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Abstract—The creation of quiet zonesin a diffuse sound field due to a multipole spherical primary source by
means of aradially vibrating surface set in the side of arigid sphere (secondary source) is investigated in this
article. The formulation utilizes the appropriate wave field expansions al ong with the transl ational addition the-
orems for spherical wave functions to develop a closed-form solution in the form of an infinite series. The
numerical resultsreveal that using abaffled spherical piston model asasecondary sourceinstead of amonopole
control source will obviously improve the sound minimization efficiency of such noise-control systemsin all
cases, especially for adipolar primary source. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Active noise control (ANC) of a spherical source
using a secondary control source to cancel the pressure
at a particular location or to reduce the output acoustic
power is an old concept [1-10]. Local active cancella
tion of acoustic pressure using a closed control source
was originally studied by Olson and May [1]. Fedoryuk
[2] considered the problem of active sound suppression
by means of continuous arrays of monopoles. In this
research, two receiving and two radiating surfacesfilled
continuously with point monopole receivers and radia-
tors are assumed to simulate a sound-control system.
Later, active suppression of sound fields by the method
of spatial harmonics was examined by Mazanikov et al.
[3]. Inthis problem, monopol e sources and sensors dis-
tributed on the surface of a concentric sphere were
brought into play to show an ANC system. In the same
way, Nelson et al. [4, 5] studied the minimum power
output of a pair of free-field monopole sources. It has
been demonstrated that, for the numbers and arrange-
ments of the secondary sources considered, significant
reductionsin power output may only be achieved if, in
general, secondary sources are placed within adistance
of half of the wavelength of the primary source. Later,
Joseph et al. [6] investigated the near-field zone of quiet
created when the total pressure is driven to zero at a
field point on the axis of aflat piston source. By assum-
ing a uniform pure tone sound field and a feedforward
control arrangement, they found that the near-field
characteristics of the secondary source are very impor-
tant in determining the resulting on-axis pressure distri-
bution. David and Elliott [7] performed a computer
simulation to estimate both the on-axis and off-axis
extent of the near-field zone of quiet created by alocal
active control system in which the secondary sourceis

1 The text was submitted by the author in English.

modeled as a flat piston in an infinite baffle. 1t was
shown that the zone of quiet becomes larger asthe con-
trol microphoneis moved further away from the control
source, until, for large separations, the 10-dB zone of
quiet, defined as the spatial zone in which the sound
pressure level of the controlled acoustic field is at least
10 dB below that of the primary field, approaches the
limiting case of a sphere with a diameter that is one-
tenth of awavelength, as predicted by Elliott et al. [8].
Active cancellation of pressure and the pressure gradi-
ent in a pure diffuse sound field with a remote control
sourceisstudied by Elliott and Garcia-Bonito [9]. Ana-
Iytical expressions for the extension of the zones of
guiet generated when the cancellation point is closed or
on the surface of the rigid sphere, a wall, a two-wall
edge, and acorner have been reported by Garcia-Bonito
etal.[10]. Inamorerelated work, Boltonet al. [11] dis-
cussed global free-field cancellation in the region exte-
rior to amonopol e primary source by the use of asingle
multipol e secondary source. It was found that improved
attenuation could be achieved by choosing the second-
ary multipole-component source strength to minimize
the total sound power radiated by the combination of
the primary and secondary sources rather than by using
adirect multipole expansion of the primary sound field.
Also, it was shown that it is more efficient in some
instances to use a single multipole rather than an array
of monopolesfor global cancellation. Martin and Roure
[12] used a spherical harmonic expansion to simulate a
primary sound field, and it was shown that, by using
such an expansion, amethod can be devel oped for opti-
mi zing the transducer locationsfor the case of free-field
radiation of a period genera (multipole) primary
source. Soon after, active noise cancellation of adipolar
source using the previous method was studied and
checked experimentally [13]. In a similar problem, an
active spherical volume was used to absorb the energy
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Receiver ated waves. The unknown coefficients are determined
Primary  AX1 incorporating the appropriate translational addition the-
source orem and imposing the proper boundary conditions at

Fig. 1. lllustration of the geometrical configuration of the
problem.

of anincident wave [14], and it was shown that using a
spherical active absorber instead of a similar passive
model would improve the efficiency of the control sys-
tem.

