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Abstract—A new equation was recently suggested by Rudenko and Robsman [1] for describing the nonlinear
wave propagation in scattering media that are characterized by weak sound signal attenuation proportional to
the fourth power of frequency. General self-similar properties of the solutions to this equation were studied. It
was shown that stationary solutions to this equation in the form of a shock wave exhibit unusual oscillations
around the shock front, as distinct from the classical Burgers equation. Here, similar solutions are studied in
detail for nonlinear waves in even-order dissipative media; namely, the solutions are compared for the media
with absorption proportional to the second, fourth, and sixth powers of frequency. Based on the numerical
results and the self-similar properties of the solutions, the fine structure of the shock front of stationary waves
is studied for different absorption laws and magnitudes. It is shown that the amplitude and number of oscilla-
tions appearing in the stationary wave profile increase with increasing power of the frequency-dependent
absorption term. For initial disturbances in the form of a harmonic wave and a pulse, quasi-stationary solutions
are obtained at the stage of fully developed discontinuities and the evolution of the profile and width of the
shock wave front is studied. It is shown that the smoothening of the shock front in the course of wave propaga-
tion is more pronounced when the absorption law is quadratic in frequency. © 2005 Pleiades Publishing, Inc.
Nonlinear effects arising in acoustic wave propaga-
tion depend in many respects on the frequency-depen-
dent behavior of absorption in the medium. In classical
liquids, the absorption of acoustic waves is caused by
viscosity and thermal conductivity and depends on fre-
quency according to a quadratic law [2, 3]. In media
like biological tissues, the absorption law is nearly lin-
ear [4, 5]. Higher powers of frequency are characteristic
of the absorption laws of scattering media and media
with complex small-scale structure [1]. In addition,
numerical algorithms of simulating nonlinear shock
wave propagation often use fictitious absorption rapidly
increasing with frequency according to different laws
to artificially smooth out discontinuous solutions and
ensure their stability [6].

Rudenko and Robsman [1] recently suggested a new
equation (the RR equation) that describes the propaga-
tion of nonlinear waves in scattering media with
absorption proportional to the fourth power of fre-
quency. In the context of the nonlinear evolution equa-
tion of an acoustic wave, this frequency-dependent law
corresponds to the absorption operator in the form of
the fourth derivative with respect to time. Rudenko and
Robsman [1] studied the general self-similar properties
of the solutions to the RR equation and showed that
strongly decaying oscillations appear in the wave pro-
file around the shock, which is in contrast to the mono-
tonic stationary solution to the Burgers equation. At the
same time, the acoustic energy loss at the shock front of
the stationary wave is independent of the absorption
1063-7710/05/5105- $26.00 0495
magnitude; it is proportional to the third power of the
shock wave amplitude and coincides with the absorp-
tion described by the Burgers equation and the equation
of simple waves [2, 3]. Nevertheless, the problems on
nonlinear wave propagation in media with absorption
rapidly increasing with frequency are far from being
exhaustively investigated. Moreover, an extension of
the existing solutions to media with still faster power
laws of frequency-dependent absorption (for example,
proportional to the sixth power of frequency, which is
characteristic of media with a complex small-scale
structure) is also of undoubted interest.

It should be noted that the effect of frequency-
dependent dissipative properties of a medium on non-
linear wave propagation and the fine structure of the
shock front has been studied much better for absorption
terms increasing with frequency according to nearly
linear and slower laws, which are characteristic of such
media as biological tissues and relaxation media [7, 8].
As is known, the shock front of a wave is formed due to
the simultaneous action of two competing processes:
one of them is the acoustic nonlinearity that steepens
the leading edge of the wave and the other is the dissi-
pation that smoothes the shock front. Depending on the
absorption behavior, the jump at the shock front can be
described by either a finite front width or by a mathe-
matical discontinuity [2, 3]. Exact analytical solutions
for strongly distorted nonlinear waves can be derived
only for certain simple cases, such as a nonabsorptive
medium (the equation of simple waves), viscous
© 2005 Pleiades Publishing, Inc.
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medium with quadratic absorption (the Burgers equa-
tion) [2, 3] and frequency-independent absorption [9],
and relaxation media [8]. In the general case, the study
of nonlinear waves with shock fronts requires resorting
to either asymptotic constructions or numerical proce-
dures [6, 7, 9–12]. It was shown [9] that the solution for
the wave profile can contain a stable shock front in the
form of a mathematical discontinuity if the high-fre-
quency absorption behavior is described by a function
increasing slower than the linear one. Characteristic
examples are the discontinuous solutions for relaxation
media [8, 11], media with frequency-independent
absorption [9], and media with selective absorption for
certain frequencies [12]. If the absorption increases
with frequency according to a law faster than the linear
law, the shock front will have a finite width.

In this paper, we investigate in detail and compare
the features of nonlinear wave propagation in dissipa-
tive media of even orders, where the absorption is pro-
portional to the second (the Burgers equation), fourth
(the RR equation), and sixth powers of frequency. We
consider the evolution of wave profiles and parameters
to the corresponding stationary values and analyze the
parameters of the shock fronts of stationary and quasi-
stationary solutions.

Consider the nonlinear evolution equation with
absorption proportional to an arbitrary even power of
frequency:

(1)

Here, p is the sound pressure; x is the coordinate along
which the wave propagates; τ = t – x/c0 is the time in the
moving coordinate system; c0 is the phase velocity of
sound; ε is the coefficient of nonlinearity of the
medium; β is the absorption coefficient; and parameter
η takes on the values of 2, 4, and 6.

For further calculations, it is convenient to rewrite
Eq. (1) in terms of dimensionless variables:

(2)

where

(3)

Here, V is the sound pressure normalized by a certain
characteristic amplitude p0, xs is the distance to the
point of discontinuity formation in the harmonic wave
of frequency ω0 in the absence of absorption, θ is
dimensionless time, and Γ is the dimensionless absorp-
tion parameter similar in physical meaning to the
inverse Reynolds number in the Burgers equation [2].
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We note that the solutions to Eq. (2) for arbitrary η =
2, 4, and 6 are of a self-similar character, which allows
one to construct a whole class of new solutions from a
single known solution. One can easily show that, if the
function V0V(θ0, z0) is a solution to Eq. (2) in the coor-
dinates θ0 and z0 for some absorption Γ0 and character-
istic amplitude V0, then the function V1V(θ1, z1) of
transformed arguments

(4)

is also a solution to Eq. (2) for other arbitrary absorp-
tion Γ1 and amplitude V1.

Let us investigate the class of stationary solutions to
Eq. (2) in the form of a pressure jump using the self-
similarity property (4). For this purpose, we require a
single stationary solution for some preset parameter Γ0
and amplitude V0. Let us set, for example, Γ0 = 1 and
V0 = V(θ  ∞) = |V(θ  –∞)| = 1, which corre-
sponds to the discontinuity amplitude (pressure jump at
the front) As = 2. For a numerical study of the stationary
solution formation and shock front dynamics, we select
the initial condition in the form of the hyperbolic tan-
gent

(5)

where 2G is the initial front width. The solution to
Eq. (2) is determined successively for the nodes of a
grid along the z coordinate with grid spacing hz by the
finite-difference algorithm:

(6)

which is conservative in the nonlinear operator, first-
order in z, and second-order in the time coordinate θ.
Here, hθ is the grid spacing in θ, n is the number of the
nodes of the temporal grid, and Lη(V) is the operator of
the corresponding higher derivative with respect to
variable θ for η = 2, 4, and 6 [13]. In order to determine
the optimum values of the grid spacing that ensure the
stability and a given accuracy (0.3%) of the solution,
we carried out calculations for different values of the
grid spacing, different widths of the initial front G, and
different disturbances of the initial smooth profile (5).
To avoid reflections from the grid boundaries, we used
a sufficiently wide temporal window.

Figure 1 shows the calculated evolution of initial
disturbances (a flat disturbance with G = 4.0 and a steep
disturbance with G = 0.05) to a stationary shock profile
for different η = 2, 4, and 6. As may be seen, in the clas-
sical case of a viscous liquid (η = 2), the resulting sta-
tionary wave has a smooth shock front of a finite width
[2]. The stationary solution to the modified Burgers-
type equation with η = 4 and 6 also behaves as a shock
wave; however, the structure of the shock front is essen-
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tially different: decaying oscillations appear on both
sides of the front. The oscillation period (T = 6.4 at η =
6 and T = 7.0 at η = 4) is comparable to the width of the
shock front of the stationary solution, and the number
and amplitude of oscillations are the greater, the higher
the derivative used in the absorption description.

Figure 2 shows the evolution of the peak value of the
wave profile Vmax(z) = maxθ(|V(z, θ)|) and the maximum
steepness of the shock front to the stationary values for
the same initial profiles (5) with front widths obviously
greater (G = 4.0) and smaller (G = 0.05) than the front
width of the stationary wave. The steepness (the inverse
width) of the shock front ∆–1 was determined as the
derivative ∆–1 = ∂V/∂θ at the front center θ = 0. It is seen
from these curves that, in the case of the law quadratic
in frequency η = 2, the profile peak values do not vary
with distance, Vmax = 1, and the front steepness tends
monotonically to the stationary value ∆–1 = 0.5. For η =
4 and 6, the steepness of the initially flat front also
monotonically increases with the distance travelled by

1
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0 10
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0
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0
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η = 2

V

Fig. 1. Nonlinear evolution of the initial disturbances (G =
4.0 and G = 0.05) to the stationary solution for different
absorption laws η = 2, 4, and 6. The bold line shows the sta-
tionary solution.
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the wave. The peak value of the wave profile remains
intact at the beginning of the propagation process. The
oscillations appear and the peak value begins monoton-
ically increasing to the stationary value only when the
wave front becomes noticeably steeper. For an initially
steep disturbance, oscillations in the wave profile
appear from the very beginning; in this case, the peak
value sharply increases, the front steepness decreases,
and a further evolution of the parameters exhibits a non-
monotonic oscillating behavior. The stationary values
of the wave parameters for the considered cases of η =

2, 4, and 6 are  = 0.5, 0.84, and 0.87 and Vmax, η = 1,
1.23, and 1.29, respectively.

Using the self-similarity property (4) and the sta-
tionary solutions determined numerically for Γ0 = 1.0
and V0 = 1.0, we consider the basic features of station-
ary solutions as functions of absorption Γ and deriva-
tive order η for a fixed amplitude of the shock front.
Setting Γ0 = 1.0 and V0 = V1 = 1.0 (As = 2) in Eqs. (4),
we obtain an expression for the shock front steepness
for an arbitrary Γ:

(7)
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Fig. 2. Evolution of (a) the peak value Vmax of the shock
wave profile and (b) the shock front steepness ∆–1 =
∂V/∂θ(θ = 0) to the stationary values for steep (G = 0.05)
and flat (G = 4.0) initial disturbances and different absorp-
tion laws η = 2, 4, and 6. The curves are obtained for the
absorption parameter Γ = 1.0 and the pressure drop at the
front As = 2.
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Figure 3 shows the shock front steepness versus the
quantity Γ for different types of absorption. As can be
seen, the front steepness always monotonically decreases
with increasing Γ. The curves meet in the region Γ = 0.5–
0.8, where the front steepness approaches unity. If the
absorption is weak (Γ < 0.5), a steeper shock front is
formed for the absorption that increases slower with fre-
quency. In the case of a strong absorption (Γ > 0.8), an
opposite relationship between the front steepness and the
absorption law occurs in the region after the intersection
point of the curves.

Figure 4 shows the stationary solutions to Eq. (2)
and their first and second derivatives for different η at
Γ = 0.5. For η = 4 (the RR equation), the curves
obtained correspond to the results obtained in [1]. As is
seen from the curves, the oscillations accompanying
the establishment of the stationary solution and deriva-
tives are more prominent for the higher derivative
describing the absorption law (η = 6). The oscillation
period-to-front width ratio depends on the derivative
order only slightly (T∆–1/V0 = 6.0 at η = 4 and T∆–1/V0 =
5.6 at η = 6) and, in view of the self-similar property of
the solution, is a quantity invariant with respect to
parameter Γ and discontinuity amplitude As = 2V0.

Consider now the features of the quasi-stationary
solutions to Eq. (2) that occur for small Γ by the exam-
ples of an initially harmonic wave and a Gaussian
pulse. As is known, at η = 2, the smooth segments of the
wave profile at the stage of fully developed discontinu-
ities are adequately described by the solution to the
equation of simple waves, and the structure of the shock
front nearly coincides with the stationary solution for
the corresponding discontinuity amplitude (the Khokh-
lov solution to the Burgers equation [2]). One would
expect that the oscillating front structure observed for
η = 4 and 6 will nearly coincide with the structure of
stationary waves of the corresponding amplitude. How-
ever, the steepness of the fronts corresponding to differ-
ent absorption laws will exhibit different dependences
on the distance-dependent discontinuity amplitude
As(z), which can be unambiguously determined from

4

0.5 Γ1.0 1.5

η = 23
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1

0

4

6

∆–1

Fig. 3. Shock front steepness ∆–1 = ∂V/∂θ(θ = 0) as a func-
tion of the absorption parameter Γ for different η = 2, 4, and
6. The pressure drop at the front is Ap = 2.
the exact solution to the equation of simple waves for
an arbitrary initial profile.

Depending on the frequency-dependent absorption
law η = 2, 4, and 6, we select the values of parameter Γ
to satisfy the requirement that the shock front steep-

nesses be identical, say  = 5, at the point where the
wave profile has the dimensionless discontinuity ampli-
tude A0 = 1. The corresponding absorption parameters
Γη are easily determined from the self-similarity prop-
erty (4) of the resulting stationary solutions whose front

steepness  at Γ = 1 and As = 2 is known (see Figs. 1
and 2):

(8)

which yields Γ2 = 2.5 × 10–2, Γ4 = 3 × 10–4, and
Γ6 = 2.45 × 10–6. Figure 5 shows the shock front steep-
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Fig. 4. Nonlinear stationary wave profiles and their first and
second derivatives for different absorption laws η = 2, 4,
and 6 at Γ = 0.5.
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ness as a function of distance z and the distance-depen-
dent evolution of the profile of an initially harmonic
wave V(z = 0, θ) = sin(θ); all data were calculated
numerically on the basis of Eq. (2) for the above param-
eters Γη and η = 2, 4, and 6. The simulation was carried
out in the spectral representation using 100 harmonics
of the reference frequency [7]. One can see that the
front steepnesses actually coincide for all absorption
laws at the distance z = 5.3, where the discontinuity
amplitude is As = 1 in accordance with the exact solu-
tion to the equation of simple waves. The maximum
front steepness is achieved at the maximal value of dis-
continuity As = 2 (z = π/2), and the greatest value of the
maximum corresponds to the quadratic law of fre-
quency-dependent absorption η = 2. The fastest
decrease in the front steepness with distance (the max-
imum smoothing of the shock front) occurs at η = 2. For
η = 4 and 6, oscillations appear in the profile behind the
front; the oscillation amplitude decreases and duration
increases as the discontinuity amplitude decreases, in
accordance with properties of stationary solutions.

Figure 6 shows similar results of a numerical simu-
lation by Eq. (2) for the same parameters Γη, but for the
initial disturbance in the form of a Gaussian pulse V(z =
0, θ) = 2.0exp(–θ2/1.72). The pulse amplitude and dura-
tion are set in a way that ensures that the distance to the
point of discontinuity formation and the maximum dis-
continuity amplitude are the same as in the case of the
above harmonic wave: z = 1 and As = 2. In this case, the
shock front steepnesses become equal at greater dis-
tances z, because the nonlinear attenuation of the shock
pulse As ~ (1 + z)–1/2 is slower than the attenuation of the
symmetric saw-tooth wave As ~ (1 + z)–1 [2, 3]. The
pulse profiles corresponding to different absorption
laws nearly coincide for equal distances on smooth seg-
ments; however, the front structure is noticeably differ-
ent and basically reproduces the behavior of the station-
ary solutions.

It is clear that the degree of closeness of the shock
front structure at the stage of fully developed disconti-
nuities to the stationary solution depends on the magni-
tude of the parameter Γ and on the absorption law η.
Figure 7 illustrates the difference between the shock
front steepness calculated from Eq. (2) for the initially
harmonic wave (the solid curves) and the stationary
solution steepness obtained from the discontinuity
amplitude of the solution to the equation of simple
waves for given parameters Γ and η (the dashed lines).
The calculations were carried out for the parameters Γη
belonging to two sets, every of which corresponded to
a certain maximum front steepness (at z = π/2) for all
absorption laws η. It is seen that, for weak absorption
(upper curves, the right-hand ∆–1 axis) and η = 4 and 6,
the stationary solution adequately describes the shock
front steepness beginning almost from the point of dis-
continuity formation. For quadratic frequency-depen-
dent absorption η = 2, the differences are more promi-
nent and the shock front approaches the stationary solu-
tion at distances of several lengths of discontinuity
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
formation. For greater values of parameter Γ (lower
curves, the left-hand ∆–1 axis), the structure of the
shock front approaches the stationary solution for
greater distances, the front is more spread than in the
stationary solution, and these differences are again
more prominent for the quadratic absorption law. In the
simulations of heavily distorted nonlinear signals, these
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Fig. 5. (a) Shock front steepness as a function of distance
and (b) the evolution of the profile of the initially harmonic
wave for different absorption laws η = 2, 4, and 6 and the
corresponding absorption parameters Γ2 = 2.5 × 10–2, Γ4 =
3 × 10–4, and Γ6 = 2.45 × 10–6.
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features play a significant role. It is the front steepness
that determines either the temporal spacing of the grid
or, in the spectral approach, the required number of har-
monics. As a result, for fixed parameters of the numer-
ical scheme, the use of an invented absorption rapidly
increasing in the high-frequency region results in
smaller distortions of the solution structure in compar-
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Fig. 6. (a) Shock front steepness as a function of distance
and (b) the evolution of the profile of the initially Gaussian
pulse for different absorption laws η = 2, 4, and 6 and the
corresponding absorption parameters Γ2 = 2.5 × 10–2, Γ4 =
3 × 10–4, and Γ6 = 2.45 × 10−6.
ison with the discontinuous solution in a lossless
medium, in which the mathematical discontinuity is
replaced with the corresponding stationary solution. In
this case, wave energy absorption will also nearly coin-
cide with the absorption caused by discontinuities in
the stationary wave.

As is known, the wave energy absorbed at an infi-
nitely narrow (discontinuous) front is proportional to
the third power of the discontinuity amplitude [3]. In
dissipative media with η = 2 and 4, the absorption at the
shock front of a finite width is independent of linear
loss Γ and coincides with the absorption at an infinitely
narrow discontinuity if the shock front width is small in
comparison with other wave scales [1, 2]. One can eas-
ily show that this situation holds for η = 6 and any other
even η. Assume that the solution V has a narrow shock
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Fig. 7. Shock front steepness of the initially harmonic wave
as a function of distance for different absorption laws η = 2,
4, and 6 and different absorption parameters Γ. The solid
curves are obtained from the numerical solution, and the
dashed curves, from the exact solution to the equation of
simple waves by replacing the mathematical discontinuity
with the corresponding stationary solution.
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front and sufficiently smoothly tends to zero behind the
front. As in [1], we multiply Eq. (2) by Vdθ and inte-
grate the result in infinite limits. Then, using notation

R = Γ, for the energy E =  we obtain

the equation

(9)

or, after integration by parts,

(10)

The first term on the right-hand side of Eq. (10) van-
ishes in view of the condition V|θ → ±∞ = 0. Derivatives
∂η – 1V/∂θη – 1 in the second term behave as narrow
peaks near the shock front and rapidly vanishing
smooth functions at a distance from the front, so that
the absorption mainly occurs at the shock front. Then,
assuming that the front profile in the integration region
nearly coincides with the stationary wave profile (i.e.,
setting ∂V2/∂θ = −2R∂ηV/∂θη) and integrating over θ in
view of |V|θ → ±∞ = V0, we obtain

(11)

Substituting Eq. (11) into Eq. (10), we obtain the
desired expression for the wave energy absorption:

(12)

where Ap is the amplitude of pressure discontinuity.

Thus, the self-similar property of the solutions to
Eq. (2) and the stationary solutions (Fig. 1) obtained
numerically in this paper for certain fixed discontinuity
amplitude and absorption parameter allow one to obtain
the whole class of stationary solutions to Eq. (2) for dif-
ferent absorption laws with even powers of frequency,
an arbitrary absorption magnitude, and an arbitrary dis-
continuity amplitude. As the power η in the frequency-
dependent absorption law increases, the amplitude and
number of oscillations appearing in the stationary wave
profile increase (for η = 4 and 6). In the case of har-
monic and pulsed initial signals, the structure of the
shock front of a finite width formed in a weakly absorb-
ing medium at the stage of fully developed discontinu-
ities reproduces the structure of the stationary wave
front; moreover, the absorption at the shock front coin-
cides with the absorption at an infinitely narrow discon-
tinuity of the same amplitude. The smoothing of the
front in the course of propagation is more prominent for
the absorption quadratic in frequency; for this reason,
the use of invented absorption rapidly increasing in the
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high-frequency region is worthwhile in the simulations
of discontinuous waves: it minimizes the shock wave
spreading and yields a more accurate description of the
smooth segments of the wave profile and the wave
energy absorption. However, this invented absorption
causes oscillations around the shock front, so that the
shape of the profile near the front, as well as the peak
values of the wave, will be distorted.
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Abstract—We consider the possibility of solving the inverse scattering problem in the linear approximation (in
the form of a convolution equation) by reducing it to a system of linear algebraic equations and minimizing the
residual. Since the problem is an ill-posed one, the Tikhonov regularization proves useful. The possibility of
using the entropy of the image estimate as a stabilizing functional is considered, which is the key idea of the
maximum entropy method. The single-frequency and multifrequency versions of the method are realized. The
advantage of the maximum entropy method over the conventional linear methods of solving the inverse scatter-
ing problem is shown. The superresolution and sidelobe suppression abilities of the maximum entropy method
are demonstrated. The method is shown to be stable to measurement noise and multiplicative interference in the
form of aperture decimation. Examples of the image reconstruction by the maximum entropy method from
model and experimental data are presented. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Obtaining information on the internal structure of
such different optically opaque objects as the ocean,
human body, welds in pipelines, etc., is a topical prob-
lem belonging to the class of inverse scattering prob-
lems. The inverse scattering problem consists in deter-
mining the quantitative characteristics of inhomogene-
ities from observations of the field scattered by them.
Different types of incident field are used: electromag-
netic, X-ray, acoustic, etc.

A widespread type of inverse scattering problems in
nondestructive testing are those concerned with ultra-
sonic sounding of optically opaque objects and struc-
tures. The purpose of sounding is to find internal
defects (cavities, cracks, etc.) and determine their size.
An important issue in ultrasonic nondestructive testing
is how to classify the defects found and how to generate
an expert evaluation of whether the object is suitable for
use.

To obtain sufficiently high-resolution images of
the defects, systems that coherently process the mea-
sured echo signals are employed. In Russia, the
Avgur-4.2 system [1] is used to test pipeline welds at
nuclear power plants. Abroad, the Masera system
from Technoatom and the µ+ system from Sonomatic
are used to check performance-critical structures.
Such industrial systems obtain images of the scatter-
ers by algorithms that solve the scalar inverse scatter-
ing problem in the Born approximation. Among the
algorithms of this class, there are the SAFT method
[2, 3], the angular spectrum method [4], and the
1063-7710/05/5105- $26.00 ©0502
method of projection in the spectral space [5, 6]. The
latter method is especially efficient, because it takes a
small time to reconstruct the scatterer images from a
set of echo signals measured in the combined mode,
when the ultrasonic pulses are transmitted and
received by the same transducer.

The underside of simplicity of these algorithms is
that images of the defects are far from always being of
a sufficiently high quality. They exhibit a high level of
spurious images produced by multiply scattered pulses
and pulses generated in wave transformations accom-
panying the scattering from the inhomogeneities. Also,
it is not always possible to uniquely identify the
defect’s shape, because the image is reconstructed only
for the part of its boundary from which the echo pulses
are recorded at the reception site. The problem of
improving the resolution and reducing the speckle
noise is topical in nondestructive ultrasonic testing.

To obtain images whose resolution is higher than the
Rayleigh limit, i.e., superresolution images, algorithms
that extrapolate frequency and angular signal spectra
are used. For example, the Gershberg–Papoulis itera-
tion algorithm [7–10, 22] or the algorithm that extrapo-
lates the spectrum of echo signals through constructing
their autoregressive (AR) model [11–14]. The Gersh-
berg–Papoulis algorithm is used to extrapolate the echo
signal spectrum, which enhances the range resolution,
as well as to extrapolate the complex image spectrum,
which enhances both the range resolution and the lat-
eral resolution. Because the Gershberg–Papoulis
method applies thresholding at a level of about 30% of
 2005 Pleiades Publishing, Inc.
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the maximum value, it neglects information about
small-amplitude scatterers. Extrapolation of the echo
signal spectrum in terms of its AR model improves only
the range resolution rather than the lateral resolution.

Among various methods for solving such problems,
one may distinguish the so-called maximum entropy
method (MEM). It was substantiated, and the first prac-
tical results were obtained in the 1950s by Jaynes, who
demonstrated that Shannon’s entropy can be used in
fuzzy decision problems. Shannon’s entropy of a set of
discrete independent random quantities is defined as
follows:

In 1972, Freiden showed that entropy can be used as
a stabilizing functional in the Tikhonov regularization
method [20]. It was demonstrated that superresolution
can be achieved in an imaging system (a one-dimen-
sional noncoherent object and a diffraction-limited
forming system) [15]. The image pixel intensity was
associated with probabilities. The study has shown that
the MEM is efficient for reconstructing images in
tomography [16], radio astronomy [17], nuclear mag-
netic resonance (NMR) [18], and ultrasonic testing
[19]. Conferences under the title Bayesian Framework
and Maximum Entropy are held on a regular basis, and
capabilities of the MEM are extended from year to year.

In this paper, we consider the possibility of applying
the MEM in ultrasonic testing to enhance the scatterer
image quality.

MATRIX MODEL OF THE SCATTERING 
PROBLEM

Following [19], let us write the formula that
describes the scattering and reception of ultrasound at a
frequency ω:

(1)

Here, r ∈  SDEF ⊂  R2 is the position vector of a point in
the scattering region (shown in Fig. 1 in gray), rRCV ∈
SRCV ⊂  R1 is the position vector of a point on the linear
receiving aperture, j is the imaginary unit, k is the wave
number, g(r, ω) is the Green’s function of the Helm-
holtz equation at the frequency ω, θ(r, ω) is the receiver
pattern, f(r) is the scattering potential (independent of
frequency), U0(r, ω) is the primary illumination field,
and n(rRCV, ω) is the additive measurement noise.

The plus and minus signs before the integral in
Eq. (1) refer to boundary problems I and II, respec-

H pi pi.ln
i 1=

N

∑–=

U rRCV ω,( ) 2 jk θ r ω,( )
S

∫±=

× g rRCV r ω,–( )U0 r ω,( ) f r( ) r n rRCV ω,( ).+d
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tively. Boundary problem I models acoustically soft
scatterers; boundary problem II, acoustically hard scat-
terers and is typical of ultrasonic nondestructive testing
applications.

The system that creates holograms U(rRCV, ω) is
assumed to be linear, and the linear model is con-
structed in terms of the Kirchhoff approximation (phys-
ical optics approximation) for opaque scatterers. Equa-
tion (1) was derived under the following assumptions:

(i) only the first-order scattering from the scatterers
is taken into account (multiple scattering is ignored);

(ii) the mode transformation is ignored;

(iii) the scatterer boundary is smooth;

(iv) the field in the scatterer’s shadow is zero;

(v) the field gradients and the Green’s function are
calculated under the assumption that only plane waves
propagate in the medium and the wave reflected by the
scatterer’s face propagates along the normal to the face;
and

(vi) only the I- and II-kind boundary conditions are
modeled.

In spite of these assumptions, there are many meth-
ods for solving the inverse scattering problem in the lin-
ear approximation that provide images whose quality is
sufficiently high for the majority of applications. Sys-
tems that successfully realize these algorithms in prac-
tice were mentioned in the Introduction.

The above model allows us to simulate various
sounding techniques by choosing the corresponding
function U0(r, ω). In particular, to simulate monostatic
measurements, in which the transmitter and receiver are
collocated, we use U0(r, ω) in the form of the same
Green’s function g(r, ω) and, without loss of generality,
the monostatic measurement model alone is considered
below.

Measurement region SRCV

Opaque

Scattering region SDEF

scatterer f

x

z

rRCV

r

Fig. 1. Schematic diagram of the scattered field measure-
ments in the combined mode.
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To solve the direct and inverse scattering problems on
a computer, a discrete model of ultrasonic scattering and
reception must be constructed. Equation (1) is sampled
on a uniform grid in Cartesian coordinates xz. The same
grid is used for the unknown solution f to the equation.

Below, we use the following notations: N and M are
the x- and y-axis dimensions of the grid in the image

reconstruction region, respectively; ∆x and ∆z are the
grid step sizes in the x and z axes, respectively; A is the
number of points on the linear aperture (the distance
between the samples is also ∆x); f is the lexicographi-
cally ordered NM × 1 vector, which is a discrete repre-
sentation of the scattering potential in the image recon-
struction region
(i.e., we write f =  instead of f =  

f 11

f 12

f 1N

f 21

f 22

f 2N

f M1

f M2

f MN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

…
…

…
…

f 11 f 12 … f 1N

f 21 f 22 … f 2N

f M1 f M2 … f MN 
 
 
 
 
 
 

,

… … … …

where fij is the value of function f(r) at the point rij); hω

is the A × 1 vector, which represents the ultrasonic field
U(rRCV, ω) measured on the receiving aperture at the
frequency ω (in the single-frequency case, we omit the
subscript); we will also call hω a hologram at the fre-

quency ω; and  = U( , ω), where  is the

distance to the ith point of the receiving aperture. In
practicing nondestructive testing, numbers of samples
N, M, and A may be as high as about 1000.

The wave propagation to the receiving aperture is

taken into account by the A × NM circulant matrix1 Gω,
which is a discrete representation of the squared
Green’s function in the image reconstruction region
with allowance for the pattern:

1 The term circulant matrix refers to the matrix of the following

structure: Q = , i.e., each subsequent row

of the matrix is equal to the preceding row shifted one place to
the right.

hω
i rRCVi

rRCVi

q11 q12 … q1N

q21 q22 … q2N 1–

q12 q13 … q11 
 
 
 
 
 
 

… … … …
Here, the row of number i is a discrete representa-
tion of the squared Green’s function, with which the
scattering potential must be convolved to obtain the
field at the ith point of the receiving aperture:

where  is the distance to the ith point of the receiv-
ing aperture and rnm is the distance to the point in the
image reconstruction region, at which the sample of
number n, m on the X and Z axes, respectively, is taken.
This model can also describe the effect of a multiplica-
tive interference on the hologram. The multiplicative
interference is represented by multiplying the hologram
by a random function. In the discrete formulation, it is
convenient to represent the effect of the multiplicative
interference by multiplying the hologram by a diagonal
matrix.

Gω

g1 1, g1 2, … g1 NM,

g2 1, g2 2, … g2 NM,

gA 1, gA 2, … gA NM, 
 
 
 
 
 
 

.=

… … … …

gi nm, 2 jkθ2 rnm( )g2 rRCVi
rnm– ω,( )/∆x,±=

rRCVi
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It is of interest in image reconstruction when S is a
decimation operator, which models the loss of a portion
of data on the receiving aperture. In the harmonic case,
to solve the direct scattering problem, i.e., to calculate
the field on the receiving aperture, one can perform the
following matrix operations:

(i) multiply the matrix of the operator G of the direct
problem by f (which corresponds to the calculation of
the convolution integral in Eq. (1) by the method of
rectangles);

(ii) add the vector of the discrete complex zero-
mean Gaussian white noise with the variance σ2, i.e.,
nω = (n1 n2 … nA)T, where Reni ~ N(0, σ2) and Imni ~
N(0, σ2); and

(iii) apply the matrix S of the multiplicative interfer-
ence for the aperture decimation case, which sets the
field measured at particular nodes equal to zero in order
to allow for the data loss on the receiving aperture.

Ultimately, the direct scattering problem at the fre-
quency ω is formulated as follows:

(2)

In practice, holograms are usually calculated at K
frequencies within the range (ωmin; ωmax) and processed
simultaneously:

(3)

This model can be modified in order to allow, for
example, for multiple scattering of the field by the inho-
mogeneities and for wave transformation. It may also
be possible to allow for the geometry and smooth vari-
ation of the velocity of sound in the object under testing
by constructing an appropriate Green’s function, which
is in general a separate and very complex problem. The
more accurately the direct scattering problem is
described, the more reliable the solutions obtained by
minimizing the residual of the direct problem are.

As the quality criterion of the reconstructed image,
we use the squared residual (written for a single fre-
quency below):

(4)

That is, the reconstructed image is a solution to the
unconstrained minimization problem (solution in terms
of the least squares method):

(5)

hω S Gω f nω+( ).=

h hωmin … hωmax( )T=

=  
Sωmin … 0

0 … Sωmax 
 
 
 
  Gωmin

Gωmax 
 
 
 
 

f
nωmin

nωmax 
 
 
 
 

.+

… … … … …

χ2 f( ) ρ2 SG f h,( ) SGf h– 2= =

=  SGf h–( )T SGf h–( ).

f̂ χ2 f( )( ).
f R

MN∈
minarg=
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Within the terminology used in [20], a solution to
degenerate system (2) that provides the minimum error
χ2 is called a pseudosolution. There are an infinite num-
ber of such pseudosolutions, and such parameters as
resolution and level of speckle noise are in general far
from ideal values.

Since the digital acoustic holography uses complex
numbers, the dimension of all variables becomes twice
as large and both the real and imaginary parts of the
image must be reconstructed, which is required by the
optimization problem with a complex criterion. In the
calculations, the vectors and matrices are written in the
form:

(6)

The gradient and Hessian of the criterion are calcu-
lated as follows (using differentiation rules for matrix
equations):

(7)

(8)

The formal solution in terms of the necessary condi-
tion for the first-order extremum (the gradient of the
criterion must be zero) yields [19, 20]

(9)

where the singular value decomposition (SVD) of the
degenerate matrix is used:

The superscript T means matrix transposition. An ana-
log of expression (9) is the inverse filter. If zero values
of λ i or values close to zero appear in the denominator
in Eq. (9), it becomes impossible to find a unique solu-
tion. The least-squares method is extremely unstable
to measurement noise. The noise component soon
starts dominating over the useful part of the solution
due to the large number of zero-valued λ i. At the same
time, the property that the Hessian is positively
semidefinite guarantees the necessary conditions for
the second-order minimum to exist in the optimization
problem (5).

The fundamental importance of the approach based
on the least-squares method consists in the freedom of
choosing the point spread function G. To determine the
point spread function, one can solve the problem for the
Green’s function of half-space, layer, or more complex
geometry or use an experimentally measured point
spread function. At the same time, this approach places
demanding requirements on computer resources. In
particular, to reconstruct an M × N = 256 × 256 image

f f Re

f Im
 
 
 
 

, G GRe GIm–

GIm GRe
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measured on an aperture consisting of A = 128 samples,
it is necessary to store a 256 × 32768 matrix G and mul-
tiply it by the vector f consisting of 256 rows. Since the
matrix G is circulant, there exists the possibility of con-
siderably reducing the memory required (only one row
can be stored) and the time necessary to calculate the
product Gf by using the property that the circulant
matrix can be transformed to a diagonal matrix by the
discrete Fourier transform [19]. The use of the fast Fou-
rier transform (FFT) algorithm reduces the computa-
tional complexity of calculating the product Gf from
about N3 to N ; however, in this case, it is neces-
sary to use a regular grid in the discrete model.

THE MAXIMUM ENTROPY METHOD
AS A PARTICULAR CASE

OF THE REGULARIZATION METHOD

Tikhonov developed a method for solving ill-posed
problems called the regularization method [20]. For the
Hadamard ill-posed problem written in the operator
form

Af = h,

the variational principle of solution selection (construc-
tion of the regularization operator) can be formulated as
the optimization problem

(10)

where f is the solution, χ2( f ) is the squared residual of
the solution in the metric determined by the specific
problem, and Ω( f ) is the stabilizing functional
intended to reduce the domain of solutions. An ill-
posed inverse convolution problem can be solved as
follows:

(i) we transform the convolution equation to a sys-
tem of linear equations with a degenerate matrix (2),
(3);

(ii) choose a stabilizing functional Ω( f );

(iii) formulate the optimization problem to mini-
mize the discrete analog of the functional Ω( f ) and the
residual of the solution to system (4); and

(iv) solve the optimization problem and the problem
of choosing the optimal regularization parameter α.

Thus, instead of solving the original problem given
by Eq. (5), we solve problem (10), which is stable to
small variations in the input data h.

As the stabilizing functional, the optimization prob-
lem can use functionals of different classes. The pur-
pose of using the stabilizing functionals is to allow for
certain prior information on the solution of the ill-posed
problem and thereby reduce the solution domain. The
prior information can vary from the simplest constraint
that the solution be nonnegative or its certain norm be

Nlog

f̂ α χ2 f( ) αΩ f( )+( ),
f R

MN∈
minarg=
minimal to constraints imposed on the known autocor-
relation function, spectrum structure, and so on.

In [19], an algorithm is presented for the ultrasonic
image reconstruction by the maximum entropy method,
in which the optimization problem uses entropy of the
image estimate as the stabilizing functional:

Here, H is either the entropy of a set of independent
discrete random variables defined (for nonnegative
real fi) as

(11)

where NM is the number of pixels in the image being
reconstructed or the cross entropy, also called Kull-
back–Leibler distance [21]:

(12)

Here, m is the prior model or estimate of the form of
solution f. As the simplest model, a constant value eµ
was used, where µ represented the estimate of the aver-
age intensity of the image background. This formula-
tion circumvents one of the problems associated with
the maximum entropy criterion. The point is that, when
part of the image pixel intensities approach zero, the
logarithm in the expression for the entropy becomes too
large, which hampers the convergence to images with a
zero background level. In this case, the components of
the entropy gradient will be close to zero for intensities
close to µ. An additional difficulty of using entropy in
form (12) is that the parameter µ must be estimated;
however, it has been shown that identical results are
observed in reconstructing from model and experimen-
tal data with values of µ that differ by several orders of
magnitude. The question of using not so trivial image
models is the subject of further research. We expect that
the amount of artefacts in the images being recon-
structed may be reduced through the use of nontrivial
prior image models. The maximum entropy criterion is
known to enhance the contrast regions of the image
(point scatterers, boundaries). Due to this feature, the
MEM has found wide application in radio astronomy
and may be used in ultrasonic testing.

Since the algorithm is nonlinear, superresolution
can be achieved in the image reconstruction, because
the components that are produced not only by incom-
plete source information appear in the spectrum of f(r).

The fact that the logarithm automatically allows for
the constraint that the image be nonnegative was recog-
nized in [22, 23] as the main advantage of the maxi-
mum entropy method in the form of Eq. (11). However,

f̂ χ2 αH f( )–( ).
f R

MN∈
minarg=

H f( ) f i f iln
i 1=

NM

∑– Ω f( ),–= =

H f( ) f i

f i
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i 1=
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to correctly reconstruct the image of f in the coherent
case (ultrasonic nondestructive testing, NMR), it must
be reconstructed as a complex function and its real
and/or imaginary parts may take negative values. Vari-
ous approaches exist that circumvent this problem [19].
For example, the image can be decomposed into four
subimages whose phases are shifted so that the real part
of each subimage is nonnegative. Thus, one has to solve
four independent reconstruction problems, shift their
phases back, and combine the subimages into a single
result.

In this paper, we generalize the MEM to complex
calculations by using the entropy of the absolute value
of the complex image. For vectors (6) with complex-
valued components, we can write

In this case, the components of the gradient and Hes-
sian of the entropy have the form

Thus, the optimization problem can be solved by the
first-order methods and by the second-order methods as
well. First-order methods of the gradient-descent type
have been applied with partial success. Since the
entropy function is nonlinear, the convergence is
extremely slow [24]. The second-order methods, which
require the inversion of the Hessian, cannot be applied
in practice, because the dimension of the Hessian is too
large.

To solve the optimization problem with the entropy
as the regularizing functional, a high-performance fast
and robust Cambridge algorithm was developed by a
research team headed by Skilling [25]. An important
property of this algorithm is that it does not invert the
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Hessian (whose dimension may by quite large), while
the convergence is provided by projecting the gradient
and the Hessian onto a specially constructed subspace.
Circulant matrices are multiplied by vectors with the
help of the FFT, which dramatically saves memory,
because only one row (or column) of the matrix rather
than the whole matrix can be stored. The convergence
rate is also increased by changing the metric of the
space in such a way that components of the metric ten-
sor become dependent on the entropy’s Hessian at the
current step of the optimization process. The Cam-
bridge algorithm was extended to the case of complex
calculations [19]. Another advantage of this algorithm
is that it offers a better estimate of the regularization
parameter α. Apparently, the effective practical imple-
mentation of the MEM should employ the Cambridge
algorithm.

Results reported below were obtained by the high-
dimension quasi-Newton algorithm based on the pro-
jection onto a two-dimensional space [26].

One of the main problems in implementing regular-
ization methods is the choice of the regularization
parameter α, which plays the role of the Lagrange mul-
tiplier in constrained optimization problems. The pur-
pose of α is to reconcile the necessity of obtaining an
exact solution to the ill-posed problem with the con-
straint imposed by the stabilizing functional.

There exist many methods for estimating the opti-
mum regularization parameter α*, which require prior
information on the source data precision and/or high
computer resources [20]. As a result of the comparative
analysis of these methods, we decided to use our pro-
prietary empirical MEM algorithm. Its choice of the
optimal regularization parameter relies on an adaptive
estimate. The estimate α* can be calculated from the
requirement that the norm of the residual’s gradient be
equal to the norm of the regularization functional at
each step of the optimization process:

(13)

This choice of the regularization parameter provides
equal norms of the gradient components (necessary
conditions for the first-order extremum) and the conver-
gence to a high-quality solution. Since α* is updated at
each step, the choice method given by Eq. (13) is called
the adaptive regularization parameter estimator. Its
main advantage is that it estimates α* without any
information about the additive measurement noise and
about the structure of the decimated aperture. This
method also works about ten times faster than some
other methods, because it does not solve the same prob-
lem many times.

This method showed very good results in the recon-
struction of model and experimental data. The image

α i 1+*
∇χ 2 f̂ i( )
∇ H f̂ i( )

------------------------.–=
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reconstruction results reported in this paper were
obtained using the adaptive regularization parameter
estimator.

MODEL NUMERICAL EXPERIMENT

Consider the model of defects in the form of nine
point scatterers placed at a depth of 40 mm and spaced
1.5 mm apart (six readings of 1.2λ, where λ is the wave-
length at the central frequency of 2.5 MHz) in a sample
with a sound velocity of 6.26 mm/µs. The scattering
coefficients of the model defects differ by a factor of 10.
A 2.5-MHz transducer transmitted and received longi-
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Fig. 2. Image of nine point scatterers used to solve the direct
scattering problem.
tudinal waves. The spatial aperture consisted of 256
readings taken at 0.25-mm-long intervals. The perfect
image of the defects is shown in Fig. 2. All figures pre-
sented below represent the x coordinate on their abscis-
sas and the magnitude of the complex scattering coeffi-
cient on their ordinates. The image reconstructed by the
angular spectrum method (ASM) from the measure-
ments taken at five frequencies in the range from 1.0 to
4.0 MHz is shown in Fig. 3a. The Rayleigh resolution
at the central frequency of 2.5 MHz is 2.0 mm. The
low-amplitude scatterers cannot be distinguished in the
reconstructed image in the presence of sidelobes of
high-amplitude scatterers. The superresolution pro-
vided by the maximum entropy method allows us to
reliably determine the number of scatterers and their
scattering coefficients (Fig. 3b). It should be noted that
amplitudes of the scatterers on the left and on the right
of the central scatterer are estimated as 0.26 instead of
the true value of 0.2; i.e., the error is 30%.

