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Abstract—A theoretical study of the practical abilities of the Novikov–Henkin algorithm, which is one of the
most promising algorithms for solving three-dimensional inverse monochromatic scattering problems by func-
tional analysis methods, is carried out. Numerical simulations are performed for model scatterers of different
strengths in an approximation simplifying the reconstruction process. The resulting estimates obtained with the
approximate algorithm prove to be acceptable for middle-strength scatterers. For stronger scatterers, an ade-
quate reconstruction is possible on the basis of a rigorous solution. © 2005 Pleiades Publishing, Inc.
METHODS FOR SOLVING INVERSE 
SCATTERING PROBLEMS

The inverse scattering problem consists in the deter-
mination of the characteristics of a scatterer located in
a spatial domain R and described by a function v(r),
where r ∈  R, from the measured scattered field. In the
case of an infinite domain R, the function v(r) is
assumed to be rapidly decreasing at infinity. Below,
scatterers concentrated in a finite domain R are consid-
ered. The inverse problem is reduced to estimating v(r)
in the Schrödinger equation or the Helmholtz equation

∆u + u = v(r)u, which coincides with the Schrödinger
equation in the monochromatic case, for the total wave
field u. Here, k0 is the wave number in the homoge-
neous nonabsorbing background medium. For acoustic
problems, in the case of a constant density of the
medium, the function v (r) characterizes the deviation
of the phase velocity of sound c(r) in the scattering

region R from its background value c0: v(r) ≡ ω2[  –
c−2(r)]. If the scatterer possesses absorbing properties,
c(r) can be formally considered as a complex quantity.
Two classes of approaches to solving the inverse scat-
tering problem can be distinguished: one of them is
based on iteration methods [1–3], and the other, on
functional analysis methods [4, 5]; a review of the latter
can be found in [6]. The advantage of the iteration
methods is that they can proceed from fragmentary data
obtained with different geometries of the experiment
and at different frequencies. These methods impose no
strict requirements on the completeness of the experi-
mental scattering data and can use any a priori and
a posteriori information. The main advantages of the
functional approach are the possibility to obtain a rig-
orous solution and (in some cases) the use of a smaller

k0
2

c0
2–
1063-7710/05/5104- $26.00 0367
number of computing operations than in the iteration
methods.

The functional analytical methods for solving one-
dimensional inverse scattering problems appeared as
early as in the 1950s (Gel’fand, Levitan, Marchenko,
and others). The first comprehensive studies of the mul-
tidimensional inverse scattering problem were carried
out by Berezanskii in the 1950s and by Faddeev and
Newton in the 1960–1970s. A systematic investigation
of this problem in application to quantum mechanics
can be found in [7]. In the 1980s, the ideas put forward
by Faddeev were developed by Nachman and Ablowitz,

who proposed a functional approach called the 

method (here, the symbol  means differentiation with
respect to the variable that is the complex conjugate of
the main argument). Henkin and Novikov continued
developing this approach by applying it to multidimen-
sional inverse scattering problems with monochromatic
data [6]. In such a problem, a plane monochromatic inci-
dent wave is characterized by the wave vector k ∈  Rn,
while the scattered wave in the far-field zone is charac-

terized by the wave vector l ∈ Rn, where k2 = l2 = 
and n is the space dimension. The experimental data are
represented by the scattering amplitude f(k, l) related to
the asymptotics of the scattered field in the far-field
zone according to the formula

where An = 2 = –(1 + i)π /  and An = 3 = –2π2. The
reconstruction of v(r) is based on the following gener-
alizations, which were first introduced by Faddeev [8].
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To solve the problem under consideration, it is pro-
posed to formally extend the wave vectors to the com-
plex domain k, l ∈  Cn by assuming that k = kR + ikI

and l = lR + ilI, where kR ≡ Rek, kI ≡ Imk, lR ≡ Re l,
and lI ≡ Im l. This passage from real values to complex

ones should be performed without leaving the  con-
stant-energy surface, which is expressed as

(1)

Requirement (1) means that the following conditions
should be simultaneously satisfied:

(2)

Here, the value of |k|2 =  +  can be as large as one
likes; however, when |kR| increases, |kI| should also
increase, so that, according to conditions (2), the differ-
ence in their squares should always be equal to the

“energy” of the incident wave . The above passage is
accompanied by the generalization of the classical
wave fields and Green functions to the case of complex
wave vectors [6, 9]. In particular, the classical scatter-
ing amplitude f(k, l) (k, l ∈  Rn) passes into a general-
ized scattering amplitude (generalized scattering data)
h(k, l), where k, l ∈ Cn.

The imaginary part of the wave vector can be repre-
sented as kI ≡ |kI|g, where the vector g ∈  Rn (|g| = 1) char-
acterizes the direction of the vector kI. When |kI|  0,
the limiting values of the generalized functions depend on
the direction g of the infinitesimal but oriented imaginary
part kI. The limiting values of the function h(k, l) are
hg(kR, lR) ≡ (kR + i |kI|g, lR), where |lR| = |kR| = k0

in the limit. The quantities hg(kR, lR) ≡ hγ(k, l), where k,
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Fig. 1. Orientation of mutually orthogonal real and imagi-
nary components of wave vectors in the (a) two-dimen-
sional and (b) three-dimensional cases.
l ∈  Rn, are in one-to-one correspondence with f(k, l)
according to the formula [4]

(3)

here, θ[(m – k, g)] is the Heaviside function, whose
argument is the scalar product of the vectors m – k and g.

From condition (1), which is equivalent to condi-
tions (2), it follows that, in the two-dimensional case,

only two orientations are possible for the vector kI = 
being orthogonal to a fixed vector kR (Fig. 1a). The
mutual orientation of the vectors lR and lI is similar. In
addition, it is assumed that

|lR| = |kR| and, hence, |lI| = |kI|. (4)

The limiting values of hg(k, l) that correspond to these
two orientations are denoted as h+(k, l) and h–(k, l),
respectively. In the three-dimensional case, the vector
kI (kI ⊥  kR) can have any direction in the plane perpen-
dicular to the fixed vector kR. At the same time, when
solving a three-dimensional problem, an additional
requirement should be introduced:

(5)

From conditions (2) and (5), it follows that

(6)

Therefore, kI is orthogonal to the plane containing the
two vectors kR and lR and, hence, the vector p ≡ k – l =
kR – lR. Then, the number of possible orientations of the
vector kI with respect to this plane becomes equal to
two (Fig. 1b), as in the two-dimensional space. (The
degenerate case of kR || lR is considered as the limiting
situation for the case of noncollinear kR and lR.)

NOVIKOV–HENKIN THREE-DIMENSIONAL 
ALGORITHMS FOR SOLVING THE INVERSE 

SCATTERING PROBLEM

A functional algorithm for solving the two-dimen-
sional monochromatic inverse scattering problem
with relatively strong scatterers was proposed by
Novikov in [10] and by Grinevich and Manakov in
[11]. Later, this algorithm was studied in application to
acoustic tomography [9] and was also implemented in
a computer program [12, 13]. In the framework of the
two-dimensional problem, a scatterer v(r) that causes
no backscattering can be rigorously and stably recon-
structed by a simplified scheme with allowance for mul-
tiple scattering processes on the basis of the known clas-
sical scattering amplitude and the two limiting functions
h±(k, l) (where k, l ∈  R2) obtained from it. From the
absence of backscattering, it follows that the high-fre-
quency components of the spatial spectrum of the scat-

hg k l,( ) f k l,( ) 2πi hg k m,( )

m R
n∈

∫+=

× θ m k g,–( )[ ]δ m2 k2–( ) f m l,( )dm; k l R
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SOLUTION OF THE THREE-DIMENSIONAL INVERSE ACOUSTIC SCATTERING PROBLEM 369
terer (x) ≡ exp(–ixr)dr, where n = 2, are

negligibly small. For weak (Born) scatterers, these are
the components with |x| ≥ 2k0. As the scatterer strength
increases, the corresponding threshold value for |x|
becomes smaller than 2k0. However, if the spectrum

(x) does contain high-frequency spatial components
causing considerable backscattering, a rigorous recon-
struction of v (r) requires knowledge of not only the
functions h±(k, l) but also the generalized backscatter-
ing amplitude h(k, l = – ) for k ∈  C2 [11, 14] (here,

the overbar denotes complex conjugation: ). In this
case, the rigorous algorithm allows one to reconstruct
middle-strength scatterers with an arbitrary spatial
spectrum. However, it proves to be fairly unstable under
the effect of noise, which makes it less valuable from a
practical point of view [15]. The instability that is
caused by the presence of backscattering is typical of
the two-dimensional inverse monochromatic scattering
problem irrespective of the specific method of its solu-
tion. This is related to the dimensional nonredundancy
of the two-dimensional monochromatic problem (a two-
dimensional parametrized space of scattering data and
also a two-dimensional domain of definition of the
desired function v(r)), which was first mentioned by
A.J. Devaney and also discussed in [16].

Experience in the computer realization of the algo-
rithms developed for solving the aforementioned two-
dimensional problems on the basis of functional analy-
sis methods and the general understanding achieved
with this experience have made it possible to proceed to
solving three-dimensional problems, which are of most
practical interest. The possibilities to obtain new results
in this area are determined by the rapidly progressing
abilities of modern computers. By now, Novikov and
Henkin developed theoretically two monochromatic
functional algorithms for reconstructing three-dimen-
sional scatterers. In both algorithms, for reconstructing
the scatterer spectrum (x) at a spatial frequency x =
−p = l – k, it is necessary to consider the set M of all
vectors k ∈  C3 that simultaneously satisfy the follow-
ing two conditions at any fixed vector p ∈  R3:

(7)

Conditions (7) are equivalent to conditions (1) (or (2))
and (5) represented in terms of the vectors k ∈  C3 and
p = kR – lR. Indeed, the substitution of l = k – p into the

relationship l2 =  yields (k – p)2 = , which, with

allowance for the requirement k2 = , leads to condi-
tions (7). The physical meaning of conditions (7) was
already explained by Fig. 1b. Namely, at a fixed p, the
vector kI is orthogonal to the plane containing the vec-
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tors kR and p, while the vector kR satisfies the equation
of this plane:

(8)

From Eq. (8), it follows that the projection of vector kR
on the direction of vector p always satisfies the condi-
tion |kR|cosα = |p|/2 (where α is the angle between kR
and p), which is equivalent to the condition |lR| = |kR|
(see Eq. (6)). In an exhaustive search through all possi-
ble directions of vectors k ∈ M corresponding to the
fixed p, the end of the vector kR of a fixed length
describes a circle of radius |kR|sinα in the plane perpen-
dicular to the vector p. Simultaneously, the vector kR
describes a conic surface (Fig. 2).

The reconstruction of the scatterer with the first of
the algorithms discussed in this paper is performed on
the basis of the asymptotic relation [6, 17]

(9)

This method is based on the decrease in the multiple
scattering effects with increasing |k| at a fixed value of

k2 =  (k ∈  C3). The minimal value |k| = |kmin| that
should be reached to neglect the multiple scattering
effects, i.e., to obtain a quasi-Born scattering, depends
on the wave size of the scatterer and on the relative con-
trast of sound velocity |∆c|/c0 in it. For a scatterer with
a linear size L, which, in the first case, is represented by
a single inhomogeneity with a fixed sign of the contrast
|∆c|/c0 and, in the second case, by an inhomogeneity
with an alternating contrast fluctuating on a character-
istic linear scale ∆L, the following conditions should,
respectively, be satisfied [18]:

(10)

where λ0 is the wavelength in the background medium.
For weak, i.e., Born, scatterers, relation (9) is valid
starting from kI = 0. As the scatterer strength increases,
it becomes necessary to take into account the multiple
scattering effects, and the stronger the scatterer, the

greater the value of | | corresponding to |kmin|. How-
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Fig. 2. Geometrical redundancy of the vector pairs (kR, lR)
generating the same vector p = kR – lR in three-dimensional
space.



370 ALEKSEENKO et al.
ever, the procedure proposed in [6, 17] for determining
H(k, p) or h(k, l), where k, l ∈  Cn, from f(k, l), where
k, l ∈  Rn, provides an acceptable noise robustness in
the monochromatic regime only for |kI|L ≤ 1, i.e., for
scatterers of a small wave size with insignificant devia-
tions of wave parameters, when the minimal necessary
imaginary component of vector k satisfies the condition

| |L ≤ 1 [19]. For more complex and stronger scat-
terers, the effect of noise and measurement errors
grows as ~exp(|kI|L) beyond an acceptable level, and
even the dimensional redundancy of data in the three-
dimensional problem does not noticeably improve the
situation.

The second three-dimensional monochromatic
algorithm for solving the inverse scattering problem,
which was also proposed in [6], relates the spatial spec-
trum of the scatterer, (–p), to the generalized scatter-
ing data H(k, p) in the following manner:

(11)

where

Here, k∗  ∈  M is an arbitrary fixed vector from the given

set. The integral kernel Kp(k', k∗ ) and the  derivative

H(k', p) of the function H(k', p) are differential forms
(as above, the overbar means complex conjugation):

(12)

kI
min

ṽ
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where  ≡  +  and H obeys

the  equation [6]

(13)

The subscripts n, m = 1, 2, 3 refer to the x, y, and z com-
ponents of the vector k' (subscript n) and the complex
conjugate vector  (subscript m). The symbol ∧  (used
in the complex analysis) appearing in the integrand in
the formula for the functional term Z1 denotes the
“exterior product”

where

µ = 

In the functional term Z2, the boundary ∂M of the set
M corresponds to the real vectors k' ∈  R3 that satisfy
conditions (7). The vectors p, kR ≡ k', and the infinites-
imal imaginary part kI ≡ ±0([p × k']), which determine
the functions H±(k', p) ≡ H(k' ± i0([p × k']), p), form
the right-handed and left-handed coordinate systems,
respectively (Fig. 1b). With |k∗ |  ∞, algorithm (11)
transforms into asymptotic algorithm (9) because Z1,
Z2  0. It should be noted that relations close to algo-
rithm (11) were later considered by Nachman [20],
however, only for the limiting case of zero energy (fre-
quency).

Thus, algorithms (9) and (11) refer to multidimen-
sional inverse problems of mathematical physics. Pre-
viously, they were only considered from the viewpoint
of obtaining mathematically rigorous solutions. How-
ever, their practical realization is difficult and, in addi-
tion, the stability of their solutions has not been theoret-
ically analyzed. As a result, until the present time, no
studies were performed with the aim of putting into
practice mathematically rigorous methods for solving
multidimensional inverse wave scattering problems and

∂
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to realize them in the form of efficient numerical algo-
rithms. For practical implementation, it is important to
estimate the physical contribution made by each of the
functional terms of algorithm (11) to the estimate of

(–p), as was briefly mentioned in [18]. The first term
H(k∗ , p) represents the generalized scattering data
themselves. Since, with the multiple scattering pro-
cesses taken into account, the function H(k∗ , p)
depends on f(k, l) (k, l ∈  R3) in a nonlinear manner, the
function H(k∗ , p) is not a purely Born-type estimate of

the spectrum (–p) but additionally includes some
non-Born information on the scatterer. For every fixed
p, it is possible to chose some k∗  ∈  M (complex-valued
in the general case) whose component Rek∗  in the
direction of vector p is equal to p/2; i.e., |p| =
2|Rek∗ |cosα∗ , where α∗  is the angle between k∗  and p.
At the same time, all possible orientations of the vector
Rek∗ , with its length |Rek∗ | being fixed, allow one to
obtain the vector p inside the sphere of radius 2|Rek∗ |;
i.e., they lead to the values |p| ≤ 2|Rek∗ |. Since, for a
complex k∗ , the value of |Rek∗ | can be chosen to be as
large as one likes, the algorithm does not impose any
strict limitations on the range of values of |p|. However,
the choice of Imk∗   0 is most appropriate for the
practical implementation of the algorithm under con-
sideration, because, in this case, the function H(k∗ , p)
is directly calculated from Eq. (3). In this case, the spa-
tial spectrum of the scatterer (–p) is only estimated in
the region |p| ≤ 2k0. In addition, the term Z1 is more sta-
ble for Imk∗   0 than for Imk∗  ≠ 0.

The term Z2, in which the limiting values of H±(k', p)
are also directly calculated from Eq. (3), is the result of
the weighted integration of the difference between
these values over the set of real vectors k' ∈ ∂ M with a
fixed length |k'| = k0. In this respect, algorithm (11) is
similar to the two-dimensional algorithm mentioned
above. When |p| < 2k0, the set ∂M represents a circum-
ference that is determined by all of the vectors k' form-
ing the given p (Fig. 2); this set degenerates into a point
at |p| = 2k0. Thus, in the case of |p| < 2k0, the corre-
sponding contribution to the estimate of (–p) is
formed by the redundant scattering data. In the case of
|p| > 2k0, the term Z2 does not participate in the forma-
tion of the components of (–p), because conditions
(7) cannot be satisfied due to |k'| = k0.

The term Z1 is most difficult to calculate. It requires

integration of the nonlinear combination H(k', p) of
the functions H(k', p) over the surface of all the com-
plex vectors k' ∈  M for a given p and, in addition,
requires knowledge of H(k', p) for k' ∈ C3. Therefore, in
making a numerical estimate of (–p), it is desirable to
ignore the surface integral Z1 because of the cumber-

ṽ

ṽ

ṽ

ṽ

ṽ

∂

ṽ
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some calculations and the instability of the procedure
used for determining H(k', p) (which was mentioned in
discussing asymptotic algorithm (9)). For these rea-
sons, we tried to reconstruct the scatterer from only
H(k∗ , p) and the jump H+(k', p) – H–(k', p) that appears
in the contour integral Z2, by analogy with the afore-
mentioned simplified algorithm in the two-dimensional
case [10, 14]. However, the term Z1 completely deter-
mines the estimate of the components of (–p) for
|p| > 2k0 (together with the term H(k∗ , p) in the case of
Imk∗  ≠ 0). Moreover, when |p| ≤ 2k0 (even if the scat-

terer is such that (–p) ≡ 0 for |p| > 2k0), Z1 makes a
contribution to (–p) that is comparable to the contri-
bution from the contour integral Z2. Therefore, neglect
of the term Z1 always leads to some distortion of the
scatterer estimate. Nevertheless, in some cases, this dis-
tortion proves to be relatively small, as is illustrated
below by numerical simulation.

Thus, in the three-dimensional problem, unlike in
the two-dimensional one, knowledge of only the limit-
ing values of H±(k', p), where k' ∈ R3, does not allow
one to obtain a rigorous reconstruction of a scatterer
producing a multiple scattering of waves. However, the
instability in calculating H(k, p) for k ∈  C3 is likely to
be a particular drawback of the specific procedure
rather than a general feature of the three-dimensional
inverse scattering problem.

RESULTS OF NUMERICAL SIMULATION

The direct scattering problem (simulation of scatter-
ing data) has a rigorous analytical solution for a very
small number of scatterers. They include homogeneous
scatterers in the form of a sphere, an ellipsoid, and a
rectangular parallelepiped. At the same time, the
numerical solution of the direct problem for three-
dimensional scatterers of arbitrary shape and not overly
small wave size involves such difficulties as either the
inversion of large-dimension matrices or the provision
for the convergence of the iterative solution. These
problems are complicated and require special consider-
ation. Therefore, at the very first step, we tested the effi-
ciency of algorithm (11) in application to the recon-
struction of a spherically symmetric scatterer in the
form of a homogeneous sphere of radius a with a sound
velocity c in it; c was assumed to be different from the
background sound velocity c0. In this case, the scatter-
ing amplitude f(k, l) can be calculated analytically (see
[21], Vol. II, pp. 452–455), which considerably simpli-
fies the numerical simulation of the algorithm. In addi-
tion, from Eq. (3) it follows that, for a three-dimensional
spherically symmetric scatterer, h+(k, l) ≡ h–(k, l), i.e.,
H+(k, p) ≡ H–(k, p), and, hence, Z2 ≡ 0. We considered
refractive scatterers of different strengths determined
by the wave size of the scatterer 2a/λ0 and by the rela-
tive contrast ∆c/c0 of the velocity inhomogeneity,

ṽ

ṽ
ṽ
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where ∆c ≡ c – c0. The additional phase shift of the
wave due to its propagation along the diameter of the

scatterer is ∆ψ ≅  |k – k0|2a = 2k0a , where

k0 = ω/c0 and k = ω/c.

At the stage of computer simulation, the term Z1 (the
surface integral) was not considered, which simplified
the numerical realization of the algorithm and simulta-
neously provided for the robustness of the solution.
However, in this approximation, the multiple scattering
processes are not completely taken into account in the
reconstruction; as a result, the solution, i.e., the esti-

mate of the spatial spectrum (–p) and the correspond-
ing scatterer function (r), ceases to be rigorous. We
assumed that Imk∗   0, and, hence, in the approxi-
mate version of the algorithm that was realized, the
spectrum (–p) was estimated on the basis of the lim-
iting values H± of the generalized scattering amplitude
for only the spatial components with |p| ≤ 2k0:

(14)

Therefore, the result of the reconstruction of (r) was
compared with the function v cut(r), whose spatial spec-
trum coincided with the spectrum of the true scatterer
v (r) inside the sphere of radius 2k0 and was equal to
zero outside this sphere. Relation (14) is similar to rela-
tion (9) for the asymptotic algorithm with kI  0, i.e.,
without passing to the limit |k|  ∞.

In the numerical simulation, we used the values c0 =
1500 m/s and λ0 = 3 × 10–3 m, which correspond to a
typical situation of medical diagnosis. Because the non-
linear relation between the generalized scattering
amplitude and the classical one takes into account mul-
tiple scattering, the resulting estimate (r) proves to be
more accurate than the estimate (r) in the first

Born approximation, in which (–p = l – k) = f(k, l),
where k, l ∈  R3. This can be clearly illustrated by the
situation with purely refractive scatterers described by
a real function v (r). In the case of weak (Born) scatter-
ers, for which the multiple scattering processes are
insignificant, the generalized scattering amplitude coin-
cides with the classical one and the two estimates coin-
cide: (r) = (r). They differ from the true func-
tion v (r) only because of the high-frequency compo-
nents of (–p), which were taken to be equal to zero
for |p| > 2k0 in the reconstruction process. As soon as
the scatterer ceases to be weak, a false imaginary part
Im (r) appears in the Born estimate, and this part
increases with growing scatterer strength. When the
phase shift reaches ∆ψ ≈ π/4, the amplitudes of the
functions Re (r) and Im (r) become equal in
magnitude (Fig. 3a: a = 1.2λ0 and ∆c/c0 ≈ –0.050). At

∆c
c0
------ 1

1 ∆c/c0+
-----------------------

ṽ̂
v̂

ṽ

ṽ̂ p–( ) H± k* p,( ).≈

v̂

v̂
v̂ Born

ṽ̂ Born

v̂ v̂ Born

ṽ

v̂ born

v̂ born v̂ born
the same time, a similar false imaginary part Im (r)
caused by the neglect of the term Z1 in Eq. (11)
becomes only slightly more noticeable, and then only
for the scatterers that cause additional phase shifts
greater than ∆ψ ≈ 3π/4, i.e., that are close to strong scat-

terers. For ∆ψ ≤ π/2, the estimate of the spectrum (–p)
and the corresponding estimate of the scatterer (r)
provide a better reconstruction of the function v cut(r)

than that given by the estimates (–p) and (r)
(Figs. 3a and 3b, for which a = 1.2λ0, ∆c/c0 ≈ –0.085,
and ∆ψ ≈ 3π/8). However, when ∆ψ is about π/2 or
greater, the distortions introduced into the estimate of

the spatial spectrum  and, hence, into the estimate
(r) become more considerable and manifest them-

selves as an increase in the relative oscillation ampli-
tude (Fig. 3c: a = 1.2λ0, ∆c/c0 ≈ –0.116, and ∆ψ ≈ π/2),
thus testifying to the growing influence of the neglected
term Z1.

It should be noted that the character of the oscilla-
tions exhibited by the function v cut(r) and the estimate

(r) because of the limitation of their spatial spectrum
by components |p| ≤ 2k0 depends on the specific values
of the parameters a and ∆c/c0. For example, Figs. 3a
and 4 represent the results for different scatterers that
cause the same phase shift ∆ψ ≈ π/4. The fluctuation of
the function (r) in comparison with the true scatterer
function v(r) is positive at the center (r = 0) at a = λ0,
∆c/c0 ≈ –0.059 (Fig. 4) and negative at a = 1.2λ0,
∆c/c0 ≈ –0.050 (Fig. 3a); it may also be almost absent
(for example, at a = 1.18λ0, ∆c/c0 ≈ –0.050). On the
other hand, the error observed in the scatterer recon-
struction is determined by the value of ∆ψ rather than
by the size of the scatterer and its contrast separately.
This conclusion is confirmed by the comparison
between scatterers close in strength (∆ψ ≈ π/2) but dif-
ferent in size (Fig. 3c and Fig. 5a, for which a = 2λ0 and
∆c/c0 ≈ –0.059) and opposite in the sign of contrast
(Fig. 5b: a = 1.2λ0 and ∆c/c0 ≈ 0.116).

Finally, it should be noted that the resulting esti-
mate  proved to be sufficiently robust against ran-
dom noise that is present in the data. To study the noise
robustness, we combined the scattering data f(k, l) with
a normally distributed random noise characterized by
the standard amplitude deviation σns = νns , where  ≡

 is the rms value of the

scattering data (the averaging is performed over the direc-
tions of the vectors k, l ∈  R3; dΩk and dΩl are the corre-
sponding elementary solid angles) and νns is the back-
ground noise coefficient. Here, σns is the deviation for the

real and imaginary parts of noise separately; i.e., σns is
the total standard deviation for the noise as a complex

v̂

ṽ̂
v̂

ṽ̂ Born v̂ Born

ṽ̂
v̂

v̂

v̂

v̂

f f

1

4π( )2
------------- Ωk Ωl f k l,( ) 2d

0
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Fig. 3. Central sections of the real (left) and imaginary (right) parts of refractive scatterers in the form of spheres with the same
radius a = 1.2λ0; the sound velocity contrast ∆c/c0 ≈ (a) –0.050, (b) –0.085, and (c) –0.116; and the additional phase shift ∆ψ ≈ (a)
π/4, (b) 3π/8, and (c) π/2: true scatterer v  (thin solid line); scatterer form vcut with the frequency band of its spatial spectrum being
restricted by a sphere of radius 2k0 (dashed line); scatterer estimate in the absence of noise with allowance for multiple scattering,

 (thick solid line); and scatterer estimate in the Born approximation,  (dotted line).v̂ v̂ Born
quantity. In this case, the deviation of the spatial spectrum

(–p) in the presence of noise in comparison with the

noise-free estimate (–p) is characterized by the relative
rms error µ ≡

.

For a scatterer causing a phase shift ∆ψ ≤ π/2, the error
in the reconstruction does not exceed µ ≅  0.03–0.04 at
νns = 0.03 and µ ≅  0.10–0.12 at νns = 0.09. Hence, the
relative error in the scatterer estimate only slightly
exceeds the relative error in the scattering data.

ṽ̂ ns

ṽ̂

ṽ̂ ns p–( ) ṽ̂ p–( )–
2

pdp 2k0≤∫  ṽ̂ p–( )
2

pdp 2k0≤∫
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It should be taken into account that, in these numer-
ical simulations, the noise introduced in all the data cor-
responding to a single value of the scattering angle (the
angle between k and l) was the same. Hence, the redun-
dancy of the three-dimensional problem was not used
in the reconstruction, and such a correlated noise
caused an increase in the error µ in comparison with the
case of an uncorrelated noise. At the same time, in the
presence of uncorrelated measurement errors, the
dimensional redundancy of the data f(k, l) (k, l ∈  R3) in
the three-dimensional problem leads to an increase in
the noise robustness of the solution. Indeed, for one
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Fig. 5. Central sections of the real (left) and imaginary (right) parts of refractive scatterers in the form of spheres with radius a = (a) 2λ0
and (b) 1.2λ0 and with sound velocity contrast ∆c/c0 ≈ (a) –0.059 and (b) 0.116. The scatterers produce the same phase shift ∆ψ ≈ π/2.
The line notation is the same as in Fig. 3.
vector p = k – l, there is a corresponding continuum of
pairs of vectors k, l ∈  R3 that differ in their directions.
Namely, the end of the vector k can rotate in a circle in
the plane perpendicular to the vector p. In this case, the
angular distance between the neighboring independent
discretized directions is equal to the average lobe width

of the scattering pattern; i.e.,  ≅   =  = .

By estimating the number of independent directions of

∆ϕ
λ0/2
L/2
----------

λ0

L
----- 2π

k0L
--------
the vector k in this way, we obtain ≅ 2π/  ≅  k0L. On
the other hand, in the case of correlated measurement
errors, the relative error in reconstructing a middle-
strength scatterer is close to the rms relative error in the
scattering data. However, in the case of estimating the
scatterer by using the data for all of the possible direc-
tions of the vector k that lead to the same p but that have
an uncorrelated measurement error, the error in the
reconstruction of middle-strength scatterers is smaller

∆ϕ
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by a factor of ≅  in comparison with the case of
correlated errors.

Thus, the estimate obtained with the approximate
version of the algorithm proves to be acceptable for mid-
dle-strength scatterers that cause phase shifts smaller
than π/2. For stronger scatterers, to obtain an adequate
estimate, it is necessary to take into account the rejected
integral term in algorithm (11) or to perform the passage
to the limit in asymptotic algorithm (9).
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Abstract—The feasibility of the reconstruction of two-dimensional temperature distributions in biological
objects with the use of linear phased arrays is investigated theoretically with allowances made for the actual
array directivity patterns and without using the data on the absorption coefficient. The method provides an
opportunity to reconstruct the temperature distribution in the region under investigation with an accuracy of
about 0.5 K from the data of 1.5-min-long measurements when the temperature of the region of interest is
raised by 5–10 K. © 2005 Pleiades Publishing, Inc.
An important characteristic of a human body is the
spatial distribution of the in-depth temperature. Tem-
perature monitoring is necessary for various therapeu-
tic procedures, such as, for example, hyperthermia in
oncology. In this procedure, it is important to heat a
tumor up to a certain optimal temperature, for example,
to 43–44°ë, and, then, to maintain the temperature for
several or several tens of minutes. Monitoring is effec-
tive if it is possible to measure the temperature at a
depth of 3–8 cm in a volume of about 1 cm3 with an
accuracy of about 0.5 K. For such measurements it is
desirable to use nondestructive and noninvasive tech-
niques, for example, to receive the thermal acoustic
radiation from a biological object in the ultrasonic fre-
quency range.

In the previous publications [1, 2], the problem of
reconstructing the in-depth temperature of a biological
object was theoretically investigated and the recon-
struction parameters were evaluated. However, in solv-
ing this problem, the directivity patterns of receivers
were approximated by beams and the ultrasonic
absorption coefficient in a biological object was
assumed to be known, which is not always possible.
Experiments on the reconstruction (using the indicated
assumptions) of the in-depth temperature in glycerol
and in a human hand were carried out in [2]. The
authors of [3–5] theoretically and experimentally
reconstructed the position of a heat source within
model objects, in some cases, with the use of focused
receivers [4, 5]. However, the temperature parameters
of the distribution were not evaluated. The authors of
[2, 6–8] theoretically and experimentally investigated
the abilities of the correlation detection of thermal
1063-7710/05/5104- $26.00 0376
acoustic radiation in determining the internal tempera-
ture of a biological object. In this case, the accuracy of
the reconstruction was not estimated.

The purpose of the present study is to theoretically
investigate the feasibility of the reconstruction of a two-
dimensional temperature distribution with the use of
linear phased arrays by taking into account the actual
directivity patterns of the arrays and by assuming that
data on the absorption coefficient are absent. We pro-
pose to determine the form of the temperature distribu-
tion in two mutually perpendicular directions from the
results of electronic scanning of a biological object by
two phased arrays and to reconstruct the absorption
coefficient in the medium from the difference between
the signals measured by these arrays. Then, using the
information on the form of the distribution and on the
absorption coefficient, we propose to calculate the
amplitude of the temperature peak and, thus, to com-
pletely reconstruct the temperature distribution.

Let us consider the measurement scheme (Fig. 1)
proposed for the solution of a two-dimensional prob-
lem. (1) A biological object is located within the right
angle formed by two rays, 0x and 0z. We assume that
ultrasonic absorption within the biological object is
constant and determined by the absorption coefficient
α0. The value of α depends on the frequency of the
received signal. We assume that the measurement of
thermal acoustic radiation is performed in soft tissue in
a frequency range of about 1 MHz and that the ampli-
tude absorption coefficient is α ≈ 0.1 cm–1 [9]. We also
assume that the attenuation coefficient α is numerically
equal to α0, since the contribution of scattering to atten-
uation in soft tissues (usually no greater than 10–15%
© 2005 Pleiades Publishing, Inc.
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[9]) can be ignored. Note that the attenuation and
absorption of ultrasound in soft tissues of an organism
may vary with temperature. However, in [10] (where
the effect of 4-MHz ultrasound on fresh samples of
dog’s muscle, liver, and kidney tissues was studied), it
was shown that, in the temperature range from 30 to
50°C (which is of interest to us), the attenuation and
absorption coefficients of tissues remained virtually
constant. It is necessary to note that an actual biological
object containing different tissues is inhomogeneous in
absorption. However, if we restrict our consideration to
soft tissues [9], in which variations of the absorption
coefficient are small, we can consider the region under
investigation to be inhomogeneous in absorption.

Let a heat source created in the hyperthermia process
be located within (2) a rectangular region under investi-
gation (Fig. 1): x ∈ [x1 = 2.0 cm, x2 = 8.0 cm], z ∈  [z1 = 0,
z2 = 6.0 cm]. We assume that the temperature distribu-
tion T(x, z) produced by the source in the region under
investigation is determined by the product of two func-
tions, f(x) and g(z), each of them depending on only one
coordinate and normalized to its own maximum value,
so that maxf(x) = maxg(z) = 1:

(1)

where T0 is the temperature of the biological object
beyond the region under investigation, which is con-
stant and known, and ∆Tmax is the maximum tempera-
ture increment in the heated region in comparison with
T0; below, this quantity will be called the temperature
peak. The peak coordinates are xmax and zmax. Contour 3
in Fig. 1 indicates the heated region, where the temper-
ature peak is located. To reconstruct the temperature, it
is necessary to determine the form of the distribution
f(x)g(z) and the value of the temperature peak ∆Tmax,
i.e., to determine the temperature increment ∆T(x, z) =
∆Tmax f(x)g(z). Since we consider a two-dimensional
problem, we assume that we have a cylindrical heat
source extended along the axis perpendicular to the x0z
plane.

The receivers of thermal acoustic radiation are two
linear phased arrays, LPA1 and LPA2, consisting of
33 rectangular elements 16.5 mm in length and 1.5 mm
in width. The distance between the element centers is
1.6 mm. The central reception frequency is 1 MHz, and
the passband is about 0.8 MHz. LPA1 is placed 2 cm
away from the boundary of the biological object (from
the x axis), and LPA2 is positioned at the boundary of
the biological object (on the z axis). Due to the elec-
tronic scanning (indicated by arrows in Fig. 1), each of
the arrays simultaneously receives thermal acoustic
radiation with the help of thirteen directivity patterns
A1(x, z), …, A13(x, z) (two directivity patterns are indi-
cated in Fig. 1 by the gray color). The calculation of
directivity patterns was performed by the method

T x z,( ) ∆Tmax f x( )g z( ) T0,+=
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described in [11]. The map of the contours of intensity
distributions of signals received by LPA1 is shown in
Fig. 2. The numbers from 1 to 13 correspond to the
numbers of the directivity patterns. For each intensity
distribution, three level lines corresponding to 0.75,
0.5, and 0.25 of the maximum value at the focus are
shown. The central distribution is the narrowest and has
the highest value in comparison with other distributions.
The extreme 12th and 13th distributions are wider, and
their maximum values are equal to 0.73 of the maxi-
mum of the first distribution. The zA coordinates of all
focuses are approximately equal, namely, zA ≈ 40 cm.
The xA coordinates of the focuses vary from 3.2 to 6.8
cm at a step of 0.3 cm. In addition, from Fig. 2 one can
see that the distribution widths at a level of 0.25 are
about 0.3 cm. The side lobes of the given distributions
are small in value and mainly lie beyond the region
under investigation. One can also see that the directivity
patterns provide an opportunity to scan over the whole
tested region of the biological object along the x axis,
and, at the same time, that the intersection regions of
the directivity patterns (at least, at the level of 0.25) are
insignificant. This allows us to assume that we obtain
13 independent measurement results with the help of a
single phased array. Note that LPA2 allows us to scan
over the region under investigation along the z axis. In
total, we have 26 independent measurements.

If the received signal is expressed in degrees, the
acoustic brightness temperature is measured [12]. The
acoustic brightness temperature by definition is the
temperature of an acoustic blackbody absorbing all

zmax

z2

z

z1 = 0
0 x1 xmax x2 x

1
2DP

LPA2

DP

LPA1

3

Fig. 1. Measurement scheme: (1) biological object, (2) the
region under investigation (x1, x2, z1, and z2 are the region
boundaries), and (3) the heated region; LPA1 and LPA2 are
linear phased arrays, and DP are the directivity patterns (the
arrows indicate the direction of scanning).
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Fig. 2. Contour map of the intensity distribution of the received signals for LPA1; numbers 1, …, 13 are the numbers of directivity
patterns.
acoustic radiation incident upon it. It is expedient to
measure the increment of the acoustic brightness tem-
perature ∆TA, i.e., the difference between the acoustic
brightness temperature of the region under investiga-
tion and all other parts of the biological object: ∆TA =
TA – T0. This quantity, with allowance for Eq. (1), can
be expressed in the form [12–14]

(2a)

(2b)

where Ai(x, z) in Eqs. (2a) and (2b) represent the direc-
tivity patterns of LPA1 and LPA2, respectively. Con-
sider the contribution of the directivity patterns to the
acoustic brightness temperature. The directivity pat-
terns have different transverse dimensions and peaks.

∆T A i( ) ∆Tmax2α0 z 2α0z–( )g z( )expd

z1

z2

∫=

× xAi x z,( ) f x( ), id

x1

x2

∫ 1 … 13;, ,=

∆T A i( ) ∆Tmax2α0 x 2α0x–( ) f x( )expd

x1

x2

∫=

× zAi x z,( )g z( ), id

z1

z2

∫ 14 … 26,, ,=
For example, the peak of A1 is higher than that of A13
(see above), but A13 is wider. Nevertheless, for all direc-
tivity patterns A1(x, z), …, A13(x, z), the integrals

Ai(x, z) are equal.

The increments of the acoustic brightness tempera-
tures ∆TA(i) (i = 1, …, 26) in Eqs. (2) are measurable
quantities. Using them, it is necessary to obtain the
desired functions f(x) and g(z). For this purpose, we com-
pare the transverse dimensions of the directivity patterns
(0.3 cm), the region under investigation (6 cm), and the
required spatial resolution (1 cm, see above). The trans-
verse dimension of the directivity patterns is much
smaller. If, for LPA1 (or LPA2), we approximate the
directivity pattern by a beam perpendicular to the x (or z)
axis and passing through the point xAi(zAi) of the focus of
the ith directivity pattern, Eqs. (2) take on the form

(3a)

(3b)

z xd
∞–

+∞∫d
0

+∞∫

∆T A i( ) ∆Tmax2α0 f xAi( ) z 2α0z–( )exp g z( ),d

z1

z2

∫≈

i 1 … 13, for LPA1;, ,=

∆T A i( ) ∆Tmax2α0g zAi( ) x 2α0x–( )exp f x( ),d

x1

x2

∫≈

i 14 … 26, for LPA2., ,=
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As one can see from Eqs. (3), the measured signals are
functions of the focus coordinate xAi (for LPA1) or zAi

(for LPA2). Hence, for LPA1 we have the dependence
∆TA(i) ~ f(xAi), and, for LPA2, ∆TA(i) ~ g(zAi). Here,

(4a)

(4b)

where ∆TA(x) and ∆TA(z) are the functions approximat-
ing the sets of acoustic brightness temperatures ∆TA(i)
with i = 1, …, 13 and ∆TA(i) with i = 14, …, 26, respec-
tively. From Eqs. (3) and (4), we obtain an equation for
the determination of the absorption coefficient α0:

(5)

The possibility of the determination of the absorption
coefficient by Eq. (5) is connected with the fact that the
value of a thermal acoustic radiation signal propagating
in an absorbing medium from a heated region to a
receiver depends on the path length. The distance from
the thermal acoustic radiation source to LPA1 is smaller
than that from the source to LPA2 (see Fig. 1). There-
fore, the increment of acoustic brightness temperature
measured by LPA1 must be greater. The difference of
the measured increments and the information on the
position of the temperature peak provides an opportu-
nity to determine the absorption coefficient. In this con-
nection, it is necessary to note the limitation for the
temperature distributions symmetric with respect to x
and z. It is necessary that the path lengths from the tem-
perature peak in the biological object to LPA1 and to
LPA2 be different.

Knowing α0, f(x), and g(z), with the help of Eqs. (2),
it is possible to calculate ∆Tmax and, thus, to completely
determine the desired temperature distribution ∆T(x, z).

The simulation was conducted in several stages.
(i) To preset the temperature distribution, we consid-

ered a symmetric distribution

(6a)

and an asymmetric distribution

(6b)

In the case of the symmetric distribution given by
Eq. (6a), the peak temperature value was reached at the

f x( ) ∆T A x( )/ ∆T x( ), i
x∀

max 1 … 13;, ,= =

g z( ) ∆T A z( )/ ∆T z( ), i
z∀

max 14 … 26,, ,= =

z 2α0z–( )∆T A z( )expd

z1

z2

∫

– x 2α0x–( )∆T A x( )expd

x1

x2

∫ 0.=

∆T 1.23 10 2– ∆Tmax x xmax–( )2–[exp×=

– z zmax–( )2/2d1
2 ] x x1–( ) x x2–( ) z z1–( ) z z2–( )

∆T 2.97 10 2– ∆Tmax×=

× x x2 z z2–+–( )/d2[ ]exp

× x x1–( ) x x2–( ) z z1–( ) z z2–( ).
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point with the coordinates xmax = 5.0 cm, zmax = 3.0 cm;
in the case of the asymmetric distribution given by
Eq. (6b), at the point with xmax = 5.7 cm, zmax = 3.7 cm.
Four factors after the exponent are introduced to reduce
to zero the temperature values at the boundaries of the
region under study in order to provide for the continuity
of temperature variation. The dimensional coefficients
1.23 × 10–2 cm–4 and 2.97 × 10–2 cm–4 are introduced for
the distribution peak as equal to ∆Tmax. The spatial
parameters d1 and d2 determine the form and character-
istic transverse dimension of the distributions. Figure 3a
shows the symmetric temperature distribution at d1 =
1.8 cm and ∆Tmax = 5 K.

(ii) We calculated the exact values of the increments
of acoustic brightness temperature ∆TA, which were
obtained from 26 “measurements,” with the help of
Eqs. (2). The results of the calculation are shown in
Fig. 4. Figure 4a (4b) for LPA1 (LPA2) demonstrates 13
values of ∆TA (squares 1) as a function of the x(z) coor-
dinate of the directivity pattern focus. Note that the incre-
ments of acoustic brightness temperature for LPA1 are
greater than those for LPA2, as was indicated above. Fig-
ure 4 also shows the increments of acoustic brightness
temperature (curves 2) that would be obtained with ideal
directivity patterns approximated by beams. In their
essence, curves 2 in Figs. 4a and 4b exactly reproduce
the shape of the desired temperature distribution (the
shapes of the functions f(x) and g(z), respectively).

(iii) The measurement errors ∆TA = 0.1 or 0.2 K
were imposed upon the exact values of δTA to obtain the

acoustic brightness temperatures ∆  = ∆TA ± δTA

“measured” with an error. The measurement error is
distributed according to the Gaussian law with zero
mean and an rms deviation δTA. The choice of error is
connected with theoretical and experimental estimates
of the accuracy of acoustic brightness temperature mea-
surements in [2, 3, 15]. In particular, the error can be
reduced by increasing the measurement time. With typi-
cal characteristics of a thermal acoustic radiation receiver,
it is possible to obtain the error δTA = 0.2 K within 20 s;
by increasing the time to 80 s, it is possible to reduce the
error to δTA = 0.1 K. Note that, for every type of preset
condition, this stage was repeated 100 times to obtain sta-
tistically reliable results. Figure 4a (4b) for LPA1

(LPA2) presents one realization of the values of ∆
“measured” with the error δTA = 0.2 K (asterisks 3).

(iv) The increments of acoustic brightness tempera-
tures “measured” with an error were approximated by
quartic polynomials for LPA1 and LPA2, and the respec-

tive profiles ∆ (x) and ∆ (z) were obtained. If the
profiles proved to be negative at some values of x or z,
these segments were assumed to be equal to zero
(because the heating of the biological object could not
cause a temperature decrease). Figure 4 represents the
approximated polynomials (curves 4) as functions of the
x and z coordinates. Note that, in Fig. 4a, the profile was

T̃ A

T̃ A

T̃ A T̃ A
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Fig. 3. Reconstruction of a temperature distribution: (a) the preset (symmetric) distribution ∆T(x, z), (b) the reconstructed distribu-

tion ∆ (x, z), and (c) the reconstruction error ∆T(x, z) – ∆ (x, z).T̃ T̃
made equal to zero on a segment close to the boundary
x = 2 cm of the tested region. The desired approximated

functions (x) ≈ ∆ (x)/ (x) and (z) ≈

∆ (z)/ (z) had peaks at the coordinates

 and . These coordinates approximated those
of the temperature peak.

(v) Using the profiles ∆ (x) and ∆ (z) obtained
with the discretization step ∆x = ∆z = 0.1 cm, we
numerically solved Eq. (5). As a result, we obtained an
approximate value of the absorption coefficient .

(vi) To calculate the approximate value of ∆ ,
various algorithms were tested. We sought the value of

∆  that corresponded to the minimum value of

F(∆ ):

(7a)

(7b)

f̃ T̃ A ∆T̃ A
x x1 x2,[ ]∈

max g̃

T̃ A ∆T̃ A
x z1 z2,[ ]∈

max

x̃max z̃max

T̃ A T̃ A

α̃0

T̃max

T̃max

T̃max

F ∆T̃max( ) Yi ∆T̃max( ) min,
i∀

∑=

F ∆T̃max( ) Yi ∆T̃max( ) min,
i∀

max=

F ∆T̃max( ) Yi
2 ∆T̃max( ) min,

i∀
∑=
where Yi(∆ ) = |∆ (i) –

∆ 2 zdx (x) (z)Ai(x, z)exp(–2 ξ)|,
ξ = z for i = 1, …, 13, and ξ = x for i = 14, …, 26. It is
important to note that all methods give approximately
the same results, but the minimization of Eq. (7a)
gives the smallest systematic error. Therefore, pre-
cisely this method was used in the following calcula-
tions.