On the other hand, acoustic radiation of pistons
placed on baffles has been extensively considered in the
literature for various piston and baffle geometries (i.e.,
planes, spheres, cylinders, and spheroids [15-21]). The
self-radiation impedance for the classic problem of a
radially (axialy) vibrating piston set in arigid sphereis
presented in [15]. The mutual acoustic impedance of
pistons on a sphere and a cylinder are analyzed in [16]
and [17], respectively. Likewise, the acoustic radiation
impedance of curved vibrating caps and rings located
on the hard baffles of an oblate spheroidal obstacle is
formulated in [18]. The self- and mutua radiation
impedances for rectangular piston sources vibrating on
a rigid prolate spheroidal baffle were investigated in
[19]. More recently, Hashemingjad and Azarpeyvand
examined acoustic radiation from a pulsating spherical
cap set on a spherical baffle near a hard/soft flat surface
[20]. Sound radiation from a liquid-filled underwater
spherical acoustic lens with an internal eccentric baf-
fled spherical piston isalso studied by the same authors
[21].

Taking into consideration the fact that the attenua-
tion of sound in an active noise-control system is not
only highly dependent on the secondary source number
and location but also on its type [22], the principal
objective of the present work is to study active noise
cancellation of a finite general primary disquieting
source by using a single partially vibrating control
source. Thus, the present work isintended to extend the
previous research carried out in [4, 5]. It is worth men-
tioning herethat, in the low-frequency range, each mul-
tipole can be represented by a set of point sources, and
vice versa (see Figs. 1 and 2 in [12]). The organization
of the work is described next. Following the Introduc-
tion, the second section presents a general solution of
the wave equation in terms of scalar generating func-
tions. The solution to the boundary-value problem is
obtained in terms of spherical Bessel and Hankel func-
tions with unknown (modal) coefficients for the radi-

the surfaces. For the given properties of the problem,
namely, the primary source type (i.e.,, monopole,
dipole, and general case), the excitation frequency, and
the separation distance, the resultant set of coupled lin-
ear algebraic equations is solved numerically. Subse-
quently, the appropriate secondary-source velocity
components (strength and phase) are found to diminish
the sound pressure at a particular point. Later, impor-
tant acoustic-field quantities such as sound attenuation
and acoustic pressure levels after sound reduction are
evaluated and discussed in Section 3.

2. THEORETICAL DEVELOPMENT

The problem can be analyzed by means of the stan-
dard methods of theoretical acoustics. The fluid is
assumed to be inviscid and ideally compressible; it is
assumed that it cannot support shear stresses, making
the state of stressin thefluid purely hydrostatic. In view
of thefact that the spherical cap is supposed to undergo
time-harmonic surface pulsations, the field equations
may conveniently be expressed in terms of a scalar
velocity potential as [23]

=@, p=-iwpd, O°d+Kd =0, (1)

where w = 211 is the angular frequency of the harmonic
fluctuations (rad/s) with frequency f, k is the wavenum-
ber, k = w/c = 217A, A isthe wavelength, p is the ambi-
ent fluid density, c isthe ideal speed of sound, u isthe
fluid particle velocity vector, p is the acoustic pressure
in the inviscid fluid, and where we have assumed har-
monic time variations throughout, with the e*“* depen-
dence suppressed for simplicity.

