the spectral problem for the linear sys-
tem (12) in the semiclassical limit, when ε  0. Let
us first consider one localized initial perturbation of
ρ(x) and v(x) to which

corresponds and then investigate the more general ini-
tial condition (9) composed of a large (infinite, in the
limit) number of such localized perturbations with non-
overlapping carriers.

d Rn〈 〉
dt

---------------
1
L
--- ∂tRn xd

L/2–

L/2

∫L ∞→
lim=

=  
1
L
---Wn

R( ) x( )
L ∞→
lim–

L/2–

L/2
,

Wn
R( ) L/2±( )

θ/l

R1〈 〉 γ f x( ) x,d

∞–

∞

∫–=

R2〈 〉 p〈 〉 γ ρ0 f x( )–( )g x( ) x,d

∞–

∞

∫= =

R3〈 〉 h〈 〉=

=  γ ρ0 f x( )–( )g2 x( ) f 2 x( )+[ ] x O ε2( ).+d

∞–

∞

∫

u ρ iε 1– v xd

x

∫ 
 
 

exp=
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For our “hydrodynamic” initial-value problem (9), it
is convenient to pass from system (12) to an equation of
the second order, which allows the standard formulas of
the Wentzel–Kramers–Brillouin (WKB) approximation
to be used. After eliminating ψ(1) and substituting ψ(2) =

ψ  to remove the first derivative, we derive the equa-
tion

where

Expressing  in terms of the hydrodynamic variables ρ
and v  helps to ascertain the actual orders of the terms
of expansion in powers of ε, given that

Disregarding the small terms O(ε) and O(ε2) in the
coefficient (x, λ; ε) in the principal order of the WKB
approximation, we obtain a simpler equation,

(36)

where

(37)

It is convenient to explicitly separate out the trivial
dependence of (9) on well width θ in (37) (considering
one well, we omit the subscript m). Taking into account
(9), we have

(38)

Let us describe the spectrum of problem (36) in the

semiclassical limit ε  0. Denote ω = 2 . Let the
velocity perturbation be small enough for the overall
pattern of variation in the function r(x, λ) to be the same
as that for v (x) ≡ 0. More specifically, r(x, λ) is positive
for |λ| > ω and either changes sign with increasing x
according to the scheme –, +, – or remains always neg-
ative for |λ| < ω (Fig. 1a). In that case, problem (36) has
a continuous spectrum with a zero reflection coefficient
(in the semiclassical approximation under consider-
ation) for |λ| > ω and a discrete spectrum with closely
spaced eigenvalues |λn + 1 – λn | ~ ε for |λ| < ω. There are

u

ε2ψxx r̃ x λ ; ε,( )ψ+ 0,=

r̃
1
4
---λ2 u 2–

1
2
---iελ uln( )x+=

+ ε2 1
2
--- uln( )xx

1
4
--- uln( )x

2– .

r̃

uln( )x
1
2
--- ρln( )x

i
ε
--v .+=

r̃

ε2ψxx r x λ,( )ψ+ 0,=

r x λ,( )
1
4
--- λ v x( )–[ ] 2 ρ x( ).–=

r x λ ; θ,( ) r1
x
θ
--- λ, 

  ,=

r1 x λ,( )
1
4
--- λ g x( )–[ ] 2 ρ0– f x( ).+=

ρ0
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no eigenvalues in the interval between m+ = minλ+(x)
and m– = maxλ–(x), where

are the roots of the equation r(x, λ) = 0. The restriction

(39)

is the condition of sufficient smallness for v(x). If it is
satisfied, then λ+(x) ≤ ω and λ–(x) ≥ –ω for all x.

4.1. The Discrete Spectrum

The discrete spectrum of problem (36) is described
(in our approximation) by an equation similar to the
Bohr–Sommerfeld quantization condition:

(40)

where

(41)

and x–(λ) < x+(λ) are the roots of the equation r1(x, λ) =
0. Since S(λ) is a nonmonotonic function (Fig. 1b),

Eq. (40) describes two sequences of spectral levels: ,

n = 0, 1, …, N– – 1 in the interval (–ω, m–) and , n =
0, 1, …, N+ – 1 in the interval (m+, ω).

In the limit ε  0, the discrete spectrum is quasi-
continuous. It can be described by the density d(λ) with
the normalization condition

(42)

Thus, the number of eigenvalues in the interval (λ, λ +
dλ) is Nd(λ)dλ, where N ~ ε–1 is the total number of dis-
crete levels, which is calculated below.

Clearly, the spectral density d(λ) is inversely pro-
portional to the interval |λn + 1 – λn | between adjacent
levels. Therefore, taking into account (40), we have

(43)

where the proportionality coefficient

(44)

is specified by the normalization condition (42).
The total number of levels is

(45)

λ± x( ) v x( ) 2 ρ x( )±=

2 ρ0 ρ x( )–( ) v x( ) 2 ρ0 ρ x( )–( )< <–

S λn( )
επ
θ

------ 1
2
--- n+ 

  , n 0 1 …,, ,= =

S λ( ) r1 x λ,( ) x,d

x– λ( )

x+ λ( )

∫=

λn
–

λn
+

λ( )d λd

ω–

ω

∫ 1.=

d λ( ) A dS
dλ
------ ,=

A S ω–( ) S ω( )+[ ] 1–=

N N– N++
θ

επA
----------,= =
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because it follows from (40) that

levels lie in the range (–ω, m–) and

levels lie in the range (m+, ω).
The above semiclassical description of the scatter-

ing problem (12) can now be used to characterize the
spectral data for the potential u(x, 0) that corresponds to
the infinite sequence of wells (8).