Figure 4a shows the image of the same defects
reconstructed by the angular spectrum method from the
data taken on the same spatial aperture but at five fre-
quencies from 2.0 to 3.0 MHz. The image quality also
fails to correctly estimate the number of scatterers and
their amplitudes, because the quality is such that one
can conclude that the number of scatterers is five. The
maximum entropy method (Fig. 4b) reliably retrieves
the number of scatterers; however, their amplitudes are
reconstructed not as reliably as in Fig. 3b because of the
insufficient lateral resolution. And, finally, due to the
high sidelobes, the measurements taken at a single fre-
quency of 2.5 MHz fail to reliably detect the defects
whose amplitudes are 20% lower than the maximum
amplitude (Fig. 5).
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Fig. 3. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of
1.0 to 4.0 MHz.
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Fig. 4. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of
2.0 to 3.0 MHz.
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Fig. 5. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded at a frequency of 2.5 MHz.
The MEM demonstrates the stability to aperture
decimation. Figure 6 shows the images reconstructed
by the (a) ASM and (b) MEM from holograms mea-
sured on 20% of the aperture, the readings being taken
at random. The rest of the modeling conditions were the
same as in the case illustrated in Fig. 2. A decimation of
the aperture by a factor of five exerts almost no effect
on the image reconstructed by the MEM, whereas the
quality of the image obtained by the ASM noticeably
degrades. Figure 7 shows the results of the reconstruc-
tion from holograms of Fig. 3 contaminated by an addi-
tive Gaussian noise with an intensity σ2 equal to 0.4 of
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
the maximum amplitude of the useful signal. The MEM
is seen to be quite stable to additive noise.

MODEL EXPERIMENT
The object used in our experiments was a duralumi-

num sample with six grooves 50 µm wide and 65 mm
deep. The distances between the grooves were 1.0, 2.0,
3.5, 5.0, and 7.5 mm. The measurements were taken by
a transducer with a flare angle of 60°, central frequency
of 2.5 MHz, and frequency band measured between
0.25-power points of 1.8 to 3.2 MHz. The longitudinal
wave velocity was c = 6.26 mm/µs. The receiving aper-
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Fig. 6. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of
1.0 to 4.0 MHz with the aperture decimated in a random manner to 20%.
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Fig. 7. Image of nine scatterers reconstructed by the (a) ASM and (b) MEM from holograms recorded over the frequency range of
1.0 to 4.0 MHz contaminated with Gaussian noise.
ture consisted of 256 points spaced at 0.394 mm. The
tips of the grooves, which are typical point scatterers,
were the only objects that could be reconstructed. In
order to equalize the frequency and spatial spectra, the
inverse frequency and spatial filtering was preliminar-
ily performed.

Figure 8 shows the images reconstructed from a
hologram taken at 2.602 MHz by the (a) ASM and (b)
MEM. Figures 9 and 10 are the images reconstructed
from the data taken at five frequencies in the range from
2.368 to 2.680 MHz by the (a) ASM and (b) MEM,
respectively, without aperture decimation and with the
aperture decimated by a factor of 2.
The MEM demonstrates its advantage in recon-
structing from experimental data. The sidelobe level is
lower, and the resolution is a little better than those
shown by the ASM. The superresolution ability of the
MEM was found to be insufficient to discriminate
between the nearest two sidelobes.

It is clear that, in practice, it is necessary to recon-
struct two-dimensional and three-dimensional images.
To realize an algorithm capable of reconstructing large
images, it is necessary to use the FFT to multiply circu-
lant matrices and, perhaps, employ special-purpose
optimization algorithms (like the Cambridge algo-
rithm).
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Fig. 8. Image of scatterers reconstructed by the (a) ASM and (b) MEM from holograms measured experimentally at 2.602 MHz.
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Fig. 9. Image of scatterers reconstructed by the (a) ASM and (b) MEM from holograms measured experimentally at five frequencies
in the range from 2.368 to 2.680 MHz.
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Fig. 10. Image of scatterers reconstructed by the (a) ASM and (b) MEM from holograms measured experimentally at five frequen-
cies in the range from 2.368 to 2.680 MHz on the aperture decimated by a factor of 2.
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005



512 A. E. BAZULIN, E. C. BAZULIN
CONCLUSIONS

A new class of algorithms for reconstructing the
images of defects by the nondestructive ultrasonic test-
ing technique is studied. Possibilities of using the max-
imum entropy method in the image reconstruction from
single-frequency and multifrequency holograms are
investigated. An efficient method for estimating the reg-
ularization parameter is proposed.

The MEM is capable of providing a superresolution
and reducing the speckle noise. It is also stable to addi-
tive and multiplicative (in the form of decimation) mea-
surement noise. The possibility of using a decimated
aperture reduces the amount of measured data, in par-
ticular, in three-dimensional holography.

The approach based on the minimization of residual
in the solution to the direct problem in combination
with various problem-specific constraints holds much
promise for wide practical applications, which is dem-
onstrated by model examples. Until recently, the com-
paratively high demand on computer resources ham-
pered the use of such methods, but the advances in
computers has made it possible. The fundamental
importance of this approach lies in its ability to solve a
wide range of problems of ultrasonic nondestructive
testing by choosing an appropriate point spread func-
tion (PSF) G. To determine the PSF, one can solve the
Green’s function problem for a half-space, layer, or
more complex structure or use a PSF measured experi-
mentally.
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Abstract—The two-dimensional tomography problem of reconstructing a refractive inhomogeneity in the
ocean is considered. A distinction of this paper is the expansion of the inhomogeneity under investigation in a
nonstandard (nonorthogonal and overfull) basis. This basis makes it possible to overcome some problems inher-
ent in the conventional schemes dividing the ocean into squares, triangles, and other figures with corners. In
addition, the perturbation matrix can be easily constructed in such a basis. The proposed approach can be used
in its present form for reconstructing flows and solving combined refractive-kinetic problems. The solution of
the tomography problem with the use of the proposed basis is carried out in both ray and wave representations.
© 2005 Pleiades Publishing, Inc.
MOSAIC BASIS

In solving the problem of oceanic inhomogeneity
reconstruction, one must choose the basis elements that
should be used to expand the desired hydrological
parameters, such as refractive inhomogeneities, flows,
and eddies. In two-dimensional problems, the basis ele-
ments usually are plane figures, e.g., squares or trian-
gles, covering the water area of interest [1–3] so that,
within every single figure, the parameters remain con-
stant; or, the water area is covered with a grid, at the
nodes of which the parameters are specified and the val-
ues for intermediate points are calculated by interpola-
tion algorithms [4–7]. However, such an approach to
the choice of the basis elements causes technical diffi-
culties even at the stage of solving the direct problem,
which precedes the tomographic reconstruction of the
desired inhomogeneities. Indeed, after setting the initial
approximation for the hydrological parameters and
positioning the source–receiver pairs, the standard pro-
cedure searches (in the ray approximation) for sound
propagation paths (ray trajectories or modes) connect-
ing the elements of such pairs using, for example, the
bracket method. In this process, either some rays
unavoidably fall in the corners of the basis figures,
which makes it impossible to apply Snell’s law for cal-
culating their further trajectories, or, in the case of the
wave approximation, the grid corners cause false dif-
fraction effects. How to overcome these difficulties is
unclear, although it is evident that they are of model ori-
gin rather than physical.

In this paper, by analogy with [8], we suggest
another approach to the choice of the basis elements.
This approach rests upon the expansion of inhomoge-
neities in the so-called nonstandard bases (Fig. 1),
which can be conditionally called mosaic bases. An
1063-7710/05/5105- $26.00 ©0513
example of such a basis is the strip basis, i.e., a set of
parallel strips rotated in the interval from 0 to π at a uni-
form angular step. This procedure creates a two-param-
eter set of strips, where one parameter is the distance to
the strip from the center of the circular region and the
other is the angular displacement of the strip relative to
the initial position. The use of basis elements in the
form of strips makes this method free of the above dif-
ficulties inherent in tomography schemes dividing the
region of interest into elements containing corners.

It is usually assumed that, in the actual ocean,
refractive inhomogeneities are weak, so that a nearly
linear relationship occurs between the perturbation of
sound velocity in a certain area of the reconstructed
region and the variation of time required for a ray to
travel through this inhomogeneity from the source to
the receiver in the case of the ray approach or the per-
turbation of acoustic field in the case of the wave
approach. The process of reconstruction is as follows.
Receiving–transmitting antennas are positioned along
the perimeter of the region, so that each antenna can
communicate with all other antennas. The reconstruc-
tion process starts with setting the background (not nec-
essarily everywhere identical) sound velocity distribu-
tion in the region of interest (for example, the season-
average distribution). Then, sequentially setting a small
reference perturbation of sound velocity in each strip
and calculating the corresponding perturbation of the
received data (variations of propagation time along rays
or field perturbation on the transmitter–receiver path)
for each of the possible paths, one can construct the per-
turbation matrix that is denoted A in what follows. The
column index of this matrix corresponds to the param-
eters of the transmitter–receiver pair, and the row index
corresponds to the parameters of the basis strips. On the
other hand, any inhomogeneity, for which one knows
 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Strip and (b) cylindrical bases.
only the temporal delays or the field perturbation
caused by its insertion in the region of interest, can be
expanded in such a strip basis. The expansion coeffi-
cients can be found by solving the inhomogeneous sys-
tem of linear equations

(1)

where A is the perturbation matrix; ∆T is the received
data vector, i.e., the vector of temporal delays or field
perturbations caused by the inhomogeneity; and X is
the vector of expansion coefficients of the unknown
inhomogeneity in the strip basis, or, in the general case,
in another mosaic basis. The least-squares solution of
this system has the form

(2)

where superscript “+” denotes the Hermitian conjuga-
tion. The synthesis and visualization of the recon-
structed inhomogeneity is performed by summing the
coefficients X of all strips containing the given spatial
point.

The use of the strip basis (and other bases of uncon-
ventional expansion) combined with the least-squares
solution has a number of useful features. For example,
in contrast to the classical tomography scheme based
on the Radon transformations, the integrals are taken
here over homogeneous basis strips. This fact is impor-
tant for the ocean tomography problems, where a ray
trajectory depends on the inhomogeneity under testing
and cannot be considered rectilinear, as in the case of
the X-ray tomography. In addition, it appears that the
strict requirements usually imposed on a basis, such as
completeness and orthogonality, can be slackened. The
proposed basis is nonorthogonal and overfull. It is clear
that it permits an arbitrary amount of redundancy of the
initial data. The nonorthoganility of the basis is of little
significance for the problems under consideration,
because the reconstruction algorithm includes no scalar
product of the basis elements. The presence of overfull
data with respect to the basis dimension plays a positive
role, because it offers a possibility to increase the num-
ber of linear equations of the initial system (1) and, con-
sequently, to enhance the stability of the least-squares

AX ∆T,=

X A+A( ) 1–
A+∆T,=
solution. In the context of the problem under consider-
ation, the overfull property implies that the volume of
data of all source–receiver pairs considerably exceeds
the total number of strips. Naturally, the number of
receiving–transmitting transducers I should be reduced
to a minimum required value dictated by the resources
of an actual experiment. For this reason, one must
search for certain combinations of the number of strips
and angles to adequately describe the region under
investigation. In this process, the number of basis ele-
ments must not exceed the number I(I – 1)/2 of the
independent source–receiver pairs.

The use of a priori information through filtering or
in the form of regularization procedures can be ascribed
to other methods of increasing the stability of the solu-
tion. As an example, the receiving–transmitting anten-
nas can be equipped with sound velocity sensors to
determine the exact velocity distribution along the
perimeter of the region. In the simplest case, the solu-
tion can also be regularized by adding the matrix A+A
with an additional diagonal matrix with small weights,
which reduces the degree of singularity of matrix A+A.
Another way to regularize the solution (we use this
approach in the numerical simulation of the inhomoge-
neity reconstruction) consists in imposing certain
restrictions on the smoothness of the coefficients of the
unknown inhomogeneity expansion in basis elements.
Note that the basis used for expanding the inhomogene-
ity of interest must not necessarily possess a wide
degree of completeness. In fact, the degree of complete-
ness should only guarantee the required accuracy of the
expansion of the desired distribution. In addition, the
additive property of the perturbation effects should be
provided (at least approximately).

It should certainly be remembered that this basis is
somewhat rough to provide an exact reconstruction of
an arbitrary function; however, as we will show below
by model examples, it ensures quite acceptable accu-
racy in the determination of hydrological inhomogene-
ities. The accuracy can be slightly improved by using
the a priori information on the smoothness of the inho-
mogeneity and performing the corresponding matched
filtration, which will be discussed below in the context
of numerical simulations.
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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To illustrate the suggested tomography scheme, we
solved the reconstruction problem for different types of
inhomogeneities located in the region under consider-
ation in both ray and wave formulations. Computer
simulations demonstrated the efficiency of the pro-
posed method.

RECONSTRUCTION OF A REFRACTIVE 
INHOMOGENEITY IN THE FRAMEWORK
OF THE RAY TOMOGRAPHY PROBLEM

The main advantages of the ray theory of wave prop-
agation are the physical clarity and relative simplicity
of using the resulting formulas in practical applications.
We used the suggested method to investigate the solu-
tion of the ray problem taking into consideration the
horizontal refraction of rays. With this in view, we con-
sidered the eikonal equation whose solution makes it
possible to determine the ray trajectories. The presence
of inhomogeneity in the region of interest bent the rays
and shifted the instants of signal arrival. Varying the
positions of the source and receivers, one can obtain the
complete pattern of the sounded region and form the
vector of relative temporal delays ∆T.

Solving the inverse problem, we regularized the
solution to Eq. (2) according to the simplest procedure
X = (A+A + εÖ)–1A+∆T, where Ö is the unit matrix and
ε is the regularizing coefficient.

In numerical simulations, we used the following
parameters. We considered a water region 100 km in
diameter surrounded by a system of 16 receiving–trans-
mitting transducers. The model distribution of sound
velocity over the water region is shown in Fig. 2a. We
assumed that the velocity inside the reconstructed inho-
mogeneity is by 4% smaller than the background veloc-
ity everywhere equal to 1500 m/s. In the basis strips, the
perturbation corresponded to the decrease in velocity
by 1% of the background velocity value. Figure 2b
shows the result of reconstruction of a cylindrical inho-
mogeneity displaced 25 km from the region’s center
along the negative direction of the abscissa axis. We
used the regularizing coefficient ε = 0.3, which is
smaller than the maximal eigenvalue of matrix A+A by
a factor of about 1000. To improve the quality of recon-
struction, we filtered the spatial spectrum of the recon-
structed image by cutting off its high-frequency portion
(Fig. 2c).

The accuracy of the results was estimated by consid-
ering the discrepancies of the solution (nc) and the
right-hand side (nT) of the system of equations (1).
These discrepancies were calculated by the formulas

nc

c xi y j,( ) ĉ xi y j,( )– 2

i j,
∑

c2 xi y j,( )
i j,
∑

---------------------------------------------------------,=
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where c(x, y) and (x, y) are the actual and recon-
structed velocities at a given point (x, y) characterized

in discrete form by indices (i, j), ∆  is the right-hand
side of system (1) obtained as a result of the substitu-
tion of solution X into the system, and ∆T is the acous-
tic field perturbation vector corresponding to the actual
inhomogeneity (m is the index of elements of this vec-
tor). The results of reconstruction seem to be quite sat-
isfactory from the viewpoint that we succeeded in
reconstructing the actual velocity value and estimating
the radius of the inhomogeneity. We note that the recon-
struction quality appears to be satisfactory despite the
relatively high values of discrepancies (for example,
the discrepancy of the solution measures nc ~ 0.5);
namely, the inhomogeneity position, radius, and peaks
are reconstructed quite adequately. The point is that the
main contribution to the discrepancies is made by fluc-
tuations related to the reconstruction of the back-
ground, i.e., the areas where the inhomogeneity is cer-
tainly absent; nevertheless, the calculation of discrep-
ancies over the whole water region takes these
fluctuations into account.

The use of the nonstandard basis combined with the
eikonal equation makes it possible to solve the recon-
struction problem using the iteration approach. We
introduced iterations as follows. The inhomogeneity
reconstructed at the preceding iteration stage was
sounded with rays; simultaneously, to this inhomoge-
neity we successively added additional basis strips
characterized by a reference perturbation of sound
velocity in the way described earlier, which resulted in
a new matrix of perturbations that affects the propaga-
tion time at the current iteration. The result of sounding
is supposed to be the matrix of relative (i.e., against the
background of the unperturbed region) temporal delays
of signals propagating through the region occupied by
the inhomogeneity. There is no need to solve the
eikonal equation at the first iteration (in this case, the
background velocity is assumed to be constant for the
whole region), because the simplest approach based on
Snell’s law appears to be adequate for this simple per-
turbation geometry. However, the construction of per-
turbation matrix Ä at further iterations requires solving
the eikonal equation.

Figure 3 shows the results of the iterative recon-
struction of an inhomogeneity of radius 20 km located
at the center of the water region under test. Figure 3a
shows the model distribution of sound velocity over the
water region. As earlier, the perturbation of sound
velocity in the inhomogeneity was equal to 4% of the
background velocity. In the reconstruction, we used the

nT

∆Tm ∆T̂m–
2

m

∑
∆Tm

2

m

∑
---------------------------------------,=

ĉ

T̂
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Fig. 2. (a) Model sound velocity distribution over the water region and (b, c) the result of reconstructing this distribution in the ray
approximation for the number of receiving–transmitting transducers I = 16, the number of basis strips P = 25, the number angles of
orientation U = 35, and the regularizing coefficient ε = 0.3. The estimate (b) before filtration is characterized by the solution dis-
crepancy nc = 0.52 and the right-hand side discrepancy nT = 0.28 and (c) after filtration, by nc = 0.45 and nT = 0.27.
same matrix as in the case shown in Fig. 2. We did not
use the high-frequency filtration, because its effect
becomes negligible with increasing number of itera-
tions.

From the analysis of the results, we infer that the
above iteration process converges to the solution.
Indeed, the discrepancies decrease (although slowly)
with increasing number of iterations: nc = 0.57 
0.45  0.42  …. As earlier, the discrepancies are
mainly formed by the noise background of the unper-
turbed part of the region under investigation, whereas
the accuracy of reconstructing the location, size, and
peak values of the inhomogeneity is increased, which
can be seen from graphical data (see Figs. 3b–3d). Of
course, one must bear in mind that the strip basis used
here is a rough basis and the iteration process will
improve the solution only to a certain limit.

RECONSTRUCTION OF A REFRACTIVE 
INHOMOGENEITY IN THE FRAMEWORK
OF THE WAVE TOMOGRAPHY PROBLEM

The wave approach is more rigorous and the only
one acceptable for working in the low-frequency limit.
For solving the direct problem in the wave representa-
tion, we had to derive analytical formulas for a cylindri-
cal wave scattered by a basis strip oriented at an arbi-
trary angle. We solved this problem in two stages. At
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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Fig. 3. (a) Model distribution of a cylindrical inhomogeneity at the center of the water region and (b–d) the result of iterative recon-
struction of this inhomogeneity in the ray approximation for the number of receiving–transmitting transducers I = 16, the number
of basis strips P = 25, the number of angles of orientation U = 35, and the regularizing coefficient ε = 0.3: (b) the first iteration (nc =
0.57, nT = 0.26), (c) the second iteration (nc = 0.45, nT = 0.22), and (d) the third iteration (nc = 0.42, nT = 0.14).
the first stage, we considered the scattering of a cylin-
drical wave generated by a point source and scattered
by a cylindrical refractive inhomogeneity. The problem
of the second stage consisted in extending the results to
the case of the strip that required a procedure for match-
ing the incident wave with the plane boundary of the
scatterer.

Because we assume that the medium is homoge-
neous in the vertical direction, the problem under con-
sideration is a two-dimensional one. As is known, in the
case of a two-dimensional inhomogeneous space con-
taining a cylindrical inhomogeneity characterized by
the sound velocity different from that of the back-
ground space, the Green’s function can be determined
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
from the system of two Helmholtz equations (one for
the external medium and the other for the internal
medium) and two boundary conditions reflecting the
continuity of the field and its normal derivative at the
interface between the media. This procedure allows one
to determine an exact expression for the Green’s func-
tion under consideration; however, it is too cumber-
some in the case of the scattering of a cylindrical wave
by the basis strip. Here, the main difficulty lies in dif-
ferent symmetry types of the wave and the boundary.
The wave has a cylindrical symmetry, whereas the
boundary is plane. For this reason, we naturally solve
the problem by expanding the incident wave in plane
waves, especially due to the fact that the theory of
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Fig. 4. (a) Model sound velocity distribution over the water region and (b) the result of reconstructing this distribution in the wave
representation for the number of receiving–transmitting transducers I = 22, the number of basis strips P = 14, the number of angles
of orientation U = 21, and the regularizing coefficient µ = 0.05; the resulting discrepancies are nc = 0.43 and nT = 0.43.
reflection, refraction, and transmission of plane waves
is well known. We described the incident field in the
form of the integral representation of a two-dimen-
sional Green’s function of the homogeneous space with
sound velocity c0 and wave number k0 ([9], Ch. 27):

where r and rS are the radius-vectors of the receiving
point and the point source, respectively.

As was shown in [10] (where the direct problem of
the transmission of a cylindrical wave through the strip
inhomogeneity is solved in detail), neglect of decaying
surrounded waves and the summation of only the plane
waves whose wave vectors lie on the Evald sphere yield
a sufficiently accurate approximation to the actual
Green’s function, which supports the idea of calculat-
ing the field as the sum of plane waves.

As the initial data, we used the total field received by
all antennas positioned along the perimeter of the water
region. In simulations, we considered the water region
with a radius of 30λ0 evanescent by a system of 22
receiving–transmitting transducers radiating at a fre-
quency of 30 Hz. We assumed that the velocity inside
the reconstructed inhomogeneity is 0.5% smaller than
the background velocity of 1480 m/s. Figure 4a shows
the inhomogeneity to be reconstructed; it has the shape
of a cylinder of radius r0 ~ 12λ0 shifted by ~ 10λ0 along
the positive direction of the Oy axis. The simulation of
reconstruction of a cylindrical inhomogeneity follows
from the need to obtain a rigorous solution of the direct
problem. In addition, the solution of the problem on the
cylindrical wave refraction by a cylindrical inhomogene-
ity is well known. Thus, we used different procedures for

g r rS ω,( ) e
ik1 r rS–( )–

k1
2 k0

2–
---------------------
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4π2
--------------------,
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∞

∫
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ω
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----,= = =
determining the elements of the perturbation matrix and
the terms of the right-hand side of Eq. (1).

We regularized the matrix A+A using a priori infor-
mation. In the reconstruction process, we used the fact
that the objects under consideration had simple shapes,
so that the expansion coefficients of adjacent basis ele-
ments could not differ widely. This fact offered a possi-
bility of imposing additional conditions on the expan-
sion coefficients of the inhomogeneity in the basis ele-
ments.We introduced a regularizing parameter µ that
characterized the additional requirement of smoothness
for the expansion coefficients (for µ = 1, the recon-
structed coefficients must be equal). In the case of sim-
ulations shown in Fig. 4b, this parameter was µ = 0.05.

EFFECT OF THE STRIP BASIS PARAMETERS
ON THE QUALITY OF RECONSTRUCTION

We estimated the effect of the parameters of the pro-
posed basis (such as the number of strips, the width of
strips, and the number of angles) according to the fol-
lowing procedure. We fixed the numbers of transducers,
strips, and angles of strip orientation and constructed a
perturbation matrix A, after which we evaluated the
degree of conditionality of the matrix by the formula

α = , where λmax and λmin are the maximum and

minimum eigenvalues of the square matrix A+A. The
degree of conditionality varied from α = 213 for
5 strips, 20 angles, and 16 transducers to α = 8833 for
25 strips, 35 angles, and 16 transducers. With an
increase in the number of transducers, the degree of
conditionality decreased, for example, to α = 1142 for
10 strips, 25 angles, and 32 transducers.

In numerical simulations, we modeled the inhomo-
geneity to be reconstructed as a cylindrically distrib-
uted phase velocity perturbation localized in the central

λmax

λmin
----------
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part of the water region of interest. The magnitude of
the velocity specifying the perturbation in both basis
strips and inhomogeneities to be reconstructed was
assumed to be 0.5% smaller than the background veloc-
ity and was equal to 1472 m/s. We fixed the number of
transducers (I = 22) and reconstructed the inhomogene-
ity of radius r0 ~ 15λ0 (Fig. 5a) for different numbers of
basis elements. We considered two cases: in the first
case, the number of strips was P = 12 and the number
of angles of orientation was U = 7; in the second case,
we used P = 6 and U = 15. The degrees of conditionality
for these cases differed slightly and were α = 18 and 32,
respectively. Here, we performed no regularization (µ =
0), because our task consisted in estimating precisely
the effect of the parameters of the basis on the quality
of reconstruction.

Figures 5b and 5c show the results of reconstruction
for the basis with the above parameters. It should be
noted that the reconstructed expansion coefficients of
the unknown inhomogeneity ï have nonzero imagi-
nary parts, which, in turn, causes an error in the form of
the imaginary component of the estimated velocity (see
curves for Im  in Figs. 5b and 5c). This can be used as
an additional indicator of the accuracy of the recon-
struction algorithm, because the imaginary part tends to
zero for the exact reconstruction.

Comparison of Figs. 5b and 5c shows that,
although the total amount of information increases
with increasing number of basis strips due to the
increase in the number of elements that intersect the
inhomogeneity, the quality of reconstruction appears
to be worse (Fig. 5b). This effect can be explained by
an increase in the number of poorly illuminated regions
falling within the reconstructed region. Consider the
propagating cylindrical wave localized in a certain ray

tube of characteristic width d ~ , where D is the

distance between the source and the receiver and λ0 is the
wavelength. For the problem under consideration, the
maximum width of the ray tube measures d ~

 ~ 270 m, whereas the distance
between the adjacent receivers illuminated by the ray
tubes of the same transmitter measures ~430 m for I =
22. As a result, the region of interest appears to be non-
uniformly illuminated. If a strip is sufficiently narrow,
its major part may fall in the shadow region and, conse-
quently, fall out of the reconstruction algorithm. One
can expect that, with a decrease in the number of strips
and an increase in the strip width (for a uniform parti-
tion of the water region into strips), one should obtain
estimates for the velocity in poorly illuminated regions
that will approach the correct values at the expense of
the well-illuminated regions. This will improve the
whole pattern of reconstruction. In this case, one must
increase the number of angles of strip orientation U to
enlarge the system describing the region, which can
become less informative with decreasing number P.

ĉ

Dλ0

2
----------

1500 m 50 m×
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An additional reasonable requirement that should be
imposed on the numbers of strips and angles is the
requirement of mutual intersection of the peripheral
parts of the basis strips corresponding to the adjacent

angles of orientation. For basis strips of width h = 

(R0 is the radius of water region under investigation),

this condition can be written in the form h ≥ R0 ,

where  is the angle between the adjacent strip orien-

tations. Thus, we obtain the condition on the numbers
of basis strips and angles in the form

(3)

Note that a similar requirement is used in the X-ray
transmission tomography for the number of angular
samples and the number of samples per projection (see
[11], Ch. 4). 

As it follows from the results of simulations, a
decrease in the strip number by a factor of two and an
increase in the number of angles also by a factor of two
(in this case, condition (3) is satisfied) results in a con-
siderable improvement of the reconstructed pattern of
velocity distribution (Fig. 5c). In addition, the false
imaginary part Im  decreases, which is also indicative
of a higher reconstruction accuracy.

Our next step consisted in decreasing the number of
transducers by a factor of two; namely, we used P = 6,
U = 15, and I = 12 (see Fig. 5d). Despite the substantial
decrease in the amount of data on the region under
investigation, the reconstruction quality was reduced
only slightly.

Implementing the above algorithm, we revealed an
additional possibility of varying the basis so as to affect
the reconstruction quality. This possibility arises if we
specify no immediate relationship between the strip
number and the strip width; i.e., if we consider a non-
uniform partition of the region into strips. Assume that
some preliminary experiment (with certain possible
parameters P, U, and I) showed that an inhomogeneity
is located at the center (or near the center) of the region
under testing. Then, we can improve the reconstruction
accuracy by decreasing the widths of the basis strips
with retaining the parameters P, U, and I. In this case,
the region is divided into strips nonuniformly; namely,
the strips are numerous in the central part of the water
region and only few of them are at the periphery. Such
an approach only slightly affects the conditionality
degree of matrix Ä (because the parameters P, U, and I
remain intact); however, it can considerably increase
the number of strips intersecting the inhomogeneity,
which increases the total amount of information pro-
vided by the basis. This procedure can be useful, for
example, for reconstructing small inhomogeneities that

2R0
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Fig. 5. (a) Model distribution of a cylindrical inhomogeneity of radius r0 ~ 15λ0 and (b–d) the result of reconstructing this inhomo-

geneity in the wave representation (with the error estimated as the imaginary velocity component Im ) for different numbers of
receiving–transmitting transducers I, basis strips P, and angles of orientation U: P = (b) 12 and (c, d) 6; U = (b) 7 and (c, d) 15; I =
(b, c) 22 and (d) 12 (nc = (b) 0.72, (c) 0.53, and (d) 0.56; nT = (b) 0.46, (c) 0.3, and (d) 0.09).

ĉ

cannot be adequately reconstructed with the use of
wide strips. An adequate reconstruction requires that
the diameter of the inhomogeneity measures several
strip widths. Instead of increasing the number of strips
by decreasing the strip width (as it is the case for the
uniform partition), we can use a nonuniform partition.
The nonuniform partition offers a possibility to achieve
the same effect without such a significant decrease in
the conditionality degree of the system as in the case of
a uniform partition. For example, to reconstruct the
actual velocity inside an inhomogeneity of smaller
radius r0 ~ 10λ0 (Fig. 6a) with a uniform partition, we
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
should use a greater number of basis strips and, hence,
reduce the strip width. In accordance with condition (3),
a greater number of strip orientations will be used in
this case. Figure 6b shows the simulated results for P =
12, U = 31, and I = 22; these parameters correspond to
the basis strip width h ~ 10λ0. However, in the case of a
nonuniform partition, qualitatively similar results can
be obtained with a smaller number of basis elements.
Figure 6c shows the result of reconstructing this inho-
mogeneity with the use of a smaller number of nar-
rower strips for P = 6, U = 21, I = 22, and h ~ 4λ0.
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Fig. 6. (a) Model distribution of a cylindrical inhomogeneity of radius r0 ~ 10λ0 and (b, c) the result of reconstructing this inhomo-
geneity in the wave representation for the number of receiving–transmitting transducers I = 22, different numbers of basis strips P
and angles of orientation U, and different basis strip widths h: (b) auniform partition of the water region into basis strips with P =
12, U = 31, and h ~ 10λ0 (nc = 0.79, nT = 0.1); (c) a nonuniform partition of the water region with P = 6, U = 21, and h ~ 4λ0 (nc =
0.59, nT = 0.36).
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Fig. 7. (a, c) Model distributions of cylindrical inhomogeneities and (b, d) the results of reconstructing these inhomogeneities in the
wave representation with the use of the cylindrical basis for the number of receiving–transmitting transducers I = 22, the number of
circular basis elements 841, and the regularizing coefficient µ = 0.03: (a) for an inhomogeneity of radius r0 ~ 15λ0 at the center of
the water region, we have (b) nc = 0.45 and nT = 0.2; (c) for an inhomogeneity of radius r0 ~ 12λ0 shifted along the positive direction
of the Oy axis by ~10λ0, we have (d) nc = 0.51 and nT = 0.22.
USE OF OTHER NONSTANDARD BASES

The above method of constructing the strip basis can
be used for constructing other nonstandard bases whose
elements will have shapes suitable to either the type of
inhomogeneities to be reconstructed or the type of the
sound field representation. For example, when dealing
with the reconstruction of eddies, it is worthwhile to
apply circular bases. In addition, in the context of the
wave approach, the use of circles as basis elements
offers the possibility for a rigorous construction of the
perturbation matrix.

As an example, consider the reconstruction problem
with the use of the cylindrical version of the mosaic
basis formed by the following procedure (Fig. 1b). The
circular region of interest is uniformly covered (with
overlapping) with cylinders (circles in the two-dimen-
sional case) as basis elements. Then, matrix A is cal-
culated in the same way as in the above procedure for
solving the problem with the use of the strip basis, i.e.,
by a sequential specification of a reference perturba-
tion in each cylinder and the calculation of the corre-
sponding field perturbation. The expansion coeffi-
cients of the reconstructed inhomogeneity are deter-
mined from Eq. (2).

In simulations, we considered a water region of
radius 30λ0. As earlier, the velocity in the inhomogene-
ity was assumed to be 0.5% smaller than the back-
ground velocity. For the cylindrical inhomogeneities
shown in Figs. 7a and 7c, the results of reconstruction
are given in Figs. 7b and 7d, respectively. Note that, in
this case, the discrepancy nT appears to be smaller than
in the case of the use of the strip basis for reconstructing
the inhmogeneities with the same parameters (radius,
location relative to the center of the water region, and
velocity perturbation) (see Figs. 5c and 4b).

CONCLUSIONS

From the results obtained, we conclude that the
requirements on the basis used to expand an inhomoge-
neity can be considerably slackened if necessary a priori
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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information is available, which leads to a convenient
and efficient expansion of the inhomogeneity under
test. The few conditions that should be satisfied by the
bases used in tomography problems include its relative
completeness (i.e., the basis should be sufficient for
describing the inhomogeneity to be reconstructed with
the required accuracy) and the additivity of the effects
taken into account. The orthogonality requirement is
not necessary. In addition, the basis can be overfull.

The proposed strip basis is a convenient structure for
constructing the perturbation matrix of the field caused
by a refractive inhomogeneity in both ray and wave
approaches to the sound field description. An extension
of the problems under consideration to media with
flows and eddies can be successfully realized.

The problem can be extended to the case of the ini-
tial data represented by the phase shifts of the vertical
modes in the horizontal rays–vertical modes combined
scheme and to more complicated cases with the initial
data given as amplitudes and phases of the signals
received by a vertical hydroacoustic array.
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Abstract—The boundary-value problem of the magnetoelastic wave interaction with a moving domain wall in
a ferromagnetic crystal is solved in the nonexchange magnetostatic approximation with allowance for the exter-
nal magnetic field. It is shown that the difference introduced by magnetic field between the ferromagnetic res-
onance frequencies of the domains does not cause any noticeably departure of the refraction characteristics of
reflected and transmitted waves from those observed at zero frequency mismatch. By contrast, the magnitudes
of the transmission and reflection coefficients strongly depend on the external magnetic field and on the mobil-
ity of the domain wall. The dependence of the magnitude of the reflection coefficient on the external magnetic
field at a fixed angle of shear wave incidence is found to possess two ferromagnetic resonance peaks. The posi-
tions and heights of the peaks may vary depending on the mobility of the domain wall. © 2005 Pleiades Pub-
lishing, Inc.
The refractive interaction of a magnetoelastic wave
with a moving 180° domain wall (DW) was considered
in [1] without taking into account the external magnetic
field. The ferromagnetic resonance (FMR) frequencies
of domains were assumed to be identical, which can be
true only when the anisotropy field of the ferromagnet
far exceeds the external field responsible for the motion
of the domain wall. However, in sufficiently strong
external magnetic fields, the difference arising between
the FMR frequencies of the domains (the FMR mis-
match) under the effect of the external magnetic field
can be significant. Therefore, the results reported in [1]
require an additional verification with allowance made
for the nonzero difference between the frequencies of
uniform spin precession in the domains. For this pur-
pose, the present paper considers the initial equations
with allowance for the external magnetic field and cal-
culates the refraction characteristics and amplitude fac-
tors of the refracted waves.

The results reported in [1] were obtained using the
simplest model of a geometric DW. Let us specify the
limitations introduced by this model in connection with
the presence of an additional factor, namely, the motion
of the DW. It is conventionally assumed that the DW
motion initiated by an external control action is not
accompanied by any structural changes in the DW if the
DW velocity satisfies the condition VD = µDH0 < vw,
where vw is the Walker limiting velocity [2], µD is the
mobility of the DW, and H0 is the external field. It
should be noted that, under steady-state motion condi-
1063-7710/05/5105- $26.00 0524
tions, the structural stability of a DW is determined by
the equilibrium thermodynamic conditions under
which the crystal is studied and by the technological
characteristics of the crystal (the presence of defects,
impurities, etc.). Therefore, the structural stability of
the DW manifests itself in different ways in bulk crys-
tals and films.

The aforementioned limitation imposed on the DW
velocity is typical of bulk crystal samples away from
the phase transition. Taking into account the inequality
that is typical of cubic ferromagnets, namely, vw > ct,
where ct is the shear wave velocity without considering
magnetostriction, in addition to the requirement for the
geometricity of the DW on the wavelength scale k∆ ! 1,
we impose a limitation on the DW velocity in the form
VD < ct. With the nonexchange magnetostatic approxi-
mation [3] in mind, we assume that k < kmax and

D ! Ha, where D is the exchange constant of the
ferromagnet, Ha is the anisotropy field, k is the magne-
toelastic wave number not exceeding the threshold
value kmax, and ∆ is the actual thickness of the DW.

Assume that the easy magnetization direction corre-
sponds to the z axis of the x0yz crystallographic coordi-
nate system (z || [001]). Then, bringing the 180° DW into
coincidence with the (010) plane of the crystal makes
sense only for ferromagnets with a positive magnetic
anisotropy constant K1 > 0. The case considered below,
namely, the refraction of shear waves by a (010)-oriented

kmax
2

© 2005 Pleiades Publishing, Inc.
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DW moving in a cubic ferromagnet, is sufficiently gen-
eral, because, with the substitution [4]

(1)

the equations written for a crystal with K1 > 0 are trans-
formed to the corresponding equations for a crystal
with K1 < 0. In the latter case, the easy magnetization
direction coincides with the principal diagonal of the
unit cell while the shear waves with displacements par-
allel to the spontaneous magnetizations M0 propagate
in the (111) plane of the crystal. In Eq. (1), b11, b12, and
b44 are the nonzero components of the magnetoelastic
interaction tensor; λ11, λ12, and λ44 are the components
of the elastic modulus tensor of the cubic crystal; and β
is the magnetoelastic coefficient.

Let us assume that shear waves propagate in the
(001) plane of an iron garnet crystal with the displace-
ments uj, which are collinear with the spontaneous

magnetizations  in the domains (  ↑↓   ||
[001]; j = 1, 2 is the domain order number). The
domains are separated in the (010) plane by a geomet-
rically thin structureless DW with the current coordi-
nate yD = VDt, where t is time. Accordingly, we assume

that the spontaneous magnetizations  and the inter-

nal magnetic fields  in the domains have the form

(2)

where Ha is the anisotropy field, j = 1 for y > yD, and j =
2 for y < yD. The minus sign before H0 corresponds to
the DW motion along the direction of the [010] axis
(VD > 0), and the plus sign, to the motion in the opposite
direction (VD < 0).

In describing the propagation of magnetoelastic
waves in a ferromagnet, the common practice [5, 6] is
to use the equation of motion from the elasticity theory

(3)

the equation of motion for the magnetic moment

(4)

λ44 λ44'
1
3
--- λ11 λ12– λ44+( ), β β',=

ω0 j ω01 2, γ Ha H0±( ),= =

Ha

2K1

M0
--------- Ha'

4K1

3M0
----------,–= =

M0
j( ) M0

1( ) M0
2( )

M0
j( )

Hi
j( )

M0
j( ) 1–( ) j 1+ M0,=

Hi
j( ) 1–( ) j 1+ Ha H0±( ),=

ρ
∂2u j

∂t2
---------- ∂

∂xk

--------
1 δik+

2
--------------- ∂w

∂u jk

---------- ,=

ρ∂M
∂t

-------- γ M
Ms

------ ∂w
∂ M/Ms( )
----------------------- ,=
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and the Maxwell equations. The quantity appearing on
the right-hand side of Eq. (3) in square brackets is the
stress tensor Tik [7]:

(5)

In Eqs. (3) and (4), ρ is the density of the crystal, t is
time, γ = 2µb" is the gyromagnetic ratio, µb is the Bohr
magneton, and " is the Plank constant.

In the general case, the energy density of the crystal
is expressed as [3]

(6)

where wM is the magnetization energy density, wH is the
energy density of magnetic field, wMU is the energy den-
sity of magnetoelastic interaction, and wU is the elastic
energy density.

Using Eqs. (3)–(6) and the propagation conditions
mentioned above, we obtain the equations that are valid
in the nonexchange magnetostatic approximation in the
presence of a bias magnetic field:

(7)

Here, Ω is the frequency of the incident or refracted
wave; ∇  is the Hamiltonian in the x0y plane; ϕj is the
magnetostatic potential;  = λ + γβ2ω0j/[M0(Ω2 –

)]; and ω0j = γ(Ha ± H0) = ω0 ± ∆ω0 are the uniform
precession frequencies in the domains, where ω0 is the
FMR frequency in the absence of the external magnetic
field, ∆ω0 is the shift of the FMR frequency (ω01 > ω02
for VD < 0 and ω01 < ω02 for VD > 0), ωkj = [ω0j(ω0j +
ωM)]1/2 is the magnetoacoustic resonance frequency,
ωM = 4πγM0 is the magnetization frequency, and λ = λ44
is the shear modulus.

The first of Eqs. (7) is the Helmholtz equation. The
solution to this equation can be represented in the form
of plane harmonic waves with the dispersion law

(8)

The second of Eqs. (7) yields

(9)

where Φj is the potential of the scattering field of the
magnetic poles [1].

Let us preset the frequency ω and the wave vector of
the incident wave k = nk, where n = (sinθ, –cosθ), θ is
the angle of incidence, and k = k(ω) is the wave number
determined from Eq. (8) in which Ω is replaced by ω.
The waves refracted by the moving DW are character-
ized by the frequencies ω' and ω'' and by the wave vec-

Tik

1 δik+
2

--------------- ∂w
∂uik

---------.=

w wM wH wMU wU,+ + +=

∇ 2u j ρΩ2/λΩ*( )u j+ 0,=

∇ 2ϕ j 1–( ) j 1+ 4πγβω0 j

Ω2 ωkj
2–

---------------------∇ 2u j.=

λΩ*

ωkj
2

k2 k2 Ω( )≡ ρΩ2/λΩ*.=

ϕ j 1–( ) j 1+ 4πγβω0 j

Ω2 ωkj
2–

---------------------u j Φ j, ∇ 2Φ j+ 0,= =
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Fig. 1. Refraction diagrams for a shear wave refracted by an (a) oncoming DW and (b–d) a receding DW with (b) acute and (c, d)
obtuse angles of refraction: the wave vectors of the (1) incident, (2) deflected, and (3) refracted waves.
tors k' = n’k' and k'' = n''k'' with the wave normals n' =
(sinθ', cosθ'') and n = (sinθ'', cosθ'') and with the wave
numbers k' = k'(ω') and k'' = k''(ω''), respectively; the lat-
ter are obtained from Eq. (8) by replacing Ω with ω' and
ω'', respectively. Here, the angles θ' and θ'' are the refrac-
tion angles lying within the interval [0, π] (Fig. 1).

Because of the difference in the FMR frequencies of
the domains, the calculation of the refraction character-
istics of refracted waves should be performed with four
equations instead of two. The equations express the
condition of the conjunction of the wave fields at the
DW by the phase invariant method [8]. Namely, the
projections of the wave vectors of the incident and
refracted waves are equal at y = yD, which yields

(10)

and the temporal synchronism of the phases of oscilla-
tions at the DW yields

(11)

ω
v
---- θsin

ω'
v '
----- θ',

ω
v
---- θsinsin

ω''
v ''
------ θ'' kτ ,≡sin= =

ω 1
VD

v
------- θcos+ 

  ω' 1
VD

v '
------- θ'cos– 

  ,=

ω 1
VD

v
------- θcos+ 

  ω'' 1
VD

v ''
------- θ''cos– 

  ω̃.= =
In Eqs. (10) and (11), v  = ω/k, v ' = ω'/k', and v '' = ω''/k''
are the phase velocities of waves.

