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Abstract—A new equation was recently suggested by Rudenko and Robsman [1] for describing the nonlinear
wave propagation in scattering media that are characterized by weak sound signal attenuation proportional to
the fourth power of frequency. General self-similar properties of the solutions to this equation were studied. It
was shown that stationary solutions to this equation in the form of a shock wave exhibit unusua oscillations
around the shock front, as distinct from the classical Burgers equation. Here, similar solutions are studied in
detail for nonlinear waves in even-order dissipative media; namely, the solutions are compared for the media
with absorption proportional to the second, fourth, and sixth powers of frequency. Based on the numerical
results and the self-similar properties of the solutions, the fine structure of the shock front of stationary waves
is studied for different absorption laws and magnitudes. It is shown that the amplitude and number of oscilla-
tions appearing in the stationary wave profile increase with increasing power of the frequency-dependent
absorption term. For initial disturbancesin the form of a harmonic wave and a pulse, quasi-stationary solutions
are obtained at the stage of fully developed discontinuities and the evolution of the profile and width of the
shock wave front is studied. It is shown that the smoothening of the shock front in the course of wave propaga-
tion is more pronounced when the absorption law is quadratic in frequency. © 2005 Pleiades Publishing, Inc.

Nonlinear effects arising in acoustic wave propaga
tion depend in many respects on the frequency-depen-
dent behavior of absorption in the medium. In classical
liquids, the absorption of acoustic waves is caused by
viscosity and thermal conductivity and depends on fre-
guency according to a quadratic law [2, 3]. In media
like biological tissues, the absorption law is nearly lin-
ear [4, 5]. Higher powers of frequency are characteristic
of the absorption laws of scattering media and media
with complex small-scale structure [1]. In addition,
numerical algorithms of simulating nonlinear shock
wave propagation often use fictitious absorption rapidly
increasing with frequency according to different laws
to artificially smooth out discontinuous solutions and
ensure their stability [6].

Rudenko and Robsman [1] recently suggested anew
equation (the RR equation) that describes the propaga-
tion of nonlinear waves in scattering media with
absorption proportiona to the fourth power of fre-
guency. In the context of the nonlinear evolution equa-
tion of an acoustic wave, this frequency-dependent law
corresponds to the absorption operator in the form of
the fourth derivative with respect to time. Rudenko and
Robsman [1] studied the general self-similar properties
of the solutions to the RR equation and showed that
strongly decaying oscillations appear in the wave pro-
file around the shock, which isin contrast to the mono-
tonic stationary solution to the Burgers equation. At the
sametime, the acoustic energy loss at the shock front of
the stationary wave is independent of the absorption

magnitude; it is proportional to the third power of the
shock wave amplitude and coincides with the absorp-
tion described by the Burgers equation and the equation
of simple waves [2, 3]. Nevertheless, the problems on
nonlinear wave propagation in media with absorption
rapidly increasing with frequency are far from being
exhaustively investigated. Moreover, an extension of
the existing solutions to media with still faster power
laws of frequency-dependent absorption (for example,
proportional to the sixth power of frequency, which is
characteristic of media with a complex small-scale
structure) is also of undoubted interest.

It should be noted that the effect of frequency-
dependent dissipative properties of a medium on non-
linear wave propagation and the fine structure of the
shock front has been studied much better for absorption
terms increasing with frequency according to nearly
linear and slower laws, which are characteristic of such
media as biological tissues and relaxation media[7, 8].
Asisknown, the shock front of awaveisformed dueto
the simultaneous action of two competing processes:
one of them is the acoustic nonlinearity that steepens
the leading edge of the wave and the other is the dissi-
pation that smoothes the shock front. Depending on the
absorption behavior, the jJump at the shock front can be
described by either afinite front width or by a mathe-
matical discontinuity [2, 3]. Exact analytical solutions
for strongly distorted nonlinear waves can be derived
only for certain simple cases, such as a honabsorptive
medium (the equation of simple waves), viscous
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medium with quadratic absorption (the Burgers equa-
tion) [2, 3] and frequency-independent absorption [9],
and relaxation media[8]. In the genera case, the study
of nonlinear waves with shock fronts requires resorting
to either asymptotic constructions or numerical proce-
dures |6, 7, 9-12]. It was shown [9] that the solution for
the wave profile can contain a stable shock front in the
form of a mathematical discontinuity if the high-fre-
guency absorption behavior is described by a function
increasing slower than the linear one. Characteristic
examples are the discontinuous solutions for relaxation
media [8, 11], media with frequency-independent
absorption [9], and media with selective absorption for
certain frequencies [12]. If the absorption increases
with frequency according to alaw faster than the linear
law, the shock front will have afinite width.

In this paper, we investigate in detail and compare
the features of nonlinear wave propagation in dissipa-
tive media of even orders, where the absorption is pro-
portional to the second (the Burgers equation), fourth
(the RR eguation), and sixth powers of frequency. We
consider the evolution of wave profiles and parameters
to the corresponding stationary values and analyze the
parameters of the shock fronts of stationary and quasi-
stationary solutions.

Consider the nonlinear evolution equation with
absorption proportional to an arbitrary even power of

frequency:

-2
op_ & 0p _ e 2"p
Ix p—-—o 3P5L = (-1) Bar”' (1)

Here, p isthe sound pressure; x is the coordinate along
which thewave propagates; T =t - x/¢, isthetimeinthe
moving coordinate system; ¢, is the phase velocity of
sound; € is the coefficient of nonlinearity of the
medium; (3 is the absorption coefficient; and parameter
n takes on the values of 2, 4, and 6.

For further calculations, it is convenient to rewrite
Eq. (1) interms of dimensionless variables:
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Here, V is the sound pressure normalized by a certain
characteristic amplitude p,, X is the distance to the
point of discontinuity formation in the harmonic wave
of frequency wy, in the absence of absorption, 6 is
dimensionlesstime, and I' is the dimensionless absorp-
tion parameter similar in physical meaning to the
inverse Reynolds number in the Burgers equation [2].
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We notethat the solutionsto Eq. (2) for arbitrary n =
2,4, and 6 are of a self-similar character, which allows
one to construct a whole class of new solutions from a
single known solution. One can easily show that, if the
function V,V(8,, z,) isa solution to Eq. (2) in the coor-
dinates 6, and z, for some absorption I, and character-
istic amplitude V,, then the function V,V(8,, z,) of
transformed arguments

A vV, [TV,
0, -eonlrvo R VA v @

is also a solution to Eq. (2) for other arbitrary absorp-
tion I, and amplitude V,.

Let usinvestigate the class of stationary solutionsto
Eq. (2) in the form of a pressure jump using the self-
similarity property (4). For this purpose, we require a
single stationary solution for some preset parameter I,
and amplitude V,. Let us set, for example, ', = 1 and
Vo= V(B — o) = M(@ — —m)| = 1, which corre-
spondsto the discontinuity amplitude (pressurejump at
thefront) A;= 2. For anumerical study of the stationary
solution formation and shock front dynamics, we select
the initial condition in the form of the hyperbolic tan-
gent

V(z=0,8) = tanh(8/2G), (5)

where 2G is the initial front width. The solution to
Eq. (2) is determined successively for the nodes of a
grid along the z coordinate with grid spacing h, by the
finite-difference algorithm:

V.(z+hz) = V,(hz)
2

[Vn+1(h2) Va-1(h2)] + (- 1) h.L,(V),

which is conservative in the nonlinear operator, first-
order in z, and second-order in the time coordinate 0.
Here, hy isthe grid spacing in 0, nis the number of the
nodes of the temporal grid, and L,(V) is the operator of
the corresponding higher derlvatlve with respect to
variable 8 forn =2, 4, and 6 [13]. In order to determine
the optimum values of the grid spacing that ensure the
stability and a given accuracy (0.3%) of the solution,
we carried out calculations for different values of the
grid spacing, different widths of theinitia front G, and
different disturbances of the initial smooth profile (5).
To avoid reflections from the grid boundaries, we used
a sufficiently wide temporal window.

Figure 1 shows the calculated evolution of initial
disturbances (aflat disturbance with G = 4.0 and asteep
disturbance with G = 0.05) to a stationary shock profile
for differentn = 2, 4, and 6. Asmay be seen, inthe clas-
sical case of aviscous liquid (n = 2), the resulting sta-
tionary wave has a smooth shock front of afinite width
[2]. The stationary solution to the modified Burgers-
type equation with n =4 and 6 also behaves as a shock
wave; however, the structure of the shock front is essen-
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Fig. 1. Nonlinear evolution of theinitial disturbances (G =
4.0 and G = 0.05) to the stationary solution for different
absorption lawsn = 2, 4, and 6. The bold line showsthe sta-
tionary solution.

tially different: decaying oscillations appear on both
sides of the front. The oscillation period (T=6.4atn =
6and T =7.0at n = 4) iscomparableto the width of the
shock front of the stationary solution, and the number
and amplitude of oscillations are the greater, the higher
the derivative used in the absorption description.

Figure 2 showsthe evolution of the peak value of the
wave profile V,.(2) = maxg(|V(z, 8)]) and the maximum
steepness of the shock front to the stationary values for
thesameinitial profiles (5) with front widths obviously
greater (G = 4.0) and smaller (G = 0.05) than the front
width of the stationary wave. The steepness (theinverse
width) of the shock front A! was determined as the
derivative A~ = 0V/06 at the front center 6 =0. Itisseen
from these curves that, in the case of the law quadratic
in frequency n = 2, the profile peak values do not vary
with distance, V,,,, = 1, and the front steepness tends

monotonically to the stationary value A™! = 0.5. For n =
4 and 6, the steepness of the initialy flat front aso
monotonically increases with the distance travelled by
2005
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Fig. 2. Evolution of (&) the peak value Vi, of the shock
wave profile and (b) the shock front steepness Al =
0V/06(8 = 0) to the stationary values for steep (G = 0.05)
and flat (G = 4.0) initia disturbances and different absorp-
tion lawsn = 2, 4, and 6. The curves are obtained for the
absorption parameter I' = 1.0 and the pressure drop at the
front Ag= 2.

the wave. The peak value of the wave profile remains
intact at the beginning of the propagation process. The
oscillations appear and the peak val ue begins monoton-
ically increasing to the stationary value only when the
wave front becomes noticeably steeper. For an initially
steep disturbance, oscillations in the wave profile
appear from the very beginning; in this case, the peak
value sharply increases, the front steepness decreases,
and afurther evolution of the parameters exhibitsanon-
monotonic oscillating behavior. The stationary values
of the wave parameters for the considered cases of ) =

2,4, and6are A" =0.5,0.84, and 0.87 and V,,,, , = 1,
1.23, and 1.29, respectlvely

Using the self-similarity property (4) and the sta-
tionary solutions determined numerically for ', = 1.0
and V, = 1.0, we consider the basic features of station-
ary solutions as functions of absorption I' and deriva-
tive order n for a fixed amplitude of the shock front.
Setting My =1.0and V, =V, = 1.0 (A;=2) in Egs. (4),
we obtain an expression for the shock front steepness
for an arbitrary I':

1

AN = T AT = ), %
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Fig. 3. Shock front steepness A~ = 9v/86(8 = 0) as afunc-
tion of the absorption parameter I" for different n = 2, 4, and
6. The pressure drop at the front is Ay = 2.

Figure 3 shows the shock front stegpness versus the
quantity I for different types of absorption. As can be
seen, the front steepness aways monotonically decreases
withincreasing I'. The curvesmeetintheregion” = 0.5—
0.8, where the front steepness approaches unity. If the
absorption is weak (I < 0.5), a steeper shock front is
formed for the absorption that increases dower with fre-
guency. In the case of a strong absorption (I > 0.8), an
opposite relationship between the front steepness and the
absorption law occurs in the region after the intersection
point of the curves.

Figure 4 shows the stationary solutions to Eq. (2)
and their first and second derivatives for different n at
= 05. For n = 4 (the RR equation), the curves
obtained correspond to theresults obtained in[1]. Asis
seen from the curves, the oscillations accompanying
the establishment of the stationary solution and deriva-
tives are more prominent for the higher derivative
describing the absorption law (n = 6). The oscillation
period-to-front width ratio depends on the derivative
order only dightly (TA"'/V,=6.0atn =4and TA'/V, =
5.6 at n =6) and, inview of the self-similar property of
the solution, is a quantity invariant with respect to
parameter I" and discontinuity amplitude A, = 2V,

Consider now the features of the quasi-stationary
solutionsto Eq. (2) that occur for small I by the exam-
ples of an initially harmonic wave and a Gaussian
pulse. Asisknown, at n = 2, the smooth segments of the
wave profile at the stage of fully developed discontinu-
ities are adequately described by the solution to the
equation of simplewaves, and the structure of the shock
front nearly coincides with the stationary solution for
the corresponding discontinuity amplitude (the Khokh-
lov solution to the Burgers equation [2]). One would
expect that the oscillating front structure observed for
n = 4 and 6 will nearly coincide with the structure of
stationary waves of the corresponding amplitude. How-
ever, the steepness of the fronts corresponding to differ-
ent absorption laws will exhibit different dependences
on the distance-dependent discontinuity amplitude
A(2), which can be unambiguously determined from
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Fig. 4. Nonlinear stationary wave profiles and their first and
second derivatives for different absorption laws n = 2, 4,
and6a " =0.5.

the exact solution to the equation of simple waves for
an arbitrary initial profile.

Depending on the frequency-dependent absorption
law n = 2, 4, and 6, we select the values of parameter I’
to satisfy the requirement that the shock front steep-

nesses beidentical, say A;" = 5, at the point where the
wave profile has the dimensi onless discontinuity ampli-
tude A, = 1. The corresponding absorption parameters
I, are easily determined from the self-similarity prop-
erty (4) of theresulting stationary solutionswhaose front

steepness A;l al =1andA;=2isknown (seeFigs. 1
and 2):

nm‘lmn_l
r,=rEd gy | (8)
n CAD o
which yields ', = 2.5 x 102, I, = 3 x 10, and
e =2.45 x 10, Figure 5 shows the shock front steep-
No. 5

ACOUSTICAL PHYSICS Vol. 51 2005



STATIONARY AND QUASI-STATIONARY WAVES

ness as afunction of distance z and the distance-depen-
dent evolution of the profile of an initialy harmonic
wave V(z = 0, 6) = sin(B); al data were calculated
numerically on the basis of Eq. (2) for the above param-
gtersl, and n = 2, 4, and 6. The simulation was carried
out in the spectral representation using 100 harmonics
of the reference frequency [7]. One can see that the
front steepnesses actually coincide for all absorption
laws at the distance z = 5.3, where the discontinuity
amplitude is A, = 1 in accordance with the exact solu-
tion to the equation of simple waves. The maximum
front steepnessis achieved at the maximal value of dis-
continuity A, = 2 (z= 172), and the greatest value of the
maximum corresponds to the quadratic law of fre-
guency-dependent absorption n = 2. The fastest
decrease in the front steepness with distance (the max-
imum smoothing of the shock front) occursat n = 2. For
n =4 and 6, oscillations appear in the profile behind the
front; the oscillation amplitude decreases and duration
increases as the discontinuity amplitude decreases, in
accordance with properties of stationary solutions.

Figure 6 shows similar results of a numerical simu-
lation by Eq. (2) for the same parametersT™,, but for the
initial disturbancein theform of aGaussian pulse V(z=
0, 8) =2.0exp(—62%/1.7%). The pulse amplitude and dura-
tion are set in away that ensuresthat the distanceto the
point of discontinuity formation and the maximum dis-
continuity amplitude are the same as in the case of the
above harmonic wave: z=1 and A, = 2. Inthis casg, the
shock front steepnesses become equal at greater dis-
tances z, because the nonlinear attenuation of the shock
pulse A, ~ (1 + 2”2 isslower than the attenuation of the
symmetric saw-tooth wave A, ~ (1 + 27! [2, 3]. The
pulse profiles corresponding to different absorption
laws nearly coincidefor equal distances on smooth seg-
ments; however, the front structure is noticeably differ-
ent and basically reproducesthe behavior of the station-
ary solutions.

It is clear that the degree of closeness of the shock
front structure at the stage of fully developed disconti-
nuitiesto the stationary solution depends on the magni-
tude of the parameter I' and on the absorption law 1.
Figure 7 illustrates the difference between the shock
front steepness calculated from Eqg. (2) for the initialy
harmonic wave (the solid curves) and the stationary
solution steepness abtained from the discontinuity
amplitude of the solution to the equation of simple
waves for given parameters ™ and n (the dashed lines).
The calculations were carried out for the parametersl,
belonging to two sets, every of which corresponded to
a certain maximum front steepness (at z = 172) for all
absorption laws n). It is seen that, for weak absorption
(upper curves, the right-hand A" axis) and n = 4 and 6,
the stationary solution adequately describes the shock
front steepness beginning almost from the point of dis-
continuity formation. For quadratic frequency-depen-
dent absorption n = 2, the differences are more promi-
nent and the shock front approaches the stationary solu-
tion at distances of several lengths of discontinuity
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Fig. 5. (8) Shock front steepness as a function of distance
and (b) the evolution of the profile of the initially harmonic
wave for different absorption lawsn = 2, 4, and 6 and the
corresponding absorption parameters I, = 2.5 x 1072, My =
3x107* and T4 =2.45x 107°.

formation. For greater values of parameter I (lower
curves, the left-hand A™! axis), the structure of the
shock front approaches the stationary solution for
greater distances, the front is more spread than in the
stationary solution, and these differences are again
more prominent for the quadratic absorption law. In the
simulations of heavily distorted nonlinear signals, these
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Fig. 6. (2) Shock front steepness as a function of distance
and (b) the evolution of the profile of the initially Gaussian
pulse for different absorption lawsn = 2, 4, and 6 and the
corresponding absorption parameters, =2.5 x 107, [, =
3x10% and T =2.45x 107,

features play a significant role. It is the front steepness
that determines either the temporal spacing of the grid
or, in the spectral approach, the required number of har-
monics. As aresult, for fixed parameters of the numer-
ical scheme, the use of an invented absorption rapidly
increasing in the high-frequency region results in
smaller distortions of the solution structure in compar-

AVERIYANOV ¢t al.

Fig. 7. Shock front steepness of theinitially harmonic wave
asafunction of distance for different absorption lawsn = 2,
4, and 6 and different absorption parameters I'. The solid
curves are obtained from the numerical solution, and the
dashed curves, from the exact solution to the equation of
simple waves by replacing the mathematical discontinuity
with the corresponding stationary solution.

ison with the discontinuous solution in a lossless
medium, in which the mathematical discontinuity is
replaced with the corresponding stationary solution. In
this case, wave energy absorption will also nearly coin-
cide with the absorption caused by discontinuities in
the stationary wave.

As is known, the wave energy absorbed at an infi-
nitely narrow (discontinuous) front is proportiona to
the third power of the discontinuity amplitude [3]. In
dissipative mediawith n = 2 and 4, the absorption at the
shock front of a finite width is independent of linear
lossT™ and coincides with the absorption at an infinitely
narrow discontinuity if the shock front widthissmall in
comparison with other wave scales[1, 2]. One can eas-
ily show that this situation holdsfor | = 6 and any other
even n. Assume that the solution V has a narrow shock
No. 5
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front and sufficiently smoothly tends to zero behind the
front. Asin [1], we multiply Eg. (2) by Vd8 and inte-
grate the result in infinite limits. Then, using notation

n—_g
R=(-1) ° T, for the energy E:J‘:ovzde we obtain
the equation
dE
e ZRJ'V—de )

or, after integration by parts,
dE - JRvd"

dZ 90"~ 1 m_ RI

The first term on the right-hand side of Eg. (10) van-
ishes in view of the condition Vlg _, ., = 0. Derivatives
o"-'v/oe"-! in the second term behave as narrow
peaks near the shock front and rapidly vanishing
smooth functions at a distance from the front, so that
the absorption mainly occurs at the shock front. Then,
assuming that the front profile in the integration region
nearly coincides with the stationary wave profile (i.e.,
setting 0V?/06 = —2R0"V/06") and integrating over 6 in
view of |V]g _ 1+ =V, We obtain

""" vav
971086

2Xde.  (10)

—2R0"'V/90" ! = (VP =VD). (11)

Substituting Eq. (11) into Eq. (10), we obtain the
desired expression for the wave energy absorption:

VD

E 4 1

((jiz I(V —V2)dV = _§v§=_éA§, (12)
_VO

where A, is the amplitude of pressure discontinuity.

Thus, the self-similar property of the solutions to
Eqg. (2) and the stationary solutions (Fig. 1) obtained
numerically in this paper for certain fixed discontinuity
amplitude and absorption parameter allow oneto obtain
thewhole class of stationary solutionsto Eqg. (2) for dif-
ferent absorption laws with even powers of frequency,
an arbitrary absorption magnitude, and an arbitrary dis-
continuity amplitude. As the power r) in the frequency-
dependent absorption law increases, the amplitude and
number of oscillations appearing in the stationary wave
profile increase (for n = 4 and 6). In the case of har-
monic and pulsed initial signals, the structure of the
shock front of afinite width formed in aweakly absorb-
ing medium at the stage of fully developed discontinu-
ities reproduces the structure of the stationary wave
front; moreover, the absorption at the shock front coin-
cideswith the absorption at an infinitely narrow discon-
tinuity of the same amplitude. The smoothing of the
front in the course of propagation ismore prominent for
the absorption quadratic in frequency; for this reason,
the use of invented absorption rapidly increasing in the
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high-frequency region is worthwhile in the simulations
of discontinuous waves. it minimizes the shock wave
spreading and yields a more accurate description of the
smooth segments of the wave profile and the wave
energy absorption. However, this invented absorption
causes oscillations around the shock front, so that the
shape of the profile near the front, as well as the peak
values of the wave, will be distorted.
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Abstract—We consider the possibility of solving theinverse scattering problem in the linear approximation (in
the form of a convolution equation) by reducing it to a system of linear algebraic equations and minimizing the
residual. Since the problem is an ill-posed one, the Tikhonov regularization proves useful. The possibility of
using the entropy of the image estimate as a stabilizing functional is considered, which is the key idea of the
maximum entropy method. The single-frequency and multifrequency versions of the method are realized. The
advantage of the maximum entropy method over the conventional linear methods of solving the inverse scatter-
ing problem is shown. The superresol ution and sidel obe suppression abilities of the maximum entropy method
are demonstrated. The method is shown to be stable to measurement noise and multiplicative interferencein the
form of aperture decimation. Examples of the image reconstruction by the maximum entropy method from
model and experimental data are presented. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Obtaining information on the internal structure of
such different optically opague objects as the ocean,
human body, welds in pipelines, etc., is atopical prob-
lem belonging to the class of inverse scattering prob-
lems. The inverse scattering problem consists in deter-
mining the quantitative characteristics of inhomogene-
ities from observations of the field scattered by them.
Different types of incident field are used: electromag-
netic, X-ray, acoustic, etc.

A widespread type of inverse scattering problemsin
nondestructive testing are those concerned with ultra-
sonic sounding of optically opague objects and struc-
tures. The purpose of sounding is to find internal
defects (cavities, cracks, etc.) and determine their size.
An important issue in ultrasonic nondestructive testing
ishow to classify the defectsfound and how to generate
an expert evaluation of whether the object issuitablefor
use.

To obtain sufficiently high-resolution images of
the defects, systems that coherently process the mea-
sured echo signals are employed. In Russia, the
Avgur-4.2 system [1] is used to test pipeline welds at
nuclear power plants. Abroad, the Masera system
from Technoatom and the pi+ system from Sonomatic
are used to check performance-critical structures.
Such industrial systems obtain images of the scatter-
ers by algorithms that solve the scalar inverse scatter-
ing problem in the Born approximation. Among the
algorithms of this class, there are the SAFT method
[2, 3], the angular spectrum method [4], and the

method of projection in the spectral space [5, 6]. The
latter method is especialy efficient, because it takes a
small time to reconstruct the scatterer images from a
set of echo signals measured in the combined mode,
when the ultrasonic pulses are transmitted and
received by the same transducer.

The underside of simplicity of these algorithms is
that images of the defects are far from always being of
a sufficiently high quality. They exhibit a high level of
spurious images produced by multiply scattered pulses
and pulses generated in wave transformations accom-
panying the scattering from the inhomogeneities. Also,
it is not always possible to uniquely identify the
defect’s shape, because the image is reconstructed only
for the part of its boundary from which the echo pulses
are recorded at the reception site. The problem of
improving the resolution and reducing the speckle
noiseistopical in nondestructive ultrasonic testing.

To obtain images whose resol ution is higher than the
Rayleigh limit, i.e., superresolution images, algorithms
that extrapolate frequency and angular signal spectra
are used. For example, the Gershberg—Papoulis itera-
tion algorithm [7-10, 22] or the algorithm that extrapo-
lates the spectrum of echo signals through constructing
their autoregressive (AR) model [11-14]. The Gersh-
berg—Papoulis algorithm is used to extrapolate the echo
signal spectrum, which enhances the range resolution,
as well as to extrapolate the complex image spectrum,
which enhances both the range resolution and the lat-
eral resolution. Because the Gershberg—Papoulis
method applies thresholding at alevel of about 30% of

1063-7710/05/5105-0502$26.00 © 2005 Pleiades Publishing, Inc.
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the maximum value, it neglects information about
small-amplitude scatterers. Extrapolation of the echo
signal spectrumintermsof itSAR model improvesonly
the range resolution rather than the lateral resolution.

Among various methods for solving such problems,
one may distinguish the so-called maximum entropy
method (MEM)). It was substantiated, and the first prac-
tical results were obtained in the 1950s by Jaynes, who
demonstrated that Shannon's entropy can be used in
fuzzy decision problems. Shannon’s entropy of a set of
discrete independent random quantities is defined as
follows:

N

H = —z piinp;.

=1

In 1972, Freiden showed that entropy can be used as
a stabilizing functional in the Tikhonov regularization
method [20]. It was demonstrated that superresolution
can be achieved in an imaging system (a one-dimen-
sional noncoherent object and a diffraction-limited
forming system) [15]. The image pixel intensity was
associated with probabilities. The study has shown that
the MEM is efficient for reconstructing images in
tomography [16], radio astronomy [17], nuclear mag-
netic resonance (NMR) [18], and ultrasonic testing
[19]. Conferences under the title Bayesian Framework
and Maximum Entropy are held on aregular basis, and
capabilities of the MEM are extended from year to year.

In this paper, we consider the possibility of applying
the MEM in ultrasonic testing to enhance the scatterer
image quality.

MATRIX MODEL OF THE SCATTERING
PROBLEM

Following [19], let us write the formula that
describesthe scattering and reception of ultrasound at a
frequency w:

U(rgey, @) = iijIG(r, w) W
S

X g(rrey =T, W)Ug(r, ) f(r)dr + n(rgcy, w).

Here, r [0 Syer O R? isthe position vector of apoint in
the scattering region (shown in Fig. 1 in gray), rgey U
Sqev O Rl isthe position vector of a point on the linear
receiving aperture, j istheimaginary unit, k isthe wave
number, g(r, w) is the Green’s function of the Helm-
holtz equation at the frequency w, 8(r, w) isthe receiver
pattern, f(r) is the scattering potential (independent of
frequency), Uy(r, w) is the primary illumination field,
and n(rgey, W) isthe additive measurement noise.

The plus and minus signs before the integral in
Eq. (1) refer to boundary problems | and Il, respec-
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Fig. 1. Schematic diagram of the scattered field measure-
ments in the combined mode.

tively. Boundary problem | models acoustically soft
scatterers; boundary problem 11, acoustically hard scat-
terersand istypical of ultrasonic nondestructive testing
applications.

The system that creates holograms U(rgey, W) is
assumed to be linear, and the linear model is con-
structed in terms of the Kirchhoff approximation (phys-
ical optics approximation) for opague scatterers. Equa:
tion (1) was derived under the following assumptions:

(i) only the first-order scattering from the scatterers
is taken into account (multiple scattering is ignored);

(ii) the mode transformation isignored;
(iii) the scatterer boundary is smooth;
(iv) thefield in the scatterer’s shadow is zero;

(v) the field gradients and the Green's function are
calculated under the assumption that only plane waves
propagate in the medium and the wave reflected by the
scatterer’s face propagates along the normal to the face;
and

(vi) only the I- and I1-kind boundary conditions are
modeled.

In spite of these assumptions, there are many meth-
odsfor solving the inverse scattering problem inthelin-
ear approximation that provideimages whose quality is
sufficiently high for the majority of applications. Sys-
tems that successfully realize these algorithmsin prac-
tice were mentioned in the Introduction.

The above modd allows us to simulate various
sounding techniques by choosing the corresponding
function U (r, w). In particular, to simulate monostatic
measurements, in which thetransmitter and receiver are
collocated, we use Uy(r, w) in the form of the same
Green’'sfunction g(r, w) and, without loss of generality,
the monostatic measurement model aoneis considered
below.
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To solvethedirect and inverse scattering problemson
acomputer, adiscrete model of ultrasonic scattering and
reception must be constructed. Equation (1) is sampled
on auniform grid in Cartesian coordinates xz. The same
grid is used for the unknown solution f to the equation.

Below, we use the following notations: N and M are
the x- and y-axis dimensions of the grid in the image

—h =—h —h —h  —h
N = R P
[ z N [E
I

N
N

(i.e., wewritef=

—
oo
=z

—~  —h
< < .
N [l

o o

—_
= cee
z

where f; is the value of function f(r) at the point r;); h,,
isthe A x 1 vector, which represents the ultrasonic field
U(rreys W) measured on the receiving aperture at the
frequency w (in the single-frequency case, we omit the
subscript); we will also call h, a hologram at the fre-

guency w; and hiw = U(rgey, » W), Where rge, isthe

distance to the ith point of the receiving aperture. In
practicing nondestructive testing, numbers of samples
N, M, and A may be as high as about 1000.

The wave propagation to the receiving aperture is

taken into account by the A x NM circulant matrix! G,
which is a discrete representation of the squared
Green's function in the image reconstruction region
with allowance for the pattern:

1 The term circulant matrix refers to the matrix of the following

%qllqlzm Ain E

O O
structure: Q = 0 921 922 - BoN-17 j e, each subsequent row
o - : O
D . . . . D
002 913 -+ 911 O

of the matrix is equal to the preceding row shifted one place to
theright.
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reconstruction region, respectively; Ax and Az are the
grid step sizesin the x and z axes, respectively; Aisthe
number of points on the linear aperture (the distance
between the samples is also Ax); f is the lexicographi-
cally ordered NM x 1 vector, which is a discrete repre-
sentation of the scattering potential in the image recon-
struction region

Sy fo o fin B
: O, f fo &
insteadof f=[ "2t "2 ' 2N
E SR SRR E
0 fwr fwe fun O

] ]
091 912 - Gunm ]
G, = Egz,l 022 - U2,nm E
g : T . » O
O O
09a19a2 - 9anm O

Here, the row of number i is a discrete representa-
tion of the squared Green's function, with which the
scattering potential must be convolved to obtain the
field at the ith point of the receiving aperture:

Ginm = £2]KO%(rm) 9°(Frey, = Fom W)/AX,

where rgc,, isthedistanceto theith point of the receiv-

ing aperture and r,,,, is the distance to the point in the
image reconstruction region, at which the sample of
number n, mon the X and Z axes, respectively, is taken.
Thismodel can also describe the effect of amultiplica-
tive interference on the hologram. The multiplicative
interferenceisrepresented by multiplying the hologram
by arandom function. In the discrete formulation, it is
convenient to represent the effect of the multiplicative
interference by multiplying the hologram by adiagonal
matriX.
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It is of interest in image reconstruction when Sis a
decimation operator, which modelsthe loss of aportion
of data on the receiving aperture. In the harmonic case,
to solve the direct scattering problem, i.e., to calculate
the field on the receiving aperture, one can perform the
following matrix operations:

(i) multiply the matrix of the operator G of the direct
problem by f (which corresponds to the calculation of
the convolution integral in Eqg. (1) by the method of
rectangles);

(if) add the vector of the discrete complex zero-
mean Gaussian white noise with the variance o2, i.e,,
N,= (N, N, ... ny", where Ren, ~ N(0, 6% and Imn; ~
N(0, 02); and

(iii) apply the matrix Sof the multiplicative interfer-
ence for the aperture decimation case, which sets the
field measured at particular nodes equal to zero in order
to alow for the data loss on the receiving aperture.

Ultimately, the direct scattering problem at the fre-
guency w isformulated as follows:

h, = S(G,f +ny). 2

In practice, holograms are usually calculated at K
frequencieswithin the range (Wi Wrnax) and processed
simultaneoudly:

h = (hwmin hwmax)T
0 oo 0 0 [l
0 Sr.omin 0 00 Goomin O 0 Neomin O (3)
=0 . ;D0 O+0 ;D
0 0 ... Suvex00Gumex 0 0 Nooma 0

This model can be modified in order to allow, for
example, for multiple scattering of thefield by theinho-
mogeneities and for wave transformation. It may also
be possible to allow for the geometry and smooth vari-
ation of the velocity of sound in the object under testing
by constructing an appropriate Green's function, which
isin general aseparate and very complex problem. The
more accurately the direct scattering problem is
described, the more reliable the solutions obtained by
minimizing the residual of the direct problem are.

As the quality criterion of the reconstructed image,
we use the squared residual (written for a single fre-
guency below):

X’(f) = p°(SGf, h) = ||SGf —h|*
= (SGf —h)"(SGf —h).

That is, the reconstructed image is a solution to the
unconstrained minimization problem (solution in terms
of the least squares method):

f = arg min (x*(f)). (5)

fOR

“)
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Within the terminology used in [20], a solution to
degenerate system (2) that provides the minimum error
x? iscalled apseudosolution. There are an infinite num-
ber of such pseudosolutions, and such parameters as
resolution and level of speckle noise are in general far
fromideal values.

Since the digital acoustic holography uses complex
numbers, the dimension of all variables becomes twice
as large and both the real and imaginary parts of the
image must be reconstructed, which is required by the
optimization problem with a complex criterion. In the
calculations, the vectors and matrices are written in the
form:

0 ] 0 O
fEDfReD GEDGRS_GImD 6
0 mld Ogm e O ©)

The gradient and Hessian of the criterion are calcu-
lated as follows (using differentiation rules for matrix
equations):

X *(f) = 2G'(SGf —h), )

mX *(f) = 2G'SG. 8)

Theformal solution in terms of the necessary condi-
tion for the first-order extremum (the gradient of the
criterion must be zero) yields [19, 20]

11 1
)\1, )\2 .“ )\NM
where the singular value decomposition (SVD) of the
degenerate matrix is used:

G'SG = Wdiag[Ay, Ay ... A] W'

The superscript T means matrix transposition. An ana-
log of expression (9) istheinversefilter. If zero values
of A; or values close to zero appear in the denominator
in Eq. (9), it becomesimpossible to find aunique solu-
tion. The least-squares method is extremely unstable
to measurement noise. The noise component soon
starts dominating over the useful part of the solution
due to the large number of zero-valued A;. At the same
time, the property that the Hessian is positively
semidefinite guarantees the necessary conditions for
the second-order minimum to exist in the optimization
problem (5).

The fundamental importance of the approach based
on the least-squares method consists in the freedom of
choosing the point spread function G. To determine the
point spread function, one can solve the problem for the
Green's function of half-space, layer, or more complex
geometry or use an experimentally measured point
spread function. At the same time, this approach places
demanding requirements on computer resources. In
particular, to reconstruct an M x N = 256 x 256 image

i= wTdiag[ }WGTSh, )
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measured on an aperture consisting of A = 128 samples,
it isnecessary to storea 256 x 32768 matrix G and mul-
tiply it by the vector f consisting of 256 rows. Since the
matrix G iscirculant, there existsthe possibility of con-
siderably reducing the memory required (only one row
can be stored) and the time necessary to calculate the
product Gf by using the property that the circulant
matrix can be transformed to a diagonal matrix by the
discrete Fourier transform [19]. The use of the fast Fou-
rier transform (FFT) agorithm reduces the computa-
tional complexity of calculating the product Gf from
about N° to NlogN ; however, in this case, it is neces-
sary to use aregular grid in the discrete model.

THE MAXIMUM ENTROPY METHOD
AS A PARTICULAR CASE
OF THE REGULARIZATION METHOD

Tikhonov devel oped a method for solving ill-posed
problems called the regul arization method [20]. For the
Hadamard ill-posed problem written in the operator
form

Af =h,

thevariational principle of solution selection (construc-
tion of the regularization operator) can beformulated as
the optimization problem

fo = arg min (X°(f) +aQ(f)),
fo R

where f is the solution, x?(f) is the squared residual of
the solution in the metric determined by the specific
problem, and Q(f) is the stabilizing functional
intended to reduce the domain of solutions. An ill-
posed inverse convolution problem can be solved as
follows:

(i) we transform the convolution equation to a sys-
tem of linear equations with a degenerate matrix (2),
A);

(ii) choose a stabilizing functional Q(f);

(iif) formulate the optimization problem to mini-
mize the discrete analog of the functional Q(f) and the
residual of the solution to system (4); and

(iv) solve the optimization problem and the problem
of choosing the optimal regularization parameter a.

Thus, instead of solving the original problem given
by Eg. (5), we solve problem (10), which is stable to
small variationsin the input data h.

Asthe stabilizing functional, the optimization prob-
lem can use functionals of different classes. The pur-
pose of using the stabilizing functionalsisto allow for
certain prior information on the solution of theill-posed
problem and thereby reduce the solution domain. The
prior information can vary from the simplest constraint
that the solution be nonnegative or its certain norm be

(10)
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minimal to constraints imposed on the known autocor-
relation function, spectrum structure, and so on.

In [19], an agorithm is presented for the ultrasonic
image reconstruction by the maximum entropy method,
in which the optimization problem uses entropy of the
image estimate as the stabilizing functional:

f = arg min (X*=aH(f)).
fOR"™
Here, H is either the entropy of a set of independent
discrete random variables defined (for nonnegative
real f) as

NM

H(f) = =3 filnf, = -Q(1), (11)

where NM is the number of pixels in the image being
reconstructed or the cross entropy, also called Kull-
back—L eibler distance [21]:

NM
H(f) = —Zfilnﬁ:—i (12)
i=1

Here, mis the prior model or estimate of the form of
solution f. As the simplest model, a constant value ey
was used, where U represented the estimate of the aver-
age intensity of the image background. This formula-
tion circumvents one of the problems associated with
the maximum entropy criterion. The point is that, when
part of the image pixel intensities approach zero, the
logarithm in the expression for the entropy becomestoo
large, which hampers the convergence to imageswith a
zero background level. In this case, the components of
the entropy gradient will be close to zero for intensities
close to p. An additional difficulty of using entropy in
form (12) is that the parameter p must be estimated;
however, it has been shown that identical results are
observed in reconstructing from model and experimen-
tal datawith values of [ that differ by several orders of
magnitude. The question of using not so trivial image
modelsisthe subject of further research. We expect that
the amount of artefacts in the images being recon-
structed may be reduced through the use of nontrivial
prior image models. The maximum entropy criterion is
known to enhance the contrast regions of the image
(point scatterers, boundaries). Due to this feature, the
MEM has found wide application in radio astronomy
and may be used in ultrasonic testing.

Since the agorithm is nonlinear, superresolution
can be achieved in the image reconstruction, because
the components that are produced not only by incom-
plete source information appear in the spectrum of f(r).

The fact that the logarithm automatically allows for
the constraint that the image be nonnegative was recog-
nized in [22, 23] as the main advantage of the maxi-
mum entropy method in the form of Eq. (11). However,
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to correctly reconstruct the image of f in the coherent
case (ultrasonic nondestructive testing, NMR), it must
be reconstructed as a complex function and its real
and/or imaginary parts may take negative values. Vari-
ous approaches exist that circumvent this problem [19].
For example, the image can be decomposed into four
subimages whose phases are shifted so that the real part
of each subimage isnonnegative. Thus, one hasto solve
four independent reconstruction problems, shift their
phases back, and combine the subimages into a single
result.

In this paper, we generalize the MEM to complex
calculations by using the entropy of the absolute value
of the complex image. For vectors (6) with complex-
valued components, we can write

z = |t = J(EF°+ (£,
NM z
H = —izlzilnal.

In this case, the components of the gradient and Hes-
sian of the entropy have the form

Rey, (&[] im, [F]
oH _f InEIJD oH _f Inqﬂ
afre z afm z

_g¢Re_ ¢Im EZN
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Thus, the optimization problem can be solved by the
first-order methods and by the second-order methods as
well. First-order methods of the gradient-descent type
have been applied with partial success. Since the
entropy function is nonlinear, the convergence is
extremely slow [24]. The second-order methods, which
require the inversion of the Hessian, cannot be applied
in practice, because the dimension of the Hessian istoo
large.

To solve the optimization problem with the entropy
as the regularizing functional, a high-performance fast
and robust Cambridge algorithm was developed by a
research team headed by Skilling [25]. An important
property of this algorithm is that it does not invert the
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Hessian (whose dimension may by quite large), while
the convergence is provided by projecting the gradient
and the Hessian onto a specially constructed subspace.
Circulant matrices are multiplied by vectors with the
help of the FFT, which dramatically saves memory,
because only one row (or column) of the matrix rather
than the whole matrix can be stored. The convergence
rate is aso increased by changing the metric of the
space in such away that components of the metric ten-
sor become dependent on the entropy’s Hessian at the
current step of the optimization process. The Cam-
bridge agorithm was extended to the case of complex
calculations [19]. Another advantage of this algorithm
is that it offers a better estimate of the regularization
parameter a. Apparently, the effective practical imple-
mentation of the MEM should employ the Cambridge
algorithm.

Results reported below were obtained by the high-
dimension quasi-Newton agorithm based on the pro-
jection onto atwo-dimensional space [26].

One of the main problems in implementing regular-
ization methods is the choice of the regularization
parameter a, which playstherole of the Lagrange mul-
tiplier in constrained optimization problems. The pur-
pose of a is to reconcile the necessity of obtaining an
exact solution to the ill-posed problem with the con-
straint imposed by the stabilizing functional .

There exist many methods for estimating the opti-
mum regul arization parameter a*, which require prior
information on the source data precision and/or high
computer resources[20]. Asaresult of the comparative
analysis of these methods, we decided to use our pro-
prietary empirica MEM algorithm. Its choice of the
optimal regularization parameter relies on an adaptive
estimate. The estimate a* can be calculated from the
requirement that the norm of the residual’s gradient be
equal to the norm of the regularization functional at
each step of the optimization process:

‘o s 2ol
' loH ()

This choice of the regularization parameter provides
equal norms of the gradient components (necessary
conditionsfor thefirst-order extremum) and the conver-
genceto a high-quality solution. Since a* is updated at
each step, the choice method given by Eq. (13) iscalled
the adaptive regularization parameter estimator. Its
main advantage is that it estimates a* without any
information about the additive measurement noise and
about the structure of the decimated aperture. This
method also works about ten times faster than some
other methods, because it does not solve the same prob-
lem many times.

This method showed very good resultsin the recon-
struction of model and experimental data. The image

(13)
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Fig. 2. Image of nine point scatterers used to solve thedirect
scattering problem.

reconstruction results reported in this paper were
obtained using the adaptive regularization parameter
estimator.

MODEL NUMERICAL EXPERIMENT

Consider the model of defects in the form of nine
point scatterers placed at a depth of 40 mm and spaced
1.5mm apart (six readingsof 1.2\, where A isthe wave-
length at the central frequency of 2.5 MHz) in asample
with a sound velocity of 6.26 mm/us. The scattering
coefficients of the model defects differ by afactor of 10.
A 2.5-MHz transducer transmitted and received longi-
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tudinal waves. The spatial aperture consisted of 256
readings taken at 0.25-mm-long intervals. The perfect
image of the defectsis shown in Fig. 2. All figures pre-
sented below represent the x coordinate on their abscis-
sas and the magnitude of the complex scattering coeffi-
cient on their ordinates. Theimage reconstructed by the
angular spectrum method (ASM) from the measure-
ments taken at five frequenciesin the range from 1.0 to
4.0 MHz is shown in Fig. 3a. The Rayleigh resolution
at the central frequency of 2.5 MHz is 2.0 mm. The
low-amplitude scatterers cannot be distinguished in the
reconstructed image in the presence of sidelobes of
high-amplitude scatterers. The superresolution pro-
vided by the maximum entropy method allows us to
reliably determine the number of scatterers and their
scattering coefficients (Fig. 3b). It should be noted that
amplitudes of the scatterers on the left and on the right
of the central scatterer are estimated as 0.26 instead of
the true value of 0.2; i.e., the error is 30%.