We emphasize that an accurate determination of the
spectrum for the Schrödinger equation with a nonperi-
odically oscillating potential specified on the x axis is a
complex mathematical problem [10]. In our case, the
problem is simplified, because we are interested not in
the detailed structure of the spectrum but only in the
density of discrete levels in the semiclassical limit ε !
1. The density d(λ) can be determined from the part of
the spectrum for the potential u(x, 0) that refers to a
finite segment L @ L0, where L0 is the characteristic
homogeneity scale of u(x, 0). Since the initial function
is ergodic, we may assume that the normalized density
d(λ) does not depend on L and tends to a definite func-
tion as L  ∞.

Each eigenvalue in the (everywhere) dense point
spectrum for the infinite sequence of wells (8) refers to
a certain well in accordance with the localization of the
eigenfunction ψλ(x) that belongs to this eigenvalue.
Therefore, if we take a sufficiently long interval with
many wells, then we can determine the total number
N(L) of spectral levels λ, each referring to a particular
well in this interval. Because of the ergodicity of
u(x, 0), the total linear level density N(L)/L has a limit
for L  ∞. Since the number of levels for each indi-
vidual well is inversely proportional to the dispersion
parameter ε, it is convenient to normalize this limit:

(46)

N– θ επ( ) 1– S ω–( ) O 1( )+=

N+ θ επ( ) 1– S ω( ) O 1( )+=

C ε N L( )
L

-----------.
L ∞→
lim=

(a) (b)
λ

ωω
λ

r > 0

r > 0

r < 0

λ+(x)

λ–(x)
m–

m+

–ω
Sx

m–

m+

–ω

Fig. 1. (a) The domains of constant sign of the function r(x, λ);
(b) the Bohr–Sommerfeld integral S(λ).
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The dimensionless density C of discrete levels defined
in this way no longer depends on ε.

The fraction in the density C of spectral levels in the
interval (λ, λ + dλ),

(47)

determines the spectral density d(λ), which is clearly
normalized according to (42).

Let us calculate the linear level density C for our ini-
tial conditions (9) composed of wells with the same
shape and depth. According to (45), Nm = θm/επA dis-
crete levels correspond to each individual well. The
total number of levels divided by the length of the inter-
val L containing a large number (M @ 1) of wells is

Here, the summation is performed over those values of
m from (8) and (9) for which the point xm lies in the
above interval L. Substituting this expression into (46)
and passing to the limit, we obtain using (11)

(48)

In our case, the spectral density d(λ) can also be eas-
ily calculated. Since there are no resonances between
the levels in different wells for a nonperiodic variation
in their width (10), the total spectrum can be obtained
by a simple superposition of the spectra for individual
wells with the same d(λ), because formulas (43) and
(44) do not contain the well width θ. Thus, for an infi-
nite sequence of wells, the spectral density d(λ) is given
by the same expressions (43) and (44).

Let us establish an important relationship between
the conserved densities 〈Rn〉  from (35) and the spectral
density d(λ). For the initial perturbation (9), the integral
in definition (35) can be represented as

(49)

where the summation is performed over the well num-
bers within the interval (–L/2, L/2) and

is the conserved integral calculated for the individual
mth well.

The invariant Jnm for a localized perturbation can be
represented not only as an integral over the x coordinate
but also as a spectral decomposition. This is the so-
called trace identity [9]. In the semiclassical case,

dC
C

------- d λ( )dλ ,=

N L( )
L

-----------
θm∑

LεπA
--------------

M
L
----- 1

επA
----------

θm∑
M

-------------.= =

C
γ

πA
-------, γ θ

l
----.= =

1
L
--- Rn x( ) xd

L/2–

L/2

∫ Jnm,
m

∑=

Jnm
1

2L
------ Rnm x( ) xd

L–

L

∫=
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where the integral over the continuous spectrum may be
disregarded, it reduces to

(50)

Here, , i = 0, …, Nm – 1 are the discrete spectral lev-
els in the mth well, and εjn(λ) are the conserved inte-
grals for an isolated soliton (7) propagating at velocity
v s = λ. The factor ε appears, because the soliton linear
size is of the order of ε on the scale under consideration.

The trace identity means that the calculated invari-
ant Jn for a localized perturbation is represented as the
sum of its values for individual solitons into which this
perturbation breaks up in the limit t  ∞ and its part
that corresponds to the continuous spectrum and that
scatters over the entire x axis for t  ∞. In the semi-
classical case under study, this part is negligible com-
pared to the soliton component.