Taking into account Eq. (8), one can prove that
Eqs. (10) and (11) are equivalent to the system of equa-
tions

(12a)

(12b)

(13)

θ'sin
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The quantities χ1 = γβ2/(λM0ω01) and χ2 = γβ2/(λM0ω02)
are dimensionless (and usually small: χ1 ! 1 and χ2 ! 1)
parameters of magnetoelastic coupling and ct = (λ/ρ)1/2.

Since θ, ω, and, hence, v  = v(ω) are known, Eqs. (12)
determine θ' and θ'' as the roots of transcendental equa-
tions. The corresponding values of ω' and ω'' can be
easily calculated by Eqs. (13), which exhibit the pres-
ence of Doppler shifts in the refracted waves. Numeri-
cally, it was found that, in the general case, the number
of the roots of Eqs. (12a) and (12b) is four. However,
according to Bolotovskiœ and Stolyarov [8], in prob-
lems with moving boundaries, the causality require-
ment is only satisfied for waves with a positive projec-

tion of their group velocity Vg = ∂ /∂  onto the direc-
tion of the energy transfer, irrespective of the type of the
energy state of the medium. Here,  and k' are the fre-
quency and the wave vector of the refracted wave in the
DW frame of reference, , which is related to the
laboratory frame of reference, x0yz, by the Galilean
transformation:  = x,  = y – VDt, z = ,  = t. Thus, the
selection criterion is the requirement that the energy
transferred by the refracted wave be carried away from
the DW:

(14)

where Vgy = ∂ /∂  is the projection of the group

velocity of the refracted wave onto the  axis. Here, it
is necessary to know the group velocity of the refracted
wave, Vg, in the DW frame of reference.

Taking into account Eq. (8), one can show that k'2  =

ω'2(ω'2 – )[(ω'2 – ) + χ1 ]–1. This equality is a
biquadratic equation in ω'. According to the nonex-
change approximation condition, the smaller root of
this equation determines the low-frequency branch of
the magnetoelastic wave spectrum:

Deriving  = (k') from this equation and differenti-
ating with respect to k', we perform some simple trans-
formations to obtain the following formula for verify-
ing condition (14):

(15)
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Here, according to Eq. (8), v(ω') is the phase velocity of
the refracted wave; the function Ψ(ω') is determined as

(16)

For the wave propagating in the second domain, the
substitutions ω'  ω'', k'  k'', θ'  θ'', χ1  χ2,
ω01  ω02, and ωk1  ωk2 should be made in Eqs. (15)
and (16).

Equation (12a) describes the refraction angles for
the waves propagating in the first domain (y > yD), and,
according to the causality requirement, they must have
a positive projection of the group velocity onto the y
axis. Correspondingly, the solutions to Eq. (12b) deter-
mine the waves propagating in the second domain (y <
yD), and, by virtue of inequality (14), the projection of
their group velocity will be negative.

Ψ ω'( ) 1
χ1ω01

2

ωk1
2 ω'2–

---------------------–
 
 
 

=

× 1
χ1ω01

2

ωk1
2 ω'2–

--------------------- 1 ω'2

ωk1
2 ω'2–

---------------------–
 
 
 

–
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.

θ', θ''

0 θ* θ** π/2 θ
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4

θ'' = π – θ

Fig. 2. Typical refraction dependences near the frequency
ω0 (solid curves) and near the frequency ωk = ω0(ω0 + ωM)
(dashed curves): (1) the case of an oncoming DW (the solid
and dashed curves coincide, |VD| < ct), (2) the case of a
receding DW (|VD| < ct), (3) the refraction dependence θ'' =
π – θ for the directly transmitted wave near the FMR fre-
quency, and (4) the deflected wave near the MAR fre-
quency.
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The calculation by Eqs. (15), (16) and (12) at a fixed
FMR mismatch (H0 = const) shows that the first of the
two solutions to Eq. (12a) only exists for obtuse refrac-
tion angles  = π – θ and does not depend on VD. A
wave refracted in this way is characterized by ω, v , and
k identical to those of the incident wave with  < 0.
Evidently, this wave does not satisfy the requirement of
the energy transfer away from the DW and can be
rejected.

For the second root of Eq. (12a), , in the case of
VD > 0 (the oncoming DW), the projection of the group

velocity is always positive and the dependence (θ)
has the form of curves 1 in Fig. 2. A wave with such
refraction characteristics is actually the reflected wave
shown (in terms of wave vectors) by arrow 3 in the
refraction diagram represented in Fig. 1a. When VD < 0
(a receding DW), the projection of the group velocity is
positive,  > 0, only for the angles of incidence θ <
θ* (at θ = θ* θ' = π/2).

For the first root of Eq. (12b), , the projection of
the group velocity is always negative and this root cor-
responds to the deflected shear wave (arrow 2 in Fig. 1)
irrespective of the sign of the DW velocity. In the case
of the oncoming DW, the second root of Eq. (12b) gives
a positive projection of the group velocity and the
parameters of the wave are identical to those of the
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θ1''
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2
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0 40 60 80

Vgy/ct

Fig. 3. Dependence of the projection of the group velocity
on the angle of incidence of a shear wave for the frequency
ω = 1.45 × 1010 s–1 and VD/ct = –0.3: (1) refracted and
(2) deflected waves; ∆ω0 = 0 (solid curves) and 0.57 ×
1010 s–1 (dashed curves).
reflected wave. Therefore, in the case of VD > 0, this
root can be excluded from consideration. When VD < 0,

for the second root of Eq. (12b), , the projection of the

group velocity is negative,  < 0, for θ > θ*.

Thus, in the case of a receding DW, the refraction
angle for θ < θ* should be calculated using the second
root of Eq. (12a), whereas its calculation for θ > θ*
should be performed using the second root of Eq. (12b).
In Fig. 2, the refraction angles calculated in this manner
form continuous curves 2 without any discontinuity at
θ = θ*.

Remember that the angle θ* is the angle at which
the reflective refraction (Fig. 1b) changes to the reflec-
tionless refraction (the double transmission mode) [1]
(Fig. 1c, θ' > π/2,  < 0) or the adjustment-type

refraction [8] (Fig. 1d, θ' > π/2,  > 0). In the case
under consideration, only the reflectionless refraction
of the magnetoelastic wave is realized. This can be
explained as follows. The nonexchange approximation
accepted above cuts off the short-wave part, i.e., the
spin part, of the low-frequency branch of the spectrum
and the acoustic part of the high-frequency branch. This
limitation, together with the specific features of the dis-
persion spectrum of the low-frequency branch, leads to
the following results. In the case of a receding DW,
according to Eq. (10), the refracted wave has a lower
frequency and, hence, a higher group velocity (esti-
mated by the slope of the tangent to the dispersion
curve), as compared to the incident wave. This effect is
the stronger, the closer the frequency of the incident
wave is to the forbidden frequency band. Therefore,
when the velocity of the receding DW is relatively low,
the wave propagating along a flatter trajectory may
have enough time to pass ahead of the DW and get into
the second domain.

As one can see from Fig. 2, in the vicinity of the
FMR, the transmitted wave is the directly transmitted
one whose refraction dependence is represented by line 3
in Fig. 2. On the whole, according to Fig. 2, the inclu-
sion of the external magnetic field does not cause any
considerable departure of the dependence θ'(θ) from
that observed at zero FMR mismatch [1]. A noticeable
difference is observed for frequencies (ω > ωk1 for VD > 0
and ω > ωk2 for VD < 0) in the vicinity of the magnetoa-
coustic resonance (MAR). In a narrow angular interval,
the directly transmitted wave becomes a deflected wave
(curve 4 in Fig. 2). However, it should be noted that a
correct calculation in the region of the magnetoelastic
wave spectrum is possible with a rigorous consider-
ation for the exchange interaction.

According to the aforementioned selection of the
roots of Eqs. (12), Fig. 3 presents the dependence of the
projection of the group velocity on the angle of inci-
dence at fixed values of the FMR mismatch (H0 =

θ2''

Vgy'

Vgy'

Vgy'
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const); the dependence was calculated by Eqs. (15) and
(16). One can see that, when the reflective refraction
(θ < θ*) changes to the double transmission mode (θ >
θ*), the group velocity changes sign (as was mentioned
above). The fact that, at θ = θ* and θ' = π/2, the projec-
tion of the group velocity is equal to zero means that, in
the case of the grazing propagation along the DW, the
magnetoelastic wave transfers the energy neither
toward the DW nor away from it. The condition
cos(θ')v (ω')Ψ(ω') > –2VD, which follows from Eq. (15)

and the general limitation  < 0, can be represented
in the form θ < θ**, where cosθ** = –2VD/[vΨ(ω)];
here, θ** is the angle of incidence starting from which
the incident wave ceases interacting with the DW and
the problem loses its meaning. In Fig. 2, this angle cor-
responds to the point of intersection of the dependence
θ'(θ) corresponding to the vicinity of the FMR with
curve 3.

Now, after the determination of the regions of the
refracted wave propagation, we can construct two inde-
pendent solutions to the boundary-value problem of the
refractive interaction of a magnetoelastic wave with a
moving DW. One of the solutions refers to the case of
the reflective refraction with the solution to Eqs. (9) in
the form

(17)

The other solution refers to the double-transmission
refraction:

(18)

In both cases, the potentials of the fields of the near-
boundary magnetostatic oscillations have the same
form and, as the solutions to the second of Eqs. (9), are
determined with allowance for the limitations given by
the equalities

Vgy'

u1 U i kr ωt–( ) R i k'r ω't–( )exp+exp[ ] ,=

u2 UT i k''r'' ω''t–( ).exp=

u1 U i kr ωt–( ),exp=

u2 U T i k''r'' ω''t–( )exp T i k'r ω't–( )exp+[ ] .=
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
(19)

Expressions (19) take into account that the near-bound-
ary magnetostatic oscillations are transferred by the
moving DW and have a frequency equal to .

The boundary conditions of the problem have the
standard form [1], but they apply to the DW plane y =
yD. Taking into account Eq. (9) and the aforementioned
jump of static fields at the DW, the components of both

magnetic moment  and stress tensor  that are
required for the substitution can be represented in the
form

(20)

(21)

The quantity Ω involved in Eqs. (20) and (21) repre-
sents ω or ω', depending on which of the terms uj

appearing in Eqs. (20) and (21) is used for the substitu-
tion. The value of  is chosen with the corresponding
frequency.

Omitting the intermediate calculations, we obtain
the final result in the form of expressions for the reflec-
tion coefficient R, transmission coefficient T, and sec-
ondary transmission coefficient T ' for a magnetoelastic
wave propagating through a moving DW. In the case of
reflective refraction, we have

Φ1 C ikxx i ω kVD–( )t–[ ] kx y yD–( )–[ ] ,expexp=
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where

(23)

(24)

If, in Eqs. (22)–(24), Ω' = ω or ω', it is necessary to take
the FMR and MAR frequencies with subscript 1: ω01,

G+−' Ω' Ω'',( ) f 2 Ω'( ) 1
f 1 ω'( ) f 2 ω''( )+
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Fig. 4. Dependences |R(θ)| for the frequency ω = 1.45 ×
1010 s–1 and VD/ct = –0.05: H0 = (1) 0, (2) 75, and (3) 190 Oe;
µD = (1, 2) 250 and (3) 100 cm/s Oe.
ωk1, χ1; if Ω' = ω'', with subscript 2: ω02, ωk2, χ2. In the
case of the double-transmission refraction, the formu-
las for the amplitude factors coincide with formulas
(22)–(24) in their structure and are therefore not pre-
sented here to save room.

The calculations by Eqs. (22)–(24) were performed
for an iron garnet crystal with the parameters ct = 3.8 ×
105 m/s, ωM = 3.5 × 1010 s–1, ω0 = γHa = 1.4 × 1010 s–1,
M0 = 140 G, λ = 7.64 × 1011, and β = 7.4 × 106. In iron
garnets at room temperature, the mobility is µD = 100–
500 cm/s Oe [9]. However, to reveal certain features of
the amplitude factor behavior, some calculations were
performed with much higher mobility values.

Figure 4 shows the dependence of the reflection
coefficient on the angle of incidence of a shear wave for
different fixed values of the external magnetic field in
the case of a receding DW. One can see that the FMR
peak observed in magnetostatic scattering fields at zero
FMR mismatch [1] is displaced toward smaller angles of
incidence in a relatively weak magnetic field (curve 2)
and may disappear in strong magnetic fields (curve 3).
This means that the position of the forming FMR max-
imum and the conditions for its existence are deter-
mined by the strength of the external magnetic field H0.
This should be expected, because H0 determines the
mismatch of the uniform spin precession frequencies in
the domains, ω0j. The latter frequencies are involved in
Eqs. (23) and (24) for the reflection coefficients as the
pole singularities, which determine the position of the
FMR peak.

30
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Fig. 5. Dependences |R(θ)| (solid curves) and |T '(θ)| (dashed
curves) for the frequency ω = 1.7 × 1010 s–1 and VD/ct = –0.6:
H0 = (1) 0, (2) 100, and (3) 500 Oe; µD = (1, 2) 2880 and
(3) 466 cm/s Oe.
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As shown in Fig. 5, a similar transformation of the
FMR peak with varying magnetic field strength also
occurs for the amplitude factor of the additionally
transmitted wave T '. From Fig. 5 it follows that, when
the refraction mode changes, the dependence of the
reflection coefficient on the angle of incidence
smoothly, without any discontinuities, passes into the
angular dependence of the transmission coefficient of
the additionally deflected wave. A similar situation
takes place for the frequencies in the vicinity of the
MAR (Fig. 6). As one can see from Fig. 6, the inclu-
sion of the external magnetic field noticeably affects
the angular dependences of the amplitude factors of
refracted waves.

Figure 7 shows the dependence of the reflection
coefficient on the external field at a fixed angle of inci-
dence for different values of the DW mobility. The
external magnetic field is directed so that VD < 0. The
angle of incidence corresponds to the FMR peak in
Fig. 4 at zero difference between the uniform preces-
sion frequencies in the domains. A specific feature of
the dependence R(H0) is the presence of the resonance
peak in strong external magnetic fields. Thus, even for
a large difference between the FMR frequencies of the
domains, conditions for the total reflection of the inci-
dent wave from the moving DW can be realized. From
Fig. 7, it also follows that the number and height of the
FMR peaks and their positions strongly depend on the
mobility of the DW.
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Fig. 6. Dependences |R(θ)| (solid curves) and |T '(θ)| (dashed
curves) for the frequency ω = 2.62 × 1010 s–1 and VD/ct =
–0.1: H0 = (1) 0, (2) 50, and (3) 200 Oe; µD = (1, 2) 760 and
(3) 190 cm/s Oe.
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By choosing the appropriate conditions, it is possi-
ble to obtain a change from reflective refraction to dou-
ble transmission mode for a shear wave incident at a
fixed angle (Fig. 8). One can see that, as in the case of

0.2

0 1 2 3 4

0.6

1.2

H0 × 10–2, Oe

12

3

|R|

0.4

1.0

0.8

21

Fig. 7. Dependence |R(H0)| for the angle of incidence θ =
45° and frequency ω = 1.45 × 1010 s–1: µD = (1) 400,
(2) 300, and (3) 200 cm/s Oe.
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10–2

Fig. 8. Dependences |R(H0)| (solid curves) and T'(H0) (dashed
curves) for the angle of incidence θ = 36.5° and frequency ω =
1.45 × 1010 s–1: µD = (1) 1000 and (2) 600 cm/s Oe.



532 VILKOV
angular dependence, the change in the refraction modes
does not cause any discontinuity of the amplitude fac-
tors.
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Abstract—Conditions of the existence of long-lived acoustic resonances that occur in a layered medium
because of its oscillation with low damping factors are considered. A priori theoretical estimates relating the
distribution of resonance frequencies in the complex plane to the parameters of inhomogeneity of the layered
system are obtained. A scheme of resonance calculations in numerical modeling is described. Examples of geo-
physical media with long-lived resonances are presented. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The problem of oscillations of a finite-size elastic
body consists in determining a denumerable set of
eigenmodes whose frequencies have a crowding point
at infinity. If the body is placed in an unbounded
medium with other properties, the eigenfrequency
spectrum in the general case is shifted in the complex
plane. Simultaneously, the eigenfrequencies acquire
imaginary parts, and the corresponding modes of oscil-
lation are called acoustic resonances. The study of the
relations between the characteristics of inhomogeneity
and the parameters of resonances is the subject of
acoustic spectroscopy [1]. It should be noted that the
conceptual and mathematical apparatus of this field of
science is to a considerable extent borrowed from quan-
tum mechanics [2], where the study of resonances is the
most important source of information about quantum
systems.

In geophysics, studies of resonances related to a lay-
ered elastic medium are of great importance. Such res-
onances affect the amplitude–frequency characteristic
of a system formed by the medium and a ground-based
object [3] and, hence, the service conditions of struc-
tures and instruments. Long-lived resonances are of
special importance, because, according to modern con-
cepts, precisely these resonances determine the effi-
ciency of vibroseismic actions on oil pools [4]. In our
previous work [5], we studied the distribution of reso-
nance frequencies in the complex plane for an
unbounded layered medium. In the present paper, we
consider the conditions of the existence of long-lived
resonances in unbounded and semibounded media.

ACOUSTIC RESONANCES IN LAYERED MEDIA

Consider elastic waves (longitudinal or transverse
ones) described by the equation

(1)ρ∂t
2u ∂x E∂xu( )– f ,=
1063-7710/05/5105- $26.00 ©0533
where u = u(t, x) is the displacement function, ρ = ρ(x)
is the density, E = E(x) is the elastic modulus, and f =
f(t, x) is the external force field. We redefine the spatial
coordinate according to the differential relation

where E0 is a constant with the pressure dimension (the
characteristic value of the elastic modulus). Then, Eq. (1)
takes the form

(2)

Let us discuss the boundary conditions for Eq. (2).
We seek the solution to Eq. (2) for the half-space y > 0
(Problem 1) and for the unbounded space –∞ < y < +∞
(Problem 2) and interpret this solution as the response
of the system to an external force f. In both cases, we
assume that the force f is equal to zero outside some
finite spatial interval of length L. In addition, the value
of κ outside this spatial interval is constant. We can
assume that κ = κ– for y < 0 (Problem 2) and κ = κ+ for
y > L (Problems 1 and 2). At spatial infinity, the radia-
tion conditions are imposed, and at the boundary of the
half-space in Problem 1, we impose the condition of
zero stress. Hence, we have the following boundary
conditions for Problem 1:

(3)

(4)

and for Problem 2:

(5)

(6)

dy E0dx/E x( ),=

κ2∂t
2u ∂y

2u– f * E0
2– Ef ,= =

κ ρE( )1/2E0
1– .=

∂yu y 0= 0,=

κ+∂tu ∂xu+( ) 0, y +∞,

κ–∂tu ∂xu–( ) 0, y –∞,

κ+∂tu ∂xu+( ) 0, y +∞.
 2005 Pleiades Publishing, Inc.
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Since Eq. (2) and boundary conditions (3)–(6) con-
tain no explicit time dependence, we can apply the Fou-
rier transformation

Then, we obtain an ordinary differential equation

(7)

with the following boundary conditions:

(8)

(9)

for Problem 1 and

(10)

(11)

for Problem 2.
For each of the Problems 1 and 2, we introduce two

solutions to homogeneous equation (7) (i.e., when F = 0),
namely, v – = v –(ω, y) and v+ = v+(ω, y), so that they are
determined by the following boundary conditions:

for Problem 1 and

for Problem 2.
We define the Green’s function by the formula

(12)

Here, ∆ is the Wronskian constructed on the basis of
two solutions to the homogeneous equation. Therefore,
∆ does not depend on the parameter y0:

∆ = ∆(ω).

One can easily verify that the following equation is
satisfied:

where the Dirac delta function is on the right-hand side.
Therefore, we can write the formal solution to Eq. (7)
in the form

(13)

The integration in formula (13) is performed over
the half-axis for Problem 1 and over the whole axis for
Problem 2. Expression (13) gives the solution to the

v v ω y,( ) iωt–( )u t y,( ) t.dexp∫= =

∂y
2v ω2κ2v+ F iωt–( ) f * t y,( ) tdexp∫–= =

∂yv y 0= 0=

iωκ+v ∂xv+( ) 0, y +∞

iωκ–v ∂xv–( ) 0, y –∞,

iωκ+v ∂xv+( ) 0, y +∞

v – y 0= 1, ∂yv – y 0= 0,= =

v + iωκ+y–( ), y +∞exp

v – iωκ–y( ), y –∞,exp

v + iωκ+y–( ), y +∞.exp

G ω y y0, ,( ) ∆ 1– v + ω y,( )v – ω y0,( ), y y0,>
v – ω y,( )v + ω y0,( ), y y0,<




=

∆ ∂yv + ω y0,( )v – ω y0,( ) v + ω y0,( )∂yv – ω y0,( ).–=

∂y
2 ω2κ2 y( )+( )G ω y y0, ,( ) δ y y0–( ),=

v ω y,( ) G ω y y0, ,( )F ω y0,( ) y0.d∫=
problems stated above, because the boundary condi-
tions imposed on the functions v – = v –(ω, y) and v+ =
v+(ω, y) provide for the fulfillment of boundary condi-
tions (8)–(11).

The functions v – = v –(ω, y) and v+ = v+(ω, y) can be
analytically continued to complex values of ω. The
functions ∆ = ∆(ω) and G(ω, y, y0) allow a correspond-
ing continuation. In this case, the Green’s function
G(ω, y, y0) may have poles coinciding with zeroes of
function ∆ = ∆(ω). If Ω is a root of the equation

(14)

the corresponding coordinate functions v–(Ω, y) and
v+(Ω, y) are proportional to

(15)

The reverse is true as well: from Eq. (15), one
obtains Eq. (14).

According to [5], for any of the solutions Ω to Eq. (14),
either Ω = 0 or ImΩ > 0. Solutions with a positive
imaginary part may be absent, but if they exist, they
are identified with the resonance frequencies of the
layered system under consideration. At the same time,
the corresponding solutions to the problem, namely,
v – = v –(Ω, y) (or v+ = v+(Ω, y), which is equivalent by
virtue of Eq. (15)), are identified with the resonant
modes of oscillation.

This definition is based on the following specula-
tion. Using Eq. (12), we apply the inverse Fourier trans-
formation

(16)

The integration in Eq. (16) is performed along the
straight line ImΩ = a lying below all singularities of the
integrand. As it was shown above, the poles of the
Green’s function G(ω, y, y0) lie in the upper complex
half-plane. Let all singularities of the function F(ω, y)
lie above the straight line ImΩ = Λ > 0. This assump-
tion corresponds to the condition that the external force
f∗ (t, y) is equal to zero for t < t∗  at a certain t∗  (the
Paley–Wiener theorem [6]). As for the Green’s function
G(ω, y, y0), in the region 0 ≤ ImΩ < Λ, it may have
poles Ω0 = 0, Ω1, Ω2, …, where ImΩn > 0 for n > 0.
Shifting the contour of integration in Eq. (16) upwards
with bypassing the poles and taking the corresponding
residues, we arrive at the formula

From this expression, one can see that the total solu-
tion contains a sum of damped oscillations (reso-
nances) corresponding to the complex frequencies Ωn.

∆ ω( ) 0,=

v + Ω y,( ) C Ω( )v – Ω y,( ).=

u t y,( ) 2π( ) 1– iωt( )exp∫=

× G ω y y0, ,( )F ω y0,( ) y0 ω.dd

u t y,( ) i y0ResΩ0
G ω y y0, ,( )F ω y0,( )[ ] y0dd∫=

+ i y0 iΩnt( )expd∫
n 0>
∑

× ResΩn
G ω y y0, ,( )F ω y0,( )[ ] y0d O Λt–( )exp( ).+
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In this case, αn = ReΩn is the oscillation frequency, βn =
ImΩn is the damping factor, Tn = 2π/αn is the oscilla-
tion period, τn = 1/βn is the lifetime, and ξn = τn/Tn is the
dimensionless lifetime of a resonance.

Thus, for determining the resonances of a layered
system, it is sufficient to have the solution to the homo-
geneous equation (2). In a small number of cases, such
a solution can be obtained in an analytical form [7] and,
hence, the parameters of the resonances can be exactly
determined. In the general case, the wave equation
should be solved numerically for different complex val-
ues of ω and, then, a numerical solution to Eq. (13)
should be sought for. Note that, to estimate the number
NC of the roots of Eq. (13) in a complex plane region
bounded by a piecewise smooth contour C, one can use
the formula

where the right-hand side can be numerically deter-
mined for specific media and contours C.

LONG-LIVED RESONANCES

To study the conditions of the existence of long-
lived resonances, it is convenient to begin with the sim-
plest models that allow an exact calculation of reso-
nances. We consider Problem 1, in which κ = κ0 for 0 <
y < L and κ = κ+ for L < y. Within each of the intervals,
the solution to homogeneous equation (2) is determined
in the form of a sum of exponentials, which are sewn
together according to the continuity conditions for the
function v  and its derivative. The Wronskian is deter-
mined by a direct calculation:

Therefore, the equation for the resonances has the
form

exp(2iωκ0L) = γ, (17)

where γ = (κ0 – κ+)/(κ0 + κ+). Depending on the sign of
γ, two sets of solutions are possible:

(a) for γ > 0,

(18)

(b) for γ < 0,

(19)

Here, β = –ln|γ|. For γ = 0, Eq. (17) has no solutions. It
is evident that long-lived resonances can exist when |γ|
is close to unity; i.e., when the layers widely differ in
acoustic stiffness.

Now, let us consider Problem 2, in which κ = κ– for
y < 0, κ = κ0 for 0 < y < L, and κ = κ+ for L < y. The

NC 2πi( ) 1– ∆ ω( ) 1– ∂∆ ω( )/∂ω( ) ω,d

C

∫=

∆ 2 1– iω κ+ κ0–( ) iω κ+ κ0–( )L( )exp(–=

+ κ+ κ0+( ) iω κ+ κ0+( )L( )exp ).

A+ 2κ0L( ) 1– 2πn iβ+( ) n 0 ±1 ±2 …,, ,={ } ;=

A– = 2κ0L( ) 1– π 2πn iβ+ +( ) n = 0 ±1 ±2 …,, ,{ } .
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problem is solved in the same way as Problem 1. The
Wronskian is calculated in an explicit form:

As in the case of Problem 1, the equation for the res-
onances has the form of Eq. (17) with solutions (18)
and (19), where

Again, long-lived resonances are possible when the
acoustic stiffness of the middle layer is much higher or
much lower than the acoustic stiffnesses of the outer
layers.

Although it is impossible to analytically calculate
the resonances for the case of layered media of the gen-
eral form, it is possible to obtain a priori estimates for
their distribution in the complex plane. For this pur-
pose, we calculate the Green’s functions for the follow-
ing auxiliary nonresonance problems.

Problem 1: κ = κ+ for 0 < y, and the Green’s function
G∗ (y, y0, ω) is calculated by formula (12), where

Problem 2: κ = κ for y < 0, κ = κ for 0 < y, and the
Green’s function G∗ (y, y0, ω) is calculated by for-
mula (12), where

We seek the solution to Problem 1 or Problem 2 in
the form

(20)

and define the function

∆ iω 2κ0( ) 1– iωκ+L–( )exp–=

× κ+ κ0–( ) κ–– κ0+( ) iωκ0L–( )exp(
+ κ+ κ0+( ) κ– κ0+( ) iωκ0L( )exp ).

γ κ0 κ––( ) κ0 κ+–( )/ κ0 κ++( ) κ0 κ++( ).=

v – iωκ+y–( )exp iωκ+y( )exp+( )/2,=

v + iωκ+y–( ),exp=

∆ iωκ+.–=

v –

iωκ–y( ), y 0,<exp

2κ+( ) 1– κ+ κ––( ) iωκ+y–( )exp(
+ κ+ κ–+( ) iωκ+y( )exp ), y 0,>






=

v +

2κ–( ) 1– κ– κ+–( ) iωκ–y–( )exp(
+ κ+ κ–+( ) iωκ–y( )exp ), y 0,<

iωκ+y–( ), y 0,>exp





=

∆ iω κ+ κ–+( ).–=

v ω y,( ) G* y y0 ω, ,( )V ω y0,( ) y0d∫=

ν y( )
κ y( )2 κ–

2, y 0<–

κ y( )2 κ+
2 , y 0.>–




=
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Substituting Eq. (20) into Eq. (2), we obtain the inte-
gral equation

(21)

Since the external force F(ω, y) and the function
ν(y) are equal to zero outside the interval 0 ≤ y ≤ L, the
function V(ω, y) is also equal to zero outside this inter-
val. Therefore, Eq. (21) can be interpreted as an integral
equation for the functions on the interval 0 ≤ y ≤ L.
Equation (21) with zero right-hand side serves for the
simultaneous determination of resonance modes and
resonance frequencies. In the latter case, the problem
for resonances can be represented in the operator form

(22)

where K is a linear integral operator appearing on the
left-hand side of Eq. (21) and acting in the function
space on the segment [0, L]. If, in this space, we intro-
duce an appropriate norm in which operator K is con-
tinuous, from Eq. (22) we obtain an estimate for the
operator norm:

(23)

The choice of the norm and the function space is not
uniquely defined. Therefore, inequality (23) represents
a family of a priori estimates for the distribution of res-
onance frequencies in the complex plane. For example,
if we chose a space of continuous functions with the
norm , we obtain the estimate

(24)

V ω y,( ) ω2ν y( )+

× G* y y0 ω, ,( )V ω y0,( ) y0d∫ F ω y,( ).=

1 K+( )V 0,=

K 1.≥

V
0 y L≤ ≤
max

ω κ*
2– v y( ) Imω( ) 1–

0 y L≤ ≤
max

× Lκ+Imω( )exp 1–( ) 1,≥
κ* min κ– κ+,( ).=
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Fig. 1. Problem 1: (1) density (t/m3) and (2) phase velocity
(km/s) distributions in depth.
Another example: if we chose a space of integrable

functions with the norm , we obtain the estimate

(25)

Estimates (24) and (25) show that small values of
the function v(y) characterizing the inhomogeneity of
the layered system preclude the presence of resonances
with large relative lifetimes ξ but still allow the pres-
ence of resonances with large absolute lifetimes and
large periods. Resonances with large relative lifetimes
are only possible in a system with a strong inhomoge-
neity.

NUMERICAL CALCULATION OF RESONANCES

To study the distribution of resonance frequencies in
the complex plane, we performed numerical calcula-
tions for different layered media. With a view to geo-
physical applications, we chose the parameters of
media (density ρ, phase velocity of waves c = (E/ρ)1/2,
and thickness) close to those of actual sediment depos-
its. Below, we present the results of the numerical mod-
eling of Problems 1 and 2 for the cases where long-
lived resonances were obtained.

In Problem 1, we considered an inhomogeneous
region with a total size L = 950 m. The density and
velocity distributions in this range are shown in Fig. 1.
Below a depth of 950 m, the density and velocity were
assumed to be constant: ρ = 2.35 t/m3 and Ò = 3.35 km/s.
The distribution of resonances in the complex plane is
shown in Fig. 2. The calculated parameters of the reso-
nance with the longest lifetime are Reω = 153.72 1/s,
Imω = 0.11 1/s, and ξ = 231.51.

In Problem 2, we considered an inhomogeneous
region with a total size L = 293 m. The density and
velocity distributions in this range are shown in Fig. 3.
Outside this region, the density and velocity were
assumed to be constant: ρ = 2.55 t/m3 and c = 4.32 km/s
for x < 0; ρ = 2.7 t/m3 and c = 4.5 km/s for x > L. The

V yd∫
ω κ*

1– v y( ) yκ+Imω( ) y 1.≥dexp∫

4.0

0 50

Imω, 1/s

Reω, 1/s
100 150 200 250 300

3.5
3.0
2.5
2.0
1.5
1.0
0.5

Fig. 2. Problem 1: resonance frequency distribution in the
complex plane.
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distribution of resonances in the complex plane is
shown in Fig. 4. The calculated parameters of the reso-
nance with the longest lifetime are Reω = 165.32 1/s,
Imω = 1.88 1/s, and ξ = 14.03.

2.0

2.6

0 50 100 150 200 x, m

2.4
2.2

1.8
1.6
1.4
1.2
1.0

1

2

250

Fig. 3. Problem 2: (1) density (t/m3) and (2) phase velocity
(km/s) distributions in depth.
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Fig. 4. Problem 2: resonance frequency distribution in the
complex plane.
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
CONCLUSIONS

The results of numerical modeling demonstrate that
the existence of actual geophysical media with acoustic
resonances characterized by large relative lifetimes is
possible. However, the above theoretical analysis
shows that such resonances can only occur in media
with strong inhomogeneities of density and elastic
modulus. In the wide class of weakly inhomogeneous
media, such resonances are impossible while a broad
spectrum of resonances with small lifetimes may be
present. The method presented in this paper allows a
numerical calculation of resonance frequencies and res-
onance modes.
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Abstract—On the basis of experimental data obtained from a non-equal-armed strainmeter with an arm length
of 52.5 m in the presence of a low-frequency hydroacoustic source operating in a deep sea and in a shallow sea,
an estimate is obtained for the ratio of the energy flux in the Rayleigh wave to the acoustic power emitted by
the hydroacoustic source. © 2005 Pleiades Publishing, Inc.
Experiments on using coast-based strainmeter for
recording the oscillations excited in water by low-fre-
quency hydroacoustic sources [1] showed good pros-
pects for strainmeters as instruments for studying the
behavior of seismoacoustic and hydroacoustic oscilla-
tions and waves at the hydrosphere–lithosphere inter-
face [2]. At the Schulz test site of the Pacific Oceano-
logical Institute, a 52.5-m non-equal-armed stationary
strainmeter was installed at a depth of 5–7 m below the
earth surface and oriented along the north–south line.
The interference units, which include a frequency-sta-
bilized laser, a collimator, and an optical gate (a dia-
phragm, a polaroid, and a λ/4 plate), of the strainmeter
1063-7710/05/5105- $26.00 ©0538
were placed in a thermally insulated room. The corner
reflectors were positioned in individual thermally insu-
lated chambers. The whole path of the laser beam
between reflector and interference unit ran through a
light guide made of stainless steel pipes.

Figure 1 schematically represents the recording sys-
tem of the strainmeter. To control the interferometer of
the strainmeter, a reference-frequency oscillator (RFO)
generates an electric signal with a frequency of 25 kHz,
an amplitude of 5 V, and an off-duty ratio of 2. This sig-
nal is transformed to a sinusoid and amplified by a
power amplifier (PA) to control the piezoceramic ele-
ment that changes the length of one of the arms of the
PM

RFO DL

PD RA SD DIA LRC RS

MP

PG

C

L

LG

CR

Fig. 1. The optical scheme of the strainmeter with a flow chart of the recording system: (CR) corner reflector, (LG) light guide, (MP)
mirrors on piezoceramic elements, (PG) plane-parallel glass plate, (C) collimator, (L) He-Ne frequency-stabilized laser, (PD) pho-
todiode, (RA) resonance amplifier, (SD) synchronous detector, (DIA) differential integral amplifier, (LRC) level-reset circuit, (PA)
power amplifier, (RFO) reference-frequency oscillator, (DL) delay line, and (RS) recording system.
 2005 Pleiades Publishing, Inc.
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interferometer by 0.1λ/2 (λ is an He–Ne laser wave-
length of 0.63 × 10–6 m). This leads to modulation of
the interference pattern intensity incident on the photo-
diode (PD), from which the signal is supplied to the res-
onance amplifier (RA). The latter provides an amplifi-
cation by a factor of 104 at a frequency of 25 kHz with
a passband of 6 kHz and is made in the form of a sepa-
rate unit positioned on the optical bench. The resonance
amplifier produces a signal that is proportional to the
variation in the arm length difference of the interferom-
eter. The signal passes to a synchronous detector (SD),
to the second input of which the reference signal passed
through a delay line (DL) is supplied. The delay line is
used to compensate for the time delay of the signal
passing through the interferometer. It allows a phase
shift in the output signal by ±π/2 with respect to the
input signal. The synchronous detector gives an output
signal of ±1 V proportional to the phase of the input sig-
nal. Then, the signal is supplied to the differential inte-
gral amplifier (DIA). The latter produces a signal of
±130 V, which controls the second piezoceramic ele-
ment. This element, displacing the mirror of the inter-
ference unit, equalizes the arm difference of the inter-
ferometer within ±λ/2. To compensate for deformations
exceeding the variation ∆L = ±λ/2, a level-reset circuit
(LRC) is used. This circuit equalizes the DIA output
voltage with the inner reference voltage Uref, and, when
the DIA voltage reaches the value of ±Uref, which cor-
responds to the variation ∆L = ±λ/2, a reset pulse is gen-
erated to reset the control voltages at the DIA output
from Umax = ±Uref to U = 0 within 1 ms. This corre-
sponds to a jump of the interference pattern from one
minimum to another, nearest to it. The case of Umax =
+Uref corresponds to an extension of the deformograph
base by λ/2, and the case of Umax = –Uref, to a compres-
sion of the deformograph base by λ/2. The recording
system (RS) follows the variation of the deformograph
base to an accuracy of 10–4λ/2 in the frequency band
within 0–1000 Hz. At the analog output, the RS pro-
duces the voltage Uout = ±5 V that is proportional to the
deformation ∆L = ±λ/2. At the pulse output, the RS pro-
duces the reset pulses (Ur+ and Ur–) whose sum deter-
mines the shift of the deformation in λ/2 units.

Thus, the strainmeter measures the variation in the
length of the deformograph arm between the interfer-

0
Sept. 17, 2004 17:45:34.00

2.5 E–03 µm

Sept. 17, 2004 18:45:34.01

Fig. 2. Filtered part of the strainmeter record obtained in the
course of the operation of the low-frequency hydroacoustic
source at a frequency of 32.6 Hz.
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
ence unit and the reflector, which are mounted on sepa-
rate basements. The arm length of the deformograph is
52.5 m. In addition, the deformograph is characterized
by the following parameters: a sensitivity of 10–10–10–11

(∆L/L, where ∆L is the displacement of the deformo-
graph base and ∆L is the deformograph length, equal to
52.5 m), the accuracy of microdisplacement measure-
ments within 10–9–10–10 m, the operating frequency
band 0–1000 Hz, and an unbounded dynamic range.

In studying the behavior of seismoacoustic and
hydroacoustic oscillations and waves at the hydro-
sphere–lithosphere interface, it is important to know
the amount of hydroacoustic energy transformed into
seismoacoustic one and received by the strainmeter.
Over a period of many years, in the Sea of Japan and at
its coast, the excitation of hydroacoustic oscillations by
a low-frequency source and the reception of seismoa-
coustic oscillations induced by it had been studied with
the use of a coast-based strainmeter. The main conclu-
sion derived from all these experimental studies was
that the use of a coast-based strainmeter for studying
the generation, dynamics, and transformation of
hydroacoustic oscillations and waves at the hydro-
sphere–lithosphere interface is rather promising. Here,
it is necessary to note that the strainmeter provides a
reliable detection of seismoacoustic oscillations caused
by the operation of low-frequency hydroacoustic
sources in both shallow and deep water even when the
source power is low. As an example (Figs. 2, 3), we
present a bandpass-filtered record obtained from the
strainmeter and the spectrum of this record. The band-
pass filter had the following parameters: cutoff frequen-
cies of 32.5 and 32.7 Hz, a length of 12000, and a Ham-
ming window. Figure 3 shows a part of the spectrum of
the unfiltered record obtained from the strainmeter in
the course of the operation of the low-frequency
hydroacoustic source. The maximum observed at a fre-
quency of about 22 Hz is associated with one of the res-
onances of the strainmeter system. This experiment was

1.1E–03 µm

1.2E–06 µm; 1.5 Hz 25.7 Hz 50 Hz

Fig. 3. Spectrum of a part of the strainmeter record obtained
in the course of the operation of the hydroacoustic source at
a frequency of 32.6 Hz.



 

540

        

DOLGIKH, CHUPIN

                                          
carried out in 2004 in Vityaz’ Bay. The source depth
was 12 m, the sea depth at the source site was 12.6 m,
and the distance from the source to the deformograph,
1.5 km. The pressure referred to the distance of 1 m
from the geometrical center of the source was 1.25 kPa.

10′

20′
42°

30′

40′

Sculz cape

50′ 131° 15′

1

2

3
4

5

6

7

Fig. 4. Positions of the hydroacoustic transmitting stations
(station nos. 1–7).

Data from the 1995 experiment

Station 
no.

R,
km

H,
m

h,
m

F,
Hz

Pm,
kPa

A1,
nm

1 16 34 31 32 1.87 0.23

2 16 35 31 32 2.3 0.30

3 16 53 31 32 1.9 0.29

4 16 71 31 32 2.3 1.77

5 25 106 31 32 1.9 0.51

6 34 1300 31 32 1.9 0.61

7 43 2131 31 32 1.75 0.52

Notes: R is the distance from the source to the strainmeter, H is the
sea depth at the source site, h is the source depth, P is the
pressure referred to the distance of 1 m from the geometri-
cal center of the source, F is the frequency of the emitted
signal, and A1 is the average amplitude of the seismoacous-
tic signal detected by the non-equal-armed strainmeter with
an arm length of 52.5 m in the course of the cw operation of
the low-frequency hydroacoustic source.
We believe that the distribution of the pressure
field caused by the operation of the low-frequency
source in the hydrosphere obeys the same conditions
that are valid for the operation of a point source of
radiation in an elastic medium [3]. Expressions for the
compression waves, shear waves, and Rayleigh waves
are given in [3]. In this case, the energy is distributed
as follows:

where P is the amplitude of the total vertical force, cl is
the velocity of the longitudinal wave in the bottom, ρ is
the density of water, Wl is the radiation power in the
longitudinal wave, Wt is the radiation power in the
transverse wave, Wr is the radiation power in the Ray-
leigh wave, and ω is the cyclic frequency.

From this energy distribution for a point source of
radiation, one can see that, in the framework of the
given experiment, the radiation power associated with
the Rayleigh wave predominates over the radiation
powers associated with other types of elastic waves.
Therefore, we perform the subsequent calculations
under the assumption that the contribution of the Ray-
leigh wave predominates in the record obtained from
the deformograph.

Using the experimental data partially reported in
[2], we estimate the ratio of the energy flux carried by
the Rayleigh wave to the emitted acoustic power. Fig-
ure 4 shows the positions of the emitting stations in
the given experiment. The experimental data of [4]
are presented in the table. We make our estimates for
the data obtained with stations 6 and 7, which corre-
spond to the deep sea conditions (H @ λ, where H is
the sea depth at the site of the source of radiation and
λ is the wavelength of the excited hydroacoustic
oscillations).

According to [5], when the source is placed at a
small depth h, its field is of a dipole character and the
sound pressure amplitude is the lower the smaller the
depth h is. Following [5], we can write the power of a
near-surface source in the form

(1)

where Pm is the effective acoustic pressure referred to
the distance of 1 m from the geometrical center of the
source, λ is the acoustic wavelength in water, and c is
the sound velocity in water.

Wl 0.0852
ω2P2

πρcl
3

------------; Wt 0.2993
ω2P2

πρcl
3

------------;≈≈

Wr 0.822
ω2P2

πρcl
3

------------,≈

Pa

4πPm
2

ρc
-------------= 1 4πh/λ( )sin

4πh/λ
----------------------------– 

  ,
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Knowing the total energy flux carried by the Ray-
leigh surface acoustic wave E(z), according to [6], we
express the coefficient A through the amplitude Ux(0) of
the horizontal displacement component measured by
the strainmeter:

where A is the coefficient calculated from the Rayleigh
wave amplitude measured at the surface at the point of
observation, kr is the Rayleigh wave number, kl is the
longitudinal wave number, kt is the transverse wave

number, qr = , and sr = .