As the result of simulation, we obtained the approx-

imation ∆ (x, z) = ∆ (x) (z) for the desired tem-
perature distribution. Figure 3b shows an example of
the reconstruction of the initial symmetric temperature
distribution (see Fig. 3a) with the use of the “measure-
ment” results given in Fig. 4. As one can see from the
comparison of Figs. 3a and 3b, the distributions almost
coincide on the scale in use. Figure 3c demonstrates the

reconstruction error (the difference ∆T – ∆ ), which
does not exceed 0.5 K. The analysis of Fig. 3 allows us
to make a preliminary conclusion about the possibility
of applying the proposed algorithm. However, to deter-
mine the quality of the reconstruction, it is necessary to
present statistically significant results. To obtain them,
each reconstruction was repeated 100 times, and each
time a random distribution of the measurement error
was used (see the third stage of simulation). The results
are shown in the table. Presetting the measurement

T̃max T̃ A

T̃max α̃0 d
z1

z2∫x1

x2∫ f̃ g̃ α̃0

T̃ T̃max f̃ g̃

T̃
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error δTA (column 1), we calculated the average values

of ∆ , , , and  and the rms deviations

δ , δ , δ , and δ  for all desired parame-
ters (columns 2–5, respectively). We also calculated the
maximum absolute error of reconstruction δT =

 – ∆ (x( j ), z(k))|, where z(k)

(k = 1, …, K) and x( j) ( j = 1, …, J) are the sampling
points (column 6).

The parameter ∆  allows us to estimate the sys-
tematic error of reconstruction, which is equal to the

difference ∆Tmax – ∆  between the exact value of

∆Tmax and the value of ∆  averaged over 100 real-

izations. The parameter δ  determines the recon-
struction accuracy for the temperature peak and the ran-
dom error of reconstruction. This is one of the control
parameters in hyperthermia, since it is important to
know the maximum temperature in the heated region.
The improvement of the accuracy of measurements for
precisely the peak values of temperature distributions is
a separate problem considered in [16]. The parameter
δT characterizes the total error of reconstruction. The
quantity δT allows us to estimate the accuracy of temper-
ature reconstruction: in any part (with a size of 1 mm) of
the tested region, the reconstruction error does not
exceed δT. Precisely this parameter should be com-
pared with the required accuracy of 0.5 K.

To test the proposed algorithm, we used it to solve
several problems.

I. Investigation of the reconstruction quality with
various values of the measurement error δTA. To solve
this problem, we preset a symmetric temperature distri-
bution (Eq. (6a)) at ∆Tmax = 5 ä, d1 = 1.8 cm, and the
values of the measurement error δTA = 0, 0.1, and 0.2 K.

The reconstruction results for the distribution ∆ (x, z)
are given in the table (see rows 1–3). We note the pres-

ence of a systematic error: ∆  ≠ 5 K. This is con-
nected with the fact that the form of the preset temper-
ature distribution (even at δTA = 0 K) cannot be per-
fectly approximated by a quartic polynomial (see Fig. 4,
curves 1 and 2). When δTA increases, the values of

∆ , , , and  do not vary considerably,

while the values of δ , δ , and δT grow by a fac-
tor of approximately 1.5–2. The variations of the
parameters δ  and δ  at the given errors lie
within 0.1 cm. This is an expected result: an exact
reconstruction of the coordinates of temperature peaks
is indicated in [2, 16, 17]. Note that the reconstruction
accuracy for the parameters  and  is acceptable
for all reconstructed temperature distributions. The
value of δT at a zero measurement error is equal to the

difference ∆Tmax – ∆ ; i.e., the maximum recon-

T̃max x̃max z̃max α̃0

T̃max x̃max z̃max α̃0

∆T x j( ) z k( ),( )
x j( ) z k( )∀∀
max T̃

T̃max

T̃max

T̃max

T̃max

T̃

T̃max

T̃max x̃max z̃max α̃0

T̃max α̃0

x̃max z̃max

x̃max z̃max

T̃max
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struction error is observed at the peak. This well-known
result is also discussed in [2, 16, 17]. In the case of a
nonzero measurement error, the maximum error was
not always observed at the point of the peak. All tem-

perature parameters (∆  ± δ  and δT) at δTA =
0.1 K practically satisfy the requirements of hyperther-
mia (see above). If the measurement error increases to

δTA = 0.2 K, the temperature parameters ±δ  and δT
lie within 1 K. This growth of the reconstruction error
is the price for the decrease in the measurement time
(see above) from 80 to 20 s. As one can see from the
table (column 5), the absorption coefficient in all cases
is reconstructed with a relative error no greater than
30% (at δTA = 0.2 K). In analyzing the reconstruction
of the absorption coefficient, it is necessary to take into
account that, in the general case, the values of this
parameter are different for different tissues of a biolog-
ical object. The proposed algorithm reconstructs a cer-

T̃max T̃max
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Fig. 4. Increments of acoustic brightness temperatures ∆TA
as functions of (a) x and (b) z coordinates: (1) results of
“measurements” without any error with allowance for the
actual directivity patterns; (2) results of “measurements”
without any error with ideal directivity patterns (curves 2
demonstrate the shape of the preset distribution, Fig. 3a);
(3) results of “measurements” with an error δTA = 0.2 K and
with allowance for the actual directivity patterns; and
(4) temperature profiles reconstructed by polynomials
(curves 4 demonstrate the shape of the reconstructed distri-
bution, Fig. 3b).
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Temperature and spatial parameters of the temperature distribution reconstructions

Row no.
δTA, K  ± , K  ± , cm  ± , cm  ± , cm–1 δT, K

1 2 3 4 5 6

Symmetric temperature distribution (Eq. (6a)), d1 = 1.8 cm, ∆Tmax = 5 K

1 0 4.6 5.0 3.0 0.10 0.4

2 0.1 4.7 ± 0.3 5.0 ± 0.1 3.0 ± 0.1 0.10 ± 0.02 0.6

3 0.2 4.7 ± 0.5 5.0 ± 0.1 3.0 ± 0.1 0.11 ± 0.03 1.0

Symmetric temperature distribution (Eq. (6a)), d1 = 1.8 cm, ∆Tmax = 10 K

4 0.1 9.3 ± 0.3 5.0 ± 0.1 3.0 ± 0.1 0.10 ± 0.01 0.8

5* 0.1 10.1 ± 0.3 5.0 ± 0.1 3.0 ± 0.1 0.10 ± 0.02 0.3

Symmetric temperature distribution (Eq. (6a)), d1 = 2.5 cm, ∆Tmax = 5 K

6 0.1 4.8 ± 0.3 5.0 ± 0.1 3.0 ± 0.1 0.10 ± 0.03 0.5

Symmetric temperature distribution (Eq. (6a)), d1 = 1.0 cm, ∆Tmax = 5 K

7 0.1 4.1 ± 0.4 5.0 ± 0.1 3.0 ± 0.1 0.10 ± 0.02 1.1 (0.8)

Asymmetric temperature distribution (Eq. (6b)), ∆Tmax = 5 K

8 0.1 5.0 ± 0.2 5.5 ± 0.1 3.5 ± 0.1 0.10 ± 0.01 0.6

10 0.2 5.2 ± 0.5 5.5 ± 0.2 3.6 ± 0.3 0.11 ± 0.03 0.9

* The description of the algorithm used for the reconstruction is given in section II, “Investigation of the influence of the peak temperature
on the reconstruction quality.”

∆T̃max δT̃max x̃max δx̃max z̃max δz̃max α̃0 δα̃0
tain average parameter important for further determina-
tion of the temperature.

II. Investigation of the influence of the peak temper-
ature on the reconstruction quality. The effect of hyper-
thermia depends on the temperature value to which the
tissue is heated and on the time interval within which
the elevated temperature is maintained. It is known that,
starting from a temperature of 42–43°C, a temperature
increase by one degree is equivalent to a twofold reduc-
tion of the heating time [18]. In other words, the effect
achieved at a temperature of 42°C within 1 h is equiva-
lent to the effect of heating, for example, to a tempera-
ture of 47°C within approximately 2 min. Therefore, it
is important to consider the influence of the tempera-
ture peak value ∆Tmax on the reconstruction quality. We
note that a decrease in ∆Tmax to 2.5 K did not lead to any
deterioration of the reconstruction quality (the results
are not given in the table). To evaluate the reconstruc-
tion quality in the case of a temperature increase, we
preset a symmetric temperature distribution (Eq. (6a))
at d1 = 1.8 cm, ∆Tmax = 10 K, and the value of the mea-
surement error δTA = 0.1 K (the reconstruction results
are given in the table, row 4). Let us compare the results
with those obtained at ∆Tmax = 5 K (row 2). In the case
of a temperature increase, the systematic error
increases to 0.7 K. In this case, the relative systematic
error almost did not change: 7–8%. The random error
of 0.3 K also did not change. As a result, the total error
of reconstruction grows to 0.8 K and goes beyond the
limits indicated above. To reduce the systematic error,
it is necessary to change the method used for approxi-
mating the temperature distribution (i.e., the fourth
stage of the algorithm). To evaluate the possibility of
reconstructing the temperature with a peak of about 10
K, we considered the distribution approximation by a
function of the type of Eq. (6a). In this case, the method
of stage (v) was used to determine the absorption coef-
ficient and, then, the distribution parameters ∆Tmax and
d1 were determined. To do this, we used an algorithm
analogous to that given by Eq. (7a). The results are
given in row 5 of the table. Note that, in this case, the
systematic error is approximately equal to zero. (This is
connected with the choice of the “perfect” type of the
approximating function. In the case of a different
choice, the systematic error should arise.) The random
error of 0.3 K did not change, but the total error was
reduced to 0.3 K, which is quite admissible. Thus, in
the case of reconstructing the temperature with peaks of
about 10 K, it is necessary to vary the type of the
approximating function. The optimal choice in this case
needs additional study.

III. Investigation of the influence of the heated
region width on the quality of temperature reconstruc-
tion. The characteristic transverse dimension of a tem-
perature distribution is determined by the size of the
heated region and by “smearing” of the temperature
distribution due to thermal conductivity and blood flow.
The estimate of the characteristic dimensions of the
temperature distributions in the soft tissues of a human
body was obtained on [19] on the basis of physiological
data. The transverse dimension of a temperature distri-
bution in a stationary state is about 1 cm. In the present
study, a symmetric temperature distribution (Eq. (6a))
was preset at ∆Tmax = 5 K with different values of the
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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parameter d1 = 1.8, 2.5, and 1.0 cm, and the temperature
was reconstructed at a measurement error of δTA = 0.1 K
(rows 2, 6, and 7). Measurements of the parameter d1
caused changes in the width of the heated region. If d1
increases from 1.0 to 2.5 cm, the diameter of the heated
region, where the temperature exceeded half the peak
value, was 2.1, 3.1, and 3.6 cm, respectively. In the case
of broader distributions, at d1 = 1.8 and 2.5 cm, the
reconstruction accuracy is approximately the same
(δT = 0.6 and 0.5 K, respectively) and satisfies the nec-
essary requirements. For the distribution with the min-
imum value d1 = 1.0 cm, the reconstruction accuracy
exceeds admissible values: δT = 1.1 K. This is con-
nected with the fact that the temperature gradient
increases. Note that a reconstruction accuracy of 0.5 K
is presumed for the region with a size of 1 cm. In our
algorithm, the quantity δT is calculated in the region
with a size of 1 mm. If we assume that, in our study, it
is important to know the temperature distribution
∆ (x, z) averaged over a region 1 cm in size, the max-
imum absolute error δT should be determined accord-
ing to the formula δT =  –

∆ (x( j ), z(k))|. The results of this calculation are given
in column 6 in parentheses. Naturally, this approach
reduces the error to 0.8 K. Thus, the proposed algo-
rithm provides a better reconstruction for smoother dis-
tributions. The reconstruction quality remains admissi-
ble for the characteristic dimension of the temperature
peak region, namely, slightly greater than 2 cm.

IV. Investigation of the reconstruction quality in the
case of an asymmetric temperature distribution. To
solve the problem, we preset an asymmetric tempera-
ture distribution (Eq. 6b) at ∆Tmax = 5 K and d2 = 6.0 cm
and reconstructed the temperature with different values
of the measurement error: δTA = 0.1 and 0.2 K (rows 8
and 9). Note that, in the case of the asymmetric distri-
bution, the systematic error is connected not with the
amplitude of the temperature peak but with its position:
the reconstructed values of  and  are 2 mm
smaller than the exact values. The random errors in the
reconstructing of the spatial parameters are also greater.
However, even at δTA = 0.2 K, the maximum error for

 does not exceed 5 mm, which is quite admissible.
The reconstruction quality for the temperature parame-
ters with the preset distribution is no worse than in the
case of a symmetric distribution.

Let us compare the results obtained above with the
data given earlier in [2, 16, 17, 20], where different reg-
ularization algorithms and the “standard source”
method were used for the reconstruction of temperature
distributions. It should be noted that the parameters of
the temperature distributions under reconstruction and
the reconstruction quality are approximately the same
as those in the present study. The advantage of our algo-
rithm consists in that the ultrasonic absorption coeffi-

T

∆T x j( ) z k( ),( )
x j( ) z k( )∀∀
max

T̃

x̃max z̃max

z̃max
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cient of the biological object is assumed to be unknown
beforehand and is calculated from the “experimental”
data. In addition, in contrast to [2, 15, 16, 19], where the
directivity patterns approximated by beams were used
to calculate the acoustic brightness temperature, we
take into account the actual directivity patterns created
by linear phased arrays. We note that actual directivity
patterns of flat circular piezoelectric transducers were
taken into account in [3], where the position of the
heated region was determined but the temperature was
not reconstructed.

All algorithms considered above imply the recon-
struction of a two-dimensional temperature distribu-
tion; i.e., they imply the presence of a cylindrical heated
region with its lateral surface perpendicular to the x0z
plane in Figs. 1 and 2. However, our algorithm also
allows one to consider a three-dimensional problem for
a heated region shaped as, e.g., a sphere. This problem
needs further investigation.

Thus, the results of this study demonstrate that,
under the adopted assumptions, temperature distribu-
tions with peak values reaching 5–10 K can be recon-
structed with an accuracy of approximately 0.5 K
within a time interval of about 1.5 min. The proposed
method does not need any a priori information on the
absorption coefficient and takes into account actual
directivity patterns of the receivers of thermal acoustic
radiation.

In conclusion, it is necessary to note the limitation
imposed upon the temperature distribution under
reconstruction: its form should be determined by the
product of functions depending on one coordinate each
(the coordinates along which the scanning is per-
formed). If the form of the temperature distribution is
described by a more complex dependence, two linear
arrays are insufficient for the determination of the tem-
perature distribution. In the general case, the problem
of reconstruction is reduced to a problem analogous to
that solved in classical X-ray tomography. However, in
the acoustical problem, it is necessary to take into
account the actual dimensions of the directivity patterns
of the arrays and the possible nonuniformity of absorp-
tion in biological objects.
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Abstract—The problem of the identification of a single internal crack in an anisotropic elastic body is inves-
tigated. Using the dislocation theory approach, a system of boundary integral equations for the crack opening
functions is constructed and studied by the boundary element method. A crack identification method is devel-
oped on the basis of the crack parametrization by a finite number of parameters, with their subsequent deter-
mination through the minimization of a certain nonquadratic residual functional. The problem of identifying
a transverse tunnel crack in an orthotropic layer is solved for the cases of plane and antiplane deformations.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The most effective experimental techniques used for
nondestructive testing of elastic bodies include those
based on the diffraction of elastic waves by the defects
[1, 2]. A correct description of the diffracted field is
given by systems of integral equations for the displace-
ment jumps at a crack. To study the diffraction of elastic
waves by internal and surface cracks, different analyti-
cal and numerical methods have been developed in
recent years for analyzing these equations. All of the
methods used for solving the direct problem of calcu-
lating the diffracted field in a medium with a single
defect can be separated into two classes according to
the type of the boundary integral equations to be ana-
lyzed: one of them includes the hypersingular equa-
tions described in many publications (see, e.g., [3–6]),
and the other includes nonsingular equations [7] and
also those using dual formulations [8, 9]. The methods
of studying the aforementioned boundary integral
equations can also be separated into two classes: high-
frequency and low-frequency ones. The advantage of
the high-frequency method consists in that the probing
pulse length is of the same order of magnitude as the
crack length or smaller than it. This leads to interfer-
ence phenomena, which can easily be observed and
used for the crack identification. The advantages of
low-frequency vibrations include the possibility to use
the static results of the theory of cracks for solving
dynamic problems and also the possibility to derive a
conclusion concerning the growth of the crack and the
fracture of the sample. It should be noted that, by now,
the methods of calculating the diffracted fields in iso-
tropic bodies with cracks are developed in sufficient
detail. These methods are based on either the boundary
element method or asymptotic methods. At the same
1063-7710/05/5104- $26.00 0385
time, many metals and alloys subjected to technologi-
cal processing acquire an anisotropy of their elastic
properties. In this case, calculations with the isotropic
medium model lead to large errors. Therefore, the study
of wave processes in bodies possessing an anisotropy
(presumed to be of the simplest type) in the presence of
crack-type defects is quite topical. This study is the
subject of the first part of the present paper. The second
part of the paper is devoted to a poorly investigated
class of inverse geometrical problems of the theory of
elasticity: the localization of a single crack in an ortho-
tropic medium from the known elastic displacement
field of a stress-free boundary area of the body.

STATEMENT OF THE PROBLEM

Consider steady-state vibrations of an orthotropic
elastic body V bounded by a piecewise smooth surface
S = S1 ∪  S2. The vibrations are caused by a load pi

applied in the boundary part S20 ⊂  S2, while the bound-
ary part S1 is restrained. We assume that, in the bound-
ary region S21 ⊂ S2, displacements  = gi are preset

and that S20 ∩ S21 = ∅ . The body V is deteriorated by a

crack bounded by internal surfaces  (Fig. 1). At these
surfaces, the components of the displacement vector
experience jumps χi =  – . In addition, we

assume that the crack edges do not interact in the course
of vibrations. In terms of the dislocation theory
approach, the boundary-value problem for a body con-
taining a crack and performing steady-state vibrations
has the form [6, 7]

(1)

ui S21

S0
±

ui S0
+ ui S0

–

σij, j ρω2ui f i+ + 0, σij cijkluk,l= = ;
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 = pi, where pi is nonzero within S20;

(2)

(3)

and the fictitious mass forces are expressed through the

jumps: fi = –[cijkl χlδ(ζ)],j. Here, cijkl are the elastic
constant tensor components, which satisfy regular sym-
metry conditions and are positively definite; ui are the
components of the displacement vector; σij are the

stress tensor components; nj and  are the components
of the unit vectors that are normal to the surfaces S and

, respectively; δ(ζ) is the Dirac delta function; ζ is

the coordinate measured along the normal to ; ρ is
the density; and ω is the frequency of vibrations.

The inverse problem of crack identification is for-
mulated as follows: from the displacement field given
in the load-free boundary region S21, it is necessary to

determine the surface .

REDUCTION OF THE PROBLEM TO OPERATOR 
EQUATIONS

In studying the vibrations of a body with a crack, the
most efficient method is to reduce the boundary-value
problem of the elasticity theory to a system of boundary
integral equations, which makes it possible to reduce
the dimensionality of the problem by one. In this case,
the elastic displacement field inside the body V can be
determined using the Somyliana formulas [8]

(4)

σijn j S2

ui S1
0;=

σijn j
±

S0
± 0;=

nk
+

n j
±

S0
±

S0
+

S0
+

um ξ( ) σijn jUi
m( ) x ξ,( ) Sxd

S

∫=

– σij
m( ) x ξ,( )n jui Sx Ui

m( ) x ξ,( ) f i V x, ξ V ,∈d

V

∫+d

S

∫

Source

p

S20

S+
0

S–
0

S1

S21

Receiver

Fig. 1. Vibrations of a body with an arbitrary crack.
where (x, ξ) and (x, ξ) are the fundamental
and singular solutions for an anisotropic medium,
respectively. Explicit representations of these solutions
cannot be constructed, but it is possible to construct
their integral representations in the form of single inte-
grals (for a plane problem in the case of an orthotropic
material, see, e.g., [10]).

Using the expressions for fi and choosing (x, ξ)
in Eq. (4) to be the fundamental solutions for the oper-
ator of the anisotropic elasticity theory given by Eqs. (1),
which satisfy the boundary conditions

(5)

we obtain

Applying the Gauss–Ostrogradski theorem to the first
integral of the latter equality and taking into account
that the crack is an internal one, we obtain that the inte-
gral is equal to zero, and the formula for calculating the
displacement field inside V takes the form

(6)

where (ξ) = (x, ξ)dSx is the field in the

medium without the defect (the reference field). Equa-
tion (6) allows one to calculate the displacement field
everywhere in the region V if the crack opening func-
tions χl are known. To determine the opening functions,
with the standard method used in the theory of cracks,
we construct a system of boundary equations by calcu-
lating the components of the stress vector at the surface

 and by applying boundary condition (3):

(7)

The kernels kjl(x, y) in Eq. (7) are hypersingular ones
with a singularity on the order of |x – y|–2 and have the
form

The corresponding integrals are interpreted in terms of
the Hadamard finite value [11], and the functions Fj(y)
are expressed through the reference field:

Ui
m( ) σij

m( )

Ui
m( )

Ui
m( )

S1
0, σij

m( ) x ξ,( ) S2
0,= =

um ξ( ) um
ref ξ( )= Ui

m( ) x ξ,( ) cijklnk
+χ lδ ς( )[ ] , j

V

∫ V xd–

=  um
ref ξ( ) Ui

m( ) x ξ,( )cijklnk
+χ lδ ς( )[ ] , j V xd

V

∫–

+ Ui j,
m( ) x ξ,( )cijklnk

+χ lδ ς( ) V x.d

V

∫

um ξ( ) um
ref ξ( ) σkl

m( ) x ξ,( )χ lnk
+ Sx,d

S0
+

∫+=

um
ref pi x( )Ui

m( )
S20∫

S0
+

Kχ k jl x y,( )χ l x( ) Sxd

S0
+

∫ F j y( ), y S0
+.∈= =

k jl x y,( ) c jimqninkσkl q,
m( ) .=

F j y( ) c jimlni
±um l,

ref .–=
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In the inverse problem, on the basis of Eqs. (6) and (7),
a system of nonlinear operator equations in χl(x) and

 is constructed:

(8)

where (x, ξ) = (x, ξ)nk.

The problem of deriving  from system (8) is non-
linear and unstable under small perturbations of the
preset functions gj(x). Thus, the inverse geometrical
problem of crack identification is incorrect and should
be solved with the use of regularizing algorithms [12].
One of the possible ways of regularization is the maxi-
mum possible narrowing of the search region, in partic-
ular, the reduction of the problem to a finite-dimen-
sional one. The method used by us for the determina-

tion of  is based on the preliminary parametrization
of the surface by the introduction of a finite number of
parameters cp; in particular, for a planar elliptic crack,
seven parameters are introduced (the coordinates of the
center, the components of the normal vector, and the
semiaxes of the ellipse). These parameters are deter-
mined using a discrete representation of integral opera-
tor (7) in terms of the nodal values of the opening func-
tions and the subsequent determination of the parame-
ters cp (p = 1, 2, …, n) from the minimum of the
residual functional

(9)

which, in the case of such a parametrization, represents
a function of n variables.

Note that the efficiency of the proposed method
strongly depends on the possibility to construct a fun-
damental solution satisfying boundary conditions (5).
For some types of domains and boundary conditions,
such solutions can be constructed rather well (a layer,
an infinite cylinder, etc.). Let us consider the simplest
examples of crack reconstruction.

EXAMPLES

We illustrate the proposed approach by solving the
problem of crack identification in an orthotropic layer

S0
+

kml
0 x ξ,( )χ l Sxd

S0
+

∫ gm
0 ξ( ) gm ξ( ) um

ref ξ( ),–= =

ξ S21,∈

k jl x y,( )χ l x( ) Sxd

S0
+

∫ F j y( ), y S0
+, m∈ 1 2 3,, ,= =

kml
0 σkl

m( )

S0
+

S0
+

Φ cp( ) um
ref y( ) ∫y S21∈

max=

 + σkl
m( ) x y,( )nk x( )χ l x( ) Sxd gm y( )–

S0
+

∫ ,
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with a vertical tunnel crack for the cases of plane and
antiplane deformations.

Consider an orthotropic layer of thickness H with a
rigidly fixed lower surface. Assume that the layer con-
tains a transverse crack with tips a and b and that the
crack does not reach the layer surfaces (i.e., 0 < a < b < H).
The coordinate system coincides with the elastic sym-
metry axes of the material. The crack lies on the Ox3 axis,
and the Ox1 axis coincides with the lower surface of the
layer (Fig. 2). Vibrations are excited in the layer by a
concentrated force P applied to the upper surface of the
layer at the point with the coordinates (–L, H). To com-
plete the problem, it is necessary to impose the radia-
tion conditions, which are formulated using the princi-
ple of ultimate absorption [13]. The inverse problem
consists in the determination of the coordinates of the
tips a and b from the displacement field at the boundary
u(x1, H) = g(x1), where x1 ∈  [c, d]. Below, we present
equations of the type of Eq. (7) for some specific loads.

THE ANTIPLANE PROBLEM FOR A LAYER 
WITH A VERTICAL CRACK

Let the vibrations be excited by a tangential force
directed along the x2 axis. In this case, the displacement
vector has only one nonzero component u2 = u(x1, x3).
The equations of motion and the boundary conditions
have the form

(10)

(11)

To determine the wave field in the layer, we apply the
Fourier transformation in x1 to Eqs. (10) and (11) and
solve the boundary-value problem for the transform

(α1, x3). As a result, we obtain the wave-field repre-
sentation

(12)

where the contour σ is chosen according to the princi-
ple of ultimate absorption and coincides with the real
axis everywhere except for the singularities of the inte-

c66u,11 c44u,33 ρω2u f+ + + 0,=

u x1 0,( ) 0, σ23 x3 H= Pδ x1 L+( ),–= =

f c66χδ ζ( )[ ] ,1, χ– χ2.= =

ũ

u x1 x3,( ) 1
2π
------ ũ α1 x3,( ) iα1x1–( ) α1,dexp

σ
∫=

–L

x1

a

b

H

x3

Fig. 2. Vibrations of a layer with a transverse crack.
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grand function: it deviates to the complex plane to
bypass the positive singularities from below and the
negative singularities from above. Using the condition
of zero stress at the crack edges, we arrive at a boundary
integral equation with a hypersingular kernel:

(13)

Here, K(ξ3, x3) =  + K0(ξ3, x3), where K0(ξ3, x3)

is the regular part representable in the form of a single
integral over the contour σ:

(14)

(15)

THE PLANE PROBLEM FOR A LAYER
WITH A VERTICAL CRACK

Let the vibrations be excited by a normal force
directed along the x3 axis. In this case, the nonzero com-
ponents of the displacement vector are u1 = u1(x1, x3) and
u3 = u3(x1, x3). The equations of motion and the bound-
ary conditions have the form

(16)

(17)

As in the case of the antiplane problem, we apply the
Fourier transformation to Eqs. (16) and (17). Satisfying

χ ξ 3( )K ξ3 x3,( ) ξ3d

a

b

∫ F x3( ), x3 a b,[ ] .∈=

ν 1/2–

ξ3 x3–( )2
-----------------------

K0 ξ3 x3,( ) να 2

2λ
--------- e

λ x3 ξ3––
---





σ
∫=

–
e

λξ 3–
cosh λ H x3–( )( ) e

λ H ξ3–( )–
sinh λ x3( )–

cosh λH( )
-----------------------------------------------------------------------------------------------------

–
ν

2
------- α e

x3 ξ3– ν α–





α ;d

ν c66/c44; λ να 2 k2– ; α α 1;= = =

k2 ρω2/c44;=

F x3( ) P0 iα
sinh λ x3( )

λcosh λH( )
--------------------------- iαL–( ) α ,dexp

σ
∫–=

P0 P/c44.=

c11u1,11 c55u1,33 c13 c55+( )u3,13 ρω2u1 f 1+ + + +  = 0;

c55u3,11 c33u3,33 c13 c55+( )u1,13 ρω2u3 f 3+ + + +  = 0;

u1 x1 0,( ) u3 x1 0,( ) 0;= =

σ33 x3 H= Pδ x1 L+( ); σ13 x3 H=– 0;= =

f 1 c11χ1δ ζ( )( ),1– c55χ3δ ζ( )( ),3;–=

f 3 c55χ3δ ζ( )( ),1– c13χ1δ ζ( )( ),3.–=
the boundary conditions at the crack and assuming that
the crack edges do not interact, we obtain a system of
boundary integral equations, which, in the case under
consideration, divides into two independent equations
in the displacement jumps:

(18)

The kernels of these equations are representable in the
form

where Mj are constants determined by the elastic con-

stants of the material, (ξ3, x3) are kernels that are reg-

ular at ξ3 = x3, and the functions (α1, ξ3, x3) that
appear in the integral representations of the kernels are
meromorphic in α1 in the complex plane and have a
finite number of poles on the real axis. The number and
relative positions of the poles depend on the vibration
frequency and determine the number of waves propa-
gating in the layer. The functions Fj(x3) are represent-
able as integrals over the contour σ and have a form
similar to that shown at the end of the previous subsec-
tion. They characterize the stress vector components on
the crack line in the layer without the crack under the
effect of the initial load. The corresponding formulas
are rather cumbersome and are not presented here.

Integral equations of the type of Eq. (13) are solved
with the boundary element method [11]. For the case of
the antiplane problem, the solution is realized in [14].

The inverse problem consists in the determination of
the crack tips a and b from the known displacements

, which are preset at the points xm within the layer
part S21 (by position probing). The solution to the prob-
lem is obtained by solving the system of boundary inte-
gral equations of the type of Eq. (7) and then minimiz-
ing the corresponding residual functional Φ(a, b) =

, where the quantities  are cal-

culated according to representation (6).

RESULTS OF NUMERICAL EXPERIMENTS

By the collocation method, boundary integral equa-
tions (18) were reduced to a system of nonlinear equations

k jj ξ3 x3,( )χ j ξ3( ) ξ3d

a

b

∫ F j x3( ),=

x3 a b,[ ] , j∈ 1 3.,=

k jj ξ3 x3,( )
M j

ξ3 x3–( )2
----------------------- k jj

0 ξ3 x3,( ),+=

k jj
0 ξ3 x3,( ) K jj

0 α1 ξ3 x3, ,( ) α1,d

σ
∫=

k jj
0

K jj
0

uk
0m

uk
m

S21
uk

0m–
2

m∑ uk
m

S21
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in the unknown crack parameters θ1 = a/H and θ2 = b/H

and the nodal values  = χj( H)/ :

(19)

Here,  and  are uniform grids on the
segment [θ1, θ2] with a mesh h = (θ2 – θ1)/N, (η1 = θ1,

ηN + 1 = θ2),  is the center of the segment [ηi, ηi + 1],
and the number N of the boundary elements was chosen
so that no less than five to seven elements fell within the
wavelength of the probing signal. An iteration process
was developed for determining the values of θ1 and θ2.
The process included the solution of the aforemen-
tioned system of equations and the minimization of the
residual functional Φ0(θ1, θ2) = Φ(θ1H, θ2H). The initial

approximation ( , ) was chosen with the help of a
search over a uniform grid in the triangle 0 < θ1 < θ2 < 1.

Figures 3–9 show examples of solutions to the
inverse problem of locating a vertical crack with the
crack tip coordinates θ1 and θ2 in an austenitic steel
layer of thickness H = 0.1 m for the frequencies κ =

Hω  = 2.2, 3.7, and 4.9 with two, three, and four
traveling waves, respectively. In all of these figures, the
horizontal axis represents the iteration number k, and

pi
j η i

0 θ2 η i
0–( ) η i

0 θ1–( )

pi
j θ2 η i

0–( ) η i
0 θ1–( )Bik

j

i 1=

N

∑ F j yk( ), j 1 3,=( )=

Bik
j M j

1
η i yk–
--------------- 1

η i 1+ yk–
---------------------– 

  hk jj
0 η i yk,( ),+=

y x3/H , η ξ 3/H .= =

η i{ } i 1=
N 1+ yk{ } k 1=

N

η i
0

θ1
0 θ2

0

ρ/c33

0.30

6

Rk

k
54321

0.25

0.20

0.15

0.10

0.05

0

Fig. 3. Relative error Rk in the reconstruction of the crack
tips versus the iteration number k for κ = 2.2, θ1 = 0.1, and
θ2 = 0.3.
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the vertical axis, the relative error in the crack tip iden-

tification Rk = max(|θ2 – |, |θ1 – |). Figure 3

corresponds to a near-bottom crack, Fig. 4, to a crack in
the middle of the layer, and Fig. 5, to a near-surface
crack. The results of calculations testify that, for the
near-surface crack, the convergence of the process is
somewhat worse. Figures 4, 6, and 7 illustrate the change
in the character of convergence with an increasing num-
ber of traveling waves in the layer. Figure 4 corresponds
to two modes propagating in the layer, Fig. 6, to three
propagating modes, and Fig. 7, to four modes. As the

1
θ2 θ1–
---------------- θ2

k θ1
k

0.6

0 8

Rk

k
642

0.5

0.4

0.3

0.2

0.1

0

Fig. 4. Relative error Rk in the reconstruction of the crack
tips versus the iteration number k for κ = 2.2, θ1 = 0.4, and
θ2 = 0.6.
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k642
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0.8

0.6

0.4

0.2

Fig. 5. Relative error Rk in the reconstruction of the crack
tips versus the iteration number k for κ = 2.2, θ1 = 0.75, and
θ2 = 0.95.
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frequency of vibrations increases, the rate of conver-
gence of the identification process grows. It should be
noted that, in all of the calculations, the crack length is
reconstructed long before the crack tips are identified.
This is illustrated in Figs. 8 and 9: Fig. 8 shows the
results of reconstructing the tips of a near-surface
crack, and Fig. 9, the results of reconstructing the tips
(the solid line) and the length (the dotted–dashed line)
of a crack at κ = 2.2.

The error in the reconstruction of the crack tips was
studied as a function of the frequency and the input data

0.5

0 6

Rk

k
42

0

0.4

0.2

0.1

0.3

1 3 5

Fig. 6. Relative error Rk in the reconstruction of the crack
tips versus the iteration number k for κ = 3.7, θ1 = 0.4, and
θ2 = 0.6.
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Fig. 8. Approximate values obtained for the crack tips 

and  versus the iteration number k for κ = 2.2, θ1 = 0.75,

and θ2 = 0.95.

θ1
k

θ2
k

error. Different numbers of position-probing points
were used. A uniformly distributed random error δ (in
percentage of the displacement field amplitude) was
additively introduced into the input data of the inverse
problem (the displacement amplitudes at the position-
probing points). The numerical experiments showed
that, when the number of position-probing points was
small (one to three points), the accuracy of the recon-
struction of the crack tips at the frequencies at which up
to three travelling waves were present was as follows:
when the input data error δ was about 1–2%, the error
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k
42

0

0.4
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1 3 5

Fig. 7. Relative error Rk in the reconstruction of the crack
tips versus the iteration number k for κ = 4.9, θ1 = 0.4, and
θ2 = 0.6.
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Fig. 9. Relative errors in reconstructing the crack tips, Rk,

and the crack length,  = , versus the

iteration number k for κ = 2.2, θ1 = 0.75, and θ2 = 0.95.
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in the tip reconstruction was 3–8%; when δ was about
5%, the error in the tip reconstruction was 15–32%.

Note that an increase in the number of traveling
waves (at a fixed input data error) improves the resolu-
tion of the proposed method.

On the whole, we conclude that the proposed
method allows one to reconstruct those cracks whose
length is no smaller than one-fourth of the wavelength
of the probing signal. From the point of view of the
reconstruction problem, acceptable frequencies are
those at which two to three travelling waves are present
(when the error in the input data of the inverse problem
is 1–5%).

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research (project no. 02-01-01124) and by a
grant from the President of the Russian Federation in
Support of the Leading Scientific Schools (grant
no. NSh-2113.2003.1).

REFERENCES
1. A. Boström and H. Wirdelius, J. Acoust. Soc. Am. 97,

2836 (1995).
2. A. B. Roœtman, Akust. Zh. 46, 685 (2000) [Acoust. Phys.

46, 601 (2000)].
3. V. Z. Parton and V. G. Boriskovskiœ, Dynamics of Brittle

Fracture (Mashinostroenie, Moscow, 1988) [in Rus-
sian].
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
4. D. E. Budreck and J. D. Achenbach, J. Appl. Mech. 55,
405 (1988).

5. G. Krishnasamy, L. Schmerr, T. J. Rudolphi, and F. J. Rizzo,
ASME Trans. J. Appl. Mech. 57, 404 (1990).

6. S. Mukherjee and Y. X. Mukherjee, ASME Trans. J.
Appl. Mech. 65, 300 (1998).

7. V. Sladek and J. Sladek, Mech. Res. Commun. 17, 281
(1990).

8. V. A. Babeshko, Dokl. Akad. Nauk SSSR 307 (2), 324
(1989).

9. E. V. Glushkov and N. V. Glushkova, Prikl. Mat. Mekh.
60, 282 (1996).

10. A. O. Vatul’yan and I. A. Guseva, Prikl. Mat. Mekh. 57,
149 (1993).

11. S. M. Belotserkovskiœ and I. K. Lifanov, Numerical
Methods in Singular Integral Equations and Their
Application in Aerodynamics, Elasticity Theory, and
Electrodynamics (Nauka, Moscow, 1985) [in Russian].

12. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving
Ill-Posed Problems (Nauka, Moscow, 1979) [in Rus-
sian].

13. I. I. Vorovich and V. V. Babeshko, Mixed Dynamic Prob-
lems of the Theory of Elasticity for Nonclassical Regions
(Nauka, Moscow, 1989) [in Russian].

14. A. O. Vatul’yan and I. V. Baranov, in Proceedings of
VI International Scientific and Engineering Conference
on Dynamics of Technological Systems (Rostov-on-Don,
2001), Vol. 1, pp. 105–109 [in Russian].

Translated by E. Golyamina



  

Acoustical Physics, Vol. 51, No. 4, 2005, pp. 392–396. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 4, 2005, pp. 463–468.
Original Russian Text Copyright © 2005 by Galanin, Kononenko.

                                                                
The Influence of the Electrode Diameter on the Diffraction 
Effects in the Ultrasonic Field Generated

by an Oscillating Piezoelectric Disk
V. V. Galanin and V. S. Kononenko

Volga State Academy of Telecommunications and Information Science,
ul. L. Tolstogo 23, Samara, 443010 Russia

e-mail: galanin_v@mail.ru
Samara State Technical University, ul. Pervomaœskaya 18, Samara, 443100 Russia

e-mail: physics@sstu.samara.ru
Received December 22, 2003

Abstract—The problem of ultrasound radiation by a finite-size source is considered. A boundary-value prob-
lem is formulated and solved for ultrasonic waves generated by an oscillating piezoelectric disk fixed along its
edge and characterized by an eigenfrequency spectrum and a corresponding oscillation amplitude distribution.
The influence of the size of electrodes on the diffraction effects arising in the ultrasonic field of the piezoelectric
disk is theoretically investigated. © 2005 Pleiades Publishing, Inc.
In the majority of publications devoted to the calcu-
lation of the ultrasonic field generated by a piston trans-
ducer, the dependence of the diffraction effects on the
transducer parameters is not considered [1–7]. In [8, 9],
an approach was proposed for calculating the diffrac-
tion field produced by an oscillating piezoelectric disk
fixed along its edge and characterized by a specific
eigenfrequency spectrum and a corresponding oscilla-
tion amplitude distribution. In connection with these
studies, it has become possible to investigate how the
ultrasonic field produced by a piezoelectric transducer
in a liquid depends on the diameter of its electrodes.
The topicality of this problem is determined by the
wide practical application of ultrasonic transducers
with diameters exceeding the diameters of their elec-
trodes.

A general solution to the problem of plate oscillations
has not yet been obtained [10–12]. Therefore, to solve
the problem of interest, we consider a circular piezoelec-
tric plate fixed along its edge and emitting radiation into
a liquid layer, whose opposite side is represented by a
rigid baffle with a receiving circular piezoelectric plate
built into it. We seek an approximate solution for a nar-
row-band signal of finite duration under the assumption
that the emitted and reflected pulses are separated in time
and that multiple reflections can be ignored. In addition,
since the effect of transverse and Lamb waves is negligi-
ble to a first approximation for sufficiently thin piezo-
electric disks [8], the shear oscillations of the piezoelec-
tric plate can be excluded from our consideration. With
these assumptions, we can easily obtain a solution to the
problem stated above and consider the dependence of the
diffraction corrections on the parameters of the system.
1063-7710/05/5104- $26.00 0392
Let us consider oscillations of a circular isotropic
piezoelectric plate of radius a that is fixed along its
edge in a hole of a rigid baffle of the same thickness.
A similar plate is used as the receiver. We use a cylin-
drical coordinate system with the coordinates r, ϕ, z.
Let the emitting and receiving piezoelectric plates have
the same radius a and thickness d and be separated by a
distance L from each other. The z axis passes through
the centers of the plates. The surfaces of the emitting
piezoelectric plate coincide with the planes z = –d and
z = 0, and the surfaces of the receiving plate, with the
planes z = L and z = L + d.

Since the plates are rigidly fixed along their con-
tours, the following boundary conditions should be sat-
isfied:

(1)

where u1, u2, 1, and u3 are the displacements of particles
of the emitting piezoelectric plate, the liquid layer, and
the receiving piezoelectric plate, respectively.

Taking into account that the electrode radius may be
smaller than the radius of the piezoelectric plates, we
should complement boundary conditions (1) with the
following requirement for the electric induction D1 in
the emitting plate:

(2)

where D10 is the electric induction of the field produced
by the voltage applied to the electrodes and a1 is the

u1 0 at u3 0 at r a,= = =

u2 1, 0 at r a, z≥ 0 and z L,= = =

D1 D10 for r a1,≤=

D1 0 for r a1,>=
© 2005 Pleiades Publishing, Inc.
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radius of the electrode of the emitting piezoelectric
plate.

Let ultrasonic waves generated in the emitting plate,
the liquid layer, and the receiving piezoelectric plate be
described by the Helmholtz equation

(3)

where uj is the displacement of particles in the medium
with number j ( j = 1, 2, 3), cj is the velocity of wave
propagation in this medium, and ω is the cyclic fre-
quency.

The solution to Eq. (3) for the liquid should take into
account the pulsed nature of the ultrasonic signal: we
assume that, within the duration of the exciting pulse,
the oscillations in the disk are steady and the radiation
is stationary. Because the exciting pulse and the
reflected signal are separated in time, no reflected sig-
nal is present in the liquid at the boundary z = 0. By
contrast, at the boundary z = L, the reflected wave
should be included in the boundary conditions. There-
fore, in view of the symmetry of the sound field with
respect to the z axis and with allowance made for
boundary conditions (1), we seek the solution to Eq. (3)
in the form

(4)

(5)

(6)

(7)

Here, the wave numbers  =  – /a2 and  =

 – /a2 determine the eigenfrequencies of oscilla-
tions for the emitting and receiving piezoelectric plates;
k1, k2, and k3 are the wave numbers for the emitting
piezoelectric plate, the liquid, and the receiving plate,
respectively; ν0n and ν0m are the roots of the zero-order

Bessel function; β2 =  – α2; α is an independent vari-
able; f(α) is the distribution function of the radial wave
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amplitudes, which is determined from the boundary
conditions; and An, Bn, Em, Fm, C(r, z), and D(r, z) are
quantities associated with the amplitudes of waves
propagating along the z axis in the positive and negative
directions. For the liquid layer, we have two expres-
sions that take into account the pulsed nature of the
piezoelectric plate excitation. Formula (5) describes the
ultrasonic field at the emitting piezoelectric plate in the
absence of the signal reflected from the receiving plate,
and formula (6) describes the ultrasonic field at the
receiving piezoelectric plate with both incident and
reflected waves being present in the liquid.

The boundary conditions at the surfaces of the
piezoelectric plates have the form

(8)

(9)

(10)

(11)

(12)

(13)

Here, T1 and T3 are elastic stresses in the emitting and

receiving plates; the quantity T2 = (∂u2/∂z) deter-

mines the sound pressure in the liquid;  = ρ2 ; and
ρ2 and c2 are the density of the liquid and the sound
velocity in it, respectively.

The equations of the piezoelectric effect for the lon-
gitudinal oscillation mode have the form [13]

(14)

(15)

where Ej and Dj are the strength and induction of the
electric field in the emitting (j = 1) and receiving (j = 3)

piezoelectric plates,  = ρj  are the elastic moduli at
a constant induction, ρj and cj are the densities of the
piezoelectric plates and the longitudinal wave veloci-
ties in them, h is the piezoelectric constant, and βs is the
inverse dielectric permittivity.

Substituting Eqs. (4)–(7) and (14) into boundary
conditions (8)–(13), we obtain six equations in six
unknowns: An, Bn, Em, Fm, C(r, z), and D(r, z). Solving
these equations, we determine the displacement u3 as a
function of the output voltage of the receiving piezo-
electric plate. Let us consider the solution step by step.
We substitute u1 and u2, 1 given by Eqs. (4) and (5) into

T1 0 at z d ,–= =

T1 T2 at z 0,= =

u1 u2 1, at z 0,= =

T2 T3 at z L,= =

u2 3, u3 at z L,= =

T3 0 at z L d .+= =

c2
D

c2
D c2

2

T j c j
D∂u j

∂z
-------- hD j,–=

E j h
∂u j

∂z
--------– βsD j,+=

c j
D c j

2
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Eqs. (6), (7), and (10); then, we multiply the resulting
equalities by (r/a2)J0(ν0mr/a2) and integrate them with
respect to r from 0 to a. Because of the orthogonality of
the Bessel functions, the terms with m ≠ n will vanish
from the sum. From the resulting set of equations in
three unknowns An, Bn, and C(r, 0), we derive an
expression for C(r, 0):

(16)

where

To determine the quantity u2, 1, in view of Eq. (1), we
represent the boundary conditions for z = 0 from the
side of the liquid layer in the following form:

(17)

Applying the Hankel integral transformation to Eq. (5)
with allowance for condition (17) and calculating the
known integral of the Bessel functions, we obtain

where x = αa.

From this formula, in view of Eq. (5), we obtain an
expression for u2, 1:

(18)

This expression describes the acoustic field produced
by an oscillating piezoelectric plate fixed along its edge
with allowance for diffraction.