Undoubtedly, the sound field radiated by a source
may often be appreciably affected by a neighboring
surface. In fact, the presence of aradiating and reflect-
ing surface (i.e., afinite control source) near a primary
source can affect not only the directional properties of
the source but also thetotal radiated sound power by the
first source [24, 25]. Consider a spherical piston set on
a rigid spherical baffle positioned at a finite distance
from aprimary multipole source (Fig. 1). Itisclear that
the proximity of the second vibrating obstacle makes
the problem more difficult to solve. The problem geom-
etry isdepicted in Fig. 1. The centers of the two spheres
are separated by a distance D, and the cap angle of the
secondary sourceis@,. Theorigins O, and O, of thetwo
spherical coordinate systems(r,, 8,,3,) and (r,, 6,, 9,)
coincide with the centers of the primary and secondary
sources, respectively. The direct distance between the
center of the primary source and the receiver (field
point) isr,; the direct distance between the center of the
control source and the receiver (field point) isr,. The
dynamics of the present multiscattering problem may
be expressed in terms of two scalar potentials: one cor-
No. 6
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Fig. 2. Sound attenuation due to the presence of the secondary partially vibrating source versus velocity strength o and velocity

phase 3 (rad), f = 100 Hz, D = A\/4 = 86.55 cm.

responding to the waves disseminating from the disqui-
eting source, and the other relating to the waves from
the control source. Each of these waves can be repre-
sented in the form of an infinite (generalized Fourier)
series whose unknown modal coefficients are to be
determined by imposing the proper boundary condi-
tions. Accordingly, for axisymmetric motion in
bispherical coordinates, we set

®7(ry, 85, 0) = 5 aghy(kry)Pa(na),

" 6
®(rz 8, @) = Y bohy(kr)Py(n;),

n=0

whereh,( )=, ) +iy,( ) isaspherical Hankel func-
tion [26], nis the circumferential wave number, P.(1,)
isaLegendre function (n; = cos6,, i = 1, 2), and a,(w)
and b,(w) are unknown modal coefficients.

The general expressions for the normal surface
velacity of the primary multipole spherical radiatorsis
written as
No. 6
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vP(8,w) = 5 ViPPy(ny). 3)

n=0

Similarly, the piston set in the surface of the second-
ary rigid sphere pulsates in the region 1— 6, < 6, < Tt
with aprescribed complex velocity V. The velocity of
the piston can be expressed as a linear combination of
spherical modes in the form of an infinite series:

v (8, w) = S VOP,(n,)
nZO ’
(4)
0 0<6,<m- G

= Qs
v m—§<60,<m,

where V¥ (n=0, 1,2, ...) arethe complex modal coef-
ficients of surface velocity distributions. These coeffi-
cients can be readily determined after multiplying both
sidesof (4) by P,(n,),(m=0, 1, 2, ...), integrating over
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dn,, and applying the orthogonality property of the
Legendre functions:

Mo
S _ I\ 9
Ve = i+ 5V [ P(nz)dn, 5
-1

(S)_ n
L P, (o) = Poa(nol],

where the integrations are performed using the follow-
ing well-known relation [15]:
1

(2n+1)J’Pn(r])dr] = Pr_1(No) =Pn+1(No).  (6)

No

Many radiation and scattering problems involve
waves of one characteristic shape (coordinate system)
that are incident upon a boundary of some other shape
(coordinate system). Thus, it is difficult to satisfy the
boundary conditions on that surface. There exists, how-
ever, a class of mathematical relationships called wave
transformations that circumvent this difficulty in many
cases by alowing one to express the incident wave in
terms of wave functions for some other coordinate sys-
tem that is more appropriate for the boundary; i.e., they
simply permit the study of the fields scattered by vari-
ous bodies by referring them all to a common origin
([24, 25]). This transformation (shift of origin) of the
wave functions greatly simplifies the task of satisfying
the specified boundary conditions on the various sur-
faces. In particular, to satisfy orthogonality in the cur-
rent problem (Fig. 1), we heed to express the spherical
wave functions of the (r,, 6,) coordinate system in
terms of spherical wave functions of the (r,, 8,) coordi-
nate system and, vice versa, through application of the
classical form of the trandational addition theorem for
bispherical coordinates[27]:

h,(kr.)P,(cosB,)

O .