Figure 4a shows the image of the same defects
reconstructed by the angular spectrum method from the
data taken on the same spatial aperture but at five fre-
guencies from 2.0 to 3.0 MHz. The image quality also
fails to correctly estimate the number of scatterers and
their amplitudes, because the quality is such that one
can conclude that the number of scatterersis five. The
maximum entropy method (Fig. 4b) reliably retrieves
the number of scatterers; however, their amplitudes are
reconstructed not asreliably asin Fig. 3b because of the
insufficient lateral resolution. And, finaly, due to the
high sidelobes, the measurements taken at asingle fre-
quency of 2.5 MHz fail to reliably detect the defects
whose amplitudes are 20% lower than the maximum
amplitude (Fig. 5).
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Fig. 3. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of

1.0t0 4.0 MHz.
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Fig. 4. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of

2.0t03.0 MHz.
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Fig. 5. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded at a frequency of 2.5 MHz.

The MEM demonstrates the stability to aperture
decimation. Figure 6 shows the images reconstructed
by the (a) ASM and (b) MEM from holograms mea-
sured on 20% of the aperture, the readings being taken
at random. Therest of the modeling conditionswerethe
sameasinthe caseillustrated in Fig. 2. A decimation of
the aperture by a factor of five exerts almost no effect
on the image reconstructed by the MEM, whereas the
quality of the image obtained by the ASM noticeably
degrades. Figure 7 shows the results of the reconstruc-
tion from holograms of Fig. 3 contaminated by an addi-
tive Gaussian noise with an intensity a2 equal to 0.4 of
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the maximum amplitude of the useful signal. The MEM
is seen to be quite stable to additive noise.

MODEL EXPERIMENT

The object used in our experiments was a duralumi-
num sample with six grooves 50 um wide and 65 mm
deep. The distances between the grooves were 1.0, 2.0,
3.5, 5.0, and 7.5 mm. The measurements were taken by
atransducer with aflare angle of 60°, central frequency
of 2.5 MHz, and frequency band measured between
0.25-power points of 1.8 to 3.2 MHz. The longitudinal
wave velocity was ¢ = 6.26 mm/us. The receiving aper-
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Fig. 6. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of
1.0 to 4.0 MHz with the aperture decimated in a random manner to 20%.
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Fig. 7. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of

1.0 to 4.0 MHz contaminated with Gaussian noise.

ture consisted of 256 points spaced at 0.394 mm. The
tips of the grooves, which are typical point scatterers,
were the only objects that could be reconstructed. In
order to equalize the frequency and spatial spectra, the
inverse frequency and spatia filtering was preliminar-
ily performed.

Figure 8 shows the images reconstructed from a
hologram taken at 2.602 MHz by the (a) ASM and (b)
MEM. Figures 9 and 10 are the images reconstructed
from the datataken at five frequenciesin the range from
2.368 to 2.680 MHz by the (@) ASM and (b) MEM,
respectively, without aperture decimation and with the
aperture decimated by afactor of 2.

The MEM demonstrates its advantage in recon-
structing from experimental data. The sidelobe level is
lower, and the resolution is a little better than those
shown by the ASM. The superresolution ability of the
MEM was found to be insufficient to discriminate
between the nearest two sidelobes.

It is clear that, in practice, it is necessary to recon-
struct two-dimensional and three-dimensional images.
To realize an algorithm capable of reconstructing large
images, it is necessary to use the FFT to multiply circu-
lant matrices and, perhaps, employ special-purpose
optimization algorithms (like the Cambridge ago-
rithm).
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Fig. 8. Image of scatterers reconstructed by the (a) ASM and (b) MEM from holograms measured experimentally at 2.602 MHz.
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Fig. 9. Image of scatterersreconstructed by the (a) ASM and (b) MEM from holograms measured experimentally at five frequencies
in the range from 2.368 to 2.680 MHz.
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CONCLUSIONS

A new class of algorithms for reconstructing the
images of defects by the nondestructive ultrasonic test-
ing technique is studied. Possibilities of using the max-
imum entropy method in the image reconstruction from
single-frequency and multifrequency holograms are
investigated. An efficient method for estimating thereg-
ularization parameter is proposed.

The MEM is capable of providing a superresolution
and reducing the speckle noise. It is also stable to addi-
tive and multiplicative (in the form of decimation) mea-
surement noise. The possibility of using a decimated
aperture reduces the amount of measured data, in par-
ticular, in three-dimensional holography.

The approach based on the minimization of residual
in the solution to the direct problem in combination
with various problem-specific constraints holds much
promise for wide practical applications, which is dem-
onstrated by model examples. Until recently, the com-
paratively high demand on computer resources ham-
pered the use of such methods, but the advances in
computers has made it possible. The fundamental
importance of this approach liesin its ability to solve a
wide range of problems of ultrasonic nondestructive
testing by choosing an appropriate point spread func-
tion (PSF) G. To determine the PSF, one can solve the
Green's function problem for a half-space, layer, or
more complex structure or use a PSF measured experi-
mentally.
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Abstract—The two-dimensional tomography problem of reconstructing a refractive inhomogeneity in the
ocean is considered. A distinction of this paper is the expansion of the inhomogeneity under investigation in a
nonstandard (nonorthogonal and overfull) basis. Thisbasismakesit possibleto overcome some problemsinher-
ent in the conventional schemes dividing the ocean into squares, triangles, and other figures with corners. In
addition, the perturbation matrix can be easily constructed in such a basis. The proposed approach can be used
in its present form for reconstructing flows and solving combined refractive-kinetic problems. The solution of
the tomography problem with the use of the proposed basisis carried out in both ray and wave representations.

© 2005 Pleiades Publishing, Inc.

MOSAIC BASIS

In solving the problem of oceanic inhomogeneity
reconstruction, one must choose the basis el ements that
should be used to expand the desired hydrological
parameters, such as refractive inhomogeneities, flows,
and eddies. In two-dimensional problems, the basisele-
ments usually are plane figures, e.g., squares or trian-
gles, covering the water area of interest [1-3] so that,
within every single figure, the parameters remain con-
stant; or, the water area is covered with a grid, at the
nodes of which the parameters are specified and theval-
ues for intermediate points are calculated by interpola
tion algorithms [4—7]. However, such an approach to
the choice of the basis elements causes technical diffi-
culties even at the stage of solving the direct problem,
which precedes the tomographic reconstruction of the
desired inhomogeneities. Indeed, after setting theinitial
approximation for the hydrological parameters and
positioning the source—receiver pairs, the standard pro-
cedure searches (in the ray approximation) for sound
propagation paths (ray trajectories or modes) connect-
ing the elements of such pairs using, for example, the
bracket method. In this process, either some rays
unavoidably fall in the corners of the basis figures,
which makes it impossible to apply Snell’slaw for cal-
culating their further trajectories, or, in the case of the
wave approximation, the grid corners cause false dif-
fraction effects. How to overcome these difficulties is
unclear, althoughit isevident that they are of model ori-
gin rather than physical.

In this paper, by analogy with [8], we suggest
another approach to the choice of the basis elements.
This approach rests upon the expansion of inhomoge-
neities in the so-called nonstandard bases (Fig. 1),
which can be conditionally called mosaic bases. An

example of such a basisis the strip basis, i.e., a set of
paralel stripsrotated intheinterval from O to Ttat auni-
form angular step. This procedure creates atwo-param-
eter set of strips, where one parameter isthe distance to
the strip from the center of the circular region and the
other isthe angular displacement of the strip relative to
the initial position. The use of basis elements in the
form of strips makes this method free of the above dif-
ficulties inherent in tomography schemes dividing the
region of interest into elements containing corners.

It is usually assumed that, in the actual ocean,
refractive inhomogeneities are weak, so that a nearly
linear relationship occurs between the perturbation of
sound velocity in a certain area of the reconstructed
region and the variation of time required for aray to
travel through this inhomogeneity from the source to
the receiver in the case of the ray approach or the per-
turbation of acoustic field in the case of the wave
approach. The process of reconstruction is as follows.
Receiving—transmitting antennas are positioned along
the perimeter of the region, so that each antenna can
communicate with all other antennas. The reconstruc-
tion process starts with setting the background (not nec-
essarily everywhere identical) sound velocity distribu-
tion in the region of interest (for example, the season-
average distribution). Then, sequentialy setting asmall
reference perturbation of sound velocity in each strip
and calculating the corresponding perturbation of the
received data (variations of propagation time along rays
or field perturbation on the transmitter—receiver path)
for each of the possible paths, one can construct the per-
turbation matrix that is denoted A in what follows. The
column index of this matrix corresponds to the param-
eters of the transmitter—receiver pair, and the row index
correspondsto the parameters of the basis strips. Onthe
other hand, any inhomogeneity, for which one knows

1063-7710/05/5105-0513$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. (8) Strip and (b) cylindrical bases.

only the temporal delays or the field perturbation
caused by itsinsertion in the region of interest, can be
expanded in such a strip basis. The expansion coeffi-
cients can be found by solving the inhomogeneous sys-
tem of linear equations

AX = AT, (1)

where A is the perturbation matrix; AT is the received
data vector, i.e., the vector of temporal delays or field
perturbations caused by the inhomogeneity; and X is
the vector of expansion coefficients of the unknown
inhomogeneity in the strip basis, or, in the general case,
in another mosaic basis. The least-squares solution of
this system has the form

X = (A*A)ATAT, )

where superscript “+” denotes the Hermitian conjuga-
tion. The synthesis and visualization of the recon-
structed inhomogeneity is performed by summing the
coefficients X of al strips containing the given spatial
point.

The use of the strip basis (and other bases of uncon-
ventional expansion) combined with the least-squares
solution has a number of useful features. For example,
in contrast to the classical tomography scheme based
on the Radon transformations, the integrals are taken
here over homogeneous basis strips. Thisfact isimpor-
tant for the ocean tomography problems, where a ray
trajectory depends on the inhomogeneity under testing
and cannot be considered rectilinear, as in the case of
the X-ray tomography. In addition, it appears that the
strict requirements usually imposed on a basis, such as
compl eteness and orthogonality, can be slackened. The
proposed basisis nonorthogonal and overfull. Itisclear
that it permits an arbitrary amount of redundancy of the
initial data. The nonorthoganility of the basisis of little
significance for the problems under consideration,
because the reconstruction algorithm includes no scalar
product of the basis elements. The presence of overfull
datawith respect to the basis dimension plays apositive
role, because it offers a possibility to increase the num-
ber of linear equations of theinitial system (1) and, con-
sequently, to enhance the stability of the least-squares

solution. In the context of the problem under consider-
ation, the overfull property implies that the volume of
data of all source—receiver pairs considerably exceeds
the total number of strips. Naturally, the number of
receiving-transmitting transducers | should be reduced
to aminimum required value dictated by the resources
of an actual experiment. For this reason, one must
search for certain combinations of the number of strips
and angles to adequately describe the region under
investigation. In this process, the number of basis ele-
ments must not exceed the number (1 — 1)/2 of the
independent source-receiver pairs.

The use of a priori information through filtering or
inthe form of regularization procedures can be ascribed
to other methods of increasing the stability of the solu-
tion. As an example, the receiving—transmitting anten-
nas can be equipped with sound velocity sensors to
determine the exact velocity distribution along the
perimeter of the region. In the simplest case, the solu-
tion can also be regularized by adding the matrix A*A
with an additional diagonal matrix with small weights,
which reduces the degree of singularity of matrix A*A.
Another way to regularize the solution (we use this
approach in the numerical simulation of the inhomoge-
neity reconstruction) consists in imposing certain
restrictions on the smoothness of the coefficients of the
unknown inhomogeneity expansion in basis elements.
Notethat the basis used for expanding the inhomogene-
ity of interest must not necessarily possess a wide
degree of completeness. Infact, the degree of complete-
ness should only guarantee the required accuracy of the
expansion of the desired distribution. In addition, the
additive property of the perturbation effects should be
provided (at least approximately).

It should certainly be remembered that this basisis
somewhat rough to provide an exact reconstruction of
an arbitrary function; however, as we will show below
by model examples, it ensures quite acceptable accu-
racy in the determination of hydrological inhomogene-
ities. The accuracy can be dightly improved by using
the a priori information on the smoothness of the inho-
mogeneity and performing the corresponding matched
filtration, which will be discussed below in the context
of numerical simulations.
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To illustrate the suggested tomography scheme, we
solved the reconstruction problem for different types of
inhomogeneities located in the region under consider-
ation in both ray and wave formulations. Computer
simulations demonstrated the efficiency of the pro-
posed method.

RECONSTRUCTION OF A REFRACTIVE
INHOMOGENEITY IN THE FRAMEWORK
OF THE RAY TOMOGRAPHY PROBLEM

The main advantages of theray theory of wave prop-
agation are the physical clarity and relative simplicity
of using theresulting formulasin practical applications.
We used the suggested method to investigate the solu-
tion of the ray problem taking into consideration the
horizontal refraction of rays. With thisin view, we con-
sidered the eikona equation whose solution makes it
possible to determine the ray trajectories. The presence
of inhomogeneity in the region of interest bent the rays
and shifted the instants of signal arrival. Varying the
positions of the source and receivers, one can obtain the
complete pattern of the sounded region and form the
vector of relative temporal delays AT.

Solving the inverse problem, we regularized the
solution to Eqg. (2) according to the simplest procedure
X = (A*A + eE)'A*AT, where E is the unit matrix and
€ isthe regularizing coefficient.

In numerical simulations, we used the following
parameters. We considered a water region 100 km in
diameter surrounded by asystem of 16 receiving-trans-
mitting transducers. The model distribution of sound
velocity over the water region is shown in Fig. 2a. We
assumed that the vel ocity inside the reconstructed inho-
mogeneity is by 4% smaller than the background veloc-
ity everywhere equal to 1500 m/s. Inthebasis strips, the
perturbation corresponded to the decrease in velocity
by 1% of the background velocity value. Figure 2b
shows the result of reconstruction of acylindrical inho-
mogeneity displaced 25 km from the region’s center
along the negative direction of the abscissa axis. We
used the regularizing coefficient € = 0.3, which is
smaller than the maximal eigenvalue of matrix A*A by
afactor of about 1000. To improve the quality of recon-
struction, we filtered the spatial spectrum of the recon-
structed image by cutting off its high-frequency portion
(Fig. 2¢).

The accuracy of the resultswas estimated by consid-
ering the discrepancies of the solution (n.) and the
right-hand side (n;) of the system of equations (1).
These discrepancies were calculated by the formulas

Zlc(xh y;) —C¢(x;, Yj)|2
ne = [
ZCZ(Xia Yj)
i j
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where ¢c(x, y) and €(x, y) are the actual and recon-
structed velocities at a given point (X, y) characterized

in discrete form by indices (i, j), AT isthe right-hand
side of system (1) obtained as a result of the substitu-
tion of solution X into the system, and AT is the acous-
tic field perturbation vector corresponding to the actual
inhomogeneity (misthe index of elements of this vec-
tor). The results of reconstruction seem to be quite sat-
isfactory from the viewpoint that we succeeded in
reconstructing the actual velocity value and estimating
the radius of theinhomogeneity. We note that the recon-
struction quality appears to be satisfactory despite the
relatively high values of discrepancies (for example,
the discrepancy of the solution measures n, ~ 0.5);
namely, the inhomogeneity position, radius, and peaks
arereconstructed quite adequately. The point isthat the
main contribution to the discrepancies is made by fluc-
tuations related to the reconstruction of the back-
ground, i.e., the areas where the inhomogeneity is cer-
tainly absent; nevertheless, the calculation of discrep-
ancies over the whole water region takes these
fluctuations into account.

The use of the nonstandard basis combined with the
eikonal equation makes it possible to solve the recon-
struction problem using the iteration approach. We
introduced iterations as follows. The inhomogeneity
reconstructed at the preceding iteration stage was
sounded with rays; simultaneously, to this inhomoge-
neity we successively added additional basis strips
characterized by a reference perturbation of sound
velocity in the way described earlier, which resulted in
anew matrix of perturbations that affects the propaga-
tion time at the current iteration. The result of sounding
is supposed to be the matrix of relative (i.e., against the
background of the unperturbed region) temporal delays
of signals propagating through the region occupied by
the inhomogeneity. There is no need to solve the
eikonal equation at the first iteration (in this case, the
background velocity is assumed to be constant for the
whole region), because the simplest approach based on
Snell’s law appears to be adequate for this simple per-
turbation geometry. However, the construction of per-
turbation matrix A at further iterations requires solving
the eikonal equation.

Figure 3 shows the results of the iterative recon-
struction of an inhomogeneity of radius 20 km located
at the center of the water region under test. Figure 3a
shows the model distribution of sound velocity over the
water region. As earlier, the perturbation of sound
velacity in the inhomogeneity was equal to 4% of the
background velocity. In the reconstruction, we used the

ny =
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Fig. 2. (&) Model sound velocity distribution over the water region and (b, ¢) the result of reconstructing this distribution in the ray
approximation for the number of receiving—transmitting transducers | = 16, the number of basis strips P = 25, the number angles of
orientation U = 35, and the regularizing coefficient € = 0.3. The estimate (b) before filtration is characterized by the solution dis-
crepancy n. = 0.52 and the right-hand side discrepancy ny = 0.28 and (c) after filtration, by n. = 0.45 and ny = 0.27.

same matrix asin the case shown in Fig. 2. We did not
use the high-frequency filtration, because its effect
becomes negligible with increasing number of itera-
tions.

From the analysis of the results, we infer that the
above iteration process converges to the solution.
Indeed, the discrepancies decrease (although slowly)
with increasing number of iterations: n, = 0.57 —
045 — 0.42 — .... Asearlier, the discrepancies are
mainly formed by the noise background of the unper-
turbed part of the region under investigation, whereas
the accuracy of reconstructing the location, size, and
peak values of the inhomogeneity is increased, which
can be seen from graphical data (see Figs. 3b—3d). Of

course, one must bear in mind that the strip basis used
here is a rough basis and the iteration process will
improve the solution only to a certain limit.

RECONSTRUCTION OF A REFRACTIVE
INHOMOGENEITY IN THE FRAMEWORK
OF THE WAVE TOMOGRAPHY PROBLEM

The wave approach is more rigorous and the only
one acceptable for working in the low-frequency limit.
For solving the direct problem in the wave representa
tion, we had to derive analytical formulasfor acylindri-
cal wave scattered by a basis strip oriented at an arbi-
trary angle. We solved this problem in two stages. At

ACOUSTICAL PHYSICS  Vol. 51

No. 5 2005



OCEAN ACOUSTIC TOMOGRAPHY

c, m/s
1520 @

1500

1480

517

¢, m/s
1520 | )

1500
1480
1460

1440

Fig. 3. (d) Model distribution of acylindrical inhomogeneity at the center of the water region and (b—d) the result of iterative recon-
struction of this inhomogeneity in the ray approximation for the number of receiving-transmitting transducers | = 16, the number
of basis strips P = 25, the number of angles of orientation U = 35, and the regularizing coefficient € = 0.3: (b) thefirst iteration (n, =
0.57, ny = 0.26), () the second iteration (n; = 0.45, ny = 0.22), and (d) the third iteration (n. = 0.42, ny = 0.14).

the first stage, we considered the scattering of a cylin-
drical wave generated by a point source and scattered
by acylindrical refractive inhomogeneity. The problem
of the second stage consisted in extending the resultsto
the case of the strip that required a procedure for match-
ing the incident wave with the plane boundary of the
scatterer.

Because we assume that the medium is homoge-
neous in the vertical direction, the problem under con-
Sideration isatwo-dimensional one. Asisknown, inthe
case of atwo-dimensional inhomogeneous space con-
taining a cylindrical inhomogeneity characterized by
the sound velocity different from that of the back-
ground space, the Green’s function can be determined

ACOUSTICAL PHYSICS Vol. 51

No. 5 2005

from the system of two Helmholtz equations (one for
the external medium and the other for the internal
medium) and two boundary conditions reflecting the
continuity of the field and its normal derivative at the
interface between the media. This procedure allows one
to determine an exact expression for the Green's func-
tion under consideration; however, it is too cumber-
some in the case of the scattering of a cylindrical wave
by the basis strip. Here, the main difficulty liesin dif-
ferent symmetry types of the wave and the boundary.
The wave has a cylindrical symmetry, whereas the
boundary is plane. For this reason, we naturally solve
the problem by expanding the incident wave in plane
waves, especialy due to the fact that the theory of
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Fig. 4. () Model sound velocity distribution over the water region and (b) the result of reconstructing this distribution in the wave
representation for the number of receiving-transmitting transducers | = 22, the number of basis strips P = 14, the number of angles
of orientation U = 21, and the regularizing coefficient i = 0.05; the resulting discrepancies are n. = 0.43 and nt = 0.43.

reflection, refraction, and transmission of plane waves
is well known. We described the incident field in the
form of the integral representation of a two-dimen-
sional Green’sfunction of the homogeneous space with
sound velocity ¢, and wave number k, ([9], Ch. 27):

0o 00

—ikqy(r—rg)
e dk,, dk
slrs ) = [ {5 g

17 Ro

—00 —00

Ky = {Ki k15} )

W
k, = |k Ko = —
=k k=
where r and r g are the radius-vectors of the receiving
point and the point source, respectively.

Aswas shown in [10] (where the direct problem of
the transmission of acylindrical wave through the strip
inhomogeneity is solved in detail), neglect of decaying
surrounded waves and the summation of only the plane
waves whose wave vectorslie on the Evald sphereyield
a sufficiently accurate approximation to the actua
Green's function, which supports the idea of calculat-
ing the field as the sum of plane waves.

Astheinitial data, we used thetotal field received by
all antennas positioned along the perimeter of the water
region. In simulations, we considered the water region
with a radius of 30\, evanescent by a system of 22
receiving-transmitting transducers radiating at a fre-
guency of 30 Hz. We assumed that the velocity inside
the reconstructed inhomogeneity is 0.5% smaller than
the background velocity of 1480 m/s. Figure 4a shows
the inhomogeneity to be reconstructed; it has the shape
of acylinder of radiusr, ~ 12\, shifted by ~ 10A, along
the positive direction of the Oy axis. The simulation of
reconstruction of a cylindrical inhomogeneity follows
from the need to obtain arigorous solution of the direct
problem. In addition, the solution of the problem on the
cylindrical waverefraction by acylindrical inhomogene-
ity iswell known. Thus, we used different proceduresfor

determining the e ements of the perturbation matrix and
the terms of the right-hand side of Eq. (1).

We regularized the matrix A*A using a priori infor-
mation. In the reconstruction process, we used the fact
that the objects under consideration had simple shapes,
so that the expansion coefficients of adjacent basis ele-
ments could not differ widely. Thisfact offered a possi-
bility of imposing additional conditions on the expan-
sion coefficients of the inhomogeneity in the basis ele-
ments.We introduced a regularizing parameter | that
characterized the additional requirement of smoothness
for the expansion coefficients (for p = 1, the recon-
structed coefficients must be equal). In the case of sim-
ulations shown in Fig. 4b, this parameter was 1 = 0.05.

EFFECT OF THE STRIP BASIS PARAMETERS
ON THE QUALITY OF RECONSTRUCTION

We estimated the effect of the parameters of the pro-
posed basis (such as the number of strips, the width of
strips, and the number of angles) according to the fol-
lowing procedure. Wefixed the numbers of transducers,
strips, and angles of strip orientation and constructed a
perturbation matrix A, after which we evaluated the
degree of conditionality of the matrix by the formula

o= I;\\m’"" , Where A, and A;,, are the maximum and

minimum eigenvalues of the square matrix A*A. The
degree of conditionality varied from a = 213 for
5 strips, 20 angles, and 16 transducers to o = 8833 for
25 strips, 35 angles, and 16 transducers. With an
increase in the number of transducers, the degree of
conditionality decreased, for example, to a = 1142 for
10 strips, 25 angles, and 32 transducers.

In numerical simulations, we modeled the inhomo-
geneity to be reconstructed as a cylindrically distrib-
uted phase vel ocity perturbation localized in the central
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part of the water region of interest. The magnitude of
the velocity specifying the perturbation in both basis
strips and inhomogeneities to be reconstructed was
assumed to be 0.5% smaller than the background vel oc-
ity and was equal to 1472 m/s. We fixed the number of
transducers (I = 22) and reconstructed the inhomogene-
ity of radiusr, ~ 15\, (Fig. 5a) for different numbers of
basis elements. We considered two cases:. in the first
case, the number of strips was P = 12 and the number
of angles of orientation was U = 7; in the second case,
weused P =6 and U = 15. The degrees of conditionality
for these cases differed dlightly and werea = 18 and 32,
respectively. Here, we performed no regularization (u =
0), because our task consisted in estimating precisely
the effect of the parameters of the basis on the quality
of reconstruction.

Figures 5b and 5c¢ show the results of reconstruction
for the basis with the above parameters. It should be
noted that the reconstructed expansion coefficients of
the unknown inhomogeneity X have nonzero imagi-
nary parts, which, inturn, causes an error in the form of
theimaginary component of the estimated velocity (see
curvesfor Im€ in Figs. 5b and 5¢). This can be used as
an additional indicator of the accuracy of the recon-
struction algorithm, because theimaginary part tendsto
zero for the exact reconstruction.

Comparison of Figs. 5b and 5c shows that,
although the total amount of information increases
with increasing number of basis strips due to the
increase in the number of elements that intersect the
inhomogeneity, the quality of reconstruction appears
to be worse (Fig. 5b). This effect can be explained by
anincrease in the number of poorly illuminated regions
faling within the reconstructed region. Consider the
propagating cylindrical wave localized in a certain ray

. ) DA )
tube of characteristic width d ~ /70 ., Where D is the

distance between the source and thereceiver and A isthe
wavelength. For the problem under consideration, the
maximum width of the ray tube measures d ~

L1500 m x50 m ~ 270 m, whereas the distance
between the adjacent receivers illuminated by the ray
tubes of the same transmitter measures ~430 m for | =
22. Asaresult, the region of interest appearsto be non-
uniformly illuminated. If a strip is sufficiently narrow,
itsmajor part may fall in the shadow region and, conse-
guently, fall out of the reconstruction algorithm. One
can expect that, with a decrease in the number of strips
and an increase in the strip width (for a uniform parti-
tion of the water region into strips), one should obtain
estimates for the velocity in poorly illuminated regions
that will approach the correct values at the expense of
the well-illuminated regions. This will improve the
whole pattern of reconstruction. In this case, one must
increase the number of angles of strip orientation U to
enlarge the system describing the region, which can
become less informative with decreasing number P.
ACOUSTICAL PHYSICS Vol. 51
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An additional reasonabl e requirement that should be
imposed on the numbers of strips and angles is the
requirement of mutual intersection of the peripheral
parts of the basis strips corresponding to the adjacent

2Ry

angles of orientation. For basis strips of width h = 5

(R, is the radius of water region under investigation),

this condition can be written in the form h = Rog,

where g is the angle between the adjacent strip orien-

tations. Thus, we obtain the condition on the numbers
of basis strips and angles in the form

T
UzZP. 3)

Note that a similar requirement is used in the X-ray
transmission tomography for the number of angular
samples and the number of samples per projection (see
[11], Ch. 4).

As it follows from the results of simulations, a
decrease in the strip number by a factor of two and an
increasein the number of angles also by afactor of two
(inthis case, condition (3) is satisfied) results in a con-
siderable improvement of the reconstructed pattern of
velocity distribution (Fig. 5c). In addition, the false

imaginary part Im¢ decreases, which isalso indicative
of a higher reconstruction accuracy.

Our next step consisted in decreasing the number of
transducers by afactor of two; namely, we used P = 6,
U=15,and| =12 (see Fig. 5d). Despite the substantial
decrease in the amount of data on the region under
investigation, the reconstruction quality was reduced
only dlightly.

Implementing the above algorithm, we revealed an
additional possibility of varying the basis so asto affect
the reconstruction quality. This possibility arises if we
specify no immediate relationship between the strip
number and the strip width; i.e., if we consider a non-
uniform partition of the region into strips. Assume that
some preliminary experiment (with certain possible
parameters P, U, and I) showed that an inhomogeneity
islocated at the center (or near the center) of the region
under testing. Then, we can improve the reconstruction
accuracy by decreasing the widths of the basis strips
with retaining the parameters P, U, and I. In this case,
the region is divided into strips nonuniformly; namely,
the strips are numerous in the central part of the water
region and only few of them are at the periphery. Such
an approach only dightly affects the conditionality
degree of matrix A (because the parametersP, U, and |
remain intact); however, it can considerably increase
the number of strips intersecting the inhomogeneity,
which increases the total amount of information pro-
vided by the basis. This procedure can be useful, for
example, for reconstructing small inhomogeneities that
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Fig. 5. (8) Model distribution of acylindrical inhomogeneity of radiusr( ~ 15A, and (b—d) the result of reconstructing thisinhomo-

geneity in the wave representation (with the error estimated as the imaginary velocity component Im¢ ) for different numbers of
receiving-transmitting transducers |, basis strips P, and angles of orientation U: P = (b) 12 and (c, d) 6; U = (b) 7 and (c, d) 15; | =
(b, €) 22 and (d) 12 (n. = (b) 0.72, (c) 0.53, and (d) 0.56; ny = (b) 0.46, (c) 0.3, and (d) 0.09).

cannot be adequately reconstructed with the use of
wide strips. An adequate reconstruction requires that
the diameter of the inhomogeneity measures several
strip widths. Instead of increasing the number of strips
by decreasing the strip width (as it is the case for the
uniform partition), we can use a honuniform partition.
The nonuniform partition offers apossihility to achieve
the same effect without such a significant decrease in
the conditionality degree of the system asin the case of
a uniform partition. For example, to reconstruct the
actual velocity inside an inhomogeneity of smaller
radiusr, ~ 10A, (Fig. 6a) with a uniform partition, we

c,m/s (a)
TA8A _ o

1480

1476 -

1472 i

-30 30
30 0

X/)\O

0 30
¥/

should use a greater number of basis strips and, hence,
reduce the strip width. In accordance with condition (3),
a greater number of strip orientations will be used in
this case. Figure 6b shows the simulated resultsfor P =
12, U =31, and | = 22; these parameters correspond to
the basis strip width h ~ 10A,. However, in the case of a
nonuniform partition, qualitatively similar results can
be obtained with a smaller number of basis elements.
Figure 6¢ shows the result of reconstructing this inho-
mogeneity with the use of a smaller number of nar-
rower stripsfor P=6, U =21,1 =22, and h ~ 4A,,.

&, m/s . (b)

Fig. 6. (a) Model distribution of acylindrical inhomogeneity of radiusr, ~ 10\ and (b, c) the result of reconstructing this inhomo-
geneity in the wave representation for the number of recelving—transmitting transducers | = 22, different numbers of basis strips P
and angles of orientation U, and different basis strip widths h: (b) auniform partition of the water region into basis strips with P =
12, U =31, and h ~ 10\, (n. = 0.79, ny = 0.1); (c) anonuniform partition of the water region withP =6, U =21, and h ~ 4\ (n. =

0.59, ny = 0.36).
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Fig. 7. (a, ¢) Modd distributions of cylindrical inhomogeneities and (b, d) the results of reconstructing these inhomogeneitiesin the
wave representation with the use of the cylindrical basisfor the number of receiving-transmitting transducers | = 22, the number of
circular basis elements 841, and the regularizing coefficient p = 0.03: (a) for an inhomogeneity of radiusrg ~ 15A at the center of
the water region, we have (b) n. = 0.45 and ny = 0.2; (c) for an inhomogeneity of radiusr ~ 12A shifted along the positive direction

of the Oy axisby ~10A, we have (d) n, = 0.51 and ny = 0.22.

USE OF OTHER NONSTANDARD BASES

The above method of constructing the strip basis can
be used for constructing other nonstandard baseswhose
elements will have shapes suitable to either the type of
inhomogeneities to be reconstructed or the type of the
sound field representation. For example, when dealing
with the reconstruction of eddies, it is worthwhile to
apply circular bases. In addition, in the context of the
wave approach, the use of circles as basis elements
offers the possibility for a rigorous construction of the
perturbation matrix.

Asan example, consider the reconstruction problem
with the use of the cylindrical version of the mosaic
basis formed by the following procedure (Fig. 1b). The
circular region of interest is uniformly covered (with
overlapping) with cylinders (circlesin the two-dimen-
sional case) as basis elements. Then, matrix A is cal-
culated in the same way as in the above procedure for
solving the problem with the use of the strip basis, i.e.,
by a sequential specification of a reference perturba-

tion in each cylinder and the calculation of the corre-
sponding field perturbation. The expansion coeffi-
cients of the reconstructed inhomogeneity are deter-
mined from Eq. (2).

In simulations, we considered a water region of
radius 30A,. As earlier, the velocity in the inhomogene-
ity was assumed to be 0.5% smaller than the back-
ground velocity. For the cylindrical inhomogeneities
shown in Figs. 7a and 7c, the results of reconstruction
aregiven in Figs. 7b and 7d, respectively. Note that, in
this case, the discrepancy n; appears to be smaller than
inthe case of the use of the strip basisfor reconstructing
the inhmogeneities with the same parameters (radius,
location relative to the center of the water region, and
velocity perturbation) (see Figs. 5¢ and 4b).

CONCLUSIONS

From the results obtained, we conclude that the
requirements on the basis used to expand an inhomoge-
neity can be considerably slackened if necessary apriori

ACOUSTICAL PHYSICS  Vol. 51

No. 5 2005



OCEAN ACOUSTIC TOMOGRAPHY

information is available, which leads to a convenient
and efficient expansion of the inhomogeneity under
test. The few conditions that should be satisfied by the
bases used in tomography problemsinclude its relative
completeness (i.e., the basis should be sufficient for
describing the inhomogeneity to be reconstructed with
the required accuracy) and the additivity of the effects
taken into account. The orthogonality requirement is
not necessary. In addition, the basis can be overfull.

The proposed strip basisisaconvenient structurefor
constructing the perturbation matrix of the field caused
by a refractive inhomogeneity in both ray and wave
approaches to the sound field description. An extension
of the problems under consideration to media with
flows and eddies can be successfully realized.

The problem can be extended to the case of the ini-
tial data represented by the phase shifts of the vertical
modes in the horizontal rays-vertical modes combined
scheme and to more complicated cases with the initial
data given as amplitudes and phases of the signals
received by avertical hydroacoustic array.
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Abstract—The boundary-value problem of the magnetoel astic wave interaction with amoving domain wall in
aferromagnetic crystal is solved in the nonexchange magnetostatic approximation with allowance for the exter-
nal magnetic field. It is shown that the difference introduced by magnetic field between the ferromagnetic res-
onance frequencies of the domains does not cause any noticeably departure of the refraction characteristics of
reflected and transmitted waves from those observed at zero frequency mismatch. By contrast, the magnitudes
of the transmission and reflection coefficients strongly depend on the external magnetic field and on the mobil-
ity of the domain wall. The dependence of the magnitude of the reflection coefficient on the external magnetic
field at afixed angle of shear waveincidence isfound to possess two ferromagnetic resonance peaks. The posi-
tions and heights of the peaks may vary depending on the mobility of the domain wall. © 2005 Pleiades Pub-

lishing, Inc.

The refractive interaction of a magnetoel astic wave
with amoving 180° domain wall (DW) was considered
in[1] without taking into account the external magnetic
field. The ferromagnetic resonance (FMR) frequencies
of domains were assumed to beidentical, which can be
true only when the anisotropy field of the ferromagnet
far exceedsthe external field responsible for the motion
of the domain wall. However, in sufficiently strong
external magnetic fields, the difference arising between
the FMR frequencies of the domains (the FMR mis-
match) under the effect of the external magnetic field
can be significant. Therefore, the results reported in [1]
require an additional verification with allowance made
for the nonzero difference between the frequencies of
uniform spin precession in the domains. For this pur-
pose, the present paper considers the initial equations
with allowance for the external magnetic field and cal-
culates the refraction characteristics and amplitude fac-
tors of the refracted waves.

The results reported in [1] were obtained using the
simplest model of a geometric DW. Let us specify the
limitationsintroduced by this model in connection with
the presence of an additional factor, namely, the motion
of the DW. It is conventionally assumed that the DW
motion initiated by an external control action is not
accompanied by any structural changesinthe DW if the
DW velocity satisfies the condition Vp = YpH, < Vi,
where v,, is the Walker limiting velocity [2], 1y is the
mobility of the DW, and H, is the external field. It
should be noted that, under steady-state motion condi-

tions, the structural stability of a DW is determined by
the equilibrium thermodynamic conditions under
which the crystal is studied and by the technological
characteristics of the crystal (the presence of defects,
impurities, etc.). Therefore, the structural stability of
the DW manifestsitself in different waysin bulk crys-
talsand films.

The aforementioned limitation imposed on the DW
velocity is typical of bulk crystal samples away from
the phase transition. Taking into account the inequality
that is typical of cubic ferromagnets, namely, v,, > ¢,
where ¢, isthe shear wave velocity without considering
magnetostriction, in addition to the requirement for the
geometricity of the DW on the wavelength scale kA < 1,
we impose a limitation on the DW velocity in the form
Vp < ¢;.. With the nonexchange magnetostatic approxi-
mation [3] in mind, we assume that k < k.. and

k2. D < H,, where D is the exchange constant of the
ferromagnet, H, is the anisotropy field, k is the magne-

toelastic wave number not exceeding the threshold
value K., and A is the actual thickness of the DW.

Assume that the easy magnetization direction corre-
sponds to the z axis of the x0yz crystallographic coordi-
nate system (z||[001]). Then, bringing the 180° DW into
coincidence with the (010) plane of the crystal makes
sense only for ferromagnets with a positive magnetic
anisotropy constant K, > 0. The case considered below,
namely, the refraction of shear waves by a(010)-oriented

1063-7710/05/5105-0524$26.00 © 2005 Pleiades Publishing, Inc.
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DW moving in a cubic ferromagnet, is sufficiently gen-
eral, because, with the substitution [4]

: 1 s
Aag —= Ay = é()\ll_)\12+)\44)l B—RB,

Wy = Wo,2 = Y(Hax Hp), (D
_ 2K, . _ 4Ky
Ha = M, —Ha = “3M,’

the equations written for acrystal with K, > 0 aretrans-
formed to the corresponding equations for a crysta
with K, < 0. In the latter case, the easy magnetization
direction coincides with the principal diagonal of the
unit cell while the shear waves with displacements par-
alel to the spontaneous magnetizations M, propagate
inthe (111) plane of the crystal. In Eg. (1), b;;, b;,, and
b,, are the nonzero components of the magnetoelastic
interaction tensor; A, A,,, and A,, are the components
of the elastic modulus tensor of the cubic crystal; and 3
is the magnetoel astic coefficient.

Let us assume that shear waves propagate in the
(001) plane of an iron garnet crystal with the displace-
ments u;, which are collinear with the spontaneous

magnetizations MY in the domains (M$” 11 M@ ||
[001]; j = 1, 2 is the domain order number). The
domains are separated in the (010) plane by a geomet-

rically thin structureless DW with the current coordi-
nate yp = Vpt, wheret istime. Accordingly, we assume

that the spontaneous magnetizations M$’ and theinter-
nal magnetic fields HY in the domains have the form

Mg’ = (1) Mo,

0 L 0)
H” = (-1)'""(Ha £ Ho),

where H, isthe anisotropy field, j = 1fory > yp, andj =

2 for y < yp. The minus sign before H,, corresponds to

the DW moation along the direction of the [010] axis

(Vp >0), and the plus sign, to the motion in the opposite

direction (V < 0).

In describing the propagation of magnetoelastic
waves in a ferromagnet, the common practice [5, 6] is
to use the equation of mation from the elagticity theory

XL 2 au

ot O ©

the equation of motion for the magnetic moment

ow } @)

oM _ M
V[Msa(M/Mg

Por ~
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and the Maxwell equations. The quantity appearing on
the right-hand side of Eq. (3) in square brackets is the
stress tensor T, [7]:

_ 1+d 0w
Ti = 2 ou, )

In Egs. (3) and (4), p is the density of the crystal, t is
time, y =2,/ isthe gyromagnetic ratio, |, is the Bohr
magneton, and 7 is the Plank constant.

In the general case, the energy density of the crystal
isexpressed as[3]

W = Wiy + Wy + Wyy + Wy, (0)

where w,, isthe magnetization energy density, wy, isthe
energy density of magneticfield, wy,, isthe energy den-
sity of magnetoelastic interaction, and wy, is the elastic
energy density.

Using Egs. (3)—(6) and the propagation conditions
mentioned above, we abtain the equationsthat are valid
in the nonexchange magnetostatic approximation in the
presence of a bias magnetic field:

O%u; + (pQ°/AE)y; = 0,
_ o qyi+1ATYBw; o )
= (-1)’ ——0%;.

—
Here, Q is the frequency of the incident or refracted
wave; [ is the Hamiltonian in the x0y plane; ¢; is the
magnetostatic potential; Ag = A + yFwy/[M(Q* -

(A)ij )]s and wy = Y(H, + Hp) = wy + Awy, are the uniform
precession frequencies in the domains, where w, is the
FMR frequency in the absence of the external magnetic
field, Aw, isthe shift of the FMR frequency (wy,; > 0y,
for Vp < 0 and wy,; < wy, for Vp > 0), wy = [wy(ey +
w12 is the magnetoacoustic resonance frequency,
wy = 41T\W, isthe magnetization frequency, and A = A,
is the shear modulus.

Thefirst of Egs. (7) isthe Helmholtz equation. The
solution to this equation can be represented in the form
of plane harmonic waves with the dispersion law

K =K(Q) = pQiINE. 8)
The second of Egs. (7) yields
j+ 14T[VB(‘3j
2 2 u
where @, is the potential of the scattering field of the
magnetic poles [1].

L et us preset the frequency w and the wave vector of
the incident wave k = nk, wheren = (sin6, —cos0), 6 is
the angle of incidence, and k = k(w) isthe wave number
determined from Eq. (8) in which Q is replaced by w.

The waves refracted by the moving DW are character-
ized by the frequencies w' and w'" and by the wave vec-

0%,

it e

¢; = (-1)
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Fig. 1. Refraction diagrams for a shear wave refracted by an (a) oncoming DW and (b—d) areceding DW with (b) acute and (c, d)
obtuse angles of refraction: the wave vectors of the (1) incident, (2) deflected, and (3) refracted waves.

torsk'=n’k and k" = n"k" with the wave normalsn' =
(sin®', cosB") and n = (sinB", cosB") and with the wave
numbersk' = K'(w") and k" = k"(w"), respectively; thelat-
ter are obtained from Eq. (8) by replacing Q with w' and
W', respectively. Here, theangles0' and 6" arethe refrac-
tion angles lying within theinterva [0, T (Fig. 1).

Because of the differencein the FMR frequencies of
the domains, the cal culation of the refraction character-
istics of refracted waves should be performed with four
equations instead of two. The equations express the
condition of the conjunction of the wave fields at the
DW by the phase invariant method [8]. Namely, the
projections of the wave vectors of the incident and
refracted waves are equal at y = yp, which yields

w w

(k) - a : | | J—
=sinB = —sinB"=
v v

w
=snd =
v

ane, . (10)

and the temporal synchronism of the phases of oscilla-
tions at the DW yields

oo%l + \%Dcosda = w'%l —\%COSGD,

w%l + \%cosd% = w"%l - \% cose'H = .

In Egs. (10) and (11), v = wk, v'= w/K, and v" = w'/K"
are the phase velocities of waves.