The functions jn(λ) are given by the formulas [9,
p. 75]

(51)

where k = 0, 1, …; ν = ; and  are the coef-
ficients from the expansion

The first three functions in (51) are

Substituting the integral for the sum in (50) in the semi-
classical limit, when λi + 1 – λi ~ ε ! 1, yields

Since the spectral density d(λ) for the sequence of wells
that differ only in width does not depend on m, we
obtain integral (49) in the form

where N(L) =  is the total number of spectral
levels in the interval L. Using the latter expression in
the definition of invariant densities (35) and taking into

Jnm ε jn λ i
m( )( ).

i 0=

Nm 1–

∑=

λ i
m( )

j2k 1+ λ( ) 1–( )k 1+ ν2k 1+

2k 1+
---------------,=

j2k 2+ λ( ) 1–( )k 1+ λν
2 k 1+( )
-------------------- 1–( )pbp

–ω2 pν2 k p–( ),
p 0=

k

∑=

ω2 λ2– bp
–

1 x+( ) 1/2– bp
– xp.

p 0=

∞

∑=

j1 λ( ) ν , j2 λ( )–
λν
2

------, j3 λ( )–
ν3

3
-----.= = =

Jnm εNm jn λ( ) λ( )d λ .d

ω–

ω

∫=

Rn x( ) xd

L/2–

L/2

∫ εN L( ) jn λ( ) λ( )d λ ,d

ω–

ω

∫=

Nmm∑
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account (46), we find the sought-for relationship
between 〈Rn〉  and the spectral parameters in the initial
state:

(52)

The simple relation (52) between the mean invariant
densities and the spectrum of the scattering problem is
a remarkable general property of our “hydrodynamic”
initial-value problem (6) and (9) under the ergodicity
conditions (cf. [4]).

4.2. The Scattering Phase

Let us now describe the set of scattering phases.
Since the spectral equation (36) in the semiclassical
limit is analogous to the spectral equation in the case of
the Korteweg–de Vries equation, the result of our scat-
tering-phase study matches that from [4]. Recall briefly
how the parameters of the shift

(53)

where bn = Cn+/Cn– is the ratio of the coefficients in the
asymptotic expressions of eigenfunctions ψn for x 
±∞, are calculated. Let us determine the phase shift for
the general case of M wells. To this end, lets us ascer-
tain how the phase of the wave function localized in the
well under consideration changes when passing the jth
well to which the turning points xr and xr + 1 (r = 2j – 1)
refer. We separated three domains in the passage of this
well (see Fig. 1 in [4]). In domain I, we have an expo-
nentially decreasing solution of the initial wave func-
tion with an amplitude Ar – 1:

(54)

Here, p = .

In domain II, the wave function is

(55)

Going around the point X2 in the complex domain from
above, we derive from (54) and (55) the relationship
between the coefficients

Rn〈 〉 C jn λ( ) λ( )d λ .d

ω–

ω

∫=

sn
ε
λn

----- bn ,ln=

ψI

Ar 1–

p
----------- 1

ε
--- p xd

X1

x

∫–
 
 
 

.exp=
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ψII
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p
------- i

ε
-- p xd
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x
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exp=

+
Br
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ε
-- p xd

X1

x
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.exp

Ar Ar 1– i
π
4
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ε
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X1

x

∫–
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 
 

.exp=
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Hence, up to the point X3, we have the solution

Similarly, going around the point X3, we obtain

(56)

Only the absolute value of the amplitude ratio is of
interest in determining the shifts. From (56), we derive
the following relation between the amplitudes when
passing the jth potential well, the levels of which do not
coincide with the levels in the first well because of the
nonperiodic variation in well width (10):

Repeating this procedure M times and taking into
account the integrals over the segments (–∞, x1) and
(xM, +∞), we have

(57)

The integration in (57) is performed over the ranges
where the wave function exponentially decays. Using
(57) and (53), we finally obtain

(58)

It is important to emphasize that the minus sign in front
of the sum in expressions (57) and (58) implies that we
found the corrections to the shifts from the wells to the
right from the well under consideration. If we perform
a similar procedure for the wells to the left, then [here,
the amplitudes Br (55) are significant) formulas (57)
and (58) retain their form; only the sign in front of the

ψII
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X1
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∫ i
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

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+
i
ε
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sum changes to plus. Formula (58) is similar to expres-
sion (40) from [4], where it was shown that the sum has
no finite limit for M  ∞ and, consequently, the phase
uniformly fills the interval of length l between the min-
ima of the potential wells at points x0 and x1. The filling
of this interval is quite similar to the generation of
chaos in dynamical systems [11].

For the “nonsymmetric” passage to M  ∞, i.e., in
a situation where the numbers of wells to the left and to
the right differ by a value proportional to M, all of the
above properties are preserved but the interval in which
the phase is smeared shifts proportionally to an arbi-
trary parameter M.

Thus, under the initial conditions (8) and (9), i.e., for
an infinite number of potential wells, the scattering
phase of the wave function localized in any initial well
randomly and uniformly fills any of the segments [xm,
xm + 1]. It was shown in [3, 4] that allowance for the
mutual influence of an infinite number of initial wells
corresponds to the asymptotic limit t  ∞. Conse-
quently, in the asymptotic limit t  ∞, our initial-
value problem is described by an infinite system of soli-
tons with random phases.