Using boundary conditions (10)–(12), we obtain
expressions for Em and Fm. We substitute Eqs. (6) and
(7) into Eqs. (10)–(12), multiply the resulting expres-
sions by (r/a2)J0(ν0mr/a2), and integrate them with
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respect to r from 0 to a. As a result, for the displace-
ments at the receiving plate, we obtain

(19)

where

(20)

Setting D3 = 0 and using Eq. (15), we determine the
voltage amplitude at the receiving piezoelectric plate:

where a2 is the radius of the receiving plate electrode.
Substituting expression (19) for u3 in the above for-
mula, we obtain

(21)

(22)

(23)

Taking into account that h = ktc1 , D10 =
ε1ε0U1/d [13], and k1d = π, we arrive at the following
expression for U:

(24)

where γ = k2/ k1 is the liquid-to-plate acoustic
resistance ratio, kt is the electromechanical coupling
coefficient, ε1 is the relative dielectric permittivity at
constant strain, ε0 = 8.85 × 10–12 F/m, and U1 is the volt-
age amplitude at the exciting piezoelectric plate.

In Eq. (24), n is the number of a frequency in the
oscillation spectrum of the excited piezoelectric plate
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Fig. 1. (a) Ratio of the absolute values of the voltage amplitudes at the receiving plate |U|/|U0| and (b) the argument of Umn for the
natural oscillations of the receiving plate with m = 1 and m = 2 versus the generalized distance s at k2a = 100, γ = 0.1, and a1/a =
a2/a = 1.
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and m is the number of a frequency in the oscillation
spectrum of the receiving piezoelectric plate.

We determined the diffraction damping decrement
A for the electric signal at the receiving plate as a func-
tion of the parameters k2a, s = λz/a2, and γ according to
the formula A = 20 , where U0 is the value
of U at s = 0. The ratio k2/k1 was set equal to 4, and the
liquid-to-plate acoustic resistance ratio was γ = 0.1.

Figure 1a shows the ratio between the absolute val-
ues of voltage amplitudes at the receiving plate |U|/|U0|
versus the generalized distance s. Figure 1b shows the
argument of Umn versus the distance s for the natural
oscillations of the receiving plate with indices m = 1
and m = 2 (the inclusion of natural oscillations with
m ≥ 3 does not qualitatively change the situation
because of their small amplitude). From the plots, one
can see that, as s increases, the natural oscillations of
the receiving piezoelectric plate are first combined in
antiphase, then in phase, and then again in antiphase.
Correspondingly, the minimum of the function |U|/|U0|
changes to a maximum, whereas, for the dependence
A(s), an opposite dynamics is observed (Fig. 2).

Figure 2 presents the dependence of the diffraction
damping decrement A on the generalized distance s for
different values of the ratio between the electrode
radius and the radius of the piezoelectric plates. To
explain the behavior of the curves, we take into account

U0 / U( )log
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
that, in Eqs. (4) and (7), the distribution of the natural
oscillation amplitude along the plate radius is deter-
mined by the zero-order Bessel function. As a result,
the plate surface can be divided into parts oscillating
with opposite phases. These parts are separated by
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Fig. 2. Diffraction damping decrement A of the electric sig-
nal at the receiving plate versus the generalized distance s
for different ratios between the electrode radii and the
radius of the piezoelectric plates at k2a = 100 and γ = 0.1:
(1) a1/a = a2/a = 1; (2) a1/a = 1 and a2/a = 0.68; and
(3) a1/a = a2/a = 0.50.
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nodal curves of circular shape. The number of such
parts is determined by the indices m or n, and the radius
of the nodal curves corresponds to the roots of the
Bessel function J0(ν0m, nr/a). Depending on the elec-
trode radii, the radius mean for the displacement of par-
ticles of the piezoelectric plate particles varies; hence,
the contribution made by each single mode to the
amplitude of the resulting plate oscillation determined
by Eq. (24) also varies. For example, the radius mean
for the natural oscillation of the receiving plate with
m = 2 is negative when the condition ν02a2/a < ν11 is sat-
isfied (see Eq. (23)), where ν02 is the second root of the
zero-order Bessel function and ν11 is the first root of the
first-order Bessel function. If the condition ν02a2/a ≥ ν11
is satisfied, the contribution made by the aforemen-
tioned natural oscillation is positive or equal to zero.
The results of our calculations showed that, when the
ratio of the electrode radius to the plate radius is the
same for the emitting and receiving plates, the diffrac-
tion damping decrement A increases (curve 3 in Fig. 2),
because the natural oscillations that make the greatest
contribution to the amplitude of the received signal sup-
press each other. By contrast, the diffraction damping
decrement A decreases (curve 2 in Fig. 2) when the size
of the emitting plate coincides with the size of its elec-
trodes and the radius of the receiving plate exceeds the
radius of its electrodes. In this case, a mutual amplifica-
tion of natural oscillations with small indices m and n
takes place.

Thus, in this paper, we developed a theoretical
approach to solving the boundary-value problem for an
oscillating piezoelectric disk fixed along its edge when
the diameter of the disk is greater than that of its elec-
trodes. We studied the diffraction damping decrement
of the ultrasonic signal as a function of the generalized
distance between the emitting and receiving piezoelec-
tric plates. We considered the influence of the parame-
ters of the measuring system on the diffraction of the
ultrasonic field generated by the oscillating piezoelec-
tric plate. We analyzed the dependences of the diffrac-
tion damping decrement on the generalized distance s
for different ratios between the electrode radii and the
radius of the piezoelectric plates.

The results obtained can be used for the purpose of
reducing the diffraction losses in precision measure-
ments of the absorption coefficient and propagation
velocity of ultrasonic waves in low-viscosity liquids at
frequencies of ~1 MHz by choosing the appropriate
parameters of the measuring system.
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Abstract—Data of experiments with single-path and multipath reception of broadband continuous pseud-
onoise acoustic signals (0.8–1.3 kHz) in a deep ocean are discussed. The experiments were carried out on tracks
from ~ 60 to ~ 420 km in length, which corresponds to the first seven convergence zones. The data on the cross-
correlation coefficients and arrival time differences are presented (for the first, second, and seventh zones) for
signals received by one highly directional (~2°) vertical array or by two such arrays simultaneously at depths
of 200 and 450 m. The correlation characteristics of signals propagating over purely water paths, i.e., without
reflections from the waveguide boundaries, and arriving under different angles in the vertical plane are com-
pared. It is found that the origin of the decorrelation of signals received from various directions or at different
depths (all other factors being the same) is the incomplete resolution of the received multipath signals in the
arrival angle in the vertical plane. © 2005 Pleiades Publishing, Inc.
The study of the temporal and correlation structure
of acoustic fields generated by the sound sources in the
ocean is necessary for the development of an adequate
model of an oceanic waveguide, as well as for the solu-
tion of a number of applied problems [1–4]. In this
case, the experimental data received under actual oce-
anic conditions are of special value, because they auto-
matically take into account the effect of various ocean-
ographic factors. Such data allow one to modify the
existing models of oceanic waveguides and to introduce
corrections into the newly developed models, the con-
struction of which is discussed in a number of publica-
tions [5–7].

In the deep ocean, the sound field at the reception
point in most cases represents the superposition of the
signals arriving from the sound source over various
rays. In this case, individual components forming a
multipath signal can differ from one another not only in
the signal arrival angles in the vertical plane but also in
the focusing factors and the times of arrival at the
reception point.

The spatial resolution of the received signals in the
arrival angle in the vertical plane can be realized with
the use of highly directional arrays developed in the
vertical direction. In order to separate individual com-
ponents of a multipath signal by their arrival times, cor-
relation processing is usually applied.

The aim of this paper is the experimental estimation
of the effect of multipath propagation on the correlation
characteristics and fluctuations in the arrival time dif-
ferences of the received signals propagating to the
reception point along different paths.
1063-7710/05/5104- $26.00 ©0397
For the correct solution of the stated problem, it is
necessary to eliminate completely (or to a large extent
at least) the influence of other factors that in principle
may lead to a decorrelation of the received signals.
Because in the deep ocean (3–5 km), neither the receiv-
ing system nor the source can be rigidly fixed in space
(at depths of 100–500 m), the experiments were carried
out using drifting research vessels. This, naturally, led
to a displacement of the acoustic track in space. There-
fore, in the test region, during the period of the experi-
ments, the sound velocity profiles should not undergo
any significant changes for any position of the track.
Besides, it was necessary to use only the signals that
propagate without reflections from the waveguide
boundaries, which allows one to eliminate the effect of
the relief and structure of the bottom and the effect of
the rough ocean surface. Note that, to obtain more reli-
able data on the correlation and temporal characteris-
tics of the signals, most of the measurements should be
carried out on those sections of the track where the
received signal-to-noise ratio was maximum. As is
known, this condition is satisfied in the convergence
zones. Therefore, the experiments were mainly carried
out in these zones.

With allowance for these considerations, the exper-
iments were carried out in a deep-water region of the
Atlantic ocean south west of the Canary Islands. This
region is characterized by a very low spatial variability
of oceanic conditions and almost completely satisfies
the above-mentioned conditions.

The experiments were carried out as follows. At
chosen points of the test track, one of the research ships
of the Acoustics Institute, with the use of an omnidirec-
 2005 Pleiades Publishing, Inc.
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tional source, emitted a continuous pseudonoise signal
in a wide frequency band from 0.8 to 1.3 kHz. During
the experiments, the source depth was 200 m. The other
ship—the receiving one—carried two vertical 40-m-long
arrays, which were lowered to various depths through
specific trunks of bathyposts located on the ship diame-
tral. The horizontal distance between the trunks was
about 45 m. Each array had the form of a flexible pipe
only 5 cm in diameter with 296 hydrophones mounted
inside it and combined into 74 phase centers. For
stretching the flexible arrays in the vertical position,
800-kg loads were attached to their lower ends. The
central hydrophone of one of the arrays was at a depth
of ~200 m, and that of the second array, at a depth of
~450 m. The signals arriving at each array from differ-
ent directions in the vertical plane were simultaneously
received by three directional patterns formed by the
analog method. One of the main lobes of these patterns
could be used not only in the guidance mode but also in
the scanning mode in the angular range of ±(20°–23°).
The spatial resolution in the arrival angle was ~2° at the
mean frequency of the emitted range. The measure-
ments of the angular, temporal, and correlation struc-
tures of the sound field were carried out at distances
from ~60 to ~420 km, which corresponds to the conver-
gence zones. The ocean depth in the test region was
about 5 km and remained almost invariable along the
whole propagation track up to a distance of 420 km.

The receiving ship with lowered arrays was drifting
during the experiment, so that its position varied rather
slowly. The transmitting ship passed from one point to
another along the test track, and at the necessary dis-
tances it drifted and emitted signals. The total time of
the experiment was 14 days, including the time neces-
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Fig. 1. Sound velocity profiles measured near (a) the receiv-
ing point and (b) the transmitting point during the whole
time of the experiment.
sary for passages. The depth dependences of the sound
velocity c(z) measured during the experiment at the
receiving and transmitting ships are shown in Figs. 1a
and 1b, respectively. As follows from the plots, the pro-
files c(z) do not undergo any significant changes.

The underwater sound channel axis was located at a
depth of about 900 m. During the experiments, the wind
and the surface roughness were less than Beaufort 2–3.
Therefore, the deflection of the arrays from the vertical
was less than 1° and the maximum changes in the array
depths did not exceed 1.5 m. Under such almost ideal
conditions, the cross-correlation functions and the
arrival time differences were measured for those signals
propagating over water rays, i.e., arriving without
reflections from the waveguide boundaries. Since the
experiments were carried out in convergence zones, the
signal-to-noise ratio noticeably exceed unity. There-
fore, in the experiment, most attention was given to an
estimation of the influence of the spatial resolution of
signals in the arrival angle in the vertical plane on the
aforementioned characteristics.

The normalized cross-correlation functions R(τ)
between signals received from different directions in
the vertical plane (including the case of arrays located
at different depths) were calculated within 4–5 min
(with an interval of 20 s) with a time of averaging T =
0.85 s. At this time of averaging, the error in the calcu-
lation of the coefficients R(τ) can be estimated from the

formula ξ =  [8], where ∆f is the frequency band.

For the given experimental conditions (∆f = 500 Hz and
T = 0.85 s), the error does not exceed 5%.

The maximum interval of estimated time delays was
τmax = ±50 ms with a step of 0.125 ms. The accuracy of
the determination of arrival time differences, proceed-
ing from the mean frequency of the emitted signal
(about 1 kHz) and the possible change in the sign of the
correlation peak, was no worse than 0.5 ms.

Let us consider the results of measurements of the
angular, temporal, and correlation structure of the
sound field that were carried out in the two near (the
first and second) and one far (the seventh) convergence
zones.

In the first zone (at a distance of 59.8 km), one of the
realizations of the angular structure of the sound field
recorded simultaneously at the above-mentioned
depths of reception (450 and 200 m) is shown in Fig. 2.
It exhibits a photograph of the screen of a sector scan
indicator in the range of arrival angles in the vertical
plane ±20° (for obtaining more accurate values of the
angles, the range ±20° on the screen is expanded to
~±120°). The inner scan refers to a reception depth of
450 m, and the outer one, to a depth of 200 m. The thick
radial dashes indicate the angles to which the main
lobes of the directional patterns of each of the arrays
were pointed in the course of the correlation measure-
ments. The angular width of the response of both arrays

1

∆ fT
--------------
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in each of the signal arrival directions almost corre-
sponds to that of a plane wave. This indirectly points to
a complete spatial resolution of the received signals.
The chosen signals arrived at angles α1 = –6.5° (at a
reception depth of 450 m) and α2 = –2.5° and α3 = +2°
(for the array at a depth of 200 m). The minus sign
means that the signal arrives at the array from below,
and the plus sign, from above. The signals with indi-
cated arrival angles propagated over purely water rays,
i.e., without reflections from the waveguide bound-
aries; their recorded angles were smaller than the graz-
ing angles of the rays touching the ocean surface (~10°
for a depth of 450 m and ~7.5° for a depth of 200 m).
Figure 3 (the upper plot) shows the autocorrelation
functions R1(τ), R2(τ), and R3(τ) of the signals arriving
from each of the indicated directions. The lower plot in
Fig. 3 exhibits the cross-correlation functions R1–2(τ),
R1–3(τ), and R2–3(τ) between the chosen signals (the
subscripts 1–2, 1–3, and 2–3 indicate the numbers of
the signals with the arrival angles α1 and α2, α1 and α3,
and α2 and α3, for which these functions were calcu-
lated). Since each of the autocorrelation functions
R1(τ), R2(τ), and R3(τ) has a single pronounced maxi-
mum (peak), which corresponds to the complete spatial
resolution of the` received signals, each of the cross-
correlation functions also has one pronounced peak.
Note that the form of these peaks almost coincides with
the autocorrelation function of the emitted signal. Such
a “single-path” signal reception simultaneously from
two or three directions in the vertical plane was

Fig. 2. Photograph of the screen of the sector scan indicator.
The inner scan refers to a depth of 450 m, and the outer
scan, to a depth of 200 m. The distance is 117.3 km. The
strokes indicate the directions of signal arrivals.
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recorded in a number of other cases, especially in
experiments in the first and second convergence zones.
The results of calculating the cross-correlation coeffi-
cients and fluctuations of arrival time differences of the
signals with an almost complete spatial resolution are
presented in Table 1. The first four columns of Table 1
present the following: the distance r between the points
of emission and reception and also the signal arrival
angles α1, α2, and α3 and the depths h at which the sig-
nals were received. The two right-hand columns (from
top to bottom) present the values of the cross-correlation
coefficients R1–2(τ), R1–3(τ), and R2–3(τ) averaged, as was
indicated above, over 4−5 min in 20–25 independent
measurements and the fluctuations of the arrival time dif-
ferences στ for the same time intervals. The boldface
print shows the results of the measurements described
above and presented in Figs. 2 and 3.

The analysis of the data presented in Table 1 shows
that, under an almost complete spatial resolution of the
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Fig. 3. Autocorrelation and cross-correlation functions of
signals received in the first convergence zone with an almost
complete spatial resolution of rays.
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signals in arrival angle in the vertical plane, the cross-
correlation coefficients are rather large and vary from
0.84 to 0.95, while the fluctuations of the arrival time
differences vary from 0.15 to 0.54 ms. Their values are
almost independent of both distance and reception
depth (i.e., reception at one depth or at two different
depths).

Here, it is necessary to note that similar conclusions
(about the large values of the cross-correlation coeffi-
cients and the relatively small fluctuations of signal
arrival time differences) were made for single-path sig-
nals received not only at different depths but at different
distances, i.e., recorded in different convergence zones
[9–12].

Consider now the results obtained in the cases when
the arriving signals cannot be resolved in angle even

Table 1

r, km /h, m /h, m /h, m |R| στ, ms

57.5 –11°/450 –6°/200 –7.5°/450 0.88 0.52

0.87 0.39

0.85 0.54

58.2 –6°/450 –8°/200 +3°/200 0.90 0.54

0.90 0.46

0.95 0.34

59.8 –6.5°/450 –2.5°/200 +2°/200 0.87 0.49

0.89 0.54

0.93 0.38

115.2 –10°/450 –7°/450 0.91 0.35

115.8 –6°/200 –2°/200 0.89 0.17

116.9 –7°/450 –3°/200 0.89 0.42

117.0 –8°/450 –6°/200 0°/200 0.87 0.38

0.88 0.26

0.91 0.31

117.5 –8.5°/450 –5.5°/200 –1.5°/200 0.84 0.49

0.87 0.35

0.95 0.15

118.2 –7°/200 –2°/200 0.91 0.35

118.5 +6°/200 –1.5°/200 –6°/200 0.91 0.31

0.90 0.43

0.91 0.43

119.7 +4°/200 –4°/200 0°/200 0.90 0.28

0.89 0.30

0.90 0.32

121.5 +1°/200 +8°/450 0.94 0.35

α1° α2° α3°
using systems that are highly directional in the vertical
plane. In these situations, the shape of the main lobe of
the directional pattern is distorted: it is broadened and
usually becomes asymmetric. A reliable determination
of the number of received signals is only possible from
the arrival time differences. Then, in the correlation
processing, two variants are possible: a partial or a
complete resolution of the signals in the arrival time.
Figure 4 illustrates the first variant corresponding to the
partial resolution of the received signals in the arrival
time. The upper plot exhibits three autocorrelation
functions, and the lower plot, three cross-correlation
functions of the signals received in the second conver-
gence zone at a distance of 117.3 km. The form of the
uppermost autocorrelation function corresponding to
the reception at a depth of 450 m at the angle α1 ≅ –6.6°
is close to that of the autocorrelation function of the
emitted signal. Hence, from this direction, an almost
single-path reception is realized. Two other autocorre-
lation functions for α2 ≅ –6.3° and α3 ≅ +2°, which cor-
respond to the reception at a depth of 200 m (especially
the second one for α2), have a single but broadened cor-
relation peak. Such a pattern arises when the arrival
time differences of the signals getting into the main
lobe of the directional pattern of the array are smaller
than the correlation interval. Naturally, the peaks of the
cross-correlation functions R1−2(τ), R1–3(τ), and R2–3(τ)
(especially where the second signal with the arrival
angle α2 is present) become asymmetric and differ in
shape from one another.

The second variant arising under the correlation pro-
cessing of signals that cannot be resolved in angle rep-
resents an almost complete resolution of the signals in
their arrival times.

Figure 5 exhibits the autocorrelation functions (the
upper plot) and the cross-correlation functions (the
lower plot) of the multipath signals recorded in the sev-
enth convergence zone at a distance of 416 km. It illus-
trates the two possible variants of the correlation deter-
mination of the number of the received signals with
both incomplete and complete resolution of the signals
in arrival times. The correlation function R1(τ) refers to
the signal reception at a depth of 450 m from the direc-
tion α1 = –8°; the other functions R2(τ) and R3(τ) refer
to the signal reception at a depth of 200 m with the
angles α2 = –4° and α3 = –1°. From the number of cor-
relation peaks and their positions, it follows that, in the
first case (R1(τ)), the signals arrived over four rays,
three of which are well-resolved but the fourth of which
is combined with the third; in the second case (R2(τ)),
the signals arrived over three rays, two of which were
poorly resolved in time (broad maxima); in the third
case (R3(τ)), the signals arrived over two rays with a
good resolution in time. In the cross-correlation func-
tions R1–2(τ), R1–3(τ), and R2–3(τ), one can see several
correlation maxima. However, they are clearly pro-
nounced only in R1–3(τ), where four correlation peaks
point to the arrival of no less than four signals. In two
other plots (R1–2(τ) and R2–3(τ)), both complete and par-
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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tial resolutions of signals in the arrival time are
observed. Thus, Fig. 5 allows one to state that each
main lobe of the directional pattern received multipath
signals arriving over two to four rays. Because their
intensities were almost equal, the corresponding corre-
lation peaks characterizing the energy of the received
signals also proved to be practically equal. One can see
that, in the case of the multipath reception, a noticeable
decrease in the correlation coefficients is observed as
compared to the single-path reception. This is related to
the fact that the same signals arriving with slightly dif-
ferent times lead to a reduction of each separate peak,
because they represent a kind of noise in the correlation
processing. Such a singular noise is usually called sig-
nal-induced noise. That is why, in this case, the maxi-
mum values of the correlation coefficients did not
exceed 0.5.

Table 2 presents the results of measurements of the
cross-correlation functions for the case of the multipath
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Fig. 4. Autocorrelation and cross-correlation functions of
signals received in the second convergence zone with an
incomplete spatial resolution of rays.
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reception in the first and second convergence zones,
and Table 3 presents the results for the seventh conver-
gence zone. The first three columns of these tables
present the distance r between the points of emission
and reception, the signal arrival angles α1 and α2, and
the depths h at which the signals were received. The
second-to-last column of each of these tables presents
the magnitudes of the highest correlation maxima |R|max
(the upper numbers) and of the secondary peaks (the
lower numbers). The last column presents the rms fluc-
tuations of the arrival time differences στ. The results of
measurements that were described above and were pre-
sented in Figs. 4 and 5 are shown in boldface.

The data obtained in the Canary region of the Atlan-
tic ocean and presented in this paper confirm the previ-
ous conclusions [9–12] that the fluctuations of the
arrival time differences of signals, even including the
measurement errors, almost coincide with the theoreti-
cal estimates [13], which relate them to the effect of
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Table 2

r, km /h, m /h, m /R/max
/R/ στ, ms r, km /h, m /h, m /R/max

/R/ στ, ms

60.2 +7°/200 +2°/200 0.83 0.36 117.0 –9°/450 –6°/200 0.64 0.31

0.42 0.23 0.52 0.31

60.2 +2°/200 –2°/200 0.84 0.28 117.0 –8°/450 –1°/200 0.79 0.49

0.47 0.36 0.30 0.44

66.6 +7.5°/200 +7°/450 0.74 0.24 117.3 –6.6°/450 +2°/200 0.87 0.38

0.32 0.56 117.3 –6.6°/450 –6.3°/200 0.79 0.32

0.47 0.51 0.44 0.43

68.5 +7°/450 +3°/450 0.79 0.41 117.3 –6.3°/200 +2°/200 0.81 0.37

0.26 0.96 0.46 0.32

69.0 +11°/450 +7°/450 0.68 0.26 120.5 +6°/450 –7°/200 0.79 0.27

0.62 0.38 0.31 0.46

0.53 0.38 120.9 +6°/200 –6°/200 0.66 0.49

69.0 –11°/450 +7°/450 0.53 0.59 0.46 0.42

0.47 0.50 120.9 –6°/200 +2.5°/200 0.64 0.50

115.2 –7.5°/450 –1°/200 0.57 0.27 0.45 0.36

0.34 0.26 122.5 +2°/200 –0.5°/200 0.77 0.35

0.32 0.29 0.40 0.62

115.2 –8°/450 –2°/200 0.66 0.34 122.8 –10.5°/450 +7.5°/450 0.50 0.69

0.51 0.50 0.33 0.26

115.5 –5°/200 0°/200 0.66 0.23 123.4 +11°/450 +8.5°/450 0.56 0.27

0.32 0.33 0.40 0.24

116.5 –7.5°/450 –5.5°/200 0.72 0.49 130.2 +10°/450 –10°/450 0.45 0.71

0.60 0.50 0.37 0.62

116.5 –7°/200 –2°/200 0.66 0.50 132.4 +10°/450 –10°/450 0.46 0.56

0.55 0.13 0.34 0.70

116.7 –7°/200 –3°/200 0.66 0.22 132.6 +10°/450 –7°/200 0.60 0.24

0.40 0.12 0.40 0.58

α1° α2° α1° α2°
inhomogeneities of the water column. The cross-corre-
lation coefficients of the signals received by highly
directional arrays at different depths separated by sev-
eral hundreds of meters (the maximum separation of
highly directional arrays in the experiments in other
regions of the ocean reached 1200 m) can be rather
large, especially at a good angular resolution of rays in
the vertical plane (in the case under study, in the first
and second convergence zones they may be up to 0.95).
Thus, the vertical correlation interval can reach hun-
dreds or even thousands of sound wavelengths. Such
conclusions noticeably differ from those made on the
basis of experiments carried out in a deep ocean with
the use of omnidirectional hydrophones (see, e.g.,
[14]). These experiments showed that the vertical and
horizontal correlation intervals are within approxi-
mately 10λ and 100λ (λ is the sound wavelength).
However, in fact, such relatively small correlation inter-
vals are not related to variations in the structure of indi-
vidual signals propagating over different rays but rather
are caused by the multipath propagation conditions in
the waveguide. The latter phenomenon considerably
reduces the cross correlation of signals at a spatial sep-
aration of the points of reception. Therefore, the key
factor reducing the correlation coefficient between sig-
nals received by the arrays is the poor resolution of
rays.

Thus, the results of the experiments with highly
directional arrays (~2°) in the vertical plane, which
were carried out in various regions of the ocean [9–12]
at different distances and depths, showed that the main
origin of the decorrelation of signals is the incomplete
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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resolution of multipath signals in arrival angle in the
vertical plane. Therefore, for signals propagating with-
out reflection from the waveguide boundaries, after the
elimination of the multipath propagation feature, the
intervals of spatial correlation almost reach the

Table 3

r, km /h, m /h, m |R|max
|R| στ, ms

415.8 –3.5°/200 +1.5°/200 0.62 0.39

0.43 0.45

415.9 –8°/450 –5°/200 0.68 0.33

0.27 0.21

415.9 –5°/200 0°/200 0.59 0.68

0.49 0.27

415.95 +2°/200 –5°/200 0.63 0.21

0.39 0.25

415.95 +2°/200 –2°/200 0.59 0.31

0.47 0.38

415.95 –5°/200 –2°/200 0.72 0.16

0.51 0.0

416.0 –8°/450 –4°/200 0.53 0.25

0.39 0.22

0.31 0.30

0.26 0.25

416.0 –8°/450 –1°/200 0.39 0.32

0.35 0.40

0.27 0.46

0.24 0.48

416.0 –4°/200 –1°/200 0.51 0.51

0.30 0.45

0.26 0.38

α1° α2°
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waveguide thickness in the vertical and exceed tens and
hundreds of kilometers in the horizontal direction.
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Abstract—Potentialities of the pulsed acoustic forward-scattering location with the use of time separation of
the intense direct and weak scattered signals propagating at a small angle to one another are considered. Two
types of interference are taken into account: nonstationary observation conditions under the effect of currents,
which affect the arrival times of the direct and scattered signals, and nonstationary reverberation. It is shown
that, in the presence of these interferences, the application of the correlation transformation equivalent to the
time reversal of waves has an advantage over the conventional location technique based on the determination
of the signal travel times. © 2005 Pleiades Publishing, Inc.
A problem of the detection of objects by their scat-
tered radiation is considered in a series of publications
[1–6]. In [1], from a full-scale experiment, the mini-
mum target strength of a scatterer that can be separated
from the direct signal by a multielement array at contin-
uous radiation is determined. In [2, 3], the same prob-
lem is solved using the frequency shift that occurs in the
scattered signal because of the scatterer motion. In [4],
a method for constructing images of scatterers moving
under a layer of inhomogeneities is proposed. In [5, 6],
a pulsed location regime is considered. In [5], the spec-
trum of a pulsed signal is smoothed out with an exten-
sion of the effective frequency band to achieve the time
separation of the direct and scattered signals. In [6], the
problem of detecting the scatterers and determining
their coordinates by scanning multi-element transmit-
ting and receiving arrays under stationary conditions
and in free space is solved. In [6], the signal processing
used for the detection of scatterers and determination of
their coordinates includes the time reversal of waves [7,
8]. The time reversal of waves allows one to eliminate
the effect of inhomogeneities of the medium on the
result of spatial focusing in it when the medium con-
tains random inhomogeneities. However, in spite of the
statement formulated in [6], nothing is known about the
possibility of a noise-resistant observation of scattered
signals with the use of the time reversal of waves. It is
also unclear how one should apply the time reversal of
waves to obtain a noise-resistant selection of scattered
signals and what should be the results of this procedure.
The authors of [6] concentrate on the spatial resolution
of the method, which proves to be very high under the
conditions of a stationary problem, a homogeneous
medium, and the complete absence of noise and inter-
ference. The aim of the present paper is an investigation
of the efficiency of the time reversal of waves [7, 8] for
the selection of a weak scatterer under the combined
action of two most widespread types of interference.
1063-7710/05/5104- $26.00 0404
First of all, these are the temporal variability of the
wave propagation velocity and the nonstationary rever-
beration.

The time-reversed acoustics consists of the time
reversal of a received pulses signal with a subsequent
backward transmission of the reversed signal through
the same medium. The result of the time reversal of
waves [7, 8] can be represented as the convolution of
the input signal with the correlation function of two
responses of the medium, one of which is the response
to the short pulse propagating in the forward direction
and the other of which is the response to the same pulse
propagating in the backward direction. A successful
realization of this transformation requires retaining all
parameters of the test medium during the whole exper-
iment, including the forward and backward wave prop-
agation. This is necessary for the corresponding signals
to correlate with one another.

The time reversal of waves provides the spatial
focusing of a reversed wave, which requires the propa-
gation of the time-reversed signal in the backward
direction. However, for the purpose of selecting the
scattered signals, spatial focusing is not necessary: it is
sufficient to receive the reversed wave at the point
where it was initially emitted. In this case, the result of
the time reversal can be obtained on the basis of one-
way propagation of a wave from the transmission point
to the point of reception, since, in this case, the cross-
correlation function is reduced to the autocorrelation
function. The autocorrelation function of the response
to the input signal can be obtained on the basis of a one-
way run of the wave. The resulting mathematical
expression slightly differs (without any fundamental
consequences) from the expression for the reversed
wave received at the point of emission. In return, the
requirement for the stationary state is completely
removed, which is important for acoustics of liquid and
© 2005 Pleiades Publishing, Inc.
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gaseous media. This is the main idea of achieving the
noise immunity of the reversal of waves with respect to
nonstationary conditions.

To illustrate the methods of calculations and their
results, let us consider a specific example. The layout of
the experiment is shown in Fig. 1. The pulsed signal is
emitted from the point A (Fig. 1). This signal is received
at the point B. The scatterer to be detected is at the
point O. The delay time of the scattered signal with
respect to the direct signal is also necessary to deter-
mine its target strength. The geometric difference ∆R in
the path length between the direct and scattered signals
can be estimated by the formula

(1)

where a is the minimum distance between the point O
and line AB (Fig. 1) and R is the length of the line AB.
Formula (1) is valid for large distances R compared to ‡
and for the position of point O relatively far from the
end points of the interval AB. The pulse duration ∆t is
assumed to be sufficiently small for the direct and scat-
tered signals to be separated in arrival time. For this
purpose, it is necessary that

(2)

where c is the wave propagation velocity.
Since our aim is to study the noise immunity of the

time reversal of waves, it is sufficient to consider the
simplest situation, shown in Fig. 1. In the general case,
the number of scatterers can be more than one, as in [6].
The spectrum of the signal received at the point B has
the form

(3)

Here, ω is the frequency, F(ω) is the spectrum of the
emitted pulse, and z(ω) is the frequency characteristic
of the wave propagation channel between points A and B.
The frequency characteristic is the response of the
channel to the transmission of the shortest possible
pulse of unit area (a δ pulse). For realizing the time
reversal of a wave, one needs to emit, from the point of
reception, a signal reversed in time. The spectrum of
such a signal is the complex conjugate of spectrum (3).
In this case, the spectrum of the signal received at the
point of emission will be [8]

(4)

To realize the procedure that leads to obtaining the
signal spectrum described by Eq. (4), two sequential
steps are necessary [7]: the first is to obtain spectrum (3),
and second, to emit the time-reversed signal into the
same medium. Under nonstationary conditions, this is
impossible, since the medium varies. However, we can
use the response that is already formed at the point B as
a result of the arrival of the pulse sent from the point A
for obtaining the spectrum of the following signal:

(5)

∆R a2/R,=

∆t ∆R/c,<

GB ω( ) F ω( )z ω( ).=

GA ω( ) F* ω( )z* ω( )z ω( ).=

K ω( ) GB* ω( )GB ω( ) F* ω( )z* ω( )F ω( )z ω( ).= =
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Let us compare formulas (4) and (5). They differ by
a factor that is equal to the spectrum of the emitted sig-
nal. This difference is insignificant for our purpose.
Therefore, we assume that transformation (5), which
will be used for noise-resistant separation of scatterers,
represents the spectrum of the result of the time reversal
of waves.

Now, we use a numerical example to show that
transformation (5) possesses an enhanced noise immu-
nity as compared to the separation of a scattered signal
by the conventional location technique. First of all, we
show that formula (5) is sufficient for separating the
scattered signal. The spectrum of the signal received at
the point B is the sum of the direct signal and the scat-
tered one, which has the form of the direct signal
delayed for the time determined by Eq. (3):

(6)

Here, k is the attenuation coefficient of the scattered
signal with respect to the direct signal, which is deter-
mined by the target strength of the scatterer. In general,
k is a function of ω. For simplicity, we first assume that
k does not depend on ω. This is possible because the
dependence of k on ω does not affect the noise immu-
nity of interest. After considering the noise immunity of
transformation (5), we will return to the problem of the
dependence of k on ω. The common factor determining
the decay of the direct and scattered signals along the
path between A and B is omitted. Substituting Eq. (6)
into Eq. (5), we obtain

(7)

The problem under consideration is of most interest
for weak scatterers, for which the square modulus of k
is small compared to unity and, therefore, can be
neglected. In this approximation, Eq. (7) is generalized
to the sum of a series of scatterers while retaining their
additivity. As is seen from Eq. (7), transformation (5) is
equivalent to the time reversal of waves and contains
terms with information on both the magnitude of the
scattered signal with respect to the direct signal and the
value of the delay of the signal. These terms are delayed
with respect to the maximum of the direct signal for the
time given by Eq. (3). Therefore, condition (2) is quite
sufficient for these terms to be separated and measured.

Figures 2a and 2b show the oscillogram of the initial
pulse and its autocorrelation function, respectively.
Using these oscillograms, one can clearly demonstrate
the difference between Eqs. (4) and (5). In both cases,
the respective oscillograms exhibit pulses repeated at

GB ω( ) F ω( ) kF ω( ) iω∆t( ).exp+=

K ω( ) F* ω( )F ω( ) 1 kk*+( )=

+ F* ω( )F ω( ) k iω∆t( )exp k* iω∆t–( )exp+{ } .

A B
O

Fig. 1. Experiment layout used in the calculations. The
source, receiver, and scatterer are positioned at the points A,
B, and O, respectively.
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Fig. 4. Locator response as a function of time (vertical) and delay (horizontal) (a) for the conventional locator and (b) for the cor-
relation locator realizing the signal processing according to Eq. (5) at a random variation of the signal travel time.
an interval ∆t, but the shape of these pulses is different.
Formula (4) corresponds to the pulse shown in Fig. 2a,
while formula (5), to the pulse shown in Fig. 2b. Fig-
ure 3 shows the levels of the signals received without
interference with the use of conventional location
(Fig. 3a) and with the use of correlation transforma-
tion (5) (Fig. 3b). From these plots, it follows that both
methods allow one to detect the presence of the scat-
tered signal (or signals) and to determine its (their)
relative magnitude with respect to the direct signal (in
the given case, –20 dB), as well as the relative delay
(eight units of distance). However, the patterns shown
in Figs. 3a and 3b have different sensitivities to varia-
tions of such a significant parameter of the problem as
the total delay of the direct and scattered signals.
Indeed, if we change the total delay, this will be evi-
dent only in Fig. 3a, while Fig. 3b will remain
unchanged. This is the basis for the higher noise immu-
nity of correlation transformation (5) compared to the
conventional location technique.

Let us consider a specific example. First, we intro-
duce interference that is only detected by the conven-
tional location. Assume that, under the effect of cur-
rents moving the eddies and temperature inhomogene-
ities of the medium, the total delay time varies with
time. The pattern corresponding to a set of 16 instants
is shown for the conventional location in Fig. 4a. In this
pattern, both direct and scattered signals are clearly vis-
ible, and they perform the common motion in accor-
dance with the variation of the total delay with time.
The pattern corresponding to the same instants and pro-
cessed by correlation method (5) is shown in Fig. 4b.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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This pattern exhibits a perfect stability, which we must
use to gain the advantage in noise immunity. To this
end, we add one more type of interference, namely, a
time-dependent reverberation in the form of a set of
extraneous scatterers. Each scatterer has a very small
target strength. However, the number of scatterers is so
great that their combined effect is noticeable. Reverber-
ation is a spatial analog of shot noise in electronics.
Because of the random character of the summation, the
resulting maxima vary in both magnitude and position
in space in a random manner [9]. We use this property
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Fig. 5. (a) Delays and (b) amplitudes of signals scattered by
scatterers for two (of 16) instants of time. The values corre-
sponding to one instant are represented by crosses, and the
values corresponding to the other instant, by circles.
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of reverberation (the random positions and magnitudes
of the local maxima) as the basis for the mathematical
modeling of reverberation. Examples of such scatterers
observed in the experiments on surface reverberation
are presented in [10, 11]. From examples presented
there, it follows that, in spite of the very large number
of initial scatterers, only a few maxima create an actual
interference for the location. This fact was taken into
account in modeling.

Using random sequences generated by a computer,
tables of random numbers were formed that deter-
mined the position (the delay with respect to the direct
signal) and the amplitude of 12 scatterers for each of
16 instants of time. Figure 5a shows the positions of the
scatterers at two instants of time, and Fig. 5b shows
their amplitudes. The plot in Fig. 5a shows the path dif-
ferences between the direct and scattered signals. These
path differences were calculated from formula (1) on
the basis of random numbers taken from the tables, which
characterize the positions of the scatterers. To model the
reverberation interference, we used two sets of scatterers
that differ in amplitude by a factor of three (10 dB).

The results of adding the reverberation interference
are shown in Fig. 6. From this figure, one can see the
noise immunity of correlation transformation (5) in
comparison with the conventional location. While in
Fig. 6a1, under a relatively weak reverberation, the
delayed signal is still visible, in Fig. 6a2, under an
enhanced reverberation, this signal is not visible at all.
At the same time, in Fig. 6b1 and even in Fig. 6b2, the
delayed signal is evident. As the reverberation level
increases, the delayed signal rapidly (within several deci-
bels) disappears from these patterns as well. In Fig. 6b1,
the reverberation signal in most cases is still lower than
the amplitude of the delayed signal distorted by the
superposition of reverberation. In Fig. 6b2, the rever-
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Fig. 6. Locator response as a function of time (vertical) and delay (horizontal) (a) for the conventional locator and (b) for the cor-
relation locator realizing signal processing according to Eq. (5) at a random variation of the signal travel time with two levels of
reverberation: (1) a low reverberation level and (2) a 10-dB-higher reverberation level.
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Fig. 7. Logarithm of the positive value of the locator response as a function of time (horizontal) and delay (depth) for the correlation
locator realizing the signal processing according to Eq. (5) at a random variation of the signal travel time with two levels of rever-
beration: (a) a low reverberation level and (b) a 10-dB-higher reverberation level.
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the vertical, and time is plotted along the horizontal.
beration signal (in most pulses) is comparable to or
even exceeds the amplitude of the scattered signal. This
is evident from Fig. 7, where the data from 6b1 and 6b2
are represented on the amplitude scale. In spite of the
fact that the desired signal in Fig. 6b2 does not exceed
the reverberation, it is clearly distinguished in this fig-
ure due to the effect of accumulation. The possibility of
accumulation is provided by the stability of the desired
signal position, which is a result of correlation process-
ing (5).

The stability of the position of the desired signal in
time gives an advantage in adding signals in time (a
temporal accumulation). The result of the temporal
accumulation is shown in Fig 8. From this figure, one
can see that the cumulative signal exceeds the reverber-
ation signal in all cases.

The specific value of the attainable noise immunity
due to the time reversal of waves is determined by many
factors, which are not discussed in this paper. For us,
the important and sufficient result is the possibility to
obtain additional noise immunity upon the reversal of
waves.
Now let us return to the dependence of the coeffi-
cient k on ω. To determine the dependence of k on ω,
one should use a short pulse with a high-frequency car-
rier, similar to the pulse used in [6]. Such a pulse can be
formed so as to localize its spectrum in a very narrow
frequency band, where the coefficient k can be consid-
ered as constant within the pulse spectrum. To obtain
the frequency dependence, one has to change the fre-
quency of the pulse carrier and repeat the measure-
ments.
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Abstract—A cross-spectral method for determining the longitudinal velocity of sound in the tissues of a human
chest in vivo is proposed and substantiated. The method is based on the detection of a percussion stroke by two
acoustic sensors positioned over opposite parts of a lung. Statistical estimates are obtained for the longitudinal
velocity of sound in chest tissues (the middle part of the right lung) from a group of three men (40–47 years
old) without any evident lung disorders in the frequency ranges of 80–130, 170–290, and 350–500 Hz. The ade-
quacy of the double-resonance acoustic model of the human respiratory tract, which combines the resonance of
the air volume in the human chest and the wave resonances of the bronchial tree as a narrow pipe, is experimen-
tally verified. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Despite exhaustive studies, the acoustic properties
of the human respiratory system are still insufficiently
investigated [1–3]. One of the acoustic parameters of
practical importance [4] is the average velocity of lon-
gitudinal sound waves in the tissues of the human chest.
This quantity is mainly determined by the sound veloc-
ity in the lung parenchyma, which is a complex three-
phase medium (air, fluid, and tissue) [5]. The order of
magnitude of this quantity estimated in full-scale
experiments in vitro (for example, [6, 7]) agrees well
with theoretical data [8, 5] and constitutes 5–70 m/s.
However, other elements affecting sound generation
and the velocity of perturbation propagation (the bron-
chial tree and the chest wall) are also present in the
human chest in addition to the parenchyma. The esti-
mates of the sound velocity value for the propagation
along the respiratory system, i.e., from the trachea to
the chest wall, are rather contradictory: for example,
30 [9] and 280 m/s [10]. Moreover, the value of the
sound velocity in the human chest may widely vary
depending on the part of the chest and on the specific
individual, not to mention its dependence on the fre-
quency range under investigation [11]. The purpose of
this work is to study experimentally the distinctive fea-
tures of the propagation of sound oscillations in a human
chest in vivo.

ACOUSTIC MODEL

The respiratory system is a narrow branching air-
filled pipe surrounded by lung tissue with an acoustic
impedance greater than that of the air. The volume of
air in the respiratory parts of a lung, i.e., in the acinuses,
1063-7710/05/5104- $26.00 0410
which are the totality of branching terminal bronchi-
oles, together with the chest wall, form the so-called
acoustic resonance circuit [12]. This acoustic system
should be characterized by two fundamental reso-
nances.

The frequency of the first of them (the resonance of
the acoustic resonance circuit), according to the model
of the resonance lid of a pipe [13], can be approxi-
mately represented in the form

farc ≈ (K/m)0.5/2π, (1)

where K = ρ0 /h is the stiffness; ρ0 is the density of
air; c0 is the sound velocity in the air; h is the thickness
of the air layer of the parenchyma, which on the aver-
age is about 5 mm, according to morphometric data
[14]; m = ρWlW is the surface density of the mass of the
chest wall; ρW ≈ 2000 kg/m3 is the average density of
the chest wall tissues [4]; and lW is the thickness of the
chest wall, which is equal to 1–2 cm. With these data, the
values of the fundamental frequency given by Eq. (1)
have an order of magnitude of 110–150 Hz, which is
close to the results of [12]. Since the resonance of a
vibrating system does not depend on the application
point of the driving action, the adequacy of the values
obtained for the frequencies of the acoustic resonance
circuit is confirmed by observations [15]: it was found
that, in the case of a finger stroke (percussion) on the
chest wall, “the fundamental frequencies of the per-
cussion tone over healthy parts of lungs are about
100–130 Hz.”

On the other hand, the whole bronchial tree as a sys-
tem of narrow acoustic pipes is characterized by a
series of wave resonances. Since, for the frequencies

c0
2

© 2005 Pleiades Publishing, Inc.
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f > farc, the impedance of the acoustic resonance circuit
has a mass character and 2πfm/ρ0c0 @ 1, a quarter-wave-
length series must be observed (if the patient breathes
with an open mouth, one end of the pipe is open) in full
accordance with the results of [16]. The sound velocity
in the air ducts of the bronchial tree differs little from
the sound velocity in the air [10], and the length of a
bronchial tree branch, from the larynx to the chest wall,
can be 23–38 cm for adults [14]. Then, the first fre-
quency of the indicated series (the frequency of the
quarter-wavelength resonance), under the assumption
that the pipe walls are acoustically stiff, must be on the
order of 215–350 Hz. Note that this resonance can also
be lower in frequency because of a finite compliance of
the walls. A standing wave can be excited at these fre-
quencies. The maximum amplitude of sound pressure
for this wave should occur at the closed end of the pipe.
However, the increase in the total cross section of the
pipe with decreasing distance to the chest wall leads to
a situation wherein the maximum amplitudes of sound
pressure are reached near the large bronchi and the
intra-chest part of the trachea [17, 18].

METHOD AND MATERIALS

To estimate the average sound velocity in the chest
tissues, we propose the following procedure (Fig. 1).
Two identical (1, 2) acoustic sensors (MKE-3 micro-
phones provided with stethoscopic heads with a diame-
ter of 20 mm and a conical cavity height of 10 mm) are
positioned over the opposite parts of the right lung (the
left lung was not used to exclude the influence of the
heart on the results of measurements). The source of
sound was a percussion stroke, which was applied near
sensor 1 according to the traditional technique by an
experienced doctor. The responses of the microphones
were recorded by a measuring tape recorder and, after
amplification and filtration within the frequency band
50–1500 Hz, were fed to an A/D converter (12 bit) and
subjected to digital auto- and cross-spectral processing
using a personal computer. The FFT procedure with the
discretization rate of 6024 Hz was used (samples with
a length of 512 readings, number of spectral readings of
256, weighting by the Hamming window, and averag-
ing over 4–8 samples with a 75% overlap). The phase

1

3

2

Fig. 1. Scheme of the experiment: (1, 2) acoustic sensors
and (3) the region of application of the percussion stroke.
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inaccuracy between the two channels of the measuring
system did not exceed 10%.