Ux z( ) Akr qrz–( )
2qrsr

kr
2 sr

2+
--------------- srz–( )exp–exp ,=

kr
2 ki

2– kr
2 kt

2–
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Then, at the surface (z = 0), we obtain

The energy flux density in the Rayleigh wave is
equal to E(z)cr [7]. Hence, for the total energy flux Φr,
we obtain the expression

where

A
Ux 0( ) kr

2 sr
2+( )

kr kr
2 sr

2 2qrsr–+( )
-------------------------------------------.=

Φr cr 2πRE z( ) zd

0

∞

∫=

=  
A2ρω4ct

2

2cr
4

---------------------
A1 ν( )
2qr

--------------
A2 ν( )
qr sr+
---------------

A3 ν( )
2sr

--------------+– 
  2πRcr,
A1(ν) = 4 +  – ,η r
2 4η r

2ξ2

A2 ν( )
2 1 η r

2ξ2– 1 η r
2– 1 η r

2ξ2–+( ) 2 η r
2 2 1 η r

2– 1 η r
2ξ2–+ +( )

2 η r
2–

----------------------------------------------------------------------------------------------------------------------------------------------------------,=

A3 ν( )
4 1 η r

2ξ2–( ) 4 3η r
2–( )

2 η r
2–( )2

---------------------------------------------------,=

η r
0.87 1.12ν+

1 ν+
------------------------------,=

ξ 1 2ν–
2 1 ν–( )
--------------------,=
cr is the Rayleigh wave velocity, ct is the transverse
wave velocity in the bottom, and ν is Poisson’s ratio.

Expressing A through Ux(0), we arrive at the for-
mula

This formula can be reduced to a form more conve-
nient for analysis by using the notation for the Rayleigh
equation in the polynomial form: η = kt/kr = cr/ct and
ξ = kl/kt = ct/cl. In this case, we have

Φr

A1 ν( )
2qr

--------------
A2 ν( )
qr sr+
---------------

A3 ν( )
2sr

--------------+–=

×
kr

2 sr
2+( )2

Ux
2 0( )cr

kr
2 kr

2 sr
2 2qrsr–+( )2

----------------------------------------------
ρω4ct

2

2cr
4

---------------2πR.
(2)

Using Eqs. (1) and (2), we determine the ratio of the
energy flux in the Rayleigh wave Φr to the acoustic
power emitted by the near-surface source Pa for sta-
tions 6 and 7. In the region where the experiment was
carried out, samples of the bottom material were taken
and analyzed. According to the results of the analysis,
the following values were accepted for the elastic con-
stants to calculate the Rayleigh wave parameters: a

Φr πRρUx
2 0( )ωct

2=

×
A1 ν( )

2 1 η r
2ξ2–

---------------------------
A2 ν( )

1 η r
2ξ2– 1 η r

2–+
-------------------------------------------------–

A3 ν( )

2 1 η r
2–

----------------------+

×
2 η r

2–

2 η r
2 2 1 η r

2ξ2––– 1 η r
2–

-------------------------------------------------------------------
 
 
  2

.
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Poisson ratio of 0.3, a transverse wave velocity of
3400 m/s, and a bottom rock density of 2600 kg/m3.
Then, using the experimental data from the table, we
obtain

for station 6,  = 9.89 × 10–3, and

for station 7,  = 11.07 × 10–3.

From the estimates presented above, it follows that
about 1% of the acoustic energy emitted by the hydroa-
coustic source is transformed into the energy of Ray-
leigh elastic waves.

ACKNOWLEDGMENTS

This work was supported in part by the Russian
Foundation for Basic Research (project nos. 03-05-
65216a and 04-05-79089k) and the Federal Target Pro-
gram “The World Ocean.”

Φr

Pa

------

Φr

Pa

------
REFERENCES

1. A. V. Davydov, G. I. Dolgikh, and N. F. Kabanov, Akust.
Zh. 41, 235 (1995) [Acoust. Phys. 41, 201 (1995)].

2. G. I. Dolgikh, Akust. Zh. 44, 358 (1998) [Acoust. Phys.
44, 301 (1998)].

3. V. V. Gushchin, V. P. Dokuchaev, Yu. M. Zaslavskiœ, and
I. D. Konyukhova, in Earth Investigation by Nonexplo-
sive Seismic Sources (Nauka, Moscow, 1981), pp. 113–
118 [in Russian].

4. G. I. Dolgikh, Investigation of Oceanic Wave Fields and
Lithosphere by Laser Interference Methods (Dal’nauka,
Vladivostok, 2000) [in Russian].

5. G. M. Sverdlin, Applied Hydroacoustics (Sudostroenie,
Leningrad, 1990) [in Russian].

6. I. A. Viktorov, Surface Acoustic Waves in Solids (Nauka,
Moscow, 1981) [in Russian].

7. V. A. Aleshkevich, L. G. Dedenko, and V. A. Karavaev,
Oscillations and Waves (Mosk. Gos. Univ., Moscow,
2001) [in Russian].

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005



  

Acoustical Physics, Vol. 51, No. 5, 2005, pp. 543–553. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 5, 2005, pp. 633–644.
Original Russian Text Copyright © 2005 by Tournat, Za

 

œ

 

tsev, Nazarov, Gusev, Castagnéde.

                                                      
Experimental Study of Nonlinear Acoustic Effects
in a Granular Medium

V. Tournat**, V. Yu. Zaœtsev*, V. E. Nazarov*, V. É. Gusev**, and B. Castagnéde**
* Institute of Applied Physics, Russian Academy of Sciences,

ul. Ul’yanova 46, Nizhni Novgorod, 603950 Russia
e-mail: vyuzai@hydro.appl.sci-nnov.ru

** Université du Maine, Av. O. Messiaen, 72 085, Le Mans, France
Received August 16, 2004

Abstract—Results of a series of experimental studies of nonlinear acoustic effects in a granular medium are
presented. Different effects observed in the experiments simultaneously testify that the nonlinearity of granular
media is governed by the weakest intergrain contacts. The behavior of the observed dependences suggests that
the distribution function of contact forces strongly increases in the range of forces much smaller than the mean
force value, which is inaccessible for conventional experimental measuring techniques. For shear waves in a
granular medium, the effects of demodulation and second harmonic generation with conversion to longitudinal
waves are studied. These effects are caused by the nonlinear dilatancy of the medium, i.e., by the nonlinear law
of its volume variation in the shear stress field. With the use of shear waves of different polarizations, the anisot-
ropy of the nonlinearity of the medium is demonstrated. The observation of the cross-modulation effect shows
that the nonlinearity-induced modulation components of the probe wave are much more sensitive to weak non-
stationary perturbations of the medium, as compared to the linearly propagating fundamental harmonic. The
nonlinear effects under study offer promise for diagnostic applications in laboratory measurements and in seis-
mic monitoring systems. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The development of seismoacoustic diagnostic tech-
niques and methods of monitoring geophysical media
requires knowledge of the elastic and inelastic, as well
as linear and nonlinear, properties of these media and
understanding of the relation between these properties
and the structure of the medium; i.e., physical models
of such media and the corresponding equations of state
are necessary. As a rule, the chemical compositions and
the physical structures of different kinds of rock are
complex and diversified, which determines the wide
range of acoustic properties of rocks and, hence, a rich
“spectrum” of nonlinear wave processes in them. On
the other hand, the variety of rocks can be separated
into several classes according to their structural similar-
ity, which determines the similarity of their acoustic
properties (even for different chemical compositions).
One such important class of geophysical media
includes granular materials. Their specificity is prima-
rily determined by the nonlinearity of the contacts
between the grains forming a granular medium. This
structural feature of granular media makes their acous-
tic nonlinearity qualitatively different from that of
homogeneous (continuous) amorphous and crystalline
solids, which makes studying the nonlinear propaga-
tion and interaction of elastic waves in granular systems
particularly interesting [1]. To describe and predict the
macroscopic behavior of a granular medium (with one
or another packing) in the field of elastic waves, it is
1063-7710/05/5105- $26.00 ©0543
necessary to know the distribution of the forces f acting
on the intergrain contacts. The results of both theoreti-
cal and experimental studies point to the fact that the
distribution function of the contact forces, P = P( f ),
rapidly decreases when f exceeds a certain characteris-
tic force f0 related to the strain of the medium [1–7]. On
the other hand, there still are no commonly accepted
models of the distribution P = P( f ) for f < f0. In the lit-
erature, one can find arguments in favor of both a
decrease [4] and an increase [5–7] in P( f ) for f < f0. The
existing experimental techniques [1–4] are insuffi-
ciently sensitive to allow choosing between the theories
describing the distribution of weak forces (f ! f0).
These techniques are based on the study of the prints of
grains on a carbon paper, the use of a microbalance for
measuring the normal forces acting on individual grains
at the boundary of the medium, and the visualization of
the deformation of grains with the help of optoelastic
effects. All of these methods deal with effects that
become stronger as the force f increases, so that the
contribution of the most-loaded contacts to the result of
measurements is predominant. Hence, it is especially
important to study the aforementioned manifestations
of granular media by experimental methods in which
the response of weak contacts is greater than that of
strong contacts. Such methods can be developed on the
basis of nonlinear acoustic effects, which are sensitive
to the weakest mechanical contacts and defects in the
structure of the medium [8–11]. In contrast to the
 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Experimental setup and (b) a schematic representation of two grain chains of a granular medium with different static
compressions: (A) control dynamometer, (B, C) receiving transducers, (D) longitudinal wave radiator, and (E–G) transverse wave
radiators with different wave polarizations.
known approaches [1–4], nonlinear acoustic methods,
in principle, allow one to obtain information on the dis-
tribution function P = P( f ) in the bulk of the medium
(rather than at its boundary) for the range of forces f <
5 × 10–2 f0.

In this paper, we combine and discuss from a single
point of view the results of a series of experimental
studies of the effects associated with the nonlinear
propagation and interaction of longitudinal (L) and
shear (S) elastic waves in granular media. The intensity
of these effects mainly depends on the nonlinearity of
weak intergrain contacts, which determine the acoustic
nonlinearity of the medium as a whole. We consider
demodulation effects, second harmonic generation for
high-frequency (HF) pulses, and cross-modulation of a
weak (probing) harmonic wave under the effect of an
intense amplitude-modulated pump wave.

2. ELASTIC NONLINEARITY OF A GRANULAR 
MEDIUM

Let us discuss the origin of the high sensitivity of
nonlinear acoustic effects in a granular medium to the
presence of weak intergrain contacts. As is known, the
origin of the strong elastic nonlinearity of a granular
medium is the Hertzian nonlinearity of contacts
between the grains [12]. For a medium with uniformly
loaded contacts, this nonlinearity leads to the following
equation of state, i.e., to the dependence σ = σ(ε):

(1)

where σ and ε are the stress and strain, the factor b
depends on the elastic moduli of the grain material, n is

σ ε( ) bnε3/2H ε( ),=
the average number of contacts per grain, and H(ε) is
the Heaviside function showing that stress occurs in the
medium only when the contacts are under compression
(σ, ε > 0). An actual granular medium contains contacts
with different loads [1–8], which requires a modifica-
tion of Eq. (1). To reveal the role of different contacts in
acoustic manifestations, we assume that a granular
medium contains only two fractions of contacts with
different static strains. Separating the static (σ0, ε0) and
dynamic ( , ) components of stress and strain for
both fractions, we obtain the following equation from
Eq. (1):

(2)

where n1 and n2 are the average numbers of contacts per
grain for the two fractions and µ is the dimensionless
parameter characterizing the weak (µ ! 1) static strain
of grains of the second fraction compared to that of the
first fraction. Note that the dynamic strain  is the same
for both fractions. This can be explained by considering
the deformation of loaded grain chains shown in Fig. 1.
Assume that, under the effect of dynamic stress, the
chain length h oscillates around its mean value h0 (h =

h0 + , | | ! h0). Then, the strain of the chain consist-
ing of N grains with a diameter d will be equal to ε =

(Nd – h0 – )/Nd. Consider a chain that has a zero strain
in the absence of acoustic load and assume that this
chain has a number of grains equal to N0 = h0/d @ 1.
Taking the number of grains in the ith chain to be Ni =

σ̃ ε̃

σ0 σ̃+ bn1 ε0 ε̃+( )3/2H ε0 ε̃+( )=

+ bn2 µε0 ε̃+( )3/2H µε0 ε̃+( ),

ε̃

h̃ h̃

h̃
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N0 + ∆Ni, where ∆Ni ! N0, we find that the strain εi

determined as the sum of the static and dynamic com-

ponents is approximately εi ≅  ∆Ni/N0 + /h0. Corre-

spondingly, the dynamic strain component  = /h0
will be the same for all of the grains belonging to dif-

ferent chains. By contrast, the static strains  =
∆Ni/N0 (i = 1, 2) are different for different chains,
because ∆N1 ≠ ∆N2. Note that the difference in the static

strains  for these chains can be relatively large even
for ∆Ni/N0 ! 1. Evidently, the model of the medium
presented above is quasi-one-dimensional, and it
assumes that the more neavily loaded grain chains
relieve other grains from the load. In actual three-
dimensional packings, it is possible to single out simi-
lar, predominantly loaded, quasi-one-dimensional
grain chains, so that, in an actual medium, the dynamic
strain can be considered as identical for all contacts to
a first approximation. Then, at n1 ~ n2, we obtain that
the first (more strained) fraction in Eq. (1) carries the
major part of the static load applied to the medium. For

this fraction, the strain  = ∆N1/N0 approximately
corresponds to the strain of the medium ε0. Thus, in
terms of the static strains of different contact fractions,
the compliance parameter of the ith fraction is deter-

mined by the ratio: µ(i) = /ε0.

For preliminarily compressed contacts and moder-
ate dynamic strains | | ! µε0, Eq. (2) can be expanded

into a Taylor series with coefficients dm (ε0)/d .
These coefficients characterize the linear (m = 1) and
nonlinear (m = 2, 3, …) elastic moduli Mm of the
medium, which determine the velocity of acoustic wave
propagation, the nonlinear correction to it, and the
intensity of nonlinear effects of the mth order:

(3)

Expression (3) shows that the contribution made by the
weak contacts to the linear modulus M1 is proportional
to µ1/2 ! 1 and is negligibly small at n1 ~ n2. By con-
trast, the contribution of the weak fraction to the non-
linear moduli Mm (m = 2, 3, …) is proportional to
µ(3/2) – m @ 1 and, hence, predominates in the presence
of sufficiently small static strains µ ≤ 10–1–10–2. Such
strains correspond to still smaller forces f/f0 ≤ 3 × 10–2–
10–3 ! µ, which fall beyond the sensitivity range of the
known experimental techniques [1–4].

From Eq. (3), it follows that, in the case of the
demodulation of weak HF acoustic pulses with an
amplitude εp < µε0, when the power series expansion of
Eq. (2) is valid, the amplitude ∈ det should be quadratic

in εp: ∈ det ~ M2 . For higher amplitudes (εp > µε0),
with allowance for the fact that the nonlinearity in

h̃

ε̃ h̃

ε0
i( )

ε0
i( )

ε0
1( )

ε0
i( )

ε̃
σ̃ ε̃m

Mm

dmσ̃ ε0( )
d ε̃m

-------------------- bn1 1
n2

n1
-----µ 3/2( ) m–+ 

  ε0
3/2( ) m– .∼ ∼

εp
2
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Eq. (2) is governed by the second term, the amplitude

∈ det is determined by the expression: ∈ det ~ 〈 H( )〉 ~
. This means that the dependence of ∈ det on εp

should exhibit a transition from the square law to the
3/2-power law. Such a transition testifies that weak con-
tacts with µ ~ εp/ε0 ! 1 are present in the medium. Sim-
ilar speculations are valid for the amplitude dependence
of the nonlinear sources producing the second-har-
monic wave in the medium.

3. EXPERIMENTAL SETUP

The experimental setup for studying the nonlinear
acoustic effects in a granular medium is shown in
Fig. 1. The granular medium was composed of glass
beads 2 mm in diameter, which filled a cylindrical con-
tainer with a diameter of 40 cm and a height of 50 cm.
The vertical static load was produced by a rigid piston
and controlled by an electronic dynamometer. The static
stresses and strains could be varied within 10–50 kPa
and (1–5) × 10–4, respectively. Piezoelectric transducers
were used to excite intense longitudinal and shear
waves in the pulsed or continuous modes (the diameter
of the transducers was about 4 cm). The receivers of
acoustic (strain) waves transmitted through the medium
were piezoelectric transducers with a longitudinal
polarization (of the same type as those used for the
emission of longitudinal waves). The positions and
polarization of acoustic radiators and receivers in the
container are shown in Fig. 1.

4. DEMODULATION OF A HIGH-FREQUENCY
S WAVE WITH A CONVERSION

INTO A LOW-FREQUENCY L WAVE

In the first experiment [13], primary HF pulses (with
a carrier frequency of 30–80 kHz) with longitudinal
and transverse polarizations were excited in the
medium. Because of the strong absorption in the gran-
ular medium, these pulses rapidly decayed (within a
distance of 5 cm). As a result of the demodulation (rec-
tification) of these pulses in the medium because of the
Hertzian nonlinearity of the contacts, secondary low-
frequency (LF) longitudinal pulses (with a characteris-
tic frequency of 4–6 kHz determined by the steepness
of the leading edges of the primary HF pulses) were
generated in the medium and propagated through it. In
hydroacoustics, devices whose operation is based on
this principle are called parametric radiators [14]; in
this case, both primary and secondary waves are
assumed to be longitudinal. The operation of paramet-
ric radiators with a shear pump wave is possible in a
granular medium because of its dilatancy [15, 16], i.e.,
the ability of the granular medium to expand under
shear stresses. This leads to a nonlinear transformation
of the signal frequency with a simultaneous change of
the wave polarization (i.e., an amplitude-modulated HF
S pump wave is transformed into a demodulated LF L

ε̃3/2 ε̃
εp

3/2
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Fig. 2. Demodulated signal amplitude as a function of the excitation amplitude of vertically propagating S and L pump waves for
two static pressures.
wave). Generally speaking, the effect of demodulation
of HF acoustic pulses with a conversion from S to L
waves is also possible in a homogeneous medium with
a quadratic elastic nonlinearity [17]. However, because
of the noticeable difference in the propagation veloci-
ties of the primary S wave and the secondary L wave
(when the dissipation in the medium is relatively
weak), their interaction will be asynchronous and the
amplitude of the demodulated signal will experience
spatial beatings.

In the given experiment, relatively long HF pulses
with a rectangular envelope were emitted, so that the
demodulated LF pulses from the leading and trailing
edges of the primary HF pulses did not overlap and
could be observed separately. With the chosen parame-
ters of HF pulses and pump transducer dimensions, the
demodulation of the signal occurred for a highly direc-
tional primary wave [14]. In this case, the shape of the
demodulated strain pulses corresponded to the second
derivative of the HF pulse envelope with respect to
time. Figure 2 shows examples of the dependences of
the amplitude ∈ dem of the demodulated pulses on the
amplitude εp of the primary L and S pulses (for different
values of static pressure). The strain level in the pump
wave (in its whole range) remained below the initial
static strain of the medium.

From the amplitude dependences obtained for the
demodulated pulses (Fig. 2), one can see that their main
feature (for both L and S pump pulses) is as follows: for
small amplitudes εp of the primary pulse, a quadratic
dependence of the amplitude ∈ dem on εp is observed,
and for large primary pulse amplitudes, this depen-
dence exhibits a transition to a 3/2-power law, which
corresponds to the Hertzian nonlinearity. It should be
stressed that this transition occurs when the strain
amplitude εp is 15–20 dB lower than the static strain ε0.
As it was noted above, the 3/2-power-law amplitude
dependence is typical of weak “clapping” contacts, and
the predominance of this dependence for εp ! ε0 testi-
fies to a considerable growth of the distribution func-
tion P = P( f ) in the range of small contact forces
(below several percent of their mean value f0). Here, it
should be taken into account that, in terms of the intro-
duced notations, the following relation is valid for Hert-
zian contacts: f/f0 ~ µ3/2 ! 1. This allows one to relate
the distribution function P = P( f ) to the contact strain
distribution n = n(µ) or vice versa, by taking into
account the relation P( f )df = n(µ)dµ, so that, if, e.g.,
n(µ) = const, one obtains P( f ) ~ f –1/3. Concerning the
behavior of the function P = P( f ), many publications
argue that the distribution of contact forces for f < f0 has
a fairly flat plateau P( f ) ≈ const [2, 3, 5, 6]. However,
it can be easily shown that such an assumption is incon-
sistent with the observed dependence of ∈ det on εp.
Moreover, even assuming that P( f ) ~ f –1/3, which cor-
responds to n(µ) = const in Eq. (2), one can see that the
power law P( f ) ~ f –1/3 (for small f) is insufficient to
obtain the transition from power 2 to power 3/2
observed in the dependence of ∈ dem on εp. A calculation
showed (see Fig. 3a) that, in the case of a uniform dis-
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tribution of contacts in the initial strain n(µ) = const
(i.e., for the distribution of the form P( f ) ~ f –1/3 in
terms of contact forces), despite the discontinuities
(clapping) of the weak contacts, the amplitude ∈ dem
almost quadratically depends on εp in the whole range
of the pump amplitude up to its value equal to the mean
static strain of the material, εp ~ ε0. Indeed, in the case
of the distribution n(µ) ≈ const, the number of clapping
contacts increases with increasing εp. As a result, the
amplitude of the demodulated pulse grows faster than

 and the amplitude dependence of this pulse
remains close to quadratic one as long as εp/ε0 ≤ 1. It is
only when εp/ε0 > 1 that almost all contacts begin clap-
ping and the quadratic dependence passes into ∈ dem ~

. Thus, the transition from the 2-power law to the
3/2-power law in the amplitude dependence of the
demodulated signal observed in the experiment for
εp/ε0 ! 1 testifies to the presence of a considerable frac-
tion of weak contacts (with µ ~ 10–1 or less). We stress
that, for the realization of the 2  3/2 transition in the
power law characterizing the amplitude dependence of
the demodulated signal, it is necessary to have a suffi-
ciently large total number of clapping contacts with
µ ! εp/ε0. Hence, to model the effect of this group of
contacts, it is sufficient to complement the smooth
function n(µ) = const with a fraction of weak contacts
concentrated in the region 0 ≤ µ ≤ µ0 ! 1 (see the exam-
ple in Fig. 3b, where we chose µ0 = 10–1, while the total
number of contacts remained the same as in Fig. 3a). In
this case, the change in the power law is evident as early
as at εp/ε0 ! 1. A similar pronounced 2  3/2 tran-
sition in the power law of the amplitude dependence
(Fig. 3b) can also be obtained when the function n =
n(µ) increases smoothly but fairly rapidly, for example,
when n(µ) ~ µ1/2 for 0 < µ < 1. A more detailed recon-
struction of the function n = n(µ) for µ ! 1 is difficult
because of the integral character of its manifestation,
but the pronounced 2  3/2 power-law transition
observed at εp ~ 10–1ε0 testifies that the growth of the
contact force distribution function in the region of
f/f0 ! 1 is substantial and allows one to estimate the
fraction of the weak contacts belonging to this region.
Note that, for the predicted 2  3/2 transition to agree
with experimental results, the characteristic value µ0
(below which a considerable part of weak contacts is
concentrated and the distribution function exhibits a
sharp growth) should be not too small. Otherwise, for
example, at µ0 = 10–2, the 2  3/2 transition would be
observed at a much smaller value of εp than that
obtained from the experiment.

Studying the polarization of the demodulated LF
pulses, we found that it was longitudinal for both longi-
tudinal and transverse polarizations of the HF pump
wave. In addition, the propagation velocity of these
pulses, which was determined from the arrival time,

εp
3/2

εp
3/2
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was also close to the propagation velocity of the L
wave. Figure 4 shows the shapes of the LF pulses for
two different frequencies of the S pump wave. When
the frequency of the S pump wave was reduced, the
decrease in its attenuation caused an increase in the
length of the nonlinear interaction region, where the
nonlinear source propagated with the velocity of the S
wave. This caused a noticeable additional delay of the
demodulated pulses and an increase in their duration,
which was not observed in the case of L pump pulses.

As noted above, the conversion of a shear wave into
a demodulated longitudinal wave occurs owing to the
dilatancy phenomenon (an increase in the volume of the
medium under the effect of a shear). Therefore, the
dependence of the demodulated pulse amplitude ∈ dem
on the shear pump amplitude εp provides the informa-
tion on the character of the dynamic (i.e., caused by the
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Fig. 3. Demodulated signal level ∈ dem (circles) modeled as
a function of pump amplitude εp for different contact com-
pression distribution functions n(µ) (squares): (a) n(µ) in
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with µ = 1, i.e., to the initial static strain of the medium.
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shear acoustic wave) dilatancy of the medium. The
classical dilatancy of a granular medium (according to
Reynolds) can be qualitatively understood from kine-
matic considerations [15] as the combination of slip
and rotation of the initially closely-packed grains with
respect to each other, which leads to an increase in the
volume of the medium. Both the kinematics of incom-
pressible grains [15, 16] and the linearized hyperplas-
ticity equations [18] predict a volume expansion of a
granular medium in direct proportion to the shear stress
amplitude. Such a dilatancy law leads to a linear depen-
dence of ∈ dem on εp (note that the stress and strain in an
acoustic wave are proportional to each other in the first
approximation). However, at small amplitudes, the
experimental dependence of ∈ dem on εp is quadratic
and, as the pump amplitude increased (up to εp ~ ε0 ~
(1–5) × 10–4), passed to the 3/2-power law, which cor-
responds to the nonlinearity of clapping Hertzian con-
tacts. Thus, in the presence of small (acoustic) strains,
the dilatancy of a granular medium noticeably mani-
fests itself and is primarily related to the compressibil-
ity of the intergrain contacts rather than to the kine-
matic effects of a repacking of grains.

The effect of demodulation of shear waves with dif-
ferent polarizations can also be used for determining
the anisotropy of the contact nonlinearity of the granu-
lar medium and for revealing the force chains prelimi-
narily oriented along the static stress in the medium.
Indeed, since the contact nonlinearity is inversely pro-
portional to the static strain (Eq. (3)), a medium with an
anisotropy of contact loads should have different non-
linearities for shear waves of different polarizations.
Figure 5 shows examples of the amplitude dependences

600
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Fig. 4. Examples of the shapes of the received demodulated
pulses for the longitudinal mode and two frequencies of the
shear pump wave. For a pump frequency of 30 kHz, the
additional delay in the first maxima is 26 ± 1 µs and the
pulse broadening (between the extrema) is 14 ± 1 µs, as
compared to the case of a pump frequency of 80 kHz.
of demodulated pulses originating from identical hori-
zontally directed S pump radiators with vertical (V) and
horizontal (H) polarizations. From these dependences,
one can see that, first, in the case of an H-polarized
pumping, the demodulated pulse amplitude is approxi-
mately 10 dB higher than that in the case of the V-polar-
ized pumping; second, the transition to clapping con-
tacts (2  3/2) for H-polarized pumping is observed at
amplitudes 7–12 dB lower than that for V-polarized
pumping. These facts testify that the nonlinear elastic
parameters of a granular medium are different for the
H- and V-polarized shear pump waves; i.e., an anisot-
ropy of nonlinearity occurs in the medium, because the
horizontal contacts are loaded less than the vertical
ones. In connection with this, we note that the propaga-
tion of an HF harmonic S pump wave with a circular
polarization of frequency Ω in such a medium may be
accompanied by the effect of generation of LF L waves
with frequencies 2kΩ , where k = 1, 2, …. The ampli-
tude dependences and the amplitude ratios of these
waves characterize the dynamic dilatancy law and the
anisotropy of the acoustic nonlinearity of a granular
medium.

5. SECOND HARMONIC GENERATION
FOR AN L WAVE UNDER AN S PUMP WAVE

The second harmonic generation is a classical non-
linear effect that is widely used, for example, in optics
for the radiation frequency conversion and in nonlinear
acoustics for nondestructive testing of materials. The
efficiency of the conversion of the fundamental har-
monic to the second one depends on the nonlinear
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Fig. 5. Demodulated signal amplitude as a function of the
amplitude of the S pump wave for the case of its horizontal
propagation with (V) vertical and (H) horizontal polariza-
tions (the pressure on the medium is 64 kPa). The character-
istic amplitudes corresponding to the 2  3/2 power
transition are indicated by arrows.
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parameters and dispersion of the medium. The latter
determines the possibilities for a synchronous accumu-
lation of the nonlinear effect. In dispersive media, the
phase velocities of waves with frequencies ω and 2ω
differ from each other, and the dependence of the sec-
ond harmonic amplitude on distance exhibits oscilla-
tions (beatings). For acoustic waves, the dispersion is
usually weak and only manifests itself in certain spe-
cific cases, for example, in acoustic waveguides [19].
Below, we describe the observation of such beatings for
the second harmonic generation in a granular medium
[20]; however, these beatings are characterized by some
distinctive features. First, the lack of synchronism
between the primary pump wave and the second har-
monic is in this case related not to the dispersion of a
single type of waves but to the velocity difference aris-
ing with the nonlinear conversion of the S wave of fre-
quency ω into the L wave of frequency 2ω. (In homo-
geneous solids, such a process is virtually unobservable
because of the large difference between the longitudi-
nal and shear wave velocities and because of the small
value of the nonlinear parameter.) Second, beatings of
the second harmonic amplitude were observed not with
an increase in distance but with an increase in the
amplitude of the primary S wave, which is related to the
nonlinear transformation in the wave interaction
region.

In the experiment, the frequency of the horizontally
propagating S pump wave was f = 5.12 kHz (the wave-
length was λ ≈ 4 cm), and its polarization could be
either vertical or horizontal. The distance from the radi-
ating transducers to the receiver was R ≈ 16 cm. For a
transducer with a radius of a ≈ 2 cm, the diffraction
length was Ld ~ πa2/λ ~ 3 cm, so that the second har-
monic generation mainly occurred in the region of the
spherical divergence of the pump wave. Here, as in the
case of demodulation, the generation of the second har-
monic for the S wave is accompanied by a conversion
to the L wave.

Figure 6 shows examples of the observed depen-
dences of the second harmonic amplitudes received in
the longitudinal mode on the amplitudes of a longitudi-
nal pump wave and a V-polarized shear pump wave (at
a static pressure of 41 kPa). From Fig. 6a, one can see
that, in the amplitude dependence obtained for a longi-
tudinal pump wave, beatings are absent and the behav-
ior of the second harmonic amplitude is similar to the
behavior of the amplitude of a demodulated pulse (see
Fig. 2); i.e., a 2  3/2 transition is observed in the
power-law dependence. For the shear pumping case
(Fig. 6b), the behavior of the second harmonic ampli-
tude is qualitatively different: instead of the monotonic
2  3/2 transition, the power law exhibits pro-
nounced beatings. In Fig. 6, the level of 0 dB on the
abscissa axis corresponds to the maximum strain
amplitude of the pump wave εp ≈ 1.4 × 10–5, which is
more than an order of magnitude smaller than the static
strain of the medium (2.4 × 10–4 at a static pressure of
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
41 kPa). As the static pressure increases, the position of
the first minimum of the second harmonic amplitude
(indicated by the arrow in Fig. 6b) is shifted toward
higher pump amplitudes.

As in the demodulation experiments described
above, the use of shear pump waves of different polar-
ization made it possible to observe the effect of anisot-
ropy of the medium by comparing the dependences of
the second harmonic amplitude on the amplitudes of
horizontally propagating H- and V-polarized S pump
waves. The comparison of these dependences showed
that, under the same static pressure, for the H- polarized
wave, the second harmonic level was higher (typically,
by 5–10 dB) and the beatings began at lower (also by
5–10 dB) pump amplitudes, as compared to those for
the V-polarized wave. This result agrees well with anal-
ogous observations for the demodulation effect.

The beatings observed with varying amplitude of
the S pump wave were related to the fact that, in the
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region of second harmonic generation, an increase in
the pump amplitude was accompanied by a change in
the conditions of wave interaction. As we have noted
above, the contribution of the unloaded contact fraction
to the demodulated signal is predominant, and part of
the weak contacts may pass to the clapping mode and
make a contribution to the second harmonic so that this
contribution proves to be comparable to (or even
greater than) the contribution from the contacts that
remain closed during the whole period of pump oscilla-
tion.

The process of the second harmonic generation in
the propagation of a longitudinal harmonic pump wave
is described by the integral [14]

(4)

where σnl and krad are the stress and the wave vector of
the secondary wave and the integration is performed
over the volume occupied by the nonlinear sources
Q( ) ≡ Q(x', y', z') produced by the primary pump
wave; r represents the coordinates of the observation
point. (For a medium with a quadratic nonlinearity,
Q(r') ~ Re[(εp/2)exp(–iωt + ikr')]2.) A similar integral
can describe the generation of an L wave of frequency
2ω in the field of an intense S wave of frequency ω in a
granular medium. However, in this case, it is necessary
to take into account the velocity difference between the
S and L waves and the specific feature of the granular
medium, namely, the 2  3/2 transition in the power
law characterizing its nonlinearity.

From the study of the demodulation effect, it was
found that the nonlinearity of a granular medium is qua-
dratic only for small amplitudes εp of the pump wave,

σnl r( ) Re
1

4π
------ Q r '( )

ikrad r r '–( )[ ]exp
r r '–

------------------------------------------d3r ',∫=

r '
as long as εp/ε0 ! µ; in this case, the source Q in Eq. (4)

is also quadratic: Q = Q2 ~ (3/16)(µε0)–1/2 . As the
pump amplitude increases up to εp/ε0 > µ, the Hertzian
nonlinearity becomes clapping, which leads to the fol-

lowing expression for the source: Q = Q3/2 ~ (3/4π) .
At some distance Lcr from the pump radiator, the ampli-
tudes of these sources coincide at the amplitude value

 ≈ 16µε0/π2, which can be considered as the charac-
teristic pump amplitude corresponding to the 2  3/2
transition in the power law. In this approximation,
Eq. (4) falls into two integrals corresponding to the
square-law and clapping (3/2-power-law) modes of the
sources:

(5)

where ε2ω is the strain in the wave of frequency 2ω.
Schematically, these subregions are shown in Fig. 7a.
At a small pump amplitude εp, the region of clapping
sources can still be absent. As the pump amplitude
grows, such a region appears near the transducer and
then moves into the depth of the medium, so that the
distance Lcr is determined by the condition of equal
amplitudes of the sources in the closed and clapping
modes: εp(r = Lcr) = 16µε0/π2. From this equality and
from the condition that the pump wave be spherically
divergent (i.e., εp(r) ≈ εp(r = 0)Ld/r) in the major part of
the interaction region, we obtain Lcr ≈ π2Ldεp(0)/(16µε0).
Performing the integration across the pumping beam
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and assuming that |r' – r| ~ r in the denominator of inte-
gral (5), we arrive at the expression

(6)

where ∆k = k – krad.
In Fig. 7b, integral (6) is represented as a function of

the pump amplitude  for several values of the param-
eter µ characterizing the degree of unloading of the
weak contacts and for other parameters corresponding
to the experimental conditions (the S and L wave veloc-
ities cS = 225 m/s and cL = 335 m/s, respectively; ∆k =

95 m–1). The amplitude (0) corresponding to the
level of 0 dB was chosen to be an order of magnitude
smaller than the static strain ε0. The behavior of the sec-
ond harmonic amplitude shown in Fig. 7b for the same
pump amplitude range as in the experiment strongly
depends on the parameter µ characterizing the reduced
strain of the weak contact fraction. Specifically, the ini-
tial quadratic growth and the subsequent harmonic
amplitude oscillations corresponding to µ ~ 10–2 in the
calculated plot are close to the behavior observed in the
experiment.

The difference in the effective interaction lengths
Leff corresponding to the adjacent extrema in the sec-
ond-harmonic amplitude dependence can be estimated
as ∆z = π/∆k ~ 3.3 cm. As the pump amplitude grows,
the boundary Lcr of the 2  3/2 transition in the
power law describing the amplitude dependence of the
demodulated signal is gradually displaced. Hence, at an
observation distance of R ~ 16 cm, the maximum num-
ber of possible extrema can be estimated as R/∆z ~ 4–5,
which agrees well with the experiment. The following
increase in the effective length of the antenna array will
cause no new extrema, because, within the entire dis-
tance from the emitter to the receiver, the nonlinear
sources will mainly be in the clapping mode corre-

sponding to the harmonic amplitude dependence ~ .
In Fig. 7b, such a situation is illustrated by the curve cor-
responding to the choice of µ = 10–3. On the other hand,
if the parameter µ is too large (µ = 10–1 in Fig. 7b), in the
given range of pump amplitudes, the number of clap-
ping contacts will be small and their contribution (and,
hence, the change in the effective length of the array)
will be too small, so that the beatings will be absent and
the harmonic amplitude dependence will be quadratic.
Note that, to simplify the model calculations, we used a
simple approximation of the distribution function (the
same parameter µ for all unloaded contacts), which
already allowed us to illustrate the role of unloaded
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contacts in the beating effect. Thus, the nonmonotonic
behavior of the second harmonic generated by a shear
pump wave proves to be a sensitive indicator of the
presence of weak contacts in a granular medium.

6. CROSS-MODULATION EFFECT
AND ITS SENSITIVITY TO STRUCTURAL 

PERTURBATIONS OF THE GRANULAR MEDIUM

In addition to the aforementioned effects related to
nonlinear frequency transformations toward higher and
lower frequencies, we also performed experimental
observations of the nonlinear acoustic response of a
granular medium to transient processes induced by
short pulsed actions with the use of the less common
effect of amplitude modulation transfer from an intense
amplitude-modulated pump wave to a probe wave of
another frequency [11]. This effect is an acoustical ana-
log of the Luxemburg–Gorki effect [21] observed in the
radio wave interaction in the ionosphere. A similar
effect of amplitude modulation of a weak seismoacous-
tic wave under the effect of an intense amplitude-mod-
ulated wave was observed in sandy soil [22]. In the
model experiments described below, the effects in a
granular medium were studied using an experimental
setup similar to that shown in Fig. 1. A more detailed
description of the experimental technique and the
experimental results can be found in [23, 24].

In addition to the results considered in [23, 24], we
present another typical example illustrating the great
difference between the sensitivity of the fundamental
component of the probe wave to the structure of the
medium and the corresponding sensitivity of the first-
and second-order cross-modulation components aris-
ing in the course of its propagation. In the experiment,
a monochromatic probe wave with a frequency of
10 kHz and a 100% amplitude-modulated pump wave
with a carrier frequency of 7 kHz and a modulation fre-
quency of 30–40 Hz were emitted into the medium.
These waves could be either parallel or perpendicular to
each other. Their mutual orientation only weakly
affected the efficiency of the modulation transfer,
because, in contrast to the harmonic generation, the
induced changes in the absorption in the medium were
important for this effect, so that no spatial synchronism
of the interacting waves was necessary. In the experi-
ment, the spectra of the probe wave were recorded at
1-s intervals, which allowed us to compare the varia-
tions of the fundamental harmonic and the modulation
lobes in time. An additional vibrator immersed in the
medium generated short (1–10 ms) shock pulses, which
produced perturbations in the medium. Figure 8 shows
the time dependences of the amplitude of the funda-
mental (with the carrier frequency) component of the
probe wave and the amplitudes of the induced first- and
second-order combination components. In the course
of these measurements, several pulses perturbing the
medium were emitted (the instants of the pulse genera-
tion are indicated by arrows). Figure 8 demonstrates the
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difference in the sensitivity of the level variations for
the modulation components and the fundamental har-
monic: for the latter, these variations are very small. An
important feature of the variations induced by the shock
pulses in the cross-modulation components of the
probe wave is their transient nature with a pronounced
slow dynamics. The dynamics of these variations is
determined by the gradual structural relaxation of the
material within 1–70 s after the perturbing pulse (see
Fig. 8). The inset to Fig. 8 shows the spectra of the
pump and probe waves. Note that the higher modula-
tion components appeared in the spectrum of the pump
wave as a result of its propagation through the medium,
and the shape of the spectrum of the probe wave does
not reproduce the shape of the pump spectrum. For
example, in the probe wave spectrum, the level of the
second-order components may in some cases be equal
to the level of the first-order components or even
exceed it (as in Fig. 8 after the first perturbing pulse).
Thus, the observed high sensitivity of the cross-modu-
lation effects to small structural changes in the granular
medium and, especially, to the structural relaxation
processes can be effectively used, along with other non-
linear effects, for nondestructive testing of the state of
a granular medium.

CONCLUSIONS

The results of the experimental studies described
above testify that the nonlinear effects occurring in a
granular medium are selectively sensitive to the pres-
ence of weak contacts (in contrast to linear elastic char-
acteristics, for which the contribution of strong contacts
predominates). The transition from the square law to
the 3/2-power law in the amplitude dependence of the
demodulated pulse and the beatings of the second har-
monic with increasing amplitude of the primary shear
wave suggest that the medium contains a considerable
fraction of weak contacts (according to estimates, 60–
70% of the total number of contacts). These nonlinear
effects observed for shear waves made it possible to
investigate the law of the dynamic dilatancy using the
dependence of the amplitude of the demodulated signal
on the shear pump amplitude. The characteristic fea-
tures of the effects under study testify that the distribu-
tion function of intergrain contact forces noticeably
increases in the region of small forces, much smaller
than the mean contact force. For grains of irregular
shape, such an increase near a zero force value is still
more pronounced, because, for example, in dry sand,
the square-law part of the amplitude dependence of the
demodulated signal is practically absent [23]. These
conclusions agree qualitatively with the recent results
of the three-dimensional modeling of intergrain forces
on the basis of the molecular dynamics approach [7].
For unloaded packings with allowance for friction, the
modeling revealed a pronounced growth of the function
P = P( f ) for f ≤ 10–1f0. The results obtained should stim-
ulate further theoretical modeling and experimental
investigations of the elastic and inelastic behavior of
granular materials.