5. THE STATISTICAL LIMIT OF THE N-SOLITON 
SOLUTION WITH RANDOM PHASES

Let us now describe an infinite system of solitons
with random phases. According to statistical physics
[12], to do this requires separating out an arbitrary sub-
system of N solitons located in some segment and then
averaging over an ensemble of states with random
phases s by assuming the segment length to indefinitely
increase as the number N increases proportionally (the
statistical limit). In this case, it would be natural to use
the standard exact solution for N interacting solitons
[9], which is convenient to transform to

(59)

Here, D and D1 are the sums over the binary multi-indi-
ces µ = µ1, …, µN (µn = 0 or 1):

(60)

where

(61)

uN x t,( ) ρ0

D1 x t,( )
D x t,( )
------------------.=

D Φµ( ), D1exp
µ
∑ iθµ( ) Φµ( ),expexp

µ
∑= =

Φµ ε 1– µnνn x λnt– sn–( )
n 1=

N

∑=

+ µmµnlmn, θµ

n 1=

N

∑
m 1=

N

∑ ε 1– µnθn.
n 1=

N

∑=
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The quantities νn, θn, and lmn are determined by the
spectrum λn:

(62)

(63)

s1, …, sN is the set of shift parameters. Note an analogy
between expressions (59)–(63) and the standard Kay–
Moses–Hirota formulas [13] for the N-soliton solution
of the Korteweg–de Vries equation that we used in [4].

The absolute value of the N-soliton solution (59) is
given by the relation

(64)

which is similar to the N-soliton formula for the
Korteweg–de Vries equation. Expression (64) derived
by the Hirota method (see, e.g., [14]) is used in the
next section to construct similar formulas for all den-
sities Rn.

The properties of the multisoliton solutions
described by formulas (59)–(61) are illustrated in Fig. 2.
We took ρ0 = 1. In Fig. 2a, |u | is plotted against x; the
arrows indicate the direction of soliton motion. Solitons
4 and 5 are in collision. The flow velocity distribution
is shown in Fig. 2b. Figure 2c shows the hodograph of
the complex function u(x), i.e., the parametrically spec-
ified dependence of Imu(x) on Reu(x). Since |u(x)|2 < ρ0
for solitons, the hodograph is located with the circle
|u | < 1. Each isolated soliton is indicated by a rectilin-
ear segment with the ends on the circumference |u | = 1.
The curve corresponds to the colliding solitons 4 and 5.

Let us return to the problem of the statistical limit
for the N-soliton solution (59)–(63). In accordance with
the solution of the scattering problem (Section 4), we
assume the parameters s1, …, sN determined by the soli-
ton initial phases to be random, i.e., uniformly and
independently distributed over the interval (–Ls/2, Ls/2).
Expressions (59)–(63) establish a one-to-one corre-
spondence between the set of points in S space with the
coordinates sn(t) = sn + λnt, which, according to (61),
move uniformly, i.e., do not interact, and the set of
interacting solitons. It would be natural to describe the
former set by its mean concentration Cs = εN/Ls, where
Ls is the length of the interval in which points sn are
located. Thus, we arrive at a problem of the statistical
properties for function (59)–(63) similar to that consid-
ered in [4] in which the shift parameters s1, …, sN are
random variables uniformly and independently distrib-
uted over the interval of length Ls; Ls  ∞ is propor-
tional to N, so the ratio εN/Ls = Cs is constant.

νn ω2 λn
2– 0, λn ω, ω2<> 4ρ0,= =

iθn( )exp zn/zn, zn λn iνn,+= =

0 θn 2π,< <

lmn
zm zn–

zm zn–
---------------ln

1
2
---

ω2 λmλn– νmνn–

ω2 λmλn νmνn+–
------------------------------------------,ln= =

R1 u 2 ρ0– ε2∂xx D,ln–= =
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The problem is also to describe the asymptotic state
that arises when t  ∞ through the evolution of the
initial conditions (9) in terms of the random functions
uN(x, t) in the statistical limit. It may be called soliton
turbulence. The soliton spectrum is specified by the
known function d(λ) from (47); the soliton spatial den-
sity C (46) is also known. At the same time, the linear
concentration Cs of points in the S set and their distri-
bution in λ, i.e., the density ρs(λ) of the set of λn in
(61)–(63), are unknown; these have to be calculated.
We define the normalization of ρs(λ), as in (42), by the
condition

(65)

This implies that the densities Cs and C are related by

where L is the scale on the x axis on which N interacting
solitons are distributed. Here, we took into account the
conservation laws for the number of solitons and the
one-to-one correspondence between the solitons and
the points of S space.

By analogy with the N-soliton solution of the
Korteweg–de Vries equation [4], we seek a maximum
of the exponent Φµ in µ. The corresponding quantity
without allowance for the interacting solitons,

is exactly maximized for

(66)

A good approximate maximizer  of the total Φµ at
large N in which the “invalid” elements  constitute
only a small fraction (see [4] for a detailed estimation
of the error) may be sought in a form similar to (66):

(67)

where bn are to be determined.