The method of the sound velocity determination is
based on the following considerations. It was assumed
that the percussion stroke excites the resonance vibra-
tions of the parenchyma part (the acoustic resonance
circuit mechanism), which represents the source of a
spherical wave propagating over the chest tissues. In
this case, the experimental scheme and the design of the
acoustic sensors provide an opportunity to separate the
longitudinal sound waves. It is evident that, for a point
source of radiation in a homogeneous medium, the
phase cross spectrum of the sensors must have the fre-
quency ranges where the phase shift varies according to
a linear law. If we select the frequencies f1 and f2
within this linear part, the difference between the
phase shifts ∆ϕ can be obtained in the form

(2)

where L is the distance between the two acoustic sensors
and cav is the average sound velocity in the medium.
Since the quantities ϕ2, ϕ1, f2, f1, and L in Eq. (2) can be
determined experimentally, the desired value of cav is

(3)

The studies were carried out with three volunteers
(three men 40–47 years old without evident lung disor-
ders). Four experiments were conducted with each
patient (in the middle part of the right lung). The values
obtained were averaged in three frequency ranges over
the ensemble of the values of cav.

RESULTS AND DISCUSSION

From the analysis of the phase parameters of the
cross spectra (for example, Fig. 2), it follows that the
probe and received signals contain frequency bands
within which the phase shift varies according to a law
that is close to linear, which testifies to the regularity of

∆ϕ ϕ 2 ϕ1– 2π f 2 f 1–( )L/cav,= =

cav 2π f 2 f 1–( )L/ ϕ2 ϕ1–( ).=

0
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Fig. 2. Cross spectrum of the response of acoustic sensors
to the percussion stroke.
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radiation from a small region of the chest. The values of
the frequencies f1 and f2 were selected at the boundaries
of this region (to increase the accuracy of linear approx-
imation), and the values of cav were calculated by Eq. (3).
In particular, the results obtained for the case shown in
Fig. 2 are given in Table 1. These values are certainly
approximate estimates because of the nonstationary
character of the percussion probe signal itself, the com-
plexity of the chest structure, and the errors connected
with the approximation of the actual phase characteris-
tic by a linear dependence. However, despite the indi-
cated inaccuracies, the value of cav is determined in vivo
and, due to the simplicity and availability of the proce-
dure, can be averaged over large groups of patients and
even over certain regions of the chest for uniform
groups of patients.

Table 1.  Velocity of longitudinal sound waves in the chest
tissues (patient T., the middle part of the right lung)

f1, Hz f2, Hz ϕ1, deg ϕ2, deg cav, m/s

82.4 117.7 –78.6 –157.8 32

176.5 223.6 –6.6 +155.2 20.1

235.3 294.1 –80.5 +151.1 18.2

341 411 –79.8 +170 20

423 517 –141 +136 24.5

Table 2.  Averaged estimates of the velocity of longitudinal
sound waves in human chest tissues: M (Q25, Q75)

Frequency
range, Hz cav, m/s Number of

measurements

80–130 36.8 (23.1; 46.6) 8

170–290 31.6 (20.1; 37) 10

350–500 52.3 (24.5; 56) 9
As a preliminary estimate, we obtained the average
values for the group of three persons under study. Some
of the measurements (up to 30%) were discarded
because of the strong irregularity of the phase spec-
trum. The results of all other measurements were aver-
aged over the three frequency ranges that were present
for all patients (80–130, 170–290, and 350–500 Hz).
These results are given in Table 2 in the form of a mean
value (M) and quartiles (Q25 and Q75), since the distri-
bution of variants turned out to be different from the
normal distribution (the Shapiro–Vilk test). From Table
2 it follows that the values of cav are sufficiently close
to the values obtained in vitro for the lung parenchyma
[6, 7]. One can also observe, although it is statistically
insignificant (the Mann–Whitney test), a frequency
dependence of cav with a minimum in the frequency
range of 170–290 Hz.

Now, let us consider in more detail the effects con-
nected with the excitation of a probe signal by a percus-
sion stroke. The high-frequency components of a per-
cussion stroke would not be detected on the opposite
side of the chest without the excitation of natural reso-
nance vibrations of the chest elements by the same
stroke. Indeed, we assumed that a percussion stroke
locally excites the resonance of an acoustic resonance
circuit. Thus, the presence of the part of the phase char-
acteristic of the cross spectrum (Fig. 2) that is close to
linear in the range of 100–150 Hz was presumed. How-
ever, apart from the range of 82–118 Hz, which fits into
the model under consideration, linear phase regions are
present in the ranges of 176–294 and 341–506 Hz in
Fig. 2. What is their origin?

To clarify the nature of this effect, let us turn to Fig. 3,
which presents an autospectrum for the response of the
microphone (part of the record that directly follows the
stroke) located near the point of application of the per-
cussion stroke (the same realization as in Fig. 2). It is
characterized by pronounced spectral peaks in the
0

28

–2
1500

Frequency, Hz

Power spectrum, dB

Fig. 3. Spectrum of the response of the nearest acoustic sensor to the percussion stroke.
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regions of 100, 200–250, and 400 Hz and weaker peaks
in the regions of 750, 900, and 1150 Hz. It is necessary
to note that, according to the above acoustic model, the
frequency value of 200–250 Hz is characteristic of the
quarter-wavelength resonance of the bronchial tree as a
narrow pipe. Therefore, the percussion stroke excites
this resonance mechanism as well. A peak at the fre-
quency of 450 Hz can be connected with the half-wave-
length resonance of the bronchial tree as a narrow pipe.
Its appearance is possible because of the complex fre-
quency-dependent character of the impedance of the
pipe “lids” at frequencies above 300 Hz or because of
the breath arrest by the patient during percussion. In the
latter case, the respiratory tract gets closed, which may
lead to the appearance of the second rigid lid on the
pipe. In this case, the higher-frequency spectral peaks
(750, 1150, and 950 Hz) most probably characterize the
next modes of the quarter- and half-wavelength series
of natural frequencies for the pipe under consideration,
respectively. The natural vibrations of the air column
that are excited in the bronchial tree pipe are the source
of a cylindrical wave propagating in the chest tissues on
account of the transformation of a part of the standing
wave energy into fluctuations of the lateral wall of the
pipe, according to [16, 17]. Since the regions of the
maximum amplitudes of the standing wave are located
at different levels of the bronchial tree (the quarter-
wavelength region is located in the area of the primary
bronchi [17], and the half-wavelength region is closer
to the chest wall), the propagation path length over the
lung tissues for the sound waves in these frequency
ranges considerably varies. Analogous considerations
can be found in [11, 19]. Thus, it is possible that the
observed minimum of cav (Table 2) is connected not
only with the dispersion of the longitudinal sound
velocity in the tissue of the lung parenchyma but also
with the variation of the propagation path length along
the parenchyma. The propagation through the air chan-
nels presumably does not noticeably influence this
effect, because the corresponding sound velocity is
about an order of magnitude higher than the sound
velocity in the parenchyma.

It is necessary to note that spectral peaks similar to
those shown in Fig. 3 are observed for all patients, but the
ratios of their amplitudes are different. Since, as follows
from the above discussion, a percussion stroke excites
the whole set of resonance frequencies (modes) of the
respiratory system, one can expect that it is also possible
to judge the functional state of the lungs according to the
ratio of the amplitudes of spectral peaks.

CONCLUSIONS

A cross-spectral method for determining the longi-
tudinal sound velocity in human chest tissues in vivo is
proposed and substantiated. The method is based on the
detection of a percussion stroke by a pair of acoustic
sensors positioned over the opposite parts of a lung.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
Estimates of the average values (quartiles) of the
longitudinal sound velocity in the chest tissues are
obtained in vivo: 36.8 (23.1, 46.6) m/s for the frequency
range of 80–130 Hz; 31.6 (20.1, 37) m/s for the fre-
quency range of 170–290 Hz; and 52.3 (24.5, 56) m/s
for the frequency range of 350–500 Hz.

The adequacy of the two-resonance acoustic model
of the human respiratory tract, which combines the res-
onance of the acoustic resonance circuit [12] and the
wave resonances of the bronchial tree as a narrow pipe
[16], is experimentally verified.
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Abstract—The wall pressure fluctuations in turbulent boundary layers play an important role in acoustic mea-
surements carried out in moving media. Results of measuring the frequency spectra of wall pressure fluctua-
tions around a surfacing device are presented. The spatial resolution achieved in measuring the wall pressure
fluctuations is investigated. It is demonstrated that the results of hydrodynamic flow noise measurements
strongly depend on the aperture size of the measuring acoustic transducer and its orientation in the turbulent
boundary layer. The pseudosound pressure fluctuation spectra observed in a series of experiments with surfac-
ing devices show that the resolution of the pressure receivers operating in the turbulent boundary layers consid-
erably varies. On the basis of systematic measurements of wall pressure fluctuations by miniature and distrib-
uted receivers at high Reynolds numbers, the effect of the geometric dimensions of a pressure receiver on its
resolution in the flow noise measurements is studied. An experimental method is proposed for estimating the
receiver-induced distortions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The frequency spectrum of pressure fluctuations in
a turbulent boundary layer is one of the most important
statistical characteristics of the wall pressure field [4].
The measurements of the wall pressure spectra remain
of interest to researchers. The frequency spectrum of
pressure is used in calculating the hydrodynamic flow
noise, and the information on the energy spectrum of
pressure is necessary for solving practical problems in
aeroacoustics [9, 10]. Within the last forty years,
numerous measurements of the frequency spectra of
pressure fluctuations have been carried out under dif-
ferent conditions. The data obtained from these studies
are most fully presented in [1–14].

The main difficulty in recording the frequency spec-
tra of wall pressure fluctuations in a turbulent boundary
layer is associated with the poor spatial resolution that
is characteristic of pressure receivers with apertures of
finite wave size. Attempts to reveal the influence of a
distributed receiver on the results of measuring the wall
pressure fluctuations were reported in many publica-
tions.

The importance of this problem is determined by the
fact that the distorting effect of the receiver hinders the
generalization of experimental data: a comparison
between the results of wall pressure measurements per-
formed with different measuring systems is virtually
impossible. The spectra of pressure fluctuations
obtained in different laboratories considerably diverge
in the high-frequency region. It is commonly believed
1063-7710/05/5104- $26.00 0414
that this result is a consequence of the averaging effect
associated with the geometric dimensions of a receiver
[6, 9, 12].

The systematic error that arises in the pressure fluc-
tuation measurements because of the finite size of the
receiver aperture hinders the comparison of data
obtained for the pressure spectra by different research-
ers with different experimental setups. The experimen-
tal data reported in [13] testify that the fluctuation
intensity sharply increases when the contribution of
small-scale turbulent pressure fluctuations are taken
into account. The present paper reports on an experi-
mental study of the resolution achieved with a receiver
of a finite wave size in measuring the frequency spectra
of wall pressure fluctuations in a turbulent boundary
layer.

2. SPATIAL RESOLUTION OF PRESSURE 
RECEIVERS

The appearance of an error in hydrodynamic flow
noise measurements is determined by the spatial reso-
lution of the acoustic transducer of pseudosound wall
pressure fluctuations. The aperture size and the orienta-
tion of the acoustic transducer in a turbulent flow
strongly affect the results of hydrodynamic flow noise
measurements. The study of the resolution of wall pres-
sure transducers is one of the most interesting problems
in hydrodynamic acoustics. By measuring the fre-
quency spectra of pressure fluctuations at the walls of a
surfacing device with the use of miniature and distrib-
© 2005 Pleiades Publishing, Inc.
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uted receivers, it is possible to study the dependence of
these spectra on the geometric dimensions of the sens-
ing surface of the receiver.

The spatial filtering of wall pressure fluctuations by
an acoustic transducer of a finite wave size leads to a
systematic error in the hydrodynamic flow noise mea-
surements. The error arises because of the averaging of
the pressure fluctuations over the receiving surface of
the sensing element of the transducer under the nonco-
herent action of turbulent pressures, whose correlation
scale is commensurable with the geometric dimensions
of the receiving surface.

The spatial resolution of a turbulent pressure
receiver is determined by the expression [15, 16]

(1)

In estimating the error in measuring turbulent pres-
sure fluctuations, the necessary condition is that the
sensing element of the pressure fluctuation receiver be
smaller in size than the turbulent vortices measured
with its help. From the resolution representation by for-

mula (1), it follows that the receiver sensitivity 
obtained from the acoustic calibration by sound pres-

sure does not coincide with the receiver sensitivity 
to pressure fluctuations. The selectivity of an acoustic
transducer toward turbulent pressure fluctuations [15]
is determined by the frequency characteristics of sensi-
tivity, ϕ( ) and ϕ( ).

For the turbulent wall pressure field, the measure-
ment error due to the averaging of pressure fluctuations
is mainly a function of the dimensionless parameter
ωS1/2/UC formed as a combination of the fluctuation fre-
quency ω, the geometric dimension of the receiver S1/2,
and the convective flow velocity UC with a correction
factor α, which varies only slightly under specific
experimental conditions.

In this paper, resolution representation (1) is used to
propose a method for determining the error in measur-
ing the wall pressure spectra with allowance for the
averaging effect of the geometric dimensions of the
receiver aperture.

The proposed method of determining the measure-
ment error is based on obtaining experimental data on
the vibration distributions f(x) over the receiving sur-
face of a pressure transducer. Let us briefly consider the
method of error estimation.

After measuring f(x), we determine the equivalent
area of the receiving surface that interacts with pressure
fluctuations:

(2)

γT
2 γsound

2 α2ϕ a( )ϕ c( ).=

γsound
2

γT
2

a c

ssurf f x( ) s x( ).d

s

∫=
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Then, we calculate the utilization factor α of the receiv-
ing surface:

Finally, we calculate the calibration curve of the mea-
surement error by the formulas

(3)

Expressions (3) for analyzing the resolution achieved
in the turbulent pressure measurement were obtained
in [15]. They are based on the Corcos correlation
model of the wall pressure field in a turbulent bound-
ary layer [18].

In the Corcos model, the approximating function is
an exponential function that depends on a single dimen-
sionless combination of the fluctuation frequency, the
spatial separation between the points of observation,
and the velocity Uc of the convective transfer of the
field components by the flow. Here, the quantities a and
b represent the correlation coefficients of pressure fluc-
tuations; |x0 – | and |y0 – | are the intervals between
the points of observation on the surface about which the
flow moves, which are taken along the longitudinal
coordinate in the flow direction and along the trans-
verse coordinate across the flow, respectively; and Lx

and Ly are the geometric dimensions of the receiving
surface of the transducer.

To use the wall pressure measurement error in prac-
tical calculations, sets of calibration curves were
obtained [15–17]. The calibration curves were con-
structed for determining the sensitivities of different
types of pressure receivers, namely, receivers with a
uniform distribution over the aperture and flexural
bimorph transducers. Figures 1 and 2 show typical
examples of spectrum measurement errors for receivers
with sensing surfaces in the form of a square and in the
form of rectangles with side ratios of 1 : 5 and 5 : 1.
Such pressure fluctuation transducers were used in the
experiment to measure the pressure fluctuation spectra
at the walls of a surfacing device.

To study the influence of the resolution of acoustic
receivers on the results of flow noise measurements,
piezoelectric plate transducers were designed with
receiving surface areas equal to that of a circular
receiver 20 mm in diameter. The structure of the plate
receivers of flow noise is shown in Fig. 3. This structure
is based on the scheme of a symmetric flexural bimorph

α
S0

Ssurf
---------.=

ϕ a( ) 1/Lx
2 a x0 x0'––( )exp

0

Lx

∫
0

Lx

∫=

× b x0 x0'–( )cos f x0( ) f x0'( ) x0 x0' ,dd

ϕ c( ) 1/Ly
2 c y0 y0'––( ) f y0( ) f y0'( ) y0 y0' .ddexp

0

Ly

∫
0

Ly
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x0' y0'
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(see Fig. 3). The transducer consists of two plate receiv-
ers electrically connected in parallel. The bimorph is
formed by the plate of the receiver frame and a rigidly
fixed barium titanate plate. This structure increases the
vibration resistance of the acoustic receiver if a symme-
try of electromechanical properties is achieved for the

2
2 × 10–3

5 × 10–3

10–2

2 × 10–2

5 × 10–2

10–1

2 × 10–1

5 × 10–1

γr/γsound

4 6 8 10 12 140

1 2

2 4 6 8 10 12 140
ω S
Vc

-----------

Fig. 1. Resolution of a receiver with a square aperture: (1) a
flexural transducer and (2) a piston transducer.
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1

2
2

1

ω S
Vc
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Fig. 2. Resolution of a receiver with a rectangular aperture:
(1) a flexural transducer and (2) a piston transducer. The
long side of the receiver is oriented (I) along the flow and
(II) across the flow with the corresponding side ratios being
(I) 5 : 1 and (II) 1 : 5.
upper and lower bimorphs. When the electroacoustic
transducer is excited by a plane flexural wave propagat-
ing over the frame of the surfacing device, elastic
stresses of opposite sign arise in the upper and lower
piezoelectric plates. If the upper plate is compressed,
the lower plate is stretched, and the vibration signals
from the two transducers electrically connected in par-
allel virtually cancel each other. The transducers were
tested for sensitivity to vibration on a test bench. It was
found that the parallel connection of the bimorphs
reduced the sensitivity of the receivers to vibration by
8–10 dB compared to a single transducer.

One of the main problems in developing transducers
with different resolutions in noise measurements was
the necessity to suppress the effect of vibration and to
provide for recording the turbulent pressure fluctua-
tions by only the part of the receiving transducer sur-
face that forms the bimorph with the piezoceramic
plate. The condition of suppressing the vibrations
excited by the wall pressure fluctuations complicates
the structure of the receiver. In addition to the frame
and the sensing elements of the transducers, a damping
mass was introduced into the receiver structure. A brass
cylinder with a hole for mounting the piezoceramic
plates was attached by epoxy resin to the receiving sur-
face of the transducer on the inner side of the frame.

Special studies of the spatial distribution of sensitiv-
ity over the receiver surfaces were performed. For all of
the pressure receivers that were used in the hydrody-
namic flow noise measurements, the distributions of
vibrations over their apertures were determined by the
contact method. The measurements were performed by
a miniature B&K vibration receiver with a special nee-
dle-ended head. The vibration receiver moved over the
sensing surface of the pressure fluctuation transducer.

∅ 100

Cover

Piezoelectric plates

Sealing ring

Frame

Cable

Fig. 3. Receiver of hydrodynamic flow noise.
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The pressure transducer operated in the acoustic emis-
sion mode using the reversibility of the piezoelectric
effect. The transducer was excited by a sine signal from
an audio frequency oscillator in the subresonance
region of the receiver. The signal was recorded in one-
third-octave bands of the filters by a 2112 B&K spec-
trometer.

Figure 4 shows the effect of vibration damping
achieved with the proposed structure of the pressure
fluctuation transducer. In moving from the edge of the
frame to the center of the receiving surface, the vibra-
tion receiver detected a 15-dB increase in the electric
signal.

The study of the spatial distribution of sensitivity by
the aforementioned method revealed a uniform distri-
bution of the particle velocity over the surface for the
receiver with a diameter of 20 mm. This receiver should
be considered as a piston-type one or, in terms of the
turbulent boundary layer studies, a uniform-sensitivity
receiver.

Experiments with the miniature vibration receiver
showed that rectangular plate transducers have the
maximal particle velocity at the center of their receiv-
ing surfaces, and this velocity smoothly decreases
toward the edge. The character of the particle velocity
distribution testifies that, in rectangular receivers, more
complex modes of vibration close to flexural ones are
excited. Figure 5 shows the vibration distribution for a
square receiver. Figures 6 and 7 show the correspond-
ing distributions for rectangular electroacoustic trans-
ducers with side ratios of 3 : 1 and 5 : 1, respectively.

One can see that the introduction of the damping
mass into the structure distorts the vibration distribu-
tion over the receiving surface that is typical of hinged
bimorph transducers and described by the function f(x) =
sinπx/L at low frequencies in the subresonance region
of the transducer.

The spatial distribution of the plate sensitivity is
proportional to the deflection of the plate under a point
force. The deflection of a hinged plate decreases as the
distance from its center to the point of the force appli-
cation increases. Hence, the function characterizing the
sensitivity of a bimorph receiver smoothly decreases
from the center to the periphery. In the experiment, the
simplest sensitivity distributions over the surfaces of
receivers were investigated. The actual efficiency of
taking into account the error in the spectrum measure-
ments strongly depends on the correct determination of
the actual distribution of vibrations over the surfaces of
the receivers used in the experiment with the surfacing
device.

The data on the particle velocity distributions over
the receiver surfaces are presented in Table 1.

From an analysis of the data given in Table 1, it fol-
lows that, for receivers used in the experiment with a
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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Fig. 4. Signal distribution along the receiving surface of a
pressure fluctuation transducer.
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Fig. 5. Spatial distribution of sensitivity for a receiver with
a square aperture.
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Fig. 6. Spatial distribution of sensitivity for a receiver with
a rectangular aperture with a side ratio of 3 : 1.
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surfacing device, the utilization factor of the sensitive
surface, i.e., the parameter α, is close to the value typi-
cal of a flexural bimorph transducer.

In the practical calculations of the error in measur-
ing the pressure fluctuation spectra, the first quantity to
be determined is the dimensionless frequency ωS/U
formed as the combination of the spectrum frequency
ω, the geometric dimension of the receiver S1/2, and the
velocity of the surfacing device U. Then, from the data
of Figs. 1 and 2, the corresponding distortion of the
spectra is determined. Examples of such calculations of
the spectrum measurement error are shown in Tables 2
and 3.

U/Umax

x/l
0

0.2

–0.2

0

12 1 2

0.4

0.6

0.8

Fig. 7. Spatial distribution of sensitivity for a receiver with
a rectangular aperture with a side ratio of 5 : 1.
The results of studying the particle velocity distribu-
tions over the receiver surfaces provided the possibility
to calculate the error in measuring the frequency spec-
tra of wall pressure fluctuations by distributed receivers
with rectangular apertures on the basis of the error cal-
ibration curves constructed for flexural receivers.

3. MEASUREMENT OF THE SPECTRA
OF WALL PRESSURE FLUCTUATIONS

AROUND A SURFACING DEVICE

To study the resolution of the pressure fluctuation
receivers and to test the method of spectrum correction,
a series of measurements of hydrodynamic flow noise
produced by surfacing devices was carried out.

For the first time, the hydrodynamic flow noise of a
surfacing device was measured by a research group
headed by Skudrzyk at the Pennsylvania university
[19]. In Russia, studies of similar devices and flow
noise were independently performed at the Black Sea
and at the Krylov Central Research Institute [20, 21].

The advantage of studying the wall pressure fluctu-
ations around a surfacing device lies in the possibility
to perform a complex acoustic–hydrodynamic experi-
ment with Reynolds numbers far exceeding those avail-
able under laboratory conditions in a turbulent bound-
ary layer formed at the outer surface of a long cylinder.
The measurements of the flow noise produced by a sur-
facing device are almost free of distortion by extrane-
ous noise.

In our experiments on studying the resolution and
determining and eliminating the systematic measure-
ment error in the pressure fluctuation measurement, the
wall pressure fluctuations were recorded under identi-
cal conditions by miniature and distributed receivers. In
the turbulent boundary layer formed around a long
(more than 8 m in length) body of revolution cylindrical
in shape, specially designed pressure receivers were
introduced. The receivers had receiving surfaces that
noticeably differed in size, shape, and orientation in the
flow.

The distributed receivers were constructed so as to
have identical areas of receiving surfaces; the apertures
Table 1.  Study of the spatial distributions of sensitivity over the apertures of distributed receivers

Shape of the receiver Characteristic linear 
dimension (cm) Total area (cm2) Equivalent receiving 

surface (cm2)
Utilization factor of the 

sensing surface α

Circle 2.0 3.14 3.14 1

Rectangle with ratio 5 : 1 4.0 3.14 1.52 0.485

Rectangle with ratio 3 : 1 3.0 3.14 2.24 0.715

Square 1.77 3.14 1.96 0.625

Note: The characteristic geometric dimension for the aperture of an acoustic receiver of circular shape is the diameter, while that for the
aperture of an acoustic receiver of rectangular shape is the length of its longer side.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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Table 2.  Systematic error in measuring the pressure fluctuation spectra by a receiver with a diameter of 20 mm

Velocity of motion 9.5 m/s

Frequency (Hz) 50 100 200 300 400 500 600 700 800 1000

Dimensionless frequency 0.4 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 8

Distortion of spectra
(% with respect to the
true spectrum)

76 56 26 9 2.6 1.4 1.2 0.8 0.5 0.36

Systematic error δ (dB) 1 2.5 6 10.5 16 19 19.5 21 23 24.5

Velocity of motion 20.5 m/s

Frequency (Hz) 50 100 200 300 400 500 600 700 800 1000

Dimensionless frequency 0.2 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.0

Distortion of spectra
(% with respect to the
true spectrum)

87 76 56 40 26 16 9 4.8 2.6 1.4

Systematic error δ (dB) 0.5 1 2.5 4.0 6.0 8.0 10.5 13 16 19

Table 3.  Systematic error in the measurement of pressure fluctuation spectra by a receiver with a diameter of 3 mm

Velocity of motion 9.5 m/s

Frequency (Hz) 50 100 200 300 400 500 600 700 800 900 1000

Dimensionless frequency 0.06 0.12 0.24 0.36 0.48 0.6 0.72 0.84 0.96 1.08 1.2

Distortion of spectra
(% with respect to the
true spectrum)

95 90 84 78 71 66 60 54 50 47 39.6

Systematic error δ (dB) – – – 1 – 1.7 – – 3 – 4

Velocity of motion 20.5 m/s

Frequency (Hz) 50 100 200 300 400 500 600 700 800 900 1000

Dimensionless frequency 0.028 0.057 0.114 0.17 0.228 0.285 0.34 0.4 0.456 0.51 0.57

Distortion of spectra
(% with respect to the
true spectrum)

– 96 92 88 85 82.5 78.5 75.8 73.5 70 67

Systematic error δ (dB) – – – – – – – 1 – – 1.7
were rectangles with side ratios of 3 : 1, 1 : 3, 1 : 5, and
5 : 1. In addition, pressure fluctuations were measured
by square receivers and diamond-shaped receivers.
Measurements were also performed with circular dis-
tributed receivers 20 mm in diameter and with minia-
ture receivers 3 mm in diameter.

The measurements of wall pressure fluctuations in
the turbulent boundary layer were carried out in the sea
with the use of an experimental setup in the form of an
elongated body of revolution cylindrical in shape with
a length of more than 8 m; the body was surfacing from
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
a large depth under the action of the excess buoyancy
force alone. High values of the Reynolds number were
achieved (Re = 3.5 × 107–11.1 × 107) at a low level of
extraneous noise. The working part of the vertical tra-
jectory of the device was 80 m long. The velocity of the
surfacing device was controlled by the on board ballast
and varied from 9.5 to 20.5 m/s. The duration of the
steady-state motion in the course of surfacing from the
given depth was more than 10 s. The flow noise was
recorded by distributed and miniature pressure fluctua-
tion receivers mounted flush with the contour of the
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surfacing device at two points on its body: on the bow
and on the stern, with coordinates 2.68 and 8.34 m,
respectively.

Sensing elements 3 mm in diameter were positioned
in a multielement unit at equal distances from each
other, so that the distance between the axes of neighbor-
ing elements was 7 mm. The multielement units of min-
iature receivers were mounted flush with the wall of the
experimental setup on its cylindrical part.

Some of the results of systematic experimental stud-
ies of hydrodynamic flow noise produced by surfacing
devices are reported in [22]. The spectral density of tur-
bulent pressure fluctuations in a frequency band of 1 Hz
is represented on a logarithmic scale along the ordinate
axis (with respect to the pressure threshold of 2 × 10–5 Pa)
for the whole frequency range studied, namely, from 40
to 10000 Hz. The measured values of turbulent pres-
sure fluctuations are combined in groups of curves
obtained for identical velocities of the surfacing object
and coordinates of the point of measurement, i.e., posi-
tions of the electroacoustic transducer. Since the Rey-
nolds numbers and the displacement thicknesses are the
same within each group of curves, it is possible to esti-
mate the influence of the geometric dimensions, shape
of the receiving surface, and orientation of the receiver
on the resolution achieved in the measurement of wall
pressure fluctuations. For example, a receiver with an
aperture in the form of a circle 20 mm in diameter has
a much lower sensitivity to pressure fluctuations in the
operating frequency range, as compared to a miniature
circular receiver with a diameter of 3 mm.

In [23], it was shown that, in acoustic–hydrody-
namic experiments, the main source of interference is
noise and vibration. The effect of interference increases
when turbulent pressure fluctuations are measured
around objects of a complex shape under conditions
close to full-scale ones. In [24], it was found that con-
siderable interference is caused by the vibrations
excited in the sensing element of the pressure receiver
by the wall pressure fluctuations. In these experiments,
the effect of vibration on spectrum measurements was
investigated. The sensitivity of all the measuring trans-
ducers to vibration was determined in special experi-
ments with a device buoying up in air. The following
method was used to estimate the sensitivity of the trans-
ducers to vibration. Piezoelectric receivers were
mounted flush with the frame of the device. The exciter
of vibration—a tone machine—was placed at the stern
of the device. The signal detected by the receivers and
by miniature piezoelectric vibration receivers of the
AMG type, which were rigidly fixed by epoxy resin to
the skin of the device near the transducers, was
recorded by a magnetic tape recorder.

The sensitivity of the vibration receiver in the
audiofrequency range is constant and equal to 20 dB
with respect to 1 mV/g. The sensitivity of the acoustic
receivers to vibration was determined by the well-
known expression typical of calibration by the compar-
ison method:

where υ is the sensitivity of the piezoelectric vibration
receiver, utr is the electric signal at the transducer, uυ is
the electric signal at the vibration receiver, and γξ is the
sensitivity of the acoustic receiver to vibration.

The sensing elements of the electroacoustic trans-
ducers that were used in the experiments with a surfac-
ing device were surrounded by sealant layers, which
provided for a reliable sealing of the transducer under
hydrostatic pressures of up to 20 kg/cm2.

Special experiments were carried out to study the
influence of vibration of the surfacing device on the
measurement of the pressure fluctuation spectra. In the
course of surfacing, the device vibration spectrum was
determined at the acoustic receiver site with the use of
a piezoelectric vibration receiver.

The equivalent sound pressure Peq that was detected
by the receiver in the course of surfacing was propor-
tional to vibration and calculated by the formula

where γp is the sensitivity of the receiver to pressure (in
volts per pascal), uυ is the electric signal at the vibration
receiver that was recorded by the magnetic recorder in
the course of testing the device (in volts), and υ is the
sensitivity of the miniature vibration receiver of the
AMG type to vibration (in V/g).

Because of the effect of vibration in the course of
surfacing, the pressure fluctuation receiver that is
mounted flush with the surfacing device measures both
the fluctuation pressure and the vibration pressure:

where PT is the fluctuation pressure.
If the spectral levels Peq and PT are close to each

other, the extraction of the useful signal from the mea-
sured values is impossible. The comparison of the spec-
tral levels of the equivalent pressure Peq and the mea-
sured values Pmeas is presented in Fig. 8 for a rectangu-
lar receiver with the side ratios 3 : 1 and 1 : 3 and in
Fig. 9 for a circular receiver with a diameter of 20 mm
for surfacing velocities of 12.4 and 20.5 m/s.

The distributed receivers with rectangular sensing
surfaces and the circular receiver with a diameter of
20 mm are positioned on the stern of the device.

From an analysis of the curves shown in Figs. 8 and
9, it follows that the proposed acoustic transducers can-
not detect the turbulent pressure fluctuations around a
surfacing device in the following spectral regions:

γξ υ
utr

uυ
-----,=

Peq

uυ

υ
-----

γξ

γp

-----,=

Pmeas Peq PT ,+=
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Fig. 8. Effect of vibration on the flow noise measurement by a receiver with a rectangular aperture (with a side ratio of 3 : 1).
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Fig. 9. Effect of vibration on the flow noise measurement by a receiver with a diameter of 20 mm.
above 500 Hz at the surfacing velocity U = 12.4 m/s and
above 1000 Hz at the surfacing velocity U = 20.5 m/s.
These frequency regions are excluded from subsequent
consideration.

To compare the data of our experiment with the
pressure fluctuation spectra measured on a flat plate,
the frequency spectra shown in Figs. 10–12 are given in
dimensionless form.

The normalization of pseudosound pressures is
often performed using “mixed” scales of the velocity
U∞ and the length, i.e., the displacement thickness δ* of
the boundary layer [2]. This approach makes it possible
to represent the dimensionless spectra of wall pressure
fluctuations as functions of a single parameter, namely,
the Strouhal number, a dimensionless combination of
the circular frequency ω, the displacement thickness δ*
of the turbulent boundary layer, and the velocity U∞ of
motion at the outer boundary of the boundary layer. The
value of this parameter noticeably varied in the course
of the measurements: from 10–1 to 101.
COUSTICAL PHYSICS      Vol. 51      No. 4      2005
The experimental results were compared with the
universal spectrum of pressure fluctuations on a flat
plate [13, 14].

Analyzing the curves shown in Figs. 10 and 11, one
can conclude that the greater the aperture of a distributed
receiver, the less it is capable of detecting small-scale
high-frequency pressure fluctuations. The distortion of
the pressure fluctuation spectra at high frequencies is
related to the fact that, in spectral measurements by dis-
tributed sources, the well-known selectivity effect mani-
fests itself [15]: a distributed receiver is insensitive to
small-scale pressure fluctuations and is “not affected” by
high-frequency pressure fluctuations [3].

The experimental data presented above demonstrate
the influence of the geometric dimensions of the
receiver on the resolution achieved in the flow noise
measurements: as the frequency increases, the contri-
bution of pressure fluctuations to the receiver signal
decreases. On the basis of the data obtained at high fre-
quencies, one can see a considerable change in the sen-
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Fig. 10. Normalized flow noise spectra. The velocity of surfacing is 20.5 m/s. The receivers are mounted on the bow of the device.
Symbol notation: ( ) 3 : 1, (×) 1 : 3, (–) 1 : 5, (d) 5 : 1, (r) 1 : 1, (∅ ) diamond, (s) 20 mm, and (+) 3 mm.
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Fig. 11. Normalized flow noise spectra. The velocity of surfacing is 20.5 m/s. The receivers are mounted on the stern of the device.
Symbol notation is the same as in Fig. 10.
sitivity to pseudosound pressure fluctuations for dis-
tributed pressure receivers calibrated by sound signals
in an acoustic tank.

To illustrate the influence of the aperture size of a
distributed receiver, Fig. 12 compares the results of
hydrodynamic noise measurements by circular receiv-
ers with a diameter of 20 mm and by a miniature
receiver with a diameter of 3 mm. One can see that, in
the high-frequency region, the experimental data
obtained by the distributed receiver with a circular
aperture 20 mm in diameter and by the small-size
receiver 3 mm in diameter differ by more than 25 dB.
The introduction of the correction according to the pro-
posed method results in the coincidence of the results of
flow noise measurements by receivers with different
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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Fig. 12. Influence of the size of the receiver on the flow noise measurement at a constant velocity of surfacing equal to 20.5 m/s:
data for the receivers with diameters of (s) 20 and (+) 3 mm.
resolutions. The miniature receiver reliably detects the
flow noise produced by the surfacing device.

CONCLUSIONS

The main results of this study are as follows.

(i) In a series of in-sea experiments with a surfacing
device, quantitative characteristics were obtained for
the distortions introduced into the spectra of hydrody-
namic flow noise by distributed receivers.

(ii) The method proposed for determining the error
in the measurement of pressure fluctuation spectra was
justified by experiments with a surfacing device on the
basis of pressure fluctuation measurements by minia-
ture and distributed receivers under identical condi-
tions.

(iii) The experimental data revealed a considerable
influence of the geometric dimensions of the receiver
aperture on the resolution achieved in the flow noise
measurements.

(iv) The effect of the vibration of the surfacing
device on the results of measuring the pressure fluctua-
tion spectra was investigated.

(v) The experiments with a surfacing device showed
that the miniature receiver reliably measures the spectra
of wall pressure fluctuations.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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Abstract—This paper is devoted to the digital processing of multicomponent seismograms using wavelet anal-
ysis. The goal of this processing is to identify Rayleigh surface elastic waves and determine their properties.
A new method for calculating the ellipticity parameters of a wave in the form of a time–frequency spectrum is
proposed, which offers wide possibilities for filtering seismic signals in order to suppress or extract the Ray-
leigh components. A model of dispersion and dissipation of elliptic waves written in terms of wavelet spectra
of complex (two-component) signals is also proposed. The model is used to formulate a nonlinear minimization
problem that allows for a high-accuracy calculation of the group and phase velocities and the attenuation factor
for a propagating elliptic Rayleigh wave. All methods considered in the paper are illustrated with the use of test
signals. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

This paper studies Rayleigh surface elastic waves.
The trajectory of volume elements oscillating in a Ray-
leigh wave is elliptic and coplanar with the wave prop-
agation vector. In a classical elastic body, Rayleigh
waves are nondispersive [1]; in the asymmetric
Cosserat medium, they exhibit a dispersion due to
microrotation [2]; and, in geological media, the disper-
sion of Rayleigh waves is caused by the variation of the
elastic properties of rock with depth [3, 4]. In the latter
case, a vibrational energy loss (dissipation) is also
observed, which affects the oscillation amplitude. As a
rule, Rayleigh waves in solids and geological media are
observed only indirectly, namely, through interpreting
the data obtained from vibration measurements in the
form of seismograms. However, these seismograms do
not contain exclusively Rayleigh waves, which makes it
nessesary to apply high-quality filtering procedures.
One of the possible methods for filtering Rayleigh
waves relies on the polarization analysis serving to
derive the parameters that characterize the ellipticity of
the signal [5, 6].

For further interpretation, one should be able to
retrieve the dispersion and dissipation parameters of the
propagation medium from source seismograms. This
data can be obtained by inversion of the Rayleigh
waves with dispersion in an analysis of one-component
[7] or multicomponent [8] signals.

Most of the experimental studies of Rayleigh waves
(e.g., [3, 5, 6]) rely on Fourier analysis. However, Ray-
leigh waves are relatively difficult to study; their char-
acteristic feature, namely, dispersion, is described by a
function of frequency rather than by a single variable.
1063-7710/05/5104- $26.00 0425
In view of this, the time–frequency approach [4, 9]
seems to be rather promising. This approach is particu-
larly remarkable because of its ability to discriminate
between signals according to their dispersion curves.
The time–frequency approach known today as wavelet
analysis [10, 11] has vigorously advanced in the last
decades and has become one of the most important
methods of digital signal processing.

Thus, the purpose of this work is to develop methods
for processing multicomponent seismograms that are
capable of retrieving the parameters of ellipticity (ellip-
ticity, phase shift, and dip angle of the polarization
ellipse), the dispersion (group and phase velocity), and
the dissipation (attenuation function) of Rayleigh
waves. As the basis for these methods, we choose wave-
let analysis, in particular, the direct and inverse contin-
uous wavelet transforms of complex signals.

1. THE BASIC RELATIONSHIPS
OF THE SPECTRAL ANALYSIS

OF COMPLEX SIGNALS

Let the raw signals be picked off from a multicom-
ponent sensor: accelerometer, velocimeter, or seis-
mometer. Let us combine different components to form
a complex signal S(t). To this end, we introduce a Car-
tesian coordinate system whose X axis is collinear with
the phase velocity vector Vp and whose Y axis is per-
pendicular to the surface. Then, we have

(1.1)

where t is the time in seconds; i =  is the imaginary
unit; and Sx(t) and Sy(t) are two independent compo-

S t( ) Sx t( ) iSy t( ),+=

1–
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nents of the signal picked off from the seismic sensor,
which have appropriate dimensions.

Consider the space L2(RRRR) of complex functions S(t)
that are defined over the entire axis RRRR(–∞, ∞) and pos-
sess a finite energy (norm) [11]:

We will use the pair of direct and inverse Fourier
transforms serving as the basis of the spectral analysis
in the form

(1.2)

where ω = 2πf is the angular frequency, f is the physical
frequency in hertz, and the circumflex symbol means
the complex Fourier transform.

In this paper, we will also use the Hilbert transform
*S(t) [12], which allows us to obtain the progressive
S+(t) and regressive S–(t) components. For the progres-
sive component, the Fourier coefficients are nonzero
only for f > 0; for the regressive component, for f < 0,

(1.3)

where the Fourier transform of the function * ( f ) is
defined as

(1.4)

To analyze the signal’s frequency distribution versus
time, we will use the continuous wavelet transform [10,
11]. The theory of the continuous wavelet transform is
developed in [10]. Here, we only present the main rela-
tionships. The pair of direct and inverse wavelet trans-
forms of a complex signal S(t) has the form

(1.5)

S t( ) L2
RRRR( ) S t( ) 2 t ∞.<d

∞–

+∞

∫⇒∈

Ŝ ω( ) 1

2π
---------- S t( )e iωt– t,d

∞–

+∞

∫=

S t( ) 1

2π
---------- Ŝ ω( )eiωt ω,d

∞–

+∞

∫=

S t( ) S+ t( ) S– t( ),+=

S± t( ) S t( ) i*S t( )±[ ] /2,=
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iŜ f( ), f 0.<
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∫
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∫=
where g(·), h(·) ∈  L2(RRRR) are real or complex wavelets,
Cg, h is the normalization coefficient, the asterisk super-
script means complex conjugate, and 0gS(t, a) is the
complex wavelet transform dependent on the dimen-
sionless scaling factor a ∈ RRRR and the dimensional time
factor t ∈ RRRR. In contrast to the majority of works that
use the continuous wavelet transform, the factor a here
takes both positive and negative values.

In our case, it is convenient to choose as the scale the
physical frequency, which is related to the dimension-
less factor a as a = f0/f, where f0 is the characteristic
(center) frequency of the wavelet. Then,

(1.6)

Thus, in contrast to the Fourier transform given by
Eqs. (1.2), the wavelet transform provides a two-
dimensional scan of the complex signal under study, the
scale and time being treated as independent variables.
As a result, the possibility appears to analyze the signal
in the physical (time) and scaling (frequency) spaces
simultaneously.

The wavelet for the inverse transform can be chosen
in the form of the delta function, which yields a very
efficient reconstruction formula [10]:

As a rule, the direct and inverse transforms use the
same wavelet. The choice of the wavelet depends on
what typical oscillation modes are present in the sig-
nal. For example, to analyze rectangular oscillations,
the real HAAR wavelet or a similar but symmetric
FHAT wavelet are most suitable. The most convenient
for the seismic signals are real wavelets constructed
on the basis of different-order derivatives of the Gaus-
sian or complex wavelets, for example, the Morlet
wavelet [10, 11]

(1.7)

where σ is the wavelet parameter. Strictly speaking, the
Morlet wavelet does not satisfy relationship (1.5),

Cg h, ĝ* ω( )ĥ ω( ) ĝ* ω–( )ĥ ω–( )+( ) ωd
ω
-------,
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Fig. 1. Parameters that characterize an elliptic signal.
because it leads to singularities at frequencies close to
zero. This property should be taken into account in
practical implementation.

The Morlet wavelet is progressive; i.e., its Fourier
coefficients for negative frequencies are zero. This fea-
ture allows the wavelet spectrum to be separated into
progressive and regressive components, similar to for-
mula (1.3):

(1.8)

where

To perform such a separation for nonprogressive
(e.g., real) wavelets, one must first calculate the Hilbert
transform of the source signal, which makes the numer-
ical procedure more complex.

The spectrum 0gS(t, f ) contains information about
the distributions of the signal’s amplitude A(t, f ) and
phase Φ(t, f ) in time and frequency:

(1.9)

We will use this representation below to separately
visualize the absolute value and phase of the complex
wavelet spectrum.

2. THE ELLIPTICITY PROPERTIES
OF RAYLEIGH WAVES

Since the form of a Rayleigh wave is comparatively
stable, the polarization analysis is a convenient tool for
processing it [5].
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S t f,( ),+=
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+
S t f,( )

0gS t f,( ), f 0≥
0, f 0,<


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=

0g
–
S t f,( )

0, f 0≥
0gS t f,( ), f 0.<


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=

0gS t f,( ) A t f,( )eiΦ t f,( ),=

A t f,( ) 0gS t f,( ) , Φ t f,( ) 0gS t f,( ).arg= =
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In the most general form, the properties of an elliptic
signal are characterized by the following time-depen-
dent parameters (Fig. 1):

(i) the major semiaxis of the ellipse, R ≥ 0;
(ii) the minor semiaxis, r: 0 ≤ r < R;
(iii) the ellipticity ρ = r/R;
(iv) the inclination (rotation) angle of the ellipse,

Θ ∈ (–π/2, π/2]. For some time, the Rayleigh wave
retains its geometry and exactly vertical orientation,
i.e., Θ = π/2, which is the criterion that allows this wave
to be identified on a seismogram; and

(v) the phase shift between the components Sx(t) and
Sy(t), ∆φ ∈ (–π, π].

To determine the ellipticity parameters in the
time domain, one can use the complex trace method
[6]. It transforms the real components Sx(t) and Sy(t) of
signal (1.1) to complex components through the Hilbert
transform given by Eqs. (1.3) and (1.4):

The real and imaginary parts of the complex signals
Cx(t) and Cy(t) obtained in this manner are considered
separately, and the phase shift is calculated and used to
determine the remaining ellipticity parameters:

(2.1)

where

Cx t( ) Sx t( ) i*Sx t( )+[ ] /2,=

Cy t( ) Sy t( ) i*Sy t( )+[ ] /2.=
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Here, mod means modulo division.
The ellipticity parameters in the frequency

domain. In seismology, the Nakamura method [13] (H/V
method) is widely used. It calculates the ellipticity ρ as
the ratio of the horizontal and vertical Fourier spectra:

(2.2)

where Fh( f ) and Fv( f ) are the smoothed power spec-
trum densities of the horizontal and vertical signals,
respectively. This spectral density is calculated through
Fourier transform (1.2) using special smoothing algo-
rithms [14] (averaging the Fourier coefficients over sev-
eral time windows).