The observed high sensitivity of nonlinear effects to
the structure of a granular medium suggests good pros-
pects for diagnostic applications of these effects in lab-
oratory conditions and in seismic monitoring systems
(where, in particular, the use of the acoustical analog of
the Luxemburg–Gorki cross-modulation effect, which
consists in the amplitude modulation transfer from an
intense pump wave to a probe harmonic wave, may be
of special interest).
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Abstract—The seismoacoustic field produced by an omnidirectional sound source located near the bottom of
a shallow-water sea is numerically modeled at frequencies lower than 100 Hz. The main types of waves that are
excited and scattered in the fluid and the layered bottom medium are represented in the form of wave hodo-
graphs on the distance–arrival time plane. A possibility to solve some problems of acoustic tomography of the
bottom is demonstrated, in particular, the problem of determining the thickness of the bottom sediment layers
and the velocities of the longitudinal and transverse waves propagating in them. By varying the elastic param-
eters of the layered bottom model, typical changes in the wave field are analyzed and the possibility to predict
the presence of oil-saturated layers in the seafloor is established. © 2005 Pleiades Publishing, Inc.
The problem of seismic profiling of the seafloor in
shelf zones is the important part of ocean acoustics, in
particular, the acoustics of bottom strata, including its
applications in the exploration of hydrocarbon deposits.
Although this problem has been studied since the sec-
ond half of the last century, the intensity of research in
this field remains high. The efforts of the researchers
are focused on experimental and technical aspects, as
well as on theoretical considerations (see [1–6], for
instance). Note that the analytical approach to studying
the field of elastic waves encounters considerable diffi-
culties even in the case of a plane-layered medium,
because the computations become extremely complex
when the number of layers increases. The modern
methods of numerical modeling allow one to overcome
these difficulties and to take into account a wide variety
of the geological and acoustical properties of the sea-
floor that are characteristic of the natural shelf regions.
Modeling offers much more opportunities to the
researcher than the analytical approach does. As the
sign or indicator of a mineral deposit at a specific hori-
zon, the behavior of the ratio of the attenuation coeffi-
cients of the transverse and longitudinal waves is often
used, specifically, a sharp increase in this ratio. On the
other hand, a fluid-saturated layer can manifest itself as
a sharp change in the propagation velocity of elastic
waves. The most advantageous method for measuring
and monitoring the group velocities of pulsed signals
carried by elastic and hydroacoustic waves in the bot-
tom medium and in the fluid consists in plotting the
wave hodographs on the range–arrival time plane. Such
hodographs identify different types of waves transmit-
ted by the source of oscillations and received by an
antenna array, that is, by a linear chain of hydrophones
or bottom-moored geophones.
1063-7710/05/5105- $26.00 ©0554
The aforementioned approach is used as the basis
for our numerical modeling and analysis of the wave
fields produced by the pulsed radiation of an underwa-
ter sound source in the frequency band of seismic
exploration. The seismoacoustic fields in the seafloor
and in the fluid are studied with the use of the OASES
software (Version 2) that was also used [7] for model-
ing the spatial wave structure of the fields generated by
tone sources. In the computations, the structure of the
seafloor is modeled by three layers, such a structure
being typical of a number of shallow-water basins. The
first layer, with a very low velocity of shear waves, is
directly followed by the second bottom layer, with a
higher stiffness and a higher velocity of transverse
waves. At the horizons corresponding to the second
layer, porous interlayers that contain the hydrocarbon
fluid are present. The existence of such interlayers cor-
relates with a decrease in the mean velocity of trans-
verse waves in this region. Thus, the objective of this
study is to analyze the qualitative change in the charac-
ter of the wave field (represented as hodographs on the
range–arrival time plane) under the influence of a
decrease in the velocity of shear waves in the region of
the second bottom layer.

With the model adopted, the seismoacoustic field
was calculated for the ranges up to 10 km with an incre-
ment of 50 m, and for the depths down to 1.5 km with
an increment of 6 m. The frequencies varied from 5 to
70 Hz at a step of 0.05 Hz to model the propagation of
broadband pulsed signals with different carrier fre-
quencies.

The model of the layered structure is identical to
that used earlier [7]: it consists of the underlying half-
space (the crystalline basement) and the three covering
layers, including the upper fluid layer. The parameters
 2005 Pleiades Publishing, Inc.
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Fig. 1. Oscillograms of the signals at a depth of 246 m for the distances X = 2.5, 5, 7.5, and 10 km. The velocity of the transverse

waves in the second bottom layer is  = 1 km/s, the carrier frequency is f = 30 Hz, and the bandwidth is ∆f = 25 Hz.VS
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of these layers are as follows: (1) the isovelocity layer

with h1 = 50 m, ρ1 = 1 g/cm3, and  = 1.5 km/s;
(2) the first bottom layer, i.e., the sediment layer, with h2 =

50 m, ρ2 = 1.5 g/cm3,  = 1.6 km/s,  = 0.06 km/s,

 = 0.05 dB/(m kHz), and  = 0.5 dB/(m kHz);
(3)  the second bottom layer with h3 = 300 m, ρ3 =

2.1 g/cm3,  = 2.5 km/s,  = (I) 1, (II) 0.5, and

(III) 0 km/s,  = 0.03 dB/(m kHz), and  =
0.1 dB/(m kHz); and (4) the stiff basement with ρ4 =

2.5 g/cm3,  = 4 km/s,  = 2.5 km/s,  =

0.02 dB/(m kHz), and  = 0.1 dB/(m kHz). Here,
h is the thickness of the layer, ρ is the density, VP and
VS are the velocities of the longitudinal and transverse
waves, and αP and αS are the corresponding attenuation
coefficients. To analyze the effect of the shear stiffness
of the second layer on the wave field characteristics,

three values of the velocity  of the transverse waves
were used for this layer (I, II, and III).

In modeling, the omnidirectional sound source of
small wave size was placed into water at 1 m above the
bottom. The received pulsed signals were filtered and
then used to plot the seismograms. Figure 1 shows the
normalized impulse responses of the medium for the
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depth Z = 246 m. These responses are obtained by
matched filtering of the sound field at the ranges X =
2.5, 5, 7.5, and 10 km. The maximum of the response at
X = 2.5 km was used as the normalizing factor.

The full set of seismograms, like that shown in Fig. 1,
allows one to visualize the seismoacoustic field pro-
duced by the source of the pulses on the range–arrival
time plane and, with the known depths of the receivers,
to obtain the godograph curves on this plane. In this
way, one can identify different types of waves and
thereby estimate the structure of the layers, in particu-
lar, the depths of the interfaces and the velocities of lon-
gitudinal and transverse waves in the bottom layers.
The darkening of the pattern indicates the sound pres-
sure level p in the fluid and the zz component of the
stress tensor in the three layers of the stiff bottom struc-
ture. In principle, the difference in the arrival times of
the signals can be used to separate waves of different
types from the total wave field, namely, the surface
waves, the channel waves (of the Lamb type), the bulk
waves (both longitudinal and transverse), and the non-
ray-type waves (like head and critically refracted ones).
This is possible, because each of the wave types pro-
duces its own hodograph curve or set of curves.

On the basis of the calculations performed, the
hodographs were plotted on the range–arrival time
plane for the waves that propagate over the entire spa-
tial domain, up to distances of 10 km, and then are
reflected toward the receivers. These hodographs are
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presented in the following figures. The data of model-
ing correspond to the transmission of a pulsed tone sig-
nal with the carrier frequency f = 30 Hz and the band-
width ∆f = 25 Hz (the corresponding time resolution is
0.04 s). Let us begin with analyzing and interpreting the
data of the calculations performed with the velocity of

the transverse waves  = 1 km/s in the second bot-
tom layer.

Figure 2 shows the section of the sound field 4 m
above the bottom. The brightest strip (indicated by
arrow 1 in the figure) is the set of curves produced by
arrivals of the pulses propagating with the velocities 1.5
and 1.6 km/s. The latter is confirmed by the fact that the
superposition of the arrivals leads to the periodic mod-
ulation of the entire bright area, whose width becomes
somewhat larger as the distance increases. Averaging
the slope of the curves over the entire path, which is
nearly 10 km in length, yields an estimate of 1.5 km/s
for the propagation velocity. The curves falling within
this area (arrows 2) are hyperbolas that deviate from
straight lines in the vicinity of the epicentral point X =
0 and tend to some fixed value of the time delay ∆t. The
principal and reverberation waves corresponding to the
hodographs are those reflected from the pressure-
release water surface, and the principal wave has the
delay ∆t = 0.333 s at X = 0. The hodographs of multiply
reflected waves produced by reverberation have the
same period of repetition and the delay time that is a
multiple of this value. There is also a hodograph of the
satellite wave that has a delay of ∆t = 0.07 s relative to
the principal wave at X = 0. Hence, one can conclude that
the principal wave is a longitudinal one with two reflec-
tions: at the pressure-release water surface and at the
interface between the first and second bottom layers.
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On the plane at hand, near the origin of coordinates,
a straight hodograph line can be seen. It exists at dis-
tances shorter than 0.5 km and decays nearly to zero at
a distance of 1 km from the source (arrow 3). This
hodograph may correspond to the direct wave propa-

gating in the fluid (  = 1.5 km/s) near the interface
between the fluid and the bottom.

A set of hodographs exists near the epicenter (X = 0),
that is, at short distances from the source. These hodo-
graphs (arrows 4) with large delay times (∆t = 1.7 s) and
with an equal repetition period (T = ∆t) correspond to
multiply reflected waves. To explain the nature of such
waves, one can suppose that the sound rays multiply
penetrate from the fluid to the first bottom layer in the
form of transverse waves and then return after being
reflected from the next interface. They again transform
to the sound wave when entering the fluid. The recur-
rence of such a process leads to a multiple interchange
of waves at the fluid–bottom boundary. The required
period of the interchange can be obtained by taking into
account the abnormally low velocity of the transverse

wave,  = 60 m/s, as compared to the velocity  =
1.5 km/s of the sound waves in the fluid, when the
refraction occurs at angles close to 90°. Note that these
reverberation waves are precisely the waves that pro-
duce the interfering noise in the detection of waves
reflected from the deep interfaces and carrying the
information about them.

Another set of parallel hodographs existing in the
pattern at great delays (arrow 5) has the repetition
period T = 0.333 s. These hodographs can also be
caused by the multiple reflections of longitudinal waves
along with the aforementioned wave interchanges in
the first bottom layer. However, the behavior of these
curves is less regular.

There are hodographs corresponding to faster waves
than those considered above. They exist at delay times
preceding the arrivals of the direct and reflected waves
travelling in the fluid. Among these waves, the head
compression waves refracted at the interface between
the first and second bottom layers are present. They

propagate with the velocity  = 2.5 km/s and are also
caused by multiple reflections (arrows 6). At even ear-
lier arrival times, i.e., at even steeper hodographs, mul-
tiply-reflected longitudinal waves can be found. They

propagate with the velocity  = 4 km/s and are
refracted at the basement boundary (arrow 7).

Figure 3 shows the wave pattern corresponding to
the signals received at a depth of 366 m, that is, in the
second bottom layer, under the interface between the
first and second layers. Here, the wave field consists of
a greater number of wave types and the hodographs of
longitudinal waves that are refracted at the interface of
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the bottom layers and have high velocities (  and

) are more pronounced (arrows 1 and 2).

At the shortest distances (0–300 m), one can see a
set of hodographs that corresponds to the longitudinal
waves with the velocity V ~ 1.5 km/s (arrow 3). The
arrival times of these waves are multiples of 1.7 s.
Another set of curves that alternates with the first set,
has an additional time delay of 0.3 s and corresponds to
the waves travelling with the velocity V ~ 1 km/s. The
latter waves exist within a finite range of distances
(0.5–0.9 km) from the source (arrows 4 in Fig. 3). The
origin of these waves seems to be the same as that con-
sidered above.

According to the numerical modeling illustrated by
Figs. 2 and 3, the signals received by the near-bottom
array of hydrophones can be used to determine the
velocities of the waves propagating in the layers that are
close to the bottom. More representative and detailed
data can be obtained by embedding the hydrophones
under the fluid–bottom interface.

To analyze the effect of the shear rigidity of the sec-
ond bottom layer, let us consider the aforementioned

wave patterns for the lower velocity  = 0.5 km/s.
Figure 4 shows the wave field received by the array of
hydrophones at a depth of 246 m. The pattern shown is
obtained by the numerical modeling with a new value
of the shear rigidity of the second layer. In comparison
with Fig. 2, the pattern is noticeably restructured at
times exceeding the arrival times of the pulses scattered
by the water surface. In addition to the bright strip
caused by the weakly resolved hodographs of the waves
with the velocities V ~ 1.5 and 1.6 km/s (arrow 1), a
broader area appears that contains the hodographs of
the underwater sound waves multiply reflected from the
pressure-release sea surface. These waves seem to pen-
etrate into the first bottom layer and undergo reflection
at the interface between the first and second layers
(arrow 2). The pulses of these waves are delayed with
respect to those that are first in their arrival times,
although they have nearly the same intensity. As above,
multiply reflected longitudinal head waves (arrows 3
and 4) exist in the range–time plane along the entire
path. The latter waves are refracted at the interface
between the first and second bottom layers (the propaga-
tion velocity V ~ 2.5 km/s) and at the interface between
the second bottom layer and the basement (the propaga-
tion velocity V ~ 4 km/s). These waves arrive earlier
than the hydroacoustic pulses.

Figure 5a illustrates the same case of a low shear
rigidity of the second layer. Here, the pattern is pre-
sented for a depth of 366 m, that is, 66 m deeper than
the boundary of the first bottom layer. The correspond-
ing pattern on the range–delay time plane is bisected by
the diagonal. The lower part of the pattern contains the
hodographs of the longitudinal waves (arrows 1) that
are multiply reflected by the surface of the basement

VP
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VP
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VS
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(the repetition period T = 0.25 s) and travel with the
velocity V ~ 2.5 km/s in the second layer. There are also
the head waves propagating with the velocity V ~ 4 km/s
(arrow 2); they are refracted at the same boundary. The
upper part of the pattern contains the hodographs of the
longitudinal waves (arrow 3) scattered by the pressure-
release sea surface with the repetition period T = 0.4 s.

By analogy with the case of  = 1 km/s, two sets
of hodographs exist at the distances of several hundreds
of meters from the source with a delay of 2.5 s. These
hodographs are presented in Fig. 5b, which is a magni-
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(b) The same wave hodographs for the distances within 0–2 km.
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fied image of the wave pattern of Fig. 5a for distances
of 0–2 km.

Arrows 4 (Figs. 5a and 5b) indicate the hodographs
of multiply reflected waves with velocities lower than
V ~ 1.5 km/s. The existence of the slow wave in the
developed wave structure is related to the reflection and
refraction in the second bottom layer where the velocity
of transverse waves is low. Arrows 5 (Figs. 5a and 5b)
label the hodographs of the waves propagating with the
velocity V ~ 1.6 km/s; those are the longitudinal waves
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refracted at the interface between the fluid and the first
bottom layer.

Thus, the data of the wave field modeling corre-
sponding to the seismic profiling lead to the conclusion
that, for the pulsed signal with the adopted carrier fre-
quency, the hodographs are primarily produced by the
reflections of the longitudinal waves at the interfaces.
However, in some cases, the hodographs are formed by
the interchanging waves that change their types in pass-
ing through the boundaries of the bottom layers. The
main information on the parameters of the deeper lay-
ers can be obtained from the slopes of the hodographs
for the most intense waves and from the periodicity of
these hodographs. In the experiment, these characteris-
tics should be treated as preliminary information to be
used in solving the inverse problem of reconstructing
the structure of the medium and determining its param-
eters.

The results of numerical modeling offer a possibility
to predict the presence of the fluid inclusions in the bot-
tom layers, one of the manifestations of such inclusions
being a decrease in the shear rigidity in the vicinity of
the second layer. According to modeling, the decrease
in the shear rigidity leads to an increase in the level of
longitudinal waves in the total wave pattern. This is true
for both the reflected waves and the head waves that are
refracted at the critical angle. On the other hand, the
decrease in the level of transverse waves takes place.
Such a decrease can also be used as an indication of the
fluid inclusions. This fact should presumably manifest
itself in the experiments on seismic probing of natural
deposits where the oil pools are mainly located in the
near-bottom layers.
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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The validity of the aforementioned statements is
confirmed by the wave pattern calculated for the limit-
ing case of zero-valued velocity of the shear waves in

all bottom layers,  = 0. Such a calculation is
illustrated in Fig. 6. In this case, the wave pattern is
formed by the more pronounced sound pulses that are
multiply reflected and by the pulses of longitudinal
waves that are refracted in the second layer and in the
basement without any contribution of the transverse
waves. The angular sector that is strongly “illuminated”
on the range–time plane corresponds to the velocities
from 0.5 to 2.5 km/s and even covers the velocity of
4 km/s, which coincides with the parameters specified
in the calculations.

The results of the wave field modeling simulate the
propagation of actual seismic and underwater sound
signals. The representation of the data in the form of the
oscillograms plotted one under another, like those pre-
sented above, is used in the in-sea experiments. By ana-
lyzing the experimentally obtained hodographs on the
range-time plane, conclusions can be drawn about dif-
ferent types of waves propagating in the seafloor. In
reconstructing the bottom strata for the sake of mineral
exploration, the signals should be processed in view of
the information extracted from the wave pattern, such
an approach being traditional for applied geophysics.

The aforementioned data of the seismoacoustic
wave field modeling serve to illustrate the possibilities
offered by one of the newly developed approaches to
the monitoring and seismoacoustic tomography of the
seafloor. The results of modeling may contribute to
updating the theoretical base of such methods. The data
obtained for the simple layered model of the seafloor
show that, in principle, one can estimate the acoustic
parameters of the bottom, namely, the velocities of lon-
gitudinal and transverse waves, which are important for
reconstructing the unknown structure of the layers. For
the frequency band considered, the space–time distri-

VS
2 3 4, ,( )
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bution of the sound field in the water column and in the
upper bottom layers are shown to be highly sensitive to
changes in the velocity of the transverse waves. Future
studies can be based on both simple and more complex
models of layered structures, with different positions of
the sound sources and receiving arrays, and with differ-
ent algorithms of space–time signal processing. There
are a number of promising directions in which further
development of computer simulations of elastic waves
will progress. Some of these directions are known from
the publications cited here; others can be extensions of
our work.
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Abstract—The propagation of broadband ultrasonic pulses in combined media that consist of printing paper of
different porosity saturated with different liquids is studied. The experiments are performed with three types of
paper, namely, Zoom Ultra (Stora Enso, Finland) with surface densities of 80 and 100 g/m2 and Data Copy (Mo
Do, Sweden) with a surface density of 160 g/cm2, and with two types of saturating liquids: ethanol and transformer
oil. To excite ultrasonic pulses and to detect them with a high time resolution, the laser optoacoustic spectroscopy
method is used. For each type of liquid-saturated paper, the phase velocity of ultrasound is measured in the fre-
quency range of 5–35 MHz. The absence of any noticeable frequency dispersion of the phase velocity is revealed.
The possibility of measuring the porosity of printing paper on the basis of the theoretical model of a two-phase
medium with the use of the corresponding experimental data is demonstrated. © 2005 Pleiades Publishing, Inc.
The development of methods for testing various
properties of paper in the process of its production is an
important problem in the printing industry. The main
characteristics of printing paper include its whiteness,
roughness, porosity, etc. The difficulty of quantitative
measurements of these parameters is connected with
their interdependence. Intensive studies had been car-
ried out with the aim to apply various optical methods
to the evaluation of paper properties [1–3]. In the
majority of these studies, the measurements were based
on the detection of laser radiation scattered by the
medium under testing. The evaluation of the optical
properties of printing and porous paper from the mea-
surements of the backscattered signal of femtosecond
laser radiation is described in [4]. The use of the Fou-
rier-optics methods in monitoring the spatial variations
of paper is described, e.g., in [5].

Ultrasonic methods also can be used to characterize
porous media. In [6], a method for the determination of
the gas content in bottom sediments is proposed on the
basis of simulation results. The model uses the depen-
dence of the velocity of sound on the porosity of the
medium. The permeability of porous water-saturated
media can be evaluated by the efficiency of electromag-
netic-acoustic effect [7].

In this paper, we propose an ultrasonic method for
measuring the porosity of paper. Probing ultrasonic
pulses were excited in paper by laser radiation through
the optoacoustic transformation [8]. Its advantage is the
possibility to generate short high-power ultrasonic sig-
nals with a smooth time envelope and a broad fre-
quency spectrum. The last fact is fundamentally impor-
tant for attaining a high measurement accuracy in test-
ing sound-absorbing objects with a thickness of tens to
hundreds of micrometers. In addition, the use of optoa-
1063-7710/05/5105- $26.00 ©0560
coustic signals provides an opportunity to investigate
the ultrasonic frequency dispersion in media under
study in a wide spectral range.

It seems most expedient to perform ultrasonic test-
ing of dry paper during the production process. How-
ever, there are several fundamental difficulties, the first
of which is caused by the necessity to provide an acous-
tic contact between the object and the receiver. The sec-
ond difficulty is the absence of simple theoretical mod-
els for sound wave propagation in a porous medium
with an unknown pore size distribution. Moreover, to
use any of such models, it is necessary to know a priori
the velocity and attenuation of sound in the solid phase
of the object (paper with “zero” porosity), which is
hardly possible in view of the technological features of
manufacturing raw material for paper production.

The possibility of applying the optoacoustic method
for a nondestructive local (within the diameter of the
laser spot on the surface of the optoacoustic source of
ultrasound) measurement of the porosity of silicon lay-
ers on a single-crystal substrate was demonstrated in
[9]. Porous samples were saturated with ethanol, and
the phase velocity of ultrasound was measured in them.
Because the pore sizes and the sample thickness are
much smaller than the acoustic wavelength, the acous-
tic signal is not separated into fast and slow compo-
nents [10], and the phase velocity of sound in a com-
bined two-phase medium can be expressed through the
sound velocities in its individual components and the
porosity of the medium. The silicon porosity was calcu-
lated with an error not worse than 5% according to the
data of ultrasonic measurements. From the aspect of the
problem formulation, the propagation of acoustic
waves in paper saturated with a liquid filler must be of
 2005 Pleiades Publishing, Inc.
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Table 1

Paper
sample Trademark Surface density,

g/m2
Density of dry paper
ρpaper × 103, kg/m3

Thickness
h × 10–6, m

no. 1 Zoom Ultra (Stora Enso, Finland) 80 0.762 105

no. 2 Zoom Ultra (Stora Enso, Finland) 100 0.794 125–127

no. 3 Data Copy (Mo Do, Sweden) 160 0.914 170–175
a similar character and the theory of a two-phase
medium can be used to calculate the porosity of paper.

The purpose of this work was to study the possibility
of applying the optoacoustic method in measuring the
porosity of printing paper.

Let us consider a theoretical model for propagation
of longitudinal sound waves in a two-phase medium
consisting of paper saturated with a liquid. We assume
that the structure of the solid phase of paper (cellulose)
does not change and that the liquid completely fills the
pore volume. Let the bulk porosity of paper be P. Then,
the density of the liquid-saturated paper ρ0 can be
expressed using the cellulose density ρcel and the liquid
density ρliq:

(1)

If a plane acoustic wave propagates in a porous
medium with a filler, its phase velocity can be
expressed through increments of sound pressure and
density in the medium [11]:

(2)

The density increment for the two-phase medium under
consideration is determined as

(3)

Hence, the expression for the phase velocity of an
acoustic wave in liquid-saturated paper can be written
in the form

(4)

where cliq and ccel are the sound velocities in the filler
and in cellulose, respectively. Formula (4) also takes
into account that the density of air is negligible, and,
therefore, (1 – P)ρcel = ρpaper is the density of dry paper,
which can be determined by weighing or from the
known surface density and thickness of dry paper.
Assuming that the sound velocity c can be measured,
the unknown quantity in Eq. (4) (apart from the paper
porosity P) is only the sound velocity ccel in cellulose.
If one uses two different liquids as fillers, Eq. (4) yields
two equations with two unknowns: P and ccel. Hence,

ρ0 1 P–( )ρcel Pρliq.+=

c2 ∂p
∂ρ0
-------- ∆p

∆ρ0
---------.≈=

∆ρ0

ρ0
--------- P

∆ρliq

ρliq
----------- 1 P–( )

∆ρcel

ρcel
-----------.+=

c2 1

ρpaper Pρliq+( ) P/ρliqcliq
2 1 P–( )2/ρpaperccel

2+( )
------------------------------------------------------------------------------------------------------------,=
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the problem of the absence of a priori data on the cellu-
lose properties is eliminated.

Thus, to determine the value of P, it is necessary and
sufficient to measure the phase velocities of longitudi-
nal sound waves in paper samples saturated with two
different liquids.

In our experiments, we used the optoacoustic spec-
troscopy method with a laser source of ultrasound [12].
The basis of this method is the laser excitation of broad-
band ultrasonic signals due to the absorption of pulsed
laser radiation in a medium specially selected as a
source of ultrasound and the detection of these signals
in a broad frequency band with a high time resolution.

Three types of printing paper samples (see Table 1)
were taken for porosity measurements. Each sample
was shaped as a circle 24 mm in diameter cut out of a
paper sheet. The sample thickness hi was measured
using a micrometer gauge, by clamping the sample
between two polished plane-parallel surfaces, with an
accuracy of 1–2 µm. It is necessary to note that the
paper thickness at different points of a sheet varied
within several micrometers (see Table 1), and, there-
fore, the measurements were performed for each sam-
ple before the ultrasonic measurements. Liquids were
chosen according to the criterion that paper should be
well saturated with them without changing its structure.
For example, distilled water distorts paper (in the
course of saturation, its thickness increases), and there-
fore cannot be used as a filler. Furthermore, it is neces-
sary to indicate an important feature of porosity calcula-
tion using Eq. (4): the stronger the liquids differ in their
acoustic properties, the more accurately the porosity
is determined. Taking into account the above factors,
we chose ethanol (ethyl alcohol) and transformer oil
as the fillers. Their densities (ρet = 798 kg/m3 and ρoil =
829 kg/m3) were measured gravimetrically, and the sound
velocities in them (cet = 1170 m/s and coil = 1450 m/s),
using a standard optoacoustic technique (for example,
see [9]). The relative error of measurements for the
indicated quantities was not worse than 0.5%. After
ultrasonic measurements, the paper thickness was mea-
sured for the second time and no deviations greater than
1–2 µm were revealed.

To excite probing acoustic pulses, we used a pulsed
Nd3+YAG laser (the radiation wavelength was λ =
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1.06 µm, the pulse length at the level of 1/e was 10–
12 ns, the pulse energy was about 10–15 mJ, and the
pulse repetition rate was 2 Hz). The laser radiation was
directed through a light-diffuser at (1) the optoacous-
tic source of ultrasound (India ink in a quartz cell, see
Fig. 1). In the presence of an impedance acoustic
boundary between India ink and quartz glass, unidirec-
tional acoustic pulses with exponential leading and
trailing edges are excited. The transformation of the
experimentally detected signal profile (Fig. 2a) at the
trailing edge and the appearance of the rarefaction
phase are connected with the ultrasonic pulse diffrac-
tion in the quartz glass and in the acoustic waveguide of
the receiver. The characteristic frequency in the spec-
trum of the excited optoacoustic signal (Fig. 3) fh =
αcink/2π ≈ 20 MHz (at a level of 1/2) was provided by the
coefficient of light absorption in India ink α ≈ 1000 cm–1.
The sound velocity in India ink, cink = (1.49 ± 0.005) ×
103 m/s, was measured experimentally. The lower oper-
ation frequency fmin ≈ 5 MHz was determined by the
diffraction of ultrasound in the acoustic waveguide of
the receiver.

The detection of ultrasonic pulses was performed by
(3) a calibrated broadband receiver based on LiNbO3 (the
operation frequency band was 1–100 MHz) (Fig. 1). The
low-frequency sensitivity of the receiver was 15 mV/atm.
For the demodulation of the probing ultrasonic signal,
the rear surface of the optoacoustic source was pressed
with the help of calibration screws and through a thin
layer (~10 µm) of the corresponding filler to the face
surface of the quartz acoustic waveguide of the receiver.
All working surfaces of the source and the receiver
were plane-parallel and initially polished. To detect
ultrasonic signals transmitted through the liquid-satu-
rated paper, (2) the samples were clamped between the
source and the receiver (Fig. 1). Electric signals from the
receiver were recorded by a Tektronix TDS-220 digital
oscilloscope (an analog frequency band of 100 MHz).

1

2

3

Fig. 1. Basic scheme of the immersion method with a laser
source of ultrasound: (1) optoacoustic source, (2) liquid-sat-
urated paper sample, and (3) broadband piezoelectric
receiver of acoustic signals.
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Fig. 2. (a) Temporal profile of the testing ultrasonic signal
excited in the optoacoustic source and detected by the
broadband piezoelectric receiver. The temporal profiles of
ultrasonic signals transmitted through the samples of paper
saturated with (b) ethanol and (c) transformer oil (the
dashed line is for paper sample no.1; the thin solid line, for
sample no. 2; and the thick solid line, for sample no. 3).
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After averaging over 128 realizations, the signals were
processed by a personal computer.

Figure 2a shows the temporal profile of a probing
ultrasonic pulse excited in India ink and detected by a
broadband receiver. It is necessary to note that the liq-
uid layer between the source and the receiver was thin
and, therefore, irrespective of whether ethanol or trans-
former oil was used as the liquid, the form of the prob-
ing acoustic pulse was the same. The position of the
signal maximum in Fig. 2a corresponds to the time
instant t = 0 of the signal arrival at the receiver from the
face surface of India ink irradiated by the laser pulse.

The profiles of the acoustic signals transmitted
through the paper samples saturated with ethanol and
transformer oil are presented in Figs. 2b and 2c, respec-
tively. The thicker the paper sample, the farther from
the reference time t = 0 the position of the signal trans-
mitted through the sample is. The decrease in the pulse
amplitudes is connected with damping of ultrasound in
the samples. Figure 3 gives the spectrum of a probing
pulse and the spectra of the signals transmitted through
the paper sample no. 3 with different fillers. All curves
are normalized to the maximum of the spectral ampli-
tude of the probing pulse. One can see that the maxi-
mum frequency in the spectrum of signals under study
is fmax ≈ 35 MHz (with the dynamic range of the receiv-
ing channel being equal to 35–40 dB). Higher-fre-
quency harmonics cannot be discriminated against the
noise background. Since the sound velocity in trans-
former oil is higher than that in ethanol, the signals
transmitted through paper samples saturated with trans-
former oil have smaller time delays with respect to the

100

0 10

U, arb. units

f, MHz
20 30 40

10–1

10–2

10–3

10–4
fmin fmax

~

Fig. 3. Frequency spectra of the probe ultrasonic pulse
excited in the optoacoustic source (the thick line) and of the
ultrasonic signals transmitted through the paper sample no. 3
saturated with ethanol (the thin solid line) and with trans-
former oil (the dashed line).
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probing pulse in comparison with the samples saturated
with ethanol. The time delay ∆t(i, j) = tmax(i, j) – tmax, (0)
between the maxima of these signals and the probing
pulse can be used to calculate the group velocities of
ultrasound v g(i, j) in the samples:

(5)

where the index i indicates the number of the sample
and the index j refers to the filler (j = 1 corresponds to
ethanol, and j = 2, to transformer oil). However Eq. (4)
involves the ultrasonic phase velocities that may
depend on the frequency of the ultrasonic wave in the
presence of a frequency dispersion. Since the paper
porosity does not depend on the frequency of the ultra-
sonic pulse, the measurement accuracy is affected by
the value of the frequency dispersion of ultrasonic
phase velocities in the samples under investigation. The
determination of the frequency dependences of ultra-
sonic phase velocities in all paper samples saturated
with liquids is very difficult because of the reverbera-
tions of the probing acoustic pulse in paper samples
clamped between the optoacoustic source and the
receiver. The determination of the spectral phase is pos-
sible only for sample no. 3 in the case of sound propa-
gation when the reverberations are practically separated
in their arrival time at the receiver. Therefore, we have

(6)

where ∆ϕ(3, j) is the phase difference between the har-
monics of the signals transmitted through the samples
of paper no. 3 saturated with different liquids and the
harmonics of the probing pulse corresponding to the
filler.

v g i j,( ) hi/∆t i j,( ),=

c 3 j,( ) 2πf h3/∆ϕ 3 j,( ),=

1.92

5 10

× 103 c(3, j), m/s

f, MHz
15 20 25 30 35

1.88

1.84

1.80

1.76

1.72

1.68

1.64

1.60

1.56

Fig. 4. Frequency dependences of the phase velocity of
ultrasound in the sample of printing paper no. 3 saturated
with (j) transformer oil and with (s) ethanol.
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Table 2

Paper
sample

Surface density, 
g/m2 c(i, 1) × 103, m/s c(i, 2) × 103, m/s P, % ccel × 103, m/s ρcel × 103, kg/m3

no. 1 80 1.52 ± 0.02 1.81 ± 0.03 36 ± 2 2.6 ± 0.2 1.20 ± 0.03

no. 2 100 1.60 ± 0.02 1.90 ± 0.03 32 ± 2 2.7 ± 0.2 1.17 ± 0.03

no. 3 160 1.64 ± 0.02 1.89 ± 0.03 25 ± 2 2.40 ± 0.14 1.21 ± 0.03
Figure 4 gives the phase velocities of ultrasound as
functions of frequency for the sample of paper no. 3
that were calculated using Eq. (6) according to the
experimental data. The frequency range of the phase
velocity variation was limited by the values of fmin and
fmax. In the case of ethanol used as the filler, the value of
the standard deviation from the average velocity value
c(3, 1) = 1.64 × 103 m/s in the frequency range from fmin
to fmax is σc ≈ 20 m/s; in the case of transformer oil with
c(3, 2) = 1.89 × 103 m/s, it is σc ≈ 30 m/s. These errors are
caused by an inaccuracy in measuring the sample thick-
ness (1–2 µm) and the time of signal detection by a
receiver (≈1 ns). Thus, within an error of 1–2%, we can
ignore the dependence of the ultrasonic phase velocity
on frequency for the sample of paper no. 3. This allows
us also to ignore the frequency dispersion of the phase
velocity for two other paper samples despite the impos-
sibility of direct measurements of spectral phases of
signals. Therefore, the group velocities calculated from
Eq. (5) by the delays of signal maxima in samples with
respect to the probing pulse correspond to the values of
the phase velocities within 1–2%. Thus, Eq. (4) can be
used to calculate the porosity of printing paper from the
data of ultrasonic measurements.

Table 2 presents the results of the ultrasonic studies
described above. The time delays ∆t between the max-
ima of the signals transmitted through a sample and the
maximum of the probing signal were multiply mea-
sured for all types of paper. The error in their measure-
ment was ~1–2 ns. The data of the sound velocity mea-
surements in different samples show that the smallest
relative error (∆c(3, j)/c(3, j) = 1.3%) is obtained for the
thickest paper. This is quite natural, because the abso-
lute errors in measuring the sample thickness and
arrival times of signals are equal for all samples. The
lowest value of ultrasonic velocity is obtained for both
fillers in the thinnest paper. For the samples of paper
nos. 2 and 3, the velocity values are almost equal. An
important specific feature of the method is the fact that
the relative error in measuring the sound velocity, being
∆c(i, j)/c(i, j) = 1.3–2%, does not lead to absolute errors
greater than 2% in determining the porosity ∆P. In the
fourth column of Table 2, the calculated porosity values
for paper samples are given. The maximum value is
obtained for paper sample no. 1 (P = 36%), in which the
sound velocity was minimum. The least porous paper
was the thickest one, which had the maximum value of
the bulk density (see the fourth column of Table 1).

Apart from the porosity, the proposed method pro-
vides an opportunity to determine the values of ccel and
ρcel. Their calculated values are given in the sixth and
seventh columns of Table 2. Within the error, these
quantities proved to be almost identical for different
paper samples. Presumably, this is caused by the fact
that raw materials used for the production of printing
paper do not differ widely for different paper types. The
absence of reference data on the density of cellulose,
sound velocity in it, and porosity of paper does not
allow us to state that the measured values correspond to
the true ones for the samples studied. However, the
reproducibility of the results in a series of experiments
and the reasonable values of paper parameters obtained
allow us to suggest the above-described method for
measuring the paper porosity. A verification of this
method requires measurements of porosity for the same
paper samples by an independent technique.

Now, let us summarize the results. In this work, we
studied the propagation of broadband acoustic pulses of
longitudinal waves in printing paper saturated with liq-
uids (ethanol and transformer oil). It was assumed that
the liquids completely fill the volume of pores without
changing the paper structure. An optoacoustic method
was used to excite probing ultrasonic signals. The
phase velocity of ultrasound was measured in the fre-
quency range of 5–35 MHz in paper samples with dif-
ferent surface densities (80, 100, and 160 g/cm2), and
the absence of its noticeable frequency dispersion was
demonstrated for all types of paper with any of the two
fillers. The values of the paper porosity were calculated
on the basis of a theoretical model of a two-phase
medium using the data of ultrasonic measurements. It
was found that the relative inaccuracy in measuring the
sound velocity ∆c(i, j)/c(i, j) = 1.3–2% leads to an absolute
error in determining the porosity ∆P = 2%.
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Abstract—The velocity of ultrasonic waves with a frequency of 3 MHz is experimentally studied in a wide
range of volume concentrations (0.1–50%) of ferrite particles in the matrix. The mean size of particles is 6 µm.
The results of the study show that the concentration dependence of the velocity of ultrasonic wave propagation
in ferrocomposites has three specific regions, in which the concentration coefficient of velocity changes from
negative to positive passing through a minimum in the percolation region. © 2005 Pleiades Publishing, Inc.
With the progress in engineering and with the intro-
duction of new technologies in industry, a steadily
growing interest in composite materials has been
observed, which is related to the possibility of produc-
ing materials with predetermined properties, the wide
range of which makes them indispensable to microelec-
tronics, space industry, civil engineering, etc.

The properties of composite materials are investi-
gated using various methods, including acoustical ones.
This paper presents an experimental study of the depen-
dence of the velocity of ultrasonic wave propagation on
the concentration of ferrite particles in ferrocompos-
ites. Ferrocomposites, as well as magnetic fluids, are of
great practical importance. In magnetic fluids, the
matrix is water, oil, kerosene, etc. Possessing the prop-
erty of fluidity, they are easily deformed but cannot
hold their shape [1, 2]. The technology used for ferro-
composite preparation makes it possible to impart any
shape to these materials and then fix it [3].

In the experimental study described in this paper,
the composite matrix was a 10% solution of gelatin,
into which Fe3O4 ferrite particles were introduced. It
should be noted that, in the 10% solution of gelatin, at
a temperature higher than the temperature of gelation,
when the viscosity of the solution was relatively low,
the ferrite particles exhibited magnetic properties. In
particular, the particles were attracted by a magnet and
the magnetic field changed their trajectories. In the
absence of magnetic field, when the particles were ran-
domly distributed over the sample volume, a decrease
in the temperature of the solution below the gelation
temperature resulted in the stabilization of the positions
of randomly distributed particles in the matrix. In this
case, the magnetic properties of the particles in the
composite disappeared. Thus, the study of the concen-
tration dependence of sound speed in such composites
gives information on the general features of sound
propagation in the solid particles–polymer composites.
Afterwards, this problem can be complicated.
1063-7710/05/5105- $26.00 ©0566
The samples under study had the form of rectangular
parallelepipeds with edge dimensions of 6 × 6 × 2 cm.
The volume concentration of particles varied from 0.1
to 50%. The dimensions of 1000 particles were mea-
sured with a microscope, and the results were used to
plot a histogram for determining the fractional compo-
sition. The mean size of particles was r = 6 µm, and the
range of particle sizes was r ∈  3–30 µm.

A simplified block diagram of the setup for measur-
ing the velocity of ultrasonic waves is shown in Fig. 1.
The sample (2) was placed in a container (1) filled with
distilled water in such a way that the side planes of the
sample were parallel to the planes of piezoelectric
transducers (3, 4) and its center of symmetry lay on the
axis passing through the transducers’ centers. A signal
from an oscillator (5) was fed to radiating quartz (3),

a

b

d

L

2

x

3 4

1

7

65

a b d

Fig. 1. Block diagram of the setup for measuring the veloc-
ity of ultrasonic waves with schematically represented
beam trajectories and their image on the screen of the oscil-
loscope.
 2005 Pleiades Publishing, Inc.
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which excited ultrasonic waves. These waves, after
passing through the sample (2), fell on the receiving
quartz (4). Then, the signal was fed to an amplifier (6)
and an oscilloscope (7) triggered by the oscillator. The
measurements were performed at a frequency of 3
MHz. The velocity of ultrasonic wave propagation c in
the sample was measured by the pulse method and cal-
culated using the relationship (2x/c) + (2L/cw) = τ,
where x is the sample thickness, L is the distance from
the sample to the quartz, cw is the sound velocity in
water, and τ is the time between pulses a and d deter-
mined by the oscilloscope [4]. The pulse duration was
80 µs, and the delay time was 3 ms. The sound velocity
measurement error determined by the errors in measur-
ing x, L, and τ was about 1%.

In Fig. 2, curve 1 displays the results of measuring
the dependence of the velocity of ultrasonic wave prop-
agation in ferrocomposites on the volume concentra-
tion of particles, which varied from 0.1 to 10%. As is
seen from the curve, the increase in the quantity of par-
ticles in the matrix leads to a decrease in the velocity of
ultrasonic wave propagation in the ferrocomposite. In
this range of concentrations, similar dependences of the
velocity were observed for magnetic fluids and a sus-
pension of glass particles [5, 6]. These data are shown
in Fig. 2 by curves 2 and 3, respectively. Note that, in
the suspension of glass spheres, after the concentration
exceeds 16%, when the distance between the particles
rmn becomes comparable to or less than the particle size
rmn ≤ 2r, the ultrasonic velocity begins to grow with the
particle concentration (curve 3). In this region of con-
centrations, measurement of sound velocity in compos-
ites by the pulse method becomes impossible due to the
strong absorption that leads to the disappearance of the
third pulse d. For measuring the sound velocity in com-
posites in the range of high particle concentrations, we
used a new method.

As is well known, the coefficient of reflection from
the boundary of two media K at normal incidence is
determined by the formula K = (Z2 – Z1)/(Z2 + Z1),
where Z2 and Z1 are the characteristic impedances of the
media [7]. Supposing that this relationship is valid for
the reflection from the composite materials placed in
water, we can write K = (c〈ρ〉  – cwρw)/(c〈ρ〉  + cwρw),
where 〈ρ〉  is the effective density of the composite and
ρw is the water density. From this relation, it is possible
to obtain the formula for calculating the sound velocity
in the composite:

c = cwρw(K + 1)/(1 – K)〈ρ〉 . (1)

The measurements of the reflection coefficient were
performed using the setup shown in Fig. 1 after some
modification: one of the piezoelectric transducers (4)
was used alternately as a radiator and as a receiver of
ultrasonic waves. The results of measuring the coeffi-
cient of reflection from ferrocomposites are presented
in Fig. 3. As is seen, in the region of low concentrations,
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
up to 7–10%, the reflection coefficient fluctuates, which
hampers the determination of its dependence on the
concentration. Numerous measurements, including
measurements with the samples that had the same par-
ticles but differently distributed in the body of the sam-
ple, showed that the fluctuations of the reflection coef-
ficient were connected with the ambiguity of the particle
arrangement in the samples [8]. Statistical processing
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Fig. 2. Dependences of the velocity of ultrasonic waves on
the concentration in (1) ferrocomposites, (2) magnetic flu-
ids [6], and (3) a suspension of glass particles [5].
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Fig. 3. Dependence of the reflection coefficient on the con-
centration of the ferrocomposite.
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of a large body of measurement results made it possible
to reveal the tendency for the growth of the reflection
coefficient with an increase in concentration. The fluc-
tuations of the reflection coefficient die out with the
growth of concentration and, above 20%, the reflection
coefficient becomes reproducible accurate to 10%. As
is seen from Fig. 3, the concentration coefficient β =
∂K/∂n in the concentration region within 20–50% con-
siderably exceeds the coefficient γ = ∂K/∂n in the region
of 0.1–10%.

The effective density required for determining the
velocity from the reflection coefficient was calculated
theoretically and measured experimentally by weigh-
ing the samples and measuring their volumes. Experi-
mental data were in satisfactory agreement with the
theoretical ones.

The velocities of ultrasonic waves calculated by for-
mula (1) are represented by curve 1 in Fig. 4 (dia-
monds). This figure also shows the velocities obtained
by the pulse method (curve 2, squares). It is seen that,
in the concentration region 0.1–10%, the velocity val-
ues determined by the pulse method agree well with the
velocities calculated from the measured reflection coef-
ficient. Thus, the use of the two methods made it possi-
ble to measure the velocity of ultrasonic waves in ferro-
composites in a wide range of concentrations, from 0.1
to 50%.

As is seen from curves 1 and 2 in Fig. 4, the depen-
dences of the velocity of ultrasonic waves on concen-
tration have three distinctive regions. In the region of
concentrations from 0.1 to 10%, in which the particles
are discretely distributed in the matrix without touching

c, m/s

n, %
5
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Fig. 4. Dependences of the velocity of ultrasonic wave
propagation in ferrocomposites on the concentration: (1, e)
data obtained from the reflection coefficient measurements,
(2, h) measurements by the pulse method, and (3) the theo-
retical curve.
each other and the distance between them rmn is greater
than the particle size, the velocity of ultrasonic waves
decreases with increasing concentration and the con-
centration coefficient of velocity is negative. In the per-
colation region of n ∈  16–20% [9], when infinite clus-
ters begin to form and double and triple interparticle
contacts appear, the concentration coefficient of veloc-
ity tends to zero. With a further growth of the particle
concentration, the number of interparticle contacts
increases [10], the velocity of ultrasonic waves grows,
and the concentration coefficient of velocity becomes
positive.