Taking into account Eqg. (8), one can prove that

Egs. (10) and (11) are equivalent to the system of equa-
tions

sing +V7Dsin(6+ 9)

1/2 12a
= g.rlgc 1+ Xlwgl ( )
v W’ f(0,0) -0, |
V
sine"+7Dsin(6+6")
12 12b
_ sin® X2Wop (120
= =G| 1+ 2.2 2 '
4 w (6, 8") —w,
1 V H 1
w _ 1+—DME f(0,9),
w v sin®
) Vosn(o s 6 (13)
W g, 08002 8) g g,
w v  sinB
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The quantities X, = YB/(AMywy,) and X, = YB/(AM0,)
aredimensionless (and usualy small: x; < 1 andx, < 1)
parameters of magnetoelastic coupling and ¢, = (A/p)'~.

Since 6, wy and, hence, v = v(w) areknown, Egs. (12)
determine @' and 0" asthe roots of transcendental equa-
tions. The corresponding values of w' and w" can be
easily calculated by Egs. (13), which exhibit the pres-
ence of Doppler shiftsin the refracted waves. Numeri-
cally, it was found that, in the general case, the number
of the roots of Egs. (12a) and (12b) is four. However,
according to Bolotovskii and Stolyarov [8], in prob-
lems with moving boundaries, the causality require-
ment is only satisfied for waves with a positive projec-
tion of their group velocity V= dw/0k' ontothedirec-
tion of the energy transfer, irrespective of thetype of the
energy state of the medium. Here, @ and k' are the fre-
guency and the wave vector of the refracted wavein the
DW frame of reference, X0yz, which is related to the
laboratory frame of reference, x0yz, by the Galilean
transformation: X =x, ¥ =y—Vpt, z= 7, t =t. Thus, the
selection criterion is the requirement that the energy

transferred by the refracted wave be carried away from
the DW:

sgn(y)sgn(Vg,) >0, (14)
where Vg, = 00 /0 ky is the projection of the group

velocity of the refracted wave onto the y axis. Here, it
is necessary to know the group velocity of the refracted
wave, Vg, inthe DW frame of reference.

Teking into account Eq. (8), one can show that k¢ =

W2 — W )[(W2 — WE ) + X, Why . This equality isa
biguadratic equation in w'. According to the nonex-
change approximation condition, the smaller root of
this equation determines the low-frequency branch of
the magnetoel astic wave spectrum:

W = W+k'Vp

1/2
- %2[((05 + k26D — (@l — k)’ + Ak ]

Deriving & = w(K'") from this equation and differenti-
ating with respect to k', we perform some simple trans-
formations to obtain the following formula for verify-
ing condition (14):

Vg, = cos(8") v (w)W(w)—Vp,

2, 2 21 (15)
v(w) = CM/]-_Xlel(wkl_w ) .
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Fig. 2. Typical refraction dependences near the frequency
Wy (solid curves) and near the frequency wy, = wy(wy + W)
(dashed curves): (1) the case of an oncoming DW (the solid
and dashed curves coincide, |Vp| < ¢;), (2) the case of a
receding DW (|Vp| < ¢), (3) the refraction dependence 0" =
11— 0 for the directly transmitted wave near the FMR fre-
quency, and (4) the deflected wave near the MAR fre-

quency.

Here, according to Eq. (8), v(w) isthe phase vel ocity of
the refracted wave; the function W(w) is determined as

O w2, O
Y(w) = -2
O wg—w
(16)
X U)Sl 0 w? O™
x11- 21 2D]'_ 2 '
W —wh wy—w

For the wave propagating in the second domain, the
substitutionsw' — w", K — K", 8' — 8", X; — X,
Wy — Wy, aNd W, — Wy, should bemadein Egs. (15)
and (16).

Equation (12a) describes the refraction angles for
the waves propagating in the first domain (y > yp), and,
according to the causality requirement, they must have
a positive projection of the group velocity onto the y
axis. Correspondingly, the solutions to Eq. (12b) deter-
mine the waves propagating in the second domain (y <
Vo), and, by virtue of inequality (14), the projection of
their group velocity will be negative.
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Vel
1.2

Fig. 3. Dependence of the projection of the group velocity
on the angle of incidence of a shear wave for the frequency
w = 1.45 x 10'% 57! and Vp/c, = —0.3: (1) refracted and
(2) deflected waves; Awyy = 0 (solid curves) and 0.57 x
10'% 57! (dashed curves).

The calculation by Egs. (15), (16) and (12) at afixed
FMR mismatch (H, = const) shows that the first of the
two solutions to Eq. (12a) only exists for obtuse refrac-
tion angles B = 11— 6 and does not depend on V. A
wave refracted in thisway is characterized by w, v, and
k identical to those of the incident wave with V, < 0.
Evidently, this wave does not satisfy the requirement of

the energy transfer away from the DW and can be
rejected.

For the second root of Eq. (12a), 85, in the case of
Vp > 0 (the oncoming DW), the projection of the group
velocity is aways positive and the dependence 6, (8)
has the form of curves / in Fig. 2. A wave with such
refraction characteristics is actually the reflected wave
shown (in terms of wave vectors) by arrow 3 in the
refraction diagram represented in Fig. 1a. When V<0
(areceding DW), the projection of the group velocity is
positive, V;Jy > 0, only for the angles of incidence 6 <
0* (at 6 = 6* 0' = T2).

For the first root of Eq. (12b), 65, the projection of

the group velocity is always negative and this root cor-
responds to the deflected shear wave (arrow 2 inFig. 1)
irrespective of the sign of the DW velocity. In the case
of the oncoming DW, the second root of Eg. (12b) gives
a positive projection of the group velocity and the
parameters of the wave are identical to those of the
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reflected wave. Therefore, in the case of V > 0, this
root can be excluded from consideration. When V, <0,

for the second root of Eq. (12b), 65 , the projection of the
group velocity is negative, Vg, <0, for 8> 6*.

Thus, in the case of a receding DW, the refraction
angle for B < 8* should be calculated using the second
root of Eqg. (124), whereas its calculation for 6 > 6*
should be performed using the second root of Eq. (12b).
InFig. 2, therefraction angles cal cul ated in this manner
form continuous curves 2 without any discontinuity at
0 = 6*.

Remember that the angle 6* is the angle at which
thereflective refraction (Fig. 1b) changesto thereflec-
tionless refraction (the doubl e transmission mode) [1]

(Fig. 1c, €' > 12, Vy, < 0) or the adjustment-type

refraction [8] (Fig. 1d, 8' > 172, Vg, > 0). In the case
under consideration, only the reflectionless refraction
of the magnetoelastic wave is realized. This can be
explained as follows. The nonexchange approximation
accepted above cuts off the short-wave part, i.e., the
spin part, of the low-frequency branch of the spectrum
and the acoustic part of the high-frequency branch. This
limitation, together with the specific features of the dis-
persion spectrum of the low-frequency branch, leadsto
the following results. In the case of a receding DW,
according to Eg. (10), the refracted wave has a lower
frequency and, hence, a higher group velocity (esti-
mated by the slope of the tangent to the dispersion
curve), as compared to the incident wave. This effect is
the stronger, the closer the frequency of the incident
wave is to the forbidden frequency band. Therefore,
when the velocity of the receding DW isrelatively low,
the wave propagating along a flatter trajectory may
have enough time to pass ahead of the DW and get into
the second domain.

As one can see from Fig. 2, in the vicinity of the
FMR, the transmitted wave is the directly transmitted
one whose refraction dependenceis represented by line 3
in Fig. 2. On the whole, according to Fig. 2, the inclu-
sion of the external magnetic field does not cause any
considerable departure of the dependence 6'(6) from
that observed at zero FMR mismatch [1]. A noticeable
differenceis observed for frequencies (w> w,, for Vp >0
and w> w,, for Vp < 0) inthevicinity of the magnetoa-
coustic resonance (MAR). In anarrow angular interval,
the directly transmitted wave becomes a defl ected wave
(curve 4 in Fig. 2). However, it should be noted that a
correct calculation in the region of the magnetoelastic
wave spectrum is possible with a rigorous consider-
ation for the exchange interaction.

According to the aforementioned selection of the
roots of Egs. (12), Fig. 3 presents the dependence of the
projection of the group velocity on the angle of inci-
dence at fixed values of the FMR mismatch (H, =
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const); the dependence was calculated by Egs. (15) and
(16). One can see that, when the reflective refraction
(6 < 6*) changes to the double transmission mode (6 >
0%*), the group velocity changes sign (as was mentioned
above). Thefact that, at 6 = 8* and 8' = 1v2, the projec-
tion of the group velocity isequal to zero meansthat, in
the case of the grazing propagation along the DW, the
magnetoelastic wave transfers the energy neither
toward the DW nor away from it. The condition
cos(8") v(w)W(w') > -2Vp, which followsfrom Eq. (15)

and the general limitation Vy, <0, can be represented

in the form 0 < 6**, where cosb** = 2Vp/[v¥P(W)];
here, 0** isthe angle of incidence starting from which
the incident wave ceases interacting with the DW and
the problem loses its meaning. In Fig. 2, this angle cor-
responds to the point of intersection of the dependence
8'(0) corresponding to the vicinity of the FMR with
curves.

Now, after the determination of the regions of the
refracted wave propagation, we can construct two inde-
pendent solutionsto the boundary-value problem of the
refractive interaction of a magnetoelastic wave with a
moving DW. One of the solutions refers to the case of
the reflective refraction with the solution to Egs. (9) in
the form

u; = U[expi(kr —wt) + Rexpi(k'r
u, = UTexpi(k"r"—w't).

—wt)],
wt)] an

The other solution refers to the double-transmission
refraction:

= Uexpi(kr —wt),

: (18)
= U[Texp|(k" "—w't) + Texpi(k'r

-wt)].

In both cases, the potentials of the fields of the near-
boundary magnetostatic oscillations have the same
form and, as the solutionsto the second of Egs. (9), are
determined with allowance for the limitations given by
the equalities

529

@, = Cexp[ikx—i(w—kVp)t] exp[—k,(y—Yo)],

(Y>Yp); (19)
®, = Dexp[ikx—i(w—kVp)t] exp[k,(y—Yp)],

(Y<Yb)-

Expressions (19) take into account that the near-bound-
ary magnetostatic oscillations are transferred by the

moving DW and have a frequency equal to ®.

The boundary conditions of the problem have the
standard form [1], but they apply to the DW planey =
Yp- Taking into account Eq. (9) and the aforementioned
jump of static fields at the DW, the components of both

magnetic moment m(‘) and stress tensor T(y’z) that are
required for the substltution can be represented in the

form
M _ _YB j i+1,, U,
my QZ_ kJ|:|Qa +( l) ani|
w 0o 0o 20

+ M |:(0 il Y -1 J+1 J'i|,
an(QF-wi)L " Oy D105

T(J) - )\*a J+( 1)l+1 VBé _%

oy M- (Q2 — 2) 0X

+ ZB : [iQa—j+(—1)j+1w0ja—j}.
AT Q" - wy;) y y

The quantity Q involved in Egs. (20) and (21) repre-
sents w or w, depending on which of the terms y,
appearing in Egs. (20) and (21) is used for the substitu-
tion. Thevalue of Ag ischosen with the corresponding
freguency.

Omitting the intermediate calculations, we obtain
thefinal result in the form of expressionsfor the reflec-
tion coefficient R, transmission coefficient T, and sec-
ondary transmission coefficient T' for a magnetoel astic
wave propagating through a moving DW. In the case of
reflective refraction, we have

1+R =T,

—i(A;cote+A:,..cote")+VB{ GL(w, W) + GL(w", )}

R =

(22)

| (CA% COt®' + A%, cot”) + %ﬂﬁ{ G (W, ") — G0, 00}
0
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1.2

0.8

Fig. 4. Dependences |R(0)| for the frequency w = 1.45 x
10'%s7! and Vpp/c; =—0.05: Hy = (1) 0, (2) 75, and (3) 190 Oe;
Hp = (1, 2) 250 and (3) 100 cm/s Oe.

where

1

G:(Q.9Q") = L))

*{Fi(0) —Fy(w") ¥ £,(Q")[Fa(w") + Fr(w)]}

£ 2(Fy(0) + Fo(e),

1 (23)

e R ) EX A

x {F1(0) - Fy(w") F ,(Q")[Fy(w") + Fa(w)]}

£ 2(Fy(0) + Fo(e),

Q% - f — 0y Q' Wy
f.(Q) = : o F(Q) = = :
' Q'z—oo(z)j ? Q' — Wy
S ) N — W
F.(Q) = o072’ F(Q) = le_Jz, (24)

kj Kj

2 2
x = X Woj _ _YB
: )\[1 "o E}, XA Moto;

If, inEgs. (22)«(24), Q' = wor w, it isnecessary to take
the FMR and MAR frequencies with subscript 1. wy,,
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Fig. 5. Dependences |R(6)| (solid curves) and [T'(6)| (dashed
curves) for thefrequency w= 1.7 x 10' s and Vp/c; = 0.6
Ho = (1) 0, (2) 100, and (3) 500 O€; pp, = (L, 2) 2880 and
(3) 466 cm/s Oe.

Wy, X3 1f Q"= w", with subscript 2: wy,, Wy, X, INnthe
case of the double-transmission refraction, the formu-
las for the amplitude factors coincide with formulas
(22)—(24) in their structure and are therefore not pre-
sented here to save room.

The calculations by Egs. (22)—(24) were performed
for an iron garnet crystal with the parametersc, = 3.8 x
10°m/s, wy =3.5x10°s!, w,=yH, =14 x10'"s7,
Mo=140G, A =7.64 x 10", and B = 7.4 x 10°. Iniron
garnets at room temperature, the mobility is pp = 100
500 cm/s Oe [9]. However, to reveal certain features of
the amplitude factor behavior, some calculations were
performed with much higher mobility values.

Figure 4 shows the dependence of the reflection
coefficient on the angle of incidence of a shear wavefor
different fixed values of the external magnetic field in
the case of a receding DW. One can see that the FMR
peak observed in magnetostatic scattering fields at zero
FMR mismatch [1] is displaced toward smaller angles of
incidence in a relatively weak magnetic field (curve 2)
and may disappear in strong magnetic fields (curve 3).
This means that the position of the forming FMR max-
imum and the conditions for its existence are deter-
mined by the strength of the external magnetic field H,,.
This should be expected, because H, determines the
mismatch of the uniform spin precession frequenciesin
the domains, wy;. The latter frequencies are involved in
Eqgs. (23) and (24) for the reflection coefficients as the
pole singularities, which determine the position of the
FMR peak.
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IR|, T|
1.6r

100
0

Fig. 6. Dependences |R(0)| (solid curves) and [T'(8)] (dashed
curves) for the frequency w = 2.62 x 10! s7! and Vp/C; =
—0.1: Hy=(1) 0, (2) 50, and (3) 200 Og; pp = (1, 2) 760 and
(3) 190 cm/s Ce.

Asshown in Fig. 5, asimilar transformation of the
FMR peak with varying magnetic field strength also
occurs for the amplitude factor of the additionally
transmitted wave T'. From Fig. 5 it follows that, when
the refraction mode changes, the dependence of the
reflection coefficient on the angle of incidence
smoothly, without any discontinuities, passes into the
angular dependence of the transmission coefficient of
the additionally deflected wave. A similar situation
takes place for the frequencies in the vicinity of the
MAR (Fig. 6). As one can see from Fig. 6, the inclu-
sion of the external magnetic field noticeably affects
the angular dependences of the amplitude factors of
refracted waves.

Figure 7 shows the dependence of the reflection
coefficient on the external field at a fixed angle of inci-
dence for different values of the DW mobility. The
external magnetic field is directed so that V; < 0. The
angle of incidence corresponds to the FMR peak in
Fig. 4 at zero difference between the uniform preces-
sion frequencies in the domains. A specific feature of
the dependence R(H,)) is the presence of the resonance
peak in strong external magnetic fields. Thus, even for
alarge difference between the FMR frequencies of the
domains, conditions for the total reflection of the inci-
dent wave from the moving DW can be realized. From
Fig. 7, it also follows that the number and height of the
FMR peaks and their positions strongly depend on the
mobility of the DW.
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Fig. 7. Dependence |R(Hg)| for the angle of |nC|dence 0=
45° and frequency w = 1.45 x 100 s up = (1) 400,
(2) 300, and (3) 200 cm/s Oe.

By choosing the appropriate conditions, it is possi-
ble to obtain a change from reflective refraction to dou-
ble transmission mode for a shear wave incident at a
fixed angle (Fig. 8). One can see that, as in the case of

IR], [T'|
10! o

4 5
Hy % 1072, Oe

Fig. 8. Dependences |R(Hy)| (solid curves) and T'(H,)) (dashed
curves) for the angleof incidence 6 =36.5° and frequency w=
1.45 x10'%s71: g = (1) 2000 and (2) 600 cnv's Oe.
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angular dependence, the change in the refraction modes
does not cause any discontinuity of the amplitude fac-
tors.
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Abstract—Conditions of the existence of long-lived acoustic resonances that occur in a layered medium
because of its oscillation with low damping factors are considered. A priori theoretical estimates relating the
distribution of resonance frequencies in the complex plane to the parameters of inhomogeneity of the layered
system are obtained. A scheme of resonance cal culations in numerical modeling is described. Examples of geo-
physical mediawith long-lived resonances are presented. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

The problem of oscillations of a finite-size elastic
body consists in determining a denumerable set of
eigenmodes whose frequencies have a crowding point
at infinity. If the body is placed in an unbounded
medium with other properties, the eigenfrequency
spectrum in the general case is shifted in the complex
plane. Simultaneously, the eigenfrequencies acquire
imaginary parts, and the corresponding modes of oscil-
lation are called acoustic resonances. The study of the
relations between the characteristics of inhomogeneity
and the parameters of resonances is the subject of
acoustic spectroscopy [1]. It should be noted that the
conceptual and mathematical apparatus of this field of
scienceisto aconsiderabl e extent borrowed from quan-
tum mechanics[2], where the study of resonancesisthe
most important source of information about quantum
systems.

In geophysics, studies of resonancesrelated to alay-
ered elastic medium are of great importance. Such res-
onances affect the amplitude—frequency characteristic
of asystem formed by the medium and a ground-based
object [3] and, hence, the service conditions of struc-
tures and instruments. Long-lived resonances are of
special importance, because, according to modern con-
cepts, precisely these resonances determine the effi-
ciency of vibroseismic actions on oil pools [4]. In our
previous work [5], we studied the distribution of reso-
nance frequencies in the complex plane for an
unbounded layered medium. In the present paper, we
consider the conditions of the existence of long-lived
resonances in unbounded and semibounded media.

ACOUSTIC RESONANCES IN LAYERED MEDIA

Consider elastic waves (longitudinal or transverse
ones) described by the equation

pafu—0(Ed.u) = f, (1)

where u = u(t, X) is the displacement function, p = p(x)
is the density, E = E(x) is the elastic modulus, and f =
f(t, x) isthe external force field. We redefine the spatial
coordinate according to the differential relation

dy = Ey dx/E(x),

where E, is a constant with the pressure dimension (the
characteristic value of the élastic modulus). Then, Eq. (1)
takesthe form

k’opu—au = f, = Ey Ef,

1/2 -1 (2)
K = (pE) " "E, .

Let us discuss the boundary conditions for Eq. (2).
We seek the solution to Eq. (2) for the half-spacey > 0
(Problem 1) and for the unbounded space —o <y < +
(Problem 2) and interpret this solution as the response
of the system to an external force f. In both cases, we
assume that the force f is equal to zero outside some
finite spatial interval of length L. In addition, the value
of K outside this spatial interval is constant. We can
assumethat Kk = k_for y < 0 (Problem 2) and k = k. for
y > L (Problems 1 and 2). At spatia infinity, the radia-
tion conditions are imposed, and at the boundary of the
half-space in Problem 1, we impose the condition of
zero stress. Hence, we have the following boundary
conditions for Problem 1:

a,ul, .o = 0, 3)
(K, 0u+0,u) —0, Yy —=+00, 4

and for Problem 2:
(K du—09,u) —0, y —»—oo, (5)

(k,0u+o.u) — 0, y—= +oo, ©6)

1063-7710/05/5105-0533$26.00 © 2005 Pleiades Publishing, Inc.
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Since Eq. (2) and boundary conditions (3)—(6) con-
tain no explicit time dependence, we can apply the Fou-
rier transformation

v =v(wy) = Iexp(—iwt)u(t, y)dt.
Then, we obtain an ordinary differential equation
v +wk’v = F = —J'exp(—i(ot)f*(t, y)dt (7)
with the following boundary conditions:
0,V|,.o =0 ()
(lwk,v +0,v) — 0, y— +o0 )
for Problem 1 and

(iwkv—-0,v) —0, Yy ——0, (10)

(11)

(iwk,v +0,v)— 0, y— +o

for Problem 2.

For each of the Problems 1 and 2, we introduce two
solutionsto homogeneous equation (7) (i.e., when F =0),
namely, v_=v_(w,y) and v, = v,(w, y), so that they are
determined by the following boundary conditions:

V=0 =1 0yv_|,.,=0,
Vv, — exp(-iwK,y),

for Problem 1 and
v_ —exp(inK.y),

y—>+00

y ——0,
vV, — exp(-iwK,y),

for Problem 2.
We define the Green's function by the formula

y—>+00,

LV, Y)V (W Yo), ¥Y>Yo
G(O.), yv yO) = A 1|:| ° °
OV (w0, Y)V.(®,Yo), Y<VYo (12)

A = 0,V.(, Yo) V(W Yo) = V(0 Yo)0yV_(w, Yo).

Here, A isthe Wronskian constructed on the basis of
two solutions to the homogeneous equation. Therefore,
A does not depend on the parameter y,:

A = Aw).
One can easily verify that the following equation is
satisfied:
(05 + W’K*(y))G(w@. Y, Yo) = 3(Y—Yo),

wherethe Dirac deltafunction ison theright-hand side.

Therefore, we can write the formal solution to Eq. (7)
in the form

v(wy) = J’G(w, Y, Yo) F(w, Yo)dyo. (13)

The integration in formula (13) is performed over

the half-axis for Problem 1 and over the whole axis for

Problem 2. Expression (13) gives the solution to the

DINARIEV, NIKOLAEVSKII

problems stated above, because the boundary condi-
tions imposed on the functions v_= v (w, y) and v, =
v, (w, y) provide for the fulfillment of boundary condi-
tions (8)—(11).

Thefunctionsv_= v (w,y) and v, = v,(w, y) can be
analytically continued to complex values of w. The
functions A = A(w) and G(w, Y, Y,) alow a correspond-
ing continuation. In this case, the Green's function
G(w, Y, Y,) may have poles coinciding with zeroes of
function A = A(w). If Q isaroot of the equation

A(w) = 0, (14)

the corresponding coordinate functions v (Q, y) and
v,(Q, y) are proportional to

v.(Q,y) = C(Q)v_(Q,Y). (15)

The reverse is true as well: from Eg. (15), one
obtains Eq. (14).

According to [5], for any of the solutions Q to Eq. (14),
either Q = 0 or ImQ > 0. Solutions with a positive
imaginary part may be absent, but if they exist, they
are identified with the resonance frequencies of the
layered system under consideration. At the sametime,
the corresponding solutions to the problem, namely,
v_=v.(Q,y) (or v, =v,(Q,Y), whichisequivalent by
virtue of Eq. (15)), are identified with the resonant
modes of oscillation.

This definition is based on the following specula-
tion. Using Eq. (12), we apply theinverse Fourier trans-
formation

u(ty) = (2n)‘1J’exp(ioot)
x G(w, Y, Yo) F(w, Yo)dysdw.

The integration in Eq. (16) is performed along the
straight lineImQ = alying below all singularities of the
integrand. As it was shown above, the poles of the
Green's function G(w, v, Y,) lie in the upper complex
half-plane. Let all singularities of the function F(w, y)
lie above the straight line ImQ = A > 0. This assump-
tion corresponds to the condition that the external force
f{t, y) is equal to zero for t < tyat a certain t(the
Paley—Wiener theorem [6]). Asfor the Green’sfunction
G(w, Y, Yp), intheregion 0 < ImQ < A, it may have
poles Q, =0, Q,, Q,, ..., where ImQ, > 0 for n > 0.
Shifting the contour of integration in Eg. (16) upwards
with bypassing the poles and taking the corresponding
residues, we arrive at the formula

u(ty) =i I dyoResg [G(w, Y, Yo) F(w, Yo)] dyo
+i ZjdyoeXD(iQnt)

n>0
x Resq [G(w, Y, Yo) F(w, Yo)] dy, + O(exp(-At)).
From this expression, one can see that the total solu-

tion contains a sum of damped oscillations (reso-
nances) corresponding to the complex frequencies Q,..

(16)
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Inthiscase, a,,= ReQ, isthe oscillation frequency, B, =
ImQ, is the damping factor, T,, = 2170, is the oscilla-
tion period, T,= 1/B, isthelifetime, and &, = 1,/T, isthe
dimensionless lifetime of aresonance.

Thus, for determining the resonances of a layered
system, it is sufficient to have the solution to the homo-
geneous equation (2). In asmall number of cases, such
asolution can be obtained in an analytical form[7] and,
hence, the parameters of the resonances can be exactly
determined. In the general case, the wave equation
should be solved numerically for different complex val-
ues of w and, then, a numerical solution to Eq. (13)
should be sought for. Note that, to estimate the number
Nc of the roots of Eq. (13) in a complex plane region
bounded by a piecewise smooth contour C, one can use
the formula

N = (2ni)‘1J'A(w)‘1(aA(w)/aw)dw,
C

where the right-hand side can be numerically deter-
mined for specific media and contours C.

LONG-LIVED RESONANCES

To study the conditions of the existence of long-
lived resonances, it is convenient to begin with the sim-
plest models that alow an exact calculation of reso-
nances. We consider Problem 1, inwhich k = Kk, for 0 <
y<Landk =k, for L <y. Within each of theintervals,
the sol ution to homogeneous equation (2) is determined
in the form of a sum of exponentials, which are sewn
together according to the continuity conditions for the
function v and its derivative. The Wronskian is deter-
mined by adirect calculation:

= _2_lioo((K+—K0)eXp(i00( K+_KO)L)
+ (K4 + Ko) exp(io(K, + Ko)L)).

Therefore, the equation for the resonances has the
form

expRiwkylL) =, (17)
wherey = (K, — K,)/(K, + K,). Depending on the sign of
Y, two sets of solutions are possible:

(@ fory> 0,

A, = {(2koL) (2 +iB)|n =0, %1, 2, ...} ; (18)
(b) fory <O,

A_={(2KoL)(m+ 2m +iB)[n =0, 21, £2, ..} 1)
Here, B = -Inly} For y=0, Eq. (17) has no solutions. It
is evident that long-lived resonances can exist when |y|
is close to unity; i.e., when the layers widely differ in
acoustic stiffness.

Now, let us consider Problem 2, in which k = k_ for
y<0,K=K,forO<y<L,andk =K, forL<y. The
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problem is solved in the same way as Problem 1. The
Wronskian is calculated in an explicit form:

= —iw(2Ky) T exp(—iwk, L)
X ((Ky —Ko) (= K_+Ko) exp(—i wK,L)
+ (K4 + Ko) (K_+ Ko) exp(iwKoL)).

Asinthe case of Problem 1, the equation for theres-
onances has the form of Eq. (17) with solutions (18)
and (19), where

Y = (Ko—K_)(Ko—K)/(Ko + K,) (Ko +Ky).

Again, long-lived resonances are possible when the
acoustic stiffness of the middle layer is much higher or
much lower than the acoustic stiffnesses of the outer
layers.

Although it is impossible to analytically calculate
the resonances for the case of layered mediaof the gen-
eral form, it is possible to obtain a priori estimates for
their distribution in the complex plane. For this pur-
pose, we calculate the Green's functions for the follow-
ing auxiliary nonresonance problems.

Problem 1. k =K, for 0 <y, and the Green’sfunction
Gy, Yo, w) iscalculated by formula (12), where

V_ = (eXp(—|U)K+Y) + eXp(I(A)K+y))/2,
Vv, = exp(-wkK.y),
= —WK,.

Problem 2: k =k fory< 0, Kk =k for 0 <y, and the
Green's function Gr{y, Y,, w) is calculated by for-
mula (12), where

mexp(iwky), y<0,
v_ = 02K (K, — k) exp(-iwoK,)

B (K. + K )exp(ioK.y)), y>0,

g(zm‘l((K_—m)exp(—iwx_y)
Ve = O+ (K, +K)exp(inky)), y<0,
exp(—iwk,y), y>0,

= —w(K, +K_).

We seek the solution to Problem 1 or Problem 2 in
the form
v(wy) = J’ G (¥, Yo @)V(w, Yo)dyo (20)

and define the function
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Fig. 1. Problem 1: (1) density (t/m3) and (2) phase velocity
(km/s) distributions in depth.

Substituting Eqg. (20) into Eq. (2), we obtain theinte-
gra equation

V(w,y)+w’v(y)

21
x _[ Gu (¥, Yo, @)V (W, Yo)dyo = F(w, Y).

Since the externa force F(w, y) and the function
v(y) are equal to zero outside theinterval 0 <y <L, the
function V(w, y) is also equal to zero outside thisinter-
val. Therefore, Eq. (21) can beinterpreted asan integral
equation for the functions on the interval 0 <y < L.
Equation (21) with zero right-hand side serves for the
simultaneous determination of resonance modes and
resonance frequencies. In the latter case, the problem
for resonances can be represented in the operator form

(1+K)V = 0, (22)
where K is a linear integral operator appearing on the
left-hand side of EQ. (21) and acting in the function
space on the segment [0, L]. If, in this space, we intro-
duce an appropriate horm in which operator K is con-
tinuous, from Eq. (22) we obtain an estimate for the
operator norm:

Kl = 1. (23)

The choice of the norm and the function spaceis not
uniquely defined. Therefore, inequality (23) represents
afamily of apriori estimates for the distribution of res-
onance frequencies in the complex plane. For example,
if we chose a space of continuous functions with the

norm max |V|, we obtain the estimate
O<ys<L

|0l 1G” max v (y)l (Imeo) ™
OsysL
x (exp(LK,Imw)-1)>1, (24)

Ky = min(k_ K,).
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Fig. 2. Problem 1: resonance frequency distribution in the
complex plane.

Another example: if we chose a space of integrable
functionswith the norm IIVI dy, we obtain the estimate

ool K5 [Ivy)lexp(yx.Ime)dy > 1. (25)

Estimates (24) and (25) show that small values of
the function v(y) characterizing the inhomogeneity of
the layered system preclude the presence of resonances
with large relative lifetimes & but still allow the pres-
ence of resonances with large absolute lifetimes and
large periods. Resonances with large relative lifetimes
are only possible in a system with a strong inhomoge-
neity.

NUMERICAL CALCULATION OF RESONANCES

To study the distribution of resonance frequenciesin
the complex plane, we performed numerical calcula-
tions for different layered media. With a view to geo-
physical applications, we chose the parameters of
media (density p, phase velocity of waves ¢ = (E/p)'/,
and thickness) close to those of actual sediment depos-
its. Below, we present the results of the numerical mod-
eling of Problems 1 and 2 for the cases where long-
lived resonances were obtained.

In Problem 1, we considered an inhomogeneous
region with a total size L = 950 m. The density and
velocity distributionsin this range are shown in Fig. 1.
Below a depth of 950 m, the density and velocity were
assumed to be constant: p = 2.35t/m?® and ¢ = 3.35 kn/s.
The distribution of resonances in the complex planeis
shown in Fig. 2. The calculated parameters of the reso-
nance with the longest lifetime are Rew = 153.72 1/s,
Imw=0.11 1/s, and & = 231.51.

In Problem 2, we considered an inhomogeneous
region with a total size L = 293 m. The density and
velocity distributions in this range are shown in Fig. 3.
Outside this region, the density and velocity were
assumed to be constant: p = 2.55t/m?and ¢ = 4.32 km/s
forx<0;p=27t/m*and c=4.5km/sfor x> L. The
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Fig. 3. Problem 2: (1) density (t/m3) and (2) phase velocity
(km/s) distributions in depth.
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Fig. 4. Problem 2: resonance frequency distribution in the
complex plane.

distribution of resonances in the complex plane is
shown in Fig. 4. The calculated parameters of the reso-
nance with the longest lifetime are Rew = 165.32 1/s,
Imw=1.881/s, and & = 14.03.
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CONCLUSIONS

The results of numerical modeling demonstrate that
the existence of actual geophysical mediawith acoustic
resonances characterized by large relative lifetimes is
possible. However, the above theoretical analysis
shows that such resonances can only occur in media
with strong inhomogeneities of density and elastic
modulus. In the wide class of weakly inhomogeneous
media, such resonances are impossible while a broad
spectrum of resonances with small lifetimes may be
present. The method presented in this paper allows a
numerical calculation of resonance frequenciesand res-
onance modes.
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Abstract—On the basis of experimental data obtained from a non-equal-armed strainmeter with an arm length
of 52.5 min the presence of alow-frequency hydroacoustic source operating in adeep seaand in ashallow sea,
an estimate is obtained for the ratio of the energy flux in the Rayleigh wave to the acoustic power emitted by
the hydroacoustic source. © 2005 Pleiades Publishing, Inc.

Experiments on using coast-based strainmeter for
recording the oscillations excited in water by low-fre-
guency hydroacoustic sources [1] showed good pros-
pects for strainmeters as instruments for studying the
behavior of seismoacoustic and hydroacoustic oscilla
tions and waves at the hydrosphere-lithosphere inter-
face [2]. At the Schulz test site of the Pacific Oceano-
logical Ingtitute, a 52.5-m non-equal-armed stationary
strainmeter wasinstalled at a depth of 5-7 m below the
earth surface and oriented along the north—south line.
The interference units, which include a frequency-sta-
bilized laser, a collimator, and an optical gate (a dia
phragm, a polaroid, and aA/4 plate), of the strainmeter

were placed in athermally insulated room. The corner
reflectors were positioned in individual thermally insu-
lated chambers. The whole path of the laser beam
between reflector and interference unit ran through a
light guide made of stainless steel pipes.

Figure 1 schematically represents the recording sys-
tem of the strainmeter. To control the interferometer of
the strainmeter, areference-frequency oscillator (RFO)
generates an electric signal with afrequency of 25 kHz,
an amplitude of 5V, and an off-duty ratio of 2. Thissig-
nal is transformed to a sinusoid and amplified by a
power amplifier (PA) to control the piezoceramic ele-
ment that changes the length of one of the arms of the

MP
PG

CR

LG

PM
RFO (— DL
PD HRA H SD H DIA [ | LRC H RS

]
|

|

Fig. 1. Theoptical scheme of the strainmeter with aflow chart of the recording system: (CR) corner reflector, (LG) light guide, (MP)
mirrors on piezoceramic elements, (PG) plane-parallel glass plate, (C) collimator, (L) He-Ne frequency-stabilized laser, (PD) pho-
todiode, (RA) resonance amplifier, (SD) synchronous detector, (DIA) differential integral amplifier, (LRC) level-reset circuit, (PA)
power amplifier, (RFO) reference-frequency oscillator, (DL) delay line, and (RS) recording system.

1063-7710/05/5105-0538%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 2. Filtered part of the strainmeter record obtained in the
course of the operation of the low-frequency hydroacoustic
source at afrequency of 32.6 Hz.

interferometer by 0.1A/2 (A is an He—Ne laser wave-
length of 0.63 x 10 m). This leads to modulation of
the interference pattern intensity incident on the photo-
diode (PD), from which thesignal issupplied to theres-
onance amplifier (RA). The latter provides an amplifi-
cation by afactor of 10* at afrequency of 25 kHz with
apassband of 6 kHz and is made in the form of a sepa-
rate unit positioned on the optical bench. The resonance
amplifier produces a signal that is proportional to the
variation in the arm length difference of the interferom-
eter. The signal passes to a synchronous detector (SD),
to the second input of which the reference signal passed
through adelay line (DL) is supplied. The delay lineis
used to compensate for the time delay of the signal
passing through the interferometer. It allows a phase
shift in the output signal by +172 with respect to the
input signal. The synchronous detector gives an output
signal of £1V proportional to the phase of theinput sig-
nal. Then, the signal is supplied to the differential inte-
gral amplifier (DIA). The latter produces a signal of
=130 V, which controls the second piezoceramic ele-
ment. This element, displacing the mirror of the inter-
ference unit, equalizes the arm difference of the inter-
ferometer within +A/2. To compensate for deformations
exceeding the variation AL = £A/2, alevel-reset circuit
(LRC) is used. This circuit equalizes the DIA output
voltage with theinner reference voltage U,.¢, and, when
the DIA voltage reaches the value of £U,.;, which cor-
respondsto thevariation AL = +A/2, areset pulseisgen-
erated to reset the control voltages at the DIA output
from U,,,, = U, to U = 0 within 1 ms. This corre-
sponds to a jump of the interference pattern from one
minimum to another, nearest to it. The case of U, =
+U,; corresponds to an extension of the deformograph
base by A/2, and the case of U,,,, = -U,.;, t0 acompres-
sion of the deformograph base by A/2. The recording
system (RS) follows the variation of the deformograph
base to an accuracy of 10*A/2 in the frequency band
within 0—1000 Hz. At the analog output, the RS pro-
ducesthevoltage U, = +5 V that is proportional to the
deformation AL = £A/2. At the pulse output, the RS pro-
duces the reset pulses (Ur* and Ur-) whose sum deter-
mines the shift of the deformation in A/2 units.

Thus, the strainmeter measures the variation in the
length of the deformograph arm between the interfer-
ACOUSTICAL PHYSICS  Vol. 51
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Fig. 3. Spectrum of apart of the strainmeter record obtained
in the course of the operation of the hydroacoustic source at
afreguency of 32.6 Hz.

ence unit and the reflector, which are mounted on sepa-
rate basements. The arm length of the deformograph is
52.5 m. In addition, the deformograph is characterized
by the following parameters: a sengitivity of 10-1°-10-!!
(AL/L, where AL is the displacement of the deformo-
graph base and AL is the deformograph length, equal to
52.5 m), the accuracy of microdisplacement measure-
ments within 10°-10-1 m, the operating frequency
band 0—1000 Hz, and an unbounded dynamic range.

In studying the behavior of seismoacoustic and
hydroacoustic oscillations and waves at the hydro-
sphere-lithosphere interface, it is important to know
the amount of hydroacoustic energy transformed into
seismoacoustic one and received by the strainmeter.
Over aperiod of many years, in the Sea of Japan and at
its coast, the excitation of hydroacoustic oscillations by
a low-frequency source and the reception of seismoa-
coustic oscillations induced by it had been studied with
the use of a coast-based strainmeter. The main conclu-
sion derived from al these experimental studies was
that the use of a coast-based strainmeter for studying
the generation, dynamics, and transformation of
hydroacoustic oscillations and waves at the hydro-
sphere-lithosphere interface is rather promising. Here,
it is necessary to note that the strainmeter provides a
reliable detection of seismoacoustic oscillations caused
by the operation of low-frequency hydroacoustic
sources in both shallow and deep water even when the
source power is low. As an example (Figs. 2, 3), we
present a bandpass-filtered record obtained from the
strainmeter and the spectrum of this record. The band-
passfilter had thefollowing parameters: cutoff frequen-
ciesof 32.5and 32.7 Hz, alength of 12000, and aHam-
ming window. Figure 3 shows a part of the spectrum of
the unfiltered record obtained from the strainmeter in
the course of the operation of the low-frequency
hydroacoustic source. The maximum observed at afre-
guency of about 22 Hz isassociated with one of the res-
onances of the strainmeter system. Thisexperiment was
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Fig. 4. Positions of the hydroacoustic transmitting stations
(station nos. 1-7).

carried out in 2004 in Vityaz' Bay. The source depth
was 12 m, the sea depth at the source site was 12.6 m,
and the distance from the source to the deformograph,
1.5 km. The pressure referred to the distance of 1 m
from the geometrical center of the source was 1.25 kPa.

Data from the 1995 experiment

Station| R, H, h, F, P Aq,
no. km m m Hz kPa nm
1 16 34 31 32 187 | 0.23
2 16 35 31 32 2.3 0.30
3 16 53 31 32 19 0.29
4 16 71 31 32 2.3 1.77
5 25 106 31 32 1.9 0.51
6 34 1300 31 32 19 0.61
7 43 2131 31 32 175 | 052

Notes: Risthe distance from the source to the strainmeter, H isthe
sea depth at the source site, h is the source depth, P is the
pressure referred to the distance of 1 m from the geometri-
cal center of the source, F is the frequency of the emitted
signal, and A, is the average amplitude of the seismoacous-
tic signal detected by the non-equal-armed strainmeter with
an arm length of 52.5 m in the course of the cw operation of
the low-frequency hydroacoustic source.
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We believe that the distribution of the pressure
field caused by the operation of the low-frequency
source in the hydrosphere obeys the same conditions
that are valid for the operation of a point source of
radiation in an elastic medium [3]. Expressionsfor the
compression waves, shear waves, and Rayleigh waves
are given in [3]. In this case, the energy is distributed
asfollows:

22 252
W, = 008522 W, =0.29932 "
LSy TG

22

W, ~ 08229

LSy

where P isthe amplitude of the total vertical force, ¢, is
the velocity of the longitudinal wavein the bottom, p is
the density of water, W, is the radiation power in the
longitudinal wave, W, is the radiation power in the
transverse wave, W, is the radiation power in the Ray-
leigh wave, and w isthe cyclic frequency.

From this energy distribution for a point source of
radiation, one can see that, in the framework of the
given experiment, the radiation power associated with
the Rayleigh wave predominates over the radiation
powers associated with other types of elastic waves.
Therefore, we perform the subsequent calculations
under the assumption that the contribution of the Ray-
leigh wave predominates in the record obtained from
the deformograph.

Using the experimental data partially reported in
[2], we estimate the ratio of the energy flux carried by
the Rayleigh wave to the emitted acoustic power. Fig-
ure 4 shows the positions of the emitting stations in
the given experiment. The experimental data of [4]
are presented in the table. We make our estimates for
the data obtained with stations 6 and 7, which corre-
spond to the deep sea conditions (H > A, where H is
the sea depth at the site of the source of radiation and
A is the wavelength of the excited hydroacoustic
oscillations).

According to [5], when the source is placed a a
small depth h, itsfield is of a dipole character and the
sound pressure amplitude is the lower the smaller the
depth h is. Following [5], we can write the power of a
near-surface source in the form

b =4T[P2m%[_sin(4nh/)\)g
& pc Amth/n 1

1)

where P,, is the effective acoustic pressure referred to
the distance of 1 m from the geometrical center of the
source, A is the acoustic wavelength in water, and c is
the sound velocity in water.
ACOUSTICAL PHYSICS  Vol. 51

No. 5 2005



EXPERIMENTAL ESTIMATE

Knowing the total energy flux carried by the Ray-
leigh surface acoustic wave E(2), according to [6], we
express the coefficient A through the amplitude U, (0) of
the horizontal displacement component measured by
the strainmeter:

2,
UL(2) = Akr[exp(—qrz)— = iexp(—srz)}
ki +s;

r

where A isthe coefficient calculated from the Rayleigh
wave amplitude measured at the surface at the point of
observation, k, is the Rayleigh wave number, k; is the
longitudinal wave number, k; is the transverse wave

number, g, = K> —k’, and s, = /K =k’ .

541

Then, at the surface (z= 0), we obtain

U,(0) (K + )
k(K +s'-2q,5)

The energy flux density in the Rayleigh wave is
equal to E(2)c, [7]. Hence, for the total energy flux @,,
we obtain the expression

00

P, = ch'ZTIRE(z) dz
0

_ Apw'c A Y)  AY) | As(v)
ZC:1 u 2qr g *s 28r 0

2TRC,,

where

AWV)=4+n? - 4an’E,

Ay(v) =

Ag(v) =

2J1-n%E3(J1-n?+.J1-n%E3) (2 +n?+ 2./1-n?/1-n2E?)