The ellipticity parameters in the wavelet space.
The method proposed in this paper for calculating the
ellipticity parameters generalizes the above two meth-
ods. It determines the major and minor semiaxes, the
dip angle, and the phase shift as functions of time and
frequency. The key idea underlying the new method is
the description of the ellipse on the complex plane in
terms of two complex numbers, A+ and A–, and two real

numbers, ω+ and ω–: C(τ) = A+  + A– .
This formula, along with geometrical consider-

ations, yields the following relationships:

When a complex progressive wavelet is used, prop-
erty (1.8) of the wavelet transform allows us to repre-
sent the wavelet spectrum as a superposition of the
progressive and regressive components. Let us con-
sider the instantaneous angular frequency defined as
the derivative of the complex spectrum: ω±(t, f ) =

∂ S(t, f )/∂t. Then, in the vicinity of time instant t,
each component can be represented as follows:

which yields a complex time–frequency spectrum for
each of the parameters:

(2.3)
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Formulas (2.3) can be used to derive the parameters
as a function of time alone or frequency alone, but,
unlike direct methods (2.1) and (2.2), this inverse pro-
cedure offers rich opportunities for the frequency and
time filtering of all ellipticity properties. Several algo-
rithms for returning to the time or frequency domain are
possible:

(i) The first possible algorithm calculates all param-
eters in the form of Eqs. (2.3) and averages them in fre-
quency, but only over those regions of the wavelet spec-
trum where the ellipticity, which is characterized by the
parameter r(t, f ), is most pronounced.

(ii) The second algorithm is as follows. In the origi-

nal wavelet spectra S(t, f ) and S(t, f ), the so-
called ridges Γ+ and Γ– are selected. For the instant t, Γ+

is the frequency corresponding to the local maximum
of the absolute value of the progressive wavelet spec-
trum and Γ– is that of the regressive wavelet spectrum.
A ridge is actually the extremum of the region that
describes the most typical behavior of the signal. If we
consider the ridge as a function of time and replace the
frequency in Eqs. (2.3) with it, we obtain the time-aver-
aged parameters. If we consider the ridge as a function
of frequency and replace the time variable in Eqs. (2.3)
with it, we obtain the frequency average.

The main idea of these averaging operations is to
extract only a particular mode from the complex signal
for analysis, which cannot be achieved with the com-
plex trace method or the H/V method.

Consider an example of a synthetic signal contain-
ing only one frequency mode. In Fig. 2a, the solid and
dashed lines, respectively, represent the real and imag-
inary parts of this signal. Figure 2b shows the absolute
values of the progressive and regressive wavelet spec-
tra; and the solid lines are the ridges Γ+ and Γ–. Figure
2c is a plot of the signal on the complex plane.

Using the ridges ( f ) and ( f ), we can deter-
mine the ellipticity parameters as functions of fre-
quency. Comparing the parameter ρ( f ) calculated by
the H/V method (the dashed line in Fig. 2d) with that
calculated by the method proposed in this paper (the
solid line in Fig. 2d), we arrive at the conclusion that
the results obtained with these methods basically agree
with each other.

Figure 3a shows the lengths of the major and minor
semiaxes of the elliptic signal on the time–frequency
plane. The ellipticity parameters calculated by the com-
plex trace method in the form of Eqs. (2.1) are shown
in Figs. 3b–3d by dashed lines. The new ellipticity
parameters, shown in Figs. 3b–3d by solid lines, are
calculated in this case using the ridges in the form of

(t) and (t). The results obtained with the complex
trace method and the new method also agree with each
other.

0g
+ 0g

–

Γ c
+ Γ c

–

Γ c
+ Γ c
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Fig. 2. Typical form of the elliptic signal.
3. THE DISPERSION AND DISSIPATION
OF RAYLEIGH WAVES

Assume that the medium is stationary and consider
two complex signals, S1(t) and S2(t), of the form of
Eq. (1.1) that are read from two instruments separated
by a distance ∆x. In the case of more than two signals,
all relationships provided below remain valid and
apply to each pair of signals.

Description of the dispersion and dissipation in
Fourier space. A model that relates the Fourier spectra
of complex signals S1(t) and S2(t) in an isotropic
medium was proposed in [3]:

(3.1)

where the frequency-dependent parameter α( f ) of the
medium determines the dissipation (attenuation func-
tion) and the wave number k( f ) describes the disper-
sion.

As the dispersion parameters, the phase and group
velocity functions determined by the wave number and
its derivative are commonly used [4]:

(3.2)

Ŝ2 f( ) e ik f( ) α f( )+[ ]∆ x– Ŝ1 f( ),=

k f( ) 2πf
V p f( )
--------------, k' f( ) 2π

Vg f( )
--------------.= =
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If the phase velocity of the medium is known, the
wave number can be found from Eqs. (3.2) and,
thereby, the group velocity is determined as

(3.3)

An exact estimate of the group velocity from the
phase velocity is impossible without additional infor-
mation because of the unknown constant that appears
when Eq. (3.3) is integrated. Formally, the group veloc-
ity function does not contain additional information
about the medium, as compared to that contained in the
phase velocity function; nevertheless, both of them are
widely used. This occurs because, in some cases, the
group velocity alone can be measured.

In our case, it should also be noted that physical
considerations require that all functions be defined
only for positive frequencies. However, we represent
the spectrum of the complex signal as consisting of
the progressive (f > 0) and regressive (f < 0) parts;
therefore, we symmetrically extend all the functions
to negative frequencies: α(–f ) = α( f ), Vp(–f ) = Vp( f ),
and Vg(–f ) = Vg( f ).

Description of the dispersion and dissipation in
the wavelet space. Using relationship (1.6) for the
wavelet transform in terms of the Fourier spectrum, we

Vg f( ) 2π
k' f( )
------------

2πV p
2

f( )
V p f( ) f V p' f( )–
---------------------------------------.= =
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obtain an analog of relationship (3.1) for the wavelet
spectrum:

Let us expand the function k(ϕ) in a Taylor series
around the point f and keep the terms up to the first-
order derivative:

(3.4)

Representing the attenuation function in a similar
manner and transforming the integrand, we obtain

(3.5)

0gS2 t f,( ) 1
2π
------ e2πiϕ tĝ*

ϕ f 0

f
--------- 

  Ŝ2 ϕ( ) ϕd

∞–

+∞

∫=

=  
1

2π
------ e2πiϕ tĝ*

ϕ f 0

f
--------- 

  e ik f( ) α f( )+[ ]∆ x– Ŝ1 ϕ( ) ϕ .d

∞–

+∞

∫

k ϕ( ) . k f( ) ϕ f–( )k' f( ).+

0gS2 t f,( ) e i k f( ) f k' f( )–[ ]∆ x– e α f( )∆x–=

× 0gS1 t k' f( )– ∆x/ 2π( ) f,( ),
or, in terms of the group and phase velocity functions,

(3.6)

Due to expansion (3.4), the dispersion model in the
wavelet space, unlike the model in the Fourier space, is
an approximation. A better approximation can be
achieved with a denser sampling in the frequency axis
and a higher value for the wavelet parameter.

Using one of the Morlet wavelet properties, one
more approximation can be obtained, which is on the
one hand less accurate than Eq. (3.6) but which, on the
other hand, very clearly illustrates the deformation of
the wavelet spectrum in the course of propagation of a
dispersive wave. The following relationship is valid
for the Morlet wavelet [10]: S(t, f ) . 2πft.
Representing the right-hand side of Eq. (3.5) in the

0gS2 t( ) e
2πif

1
V p f( )
--------------- 1

Vg f( )
--------------– 

  ∆x–

=

× e α f( )∆x– 0gS1 t
∆x

Vg f( )
--------------– f, 

  .

0garg
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form of Eq. (1.9) and using the above expression for
the argument of the complex spectrum, we obtain

(3.7)

Thus, the group velocity is a function that
“deforms” the image of the absolute value of the source
signal’s wavelet spectrum, the phase velocity
“deforms” the matrix of the wavelet spectrum phase,
and the attenuation function determines the frequency-
dependent real coefficient by which the spectrum is
multiplied.

To demonstrate the model proposed above, consider
the following example. As an approximation of the
phase velocity function, let us use the three-parameter
exponential approximation with the group velocity
determined by Eq. (3.3):

(3.8)

Let us use the simplest model of the attenuation
function in the form of a linear dependence of the atten-
uation factor on frequency, α( f ) = βf, with one param-
eter β. The parameters of the problem have the follow-
ing values: V1 = 1300 m/s, ∆V = 200 m/s, σ = 6 Hz, ∆x =
3500 m, and β = 3 × 10–5 1/(Hz s).

Figure 4a shows the phase velocity (the solid line)
and the group velocity (the dashed line) for the given
parameters. Figure 4b shows the variation of the Fou-
rier coefficients due to attenuation: the solid line refers

to the spectrum ( f ), and the dashed line, to the spec-

trum ( f ). Figure 4c illustrates the signal S1(t) (the
solid line represents the real part, and the dashed line,
the imaginary part); Fig. 4d shows the signal S2(t) cal-
culated from Eqs. (3.6) (the black solid and dashed
lines) and (3.1) (the gray lines). Figure 4e shows the
absolute values of the wavelet spectra of signals S1(t)
and S2(t), and Fig. 4f, the corresponding phases. The
geometrical distortion of the spectrum 0gS2(t) with
respect to 0gS1(t), which was illustrated above by Eq.
(3.7), is due to the frequency dependence of the phase
and group velocities. This example demonstrates a
good agreement between model (3.1), defined in the
Fourier space, and model (3.6), defined in the wavelet
space.

4. THE CALCULATION OF THE GROUP
AND PHASE VELOCITIES

As an example of practical application of the
model reported in the previous section, let us formu-
late the nonlinear minimization problem to calculate

0gS2 t( ) e α f( )∆x– 0gS1 t
∆x

Vg f( )
--------------– f, 

 =

× i 0gS1 t
∆x

V p f( )
--------------– f, 

 arg .exp

V p f( ) V1 ∆Ve

f
2

2σ2
---------–

.+=

Ŝ1

Ŝ2
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the group and phase velocities from the known signals
S1(t) and S2(t).

Let us use model (3.5) and the parametric approxi-
mation of the wave number k( f ) and the attenuation
function α( f ):

Then, in the general form, the unconstrained nonlin-
ear minimization problem can be formulated as fol-
lows:

(4.1)

Problem (4.1) can be solved numerically by the Lev-
enberg–Marquardt method [14], in which the χ2(·)
function is the mean-square cost function. For this
function, several formulations that provide different
parameter reconstruction accuracies can be considered.
For space considerations, we will only focus on two of
them.

(i) The simplest optimization problem to realize is
when the cost function χ2(·) is defined as the difference
between the absolute value of the wavelet spectrum of
the second signal, |0gS2(t, f )|, and that of the function
|0gSn(t, f )| obtained by transforming the spectrum of
the first signal with the use of Eq. (3.5). This algorithm
is intended to reconstruct the group velocity and the
dissipation parameters, because this cost function
ignores the phase component of the signal:

(4.2)

(ii) To reconstruct the phase information from the
signal and, consequently, to calculate the phase veloc-
ity, the cost function must allow for the phase compo-
nent of the wavelet spectrum:

(4.3)

Here, it should be noted that the phase optimization
is more sensitive to initial conditions. Therefore, as
initial values of parameters pi and qi, it is necessary to
use the results obtained by minimizing cost function
(4.2). Also, the influence of the wavelet parameter is
significant; an increase in this parameter improves the
accuracy of the phase velocity reconstruction.

Methods that are capable of optimizing complex
functions may use the cost function in the form of a
sample squared absolute value of the difference
between complex wavelet coefficients, |0gS2(t, f ) –
0gSn(t, f )|2. However, in this case, statistical methods
based on the Monte Carlo method are, in our opinion,
more efficient than gradient methods, to which the
Levenberg–Marquardt method belongs. If the source

k f( ) . k f pi,( ), α f( ) . α f q j,( ),

i 1…N , j 1…M.= =

χ2 pi q j ∆x, ,( ) min, pi g j RRRR,∈,
i 1…N , j 1…M.= =

χ1
2 0gS2 t f,( ) 0gSn t f,( )–[ ] 2

t f .dd

f

∫
t

∫=

χ2
2 = 0gS2 t f,( )arg 0gSn t f,( )arg–[ ] 2

t f .dd

f

∫
t

∫



432 KULESH et al.
1500

1450

1400

1350

1300

1250

1200

V
(t

),
 m

/s

–10 –5 0 5 10
f, Hz

(‡) (b)

–10 –5 0 5 10

Vp( f )
Vg( f )

0.05

0

–0.05

(c)

(e)10

5

0

–5

–10

–0.05

0

0.05
(d)

S 1
(t

)
S 2

(t
)

(f)10

5

0

–5

–10

f, 
H

z
f, 

H
z

argWg S1(t, f )

 Wg S1(t, f )  Wg S2(t, f )

argWg S2(t, f )

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t, s

f, Hz

Fig. 4. Comparison of the dispersion models formulated in the Fourier and wavelet spaces.
seismogram is severely contaminated with noise, the
optimization process may use the cost function in the
form |[0gT1, 2](t, f ) – [0gT1, n](t, f )|2, where the sym-

bol Ti, j means cross correlation of the signals: ( f ) =

(f) ( f ). Relationships (3.1)–(3.7) can readily be
modified for this case. If the seismogram does not con-
tain only the Rayleigh component, the double integral
in Eqs. (4.2) and (4.3) is replaced with an integral over
a region specified by ellipticity parameters (2.3). How-

T̂ i j,

Ŝi Ŝ j
ever, a detailed analysis of these and many other modi-
fications is a subject of a separate study.

Consider an example. Let the signal propagate with-
out attenuation and the three-parameter exponential
approximation be chosen for the function k( f, pi):

Let S1(t) and S2(t) be synthetic signals, where the
second signal can be obtained from the first signal with

k f pi,( ) p1 f p2 f e

f
2

2 p3
2

---------–

.+=
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the help of dispersion model (3.1)–(3.3) with the phase
velocity Vp given by Eq. (3.8) at V1 = 1300 m/s, ∆V =
300 m/s, σ = 10 Hz, and ∆x = 2000 m.

Figure 5a shows the real (solid line) and imaginary
(dashed line) parts of the source signal S1(t). Figure 5b
shows the source S2(t) (black lines) and reconstructed
Sn(t) (gray lines) signals.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
Figure 5c shows the absolute values of the source
wavelet spectrum and the one reconstructed by proce-
dure (4.1)–(4.3), where |0gSn(t, f )| is the absolute
value of the reconstructed signal spectrum. Figure 5d
shows the phases of these spectra.

The solid line in Fig. 5e represents the theoretical
phase velocity used to generate signals S1(t) and S2(t);
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the dashed line represents the reconstructed phase veloc-
ity for cost function (4.2), and the dashed-dotted line, for
cost function (4.3). Figure 5f shows similar curves for
the group velocity. The conclusion may be drawn that
the velocity reconstruction accuracy is quite satisfac-
tory, the accuracy provided by cost function (4.3) being
higher than that provided by cost function (4.2).

CONCLUSIONS
The following new results were obtained from this

study:
(1) A new method based on the wavelet analysis for-

malism is proposed. The method determines the follow-
ing ellipticity parameters of surface waves in the form
of time–frequency spectra (matrices): the major R(t, f )
and minor r(t, f ) semiaxes of the ellipse and the ellipse
dip angle Θ(t, f ); the phase shift ∆φ(t, f) between two
components Sx(t) and Sy(t) of two-component signals;
and the ellipticity ρ(t, f ). These parameters allow one to
identify with fair accuracy a Rayleigh wave in seismo-
grams.

(2) A model that relates the wavelet spectra of two
complex signals S1(t) and S2(t) obtained from two mul-
ticomponent seismic receivers displaced by ∆x is pro-
posed. Parameters of the model are the amplitude atten-
uation function α( f ), the phase velocity Vp( f ), and the
group velocity Vg( f ).

(3) A nonlinear minimization problem is formulated,
the solution of which determines the phase and group
velocity functions and the attenuation function to a high
accuracy from two complex signals S1(t) and S2(t).

(4) The combination of the minimization problem
with the proposed method of calculating the ellipticity
parameters allows one to determine the phase and
group velocities and the attenuation function for the
Rayleigh modes in the source seismograms.
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Abstract—The spectrum of a “gas plume” formed by a marine hydrocarbon seep is described. The noise spec-
tral density has maxima at frequencies corresponding to the natural (collective) oscillations of the bubble
cloud, which are related to the size of the gas plume and to the mean volume gas content in the medium. The
spatial distribution of noise in depth near a gas plume is highly nonuniform and modal in nature. The nonuni-
formity is localized in the horizontal plane, and the localization radius is the smaller the higher the mode num-
ber is. © 2005 Pleiades Publishing, Inc.
In the mid-1980s, gas hydrate manifestations were
detected in the Sea of Okhotsk near Paramushir Island
and the Deryugin basin [1, 2]. Marine hydrocarbon seeps
emitting methane bubbles from seafloor vents give rise to
the so-called “gas plumes.” The latter can be easily
detected by regular echo sounders, because the resonant
scattering cross section of a gas bubble is two orders of
magnitude greater than the bubble size. The seeps found
in the Sea of Okhotsk were mainly studied under the
KOMEX joint Russian–German project [3–8]. Field
measurements aimed at studying these phenomena were
carried out with the use of both remote acoustic methods
and underwater systems in the UK part of the North Sea
[9–12], in the Gulf of Mexico [13, 14], and near the coast
of California (the northern boundary of the Santa Bar-
bara Channel) [15–17].

Along with the conventional (active) methods of gas
plume sounding, the development of passive methods is
proposed on the basis of analyzing the noise radiation
in the vicinity of the object at frequencies correspond-
ing to the natural (collective) oscillations of the bubble
cloud. Two types of noise sources are analyzed. The
formation of a single bubble is accompanied by noise
radiation that is characterized by Longuet-Higgins as a
“birthing wail” [18]. The second type of noise source is
well known: the agitated upper layer of the ocean,
where noise is produced by breaking waves. Broadband
noise propagating in a bubble cloud gives rise to stand-
ing waves in the gas plume region. These collective
oscillations manifest themselves as maxima in the spec-
tral density of noise signals at frequencies related to the
geometric dimensions of the gas plumes and to the
mean gas content in the medium.

In constructing the model, it is reasonable to rely
upon the world’s most spectacular marine hydrocarbon
seeps. They include primarily the SBC (Santa Barbara
Channel) seep. In this region, bubbles rise from a rela-
tively small depth (~60 m). Multiple backscattering
1063-7710/05/5104- $26.000435
measurements were performed at frequencies of 50 kHz
and 3.5 MHz, and bubble size distributions were stud-
ied [14]. The bubbles fill the whole water column, from
the vents in the bottom to the ocean surface, and the
backscattering data show no anomalies in their distribu-
tion in depth. Below, a comparison is performed with
the following marine hydrocarbon seeps [19]: the
Thor CP Seep (TCS), (latitude 34°52.442′, longitude
119°23.650′) lying at a depth of 20 m and extending
over an area of ~2 m2; La Goleta Seep (LGS), (latitude
34°51.183′, longitude 119°22.500′) lying at a depth of
70 m and occupying an area of ~25 m2; and Seep Tent
Seep (STS), (latitude 34°53.350′, longitude 119°23.050′)
at a depth of 70 m with an area of ~700 m2. The sim-
plest model (Fig. 1) that can be used to describe a gas

Ocean

Atmosphere

z

ρ

RcH
Gas plume

Fig. 1. Model of a gas plume: a cylinder with a height H and
radius Rc filled with a gas–liquid mixture that is character-
ized by a sound velocity cm much smaller than the sound
velocity c in the surrounding liquid.

Bottom
 © 2005 Pleiades Publishing, Inc.
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plume is a circular cylinder filled with a mixture of liq-
uid and bubbles, whose height H is equal to the depth at
which the bubbles depart from the vents and whose
radius Rc characterizes the transverse size of the gas
plume.

The linearity of the problem allows us to separate
the solution into two parts. At the first stage, we analyze
the radiation of a unit-amplitude monopole point
source with a time dependence exp(–iωt). Eliminating
the time variable, we reduce the problem to solving the
Helmholtz equation for the pressure field P in pure liq-
uid with the wave vector

(1)

where c is the velocity of sound in the pure liquid. The
pressure perturbation P in the gas plume, i.e., in the
aforementioned cylindrical column with –H < z < 0 and
0 < ρ < Rc, is described by the Helmholtz equation with
the wave vector [20]

(2)

Here, g(R) is the distribution function representing the
number of bubbles in a unit volume with radii from R to
R + ∆R (the dimension of this functions is m−3 µm–1);
Ω0(R) and δ are the eigenfrequency and damping factor
of a bubble of radius R.

The applicability conditions for Eq. (2) deserve spe-
cial consideration. Information on the distribution func-
tion of bubbles departing from the vents is rather scarce
[2, 21–23]. In the most common case, that of continu-
ous bubble generation, the distribution function has a
maximum at Rm ~ 2.5 × 10–3 m and is characterized by
a smooth decrease toward smaller and greater radii. A
bubble with radius Rm has a resonance frequency f0 ~
1.3 kHz near the surface; at a depth d, because of the
hydrostatic pressure, the resonance frequency of a bub-

ble of the same size is f(d) = f0  (h ≈ 10 m).
The distribution formed near the bottom can noticeably
vary as the bubbles rise from the bottom to the surface
[21–27]: the bubble size tends to decrease because of
the dissolution of methane (CH4) in water and tends to
grow because of the decrease in hydrostatic pressure.

The present paper studies the low-frequency collec-
tive oscillations of the bubble cloud forming the gas
plume; the periods of these oscillations are much
greater than those of natural oscillations of individual
bubbles. In this case, formula (2) is reduced to the well-
known expression for the effective velocity of sound
propagation in a gas–liquid mixture (Wood’s equation)
[28, 29]:

(3)

where β is the volume gas content, P is the hydrostatic
pressure, and ρ0 is the density of the liquid. The law
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governing the decrease in the volume gas content with
decreasing distance to the surface depends on many
factors [22] and differs from the linear law of hydro-
static pressure decrease. However, for depths smaller
than 100 m, the ratio of these quantities can be consid-
ered to be constant within an order of magnitude. Pre-
cisely this simplest model with a constant sound veloc-
ity is used in the following calculations.

If, near the surface, the volume concentration β
exceeds 10–4, the effective sound velocity proves to be
much smaller than the sound velocity in the pure liquid,

and  ≈ P(βρ0)−1. For β ≈ 0.01, the sound velocity
cm ≈ 100 m/s is more than an order of magnitude
smaller than c. This case is quite realistic because, in
regions with an intense gas release, such as the SBC
region, where methane production is organized, β ≈
0.05 [15].

The Green function describing the propagation of
sound from a point source satisfies the Helmholtz equa-
tion

(4)

which should be complemented with boundary condi-
tions. We use the free surface condition

(5a)

for regions occupied by the bubble mixture, as well as
for regions occupied by pure liquid. At the bottom, in
the presence of a sediment layer, we use the “soft” bot-
tom condition

(5b)

in the presence of rock, we use the “hard” bottom con-
dition

(5c)

Expanding the Green function in the eigenfunctions
of the boundary-value problem and taking into account
that the set of functions {sinλnz} is complete for both
soft and hard boundaries, we obtain

(6)

where, for the soft bottom given by Eq. (5b), λn ≡  =
(π/H)n, whereas, for the hard bottom given by Eq. (5c),

cm
2

∆G ω; r r'( ) k2 ρ( )G ω; r r'( )+ 4πδ r r'–( ),–=
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λn ≡  = (π/H)(n – 1/2) (n = 1, 2, 3, …); (ρ, ϕ, z) are
cylindrical coordinates. The explicit form of the radial

λn
R
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part of Green’s function Gnm(ω; ρ|ρ'), which is the
solution to Eq. (6), is determined by the formulas
(7)Gnm ρ ρ'( ) 2π

Jm κnρ( ) iπHm
1( ) κnρ'( ) d1 n m,( )Jm κnρ'( )–[ ] ρ ρ ' Rc,< <
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c2
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2– ω2

cm
2
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2
,–= =
where Jm, , Im, and Km are Bessel functions and the
prime denotes differentiation with respect to the coor-
dinate.

As was mentioned above, the sound velocity in the
mixture can be an order of magnitude smaller than the
sound velocity in the liquid, and, therefore, the gas
plume region represents an effective waveguide. Here,
it is appropriate to refer to the analogy with an optical-
fiber waveguide, which was mentioned in [30]. The
presence of eigenmodes captured by this waveguide
manifests itself as the poles of Green’s function (6),
(7). Indeed, at frequencies below the critical one, i.e.,
ω < ω0 = c(π/2H) (below, the calculations are per-
formed for a hard bottom), all normal modes in the
oceanic waveguide are damped and, hence, the Green
function has no poles near the real axis. However, in
the presence of a gas plume, the denominator d2(0, n) =
(πRc/2)]K0(knRc)κnJ1(κnRc) – knK1(knRc)J0(κnRc) involved
in the axisymmetric (m = 0) part of Green’s function
G0n(ω; ρ|ρ') may be equal to zero, which is the condi-
tion for the existence of natural oscillations localized in
the horizontal plane. In the gas plume region, they are
described by the singularity-free functions J0(κnρ), and,
outside the gas plume, by the exponentially decreasing
functions K0(knρ).

The presence of the small parameter Rc/H ! 1 (for
TCS, Rc ~ 0.8 m and (Rc/H) ~ 0.04; for LGS, Rc ~ 3 m
and (Rc/H) ~ 0.04; and for STS, Rc ~ 15 m and (Rc/H) ~
0.2) allows one to determine, in an explicit form, the
eigenfrequencies of these localized oscillations. Taking
only the first- and second-order terms of the Bessel

Hm
1( )
 function expansions in the small parameters Rcκn ! 1

and Rckn ! 1, we obtain

The eigenfrequency of the nth mode, ωRn, is determined
from the condition

(8)

As an illustration, Fig. 2 shows a graphical solution of
this equation for the lowest mode with the geometrical
parameters of the STS (Rc/H ≈ 0.2). The gas flow from
this seep is known to be rather intense [19], and, there-
fore, the calculations are performed by taking the sound
velocity in the mixture to be much lower than the sound

velocity in pure liquid: ssr = ( /c2) ≈ 0.1, 0.05, and
0.01. The low damping is ignored. Applying Wood’s
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formula to these velocities in the mixture, we obtain the
following volume concentration values: β ≈ 0.044,
0.088, and 0.44%. Figure 2 represents the quantities
S(s) = (1/2)[1 – (cm/c)2](cm/c)–2[(πRc)2(2H)–2 – s2] and –
1/ln(s) plotted along the y axis versus the quantity s ≡

Rck1 (k1 = ) plotted along the x axis.
The eigenfrequency of the trapped mode is determined
by the point of intersection of the curves: s(0.1) . 0.087,
s(0.05) . 0.178, and s(0.01) . 0.287, which, according

to the formula f = (c/2πRc) ), yields
f(0.1) ≈ 5.1 Hz, f(0.05) ≈ 4.4 Hz, and f(0.01) ≈ 2.1 Hz.
Note that it is the high concentration of bubbles in the
mixture and, hence, the low sound velocity that is
responsible for the noticeable deviation of the eigenfre-
quency from the continuous spectrum boundary fc =
(c/4H) ≈ 5.4 Hz. In this case, it is possible to obtain an
analytical dependence of the eigenfrequency on the
determining parameters:

(9)

A similar expression can be obtained from simple
physical considerations. Indeed, the model under study
(Fig. 1) can be interpreted as the problem concerning
the natural oscillations of a cylindrical bubble whose
compressibility is expressed as

π/2H( )2 ω/c( )2–

πRc/2H( )2 s2–

ωR1
2 2cm

2

Rc
2

Rc/H( )ln
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Fig. 2. Graphical solution of the dispersion equation for the
lowest mode. The right-hand side of Eq. (8) is represented
by the dashed line, and the left-hand side is represented by
the solid lines, which are plotted for the sound velocity in
the mixture cm being much smaller than the sound velocity

in the pure liquid c: ssr = ( /c2) ≈ 0.1, 0.05, and 0.01. The

calculations are performed for the geometrical parameters
of the STS, (Rc/H) ≈ 0.2.

cm
2

and whose inertial mass can be determined as follows.
At distances smaller than the wavelength λ = 2π/k ≥ H,
the liquid can be considered incompressible; therefore,
the potential satisfying the Laplace equation has the
form ϕ = –ϕ(t, Rc)ln(ρ/H), and the pressure variations
are expressed through the potential using the Bernoulli
equation ∆Pout = –ρ0(∂ϕ/∂t). The continuity conditions
for the displacements and pressure variations at the
cylindrical wall of the bubble yield

(10)

which is an analog of the Rayleigh equation with the
eigenfrequency determined by Eq. (9).

In the opposite case, when the deviation from the
critical frequency is small, i.e., f = fc – ∆f and ∆f ! fc,
dispersion equation (8) can be represented in the form

Replacing the left-hand side of this equation by an

approximate expression (Rck1)2 = [π2/(4H2) – 4π2( fc –

∆f )2c–2] ≈ (2π2 c–1H–1)∆f, we obtain

(11)

According to Eq. (11), for not as intense seeps (such
as the LGS and TCS) with a smaller transverse size
(Rc/H) ~ 0.04, the deviation of the lowest frequency
from the continuous spectrum boundary (fc = (c/4H) ≈
5.4 Hz for the LGS and fc ≈ 19 Hz for the TCS) is expo-
nentially small. The physical parameter separating the
two limiting cases is η = (cmH/cRc). When η ! 1, the
deviation of the eigenfrequency is considerable and the
eigenfrequency is described by Eq. (9); when η @ 1, the
deviation from the continuous spectrum boundary is
exponentially small.

Dispersion equation (8) describes not only the low-
est mode but also a set of higher localized modes satis-
fying the inequalities Rcκn ! 1, Rckn ! 1 and containing
increasing numbers of nodes and antinodes in their ver-
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tical structures. However, since these states fall within
the continuous spectrum region, they are considered
complex resonances.

The problem of captured modes in an acoustic
waveguide, such as collective oscillations of a bubble
plume, has been intensively studied in the last ten years
(see [31–33] and the literature cited there). At the same
time, rigorous mathematical results concerning the
conditions for the presence (or absence) of captured
modes were obtained for simple models, namely,
objects of regular geometrical shape in configurations
symmetric with respect to the walls or displaced from
the symmetric configurations so as to allow one to use
the perturbation theory. Moreover, the main results
were obtained for the two-dimensional problem. In
actual geometry, they may be applicable to a cylindrical
object whose generatrix is parallel to the ocean surface.

Now, let us proceed to the comparison with the
results of laboratory studies of sound radiation from a
cylindrical column of bubbles in a tank [30, 34–36].
The bubbles were produced at the bottom by pumping
air through nozzles (medical needles of identical size)
uniformly distributed around concentric circles.
Detailed measurements of the positions of the first five
maxima in spectral density and their dependence on the
volume gas content within 0.1–1.5% showed a total
coincidence of the theoretical and experimental results.
However, it should be noted that, in the presence of
reflecting side walls, the dispersion equation for the
eigenmodes in the tank with a cylindrical bubble cloud
differed from that analyzed in this paper. This differ-
ence was most pronounced for lower volume concen-
trations, when the captured mode frequency (for defi-
niteness, we consider the lowest mode) approached the
boundary fc of the continuous spectrum of the oceanic
waveguide. Under the conditions of the experiment
[36], fc = (c/4H) ≈ 450 Hz (the height is H ≈ 0.82 m), but
this value is not evident in the experiment, because the
origin of localization in the horizontal direction is not
affected by the damped nature of the field in the region
Rc ≤ ρ ≤ Rt (Rt is the tank radius) at f < fc or by its stand-
ing wave character at f > fc: the localization is provided
by the presence of the tank side walls. A totally differ-
ent situation occurs in a waveguide that is infinite in the
horizontal direction: there, the captured lowest mode
can only exist at f < fc.

The conditions of experiment [30] carried out in a
tank that was relatively long in the transverse direction
(the depth of the liquid was 0.28 to 0.47 m, and the tank
radius was ~1.50 m) were closest to the STS in propor-
tion. Figure 3 of the cited paper shows the dependence
of the lowest mode frequency on the volume concentra-
tion for a cylindrical bubble plume of radius Rc = 0.08 m
with the height of the liquid column H = 0.41 m. Since,
in this case, we have Rc/H ≈ 0.2, the comparison with
the data of [30] verifies the results; in particular, this
comparison confirms the validity of the dispersion
equation in the relatively simple form of Eq. (8).
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
The explicit form of Green function as given by
Eqs. (6) and (7) allows us to describe the spatial distri-
bution of noise in the vicinity of a gas plume by com-
bining the contributions of different sources. The Fou-
rier component of the pressure measured at a frequency
ω at the point r PT(ω; r), is described by the integral

(12)

where q(ω; r') is a random distribution function of
monopole noise sources. The spatial coherence of the
noise field is described by the correlation function

where the asterisk indicates complex conjugation and
the angular brackets denote averaging over an ensemble
of random sources. Let us specify the types of sources.

Let us first consider noise caused by breaking
waves. We use the conventional model [37, 38], accord-
ing to which every point of the plane lying at a depth z0
below the free surface corresponds to a monopole
source described as q(ω; r') = s(ω; r')δ(z' – z0). In this
expression, the function s(ω; r') is a random variable,
and its correlation function is 〈s*(ω; r')s(ω; r'')〉  =
|q0(ω)|2N(|r' – r''|). In the important particular case of
uncorrelated sources, N(ρ) = 2δ(ρ)(ω2ρ/c2)–1 [37], and
we have

(13)

However, the basic quantity measured in an experi-
ment is the spectral density SD:

(14)

Here, T is the duration of the measurement interval and
Pref = 1 µPa. Assuming ergodicity, we express Eq. (14)
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through the average over the ensemble of noise sources
given by Eq. (13):

(15)

Near the frequencies corresponding to the natural
collective oscillations of the bubble cloud (Eq. (8)), the
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major contribution to the spectral density is made by
the pole singularities of Green function [37]. Retaining
the components of the axisymmetric (m = 0) Green
function that are diagonal in mode numbers n and that
make the maximal contribution near the resonances, we
obtain

(16)

Taking the principal order in small parameters Rcκn ! 1
and Rckn ! 1, we arrive at the expression
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From this formula, it follows that the contribution to the
excitation of eigenmodes from the noise sources

located above the gas plume (proportional to ~ ) is
greater than the contribution from the sources located

in the more extended region (~ ) outside the gas
plume, but this occurs because of the Rayleigh-type

(ω4 /c4) ! 1 scattering leading to much smaller val-
ues of spectral density. Substituting this expression into
Eq. (16), we obtain

(17)

Following [38], we eliminated the dependence on the
parameter z0 of the model, i.e., on the depth of the
source layer. For this purpose, the noise level q0(ω) was

normalized [38], (ω) = (ω)/(16π ), so as to
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reduce it to the level q∞ produced by the same sources
in an infinitely deep ocean. To describe the finite width
of the resonance curve, the phenomenological parame-
ter Qn representing the Q factor of the nth localized
mode was introduced in Eq. (17). If the major contribu-
tion to damping is made by the scattering by bubbles,
we have

At the same time, this issue requires special investiga-
tion; in particular, it is necessary to take into account
the permeability of the bottom, for example, in the Pek-
eris model, i.e., a fluid layer overlying a fluid half-
space.

Now, let us calculate the distribution of noise gen-
erated by bubbles formed at the vents. Since the prob-
lem is linear, their contribution is additive with sur-
face wave contribution (17). Then, the correlation

Qn
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function of monopole sources is described by the for-
mula [36]

where  is the number of bubbles formed at the vents

per unit time,  is the average bubble radius, and ( )ω
is the Fourier component of the bubble wall accelera-
tion for a bubble of characteristic size . The physical
interpretation of this expression is as follows: the base
of the column is divided into N incoherent piston
sources (vents), and each of them acts with the same

pressure over an area of π /N.

Retaining the diagonal (in mode number n) compo-
nents of the axisymmetric (m = 0) Green function, we
obtain the following noise distribution in the vicinity of
a gas plume (ρ > Rc):

(18)

Thus, the spatial distribution of the spectral intensity
of noise in depth near a gas plume is highly nonuniform
and exhibits a mode character. This nonuniformity is
localized in the horizontal plane, and the localization
radius is smaller the higher the mode number is. The
noise spectral density has maxima at frequencies
directly related to the size of the gas plume and to the
mean volume gas content in the medium.

In closing, let us estimate the noise spectrum
described by Eqs. (17) and (18) and compare it with
ambient noise in the ocean [40–42]. We use the esti-

mate for the intensity of sources (ω) [38] that pro-
duce a uniform pressure distribution q∞ in an infinitely
deep ocean with an intensity corresponding to 70 dB.
According to Eq. (17), the spectral peaks associated
with the gas plume manifestation exceed the ambient
noise level only when RcQn > H, i.e., for a sufficiently
high Q factor of localized modes and sufficiently large
seep areas, such as, e.g., the STS. The excess over the
ambient noise level can be observed at distances equal
to several depths. An indicator of the gas plume pres-
ence that is more efficient than noise intensity is the
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structure of spatial correlations of noise (Eq. (13)).
However, these issues, as well as the “illumination” of
a gas plume by ship noise, variations in the plume
shape, and, in particular, the description of a conic
waveguide, should be studied separately.

Let us estimate the noise level produced by bubbles
appearing from vents at the bottom of the ocean. The
spectral density of noise for the first normal modes of a
bubble plume was investigated under laboratory condi-
tions [36] in the frequency range 300–1200 Hz. The
sampling interval was T = 0.1 s. At the axis of the plume
(see Fig. 8 of the cited paper), the spectral density of the
first mode was ~110 dB with respect to the wave with
Pref = 1 µPa in a 1-Hz frequency band. A full agreement
with the experimental results was achieved for a model
with the characteristic bubble size R0 ~ 2 × 10–3 m and
the rate of bubble generation at a single vent (medical
needle)  = /N ~ 50 s–1 (in the experiment under dis-
cussion, N = 49). In calculating the spectral density at
the lowest mode frequency by formula (18), we use the
same model of noise generation and the same value of
the characteristic bubble radius as in [36]. To obtain a
quantitative estimate, it is necessary to preset the Q fac-
tor of the lowest mode Q1, the geometrical parameters
of the seep (Rc, H), the mean rate of bubble generation
at a single vent , and the total number of vents in the

seep N (  ≈ N). Referring to the parameters of the
STS, one can see that, for this seep, the rate of bubble
generation at one vent is higher than in the laboratory
experiment [36], but the density of vent distribution

N/(π ) is much smaller. To determine , we use the
data from [39]. The methane production in the STS
region is carried out with the use of two metal canopies
fixed at the bottom and covering an area of 1800 m2 and

makes  ~ 9 × 105 m3/month or 0.34 m3/s [39]. Then,
for the STS with an area of about 700 m2, we obtain

 = /(4π /3) = 0.34(700/1800)[(4π/3)(2 × 10–3)3]–1 ≈
4 × 106 s–1.

We use the same Q factor, namely, Q1 ~ 10, as that
realized in the experiment in [36], but, because of the
higher permeability of the bottom at much lower fre-
quencies corresponding to the eigenmodes of a natural
seep, this value should be considered an estimate from
above. Substituting these expressions into Eqs. (18) and
(14), we estimate the peak value of spectral density at
the first mode frequency at the cylinder axis: SD ≈ 128
dB.

Comparison with the ambient noise level in the ocean
at frequencies from several to ten hertz [40–42] shows
that the above value considerably exceeds the minimal
noise levels in this frequency range. With distance from
the gas plume, the intensity of the spectral peak

decreases according to the law (k1ρ) ~ exp(– ρ2),

and, at a distance equal to several depths, ρ @  ~ H,

ṅN ṅ

ṅN

ṅ ṅN

Rc
2 ṅ

V̇

ṅ V̇ Rc
2

K0
2 k1

2

k1
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the peak is lost in the ambient noise spectrum. As was
noted above, at these distances, the presence of the
plume can still be detected, although not by intensity
measurements but rather by measuring more complex
characteristics, namely, the spatial correlations of the
spectrum (see Eq. (13)).
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Abstract—Methods based on wavelet analysis are used to study longitudinal elastic waves propagating in alumi-
num single crystals in the [111] and [001] directions at frequencies of 5 and 10 MHz. Results of the wavelet fil-
tering of responses of the laser Doppler interferometer to these acoustic signals are reported. The efficiency of fil-
tering the time dependencies of the interferometer response in the presence of white and colored noise is studied.
Recommendations concerning the choice of the filtering parameters are given. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Laser ultrasonic interferometry is one of the most
advanced techniques for studying the structure of
acoustic fields in solids [1]. Noncontact data acquisi-
tion combined with a high resolution determined by the
diameter of the laser beam allow one to obtain the nec-
essary amount of information about the acoustic field,
which can subsequently be processed with appropriate
software and represented in a form convenient for anal-
ysis.

Because the optical receiver is broadband and the
surface of a solid is rough, the output signal of the laser
interferometer is noisy, which hampers the correct
interpretation of the results of the measurements. In
addition, the signals detected by the interferometer usu-
ally have their own complex spectra, which makes the
situation even more difficult. Also, the signal waveform
may be different at different points of the acoustic field.
All of these circumstances prevent digital filters based
on conventional techniques from efficiently extracting
the useful signals.

Earlier [2–4], it was shown that wavelet analysis can
serve as a basis for universal algorithms intended for fil-
tering complex signals. In this paper, we consider the
application of the wavelet transform to the output sig-
nals of a laser ultrasonic interferometer that contain
noise with different types of spectra. We also show that
the surface roughness of a solid affects the interferom-
eter output.

EXPERIMENTAL TECHNIQUE

The experimental part of this work was performed
using the OFV-3001 laser ultrasonic interferometer
that belongs to the Fraunhofer Institute of Nonde-
structive Testing (Dresden, Germany). The output sig-
1063-7710/05/5104- $26.00 0443
nal of the interferometer was digitized by a digital
oscilloscope. The data were analyzed and stored by a
personal computer running LabView 5.0-based soft-
ware. A more detailed description of the experimental
setup can be found in [5].

Longitudinal elastic waves were excited in the sam-
ples under study by piezoelectric transducers with res-
onant frequencies of 5 and 10 MHz. The diameters of
the piezoelectric plates of the 10- and 5-MHz transduc-
ers were 5 and 13 mm, respectively. Each sample had
two planar surfaces. One of the surfaces carried the
piezoelectric transducer, and the other was illuminated
by a laser beam to detect the elastic field.

The time dependence of the response amplitude at
each point of the scanned field, i.e., the type-A scan,
consisted of 1000 sample values. The size of the
scanned field was usually 14 × 14 mm. After scanning
at different points, the type-A scans were stored in dig-
ital format and were available for subsequent computer
processing.

The experimental samples were aluminum single
crystals. The normal to the sample’s parallel faces was
parallel to the [001] or [111] crystallographic direction.
The samples were approximately cylindrical and were 16
to 20 mm long. The sample with the [001] orientation
had two polished plane-parallel faces. The second sam-
ple also had two parallel faces. One of them was exactly
perpendicular to the [111] axis and polished so that the
roughness height did not exceed 8 µm. The other face
initially was not polished, and its roughness height was
30 to 40 µm with the average in-plane size of irregular-
ities being about 100 µm. After a series of experiments,
this face was polished and the measurements were
repeated.
© 2005 Pleiades Publishing, Inc.
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SIGNAL FILTERING USING THE DISCRETE 
WAVELET TRANSFORM

According to the theory of the orthogonal wavelet
transform [6], a function of time t, f(t) ∈ L2(R), defined
on the entire real axis R(–∞; +∞) and possessing a finite
norm ||f || can be represented in terms of the following
spectral expansion:

(1)

where (t) and (t) are, respectively, the large-
scale component (approximation or approximation
coefficients) and the small-scale component (refine-
ment or refinement coefficients) of the function f(t) on
the ith level of resolution. Here, i0 refers to a certain
initial level corresponding to the lowest time resolu-
tion.

In formula (1),  and  are the coefficients of
expansion of the function f(t) in systems of basis func-
tions ϕij(t) and ψij(t), respectively. The index i is the
number of the resolution level; it determines the time
span of the basis function, i.e., its resolution; the index
j determines the position of the basis function on the
time axis.

The functions ϕij(t) and ψij(t) are called scaling
functions and wavelets, respectively. They determine
the corresponding orthonormal bases in the orthonor-
mal space L2(R) and are defined as follows [6]:

(2)

(3)

where i and j are integers.

The following orthogonality relationships are valid
for the scaling functions and wavelets [6]: (ϕij, ϕil) = δjl,
(ψij, ψkl) = δikδjl, and (ϕij, ψil) = 0, where i, j, k, and l are
integers and δ is the Kronecker delta.

The functions ϕ(t) and ψ(t) are called, respectively,
the generative scaling function and the generative
wavelet. They are used to generate orthogonal sets of
basis functions through scaling by integer powers of
number 2 and shifting in time by integer numbers, as
defined by Eqs. (2) and (3). The expansion coefficients
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of the function f(t) in these bases are given by the fol-
lowing formulas [6]:

(4)

(5)

which are similar to the expressions for spectral coeffi-
cients of the generalized Fourier transform. The numer-
ical sequences given by Eqs. (4) and (5) are called the
scaling and wavelet coefficients, respectively.

Relationships (1), (4), and (5) express the concept
of the multiple-scale analysis, i.e., the multilevel
expansion of the function being analyzed in orthonor-
mal systems of basis functions that differ only in the
scaling factor of the argument. This expansion repre-
sents the space L2(R) as a sequence of embedded sub-
spaces V(i) such that … ⊂ V(i – 1) ⊂  V(i) ⊂  V(i + 1) ⊂  … ⊂

and  = L2(R),  = {0}. Then, for exam-

ple, the approximation (t) corresponds to an orthog-
onal projection of the function f(t) onto the subspace

 and contains the components of f(t) whose time

scale is no smaller than .

The refinement (t) is a projection of the function

f(t) onto the subspace , which is the orthogonal

complement of the space  in :  =

 ⊕  , which extracts from f(t) the components

whose time scale is on the order of . The possi-
bility of using the multiple-scale analysis to construct
the orthogonal wavelet transform was first shown by
Mallat [7, 8].

It is known [6] that the scaling function and the
wavelet must satisfy the following refinement relations:

(6)

(7)

where k is an integer. The numerical sequences hk and
gk are referred to as the coefficients of the scaling and
wavelet filters, respectively. They are related by the
expression gk = (–1)kh1 – k.