If only one nth index varies in the multi-index ,

(68)

ρs λ( ) λd

ω–

ω

∫ 1.=

Cs C
L
Ls

-----, CL εN ,= =

εΦµ
0( ) µnνn an sn–( ), an

n 1=

N

∑ x λnt,–= =

µn η an sn–( ), η x( )
0, x 0,<
1, x 0.>




= =

µ̃
µ̃n

µ̃n η bn sn–( ),=

µ̃

µ̃p µp µ̃p σnδnp,+=

σn 1 2µ̃n– 1–( )µ̃n,= =
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then the increment of εΦµ is

∆n ε Φµ Φµ̃–( )≡ σn νn an sn–( ) 2ε lnp

p 1=

N

∑ µ̃p+=

=  νnσn an sn–
2ε
νn

----- lnp µ̃p〈 〉
p 1=

N

∑+
 
 
 

∆̃n.+
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Fig. 2. An example of a multisoliton solution. (a) The den-
sity ρ(x) = |u |2 and direction of soliton motion; the soliton
amplitudes are 0.27 (1), 0.15 (2), 0.18 (3), 0.46 (4), 0.12 (5),
0.03 (6), and 0.04 (7); the soliton velocities are 1.46 (1),
−1.70 (2), –1.65 (3), –1.08 (4), 1.75 (5), –1.94 (6), and
−1.91 (7). (b) The hydrodynamic flow velocity v(x). (c) The
hodograph of the complex function u(x).
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Here,  is the mean value of , which, in view of
(67), depends on bn, 

(69)

and  is the random component of ∆n with a zero
mean. The following linear system of equations is the
condition that the “systematic” part of the increment ∆n

be negative for all n:

(70)

If we calculate b1, …, bn from this system, then, in view
of (67) and (68), we have for any n

i.e., ∆n ≤ 0 except for those cases where the random

increment  is positive and exceeds the absolute value
of the systematic part of ∆n:

Following [4], we can show that this condition for
N  ∞ is satisfied only for an infinitesimal fraction of
all N elements in the multi-index  (67). In other
words, condition (70) exactly determines the maxi-
mizer in the limit N  ∞.

Given relation (69), the system of equations (70) can
be replaced with an equivalent system for the
unknowns y(n) = . We will also use an explicit
expression of an in terms of x, t and the relation of νn to
λn. As a result, we obtain the system of equations

(71)

Substituting the integral for the sum when N  ∞ [the
number of spectral levels λn in the interval (λ, λ + dλ)
is Nρs(λ)dλ], we derive an integral equation of the sec-
ond kind (x/Ls = ξ, t/Ls = τ, N/Ls = ε–1Cs) from (71):

(72)

where

µ̃n〈 〉 µ̃ n

µ̃n〈 〉 1
Ls

----- bn

Ls

2
-----– 
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Ls
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1
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---,+= =
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an
2ε
νn

----- lnp
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2
---+ 

 
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N

∑+ bn, n 1 … N ., ,= =

∆n νnσn bn sn–( ) ∆̃n+ νn bn sn– ∆̃n,+–= =

∆̃n

∆̃n νn bn sn– .>

µ̃

µ̃n〈 〉

y n( ) 1
2
--- x

Ls
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t

Ls

-----–
2ε

Ls ω2 λn
2–

--------------------------- lnpy p( ).
p 1=

N

∑+ +=

y λ ; ξ τ,( ) 1
2
--- ξ λτ–+=

+
2Cs

ν λ( )
---------- l λ λ ',( )ρs λ'( )y λ'; ξ τ,( ) λ',d

ω–

ω

∫

ν λ( ) ω2 λ2– ,=

l λ λ ',( )
1
2
--- ω2 λλ '– ν λ( )ν λ '( )–

ω2 λλ '– ν λ( )ν λ '( )+
------------------------------------------------.ln=
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In the next section, we will need to generalize the
multisoliton solution (59)–(63) to the entire hierar-
chy of higher NSEs (30) to calculate the invariant den-
sities 〈Rn〉 .

To obtain the “multitime” N-soliton solution, it will
suffice to substitute the combination v 1(λn)t1 +
v 2(λn)t2 + … for λnt in (61). Here, vm(λ) is the velocity
of the soliton of the mth equation in hierarchy (30) that
corresponds to the discrete spectral level λ. These
velocities are determined by the dynamics of the transi-
tion coefficients of the discrete spectrum for a finite
density [9, pp. 240, 241] and can be calculated from the
formulas (k = 0, 1, 2, …)

(73)

where ν = ν(λ) and  are the coefficients for the
expansion of (1 + x)1/2 in powers of x. In particular,
v 1(λ) = λ is the soliton velocity for Eq. (19). The set of
soliton velocities v 1, v 2, … is supplemented here with
the element v 0 = 1, which is convenient in writing the
general formulas.