2-n;

4(1-n%E%)(4-3n7)

(2-n)’

_ 0.87+112v

r

1+v

¢, is the Rayleigh wave velocity, ¢, is the transverse
wave velocity in the bottom, and v is Poisson’s ratio.

Expressing A through U,(0), we arrive at the for-
mula

_TAL(V)  Ax(v) | As(v)
= [ 20, G +s 25 }

2
(K +5) UN(0)c, pw'ef
k(K +s - 2q,8)" 2¢/

2TR.

This formula can be reduced to a form more conve-
nient for analysis by using the notation for the Rayleigh
equation in the polynomial form: n = k/k; = ¢,/c; and
& =k /k = c/c,. Inthis case, we have
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®, = TRPU(0)wC

x{ A(v) Ay(V) As(V)
2/1-n%8 J1-n’+./1-n? 2J1-n’le)
2 2
XE 2-n; O

0.
-n’-2/1-n%"/1-nT

Using Egs. (1) and (2), we determine theratio of the
energy flux in the Rayleigh wave @, to the acoustic
power emitted by the near-surface source P, for sta-
tions 6 and 7. In the region where the experiment was
carried out, samples of the bottom material were taken
and analyzed. According to the results of the analysis,
the following values were accepted for the elastic con-
stants to calculate the Rayleigh wave parameters. a
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Poisson ratio of 0.3, a transverse wave velocity of
3400 m/s, and a bottom rock density of 2600 kg/m?.
Then, using the experimental data from the table, we
obtain

. ®,
for station 6, B = 9.89 x 103, and
a

for station 7, % =11.07 x 1073,
Pa
From the estimates presented above, it follows that
about 1% of the acoustic energy emitted by the hydroa-
coustic source is transformed into the energy of Ray-
leigh elastic waves.
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Abstract—Results of a series of experimental studies of nonlinear acoustic effects in a granular medium are
presented. Different effects observed in the experiments simultaneously testify that the nonlinearity of granular
mediais governed by the weakest intergrain contacts. The behavior of the observed dependences suggests that
the distribution function of contact forces strongly increasesin the range of forces much smaller than the mean
force value, which is inaccessible for conventional experimental measuring techniques. For shear wavesin a
granular medium, the effects of demodul ation and second harmonic generation with conversion to longitudinal
waves are studied. These effects are caused by the nonlinear dilatancy of the medium, i.e., by the nonlinear law
of itsvolume variation in the shear stressfield. With the use of shear waves of different polarizations, the ani sot-
ropy of the nonlinearity of the medium is demonstrated. The observation of the cross-modulation effect shows
that the nonlinearity-induced modul ation components of the probe wave are much more sensitive to weak non-
stationary perturbations of the medium, as compared to the linearly propagating fundamental harmonic. The
nonlinear effects under study offer promise for diagnostic applicationsin laboratory measurementsand in seis-

mic monitoring systems. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The devel opment of sel smoacoustic diagnostic tech-
nigues and methods of monitoring geophysical media
requires knowledge of the elastic and inelastic, as well
as linear and nonlinear, properties of these media and
understanding of the relation between these properties
and the structure of the medium; i.e., physical models
of such media and the corresponding equations of state
are necessary. Asarule, the chemical compositions and
the physical structures of different kinds of rock are
complex and diversified, which determines the wide
range of acoustic properties of rocks and, hence, arich
“gpectrum” of nonlinear wave processes in them. On
the other hand, the variety of rocks can be separated
into several classesaccording to their structural similar-
ity, which determines the similarity of their acoustic
properties (even for different chemical compositions).
One such important class of geophysical media
includes granular materials. Their specificity is prima-
rily determined by the nonlinearity of the contacts
between the grains forming a granular medium. This
structural feature of granular media makes their acous-
tic nonlinearity qualitatively different from that of
homogeneous (continuous) amorphous and crystalline
solids, which makes studying the nonlinear propaga-
tion and interaction of elastic wavesin granular systems
particularly interesting [1]. To describe and predict the
macroscopic behavior of a granular medium (with one
or another packing) in the field of elastic waves, it is

necessary to know the distribution of the forcesf acting
on the intergrain contacts. The results of both theoreti-
cal and experimental studies point to the fact that the
distribution function of the contact forces, P = P(f),
rapidly decreases when f exceeds a certain characteris-
ticforcef, related to the strain of the medium [1-7]. On
the other hand, there still are no commonly accepted
models of the distribution P = P(f) for f < f,,. In thelit-
erature, one can find arguments in favor of both a
decrease[4] and anincrease[5-7] in P(f) for f < f,. The
existing experimental techniques [1-4] are insuffi-
ciently sensitive to allow choosing between the theories
describing the distribution of weak forces (f < f).
These techniques are based on the study of the prints of
grains on a carbon paper, the use of a microbalance for
measuring the normal forces acting onindividual grains
at the boundary of the medium, and the visualization of
the deformation of grains with the help of optoelastic
effects. All of these methods deal with effects that
become stronger as the force f increases, so that the
contribution of the most-loaded contactsto the result of
measurements is predominant. Hence, it is especially
important to study the aforementioned manifestations
of granular media by experimental methods in which
the response of weak contacts is greater than that of
strong contacts. Such methods can be devel oped on the
basis of nonlinear acoustic effects, which are sensitive
to the weakest mechanical contacts and defects in the
structure of the medium [8-11]. In contrast to the
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Fig. 1. (a) Experimental setup and (b) a schematic representation of two grain chains of a granular medium with different static
compressions; (A) control dynamometer, (B, C) receiving transducers, (D) longitudinal wave radiator, and (E-G) transverse wave

radiators with different wave polarizations.

known approaches [1-4], nonlinear acoustic methods,
in principle, alow oneto obtain information on the dis-
tribution function P = P(f) in the bulk of the medium
(rather than at its boundary) for the range of forces f <
5% 10721,

In this paper, we combine and discuss from asingle
point of view the results of a series of experimental
studies of the effects associated with the nonlinear
propagation and interaction of longitudinal (L) and
shear (S) elastic wavesin granular media. Theintensity
of these effects mainly depends on the nonlinearity of
weak intergrain contacts, which determine the acoustic
nonlinearity of the medium as a whole. We consider
demodulation effects, second harmonic generation for
high-frequency (HF) pulses, and cross-modulation of a
weak (probing) harmonic wave under the effect of an
intense amplitude-modulated pump wave.

2. ELASTIC NONLINEARITY OF A GRANULAR
MEDIUM

Let us discuss the origin of the high sensitivity of
nonlinear acoustic effects in a granular medium to the
presence of weak intergrain contacts. Asis known, the
origin of the strong elastic nonlinearity of a granular
medium is the Hertzian nonlinearity of contacts
between the grains [12]. For a medium with uniformly
loaded contacts, this nonlinearity leadsto the following
equation of state, i.e., to the dependence ¢ = 6(€):

a(e) = bne*’H(e), (1)

where o and € are the stress and strain, the factor b
depends on the elastic moduli of the grain materia, nis

the average number of contacts per grain, and H(e) is
the Heaviside function showing that stress occursin the
medium only when the contacts are under compression
(o, € >0). An actual granular medium contains contacts
with different loads [1-8], which requires a modifica
tion of Eq. (1). Toreveal therole of different contactsin
acoustic manifestations, we assume that a granular
medium contains only two fractions of contacts with
different static strains. Separating the static (g, €,) and

dynamic (0, €) components of stress and strain for

both fractions, we obtain the following equation from
Eq. (1):

0o+ 0 = bny(g,+ &)’ H(gy +£) o
+ by (pey + €)?H (ugy + €),

wheren, and n, are the average numbers of contacts per
grain for the two fractions and [ is the dimensionless
parameter characterizing the weak (U <€ 1) static strain
of grains of the second fraction compared to that of the
first fraction. Note that the dynamic strain € isthe same
for both fractions. This can be explained by considering
the deformation of loaded grain chains shownin Fig. 1.
Assume that, under the effect of dynamic stress, the
chain length h oscillates around its mean value h, (h =

h, + F], |PN1 | < hy). Then, the strain of the chain consist-
ing of N grains with a diameter d will be equal to € =

(Nd - h,— h)/Nd. Consider achain that hasazero strain
in the absence of acoustic load and assume that this
chain has a number of grains equal to N, = hy/d > 1.
Taking the number of grainsin theith chainto be N, =
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N, + AN;, where AN; < N,, we find that the strain g;
determined as the sum of the static and dynamic com-

ponents is approximately € O AN/N, + F]/ho. Corre-

spondingly, the dynamic strain component € = ﬁ/h0
will be the same for al of the grains belonging to dif-
ferent chains. By contrast, the static strains 88) =
AN/N, (i = 1, 2) are different for different chains,

because AN, # AN,. Notethat the differencein the static

strains 88’ for these chains can be relatively large even

for AN/N, < 1. Evidently, the model of the medium
presented above is quasi-one-dimensional, and it
assumes that the more neavily loaded grain chains
relieve other grains from the load. In actua three-
dimensional packings, it is possible to single out simi-
lar, predominantly loaded, quasi-one-dimensional
grain chains, so that, in an actual medium, the dynamic
strain can be considered as identical for all contacts to
a first approximation. Then, at n, ~ n,, we obtain that
the first (more strained) fraction in Eq. (1) carries the
major part of the static |oad applied to the medium. For

this fraction, the strain egl) = AN,/N, approximately
corresponds to the strain of the medium g,. Thus, in
terms of the static strains of different contact fractions,

the compliance parameter of the ith fraction is deter-
mined by the ratio: p® = € /g,.

For preliminarily compressed contacts and moder-
ate dynamic strains |€ | < pg,, Eq. (2) can be expanded

into a Taylor series with coefficients d™c (g,)/dg".
These coefficients characterize the linear (m = 1) and
nonlinear (m = 2, 3, ...) eastic moduli M,, of the
medium, which determinethe vel ocity of acoustic wave
propagation, the nonlinear correction to it, and the
intensity of nonlinear effects of the mth order:

d"o

M, O
de

€ n _ _

mo)D bnlgl. + h_iu(w) r%s(()s/z) m 3)
Expression (3) shows that the contribution made by the
weak contacts to the linear modulus M, is proportional
to p2 < 1 and is negligibly small at n, ~ n,. By con-
trast, the contribution of the weak fraction to the non-
linear moduli M,, (m = 2, 3, ...) is proportional to
2 -m s> 1 and, hence, predominates in the presence
of sufficiently small static strains g < 10-'-10-2. Such
strains correspond to still smaller forcesf/fy <3 x 102
1073 < p, which fall beyond the sensitivity range of the
known experimental techniques [1-4].

From Eg. (3), it follows that, in the case of the
demodulation of weak HF acoustic pulses with an
amplitude €, < ey, when the power series expansion of
Eq. (2) isvalid, the amplitude Oy should be quadratic

in €, e ~ Myg5. For higher amplitudes (g, > ),
with allowance for the fact that the nonlinearity in
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Eq. (2) is governed by the second term, the amplitude
Oy iS determined by the expression: Oy ~ (> 2 H(E )T~
g5~ This means that the dependence of gy on &,
should exhibit a transition from the square law to the
3/2-power law. Such atransition testifiesthat weak con-
tactswith L ~ €,/e, < 1 are present in the medium. Sim-
ilar speculationsare valid for the amplitude dependence

of the nonlinear sources producing the second-har-
monic wave in the medium.

3. EXPERIMENTAL SETUP

The experimental setup for studying the nonlinear
acoustic effects in a granular medium is shown in
Fig. 1. The granular medium was composed of glass
beads 2 mm in diameter, which filled a cylindrical con-
tainer with a diameter of 40 cm and a height of 50 cm.
The vertical static load was produced by a rigid piston
and controlled by an electronic dynamometer. The static
stresses and strains could be varied within 10-50 kPa
and (1-5) x 104, respectively. Piezoel ectric transducers
were used to excite intense longitudinal and shear
waves in the pulsed or continuous modes (the diameter
of the transducers was about 4 cm). The receivers of
acoustic (strain) wavestransmitted through the medium
were piezoelectric transducers with a longitudinal
polarization (of the same type as those used for the
emission of longitudina waves). The positions and
polarization of acoustic radiators and receivers in the
container are shown in Fig. 1.

4. DEMODULATION OF A HIGH-FREQUENCY
S WAVE WITH A CONVERSION
INTO A LOW-FREQUENCY L WAVE

Inthefirst experiment [13], primary HF pulses (with
a carrier frequency of 30-80 kHz) with longitudinal
and transverse polarizations were excited in the
medium. Because of the strong absorption in the gran-
ular medium, these pulses rapidly decayed (within a
distance of 5 cm). Asaresult of the demodulation (rec-
tification) of these pulses in the medium because of the
Hertzian nonlinearity of the contacts, secondary low-
frequency (LF) longitudinal pulses (with a characteris-
tic frequency of 46 kHz determined by the stegpness
of the leading edges of the primary HF pulses) were
generated in the medium and propagated through it. In
hydroacoustics, devices whose operation is based on
this principle are called parametric radiators [14]; in
this case, both primary and secondary waves are
assumed to be longitudinal. The operation of paramet-
ric radiators with a shear pump wave is possible in a
granular medium because of its dilatancy [15, 16], i.e.,
the ability of the granular medium to expand under
shear stresses. This leads to anonlinear transformation
of the signal frequency with a simultaneous change of
the wave polarization (i.e., an amplitude-modulated HF
S pump wave is transformed into a demodulated LF L
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Fig. 2. Demodulated signal amplitude as a function of the excitation amplitude of vertically propagating S and L pump waves for

two static pressures.

wave). Generally speaking, the effect of demodulation
of HF acoustic pulses with a conversion from Sto L
waves is aso possible in a homogeneous medium with
aquadratic elastic nonlinearity [17]. However, because
of the noticeable difference in the propagation veloci-
ties of the primary S wave and the secondary L wave
(when the dissipation in the medium is relatively
weak), their interaction will be asynchronous and the
amplitude of the demodulated signal will experience
spatial beatings.

In the given experiment, relatively long HF pulses
with a rectangular envelope were emitted, so that the
demodulated LF pulses from the leading and trailing
edges of the primary HF pulses did not overlap and
could be observed separately. With the chosen parame-
ters of HF pulses and pump transducer dimensions, the
demodulation of the signal occurred for a highly direc-
tional primary wave [14]. In this case, the shape of the
demodulated strain pulses corresponded to the second
derivative of the HF pulse envelope with respect to
time. Figure 2 shows examples of the dependences of
the amplitude Oy, Of the demodulated pulses on the
amplitudee, of theprimary L and S pulses (for different
values of static pressure). The strain level in the pump
wave (in its whole range) remained below the initial
static strain of the medium.

From the amplitude dependences obtained for the
demodulated pulses (Fig. 2), one can seethat their main
feature (for both L and S pump pulses) isasfollows: for
small amplitudes €, of the primary pulse, a quadratic

dependence of the amplitude g, ON €, is observed,
and for large primary pulse amplitudes, this depen-
dence exhibits a transition to a 3/2-power law, which
corresponds to the Hertzian nonlinearity. It should be
stressed that this transition occurs when the strain
amplitude €, is 15-20 dB lower than the static strain g,.
As it was noted above, the 3/2-power-law amplitude
dependenceistypical of weak “clapping” contacts, and
the predominance of this dependence for €, < ¢, testi-
fies to a considerable growth of the distribution func-
tion P = P(f) in the range of small contact forces
(below several percent of their mean value f,)). Here, it
should be taken into account that, in terms of the intro-
duced notations, thefollowing relationisvalid for Hert-
zian contacts: f/f, ~ p*? < 1. This allows one to relate
the distribution function P = P(f) to the contact strain
distribution n = n(u) or vice versa, by taking into
account the relation P(f)df = n(w)dy, so that, if, e.g.,
n(K) = const, one obtains P(f) ~ f -1/, Concerning the
behavior of the function P = P(f), many publications
argue that the distribution of contact forcesfor f < f, has
afairly flat plateau P(f) = const [2, 3, 5, 6]. However,
it can be easily shown that such an assumption isincon-
sistent with the observed dependence of [y ON €.
Moreover, even assuming that P(f) ~ f ~1/3, which cor-
responds to n(l) = const in Eq. (2), one can see that the
power law P(f) ~ -1 (for small f) is insufficient to
obtain the transition from power 2 to power 3/2
observed in the dependence of e, 0N €,. A calculation
showed (see Fig. 3a) that, in the case of a uniform dis-
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tribution of contacts in the initial strain n() = const
(i.e, for the distribution of the form P(f) ~ f-1/3 in
terms of contact forces), despite the discontinuities
(clapping) of the weak contacts, the amplitude Oy
almost quadratically depends on g, in the whole range
of the pump amplitude up to its value equal to the mean
static strain of the materid, €, ~ €. Indeed, in the case
of the distribution n() = const, the number of clapping
contacts increases with increasing €, Asa result, the
amplitude of the demodulated pulse grows faster than

e)” and the amplitude dependence of this pulse

remains close to quadratic one aslong as€y/g, < 1. Itis
only when g/, > 1 that almost all contacts begin clap-
ping and the quadratic dependence passes into [, ~

£5%. Thus, the transition from the 2-power law to the

3/2-power law in the amplitude dependence of the
demodulated signal observed in the experiment for
€,/€, < 1 testifiesto the presence of aconsiderable frac-

tion of weak contacts (with L ~ 107! or less). We stress
that, for therealization of the2 — 3/2 transition in the
power law characterizing the amplitude dependence of
the demodulated signal, it is necessary to have a suffi-
ciently large total number of clapping contacts with
M < g/€,. Hence, to model the effect of this group of
contacts, it is sufficient to complement the smooth
function n() = const with a fraction of weak contacts
concentrated intheregion0 < U < 4, <<€ 1 (seetheexam-
plein Fig. 3b, where we chose i, = 10!, while the total
number of contacts remained the sameasin Fig. 3a). In
thiscase, the changein the power law isevident asearly
asat g/, < 1. A similar pronounced 2 — 3/2 tran-
sition in the power law of the amplitude dependence
(Fig. 3b) can aso be obtained when the function n =
n(W) increases smoothly but fairly rapidly, for example,
when n(p) ~ u'2 for 0 < p < 1. A more detailed recon-
struction of the function n= n(p) for p < 1 isdifficult
because of the integral character of its manifestation,
but the pronounced 2 — 3/2 power-law transition
observed at €, ~ 107'g, testifies that the growth of the
contact force distribution function in the region of
f/f, < 1 is substantial and alows one to estimate the
fraction of the weak contacts belonging to this region.
Notethat, for the predicted 2 — 3/2 transition to agree
with experimental results, the characteristic value |,
(below which a considerable part of weak contacts is
concentrated and the distribution function exhibits a
sharp growth) should be not too small. Otherwise, for
example, at |, = 1072, the 2 — 3/2 transition would be
observed at a much smaller value of €, than that
obtained from the experiment.

Studying the polarization of the demodulated LF
pulses, we found that it was longitudinal for both longi-
tudinal and transverse polarizations of the HF pump
wave. In addition, the propagation velocity of these
pulses, which was determined from the arrival time,
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withpu =1, i.e, totheinitia static strain of the medium.

was also close to the propagation velocity of the L
wave. Figure 4 shows the shapes of the LF pulses for
two different frequencies of the S pump wave. When
the frequency of the S pump wave was reduced, the
decrease in its attenuation caused an increase in the
length of the nonlinear interaction region, where the
nonlinear source propagated with the velocity of the S
wave. This caused a noticeable additional delay of the
demodulated pulses and an increase in their duration,
which was not observed in the case of L pump pulses.

As noted above, the conversion of a shear wave into
a demodulated longitudina wave occurs owing to the
dilatancy phenomenon (an increasein the volume of the
medium under the effect of a shear). Therefore, the
dependence of the demodulated pulse amplitude Oy
on the shear pump amplitude €, provides the informa-
tion on the character of the dynamic (i.e., caused by the
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Fig. 4. Examples of the shapes of the received demodulated
pulses for the longitudinal mode and two frequencies of the
shear pump wave. For a pump frequency of 30 kHz, the
additional delay in the first maxima is 26 + 1 ps and the
pulse broadening (between the extrema) is 14 + 1 s, as
compared to the case of a pump frequency of 80 kHz.

shear acoustic wave) dilatancy of the medium. The
classical dilatancy of a granular medium (according to
Reynolds) can be qualitatively understood from kine-
matic considerations [15] as the combination of dlip
and rotation of the initially closely-packed grains with
respect to each other, which leadsto an increase in the
volume of the medium. Both the kinematics of incom-
pressible grains [15, 16] and the linearized hyperplas-
ticity equations [18] predict a volume expansion of a
granular medium in direct proportion to the shear stress
amplitude. Such adilatancy law leadsto alinear depen-
dence of [y, ON €, (Note that the stressand strainin an
acoustic wave are proportional to each other in thefirst
approximation). However, at small amplitudes, the
experimental dependence of Uye, ON €, is quadratic
and, as the pump amplitude increased (up to &, ~ &, ~
(1-5) x 10, passed to the 3/2-power law, which cor-
responds to the nonlinearity of clapping Hertzian con-
tacts. Thus, in the presence of small (acoustic) strains,
the dilatancy of a granular medium noticeably mani-
festsitself and is primarily related to the compressibil-
ity of the intergrain contacts rather than to the kine-
matic effects of arepacking of grains.

The effect of demodulation of shear waves with dif-
ferent polarizations can aso be used for determining
the anisotropy of the contact nonlinearity of the granu-
lar medium and for revealing the force chains prelimi-
narily oriented along the static stress in the medium.
Indeed, since the contact nonlinearity is inversely pro-
portional to the static strain (Eg. (3)), amedium with an
anisotropy of contact loads should have different non-
linearities for shear waves of different polarizations.
Figure 5 shows examples of the amplitude dependences
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Fig. 5. Demodulated signal amplitude as a function of the
amplitude of the S pump wave for the case of its horizontal
propagation with (V) vertical and (H) horizontal polariza-
tions (the pressure on the medium is 64 kPa). The character-
istic amplitudes corresponding to the 2 — 3/2 power
transition are indicated by arrows.

of demodulated pulses originating from identical hori-
zontally directed S pump radiatorswith vertical (V) and
horizontal (H) polarizations. From these dependences,
one can see that, first, in the case of an H-polarized
pumping, the demodulated pulse amplitude is approxi-
mately 10 dB higher than that in the case of the V-polar-
ized pumping; second, the transition to clapping con-
tacts (2 — 3/2) for H-polarized pumping is observed at
amplitudes 7-12 dB lower than that for V-polarized
pumping. These facts testify that the nonlinear elastic
parameters of a granular medium are different for the
H- and V-polarized shear pump waves; i.e., an anisot-
ropy of nonlinearity occursin the medium, because the
horizontal contacts are loaded less than the vertical
ones. In connection with this, we note that the propaga-
tion of an HF harmonic S pump wave with a circular
polarization of frequency Q in such a medium may be
accompanied by the effect of generation of LF L waves
with frequencies 2kQ, where k = 1, 2, .... The ampli-
tude dependences and the amplitude ratios of these
waves characterize the dynamic dilatancy law and the
anisotropy of the acoustic nonlinearity of a granular
medium.

5. SECOND HARMONIC GENERATION
FOR AN L WAVE UNDER AN S PUMP WAVE

The second harmonic generation is a classical non-
linear effect that is widely used, for example, in optics
for the radiation frequency conversion and in nonlinear
acoustics for nondestructive testing of materials. The
efficiency of the conversion of the fundamental har-
monic to the second one depends on the nonlinear
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parameters and dispersion of the medium. The latter
determines the possibilities for a synchronous accumu-
lation of the nonlinear effect. In dispersive media, the
phase velocities of waves with frequencies w and 2w
differ from each other, and the dependence of the sec-
ond harmonic amplitude on distance exhibits oscilla-
tions (beatings). For acoustic waves, the dispersion is
usually weak and only manifests itself in certain spe-
cific cases, for example, in acoustic waveguides [19].
Below, we describe the observation of such beatingsfor
the second harmonic generation in a granular medium
[20]; however, these beatings are characterized by some
distinctive features. First, the lack of synchronism
between the primary pump wave and the second har-
monic isin this case related not to the dispersion of a
single type of waves but to the velocity difference aris-
ing with the nonlinear conversion of the S wave of fre-
quency w into the L wave of frequency 2w. (In homo-
geneous solids, such aprocessisvirtually unobservable
because of the large difference between the longitudi-
nal and shear wave velocities and because of the small
value of the nonlinear parameter.) Second, beatings of
the second harmonic amplitude were observed not with
an increase in distance but with an increase in the
amplitude of the primary Swave, whichisrelated to the
nonlinear transformation in the wave interaction
region.

In the experiment, the frequency of the horizontally
propagating S pump wave was f = 5.12 kHz (the wave-
length was A = 4 cm), and its polarization could be
either vertical or horizontal. The distance from the radi-
ating transducers to the receiver was R= 16 cm. For a
transducer with a radius of a = 2 cm, the diffraction
length was Ly ~ T®*/A ~ 3 cm, so that the second har-
monic generation mainly occurred in the region of the
spherical divergence of the pump wave. Here, asin the
case of demodulation, the generation of the second har-
monic for the S wave is accompanied by a conversion
to the L wave.

Figure 6 shows examples of the observed depen-
dences of the second harmonic amplitudes received in
the longitudinal mode on the amplitudes of alongitudi-
nal pump wave and aV-polarized shear pump wave (at
a static pressure of 41 kPa). From Fig. 6a, one can see
that, in the amplitude dependence obtained for alongi-
tudinal pump wave, beatings are absent and the behav-
ior of the second harmonic amplitude is similar to the
behavior of the amplitude of a demodulated pulse (see
Fig. 2); i.e.,, a2 — 3/2 transition is observed in the
power-law dependence. For the shear pumping case
(Fig. 6b), the behavior of the second harmonic ampli-
tudeis qualitatively different: instead of the monotonic
2 — 3/2 transition, the power law exhibits pro-
nounced beatings. In Fig. 6, the level of 0 dB on the
abscissa axis corresponds to the maximum strain
amplitude of the pump wave €, = 1.4 x 10, which is
more than an order of magnitude smaller than the static
strain of the medium (2.4 x 10 at a static pressure of
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Fig. 6. Examples of the second harmonic level, measured for
the longitudinal mode, as a function of the amplitude of the
horizontally propagating (a) L pump wave and (b) V-polar-
ized S pump wave. The straight lines represent the square
power law and the 3/2 power law (the powers are indicated
near the lines).

41 kPa). Asthe static pressureincreases, the position of
the first minimum of the second harmonic amplitude
(indicated by the arrow in Fig. 6b) is shifted toward
higher pump amplitudes.

As in the demodulation experiments described
above, the use of shear pump waves of different polar-
ization made it possible to observe the effect of anisot-
ropy of the medium by comparing the dependences of
the second harmonic amplitude on the amplitudes of
horizontally propagating H- and V-polarized S pump
waves. The comparison of these dependences showed
that, under the same static pressure, for the H- polarized
wave, the second harmonic level was higher (typically,
by 5-10 dB) and the beatings began at lower (also by
5-10 dB) pump amplitudes, as compared to those for
theV-polarized wave. Thisresult agreeswell with anal-
ogous observations for the demodulation effect.

The beatings observed with varying amplitude of
the S pump wave were related to the fact that, in the
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Fig. 7. (a) Schematic representation of the clapping (Qz/,) and square-law (Q,) modes of nonlinear sources in the second harmonic
generation region and (b) dependences of the second harmonic amplitude on the pump amplitude modeled on the basis of integral
(6) for different values of the compliance parameter | of the additional weak contact fraction.

region of second harmonic generation, an increase in
the pump amplitude was accompanied by a change in
the conditions of wave interaction. As we have noted
above, the contribution of the unloaded contact fraction
to the demodulated signal is predominant, and part of
the weak contacts may pass to the clapping mode and
make a contribution to the second harmonic so that this
contribution proves to be comparable to (or even
greater than) the contribution from the contacts that
remain closed during the whole period of pump oscilla-
tion.

The process of the second harmonic generation in
the propagation of alongitudinal harmonic pump wave
is described by the integral [14]

eXD[Ikrad(rl —1")] &r
Ir—r’|

o"(r) = Re}TJQ(r') @

where ¢" and k. are the stress and the wave vector of
the secondary wave and the integration is performed
over the volume occupied by the nonlinear sources
Q') = QX, Yy, Z) produced by the primary pump
wave; r represents the coordinates of the observation
point. (For a medium with a quadratic nonlinearity,
Q(r") ~ Ref(ey/2)exp(—iwt + ikr)]>.) A similar integral
can describe the generation of an L wave of frequency
2winthefield of an intense Swave of frequency wina
granular medium. However, in this case, it is necessary
to take into account the vel ocity difference between the
Sand L waves and the specific feature of the granular
medium, namely, the 2 — 3/2 transition in the power
law characterizing its nonlinearity.

From the study of the demodulation effect, it was
found that the nonlinearity of agranular mediumisqua-
dratic only for small amplitudes €, of the pump wave,

aslong asey/e, < |; inthis case, the source Q in Eq. (4)
is dso quadratic: Q = Q, ~ (3/16)(g,) €. As the
pump amplitude increases up to €,/€, > |, the Hertzian
nonlinearity becomes clapping, which leads to the fol-
lowing expression for the source: Q = Q;, ~ (3/4TD 5.
At somedistance L, from the pump radiator, the ampli-
tudes of these sources coincide at the amplitude value
gp = 16pg,/T?, which can be considered as the charac-

teristic pump amplitude corresponding to the2 — 3/2
trangition in the power law. In this approximation,
Eqg. (4) fals into two integrals corresponding to the
square-law and clapping (3/2-power-law) modes of the
Sources:

exp[lkrad(rl —-r')] &
Ir—r|

20 10
e (r) DRG4T[E I Qa2
r‘<LCr

)

Xplik(r =] .0

M B :

r' > LCI‘
where €@ is the strain in the wave of frequency 2w.
Schematically, these subregions are shown in Fig. 7a.
At a small pump amplitude €, the region of clapping
sources can till be absent. As the pump amplitude
grows, such a region appears near the transducer and
then moves into the depth of the medium, so that the
distance L is determined by the condition of equal
amplitudes of the sources in the closed and clapping
modes. g,(r = L) = 16pgy/Te. From this equality and
from the condition that the pump wave be spherically
divergent (i.e., €,(r) = g,(r = 0)Ly/r) in the major part of
theinteraction region, we obtain L, = TEL4€,(0)/(161).
Performing the integration across the pumping beam
ACOUSTICAL PHYSICS  Vol. 51
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and assuming that |r' —r| ~ r in the denominator of inte-
gral (5), we arrive at the expression

Ets/z 0) Lo
£”°(R) ORe[2

DHJE-L[
|:| d

£5(0)
4(pey)

where Ak = K — K.

InFig. 7b, integral (6) isrepresented asafunction of
the pump amplitude €, for several values of the param-
eter Y characterizing the degree of unloading of the
weak contacts and for other parameters corresponding

to the experimental conditions (the Sand L wave veloc-
ities cg= 225 m/s and ¢, = 335 m/s, respectively; Ak =

95 m). The amplitude &, (0) corresponding to the
level of 0 dB was chosen to be an order of magnitude
smaller than the static strain €. The behavior of the sec-
ond harmonic amplitude shown in Fig. 7b for the same
pump amplitude range as in the experiment strongly
depends on the parameter 1 characterizing the reduced
strain of the weak contact fraction. Specifically, theini-
tial quadratic growth and the subseguent harmonic
amplitude oscillations corresponding to p ~ 1072 in the
calculated plot are close to the behavior observed in the
experiment.

The difference in the effective interaction lengths
L« corresponding to the adjacent extrema in the sec-
ond-harmonic amplitude dependence can be estimated
as Az = YAk ~ 3.3 cm. As the pump amplitude grows,
the boundary L. of the 2 — 3/2 transition in the
power law describing the amplitude dependence of the
demodulated signal isgradually displaced. Hence, at an
observation distance of R~ 16 cm, the maximum num-
ber of possible extrema can be estimated as R/Az ~ 4-5,
which agrees well with the experiment. The following
increasein the effective length of the antennaarray will
cause no new extrema, because, within the entire dis-
tance from the emitter to the receiver, the nonlinear
sources will mainly be in the clapping mode corre-

. . . 3/2
sponding to the harmonic amplitude dependence ~¢€,” .

InFig. 7b, such asituationisillustrated by the curve cor-
responding to the choice of p = 10-3. On the other hand,
if the parameter pistoolarge (u=10"'inFig. 7b), inthe
given range of pump amplitudes, the number of clap-
ping contacts will be small and their contribution (and,
hence, the change in the effective length of the array)
will betoo small, so that the beatings will be absent and
the harmonic amplitude dependence will be quadratic.
Note that, to simplify the model calculations, we used a
simple approximation of the distribution function (the
same parameter p for all unloaded contacts), which
already alowed us to illustrate the role of unloaded

iAkZ
ex;()i.l) 172 )dz‘

(6)

+

R

exp(iAkz‘)dZ, 4
72 3
LC

r
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contacts in the beating effect. Thus, the nonmonotonic
behavior of the second harmonic generated by a shear
pump wave proves to be a sensitive indicator of the
presence of weak contacts in a granular medium.

6. CROSS-MODULATION EFFECT
AND ITS SENSITIVITY TO STRUCTURAL
PERTURBATIONS OF THE GRANULAR MEDIUM

In addition to the aforementioned effects related to
nonlinear frequency transformations toward higher and
lower frequencies, we also performed experimental
observations of the nonlinear acoustic response of a
granular medium to transient processes induced by
short pulsed actions with the use of the less common
effect of amplitude modulation transfer from an intense
amplitude-modulated pump wave to a probe wave of
another frequency [11]. Thiseffect isan acoustical ana-
log of the Luxemburg—Gorki effect [21] observed in the
radio wave interaction in the ionosphere. A similar
effect of amplitude modulation of aweak sei smoacous-
tic wave under the effect of an intense amplitude-mod-
ulated wave was observed in sandy soil [22]. In the
model experiments described below, the effects in a
granular medium were studied using an experimental
setup similar to that shown in Fig. 1. A more detailed
description of the experimental technique and the
experimental results can be found in [23, 24].

In addition to the results considered in [23, 24], we
present another typical example illustrating the great
difference between the sensitivity of the fundamental
component of the probe wave to the structure of the
medium and the corresponding sensitivity of the first-
and second-order cross-modulation components aris-
ing in the course of its propagation. In the experiment,
a monochromatic probe wave with a frequency of
10 kHz and a 100% amplitude-modulated pump wave
with acarrier frequency of 7 kHz and amodulation fre-
quency of 3040 Hz were emitted into the medium.
Thesewaves could be either parall€l or perpendicular to
each other. Their mutua orientation only weakly
affected the efficiency of the modulation transfer,
because, in contrast to the harmonic generation, the
induced changes in the absorption in the medium were
important for this effect, so that no spatial synchronism
of the interacting waves was necessary. In the experi-
ment, the spectra of the probe wave were recorded at
1-sintervals, which allowed us to compare the varia-
tions of the fundamental harmonic and the modulation
lobes in time. An additional vibrator immersed in the
medium generated short (1-10 ms) shock pulses, which
produced perturbations in the medium. Figure 8 shows
the time dependences of the amplitude of the funda-
mental (with the carrier frequency) component of the
probe wave and the amplitudes of theinduced first- and
second-order combination components. In the course
of these measurements, severa pulses perturbing the
medium were emitted (the instants of the pulse genera-
tion areindicated by arrows). Figure 8 demonstratesthe
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Fig. 8. Time dependences (at astep of 1 s) of the fundamental harmonic amplitude of the probe wave (marked with number 0) and
of itsright-hand and left-hand first- and second-order modulation lobes (marked with numbers+1 and £2). The arrows indicate the
instants of “seismic events.” The inset shows examples of the spectra of the 100% amplitude-modulated pump wave and the probe
wave with induced modulation after their transmission through the medium.

difference in the sensitivity of the level variations for
the modulation components and the fundamental har-
monic: for the latter, these variations are very small. An
important feature of the variationsinduced by the shock
pulses in the cross-modulation components of the
probe wave is their transient nature with a pronounced
slow dynamics. The dynamics of these variations is
determined by the gradual structural relaxation of the
material within 1-70 s after the perturbing pulse (see
Fig. 8). The inset to Fig. 8 shows the spectra of the
pump and probe waves. Note that the higher modula-
tion components appeared in the spectrum of the pump
wave as aresult of its propagation through the medium,
and the shape of the spectrum of the probe wave does
not reproduce the shape of the pump spectrum. For
example, in the probe wave spectrum, the level of the
second-order components may in some cases be equal
to the level of the first-order components or even
exceed it (asin Fig. 8 after the first perturbing pulse).
Thus, the observed high sensitivity of the cross-modu-
lation effectsto small structural changesin the granular
medium and, especidly, to the structural relaxation
processes can be effectively used, along with other non-
linear effects, for nondestructive testing of the state of
agranular medium.

CONCLUSIONS

The results of the experimental studies described
above testify that the nonlinear effects occurring in a
granular medium are selectively sensitive to the pres-
ence of weak contacts (in contrast to linear elastic char-
acteristics, for which the contribution of strong contacts
predominates). The transition from the square law to
the 3/2-power law in the amplitude dependence of the

demodulated pulse and the beatings of the second har-
monic with increasing amplitude of the primary shear
wave suggest that the medium contains a considerable
fraction of weak contacts (according to estimates, 60—
70% of the total number of contacts). These nonlinear
effects observed for shear waves made it possible to
investigate the law of the dynamic dilatancy using the
dependence of the amplitude of the demodulated signal
on the shear pump amplitude. The characteristic fea-
tures of the effects under study testify that the distribu-
tion function of intergrain contact forces noticeably
increases in the region of small forces, much smaller
than the mean contact force. For grains of irregular
shape, such an increase near a zero force value is till
more pronounced, because, for example, in dry sand,
the square-law part of the amplitude dependence of the
demodulated signal is practically absent [23]. These
conclusions agree qualitatively with the recent results
of the three-dimensional modeling of intergrain forces
on the basis of the molecular dynamics approach [7].
For unloaded packings with allowance for friction, the
modeling reveal ed a pronounced growth of the function
P =P(f) for f< 10°'f,. Theresults obtained should stim-
ulate further theoretical modeling and experimental
investigations of the elastic and inelastic behavior of
granular materials.

The observed high sensitivity of nonlinear effectsto
the structure of a granular medium suggests good pros-
pects for diagnostic applications of these effectsin lab-
oratory conditions and in seismic monitoring systems
(where, in particular, the use of the acoustical analog of
the Luxemburg—Gorki cross-modulation effect, which
consists in the amplitude modulation transfer from an
intense pump wave to a probe harmonic wave, may be
of special interest).
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Abstract—The seismoacoustic field produced by an omnidirectional sound source located near the bottom of
ashallow-water seaisnumerically modeled at frequencies|ower than 100 Hz. The main types of wavesthat are
excited and scattered in the fluid and the layered bottom medium are represented in the form of wave hodo-
graphs on the distance-arrival time plane. A possibility to solve some problems of acoustic tomography of the
bottom is demonstrated, in particular, the problem of determining the thickness of the bottom sediment layers
and the velocities of the longitudinal and transverse waves propagating in them. By varying the elastic param-
eters of the layered bottom model, typical changes in the wave field are analyzed and the possibility to predict
the presence of oil-saturated layersin the seafl oor is established. © 2005 Pleiades Publishing, Inc.

The problem of seismic profiling of the seafloor in
shelf zones is the important part of ocean acoustics, in
particular, the acoustics of bottom strata, including its
applicationsin the exploration of hydrocarbon deposits.
Although this problem has been studied since the sec-
ond half of the last century, the intensity of researchin
this field remains high. The efforts of the researchers
are focused on experimental and technical aspects, as
well as on theoretical considerations (see [1-6], for
instance). Note that the analytical approach to studying
the field of elastic waves encounters considerable diffi-
culties even in the case of a plane-layered medium,
because the computations become extremely complex
when the number of layers increases. The modern
methods of numerical modeling allow one to overcome
these difficulties and to take into account awide variety
of the geological and acoustical properties of the sea-
floor that are characteristic of the natural shelf regions.
Modeing offers much more opportunities to the
researcher than the analytical approach does. As the
sign or indicator of amineral deposit at a specific hori-
zon, the behavior of the ratio of the attenuation coeffi-
cients of the transverse and longitudinal wavesis often
used, specifically, a sharp increase in this ratio. On the
other hand, afluid-saturated layer can manifest itself as
a sharp change in the propagation velocity of elastic
waves. The most advantageous method for measuring
and monitoring the group velocities of pulsed signals
carried by elastic and hydroacoustic waves in the bot-
tom medium and in the fluid consists in plotting the
wave hodographs on the range—arrival time plane. Such
hodographs identify different types of waves transmit-
ted by the source of oscillations and received by an
antenna array, that is, by alinear chain of hydrophones
or bottom-moored geophones.

The aforementioned approach is used as the basis
for our numerical modeling and analysis of the wave
fields produced by the pulsed radiation of an underwa-
ter sound source in the frequency band of seismic
exploration. The seismoacoustic fields in the seafloor
and in the fluid are studied with the use of the OASES
software (Version 2) that was also used [7] for model-
ing the spatial wave structure of the fields generated by
tone sources. In the computations, the structure of the
seafloor is modeled by three layers, such a structure
being typical of anumber of shallow-water basins. The
first layer, with a very low velocity of shear waves, is
directly followed by the second bottom layer, with a
higher stiffness and a higher velocity of transverse
waves. At the horizons corresponding to the second
layer, porous interlayers that contain the hydrocarbon
fluid are present. The existence of such interlayers cor-
relates with a decrease in the mean velocity of trans-
verse waves in this region. Thus, the aobjective of this
study isto analyze the qualitative change in the charac-
ter of the wave field (represented as hodographs on the
range—arrival time plane) under the influence of a
decrease in the velocity of shear wavesin the region of
the second bottom layer.

With the model adopted, the seismoacoustic field
was calculated for the ranges up to 10 km with anincre-
ment of 50 m, and for the depths down to 1.5 km with
an increment of 6 m. The frequencies varied from 5 to
70 Hz at a step of 0.05 Hz to model the propagation of
broadband pulsed signals with different carrier fre-
guencies.

The model of the layered structure is identical to
that used earlier [7]: it consists of the underlying half-
space (the crystalline basement) and the three covering
layers, including the upper fluid layer. The parameters

1063-7710/05/5105-0554$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Oscillograms of the signals at a depth of 246 m for the distances X = 2.5, 5, 7.5, and 10 km. The velocity of the transverse

waves in the second bottom layer is Vg’) = 1 km/s, the carrier frequency is f = 30 Hz, and the bandwidth is Af = 25 Hz.

of these layers are as follows: (1) the isovelocity layer
with h, =50 m, p, = 1 g/en?®, and V&’ = 1.5 kn/s;
(2) thefirst bottom layer, i.e., the sediment layer, with h, =

50m, p, = L5 g/lem’, VI = 1.6 kmis, V& = 0.06 ks,

a? =005 dB/(m kHz), and a? = 05 dB/(m kH2);
(3) the second bottom layer with h; = 300 m, p; =

2.1glem?, V& =25 kmis, V& = (1) 1, (I1) 0.5, and

() 0 knvs, a = 0.03 dB/(m kHz), and af =
0.1 dB/(m kHz); and (4) the stiff basement with p, =

25g/em?, V& = 4 knvs, VY = 25 kmis, ol =

0.02 dB/(m kHz), and a¥’ = 0.1 dB/(m kHz). Here,
his the thickness of the layer, p is the density, Vp and
Vs are the velocities of the longitudinal and transverse
waves, and ap and o g are the corresponding attenuation

coefficients. To analyze the effect of the shear stiffness
of the second layer on the wave field characteristics,

three values of the velocity V(Sa) of thetransverse waves
were used for thislayer (I, I1, and I11).