A straightforward implementation of the orthogonal
dyadic wavelet transform based on Eqs. (1), (4), and (5)
presents a heavy burden for the processor. However, the
performance of the method can be considerably
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improved and the method can best be adapted to the
analysis of discrete signals by the technique described
below. Let us perform the following transformations:
substitute Eqs. (6), (7) into definitions (2), (3) and sub-
stitute the result into Eqs. (4), (5). Ultimately, we obtain
the following recurrence relations [6], which give the
fast wavelet transform (FWT) algorithm:

(8)

(9)

where  = hK – k – 1;  = gK – k – 1; and K is the length
of sequences h*, g*, hk, and gk. Is clear that, in practice,
calculations by formulas (8) and (9) must be performed
a finite number of times and must end at a certain low-
est level of resolution with index i0. Consequently, the
index i in Eqs. (8) and (9) must take the following val-
ues: i = imax – 1, imax – 2, …, i0 + 1, i0. The index j in
Eqs. (8) and (9) ranges over the following values: j = 0,
1, 2, …, Int[(N(i + 1) + K – 1)/2, where N(i + 1) is the length
of the scaling and wavelet coefficient vectors at the res-
olution level number i + 1. Here, Int[·] is the integer part
of the argument.

It should be noted that, at each step from an ith res-
olution level to the next level i + 1, the length of the vec-
tors of the scaling and wavelet coefficients decreases by
a factor of two.

As the initial coefficients, formulas (8) and (9) use the

expansion coefficients of the signal  being ana-
lyzed that correspond to the highest resolution level of

number imax. As a rule,  = fj, where fj is the discrete

signal being analyzed, which consists of N =  sam-
ples taken with a sampling time interval ∆t.

It can be shown [6] that the signal can be recon-
structed from its scaling and wavelet coefficients by an
algorithm called the inverse fast wavelet transform
(IFWT), which can also be represented as the recur-
rence relation

(10)

In this paper, we will always implement the FWT
and IFWT procedures using the Sym8 wavelet from the
symlet family [6] and perform the transformations at
four levels of resolution.

The wavelet filtering of signals relies on the FWT
algorithm and is performed as follows. For all vectors
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of refining coefficients obtained at all resolution levels
of the FWT algorithm, symmetric (about the zero level)
thresholds, whose values are chosen by a certain strat-
egy, are adjusted. The elements that are beyond the
thresholds are left unchanged, and all the remaining
elements are replaced by zeroes. This procedure is
called hard thresholding. If the values of the nonzero
vector elements that are left after applying the threshold
limitation are additionally shifted towards the zero level
by the corresponding threshold values, the procedure is
called soft thresholding. Subsequently, IFWT proce-
dure (10) is applied to the modified vectors of refining
coefficients to obtain the denoised signal.

The wavelet filtering algorithm was first proposed
by Donoho and Johnstone [2, 9], who formulated one of
the possible rules for choosing the threshold levels on
the ith resolution level as follows:

(11)

where med(·) is the median of the argument vector .

EFFECT OF ROUGHNESS

Consider the results of measuring the type-A scans,
i.e., the time dependences of the interferometer’s
response, for two conditions of the reflecting surface:
before and after polishing. Let us analyze the scans
themselves and also the wavelet spectra and scalograms
obtained by the continuous wavelet transform [6, 10],
which we implement in this paper using the MHAT
wavelet. The scalogram is a generalized characteristic
of the time dependence. It shows the distribution of
oscillation power in period. The maxima of the scalo-
gram show the periods that predominate. The experi-
mental and theoretical results are shown in Fig. 1 for
the unpolished sample. Type-A scans for three beam
points with the coordinate Y = 7.5 mm and different
X coordinates are shown in Fig. 1a. The corresponding
scalograms are shown in Fig. 1b. The realization for the
point at X = 3 mm refers to a noise like signal. The cor-
responding scalogram has a maximum at a period of
≈0.1 µs, which is much smaller than the period of ultra-
sonic oscillations. The point at X = 6 mm refers to the
periphery of the beam. In the realization for this point,
an ultrasonic pulse is seen in the presence of noise.
A second maximum appears in the scalogram in addition
to the maximum due to noise. The point at X = 9.5 mm
is at the center of the beam. Here, the amplitude of the
ultrasonic pulse exceeds the noise level. In the scalo-
gram, the highest maximum is now the one that corre-
sponds to the ultrasonic pulse.

After these measurements, the reflecting surface
was polished, so that the roughness height was reduced
to 8 µm and the measurements were repeated. Figure 2a

Ti med w j
i( )( ) 2 Nln

0.6745
-----------------,±=

w j
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shows a type-A scan for the central point of the beam;
Fig. 2b, scalograms for three points: X = 7.5 mm (cen-
ter of the beam), X = 13 mm (periphery of the beam),
and X = 1 mm (region outside the beam). It is seen that
the noise component is noticeably reduced. The max-
ima that refer to the ultrasonic pulse are seen in the
scalograms even when the point is outside the ultra-
sonic beam.

WAVELET ANALYSIS AND FILTERING
OF TYPE-A SCANS

In this section, we analyze the time dependence of
the laser interferometer’s response and the effect of
noise with different spectra on it. We construct a filter-
ing algorithm for this signal. The original signal, shown
in Fig. 3a by curve 1, is obtained at the central point of
the beam for the sample with the [001] orientation.
Longitudinal elastic waves were excited at a frequency
of 10 MHz in the pulsed mode. The recording time was
10 µs. Two pulses can be seen, at 0.7–1.6 µs and 6.2–
6.7 µs. The realization also contains an interference
signal at 3.3–4 µs. This signal was combined with a

0 2
Time, µs

(‡)

1.0

0 0.5

(b)

Period, µs

0.8

0.6

0.4

0.2

1.0 1.5 2.0

1

2

3

4 6 8 10

3

2

1

Fig. 1. (a) Time dependences of the interferometer response
and (b) the corresponding scalograms for the [111]-oriented
sample at three points: X = (1) 3, (2) 6, and (3) 9.5 mm and
Y = 7.5 mm before polishing.
noise like signal with a white-noise spectrum; the sig-
nal-to-noise ratio was 4.6 dB. The signal is shown in
Fig. 3a by curve 2. Now, it is impossible to distinguish
the second low-amplitude ultrasonic pulse in the pres-
ence of noise.

The wavelet spectrum of this signal is illustrated in
Fig. 3b. It has the form of a diagram, which displays the
values of the wavelet transform coefficients in color or
shades of gray. The abscissa axis represents the time,
and the ordinate axis, the periods of oscillations of the
signal. Thus, the wavelet spectrum represents the oscil-
lation process in dynamics; i.e., it shows what frequen-
cies or periods are present in the oscillations at particu-
lar time intervals. Examples of wavelet spectra of vari-
ous signals can be found in [10, 11]. In Fig. 3b, the
region 0.7–1.4 µs of the ultrasonic pulse contains loop-
like structures. The interference signal in the region
3.2–3.8 µs also shows loop like structures, but with
greater periods. The noise like signals are seen in the
wavelet transform diagram as alternating vertical
stripes. The frequency spectrum of the signal under
study contaminated by noise and its scalogram are
shown in Fig. 3c. The scalogram is seen in the figure as

0.2

0 0.5

(b)

Period, µs

0 2
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0.4
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0.8
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1.0 1.5 2.0
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(a)
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Fig. 2. (a) Type-A scans and (b) scalograms for three points:
X = 7.5 mm (center of the beam), X = 13 mm (periphery of
the beam), and X = 1 mm (region outside the beam).
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the smoother curve. Maxima of the scalogram and the
Fourier spectrum are at the ultrasonic signal’s carrier
frequency of ≈10 MHz. The signal shown in Fig. 3a by
curve 2 was wavelet filtered with the use of hard thresh-
olding, the thresholds being chosen in accordance with
Eq. (11). The result is shown in Fig. 3a by curve 3. Both
pulses have again become visible. The comparison of
signals 1 and 3 shows that the structure of oscillations
in the first pulse is reproduced correctly. The interfer-
ence pulse remained a series of small-amplitude oscil-
lations. It can, in principle, be removed by appropri-
ately choosing the parameters of the filtering proce-
dure, but this would noticeably change the amplitude of
the second ultrasonic pulse. Thus, the work reported
above proves that this filtering procedure is efficient for
pulsed ultrasonic signals contaminated by wideband
noise.

A question arises about the efficiency of the filtering
procedure for noise with a different spectrum. As an
example of a colored noise, we considered noise with
the spectral power density of 1/f. Such a noise can be
acoustic in nature; i.e., it can arise in the medium
through which the wave travels. Apart from the acoustic
noise, there may be electric noise and interferences
whose spectral density maximum is displaced from the
maximum of the acoustic signal spectrum. The action
of such an interference within the bandwidth of the
receiver can be modeled by colored noise. As the orig-
inal signal, we again used the type-A scan shown by
curve 1 in Fig. 3a. It was additively contaminated by
noise with a 1/f-type spectral density. This noisy signal
is shown in Fig. 4a by curve 2. The signal-to-noise ratio
was 4.2 dB.

The random numerical sequences that modeled the
1/f-type noise were generated by the algorithm reported
in [12]. It is specified by the expression

(12)

where ρ is the required correlation coefficient between
adjacent random numbers, this coefficient being related
to the relaxation time τ as ρ = exp(–1/τ), and the rn are
uniformly distributed random numbers. Formula (12)
assumes that x0 = 0.

We used a set of three values of τ: 1, 10, and 100. We
substituted them one by one into Eq. (12) using differ-
ent sets of rn and then summed the realizations obtained
to generate sequences of random numbers whose spec-
tral density is characterized by a frequency dependence
of 1/f throughout a range of almost three decimal orders
of magnitude in width.

The noisy signal 2 shown in Fig. 4a was subjected to
the following filtering procedure, which was performed
in two stages. At first, the low-frequency noise was fil-
tered out. For this purpose, the refining coefficients for

xn 1+ ρxn rn 1 ρ2– ,+=
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all the four resolution levels were set equal to zero.
Then, the signal obtained was subtracted from the orig-
inal signal, and the result was subjected to the second
stage of the filtering procedure. It used hard threshold-
ing with the thresholds chosen according to Eq. (11).
The filtered sequence is shown in Fig. 4a by curve 3.
The signal-to-noise ratio clearly became higher, and the
second ultrasonic pulse became discernable. The wave-
let spectrum of the filtered realization is shown in Fig. 4b.
Its most important feature is that the first pulse near
1 µs on the abscissa axis is observable. Also, one can
see a manifestation of the second ultrasonic pulse after
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Fig. 3. Wavelet analysis and filtering of type-A scans in the
presence of white noise. The direction of propagation is
[001], and the frequency is 10 MHz. (a) Time dependences:
(1) the interferometer response at the central point of the
beam, (2) the signal contaminated by noise, and (3) the fil-
tered signal. (b) Wavelet spectrum of signal 2. (c) Scalo-
gram of signal 2 (the smoother curve) and its frequency
spectrum.
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6 µs. The Fourier power spectrum and the scalogram of
the filtered signal are shown in Fig. 4c. (Here, the scalo-
gram is the smother curve with one maximum.)

CONCLUSIONS

Acoustic fields in aluminum single crystals are stud-
ied by a laser Doppler interferometer. The time depen-
dences of the acoustic field at different points of the
ultrasonic beam are analyzed with the use of the contin-
uous wavelet transform for different conditions of the
reflecting surface: before and after polishing.
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Fig. 4. Wavelet analysis and filtering of type-A scans in the
presence of noise with the 1/f spectrum. The direction of
propagation is [001], and the frequency is 10 MHz. (a) Time
dependences: (1) the interferometer response at the central
point of the beam, (2) the signal contaminated by noise, and
(3) the filtered signal. (b) Wavelet spectrum of signal 3.
(c) Scalogram of signal 3 (the smoother curve) and its fre-
quency spectrum.
The application of wavelet signal filtering algo-
rithms based on the discrete wavelet transform theory is
considered. It is shown that the use of symlets with suf-
ficiently large indices, for example, Sym8, as the basis
functions of the discrete wavelet transform gives good
results in the image filtering. The number of resolution
levels can be limited to four.

A dual filtering algorithm that is capable of effi-
ciently extracting one-dimensional signals (time
dependences of the interferometer response) from
white and colored noise is developed. The fixed-thresh-
old hard thresholding strategy is shown to be most effi-
cient for filtering one-dimensional functions.

The most important advantage of the discrete wavelet
transform filtering algorithm is that it does not require
any special fitting to the particular function being ana-
lyzed. Consequently, the advantages of the wavelet filter-
ing are realized without applying an operator.
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Abstract—Results of the observation of seasonal variations in the vertical distribution of water temperature
in the shelf zone of the Sea of Japan are presented, and the effect of this variability on the parameters of inter-
nal waves and on sound propagation is studied. The measurements were carried out in different seasons using
a vertical acoustical–hydrophysical measuring system. The propagation of sound (tone and noise signals) was
studied on a 510-m-long track at a constant depth of 38 m. Using a self-contained resonance (320 Hz) trans-
mitter of the electromagnetic type, which was bottom-moored at a depth of 65 m, a 10.6-km-long stationary
acoustic track crossing the shelf was set up. During the in-sea experiments, the spatial characteristics of inter-
nal waves were measured along with the distributions of temperature, salinity, sound velocity, and sea level
variations. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

At present, despite considerable progress in the the-
ory and numerical modeling of the effect of hydrophys-
ical fields on the sound propagation in a shallow sea [1–
3], some problems remain of interest to researchers,
namely, the problems related to the experimental inves-
tigation of hydrophysical fields and hydrodynamic pro-
cesses that occur in the shelf zone in different seasons
and the influence of these fields and processes on sound
propagation.

In the presence of a fully developed pycnocline, the
main hydrodynamic sources of acoustic inhomogene-
ities in the water layer are the tidal internal wave and
the shorter internal waves (IWs). The tidal internal
wave induced by the tidal current at the edge of the
shelf [4–7] propagates along the shelf as a long internal
wave (LIW). Because of nonlinearity and interaction
with the bottom, it undergoes transformations accom-
panied by the generation of shorter IWs and packets of
quasi-harmonic and soliton-like nonlinear IWs [5–7].
Therefore, the field of IWs on the shelf, as well as the
acoustic wave fields, have a number of features related
to the influence of the bottom and to the seasonal vari-
ability of the spatial parameters of the density field in
the water layer. The refraction and scattering of acous-
tic waves by inhomogeneities of the sound velocity
field, which are induced by the IW in the water layer,
lead to both focusing and defocusing of acoustic waves
in the horizontal plane and to energy transfer from
propagating acoustic modes with low numbers to those
of higher numbers. This interaction can be of a reso-
nance character [3, 8, 9].
1063-7710/05/5104- $26.00 ©0449
In 1978, Il’ichev Pacific Oceanological Institute
began to establish a research base at the Schulz Cape
(see the chart in Fig. 1). Over a period of 25 years,
experimental data on the variability and dynamics of
basic oceanological fields that affect the sound propa-
gation in the shelf region of the Sea of Japan in various
seasons were collected. Numerous observations of the
IW parameters were carried out [10–14], and the effect
of these parameters on sound propagation was studied
[14–18]. The present paper is a logical development of
the previous investigations, with an emphasis on study-
ing the features of the sound propagation from the
deep-water part of the shelf to the shallow-water coastal
region and also the influence of the IWs on the sound
propagation along tracks oriented across and along the
direction of IW propagation.

THE TEST REGION AND THE MEASURING 
SYSTEM

Figure 1 shows a chart of the test region with the
measurement sites and the tracks on which the mea-
surements were carried out. In this shelf region of the
Sea of Japan, an unusual semidiurnal tide is observed
with a height of 35 cm. At the same time, a surge related
to wind currents and surface waves plays a considerable
part in sea surface displacements. The summer mon-
soon displaces the seasonal thermocline from the shal-
low-water part of the shelf, and the water layer becomes
almost homogeneous in temperature. However, in
autumn, due to the long-term action of the north and
northwest winds, the cool near-bottom water returns to
the shallow-water region, and this process is accompa-
nied by intense nonlinear IWs [17, 18].
 2005 Pleiades Publishing, Inc.
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Fig. 1. Chart of the test region with the positions of the measuring means, the acoustic tracks, and the crests and propagation direc-
tions of long internal waves (LIWs) measured in autumn of 2001 [17]. Schemes of positioning the Mollusk-02 vertical acoustic–
hydrophysical measuring system and the acoustic–hydrophysical radio buoy (AHRB) in the sea of Japan. Notation: Vityaz’-01 is
the level meter, M-02 is the Mollusk-02 measuring system, ARI-320 is the self-contained resonance transmitter of an acoustic signal
with a frequency of 320 Hz, H is the hydrophone, PTS is the point temperature sensor, and DTS is the distributed temperature sensor
of the resistance type.

Peninsula
The emission of tone and noise acoustic signals was
performed by a piezoceramic transmitter, which was
stationarily positioned at a depth of 37 m at the point
p1[19]. Using the Mollyusk-02 vertical acoustical–
hydrophysical measuring system [20], a self-contained
resonance transmitter (ARI-320), and acoustical–
hydrophysical radio buoys (AHRB), stationary tracks
up to a length of 10.6 km were set up (Fig. 1). The basic
technical characteristics of the measuring means are
presented in [21].

RESULTS OF ACOUSTIC–HYDROPHYSICAL 
MEASUREMENTS AND NUMERICAL 

MODELING

In April 2003, at the point p3 (see Fig. 1), an acous-
tic–hydrophysical radio buoy was placed, and the
ARI-320 transmitter positioned at the point p2 emitted a
TON-320 tone acoustic signal. Signals TON-295 and
TON-450 were emitted at the point p1. The results of
synchronous measurements of acoustic signals and
variations of water temperature at the points M-2 and
p3 are presented in Fig. 2. The variations of the mean
temperature within a 30-m-thick water layer are repre-
sented by the plot of η(t) and were obtained using a dis-
tributed temperature sensor of the AHRB positioned at
the point p3. This plot characterizes the profile of the
IWs propagating over the thermocline [22]. The verti-
cal displacements of the sea surface are represented by
the plot of ξ(t) (the solid line) and were obtained using
the Vityaz’-01 level meter placed near the entrance to
the Vityaz’ Bay (see Fig. 1). In the same figure, the dot-
ted line shows the tide line calculated analytically.
From Fig. 2, one can see that the theoretical curve cor-
rectly predicts the phases and the character of the tide
in this region. Therefore, in analyzing the data obtained
in the experiments in which ξ(t) was not measured, we
will use the theoretical curves.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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In Fig. 2, it is possible to select a group of intense
IWs arriving at the point p3 at about 02:19 on April 26,
2003 (see the plot of η(t)). It is known [17] that, in this
region, the long internal waves (LIWs) induced by the
tidal current and the shorter IWs related to them [7]
propagate nearly along the p2–M-2 track with a speed
of ≈0.30–0.45 m/s. Therefore, this group of IWs should
arrive at the point M-2 within approximately 4 h. In the
plots of (t) obtained with the use of seven distributed
temperature sensors of the M-02 measuring system at
nearly the same time (5:00 to 9:00 on April 26, 2003),
a group of nonlinear IWs is clearly visible. As follows
from Fig. 2, the intense IWs causing synchronous vertical
displacements of isotherms by ≈4.5 m in a 27-m-thick
water layer are observed when bases of the LIWs pass
by (see the curves (t) at 07:02, April 26 and 01:52,
April 27). Theoretically, the LIW can be generated at
the shelf edge by a hydraulic jump [4]. Such a jump can
begin to propagate upstream, in the coast direction, as
an LIW undergoing considerable nonlinear transforma-
tions [7] that are accompanied by energy transfer to the
shorter IWs (see the plot of η(t) in the interval 00:00 to
07:00 on April 26, 2003). However, the jump can also
retain its space–time scale (see the plot of η(t) in the
interval 15:00 to 20:00 and the curves (t) in the inter-
val 20:00 to 22:00 on April 26, 2003). Now consider in
more detail the spatial–temporal formation of cool
water, which is conditionally denoted as LIW in Fig. 2.
The speed of its propagation from the point p3 to M-2
is 0.4 m/s, which agrees well with the results of mea-
surements carried out in this region in October 2001
[17]. According to the plot of ξ(t), the speed of the tidal
current at the shelf edge was maximum approximately
at 04:00 on April 26, 2003. If the LIW induced at this
phase of the surface tide propagated with a speed of
0.4 m/s, it would arrive at the point p3 within 12 h.
Therefore, we can assume that the LIW is truly related
to the tide and began its motion toward the beach
against the tidal current, which agrees well with the
model proposed in [4]. Its spatial scale in the shallow-
water part of the shelf is about 6.5 km, according to the
measurements at the point p3.

Let us consider the results of the acoustic measure-
ments. Figure 2 shows the plots of intensity variations
I(t) of acoustic signals with different frequencies and
propagating along different tracks: TON-320 Hz prop-
agated along the p2–p3 (6.6 km) and p2–M-2 (10.6 km)
tracks; TON-295 and TON-450 Hz were generated at
the point p1 and propagated along the p1–p3 (4.7 km)
and p1–M-2 (510 m) tracks. The results of synchronous
measurements at the points p3 and M-2 (see Fig.1)
allow one to estimate the effect of IWs at different dis-
tances from the emission point of the TON-320 signal
(p2); the acoustic signals TON-320 and TON-295 prop-
agated along nearly the same track but in opposite
directions. Let us compare the variations of signal inten-
sities within the time interval from 22:48 (April 25) to
11:44 (April 26) that corresponds to the transmission of

T

T

T

a group of intense nonlinear IWs along the p2–M-2
track. From Fig. 2, it is seen that, at the deep-water part
of the p2–p3 track, the IWs do not produce any consid-
erable effect on the sound field formed near the bottom
by the TON-320 signal at the point p3 (variations of I(t)
do not exceed 5 dB). At the transmission of the IWs
near the point M-2, the short-period variations of I(t) at
this point reached 15 dB in both the near-bottom (plot 1)
and subsurface (plot 7) water layers. The variations I(t)
of the TON-295 signal measured at the point p3 also
reach ≈15 dB at the passage of the IWs over the emis-
sion and reception points. For this time interval, the plot
of I(t) (TON-450) is similar to that of η(t).

The observed intensity variations of the acoustic
field, which were measured by hydrophones at fixed
depths at the passage of IWs near the point of reception,
can be caused by changes in the vertical interference
structure of the acoustic field. The inteference can be
induced by the refraction of acoustic waves by spatial
acoustic inhomogeneities generated by the IWs. Appar-
ently, it is also necessary to take into account the effect
of IWs on the mode structure of the sound field, since
the IWs change the spatial distribution of the sound
velocity field over the source. For estimating these
effects, numerical modeling was performed in the
mode adiabatic approximation. The results of the
numerical experiment are presented in Fig. 3. The
model waveguide has the form of a three-layer structure
with a liquid sediment layer and a liquid basement. The
water layer consists of a subsurface homogeneous layer
with sound velocity C = 1490 m/s and a near bottom
homogeneous layer with C = 1470 m/s. Between these
layers, a 10-m-thick thermocline is present, with the
sound velocity linearly varying from 1490 to 1470 m/s.
The sound source is located at the initial point of the
track at a depth of 64 m. The dotted line shows the shift
of thermocline boundaries caused by a model solitary
internal wave 10 m in height and 300 m in width at the
base. In the numerical experiment, a spatial inhomoge-
neity formed by this wave in the sound velocity field
propagated with a speed of 0.4 m/s along an inhomoge-
neous waveguide whose geometry was similar to that of
the full-scale experiment.

Figure 3b shows the results of calculating the trans-
mission loss by using a modified MOATL code [23] for
eight depths for 320-Hz sound propagating in the given
waveguide [23]. The zero instant of time corresponds to
the internal wave passage above the sound source,
while the time instant 7.2 h corresponds to the passage
of the model internal wave through the point on the
track where the vertical measuring system was posi-
tioned. From Fig. 3b, it is seen that, at the point of
reception, relatively short time variations of the acous-
tic field intensity are maximum when the model acous-
tic inhomogeneity moves near the points of emission
and reception. The greatest amplitudes of variations are
observed at depths corresponding to minima in the spa-
tial interference structures of the acoustic field formed
in the waveguide. Thus, the results of modeling agree
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005



        

THE EFFECT OF INTERNAL WAVES ON THE SOUND PROPAGATION IN THE SHELF ZONE 453

 

–75

0

I(
t)

, d
B

Time, h

70

0 1

D
ep

th
, m

Distance, km

–65

–55

–45

–85
1 2 3 4 5 6 7 8

5.5 m
10.0
14.5
19.0
23.5
28.0
32.5
37.0

2 3 4 5 6 7 8 9 10

60

50

40

30

10

20

0

80

C = 1490 m/s

C = 1470 m/s

V = 0.4 m/s

Water layer

Sediments

Basement

C = 1800 m/s

C = 4500 m/s
ρ = 2000 kg/m3

ρ = 2000 kg/m3

(‡)

(b)

Fig. 3. (a) Geometry and parameters of the model waveguide. (b) Intensity variations I(t) of sound with a frequency of 320 Hz at
eight depths in the course of the motion of the acoustic inhomogeneity along the waveguide, where the inhomogeneity is formed
from the thermocline by a model internal wave propagating through it.
well with the full-scale data. Besides, from Fig. 2b, it is
seen that short-period variations of I(t) are truly maxi-
mum in the acoustic signals measured by the hydro-
phones located at the interference minima of the acous-
tic field. This effect was interpreted in [15].

As an example, Fig. 4 illustrates the effect of
waveguides generated by the crests of the IWs on the
vertical interference structure of the acoustic field
formed by tone (with a frequency of 310 Hz) and noise
signals emitted at the point p1. The sound propagated
along the p1–M-2 track oriented almost parallel to the
crests of the IWs. An analysis of the influence of IWs
on the interference structure of the acoustic field gener-
ated by a noise signal [15, 17] showed that the IWs
noticeably effect both the spatial and frequency inter-
ference structures of the acoustic field. Therefore, it is
possible, by means of averaging the power spectral den-
sity of the acoustic field in a wide frequency band and
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
using algorithm (1), to eliminate the effects caused by
the IWs in the frequency interference and to select the
synchronous (in the frequency range fn – fm) variations
in the vertical interference structure of the noise field:

(1)

where G( fn) is the value of the periodogram at the fre-

quency fn = , fd is the digitization frequency, and N

is the length of the series used to calculate the peri-
odogram by the fast Fourier transformation (FFT).

As follows from Fig. 4, the effects caused by the
IWs are more pronounced in the plots of (t) obtained
by algorithm (1). However, the mean intensity of the
acoustic field varies with the periods exceeding those of
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the IWs observed at the point M-2 (see the plots of
(t)). Apparently, the IWs intersected the p1–M-2

track at an angle smaller than 90°.

RESULTS OF OBSERVATIONS IN WINTER 
HYDROLOGICAL CONDITIONS

In February of 1995, in the given shelf region, a sta-
tionary acoustic track was set up with a transmitter
located in the coastal zone and a receiving radio
hydroacoustic station positioned 15 km away from the
coast and providing measurements of acoustic pressure
near the bottom during 2.5 days [24]. The temperature
measurements performed with the use of reversing
mercury thermometers showed that, in winter in the
coastal zone, a relatively cold (–1.8°ë) and, therefore,
heavy water mass is formed, which moves toward the
shelf edge. On the other hand, a horizontal advection of
the warmer water (0.5°ë) of the Sea of Japan into the
shelf zone is observed, which leads to the formation of
a dynamic temperature front extending along the shelf
and affecting the sound propagating through it.

T

Figure 5 shows the results of acoustic–hydrophysi-

cal measurements carried out on the p1–M-2 track in
December 2002, and in March 2003. Tone (TON-240,
TON-450) and noise acoustic signals were continu-
ously emitted at the point p1. The plots of T(t) shown in
Fig. 5 correspond to the measurements carried out with
eight point temperature sensors of the M-02 system.
These plots quantitatively illustrate the variations in the
vertical distribution of the temperature field during the
active phase of convective cooling of water (Fig. 5a), as
evidenced by the temperature inversions. Unfortu-
nately, the figure is black and white and, therefore, the
inversions are not visible. Figure 5 (see the plots of T(t))
shows that, under winter hydrological conditions, the
LIWs play an important role in the hydrodynamic pro-
cesses on the shelf. The IWs induce synchronous verti-
cal displacements of isotherms in the whole 30-m-thick
test water layer.

Thus, from the results of measurements carried out
in different seasons by the Mollusk-02 vertical acous-
tic–hydrophysical measuring system, it follows that the
LIW and the IWs related to it are present in this shelf
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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Fig. 5. Variations of water temperature and intensities of tone acoustic signals propagating along the p1–M-2 track. The measure-
ments were carried out under winter hydrological conditions using the M-02 system. The plots of ξ(t) refer to the theoretical surface
tide.
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region of the Sea of Japan at all times of the year.
Apparently, the orbital motions of water particles in the
IWs play an important role in winter convective pro-
cesses on the shelf. As follows from Fig. 5, in winter,
because of the small value of the vertical temperature
gradient in water (≈0.032°C/m) and, hence, the small
sound velocity gradient, the effect of the LIWs and IWs
on the sound propagation along the p1–M-2 track
becomes insignificant compared to the effect of the sur-
face tide, which causes changes in the water layer thick-
ness according to the plots of ξ(t) presented in Fig. 5.
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Abstract—Operations of the type of taking the logarithm, summation, and time delay can be used by a simple
operator, which, with different values of frequency and time parameters, creates different transformations of the
current spectrum. This operator simulates such properties of auditory perception as temporal and frequency mask-
ing, effects of turning on and off a stimulus, selective response to transients with different rates, detection of ampli-
tude and frequency modulations, and adaptation to the mean signal level. © 2005 Pleiades Publishing, Inc.
Most of the modern automatic speech recognition
systems use formal mathematics for the primary
description of the speech signal. This may be either the
Fourier transformation in a moving window with a
weighting function or 10–12 coefficients of the current
cepstrum, often together with the first and second time
derivatives. Such a description only gives a vague idea
of the actual speech signal features. Therefore, the
properties of the auditory system have become of spe-
cial interest to researchers.

Different models of auditory analysis were pro-
posed and then implemented in speech recognition sys-
tems [1–4]. In [5], the synchronism of responses in dif-
ferent frequency channels was studied, and the results
were used to determine the formant frequencies. The
data on the critical bands of hearing and on the nonuni-
form frequency dependence of hearing sensitivity were
realized in a “perceptual linear predictive” (PLP) sys-
tem [6].

At the same time, the physiology of hearing has
some properties that may be directly related to the
description of the speech signal but that are not imple-
mented in automatic speech recognition systems. The
auditory cortex contains neurons selectively respond-
ing to switching on and off a stimulus [7, 8]. Structures
specializing in the detection of amplitude modulations
are also present in the auditory system [9, 10], and
some of the neurons possess a threshold for the rate of
change of the sound signal envelope [11]. Auditory
neurons also respond to frequency modulations in the
signal [12]. Some neurons of the auditory cortex selec-
tively respond to an increase or decrease in frequency
[13, 14].

The auditory system was found to possess different
integration time constants. A value close to 2 ms was
obtained in [15], and a time constant of about 10 ms
was reported in [16, 17]. In [18], adaptation intervals of
150–300 ms with the corresponding time constants of
1063-7710/05/5104- $26.00 0457
50–100 ms were determined. Even greater time con-
stants (200–300 ms) characterize the mechanism of
hearing adaptation to the mean sound level. The authors
of [19] proposed a smoothing of the spectral compo-
nents of the speech signal with a time constant of 170–
220 ms.

Effects of temporal masking, i.e., a dependence of
the perception of a stimulus or a speech segment on the
preceding and following signals, were observed for test
signals [20] and in the perception of speech [21].

The reproduction of the known properties of percep-
tion in mathematical models of the primary analysis of
speech signals may contribute to the stability of auto-
matic speech recognition systems against external
noise and distortions and also reduce the effect of the
speaker-related variability of speech patterns.

In what follows, the spectrum S(ω, t) means the

power spectrum S(ω, t) = | ( jω, t)|2, where ( jω, t) is
the complex spectrum of the speech signal. The
dynamic spectrum of a distorted speech signal at the
input of a recognition system has the form

(1)

where X(ω, t) is the frequency–time characteristic of
the vocal tract, V(ω, t) is the characteristic of the source
of excitation, and ζ(ω, t) is the dynamic spectrum of
additive noise. The transfer function of the channel
K(ω, t) can be represented in the form of the product of
components depending on the speech signal and inde-
pendent of it:

K(ω, t) = m(ω, t)r(X, ω, t), (2)

where m(ω, t) is the speech-independent amplitude–
frequency characteristic of the microphone and the
communication channel and r(X, ω, t) is the character-
istic of the frequency–time distortions depending on the
speech signal, such as microphone-related nonlinear

S̃ S̃

S ω t,( ) K ω t,( ) V ω t,( )X ω t,( ) ζ ω t,( )+[ ] ,=
© 2005 Pleiades Publishing, Inc.
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distortions or room reverberation. A logarithmic trans-
formation of Eq. (1) yields

(3)

The presence of additive noise prevents the separation
of the characteristics of the source of excitation V(ω, t)
from those of the vocal tract X(ω, t). Let us assume that
additive noise is suppressed to a negligibly small level,
for example, by a spectral subtraction [22]. Then, we
have

(4)

Generally speaking, by filtering out additive noise, it
is also possible to distort the frequency–time character-
istic of the speech signal. However, to simplify the fol-
lowing discussion, we assume that this distortion is
absent. The extraction of the speech signal characteris-
tics from the mixture given by Eq. (4) is only possible
when their spectral–time parameters do not intersect
with the distortion parameters. The amplitude–fre-
quency characteristic of the communication channel
m(ω, t) may slowly vary with time in comparison with
the speech signal characteristic X(ω, t), whereas the
characteristic of the source of excitation V(ω, t) may
vary much faster. In this case, the filtering in the region
of the modulation spectra, i.e., spectra of the time signal
for each of the frequency components ω, suppresses the
spectral components outside the region of the speech
modulation spectrum. Experimentally, it was found that
the modulation spectra of speech signals can be con-
fined within a band of 2–16 Hz [23], and this property
was used to increase the stability of speech recognition
systems [24, 25].

Along with the suppression of distortions and noise,
it is necessary to describe the speech signal so as to
reproduce most adequately the variety of properties of
phonetic and acoustic speech segments. According to
[26], the responses to transient processes and to a
steady sound stimulus occur in different parts of the
human auditory cortex. This testifies that the analysis of
the dynamics of a sound signal and its quasi-stationary
spectral composition is likely to be performed by
applying different types of processing to the data arriv-
ing from the internal ear.

Consider an operator that uses only those mathemat-
ical operations whose analogs are known to exist in the
auditory system: summation, subtraction, integration
with respect to time and frequency, delay in time,
smoothing with different time constants, and an almost
logarithmic transformation of the input signal ampli-
tude

(5)

S ω t,( )log m ω t,( )log r X ω t, ,( )log+=

+ V ω t,( )X ω t,( ) ζ ω t,( )+[ ] .log

S ω t,( )log m ω t,( )log≈
+ r X ω t, ,( )log V ω t,( )log X ω t,( ).log+ +

A ω t,( )
S ω ∆Ω θ1 t ∆T1 τ1,±, ,+( ) C+
S ω ∆Ω θ2 t ∆T2 τ2,+−, ,–( ) C+
--------------------------------------------------------------------------.log=
This operator describes the acoustic (nonspecific)
detectors of spectrum–time inhomogeneities of the sig-
nal and models many of the known properties of audi-
tory perception. Here, S is the power spectrum of the
received signal separated from additive noise, ∆Ω is the
frequency shift of the spectrum reading, ∆T is the time
shift of the spectrum reading, θ1 and θ2 are the moving
intervals of smoothing the spectrum in frequency, τ1
and τ2 are the time constants of smoothing the spectral
components by a first-order filter, and C ≥ 1.

At certain values of the parameters ∆Ω, θ1, θ2, and
C, the function A(ω, t) is invariant with respect to the
time-constant amplification coefficient K(ω) for each of
the frequency components ω, which provides for the
independence from the stationary amplitude–frequency
characteristic of the communication channel, including
the independence from the amplification coefficient.
However, this property only holds for the channels in
which the amplification coefficient is nonzero at certain
frequencies. At other values of the parameters ∆Ω, θ1,
θ2, and C, the function A(ω, t) weakly depends on K(ω).

A total invariance to the sound level is undesirable,
because, in this case, weak noise fluctuations in the
communication channel acquire weight equal to that of
the speech signal. In addition, the speech intelligibility
is known to depend on the sound level, which manifests
itself most clearly in the perception of foreign speech
when the listener is not quite familiar with the lan-
guage. The choice of the constant C is determined by
the compromise between the sensitivity of the detector
to small signal fluctuations and its sensitivity to the
nonuniform amplitude–frequency characteristic of the
channel. To describe most clearly the properties of
operator (5), we set C = 0 and ignore the possibility of
the situation with log(0).

Let us consider several particular cases. At τ1 = 0,
τ2 = 0, ∆Ω = 0, θ1 = 0, θ2 = 0, ∆T1  0, and ∆T2  0,
operator (5) calculates the logarithmic derivative with
respect to time:

(6)

because the second term in Eq. (6) is the central differ-
ence converging to the derivative ∂S(ω, t)/∂t at δt  0.
The operator A(ω, t) given by formula (6) possesses the
properties of the detector of the beginning and end of
the signal: the rise of the signal (positive derivative)
corresponds to A(ω, t) > 0, and the drop of the signal
(negative derivative) corresponds to A(ω, t) < 0; within
the stationary part of the signal with zero derivative,
A(ω, t) = 0. At finite values of ∆T1 = ∆T2 = ∆T, A(ω, t)
is invariant with respect to the constant amplification
coefficient K(ω). A finite interval of 2∆T corresponds to
sampling of the function A(ω, t) in time at a step of 2∆T,
and, according to the Nyquist–Kotel’nikov theorem, an
increase in this interval leads to a decrease in the high-
est frequency retained in the spectrum A(ω, t), i.e., to

A ω t,( ) S ω t δt+,( )log=

– S ω t δt–,( )log 2δt S ω t,( )log[ ] ',=
δt → 0
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the smoothing of the function A(ω, t) in time. There-
fore, the calculation of the finite difference on the inter-
val 2∆T leads to the smoothing of the first derivative of
the signal. This contributes to the suppression of high-
frequency noise. When τ1 ≠ 0 and τ2 ≠ 0, an additional
smoothing of the signal with the suppression of differ-
ent high-frequency components takes place.

At θ1 = 0, θ2 = 0, and ∆Ω = 0, i.e., in the case of only
temporal signal processing, operator A(ω, t) simulta-
neously responds to changes in both amplitude and
spectral composition of the signal. The time interval
∆T1 + ∆T2 determines the duration of the segment, at
the ends of which signal readings are taken and the rate
of the relative spectrum variation is estimated. This
interval is different for different combinations of artic-
ulatory or acoustic events, i.e., transitions from one
state to another. The time constants τ1 and τ2 should
also be different. For example, for an estimate of the
transient process between a nonaspiratory stop conso-
nant and the following vowel, the time constants and
the interval of analysis should be small. At the same
time, the spectrum of fricative consonants varies within
a relatively long interval of time, and the parameters τ1,
τ2, ∆T1, and ∆T2 should correspond to these features.

Vowels, fricatives, and nasal, voiced, and voiceless
closures have quasi-stationary segments characterized
by their own spectra. It is desirable to find such a spec-
trum description that is little sensitive to distortions of
the amplitude–frequency characteristic of the channel
but that retains the informative features of the speech
sound spectra.

At θ1 = 0, θ2 = 0, τ1 = 0, τ2 = 0, ∆T1 = 0, ∆T2 = 0, and
∆Ω  0, as in Eq. (6), A(ω, t) taken in the limit esti-
mates the instantaneous derivative of the spectrum,
however, with respect to frequency rather than with
respect to time:

(7)

where the prime now denotes the derivative with
respect to ω. Representing Eq. (7) in the form

(8)

one can see that Eq. (8) estimates the rate of spectrum
variation in frequency, this rate being normalized by the
spectral value at the given frequency. As in the case of
Eq. (6), an increase in the interval between the spec-
trum readings in frequency is equivalent to a smoothing
of the derivative, which suppresses random fluctuations
of the spectrum readings. The logarithmic derivative
with respect to frequency is sensitive to the nonunifor-
mity of the amplitude–frequency characteristic of the
channel:

A ω t,( ) S ω ∆Ω t,+( ) ,log=

– S ω ∆Ω t,–( )log 2∆Ω S ω t,( )log[ ] ',=
∆Ω → 0

A ω t,( ) 2∆ΩS' ω t,( )
S ω t,( )
------------------,=

S' ω t,( )
S ω t,( )
------------------ K' ω t,( )

K ω t,( )
-------------------

V ω t,( )X ω t,( )[ ] '
V ω t,( )X ω t,( )

------------------------------------------.+=
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Nevertheless, when the amplitude–frequency char-
acteristic of the channel does not vary with time, the
subsequent processing of the dynamic spectrum of the
signal with the calculation of the logarithmic time
derivative provides for invariance to the perturbing
term K'(ω)/K(ω) or reduces its influence, as in the case
of Eq. (6).

Spectral peaks corresponding to the resonance fre-
quencies can merge, as often happens for the first and
second resonances of the vowels /o, u/. In this case, an
exact estimate of formant frequencies through the
search for the extrema of the spectrum is impossible.
The value of the frequency interval between the max-
ima of the positive and negative frequency derivatives
and its comparison with the expected bandwidth of the
formant at a given frequency may indicate the presence
of two formants and will allow an approximate estimate
of their frequencies. In some cases, the position of the
maximum of the negative derivative in the low-fre-
quency region clearly discriminates the voiced and
nasal closures, while the position of the maximum of
the positive derivative in the high-frequency region dis-
tinguishes the fricatives /s, sh/.

At τ1 = 0, τ2 = 0, θ1 = 0, θ2 = 0, ∆T1 = ∆T2  0, and
∆Ω  0, operator (5) estimates the combined deriva-
tive with respect to frequency and time with normaliza-
tion to the spectrum reading at the frequency ω at the
instant t; i.e., it calculates the energy gradient of sono-
grams.

Parameters θ1 and θ2 normalize the signal spectrum
to the moving average:

(9)

This operation is analogous to the so-called lateral sup-
pression in the frequency domain. If the average over
the interval 2θ1 is equal to the average over the interval

2θ2, we have (ω, t) = 0. This corresponds to the spec-
trum parts with a strictly linear dependence on fre-
quency, in particular those with a constant level. Posi-
tive values (ω, t) > 0 occur only for convex parts of

the locally normalized spectral section (ω, t). For con-
cave parts, the spectral section normalized by Eq. (9) is

(ω, t) < 1 and, hence, (ω, t) < 0. If we impose a

limitation on the negative values of (ω, t), i.e., if we

require that (ω, t) = 1 each time when

(10)

then such parts of the spectrum will also be “invisible,”
because (ω, t) = 0. As a result, the spectral section
will contain local maxima determined within different

S ω t,( ) θ2 S ω t,( ) ω/ θ1 S ω t,( ) ωd

ω θ2–

ω θ2+

∫ .d

ω θ1–

ω θ1+

∫=

A

A

S

S Slog

A

S

θ1 S ω t,( ) ω θ2 S ω t,( ) ω,d

ω θ1–

ω θ1+

∫>d

ω θ2–

ω θ2+

∫

A
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frequency intervals. These maxima may be identified as
the resonances of the mouth cavity and subglottal area.

A local normalization of the spectrum leads to a
kind of equalization of the high and low levels by
reducing the sensitivity to transformations of the Lom-
bard-effect type, changes in the spectrum slope due to
differentiation or integration in the time domain (which
are equivalent to multiplication or division by ω), and
different spectral characteristics of the sources of
acoustic vibration excitation in the vocal tract. Trans-
formation (9) retains the dependence on K(ω), but, in
the determination of the frequencies of the spectral
maxima, the influence of the nonuniform amplitude–
frequency characteristic of the communication channel
can be negligible.

In the particular case, at θ1 = 0 and θ2 = Θ, where Θ
is the upper bound of the frequency spectrum of the sig-
nal, the normalization to the total signal energy in the
whole frequency range at every instant of time is per-
formed:

(11)

Then, the normalized detector is represented as

(12)

Let the spectral composition of the signal be con-
stant in time and only the amplitude of the signal vary:
S(ω, t) = G(t)H(ω). Then, the normalized spectrum
does not vary with time:

(13)

In the case of, e.g., τ1 = 0, τ2 = 0, and ∆Ω = 0, we obtain

(14)

because the values of (ω) are the same at different

instants ∆T1 and ∆T2. If τ1 ≠ 0 and τ2 ≠ 0, (ω, t) =
const after the termination of the transient processes.
This case corresponds to an idealized description of the
beginning of a vowel or a fricative after a pause or their
termination before a pause, when the spectral composi-
tion of the sound does not change, while its energy
either increases or decreases. The detectors of normal-
ized signals, (ω, t), for all frequency components of
the sound spectrum will notice the passage from the
pause spectrum to the speech segment spectrum (or in
the opposite direction) but will not respond to the
change in amplitude, whereas the detectors of nonnor-
malized signals A(ω, t) will notice the transient pro-

S ω t,( ) ΘS ω t,( )/ S ω t,( ) ω.d

0

Θ

∫=

A ω t,( )
S ω ∆Ω t ∆T1 τ1,±,+( )

S ω ∆Ω Θ t ∆T2 τ2,+−, ,–( )
--------------------------------------------------------------.log=

S ω t,( ) ΘG t( )H ω( )/ G t( )H ω( ) ωd

0

Θ

∫ S ω( ).= =

A ω t,( )
S ω t ∆T1 τ1,±,( )
S ω t ∆T2 τ2,+−,( )
----------------------------------------log 0,= =

S

A

A

cesses. Thus, the detectors (ω, t) mainly respond to
energy redistribution over the spectrum, while the
detectors A(ω, t) respond to both amplitude variations
and changes in the spectral composition of the signal.
Detectors (ω, t) retain the properties of A(ω, t) for a
time-invariable amplitude–frequency characteristic of
the channel.

The spectral–time patterns of the speech signal dif-
fer depending on whether the operations are performed
in only the time or only the frequency domain or the
temporal processing is performed before or after the
frequency processing.

The figure shows the results of the speech signal
processing for the sequence of words odin, shest',
chetyre by using the operator with different parameters.
The apostrophe marking the symbols means palatalized
consonants, the symbol vh means aspiration at the end
of a word, the symbol Th means aspiratory stop, the
symbol T! means nonaspiratory stop, and the symbol z#
means the beginning of a pause between words. The
plot below the speech signal represents the sonogram
calculated on the mel scale and smoothed in frequency
by triangular filters (with slopes of +25 dB/Bark and
−10 dB/Bark). The plot below the sonogram shows the
“detectograms,” i.e., the positive responses of the opera-
tor with the parameters θ1 = 0, θ2 = 0, ∆Ω = 0, τ1 = 5 ms,
τ2 = 15 ms, ∆T1 = 0, and ∆T2 = –25 ms, and the inverted
“detectogram” for the negative responses of the opera-
tor with the same parameters. The next plot below is the
sonogram that was frequency normalized on moving
intervals θ1 = 40 mel and θ2 = 600 mel. The lowest plot
shows the positive finite differences of the spectrum in
frequency, which are calculated on a 120-mel interval.