DZ an(krsh es|)jm(kr|)Pm(COSG|), I’I < rsI
_Lh=o (7
=0 N

0

DZ Rmn(krsli 63,)hm(kr|)Pm(c059,), r.I > rs.li

O,

wheres, | = 1,2 (s# 1), j,( ) is the spherical Bessel
function of order n [26], 8 is the angle between the
z axisand the OO, line(i.e., suchthat 8,, =0or 8,, =),
r, =r,, =D isthe center—center distance (Fig. 1), and

an(krsI- esl) = im—n(2m+ 1)

X Z icbgmho(krsl) PG(COSGS|),
g =m-n| (8)

Rmn(krsl’esl) = im—n

AZARPEYVAND

x Y i%(20+1)bg"jo(krg)Po(cosBy),

o=|m-n|

where b" = (nmO0|u0)?, in which the Clebsch-Gordan

coefficients are defined, with g = (1 + n + m)/2 and 2q
being even, as[26]

(=1)"" !

(nMOOIKO) = ra =Ry (g —m)! (a—p)

€))

((55 - 11))| (29-2n)!(29-2m)! (2q-2p)!,

and, when 2qis odd, (nm00|u0) = 0.

Incorporation of the above addition theorem in (2)
allows us to translate the wave components of the first
coordinate system in terms of spherical wave functions
of the second coordinate system and vice versa, i.e.,

®®(r,, 8,, w)

00

= z [ z anQumn(kD, 0)}jn(krz) Pa(N2),
m=0

n=0

(10)
®9(r,, 8,, )

00

= Z { z b Qumn(KD, n)}jn(krl) Pn(Nn).
m=0

n=0

The modal coefficients a,(w) and b, (w) must be
determined by imposing suitable boundary conditions.
The continuity of radial velocity components at the sur-
face of each sphere implies that

00 (r, 8, w7 _ e
al'l :|r1—a - Zvn Pn(nl)1
) " D
0P '(r,, 6,, W) _ ©)
arz :|r2—b - Zovn Pn(r]Z)f

where @'(r;, 6, w) = ®P(r;, 6, W) + DO(r;, B, W),
(i=1,2). Substitution of velocity potential expan-
sions (2), (5), and (10) into the above boundary condi-
tionsleadsto

—k[h;(ka)an +Jn(ka) 3 bn(60)Qun(KD, n)} = Vi,
n=0

2k(—1)"+1[jh(kb) z am(0)Qma(kD, 0)  (12)
n=0
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+h;(kb)bn} = [Pn_1(No) =P+ 1(No)] VE,

where the prime symbol indicates the derivative with
respect to the argument. Subsequently, the unknown
coefficients a,(w) and b,(w) may be readily computed
by solving the linear system of equations (12). Now,
from the second of (1), (2), and (10), the radiated acous-
tic pressure may be written as

613

P13, 05,0) = -iwp0y [anhn(ku) P,(c0s6,)
s (13)

* % brQun(kD, M) jn(kry)Pn(ny) |0
m=0 U

Asafina point, the acoustic sound attenuation (SA)
due to the presence of the partially vibrating canceller
can be obtained:

00 (oo} [ee] - D
gz anhn(krl) Pn(cosel) + z Z memn(kD1 T[)Jn(krl) Pn(nl)g
SA(w, V) = 10login=o T 0. (14)
] UJ
——h.(kr,)P,(cosO
E nzokh;](ka) n(Krq)P,(cosb,) E