In modeling, the omnidirectional sound source of
small wave size was placed into water at 1 m above the
bottom. The received pulsed signals were filtered and
then used to plot the seismograms. Figure 1 shows the
normalized impulse responses of the medium for the
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depth Z = 246 m. These responses are obtained by
matched filtering of the sound field at the ranges X =
25,5, 7.5, and 10 km. The maximum of the response at
X = 2.5 km was used as the normalizing factor.

Thefull set of seismograms, likethat showninFig. 1,
allows one to visualize the seismoacoustic field pro-
duced by the source of the pulses on the range-arrival
time plane and, with the known depths of the receivers,
to obtain the godograph curves on this plane. In this
way, one can identify different types of waves and
thereby estimate the structure of the layers, in particu-
lar, the depths of theinterfaces and the vel ocities of lon-
gitudinal and transverse waves in the bottom layers.
The darkening of the pattern indicates the sound pres-
sure level p in the fluid and the zz component of the
stresstensor in the three layers of the stiff bottom struc-
ture. In principle, the difference in the arrival times of
the signals can be used to separate waves of different
types from the total wave field, namely, the surface
waves, the channel waves (of the Lamb type), the bulk
waves (both longitudinal and transverse), and the non-
ray-type waves (like head and critically refracted ones).
This is possible, because each of the wave types pro-
duces its own hodograph curve or set of curves.

On the basis of the calculations performed, the
hodographs were plotted on the range-arrival time
plane for the waves that propagate over the entire spa
tial domain, up to distances of 10 km, and then are
reflected toward the receivers. These hodographs are
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Fig. 2. Wave hodographs at the depth Z = 246 m. The veloc-

ity of transverse waves in the second bottom layer is V(Ss) =
1 km/s.

presented in the following figures. The data of model-
ing correspond to the transmission of a pulsed tone sig-
nal with the carrier frequency f = 30 Hz and the band-
width Af = 25 Hz (the corresponding time resolution is
0.04 s). Let us beginwith analyzing and interpreting the
data of the calculations performed with the velocity of

the transverse waves V(S3) =1 km/s in the second bot-
tom layer.

Figure 2 shows the section of the sound field 4 m
above the bottom. The brightest strip (indicated by
arrow / in the figure) is the set of curves produced by
arrivals of the pulses propagating with the velocities 1.5
and 1.6 km/s. Thelatter is confirmed by the fact that the
superposition of the arrivals leads to the periodic mod-
ulation of the entire bright area, whose width becomes
somewhat larger as the distance increases. Averaging
the slope of the curves over the entire path, which is
nearly 10 km in length, yields an estimate of 1.5 km/s
for the propagation velocity. The curves falling within
this area (arrows 2) are hyperbolas that deviate from
straight lines in the vicinity of the epicentral point X =
0 and tend to some fixed value of thetime delay At. The
principal and reverberation waves corresponding to the
hodographs are those reflected from the pressure-
release water surface, and the principal wave has the
delay At = 0.333 sat X = 0. The hodographs of multiply
reflected waves produced by reverberation have the
same period of repetition and the delay time that is a
multiple of this value. There is aso a hodograph of the
satellite wave that has a delay of At = 0.07 srelative to
the principa wave at X = 0. Hence, one can conclude that
the principal wave isalongitudinal one with two reflec-
tions. at the pressure-release water surface and at the
interface between the first and second bottom layers.

ZASLAVSKII et al.

On the plane at hand, near the origin of coordinates,
a straight hodograph line can be seen. It exists at dis-
tances shorter than 0.5 km and decays nearly to zero at
a distance of 1 km from the source (arrow 3). This
hodograph may correspond to the direct wave propa

gating in the fluid (VS = 1.5 km/s) near the interface
between the fluid and the bottom.

A set of hodographs exists near the epicenter (X =0),
that is, at short distances from the source. These hodo-
graphs (arrows 4) with large delay times (At = 1.7 ) and
with an equal repetition period (T = At) correspond to
multiply reflected waves. To explain the nature of such
waves, one can suppose that the sound rays multiply
penetrate from the fluid to the first bottom layer in the
form of transverse waves and then return after being
reflected from the next interface. They again transform
to the sound wave when entering the fluid. The recur-
rence of such a process leads to a multiple interchange
of waves at the fluid-bottom boundary. The required
period of the interchange can be obtained by taking into
account the abnormally low velocity of the transverse

wave, V2 =60 m/s, ascompared to the velocity V& =
1.5 km/s of the sound waves in the fluid, when the
refraction occurs at angles close to 90°. Note that these
reverberation waves are precisely the waves that pro-
duce the interfering noise in the detection of waves
reflected from the deep interfaces and carrying the
information about them.

Another set of parallel hodographs existing in the
pattern at great delays (arrow 5) has the repetition
period T = 0.333 s. These hodographs can also be
caused by the multiple reflections of longitudinal waves
along with the aforementioned wave interchanges in
the first bottom layer. However, the behavior of these
curvesislessregular.

There are hodographs corresponding to faster waves
than those considered above. They exist at delay times
preceding the arrivals of the direct and reflected waves
travelling in the fluid. Among these waves, the head
compression waves refracted at the interface between
the first and second bottom layers are present. They

propagate with the vel ocity Vf‘) =2.5km/sand areaso

caused by multiple reflections (arrows 6). At even ear-
lier arrival times, i.e., at even steeper hodographs, mul-
tiply-reflected longitudinal waves can be found. They

propagate with the velocity VS? = 4 km/s and are
refracted at the basement boundary (arrow 7).

Figure 3 shows the wave pattern corresponding to
the signals received at a depth of 366 m, that is, in the
second bottom layer, under the interface between the
first and second layers. Here, the wave field consists of
a greater number of wave types and the hodographs of
longitudinal waves that are refracted at the interface of
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the bottom layers and have high velocities (V(Ps) and

V£,4) ) are more pronounced (arrows / and 2).

At the shortest distances (0300 m), one can see a
set of hodographs that corresponds to the longitudinal
waves with the velocity V ~ 1.5 km/s (arrow 3). The
arrival times of these waves are multiples of 1.7 s.
Another set of curves that aternates with the first set,
has an additional time delay of 0.3 sand correspondsto
the waves travelling with the velocity V ~ 1 km/s. The
latter waves exist within a finite range of distances
(0.5-0.9 km) from the source (arrows 4 in Fig. 3). The
origin of these waves seems to be the same as that con-
Sidered above.

According to the numerical modeling illustrated by
Figs. 2 and 3, the signals received by the near-bottom
array of hydrophones can be used to determine the
velacities of the waves propagating in the layersthat are
close to the bottom. More representative and detailed
data can be obtained by embedding the hydrophones
under the fluid-bottom interface.

To analyze the effect of the shear rigidity of the sec-
ond bottom layer, let us consider the aforementioned

wave patterns for the lower velocity Vés) = 0.5 km/s.

Figure 4 shows the wave field received by the array of
hydrophones at a depth of 246 m. The pattern shown is
obtained by the numerical modeling with a new value
of the shear rigidity of the second layer. In comparison
with Fig. 2, the pattern is noticeably restructured at
times exceeding the arrival times of the pulses scattered
by the water surface. In addition to the bright strip
caused by theweakly resolved hodographs of the waves
with the velocities V ~ 1.5 and 1.6 km/s (arrow 1), a
broader area appears that contains the hodographs of
the underwater sound waves multiply reflected from the
pressure-rel ease sea surface. These waves seem to pen-
etrate into the first bottom layer and undergo reflection
a the interface between the first and second layers
(arrow 2). The pulses of these waves are delayed with
respect to those that are first in their arrival times,
although they have nearly the same intensity. As above,
multiply reflected longitudinal head waves (arrows 3
and 4) exist in the range-time plane aong the entire
path. The latter waves are refracted at the interface
between thefirst and second bottom layers (the propage-
tion velocity V ~ 2.5 km/s) and at the interface between
the second bottom layer and the basement (the propagea
tion velocity V ~ 4 km/s). These waves arrive earlier
than the hydroacoustic pulses.

Figure 5a illustrates the same case of a low shear
rigidity of the second layer. Here, the pattern is pre-
sented for a depth of 366 m, that is, 66 m deeper than
the boundary of the first bottom layer. The correspond-
ing pattern on the range—delay time planeis bisected by
the diagonal. The lower part of the pattern contains the
hodographs of the longitudinal waves (arrows 1) that
are multiply reflected by the surface of the basement
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Fig. 3. Wave hodographs at the depth Z = 366 m. The veloc-

ity of transverse wavesin the second bottom layer is V(SS) =
1km/s.
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Fig. 4. Wave hodographs at the depth Z = 246 m. The veloc-

ity of transverse wavesin the second bottom layer is V(S3) =
0.5 km/s.

(the repetition period T = 0.25 s) and travel with the
velocity V ~ 2.5 km/sin the second layer. Thereare also
the head waves propagating with the velocity V ~ 4 km/s
(arrow 2); they are refracted at the same boundary. The
upper part of the pattern contains the hodographs of the
longitudinal waves (arrow 3) scattered by the pressure-
release sea surface with the repetition period T=0.4 s.

By analogy with the case of Vé3) = 1 km/s, two sets

of hodographs exist at the distances of several hundreds
of meters from the source with adelay of 2.5 s. These
hodographs are presented in Fig. 5b, which is a magni-
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Fig. 5. (a) Wave hodographs at the depth Z = 366 m. The velocity of transverse wavesin the second bottom layer is V(s3) =0.5km/s.

(b) The same wave hodographs for the distances within 0-2 km.

fied image of the wave pattern of Fig. 5afor distances
of 0-2 km.

Arrows 4 (Figs. 5a and 5b) indicate the hodographs
of multiply reflected waves with velocities lower than
V ~ 1.5 km/s. The existence of the slow wave in the
developed wave structure isrelated to the reflection and
refraction in the second bottom layer wherethe vel ocity
of transverse wavesis low. Arrows 5 (Figs. 5a and 5b)
label the hodographs of the waves propagating with the
velocity V ~ 1.6 km/s; those are the longitudinal waves

10

t,s
Fig. 6. Wave hodographs at the depth Z = 366 m. The veloc-
ity of transverse wavesis V(SZ’ %4 = 0inall of the bottom
layers.

refracted at the interface between the fluid and the first
bottom layer.

Thus, the data of the wave field modeling corre-
sponding to the seismic profiling lead to the conclusion
that, for the pulsed signal with the adopted carrier fre-
quency, the hodographs are primarily produced by the
reflections of the longitudinal waves at the interfaces.
However, in some cases, the hodographs are formed by
the interchanging waves that change their typesin pass-
ing through the boundaries of the bottom layers. The
main information on the parameters of the deeper lay-
ers can be obtained from the slopes of the hodographs
for the most intense waves and from the periodicity of
these hodographs. In the experiment, these characteris-
tics should be treated as preliminary information to be
used in solving the inverse problem of reconstructing
the structure of the medium and determining its param-
eters.

Theresults of numerical modeling offer apossibility
to predict the presence of the fluid inclusionsin the bot-
tom layers, one of the manifestations of such inclusions
being a decrease in the shear rigidity in the vicinity of
the second layer. According to modeling, the decrease
in the shear rigidity leads to an increase in the level of
longitudinal wavesin thetotal wave pattern. Thisistrue
for both the reflected waves and the head wavesthat are
refracted at the critical angle. On the other hand, the
decrease in the level of transverse waves takes place.
Such a decrease can also be used as an indication of the
fluid inclusions. This fact should presumably manifest
itself in the experiments on seismic probing of natural
deposits where the ail pools are mainly located in the
near-bottom layers.
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The validity of the aforementioned statements is
confirmed by the wave pattern calculated for the limit-
ing case of zero-valued velocity of the shear wavesin

al bottom layers, VZ&*% = 0. Such a calculation is

illustrated in Fig. 6. In this case, the wave pattern is
formed by the more pronounced sound pulses that are
multiply reflected and by the pulses of longitudinal
waves that are refracted in the second layer and in the
basement without any contribution of the transverse
waves. Theangular sector that is strongly “illuminated”
on the range-time plane corresponds to the velocities
from 0.5 to 2.5 km/s and even covers the velocity of
4 km/s, which coincides with the parameters specified
in the calculations.

The results of the wave field modeling simulate the
propagation of actual seismic and underwater sound
signals. The representation of the datain theform of the
oscillograms plotted one under another, like those pre-
sented above, is used in the in-seaexperiments. By ana-
lyzing the experimentally obtained hodographs on the
range-time plane, conclusions can be drawn about dif-
ferent types of waves propagating in the seafloor. In
reconstructing the bottom strata for the sake of mineral
exploration, the signals should be processed in view of
the information extracted from the wave pattern, such
an approach being traditional for applied geophysics.

The aforementioned data of the seismoacoustic
wave field modeling serve to illustrate the possibilities
offered by one of the newly developed approaches to
the monitoring and seismoacoustic tomography of the
seafloor. The results of modeling may contribute to
updating the theoretical base of such methods. The data
obtained for the simple layered model of the seafloor
show that, in principle, one can estimate the acoustic
parameters of the bottom, namely, the velacities of lon-
gitudinal and transverse waves, which are important for
reconstructing the unknown structure of the layers. For
the frequency band considered, the space-time distri-
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bution of the sound field in the water column and in the
upper bottom layers are shown to be highly sensitive to
changesin the velocity of the transverse waves. Future
studies can be based on both simple and more complex
models of layered structures, with different positions of
the sound sources and receiving arrays, and with differ-
ent algorithms of space-time signal processing. There
are a number of promising directions in which further
development of computer simulations of elastic waves
will progress. Some of these directions are known from
the publications cited here; others can be extensions of
our work.
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Abstract—The propagation of broadband ultrasonic pulsesin combined mediathat consist of printing paper of
different porosity saturated with different liquids is studied. The experiments are performed with three types of
paper, namely, Zoom Ultra (Stora Enso, Finland) with surface densities of 80 and 100 g/m? and Data Copy (Mo
Do, Sweden) with asurface density of 160 g/cm?, and with two types of saturating liquids: ethanol and transformer
oil. To excite ultrasonic pulses and to detect them with a high time resol ution, the laser optoacoustic spectroscopy
method is used. For each type of liquid-saturated paper, the phase velocity of ultrasound is measured in the fre-
quency range of 5-35 MHz. The absence of any noticeable frequency dispersion of the phase velocity isrevea ed.
The possibility of measuring the porosity of printing paper on the basis of the theoretical model of a two-phase
medium with the use of the corresponding experimenta datais demonstrated. © 2005 Pleiades Publishing, Inc.

The development of methods for testing various
properties of paper in the process of its productionisan
important problem in the printing industry. The main
characteristics of printing paper include its whiteness,
roughness, porosity, etc. The difficulty of quantitative
measurements of these parameters is connected with
their interdependence. Intensive studies had been car-
ried out with the aim to apply various optical methods
to the evaluation of paper properties [1-3]. In the
majority of these studies, the measurements were based
on the detection of laser radiation scattered by the
medium under testing. The evaluation of the optical
properties of printing and porous paper from the mea-
surements of the backscattered signal of femtosecond
laser radiation is described in [4]. The use of the Fou-
rier-optics methods in monitoring the spatia variations
of paper isdescribed, e.g., in[5].

Ultrasonic methods a so can be used to characterize
porous media. In[6], amethod for the determination of
the gas content in bottom sediments is proposed on the
basis of simulation results. The model uses the depen-
dence of the velocity of sound on the porosity of the
medium. The permeability of porous water-saturated
mediacan be evaluated by the efficiency of electromag-
netic-acoustic effect [7].

In this paper, we propose an ultrasonic method for
measuring the porosity of paper. Probing ultrasonic
pulses were excited in paper by laser radiation through
the optoacoustic transformation [8]. Its advantageisthe
possibility to generate short high-power ultrasonic sig-
nals with a smooth time envelope and a broad fre-
guency spectrum. The last fact isfundamentally impor-
tant for attaining a high measurement accuracy in test-
ing sound-absorbing objects with a thickness of tensto
hundreds of micrometers. In addition, the use of optoa

coustic signals provides an opportunity to investigate
the ultrasonic frequency dispersion in media under
study in awide spectral range.

It seems most expedient to perform ultrasonic test-
ing of dry paper during the production process. How-
ever, there are several fundamental difficulties, the first
of whichis caused by the necessity to provide an acous-
tic contact between the object and the receiver. The sec-
ond difficulty is the absence of simple theoretical mod-
els for sound wave propagation in a porous medium
with an unknown pore size distribution. Moreover, to
use any of such models, it is hecessary to know a priori
the velocity and attenuation of sound in the solid phase
of the object (paper with “zero” porosity), which is
hardly possible in view of the technological features of
manufacturing raw material for paper production.

The possihility of applying the optoacoustic method
for a nondestructive local (within the diameter of the
laser spot on the surface of the optoacoustic source of
ultrasound) measurement of the porosity of silicon lay-
ers on a single-crystal substrate was demonstrated in
[9]. Porous samples were saturated with ethanol, and
the phase velocity of ultrasound was measured in them.
Because the pore sizes and the sample thickness are
much smaller than the acoustic wavelength, the acous-
tic signal is not separated into fast and slow compo-
nents [10], and the phase velocity of sound in a com-
bined two-phase medium can be expressed through the
sound velacities in its individual components and the
porosity of the medium. The silicon porasity was calcu-
lated with an error not worse than 5% according to the
data of ultrasonic measurements. From the aspect of the
problem formulation, the propagation of acoustic
waves in paper saturated with aliquid filler must be of

1063-7710/05/5105-0560$26.00 © 2005 Pleiades Publishing, Inc.
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Tablel
Lok T rtacodensty, | Dty o dypeper | Thickoess
no.1 |Zoom Ultra(Stora Enso, Finland) 80 0.762 105
no.2 |Zoom Ultra (Stora Enso, Finland) 100 0.794 125127
no.3 |DataCopy (Mo Do, Sweden) 160 0.914 170-175

a similar character and the theory of a two-phase
medium can be used to calculate the porosity of paper.

The purpose of thiswork wasto study the possibility
of applying the optoacoustic method in measuring the
porosity of printing paper.

Let us consider a theoretical model for propagation
of longitudina sound waves in a two-phase medium
consisting of paper saturated with aliquid. We assume
that the structure of the solid phase of paper (cellulose)
does not change and that the liquid completdly fills the
pore volume. Let the bulk porosity of paper be P. Then,
the density of the liquid-saturated paper p, can be
expressed using the cellulose density p.4 and theliquid
density p;q:

Po = (1-P)pey + Ppyiq- (1)

If a plane acoustic wave propagates in a porous
medium with a filler, its phase velocity can be
expressed through increments of sound pressure and
density in the medium [11]:

2_ 0p _Ap
?=2B-2D 2
0py Apo o

The density increment for the two-phase medium under
consideration is determined as

% = P% + A_pCd_
Po Piiq Pcel

Hence, the expression for the phase velocity of an
acoustic wave in liquid-saturated paper can be written
in the form

2 _ 1
(ppaper + Ppliq)(P/pquCﬁq + (1 - P)Z/ppaperccz:el) 1(4)

where c;;, and ¢, are the sound velocities in the filler
and in cedlulose, respectively. Formula (4) also takes
into account that the density of air is negligible, and,
therefore, (1 — P)pee = Ppaper ISthe density of dry paper,
which can be determined by weighing or from the
known surface density and thickness of dry paper.
Assuming that the sound velocity ¢ can be measured,
the unknown quantity in Eq. (4) (apart from the paper
porosity P) is only the sound velocity ¢,y in cellulose.
If one usestwo different liquids asfillers, Eq. (4) yields
two equations with two unknowns: P and c.,. Hence,

(1-P) 3

c
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the problem of the absence of apriori dataon the cellu-
lose propertiesis eliminated.

Thus, to determine the value of P, it is necessary and
sufficient to measure the phase velocities of longitudi-
nal sound waves in paper samples saturated with two
different liquids.

In our experiments, we used the optoacoustic spec-
troscopy method with alaser source of ultrasound [12].
The basis of thismethod isthe laser excitation of broad-
band ultrasonic signals due to the absorption of pulsed
laser radiation in a medium specialy selected as a
source of ultrasound and the detection of these signals
in abroad frequency band with a high time resolution.

Three types of printing paper samples (see Table 1)
were taken for porosity measurements. Each sample
was shaped as a circle 24 mm in diameter cut out of a
paper sheet. The sample thickness h, was measured
using a micrometer gauge, by clamping the sample
between two polished plane-parallel surfaces, with an
accuracy of 1-2 um. It is necessary to note that the
paper thickness at different points of a sheet varied
within several micrometers (see Table 1), and, there-
fore, the measurements were performed for each sam-
ple before the ultrasonic measurements. Liquids were
chosen according to the criterion that paper should be
well saturated with them without changing its structure.
For example, ditilled water distorts paper (in the
course of saturation, its thicknessincreases), and there-
fore cannot be used as afiller. Furthermore, it is neces-
sary to indicate an important feature of porosity calcula-
tion using Eq. (4): the stronger the liquids differ in their
acoustic properties, the more accurately the porosity
is determined. Taking into account the above factors,
we chose ethanol (ethyl alcohol) and transformer oil
asthefillers. Their densities (pg = 798 kg/m?* and p,;; =
829 kg/m?) were measured gravimetrically, and the sound
velocities in them (¢ = 1170 m/s and ¢, = 1450 m/s),
using a standard optoacoustic technique (for example,
see [9]). The relative error of measurements for the
indicated quantities was not worse than 0.5%. After
ultrasonic measurements, the paper thickness was mea-
sured for the second time and no deviations greater than
1-2 pm were revealed.

To excite probing acoustic pul ses, we used apul sed
Nd*YAG laser (the radiation wavelength was A =
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3]

Fig. 1. Basic scheme of the immersion method with a laser
source of ultrasound: (1) optoacoustic source, (2) liquid-sat-
urated paper sample, and (3) broadband piezoelectric
receiver of acoustic signals.

1.06 um, the pulse length at the level of 1/e was 10—
12 ns, the pulse energy was about 10-15 mJ, and the
pulse repetition rate was 2 Hz). The laser radiation was
directed through alight-diffuser at (/) the optoacous-
tic source of ultrasound (Indiaink in aquartz cell, see
Fig. 1). In the presence of an impedance acoustic
boundary between Indiaink and quartz glass, unidirec-
tional acoustic pulses with exponential leading and
trailing edges are excited. The transformation of the
experimentally detected signal profile (Fig. 2a) at the
trailing edge and the appearance of the rarefaction
phase are connected with the ultrasonic pulse diffrac-
tioninthe quartz glass and in the acoustic waveguide of
the receiver. The characteristic frequency in the spec-
trum of the excited optoacoudtic signa (Fig. 3) f, =
0Cip/2T1= 20 MHz (at alevd of 1/2) was provided by the
coefficient of light absorptionin Indiaink o = 1000 cm!.
The sound velocity in Indiaink, ¢ = (1.49 £ 0.005) x
103 m/s, was measured experimentally. The lower oper-
ation frequency f.;, = 5 MHz was determined by the
diffraction of ultrasound in the acoustic waveguide of
the receiver.

The detection of ultrasonic pulses was performed by
(3) acalibrated broadband receiver based on LiNbO; (the
operation frequency band was 1-100 MHz) (Fig. 1). The
low-frequency sensitivity of thereceiver was15 mV/atm.
For the demodulation of the probing ultrasonic signal,
the rear surface of the optoacoustic source was pressed
with the help of calibration screws and through athin
layer (~10 pum) of the corresponding filler to the face
surface of the quartz acoustic waveguide of the receiver.
All working surfaces of the source and the receiver
were plane-parallel and initially polished. To detect
ultrasonic signals transmitted through the liquid-satu-
rated paper, (2) the samples were clamped between the
source and thereceiver (Fig. 1). Electric signalsfrom the
receiver were recorded by a Tektronix TDS-220 digital
oscilloscope (an anaog frequency band of 100 MHz).

U, v
0.5

0.4 ®

0.3

0.2
0.1 J
0

-0.1

_0'2 1 1 1 ]
-0.1 0 0.1 0.2 0.3

0.08

0.06

0.04

~0.04 L

1 1 1 1 ]
-0.1 0 01 02 03 04 05 06
t, Us

Fig. 2. (a) Tempora profile of the testing ultrasonic signal
excited in the optoacoustic source and detected by the
broadband piezoelectric receiver. The temporal profiles of
ultrasonic signals transmitted through the samples of paper
saturated with (b) ethanol and (c) transformer oil (the
dashed lineisfor paper sample no.1; the thin solid line, for
sample no. 2; and the thick solid line, for sample no. 3).
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Fig. 3. Frequency spectra of the probe ultrasonic pulse
excited in the optoacoustic source (the thick line) and of the
ultrasonic signals transmitted through the paper sample no. 3
saturated with ethanol (the thin solid line) and with trans-
former oil (the dashed line).

After averaging over 128 realizations, the signals were
processed by apersonal compuiter.

Figure 2a shows the temporal profile of a probing
ultrasonic pulse excited in India ink and detected by a
broadband receiver. It is hecessary to note that the lig-
uid layer between the source and the receiver was thin
and, therefore, irrespective of whether ethanol or trans-
former oil was used as the liquid, the form of the prob-
ing acoustic pulse was the same. The position of the
signal maximum in Fig. 2a corresponds to the time
instant t = O of the signal arrival at the receiver from the
face surface of Indiaink irradiated by the laser pulse.

The profiles of the acoustic signals transmitted
through the paper samples saturated with ethanol and
transformer oil are presented in Figs. 2b and 2c, respec-
tively. The thicker the paper sample, the farther from
the reference timet = O the position of the signal trans-
mitted through the sampleis. The decrease in the pulse
amplitudes is connected with damping of ultrasound in
the samples. Figure 3 gives the spectrum of a probing
pulse and the spectra of the signals transmitted through
the paper sample no. 3 with different fillers. All curves
are normalized to the maximum of the spectral ampli-
tude of the probing pulse. One can see that the maxi-
mum frequency in the spectrum of signals under study
IS fna= 35 MHz (with the dynamic range of the receiv-
ing channel being equa to 35-40 dB). Higher-fre-
guency harmonics cannot be discriminated against the
noise background. Since the sound velocity in trans-
former oil is higher than that in ethanol, the signals
transmitted through paper sampl es saturated with trans-
former oil have smaller time delays with respect to the
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Fig. 4. Frequency dependences of the phase velocity of
ultrasound in the sample of printing paper no. 3 saturated
with (H) transformer oil and with (O) ethanol.

probing pulsein comparison with the samples saturated
with ethanol. The time delay At; ;) = trai ) — tmax. ©)
between the maxima of these signals and the probing
pulse can be used to calculate the group velocities of
ultrasound vy ;, in the samples:

Vai.py = MilAtg ), &)

where the index i indicates the number of the sample
and the index j refersto thefiller (j = 1 correspondsto
ethanol, and j = 2, to transformer oil). However Eq. (4)
involves the ultrasonic phase velocities that may
depend on the frequency of the ultrasonic wave in the
presence of a frequency dispersion. Since the paper
porosity does not depend on the frequency of the ultra-
sonic pulse, the measurement accuracy is affected by
the value of the frequency dispersion of ultrasonic
phase vel ocitiesin the samples under investigation. The
determination of the frequency dependences of ultra-
sonic phase velocities in al paper samples saturated
with liquids is very difficult because of the reverbera-
tions of the probing acoustic pulse in paper samples
clamped between the optoacoustic source and the
receiver. The determination of the spectral phaseis pos-
sible only for sample no. 3 in the case of sound propa-
gation when thereverberations are practically separated
in their arrival time at the receiver. Therefore, we have

Caj) = 2T hs/Ad 5 ), (6)

where Ad; j, is the phase difference between the har-
monics of the signals transmitted through the samples
of paper no. 3 saturated with different liquids and the
harmonics of the probing pulse corresponding to the
filler.
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Table2
Paper Surface density,
gaj?nppl o om’ y Ci, 1) X 103, m/s | ¢ 5 x 103 m/s P, % Cog X 10%, M/s |pgy % 103, kg/m®
no. 1 80 152 +£0.02 1.81+£0.03 362 26+0.2 1.20+0.03
no. 2 100 1.60 £ 0.02 1.90+£0.03 32+2 27+£0.2 1.17£0.03
no. 3 160 1.64 £ 0.02 1.89+£0.03 25+2 240+0.14 1.21+£0.03

Figure 4 gives the phase velocities of ultrasound as
functions of frequency for the sample of paper no. 3
that were calculated using Eq. (6) according to the
experimental data. The frequency range of the phase
velocity variation was limited by the values of f;,, and
fnax- 1N the case of ethanol used asthefiller, the value of
the standard deviation from the average velocity value
Ca. 1y = 1.64 x 10° m/sin the frequency range from f;,
to fa 1ISO:. = 20 m/s; in the case of transformer oil with
Ca.2 = 1.89 X 10° m/s, itiso,= 30 m/s. These errorsare
caused by an inaccuracy in measuring the sampl e thick-
ness (1-2 um) and the time of signal detection by a
receiver (=1 ns). Thus, within an error of 1-2%, we can
ignore the dependence of the ultrasonic phase velocity
on frequency for the sample of paper no. 3. Thisallows
us aso to ignore the frequency dispersion of the phase
velocity for two other paper samples despite the impos-
sibility of direct measurements of spectral phases of
signals. Therefore, the group velocities calculated from
Eq. (5) by the delays of signal maximain samples with
respect to the probing pul se correspond to the values of
the phase velocities within 1-2%. Thus, Eq. (4) can be
used to cal culate the porosity of printing paper from the
data of ultrasonic measurements.

Table 2 presents the results of the ultrasonic studies
described above. The time delays At between the max-
ima of the signals transmitted through a sample and the
maximum of the probing signal were multiply mea
sured for all types of paper. The error in their measure-
ment was ~1-2 ns. The data of the sound velocity mea-
surements in different samples show that the smallest
relative error (Ac j)/Cs 5, = 1.3%) is obtained for the
thickest paper. This is quite natural, because the abso-
lute errors in measuring the sample thickness and
arrival times of signals are equal for al samples. The
lowest value of ultrasonic velocity is obtained for both
fillers in the thinnest paper. For the samples of paper
nos. 2 and 3, the velocity values are amost equal. An
important specific feature of the method is the fact that
therelative error in measuring the sound vel ocity, being
Ac; ;/c ;) = 1.3-2%, does not lead to absolute errors
greater than 2% in determining the porosity AP. In the
fourth column of Table 2, the calculated porosity values
for paper samples are given. The maximum value is
obtained for paper sampleno. 1 (P = 36%), inwhich the
sound velocity was minimum. The least porous paper

was the thickest one, which had the maximum value of
the bulk density (see the fourth column of Table 1).

Apart from the porosity, the proposed method pro-
vides an opportunity to determine the values of ¢4 and
Pey- Their calculated values are given in the sixth and
seventh columns of Table 2. Within the error, these
guantities proved to be amost identical for different
paper samples. Presumably, this is caused by the fact
that raw materials used for the production of printing
paper do not differ widely for different paper types. The
absence of reference data on the density of cellulose,
sound velocity in it, and porosity of paper does not
allow usto state that the measured val ues correspond to
the true ones for the samples studied. However, the
reproducibility of the resultsin a series of experiments
and the reasonable values of paper parameters obtained
allow us to suggest the above-described method for
measuring the paper porosity. A verification of this
method requires measurements of porosity for the same
paper samples by an independent technique.

Now, let us summarize the results. In this work, we
studied the propagation of broadband acoustic pul ses of
longitudinal wavesin printing paper saturated with lig-
uids (ethanol and transformer oil). It was assumed that
the liquids completely fill the volume of pores without
changing the paper structure. An optoacoustic method
was used to excite probing ultrasonic signals. The
phase velacity of ultrasound was measured in the fre-
guency range of 5-35 MHz in paper samples with dif-
ferent surface densities (80, 100, and 160 g/cm?), and
the absence of its noticeable frequency dispersion was
demonstrated for all types of paper with any of the two
fillers. The values of the paper porosity were calculated
on the basis of a theoretical model of a two-phase
medium using the data of ultrasonic measurements. It
was found that the relative inaccuracy in measuring the
sound velocity Ac; )/ j) = 1.3-2% leadsto an absolute
error in determining the porosity AP = 2%.
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Abstract—The velocity of ultrasonic waves with a frequency of 3 MHz is experimentally studied in awide
range of volume concentrations (0.1-50%) of ferrite particlesin the matrix. The mean size of particlesis6 pm.
The results of the study show that the concentration dependence of the velocity of ultrasonic wave propagation
in ferrocomposites has three specific regions, in which the concentration coefficient of velocity changes from
negative to positive passing through a minimum in the percolation region. © 2005 Pleiades Publishing, Inc.

With the progress in engineering and with the intro-
duction of new technologies in industry, a steadily
growing interest in composite materials has been
observed, which is related to the possibility of produc-
ing materials with predetermined properties, the wide
range of which makes them indispensabl e to microelec-
tronics, space industry, civil engineering, etc.

The properties of composite materials are investi-
gated using various methods, including acoustical ones.
This paper presentsan experimental study of the depen-
dence of the velocity of ultrasonic wave propagation on
the concentration of ferrite particles in ferrocompos-
ites. Ferrocomposites, as well as magnetic fluids, are of
great practical importance. In magnetic fluids, the
matrix iswater, oil, kerosene, etc. Possessing the prop-
erty of fluidity, they are easily deformed but cannot
hold their shape [1, 2]. The technology used for ferro-
composite preparation makes it possible to impart any
shape to these materials and then fix it [3].

In the experimental study described in this paper,
the composite matrix was a 10% solution of gelatin,
into which Fe;O, ferrite particles were introduced. It
should be noted that, in the 10% solution of gelatin, at
a temperature higher than the temperature of gelation,
when the viscosity of the solution was relatively low,
the ferrite particles exhibited magnetic properties. In
particular, the particles were attracted by a magnet and
the magnetic field changed their trgjectories. In the
absence of magnetic field, when the particles were ran-
domly distributed over the sample volume, a decrease
in the temperature of the solution below the gelation
temperature resulted in the stabilization of the positions
of randomly distributed particles in the matrix. In this
case, the magnetic properties of the particles in the
composite disappeared. Thus, the study of the concen-
tration dependence of sound speed in such composites
gives information on the general features of sound
propagation in the solid particles—polymer composites.
Afterwards, this problem can be complicated.

The samples under study had the form of rectangular
parallel epipeds with edge dimensions of 6 x 6 x 2 cm.
The volume concentration of particles varied from 0.1
to 50%. The dimensions of 1000 particles were mea-
sured with a microscope, and the results were used to
plot a histogram for determining the fractional compo-
sition. The mean size of particleswasr = 6 um, and the
range of particle sizeswasr [ 3-30 pm.

A simplified block diagram of the setup for measur-
ing the velocity of ultrasonic wavesis shownin Fig. 1.
The sample (2) was placed in acontainer (1) filled with
distilled water in such away that the side planes of the
sample were parallel to the planes of piezoelectric
transducers (3, 4) and its center of symmetry lay on the
axis passing through the transducers' centers. A signa
from an oscillator (5) was fed to radiating quartz (3),

My

a b d

Fig. 1. Block diagram of the setup for measuring the veloc-
ity of ultrasonic waves with schematically represented
beam trajectories and their image on the screen of the oscil-
loscope.

1063-7710/05/5105-0566%$26.00 © 2005 Pleiades Publishing, Inc.
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which excited ultrasonic waves. These waves, after
passing through the sample (2), fell on the receiving
quartz (4). Then, the signal was fed to an amplifier (6)
and an oscilloscope (7) triggered by the oscillator. The
measurements were performed at a frequency of 3
MHz. The velocity of ultrasonic wave propagation c in
the sample was measured by the pulse method and cal-
culated using the relationship (2x/c) + (2L/c,) = T,
where x is the sample thickness, L is the distance from
the sample to the quartz, ¢, is the sound velocity in
water, and T is the time between pulses a and d deter-
mined by the oscilloscope [4]. The pulse duration was
80 s, and the delay time was 3 ms. The sound velocity
measurement error determined by the errorsin measur-
ing X, L, and T was about 1%.

In Fig. 2, curve I displays the results of measuring
the dependence of the velocity of ultrasonic wave prop-
agation in ferrocomposites on the volume concentra-
tion of particles, which varied from 0.1 to 10%. Asis
seen from the curve, the increase in the quantity of par-
ticlesin the matrix leads to adecreasein the velocity of
ultrasonic wave propagation in the ferrocomposite. In
thisrange of concentrations, similar dependences of the
velocity were observed for magnetic fluids and a sus-
pension of glass particles [5, 6]. These data are shown
in Fig. 2 by curves 2 and 3, respectively. Note that, in
the suspension of glass spheres, after the concentration
exceeds 16%, when the distance between the particles
I, becomes comparableto or less than the particle size
rm < 2r, the ultrasonic velocity beginsto grow with the
particle concentration (curve 3). In this region of con-
centrations, measurement of sound velocity in compos-
ites by the pul se method becomes impossible due to the
strong absorption that leads to the disappearance of the
third pulse d. For measuring the sound velacity in com-
positesin the range of high particle concentrations, we
used a new method.

Asiswell known, the coefficient of reflection from
the boundary of two media K at normal incidence is
determined by the formula K = (Z, - 2))/(Z, + Z)),
where Z, and Z, arethe characteristicimpedances of the
media [7]. Supposing that this relationship is valid for
the reflection from the composite materials placed in
water, we can write K = (clpl- ¢,p)/(clpl+ c,py),
where [pUis the effective density of the composite and
p,, isthe water density. From thisrelation, it is possible
to obtain the formulafor cal culating the sound velocity
in the composite:

C=CuPu(K + D/(1 - K)[BL )]

The measurements of the reflection coefficient were
performed using the setup shown in Fig. 1 after some
modification: one of the piezoelectric transducers (4)
was used aternately as a radiator and as a receiver of
ultrasonic waves. The results of measuring the coeffi-
cient of reflection from ferrocomposites are presented
inFig. 3. Asisseen, intheregion of low concentrations,
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Fig. 2. Dependences of the velocity of ultrasonic waves on
the concentration in (1) ferrocomposites, (2) magnetic flu-
ids [6], and (3) a suspension of glass particles[5].
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Fig. 3. Dependence of the reflection coefficient on the con-
centration of the ferrocomposite.

up to 7-10%, the reflection coefficient fluctuates, which
hampers the determination of its dependence on the
concentration. Numerous measurements, including
measurements with the samples that had the same par-
ticles but differently distributed in the body of the sam-
ple, showed that the fluctuations of the reflection coef-
ficient were connected with the ambiguity of the particle
arrangement in the samples [8]. Statistical processing
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Fig. 4. Dependences of the velocity of ultrasonic wave
propagation in ferrocomposites on the concentration: (7, ©)
data obtained from the reflection coefficient measurements,
(2, 0) measurements by the pulse method, and (3) the theo-
retical curve.

of alarge body of measurement results madeit possible
to reveal the tendency for the growth of the reflection
coefficient with an increase in concentration. The fluc-
tuations of the reflection coefficient die out with the
growth of concentration and, above 20%, the reflection
coefficient becomes reproducible accurate to 10%. As
is seen from Fig. 3, the concentration coefficient 3 =
dK/an in the concentration region within 20-50% con-
siderably exceedsthe coefficient y= dK/on in theregion
of 0.1-10%.

The effective density required for determining the
velocity from the reflection coefficient was calculated
theoretically and measured experimentally by weigh-
ing the samples and measuring their volumes. Experi-
mental data were in satisfactory agreement with the
theoretical ones.

The velocities of ultrasonic waves calcul ated by for-
mula (1) are represented by curve I in Fig. 4 (dia
monds). This figure also shows the velocities obtained
by the pulse method (curve 2, squares). It is seen that,
in the concentration region 0.1-10%, the velocity val-
ues determined by the pulse method agree well with the
velocities cal culated from the measured reflection coef-
ficient. Thus, the use of the two methods made it possi-
bleto measure the vel ocity of ultrasonic wavesin ferro-
composites in awide range of concentrations, from 0.1
to 50%.

Asisseen from curves I and 2 in Fig. 4, the depen-
dences of the velocity of ultrasonic waves on concen-
tration have three distinctive regions. In the region of
concentrations from 0.1 to 10%, in which the particles
arediscretely distributed in the matrix without touching

KOL’TSOVA et al.

each other and the distance between themr ,,, is greater
than the particle size, the velocity of ultrasonic waves
decreases with increasing concentration and the con-
centration coefficient of velocity is negative. In the per-
colation region of n 0 16-20% [9], when infinite clus-
ters begin to form and double and triple interparticle
contacts appear, the concentration coefficient of veloc-
ity tends to zero. With a further growth of the particle
concentration, the number of interparticle contacts
increases [10], the velocity of ultrasonic waves grows,
and the concentration coefficient of velocity becomes
positive.

At present, thereis no appropriate theory of acoustic
wave propagation in composite materials. Specific
models are considered for every class of materials[11—
15]. For the composite materials under study, in which
the matrix is a 10% solution of gelatin, the model of
microinhomogeneous media proposed by Isakovich,
Ratinskaya-Chaban, et al. [16-19] can be used,
because, in these materials, the bound water comprises
only 2% of the gelatin weight and the remaining 98%is
in the free state [20]. The theories describing the prop-
agation of acoustic waves in disperse systems assume
the additivity of density [B0= (1 — n)p, + np,, heat
capacity at aconstant pressure [C,L= (1 —n)C,; + nCpy,
coefficient of thermal expansion %(D: (1 -n)a, + na,,
and isothermal compressibility BO= (1 — n)B, + npB,.
Here, subscript 1 denotes the matrix medium and sub-
script 2, the disperse phase. The coefficient of adiabatic
compressibility is also additive in the absence of
exchange processes between the phasesin the heteroge-
neous system: [B 4= (1 —N)Byy; + NBag- INthiscase, the
Laplacian velocity of ultrasonic waves in the heteroge-
neous medium is determined as

_ 1
= B @

However, in the propagation of ultrasonic wavesin
heterogeneous systems, the energy exchange processes
between the phases arise at the phase boundaries,
which leadsto an additional loss of acoustic energy and
to corrections to the Laplacian sound velacity.

In the theoretical papers [16-19], under the condi-
tion that r,,, > 2r, the mechanisms of acoustic energy
absorption in disperse systems due to the heat
exchange, viscous stress, and scattering are considered
and the corresponding corrections to the Laplacian
velocity are calculated. Assuming that, in the compos-
ites under study, the exchange processes between the
Fe,O, particlesand water play the dominant rolein dis-
sipative processes, we calculated the velocity and cor-
rections to it for ferrocomposites in the concentration
region n [0 0.1-10%, where the condition r, > 2r is
satisfied. The values of the parameters required for cal-
culating c, Acy, and Ac,, [21] are given in the table. In
the caculations, we usea the mean particlesizer =6 um
determined from the histogram. The choice of formulas
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Table
: . Coefficient of Coefficient of thermal . .
Density Heat capacity essibili p : Viscosity
Substance 0, kg/m? Cp. 102 Jkg K c%mf&gg _|}y vol urg(etg (3:45 e>‘<<p_alns on n, 10 Pas
Water 0.998 41.9 4.61 182 1.01
Fe;0, particles 7.87 4.6 0.062 35.571 -

for theoretical calculations was determined by the val-
ues of the parameters kr, kI, and k,r, where k, kr, and
k,, are the wave numbers of acoustic, heat, and viscous
waves, respectively. The correction to the velocity due
to the heat exchange processes was calculated by the
formula obtained for k;r < 1:

= 1 0% G0
Acy ZTOCMﬂMszEblel pchp- 3)

The correction to the velocity connected with the
excitation of viscous waves was calculated by the for-
mula obtained for kr < 1:

A = cag JE(1+b./E) ’
T+ JE) HE(L+bE) —aE JE(1+b.JE)

where

g2 WP2 oo 2Py 2P 20

n ol p, O 7 9ol p, I

Note that the correction to the velocity connected
with the heat exchange processes reducesthe Laplacian
velocity, and the correction owing to the viscous
stresses increases the Laplacian velocity in the ferro-
composite.