As one can see from the figure, the detectors of the
rise and fall of energy in time notice the beginning and
end of transients. However, this is not the only role of
the dynamic detectors. The energy distribution in fre-
quency at every given instant also characterizes the
spectral composition of transients. The locally normal-
ized spectrogram more clearly distinguishes between
the trajectories of the energy peaks, as compared to the
initial sonogram. The positive “derivative” emphasizes
the difference in the cutoff frequencies of the spectra
for the fricatives /sh/ and /s/.

Operator (5) reproduces many properties observed
in the auditory system. By choosing the parameters θ1,
θ2, ∆Ω, τ1, τ2, ∆T1, and ∆T2 with an allowance made
for the dynamic and spectral characteristics of phonetic
and acoustic segments of the speech signal, it is possi-
ble to reduce the influence of amplitude–frequency dis-
tortions of the speech signal and to emphasize the char-
acteristic features of speech segments. Thus, one
obtains a multilayer description of a speech flow with
different resolving powers in the frequency and time
domains, which is necessary for an adequate segmenta-
tion and subsequent decoding of the speech signal.

A

A
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Words odin, shest', chetyre. From top to bottom: oscillogram of the speech signal, sonogram, response of the dynamic detector to
the energy rise, response of the dynamic detector to the energy drop, sonogram normalized by an interval moving in frequency, and
finite difference in frequency (explanations are given in the main body of the paper).
A system of dynamic detectors in chosen frequency
bands was tested in the recognition of Russian numer-
als from a speech data base obtained from 47 speakers
with the use of three types of microphones placed at
different distances from a speaker, two types of hand-
sets, two types of nonprofessional A/D converters, and
a simulator of a telephone communication channel. For
some speakers, the signal-to-noise ratio in this base did
not exceed 10 dB. The structure of the speech recogni-
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
tion system was described in [27]. The mean error in
the recognition of single words was found to be about
11.7%.
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Abstract—The effect of a radially nonuniform steady-state liquid flow in the outlet of a centrifugal pump on
the excitation of sound waves in it by a source of oscillations positioned in the inlet cross section of the impeller
is analyzed. It is shown that a change in the velocity of the potential rotation of the liquid in the outlet almost
does not affect the resonance frequency values in the frequency range of sound oscillations under consideration
(the difference is less than 2%). A similar change (an increase) in the velocity of the solid-state rotation of the
flow leads to a small (from 2 to 10%) increase in the resonance frequencies within the same frequency range.
© 2005 Pleiades Publishing, Inc.
Centrifugal pumps are known to be capable of
working in a wide range of volume discharges (capaci-
ties) [1]. The use of centrifugal pumps in the whole
range of possible capacities is primarily limited by the
hydrodynamic vibration that arises when they operate
at low capacities. The hydrodynamic vibration reduces
the performance of pumps, causes an increase in the
power consumption, wears out the equipment, and pro-
duces an adverse ecological effect. One of the sources
of this type of vibration may be the resonance excita-
tion of sound by the disturbances of liquid that arise, for
example, at the interaction of moving and stationary
blade cascades. In this connection, it is of interest to
consider the effect of a radially nonuniform steady-
state liquid flow in the outlet of a centrifugal pump on
the excitation of sound waves in it by a source of oscil-
lations positioned in the inlet cross section of the impel-
ler. This problem is close to that of a silencer with a
hole in the screen separating the moving and stationary
media and operating in the presence of an air flow. The
study of the effect of a flow on the acoustical character-
istics of holes while taking into account their finite
width is a complicated problem, various aspects of
which are considered in [2–6].

As an initial set of equations describing the propa-
gation of sound waves in the outlet, we use the follow-
ing linearized equations:

the continuity equation

(1)iωrρ ρ0r
∂v
∂r
------- ρ0v U0

∂ρ
∂ϕ
------ ρ0

∂u
∂ϕ
------+ ++ + 0,=
1063-7710/05/5104- $26.00 0463
the projections of the Euler vector equation of motion
on the circular and radial directions of a cylindrical
coordinate system r, ϕ, z (figure)

(2)

(3)

and the equation of state

(4)

where u and v  are the circular and radial components of
the oscillating particle velocity in the outlet, respec-
tively; ρ and p are the fluctuations of density and pres-
sure of the liquid in the outlet, respectively; ρ0 and U0
are the steady-state values of the density (ρ0 = const)
and of the projection of the liquid velocity vector in the
outlet on the circular direction, respectively; c is the
sound speed in the stationary medium; ω is the angular
frequency of oscillations; r and ϕ are the radial and
angular coordinates, respectively; and i is the imaginary
unit.

Equations (1)–(3) were derived under the following
assumptions:

(i) the sound source generates harmonic oscillations
of frequency ω;

(ii) the steady-state flow in the outlet is mainly real-
ized in the circular direction with the velocity U0 vary-
ing in the radial direction and independent of the axial
coordinate z, which is perpendicular to the plane of the
outlet drawing in the figure; the oscillating components
of the dependent variables in Eqs. (1)–(3) are also
assumed to be independent of the z coordinate;

v
r
----

d rU0( )
dr

-----------------
U0

r
------ ∂u

∂ϕ
------ iωu

1
rρ0
-------- ∂p

∂ϕ
------+ + + 0,=

iωv
U0

r
------∂v

∂ϕ
-------

2U0u
r

-------------–
1
ρ0
-----∂p

∂r
------+ + 0,=

ρ p/c2,=
© 2005 Pleiades Publishing, Inc.
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(iii) the effect of the impeller rotation on the sound
propagation is neglected; the effect of the outlet orifice
is also neglected.

Since the dependent variables involved in set of equa-
tions (1)–(4) should be periodic in the ϕ coordinate, the
solution to this set of equations can be written as

(5)

where f(r, ϕ) denotes the dependent variables involved
in set of equations (1)–(4): ρ, v , u, and p. Then, taking
into account Eqs. (4) and (5), set of equations (1)–(3)
takes the form

(6)

(7)

(8)

Considering Eqs. (7) and (8) as a set of algebraic equa-
tions with respect to the unknowns v  and u, we find the
expressions for v  and u in terms of ρ:

(9)

f r ϕ,( ) f r( ) imϕ–( ),exp=

iωrρ ρ0r
∂v
∂r
------- ρ0v imU0ρ– imρ0u–+ + 0,=

1
r
---

d rU0( )
dr

-----------------v im
U0

r
------u– iωu

imc2

rρ0
-----------ρ–+ 0,=

iωv im
U0

r
------v

2U0

r
---------u–

c2

ρ0
-----∂ρ

∂r
------+– 0.=

v i

m2
U0

r2
------ c2

ρ0
-----ρ– ω m

U0

r
------– 

  c2

ρ0
-----∂ρ

∂r
------+

ω m
U0

r
------– 

 
2

2
U0

r2
------

d rU0( )
dr

-----------------–

---------------------------------------------------------------------------,=

0
0

1
2

1

r
ϕ

d1

0

2

0

h

s
d2

A centrifugal pump.
(10)

By substituting Eqs. (9) and (10) into continuity equa-
tion (6), it is possible to obtain an equation for the den-
sity perturbation for an arbitrary dependence of the
steady-state circular component of liquid velocity in the
outlet U0 on the radial coordinate r. This equation is not
given here because of its awkwardness. In addition, it
should be noted that the analytical solution of this equa-
tion is rather complicated. However, for some particu-
lar forms of the function U0 = U0(r) that are of practical
importance, this equation can be simplified and its solu-
tion becomes possible.

If the solution for the density perturbation ρ(r) is
found, then, using Eqs. (4), (9), and (10), it is possible
to obtain the functions p(r), v(r), and u(r). To complete
the problem formulation, we specify the boundary con-
ditions.

At the outer radius of the outlet, the no-leakage con-
dition is satisfied, which implies that the radial compo-
nent of the oscillating particle velocity equals zero:

(11)

where d2 is the diameter of the impeller and h is the
height of the outlet (h = const).

The other boundary separates the moving medium
in the outlet from the medium in the blade channels of
the impeller, which, on the average, is stationary. This

boundary is given by the equation r =  + η(ϕ, t) and

is characterized by the continuity of the small boundary
displacement η(ϕ, t):

(12)

as well as by the continuity of the pressure fluctuation

(13)

Here, Pk2 is the pressure fluctuation of the liquid at the
outlet of the blade channel of the impeller.

The radial component of the oscillating particle
velocity of liquid in the outlet at the boundary separat-
ing the moving medium in the outlet from the stationary

u

1
r
---

d rU0( )
dr

----------------- c2

ρ0
-----∂ρ

∂r
------ ω m

U0

r
------– 

  c2

ρ0
-----m

r
----ρ–

ω m
U0

r
------– 

 
2

2
U0

r2
------

d rU0( )
dr

-----------------–

----------------------------------------------------------------------------------.–=

v i ω m
U0

r
------– 

  c2

ρ0
-----∂ρ

∂r
------ m2

U0

r2
------ c2

ρ0
-----ρ– 0= =

for r
d2

2
----- h,+=

d2

2
-----

η1 ϕ t,( ) η2 ϕ t,( ) for r
d2

2
-----,= =

ρ r( )c2e imϕ– Pk2 for r
d2

2
-----.= =
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(on the average) medium in the blade channels of the
impeller is determined by the formula

(14)

and the radial component of the oscillating particle
velocity of liquid in the blade channel of the impeller at

the same boundary  is determined by the formula

(15)

Using condition (12) and Eqs. (14) and (15), we obtain
the following differential equation:

(16)

Substituting the function v(r) found from the solution
of set of equations (1)–(4) for r = d2/2 into the left-hand
side of Eq. (16), we obtain

(17)

The solution to inhomogeneous differential equation (17)
has the form

(18)

where C = const.
In the framework of the problem formulation con-

sidered in this paper, the solution to Eq. (18) should be
periodic in the variable ϕ. Consequently, the constant C
has a nonzero value only when

(19)

where n is an integer.
When condition (19) is violated, the boundary con-

dition for the radial component of the oscillating parti-
cle velocity at the boundary separating the moving
medium in the outlet from the stationary (on the aver-
age) medium in the blade channels of the impeller is
determined by the formula

Let the steady-state flow in the outlet represent a
potential rotation with the velocity

(20)

where Γ = const.

v
∂η2

∂t
--------- U0

1
r
---

∂η2

∂ϕ
---------+ iωη2

2U0

d2
---------

∂η2

∂ϕ
---------,+= =

v k2
r

v k2
r ∂η1

∂t
--------- iωη1.= =

v v k2
r 2U0

iωd2
-----------

∂v k2
r

∂ϕ
-----------.+=

v
d2

2
----- 

  imϕ–( )exp v k2
r 2U0

iωd2
-----------

∂v k2
r

∂ϕ
-----------.+=

v k2
r C

iωd2

2U0
-----------ϕ– 

  v d2/2( )

1
m2U0

ωd2
--------------–

----------------------- imϕ–( ),exp+exp=

ωd2

2U0
--------- n,=

v k2
r v d2/2( )

1
m2U0

ωd2
--------------–

----------------------- imϕ–( ).exp=

U0 Γ /r,=
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Then, continuity equation (6) can be represented as

(21)

We restrict our consideration to the high-frequency
oscillations that are generated in high-speed turboma-
chines, for example, in aerodynamic interaction
between moving and stationary cascades [7]. In this

case, it is possible to assume that ε =  ! 1.

Writing Eq. (21) in the linear approximation with
respect to ε, we obtain

(22)

By a direct substitution, one can verify that, within
the accepted accuracy, the following expression is the
solution to Eq. (22):

(23)

where Jν(αr) and Nν(αr) are the Bessel and Neumann
functions, respectively; A = const; B = const; ν2 = m2 +

; and α2 = .

Substituting Eq. (23) into Eq. (9), we use boundary
conditions (11), (13), and (18) to obtain expressions for
A and B and, then, the relation between the pressure and
the radial velocity at the beginning of the outlet:

∂2ρ
∂r2
-------- 4mΓ

r3 ω m
Γ
r2
----– 

 
-----------------------------– 1

r
---+

∂ρ
∂r
------+

+

ω ω m
Γ
r2
----– 

 

c2
-----------------------------

8m2Γ2

r6 ω m
Γ
r2
----– 

  2
-------------------------------+

+ 4mΓ

r4 ω m
Γ
r2
----– 

 
-----------------------------

mΓ ω m
Γ
r2
----– 

 

r2c2
--------------------------------- m2

r2
------–– ρ 0.=

mΓ
ωr2
--------

∂2ρ
∂r2
-------- 1

r
--- 4mΓ

r3ω
-----------–

∂ρ
∂r
------+

+ ω2

c2
------ 2mΓω

r2c2
----------------– 4mΓ

r4ω
----------- m2

r2
------–+ ρ 0.=

ρ mΓ
ωr2
--------– 

  Zν αr( )exp=

=  mΓ
ωr2
--------– 

 exp AJν αr( ) BNν αr( )+[ ] ,

2ωΓm

c2
---------------- ω2

c
2

------
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(24)v k2
r  = 

iαω

ω m
Γ

d2/2( )2
-----------------– 

  2
ρ0

---------------------------------------------Pk2

Nν' α
d2

2
----- h+ 

  Jν' α
d2

2
----- 

  Jν' α
d2

2
----- h+ 

  Nν' α
d2

2
----- 

 +–

D
---------------------------------------------------------------------------------------------------------------------------------- C i

ω
Γ
---- d2/2( )2ϕ– 

  ,exp+
where the prime designates differentiation with respect
to the argument and

Note that, in the case of high-frequency oscillations
under consideration, it is possible to use the asymptotic
representations of the Bessel and Neumann functions.
Then, Eq. (24) takes the form

D Jν' α
d2

2
----- h+ 

  Nν α
d2

2
----- 

 =

– Nν' α
d2

2
----- h+ 

  Jν α
d2

2
----- 

  .
(25)

Substituting the expressions from [8] that relate the
fluctuation amplitudes of the radial velocity and the

pressure at the blade channel outlet,  and Pk2, to the
corresponding amplitudes at the blade channel inlet,

 and Pk1, into Eq. (25), we obtain the impedance
relation at the impeller inlet:

v k2
r iαω

ω m
Γ

d2/2( )2
-----------------– 

  2
ρ0

---------------------------------------------Pk2
αh( )sin
αh( )cos

--------------------=

+ C i
ω
Γ
---- d2/2( )2ϕ– 

  .exp

v k2
r

v k1
r

(26)

v k1
r β2sin

β1sin
------------- 1 kltan

ks2
------------– 

  kl
cωα αh( )tan

ω m
Γ

d2/2( )2
-----------------– 

  2
---------------------------------------- klsin

β1sin
-------------–cos

=  Pk1
iωα αh( )tan

ω m
Γ

d2/2( )2
-----------------– 

  2
ρ0

--------------------------------------------- 1 kltan
ks1

------------+ 
  kl

i β2sin
ρ0c

---------------+ 1 1

k2s1s2

--------------
l

ks1s2
------------ klcot–+ 

  klsincos C i
ω
Γ
---- d2/2( )2ϕ– 

  ,exp+
where k is the wave number of sound oscillations in the

blade channel of the impeller, k = ; l is the length of

the blade channel of the impeller; β1 and β2 are the
angles of the blade orientation at the inlet and outlet of
the impeller, respectively; s1 and s2 are the coordinates
of the inlet and outlet cross sections of the blade chan-
nel; and Pk1 = P1 = const.

The condition for the resonance sound excitation in
the pump is the zero value of the coefficient multiplying

 in Eq. (26):

(27)

The resonance frequencies at the impeller inlet are
determined from the solution of transcendental equa-

ω
c
----

v k1
r

β2sin
β1sin

------------- 1 ωl/c[ ]tan
ωs2/c

------------------------– 
  ωl/c( )cos

–
ω2 ωh/c[ ]tan

ω m
Γ

d2/2( )2
-----------------– 

  2
---------------------------------------- ωl/c( )sin

β1sin
----------------------- 0.=
tion (27), and their values depend on the flow velocity
in the outlet only for nonzero modes of sound oscilla-
tions in the outlet (m ≠ 0). It should be noted that, in
the absence of the flow and when the outlet height is
small compared to the outer radius of the impeller,
i.e., 2h/d2 ! 1, Eq. (27) transforms into the formula for
determining the resonance frequencies derived for the
conditions indicated in [8].

We consider the case when the steady-state flow in
the outlet represents a solid-state rotation with the
velocity

(28)

We introduce the notation λ = ω – mΩ. Let λ ≠ 2Ω .
Then, substituting Eqs. (9) and (10) into Eq. (6) with
allowance for Eq. (28), we obtain

(29)

U0 Ωr.=

r2∂2ρ
∂r2
-------- r

∂ρ
∂r
------ m2– r2λ2 4Ω2–

c2
---------------------+ ρ+ + 0.=
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Let us assume that the velocity of the solid-state
rotation of the liquid in the outlet is much smaller than
the sound speed, Ω2r2/c2 ! 1. Then, Eq. (29) can be
written in the simplified form

(30)

Obviously, the solution to Eq. (30) has the form

r2∂2ρ
∂r2
-------- r

∂ρ
∂r
------ r2λ2

c2
---------- m2– ρ+ + 0.=
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where µ = λ/c, C = const, and E = const.
Now, for the case under consideration, we use a pro-

cedure similar to that described above in the investiga-
tion of the effect of a potentially rotating flow on the
acoustic resonance in a centrifugal pump. As a result,
we obtain the impedance relation at the impeller inlet in
the form

ρ Zm
λ
c
---r 

  CJm µr( ) ENm µr( ),+= =
(31)

v k1
r β2sin

β1sin
------------- 1 kltan

ks2
------------– 

  kl
c klsin

β1sin
--------------- λ mΩ+( )

µh( ) λµ( )2 2Ωm( )2

d2

2
----- h+ 

  d2

2
-----

--------------------------+ λµ 2Ωmh
d2

2
-----

d2

2
----- h+ 

 
--------------------------–tan

λ λ 2 4Ω2–( ) λµ 2Ωm
d2

2
----- h+
-------------- µh( )tan–

----------------------------------------------------------------------------------------------------------------–cos

 
 
 
 
 
 
 
 
 
 
 

=  iPk1 λ mΩ+( )

µh( ) λµ( )2 2Ωm( )2

d2

2
----- h+ 

  d2

2
-----

--------------------------+tan λµ 2Ωmh
d2

2
-----

d2

2
----- h+ 

 
--------------------------–

λ λ 2 4Ω2–( )ρ0 λµ 2Ωm
d2

2
----- h+
-------------- µh( )tan–

---------------------------------------------------------------------------------------------------------------- 1 kltan
ks1

------------+ 
  klcos













+
β2sin

ρ0c
------------- 1 1

k2s1s2

--------------
l

ks1s2
------------ klcot–+ 

  klsin













C i
λ mΩ+

Ω
------------------– .exp+
From Eq. (31) it follows that the condition for the
resonance sound excitation in the pump is the zero
value of the coefficient multiplying .

If, in the coefficient of , we retain the terms lin-

ear in the small parameters ε1 = (rµ)–1 and ε2 = , we

obtain the condition for resonance sound excitation in
the pump for the case of solid-state rotation:

v k1
r

v k1
r

Ωr
c

-------
(32)

Using the dimensionless frequency of sound oscilla-
tions  = ωl/c, the dimensionless velocity of potential

rotation  = , the dimensionless velocity of

β2sin
β1sin

------------- 1 kltan
ks2

------------– 
  klcos

–
λ mΩ+( )

λ
----------------------- klsin
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ω

U0 p
Γ

cd2/2
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Table 1.  Resonance frequencies in the pump for a potential rotation of the liquid in the outlet

Resonance frequency, 

0.05 2.50 3.72 4.71 5.65 6.88 7.85 8.80 10.03 10.99 11.94

0.5 2.51 3.67 4.71 5.69 6.85 7.85 8.82 10.00 10.99 11.96

mlU0 p ω

Table 2.  Resonance frequencies in the pump for solid-state rotation of the liquid in the outlet

Resonance frequency, 

0.05 2.52 3.75 4.76 5.68 6.90 7.90 8.82 10.05 11.04 11.96

0.5 2.77 3.97 5.21 5.90 7.14 8.35 9.04 10.29 11.49 12.18

mlU0t ω
solid-state rotation  = , the dimensionless

length of the blade channel of the impeller  = , and

the dimensionless height of the outlet  = h/l, expres-
sions (27) and (32) can be represented in the form

Calculations with these formulas for s2/l = 2,  =

1, β2 = π/6, m  = 0.05 and 0.5, and m  = 0.05
and 0.5 are presented in Tables 1 and 2. These calcu-
lations show that the potential rotation of the flow in

U0t
Ωd2/2

c
---------------

l
l

d2/2
----------

h

β2sin
β1sin

------------- 1 ωtan
ωs2/l
------------– 

  ωcos

–
ωh( )tan

1 m
U0 p l

ω
-----------– 

 
2

--------------------------------- ωsin
β1sin
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β2sin
β1sin
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ωs2/l
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  ωcos

–
ω 1 m

U0t l
ω

----------– 
  h 

 tan

1 m
U0t l
ω

----------– 
 

--------------------------------------------------- ωsin
β1sin

------------- 0.=

h

U0 p l U0t l
the centrifugal pump outlet almost does not change
the resonance frequencies values (the difference is
less than 2%). In the case of solid-state rotation,
there is a slight increase (by ~2 to ~10%) in the val-
ues of the resonance frequencies for the same
increase in the flow velocity as in the case of the
potential rotation.
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Abstract—A method for the numerical modeling and visualization of the diffraction of surface acoustic waves
propagating in anisotropic crystals is described. Examples of two-dimensional wave energy distributions are
presented for some crystal orientations widely used in acoustoelectronics. © 2005 Pleiades Publishing, Inc.
A theoretical analysis of the properties of surface
acoustic waves (SAW) propagating in piezoelectric
media is usually based on the assumption that the wave
front is planar [1, 2]. However, an actual acoustic wave
beam, which, as a rule, is excited by an interdigital
transducer (IDT), has a finite cross-sectional dimen-
sion. Therefore, in the general case, a diffraction of the
acoustic wave beam always takes place. If the distance
between the IDTs exciting and receiving an electroa-
coustic surface wave is large, the energy loss owing to
the diffraction of the acoustic beam may be consider-
able. Consequently, the problem of analyzing the dif-
fraction distortion of surface acoustic waves propagat-
ing along the surfaces of various piezoelectric crystals
and the problem of finding the “optimal” (from the
point of view of minimal diffraction distortion) orienta-
tions for SAW in these media are important and urgent
[1–6].

These problems can be solved using the methods
employed in optics [7], i.e., considering the superpo-
sition of scalar secondary waves at the point of obser-
vation. As indicated in [1], the neglect of the vector
character of oscillations is justified for two-dimen-
sional diffraction problems, when the diffraction is
considered only in the surface plane of the crystal and
the depth dependence is ignored. The essential dis-
tinction of the diffraction in anisotropic crystals from
the diffraction in optics consists in the fact that the
velocity of a surface acoustic wave propagating in an
anisotropic medium depends on the direction of prop-
agation. If this dependence can be approximated by a
parabola, the diffraction problem can be solved ana-
lytically [1, 2]. In the general case, numerical calcula-
tions are needed.

In this paper, we present the method and the results
of numerical modeling of SAW diffraction in some cuts
of quartz (SiO2), lithium tantalate (LiTaO3), and lan-
1063-7710/05/5104- $26.00 0469
gasite (LGS) crystals. The amplitude of the resulting
wave at an arbitrary point of the crystal surface was cal-
culated as a superposition of waves arriving at this point
from various points of the wave source. In this superpo-
sition, both plane and cylindrical waves were used.
Both variants give practically the same profiles of the
transverse amplitude distribution, but, in the case of
cylindrical waves, the energy conservation law is addi-
tionally obeyed. The dependences of the SAW velocity
on the propagation direction in SiO2, LiTaO3, and LGS
piezoelectric crystals were calculated beforehand using
the methods described in [8, 9]. The program for calcu-
lating the diffraction was done in the Borland C++
Builder visual programming environment. The results
of the calculations were automatically passed to the
Excel worksheet and were displayed as graphs of two-
dimensional wave energy distributions. These graphs
clearly show how various cuts and directions in piezo-
electric crystals appear from the point of view of dif-
fraction distortion of a SAW. These dependences also
contain the quantitative information that allows one to
calculate the propagation loss due to the diffraction
divergence of an acoustic beam. The visualization of
the results of calculation in the form of two-dimen-
sional dependences of radiation energy on the coordi-
nates distinguishes this work from the most recent
papers on the same subject, where one-dimensional
energy distributions in one coordinate (usually in the
transverse one) for some fixed values of the other coor-
dinate are presented (see, for instance, [1–5]). Two-
dimensional distributions for quartz, lithium tantalate,
and lithium niobate are presented in [6], but they refer
to other conditions and orientations.

Let us consider the method for analyzing the diffrac-
tion divergence of an acoustic wave beam in more
detail. The wave amplitude A(X, Y) at an arbitrary point
© 2005 Pleiades Publishing, Inc.
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of a plane with the coordinates X, Y can be computed as
a superposition of secondary waves [1–6]:

(1)

Here, X' = 0, Y' are the coordinates of the source
points, A0(0, Y') is the distribution of the secondary
wave amplitude over the source (the input IDT), G(R) =

1 for plane waves, G(R) =  for cylindrical waves,

R =  is the distance from the source

point to the point of observation,  is the depen-

dence of the normalized phase velocity of a wave on the

propagation direction α, α =  is the angle

of the propagation direction, a is the source width (the
aperture), and K(α) is a function that equals unity at
α = 0 and monotonically decreases with increasing |α|
(the simplest variant is K(α) = cos(α)). In [1], the func-
tion K(α) ~ sin(α)/α is used. All of the sizes are normal-
ized by the wavelength λ.

The proposed method makes it possible to model the
diffraction of pseudosurface waves as well. It is only
necessary to take into account two additional factors:
first, the pseudosurface waves attenuate along the direc-
tion of propagation and the attenuation coefficient
depends on this direction, and, second, these waves do
not exist for all spatial orientations. Some examples of
the diffraction of pseudosurface acoustic waves are pre-
sented in [10]. In the present paper, we only consider
the diffraction of surface waves.

A X Y,( ) A0 Y'( )K α( )G R( )
a/2–

a/2

∫=

× i2πv 0( )
v α( )
-------------R Y'.dexp

1

R
--------
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v α( )
v 0( )
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Y Y'–
X

--------------arctan
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Fig. 1. Normalized phase velocity of a SAW as a function
of the third Euler angle ψ in quartz with the (0°, 132.75°, ψ)
orientation.
The integration in Eq. (1) can be performed analyti-
cally if we suppose that G(R) = 1 (plane secondary
waves), A0 = const, and the dependence of the SAW
velocity v  on the direction of propagation is of a para-
bolic character:

(2)

The quantity γ involved in this expression is called
the anisotropy parameter [1]. From the analytical the-
ory, it follows that the optimal value of the anisotropy
parameter is γ = –1. For this value of the anisotropy
parameter, the diffraction divergence of the acoustic
beam is absent and the beam profile remains unchanged
at any distance from the aperture [1]. Although the par-
abolic approximation of the SAW velocity is not always
valid, the anisotropy parameter is often used to estimate
whether the calculated orientation of a piezoelectric
crystal is optimal from the point of view of the diffrac-
tion distortion. The anisotropy parameter for an arbi-
trary specific orientation in a crystal can be calculated
by the expression

(3)

where

(4)

is the power flow angle.
Here, ψ is the third Euler angle, which determines

the direction of SAW propagation in the crystal cut. The
crystal cut is defined by the first (φ) and second (θ)
Euler angles [11].

Note that, in an isotropic medium, the wave velocity
does not depend on the propagation direction and the
anisotropy parameter γ equals zero. In anisotropic crys-
tals, the behavior of the wave phase velocity strongly
depends on all of the three Euler angles determining the
orientation in the crystal. For example, Fig. 1 shows the
dependence of the normalized SAW phase velocity on
the third Euler angle for ST-cut (0°, 132.75°, ψ) quartz
in the vicinity of the X direction (ψ0 = 0). The phase
velocity is normalized to the velocity corresponding to
ψ0 = 0; i.e., this curve can be used for calculations by
Eq. (1) (α = ψ – ψ0). Using Eqs. (3) and (4), from the
curve given in Fig. 1 for the direction ψ0 = 0, we obtain
γ = 0.38. The positive value of γ corresponds to a
greater diffraction divergence than that in the isotropic
case; i.e., from the point of view of diffraction distor-
tion, the ST-X quartz is worse than an isotropic
medium. Figure 2 displays the calculated two-dimen-
sional isolines of γ for a SAW in the space of the two
Euler angles: θ = 0°–180° and Ψ = 0°–180°, at a fixed
φ = 0° for (0°, θ, Ψ) quartz. As is seen from Fig. 2, there
are a number of spatial orientations in which, according

V α( )
V 0( )
------------ 1

1
2
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----------------,=
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1
v
---- ∂v
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Fig. 2. Dependence of the anisotropy parameter γ on the second (θ) and third (ψ) Euler angles for quartz. The first Euler angle φ is
equal to zero. The isolines of γ are shown only in the range from –2 to +2.
to the analytical theory, the diffraction distortion of
SAW is absent (γ = –1).

The search for optimal spatial orientations for a
SAW in a piezoelectric crystal also includes the follow-
ing conditions: in the direction found, the SAW should
have the minimal power flow angle (pfa ≈ 0), minimal
temperature coefficient of delay (tcd ≈ 0), maximal
electromechanical coupling coefficient (K2), etc. [2].
The search for the optimal orientation consists in find-
ing the minimum of the objective function Φc [12],
which is a linear combination of the main parameters of
the wave (tcd, pfa, K2, γ, etc.) with the corresponding
weight coefficients. As a result of such a search, the ori-
entation determined by using the contour maps can be
refined to yield the optimal orientation from the point of
view of all of the main wave parameters. For instance,
for quartz, such an orientation is the orientation near the
Euler angles (0°, 45°, 24°). Figure 3 illustrates the
dependence of the phase velocity for (0°, 45°, ψ) quartz
in the neighborhood of the propagation direction ψ0 =
24°. Near this direction, the velocity reaches its maxi-
mum and Eqs. (3) and (4) give γ = –0.79, which
approaches the ideal value γ = –1. For this direction,
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
tcd = 0.2 × 10–6/°C, K2 = 0.13%, pfa ≈ 0, and the phase
velocity is V = 3.626 km/s.

If the phase velocity curve for the propagation direc-
tion ψ0 does not have an extremum, then, along with the
beam divergence, beam deflection takes place (pfa ≠ 0).

V(ψ)/V(25°)

ψ, deg
10

0.92
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0.96

0.98

1.00

15 20 25 30 35 40 45 505
0.90

Fig. 3. Normalized phase velocity of a SAW as a function
of the third Euler angle ψ in quartz with the (0°, 45°, ψ) ori-
entation.
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Fig. 4. Isotropic medium, γ = 0.
For example, in the commonly used orientation of
ST + 25 (0°, 132.75°, 25°) quartz, the power flow angle
is pfa = 5° (see Fig. 1, ψ0 = 25°).

To calculate integral (1), it is necessary first to cal-
culate the wave phase velocity in the angle interval
Ψ0 ± 90°. The values obtained for v  were used in the
form of tables with a small step in the range from ψ0 –
90° to ψ0 + 90°. The values at the intermediate points
were determined using a linear interpolation.

In the calculation of integral (1), both plane and
cylindrical secondary waves were used. Both types of
secondary waves gave practically the same profiles of
the energy distribution along the transverse Y coordi-
nate, but plane waves did not ensure a decrease in the
wave amplitude with distance from the source; i.e., they
did not satisfy the energy conservation law. They give
an incorrect distribution along the X propagation direc-
tion and do not allow one to obtain a two-dimentional
image of the energy distribution. In this case, it is pos-
sible to obtain a correct result by applying a special nor-
malization procedure on every line X = const. Then,
both types of secondary waves give practically the
same two-dimensional distributions of wave energy.
Some of these distributions are displayed in Figs. 4–9.
In all cases, A0 = const and the aperture is equal to
20 wavelengths. Figures 4–9 show the normalized val-
ues of |A(X, Y)/A0|2, which are proportional to the wave
energy.

Figure 4 displays the distribution corresponding to
an isotropic medium (γ = 0). Figures 5–9 represent the
energy distributions for the surface acoustic waves cor-
responding to certain known cuts and orientations in
some of the widely used crystals. Figure 5 shows the
diffraction pattern for ST-X (0°, 132.75°, 0°) quartz.
The comparison with Fig. 4 shows that this widely used
thermostable cut is rather poor from the point of view
of the diffraction divergence. This is caused by the
behavior of the SAW velocity in the neighborhood of
the propagation direction (the corresponding curve has
a minimum). For large distances between IDTs, this
orientation is inappropriate. Figure 6 shows the energy
distribution for ST + 25 (0°, 132.75°, 25°) quartz. This
orientation corresponds to a particular phase relation
between the electric potential and the longitudinal dis-
placement of the wave, and, therefore, it can be used for
unidirectional IDTs (NSPUDT) [13]. For this orienta-
tion, Eqs. (3) and (4) yield γ = –0.22 and the diffraction
divergence is smaller than that in an isotropic medium;
however, a 5° deflection of the beam takes place,
because the phase velocity curve contains no extremum
for this direction. Figure 6 clearly shows how the input
and output IDTs should be positioned with respect to
each other to avoid energy loss due to this deflection.
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
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Fig. 8. LGS with the (0°, 140°, 25°) orientation, γ = –1.48.
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Figure 7 presents the diffraction pattern for a quartz
of the (0°, 45.1°, 23.95°) orientation. In the vicinity of
this orientation, a SAW has parameters that are close to
the optimal ones, in particular, a high thermal stability
and a zero power flow angle (the velocity curve has a
maximum, see Fig. 3). In addition, for this direction,
the anisotropy parameter is γ = –0.79 and the diffraction
divergence is relatively small.

Figure 8 displays the energy distribution for (0°,
140°, 25°) LGS. Near this orientation, all of the wave
parameters for this crystal are very good (v  = 2.744 km/s,
tcd ≈ 0, K2 = 0.36%, pfa ≈ 0.1°, and γ = –1.48). The dif-
fraction divergence is fairly small, as is seen from Fig. 8.
However, an asymmetry of the wave beam arises
because of the asymmetry of the phase velocity curve
near this direction. The material constants for langasite
(LGS) were taken from [14].

Finally, Fig. 9 shows the diffraction pattern for (90°,
90°, 112°) LiTaO3. The anisotropy parameter is γ =
−0.3. As is seen from Fig. 9, the wave beam has a small
diffraction divergence, but it exhibits a slight deflec-
tion, because this direction does not exactly correspond
to the maximum of the phase velocity curve (pfa =
1.2°). The material constants for LiTaO3 were taken
from [15].
SICS      Vol. 51      No. 4      2005
Thus, in this paper, we described a method for cal-
culating and visualizing the two-dimensional energy
distribution of a propagating surface acoustic wave,
which allows one to obtain visual diffraction patterns
for any orientation of a piezoelectric crystal of any
crystallographic symmetry class. This makes it possible
to evaluate different crystal orientations from the point
of view of the diffraction loss and the loss associated
with the deflection of the power flux of the acoustic
beam. In addition, from these distributions, quantitative
data can be obtained for calculating the diffraction loss.
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The authors of [1] study the gain (usually called the
noise immunity factor in the Russian literature on
acoustics) of a combined receiver that consists of a
three-component pickup for the particle velocity and a
sound pressure detector. The paper states that, in the
case of multiplicative processing of signals obtained
from the pressure detector and the particle velocity
pickup, the noise immunity factor tends to infinity in an
isotropic noise field, while, in an actual field of ambient
sea noise, it reaches (15–30) dB. These conclusions
seem to be questionable.

When the signals of particle velocity pickups ori-
ented along the X, Y, and Z axes are subjected to an
additive summation with some real coefficients ax, ay ,
and az, the non normalized directivity pattern of the
three-component pickup of particle velocity has the
form

Without loss of generality, one can assume that  +

 +  = 1. Then, as is known, the expression on the
right-hand side of the above equation represents the
cosine of the angle θ' between two directions, one of
which (the current one) is determined by the angles θ,
ϕ while the other has the direction numbers equal to ax,
ay , and az; i.e., the latter direction is determined by the
angles θ0, ϕ0 satisfying the relations sinθ0cosϕ0 = ax,
sinθ0sinϕ0 = ay , and cosθ0 = az, which yield ϕ0 =

 and θ0 = . In other
words, the directivity pattern of the three-component
particle velocity pickup is described by the function
cosθ' and has a maximum in the direction θ0, ϕ0. In the
particular case of ax = ay = az, the angles are ϕ0 = 45°
and θ0 = 55° and the symmetry axis of the directivity
pattern makes identical angles approximately equal to
55° with the X, Y, and Z axes.

Thus, the directivity pattern of a three-component
particle velocity pickup differs from the directivity pat-
tern of a one-component pickup in only its orientation
in space. Therefore, the noise immunity of a combined
receiver does not depend on the number of its compo-
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nent particle velocity pickups if the direction of the
maximum of its directivity pattern coincides with the
direction of the signal arrival. The noise immunity fac-
tor of a combined receiver consisting of one particle
velocity pickup and one pressure sensor has been com-
prehensively studied (not only for the case of multipli-
cative processing) in [2–4] and other publications. The
results of these studies showed that, in the operation of
combined receivers, both single and in arrays, in both
isotropic and anisotropic noise fields, in a free medium
or in the presence of baffles, the use of multiplicative
processing for the output signals of the pressure and
particle velocity channels in most cases leads to a
decrease in the noise immunity factor. For example, as
stated in [1], a single multiplicative combined receiver
consisting of a pressure detector and a particle velocity
pickup and operating in an isotropic noise field has a
noise immunity factor equal to 2.4 (instead of infinity),
whereas, in the case of an additive scheme of data pro-
cessing, this factor is equal to 3.

The authors of [1] proceed from the fact that the
directivity pattern of a three-component particle veloc-
ity pickup is written in the form

i.e., it is omnidirectional.
To obtain such a directivity pattern, the output sig-

nals of the particle velocity pickups should presumably
be subjected to a certain processing, for example, to a
quadratic detection. In this case, the authors of [1]
should not estimate the noise immunity by using the
formula from [2] (a detailed derivation of this formula
is given in [4]). This formula determines the threshold
ratio at the output of a multiplicative detector only in
the case of multiplication of normal random processes
with zero means. Precisely the inappropriate use of this
formula in the case under discussion has led to the con-
clusion that the noise immunity factor of a combined
receiver operating in an isotropic noise field can be infi-
nitely large. The same formula was used by the authors
of [1] to obtain the expressions for processing the
experimental data.
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In the context of the above comments, the results
reported in [1] (both theoretical results and experimen-
tal ones processed on their basis) cannot be used to
evaluate the noise immunity and efficiency of the detec-
tion modes of hydroacoustic systems.
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The problem of noise immunity of a single com-
bined receiver has been being discussed since the
1960s. The literature devoted to this subject is quite
voluminous. In [1–4], one can find a variety of refer-
ences concerning this issue. In our paper [1], unlike
preceding papers, we presented an estimate of the noise
immunity of a combined receiver on the basis of results
obtained from a field experiment in a deep open ocean.
We also performed a theoretical analysis of the mecha-
nism governing the formation of the signal-to-noise
ratio for energy density and orthogonal components of
energy flux in a partially coherent field of dynamic
noise. Two cases were considered for partially coherent
dynamic noise: with a prevailing diffusive noise com-
ponent and with a prevailing coherent noise compo-
nent.

In [1], we described a four-component combined
receiver consisting of a scalar omnidirectional pressure
detector and a three-component vector receiver. Smary-
shev, in his letter, analyzes the nonnormalized directiv-
ity pattern of a three-component particle velocity
receiver: R(θ, ϕ) = axsinθcosϕ + aysinθsinϕ + azcosθ.
Since, in the case under consideration, the characteris-
tic R(θ, ϕ) is nonnormalized, the coefficients ax, ay, and
az have a physical meaning: they represent the sensitiv-
ities of the x, y, and z channels with the corresponding

physical dimension. Then, what does the relation  +

 +  = 1 presented in Smaryshev’s letter mean? In
experimental underwater acoustics, the relation pro-
posed by Smaryshev is never used and has no actual
physical meaning. The cardioid pattern of combined
receivers had been successfully used for years in actual
underwater systems [2]. In [1], we presented the nor-
malized characteristic of a four-component combined

receiver in the form R(θ, ϕ) = (θ, ϕ) + (θ, ϕ) +

(θ) = 1. This expression suggests that the sensitivity
characteristic of a four-component combined receiver
is a sphere. However, this characteristic of sensitivity
has nothing to do with the multiplicative data process-
ing performed by us in [1], which was not taken into
account by Smaryshev.
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It is unclear which of the results of our study [1] has
caused the following comment by Smaryshev: “…the
noise immunity factor in an isotropic noise field…
reaches (15–30) dB in the actual field of ambient sea
noise. These conclusions seem to be questionable.”
Here, it is necessary to note that we considered the sit-
uation not “in an isotropic noise field” (as Smaryshev
writes) but in a diffusive field. These cases essentially
differ from each other from the physical point of view.
Besides, we wrote not “(15–30) dB” but “(15–16) dB”
in a diffusive field in the horizontal plane and up to
30 dB in the case of the compensation of opposing
energy fluxes in the vertical plane [1, 4]. We would like
to see a more specific criticism, namely, which part of
[1] represents incorrect studies (i.e., is “questionable”):
the processing of the field-experiment data or the theo-
retical calculation of the combined receiver gain? If
Smaryshev’s conclusions are only based on the inap-
propriate use of formula (3) in [1], these conclusions
are wrong in the case under discussion, because the sig-
nals from the channels of the combined receiver were
not subjected to “quadratic detection” but, as was indi-
cated in [1], the multiplicative processing was applied
to Gaussian random processes with zero means, which
agrees well with [3]. In closing, it should be noted that
the approach represented in [1] has been successfully
used for years in solving practical problems of under-
water acoustics (see, e.g., [2]) despite the fact that many
theoretical acousticians in Russia consider it to have no
potential.
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In Memory of L.M. Brekhovskikh
(May 6, 1917–January 15, 2005)
On January 15, 2005, Academician Leonid Maksi-
movich Brekhovskikh—an outstanding Russian scien-
tist, the founder of ocean acoustics as a new field of
research in oceanology, and Counselor of the Presidium
of the Russian Academy of Sciences—passed away at
the age of 87.

Brekhovskikh was born on May 6, 1917, in Strunk-
ino (a village near Arkhangel’sk) to a peasant family.
There, he spent his first school years, and his eight-year
school education was completed in Krasnoural’sk in
1934. To continue his education, Brekhovskikh entered
Perm State University, from which he graduated with
honors in 1939, and then became a postgraduate stu-
dent of the Lebedev Physical Institute of the Academy
of Sciences of the USSR. In October 1941, Brekhovs-
kikh received his candidate degree for a work entitled
Theory of X-Ray Scattering in Crystals. 

The talent of the young scientist became evident
during World War II, when he worked with a research
group headed by Corresponding Member of the Acad-
emy of Sciences of the USSR N.N. Andreev on the
development of acoustic minesweepers. For this pur-
pose, one would apply the empirical trial-and-error
method to form an appropriate acoustic imitator. How-
ever, Brekhovskikh decided to carry out a comprehen-
sive analysis of the problem. He calculated the oscilla-
tions of plates forming the skin of a ship. The calcula-
1063-7710/05/5104- $26.00 0480
tions allowed him to choose the sort of plates and the
type of their fastening and excitation, so that, finally, he
developed the first minesweeper imitating the noise of
an actual vessel. Within four months after the beginning
of the project, the first working imitator model was pre-
sented to the navy, and the device was soon success-
fully tested in action.

The late 1940s and the early 1950s were the period of
Brekhovskikh’s best work in theoretical science. In par-
ticular, he proposed a method for solving the problem of
wave scattering by rough surfaces whose characteristic
roughness scale was large compared to the sound (or
electromagnetic) wavelength, which was called the “tan-
gential plane approximation.” This problem could not be
solved for almost 50 years after it was first formulated by
Rayleigh. Brekhovskikh’s work aroused great interest
and stimulated numerous publications in both Russia
and abroad on the scattering of waves of different
nature. In 1946, after analyzing the results of experi-
ments carried out in the Sea of Japan by Rozenberg and
Sigachev in cooperation with navy engineers, Bre-
khovskikh discovered the presence of the underwater
sound channel. In subsequent years, he comprehen-
sively studied this phenomenon both theoretically and
in field experiments. The results of these studies were
of fundamental importance for the development of
underwater acoustics, including the theory of wave
propagation in the ocean and various practical applica-
tions.

In 1947, Brekhovskikh received his doctoral degree
for a theoretical work on the propagation of acoustic
and electromagnetic waves in layered media. This
work, which was presented in his doctoral dissertation
under the title Propagation of Sound and Radio Waves
in Layers, brought him a Papaleksi Award in 1948. In
1951, for the discovery of the underwater sound chan-
nel, Brekhovskikh and his colleagues received a Stalin
Award of the first degree. In 1953, Brekhovskikh
received the title of Professor and was elected Corre-
sponding Member of the Academy of sciences of the
USSR. In the same year, Brekhovskikh took part in
organizing the Acoustics Institute of the Academy of
Sciences of the USSR and became its first director
(until 1962).

In the late 1950s, Brekhovskikh supervised the
development of the Rubin long-range hydroacoustic
system for nuclear-powered submarines. This work was
carried out with the participation of leading scientists
from the Acoustics Institute and the best engineers from
© 2005 Pleiades Publishing, Inc.
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the Leningrad Research Institute-3 (today, the Morfiz-
pribor Central Research Institute). For the first time,
with the use of the underwater sound channel properties
and wide-aperture arrays, the range of hydroacoustic
systems could be increased by an order of magnitude.
For this work, Brekhovskikh together with the leading
researchers and engineers from other organizations
received a Lenin Prize in 1970.

Brekhovskikh invited many gifted young physicists
and engineers to work at the Laboratory of Acoustic
Studies of the Ocean, which was organized at the Acous-
tics Institute. These scientists formed the basis of his sci-
entific school: N.S. Ageeva, I.B. Andreeva, O.P. Galkin,
Yu.Yu. Zhitkovskiœ, B.F. Kur’yanov, I.E. Mikhal’tsev,
A.V. Furduev, S.D. Chuprov, R.F. Shvachko, and oth-
ers. Together with the young scientists in the laboratory,
Brekhovskikh carried out many expeditions on the
unique research vessels of the Acoustics Institute,
Sergeœ Vavilov and Petr Lebedev, in different regions of
the ocean. The expeditions allowed Brekhovskikh to
test his theoretical results in practice. Some of the
researchers from the Laboratory of Acoustic Studies of
the Ocean became coauthors of the well-known mono-
graph Ocean Acoustics, for which they received a State
Award in 1976.