At present, there is no appropriate theory of acoustic
wave propagation in composite materials. Specific
models are considered for every class of materials [11–
15]. For the composite materials under study, in which
the matrix is a 10% solution of gelatin, the model of
microinhomogeneous media proposed by Isakovich,
Ratinskaya-Chaban, et al. [16–19] can be used,
because, in these materials, the bound water comprises
only 2% of the gelatin weight and the remaining 98% is
in the free state [20]. The theories describing the prop-
agation of acoustic waves in disperse systems assume
the additivity of density 〈ρ〉  = (1 – n)ρ1 + nρ2, heat
capacity at a constant pressure 〈Cp〉  = (1 – n)Cp1 + nCp2,
coefficient of thermal expansion 〈α〉  = (1 – n)α1 + nα2,
and isothermal compressibility 〈β〉  = (1 – n)β1 + nβ2.
Here, subscript 1 denotes the matrix medium and sub-
script 2, the disperse phase. The coefficient of adiabatic
compressibility is also additive in the absence of
exchange processes between the phases in the heteroge-
neous system: 〈βad〉 = (1 – n)βad1 + nβad2. In this case, the
Laplacian velocity of ultrasonic waves in the heteroge-
neous medium is determined as

(2)

However, in the propagation of ultrasonic waves in
heterogeneous systems, the energy exchange processes
between the phases arise at the phase boundaries,
which leads to an additional loss of acoustic energy and
to corrections to the Laplacian sound velocity.

In the theoretical papers [16–19], under the condi-
tion that rmn @ 2r, the mechanisms of acoustic energy
absorption in disperse systems due to the heat
exchange, viscous stress, and scattering are considered
and the corresponding corrections to the Laplacian
velocity are calculated. Assuming that, in the compos-
ites under study, the exchange processes between the
Fe3O4 particles and water play the dominant role in dis-
sipative processes, we calculated the velocity and cor-
rections to it for ferrocomposites in the concentration
region n ∈ 0.1–10%, where the condition rmn @ 2r is
satisfied. The values of the parameters required for cal-
culating c, ∆cT, and ∆cη [21] are given in the table. In
the calculations, we used the mean particle size r = 6 µm
determined from the histogram. The choice of formulas

c
1

ρ〈 〉 β ad〈 〉
----------------------.=
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Table

Substance Density
ρ, kg/m3

Heat capacity
Cp, 10–2 J/kg K

Coefficient of
compressibility
β, 10–10 Pa–1

Coefficient of thermal 
volumetric expansion 

α, 10–6 K–1

Viscosity
η, 10–3 Pa s

Water 0.998 41.9 4.61 182 1.01

Fe3O4 particles 7.87 4.6 0.062 35.571 –
for theoretical calculations was determined by the val-
ues of the parameters kr, kTr, and kηr, where k, kT, and
kη are the wave numbers of acoustic, heat, and viscous
waves, respectively. The correction to the velocity due
to the heat exchange processes was calculated by the
formula obtained for kTr ! 1:

(3)

The correction to the velocity connected with the
excitation of viscous waves was calculated by the for-
mula obtained for kηr ! 1:

(4)

where

Note that the correction to the velocity connected
with the heat exchange processes reduces the Laplacian
velocity, and the correction owing to the viscous
stresses increases the Laplacian velocity in the ferro-
composite.

In Fig. 4, where the experimental data are displayed
(curve 1), the results of theoretical calculations of the
velocity by Eqs. (2)–(4) with allowance for the correc-
tions c + ∆cT + ∆cη are also presented (curve 3). As is
seen, theoretical curve 3 agrees well with the experi-
mental curve in the concentration region 0.1–10%.

The above study of the concentration dependence of
the velocity of ultrasonic waves propagating in ferro-
composites makes it possible, by using Eq. (2), to solve
the inverse problem: to obtain information on the effec-
tive volume compressibility. Figure 5 shows the depen-
dence of 〈βeff〉  on the concentration of Fe3O4 particles in
the matrix. The values of the coefficients of volume
compressibility of a 10% solution of gelatin and Fe3O4
are also given in this figure.

As is seen from the plot, in the region of concentra-
tions corresponding to a discrete particle distribution in
the matrix, the coefficient of compressibility of the
composite is on the order of the coefficient of com-
pressibility of the matrix, and even slightly greater. The
particles introduced into the matrix violate its homoge-

∆cT
n
2
---T0cll

3 ρ〈 〉ρ 2Cp2
α1

ρ1Cp1
--------------

α2

ρ2Cp2
--------------– 

  2

.–=

∆cη  = 
caξ ξ 1 b ξ+( )

1 ξ+( )2 ξ 1 b ξ+( )2
aξ ξ 1 b ξ+( )–+

--------------------------------------------------------------------------------------------------------,

ξ ωρ
η

-------r2, a
2n
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ρ2 ρ1–

ρ1
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2

, b
2
9
---

ρ1 2ρ2+
ρ1
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  .= = =
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neity and cause an increase in compressibility. A rein-
forcement of the composite and a reduction of its com-
pressibility takes place for the concentrations exceed-
ing the concentration of the percolation region n >
20%, when a globular network structure of particles
develops in the matrix with the number of interparticle
contacts greater than three; i.e., the strength of the com-
posite grows with an increase in the number of interpar-
ticle contacts.

Thus, using the two methods of measuring the
sound velocity, namely, the pulse method and the calcu-
lation from the reflection coefficient, we measured the
concentration dependence of sound velocity in com-
posite materials in a wide range of concentrations of the
disperse phase, from 0.05 to 50 vol %.

The dependence of the velocity of ultrasonic waves
on concentration has three specific regions: (i) the
region of low concentrations within 0.05–10%, where
the concentration coefficient of velocity is ∂c/∂n < 0;
(ii) the percolation region with concentrations of 10–

n, %
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βwater

20 30 40 500

2

3
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6
βeff, 10–10 Pa–1 

Fig. 5. Dependence of the coefficient of effective compress-
ibility of ferrocomposites on the concentration of the dis-
perse phase.
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25%, where ∂c/∂n ≈ 0; and (iii) the region of high con-
centrations n > 25%, where ∂c/∂n > 0.

It is shown that, for the class of composite materials
studied, in the region of low concentrations, the model
of microinhomogeneous media developed by Isakov-
ich, Rytov, Ratinskaya-Chaban et al. can be used.
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Abstract—Experimental results on the propagation of longitudinal and torsional elastic waves in polycrystalline
copper under elastoplastic strain are reported. The strain in the interval of 0–0.06 was created by applying heavy
tensile loads to the samples. The Young and shear moduli, Poisson ratio, and nonlinear acoustic parameters of lon-
gitudinal and torsional elastic waves were measured as functions of the static strain. The nonlinear acoustic param-
eters were found to behave anomalously in loading–unloading cycles in the plastic strain region. The experimental
results are discussed. The nonlinear properties of structurally inhomogeneous materials are explained in terms of
the clapping nonlinearity and hysteretic nonlinearity mechanisms. © 2005 Pleiades Publishing, Inc.
The first milestone work on the effect of defect
structure of metal polycrystals and single crystals on
their nonlinear elastic properties was published by
V.A. Krasil’nikov et al. in 1963 [1]. They experimen-
tally showed that inhomogeneities (e.g., dislocations,
microcracks, or local internal stresses) that occur in the
internal structure of solids noticeably affect their non-
linear elastic properties. An experimental observation
of the generation of the second shear harmonic in poly-
crystalline metals (aluminum and MA-8 magnesium–
aluminum alloy) was also reported in [1]. It is well
known that the second shear harmonic cannot be gener-
ated in perfect isotropic solids without defects [2, 3].
The results reported in [1] served as the basis for the
development of new nondestructive testing methods for
structural materials, as well as for the strength diagnos-
tics of solids [4, 5]. An important result of these works
is that, along with the nonlinearity associated with
anharmonicity of the crystal lattice (classical nonlinear-
ity), materials with defects exhibit structural (nonclas-
sical) nonlinearity associated with the imperfection of
material’s internal structure. Nonclassical nonlinearity
was found not only to be much stronger than classical
nonlinearity, but also to change the symmetry of the
nonlinear elastic properties of solids. Much later, other
authors found that a strong nonclassical nonlinearity is
also inherent in rock, construction materials, granular
media, composite materials, and other media with
irregular internal structure [6–9]. Possible mechanisms
of the structural nonlinearity are considered in [10]. In
recent years, two main phenomenological models have
been used to describe the nonclassical nonlinearity of
structurally inhomogeneous materials: the bilinear
medium and the medium with hysteretic elastic proper-
ties [11, 12]. In the framework of these models, nonlin-
1063-7710/05/5105- $26.00 ©0571
ear equations of state were proposed for rocks, frac-
tured media, and oil-saturated granular media, which
sufficiently well describe the experimental results [7,
13, 14].

The purpose of the present work is to experimen-
tally study the propagation of torsional and longitudinal
elastic waves in polycrystalline copper under elasto-
plastic strain with a continuous variation of its internal
structure. The samples for the experiment were made of
electrical copper wire, which acquired multiple struc-
tural defects and a texture in the course of sample prep-
aration. The defect structure created in this manner can
be modified by applying heavy static loads to the sam-
ples [15, 16].

EXPERIMENTAL TECHNIQUE AND RESULTS

Ultrasonic elastic waves propagating in thin metal
rods (wires) are known to be noticeably different from
waves that propagate in an unbounded medium. The
presence of a dimensional parameter D (D is the rod
diameter) comparable to the wavelength of the ultra-
sonic elastic wave, λ, leads to the situation where nor-
mal modes of three types can propagate in the rod: lon-
gitudinal, torsional, and flexural waves. As a rule, these
waves exhibit a considerable dispersion. Rigorous anal-
ysis of these waves is associated with intricate and dif-
ficult mathematical calculations [17].

In the experiments, we used longitudinal and tor-
sional normal modes. From the family of longitudinal
waves, we used the lowest-order longitudinal mode.
This mode exists at frequencies down to zero, whereas
the higher-order longitudinal normal modes have cut-
off frequencies. In the low-frequency limit, when the
wire diameter is D ! λ, the velocity of the longitudinal
 2005 Pleiades Publishing, Inc.
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Fig. 1. Block diagram of the ultrasonic measurement system.
elastic wave, Vlong, is determined by the simple expres-
sion

(1)

where E is the dynamic Young modulus and ρ is the
density of the material. From the family of torsional
waves, the experiments employed the zero-order mode
of the torsional wave, which is nondispersive. The
phase velocity of this mode, Vtors, is equal to the veloc-
ity Vtrans of the transverse (shear) elastic wave in an
unbounded medium:

(2)

where µ is the dynamic shear modulus, ν is the Poisson
ratio, and ρ is the density of the material.

The elastic properties of the samples, whose defect
structure was changed due to the static strain, were
studied with the help of an automated ultrasonic mea-
surement system schematically represented in Fig. 1
[18]. The sample under study 1, whose length was L0 ≈
1 m, was fixed between two movable plates. To the
upper plate, a constant stretching force F was applied,
which created a static strain εs in the sample. The lower
plate could be vibrated with a shaking table 5 according
to a harmonic law ∆Xsin(Ωt) at a frequency Ω. The
amplitude of these vibrations, ∆X, was measured with the
help of an accelerometer 6 from Analog Devices. Simul-

V long
E
ρ
---,=

V tors V trans
E

2ρ 1 ν+( )
------------------------ µ

ρ
---,= = =
taneously, a harmonic elastic wave A = A0sin(2πft – ϕ)
(where A0 is the amplitude, ϕ = kX is the phase, k = 2πf/V
is the wave number, f is the frequency, and V is the
velocity of the elastic wave) was excited in the sample
at a frequency ω @ Ω with the help of an oscillator 7
and transducer 2. The output signal of the transducer 3'
was amplified and applied to an oscilloscope 8 and a
spectrum analyzer 9 for recording. The information on
the sample length L, length modulation amplitude ∆X,
deviation of the sample length ∆L, the length modula-
tion amplitude X, the sample length variation L, the
force F, and the amplitude A0 and phase ϕ of the elastic
wave transmitted through the sample was fed into a per-
sonal computer 10 in order to store the results and to
analyze them later. The measurement accuracy was
~1 × 10−6 m for the sample length, 0.02 radians for the
phase ϕ, and (1–2)% for the wave amplitude A0 and
force F. The measurements could be performed in the
pulsed or continuous mode of operation.

The methods for the excitation and detection of lon-
gitudinal elastic waves in thin rods were considered in
[18]. To generate and receive torsional elastic waves in
the wire, we used the setup whose diagram is shown in
Fig. 1. A piezoelectric transducer 4 excited longitudinal
oscillations in the conical concentrator 3. These oscilla-
tions were guided to the plate 2 rigidly fixed on the
wire 1. The longitudinal oscillations of the concentrator
created a variable torsional moment about the wire axis,
which generated the torsional waves. To receive the tor-
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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sional waves at the other end of the wire, the measuring
system used a similar device.

The samples for the experiment were made from
PÉV-1 electric copper wires of different diameters (D =
0.75 and 0.9 mm). The propagation velocity of tor-
sional and longitudinal elastic waves in the samples
was preliminarily measured by the echo-pulse method.
The waveform of the elastic wave signal transmitted
through the sample was shown on the oscilloscope 8
(Fig. 1). The velocities of the zero-order torsional and
longitudinal modes were Vtors = (2200 ± 50) m/s and
Vlong = (3650 ± 50) m/s. The elastic constants of the cop-
per samples in the initial state were calculated from
these measurements by formulas (1) and (2): E = (116 ±
3) GPa, µ = (43 ± 2) GPa, and ν = (0.38 ± 0.02), which
is in good agreement with reference data [19]. The elas-
tic wave velocity was measured over the frequency
range of f = 50–200 kHz. In this range, D ! λ and no
dispersion of the elastic wave velocity was observed
within the experimental error. After the initial elastic
wave velocity was found, we simultaneously measured
the stress σst–static strain εs curve (εs = ∆L/L0, where ∆L
is the change in the wire length as a result of the stress
σst caused in the sample by the external load) and the
changes in the velocity and amplitude of the elastic
wave. These measurements were performed in the auto-
mated mode at a constant rate of stress variation in the
sample (∂σst/∂t) = const). The duration of one measure-
ment cycle was no longer than 0.1 s. The interval
between the measurement cycles was specified by the
computer to be within 15 to 30 s. When the strain of the
sample was as high as εs ~ 0.06, the experiment was ter-
minated. The number of measurement cycles was
2000–3000. Based on the measured longitudinal
Vlong(εs) and torsional Vtors(εs) elastic wave velocities,
the Young modulus (E(εs)), shear modulus µ(εs), and
Poisson ratio ν(εs) = {0.5[Vlong(εs)/Vtors(εs)]2 – 1} were
calculated as functions of the static strain. These func-
tions are plotted in Figs. 2a–2c. An increase in the strain
from 0 to 0.06 caused a monotonic decrease in E(εs)
and µ(εs) by approximately 9%. However, at small
strains, the Young modulus E(εs) decreased faster than
the shear modulus µ(εs). With increasing strain, the
Poisson ratio ν(εs) first decreases, reaches its minimum
at εs ≅  0.0022, and then grows by ~11%.

The experimental dependencies of the moduli E(εs)
and µ(εs) were used to calculate the quasi-static nonlin-

ear parameters  and  of the torsional and lon-
gitudinal elastic waves, respectively:

where µn =  and En =  are, respectively, the third-

order quasi-static shear and Young’s moduli [20]. It is
impossible to directly differentiate the functions shown
in Figs. 2a and 2b, because they are represented by dis-
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crete experimental points and are not continuous.
Therefore, before differentiating, we approximated
these functions by a sum of exponentials plotted in
Figs. 2a and 2b by thin lines (to show these curves, in
Figs. 2a and 2b we presented every 50th experimental
point). Figures 3a and 3b show the quasi-static nonlin-

ear acoustic parameters  and  for the torsionalGtors
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and longitudinal elastic waves, respectively, versus the
strain εs. At small strains εs ≅  0, the nonlinear acoustic

parameters  and  within experimental errors
agree well with those calculated from the second- and
third-order moduli of elasticity of copper single crys-
tals [21]. This fact indicates that, at these strains, the
nonlinear acoustic parameters are predominantly deter-
mined by anharmonicity of interatomic forces. With
increasing static strain, the absolute values of both
parameters decrease and asymptotically tend to unity in
the region of plastic strains.

The dynamic nonlinear acoustic parameter G was
measured by the spectral method. The method mea-
sures the amplitudes A(ω), A(ω + Ω), and A(ω – Ω) of
the fundamental and combination frequencies (ω + Ω)
and (ω – Ω), which appear in the spectrum of the acous-
tic signal as a result of nonlinear interaction of elastic
waves at the frequencies ω and Ω. Measuring the mod-
ulation depth

M(εs) = [A(ω – Ω) + A(ω – Ω)]/A(ω)

of the acoustic signal for different static strains εs of the
sample, it is possible to study the dependence of the
dynamic nonlinear acoustic parameter on the strain εs:

GDN(εs) = {[2M(εs)/k∆X] – 2}. (3)

Gtors
qs Glong

qs

0 0.02 0.04 0.06
εs

–1.0

–1.5

–2.0

–2.5

–3.0

(a)

(b)

–1

0

–2

–3

–4

–5

–6

–7

G
lo

ng
q

s
G

to
rs

q
s

Fig. 3. Quasi-static nonlinear parameters of (a) torsional

elastic waves, , and (b) longitudinal elastic waves,

, versus the static strain.

Gtors
qs

Glong
qs
It should be noted that this method yields the absolute
value of the acoustic parameter [20]. The dynamic non-
linear parameter for torsional and longitudinal elastic
waves was measured in the continuous mode near the
frequency of f ~ 48 kHz, which corresponds to one of
the sample’s standing wave resonances. Simulta-
neously, longitudinal oscillations at the frequency of
Ω = 40 Hz with the displacement amplitude ∆X = 1.7 ×
10–5 m were excited in the wire by the shaking table 5
(Fig. 1). The condition ((V/Ω) @ L was satisfied; i.e.,
the wavelength at the frequency Ω was much greater
than the sample length. Therefore, the strain created in
the sample by the oscillations at the frequency Ω could
be considered to be uniform over its length. The screen
of the spectrum analyzer 9 (Fig. 1) displayed a triplet
with the fundamental frequency A(ω) and side frequen-
cies A(ω – Ω) and A(ω + Ω). The measured triplet
amplitudes were used to calculate the modulation
index M and the parameter GDN(εs) from Eq. (3). The
nonlinear parameters of the torsional and longitudinal
elastic waves were determined by the following proce-
dure. At the beginning of the experiment, the force
applied to the sample was slowly increased until a plas-
tic strain of εs = (∆L/L0) ~ 0.025 (loading) was reached.
After that, the force was slowly decreased to zero
(unloading) and then increased again (repeated load-
ing). Upon reaching the strain of εs ~ 0.045, the force
applied to the sample was decreased to zero (repeated
unloading) and then increased again (Figs. 4a and 5a).
The measuring system was capable of creating static
strains εs ≥ 0.4 in the copper samples. However, as we
noted above, upon reaching the static strain of εs ~ 0.06,
the measurements were terminated for the following
reasons. It was experimentally found that, for strains
εs ≤ 0.06, the static strain is uniform throughout the
length of the sample and no anomalously high local
strains (waists) are present. This circumstance simplifies
the analysis of the experimental results. The nonlinear

parameters of torsional and longitudinal waves, (εs)

and (εs), measured as functions of the static strain
εs are shown in Figs. 4b and 5b. In these figures, curves
1–3 refer to loading of the sample; curves 1' and 2', to

unloading. At small values of εs, (εs) ≈ 120, which

is four times as great as the parameter (εs) ≈ 30.
These values of the nonlinear parameters of torsional
and longitudinal elastic waves in unstrained samples
are several times higher than those for copper single
crystals. The nonlinear acoustic parameter of copper
single crystals is predominantly determined by the
anharmonicity of the crystal lattice, and its value calcu-
lated from the data on the second- and third-order elas-
tic coefficients borrowed from [21] is no greater than
10. The behavior of the nonlinear dynamic elastic
parameters of torsional and longitudinal waves with
increasing εs is noticeably different. The parameter
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(εs) monotonically decreases whereas the longitu-
dinal nonlinear parameter sharply increases reaching

the value of (εs) ~ 50 at strains of εs > 0.005; with
a further increase in strain, it remains constant within
the measurement error. The behavior of the nonlinear
parameters is also different in the unloading region.
The nonlinear parameter of torsional waves sharply

increases and reaches a value of (εs) ~ 300,

whereas (εs) decreases. In the subsequent loading

cycle, the nonlinear parameter (εs) increases again,

reaches a value of (εs) ~ 120 in the region of plastic
strains, and remains constant until the subsequent

unloading, in which the parameter (εs) increases

and the parameter (εs) decreases. In the region of
the subsequent unloading–loading cycle, the situation
is reproduced. This behavior of the nonlinear parame-

Gtors
DN

Glong
DN

Gtors
DN

Glong
DN

Glong
DN

Glong
DN

Gtors
DN

Glong
DN

0

20

40

60

80

100

120

140

160
σ, MPa

1
2

3

1'

2'

(a)

(b)

0.02 0.04 0.06εs
0

100

200

300

400

1

2

3

1'
2'

Gtors
DN

Fig. 4. (a) Stress–strain curve and (b) the nonlinear param-

eter of torsional elastic waves, (εs), versus the static

strain.

Gtors
DN
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
ters in the loading–unloading cycles indicates that the
mechanisms of the dynamic nonlinearity of torsional
and longitudinal elastic waves are different and are
associated with changes in the samples’ internal struc-
ture. As a result of plastic strain, dislocations and
microcracks in the sample increase and microcrystal-
line grains fragmentize, which increases the area of
intergrain boundaries. These effects are evidenced by
microphotographs of the sample taken before and after
it experienced the plastic strain (Fig. 6). As shown in
Fig. 6a, the sample preparation process creates a colum-
nar microstructure in the copper wire with ~10-µm
grains in strips. After the plastic strain, the dimensions of
the microcrystalline grains decreased to 5 µm (Fig. 6b).
It should be noted that the crystallite dimensions are
affected not only by the magnitude of the strain experi-
enced by the sample but also by the number of unload-
ing–loading cycles in the region of plastic strain, which
increase the number of microcrystals and simulta-
neously reduce their dimensions [15, 16]. The loading–
unloading cycle also changes the crack opening and the
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state of intergrain boundaries. These are the effects that

change the nonlinear parameters (εs) and (εs).
A phenomenological description of the nonclassical
nonlinearity in solids was proposed in [13, 22], where
it was assumed that the equations of state for the normal
and tangential (to the contacting boundaries) displace-
ments in the elastic wave may be different. In the case
under study, we consider the intergrain and microcrack
boundaries as the contacting boundary. The strain nor-
mal to the interface was described in terms of the model
of a bilinear medium, whose equation of state σ = σ(ε)
is a piecewise-linear function with a discontinuity at
ε = 0 (Fig. 7a). As can be seen from this figure, when
the strain amplitude ε0 in the elastic wave is lower than
the static strain εs at the boundary, i.e., the condition
ε0 < |εs| is met, the medium is linear; when ε0 > |εs|, the
elastic properties of the medium are different for the
loading and unloading phases, which causes the so-
called clapping nonlinearity [13, 22]. At the strain εs = 0,
the nonlinearity is maximal. For the shear elastic wave
whose strain is parallel to the interface, a hysteretic
equation of state σ = σ(ε) (Fig. 7b) was proposed in [13,
22]. This equation was based on the fact that the friction
force between the contacting surfaces caused by the
shear strain does not exceed the static friction force
Ffric = kN, where k is the friction coefficient and N is the
normal pressure force that determines the pressure
between the surfaces. In this situation, the motion of the
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(‡)

(b)

Fig. 6. Microphotographs of the samples under study (mag-
nified by a factor of 140) (a) before and (b) after straining.
 interfaces may consist of two phases. In the first phase,

when, under the action of the elastic wave, the friction
force between the contacting surfaces does not exceed
the static friction force Ffric, the surfaces move together.
In Fig. 7b, this phase corresponds to the sloping regions
of the function σ = σ(ε). In the second phase, when the
friction force exceeds the static friction force Ffric, the
contacting surfaces slide along each other, which corre-
sponds to horizontal regions of the function σ = σ(ε)
(Fig. 7b). It is clear that, at a given strain amplitude ε0 > εi

(εi is the strain at which the sliding phase begins), the
area under the hysteresis curve σ = σ(ε) depends on N,
i.e., on the normal pressure force determining the pres-
sure between the contacting surfaces σi in Fig. 7b and,
hence, the magnitude of the hysteretic nonlinearity.
When ε0 < εi, the medium exhibits no hysteretic prop-
erties and remains linear. The equations of state σ =
σ(ε) (Fig. 7) qualitatively explain the behavior of the

dynamic nonlinear parameters (εs) and (εs) of
the torsional and longitudinal elastic waves (Figs. 4b
and 5b). With an increase in the static strain, the pres-
sure between the contacting surfaces in the sample
decreases, which enhances the clapping nonlinearity
for the longitudinal elastic waves and suppresses the hys-
teretic nonlinearity of torsional elastic waves (Fig. 7).

This effect increases (εs) and reduces (εs).
With a further strain increase in the sample’s plastic
strain region, the nonlinear acoustic parameters remain
virtually unchanged (Figs. 4b and 5b), because the
increase in the plastic strain does not noticeably
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increase the stress in the samples (Figs. 4a and 4b); i.e.,
the pressure between the contacting surfaces remains
virtually constant. Therefore, an increase in the static
strain does not change the nonlinear parameters. The
unloading increases the pressure between the contact-

ing surfaces, which leads to a decrease in (εs) and

an increase in (εs). The unloading–loading cycles
increase these parameters, because, as we noted above,
an loading–unloading cycle reduces the crystallite
dimensions and simultaneously increases the contact-
ing area and, as a consequence, the number of elements
that give rise to nonlinearity. In the next loading–
unloading cycle, the above processes, which change the
sample’s internal structure, are repeated. As can be seen
from Figs. 4b and 5b, there is an optimal pressure on the
contacting boundaries at which the nonclasical nonlin-
earity is maximal. A similar effect was observed in [23,
24], where the amplitude of the second acoustic har-
monic generated at the contacting boundary between two
media was found to depend on the pressure across the
contact. There, an optimum pressure at which the ampli-
tude of this harmonic was maximal was also observed.

CONCLUSIONS
We presented an experimental study of the linear and

nonlinear elastic properties of polycrystalline copper
under elastoplastic strain with a continuous variation of
internal structure caused by the external loading. The
Young and shear moduli and the Poisson ratio were stud-
ied in the static strain interval of 0–0.06. The quasi-static
and dynamic nonlinear acoustic parameters of the longi-
tudinal and torsional elastic waves were measured. The
dynamic nonlinear acoustic parameters were found to
behave anomalously in the loading–unloading cycles in
the plastic strain region. The experimental results were
explained in terms of phenomenological equations of
state for media with bimodular elasticity and media with
hysteretic elasticity. It should be noted that the nonclas-
sical nonlinearity is noticeably higher than the nonlinear-
ity associated with dislocations in single crystals [21].
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Abstract—A method is developed for solving problems of multiple scattering by an aggregate of bodies in a
homogeneous unbounded medium. For this purpose, the problem on the multiple scattering produced by two
bodies in the field of a plane wave is first considered under the assumption that the initial unperturbed scattering
amplitudes of both scatterers are known. The solution is constructed by considering plane waves multiply res-
cattered by the scatterers. Integral equations are obtained that allow one to calculate the resulting scattering
amplitude of each scatterer and the combined scattering amplitude of the system of two scatterers. It is shown
that knowledge of the solution to this problem is sufficient to solve the problem on the scattering field of a sys-
tem consisting of an arbitrary number of scatterers. Expressions for the scattering amplitude in the case of an
arbitrary primary field are presented. The relationship between the integral equations describing the multiple
scattering in a homogeneous space and the multiple scattering by a single scatterer located near an interface is
demonstrated. Approximate expressions are given for calculating the scattering amplitude in the case of multi-
ple scattering. © 2005 Pleiades Publishing, Inc.
Extensive literature is devoted to the problem of
multiple scattering for the case of two or more scatter-
ers illuminated by some primary field when the mutual
effect of the scatterers (secondary rescattering effects)
cannot be neglected. Some of these publications are
included in the references [1–15]. Evidently, papers
concerned with the problems of scattering caused by
reflecting boundaries and inhomogeneities of the
medium also refer to this subject. In this case, the pres-
ence of a single scatterer near an interface or an inho-
mogeneity of the medium is sufficient for the appear-
ance of multiple scattering. Examples of such publica-
tions are papers [16–24].

In [1–15], a homogeneous space of two or three
dimensions is considered with two or more scatterer
illuminated by a certain primary wave. The solution is
sought in the form of the sum of the primary wave and
the fields produced by all of the scatterers under the
assumption that all the required boundary conditions
and the Sommerfeld radiation conditions at infinity are
satisfied. The fields are represented as series expan-
sions in spherical or cylindrical functions (depending
on the dimension of the problem), and the unknown
expansion coefficients in the expressions for the scat-
tering fields are determined using either the T-matrix
method [2, 6, 7, 10, 11, 13] or the addition theorems for
spherical and cylindrical functions [4, 5, 8, 9]. From
these coefficients, one can determine the individual
scattering amplitudes of the scatterers. This approach
automatically takes into account the effect of multiple
scattering.
1063-7710/05/5105- $26.00 ©0578
Interfaces also give rise to multiple scattering. For
example, in [20], the problem on the scattering field of
a sphere positioned near an acoustically soft plane
boundary is considered. The problem is reduced to that
of the multiple scattering by two spheres in a homoge-
neous space [8].

On the whole, despite the clarity of formalism, the
above approach to the problem on multiple scattering
by several bodies is not free of shortcomings. First, it
generally requires calculating the countable set of
unknown expansion coefficients of the scattered field.
Second, the difficulty of this procedure drastically
increases with the number of scatterers.

This paper suggests an alternative approach to the
problem of multiple scattering by several bodies. The
approach consists in considering the plane waves mul-
tiply reflected (rescattered) by the scatterers. The res-
cattered plane waves are taken into account using the
unperturbed scattering amplitudes of each of the bod-
ies, which yields the integral equations that allow cal-
culating the perturbed scattering amplitudes from the
unperturbed ones. A similar procedure was used earlier
for calculating the fields scattered by distributed radia-
tors and scatterers under the effect of interfaces and a
layered inhomogeneity of the medium [25–27]. The
sole limitation of this approach is the requirement that
the unperturbed scattering amplitudes of the bodies
must be known; however, this requirement is not exces-
sive, because any scatterer is primarily characterized by
its scattering amplitude in an unbounded medium in the
absence of foreign bodies.
 2005 Pleiades Publishing, Inc.
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Let us consider the problem in the case of a three-
dimensional unbounded medium. We begin with the
simple special case of a single scatterer with its center
at the point (x0, y0, z0) in the primary field of a sound-
transparent directional source located at the origin of
coordinates. The field of the source is calculated by the
formula [25]

(1)

Here, k1 = (kx, ky, α) and k2 = (kx, ky, –α) are the conju-

gated wave vectors, α = (k2 –  – )1/2, k is the wave
number, x = (x, y, z), m = 1 corresponds to the field in
the upper half-space z ≥ 0 and m = 2 corresponds to the
filed in the lower half-space z ≤ 0, and D(km) is the
directional pattern (DP) of the source in the whole (kx,
ky) plane; this DP is related to the commonly used DP

(θ, ϕ) in the circle  +  ≤ k2 (the visibility region)
by the relationship (see, e.g., [25])

(2)

Here, θ and ϕ are the angles of the spherical coordinate
system, α = kcosθ, kx = ξcosϕ, ky = ξ sinϕ, ξ = ksinθ,
and x = (kx, ky) = (ξ, ϕ) is the horizontal projection of
the wave vector.

By analogy with the source, we characterize a scat-
terer by the function that describes its directional prop-

erties. This function (kl, ks), where n, m = 1, 2, of
two vector variables kl and ks, which are the wave vec-
tors of the incident and scattered waves, respectively, is
called the scattering amplitude (SA). Physically, this

function describes the spectrum of plane waves (kl,
ks)exp(iksx) excited by the scatterer centered at the ori-
gin of coordinates under the action of a unit-amplitude
incident plane wave exp(iklx) with a zero-valued phase
at the scatterer’s geometric center. The lower index m =
1, 2 specifies the propagation direction of the incident
plane wave: m = 1 corresponds to the wave propagating
in the direction of increasing z (i.e., upwards), and m = 2
corresponds to the wave propagating in the direction of
decreasing z (i.e., downwards). The upper index n spec-
ifies the direction of scattering: n = 1 corresponds to the
upward scattering (+α), and n = 2 corresponds to the
downward scattering (–α). The domain of definition of
this function includes the regions inside and outside the
visibility region. Note that the scatterer centered at the
point x0 = (x0, y0, z0) and driven by a plane incident
wave Aexp(ikx), where A = const, generates a plane

wave spectrum Aexp(iklx) (kl, ks)exp(iks(x – x0)).
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For a scatterer whose center is located at the point x0
and whose SA is known, the scattered field us is
described by an expression similar to Eq. (1) [25]:

(3)

This expression can be used to determine the SA math-
ematically; namely, the SA of the scatterer centered at
the point x0 and driven by the incident unit-amplitude
plane wave exp(ikl(x – x0)) with zero-valued phase at
the scatterer’s center x0 is the corresponding spectrum
of scattered plane waves with zero-valued phases at the
scatterer’s center, as given by the scattered field repre-
sentation (3). As it will be seen from Eqs. (5)–(7), the
SA in the spherical coordinate system coincides with the
geometrical optics amplitude of the scattered field (3)
calculated from the zero-order transfer equation.

If the primary field of the type given by Eq. (1) is
created by a directional source (i.e., if it is representable
as a set of plane waves) whose center falls at the origin
of coordinates and the scatterer is located at the point
(x0, y0, z0), the resulting SA (ks, x0) can be deter-
mined using the technique given in [25]. As a result, we
obtain

(4)

The integral in Eq. (4) can be asymptotically evaluated
as in [25]. This estimate has the form

(5)

(6)

(7)

Here, L is the operator defined by the expression

(8)

 and T ' are the resulting and unperturbed SAs in the
spherical coordinate system, respectively; (R0, θ0, ϕ0)
are the spherical coordinates of the point (x0, y0, z0); (Rs,
θs, ϕs) are the spherical coordinates in the spherical
coordinate system with origin at the point (x0, y0, z0)
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(scatterer’s center); and ∆θ, ϕ is the spherical Beltrami
operator (the angular part of the Laplace operator).

Representations (5)–(8) offer a possibility to ana-
lyze the errors in calculating the actual SA in the form
of a finite sum. In the Fraunhofer zone, it is sufficient to
use the zero-order approximation:

(9)

which corresponds to the idea that the source field at the
scatterer point is representable in the form of the

weighted plane wave exp(ikR0).

The combined field of a scatterer with SA in the
form of Eq. (4) must be calculated by Eq. (3) after

replacing SA (kl, ks) with SA (4) and fixing the ori-
gin at the scatterer’s center. As a result, we obtain the
geometrical optics representation similar to Eqs. (5)–
(7). This procedure remains also valid for the zero-
order approximation (9), for which the scattered field in
the form of Eqs. (5)–(7) is given by the formulas

(10)

(11)

(12)

If we again restrict our consideration to the zero-order
approximation in Eqs. (10)–(12), we arrive at the ray
version of scattering. Namely, a ray launched from the
directional source toward the scatterer at angles θ0, ϕ0
in the source coordinate system is weighted with its
directional pattern (θ0, ϕ0); reaching the scatterer at
the point (R0, θ0, ϕ0), it is reflected at angles θs, ϕs rela-
tive to scatterer and weighted with its SA; when this ray
reaches the point (Rs, θs, ϕs) in the scatterer coordinate
system, the corresponding amplitude is given by the
term of series (10) with index l = 0.

Consider now the case when two scatterers S1 and S2
characterized by the corresponding unperturbed (without

the crosstalk effects) SAs, (kl, ks) and (kl, ks), are
located in a homogeneous half-space. Let the center of

the first scatterer be located at the point  and

the center of the second scatterer, at the point .

For definiteness, we consider the combined scattering
field under the assumption that this pair of scatterers is

T ' R0 θ0 ϕ0 θs ϕ s, , , ,( )

=  
ikR0( )exp

R0
-------------------------D θ0 ϕ0,( )T ' θ0 ϕ0 θs ϕ s, , ,( ) O
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Al 1+ θs ϕ s,( ) L Al θs ϕ s,( )[ ] θ s ϕ s l, ,( ),=

A0 θs ϕ s,( ) D θ0 ϕ0,( )T ' θ0 ϕ0 θs ϕ s, , ,( ).=

D

T1 n
m T2 n

m

0 0
z0

2
----–, , 

 

0 0
z0

2
----, , 

 
illuminated by a plane wave exp(iklx) propagating in
the direction of increasing z, i.e., in the upward direc-
tion. We seek the field by summing multiply scattered
plane waves (the superposition principle is appropriate
here, because every plane wave generates its own set of
scattered waves, which, being combined with the inci-
dent wave, ensure the fulfillment of the boundary con-
ditions at every scatterer; this consideration holds for
all pairs of plane waves and the corresponding scattered
waves). In addition, we note that such a solution is
unique by virtue of the uniqueness of all terms consti-
tuting the solution, beginning from primarily scattered
fields, which is a consequence of the choice of appro-
priate Sommerfeld radiation conditions.

Let us denote the resulting SAs that take into

account all multiple reflections by (kl, ks) and

(kl, ks) and consider, for example, the formation of
the resulting SA of scatterer S1 in the upper hemisphere,

i.e., (kl, ks). The process is as follows. The plane
wave exp(iklx) traveling through scatterers S1 and S2
causes them to excite primary scattering fields with

respective SAs (kl, ks)exp  and (kl,

ks)exp , and precisely these fields will affect the

formation of the desired resulting SA (kl, ks) (the

factors exp  correspond to the plane wave

phases at the sites of the scatterers S2 and S1, respec-
tively). We explain this fact by the example of the pri-

marily scattered field (kl, ks)exp . This

field is produced by the plane wave incident on scat-
terer S1. It propagates in the upward direction, reaches
scatterer S2, where it is rereflected; then, the rereflected
field propagates in the downward direction and is
rereflected from scatterer S1, thus generating the first
correction to the SA; this rereflected field again propa-
gates in the upward direction, and so forth to infinity.

The result of this process is the component (kl, ks)

of the resulting SA (kl, ks), which is caused by the

field primarily scattered by scatterer S1 with SA (kl,

ks)exp . The component (kl, ks) of the

resulting SA (kl, ks) that is caused by the field

(kl, ks)exp  primarily scattered by scatterer

S2 is formed in a similar way: the field (kl,

ks)exp  primarily scattered by scatterer S2 will

propagate in the downward direction and will be

T
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T
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rereflected from scatterer S1, thus generating the first

correction to (kl, ks); then, the rereflected field will
propagate in the upward direction, will again be
rereflected from S2, and so forth to infinity. Thus, we
have to calculate the sum

(13)

Calculating the secondary SAs by Eq. (4) and pro-
ceeding according to the procedure used in the case
when the interface played the role of the second scat-
terer (in that case, the reflection coefficient served as
the SA of the interface [25]), we obtain the following
representations:

(14)

(15)

where (kl, ks) is determined by the expression

(16)

and operator  is defined as

(17)

As it is seen from Eq. (17), operator  calculates the

one-cycle correction to the SA (kl, ks); namely, the
wave scattered by scatterer S1 reaches scatterer S2, is
rereflected in the backward direction, reaches scatterer

S1, and adds the next increment to the SA (kl, ks).
We note that series (14) and (15) truncated to a finite
number of terms can be used to approximately calculate
the components of the SA.
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Formally, the Neumann series (14) and (15) con-
verge if the norm of operator (17) is less then unity.
However, physically, it is clear that the corresponding
components of the resulting SA form precisely the
series of type (14) and (15) according to the construc-
tion of the unique solution; indeed, these series reflect
the physics of the formation of the resulting SA and
represent the solution alternative to that described in
[1–15]. This inference must hold even in the presence
of resonance phenomena in single and multiple scatter-
ing [9, 13].

If series (14) and (15) converge, we can invert oper-

ator (I – )–1 according to the standard procedure. As
a result, we obtain integral equations for the compo-

nents of the resulting SA (kl, ks):

(18)

(19)

where operator  is defined in Eq. (17).

Note that, having determined the resulting SA

(kl, ks) of scatterer S1, we can easily obtain the

resulting SA (kl, ks) of scatterer S2. It is easy to
understand that this can be done by adding the primary

component (kl, ks)exp  caused by the inci-

dence of the primary plane wave with the component
caused by the scattering of the combined scattering

field of scatterer S1 with the resulting SA (kl, ks) by
scatterer S2. In the final form, we have

(20)

Proceeding in a similar way, we find the correspond-

ing integral equations for components (kl, ks) and

(kl, ks) of the resulting SA,

(21)

of scatterer S2 in the lower half-space. These equations
have the form

(22)

(23)
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where (kl, ks) is defined by the expression

and operator [T](kl, ks) is given by the formula

(24)

The resulting SA of scatterer S1 in the lower half-
space is determined by the expression

(25)

Now, let the primary wave propagate in the down-
ward direction. In this case, Eqs. (13)–(25) remain valid
with the following modifications. The primary fields will

be (kl, ks)exp  and (kl, ks)exp ,

respectively. In addition, in Eqs. (13)–(25), the right-
hand subscript 1 should be replaced by 2 in all expres-
sions for the SAs dependent on kl and the sign of the
exponents involving αl should be changed. All other
notations and expressions remain intact. As a result,
Eqs. (22) and (23) take the form

(22a)

(23a)

Thus, we obtained all expressions required for deter-

mining the resulting SAs of two scatterers (kl, ks)

and (kl, ks), where l, n = 1, 2. These expressions are
useful, for example, for estimating the degree of pertur-
bation of the unperturbed SAs.

However, if perturbation of the SAs cannot be
neglected, the combined SA of the system of a pair of
scatterers may appear to be a more informative quan-
tity. Such a quantity can be easily obtained from Eq. (3)
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using the superposition principle. The corresponding

final expression for the combined SA (kl, ks) has the
form

(26)

Substituting Eq. (26) either in Eq. (4) or in Eqs. (5)–(7),
one can calculate the combined SA of the system of
scatterers illuminated by the directional source generat-
ing the field given by Eq. (1). It is clear that the center
of the system of scatterers is located at the center of the
segment connecting the centers of both scatterers.

The ability to calculate the combined SA (kl, ks)
of the system of a pair of scatterers allows one to con-
struct a solution to the problem with N scatterers. The
process is as follows. First, we consider the system of
two scatterers, determine their combined SA, and
replace both scatterers with one fictitious scatterer
characterized by the combined SA and the center lying
at the center of the segment connecting the centers of
both scatterers. Then, we consider the system consist-
ing of the third scatterer and the above fictitious scat-
terer, determine their combined AP, and so forth until all
scatterers are used and the combined SA of all N scatter-
ers is determined. The validity of the above iterative pro-
cedure follows from the superposition principle.

Below, we consider several special cases. It is of
interest to use the above expressions for deriving the
results obtained earlier [25, 26] for the case when one
of the scatterers is a reflecting plane (a plane interface)
whose SA is calculated in Appendix 1. Substituting

Eq. (A1) for the SA of the reflecting plane (kl, ks)
into Eqs. (16)–(20), we obtain the integral equations
given in [25, 26] for the case of a scatterer near a reflect-
ing boundary.