In Fig. 4, where the experimental data are displayed
(curve 1), the results of theoretical calculations of the
velocity by Egs. (2)—«(4) with alowance for the correc-
tions ¢ + Acr + Ac, are also presented (curve 3). Asis
seen, theoretical curve 3 agrees well with the experi-
mental curve in the concentration region 0.1-10%.

The above study of the concentration dependence of
the velocity of ultrasonic waves propagating in ferro-
composites makesit possible, by using Eg. (2), to solve
the inverse problem: to obtain information on the effec-
tive volume compressibility. Figure 5 shows the depen-
dence of [B.[bn the concentration of Fe;O, particlesin
the matrix. The values of the coefficients of volume
compressibility of a 10% solution of gelatin and Fe,O,
are also given in thisfigure.

Asis seen from the plot, in the region of concentra-
tions corresponding to adiscrete particle distribution in
the matrix, the coefficient of compressibility of the
composite is on the order of the coefficient of com-
pressibility of the matrix, and even dlightly greater. The
particles introduced into the matrix violate its homoge-

ACOUSTICAL PHYSICS Vol.51 No.5 2005

neity and cause an increase in compressibility. A rein-
forcement of the composite and areduction of itscom-
pressibility takes place for the concentrations exceed-
ing the concentration of the percolation region n>
20%, when a globular network structure of particles
develops in the matrix with the number of interparticle
contacts greater than three; i.e., the strength of the com-
posite growswith anincreasein the number of interpar-
ticle contacts.

Thus, using the two methods of measuring the
sound velocity, namely, the pulse method and the cal cu-
|ation from the reflection coefficient, we measured the
concentration dependence of sound velocity in com-
posite materialsin awiderange of concentrations of the
disperse phase, from 0.05 to 50 vol %.

The dependence of the velocity of ultrasonic waves
on concentration has three specific regions. (i) the
region of low concentrations within 0.05-10%, where
the concentration coefficient of velocity is dc/on < O;
(ii) the percolation region with concentrations of 10—

, 10710 Pa-!
eff

1F

BF6304—— 1 1 1 1

0 10 20 30 40 50
n, %

Fig. 5. Dependence of the coefficient of effective compress-
ibility of ferrocomposites on the concentration of the dis-
perse phase.
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25%, where dc/on = 0; and (iii) the region of high con-
centrations n > 25%, where dc/on > 0.

Itisshown that, for the class of composite materials
studied, in the region of low concentrations, the model
of microinhomogeneous media developed by |sakov-

ich,

NP

w

Rytov, Ratinskaya-Chaban et al. can be used.
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Nonlinear Elasticity in Structurally Inhomogeneous M aterials:
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Abstract—Experimental results on the propagation of longitudinal and torsional elastic wavesin polycrystalline
copper under elastoplastic strain are reported. The strain in the interval of 0-0.06 was created by applying heavy
tensile loadsto the samples. TheYoung and shear moduli, Poisson ratio, and nonlinear acoustic parameters of lon-
gitudinal and torsional elastic waveswere measured asfunctions of the static strain. The nonlinear acoustic param-
eterswere found to behave anomal oudly in loading—unloading cyclesin the plastic strain region. The experimental
results are discussed. The nonlinear properties of structurally inhomogeneous materials are explained in terms of
the clapping nonlinearity and hysteretic nonlinearity mechanisms. © 2005 Pleiades Publishing, Inc.

The first milestone work on the effect of defect
structure of metal polycrystals and single crystals on
their nonlinear elastic properties was published by
V.A. Krasil'nikov et al. in 1963 [1]. They experimen-
tally showed that inhomogeneities (e.g., dislocations,
microcracks, or local internal stresses) that occur in the
internal structure of solids noticeably affect their non-
linear elastic properties. An experimental observation
of the generation of the second shear harmonic in poly-
crystalline metals (aluminum and MA-8 magnesium—
aluminum alloy) was also reported in [1]. It is well
known that the second shear harmonic cannot be gener-
ated in perfect isotropic solids without defects [2, 3].
The results reported in [1] served as the basis for the
development of new nondestructive testing methods for
structural materials, aswell asfor the strength diagnos-
tics of solids[4, 5]. An important result of these works
is that, along with the nonlinearity associated with
anharmonicity of the crystal lattice (classical nonlinear-
ity), materials with defects exhibit structural (nonclas-
sical) nonlinearity associated with the imperfection of
material’s internal structure. Nonclassical nonlinearity
was found not only to be much stronger than classical
nonlinearity, but also to change the symmetry of the
nonlinear elastic properties of solids. Much later, other
authors found that a strong nonclassical nonlinearity is
also inherent in rock, construction materials, granular
media, composite materials, and other media with
irregular internal structure [6-9]. Possible mechanisms
of the structural nonlinearity are considered in [10]. In
recent years, two main phenomenological models have
been used to describe the nonclassical nonlinearity of
structurally inhomogeneous materials: the bilinear
medium and the medium with hysteretic el astic proper-
ties[11, 12]. Inthe framework of these models, nonlin-

ear equations of state were proposed for rocks, frac-
tured media, and oil-saturated granular media, which
sufficiently well describe the experimental results [7,
13, 14].

The purpose of the present work is to experimen-
tally study the propagation of torsional and longitudinal
elastic waves in polycrystalline copper under elasto-
plastic strain with a continuous variation of its internal
structure. The samplesfor the experiment were made of
electrical copper wire, which acquired multiple struc-
tural defects and atexturein the course of sample prep-
aration. The defect structure created in this manner can
be modified by applying heavy static loads to the sam-
ples[15, 16].

EXPERIMENTAL TECHNIQUE AND RESULTS

Ultrasonic elastic waves propagating in thin metal
rods (wires) are known to be noticeably different from
waves that propagate in an unbounded medium. The
presence of a dimensiona parameter D (D is the rod
diameter) comparable to the wavelength of the ultra-
sonic elastic wave, A, leads to the situation where nor-
mal modes of three types can propagate in the rod: lon-
gitudinal, torsional, and flexural waves. Asarule, these
waves exhibit aconsiderable dispersion. Rigorous anal-
ysis of these waves is associated with intricate and dif-
ficult mathematical calculations[17].

In the experiments, we used longitudinal and tor-
sional normal modes. From the family of longitudinal
waves, we used the lowest-order longitudinal mode.
This mode exists at frequencies down to zero, whereas
the higher-order longitudinal normal modes have cut-
off frequencies. In the low-frequency limit, when the
wire diameter isD < A, the velocity of the longitudinal

1063-7710/05/5105-0571$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Block diagram of the ultrasonic measurement system.

elastic wave, Vo, is determined by the simple expres-

sion
E
=, 1

where E is the dynamic Young modulus and p is the
density of the material. From the family of torsiona
waves, the experiments employed the zero-order mode
of the torsional wave, which is nondispersive. The
phase velocity of this mode, V., isequal to the veloc-
ity Vians Of the transverse (shear) elastic wave in an
unbounded medium:

- S =
Vtors - Vtrans - 2p(1+V) /\/;), (2)

where p isthe dynamic shear modulus, v is the Poisson
ratio, and p isthe density of the material.

The elastic properties of the samples, whose defect
structure was changed due to the static strain, were
studied with the help of an automated ultrasonic mea-
surement system schematically represented in Fig. 1
[18]. The sample under study /, whose lengthwas L, =
1 m, was fixed between two movable plates. To the
upper plate, a constant stretching force F was applied,
which created a static strain €. in the sample. The lower
plate could be vibrated with a shaking table 5 according
to a harmonic law AXsin(Qt) at a frequency Q. The
amplitude of these vibrations, AX, was measured with the
help of an accelerometer 6 from Analog Devices. Simul-

Vlong =

taneoudly, a harmonic elastic wave A = A,Sin21tt — )
(where A, isthe amplitude, ¢ = kX isthe phase, k= 21d/V
is the wave number, f is the frequency, and V is the
velacity of the elastic wave) was excited in the sample
at a frequency w > Q with the help of an oscillator 7
and transducer 2. The output signal of the transducer 3'
was amplified and applied to an oscilloscope 8 and a
spectrum analyzer 9 for recording. The information on
the sample length L, length modulation amplitude AX,
deviation of the sample length AL, the length modula-
tion amplitude X, the sample length variation L, the
force F, and the amplitude A, and phase ¢ of the elastic
wave transmitted through the sample wasfed into aper-
sonal computer /0 in order to store the results and to
analyze them later. The measurement accuracy was
~1 x 107 m for the sample length, 0.02 radians for the
phase ¢, and (1-2)% for the wave amplitude A, and
force F. The measurements could be performed in the
pulsed or continuous mode of operation.

The methods for the excitation and detection of lon-
gitudinal elastic waves in thin rods were considered in
[18]. To generate and receive torsiona elastic wavesin
the wire, we used the setup whose diagram is shown in
Fig. 1. A piezoelectric transducer 4 excited longitudinal
oscillationsin the conical concentrator 3. These oscilla-
tions were guided to the plate 2 rigidly fixed on the
wire /. Thelongitudinal oscillations of the concentrator
created avariabletorsional moment about thewire axis,
which generated the torsional waves. To receive thetor-
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sional waves at the other end of the wire, the measuring
system used asimilar device.

~The samples for the experiment were made from
PEV-1 electric copper wires of different diameters (D =
0.75 and 0.9 mm). The propagation velocity of tor-
sional and longitudinal elastic waves in the samples
was preliminarily measured by the echo-pul se method.
The waveform of the elastic wave signal transmitted
through the sample was shown on the oscilloscope 8
(Fig. 1). The velocities of the zero-order torsional and
longitudinal modes were V,,s = (2200 + 50) m/s and
Viong = (3650 = 50) m/s. The €l astic constants of the cop-
per samples in the initial state were calculated from
these measurements by formulas (1) and (2): E= (116 +
3) GPa, [ = (43 + 2) GPa, and v = (0.38 + 0.02), which
isin good agreement with reference data[19]. The elas-
tic wave velocity was measured over the frequency
range of f = 50200 kHz. In thisrange, D < A and no
dispersion of the elastic wave velocity was observed
within the experimental error. After the initial elastic
wave vel ocity was found, we simultaneously measured
the stress o—static strain €; curve (g,= AL/L,,, where AL
is the change in the wire length as aresult of the stress
04 caused in the sample by the external load) and the
changes in the velocity and amplitude of the elastic
wave. These measurementswere performed in the auto-
mated mode at a constant rate of stress variation in the
sample (004/0t) = const). The duration of one measure-
ment cycle was no longer than 0.1 s. The interval
between the measurement cycles was specified by the
computer to bewithin 15 to 30 s. When the strain of the
samplewas as high asg; ~ 0.06, the experiment was ter-
minated. The number of measurement cycles was
2000-3000. Based on the measured longitudinal
Viong(€s) and torsional V(&) elastic wave velocities,
the%(oung modulus (E(gy)), shear modulus u(ey), and
Poisson ratio V(€s) = {0.5[Viong(€)/Viors(E)]> — 1} Were
calculated as functions of the static strain. These func-
tionsareplotted in Figs. 2a—2c. Anincreaseinthe strain
from 0 to 0.06 caused a monotonic decrease in E(gy)
and p(eg) by approximately 9%. However, at small
strains, the Young modulus E(g,) decreased faster than
the shear modulus p(ey). With increasing strain, the
Poisson ratio v(gy) first decreases, reachesits minimum
at €,10.0022, and then grows by ~11%.

The experimental dependencies of the moduli E(g,)
and (e were used to cal culate the quasi-static nonlin-
ear parameters G, and Gy}, of the torsional and lon-
gitudinal elastic waves, respectively:

n En
G?osrs = %, quoig = Ey
wherep"= o andE"= 9E are, respectively, thethird-
IR o€,

order quasi-static shear and Young's moduli [20]. It is
impossibleto directly differentiate the functions shown
in Figs. 2aand 2b, because they are represented by dis-
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Fig. 2. (a) Shear modulus p(gg), (b) Young modulus E(gy),
and (c) Poisson ratio v(gg) of polycrystalline copper versus
the static strain.

crete experimental points and are not continuous.
Therefore, before differentiating, we approximated
these functions by a sum of exponentias plotted in
Figs. 2a and 2b by thin lines (to show these curves, in
Figs. 2a and 2b we presented every 50th experimental
point). Figures 3a and 3b show the quasi-static nonlin-

ear acoustic parameters Gy and Gy, for thetorsional
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and longitudinal elastic waves, respectively, versus the
strain €. At small strains g [10, the nonlinear acoustic

parameters Gg, and Gy, within experimental errors

agree well with those calculated from the second- and
third-order moduli of elasticity of copper single crys-
tals [21]. This fact indicates that, at these strains, the
nonlinear acoustic parameters are predominantly deter-
mined by anharmonicity of interatomic forces. With
increasing static strain, the absolute values of both
parameters decrease and asymptotically tend to unity in
theregion of plastic strains.

The dynamic nonlinear acoustic parameter G was
measured by the spectral method. The method mea-
sures the amplitudes A(w), A(w + Q), and A(w - Q) of
the fundamental and combination frequencies (w + Q)
and (w— Q), which appear in the spectrum of the acous-
tic signal as aresult of nonlinear interaction of elastic
waves at the frequencies w and Q. Measuring the mod-
ulation depth

M(gg) = [A(w— Q) + A(w— Q)]/A(w)
of the acoustic signal for different static strains &, of the

sample, it is possible to study the dependence of the
dynamic nonlinear acoustic parameter on the strain €

GPN(ey) = {12M(e)/KAX] - 2}. 3

KOROBOV et al.

It should be noted that this method yields the absolute
value of the acoustic parameter [20]. The dynamic non-
linear parameter for torsional and longitudinal elastic
waves was measured in the continuous mode near the
frequency of f ~ 48 kHz, which corresponds to one of
the sample’'s standing wave resonances. Simulta-
neously, longitudinal oscillations at the frequency of
Q =40 Hz with the displacement amplitude AX = 1.7 x
10> m were excited in the wire by the shaking table 5
(Fig. 1). The condition ((V/Q) > L was satisfied; i.e.,
the wavelength at the frequency Q was much greater
than the sample length. Therefore, the strain created in
the sample by the oscillations at the frequency Q could
be considered to be uniform over its length. The screen
of the spectrum analyzer 9 (Fig. 1) displayed a triplet
with the fundamental frequency A(w) and side frequen-
cies Alw - Q) and A(w + Q). The measured triplet
amplitudes were used to calculate the modulation
index M and the parameter GPN(ey) from Eq. (3). The
nonlinear parameters of the torsional and longitudinal
elastic waves were determined by the following proce-
dure. At the beginning of the experiment, the force
applied to the sample was slowly increased until aplas-
tic strain of £5= (AL/L,) ~ 0.025 (loading) was reached.
After that, the force was slowly decreased to zero
(unloading) and then increased again (repeated load-
ing). Upon reaching the strain of &5~ 0.045, the force
applied to the sample was decreased to zero (repeated
unloading) and then increased again (Figs. 4a and 5a).
The measuring system was capable of creating static
strains €, = 0.4 in the copper samples. However, as we
noted above, upon reaching the static strain of €,~ 0.06,
the measurements were terminated for the following
reasons. It was experimentally found that, for strains
€ < 0.06, the static strain is uniform throughout the
length of the sample and no anomalously high local
strains (waists) are present. This circumstance simplifies
the analysis of the experimenta results. The nonlinear

parameters of torsional and longitudinal waves, Gor (€)

and Gjong (€2, measured as functions of the static strain
g, areshown in Figs. 4b and 5b. In these figures, curves
1-3 refer to loading of the sample; curves 1' and 2, to

unloading. At small values of €, Goys (€9 = 120, which

is four times as great as the parameter G (€9 = 30.

These values of the nonlinear parameters of torsional
and longitudinal elastic waves in unstrained samples
are severa times higher than those for copper single
crystals. The nonlinear acoustic parameter of copper
single crystals is predominantly determined by the
anharmonicity of the crystal lattice, and its value calcu-
lated from the data on the second- and third-order elas-
tic coefficients borrowed from [21] is no greater than
10. The behavior of the nonlinear dynamic elastic
parameters of torsional and longitudinal waves with
increasing €, is noticeably different. The parameter
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Fig. 4. (a) Stress-strain curve and (b) the nonlinear param-

eter of torsional elastic waves, Ggg (g9), versus the static
strain.

Gon (e monotonically decreases whereas the longitu-
dinal nonlinear parameter sharply increases reaching
the value of Gio, (€9) ~ 50 at strains of &> 0.005; with

a further increase in strain, it remains constant within
the measurement error. The behavior of the nonlinear
parameters is aso different in the unloading region.
The nonlinear parameter of torsional waves sharply

increases and reaches a value of Gpw (e ~ 300,
whereas G,y (€, decreases. In the subsequent loading
cycle, the nonlinear parameter Gy, (€9 increases again,
reachesavalueof Gon (€5 ~ 120 in theregion of plastic
strains, and remains constant until the subsequent
unloading, in which the parameter Go (€. increases

and the parameter Gy, (€9) decreases. In the region of

the subsequent unloading— oading cycle, the situation
is reproduced. This behavior of the nonlinear parame-
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Fig. 5. (a) Stress-strain curve and (b) the nonlinear param-

eter of longitudinal elastic waves, GB,’:‘g (g9), versus the
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ters in the loading—unloading cycles indicates that the
mechanisms of the dynamic nonlinearity of torsional
and longitudinal elastic waves are different and are
associated with changes in the samples’ internal struc-
ture. As a result of plastic strain, disocations and
microcracks in the sample increase and microcrystal-
line grains fragmentize, which increases the area of
intergrain boundaries. These effects are evidenced by
microphotographs of the sample taken before and after
it experienced the plastic strain (Fig. 6). As shown in
Fig. 6a, the sample preparation process creates a colum-
nar microstructure in the copper wire with ~10-um
grainsin strips. After the plastic strain, the dimensions of
the microcrystaline grains decreased to 5 um (Fig. 6b).
It should be noted that the crystallite dimensions are
affected not only by the magnitude of the strain experi-
enced by the sample but also by the number of unload-
ing—oading cyclesin the region of plastic strain, which
increase the number of microcrystals and simulta-
neously reduce their dimensions[15, 16]. The loading—
unloading cycle aso changesthe crack opening and the



Fig. 6. Microphotographs of the samples under study (mag-
nified by afactor of 140) (a) before and (b) after straining.

state of intergrain boundaries. These are the effects that
change the nonlinear parameters Gy (€) and Giopyg (£9).
A phenomenological description of the nonclassical
nonlinearity in solids was proposed in [13, 22], where
it was assumed that the equations of state for the normal
and tangential (to the contacting boundaries) displace-
ments in the elastic wave may be different. In the case
under study, we consider the intergrain and microcrack
boundaries as the contacting boundary. The strain nor-
mal to the interface was described in terms of the model
of abilinear medium, whose equation of state o = o(g)
is a piecewise-linear function with a discontinuity at
€ =0 (Fig. 7a). As can be seen from this figure, when
the strain amplitude €, in the elastic wave is lower than
the static strain € at the boundary, i.e., the condition
€ < |&J ismet, the medium islinear; when g, > |&/, the
elastic properties of the medium are different for the
loading and unloading phases, which causes the so-
called clapping nonlinearity [13, 22]. At the straine, =0,
the nonlinearity is maximal. For the shear elastic wave
whose dtrain is paralel to the interface, a hysteretic
equation of state o = a(¢€) (Fig. 7b) was proposed in[13,
22]. Thisequation was based on the fact that thefriction
force between the contacting surfaces caused by the
shear strain does not exceed the static friction force
F:ic = kN, where kisthefriction coefficient and N isthe
normal pressure force that determines the pressure
between the surfaces. In this situation, the motion of the

KOROBOV et al.

(a)

AWA\

Fig. 7. Stress—strain curves o = o(g) for the (a) bilinear and
(b) hysteretic media.

interfaces may consist of two phases. In thefirst phase,
when, under the action of the elastic wave, the friction
force between the contacting surfaces does not exceed
the static friction force 4, the surfaces move together.
In Fig. 7b, this phase correspondsto the sloping regions
of the function o = a(€). In the second phase, when the
friction force exceeds the static friction force F., the
contacting surfaces dide along each other, which corre-
sponds to horizontal regions of the function o = o(g)
(Fig. 7b). Itisclear that, at agiven strain amplitudeg, > ¢
(g; isthe strain at which the dliding phase begins), the
area under the hysteresis curve o = o(€) dependson N,
i.e., on the normal pressure force determining the pres-
sure between the contacting surfaces g, in Fig. 7b and,
hence, the magnitude of the hysteretic nonlinearity.
When ¢, < g;, the medium exhibits no hysteretic prop-
erties and remains linear. The equations of state o =
o(e) (Fig. 7) qualitatively explain the behavior of the
dynamic nonlinear parameters Gy (€9) and Giopy (€) OF
the torsional and longitudinal elastic waves (Figs. 4b
and 5b). With an increase in the static strain, the pres-
sure between the contacting surfaces in the sample
decreases, which enhances the clapping nonlinearity
for thelongitudinal elastic waves and suppressesthe hys-
teretic nonlinearity of torsional elastic waves (Fig. 7).

This effect increases Gy (g9 and reduces Gigs (€y).
With a further strain increase in the sample's plastic
strain region, the nonlinear acoustic parameters remain
virtually unchanged (Figs. 4b and 5b), because the
increase in the plastic strain does not noticeably
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increase the stress in the samples (Figs. 4aand 4b); i.e.,
the pressure between the contacting surfaces remains
virtually constant. Therefore, an increase in the static
strain does not change the nonlinear parameters. The
unloading increases the pressure between the contact-

ing surfaces, which leads to a decrease in G (€9) and

an increase in Gy (€5). The unloading-loading cycles

increase these parameters, because, as we noted above,
an loading—unloading cycle reduces the crystalite
dimensions and simultaneously increases the contact-
ing area and, as a consequence, the number of el ements
that give rise to nonlinearity. In the next loading—
unloading cycle, the above processes, which change the
samplée'sinternal structure, are repeated. As can be seen
from Figs. 4b and 5b, thereis an optimal pressure on the
contacting boundaries at which the nonclasical nonlin-
earity ismaximal. A similar effect was observed in [23,
24], where the amplitude of the second acoustic har-
monic generated at the contacting boundary between two
media was found to depend on the pressure across the
contact. There, an optimum pressure at which the ampli-
tude of this harmonic was maximal was a so observed.

CONCLUSIONS

We presented an experimental study of the linear and
nonlinear elastic properties of polycrystalline copper
under elastoplastic strain with a continuous variation of
interna structure caused by the externa loading. The
Young and shear moduli and the Poisson ratio were stud-
ied inthe static strain interval of 0—-0.06. The quasi-static
and dynamic nonlinear acoustic parameters of the longi-
tudinal and torsional elastic waves were measured. The
dynamic nonlinear acoustic parameters were found to
behave anomalously in the loading—unloading cyclesin
the plagtic strain region. The experimental results were
explained in terms of phenomenological equations of
state for mediawith bimodular elasticity and mediawith
hysteretic elasticity. It should be noted that the nonclas-
sical nonlinearity isnoticeably higher than the nonlinear-
ity associated with disocations in single crystals [21].
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Abstract—A method is developed for solving problems of multiple scattering by an aggregate of bodiesin a
homogeneous unbounded medium. For this purpose, the problem on the multiple scattering produced by two
bodiesin thefield of aplane waveisfirst considered under the assumption that theinitial unperturbed scattering
amplitudes of both scatterers are known. The solution is constructed by considering plane waves multiply res-
cattered by the scatterers. Integral equations are obtained that allow one to calculate the resulting scattering
amplitude of each scatterer and the combined scattering amplitude of the system of two scatterers. It is shown
that knowledge of the solution to this problem is sufficient to solve the problem on the scattering field of asys-
tem consisting of an arbitrary number of scatterers. Expressions for the scattering amplitude in the case of an
arbitrary primary field are presented. The relationship between the integral equations describing the multiple
scattering in a homogeneous space and the multiple scattering by a single scatterer located near an interfaceis
demonstrated. Approximate expressions are given for calculating the scattering amplitude in the case of multi-

ple scattering. © 2005 Pleiades Publishing, Inc.

Extensive literature is devoted to the problem of
multiple scattering for the case of two or more scatter-
ersilluminated by some primary field when the mutual
effect of the scatterers (secondary rescattering effects)
cannot be neglected. Some of these publications are
included in the references [1-15]. Evidently, papers
concerned with the problems of scattering caused by
reflecting boundaries and inhomogeneities of the
medium also refer to this subject. In this case, the pres-
ence of a single scatterer near an interface or an inho-
mogeneity of the medium is sufficient for the appear-
ance of multiple scattering. Examples of such publica-
tions are papers [16-24].

In [1-15], a homogeneous space of two or three
dimensions is considered with two or more scatterer
illuminated by a certain primary wave. The solution is
sought in the form of the sum of the primary wave and
the fields produced by all of the scatterers under the
assumption that all the required boundary conditions
and the Sommerfeld radiation conditions at infinity are
satisfied. The fields are represented as series expan-
sions in spherical or cylindrical functions (depending
on the dimension of the problem), and the unknown
expansion coefficients in the expressions for the scat-
tering fields are determined using either the T-matrix
method [2, 6, 7, 10, 11, 13] or the addition theoremsfor
spherical and cylindrical functions [4, 5, 8, 9]. From
these coefficients, one can determine the individua
scattering amplitudes of the scatterers. This approach
automatically takes into account the effect of multiple
scattering.

Interfaces also give rise to multiple scattering. For
example, in [20], the problem on the scattering field of
a sphere positioned near an acoustically soft plane
boundary is considered. The problem is reduced to that
of the multiple scattering by two spheres in a homoge-
neous space [§].

On the whole, despite the clarity of formalism, the
above approach to the problem on multiple scattering
by several bodies is not free of shortcomings. First, it
generally requires calculating the countable set of
unknown expansion coefficients of the scattered field.
Second, the difficulty of this procedure drastically
increases with the number of scatterers.

This paper suggests an alternative approach to the
problem of multiple scattering by several bodies. The
approach consists in considering the plane waves mul-
tiply reflected (rescattered) by the scatterers. The res-
cattered plane waves are taken into account using the
unperturbed scattering amplitudes of each of the bod-
ies, which yields the integral equations that allow cal-
culating the perturbed scattering amplitudes from the
unperturbed ones. A similar procedure was used earlier
for calculating the fields scattered by distributed radia-
tors and scatterers under the effect of interfaces and a
layered inhomogeneity of the medium [25-27]. The
sole limitation of this approach is the requirement that
the unperturbed scattering amplitudes of the bodies
must be known; however, this requirement is not exces-
sive, because any scatterer isprimarily characterized by
its scattering amplitude in an unbounded medium in the
absence of foreign bodies.

1063-7710/05/5105-0578$26.00 © 2005 Pleiades Publishing, Inc.
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Let us consider the problem in the case of a three-
dimensional unbounded medium. We begin with the
simple special case of a single scatterer with its center
at the point (X, Yo, ) in the primary field of a sound-
transparent directional source located at the origin of
coordinates. Thefield of the sourceis calculated by the
formula[25]

exp(lk x)dk,.dk,, m = 1,2.
e I (1)

Here, k; = (k;, k;, a) and k, = (k,, k, —a) are the conju-

gated wave vectors, o = (K — k; — k2)'2, kisthe wave
number, x = (X, Yy, 2), m= 1 corresponds to the field in
the upper half-space z= 0 and m = 2 correspondsto the
filed in the lower haf-space z < 0, and D(k,,) is the
directional pattern (DP) of the source in the whole (k,,
k,) plane; this DP is related to the commonly used DP

D (8, ¢)inthecircle k; + k; <K (thevisibility region)
by the relationship (see, e.q., [25])

?(9, ¢) = D(ky) E 60[0, 12,
D(m-6 ¢) = D(k,) O 2
¢ 00,21, o[k 0.

Here, 8 and ¢ are the angles of the spherical coordinate
system, o = kcosb, k, = £cosd, k, = Esing, & = ksin®,
and § = (k, k) = (E ¢) is the horizontal projection of
the wave vector.

By analogy with the source, we characterize a scat-
terer by the function that describes its directional prop-

erties. This function Ty, (k,, ko), wheren, m= 1, 2, of
two vector variablesk; and k, which are the wave vec-

tors of theincident and scattered waves, respectively, is
called the scattering amplitude (SA). Physically, this

function describes the spectrum of plane waves T, (K;,
koexp(ikx) excited by the scatterer centered at the ori-
gin of coordinates under the action of a unit-amplitude
incident plane wave exp(ik,x) with a zero-valued phase
at the scatterer’s geometric center. The lower index m=
1, 2 specifies the propagation direction of the incident
plane wave: m= 1 corresponds to the wave propagating
in the direction of increasing z(i.e., upwards), and m= 2
corresponds to the wave propagating in the direction of
decreasing z (i.e., downwards). The upper index n spec-
ifiesthe direction of scattering: n =1 correspondsto the
upward scattering (+a), and n = 2 corresponds to the
downward scattering (—a). The domain of definition of
thisfunction includesthe regionsinside and outside the
visibility region. Note that the scatterer centered at the
point X, = (X, Yo, Z,) and driven by a plane incident
wave Aexp(ikx), where A = congt, generates a plane

wave spectrum Aexp(ikx) Tr, (K, koexp(iky(x — X,)).
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For ascatterer whose center islocated at the point x,
and whose SA is known, the scattered field ug is
described by an expression similar to Eqg. (1) [25]:

m(k  Ky)
ug(x, k) = 21'[,[ I 3)

x EXp(I ks(X - XO))dksxdksy-

This expression can be used to determine the SA math-
ematically; namely, the SA of the scatterer centered at
the point x, and driven by the incident unit-amplitude
plane wave exp(ik (x — x,)) with zero-valued phase at
the scatterer’s center x, is the corresponding spectrum
of scattered plane waves with zero-valued phases at the
scatterer’s center, as given by the scattered field repre-
sentation (3). Asit will be seen from Egs. (5)—(7), the
SA inthe spherical coordinate system coincideswith the
geometrical optics amplitude of the scattered field (3)
calculated from the zero-order transfer equation.

If the primary field of the type given by Eq. (1) is
created by adirectional source(i.e., if itisrepresentable
as aset of plane waves) whose center fals at the origin
of coordinates and the scatterer is located at the point

(%> Yo Z), the resulting SA T, (ks X,) can be deter-
mined using the technique givenin [25]. Asaresult, we
obtain

D (k) Tk, ko)
n(ksa 0) - TTIG—|| @

x exp(ik xo)dkdk,y, n = 1,2.

Theintegral in Eq. (4) can be asymptotically evaluated
asin [25]. This estimate has the form

T'(Ry, 65, ¢0, 65, 0)

_ exp(lkRo)zAl(eo, 9o, 0., 0) )
(kRy)'
A+ 1(80, §o, 8, 0 ©
= L[A(80, $0, 85, 0] @, b0 1),
Ao(86, Do, O, )
(7

= D(8p, §o) T'(B0, 0, 65, 9)-
Here, L isthe operator defined by the expression

KA I(l+ 1)D )
92¢(|—+1)DW(97 ¢), (®)

L[W]6.9.1) =
T' and T' are the resulting and unperturbed SAs in the
spherical coordinate system, respectively; (R,, 6y, 9,)
arethe spherical coordinates of the point (X, Yo, Z)); (Rs,
B, ¢ are the spherical coordinates in the spherica
coordinate system with origin at the point (X, Yo, Z)
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(scatterer’s center); and Ay 4 is the spherical Beltrami
operator (the angular part of the Laplace operator).

Representations (5)—(8) offer a possibility to ana-
lyze the errors in calculating the actual SA in the form
of afinite sum. In the Fraunhofer zone, it is sufficient to
use the zero-order approximation:

T'(Ry, 60, $ oy 05, B
.k _ 9
— EX—B(-F;—O—R-O—)D(GO’ q)O)Tl(eO, ¢01 951 q)s) + OE?JE-OZH’( )

which correspondsto theideathat the sourcefield at the
scatterer point is representable in the form of the

weighted plane wave M eXp(ikRy).

Ro

The combined field of a scatterer with SA in the
form of Eqg. (4) must be calculated by Eq. (3) after
replacing SA T, (k;, ko) with SA (4) and fixing the ori-
gin at the scatterer’s center. As a result, we obtain the
geometrical optics representation similar to Egs. (5)—
(7). This procedure remains aso valid for the zero-
order approximation (9), for which the scattered field in
the form of Egs. (5)—7) is given by the formulas

ik
(R, B4 = ZEE
: o (10)
L SD(KR) & A, 0)
R & kR)

AI+1(es’¢s) = L[Al(esv ¢s)] (esv ¢S,|), (11)

Ao(B5 §5) = D(By, §o)T'(80, 9o, 05, 4.  (12)

If we again restrict our consideration to the zero-order
approximation in Egs. (10)—(12), we arrive at the ray
version of scattering. Namely, aray launched from the
directional source toward the scatterer at angles 6,, ¢,
in the source coordinate system is weighted with its
directional pattern D (8,, ¢,); reaching the scatterer at
the point (R, 8,, ¢,), it isreflected at angles 6., ¢ rela
tiveto scatterer and weighted with its SA; when thisray
reaches the point (R;, 8, ¢¢) in the scatterer coordinate
system, the corresponding amplitude is given by the
term of series (10) with index | = 0.

Consider now the case when two scatterers S, and S,
characterized by the corresponding unperturbed (without

the crosstalk effects) SAs, 'T7. (k;, ko) and °T1 (k, ko), are
located in a homogeneous half-space. Let the center of

the first scatterer be located at the point %J 0, —?2—% and

the center of the second scatterer, at the point B) 0, %‘E.

For definiteness, we consider the combined scattering
field under the assumption that this pair of scatterersis

SHARFARETS

illuminated by a plane wave exp(ik,x) propagating in
the direction of increasing z, i.e., in the upward direc-
tion. We seek the field by summing multiply scattered
plane waves (the superposition principle is appropriate
here, because every plane wave generatesits own set of
scattered waves, which, being combined with the inci-
dent wave, ensure the fulfillment of the boundary con-
ditions at every scatterer; this consideration holds for
all pairsof planewaves and the corresponding scattered
waves). In addition, we note that such a solution is
unique by virtue of the uniqueness of all terms consti-
tuting the solution, beginning from primarily scattered
fields, which is a consequence of the choice of appro-
priate Sommerfeld radiation conditions.

Let us denote the resulting SAs that take into
account al multiple reflections by 1‘T’2(kl, ko and

_2 (k;, k) and consider, for example, the formation of
theresulting SA of scatterer S, in the upper hemisphere,

i.e., 1‘T’i (k;, k). The process is as follows. The plane
wave exp(ik;x) traveling through scatterers S, and S,
causes them to excite primary scattering fields with

respective SAs '] (k,, ks)exp%—ia%qa and “T} (k,,

ks)expaa,%qa, and precisely these fields will affect the

formation of the desired resulting SA 1'T'i (k;, ko) (the

factors exp%iaé% correspond to the plane wave

phases at the sites of the scatterers S, and S, respec-
tively). We explain this fact by the example of the pri-
marily scattered field “T-(k,, koexp E—ion%%. This
field is produced by the plane wave incident on scat-
terer S;. It propagates in the upward direction, reaches
scatterer S,, where it isrereflected; then, the rereflected
field propagates in the downward direction and is
rereflected from scatterer S, thus generating the first
correction to the SA; this rereflected field again propa-
gates in the upward direction, and so forth to infinity.

The result of this process is the component i‘T’i (k;, ko
of the resulting SA 'T1 (k,, ko), which is caused by the
field primarily scattered by scatterer S, with SA 'T} (k;,
ks)expg—ia%‘%. The component %‘T’i (k,, ko of the
resulting SA 'T:(k,, ko that is caused by the field
T2 (k;, koexp Ea,% primarily scattered by scatterer
S, is formed in a similar way: the field 2Tf(k,,
koexp Ea%‘% primarily scattered by scatterer S, will

propagate in the downward direction and will be

ACOUSTICAL PHYSICS Vol.51 No.5 2005
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rereflected from scatterer S, thus generating the first

correction to 5T: (k;, ko) then, the rereflected field will
propagate in the upward direction, will again be
rereflected from S,, and so forth to infinity. Thus, we
have to calculate the sum
Tilki ko) = 1Tak, ko) +oTa(k, k). (13)
Calculating the secondary SAs by Eqg. (4) and pro-
ceeding according to the procedure used in the case
when the interface played the role of the second scat-
terer (in that case, the reflection coefficient served as
the SA of the interface [25]), we obtain the following
representations:

1Ti(ky, ko)
exp(—ia,z,/2)

[

= $ (AD'T'Ti(k, k)
ZO ' | (14)

= (1-AD T'Ti1 (K, k),

Mk, k) = Z(Al) Tk k) "
-1.1~1

= (1=A) [Tk ko),

where lﬁ (k;, ko) is determined by the expression

2 [
Filk k) = expoi 3

21 B "
w prtlll T S oo,z ey

RZ

and operator Ai isdefined as

AT (ki k) = B0

0 *TiKy, km)T(k Kn)

J=
el

g
exp(i anzo)dknxdkn% (17)

2

1-+1
To(Km Ko _
x % exp(i 0t Zg) A K -

Asitis seen from Eq. (17), operator Ai calculates the

one-cycle correction to the SA l‘T’i (k;, ky); namely, the
wave scattered by scatterer S, reaches scatterer S, is
rereflected in the backward direction, reaches scatterer

S, and adds the next increment to the SA 1 k;, ko).
We note that series (14) and (15) truncated to a finite
number of terms can be used to approximately calculate
the components of the SA.
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Formally, the Neumann series (14) and (15) con-
verge if the norm of operator (17) is less then unity.
However, physically, it is clear that the corresponding
components of the resulting SA form precisely the
series of type (14) and (15) according to the construc-
tion of the unique solution; indeed, these series reflect
the physics of the formation of the resulting SA and
represent the solution alternative to that described in
[1-15]. This inference must hold even in the presence
of resonance phenomenain single and multiple scatter-
ing [9, 13].

If series (14) and (15) converge, we can invert oper-
ator (I — Ai )y~! according to the standard procedure. As
a result, we obtain integral equations for the compo-

nents of the resulting SA ‘T1 (k,, ko):

(- ADTA (K k) = 'Titk, k)expTia 2, (18)

2l

(1= AD[ETH (K, ko) = Tk, ko), (19)

where operator A; is defined in Eq. (17).

Note that, having determined the resulting SA
_i(kb ko of scatterer S;, we can easily obtain the
resulting SA °T; (k,, ko) of scatterer S,. It is easy to
understand that this can be done by adding the primary
component zTi k,, ks)expﬁon%qa caused by the inci-
dence of the primary plane wave with the component
caused by the scattering of the combined scattering

field of scatterer S, with the resulting SA ‘T1 (k,, ko) by
scetterer S,. In the final form, we have

Tilki k) = Ti(k, k)expHa 21

(20)

2k k)M Tk
1( m? S) 1( I n) p(ldnzo)dknxdkny

2nf

Proceedl ng inasimilar way, we find the correspond-
ing integral equations for components %Ti k;, ko and
ZLT'i (k;, k) of theresulting SA,

Tilki ko) = ik, k) +3Ti(k, k), @D

of scatterer S, in the lower half-space. These equations
have the form

(1= AT (ki ko) = Ttk k)emHa R, 22)

(1= AD[5TH (K, ke) = Tk, ko), (23)
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where “T3 (k,, ko) is defined by the expression
_ Zg i
Tl(kh S) eXpD |G| 2D2T[

[*Ti(Kp kI Ta(k), k)]
Un

exp(i 0, Zo) Ak dkny

RZ

and operator A§ [TI(k,, ko) isgiven by the formula

AT (k) = BT

O "TyKn, km)T(kh Kp)

X

4
exp(ia nZO)dknxdkn% (24)

N

a0

Tikm ko)
am

The resulting SA of scatterer S, in the lower half-
space is determined by the expression

exp (i 0y Zo) Ak Ky

ik k) = "Tik, ko) explio 3

(25)

['Ta(kn Sl T k)l i

2T[_I

Novv, let the primary wave propagate in the down-
ward direction. In this case, Egs. (13)<(25) remain valid
with the following modifications. The primary fieldswill
be T3 (k, koexp Ho, 1 and "Th ks, kjexp |0(|22(H,
respectively. In addition, in Egs. (13)—25), the right-
hand subscript 1 should be replaced by 2 in all expres-
sions for the SAs dependent on k; and the sign of the
exponents involving a, should be changed. All other
notations and expressions remain intact. As a result,
Egs. (22) and (23) take the form

(1= AL (ki ko) = Tk, kexpFio 50, 220)

(1-ADETa (ki k) = Ta(ki k). (23a)
Thus, we obtained all expressions required for deter-
mining the resulting SAs of two scatterers ‘T, (k, ko)

and 2'T'|n (k,, k), wherel, n=1, 2. These expressions are
useful, for example, for estimating the degree of pertur-
bation of the unperturbed SAs.

However, if perturbation of the SAs cannot be
neglected, the combined SA of the system of a pair of
scatterers may appear to be a more informative quan-
tity. Such aquantity can be easily obtained from Eq. (3)

SHARFARETS

using the superposition principle. The corresponding

final expression for the combined SA T/ (k;, ko) hasthe
form

Thk, ko = Tk, kdepFa 2 B
0
0
+2TH (K, k) exp i S%‘H%
0 1=1,2. Q6)
0
Tik, k) = Tk, kexpHa 20
0
0
+ T (ki ko) expHo 250

Substituting Eq. (26) either in Eq. (4) orin Egs. (5)—7),
one can calculate the combined SA of the system of
scatterersilluminated by the directional source generat-
ing the field given by Eq. (1). It is clear that the center
of the system of scatterersislocated at the center of the
segment connecting the centers of both scatterers.

The ability to calculate the combined SA T (k;, ko)
of the system of a pair of scatterers allows one to con-
struct a solution to the problem with N scatterers. The
process is as follows. First, we consider the system of
two scatterers, determine their combined SA, and
replace both scatterers with one fictitious scatterer
characterized by the combined SA and the center lying
at the center of the segment connecting the centers of
both scatterers. Then, we consider the system consist-
ing of the third scatterer and the above fictitious scat-
terer, determine their combined AP, and so forth until all
scatterers are used and the combined SA of all N scatter-
ersisdetermined. The validity of the above iterative pro-
cedure follows from the superposition principle.

Below, we consider several special cases. It is of
interest to use the above expressions for deriving the
results obtained earlier [25, 26] for the case when one
of the scatterersis areflecting plane (a plane interface)
whose SA is calculated in Appendix 1. Substituting

Eq. (A1) for the SA of the reflecting plane Tf k), ko

into Egs. (16)—<20), we obtain the integral equations
givenin[25, 26] for the case of ascatterer near areflect-
ing boundary.

Now, let us consider the case when the plane wave
is incident on a system consisting, as before, of two
scatterers. Here, we limit our consideration to the situ-
ation when the assumption is valid that every scatterer
islocated in the Fraunhofer zone of the other scatterer.
In this case, we can use Eqg. (9) to calculate the SA of
the scatterer illuminated by the field scattered by the
other scatterer and then calculate the resulting SAs. For
generality, we assume that the centers of scatterers are
located at pointsr, and r, relative to the origin of coor-
dinates.