Brekhovskikh also was widely known for his many-
sided scientific, pedagogical, and organizational activi-
ties. In 1963–1969, he represented Soviet acousticians
at the International Acoustical Commission. In 1964–
1967, he was a member of the Bureau of the Interna-
tional Geophysical Association in Physical Oceanol-
ogy. Over many years, he chaired the Oceanographic
Commission (later, the Scientific Council on the
Ocean) at the Presidium of the Academy of Sciences of
the USSR. From 1966 to 1969, he chaired the Scientific
Council on Acoustics of the Academy of Sciences of
the USSR. In 1968, he was elected Full Member of the
Academy of Sciences of the USSR, and, in 1969, he
became Academician-Secretary of the Division of
Oceanology, Atmospheric Physics, and Geography. He
headed this division until 1991. In 1970, Brekhovskikh
supervised the Poligon-70 hydrophysical experiment
carried out in the Atlantic Ocean. This experiment
resulted in one of the most significant discoveries made
in the Earth sciences in the 20th century, namely, the
discovery of oceanic synoptic vortices, which contain
more than 90% of the kinetic energy of oceanic waters.
This discovery profoundly changed the understanding
of the dynamics of waters in the ocean. 

Over twenty years, starting in 1975, Brekhovskikh
chaired the Department of Hydrospace at the Moscow
Institute of Science and Technology. Many well-known
Russian acousticians working in Russia and abroad were
educated at this department. In 1977, Brekhovskikh was
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
elected Member of the Polish Academy of Sciences,
and, in 1978, he was awarded a Rayleigh Gold Medal
of the Institute of Acoustics of Great Britain (the most
distinguished international award for acousticians) for
the discovery of the underwater sound channel. In
1986, he received the Karpinsky Prize—an interna-
tional prize established to mark scientific achievements
in the fields especially important for the future of man-
kind. In 1991, Brekhovskikh was elected Foreign
Member of the National Academy of Sciences of the
United States. In 1999, he received the title of Honored
Member of the Acoustical Society of America “for his
pioneering works on the propagation and scattering of
waves.” He also became the first Honored Member of
the Russian Acoustical Society.

In 1980, Brekhovskikh organized the Department of
Ocean Acoustics at the Oceanology Institute of the
Academy of Sciences of the USSR and became head of
this department. He moved there with a small group of
his students and colleagues from the Acoustics Insti-
tute. Thus, Brekhovskikh established one more
research center for the study of sound propagation in
the ocean. Brekhovskikh’s Workshop in Ocean Acous-
tics is a widely known regular event, and the proceed-
ings of the Workshop are fairly popular among acousti-
cians. The “acoustic” research vessels of the Academy
of sciences of the USSR, Akademik Sergeœ Vavilov and
Akademik Ioffe, were constructed under Brekhovskikh’s
supervision. Brekhovskikh took active part in the expe-
ditions carried out on these vessels as well.

Brekhovskikh’s services to Russian science were
highly appraised by the government: he received the
Lenin Prize and the USSR State Award, was given the
title of Hero of Socialist Labor, and was awarded the
Order of Lenin (three times), the Order of the Red Ban-
ner of Labor, and the Order for the Services to the
Country of the third degree.

Leonid Maksimovich Brekhovskikh will remain in
the memory of his students and colleagues as a promi-
nent theoretical scientist and a tactful supervisor and
teacher. The books written by Brekhovskikh alone or
together with his colleagues (Yu.P. Lysanov, V.V. Gon-
charov, and O.A. Godin) and, especially, his popular
monograph Waves in Layered Media have become
handbooks for several generations of specialists in
hydroacoustics. For Brekhovskikh, the best reward was
his numerous works and the sincere love and shining
memory that will last in the hearts of those who knew
him. The life of Academician L.M. Brekhovskikh is a
bright example of utter devotion to his country and to
the ideas of honor, goodness, and justice.

Translated by E. Golyamina
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In Memory of A.M. Dykhne
(October 27, 1933–January 6, 2005)
Academician Aleksandr Mikhaœlovich Dykhne—
director of the Center of Theoretical Physics and Com-
putational Mathematics of the State Research Center
Troitsk Institute for Innovation and Thermonuclear
Research—died unexpectedly on January 6, 2005.

Dykhne was born on October 27, 1933, in Moscow.
He was educated at the Kiev Polytechnical Institute and
began his career as an engineer at integrated iron and
steel works in Siberia. After the establishment of the
Siberian Division of the Academy of Sciences of the
USSR, Dykhne changed his work place to the Institute
of Radio Physics and Electronics organized in Novosi-
birsk by Yu.B. Rumer, who immediately understood the
potential of the young metallurgical engineer as a tal-
ented theoretical physicist.

Dykhne simultaneously worked in several fields of
research: electrodynamics (the theory of horn anten-
nas), statistical physics (the Ising–Onsager two-dimen-
sional dipole lattice), and quantum mechanics (adia-
batic transitions). In connection with the development
of magnetic traps for controlled thermonuclear synthe-
sis, Dykhne calculated the change in the adiabatic
invariant of a charged particle in such a trap. The solu-
tion to the problem of transitions in a two-level system
under an adiabatic perturbation is known as the Lan-
dau–Dykhne formula. L.D. Landau, a reviewer of the
Dykhne’s candidate dissertation, appreciated the talent
of the author. The degree of candidate of science was
received by Dykhne in 1960.

In 1962, Dykhne returned to Moscow and began
working at the Kurchatov Institute of Atomic Energy. In
the following years, he worked in such fields of science
1063-7710/05/5104- $26.00 0482
as quantum mechanics, plasma physics, solid state
physics, astrophysics, biophysics, laser physics, and
laser technologies.

Dykhne is the author of more than 150 papers, two
books, one discovery, and a number of inventions cov-
ered by Russian and foreign patents. In 1987, Dykhne
was elected corresponding member and, in 1992, full
member of the Russian Academy of Sciences.

Russian acoustics owes much to Dykhne for his sci-
entific achievements and for his organizational activi-
ties in science. He was an active member of the Scien-
tific Council on Acoustics of the Russian Academy of
Sciences. In 1992–2001, he chaired the Expert Council
in Physics of the Supreme Certification Commission. In
1994–2000, Dykhne chaired the Expert Council of the
Russian Foundation for Basic Research, and, beginning
in 2000, he was a member of the Bureau of the Council
of the Russian Foundation for Basic Research. Simulta-
neously, he worked as a member of the Bureau of the
Division of Physical Sciences of the Russian Academy
of Sciences. Working in all these organizations during
years that were difficult for Russian science, Dykhne
actively supported basic research in acoustics; he called
special attention to the burning problems of this field of
science and promoted additional financial support for
research.

Dykhne published several remarkable works in
acoustics, which were characterized by fundamentally
new ideas and elegant theoretical representations. He
proposed the method of excitation of large-amplitude
surface elastic waves by a moving laser beam and pre-
dicted the effect of the group resonance that allowed a
selective excitation of these waves. Dykhne suggested
the use of the noise correlation functions of higher
orders to extract information on the internal structure of
bodies. One of this most important achievements was
the discovery of “self-dual” inhomogeneous media and
new physical phenomena in such media. Exact expres-
sions were found for the conductivity of thin microin-
homogeneous films of the metal–dielectric type, the
parameters of composites and polycrystalline media
were calculated, and the theory of the fractional Hall
effect and wave scattering by a rough surface was
developed. Similar results were obtained in acoustics
and in the theory of elasticity of inhomogeneous media.
Strong fluctuations caused by the presence of broad-
band resonances in “Dykhne media” were observed
experimentally, as well as the strong scattering of
waves and the flicker noise.
© 2005 Pleiades Publishing, Inc.
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The methods developed by Dykhne in solid state
physics were applied to molecular biology. On their
basis, the theory of “melting” of a DNA molecule was
developed, and the specificity of the thermodynamics
of ring biopolymers was studied. The results of the
long-term studies of biological problems have found
application in such an important area as medicine
design, the appearance of which is largely due to the
efforts by Dykhne.

Dykhne developed a hydrodynamic model of the
resonant radiation transfer in gases. The dominant role
of smooth trajectories in the gamma-radiation transfer
in heterogeneous media, which followed from this
model, served as the key idea in analyzing the radioac-
tive radiation flows from the Chernobyl “sarcophagus.”
A related problem was the detection of a set of instabil-
ities of waves of self-sustained melting under the effect
of residual heat of radioactive sources, which was
called the “Chinese syndrome.”

Although Dykhne was a theoretical physicist, he
generated numerous ideas that were realized experi-
mentally. His great experience and unique intuition
allowed him to create new technologies, materials, and
instruments and to discover new physical effects.

Dykhne took active part in international coopera-
tion. He headed the Expert Committee of the program
“Fundamental Science and Higher Education,” which
was organized by the Ministry of Education of Russia
and the Civil Research and Development Foundation of
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
America with the aim to establish modern centers of
scientific education in Russia. He supervised a research
project that was included in the international coopera-
tion program “Russian Academy of Sciences–Depart-
ment of Energy of the USA,” which was aimed at
improving the safety of radioactive burials in different
countries, especially, in Russia.

Dykhne received a USSR State Award and other
awards from the government, including the one for the
participation in the liquidation of the consequences of
the Chernobyl disaster.

Dykhne, being a gifted person, could fascinate other
people with interesting problems and stimulate creative
ideas. He was a tactful person with a good sense of
humor, but also a man of principle and a strong person-
ality. Helping other people in difficult situations and
showing courage in surviving the difficulties in his own
life, he won the respect of a great number of people.

The world has lost a brilliant scientist and a wonder-
ful person. Dykhne has left many students, successors,
and friends who were fond of his keen mind and origi-
nal ideas.

The memory of Aleksandr Mikhaœlovich Dykhne
will remain with his friends, colleagues, and all those
who knew him.

Translated by E. Golyamina



  

Acoustical Physics, Vol. 51, No. 4, 2005, pp. 484–485. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 4, 2005, pp. 566–567.
Original Russian Text Copyright © 2005 by the Editorial Board.

                    

CHRONICLE

 

In Memory of V.I. Zaborov
(March 16, 1927–August 30, 2004)
Vladimir Isaakovich Zaborov—Professor, Doctor
of Engineering, a well-known specialist in construc-
tional and architectural acoustics, the author of more
than 250 publications, which include 11 monographs
and 26 papers published in the Akusticheskiœ zhurnal
(the Acoustical Physics)—has passed away.

Zaborov graduated from the Moscow Institute of
Constructional Engineering (including its post-gradu-
ate department) in 1949. His first place of work was the
Central Research Institute of Industrial Structures
(Moscow), where he studied the problems of structure
mechanics and prepared a thesis devoted to calculating
the strength and stability of composite arches. In 1952,
he received the degree of Candidate of Science. In
1955, Zaborov moved to the Urals. There, he investi-
gated topical problems of the sound insulation of build-
ings and structures and, later on, other problems of con-
structional and industrial acoustics.

Zaborov’s first experimental and theoretical studies
of sound insulation of buildings were concerned with
the development of methods for calculating sound
transmission through multilayer protecting walls,
vibration excitation in multilayer structures under an
impact and a subsequent sound radiation by these struc-
tures, and other problems of sound insulation in build-
ings. He carried out calculations to determine the sound
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insulation properties of two-layer structures and also
those of three-layer structures with point constraints,
with air-filled gaps, and with porous and elastic inter-
layers. He calculated the sound insulation under an
impact noise for slabs with an elastic coating and for
three-layer structures with different constrains. He also
calculated the sound insulation in buildings with allow-
ance made for indirect sound transmission. In 1962,
Zaborov published his monograph Theory of Sound
Insulation by Protecting Structures, which was mainly
based on the results he himself had obtained. In the
same year, he received the degree of Doctor of Science.
The contribution made by Zaborov to solving the prob-
lems of sound insulation is very large. His name is
related to the transformation of particular problems of
sound insulation in buildings into a large independent
field of science with a wide scope of practical applica-
tions. The basic concepts of this field of science were
formulated by Zaborov in the aforementioned mono-
graph, in its modified and extended second edition
(Stroiizdat, Moscow, 1969), in the books Sound Insula-
tion in Large-Panel Buildings (Stroiizdat, Moscow,
1964) and Noise Suppression by Sound Insulation
(Stroiizdat, Moscow, 1973), in the handbook Noise
Control in Industry (Mashinostroenie, Moscow, 1985),
and in A Handbook of Noise and Vibration Control in
Private and Public Buildings (Budivel’nik, Kiev,
1989), etc. Zaborov worked in the field of sound insu-
lation all his life and made a substantial contribution to
the development of acoustic design of sound insulation
in buildings and structures in Russia.

In 1972–1979, while working at the All-Union
Research Institute of Ferrous Metals (Chelyabinsk),
Zaborov organized a large and efficient working team
of specialists in industrial noise and vibration control.
Many of the results obtained within this period of time
were included in his book Noise and Vibration Control
in Ferrous Metallurgy (Metallurgiya, Moscow, 1976).

In 1981–1988, Zaborov headed the Noise and
Vibration Department of the Institute of Construction
and Architecture of the State Construction Committee
of the BSSR. At that time, he worked at solving the top-
ical problem of protecting buildings from noise and
vibration produced by shallow subways. He studied the
excitation and propagation of vibrations from the sub-
way and developed methods for calculating these vibra-
tions and reducing them in buildings. He also studied
the vibration excitation in the subway tunnel structures,
the transfer of vibration from the tunnel to the environ-
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ment, the transmission of longitudinal and transverse
waves through obstacles in an elastic medium (plates or
water-filled gaps), the interaction of elastic waves with
buildings, and the vibrations of multilayer floors with a
sound-insulating layer.

Zaborov was also well known for his organizational
activities in science. He had many students who
became scientists under his supervision. More than
twenty of his students have become candidates of sci-
ence. He brilliantly organized and conducted two All-
Union Acoustical conferences in Chelyabinsk (in 1966
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
and 1980). He was an active member of many scientific
councils and conferences and gave many talks and lec-
tures for specialists in acoustics, engineers, and stu-
dents.

With his death, we have lost a wonderful person, an
excellent scientist and engineer, a teacher, and a dear
friend. The memory of Vladimir Isaakovich Zaborov
will remain forever in our hearts.

Translated by E. Golyamina
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In Memory of V.A. Robsman
(March 18, 1937–January 9, 2005)
Vadim Aleksandrovich Robsman—Doctor of Phys-
ics and Mathematics, principal researcher of the Cen-
tral Research Institute of Transport Engineering, Hon-
ored Builder, and Honored Transport Builder of the
Russian Federation—passed away on January 9, 2005.

Robsman was born on March 18, 1937 in Moscow.
In 1959, he graduated from the Building Faculty of the
Moscow Institute of Transport Engineers. Then, he
worked at the Ministry of Transport Communications
and at the Vilyuœ Hydro. In 1970, Robsman moved to
Moscow to work at the Faculty of Geography of Mos-
cow State University. There, he was deeply involved in
the fundamental sciences: mathematics, physics, and
geology. He was one of the first to master computer
methods in science [1]. He also took part in expeditions
to the Far East. An important role in the formation of
Robsman’s scientific interests was played by Academi-
cian R.V. Khokhlov, Rector of Moscow State Univer-
sity, who attracted Robsman’s attention to the problems
of acoustics and physics of nonlinear waves. In 1981,
Robsman began working at the Central Research Insti-
tute of Transport Engineering, which remained his
place of work until the end of his life. Although his
main occupation was solving applied problems, he
retained an interest in the fundamental problems of
solid-state physics [2, 3], fracture mechanics [4, 5],
nonlinear dynamics, and acoustics.
1063-7710/05/5104- $26.00 0486
Robsman worked on the construction of the Sevan–
Arpa tunnel in Armenia just before the catastrophic
earthquake in Spitak. He took active part in the elimi-
nation of the consequences of the earthquake. He pro-
posed several methods of acoustic nondestructive test-
ing of the load-carrying structures of damaged build-
ings with the aim to determine which of the buildings
could be reconstructed and which of them should be
demolished. By combining active sounding of beams
and floors by acoustic signals and shock pulses with
recording the spectra of acoustic emissions under
quasi-static loads, Robsman observed nonlinear distor-
tions of wave spectra. He understood that the formation
of isolated cracks, their growth, collective behavior
(interaction), and subsequent coalescence are the origin
of increasing nonlinear distortions. When the external
force action on a structure was increased, the nonlinear
effects became more pronounced.

On the basis of full-scale testing, Robsman devel-
oped empirical criteria for the relation between the non-
linear distortions of spectra and the loss of strength in a
structure [6, 7]. Later, thanks to close cooperation with
the Department of Acoustics of Moscow State Univer-
sity, the effects observed by Robsman were given a
more elaborate theoretical explanation on the basis of
the ideas and results of nonlinear acoustics [8–13].

In the last fifteen years, the methods of nonlinear
nondestructive testing were put to practice by Robsman
and his colleagues in transportation, the power industry,
and civil engineering. Nondestructive testing was car-
ried out for thirty bridges, several tens of highway over-
passes, more than twenty thermal electric power sta-
tions, and many tunnels and subways. The work carried
out in zones of seismic hazard made it possible to
restore tens of structures damaged by earthquakes and
to provide for the seismic safety of residential areas and
power stations. In Moscow, nondestructive testing was
used to monitor different stages of construction of the
third transport ring, as well as in the restoration of some
ancient buildings.

Robsman took part in the liquidation of the conse-
quences of the Chernobyl accident, where he received
a high radiation dose. Though he was seriously ill dur-
ing the last five years of his life, he continued working.
In these years, Robsman not only worked on the prob-
lems of the modern construction industry but also
obtained some fundamental scientific results. He pro-
posed a new nonlinear equation with a fourth-order
derivative that describes intense waves in a scattering
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medium [14]. This equation is of fundamental physical
importance and continues the series of the well-known
Burgers (second order) and Korteweg–de Vries (third
order) equations. The equation allows for exact solu-
tions, which were obtained in [14]. Although these
results were published only recently, references to the
new model as the “Robsman equation” have already
appeared in the literature.

In a publication that appeared one month before his
death [15], Robsman solved the problem of nonlinear
waves in a hysteretic medium. The formulation of the
problem is directly related to the nondestructive testing
of piles used in the construction of the third transport
ring of Moscow. In solving this applied problem, Rob-
sman generalized the well-known Mandel’shtam–
Leontovich theory to the case of relaxation of the non-
linear “internal parameter.” In addition, he obtained
several important physical results and a family of new
nonlinear equations with a set of exact solutions.

All those who worked and communicated with
Vadim Aleksandrovich Robsman will forever remem-
ber this wonderful and kind man.

LIST OF THE MAIN PUBLICATIONS
BY V.A. ROBSMAN IN ACOUSTICS

OF THE SOLID STATE, GEOACOUSTICS,
AND NONDESTRUCTIVE TESTING

1. V. A. Robsman, Problems of Mathematical Modeling of
Geosystems, Vestn. Mosk. Univ., Ser. 5: Geogr., No. 6,
72 (1972).

2. V. A. Robsman and M. Sh. Shikhsaidov, Acoustic Emis-
sion and the Photoplastic Memory Effect in the Defor-
mation of Zinc Sulfide and Zinc Selenide Crystals, Fiz.
Tverd. Tela (Leningrad) 30 (8), 2437 (1988).

3. V. A. Robsman and M. Sh. Shikhsaidov, Effect of Ultra-
sonic Pulses on the Plastic Properties of II–IV Semicon-
ductor Compounds, Fiz. Tverd. Tela (Leningrad) 30
(11), 3329 (1988).

4. M. V. Kas’yan, G. N. Nikogosyan, and V. A. Robsman,
Changes in the Spectra of Emission Signals with the
Development of Cracks and with the Fracture of Rock,
Dokl. Akad. Nauk SSSR, Ser. Geofiz., No. 3 (1989).

5. V. A. Robsman and V. V. Braun, Methods and Results of
Automated Fatigue Tests of Concrete, Beton i Zhelezo-
beton (1990).
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6. A. V. Kashko and V. A. Robsman, Methods of Full-Scale
Measurements and Evaluation of the Structure Damage
after the Spitak Earthquake, in Measuring and Testing
Means for Ensuring the Seismic Stability of Structures
(Yerevan, 1990).

7. V. A. Robsman and V. É. Stepanyan, Instrumental Diag-
nostics of Seismic Stability of Structures in Seismoactive
Areas, in Problems of Engineering Geology and Engi-
neering Seismicity of Towns and Urban Areas (Institute
of the Lithosphere, Russian Academy of Sciences, Mos-
cow, 1990), pp. 82–84.

8. V. A. Robsman, Nonlinear Transformation of Noise
Spectra in Nondestructive Testing of Concrete Struc-
tures, Akust. Zh. 37 (5), 1038 (1991) [Sov. Phys. Acoust.
37, 541 (1991)].

9. V. A. Robsman, Transformation of Acoustic Spectra in
Inhomogeneous Solid Media under Nonlinear Deforma-
tion, Akust. Zh. 38 (1), 129 (1992) [Sov. Phys. Acoust.
38, 66 (1992)].

10. V. A. Robsman, Accumulation and Chaotic Development
of Nonlinear Acoustic Processes in the Dynamic Frac-
ture of Geological Structures, Akust. Zh. 39 (2), 333
(1993) [Acoust. Phys. 39, 176 (1993)].

11. V. V. Krylov, P. S. Landa, and V. A. Robsman, A Model
of the Development of Acoustic Emission as the Chaoti-
zation of Transient Processes in Coupled Nonlinear
Oscillators, Akust. Zh. 39 (1), 108 (1993) [Acoust. Phys.
39, 55 (1993)].

12. P. S. Landa, G. I. Firsov, and V. A. Robsman, A Model of
Crack Dynamics and Acoustic Emission as a System of
Coupled Nonlinear Oscillators, J. Tech. Phys. 37 (3–4),
513 (1996).

13. V. A. Robsman and O. V. Rudenko, A New Method for
Nonlinear Nondestructive Testing of Developing Defects
Inside Inhomogeneous Solids, J. Acoust. Soc. Am. 105
(2), 1015 (1999).

14. O. V. Rudenko and V. A. Robsman, Nonlinear Wave
Equation in a Scattering Medium, Dokl. Akad. Nauk,
Ser, Fiz. 384 (6), 434 (2002) [Doklady Physics 47 (6),
443 (2002)].

15. O. V. Rudenko and V. A. Robsman, Nonlinear Processes
in Media with an Acoustic Hysteresis and the Problems
of Dynamic Interaction between Piles and the Earth
Foundation, Akust. Zh. 50 (6), 825 (2004) [Acoust.
Phys. 50, 725 (2004)].

Translated by E. Golyamina
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“Magnetoacoustics and Acoustoelectronics,” 
Session of the Scientific Council on Acoustics

of the Russian Academy of Sciences
A topical session of the Scientific Council on
Acoustics of the Russian Academy of Sciences, “Mag-
netoacoustics and Acoustoelectronics,” was held at
Syktyvkar State University on June 22–26, 2004.
Researchers from the Physics Faculty of Syktyvkar
State University, Syktyvkar Forestry Institute, and
Kirov Forestry Engineering Academy, St. Petersburg,
as well as specialists from research centers in Moscow,
St. Petersburg, Ul’yanovsk, Chelyabinsk, and Brest
took part in the session.

An introductory speech was made by the Cochair-
man of the organizing committee of the session, the
Head of the laboratory of the Institute of Radio Engi-
neering and Electronics, Russian Academy of Sciences,
Professor V.G. Shavrov. He noted that the first papers in
acoustoelectronics (G. Weinreich, Yu.V. Gulyaev, V.I.
Pustovoœt, V.L. Gurevich, and others) and magnetoa-
coustics (E.A. Turov, Yu.P. Irkhin, Ch. Kittel, A.I.
Akhiezer, V.G. Bar’yakhtar, S.V. Peletminskiœ and oth-
ers) were published about 50 years ago. Today, these
fields of research remain topical, because the funda-
mental results of studying these problems are of great
importance for applications in devices used for data
processing and communication. He stressed the fact
that such a session was being held in the Komi Republic
for the second time. The first session was organized in
1993. Since that time, research in magnetoacoustics
and acoustoelectronics has progressed a great deal and
young researchers actively working in this field have
appeared. The guests were also greeted by the Rector of
Syktyvkar State University, Chairman of the Local
Organizing Committee, Professor V.N. Zadorozhnyœ
and Head of the Department of Radio Physics and Elec-
tronics, Professor L.N. Kotov. Zadorozhnyœ noted that
the session will enhance basic research in physics in the
Komi Republic and wished successful work to all par-
ticipants. Then, 13 papers were presented at several
sections of the session.

Section A: Acoustomagnetic Phenomena
in Condensed Media

A paper by V.G. Shavrov (coauthors: V.D. Buchel’nikov,
V.V. Koledov, Yu.A. Kuzavko, and T.O. Khudaverdyan
from the Institute of Radio Engineering and Electronics
of the Russian Academy of Sciences, Chelyabinsk State
University, and Brest State Technological University),
1063-7710/05/5104- $26.00 0488
“Effect of Ultrasound on the Structural Transition and
the Shape Memory Effect in a Ferromagnet,” presented
the results of research into the acoustic properties of
NiMnFeGa polycrystals, where anomalies of the Young
modulus and ultrasonic attenuation near the magnetic,
structural, and modulation transitions were detected. It
was demonstrated experimentally that ultrasound can
cause austenite–martensite and martensite–austenite
structural transformations at constant temperature. The
nonthermal mechanism of the ultrasonic effect on the
structural transition was proved using a pulsed tech-
nique. It was shown that the effect of ultrasound on the
structural transition differs from the effects of constant
pressure and magnetic field. For example, a magnetic
field shifts the temperature loop of hysteresis to the
higher temperature range and constant pressure smears
and shifts it to the right, whereas ultrasound makes the
hysteresis loop narrower.

A paper by V.D. Buchel’nikov (coauthors:
N.K. Dan’shin, L.T. Tsymbal, and V.G. Shavrov from
Chelyabinsk State University, the Donetsk Physicote-
chnical Institute of the National Academy of Sciences
of Ukraine, and the Institute of Radio Engineering and
Electronics of the Russian Academy of Sciences),
“Magnetoelastic Interactions in Rare-Earth Orthofer-
rites in the Phase Transition Region,” was devoted to a
review of experimental and theoretical studies of the
magnetoacoustics of rare-earth orthoferrites in the
region of orientation phase transitions. The temperature
and field dependences of the frequencies of soft magne-
toresonance modes and of the velocity and attenuation
of sound in the vicinities of different orientation phase
transitions were presented. The dependences were
obtained by the methods of microwave and ultrasonic
spectroscopy. It was found that the contributions of pre-
cession and longitudinal oscillations of magnetization
intensity to the dynamic properties always coexist and
are additive, while their ratio depends on both the exter-
nal parameters and the ratio of the temperatures of
spontaneous reorientation and ordering of the corre-
sponding spin subsystem. The origin of the energy gaps
in the spectrum of spin waves and the change in the dis-
persion law at the points of orientation phase transitions
was discussed. It was demonstrated that the observed
values of energy gaps and the behavior of sound veloc-
ities result from the interaction of all indicated sub-
systems of orthoferrites.
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In the paper by N.S. Shevyakhov (coauthors:
S.N. Maryshev and V.G. Shavrov from the Ul’yanovsk
Branch of the Institute of Radio Engineering and Elec-
tronics and the Institute of Radio Engineering and Elec-
tronics of the Russian Academy of Sciences), “Modes
of Shear Magnetoelastic Waves Propagating in a Ferro-
magnetic Cylinder in a Circulation Manner,” a solution
to the problem of the propagation of magnetoelastic
waves in a ferromagnetic cylinder was given. The mag-
netostatics conditions and the periodic boundary condi-
tions for magnetization and elastic displacements were
taken as the boundary conditions. The solution to the
equations of magnetoelasticity was selected in the form
of the product of a harmonic function of time and cylin-
drical functions of coordinates. The nonreciprocity of
the propagation of waves with different polarizations,
the frequency dispersion of the azimuth wave number
with respect to the wave frequency, and a high-fre-
quency ferromagnetic resonance for the modes of
inverse propagation were revealed. The nonreciprocity
of the mode propagation manifests itself more strongly
away from the magnetoacoustic resonance and is most
pronouced for the lowest mode. The presence of a
demarcation frequency for the lowest mode of direct
propagation was revealed, and its dependence on the
cylinder radius was investigated for the case of a mod-
erate magnetoelastic coupling.

The paper by V.S. Vlasov (coauthors: F.F. Asadullin,
L.N. Kotov, D.E. Tsurikov, and V.G. Shavrov from Syk-
tyvkar State University, the Syktyvkar Forestry Insti-
tute, and the Institute of Radio Engineering and Elec-
tronics of the Russian Academy of Sciences), “Dynam-
ics of Interaction of Elastic Vibrations with the
Magnetic Subsystem in the Ferromagnetic Resonance
Region in Particles and Films,” analyzed the numerical
solution to the system of magnetoelasticity equations in
a plane ferrite particle and a ferrite film under the con-
dition of nonlinear magnetoacoustic resonance for dif-
ferent values of the magnetic dissipation parameter.
The rise of a nonuniform distribution of energy
between the elastic and magnetic subsystems under the
resonance conditions was revealed. The presence of
three relaxation regions for magnetization oscillations
was observed under magnetoacoustic resonance condi-
tions in the presence of an alternating field at certain
values of the magnetic dissipation parameter. The
relaxation nonlinearity becomes significant only at the
end of the relaxation time interval. The interval of the
values of the magnetic dissipation parameter was deter-
mined, within which the nonlinear relaxation and mag-
netization damping, as well as the largest growth of
elastic vibrations, are observed.

The paper by L.S. Nosov (coauthors: V.S. Vlasov,
L.N. Kotov, and V.G. Shavrov from Syktyvkar State
University and the Institute of Radio Engineering and
Electronics of the Russian Academy of Sciences),
“Behavior of an Elastic Subsystem under the Magneti-
zation Reorientation in a Single-Domain Particle,” was
devoted to the simulation of the dynamics of the elastic
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
and magnetic subsystems in a cubic ferrite particle
under the effect of magnetization reorientation by a
strong alternating magnetic field. A numerical solution
to the simultaneous equations of motion of the magne-
tization vector in Gilbert’s form and the equation for the
elastic subsystem of a small magnetic particle was
obtained in the approximation of a uniform precession
of the magnetization vector. It was demonstrated that,
when the frequencies of the acoustic and ferromagnetic
resonances differ widely, the elastic subsystem does not
affect the reorientation conditions. If these frequencies
are of the same order of magnitude, the elastic sub-
system decelerates the reorientation and represents an
additional channel of energy loss.

Yu.A. Kuzavko (coauthors: M.M. Karpuk, D.A. Kos-
tyuk, and V.G. Shavrov from Brest State Technological
University and the Institute of Radio Engineering and
Electronics of the Russian Academy of Sciences) pre-
sented the paper “Characteristic Features of Reflection
and Refraction of Acoustic Waves at the Boundary with
a Magnetically Ordered Crystal in Its Phase Transition
Region.” He considered a semi-infinite antiferromag-
netic crystal with an anisotropy of the easy-plane type
near the orientation phase transition in a magnetic field
applied in the basal plane. When the free surface of the
crystal is loaded with a fluid and, then, with a nonmag-
netic dielectric, the number of critical angles for a
transverse wave increases and reaches a value of three.
In this case, accompanying surface oscillations occur,
which may deteriorate in the vicinity of the phase tran-
sition, i.e., begin to radiate into the volume. Analogous
effects are discussed for a ferromagnetic crystal of the
Geissler alloy, Ni2MnGa, with a shape memory, for
which a one-order-stronger as compared to hematite
acoustic anisotropy is observed in the region of the pre-
martensite and martensite phase transitions.

The paper by S.N. Karpachev (coauthors: K.V. Kopy-
tin and D.E. Khasanov from Moscow State University)
“Propagation and Transformation of Different Types of
Magnetoelastic Waves in a Manganese Zinc Spinel Crys-
tal” presented experimental data on the propagation of
bulk and surface magnetoelastic waves in a Mn–Zn
spinel sample. It was demonstrated experimentally that,
in external magnetic fields corresponding to the magne-
toacoustic resonance region, the maximum efficiency
of the surface magnetoelastic wave generation is
observed when the waves are excited by a meander.
Anomalies appear in the case of the elimination of the
magnetic component of bulk magnetoelastic waves by
the meander and in the opposite case, when bulk mag-
netoelastic waves are excited by the meander and the
signal is eliminated by a bulk wave transducer.

The paper by L.N. Kotov (coauthors: F.F. Asadullin,
A.M. Ulyashev, and V.G. Shavrov from Syktyvkar
State University, the Syktyvkar Forestry Institute, and
the Institute of Radio Engineering and Electronics of
the Russian Academy of Sciences), “Characteristic
Features of Damping of Ultrasonic waves in the Region
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of the Magnetic Phase Transition in Manganese Zinc
Spinel,” reported on new results of the studies of ultra-
sonic wave damping near the point of inversion of the
first anisotropy constant in manganese zinc spinel crys-
tals, which were grown by different methods. Different
damping in these samples was explained taking into
account the internal fields and the variations of the
parameters of magnetization relaxation. It was associ-
ated with the macroscopic disorder of the crystals and
different ordering of the ferrous and ferric iron ions in
the lattice. A strong damping at very low frequencies
(in the frequency range of several megahertz) was
revealed in the region of spin reorientation in manga-
nese zinc spinel, which was caused by the magnetoelas-
tic interaction in this region.

Section B: Acoustoelectronic Phenomena
in Condensed Media

The paper by L.A. Kulakova (coauthors: A.V. Lyu-
tetskiœ, N.A. Pikhtin, I.S. Tarasov, and E.Z. Yakhkind
from the Ioffe Physicotechnical Institute, Russian
Academy of Sciences, St. Petersburg), “Study of the
Effect of Alternating Strain on the Electronic and Opti-
cal Properties of Heterolasers,” discussed the results of
the first studies of acoustoelectronic and acoustooptic
effects in InGaAsP/InP laser heterostructures. A new
principle of the periodic frequency tuning of the diode
laser radiation by the action of an alternating elastic
strain on the active region of laser heterostructures was
reported. The first data on the effect of the strain action
of bulk and surface ultrasonic waves on the spectral
parameters of laser radiation were obtained. To imple-
ment the action of elastic strain on the optical genera-
tion mode, excitation of both bulk and surface sound
waves was performed in heterostructures in the fre-
quency range of 5–10 MHz. It was demonstrated that
the introduction of ultrasound into a heterostructure
sample leads to the modulation of the generation fre-
quency with a period equal to the period of the sound
wave. It was found that, in the structures studied, the
effect of sound on the band structure of the active
region is the determining factor.

The paper by L.N. Kotov (coauthors: I.V. Piir,
A.M. Ulyashev, and F.F. Asadullin from Syktyvkar
State University and the Syktyvkar Forestry Institute),
“Acoustic Properties of Solid Solutions of Complex
Bismuth Niobates with a High-Temperature Conduc-
tivity,” is devoted to studies of the acoustic properties
(the velocity and damping of ultrasonic waves at fre-
quencies of 2.5–10 MHz) of solid solutions of complex
bismuth niobates Bi2MgCuxNb2O9 (x = 0.25, 0.5, and
0.75), Bi2Zn0.8Fe0.2Nb2O9, and Bi5Nb0.1Cr0.9O9 in the
temperature interval of 290–620 K. It was demon-
strated that the ultrasonic damping coefficient increases
for all samples as the temperature grows, which is con-
nected with the increase in the conductivity of the sam-
ples and with the interaction of the ultrasonic wave with
charge carriers. It was found that the high-temperature
velocity value strongly depends of the concentration of
transition metals. The presence of several high-temper-
ature jumps of sound velocity was revealed. The jumps
are related to the existence of metastable states of the
crystal structure and to the presence of relatively
weakly interacting solid phases in the samples under
study.

F.F. Asadullin (coauthor: L.N. Kotov, the Syktyvkar
Forestry Institute and Syktyvkar State University) pre-
sented the paper “Excitation of Piezoelectric Oscilla-
tions in Particle Ensembles.” He considered the condi-
tions for the resonance excitation of acoustoelectric
oscillations of particles (with a particle size of 50–
150 µm) by a pulse of electric field at frequencies of
10–50 MHz. The effect of the interaction of oscillating
particles on the relaxation time of elastic and electric
oscillations was demonstrated. The origin of coherent
responses of piezoelectric particles was discussed. For-
mulas for the amplitude of acoustoelectric particle
oscillations were given and compared with experimen-
tal data for piezoelectric powders of different materials.

Section C: Critical and Nonlinear Phenomena
in the Physical Acoustics of Solids

The paper by Yu.A. Kuzavko (Brest State Techno-
logical University), “Propagation of Bulk and Surface
Acoustic Waves at the Boundary with a Dissipative
Medium,” considered the case of an oblique reflection
of a longitudinal acoustic wave from the boundary
between a liquid and a dissipative medium, in which a
strong absorption of ultrasonic oscillations is observed.
At the critical angle of incidence, when the reflected
signal begins to be observable, its amplitude is deter-
mined by the dissipative loss parameter. At other angles
of incidence of the longitudinal wave, the effect of its
maximum conversion into a transverse wave occurs at
the boundary of a solid with a dissipative medium. This
transverse wave is sensitive to the shear viscosity of the
reflecting medium. In the case of the incidence of a
transverse wave at an angle higher than critical, accom-
panying surface oscillations are generated, while the
wave itself only slightly penetrates into the medium. At
the boundary between a solid and a dissipative medium,
the dissipative factor favors the presence of surface
waves with polarization parallel to the boundary plane.

Yu.N. Belyaev (Syktyvkar State University) pre-
sented the paper “The Characteristic Matrix for the
Dynamics of Elastic Properties of Layered Periodic
Structures.” He determined the interference coefficients
of reflection and refraction of elastic waves in layered
periodic media. The methods of the characteristic
matrices of the fourth to sixth orders were used to deter-
mine the coefficients. In the case of the critical phenom-
ena in layered periodic structures, the coefficients were
calculated using higher orders of the indicated charac-
teristic matrices.
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Section D: Application of Acoustic Oscillations
and Waves in Various Devices

The paper by S.G. Alekseev (coauthors: I.M. Kote-
lyanskiœ and G.D. Mansfel’d from the Institute of Radio
Engineering and Electronics, Russian Academy of Sci-
ences), “Microwave Resonators and Filters Using Bulk
Acoustic Waves,” characterized the modern state-of-
the-art and the prospects for the development of acous-
toelectronic elements using bulk acoustic waves in the
microwave range. The presentation was based on orig-
inal results obtained at the Institute of Radio Engineer-
ing and Electronics in the design of microwave resona-
tors and filters and also sensors for some physical quan-
tities on the basis of microwave resonators. Special
attention was given to the achievements of the Institute
of Radio Engineering and Electronics in developing the
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
metrics of new promising acoustic materials for the
microwave range and the design of thin piezoelectric
and metal films to be used in elements intended for the
microwave range.

The session was concluded by a round table discus-
sion of topical problems of magnetoacoustics and
acoustoelectronics. The general opinion was expressed
that it is necessary to develop acoustic research into
new nanomaterials, composite thin films, and layered
structures. It also is necessary to pay more attention to
the nonlinear aspects of the physical acoustics of solids.

L. N. Kotov

Translated by M. Lyamshev
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Review of the Book Baffling of Hydroacoustic Transducers
by V.E. Glazanov and A.V. Mikhaœlov

(Élmor, St. Petersburg, 2004)
The book is devoted to the basic problems of the the-
ory and practical design of acoustic baffles for modern
hydroacoustic transducers and arrays. Since the appear-
ance of the monograph Baffling of Hydroacoustic
Arrays (by V.E. Glazanov, Sudostroenie, Leningrad,
1986 (in Russian)), which was the only book on acous-
tic baffles in the Russian literature at that time, the
authors, well-known specialists in this area of engineer-
ing, have carried out many theoretical and experimental
studies of both baffles themselves and characteristics of
baffled transducers. The newly published book is
mainly concerned with the methods of calculating the
baffle elements and the acoustic characteristics of indi-
vidual transducers and to the comparison of calcula-
tions with experiments. The theoretical consideration is
not limited to the derivation of the final expressions for
calculation. The mathematical methods used for their
derivation give an insight into the principles of opera-
tion of the devices in question and allow researchers
and engineers to master the mathematical description
of the physical problems of baffle design. The book
consists of five parts and contains 22 sections and two
appendices. The authors provided a comprehensive
description of the basic problems of baffling according
to the current status of this field of research.

Part I, entitled Baffling Properties of Plane Layered
Systems (Sections 1–4), presents the formulas for cal-
culating single-layer, two-layer, and multilayer systems
serving as the basic elements in designing acoustic baf-
fles. Using an array consisting of bar transducers as an
example, the authors estimate the effect of a plane baf-
fle on the back lobe of the array directivity pattern.

Part II is entitled Acoustic and Elastic Parameters of
a Medium with Cylindrical Ducts (Sections 5–8). This
part is devoted to a comprehensive study of the statisti-
cal and dynamic properties of a rubber medium with
cylindrical ducts (under small and large deformations).
Layers of such a medium are widely used in hydroa-
coustics for making sound-insulating and sound-
absorbing coatings and baffles. (This kind of medium
was first described by Tyutekin in the paper Elastic
Wave Propagation in a Medium with Cylindrical Ducts,
Akust. Zh. 2, 291 (1956) [Acoust. Phys. 2, 307
(1956)].) An approximate theory that allows one to
determine the acoustic and elastic parameters of such
media with sufficient accuracy is developed. The calcu-
lated frequency characteristics of the reflection and
1063-7710/05/5104- $26.000492
transmission coefficients of baffles made of rubber with
cylindrical ducts are found to agree well with experi-
mental data.

In Part III, entitled An Acoustic Baffle for a Broad-
band Hydroacoustic Array (Sections 9–13), a method
of designing an acoustic baffle for a receiving hydroa-
coustic array is proposed and justified. A sound reflec-
tor consisting of a metal plate combined with a compli-
ant layer of rubber with cylindrical ducts is studied.
Such baffles are optimum ones from the point of view
of acoustic and weight–size characteristics and are used
in practice in modern broadband arrays. Results of
experimental studies of baffle elements under different
hydrostatic pressures are presented. These results agree
well with the calculated characteristics of the reflection
and transmission coefficients. The sensitivity of a
receiver positioned near the baffle under consideration
is determined by both calculation and experimental
measurement.

Part IV, Baffling of Cylindrical Transducers (Sec-
tions 14–18), describes the effect of baffles on the
parameters of cylindrical transducers. The authors pro-
ceed from the possibility of obtaining simplified
expressions that are suitable for engineering calcula-
tions to determine the acoustic characteristics of baffled
transducers with actual properties of the baffles. In
addition to the physically justified statement of the
problem, the validity criterion for the derived expres-
sions is the coincidence of the results of calculations
with experimental data. An approximate method is pro-
posed for determining the field produced by a cylindri-
cal transducer of finite height with allowance for the
radiation from the ends of its inner volume filled with
an elastic medium with an arbitrary Poisson ratio. This
problem is solved without taking into account the inter-
action of the ends of the inner cavity and the outer sur-
face of the transducer, where the latter is considered as
an opaque cylinder in perfectly rigid semi-infinite baf-
fles. The sound pressure generated along the radius by
a transducer that has a foam-plastic inner baffle or is
filled with water is calculated. For the wave generated
by the cylinder, the problem of its diffraction by a non-
closed array of perfectly compliant cylindrical scatter-
ers surrounding the cylinder is solved, and the results
are used to calculate the pressure and the radiation
resistance of the cylinder for arbitrary baffling angles
and sound insulation of the array. The calculated direc-
 © 2005 Pleiades Publishing, Inc.
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tivity patterns agree well with the measured ones. The
problem of radiation from a cylinder positioned near a
plane baffle with a given input impedance is solved.
The possibility to design side baffles for cylindrical
transducers on the basis of resonant-type baffling plates
is considered. A theory for calculating the acoustic and
strength parameters of baffling plates is developed. (It
should be noted that oscillatory systems of this kind
were studied by Grinchenko and Vovk in their mono-
graph Wave Problems of Sound Scattering by Elastic
Shells, Naukova Dumka, Kiev, 1986).

Part V, Application of the Multipole Method in Cal-
culating the Acoustic Characteristics of Cylindrical
Transducers (Sections 19–22), describes the methods
for calculating some unconventional types of cylindri-
cal transducers and baffles for them.

For each of the issues considered in the book,
exhaustive information is given, which provides the
possibility for designing baffles and baffling schemes
ACOUSTICAL PHYSICS      Vol. 51      No. 4      2005
for transducers according to the modern engineering
level.

The book contains ample graphical material that
gives better insight into the essence of the problems
under consideration. This book is definitely useful for
engineers and researchers involved in the development
of hydroacoustic transducers and arrays, as well as in
other problems concerned with sound insulation in
water, and also for university students and postgradu-
ates specializing in acoustics.

In closing, it should be noted that the appearance of
this book after a long absence of Russian publications
in applied acoustics is an important event, which should
be welcomed by the scientific community.

V.V. Tyutekin

Translated by E. Golyamina
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• acoustic tomography
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found on that Internet at http://rav.sio.rssi.ru/school-11.html

The Organizing Committee would appreciate your sharing information
on the XI Workshop on Ocean Acoustics and the XVII Session 

of the Russian Acoustical Society with your colleagues. 

ORGANIZING COMMITTEE: PROGRAM GROUP:
B. Kuperman R. F. Shvachko (Chair)

N. A. Dubrovsky A. L. Virovlyanskiœ

V. A. Akulichev V. V. Goncharov

S. S. Lappo V. S. Gostev

A. G. Luchinin E. A. Kopyl

B. F. Kur’yanov Yu. P. Lysanov

O. A. Godin A. I. Malekhanov

Yu. A. Chepurin

E. V. Yudina

V. G. Selivanov
1063-7710/05/5104- $26.00 © 2005 Pleiades Publishing, Inc.0494


	367_1.pdf
	376_1.pdf
	385_1.pdf
	392_1.pdf
	397_1.pdf
	404_1.pdf
	410_1.pdf
	414_1.pdf
	425_1.pdf
	435_1.pdf
	443_1.pdf
	449_1.pdf
	457_1.pdf
	463_1.pdf
	469_1.pdf
	477_1.pdf
	479_1.pdf
	480_1.pdf
	482_1.pdf
	484_1.pdf
	486_1.pdf
	488_1.pdf
	492_1.pdf
	494_1.pdf