Now, let us consider the case when the plane wave
is incident on a system consisting, as before, of two
scatterers. Here, we limit our consideration to the situ-
ation when the assumption is valid that every scatterer
is located in the Fraunhofer zone of the other scatterer.
In this case, we can use Eq. (9) to calculate the SA of
the scatterer illuminated by the field scattered by the
other scatterer and then calculate the resulting SAs. For
generality, we assume that the centers of scatterers are
located at points r1 and r2 relative to the origin of coor-
dinates.
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The plane primary wave traveling upward will cause
scatterers S1 and S2 to excite two unperturbed scattered
fields with respective SAs 1T'(θl, ϕl, θ1s, ϕ1s)exp(ik1r1)
and 2T'(θl, ϕl, θ2s, ϕ2s)exp(ik1r2) (we use here spherical
coordinates, and θ1s, ϕ1s, and θ2s, ϕ2s are the spherical
angles measured relative to the scatterer’s centers). As
was shown earlier, both these initially scattered fields
participate in the formation of the resulting field scat-
tered by each of the scatterers. Let us derive the approx-

imate expression for (θl, ϕl, θ1s, ϕ1s), θ1s ∈  , as

an example. One can easily see that, in this case, such a
calculation consists of summing two geometric pro-

gressions for the components  =  + :

(27)

(28)

(29)

Here, (θ(1 – 2)s, ϕ(1 – 2)s) and (θ(2 – 1)s, ϕ(2 – 1)s) are the
angular coordinates of the center of the second scatterer
relative to the center of the first scatterer and those of
the center of the first scatterer relative to the center of
the second one, respectively. Assuming that the condi-
tion |q| < 1 holds, we obtain the expression for the
resulting SA:

(30)

Using Eq. (20), we obtain the expression for θ2s ∈

:

(31)
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-------------------------------------;
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Expressions (30) and (31) assume that ϕ1s, ϕ2s ∈  [0, 2π].
The resulting SAs in the remainder of the domain of

definition θs ∈  , ϕs ∈  [0, 2π] are determined sim-

ilarly:

(32)

(33)

Here,

(34)

(35)

(36)

Note that the first terms in the numerators of Eqs. (30)
and (32) are the corresponding unperturbed SAs
weighted with phase factors. In the case of the plane
wave incident on the scatterers in the downward direc-
tion, the corresponding expressions can be obtained
from Eqs. (27)–(36) by replacing k1 with k2 in all expo-
nential factors.

Let C be the center of the segment connecting the
scatterer’s centers and R1, R2, and RC be the distances to
the observation point measured from the centers of the
first and second scatterers and from the point C, respec-
tively. Then, under the condition that R1, R2, RC @ |r2 – r1|,
we have θ1s ≈ θ2s ≈ θs, ϕ1s ≈ ϕ2s ≈ ϕs, and the scattering
field of the mth scatterer is given by the formula

(37)
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Here, RC, θs, and ϕs are the spherical coordinates of the

observation point relative to the point C; RC and  =

 are the vector connecting the point C with the

observation point and the collinear unit vector, respec-
tively; and  = (r1 – r2)/2 and  = (r2 – r1)/2. Sum-
ming fields (37), we obtain the expression for the SA of
the equivalent scatterer (combined of the two above
scatterers) with the center at the point C:

(38)

which agrees with Eq. (26). It is clear that the procedure
of including the third scatterer (and all other scatterers)
can be easily realized with the known SA given by
Eq. (38). In this procedure, the first pair of scatterers is
characterized by SA (38) and the center at the point C,
and so forth.

Thus, in this paper, we derived the exact expressions
(integral equations) that allow one to calculate the
resulting SAs of two scatterers under the conditions
where each of the scatterers is driven by the primary
wave and the perturbation field of the other scatterer
while the unperturbed SAs of both scatterers are
known. This, in turn, makes it possible to develop the
procedure for considering multiple scattering by three
and more bodies. In addition, we derived the zero-order
geometrical optics approximations for the resulting
SAs in the case when every scatterer is located in the
Fraunhofer zone relative to all other scatterers. The
expressions obtained appear to be useful for solving
similar problems concerning the effect of interfaces and
inhomogeneities on the resulting SAs.

The proposed method yields the same solutions to
the problem of multiple scattering as those obtained by
the methods given in [1–15], however, in other terms. It
additionally emphasizes that the SA carries exhaustive
information about the field at any point outside the scat-
terers, rather than characterizes the far field alone.
Moreover, if a data bank of unperturbed SAs of scatter-
ers is available, the proposed method makes it possible
to construct the solutions to multiple scattering prob-
lems with arbitrary scatterer configurations, as distinct
from alternative approaches that require obtaining a
new solution for every new configuration.

APPENDIX 1

SCATTERING AMPLITUDE
OF A PLANE INTERFACE

Let the plane z = 0 serve as an interface between the
lower homogeneous half-space z ≤ 0 and the upper
inhomogeneous layered medium z ≥ 0. When a plane

R̂C

RC

RC

-------

r1 r2

T ' θi ϕ i θs ϕ s, , ,( ) T
1

' θi ϕ i θs ϕ s, , ,( )=

× ikR̂Cr1–( )exp T
2

' θi ϕ i θs ϕ s, , ,( ) ikR̂Cr2–( ),exp+
wave exp(i(klxx + klyy + αlz)) is incident on the interface
from the lower half-space, the reflected plane wave
V(αl)exp(i(klxx + klyy – αlz)), where V(αl) is the reflec-
tion coefficient, is formed in this half-space. To calcu-
late the SA of the reflecting plane, we formally use
Eq. (3). Taking into account that the scattered field is
given in this case by the formula

we represent Eq. (3) in the form

The analysis of this expression shows that the SA of the
reflecting plane can be represented in the form

(A1)

Here, we used the filtering property of the delta-
function.

APPENDIX 2

SCATTERING AMPLITUDES
OF THREE NEIGHBORING SPHERES 

CHARACTERIZED BY THE HOMOGENEOUS 
DIRICHLET BOUNDARY CONDITION

Let us have three identical spherical scatterers Sm,
m = 1, 2, 3 of radius R0 characterized by the homoge-
neous Dirichlet boundary conditions (perfectly soft
boundaries). The centers of the spheres are located at

the points , , and (x = z0, 0, 0),

respectively. The low-frequency approximation (to
O(k3)) of the unperturbed SA of such a sphere is given
in [28, p. 86] and has the form

(A2)

where

On changing to the spherical coordinate system
dkxdky = ξdξdϕ = k2sinθcosθdθdϕ = kα sinθdθdϕ, the
integration limits of the integrals of type (17) are

us x kl,( ) V α l( ) i klxx klyy α lz–+( )( ),exp=

V α l( ) i klxx klyy α lz–+( )( )exp

=  
i

2π
------

T1
2 kl ks,( )

α s

----------------------- i ksxx ksyy α sz–+( )( ) ksx ksy.ddexp

R
2

∫

T1
2 kl ks,( ) 2π

i
------V α l( )α lδ klx ksx–( )δ kly ksy–( )=

=  
2π
i

------V α s( )α sδ klx ksx–( )δ kly ksy–( ).

0 0
z0

2
----–, , 

  0 0
z0

2
----, , 

 

T θl ϕ l θs ϕ s, , ,( )

=  A B θl θscoscos θl θs ϕ l ϕ s–( )cossinsin+( ),+

A R0–
2
3
---k2R0

3 ikR0
2; B+ + k2R0

3.–= =
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changed as follows: kx, ky ∈  R2 ⇒  θ ∈  ,

ϕ ∈  [0, 2π]. Simple calculations yield [25]

(A3)

Here, θl, ϕl, and θs, ϕs are the respective spherical coor-
dinates of vectors kl and ks, respectively, on the sphere
of radius k in (kx, ky, kz) space for ξ ∈  [0, ∞). Substitut-
ing Eqs. (A3) into integrals of type (16), (17), and so
forth, one can exactly calculate the resulting SAs of the
spheres. In calculating the SAs from approximate
expressions (27)–(36), one should use the unperturbed
expressions for the SAs.

Consider such a calculation for three spheres illumi-
nated by a plane wave incident at the angles θl = π/2,

ϕl = 0. Estimate for example the combined SA  in the
direction θs = π/2, ϕs = 0 coinciding with the direction
of incidence of the primary wave. This direction is of

0 π
2
--- i∞–, 



T1'
2 θl ϕ l θs ϕ s, , ,( ) T2'

1 θl ϕ l θs ϕ s, , ,( )=

=  A B θl θscoscos– θl θs ϕ l ϕ s–( )cossinsin+( )+

T1'
1 θl ϕ l θs ϕ s, , ,( ) T2'

2 θl ϕ l θs ϕ s, , ,( )=

=  A B θl θscoscos θl θs ϕ l ϕ s–( )cossinsin+( )+ 







,

ϕ l ϕ s 0 2π,[ ] ; θl θs 0 π
2
--- j∞–, 

 .∈,∈,

T '
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interest because of the fact that the relationship Q =

Im (θl, ϕl, θs = θl, ϕs = ϕl), where Q is the total scat-

tering cross section, holds in this case [28, p. 69]. First,
we use Eqs. (30), (27)–(29), and (A2) to calculate the

combined SAs 1, 2T  and 1, 2T  of

scatterers S1 and S2 for the scattering in the forward and
backward directions. We have

(A4)

where β = . We replace the two first scatterers

by the combined scatterer with center located at the ori-
gin of coordinates and the SA given by Eqs. (A4). Then,
using again Eqs. (30), (27)–(29), and (A2) for calculating
the unperturbed SAs of the combined and third scatter-

ers, we determine the resulting SA  of

the combined scatterer:

4π
k

------ T '

π
2
--- 0

π
2
--- 0, , , 

  π
2
--- π π

2
--- 0, , , 

 

T1 2, '
π
2
--- 0

π
2
--- 0, , , 

  2
A B A2β+ +

1 β2A A B–( )–
-------------------------------------,=

T1 2, '
π
2
--- π π

2
--- 0, , , 

  2
A B– A2β+

1 β2A A B–( )–
-------------------------------------,=

ikz0( )exp
z0

------------------------

T
1 2,

'
π
2
--- 0

π
2
--- 0, , , 

 
(A5)T
1 2,

'
π
2
--- 0

π
2
--- 0, , , 

 
T1 2, '

π
2
--- 0

π
2
--- 0, , , 

  ikz0( )β A B–( ) T1 2, '
π
2
--- π π

2
--- 0, , , 

 exp+

1 β2 A B–( ) T1 2, '
π
2
--- π π

2
--- 0, , , 

 –

---------------------------------------------------------------------------------------------------------------------------------------.=
In a similar way, using Eqs. (32), (34)–(36), (A4), and
(A2), we determine the resulting SA of scatterer S3:

(A6)

With these results, the combined SA of the whole
system of three scatterers with respect to the point

 =  can be found from Eq. (38):

(A7)

T
3

'
π
2
--- 0

π
2
--- 0, , , 

 

=  

ikz0( ) A B+( )exp β A B+( ) T1 2, '
π
2
--- 0

π
2
--- 0, , , 

 +

1 β2 A B+( ) T1 2, '
π
2
--- π π

2
--- 0, , , 

 –

--------------------------------------------------------------------------------------------------------------------.

x-
 z0

2
---- 0 0, , 



T ' θi ϕ i θs ϕ s, , ,( ) T
1 2,

'
π
2
--- 0

π
2
--- 0, , , 

  ik
z0

2
---- 

 exp=

+ T
3

'
π
2
--- 0

π
2
--- 0, , , 

  ik
z0

2
----– 

  .exp
Note that, for z0  ∞, Eqs. (A5)–(A7) are reduced
to the corresponding expressions derived without
regard for the multiple scattering.
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Abstract—The scattering of a plane monochromatic shear wave by a circular semiconductor cylinder sol-
dered into a piezoelectric of class 6mm(4mm, ∞m) is considered for the case when an azimuth drift current
occurs in the cylinder. It is found that the drift-related nonequivalence of scattering in opposite azimuth
directions of wave propagation around the cylinder is the origin of the asymmetry of the polar scattering
pattern while the effective (for the partial waves travelling around the cylinder in the drift direction with
a sufficiently high angular velocity) acoustoelectronic amplification reduces the total scattering loss and
can make it negative. A relatively strong contribution of the plasma and drift to the scattering is predicted
for the case of acoustic matching between the materials of the cylinder and the surrounding piezoelectric.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Piezoelectric crystals and materials formed on their
basis are used in radio electronics and adjacent technol-
ogy as resonators, transducers, and filters [1, 2]. This is
the main reason for the long-term interest in the propa-
gation of acoustic waves in piezoelectrics. Recent years
have been marked by an increased attention to the
acoustic properties of heterophase polycrystalline
materials of the piezoceramic type [3–5]. In the process
of acoustic wave propagation in them, the conductivity
and frequency dispersion of permittivity can manifest
themselves due to the piezoelectric effect, for example,
as a result of pores of piezoceramics being filled with
an electrolyte (seawater) [6]. Analogous acoustoelec-
tronic effects are possible if one of the phases of a mate-
rial has semiconductor properties and the drift of
charge carriers is generated in it to obtain the control
effect.

The understanding of the essence of acoustic pro-
cesses in composite piezoelectrics and piezoceramics
with a conducting phase needs investigation of the par-
ticular features of wave scattering by single inhomoge-
neities. A number of aspects of this problem were con-
sidered earlier [7, 8]. However, in [7], the contribution
of the piezoelectric effect, conductivity, and drift of
charge carriers to the scattering of a shear wave by a
conducting cylindrical region of a bulk piezoelectric
crystal and a cylindrical cavity in a piezoelectric with a
semiconductor cylinder separated by a thin vacuum gap
1063-7710/05/5105- $26.00587
was not evaluated integrally but determined according
to the variations of the amplitude coefficients of single
partial waves of the scattered field. In that case, simpli-
fying restrictions were used, such as a low level of cou-
pling between the oscillations of the acoustic and
plasma subsystems, a high diffusion frequency of
plasma, and a small wave size of the cylindrical inho-
mogeneity.

Additional investigation [8] of the effects of acous-
toelectronic amplification and damping of shear waves
scattered by a cavity in a piezoelectric with a semicon-
ductor cylinder in a noncontact position provided an
opportunity to reveal the nonequivalence (nonreciproc-
ity), induced by the drift of charge carriers in the semi-
conductor, for the scattering of partial waves in the
opposite azimuth directions of propagation around the
cavity. A consequence of the drift-related nonreciproc-
ity of scattering is the visible asymmetry of the scatter-
ing pattern with respect to the angular coordinate. How-
ever the calculation of the scattering patterns in [8] was
also restricted to the case of high diffusion frequencies
of the semiconductor plasma and moderate cavity
dimensions.

In the present paper, the results obtained in [7, 8] for
the scattering of a shear wave by a circular cylindrical
cavity with a noncontact semiconductor cylinder are
generalized to the case of a piezoelectric and a cylinder
brought into an acoustic contact. For several reasons,
this situation provides, first, a unique opportunity to
0 © 2005 Pleiades Publishing, Inc.
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consider more exhaustively1 the linear effects of acous-
toelectronic interaction, including the control of acous-
tic scattering by the drift of charge carriers. This can be
performed within the framework of the traditional con-
tinual approach and the hydrodynamic description of a
semiconductor plasma without the restriction on a low
level of oscillation coupling for the phonon and plasma
subsystems in the whole available range of frequencies
and wavelengths. Second, this situation is more ade-
quate to the existing industrial technologies of manu-
facturing artificial composite media and allows one to
separate the acoustoelectronic scattering of a shear
wave that is induced by drift and the cylinder conduc-
tivity in the case of its acoustic matching with the
piezoelectric. The acoustic matching of the materials,
i.e., the piezoelectric and the semiconductor cylinder
brought into contact with it, excludes common acoustic
scattering caused by the cavity itself [7, 8]. The last
plays the role of a masking background with respect to
the acoustoelectronic effects of semiconductor current
plasma. Therefore, there is an opportunity, in the
approximation of a low repetition factor of scattering,
to use the results on acoustoelectronic scattering by a
single cylinder for a qualitative evaluation of the behav-
ior of an artificial composite medium in the form of an
aggregate of parallel and identical in all parameters

1 It differs from the special case of scattering by a conducting
region of a bulk piezoelectric crystal [7] in the absence of piezo-
electric properties of the scattering cylinder. This fact provides an
opportunity to avoid the difficulties in matching the elastic and
electric fields in the scattering cylinder because of the presence of
drift. However, the specific results, in particular, the spectral
characteristics of such an important integral property of scatter-
ing as the extinction and scattering cross sections of a cylinder
(which were not considered earlier), could be obtained without
using the frequency limitations only by numerical calculation
with the help of modern computing facilities.

E0

R

θ

r
(‡)

(b)

Fig. 1. (a) Geometry of the problem and (b) the pattern of
paraxial rays in the semiconductor cylinder.
semiconductor cylinders (fibers) distributed over a
piezoelectric crystal with low density.

FORMULATION OF THE PROBLEM
AND THE INITIAL EQUATIONS

Let, in the cylindrical coordinates r, θ, z, a piezo-
electric of class 6mm(4mm, ∞m) with the highest-order
symmetry axis L6(L4, L∞) || z occupy the region r > R,
and the region r < R be occupied by a nonpolar semi-
conductor also oriented with its crystallographic axis
along the z axis. The consequence of this crystal posi-
tioning in the case of normal incidence of a plane
monochromatic shear wave with amplitude U and axial

polarization of displacements  = (0, 0, ),  =
Uexp(iψ), ψ = k2rcosθ – ωt on a semiconductor cylin-
der (Fig. 1), is the absence of boundary transformations
of elastic oscillation modes. Therefore, in the quasi-
static approximation [9], which is quite effective for
scattering problems, we obtain a system of equations
from the Maxwell equations and the equations for the
piezoelectric effect [1, 2] owing to the harmonic char-
acter of oscillations of the resulting shear displace-
ments u2 = (0, 0, u2) and the electric potential ϕ2 of
piezoelectric fields:

(1)

Here and above, ∇ 2 is the Laplacian in the plane of
shear wave propagation, k2 = ω(ρ2/ )1/2 is the wave

number, ω is the frequency,  = λ2 + 4π /ε2, λ2 is
the shear modulus, e15 is the piezoelectric modulus, ε2
is the dielectric constant, ρ2 is the piezoelectric density,
and t is time.

In the nonpiezoelectric semiconductor, the shear
displacements u1 are not connected directly with the
electric field of the potential ϕ1 and the equation of
motion of the elastic medium leads to a common Helm-
holtz equation:

(2)

where k1 = ω(ρ1/λ1)1/2 is the wave number, ρ1 is the den-
sity, and λ1 is the shear modulus of the semiconductor.
However, it is necessary to take into account the electric
field penetrating from the piezoelectric crystal and per-
turbing the electronic plasma of charge carriers in the
semiconductor. In the hydrodynamic approximation,
the plasma is described by the equations

(3)

Here, D(1) is the electric induction in the semiconductor,
j is the current density, E1 = E0 – ∇ϕ 1, E0 is the drift

u2
in u2

in u2
in

∇ 2u2 k2
2u2+ 0, ϕ2

4πe15

ε2
-------------u2 Φ2,+= =

∇ 2Φ2 0.=

λ2*

λ2* e15
2

∇ 2u1 k1
2u1+ 0,=

∇ D 1( )⋅ 4πeN , ∇ j⋅– e
∂N
∂t
-------,= =

j σE1 ef D0∇ N .+=
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field, σ = σ0 + efµN is the semiconductor conductivity
consisting of the static σ0 and perturbed parts, N is the
concentration of charge carriers, e is the elementary
charge, µ is the mobility, f is the trapping factor, D0 is
the diffusion coefficient of charge carriers, and ∇  is the
Hamilton operator in the plane orthogonal to the z axis.

For small perturbations of electronic plasma, we use
the linearized current density j ≈ efD0∇ N + σE0 – σ0∇ϕ 1
and assume that the azimuth drift under the effect of
the field E0 = (0, E0, 0), E0 = –αr is reduced to the cir-
cular rotation of electrons with a constant angular
velocity. The constant α is determined by the method
of drift excitation. If one uses a nonstationary radially
inhomogeneous magnetic field H0 || z (H0 ~ r2) [6] for
these purposes, α has the meaning of the rate of mag-
netic field variation in time. Taking into account the
relation D(1) = ε1E1, we eliminate the quantities j and
N from Eq. (3) and obtain an equation for the determi-
nation of ϕ1:

(4)

where ωc = 4πσ0/ε1 is the Maxwell relaxation fre-
quency.

We complement Eqs. (1), (2), and (4) with the
boundary conditions of continuity at r = R for shear dis-
placements, components Trz of the stress tensor, poten-
tials, and radial components of the electric induction.
Assuming that recombination and trapping of charge
carriers at the surface levels is absent, we add the
requirement of the absence of charge transfer from the
semiconductor cylinder to the piezoelectric: jr|r = R = 0.
Finally, using the equations for the piezoelectric effect
[1, 2] and the linearized expression for the current den-
sity, we write

(5)

SOLUTION OF THE BOUNDARY PROBLEM

The shear displacements u1, 2 as the solutions to
homogeneous Helmholtz equations (1) and (2) can be
formally represented by the Rayleigh series of the solu-
tion to the reference problem of the scalar theory

∇ 2 fµ E0 ∇⋅( ) f D0∇
2 ∂

∂t
-----– ωc–+ ϕ1 0,=

u1 r R= u2 r R= ,=

λ2

∂u2

∂r
-------- e15

∂ϕ2

∂r
---------+ 

 
r R=

λ1
∂u1

∂r
--------

r R=

,=

ϕ1 r R= ϕ2 r R= ,=

4πe15

∂u2

∂r
-------- ε2

∂ϕ2

∂r
---------– 

 
r R=

ε1
∂ϕ1

∂r
---------

r R=

,–=

ωc

∂ϕ1

∂r
---------

r R=
f D0∇

2 ∂ϕ1

∂r
--------- 

 
r R=

.=
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describing the diffraction of a plane monochromatic
wave by a foreign cylinder [10, 11]:

(6)

(7)

Here, we use standard notations for the Bessel func-
tions Jn(x) and the Hankel functions of the first kind

(x); the incident wave is taken into account in
Eq. (7) by the first term in square brackets; the second
term in them characterizes the partial contribution from
the azimuth harmonic to the field scattered by the cyl-
inder; and the coefficients an and bn must be deter-
mined.

The determination of ϕ2 is reduced to the determina-
tion of the potential Φ2 of the field of boundary piezo-
electric polarization oscillations, and, taking into
account its limited character at r > R along with the need
to satisfy the boundary conditions given by Eqs. (5), we
obtain, by virtue of Eq. (1),

(8)

From Eq. (4), it also follows that

(9)

The potential Φ1 of the piezoelectric polarization oscil-
lations in the semiconductor cylinder is analogous in its
structure to Eq. (8) with the exception of the fact that
the powers of the radial coordinate are taken with the
positive sign:

(10)

In conformity with the adopted type of drift, for each
azimuth harmonic, the effect of the operator E0 · ∇  in the
last of Eqs. (9) is equivalent to multiplication by –iαn.
Taking into account the substitution of ∂/∂t for –iωt, this

equation can be represented in the form ∇ 2Φ – Φ = 0,
which allows us to represent the potential Φ of the field
response of the semiconductor plasma to piezoelectric
polarization oscillations in the form

(11)

u1 U iωt–( )exp=

× in inθ( )Jn k1r( )bn, r R,<exp
n ∞–=

∞

∑
u2 U iωt–( )exp=

× in inθ( ) Jn k2r( ) Hn
1( ) k2r( )an+[ ] , r R.>exp

n ∞–=

∞

∑

Hn
1( )

Φ2 iωt–( ) in inθ( )r n– dn.exp
n ∞–=

∞

∑exp=

ϕ1 Φ1 Φ, ∇ 2Φ1+ 0,= =

fµ E0 ∇⋅( ) f D0∇
2 ∂

∂t
-----– ωc–+ Φ 0.=

Φ1 iωt–( ) in inθ( )r n cn.exp
n ∞–=

∞

∑exp=

χn
2

Φ iωt–( ) in inθ( )In χn( )gn.exp
n ∞–=

∞

∑exp=
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Here, In(x) is the modified Bessel function selected pro-
ceeding from the bounded character of the solution,

χn = k1(ωD/ω)1/2[ωc/ω – i(1 – nΩ/ω)]1/2, ω/ωD = fD0 /ω,
ωD is the diffusion frequency, and Ω = fµα is the angu-
lar velocity of the azimuth drift of charge carriers.

The amplitude coefficients an, bn, cn, dn, and gn are
obtained from the system of inhomogeneous algebraic
equations, which are obtained from the substitution of
the expressions for displacements (Eqs. (6) and (7)) and
the summary potentials ϕ1 and ϕ2 following from
Eqs. (1) and (8)–(11) into the boundary conditions (5).
However, it should be noted that the indices of the scat-
tering ability of the semiconductor cylinder are only
characterized by the coefficients an, which have the
form

k1
2
 (12)

Therefore, it is unnecessary to give here the equations
for other amplitude coefficients. The latter are
expressed finally by a chain of linked equations through

the coefficients an. In Eq. (12), _2 = 4π (ε2 )–1 is

the square of the electromechanical coupling coeffi-
cient of the piezoelectric, ξ1 = k1R, ξ2 = k2R, m = λ1/ ,

and

an

Jn ξ2( )
Hn

1( ) ξ2( )
--------------------–=

×
_2

n Fn τ ξ 1,( ) mξ1 Jn ξ1( )ln[ ] '– ξ2 Jn ξ2( )ln[ ] '+

_2
n Fn τ ξ 1,( ) mξ1 Jn ξ1( )ln[ ] '– ξ2 Hn

1( ) ξ2( )ln[ ] '+
-------------------------------------------------------------------------------------------------------------------------.

e15
2 λ2*

λ2*
(13)Fn τ ξ 1,( )

ε1

ε2
---- 1 n

Ω
ω
----– 

  1 δn 1 i
ω
ωD

-------+ 
 +

1 n
Ω
ω
----– 

  1
ε1

ε2
---- 1 δn+( )+ i

ω
ωD

-------δn

ε1

ε2
---- i

ωc

ω
------ n

ζ
----- 1

In ζ( )ln[ ] '
------------------------+ +

--------------------------------------------------------------------------------------------------------------------------------------=
is the function of the generalized conductivity parame-
ter τ and ξ1, which contains the quantities δn = i[(1 –
nΩ/ω) + iω/ωD]–1ωc/ω and ζ = ξ1(ωD/ω)1/2[ωc/ω – i(1 –
nΩ/ω)]1/2. Equations (12) and (13), where the primes
denote the derivatives of the logarithms of cylindrical
functions, complete the representation of the solution to
the boundary problem under consideration.

Let us verify that the result corresponds to previous
data. For example, m = 0 means the absence of the
acoustic contact of the semiconductor cylinder with the
piezoelectric and Eq. (12), as it should be expected,
transforms into Eq. (2) from [8]. If we additionally
assume that ωc = 0, µ = 0 (Ω = 0), and ε1 = 1, we obtain
the case of scattering of a shear wave by a cylindrical
air gap in a piezoelectric crystal, which was considered
in [7, 8]. In the absence of the piezoelectric effect, when
_2 = 0, Eq. (12) leads to the amplitude coefficients of
the partial shear waves scattered by a foreign cylinder
in an isotropic elastic medium [10]. The solution for the
last case is mathematically equivalent to the solution to
the problem of scattering of an H-polarized electro-
magnetic wave by a dielectric cylinder [11].

EFFECT OF THE CONDUCTIVITY
AND DRIFT ON THE PARTIAL WAVES

OF THE SCATTERED FIELD
In [8], the ratio Γn = |an(Ω)|/|an(0)| was taken as the

measure of the amplitude variation of a partial scattered
wave under the effect of conductivity and drift. This
quantity was calculated for extremely low ultrasonic
frequencies ω2 ! ωcωD and a semiconductor plasma
with a low conductivity (ωÒ ! ωD). The resulting esti-
mate for waves of low numbers [lnIn(ζ)]' ~ 1 in the
asymptotic case of |ζ| @ ξ1 allowed us to ignore the last
term in the denominator of Eq. (12) and to solve the
major problem connected with calculating the modified
Bessel function of a complex argument. Along with
this, we also ignored the terms proportional to ω/ωD,
and the function Fn(τ, ξ1) acquired a relatively simple
form Fn(τ, ξ1) ≈ ε1(1 + δn)[ε2 + ε1(1 + δn)]–1. This
description of the plasma response corresponds to its
model representation as a medium with the effective
dielectric constant ε1(1 + δn), which is natural, since the
boundary plasma effects under the aforementioned
conditions (diffusion-free approximation) are negligi-
bly small.

The approach adopted in [8] made it impossible to
investigate the acoustoelectronic effects in the case of
scattering of a shear wave by a cavity with a semicon-
ductor (m = 0) in the most interesting frequency range
ω2 ~ ωcωD. The possibility of studying the azimuth drift
with the angular velocities Ω = ω/n or close to them was
also excluded, since, in this case, it is unacceptable to
ignore the “small” terms in Eq. (12) because of their
growth with respect to the first term. The results of the
present work are based on the data of an exact quantita-
tive calculation according to Eqs. (12) and (13), and,
therefore, they are free of the aforementioned draw-
backs.

For the program module with the inaccuracy of cal-
culation of Γn and other quantities no higher than 10–9

at ξ1 < 3 × 102(ω/ωD)1/2, when the characteristic range
of variation of the ratio ω/ωD was overly exceeded for
cylinders with moderate (ξ1 ≅ 10) or higher wave
dimensions, the basic procedure was the calculation of
the cylindrical functions of integer order with a positive
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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argument according to Miller’s algorithm [12, 13]. Its
applicability to calculating the function In(z) of a com-
plex argument z together with the relations In(z) =
exp(−inπ/2)Jn(iz), −π <  ≤ π/2, In(z) = exp(i3nπ/2) ×
Jn(iz), π/2 <  ≤ π is secured by the theorem of mul-
tiplication for the Bessel function [14]:

(14)

where a and z are any complex numbers. Assuming
that, in Eq. (14), az = w and z = |w|, we obtain the expan-
sion of the Bessel function of a complex argument w
into a series in the Bessel functions of a positive argu-
ment |w|.

The results of numerical calculation for the values
of Γn qualitatively agree with the conclusions of [8].
For example, together with Eqs. (12) and (13), they
point to the inequality an ≠ a–n under the drift conditions
for the amplitudes of the scattered field of the direct
(n > 0) and inverse (n < 0) azimuth propagation of
waves. The last means the drift-related nonreciprocity
of scattering. The conclusion concerning the possibility
of a noticeable acoustoelectronic amplification (attenu-
ation) of partial scattered waves by the drift current,
when the semiconductor cylinder has wave dimensions
sufficient for the formation of plasma bunches ξ1 > 1,

was also confirmed.2 However, together with the char-
acteristic acoustoelectronic change of sign for the
dependences Γn(Ω) – 1 at the “critical” drift currents
(Fig. 2), the presence of a drop in the value of Γn at an
angular velocity of drift Ω = ω/n was revealed, this drop
being the deeper the closer to each other in acoustic
properties the piezoelectric and the semiconductor
were.

This is illustrated by the curves in Fig. 2. They are
calculated for the case where the conditions of acoustic
matching for the materials of the cylinder and the
piezoelectric are assumed in Eq. (12): m = 1, k1 = k2
(ξ1 = ξ2). This case will be given special attention
below. The largest depth of the dip, which reaches a
value of Γn = 0, corresponds to this case. The horizontal
dashed line in Fig. 2 indicates the level of zero variation
for the amplitude of a partial wave Γn = 1.

As for the angular velocity of drift Ω = ω/n, it is nec-
essary to note that it corresponds to the linear drift
velocity v d = ΩR of charge carriers, which coincides
with the velocity of azimuth propagation of a partial
wave around the cylinder boundary v n = ωR/n. To
determine this fact, to the number n of an azimuth har-
monic we assign the value n = knR, where kn = ω/v n is

2 At ξ1 ≤ 1, the semiconductor plasma has a polarization effect and,
facilitating the “displacement” of the field of polarization oscilla-
tions to the external region, increases the acoustic scattering uni-
formly over all azimuths. This effect is analogous to the amplifi-
cation of acoustic wave scattering by a cavity in a piezoelectric
on account of boundary metallization [7, 9].

zarg
zarg

Jn az( ) an 1–( )k a2 1–( )k
z/2( )k

k!
-----------------------------------Jn k+ z( ),

k 0=

∞

∑=
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the azimuth wave number. According to Eq. (13), the
dip in the dependence Γn(Ω) at the point of the “sonic”
drift is caused by the termination of acoustoelectronic
interaction: Fn(τ, ξ1) = 0, which is explained by the
known [15] mechanism of phase synchronism of
plasma bunches with a wave, which is supported by
drift. The diffusion of charge carriers does not influence
the position of the point of “sonic” drift. However, from
the comparison of curves 1–3 (Fig. 2), one can see that,
as it grows, a broadening of the peak observed in the
dependence Γn(Ω) and cut through by the dip occurs. At
Ω  0 (Ω > 0, a direct azimuth drift), a sharp increase
in the partial wave scattering, which occurs when
Γn  1 and may even exceed the zero level of scatter-
ing variation under the conditions n/ξ1 ≤ 1, n ~ 1, is
caused by the fact that the acoustoelectronic mecha-
nism is replaced by the screening action of the semicon-
ductor plasma. The same circumstance ensures the
validity of the inequality Γn > 1 at the initial sections of
the inverse (Ω < 0) drift and, together with the acousto-
electronic interaction, finally leads to the violation of
the ideal asymmetry of the curves Γn(Ω) with respect to
the zero level of scattering variation.

INTEGRAL CHARACTERISTICS
OF THE ACOUSTOELECTRONIC SCATTERING 
OF A SHEAR WAVE BY A SEMICONDUCTOR 

CYLINDER

The analysis of variations of the amplitude coeffi-
cients for single partial waves scattered by a cylinder
reveals the mechanisms of the control action by con-
ductivity and drift upon the process of scattering but
does not give the whole pattern of the phenomenon.
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Fig. 2. Drift dependences Γn for n = 30 in the case of ξ1 =
20, _2 = 0.01, ε1/ε2 = 1.4, and ωc/ω = 1 for different ratios
ω/ωD under the conditions of acoustic matching of the cyl-
inder with the piezoelectric: ω/ωD = (1) 1, (2) 5, and (3) 10.
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A complete picture of scattering is provided by the inte-
gral characteristics of scattering [10, 11, 13], i.e., the
polar scattering pattern

(15)

and the linear (per unit length of the cylinder) total scat-
tering cross section σS. The first of these quantities
characterizes the amplitude of the scattered field in the
far wave zone, which is represented in the form of radi-
ation from an effective linear source at the cylinder axis
and shows in fact the azimuthal distribution of the scat-
tered energy. The second quantity, which is usually
expressed by the ratio of the time-averaged radially
scattered power to the intensity of the incident wave, is
taken as a measure for the energy efficiency of conver-
sion of the incident wave into the scattered field.

This definition of σS leads to the expression [11, 13, 15]

(16)

It is evident that, in the presence of loss or in the case
of wave amplification in the cylinder (negative loss), σS
can be considered only with respect to a part of the inci-
dent power that remains in the cylinder minus the loss.
The measure of the total conversion of the incident wave
in the case of scattering is the quantity σex = σS + σA
called the cross section of extinction by analogy with
optics [13]. The addition σA to σS (now, it is sensible to
exclude from the name of σS the prefix “total”) deter-
mines the share of energy loss due to the scattering and
can be called the absorption cross section of.

A convenient way to calculate σA is to follow the
standard procedure for the determination of σS, but, in
this case, the average radial flux of scattered energy is
replaced by the difference of summary average radial
energy fluxes converging to and diverging from the cyl-
inder. A specific feature of this case is that the radial
energy flux converging at the cylinder is formed by
only part of the incident wave field. Its remaining part
is added to the flux of the scattered field. The procedure
of decomposition of the incident wave field into contri-
butions to the radial energy fluxes converging to and
diverging from the cylinder is described in [16].

In contrast to [10, 13], the determination of σA is
performed in [16], as applied to the case of not only an
absorbing but also an amplifying cylinder. However,
this did not affect the final representation of σA by a
series:

(17)

The minus sign in Eq. (17) reflects the fact of directivity
of the absorbed energy flux towards the cylinder. Equa-
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2.
n ∞–=

+∞

∑=

σA
4
k2
---- an

2 Rean+( ).
n ∞–=

+∞

∑–=
tions (16) and (17) yield the following expression for
the extinction cross section:

(18)

Since, according to [7, 8], the piezoelectric effect
and, through it, the conductivity and drift manifest
themselves weakly against the background of the
acoustic scattering by the cavity in the piezoelectric and
there are no grounds to expect something different in
the case of a shear wave scattering by a foreign contact-
ing cylinder, the above case of acoustically matched
piezoelectric and semiconductor deserves some atten-
tion. In this case, because of the equations λ1 = ,
ρ1 = ρ2, ξ1 = ξ2 ≡ ξ, and m = 1, from Eq. (12) we obtain

(19)

Equation (19) shows that now the scattering of a shear
wave is completely determined by the piezoelectric
effect (_ ≠ 0) and the acoustoelectronic interaction
(Fn(τ, ξ) ≠ 0) due to the appearance of piezoelectric
polarization charges at the boundary under the effect of
the incident wave. In its absolute value, this scattering
effect (let us call it acoustoelectronic scattering) may be
rather small, since most often _2 ! 1, but it is very
attractive, because it offers a possibility for the clear
manifestation of the plasma properties of the semicon-
ductor. Further, we will concentrate on the consider-
ation of only the acoustoelectronic scattering.

It is necessary to note that the monopole contribu-
tion is absent in the acoustoelectronic scattering (n = 0),
and, at low frequencies (ξ ! 1), it is determined mainly
by the dipole modes of oscillations of partial waves
with the numbers n = ±1. This is the reason why the cal-
culation of the normalized polar characteristics of scat-
tering (below, simply polars) gS = FS(θ)/FS(0) accord-
ing to Eqs. (15) and (19) demonstrates that, in the Ray-
leigh region, the latter have a form differing little from
the classical “figure eight.” The conductivity enhances
the thickening of its neck, and the drift, as in the case of
scattering by a cavity with a semiconductor [8], causes
a general azimuth rotation of polars.

As the wavelength shortens, the polarizing effect of
the plasma charge carriers is replaced by the acousto-
electronic mechanism as the conditions for grouping of
electronic bunches near the piezoelectric polarization
field improve [15]. In this case, together with the rota-
tional conversion of polars, their asymmetry with
respect to the direction of location, as the general
expression for the drift nonreciprocity of scattering,
becomes more and more governed by the change of
sidelobes and backscattering. Specific shapes of polars
received at moderate and medium frequencies under
the effect of conductivity and drift differ in greater vari-
ety. Figure 3 gives the polars of high-frequency scatter-
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ing of a shear wave by a semiconductor cylinder in a
piezoelectric of the BaTiO3 type in the absence (Ω/ω =
0, the upper polar) and presence (Ω/ω = 0.05, the lower
polar) of the azimuth drift. Their comparison illustrates
the manifestation of the acoustoelectronic mechanism.
The propagation direction of the incident shear wave is
indicated by the arrow in Fig. 3.

The fact that the principal (in the location direction)
shadow-forming side lobe with the length assumed to
be equal to unity is not subjected to the effect of drift at
high frequencies (see the scaling section in Fig. 3) is
explained as follows. The bundles of paraxial rays
forming it, these bundles being the narrower, the higher
ξ is, cross the semiconductor cylinder in its central part,
as is shown schematically in Fig. 1b by the dashed
lines. Here, they are orthogonal to the drift current
(shown by direct arrows at the cylinder periphery). The
contribution of the drift current to the acoustoelectronic
interaction in this case is absent [15]. At the same time,
the amplification of scattering that can be seen in Fig. 3
in the angular sector π/4 < θ < π is evidence of the pos-
sibility for sufficiently effective control of the azimuth
distribution of the scattered field with the help of drift.

The possibility of an acoustoelectronic absorption
(σA > 0) and its change for the acoustoelectronic ampli-
fication of scattering (σA < 0, negative absorption)
under the effect of drift is illustrated by the spectra of
the absorption cross section, which are calculated
according to Eqs. (17) and (19) for a piezoelectric of the
BaTiO3 type (_2 = 0.38, ε1/ε2 = 1.4) and a “dense”
(ω2 ! ωcωD, ω/ωD = 0.001, Fig. 4a) or “loose” (ω2 ~
ωcωD, ω/ωD = 0.5, Fig. 4b) plasma of the semiconductor
with a conductivity ωc/ω = 1. The corresponding spec-
tral dependences in the absence of drift are plotted by
dashed lines. The formation of the relaxation peak of
absorption is observed for wave dimensions ξ ≤ 2 (it is
indicated by normal arrows), which corresponds to the
peak of the Joule losses in the dipole oscillations of the
cylinder plasma. The major difference is that, because
of the strong diffusion damping under the conditions of
a “loose” plasma, the effect of drift is extended to the
long-wavelength part of the spectrum of the absorption
cross section touching even upon the range of the Ray-
leigh scattering ξ ! 1. One can see, for example, that,
as the drift increases, the relaxation peak of absorption
weakens and gradually transforms into the minimum of
negative absorption that is indicated in curves 2 and 3
in Fig. 4b by light arrows.

Another characteristic detail of the absorption spec-
tra is connected with the appearance (after the relax-
ation peak) of the plasma resonances of the cylinder.
Since, in accordance with the nature of the drift, the
waves of bulk charge in the cylinder are supported by
the drift, the position of the plasma resonances is
largely determined by the velocity of the azimuth drift.
In Fig. 4a, as the result of the extremely high “density”
of the plasma and considerable disproportion of acous-
tic wavelengths with respect to the Debye length, they
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
are expressed in the form of weak perturbations decreas-
ing because of the transition to the regions of acousto-
electronic amplification of scattering in curves 1–3 of the
dependences σA(ξ). Under the conditions of a loose
plasma, the degree of the boundary coupling of the
acoustic and plasma subsystems, which, as the bulk
modes of oscillations of a piezoelectric semiconductor
[17], is determined by the value of _2ωc/ωD, is notice-
ably higher. Therefore, the plasma resonance peaks in
curves 1 and 2 in Fig. 4b are well pronounced and con-
siderably exceed the level of the absorption cross sec-
tion in the absence of drift. At the same time, a high dif-
fusion damping gives them such a large width that
Fig. 4b contains just single peaks of the plasma reso-
nance in the calculation range.

The serial character of plasma resonances in the
spectrum of an absorption cross section is demon-
strated graphically in Fig. 5a for the plasma less dense
(ω/ωD = 0.04) than in Fig. 4a but with a higher (by a
factor of 40) degree of boundary coupling of acoustic
and plasma modes. One can see that, in the absence of
drift (the dashed curve), plasma resonances vanish and,
as the cylinder curvature decreases, a gradual decrease
in their peaks is observed. This is evidence that the
peripheral plasma waves of the cylinder, i.e., the oscil-
lations of charge carriers, which are carried away by the
drift and on which plasma resonances develop, belong
to the class of the boundary-curvature controlled “fast”
(i.e., supersonic) waves of the type of whispering gal-
lery modes [18]. This agrees well with the condition of
supersonic drift for partial waves with the numbers n >
ω/Ω , which make the decisive contribution to the for-
mation of the plasma-resonance response of the cylin-
der in the case of the shear wave scattering. It is nec-
essary to note that, according to the above consider-

1.0

Fig. 3. Polar scattering patterns gS(θ) of a semiconductor
cylinder with the wave dimension ξ = 20 in the absence (the
upper curve) and presence (Ω/ω = 0.05, the lower curve) of
azimuth drift for ωc/ω = 1, ω/ωD = 0.1, _2 = 0.38, and
ε1/ε2 = 1.4.
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ations, the series of plasma resonances in curves 1 and 2
(Fig. 5a) is separated from the relaxation peak of absorp-
tion by the dip (indicated by arrows) of the acoustoelec-
tronic interaction termination at Ω = nω for a partial
wave with the corresponding number n. The possibility
of its presence was discussed earlier and is illustrated in
Fig. 2.