ACOUSTICAL PHYSICS  Vol. 51
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The plane primary wavetraveling upward will cause
scatterers S, and S, to excite two unperturbed scattered
fields with respective SAs 'T'(6,, ¢,, 6,s, ¢,Jexp(ik,r,)
and 2T'(6,, ¢,, 6, ,exp(ik,r,) (we use here spherica
coordinates, and 6,., ¢, and 6,,, ¢, are the spherical
angles measured relative to the scatterer’s centers). As
was shown earlier, both these initially scattered fields
participate in the formation of the resulting field scat-
tered by each of the scatterers. L et usderive the approx-

mateexprewonfor]'r ©,0,,6,5 99,0, 0 [ rj as

an example. One can easily seethat, inthiscase, such a
calculation consists of summing two geometric pro-

gressions for the components 'T' = 1T' + 5T

ol (801,615, 02) = Y A", =12,
27)
ag = T'(8), &), 015, 01) eXp(ikyry);
g = exp(ikir)[°T'(81, &1, B2 1ys P2-1)s)]
x[ T (01 = 02-1)s 011 = G (2-1)s B1s $15)] (28)
y exp(|k|r1—r2|)_
[ri—r, ’
_ (kI 1)
U |r1_r2| U
x['T'(8y = 82— 1ye P11 = B2-1)s O1e P15)] 00
X [ZT'(em = 0(1-2)9 021 = B(1-2)s
0,5 = e(2 1)s1¢25_ ¢(2 1)5)]

Here, (81_2s $u-29 and (Bp_s $p-1)9 are the
angular coordinates of the center of the second scatterer
relative to the center of the first scatterer and those of
the center of the first scatterer relative to the center of
the second one, respectively. Assuming that the condi-
tion |g| < 1 holds, we obtain the expression for the

resulting SA:
T8, 61, 01, 010) = 302, 6:,0[0.5] G0

Using Eg. (20), we obtain the expression for 6,; [

03]

“T'(81, 01, 826, B25) = (8}, b1, B, b25) XP(iKs T )
+[ T (02 = B1_2) O21 = D (1-2)s B2s: $25)]

(3D
x[ T (61, 01,015 = 81 -2y P15 = D (1-2)s)]
exp(|k|r1—r2|)
Iri=rs
ACOUSTICAL PHYSICS Vol.51 No.5 2005

583

Expressions (30) and (31) assumethat ¢, ¢, L1 [0, 211].
The resulting SAs in the remainder of the domain of

definition 6,00 [g T[} , o000, 211 are determined sim-

ilarly:

gy + Ay
1-q

(81, &1, 816 B10) = T'(8), by, B, 1) XP(ikyT 4)

T(8), 01, 056 §6) = (32)

+['T(8y = Be_1ys D11 = Do_1ys O1, 0] )
X [*T(8), §1, 855 = B 1ys, 25 = Oo_1)9)]
exp(|k|rl—r2|).
1=y
Here,
- iklr
q= g}xpfrll_lrﬂ Zl')D ['T'(6, = B-1s
by = ¢(2—l)51 015 = 9(1—2)51 b= ¢(1—2)s)] (34)
x[ T(92| B-2 021 = P12y B2 $29)]5
ay = Tl(ela b1, 56, 025) exp(ikyry); (35)
ag, = exp(ik,ry)
X [ZT'(92| = 01-29 P21 = O(1-2)9 Oz §25)] (36)
x| T (601, 91,015=6(1_2)5; 015 = O (1_2)5)]
exp(|k|rl—r2|)
[ry—rg

Note that the first terms in the numerators of Egs. (30)
and (32) are the corresponding unperturbed SAs
weighted with phase factors. In the case of the plane
wave incident on the scatterersin the downward direc-
tion, the corresponding expressions can be obtained
from Egs. (27)—(36) by replacing k, withk, inall expo-
nential factors.

Let C be the center of the segment connecting the
scatterer’s centersand R,, R,, and R be the distancesto
the observation point measured from the centers of the
first and second scatterers and from the point C, respec-
tively. Then, under the conditionthat R, R,, R = |r, — 1],
we have 8,,= 0,,= 6, ¢, = ¢, = ¢, and the scattering
field of the mth scatterer is given by the formula

Uns= (" T'(8;, ¢y, O, &) exp(=ikRef )

 &D(ikRo)
e

(37)
m=1,2.
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Here, R, 6., and ¢ are the spherical coordinates of the
observation point relative to the point C; R and R¢ =

%9 are the vector connecting the point C with the
C

observation point and the collinear unit vector, respec-
tively,and ry =(r, —ry/2and 7, = (r, —r;)/2. Sum-
ming fields (37), we obtain the expression for the SA of
the equivalent scatterer (combined of the two above
scatterers) with the center at the point C:

T'(8, 01, 6, 65) = 'T'(8;, b1, 06, 0 a8
x exp(—ikRcr;) + °T'(8,, ¢, 6, bs) exp(—ikRcT ),

which agreeswith Eq. (26). It isclear that the procedure
of including the third scatterer (and all other scatterers)
can be easily redlized with the known SA given by
Eqg. (38). In this procedure, the first pair of scatterersis
characterized by SA (38) and the center at the point C,
and so forth.

Thus, in this paper, we derived the exact expressions
(integral equations) that alow one to calculate the
resulting SAs of two scatterers under the conditions
where each of the scatterers is driven by the primary
wave and the perturbation field of the other scatterer
while the unperturbed SAs of both scatterers are
known. This, in turn, makes it possible to develop the
procedure for considering multiple scattering by three
and more bodies. In addition, we derived the zero-order
geometrical optics approximations for the resulting
SAs in the case when every scatterer is located in the
Fraunhofer zone relative to al other scatterers. The
expressions obtained appear to be useful for solving
similar problems concerning the effect of interfacesand
inhomogeneities on the resulting SAs.

The proposed method yields the same solutions to
the problem of multiple scattering as those obtained by
the methods given in [1-15], however, in other terms. It
additionally emphasizes that the SA carries exhaustive
information about thefield at any point outside the scat-
terers, rather than characterizes the far field alone.
Moreover, if adata bank of unperturbed SAs of scatter-
ersis available, the proposed method makes it possible
to construct the solutions to multiple scattering prob-
lems with arbitrary scatterer configurations, as distinct
from alternative approaches that require obtaining a
new solution for every new configuration.

APPENDIX 1

SCATTERING AMPLITUDE
OF A PLANE INTERFACE

Let the plane z= 0 serve as an interface between the
lower homogeneous half-space z < 0 and the upper
inhomogeneous layered medium z = 0. When a plane

SHARFARETS

wave exp(i(kX + k,y + 0,2)) isincident on the interface
from the lower half-space, the reflected plane wave
V(apexp(i(k,x + kyy — 0,2)), where V(q,) is the reflec-
tion coefficient, is ?ormed in this half-space. To calcu-
late the SA of the reflecting plane, we formally use
Eqg. (3). Taking into account that the scattered field is
given in this case by the formula

Us(x, ki) = V(a,)exp(i(kx +kyy—a,2)),
we represent Eq. (3) in theform
V(a,)exp(i(kx + kyy—0,2)

2
= 2T[J. ay eXp(l (ksxx + ksyy_ aSZ))dkadksy-
=2

The analysis of this expression showsthat the SA of the
reflecting plane can be represented in the form

Ti(kli ks) = 2i_T[V(aI)aI6(klx_ksx)é(kly_ksy)
21 Al
= Tv(as)asa(klx_ksx)é(kly_ksy)'

Here, we used the filtering property of the delta-
function.

APPENDIX 2

SCATTERING AMPLITUDES
OF THREE NEIGHBORING SPHERES
CHARACTERIZED BY THE HOMOGENEQOUS
DIRICHLET BOUNDARY CONDITION

Let us have three identical spherica scatterers S,
m=1, 2, 3 of radius R, characterized by the homoge-
neous Dirichlet boundary conditions (perfectly soft
boundaries). The centers of the spheres are located at

: Z0] 'l _
the points %) 0, >0 %) 0, >0 and (x = z, 0, 0),

respectively. The low-frequency approximation (to
O(k?)) of the unperturbed SA of such a sphereis given
in [28, p. 86] and has the form

T(61, 91,65 ¢5)
= A+ B(cosB,cosO, + sinB,sinB,cos(¢, —b.)), (A2)

where
A= R+ SR +iKRS B = KR,

On changing to the spherical coordinate system
dk,dk, = £dEdd = k*sinBcosBdBdd = kasinBdBdd, the
integration limits of the integras of type (17) are
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changed as follows: k. k, DR 0 6 O [o,g_img,
¢ O [0, 2m]. Simple calculations yield [25]
TY(8, 61,64, 05) = T5(8), ¢, 05, 6) 0
= A+ B(—cosB,cosB,+ sinB,sinB.cos(d, — ¢J)) O
]

TI(8,91,6,,0.) = T5(8,91.6,0.) D3

= A+ B(cosB,cos8,+ sinB,sinB.cos(d, —¢J)) O
¢|,¢SD[O,2T[]; e|,e |:||:0 2—]00Er

Here, 6,, ¢,, and 6, ¢ are the respective spherical coor-
dinates of vectors k, and kg, respectively, on the sphere
of radiuskin (k,, k, k,) spacefor & [ [0, «). Substitut-
ing Egs. (A3) into integrals of type (16), (17), and so
forth, one can exactly calculate the resulting SAs of the
spheres. In calculating the SAs from approximate
expressions (27)—(36), one should use the unperturbed
expressions for the SAs.

Consider such acalculation for three spheresillumi-
nated by a plane wave incident at the angles 6, = 172,
¢, = 0. Estimate for examplethe combined SA T' inthe
direction 65 = 172, ¢, = 0 coinciding with the direction
of incidence of the primary wave. This direction is of
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interest because of the fact that the relationship Q =
AT T (6, ¢, 6,= 6, b, = b)), where Q is the total scat-

k
tering cross section, holds in this case [28, p. 69]. First,

we use Egs. (30), (27)«29), and (A2) to caculate the
i 1,2 D_T E 1,2 D_T T_T
combined SAs T[Q, 0, 2,(% and T[Q, T, 2,(’% of

scatterers S, and S, for the scattering in the forward and
backward directions. We have

Lo [T A 0 0] _ , A+B+AB
T _lol_! - 2—1
("™ 2 & 1-pB2A(A—B)
) (A4)
T 70 ) = o-AZB+AB
2 1-B*A(A-B)
where3 = w . Wereplace the two first scatterers

by the combined scatterer with center located at the ori-
gin of coordinates and the SA given by Egs. (A4). Then,
using again Egs. (30), (27)—<29), and (A2) for calculating
the unperturbed SAs of the combined and third scatter-

) . L2, [ 4 T
ers, we determine the resulting SA T 5 0, > (H of

the combined scatterer:

"1, 0,5, 0+ exp(ikz) B(A- B)[”T'Eg gdﬂ

el -

In asimilar way, using Egs. (32), (34)—<36), (A4), and
(A2), we determine the resulting SA of scatterer S;:

3T%’ > g % (A6)
exp(ikzo) (A+ B) +B(A+B)[ T (L, 0.7. &
1-pXA+ B)[l’ vl } |

With these results, the combined SA of the whole
system of three scatterers with respect to the point

% = ZEO 0, 0E can be found from Eq. (38):

O
T8, 6,0, 00 = “T', 0,7, FHexpHkEE
(A7)
+ T'E’T 0,z CHexpD—lkzzqa
ACOUSTICAL PHYSICS Vol.51 No.5 2005

1-BA- B)[l’ T

- (AS)
T 1]

Note that, for z,— o, Egs. (A5)—(A7) are reduced
to the corresponding expressions derived without
regard for the multiple scattering.
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Abstract—The scattering of a plane monochromatic shear wave by acircular semiconductor cylinder sol-
dered into apiezoelectric of class 6mm(4mm, com) is considered for the case when an azimuth drift current
occurs in the cylinder. It is found that the drift-related nonequivalence of scattering in opposite azimuth
directions of wave propagation around the cylinder is the origin of the asymmetry of the polar scattering
pattern while the effective (for the partial waves travelling around the cylinder in the drift direction with
a sufficiently high angular velocity) acoustoel ectronic amplification reduces the total scattering loss and
can make it negative. A relatively strong contribution of the plasma and drift to the scattering is predicted
for the case of acoustic matching between the materials of the cylinder and the surrounding piezoelectric.

© 2005 Pleiades Publishing, Inc.

INTRODUCTION

Piezoelectric crystals and materials formed on their
basis are used in radio electronics and adjacent technol-
ogy as resonators, transducers, and filters[1, 2]. Thisis
the main reason for the long-term interest in the propa-
gation of acoustic wavesin piezoelectrics. Recent years
have been marked by an increased attention to the
acoustic properties of heterophase polycrystalline
materials of the piezoceramic type [3-5]. In the process
of acoustic wave propagation in them, the conductivity
and frequency dispersion of permittivity can manifest
themselves due to the piezoel ectric effect, for example,
as aresult of pores of piezoceramics being filled with
an electrolyte (seawater) [6]. Analogous acoustoel ec-
tronic effectsare possibleif one of the phases of amate-
rial has semiconductor properties and the drift of
charge carriers is generated in it to obtain the control
effect.

The understanding of the essence of acoustic pro-
cesses in composite piezoelectrics and piezoceramics
with a conducting phase needs investigation of the par-
ticular features of wave scattering by single inhomoge-
neities. A number of aspects of this problem were con-
sidered earlier [7, 8]. However, in [7], the contribution
of the piezoelectric effect, conductivity, and drift of
charge carriers to the scattering of a shear wave by a
conducting cylindrical region of a bulk piezoelectric
crystal and acylindrical cavity in apiezoelectric with a
semiconductor cylinder separated by athin vacuum gap

was not evaluated integrally but determined according
to the variations of the amplitude coefficients of single
partial waves of the scattered field. In that case, simpli-
fying restrictions were used, such asalow level of cou-
pling between the oscillations of the acoustic and
plasma subsystems, a high diffusion frequency of
plasma, and a small wave size of the cylindrical inho-
mogeneity.

Additional investigation [8] of the effects of acous-
toelectronic amplification and damping of shear waves
scattered by a cavity in a piezoel ectric with a semicon-
ductor cylinder in a noncontact position provided an
opportunity to reveal the nonequival ence (nonreciproc-
ity), induced by the drift of charge carriersin the semi-
conductor, for the scattering of partial waves in the
opposite azimuth directions of propagation around the
cavity. A consequence of the drift-related nonreciproc-
ity of scattering is the visible asymmetry of the scatter-
ing pattern with respect to the angular coordinate. How-
ever the calculation of the scattering patternsin [8] was
also restricted to the case of high diffusion frequencies
of the semiconductor plasma and moderate cavity
dimensions.

In the present paper, theresultsobtainedin [7, 8] for
the scattering of a shear wave by a circular cylindrical
cavity with a noncontact semiconductor cylinder are
generalized to the case of a piezoelectric and acylinder
brought into an acoustic contact. For severa reasons,
this situation provides, first, a unique opportunity to

1063-7710/05/5105-0587$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. (@) Geometry of the problem and (b) the pattern of
paraxial raysin the semiconductor cylinder.

consider more exhaustively* the linear effects of acous-
toelectronic interaction, including the control of acous-
tic scattering by the drift of charge carriers. This can be
performed within the framework of the traditional con-
tinua approach and the hydrodynamic description of a
semiconductor plasma without the restriction on a low
level of oscillation coupling for the phonon and plasma
subsystems in the whole available range of frequencies
and wavelengths. Second, this situation is more ade-
guate to the existing industrial technologies of manu-
facturing artificial composite media and allows one to
separate the acoustoelectronic scattering of a shear
wave that is induced by drift and the cylinder conduc-
tivity in the case of its acoustic matching with the
piezoelectric. The acoustic matching of the materials,
i.e., the piezoelectric and the semiconductor cylinder
brought into contact with it, excludes common acoustic
scattering caused by the cavity itself [7, 8]. The last
plays the role of a masking background with respect to
the acoustoel ectronic effects of semiconductor current
plasma. Therefore, there is an opportunity, in the
approximation of a low repetition factor of scattering,
to use the results on acoustoelectronic scattering by a
single cylinder for aqualitative eval uation of the behav-
ior of an artificial composite medium in the form of an
aggregate of paralel and identical in al parameters

L1t differs from the special case of scattering by a conducting
region of a bulk piezoelectric crystal [7] in the absence of piezo-
electric properties of the scattering cylinder. Thisfact provides an
opportunity to avoid the difficulties in matching the elastic and
electric fieldsin the scattering cylinder because of the presence of
drift. However, the specific results, in particular, the spectral
characteristics of such an important integral property of scatter-
ing as the extinction and scattering cross sections of a cylinder
(which were not considered earlier), could be obtained without
using the frequency limitations only by numerical calculation
with the help of modern computing facilities.

SHEVYAKHOV

semiconductor cylinders (fibers) distributed over a
piezoelectric crystal with low density.

FORMULATION OF THE PROBLEM
AND THE INITIAL EQUATIONS

Let, in the cylindrical coordinatesr, 6, z, a piezo-
electric of class 6mm(4mm, com) with the highest-order
symmetry axis Lq(Ly4, Lo,) || ZOccupy the regionr > R,
and the region r < R be occupied by a nonpolar semi-
conductor also oriented with its crystallographic axis
along the z axis. The consequence of this crystal posi-
tioning in the case of norma incidence of a plane
monochromatic shear wave with amplitude U and axial
polarization of displacements u, = (0, 0, Uy ), Uy =
Uexp(iy), Y = kyr cosB — wt on a semiconductor cylin-
der (Fig. 1), isthe absence of boundary transformations
of elastic oscillation modes. Therefore, in the quasi-
static approximation [9], which is quite effective for
scattering problems, we obtain a system of equations
from the Maxwell equations and the equations for the
piezoelectric effect [1, 2] owing to the harmonic char-
acter of oscillations of the resulting shear displace-
ments u, = (0, 0, u,) and the electric potential ¢, of
piezoelectric fields:

4
T[el5u2 + CDZ’
, £ (1)
0@, = 0.
Here and above, [? is the Laplacian in the plane of
shear wave propagation, k, = w(p,/A3 )7 is the wave

D%u, + kiU, = 0, ¢, =

number, @ is the frequency, A3 = A, + 4Tte%s /€y, A, iS
the shear modulus, €5 is the piezoelectric modulus, €,
isthe dielectric constant, p, isthe piezoelectric density,
andtistime.

In the nonpiezoeectric semiconductor, the shear
displacements u, are not connected directly with the
electric field of the potential ¢, and the equation of
motion of the elastic medium leadsto acommon Helm-
holtz equation:

O%u, + Ku, = 0, )

wherek, = oXp,/A,)!? isthe wave number, p, isthe den-
sity, and A, is the shear modulus of the semiconductor.
However, it isnecessary to takeinto account the electric
field penetrating from the piezoelectric crystal and per-
turbing the electronic plasma of charge carriers in the
semiconductor. In the hydrodynamic approximation,
the plasma is described by the equations

(1): = a—N
O —4meN, 0O eat, 3)

j = OE, +ef D,ON.

Here, DU isthe electric induction in the semiconductor,
j isthe current density, E, = E, — [@ |, E, is the drift
ACOUSTICAL PHYSICS Vol. 51
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field, o = g, + efpN is the semiconductor conductivity
consisting of the static g, and perturbed parts, N is the
concentration of charge carriers, e is the elementary
charge, p is the mobility, f is the trapping factor, D, is
the diffusion coefficient of charge carriers, and O isthe
Hamilton operator in the plane orthogonal to the z axis.

For small perturbations of electronic plasma, we use
the linearized current density j = efD,CIN + 0E, — 0, ,
and assume that the azimuth drift under the effect of
thefield E, = (0, E,, 0), E, = —ar isreduced to the cir-
cular rotation of electrons with a constant angular
velocity. The constant a is determined by the method
of drift excitation. If one uses a nonstationary radially
inhomogeneous magnetic field H, || z (H, ~ r?) [6] for
these purposes, o has the meaning of the rate of mag-
netic field variation in time. Taking into account the
relation DV = ¢,E,, we eliminate the quantities j and
N from Eq. (3) and obtain an equation for the determi-
nation of ¢,:

7 (B M) + 1D - S -wfe, = 0. @

where w, = 41qy/g, is the Maxwell relaxation fre-
quency.

We complement Egs. (1), (2), and (4) with the
boundary conditions of continuity at r = Rfor shear dis-
placements, components T,, of the stress tensor, poten-
tials, and radial components of the electric induction.
Assuming that recombination and trapping of charge
carriers at the surface levels is absent, we add the
requirement of the absence of charge transfer from the
semiconductor cylinder to the piezoelectric: j |, _g = 0.
Finally, using the equations for the piezoelectric effect
[1, 2] and the linearized expression for the current den-
sity, we write

ullr:R = u2|r=R’
26_uz+ 1563(])ZD
or ort|,

¢1|r=R =

au 0
Jines 5 -5
00,

W or

_}\au1 ,
=R ar.rR

Oaf; - g )

- 6¢1
ar

_ 2099
= fD0|:| DWD -

r=R

SOLUTION OF THE BOUNDARY PROBLEM

The shear displacements u, , as the solutions to
homogeneous Helmholtz equations (1) and (2) can be
formally represented by the Rayleigh series of the solu-
tion to the reference problem of the scalar theory
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describing the diffraction of a plane monochromatic
wave by aforeign cylinder [10, 11]:

u, = Uexp(—iwt)

® 6
x Z i"exp(in®)J,(k;Nb,, r<R, ©

u, = Uexp(—iwt)
xy i"exp(in®)[J, (k1) + H" (k,r)a], r>R.

n=—o

Here, we use standard notations for the Bessel func-
tions J,(x) and the Hankel functions of the first kind

H™ (x); the incident wave is taken into account in

Eq. (7) by the first term in square brackets; the second
term in them characterizes the partial contribution from
the azimuth harmonic to the field scattered by the cyl-
inder; and the coefficients a, and b, must be deter-
mined.

The determination of ¢, isreduced to the determina-
tion of the potential @, of the field of boundary piezo-
electric polarization oscillations, and, taking into
account itslimited character at r > R aong with the need
to satisfy the boundary conditions given by Egs. (5), we
obtain, by virtue of Eqg. (1),

@)

®, = exp(-iwt) § i"exp(in@)r™d,.  (8)

From Eq. (4), it dso follows that
0, = ®,+®, D@, =0,

g
ot

The potential ®, of the piezoel ectric polarization oscil-
lationsin the semiconductor cylinder isanalogousin its
structure to Eqg. (8) with the exception of the fact that
the powers of the radial coordinate are taken with the
positive sign:

)

[fu(EOED)+ fD,0% - wC}CD = 0.

®, = exp(-iwt) Z i"exp(ind)r'c,. (10)

In conformity with the adopted type of drift, for each
azimuth harmonic, the effect of the operator E,, - [1inthe
last of Egs. (9) is equivalent to multiplication by —ian.
Taking into account the substitution of d/dt for —iwt, this
equation can be represented in the form > — xﬁ ® =0,
which alows usto represent the potential @ of thefield

response of the semiconductor plasmato piezoelectric
polarization oscillations in the form

® = exp(—iwt) z i"exp(in®)1,(x,)g,. (11)

n=—o
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Here, 1,(X) isthe modified Bessel function selected pro-
ceeding from the bounded character of the solution,
Xn = K1 (000/00) 2[00/ (1 — NQ/0)] ', 6ol =Dy kS feo,
wp, isthe diffusion frequency, and Q = fua is the angu-
lar velacity of the azimuth drift of charge carriers.

The amplitude coefficients a,, b, ¢, d,, and g, are
obtained from the system of inhomogeneous algebraic
equations, which are obtained from the substitution of
the expressionsfor displacements (Egs. (6) and (7)) and
the summary potentials ¢, and ¢, following from
Egs. (1) and (8)—(11) into the boundary conditions (5).
However, it should be noted that the indices of the scat-
tering ability of the semiconductor cylinder are only
characterized by the coefficients a,, which have the
form

SHEVYAKHOV

_3,(E)
@
, Hn (EZ) (12)
o JAN[Fa(T, &4) —mE,[InJn (8] + &, InJn(E2)]" .
HOINIFo(, &2) ~mEL[INIA(E)]' + ELINHP ()]
Therefore, it is unnecessary to give here the equations

for other amplitude coefficients. The latter are
expressed finally by achain of linked equationsthrough

the coefficients a,. In Eq. (12), H? = 4mels (e,A% ) is

the square of the electromechanical coupling coeffi-
cient of the piezoelectric, &, = kR, & =k,R, m=A,/A} ,

and

n -

z—i%L— n%[l +3,HL+ ia)(%g}

Fn(Tf El) =

£ 0, €
H- nQD[l +2(+ 6n)} +i25, i
& wp e

o

isthe function of the generalized conductivity parame-
ter T and &,, which contains the quantities 8, = i[(1 —
NQ/w) + iw/wp] ™' w/w and { = &, (wp/w)"*[wy/w—i(1 -
nQ/w)]"2. Equations (12) and (13), where the primes
denote the derivatives of the logarithms of cylindrical
functions, complete the representation of the solution to
the boundary problem under consideration.

Let us verify that the result corresponds to previous
data. For example, m = 0 means the absence of the
acoustic contact of the semiconductor cylinder with the
piezoelectric and Eqg. (12), as it should be expected,
transforms into Eq. (2) from [8]. If we additionally
assumethat w.=0,u=0(Q=0),and e, =1, weobtain
the case of scattering of a shear wave by a cylindrical
air gap in apiezoelectric crystal, which was considered
in[7, 8]. Inthe absence of the piezoel ectric effect, when
H? =0, Eq. (12) leads to the amplitude coefficients of
the partial shear waves scattered by a foreign cylinder
inanisotropic elastic medium [10]. The solution for the
last case is mathematically equivalent to the solution to
the problem of scattering of an H-polarized electro-
magnetic wave by adielectric cylinder [11].

EFFECT OF THE CONDUCTIVITY
AND DRIFT ON THE PARTIAL WAVES
OF THE SCATTERED FIELD

In[8], theratio I, = [a,(Q))/|a,(0)| was taken as the
measure of the amplitude variation of apartial scattered
wave under the effect of conductivity and drift. This
guantity was calculated for extremely low ultrasonic
frequencies ¥ < w,wp and a semiconductor plasma
with alow conductivity (w, < u)). The resulting esti-
mate for waves of low numbers [Inl,(0)]' ~ 1 in the

(13)
L[| 1

, o [Inl,@Qr

asymptotic case of |{| > , alowed usto ignorethe last
term in the denominator of Eq. (12) and to solve the
major problem connected with cal cul ating the modified
Bessel function of a complex argument. Along with
this, we also ignored the terms proportiona to w/wy,
and the function F.(t, &,) acquired arelatively simple
form F (T, &) =¢&/(1 + d)e, + €(1 + d)]"". This
description of the plasma response corresponds to its
model representation as a medium with the effective
dielectric constant €,(1 + &,,), whichisnatural, sincethe
boundary plasma effects under the aforementioned
conditions (diffusion-free approximation) are negligi-
bly small.

The approach adopted in [8] made it impossible to
investigate the acoustoel ectronic effects in the case of
scattering of a shear wave by a cavity with a semicon-
ductor (m = 0) in the most interesting frequency range
W’ ~ W.Wp. Thepossibility of studying the azimuth drift
with theangular velocities Q = w/n or close to them was
also excluded, since, in this case, it is unacceptable to
ignore the “small” terms in Eq. (12) because of their
growth with respect to the first term. The results of the
present work are based on the data of an exact quantita-
tive calculation according to Egs. (12) and (13), and,
therefore, they are free of the aforementioned draw-
backs.

For the program module with the inaccuracy of cal-
culation of I, and other quantities no higher than 10~°
at &, <3 x 10%(w/wp) 2, when the characteristic range
of variation of the ratio w/wp was overly exceeded for
cylinders with moderate (¢, [0 10) or higher wave
dimensions, the basic procedure was the calculation of
the cylindrical functions of integer order with apositive
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argument according to Miller's algorithm [12, 13]. Its
applicability to calculating the function I,(2) of a com-
plex argument z together with the relations 1,(2) =

exp(-inty2)J.(i2), -Ti< argz < 192, 1 (2) = exp(i3n1y2) x
Ji(i2), T¥2 < argz < Ttis secured by the theorem of mul-
tiplication for the Bessel function [14]:

«(@’ - 1) (Z/2) 3

J.,(az) = a Z( 1) (14)

n+k(Z)1

where a and z are any complex numbers. Assuming
that, in EqQ. (14), az=w and z= |w|, we obtain the expan-
sion of the Bessel function of a complex argument w
into a series in the Bessel functions of a positive argu-
ment |w|.

The results of numerical calculation for the values
of I',, qualitatively agree with the conclusions of [8].
For example, together with Egs. (12) and (13), they
point to theinequality a, # a_,, under thedrift conditions
for the amplitudes of the scattered field of the direct
(n> 0) and inverse (n < 0) azimuth propagation of
waves. The last means the drift-related nonreciprocity
of scattering. The conclusion concerning the possibility
of a noticeable acoustoel ectronic amplification (attenu-
ation) of partial scattered waves by the drift current,
when the semiconductor cylinder has wave dimensions
sufficient for the formation of plasma bunches &, > 1,

was also confirmed.? However, together with the char-
acteristic acoustoelectronic change of sign for the
dependences I (Q) — 1 at the “critical” drift currents
(Fig. 2), the presence of adrop inthevaue of ', at an
angular velocity of drift Q = w/nwasrevealed, thisdrop
being the deeper the closer to each other in acoustic
properties the piezoelectric and the semiconductor
were.

Thisisillustrated by the curvesin Fig. 2. They are
calculated for the case where the conditions of acoustic
matching for the materials of the cylinder and the
piezoelectric are assumed in Eq. (12): m= 1, k; = k,
(&, = &,). This case will be given specia attention
below. The largest depth of the dip, which reaches a
valueof I',, = 0, correspondsto this case. The horizontal
dashed linein Fig. 2 indicatesthelevel of zero variation
for the amplitude of a partial waverl , = 1.

Asfor theangular velocity of drift Q = w/n, itisnec-
essary to note that it corresponds to the linear drift
velocity vy = QR of charge carriers, which coincides
with the velocity of azimuth propagation of a partial
wave around the cylinder boundary v,, = wR/n. To
determine this fact, to the number n of an azimuth har-
monic we assign the value n = kR, where k, = w/v,, is

2At & < 1, the semiconductor plasma has a polarization effect and,
facilitating the “ displacement” of the field of polarization oscilla-
tions to the external region, increases the acoustic scattering uni-
formly over all azimuths. This effect is analogous to the amplifi-
cation of acoustic wave scattering by a cavity in a piezoelectric
on account of boundary metallization [7, 9].
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Fig. 2 Drift dependences ', for n = 30 in the case of §; =
20, H?=0.01, &,/e, = 1.4, and wy/w = 1 for different ratios
w/wp under the conditions of acoustic matchi ng of the cyl-
inder with the piezoelectric: w/wp = (1) 1, (2) 5, and (3) 10.

the azimuth wave number. According to Eq. (13), the
dip in the dependence I' (Q) at the point of the “sonic”
drift is caused by the termination of acoustoelectronic
interaction: F.(t, &,) = 0, which is explained by the
known [15] mechanism of phase synchronism of
plasma bunches with a wave, which is supported by
drift. Thediffusion of charge carriers does not influence
the position of the point of “sonic” drift. However, from
the comparison of curves /-3 (Fig. 2), one can seethat,
as it grows, a broadening of the peak observed in the
dependencel (Q) and cut through by thedip occurs. At
Q — 0(Q >0, adirect azimuth drift), asharp increase
in the partial wave scattering, which occurs when
I, — 1 and may even exceed the zero level of scatter-
ing variation under the conditions n/§,; < 1, n ~ 1, is
caused by the fact that the acoustoel ectronlc mecha-
nismisreplaced by the screening action of the semicon-
ductor plasma. The same circumstance ensures the
validity of theinequality I',, > 1 at theinitial sections of
theinverse (Q < 0) drift and, together with the acousto-
electronic interaction, finally leads to the violation of
theideal asymmetry of the curvesI™(Q) with respect to
the zero level of scattering variation.

INTEGRAL CHARACTERISTICS
OF THE ACOUSTOELECTRONIC SCATTERING
OF A SHEAR WAVE BY A SEMICONDUCTOR
CYLINDER

The analysis of variations of the amplitude coeffi-
cients for single partial waves scattered by a cylinder
reveals the mechanisms of the control action by con-
ductivity and drift upon the process of scattering but
does not give the whole pattern of the phenomenon.
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A complete picture of scattering is provided by theinte-
gral characteristics of scattering [10, 11, 13], i.e., the
polar scattering pattern

F(0) = Z a,exp(ind) (15)

n=-—ow

and thelinear (per unit length of the cylinder) total scat-
tering cross section og The first of these quantities
characterizes the amplitude of the scattered field in the
far wave zone, which is represented in the form of radi-
ation from an effective linear source at the cylinder axis
and shows in fact the azimuthal distribution of the scat-
tered energy. The second quantity, which is usualy
expressed by the ratio of the time-averaged radialy
scattered power to the intensity of the incident wave, is
taken as a measure for the energy efficiency of conver-
sion of the incident wave into the scattered field.

Thisdefinition of ogleadstotheexpression[11, 13, 15]

4 +o00
Og = k_2 z |an|2.

n=—-o

(16)

It is evident that, in the presence of loss or in the case
of wave amplification in the cylinder (negative l0ss), og
can be considered only with respect to a part of theinci-
dent power that remains in the cylinder minus the loss.
The measure of the total conversion of the incident wave
in the case of scattering is the quantity 0, = 05+ Oa
called the cross section of extinction by analogy with
optics[13]. The addition o, to ag (now, it issensibleto
exclude from the name of agthe prefix “total”) deter-
mines the share of energy loss due to the scattering and
can be called the absorption cross section of .

A convenient way to calculate g, is to follow the
standard procedure for the determination of ag, but, in
this case, the average radial flux of scattered energy is
replaced by the difference of summary average radial
energy fluxes converging to and diverging from the cyl-
inder. A specific feature of this case is that the radial
energy flux converging at the cylinder is formed by
only part of the incident wave field. Its remaining part
is added to the flux of the scattered field. The procedure
of decomposition of the incident wave field into contri-
butions to the radial energy fluxes converging to and
diverging from the cylinder is described in [16].

In contrast to [10, 13], the determination of o, is
performed in [16], as applied to the case of not only an
absorbing but also an amplifying cylinder. However,
this did not affect the fina representation of o, by a
series:

O, = _kiz Z (la)? + Reay,). (17)

n=—-o

Theminussignin Eq. (17) reflectsthefact of directivity
of the absorbed energy flux towards the cylinder. Equa-
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tions (16) and (17) yield the following expression for
the extinction cross section:

~ 4 +o0
Oy = T z Rea,,. (18)
n=—ow

Since, according to [7, 8], the piezoelectric effect
and, through it, the conductivity and drift manifest
themselves weskly against the background of the
acoustic scattering by the cavity in the piezoelectric and
there are no grounds to expect something different in
the case of ashear wave scattering by aforeign contact-
ing cylinder, the above case of acoustically matched
piezoelectric and semiconductor deserves some atten-

tion. In this case, because of the equations A; = A3,
P =pn& =& =& andm=1, from Eq. (12) we obtain

2 2
= o EEDRE
NI (1, 8) IO HP (2) + 2ifm

Equation (19) shows that now the scattering of a shear
wave is completely determined by the piezoelectric
effect (J{ # 0) and the acoustoelectronic interaction
(Fn(t, & # 0) due to the appearance of piezoelectric
polarization charges at the boundary under the effect of
the incident wave. In its absolute value, this scattering
effect (let uscall it acoustoel ectronic scattering) may be
rather small, since most often H? < 1, but it is very
attractive, because it offers a possibility for the clear
manifestation of the plasma properties of the semicon-
ductor. Further, we will concentrate on the consider-
ation of only the acoustoel ectronic scattering.

It is necessary to note that the monopole contribu-
tion isabsent in the acoustoel ectronic scattering (n = 0),
and, at low frequencies (§ < 1), it isdetermined mainly
by the dipole modes of oscillations of partial waves
withthe numbersn = x1. Thisisthereason why the cal-
culation of the normalized polar characteristics of scat-
tering (below, simply polars) gs = F48)/F{0) accord-
ing to Egs. (15) and (19) demonstrates that, in the Ray-
leigh region, the latter have aform differing little from
the classical “figure eight.” The conductivity enhances
the thickening of its neck, and the drift, asin the case of
scattering by a cavity with a semiconductor [8], causes
agenera azimuth rotation of polars.

As the wavel ength shortens, the polarizing effect of
the plasma charge carriers is replaced by the acousto-
€l ectronic mechanism as the conditions for grouping of
electronic bunches near the piezoelectric polarization
field improve [15]. In this case, together with the rota-
tiona conversion of polars, their asymmetry with
respect to the direction of location, as the genera
expression for the drift nonreciprocity of scattering,
becomes more and more governed by the change of
sidelobes and backscattering. Specific shapes of polars
received at moderate and medium frequencies under
the effect of conductivity and drift differ in greater vari-
ety. Figure 3 gives the polars of high-frequency scatter-
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ing of a shear wave by a semiconductor cylinder in a
piezoelectric of the BaTiO; typein the absence (Q/w =
0, the upper polar) and presence (Q/w = 0.05, the lower
polar) of the azimuth drift. Their comparison illustrates
the manifestation of the acoustoel ectronic mechanism.
The propagation direction of the incident shear waveis
indicated by the arrow in Fig. 3.

Thefact that the principal (in the location direction)
shadow-forming side lobe with the length assumed to
be equal to unity is not subjected to the effect of drift at
high frequencies (see the scaling section in Fig. 3) is
explained as follows. The bundles of paraxial rays
forming it, these bundles being the narrower, the higher
¢ is, cross the semiconductor cylinder inits central part,
as is shown schematically in Fig. 1b by the dashed
lines. Here, they are orthogona to the drift current
(shown by direct arrows at the cylinder periphery). The
contribution of the drift current to the acoustoel ectronic
interaction in this case is absent [15]. At the sametime,
the amplification of scattering that can be seeninFig. 3
in the angular sector 174 < 0 < Ttis evidence of the pos-
sibility for sufficiently effective control of the azimuth
distribution of the scattered field with the help of drift.

The possibility of an acoustoelectronic absorption
(o, > 0) and its change for the acoustoel ectronic ampli-
fication of scattering (0, < 0, negative absorption)
under the effect of drift isillustrated by the spectra of
the absorption cross section, which are calculated
accordingto Egs. (17) and (19) for apiezoel ectric of the
BaTiO, type (H{? = 0.38, €,/e, = 1.4) and a “dense’
(W < wwp, Wwp = 0.001, Fig. 4a) or “loose” (W’ ~
WWp, Wy = 0.5, Fig. 4b) plasmaof the semiconductor
with a conductivity w,/w = 1. The corresponding spec-
tral dependences in the absence of drift are plotted by
dashed lines. The formation of the relaxation peak of
absorption is observed for wave dimensions & < 2 (itis
indicated by normal arrows), which corresponds to the
peak of the Joule lossesin the dipole oscillations of the
cylinder plasma. The major difference is that, because
of the strong diffusion damping under the conditions of
a“loose” plasma, the effect of drift is extended to the
long-wavelength part of the spectrum of the absorption
Ccross section touching even upon the range of the Ray-
leigh scattering & < 1. One can see, for example, that,
as the drift increases, the relaxation peak of absorption
weakens and gradually transformsinto the minimum of
negative absorption that isindicated in curves 2 and 3
in Fig. 4b by light arrows.

Another characteristic detail of the absorption spec-
tra is connected with the appearance (after the relax-
ation peak) of the plasma resonances of the cylinder.
Since, in accordance with the nature of the drift, the
waves of bulk charge in the cylinder are supported by
the drift, the position of the plasma resonances is
largely determined by the velocity of the azimuth drift.
In Fig. 4a, asthe result of the extremely high “density”
of the plasma and considerable disproportion of acous-
tic wavelengths with respect to the Debye length, they
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Fig. 3. Polar scattering patterns g«(6) of a semiconductor
cylinder with the wave dimension & = 20 in the absence (the
upper curve) and presence (Q/w = 0.05, the Iovver curve) of
azimuth drift for wy/w = 1, wap = 0.1, H? = 0.38, and
£,/ =14.

are expressed in the form of weak perturbations decreas-
ing because of the transition to the regions of acousto-
electronic amplification of scatteringin curves /-3 of the
dependences G,(¢). Under the conditions of a loose
plasma, the degree of the boundary coupling of the
acoustic and plasma subsystems, which, as the bulk
modes of oscillations of a piezoelectric semiconductor
[17], is determined by the value of J{?w,/wy, is notice-
ably higher. Therefore, the plasma resonance peaks in
curves / and 2 in Fig. 4b are well pronounced and con-
siderably exceed the level of the absorption cross sec-
tionin the absence of drift. At the sametime, ahigh dif-
fusion damping gives them such a large width that
Fig. 4b contains just single peaks of the plasma reso-
nance in the calculation range.

The seria character of plasma resonances in the
spectrum of an absorption cross section is demon-
strated graphically in Fig. 5afor the plasmaless dense
(w/wp = 0.04) than in Fig. 4a but with a higher (by a
factor of 40) degree of boundary coupling of acoustic
and plasma modes. One can see that, in the absence of
drift (the dashed curve), plasma resonances vanish and,
as the cylinder curvature decreases, a gradual decrease
in their peaks is observed. This is evidence that the
peripheral plasmawaves of the cylinder, i.e., the oscil-
lations of charge carriers, which are carried avay by the
drift and on which plasma resonances devel op, belong
to the class of the boundary-curvature controlled “fast”
(i.e., supersonic) waves of the type of whispering gal-
lery modes[18]. This agrees well with the condition of
supersonic drift for partial waves with the numbersn >
w/Q, which make the decisive contribution to the for-
mation of the plasma-resonance response of the cylin-
der in the case of the shear wave scattering. It is nec-
essary to note that, according to the above consider-
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Fig. 4. (a) Spectra of the absorption cross section for the
scattering of ashear wave by a semiconductor cylinder with
a dense plasma: Q/w = (1) 0.05, (2) 0.08, (3) 0.12, and
(4) 0.25. (b) Spectra of the absorption cross section for the
scattering of ashear wave by a semiconductor cylinder with
aloose plasma: Q/w = (1) 0.1, (2) 0.3, and (3) 0.5.

ations, the series of plasmaresonancesin curves / and 2
(Fig. 5a) is separated from the rel axation peak of absorp-
tion by the dip (indicated by arrows) of the acoustoel ec-
tronic interaction termination at Q = nw for a partial
wave with the corresponding number n. The possibility
of its presence was discussed earlier and isillustrated in
Fig. 2.

The value of ag, being aways positive and numeri-
cally comparable to the absorption cross section, does
not have an independent meaning as a characteristic of
the scattering ability of the semiconductor cylinder.
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Fig. 5. (a) Spectraof the absorption cross section for w/wp =
0.04 and Q/w = (1) 0.05 and (2) 0.15 (all other calculation
parameters are the same as in Fig. 4a). (b) Spectra of the
extinction cross section for w/owp = 1 and Q/w = (1) 0.4,
(2) 0.54, (3) 0.7, and (4) 0.9 (all other parameters are the
same asin Fig. 4b).

However, the following feature of its spectral behavior
deserves attention. In the Rayleigh region, og is
extremely small and, on the whole, the character of
scattering is determined by the acoustoelectronic
absorption. In the case of aloose plasma (Fig. 4b), this
isfundamentally important, since it meansthe possibil-
ity of a negative extinction in the process of scattering,
which is a result not indicated earlier in the theory of
wave scattering by amplifying bodies [16, 19, 20].
Moreover, earlier [16], it was stated that the total
energy gain of radiation on account of the amplification
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by the scattering cylinder for only a part of partia
waves is impossible. This conclusion was based on a
series of approximations used in solving the problem of
el ectromagnetic wave scattering by arotating cylinder
with a finite conductivity. In particular, the limitation
by the nonrelativistic velocities of cylinder rotation
seemsto be essential, which automatically excluded the
consideration of the conditions analogous to a strong
drift in the loose (wW/wp = 1) plasmain Fig. 5b, where,
in the region & < 1, curves /-3 are located lower than
the zero level of the extinction cross section indicated
by the dashed line.