All the reasoning that leads to the integral equa-
tion (72) remains valid and gives an equation for the
generalized averaged maximizer y(λ; ξ, τ1, τ2, …) that
depends on many times:

(74)

At τ1 = τ and τ2 = τ3 = … = 0, we have the special case
(72). The solution of Eq. (74) is a linear combination,

(75)

of the solutions to the equations

(76)

The identity used below follows from relations (76):

(77)

v 2k 1+ λ( ) 1–( )kλν 2k,=

v 2k λ( ) 1–( )k 1–( )pbp
+ω2 pν2 k p–( ),

p 0=

k

∑=

bp
+

y λ( ) 1
2
--- ξ v 1 λ( )τ1– v 2 λ( )τ2– …–+=

+
Cs

ν λ( )
---------- l λ λ ',( )ρs λ'( )y λ'( ) λ'.d

ω–

ω

∫

y λ( ) 1
2
--- ξ+ 

  y0 λ( ) τkyk λ( ),
n 0>
∑–=

yk λ( ) v k λ( )
2Cs

ν λ( )
---------- l λ λ ',( )ρs λ'( )yk λ'( ) λ',d

ω–

ω

∫+=

k 0 1 2 … ., , ,=

ν λ( )ρs λ( )yk λ( ) λd

ω–

ω

∫ ν λ( )ρs λ( )v k λ( )y0 λ( ) λ ,d

ω–

ω

∫=

k 1 2 …., ,=
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To prove it, we must multiply Eq. (76) by
ν(λ)ρs(λ)yk(λ) at k = 0 and by ν(λ)ρs(λ)y0(λ) for non-
zero k and, subsequently, integrate the derived relations
over λ from –ω to ω and subtract one from the other.

6. CALCULATING THE CONSERVED DENSITIES 
IN A STATISTICAL STATE 

USING THE AVERAGED MAXIMIZER

In Section 4, we established relation (52) between
the conserved quantities 〈Rn〉  and the spectral densities
C and d(λ). Let us derive similar formulas for 〈Rn〉  via
the spectral parameters Cs and ρs(λ) of the statistical
soliton state described in the preceding section. To this
end, we use the averaged maximizer constructed above.

As the starting point, we make use of the local rela-
tions between the density of the conserved quantities
(23) and the sum D (60), which underlies the N-soliton
solution. Denote

The following relation holds:

(78)

where the coefficients  are defined above [see (51)]
and the summation is performed over all integer p that
satisfy the above inequality. For brevity, the inessential
additional terms that are the total derivatives were omit-
ted in (78). The validity of the first formula in (78), i.e.,
expressions (64), has already been established. To
prove (78) for n > 1, we use the conservation laws in
higher times (32) at n = 1 and the generating functions
(20).

Differentiating (64) with respect to tm (m = 1, 2, …)
yields the relation

which is the conservation law (32) for n = 1. In this
case, the flux is given by formula (33), which allows Gm

to be related to the invariant densities Qk: to within the
total derivative with respect to x, we have

(79)

where m = 1, 2, … . When deriving this relation, we
took into account the fact that the function Gm(x), as
well as the densities Qk(x), tends to zero as |x |  ∞.

It is important to note that (79) also holds for m = 0.
This follows from (64), given that R1 = Q1 (22) and

G0 ∂xx D,ln–=

Gm
∂2 Dln
∂tm∂x
--------------- for m 1.≥=

Rn
ε2

n
---- bp

–ω2 pGn 1– 2 p– , n
0 2 p n<≤
∑ 1 2 …,, ,= =

bp
–

∂R1

∂tm

--------- ε2∂Gm

∂x
----------+ 0,=

ε2Gm kβk 1+ m 1 k–+, Qk,
k 1=

m 1+

∑=
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βn0 = 1 (21). In this case, system (79) becomes triangu-
lar and allows us to successively calculate Qn as linear
combinations of G0, G1, …, Gn – 1 and then derive for-
mulas (78) for Rn using (22). To efficiently perform this
procedure, let us define the generating function

The relation between G(η) and Q(ξ) that follows from
the system of equations (79) with m = 0, 1, 2, … is

(80)

This can be easily established by calculating the expan-
sion of the derivative dQ/dξ in powers of η using
expansions (21). Since ξ = η(1 + ω2η2)–1/2, we obtain

and derive the sought-for relation between the generat-
ing functions R(η) and G(η) from (80):

whence follows relation (78) for the coefficients of the
expansions R(η) = R1η + R2η2 + … and G(η) = G0 +
G1η + … .