The value of σS, being always positive and numeri-
cally comparable to the absorption cross section, does
not have an independent meaning as a characteristic of
the scattering ability of the semiconductor cylinder.
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Fig. 4. (a) Spectra of the absorption cross section for the
scattering of a shear wave by a semiconductor cylinder with
a dense plasma: Ω/ω = (1) 0.05, (2) 0.08, (3) 0.12, and
(4) 0.25. (b) Spectra of the absorption cross section for the
scattering of a shear wave by a semiconductor cylinder with
a loose plasma: Ω/ω = (1) 0.1, (2) 0.3, and (3) 0.5.
However, the following feature of its spectral behavior
deserves attention. In the Rayleigh region, σS is
extremely small and, on the whole, the character of
scattering is determined by the acoustoelectronic
absorption. In the case of a loose plasma (Fig. 4b), this
is fundamentally important, since it means the possibil-
ity of a negative extinction in the process of scattering,
which is a result not indicated earlier in the theory of
wave scattering by amplifying bodies [16, 19, 20].
Moreover, earlier [16], it was stated that the total
energy gain of radiation on account of the amplification
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Fig. 5. (a) Spectra of the absorption cross section for ω/ωD =
0.04 and Ω/ω = (1) 0.05 and (2) 0.15 (all other calculation
parameters are the same as in Fig. 4a). (b) Spectra of the
extinction cross section for ω/ωD = 1 and Ω/ω = (1) 0.4,
(2) 0.54, (3) 0.7, and (4) 0.9 (all other parameters are the
same as in Fig. 4b).
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by the scattering cylinder for only a part of partial
waves is impossible. This conclusion was based on a
series of approximations used in solving the problem of
electromagnetic wave scattering by a rotating cylinder
with a finite conductivity. In particular, the limitation
by the nonrelativistic velocities of cylinder rotation
seems to be essential, which automatically excluded the
consideration of the conditions analogous to a strong
drift in the loose (ω/ωD = 1) plasma in Fig. 5b, where,
in the region ξ ≤ 1, curves 1–3 are located lower than
the zero level of the extinction cross section indicated
by the dashed line.

Typical spectra of an extinction cross section for a
dense plasma with the calculation parameters of Fig. 5a
are given in Fig. 6. The dashed line corresponds to the
case of the absence of drift. The series of peaks of
plasma resonances are also observed in them (they are
especially pronounced in curve 1) together with the
clear manifestation of the relaxation peak of absorption
(indicated by arrows) only at sufficiently high angular
velocities of drift. As one can see from the comparison
of curves 1 in Figs. 5a and 6, the scattering itself,
enhancing the monotonic growth of extinction with
expansion into the short-wavelength part of the spec-
trum, ensures fulfillment of the condition σex > 0 in this
case.

ACOUSTIC PROPERTIES OF A HETEROPHASE 
PIEZOELECTRIC MEDIUM

WITH FILAMENTOUS SEMICONDUCTOR 
INCLUSIONS

The negative character of extinction of a semicon-
ductor cylinder with a loose plasma at ξ ≤ 1 means that
a piezoelectric with a large number of such inhomoge-
neities under the effect of drift should demonstrate the
qualities of an active or, at least, quasi-transparent
acoustic medium. The specificity of its effective acous-
tic properties can be connected, first of all, with the
absence of a pronounced drift directivity characteristic
of common acoustoelectronic interaction in homoge-
neous piezoelectric semiconductors and layered struc-
tures consisting of combinations of piezoelectric and
semiconductor materials. Let us apply the results to the
laws of shear wave propagation in a piezoelectric
medium (matrix) with a multiplicity of identical ran-
domly distributed parallel semiconductor cylinders
each having identical azimuth drift currents.

The low scattering efficiency due to the acoustic
matching of the cylinders and the matrix allows us to
use the results of the theory of multiple scattering of
waves in the approximation of low multiplicity of scat-
tering [15]. The necessary restriction kd @ 1, where d is
the average distance between the cylinders, provides
not only a sufficient weakness of acoustic rescattering
but also allows us to ignore the mutual induction of
piezoelectric polarization charges arising at the cylin-
der boundaries. Indeed, from the asymptotics of the
scattered field at kd @ 1, it follows that the field
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
decreases by the law (kr)–1/2, while, according to Eq. (8)
and the evaluation of the main contribution of the
dipole (at |n| = 1) terms to the field of piezoelectric
polarization charges, we obtain a stronger decrease in
the latter: Φ2 ~ ξ/kr, kr @ 1. Under the aforementioned
conditions of weak scattering and low concentration of
cylinders n0 (it indicates their number within a unit
area of the sagittal plane, where the propagation of the
shear wave occurs), one can satisfactorily predict the
acoustic properties of the heterophase medium for ξ ≤ 1.

If fS = exp(inθ) is the quotient function of
scattering by a single cylinder and κ is the effective
wave number of a shear wave in the heterophase piezo-
electric, then, according to [15], we have

(20)

where q = πR2n0 is the specific volume of the semicon-
ductor phase. The real part of κ ' = Re(κ) determines the
phase velocity v = ω/κ ' and κ '' = Im(κ) is the absorp-
tion coefficient γ of the shear wave. Equation (20) is
determined under the assumption of spherical shape of
inclusions. However, it was noted repeatedly that the
results obtained with it do not depend on the specific
geometrical shape of the scatterers. The only point that
is significant is their characteristic wave size.

Figure 7 presents the curves for the frequency dis-
persion of a shear wave in a piezoelectric of BaTiO3
type (_2 = 0.38, ε1/ε2 = 1.4) with semiconductor cylin-
ders. The curves are obtained by calculation according
to Eqs. (19) and (20) at different angular velocities of
drift for the most attractive (from the point of view of
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control in the region ξ ≤ 1) case of a loose plasma,
ωcR/ct = 1 and ct/ωDR = 1. They resemble the curve of
the frequency dependence of optical dispersion for the
Drude–Lorentz medium near the absorption line [13],
cross the dashed curve v(ω) for the case of the drift
absence at the points ω = Ω , and, for the assumed small
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Fig. 7. Frequency dispersion of shear waves in a het-
erophase piezoelectric with semiconductor cylinders:
ΩR/ct = (1) 0.1, (2) 0.2, (3) 0.5, and (4) 1.
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Fig. 8. Spectra of absorption for a shear wave in the het-
erophase piezoelectric; the spectra correspond to the disper-
sion spectra shown in Fig. 7.
value of the specific volume q = 0.01, demonstrate an
insignificant (~0.1%) relative variation of the phase
velocity, which indirectly confirms the reliability of
calculation. The shifts of the curves towards shorter
wavelengths with an increase in drift follow the fre-
quency shift of the “sonic” velocity of drift for the
dipole oscillations of number n = 1, which is reflected
in the equality of these values due to the natural contra-
positive of the angular velocity of drift with the cyclic
frequency.

One can readily see that the reason for the agree-
ment of the dependences v(ω) with the results of the
electronic theory of dispersion lies in the aforemen-
tioned quasi-dipole character of the polars of cylinders
at ξ ≤ 1, which makes them similar to classical oscilla-
tors. The appearance of a hump in the drift-free depen-
dence v(ω) at ωR/ct = 1 (ct = ω/k is the velocity of shear
waves) is apparently connected with the averaged man-
ifestation of the relaxation peak of absorption by the
system of randomly distributed cylinders. The disper-
sion dependences in Fig. 7 correspond to the absorption
spectra in Fig. 8, which have the form of the character-
istic loss minimum in the case of acoustoelectronic
“clarification” of the medium under the conditions of
sonic (for the dipole term of the scattered field) drift
ω = Ω manifesting itself against the background of
monotonic growth of γ(ω) because of the general
amplification of scattering with the increase in fre-
quency. However, in calculations, it was impossible to
obtain a full clarification of the medium γ = 0 and, espe-
cially, the absorption inversion, which is possible
because of the negative extinction cross section. This is
explained by both the low value of negative extinction
of single scattering (|σex| ~ 10–3) and the multiple char-
acter of scattering, which bring the resulting extinction
to the region of positive values.

In closing, it is necessary to note that, according to
the set of properties determined above, a heterophase
piezoelectric medium of parallel thin semiconductor
cylinders randomly distributed over a piezoelectric
crystal, where the transverse dimensions of the cylin-
ders are slightly greater than the Debye radius, is a kind
of analog to the Drude–Lorentz optical medium with
the line of acoustoelectronic clarification controlled
within the spectrum by azimuth drift.

CONCLUSIONS

The study of how the current plasma of a semicon-
ductor cylinder in contact with a piezoelectric affects
the scattering of a shear wave gave us the chance to
determine that the most effective manifestation of con-
ductivity and drift in acoustic wave scattering into the
piezoelectric occurs in the case of acoustic matching of
the materials of the cylinder and the external piezoelec-
tric medium. The acoustoelectronic scattering that
occurs under these conditions is characterized by the
absence of the contribution of monopole sources; the
presence of the drift-related nonreciprocity of scatter-
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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ing, which manifests itself by the nonequivalence of the
scattering of partial waves with direct and inverse azi-
muth propagation; and the existence of plasma reso-
nances and the relaxation peak in the spectra of the
absorption cross section, where the peak is due to the
optimal manifestation of the Joule loss in the dipole
plasma oscillations. The essential feature of the effects
of acoustoelectronic scattering also manifests itself in
the fact that, as the frequency grows, the polarization
effect of the semiconductor plasma in combination with
the drift is replaced by the White mechanism of acous-
toelectronic amplification (attenuation) of partial waves
of the scattered field because of the grouping of charge
carriers near the fields of boundary piezoelectric polar-
ization oscillations penetrating in the semiconductor.

The general result is the conclusion on possible
effective control of acoustoelectronic scattering by the
azimuth drift and the presence of certain prerequisites
for the development of special methods of acoustic
spectroscopy of piezoelectric crystals with weak dis-
crete electrical inhomogeneities. The prospects of a
similar idea of using controlled acoustoelectronic scat-
tering in the design of artificial heterophase piezoelec-
tric materials with controlled acoustic parameters are
demonstrated by the example of a composite piezoelec-
tric medium consisting of parallel semiconductor fila-
ment cylinders randomly distributed over the piezo-
electric. In particular, it is demonstrated that, under the
effect of azimuth drift of charge carriers in filament cyl-
inders, this composite piezoelectric is similar to the
weakly absorbing Drude–Lorentz optical medium with
a clarification line controlled within the spectrum.
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Abstract—The theory of a periodic flow of a conducting magnetized liquid in the presence of an ac current
passing through it is described. It is shown that the flow arising under these conditions is of pseudosound char-
acter rather than sonic, as stated in some publications. Experimental data demonstrating the transformation of
pseudosound flow into sound waves are presented. © 2005 Pleiades Publishing, Inc.
The magnetohydrodynamic (MHD) effect in
hydroacoustics was first considered by Anderson [1],
who calculated the influence of the terrestrial magnetic
field on the attenuation of sound in seawater. This effect
is characterized by a quadratic dependence on magnetic
induction, and its magnitude proves to be significant for
infrasonic frequencies.

An observation of sound waves arising in a conduct-
ing liquid (salt water) because of the MHD effect of an
ac electric field was reported in [2]. The potential dif-
ference between the electrodes, between which the
sound waves propagated in the liquid, was found to
depend linearly on magnetic induction, as the potential
difference in the Hall effect.

In [3] (see also [4, 5]), the excitation of a periodic
motion of a conducting liquid was observed under the
combined effect of a constant magnetic field and an ac
current passing through the liquid. The periodic motion
of the liquid was interpreted in [3] as a sound wave, and
the effect itself, as an MHD analog of the Hall effect.

In the present paper, we show that the sound waves
observed in [3] arise as a result of the reflection of the
pseudosound flows produced by the MHD generator
from the boundaries of the tank containing the liquid. In
other words, the MHD generator excites pseudosound,
which is then transformed to ordinary sound at the
walls of the tank.

Remember that the notion of pseudosound as a peri-
odic liquid flow unrelated to density variations in the
liquid was introduced by L.D. Blokhintsev [6] in
describing turbulent flows around rigid objects. Recent
publications devoted to pseudosound include [7–10].

Figure 1 schematically represents the experimental
setup. The magnetic field and the electrodes fed by an
ac voltage are oriented perpendicular to each other and
placed in a conducting liquid. The pseudosound flow
generated in this setup has a directional pattern whose
maximum is oriented in the third orthogonal direction.
1063-7710/05/5105- $26.00 ©0598
The hydrodynamics equations for an ideal liquid in
a force field f(r, t) have the form [11]

(1)

Here, ρ(r, t) is the density of the liquid and v(r, t) is its
velocity.

Linearizing Eqs. (1), we obtain an equation for the
deviation of the density ρ of the liquid from the equilib-
rium value ρ0 (ρ' = ρ – ρ0):

(2)

where u is the velocity of sound.
The boundary condition for Eq. (2) can be obtained

as follows. We proceed from the boundary condition for
the velocity. For a liquid bounded by a rigid surface Γ,
the normal velocity component vn should be equal to
zero, i.e.,

(3)

∂v
∂t
------ v∇( )v+

1
ρ
--- ∇ p–

1
ρ
---f r t,( ),+=

∂ρ
∂t
------ ∇ ρ v( )+ 0.=

∂2ρ'

∂t2
--------- u2∆ρ'– divf r t,( ),–=

v n Γ 0,=

2

1

3

4
7

6 5
S

N

Fig. 1. Schematic representation of the experimental setup:
(1) permanent magnet, (2) electrodes, (3) source of ac current,
(4) current-measuring resistor, (5) hydrophone, (6) amplifier,
and (7) oscilloscope.
 2005 Pleiades Publishing, Inc.



        

MAGNETOHYDRODYNAMIC GENERATOR OF PSEUDOSOUND 599

                                                                                        
and v(r, t) should satisfy the linearized Euler equation

(4)

Differentiating boundary condition (3) with respect to
time and taking into account Eq. (4), we obtain a
boundary condition for ρ':

(5)

Let us show that, in the case under consideration,
both Eq. (2) and boundary condition (5) are homoge-
neous. Assume that two electrodes are placed in an
unbounded liquid in a constant homogeneous magnetic
field H and that each of the electrodes has the form of a
closed surface made of a perfectly rigid and perfectly
conducting material. In this case, the surface of each of
the electrodes is equipotential and a current with den-
sity j(r, t) generating a Lorentz force f = [j, H] passes
through the liquid. In the quasi-stationary case, curlj = 0.
Then, at the surfaces of the electrodes, the current den-
sity vector is perpendicular to these surfaces. Therefore,
divf = (H, curlj) = 0 and fn|Γ = 0. Hence, ρ'(r, t) ≡ 0. In
other words, in the given case, the effect of the force
field f(r, t) does not lead to a compression or rarefaction
of the liquid and, hence, no sound wave is formed in the
liquid.

However, under the effect of such a force field, a liq-
uid flow whose nature is different from that of a sound
wave may arise. In particular, if the force field f(r, t)
harmonically depends on time as f(r, t) = f(r)e–iωt, the
liquid flow will also be of a harmonic character. Such
periodic liquid flows of nonsound nature are called
pseudosound [6].

To study the velocity distribution in the given pseu-
dosound flow, we consider Eq. (4). Substituting ρ' = 0
and integrating with respect to time, we finally obtain

(6)

Let the electrodes have the form of spheres of
radius a with their centers at the points ±l. Assume
that r @ l @ a. Then, the current density in the quasis-
tationary case is determined by the expression

(7)

where I(t) = Ie–iωt is the total current between the elec-
trodes. Substituting the corresponding expression for
the Lorentz force f = [j, H] into Eq. (6), we obtain v  ~ r–3.
Hence, for the pseudosound field, the rate of decrease
with distance from the source is much greater than that
for the ordinary sound field, for which v  ~ r–1.

Naturally, any object placed in a pseudosound flow
represents a source of sound waves [6], and this fact
should be taken into account in interpreting experimen-

∂v
∂t
------

u2

ρ0
----- ∇ρ '–

1
ρ0
-----f r t,( ).+=

∂ρ'
∂n
-------

Γ

1

u2
----- f n

Γ

.=

v r t,( ) i
ωρ
-------f r( )e iωt– .=

j r t,( ) I t( )l

2πr3
----------- l0 3r0 r0 l0,( )–( ),=

r0 r/r, l0 l/l,= =
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tal data. In the experiment described in [3], such objects
could be the walls of the tank and the membrane sepa-
rating the volume of the conducting liquid, in which
pseudosound flows were generated, from the volume of
the nonconducting liquid, in which the hydrophone was
placed.

The theory described above was developed with the
aim to interpret the results of our experiments. As the
conducting liquid, we used a 3.5% aqueous solution of
NaCl, which corresponds to the salinity of seawater.
The tank containing the liquid was made of stainless
steel with the dimensions 162 × 77 × 10 cm3. The
source of magnetic field was a permanent magnet,
which, with the use of pole concentrators with an outer
diameter of 30 mm, provided a magnetic field of about
0.5 T in a 15-mm-wide gap. Bronze cylindrical elec-
trodes 9 mm in diameter were coaxially positioned at a
distance of 10 mm from each other in the region of the
maximal magnetic field in such a way that their com-
mon axis was normal to the field. The output voltage of
the master oscillator was supplied via a power amplifier
to a series-connected current-measuring resistor and to
the electrodes. The sound pressure receiver was repre-
sented by calibrated piezoelectric transducers in the
form of cylinders 19 mm in diameter and 22 mm in
length. The transducers were positioned on the axis per-
pendicular to both magnetic field and electrode current
directions, at a distance of 40 cm from the electrodes.
The signal from the receiver was preamplified and sup-
plied to one of the oscilloscope channels. The second
oscilloscope signal served for controlling the magni-
tude and form of the electrode current.

Figure 2 shows the experimental dependences of the
receiver signal amplitude on the amplitude of the elec-
trode current for several frequencies. One can see that
the amplitude of the detected sound signal linearly
depends on the current strength, according to Eqs. (6)
and (7). As for the spatial distribution of sound, its
parameters could not be explained in terms of the stand-
ing sound wave pattern produced by the source of fairly
simple geometry used in the experiment. This fact has
stimulated us in analyzing theoretically the phenome-
non described above. Presumably, under our experi-
mental conditions, the transformation of the pseudo-
sound flow into acoustic oscillations mainly occurred at
the metal electrodes and at the poles of the magnet. This
conclusion can be made in view of the fast attenuation
of pseudosound with distance that is predicted by
Eq. (7). Such a fast attenuation of the signal with
increasing source–hydrophone distance was not
observed in the experiment.

In addition to the sound signal at the frequency of
the exciting current, in some cases we observed a dou-
ble-frequency signal, as in [3]. This signal is associated
with the periodic heat release in the gap between the
electrodes: the heat release does not depend on the
polarity of the electrodes and, therefore, varies with
time at a double frequency. Indirect evidence of the
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thermal nature of the double-frequency signal is the
fact that this signal was only observed within a time
after the beginning of the oscillator operation, because,
in the course of its operation, the electrodes become
oxidized and the heat release in the metal–electrolyte
boundary layer increases.

2

1 2 3 4 5 6
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6
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10
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18.4 kHz

11.5 kHz

Fig. 2. Dependence of the hydrophone signal amplitude on
the amplitude of the electrode current.
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CHRONICLE

       
In Memory of Yuriœ Mikhaœlovich Sukharevskiœ
(September 8, 1906–September 17, 2004)
On September 17, 2004, one of the prominent
acousticians of Russia, Professor Yuriœ Mikhaœlovich
Sukharevskiœ—the founder of the Russian school of
hydroacoustics, a doctor of engineering, a laureate of
the USSR State Award, and a person of manifold
gifts—passed away at the age of 98.

In 1925–1930, Sukharevskiœ was a student of the
Faculty of Electrical Engineering of the Moscow Power
Engineering Institute. There, he simultaneously spe-
cialized in electrical engineering, local power stations,
factory electrical instruments, electrical machine build-
ing, and safety means for high-voltage power lines. In
total, during the years of his studies at the institute, he
passed 115 examinations in different branches of engi-
neering. Sukharevskiœ carried out his first research
project as a student, and his first scientific publication
appeared in 1929.

In 1927–1931, Sukharevskiœ also studied at the
Piano Faculty of the Moscow Conservatory. After
1063-7710/05/5105- $26.00 ©0601
receiving his master’s degree in music, he continued his
education at the Conservatory as a postgraduate student
until 1935. In those years, Sukharevskiœ gave many
concerts with the symphony orchestras of the Moscow
Conservatory and Moscow Radio.

The aforementioned activities did not exhaust his
versatile talents. He was keen on sports, being a figure-
skater and a mountain-climber.

The variety of occupations and creative abilities
formed the life of young Sukharevskiœ—the future
prominent scientist.

After his graduation from the Moscow Power Engi-
neering Institute, within 1930 to 1938, Sukharevskiœ
worked at the Acoustical Laboratory of the Central
Research Institute of the People’s Commissariat of
Communication.

In late 1938, Sukharevskiœ was invited to work at the
Academy of Sciences of the USSR as a senior
researcher in the Group of Applied Physics at the Engi-
neering Science Division of the Academy of Sciences
of the USSR. Simultaneously, he worked as a scientist-
secretary of the Acoustical Commission of this division
(the chair of the commission was N.N. Andreev), which
was later transformed into the Scientific Council on
Acoustics of the Academy of Sciences of the USSR.

In the same period of time, Sukharevskiœ was a mem-
ber of the commission established by the Presidium of
the Academy of Sciences to supervise the acoustic
design of the large halls of the Palace of Soviets in Mos-
cow. The commission was headed by N.N. Andreev.

In 1939, Sukharevskiœ became a senior researcher at
the Acoustical Laboratory of the Lebedev Physical
Institute of the Academy of Sciences of the USSR. In
the same year, he received his candidate degree, and, in
1940, at the age of 33, he became a doctor of engineer-
ing.

From the beginning of the German invasion of the
USSR in World War II until the end of the war,
Sukharevskiœ, together with his colleagues, worked on
military problems.

In 1945, Sukharevskiœ became the head of the Sector
of Hydroacoustics of the Acoustical Laboratory of the
Lebedev Physical Institute and also the head of the
Sukhumi Marine Research Expedition, which ran until
1954. At the same time, he was involved in the prob-
lems of construction and equipment of the future
marine research station.
 2005 Pleiades Publishing, Inc.
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Supervising research in underwater acoustics, he
recruited young scientists for this field: he visited uni-
versities and institutes of Moscow and other cities, gave
lectures on his own studies, and invited graduate and
postgraduate students to work at his Hydroacoustic
Research Sector in Moscow and at the permanent
Sukhumi Expedition. Within a short period of time,
Sukharevskiœ formed two teams of young researchers—
his future students and colleagues.

In 1954, after the Acoustical Laboratory of the Leb-
edev Physical Institute was transformed into the Acous-
tics Institute of the Academy of Sciences of the USSR
and the Sukhumi Expedition was transformed into the
Sukhumi Marine Research Station, Sukharevskiœ
became the head of a laboratory and then the head of a
department of the Acoustics Institute and, simulta-
neously, the head of the Sukhumi Marine Research Sta-
tion.

In 1959–1960, Sukharevskiœ supervised the work of
the joint Soviet–China expedition on hydroacoustics
that was organized by the Academy of Sciences of the
USSR and the Academy of Sciences of the People’s
Republic of China.

In 1961–1966, Sukharevskiœ was a Deputy Director
of the Acoustics Institute and, simultaneously,
remained the head of the Hydroacoustics Department.

In 1970, Sukharevskiœ received the title of Professor.
In his final years, he was a principal researcher of the
Acoustics Institute, an active member of the Scientific
Council of the Institute, and the chairman of the regular
seminar on hydroacoustics. He continued his active
work in research and published a number of papers
devoted to the generalization of his previous studies
and to the development of certain new lines of research
in hydroacoustics.

At the age of 90, Sukharevskiœ earned the Prize for
the Best Publication in Academic Editions.

In 2004, approaching the age of 98, Sukharevskiœ
wrote three articles for the book devoted to the
50th anniversary of the Acoustics Institute. He also pre-
pared a brief paper outlining the main contents of his
future monograph that should be entitled Several New
Aspects of the Sonar Problem. However, he had not
enough time to realize this project.

Sukharevskiœ left a rich scientific heritage. He is the
author of 165 scientific works, including three mono-
graphs.

He was not only a prominent scientist but also a tal-
ented teacher of young scientists. The scientific school
formed by Sukharevskiœ is well known as a school of
excellent specialists in hydroacoustics. Sukharevskiœ
educated 11 doctors of science and 26 candidates of sci-
ence. His former students have become full and corre-
sponding members of the Academy of Sciences, hon-
ored scientists and engineers, and honored inventors.
The name of the prominent practical scientist
Sukharevskiœ is respected among broad circles of civil
and military specialists in hydroacoustics.

For his services to the country, Sukharevskiœ was
awarded two Orders of the Red Banner of Labor, an
Order of the October Revolution, a Badge of Honor, a
Valiant Labor during the Patriotic War Medal, and other
medals; he also received the title of the Laureate of the
USSR State Award. In the last years of his life,
Sukharevskiœ received a special grant from the Presi-
dent of the Russian Federation as “a Prominent Scien-
tist of Russia.”

THE MAIN RESULTS OF SUKHAREVSKIŒ’S 
SCIENTIFIC AND ENGINEERING ACTIVITIES

In 1930–1942, Sukharevskiœ carried out research
and design in electroacoustics, acoustic metrology, and
architectural acoustics.

He developed metrological test benches for the cal-
ibration and testing of electroacoustic transducers—
transmitters and receivers of sound—under the condi-
tions of an acoustic chamber and under field conditions.

He designed Russia’s first test bench for the absolute
calibration of loudspeakers and microphones and for
measuring their frequency characteristics and nonlinear
distortions. This test bench was used for testing the
quality of the electroacoustic equipment produced by
the enterprises of the People’s Commissariat of Com-
munication and by local industry.

Sukharevskiœ developed the theory of insonification
of large halls and open spaces with the use of electroa-
coustic horn systems.

He planned and realized Russia’s first outdoor
acoustic test site (near Balashikha, Moscow region) for
full-scale measurements of the characteristics of pow-
erful sound sources, including horn loudspeakers for
outdoor broadcasting.

On the basis of the results obtained from studying
the directional characteristics of acoustic horns at the
test site, Sukharevskiœ proposed and designed a funda-
mentally new high-quality horn loudspeaker with a uni-
form response and directional characteristic in a broad
frequency band.

He studied electroacoustic horn systems for insoni-
fying large halls and outdoor spaces. He developed a
method for calculating the parameters of these systems.

He performed theoretical and experimental studies
of the acoustic feedback that restricted the possibilities
of sound amplification in both indoor and outdoor
sound amplifying systems.

He developed and substantiated Russia’s first sys-
tem of distributed loudspeakers for insonifying large
open spaces, which simulated the effect of boominess
of a large hall without echo interference (reverbera-
tion). Such a system was installed under his supervision
at the All-Union Agricultural Exhibition in Moscow.
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
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Sukharevskiœ designed and organized the manufac-
ture of Russia’s first low-frequency directional loud-
speaker with a very large horn. To test the characteris-
tics of the new powerful loudspeaker, he organized an
expedition to the region of Mount Elbrus. The loud-
speaker and a microphone (with the transmission of the
received signal through radio) were positioned on the
two ridges of Elbrus (3000–3500 m in height) separated
by a deep valley. There, Sukharevskiœ studied the sound
propagation range without the acoustic effect of the
earth’s surface; he also studied the fluctuations of the
signal in amplitude and phase due to the inhomogeneity
and dynamics of the medium.

Sukharevskiœ put forward the original idea of
installing a set of loudspeakers on the giant airplane
Maksim Gor’kiœ for insonifying large areas with intel-
ligible speech.

He carried out research in architectural acoustics
and electroacoustics in application to broadcasting. He
performed full-scale measurements of the acoustical
characteristics of broadcasting studios and the charac-
teristics of microphones. He implemented his original
idea of controlling the directivity of vector micro-
phones used in broadcasting.

In application to the problems of architectural
acoustics, he developed a new impulse method for an
objective evaluation of the acoustics of concert halls
and large auditoriums by the criterion of the nonstation-
ary “process of sound formation” instead of the previ-
ously known reverberation time criterion. The impulse
method of excitation with an analysis of a recording of
the sound formation process allows the determination
of the instant of the first reflection arrivals and the spa-
tial identification of these reflections. A similar method
was mastered by architectural acousticians in the
United States 10 years later.

Sukharevskiœ used the aforementioned method to
reveal the acoustic defects of the Tchaikovsky Concert
Hall, which was newly built at that time. As a result, the
acoustic drawbacks of this hall were explained from the
scientific point of view. The discussion of the defects
along with the possible measures for their improvement
was planned for July of 1941, but the outbreak of World
War II on the territory of the USSR prevented the ful-
fillment of these peaceful plans.

Sukharevskiœ began working on military problems
together with other scientists. He worked at the
improvement of sound-detecting horns used in anti-air-
craft artillery. The first full-scale experimental studies
of the characteristics of these horns were performed
near Moscow, 15 km away from the front. It was found
that the main disadvantage of sound-detecting horns is
their high sensitivity to wind noise, which considerably
reduces the detection range. To suppress wind noise,
Sukharevskiœ developed a wind-protecting screen in the
form of a multilayer fairing made of a thin metal net,
which protected the horn throat. Full-scale tests of
sound-detecting horns with wind protection showed a
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005
considerable increase in the detection range. The
improved sound-detecting horns were accepted for use
in air defense in 1942, and the commander of the air-
defense forces officially expressed his gratitude to
Sukharevskiœ.

From 1943 to 2004, Sukharevskiœ mainly worked in
underwater acoustics.

In 1943–1944, he organized and carried out the first
hydroacoustic expedition on the vessels belonging to
the Pacific part of the navy. He studied the characteris-
tics of hydroacoustic armaments used by Russian and
foreign naval vessels, as well as the acoustic character-
istics of the armed vessels and underwater targets. He
carried out comprehensive studies of the conditions of
sound propagation in the ocean and reverberation as the
main interference arising in underwater detection and
ranging.

Sukharevskiœ used the results of the Pacific expedi-
tion to develop proposals concerning the improvement
of sonar and recommendations for their optimum appli-
cation in different tactical situations and under varying
acoustical conditions of the ocean. For his contribution
to the defense potential of the USSR, Sukharevskiœ was
awarded an Order of the Red Banner of Labor in 1945.

Based on the results of the Pacific expedition,
Sukharevskiœ justified the necessity of establishing a
permanent experimental hydroacoustic base and put
forward the relevant proposals. The latter were sup-
ported by Director of the Lebedev Physical Institute,
President of the Academy of Sciences of the USSR
S.I. Vavilov, and their implementation began in 1945.

Sukharevskiœ supervised the construction, the equip-
ment, and the formation of the research group of the
Sukhumi Marine Research Station, which was later
transformed into the Sukhumi Branch of the Acoustics
Institute. The Sukhumi Marine Research Station cre-
ated by Sukharevskiœ was the most-advanced stationary
hydroacoustic base of the USSR at that time.

Sukharevskiœ formed and educated teams of special-
ists in underwater acoustics, who first worked at his
research sector of the Lebedev Physical Institute and,
then, at the laboratory and the department of the Acous-
tics Institute.

Sukharevskiœ supervised experimental studies of
fundamental importance in physical and applied under-
water acoustics at the Sukhumi Marine Research Sta-
tion and the Sukhumi Branch. One of the results of
these studies was the discovery of the secondary zones
of acoustic illumination and focusing of sound.

He supervised the hydroacoustic research groups
working at the Acoustics Institute and other related
organizations involved in comprehensive experimental
studies that were carried out during oceanic expeditions
on research vessels, submarines, and naval vessels,
including field tests of newly designed hydroacoustic
armaments.
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Sukharevskiœ supervised the studies of noise radia-
tion and reflectivity of submarines and the development
of acoustic protection means for them.

He carried out basic and applied research and super-
vised the development of a series of noise-suppressing,
antisonar, and vibration-damping coatings, which were
put into mass production and used in the construction
of Russian submarines.

He developed a statistical approach and criteria for
evaluating the probability of acoustic security of sub-
marines under a variety of conditions of motion, which
allowed a submarine to maintain security at a given
level.

He developed the principles of the frequency opti-
mization of sonars with allowance for the whole set of
spectral characteristics of sounding signals and noise,
the parameters of the acoustic waveguide, and the
methods of data processing.

He developed a method of using the coefficients of
variation or decrease in the detection range of a fre-
quency-optimized sonar under the variation of its own
parameters or the acoustic characteristics of the targets
and the waveguide.

He proposed a statistical approach to the main crite-
rion of the quality of hydroacoustic systems, namely,
their detection range, by introducing the probable
detection range of a sonar under the set of physical oce-
anic conditions as a statistical quantity with a given
integral probability.

On the basis of the results of comprehensive studies
and with the use of the effect of far zones of acoustic
illumination and focusing of sound, he developed the
foundations for designing a new generation of ship-
borne hydroacoustic armaments.
Sukharevskiœ made a radically new proposal con-
cerning the development of hydroacoustic systems for
nuclear-powered submarines with a detection range an
order of magnitude greater than that existing at the time
and calculated the parameters of such systems.

He supervised the design of the first long-range
hydroacoustic system, which was accepted for use by
the navy. This work was honored by a USSR State
Award.

Sukharevskiœ developed a scientific basis for the
design of the future, more advanced ship-borne hydroa-
coustic armaments.

He initiated and supervised the development of
three generations of sonar systems for nuclear-powered
submarines. These systems were approved by the Navy,
put to mass production, and installed on submarines of
six different types.

Sukharevskiœ never restricted the scope of his inter-
ests to professional occupation. He gave concerts as a
pianist with the Symphony Orchestra of the House of
Scientists of the Russian Academy of Sciences. His
repertoire included more than 15 concerts for piano and
orchestra by Beethoven, Liszt, Tchaikovsky, Rachma-
ninov, and Gershwin. He gave us the pleasure of listen-
ing to his musical performances at parties held at the
Acoustics Institute and during the expeditions.

The memory of Yuriœ Mikhaœlovich Sukharevskiœ
will forever remain in the hearts of his friends and col-
leagues.

V.I. Mazepov,
a former student

and a comrade of Sukharevskiœ

Translated by E. Golyamina
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Information on the Activities of the St. Petersburg Seminar
on Computational and Theoretical Acoustics

of the Scientific Council on Acoustics
of the Russian Academy of Sciences in 2004
In 2004, the St. Petersburg Seminar on Computa-
tional and Theoretical Acoustics proceeded with its reg-
ular activities. As usual, the seminar consisted of a
series of spring sessions (March to May) and a series of
autumn sessions (October to December). In total, six-
teen sessions were held. The scope of the seminar can
be divided into three main topics: wave processes in an
acoustic (i.e., nonresistant to shear) medium, wave pro-
cesses in a solid elastic medium, and wave processes in
thin-walled structures (isolated or placed in an external
acoustic medium).

The first topic was represented by the papers by
D.P. Kouzov, S.V. Bobyshev, and S.G. Kadyrov.

Kouzov introduced refined acoustic equations that
take into account the presence of the gravitational field.
This approach, in particular, allows one to consider
sound waves in a medium and gravity waves on a liquid
surface from a single point of view.

Bobyshev analyzed the formation of a steady-state
self-oscillation mode due to the interaction of a jet issu-
ing from a Laval nozzle with resonators of cylindrical
and conical shapes.

Kadyrov studied the diffraction field caused by the
incidence of a discontinuous nonstationary wave on a
rigid convex body. Using boundary integral equations,
he derived both “early” and “late” asymptotics.

The second topic was represented by the papers by
P.V. Tkachev, A.P. Kiselev, A.V. Osetrov, A.M. Lin’kov,
A.V. Teplyakova, and R.G. L’vov.

The purpose of the study carried out by Tkachev
was to estimate the effect of the microstructure of a
material on the wave processes that occur in it. The
study was based on the microstructure equations of a
medium modeled by a set of pairwise interacting con-
centrated elements that formed an infinite perfect crys-
tal lattice. Tkachev derived the dispersion relations for
a plane uniform deformation of the lattice and deter-
mined the stability conditions for its deformed state.

In the paper coauthored by E. Becache and A.P. Kise-
lev, the field of a planar source of elastic waves was
considered and the asymptotic and numerical method
of its determination were compared.
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Kiselev together with G. Huet and M. Deschamps
investigated the forms of the transverse component of a
nonstationary P-wave field.

Osetrov proposed an analytical method for the
determination of the surface waves propagating along a
randomly rough boundary. The medium was assumed
to be piezoelectric and belonging to an arbitrary sym-
metry class. The roughness was described by a correla-
tion function. The boundary conditions at the rough
surface of the medium were formulated using the Ray-
leigh hypothesis.

Lin’kov discussed a new effect: amplification of
waves at a softening surface between elastic media. He
considered the connection with the problem of rock
bursts in deep mines. He also proposed an interpreta-
tion of the seismic data recorded along the fault pro-
duced by the earthquake in Taiwan in 1999.

The papers presented by Teplyakova and L’vov were
concerned with the development of the theory of non-
destructive testing methods. Teplyakova studied the
field scattered by rigid cylindrical inclusions of infinite
length with a disruption of the adhesion bond on part of
the surface. The disruption of adhesion was quantita-
tively characterized by introducing the moduli of the
contact stiffness responsible for the transfer of elastic
displacements in the directions normal and tangential
to the boundary. L’vov considered a scatterer in the
form of a sphere that contained a nonconcentric empty
sphere inside it. The purpose of the studies was to deter-
mine the scattering coefficients.

The papers concerned with the third topic were
presented by I.P. Babaœlov, G.V. Filippenko, and
I.V. Andronov.

Babaœlov considered the oscillations of an elastic
spherical segment rigidly fixed along its contour. The
initial equations were the Goldenveiser equations for a
spherical shell. The eigenfrequencies were calculated.

Filippenko, on the basis of an exact analytical solu-
tion, calculated the eigenfrequencies of a plate partially
submerged in a water basin. The water basin was
assumed to have a finite depth and an infinite length (an
acoustic waveguide), and the plate was assumed to be
 2005 Pleiades Publishing, Inc.
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rigidly fixed to the bottom. The upper edge of the plate
was assumed to be free.

The papers presented by Andronov were concerned
with generalized point models in boundary-contact
problems of acoustics. He described the theoretical
foundations of the proposed approach (the theory of
zero-radius potentials) and two its applications for cal-
culating the wave field in a liquid covered with a plate:
the diffraction of an acoustic wave by a crack of a finite
width and by a prominent stiffening rib. The dimen-
sions of the obstacles (the crack width and the height of
the rib) were assumed to be small compared to the
wavelength. The advantage of the proposed approach is
that, after the necessary characteristics of the field are
determined for a single obstacle, the diffraction field of
a finite number of such obstacles can be calculated by
solving a system of linear algebraic equations.
The sessions of the seminar are held in the assembly
hall of the Institute for Problems of Mechanical Engineer-
ing, Russian Academy of Sciences (Vasil’evskiœ Ostrov,
Bol’shoœ pr. 61, St. Petersburg), Tuesdays at 18:30.

More detailed authors’ abstracts of papers and other
information on the seminar can be obtained on the web
site:

http:/mph.phys.spb.ru/~george/seminar.html
Applications for papers can be forwarded by e-mail:
kouzov@alfa.ipme.ru or george@GF4663.spb.edu
and also by phone to the seminar head D.P. Kouzov

(812)312-3530 or the seminar secretary G.V. Filip-
penko (812)143-2323.

D.P. Kouzov

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 51      No. 5      2005



  

Acoustical Physics, Vol. 51, No. 5, 2005, p. 607. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 5, 2005, p. 704.
Original Russian Text Copyright © 2005 by Myshinski

 

œ

 

.

         

INFORMATION

 

Scientific–Engineering Conference
“Ship Acoustics—2005”
The scientific–engineering conference “Ship
Acoustics 2005” was held April 12–14, 2005, in
St. Petersburg. The conference was organized by the
Krylov Central Research Institute, the East-European
Acoustical Association, and the Council on Acoustics
of the Russian Academy of Sciences.

The participants of the conference included scien-
tists from St. Petersburg and Moscow, specifically,
from the Krylov Central Research Institute, Institute of
Mechanical Engineering of the Russian Academy of
Sciences, Research Institute of Physicotechnical and
Radio Engineering Measurements, Aurora Central
Research Institute, Central Research Institute of Ship-
building Technology, and Central Research Institute of
Military Shipbuilding, as well as representatives from
different design offices.

In total, 42 papers were presented at the conference.
Some of them caused much discussion, for example,
the problem of self-testing for the external acoustic
parameters of a vessel. Fundamentally different solu-
tions to this problem were proposed by A.K. Novikov
and V.I. Popkov. The way of using on board measuring
means, the choice of the number and positions of the
test points, the algorithms of data processing, and the
calculated control parameter—all of these aspects of
the problem were considered by the two authors and
new original solutions were proposed, which, however,
were criticized by the opponents because of the diffi-
culties in their realization. Nevertheless, the possibility
of developing an on board self-testing system is beyond
question, and the need for an experimental study of the
basic solutions with the use of models and actual ves-
sels is evident. Many papers were concerned with the
problem of reliability of underwater noise level mea-
surements in the course of the motion of an object. This
problem was discussed by Yu.F. Shlemov, V.A. Kal’yu,
and V.Yu. Garin from the Krylov Central Research
Institute and by O.A. Shiryak, A.F. Kurchanov, and
V.B. Bychkov from the Research Institute of Physicote-
chnical and Radio Engineering Measurements.

Some of the noise control problems encountered in
certifying a frigate built for export were considered by
M.Ya. Moshchuk and N.V. Vasil’ev. Nontypical noise
1063-7710/05/5105- $26.00 ©0607
sources, such as a defect supporting bearing of the shaft
line or a cavitation flow around the stock of the ship sta-
bilizer, made it impossible to reach the specified ship
noise levels, which required special investigation to
elaborate appropriate engineering solutions.

The paper presented by Yu.I. Bobrovnitskiœ (Insti-
tute of Mechanical Engineering, Russian Academy of
Sciences) attracted considerable interest. It was entitled
“How to Make a Body Transparent to Sound.” The
problem of developing an active system for reducing
the radiation and scattering of sound by an underwater
object had been considered years ago (G.D. Malyuzhi-
nets), but a technical implementation of such a system
had been impossible until this day. The new approach
proposed by Bobrovnitskiœ was approved by the audi-
ence as being much more realizable from the technical
point of view but still calling for experimental verifica-
tion.

The calculation of oscillations and radiation and
scattering of sound by elastic bodies was the subject of
papers presented by M.Ya. Pekel’nyi, T.M. Tomilina,
I.V. Grushetskii, and A.V. Smol’nikov. A number of
papers were concerned with the development of acous-
tic protection means for ships. The papers by
Yu.N. Popov, N.V. Volkova, V.I. Kuz’menko, Yu.I. Kot-
sarev, and V.S. Konevalov reported on the results of
recent studies aimed at increasing the efficiency of
hydroacoustic and vibration-absorbing coatings and at
the design of new types of composite vibration dampers.

In the course of discussions, the participants of the
conference gave some interesting comments and put
forward some new ideas concerning the topical prob-
lems of measuring and reducing noise produced by dif-
ferent ships and vessels.

The participants of the conference estimated the lat-
ter as quite successful. The next conference, “Ship
Acoustics 2007,” is planned for April of 2007.

É.L. Myshinskiœ

Translated by E. Golyamina
 2005 Pleiades Publishing, Inc.
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