Typical spectra of an extinction cross section for a
dense plasma with the calculation parameters of Fig. 5a
are given in Fig. 6. The dashed line corresponds to the
case of the absence of drift. The series of peaks of
plasma resonances are also observed in them (they are
especially pronounced in curve 1) together with the
clear manifestation of the relaxation peak of absorption
(indicated by arrows) only at sufficiently high angular
velocities of drift. As one can see from the comparison
of curves / in Figs. 5a and 6, the scattering itself,
enhancing the monotonic growth of extinction with
expansion into the short-wavelength part of the spec-
trum, ensures fulfillment of the condition o, > 0 inthis
case.

ACOUSTIC PROPERTIES OF A HETEROPHASE
PIEZOELECTRIC MEDIUM
WITH FILAMENTOUS SEMICONDUCTOR
INCLUSIONS

The negative character of extinction of a semicon-
ductor cylinder with aloose plasmaat & < 1 means that
a piezoelectric with alarge number of such inhomoge-
neities under the effect of drift should demonstrate the
qualities of an active or, at least, quasi-transparent
acoustic medium. The specificity of its effective acous-
tic properties can be connected, first of all, with the
absence of a pronounced drift directivity characteristic
of common acoustoelectronic interaction in homoge-
neous piezoelectric semiconductors and layered struc-
tures consisting of combinations of piezoelectric and
semiconductor materials. Let us apply the resultsto the
laws of shear wave propagation in a piezoelectric
medium (matrix) with a multiplicity of identical ran-
domly distributed parallel semiconductor cylinders
each having identical azimuth drift currents.

The low scattering efficiency due to the acoustic
matching of the cylinders and the matrix allows us to
use the results of the theory of multiple scattering of
waves in the approximation of low multiplicity of scat-
tering [15]. The necessary restrictionkd > 1, wheredis
the average distance between the cylinders, provides
not only a sufficient weakness of acoustic rescattering
but also alows us to ignore the mutual induction of
piezoelectric polarization charges arising at the cylin-
der boundaries. Indeed, from the asymptotics of the
scattered field at kd> 1, it follows that the field
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Fig. 6. Spectraof the extinction cross section for asemicon-
ductor cylinder with a dense plasma: Q/w = (1) 0.05 and
(2) 05.

decreases by the law (kr)~'2, while, according to Eqg. (8)
and the evaluation of the main contribution of the
dipole (at |n| = 1) terms to the field of piezoelectric
polarization charges, we obtain a stronger decrease in
the latter: &, ~ &/kr, kr > 1. Under the aforementioned
conditions of weak scattering and low concentration of
cylinders n, (it indicates their number within a unit
area of the sagittal plane, where the propagation of the
shear wave occurs), one can satisfactorily predict the
acoustic properties of the heterophase medium for § < 1.

If fs= %21: a, exp(inB) isthe quotient function of
scattering by a single cylinder and K is the effective
wave number of a shear wave in the heterophase piezo-
electric, then, according to [15], we have

2 2

K=K J[Hza%fs(m} —%fé(n), (20)
where q = TiIR?n, is the specific volume of the semicon-
ductor phase. Thereal part of k' = Re(K) determinesthe
phase velocity v = w/K' and K" = Im(K) is the absorp-
tion coefficient y of the shear wave. Equation (20) is
determined under the assumption of spherical shape of
inclusions. However, it was noted repeatedly that the
results obtained with it do not depend on the specific
geometrical shape of the scatterers. The only point that
issignificant is their characteristic wave size.

Figure 7 presents the curves for the frequency dis-
persion of a shear wave in a piezoelectric of BaTiO,
type (H? = 0.38, €,/e, = 1.4) with semiconductor cylin-
ders. The curves are obtained by calculation according
to Egs. (19) and (20) at different angular velocities of
drift for the most attractive (from the point of view of
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Fig. 8. Spectra of absorption for a shear wave in the het-
erophase piezoel ectric; the spectra correspond to the disper-
sion spectrashown in Fig. 7.

control in the region & < 1) case of a loose plasma,
w.R/c. =1 and ¢/uR = 1. They resemble the curve of
the frequency dependence of optical dispersion for the
Drude-L orentz medium near the absorption line [13],
cross the dashed curve v(w) for the case of the drift
absence at the pointsw= Q, and, for the assumed small
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value of the specific volume g = 0.01, demonstrate an
insignificant (~0.1%) relative variation of the phase
velocity, which indirectly confirms the reliability of
calculation. The shifts of the curves towards shorter
wavelengths with an increase in drift follow the fre-
guency shift of the “sonic” velocity of drift for the
dipole oscillations of number n = 1, which is reflected
inthe equality of these values due to the natural contra-
positive of the angular velocity of drift with the cyclic
frequency.

One can readily see that the reason for the agree-
ment of the dependences v(w) with the results of the
electronic theory of dispersion lies in the aforemen-
tioned quasi-dipole character of the polars of cylinders
at & < 1, which makes them similar to classical oscilla-
tors. The appearance of a hump in the drift-free depen-
dence v(w) at wR/c; = 1 (¢, = wykisthe velocity of shear
waves) is apparently connected with the averaged man-
ifestation of the relaxation peak of absorption by the
system of randomly distributed cylinders. The disper-
sion dependencesin Fig. 7 correspond to the absorption
spectrain Fig. 8, which have the form of the character-
istic loss minimum in the case of acoustoelectronic
“clarification” of the medium under the conditions of
sonic (for the dipole term of the scattered field) drift
w= Q manifesting itself against the background of
monotonic growth of y(w) because of the genera
amplification of scattering with the increase in fre-
guency. However, in calculations, it was impossible to
obtain afull clarification of the mediumy =0 and, espe-
cially, the absorption inversion, which is possible
because of the negative extinction cross section. Thisis
explained by both the low value of negative extinction
of single scattering (|0s| ~ 10~*) and the multiple char-
acter of scattering, which bring the resulting extinction
to the region of positive values.

In closing, it is necessary to note that, according to
the set of properties determined above, a heterophase
piezoelectric medium of parallel thin semiconductor
cylinders randomly distributed over a piezoelectric
crystal, where the transverse dimensions of the cylin-
dersaredightly greater than the Debyeradius, isakind
of analog to the Drude-Lorentz optical medium with
the line of acoustoelectronic clarification controlled
within the spectrum by azimuth drift.

CONCLUSIONS

The study of how the current plasma of a semicon-
ductor cylinder in contact with a piezoelectric affects
the scattering of a shear wave gave us the chance to
determine that the most effective manifestation of con-
ductivity and drift in acoustic wave scattering into the
piezoel ectric occurs in the case of acoustic matching of
the materials of the cylinder and the external piezoel ec-
tric medium. The acoustoelectronic scattering that
occurs under these conditions is characterized by the
absence of the contribution of monopole sources; the
presence of the drift-related nonreciprocity of scatter-
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ing, which manifestsitself by the nonequivalence of the
scattering of partial waves with direct and inverse azi-
muth propagation; and the existence of plasma reso-
nances and the relaxation peak in the spectra of the
absorption cross section, where the peak is due to the
optimal manifestation of the Joule loss in the dipole
plasma oscillations. The essential feature of the effects
of acoustoelectronic scattering also manifests itself in
the fact that, as the frequency grows, the polarization
effect of the semiconductor plasmain combination with
the drift is replaced by the White mechanism of acous-
toel ectronic amplification (attenuation) of partial waves
of the scattered field because of the grouping of charge
carriers near the fields of boundary piezoel ectric polar-
ization oscillations penetrating in the semiconductor.

The genera result is the conclusion on possible
effective control of acoustoel ectronic scattering by the
azimuth drift and the presence of certain prerequisites
for the development of special methods of acoustic
spectroscopy of piezoelectric crystals with weak dis-
crete electrical inhomogeneities. The prospects of a
similar idea of using controlled acoustoel ectronic scat-
tering in the design of artificial heterophase piezoelec-
tric materials with controlled acoustic parameters are
demonstrated by the exampl e of acomposite piezoel ec-
tric medium consisting of parallel semiconductor fila-
ment cylinders randomly distributed over the piezo-
electric. In particular, it is demonstrated that, under the
effect of azimuth drift of charge carriersin filament cyl-
inders, this composite piezoelectric is similar to the
weakly absorbing Drude-L orentz optical medium with
aclarification line controlled within the spectrum.

REFERENCES

1. G. Kino, Acoustic Waves: Devices, Imaging and Analog
Sgnal Processing (Prentice-Hall, Englewood-Cliffs,
1987; Mir, Moscow, 1990).

2. J. Zelenka, Piezoelectric Resonators and Their Applica-
tions (Elsevier, Amsterdam, 1986; Mir, Moscow, 1990).

3. Ce-Wen Nan, J. Appl. Phys. 76, 1155 (1994).

ACOUSTICAL PHYSICS Vol.51 No.5 2005

4.

5.

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

597

Q. L. Fan, J. Takatsubo, and S. Yamamoto, J. Appl. Phys.
86, 4023 (1999).

S-H. Lee and T. J. Royston, J. Acoust. Soc. Am. 108,
2843 (2000).

O. Lacour, M. Lagier, and D. Sornette, J. Acoust. Soc.
Am. 96, 3548 (1994).

N. S. Shevyakhov, Akust. Zh. 24 (2), 271 (1978) [Sov.
Phys. Acoust. 24 (2), 150 (1978)].

N. S. Shevyakhov, Akust. Zh. 31, 380 (1985) [Sov. Phys.
Acoust. 31, 223 (1985)].

N. S. Shevyakhov, Fiz. Voln. Proc. Radiotekh. Sys. 2 (1),
15 (1999).

N. Brauner and A. I. Beltzer, Ultrasonics 26 (6), 328
(1988).

R. B. Vaganov and B. Z. Katsenelenbaum, Foundations
of the Diffraction Theory (Nauka, Moscow, 1982) [in
Russian].

N. N. Lozinskii, A. T. Makushkin, V. Ya. Rozenberg, and
V. R. Erglis, Handbook for a Programmer (Sudostroe-
nie, Leningrad, 1964), Vol. 2 [in Russian].

C. Boren and P. Hafmen, Absorption and Scattering of
Lihgt by Small Particles (Wiley, New York, 1983; Mir,
Moscow, 1986).

Handbook of Mathematical Functions, Ed. by M. Abra-
mowitz and I. Stegun (Dover, New York, 1972; Nauka,
Moscow, 1979).

R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Meth-
ods in Solid Sate Physics (Academic, New York, 1969;
Mir, Moscow, 1972).

B. M. Bolotovskii and S. N. Stolyarov, Amplificaton of
Electromagnetic Waves in the Presence of Moving
Media (Nauka, Moscow, 1980), p. 73 [in Russian].

N. S. Shevyakhov, Akust. Zh. 35, 934 (1989) [Sov. Phys.
Acoust. 35, 541 (1989)].

L. M. Brekhovskikh, Akust. Zh. 13, 541 (1967) [Sov.
Phys. Acoust. 13, 462 (1967)].

A. A. Starobinskii and S. N. Churilov, Zh. Eksp. Teor.
Fiz. 65 (1), 3 (1973) [Sov. Phys. JETP 65 (1), 1 (1973)].

A. L. Fabrikant, Akust. Zh. 28, 694 (1982) [Sov. Phys.
Acoust. 28, 410 (1982)].

Trandated by M. Lyamshev



Acoustical Physics, Vol. 51, No. 5, 2005, pp. 598-600. Translated from Akusticheskir Zhurnal, Vol. 51, No. 5, 2005, pp. 694-696.
Original Russian Text Copyright © 2005 by Danilyan, Dorofeev, Naskidashvili, Pakhomov, Zon.

SHORT COMMUNICATIONS

M agnetohydrodynamic Generator of Pseudosound

A.V. Danilyan, D. L. Dorofeev, V. |. Naskidashvili,
G. V. Pakhomov, and B. A. Zon
\oronezh Sate University, Universitetskaya pl. 1, Voronezh, 394893 Russia
e-mail: zon@niif.vsu.ru
Received June 23, 2004

Abstract—The theory of a periodic flow of a conducting magnetized liquid in the presence of an ac current
passing through it is described. It is shown that the flow arising under these conditionsis of pseudosound char-
acter rather than sonic, as stated in some publications. Experimental data demonstrating the transformation of
pseudosound flow into sound waves are presented. © 2005 Pleiades Publishing, Inc.

The magnetohydrodynamic (MHD) effect in
hydroacoustics was first considered by Anderson [1],
who calculated the influence of the terrestrial magnetic
field on the attenuation of sound in seawater. This effect
ischaracterized by aquadratic dependence on magnetic
induction, and its magnitude provesto be significant for
infrasonic frequencies.

An observation of sound waves arising in aconduct-
ing liquid (salt water) because of the MHD effect of an
ac electric field was reported in [2]. The potentia dif-
ference between the €electrodes, between which the
sound waves propagated in the liquid, was found to
depend linearly on magnetic induction, as the potential
difference in the Hall effect.

In [3] (see dso [4, 5]), the excitation of a periodic
motion of a conducting liquid was observed under the
combined effect of a constant magnetic field and an ac
current passing through the liquid. The periodic motion
of theliquid wasinterpreted in [3] asasound wave, and
the effect itself, as an MHD analog of the Hall effect.

In the present paper, we show that the sound waves
observed in [3] arise as a result of the reflection of the
pseudosound flows produced by the MHD generator
from the boundaries of thetank containing theliquid. In
other words, the MHD generator excites pseudosound,
which is then transformed to ordinary sound at the
walls of the tank.

Remember that the notion of pseudosound as a peri-
odic liquid flow unrelated to density variations in the
liquid was introduced by L.D. Blokhintsev [6] in
describing turbulent flows around rigid objects. Recent
publications devoted to pseudosound include [ 7-10].

Figure 1 schematically represents the experimental
setup. The magnetic field and the electrodes fed by an
ac voltage are oriented perpendicular to each other and
placed in a conducting liquid. The pseudosound flow
generated in this setup has a directional pattern whose
maximum is oriented in the third orthogonal direction.

The hydrodynamics equations for an ideal liquid in
aforcefied f(r, t) have the form [11]

ov N VRN
a+(vD)v- pr+pf(r,t),

ap (D
E + Dp V) = 0.

Here, p(r, t) isthe density of theliquid and v(r, t) isits
velocity.

Linearizing Egs. (1), we obtain an equation for the
deviation of the density p of theliquid from the equilib-
rium value p, (p' = p — Po):

2 1
0P _\ap = —divi(r,t), @)
ot
where u isthe velocity of sound.

The boundary condition for Eq. (2) can be obtained
asfollows. We proceed from the boundary condition for
the velocity. For aliquid bounded by arigid surface I,
the normal velocity component v,, should be equa to
zero, i.e.,

Valr = 0, 3)
Ty ¥
|l 1
L T

6 5\\\
LN

Fig. 1. Schematic representation of the experimental setup:
(1) permanent magnet, (2) electrodes, (3) source of ac current,
(4) current-measuring resistor, (5) hydrophone, (6) amplifier,
and (7) oscilloscope.
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MAGNETOHYDRODYNAMIC GENERATOR OF PSEUDOSOUND

and v(r, t) should satisfy the linearized Euler equation

u? 1
= = ! _f ,t. 4
po@ +Do (r,t) )

Differentiating boundary condition (3) with respect to
time and taking into account Eq. (4), we obtain a
boundary condition for p":

ap'
on r

Let us show that, in the case under consideration,
both Eg. (2) and boundary condition (5) are homoge-
neous. Assume that two electrodes are placed in an
unbounded liquid in aconstant homogeneous magnetic
field H and that each of the electrodes has the form of a
closed surface made of a perfectly rigid and perfectly
conducting material. In this case, the surface of each of
the electrodes is equipotential and a current with den-
sity j(r, t) generating a Lorentz force f = [j, H] passes
through theliquid. In the quasi-stationary case, curlj = 0.
Then, at the surfaces of the electrodes, the current den-
sity vector is perpendicular to these surfaces. Therefore,
divf = (H, curlj) = 0 and f,|- = 0. Hence, p'(r, t) =0. In
other words, in the given case, the effect of the force
field f(r, t) does not lead to a compression or rarefaction
of theliquid and, hence, no sound waveisformed in the
liquid.

However, under the effect of such aforcefield, alig-
uid flow whose nature is different from that of a sound
wave may arise. In particular, if the force field f(r, t)
harmonically depends on time as f(r, t) = f(r)e"'™, the
liquid flow will aso be of a harmonic character. Such
periodic liquid flows of nonsound nature are called
pseudosound [6].

To study the velocity distribution in the given pseu-
dosound flow, we consider Eq. (4). Substituting p' = 0
and integrating with respect to time, we finally obtain

v(r 1) = wi—pf(r)e_iwt. ©)

Let the electrodes have the form of spheres of
radius a with their centers at the points +I. Assume
that r > | > a. Then, the current density in the quasis-
tationary case is determined by the expression

. 1(t)]
i(r.t) = ﬁg(lo—sro(ro,lon,
ro =rir, lg =1/,

where I(t) = le'“t is the total current between the elec-
trodes. Substituting the corresponding expression for
the Lorentz forcef = [j, H] into Eq. (6), weobtain v ~ r=3.
Hence, for the pseudosound field, the rate of decrease
with distance from the source is much greater than that
for the ordinary sound field, for which v ~ r1,

Naturally, any object placed in a pseudosound flow
represents a source of sound waves [6], and this fact
should be taken into account in interpreting experimen-

1
2
r u

fn &)

()
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tal data. Inthe experiment described in[3], such objects
could be the walls of the tank and the membrane sepa-
rating the volume of the conducting liquid, in which
pseudosound flows were generated, from the volume of
the nonconducting liquid, in which the hydrophone was
placed.

The theory described above was developed with the
aim to interpret the results of our experiments. As the
conducting liquid, we used a 3.5% aqueous solution of
NaCl, which corresponds to the salinity of seawater.
The tank containing the liquid was made of stainless
steel with the dimensions 162 x 77 x 10 cm’. The
source of magnetic field was a permanent magnet,
which, with the use of pole concentrators with an outer
diameter of 30 mm, provided a magnetic field of about
0.5 T in a 15-mm-wide gap. Bronze cylindrical elec-
trodes 9 mm in diameter were coaxially positioned at a
distance of 10 mm from each other in the region of the
maximal magnetic field in such a way that their com-
mon axis was normal to the field. The output voltage of
the master oscillator was supplied viaapower amplifier
to a series-connected current-measuring resistor and to
the electrodes. The sound pressure receiver was repre-
sented by calibrated piezoelectric transducers in the
form of cylinders 19 mm in diameter and 22 mm in
length. Thetransducerswere positioned on the axis per-
pendicular to both magnetic field and el ectrode current
directions, at a distance of 40 cm from the electrodes.
The signal from the receiver was preamplified and sup-
plied to one of the oscilloscope channels. The second
oscilloscope signal served for controlling the magni-
tude and form of the electrode current.

Figure 2 showsthe experimental dependences of the
receiver signal amplitude on the amplitude of the elec-
trode current for several frequencies. One can see that
the amplitude of the detected sound signal linearly
depends on the current strength, according to Egs. (6)
and (7). As for the spatial distribution of sound, its
parameters could not be explained in terms of the stand-
ing sound wave pattern produced by the source of fairly
simple geometry used in the experiment. This fact has
stimulated us in analyzing theoretically the phenome-
non described above. Presumably, under our experi-
mental conditions, the transformation of the pseudo-
sound flow into acoustic oscillations mainly occurred at
the metal electrodesand at the poles of the magnet. This
conclusion can be made in view of the fast attenuation
of pseudosound with distance that is predicted by
Eq. (7). Such a fast attenuation of the signal with
increasing source-hydrophone distance was not
observed in the experiment.

In addition to the sound signal at the frequency of
the exciting current, in some cases we observed a dou-
ble-frequency signal, asin[3]. Thissignal is associated
with the periodic heat release in the gap between the
electrodes. the heat release does not depend on the
polarity of the electrodes and, therefore, varies with
time at a double frequency. Indirect evidence of the
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Fig. 2. Dependence of the hydrophone signal amplitude on
the amplitude of the electrode current.

thermal nature of the double-frequency signa is the
fact that this signal was only observed within a time
after the beginning of the oscillator operation, because,
in the course of its operation, the electrodes become
oxidized and the heat release in the metal—electrolyte
boundary layer increases.
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CHRONICLE

In Memory of Yurii Mikhailovich Sukharevskii
(September 8, 1906-September 17, 2004)

On September 17, 2004, one of the prominent
acousticians of Russia, Professor Yurii Mikhailovich
Sukharevskii—the founder of the Russian school of
hydroacoustics, a doctor of engineering, a laureate of
the USSR State Award, and a person of manifold
gifts—passed away at the age of 98.

In 1925-1930, Sukharevskii was a student of the
Faculty of Electrical Engineering of the M oscow Power
Engineering Institute. There, he simultaneously spe-
cialized in electrical engineering, local power stations,
factory electrical instruments, electrical machine build-
ing, and safety means for high-voltage power lines. In
total, during the years of his studies at the ingtitute, he
passed 115 examinations in different branches of engi-
neering. Sukharevskii carried out his first research
project as a student, and his first scientific publication
appeared in 1929.

In 1927-1931, Sukharevskii also studied at the
Piano Faculty of the Moscow Conservatory. After

receiving his master’s degreein music, he continued his
education at the Conservatory as a postgraduate student
until 1935. In those years, Sukharevskii gave many
concerts with the symphony orchestras of the Moscow
Conservatory and Moscow Radio.

The aforementioned activities did not exhaust his
versatile talents. He was keen on sports, being afigure-
skater and a mountain-climber.

The variety of occupations and creative abilities
formed the life of young Sukharevskii—the future
prominent scientist.

After his graduation from the Moscow Power Engi-
neering Institute, within 1930 to 1938, Sukharevskii
worked at the Acoustical Laboratory of the Central
Research Institute of the People’s Commissariat of
Communication.

Inlate 1938, Sukharevskii wasinvited to work at the
Academy of Sciences of the USSR as a senior
researcher in the Group of Applied Physics at the Engi-
neering Science Division of the Academy of Sciences
of the USSR. Simultaneously, he worked as a scientist-
secretary of the Acoustical Commission of thisdivision
(the chair of the commission was N.N. Andreev), which
was later transformed into the Scientific Council on
Acoustics of the Academy of Sciences of the USSR.

In the same period of time, Sukharevskii was amem-
ber of the commission established by the Presidium of
the Academy of Sciences to supervise the acoustic
design of thelarge halls of the Palace of Sovietsin Mos-
cow. The commission was headed by N.N. Andreev.

In 1939, Sukharevskii became a senior researcher at
the Acoustical Laboratory of the Lebedev Physical
Institute of the Academy of Sciences of the USSR. In
the same year, he received his candidate degree, and, in
1940, at the age of 33, he became a doctor of engineer-
ing.

From the beginning of the German invasion of the
USSR in World War Il until the end of the war,
Sukharevskii, together with his colleagues, worked on
military problems.

In 1945, Sukharevskii became the head of the Sector
of Hydroacoustics of the Acoustical Laboratory of the
Lebedev Physical Institute and also the head of the
Sukhumi Marine Research Expedition, which ran until
1954. At the same time, he was involved in the prob-
lems of construction and equipment of the future
marine research station.

1063-7710/05/5105-0601$26.00 © 2005 Pleiades Publishing, Inc.
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Supervising research in underwater acoustics, he
recruited young scientists for this field: he visited uni-
versitiesand institutes of Moscow and other cities, gave
lectures on his own studies, and invited graduate and
postgraduate students to work at his Hydroacoustic
Research Sector in Moscow and at the permanent
Sukhumi Expedition. Within a short period of time,
Sukharevskii formed two teams of young researchers—
his future students and colleagues.

In 1954, after the Acoustical Laboratory of the Leb-
edev Physical Institute was transformed into the Acous-
tics Ingtitute of the Academy of Sciences of the USSR
and the Sukhumi Expedition was transformed into the
Sukhumi Marine Research Station, Sukharevskii
became the head of alaboratory and then the head of a
department of the Acoustics Institute and, simulta-
neously, the head of the Sukhumi Marine Research Sta
tion.

In 19591960, Sukharevskii supervised the work of
the joint Soviet—China expedition on hydroacoustics
that was organized by the Academy of Sciences of the
USSR and the Academy of Sciences of the People’'s
Republic of China.

In 1961-1966, Sukharevskii was a Deputy Director
of the Acoustics Institute and, simultaneoudly,
remained the head of the Hydroacoustics Department.

In 1970, Sukharevskii received thetitle of Professor.
In his final years, he was a principal researcher of the
Acoustics Institute, an active member of the Scientific
Council of the Institute, and the chairman of the regular
seminar on hydroacoustics. He continued his active
work in research and published a number of papers
devoted to the generaization of his previous studies
and to the devel opment of certain new lines of research
in hydroacoustics.

At the age of 90, Sukharevskii earned the Prize for
the Best Publication in Academic Editions.

In 2004, approaching the age of 98, Sukharevskii
wrote three articles for the book devoted to the
50th anniversary of theAcoustics Institute. He also pre-
pared a brief paper outlining the main contents of his
future monograph that should be entitled Several New
Aspects of the Sonar Problem. However, he had not
enough time to realize this project.

Sukharevskii |eft arich scientific heritage. Heisthe
author of 165 scientific works, including three mono-
graphs.

He was not only a prominent scientist but also atal-
ented teacher of young scientists. The scientific school
formed by Sukharevskii is well known as a school of
excellent specidists in hydroacoustics. Sukharevskii
educated 11 doctors of science and 26 candidates of sci-
ence. His former students have become full and corre-
sponding members of the Academy of Sciences, hon-
ored scientists and engineers, and honored inventors.

MAZEPOV

The name of the prominent practical scientist
Sukharevskii is respected among broad circles of civil
and military specialists in hydroacoustics.

For his services to the country, Sukharevskii was
awarded two Orders of the Red Banner of Labor, an
Order of the October Revolution, a Badge of Honor, a
Valiant Labor during the Patriotic War Medal, and other
medals; he also received the title of the Laureate of the
USSR State Award. In the last years of his life,
Sukharevskii received a special grant from the Presi-
dent of the Russian Federation as “a Prominent Scien-
tist of Russia”

THE MAIN RESULTS OF SUKHAREVSKIT'S
SCIENTIFIC AND ENGINEERING ACTIVITIES

In 19301942, Sukharevskii carried out research
and design in electroacoustics, acoustic metrology, and
architectural acoustics.

He developed metrological test benches for the cal-
ibration and testing of electroacoustic transducers—
transmitters and receivers of sound—under the condi-
tions of an acoustic chamber and under field conditions.

He designed Russia' sfirst test bench for the absolute
calibration of loudspeakers and microphones and for
measuring their frequency characteristics and nonlinear
distortions. This test bench was used for testing the
quality of the electroacoustic equipment produced by
the enterprises of the People’s Commissariat of Com-
munication and by local industry.

Sukharevskii developed the theory of insonification
of large halls and open spaces with the use of electroa-
coustic horn systems.

He planned and realized Russia's first outdoor
acoustic test site (near Balashikha, Moscow region) for
full-scale measurements of the characteristics of pow-
erful sound sources, including horn loudspeakers for
outdoor broadcasting.

On the basis of the results obtained from studying
the directional characteristics of acoustic horns at the
test site, Sukharevskii proposed and designed a funda-
mentally new high-quality horn loudspeaker with auni-
form response and directional characteristic in a broad
frequency band.

He studied electroacoustic horn systems for insoni-
fying large halls and outdoor spaces. He developed a
method for cal culating the parameters of these systems.

He performed theoretical and experimental studies
of the acoustic feedback that restricted the possibilities
of sound amplification in both indoor and outdoor
sound amplifying systems.

He developed and substantiated Russia’s first sys-
tem of distributed loudspeakers for insonifying large
open spaces, which simulated the effect of boominess
of a large hall without echo interference (reverbera-
tion). Such asystem wasinstalled under his supervision
at the All-Union Agricultural Exhibition in Moscow.
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Sukharevskii designed and organized the manufac-
ture of Russia’s first low-frequency directional |oud-
speaker with a very large horn. To test the characteris-
tics of the new powerful loudspeaker, he organized an
expedition to the region of Mount Elbrus. The loud-
speaker and amicrophone (with the transmission of the
received signal through radio) were positioned on the
two ridges of Elbrus (3000-3500 min height) separated
by adeep valley. There, Sukharevskii studied the sound
propagation range without the acoustic effect of the
earth’s surface; he also studied the fluctuations of the
signal in amplitude and phase due to the inhomogeneity
and dynamics of the medium.

Sukharevskii put forward the original idea of
installing a set of loudspeakers on the giant airplane
Maksim Gor’ kii for insonifying large areas with intel -
ligible speech.

He carried out research in architectural acoustics
and electroacoustics in application to broadcasting. He
performed full-scale measurements of the acoustical
characteristics of broadcasting studios and the charac-
teristics of microphones. He implemented his original
idea of controlling the directivity of vector micro-
phones used in broadcasting.

In application to the problems of architectural
acoustics, he developed a new impulse method for an
objective evaluation of the acoustics of concert halls
and large auditoriums by the criterion of the nonstation-
ary “process of sound formation” instead of the previ-
ously known reverberation time criterion. The impulse
method of excitation with an analysis of arecording of
the sound formation process alows the determination
of theinstant of the first reflection arrivals and the spa-
tial identification of these reflections. A similar method
was mastered by architectural acousticians in the
United States 10 years later.

Sukharevskii used the aforementioned method to
reveal the acoustic defects of the Tchaikovsky Concert
Hall, which was newly built at that time. Asaresult, the
acoustic drawbacks of thishall were explained from the
scientific point of view. The discussion of the defects
along with the possible measuresfor their improvement
was planned for July of 1941, but the outbreak of World
War Il on the territory of the USSR prevented the ful-
fillment of these peaceful plans.

Sukharevskii began working on military problems
together with other scientists. He worked at the
improvement of sound-detecting horns used in anti-air-
craft artillery. The first full-scale experimental studies
of the characteristics of these horns were performed
near Moscow, 15 km away from the front. It was found
that the main disadvantage of sound-detecting hornsis
their high sensitivity to wind noise, which considerably
reduces the detection range. To suppress wind noise,
Sukharevskii developed awind-protecting screenin the
form of a multilayer fairing made of a thin metal net,
which protected the horn throat. Full-scale tests of
sound-detecting horns with wind protection showed a
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considerable increase in the detection range. The
improved sound-detecting horns were accepted for use
in air defense in 1942, and the commander of the air-
defense forces officially expressed his gratitude to
Sukharevskii.

From 1943 to 2004, Sukharevskii mainly worked in
underwater acoustics.

In 1943-1944, he organized and carried out the first
hydroacoustic expedition on the vessels belonging to
the Pecific part of the navy. He studied the characteris-
tics of hydroacoustic armaments used by Russian and
foreign naval vessels, aswell as the acoustic character-
istics of the armed vessels and underwater targets. He
carried out comprehensive studies of the conditions of
sound propagation in the ocean and reverberation asthe
main interference arising in underwater detection and
ranging.

Sukharevskii used the results of the Pacific expedi-
tion to develop proposals concerning the improvement
of sonar and recommendationsfor their optimum appli-
cation in different tactical situations and under varying
acoustical conditions of the ocean. For his contribution
to the defense potential of the USSR, Sukharevskii was
awarded an Order of the Red Banner of Labor in 1945.

Based on the results of the Pecific expedition,
Sukharevskii justified the necessity of establishing a
permanent experimental hydroacoustic base and put
forward the relevant proposals. The latter were sup-
ported by Director of the Lebedev Physical Institute,
President of the Academy of Sciences of the USSR
S.I. Vavilov, and their implementation began in 1945.

Sukharevskii supervised the construction, the equip-
ment, and the formation of the research group of the
Sukhumi Marine Research Station, which was later
transformed into the Sukhumi Branch of the Acoustics
Institute. The Sukhumi Marine Research Station cre-
ated by Sukharevskii was the most-advanced stationary
hydroacoustic base of the USSR at that time.

Sukharevskii formed and educated teams of special-
ists in underwater acoustics, who first worked at his
research sector of the Lebedev Physical Institute and,
then, at the laboratory and the department of the Acous-
tics Ingtitute.

Sukharevskii supervised experimental studies of
fundamental importance in physical and applied under-
water acoustics at the Sukhumi Marine Research Sta-
tion and the Sukhumi Branch. One of the results of
these studies was the discovery of the secondary zones
of acoustic illumination and focusing of sound.

He supervised the hydroacoustic research groups
working at the Acoustics Institute and other related
organizations involved in comprehensive experimental
studiesthat were carried out during oceanic expeditions
on research vessels, submarines, and naval vessels,
including field tests of newly designed hydroacoustic
armaments.
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Sukharevskii supervised the studies of noise radia-
tion and reflectivity of submarinesand the devel opment
of acoustic protection means for them.

He carried out basic and applied research and super-
vised the devel opment of a series of noise-suppressing,
antisonar, and vibration-damping coatings, which were
put into mass production and used in the construction
of Russian submarines.

He developed a statistical approach and criteria for
evaluating the probability of acoustic security of sub-
marines under avariety of conditions of motion, which
allowed a submarine to maintain security at a given
level.

He developed the principles of the frequency opti-
mization of sonars with alowance for the whole set of
spectral characteristics of sounding signals and noise,
the parameters of the acoustic waveguide, and the
methods of data processing.

He developed a method of using the coefficients of
variation or decrease in the detection range of a fre-
guency-optimized sonar under the variation of its own
parameters or the acoustic characteristics of the targets
and the waveguide.

He proposed a statistical approach to the main crite-
rion of the quality of hydroacoustic systems, namely,
their detection range, by introducing the probable
detection range of a sonar under the set of physical oce-
anic conditions as a statistical quantity with a given
integral probability.

On the basis of the results of comprehensive studies
and with the use of the effect of far zones of acoustic
illumination and focusing of sound, he developed the
foundations for designing a new generation of ship-
borne hydroacoustic armaments.

MAZEPOV

Sukharevskii made a radically new proposal con-
cerning the development of hydroacoustic systems for
nuclear-powered submarines with a detection range an
order of magnitude greater than that existing at thetime
and calcul ated the parameters of such systems.

He supervised the design of the first long-range
hydroacoustic system, which was accepted for use by
the navy. This work was honored by a USSR State
Award.

Sukharevskii developed a scientific basis for the
design of the future, more advanced ship-borne hydroa-
coustic armaments.

He initiated and supervised the development of
three generations of sonar systems for nucl ear-powered
submarines. These systemswere approved by the Navy,
put to mass production, and installed on submarines of
six different types.

Sukharevskii never restricted the scope of hisinter-
ests to professional occupation. He gave concerts as a
pianist with the Symphony Orchestra of the House of
Scientists of the Russian Academy of Sciences. His
repertoire included more than 15 concertsfor piano and
orchestra by Beethoven, Liszt, Tchaikovsky, Rachma-
ninov, and Gershwin. He gave usthe pleasure of listen-
ing to his musical performances at parties held at the
Acoustics Institute and during the expeditions.

The memory of Yurii Mikhailovich Sukharevskii
will forever remain in the hearts of his friends and col-

leagues.

V.I. Mazepov,

aformer student
and a comrade of Sukharevskii

Trandlated by E. Golyamina
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INFORMATION

| nfor mation on the Activities of the St. Peter sburg Seminar
on Computational and Theoretical Acoustics
of the Scientific Council on Acoustics
of the Russian Academy of Sciencesin 2004

In 2004, the St. Petersburg Seminar on Computa-
tional and Theoretical Acoustics proceeded with itsreg-
ular activities. As usual, the seminar consisted of a
series of spring sessions (March to May) and a series of
autumn sessions (October to December). In total, six-
teen sessions were held. The scope of the seminar can
be divided into three main topics. wave processesin an
acoustic (i.e., nonresistant to shear) medium, wave pro-
cessesin asolid elastic medium, and wave processesin
thin-walled structures (isolated or placed in an external
acoustic medium).

The first topic was represented by the papers by
D.P. Kouzov, S.V. Bobyshev, and S.G. Kadyrov.

Kouzov introduced refined acoustic equations that
take into account the presence of the gravitational field.
This approach, in particular, alows one to consider
sound wavesin amedium and gravity waveson aliquid
surface from a single point of view.

Bobyshev analyzed the formation of a steady-state
self-oscillation mode dueto theinteraction of ajet issu-
ing from a Laval nozzle with resonators of cylindrical
and conical shapes.

Kadyrov studied the diffraction field caused by the
incidence of a discontinuous nonstationary wave on a
rigid convex body. Using boundary integral equations,
he derived both “early” and “late” asymptotics.

The second topic was represented by the papers by
PV. Tkachev, A.P. Kiselev, A.V. Osetrov, A.M. Lin'kov,
A.V. Teplyakova, and R.G. L’'vov.

The purpose of the study carried out by Tkachev
was to estimate the effect of the microstructure of a
material on the wave processes that occur in it. The
study was based on the microstructure equations of a
medium modeled by a set of pairwise interacting con-
centrated elements that formed an infinite perfect crys-
tal lattice. Tkachev derived the dispersion relations for
a plane uniform deformation of the lattice and deter-
mined the stability conditions for its deformed state.

In the paper coauthored by E. Becacheand A.P. Kise-
lev, the field of a planar source of elastic waves was
considered and the asymptotic and numerical method
of its determination were compared.

Kiselev together with G. Huet and M. Deschamps
investigated the forms of the transverse component of a
nonstationary P-wave field.

Osetrov proposed an analytical method for the
determination of the surface waves propagating along a
randomly rough boundary. The medium was assumed
to be piezoelectric and belonging to an arbitrary sym-
metry class. The roughness was described by a correla
tion function. The boundary conditions at the rough
surface of the medium were formulated using the Ray-
leigh hypothesis.

Lin'kov discussed a new effect: amplification of
waves at a softening surface between elastic media. He
considered the connection with the problem of rock
bursts in deep mines. He also proposed an interpreta-
tion of the seismic data recorded along the fault pro-
duced by the earthquake in Taiwan in 1999.

The papers presented by Teplyakovaand L'vov were
concerned with the development of the theory of non-
destructive testing methods. Teplyakova studied the
field scattered by rigid cylindrical inclusions of infinite
length with adisruption of the adhesion bond on part of
the surface. The disruption of adhesion was quantita-
tively characterized by introducing the moduli of the
contact stiffness responsible for the transfer of elastic
displacements in the directions normal and tangentia
to the boundary. L'vov considered a scatterer in the
form of a sphere that contained a nonconcentric empty
sphereinsideit. The purpose of the studieswasto deter-
mine the scattering coefficients.

The papers concerned with the third topic were
presented by |.P. Babailov, G.V. Filippenko, and
[.V. Andronov.

Babailov considered the oscillations of an elastic
spherical segment rigidly fixed along its contour. The
initial equations were the Goldenveiser equations for a
spherical shell. The eigenfrequencies were calcul ated.

Filippenko, on the basis of an exact analytical solu-
tion, calcul ated the eigenfrequencies of aplate partially
submerged in a water basin. The water basin was
assumed to have afinite depth and an infinite length (an
acoustic waveguide), and the plate was assumed to be
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rigidly fixed to the bottom. The upper edge of the plate
was assumed to be free.

The papers presented by Andronov were concerned
with generalized point models in boundary-contact
problems of acoustics. He described the theoretical
foundations of the proposed approach (the theory of
zero-radius potentials) and two its applications for cal-
culating the wavefield in aliquid covered with a plate:
the diffraction of an acoustic wave by a crack of afinite
width and by a prominent stiffening rib. The dimen-
sions of the obstacles (the crack width and the height of
the rib) were assumed to be small compared to the
wavelength. The advantage of the proposed approachis
that, after the necessary characteristics of the field are
determined for a single obstacle, the diffraction field of
a finite number of such obstacles can be calculated by
solving a system of linear algebraic equations.

KOUzZOV

The sessions of the seminar are held in the assembly
hall of the Institute for Problems of Mechanical Engineer-
ing, Russian Academy of Sciences (Vasil’ evskii Ostrov,
Bol’shoi pr. 61, St. Petersburg), Tuesdays at 18:30.

More detailed authors' abstracts of papers and other
information on the seminar can be obtained on the web
site:

http:/mph.phys.spb.ru/~george/seminar.html

Applicationsfor papers can be forwarded by e-mail:

kouzov@alfa.ipme.ru or george@GF4663.spb.edu

and also by phone to the seminar head D.P. Kouzov
(812)312-3530 or the seminar secretary G.V. Filip-
penko (812)143-2323.

D.P. Kouzov

Trandated by E. Golyamina
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INFORMATION

Scientific-Engineering Conference
“Ship Acoustics—2005"

The scientific-engineering conference  “Ship
Acoustics 2005” was held April 12-14, 2005, in
St. Petersburg. The conference was organized by the
Krylov Central Research Institute, the East-European
Acoustical Association, and the Council on Acoustics
of the Russian Academy of Sciences.

The participants of the conference included scien-
tists from St. Petersburg and Moscow, specifically,
from the Krylov Central Research Ingtitute, Institute of
Mechanical Engineering of the Russian Academy of
Sciences, Research Ingtitute of Physicotechnical and
Radio Engineering Measurements, Aurora Central
Research Institute, Central Research Institute of Ship-
building Technology, and Central Research Institute of
Military Shipbuilding, as well as representatives from
different design offices.

In total, 42 papers were presented at the conference.
Some of them caused much discussion, for example,
the problem of self-testing for the external acoustic
parameters of a vessel. Fundamentally different solu-
tions to this problem were proposed by A.K. Novikov
and V.. Popkov. The way of using on board measuring
means, the choice of the number and positions of the
test points, the algorithms of data processing, and the
calculated control parameter—all of these aspects of
the problem were considered by the two authors and
new original solutions were proposed, which, however,
were criticized by the opponents because of the diffi-
cultiesin their realization. Nevertheless, the possibility
of developing an on board self-testing system is beyond
guestion, and the need for an experimental study of the
basic solutions with the use of models and actual ves-
sels is evident. Many papers were concerned with the
problem of reliability of underwater noise level mea
surementsin the course of the motion of an object. This
problem was discussed by Yu.F. Shilemov, V.A. Kal’yu,
and V.Yu. Garin from the Krylov Central Research
Institute and by O.A. Shiryak, A.F. Kurchanov, and
V.B. Bychkov from the Research I nstitute of Physicote-
chnical and Radio Engineering M easurements.

Some of the noise control problems encountered in
certifying a frigate built for export were considered by
M.Ya. Moshchuk and N.V. Vasil’ev. Nontypical noise

sources, such as adefect supporting bearing of the shaft
line or acavitation flow around the stock of the ship sta-
bilizer, made it impossible to reach the specified ship
noise levels, which required specia investigation to
elaborate appropriate engineering solutions.

The paper presented by Yu.l. Bobrovnitskii (Insti-
tute of Mechanical Engineering, Russian Academy of
Sciences) attracted considerableinterest. It was entitled
“How to Make a Body Transparent to Sound.” The
problem of developing an active system for reducing
the radiation and scattering of sound by an underwater
object had been considered years ago (G.D. Malyuzhi-
nets), but a technical implementation of such a system
had been impossible until this day. The new approach
proposed by Bobrovnitskii was approved by the audi-
ence as being much more realizable from the technical
point of view but still calling for experimental verifica-
tion.

The calculation of oscillations and radiation and
scattering of sound by elastic bodies was the subject of
papers presented by M.Ya. Pekel'nyi, T.M. Tomilina,
[.V. Grushetskii, and A.V. Smol’nikov. A number of
papers were concerned with the devel opment of acous-
tic protection means for ships. The papers by
Yu.N. Popov, N.V. Volkova, V.I. Kuz' menko, Yu.l. Kot-
sarev, and V.S. Konevalov reported on the results of
recent studies aimed at increasing the efficiency of
hydroacoustic and vibration-absorbing coatings and at
the design of new types of composite vibration dampers.

In the course of discussions, the participants of the
conference gave some interesting comments and put
forward some new ideas concerning the topical prob-
lems of measuring and reducing noise produced by dif-
ferent ships and vessels.

The participants of the conference estimated the | at-
ter as quite successful. The next conference, “Ship
Acoustics 2007, is planned for April of 2007.

E.L. Myshinskii

Trandlated by E. Golyamina
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