3. NUMERICAL RESULTS AND DISCUSSIONS

In order to illustrate the nature and general perfor-
mance of the solution, anumber of particular numerical
examples are considered in this section. There are many
conditions under which the active control system works
effectively. In the present paper, among al of the fac-
tors, specia attention is given to the following subjects:
primary-source surface vibration type (i.e., monopole,
dipole, and general source), separation distance, and
effective vibrating area of the secondary source. Subse-
quently, aMATLAB program was constructed for treat-
ing the boundary conditions, to determine the unknown
modal coefficients, and to compute the sound attenua-
tion (SA) of the system as functions of V for various
cap angles (8, = 30°, 60°, and 180°) at two excitation
frequencies (f = 100, 250 Hz) when the primary source
may Vvibrate in the monopole (n = 0), dipole (n= 1), or
any of the higher multipole-like (n =1, 2, 3, 4, ...)
modes. It is noteworthy that the first two modes (i.e.,
the pulsating (n = 0) and the oscillating (n = 1) sources)
are of most practical interest, asthey are known to best
represent the “expander” and “shaker” type acoustic
transducers, respectively ([24], [25], and [28]). In order
to produce a monopole (dipole) primary source in the

computation process, it is sufficient to assume Vf)P) =1
(V") = 1); also, for amultipole primary source, i.e., a
general source, it should be assumed that V) = V{7 =

v = ... = 1. In this example, the ambient fluid is

assumed to be air at atmospheric pressure and room
temperature, and the primary (secondary) finite source
is presumed to be of dimension a = 10 cm (b = 5 cm).
The computations were performed on a Pentium 111
personal computer with atruncation constant of N = 20
to assure convergence in the high-frequency range, and

ACOUSTICAL PHYSICS Vol. 51

No. 6 2005

also in the case of close proximity of the secondary
source to the primary source.

Animportant question in the practical application of
anoise-control system is finding the necessary velocity
of the secondary source (the phase and strength) to
achieve maximum sound attenuation. In order to eluci-
date this point, Figs. 2-5 are displayed: they show the
effect of varying the secondary-source velocity charac-
teristics, namely, strength and phase, on the sound
attenuation of the sound-control system presented here.
It is assumed that the secondary control source is pul-
sating with a different amplitude and phase in compar-
ison with the primary source, in order to minimize the
sound pressure at a point within aregion downstream of
the secondary source (R = 70 cm, 6, = 0). Hence, the

secondary-source velocity can be written as V© =
aexp(if3), where

a = JOVO)P2+ IV, tanB = I(VO)O V),
(0=B<2m).

Figures 2 and 3 show the sound attenuation, SA(w, V1),
of the active noise-control system when the sources are
vibrating at a selected frequency of f = 100 Hz and
when the selected separation distances are D = A/4 =
86.55 cm and D = A = 346.20 cm, respectively [5].
A comparison of these figures leads to the following
remarks. Using a baffled piston source instead of a
wholly vibrating source (8, = 180°) asasound control-
ler will generally increase the efficiency of the control
system, particularly when the primary source vibrates
as adipolar or a generally vibrating source (multipole
source). Additionally, Fig. 2 shows that, for a dipolar
disturbing source when the control sourceis positioned
in close proximity to it (D = A/4), asecondary sourceis
needed to vibrate in antiphase (3 = 1) and with aweak
strength a = 0.769 in comparison with the primary
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Fig. 3. Sound attenuation due to the presence of the secondary partialy vibrating source versus velocity strength o and velocity

phase (3 (rad), f = 100 Hz, D = A = 346.20 cm.

source to gain maximum sound attenuation. Further-
more, achieving an acceptabl e attenuation level (SA =—
10 dB) for a monopole primary source by means of a
baffled piston (6, = 30° or 60°) located A\/4 away from
the primary source requires a more forceful secondary
source (0 =7.5), but the same required attenuation level
can be achieved with aweaker wholly vibrating source
(a = 1.8). To have an al-encompassing study, it is
required to scrutinize the shadow effect of the second-
ary source on the sound reduction at the selected point
(microphone point). The shadow effect of the second-
ary source can be seen fromthefigureswhena =0(i.e,,
a rigid sphere). The numerical results revea that the
presence of afinite secondary source does not have any
apparent effect on the sound attenuation of the system,
so the active noise-cancellation process is the most
important reason for sound attenuation. Moreover, the
figures show that, as the value of the cap angle is
increased, the adequate velocity strength of the second-
ary source is decreased but the velocity phase of the
canceller source remains unchanged; alternatively,

increasing the separation distance D will decrease the
required phase of the secondary source.