Let us average the quantities (78). We make use of
the equality established in [4] for the sums

in the continuum limit when N  ∞ between the
mean quantities

(81)

This relation allows the above averaged maximizer
 = y(n) to be used: according to (61),

and we have for N  ∞

(82)

Substituting the integral for the latter sum in the contin-
uum limit and combining (81) and (82) yields

(83)

G η( ) Gmηm.
m 0=

∞

∑=

ξ2dQ
dξ
------- ε2η2G η( ).=

dQ
dξ
-------

η3

ξ3
-----dR

dη
-------=

dR
dη
------- ε2 1 ω2η2+( ) 1/2–

G η( ),=

D Φµ( )exp
µ
∑=

∂x Φµ( )exp
µ
∑ln ∂x Φµ

µ
lim .= max

µ̃n〈 〉

∂x Φµ
µ

lim ε 1– µ̃nνn,
n 1=

N

∑=max

∂x Φµ
µ

lim ε 1– y n( )νn.
n 1=

N

∑=max

∂x Dln〈 〉 ε 1– N y λ( )ν λ( )ρs λ( ) λ .d

ω–

ω

∫=
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Based on formulas (78) and the averaging rule for
(83), we can derive an expression for the mean 〈Rn〉  that
contains a linear combination of the derivatives of the
generalized averaged maximizer y(λ; x, t1, t2, …) with
respect to x, t1, t2, … under the integral. These deriva-
tives can be easily calculated from (75):

which allows the following expression for the mean
densities to be derived by using identity (77):

(84)

The soliton velocities v n and the conserved integrals
for an isolated soliton jn are related by the relations that
follow from (51) and (73):

Given these identities, formulas (84) reduce to

(85)

These are the sought-for expressions for the conserved
densities in terms of the soliton-gas parameters.

Let us compare expressions (85) with formulas (52),
which give the conserved densities 〈Rn〉  in the initial
state. Together with the condition for the satisfaction of
all conservation laws for the mean densities (52) and
(85), this allows the relationship between Csρs(λ) and
the analogous parameter of the initial spectrum to be
unambiguously determined:

(86)

One cannot but note the remarkable fact that the identi-
cal equality of an infinite set of conserved densities in
the initial and statistical states is satisfied when only
one relation (86) holds [using only the transformation
function y0(λ)].

Give relation (86), we can find the solution of
Eq. (76) at k = 0, i.e., the equations

We have

(87)
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where the linear level density C and the spectral density
d(λ) are specified by the initial conditions (9), i.e., these
are fixed. Taking into account normalization (65) of the
density ρs(λ), we determine the linear concentration of
soliton phases from (86):

(88)

Once Cs and y0(λ) have been calculated, the spectral
density in soliton gas can be determined from (86):

(89)

The transformation function y0(λ) is the key element
that relates the spectral parameters of the initial and
asymptotic statistical states of the system. A similar
formula was derived in [4] for the Korteweg–de Vries
equation.

6.1. The Transformation Function

Expression (87) for y0(λ) can be simplified by
directly expressing y0(λ) in terms of the functions f(x)
and g(x) that describe the shape of the local hydrody-
namic perturbations of which the initial condition (9)
consists. Note that

where the function

Therefore, through integration by parts, (87) trans-
forms to

(90)

where the integral has the meaning of the Cauchy prin-
cipal value. Before integrating by parts, we must
exclude the δ neighborhood of the singularity λ' = λ
from the range of integration and then let δ  0.
Using expression (41) in (90) with allowance for the
difference in sign between the functions F(λ) and S(λ)
and changing the order of integration, we obtain

(91)
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AND THEORETICAL PHYSICS      Vol. 94      No. 4      2002



A STATISTICAL LIMIT IN THE SOLUTION OF THE NONLINEAR SCHRÖDINGER EQUATION 849
where r1(x, s) is given by (38) and

The range of integration in the inner integral is the
range where r1(x, s) > 0:

The inner integral in formula (91) can be calculated
explicitly. To this end, we use the relation

between the real and imaginary parts of the function of
complex variable Φ(z) on the real axis, which is ana-
lytic in the upper half-plane and has the limit Φ(∞) = 0.
If we are be able to choose a function Φ(z) for which

at s in the domain D+ and the imaginary part is zero out-
side D+ (the argument x acting as a parameter here was
omitted), then the inner integral in (91) will be

It is easy to see that

[here, we took into account the fact that r1 = (1/4)(λ –
λ–)(λ – λ+)]. The constant 1/2 was added to satisfy the
condition Φ(∞) = 0 and the branch of the root must be
chosen in such a way that the imaginary part of Φ(z)
had the correct sign of σ(s) on the real axis. We then
obtain

for λ in the domain D+ and

for λ– ≤ λ ≤ λ+.

σ x λ,( )
1 for ω λ λ– x( ),≤ ≤––

1 for λ+ x( ) λ ω.≤ ≤



=

D+ x( ) ω λ– x( ),–( ) λ+ x( ) ω,( ).∪=

ReΦ λ i0+( ) 1
π
--- ImΦ s i0+( )

s λ–
----------------------------- sd

∞–

∞

∫=

ImΦ s i0+( )
σ s( ) r1 s( )

ω2 s2–
-------------------------=

πReΦ λ i0+( ).

Φ z( )
1
2
---

z λ––( ) z λ+–( )
z ω–( ) z ω+( )

------------------------------------- 1
2
---+=

ReΦ λ i0+( ) 1
2
---=

ReΦ λ i0+( ) 1
2
---

1
2
---

λ λ ––( ) λ+ λ–( )

ω2 λ2–
---------------------------------------–=

=  
1
2
---

r1 x λ,( )–

ω2 λ2–
-------------------------–
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Substituting the derived expressions for the inner
integral in (91) yields the sought-for explicit expression
for y0(λ). Finally, we have

in the interval m– ≤ λ ≤ m+ and

(92)

outside the interval m– ≤ λ ≤ m+ (but for –ω ≤ λ ≤ ω),
where ∆–(λ) is the range outside the segment [x–(λ),
x+(λ)] in which r1 < 0.

6.2. The Maximum Soliton Density

The existence of the upper limit Cm follows from
relations (92) and (88). It cannot exceed the linear level
density C, because, when C approaches Cm from below,
Cs(C) indefinitely increases. Indeed, the function y0(λ)
reaches a minimum at the ends of the interval |λ| ≤ ω,
with its derivative being finite at λ = ±ω. The values of
y0(±ω) can easily be determined from (92) by taking
into account the fact that x+(±ω) – x–(±ω) = 1, according
to the definition of r1(x, λ) (38), and that the integral in
(92) vanishes at λ = ±ω. We have

As C increases, min y0 decreases, which, in view of
(88), causes the increase in Cs(C) to accelerate. Finally,
min y0 becomes zero at C = Cm = (πA)–1, the integral in
(88) diverges, and Cs(C)  ∞ when C  Cm. Note
that a similar divergence of Cs(C) and, accordingly, the
maximum density Cm also arise in the solution of the
Korteweg–de Vries equation [4].

The limiting linear spectral density Cm = (πA)–1 cor-
responds to a dense packing of wells in the initial state.
It follows from the well nonoverlapping condition that
the mean distance  between the well centers must be

larger than the mean well width , i.e., γ = /  < 1; the
limiting value γ = 1 corresponds to a dense packing of
wells. Taking into account relation (48), we see that γ
tends to unity when C  Cm.

6.3. An Example of a Numerical Computation

We tested the equality of the invariant densities in
the initial state (9) and in the statistical limit on the first
three densities by means of a numerical experiment. As

y0 λ( ) 1 2πCA
1
2
---

r1 x λ,( )–

ω2 λ2–
-------------------------–

 
 
 

xd

∞–

∞

∫–=

y0 λ( ) 1 πCA x+ λ( ) x– λ( )–[ ]–=

– 2πCA
1
2
---

r1 x λ,( )–

ω2 λ2–
-------------------------–

 
 
 

xd

∆– λ( )

∫

miny0 λ( ) 1 πCA.–=

l

θ θ l
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the specific model for our computation, we took the ini-
tial condition (9) with ρ0 = 1 and the functions

(93)

The nonnegative parameter a < 1 characterizes the well
depth relative to the background level ρ0. The parame-
ter α describes the velocity perturbation; for –1 ≤ α ≤ 1,
condition (39), which provides the structure of the
semiclassical spectrum described in Section 4, is satis-
fied.

According to (52), 〈Rn〉  are proportional to the linear
spectral density C. The proportionality coefficients
were computed for the above model (93) with a = 0.8
and α = –0, 8 at n = 1, 2, 3. These are represented in
Fig. 3a as the horizontal straight lines.

The circles in Fig. 3a indicate the ratios 〈Rn〉 s/C at
n = 1, 2, 3 at which 〈Rn〉 s were determined by averaging
the local densities Rn (27) for the N-soliton solution
(59) with randomly chosen parameters sn over x. The
N-soliton solution itself was computed by using an
algorithm that allows for the existence of a maximizer.
Using the maximizer significantly reduces the compu-
tational time by discarding the overwhelming majority

f x( )
a 1 4x2–( ) for x

1
2
---,≤

0 for x
1
2
---,>






=

g x( ) 2α 1 1 f x( )––( ).=

–0.5

0 0.1
C

0

0.5

1.0

1.5

–1.0
0.2 0.3 0.4

(a) (b)
〈–R1〉/C
〈R3〉/C

〈R2〉/C

Fig. 3. (a) Comparison of the invariant densities in the initial
(horizontal straight lines) and statistical (circles) states.
(b) The scatter of means for one realization of u(x) relative
to the means for all realizations.
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of the 2N terms that constitute sum (60). The algorithm
is detailed in [4]. In our computation, we took N = 200.
By way of illustration, Fig. 4 shows plots of the densi-
ties ρ = ρ0 + R1, as well as p and h (29) at C = 0.2 for
one specific set of numbers sn. The correspondence of
the statistical N-soliton solution (59)–(63) to the initial
condition (9) and (93) was achieved by using formulas
(88) and (89) to determine Cs and λn.

To obtain statistically significant results, we per-
formed an additional averaging over the many (40 in
Fig. 3a) realizations (59) determined by a random
choice of the set of parameters s1, …, sN. Figure 3b
shows the scatter of means (normalized to C) computed
for individual realizations relative to the means for all
realizations.

We see from Fig. 3a that there is good agreement
between the conserved densities computed for the sta-
tistical state and their values in the initial hydrody-
namic state. The agreement holds up to C close to the
limiting value Cm = 0.4157. This shows that using the
maximizer to compute the statistical parameters of a
turbulent state proves to be very efficient even at maxi-
mum densities of the gas of interacting solitons.
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