Figures 4 and 5 show the sound reduction in a con-
trol system when the separation distancesare D = A/4 =
34.62 cmand D = A = 138.48 cm respectively, and the
system is excited at a frequency of f = 250 Hz. A com-
parison of Figs. 4 and 5, in addition to the results noted
in the previous paragraph, leads to the following obser-
vations. Although using a secondary source with a
small cap (8, = 30°) when the dipole primary sourceis
located at distance D = A/4 = 34.62 cm away from the
control source leads to maximum sound attenuation
(SA = -15), the 6, = 60° case will attain the required
sound attenuation level of 10 dB with a lower velocity
strength (o = 2.56). Findly, the velocity power and
phase angle of the selected secondary source, 6, = 60°,
as seen from Figs. 2-5, are summarized in the table.

In Figs. 6 and 7, we show the acoustic field com-
puted all around the primary source (360° azimuthal
angle), 10log[|p(6,, w)|] , versus the angular parame-
ter 6, for prescribed values of a, 3 from thetable. These
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Fig. 4. Sound attenuation due to the presence of the secondary partialy vibrating source versus velocity strength o and velocity

phase 3 (rad), f =250 Hz, D = A\/4 = 34.62 cm.

figures illustrate that, for a dipole and multipole pri-
mary source, using a baffled piston (8, = 60°) not only
decreases the sound pressure at 6, = 0° (the main objec-
tive of the previous sections) but also allows al-around
sound reduction to be achieved (i.e., thismeansthat, in
addition to minimization of pressure at a single point,
the total output energy from the system is decreased as
well). Also, the figures make clear that, although in all
of the cases noise cancellation at a particular point,
namely, (R=0.7m, 8, = 0°), isachieved with an accept-

able attenuation (10 dB), a single secondary source is
not ableto cancel the sound pressure of amonopole pri-
mary source all around it. These results demonstrate
that the acceptable zone of quiet, SA = -10 dB, for a
monopole primary source after the sound-cancellation
operationistheregion—8° < 0, <8°(—4.5°< 0, <£4.5°)
when f = 100 Hz (f = 250 Hz). The presented results are
comparable with those found in [29] using a wall of
secondary monopole sources. It is worth mentioning
here that the reason for the creation of this quiet region

Secondary-source velocity strength (o) and phase () required to minimize the sound pressureat R=0.7m, 6, =0

f=100Hz, D = \/4 f=100Hz,D=A f=250Hz, D =M\/4 f=250Hz,D=A
o B a a B a B
Monopole 7.9487 4.6721 3.0769 3.0610 10.000 4.3499 5.6410 2.8999
Dipole 0.7692 3.3833 0.2564 16111 2.5641 3.0610 1.2821 1.4500
Multipole 8.2051 45110 3.0769 2.8999 10.000 4.1888 5.8974 25777
ACOUSTICAL PHYSICS Vol.51 No.6 2005
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Fig. 5. Sound attenuation due to the presence of the secondary partialy vibrating source versus velocity strength o and velocity

phase 3 (rad), f =250 Hz, D = A = 138.48 cm.

is “active noise control,” not the shadow effect due to
the presence of the secondary finite source, but, on the
other hand, the presence of avibrating obstacle near a
primary source leads to an increase in the number of
lobes after the noise-cancellation process.

Finally, in order to check the overall validity of the
work, the code was used to compute the normalized
average radiation impedance load per unit area for the
case of two vibrating spherical surfaces. Thefluctuating
fluid pressure on the surface of a vibrating source con-
dtitutes its radiation loading. The normalized average
acoustic radiation impedance load per unit area on the
vibrating piston may be computed by making use of
Foldy’s definition of the radiated power ([15, 30])

1

Z = R=iX = —————
4rpe(V©b,)

—No

[ Pr2 = b @)(v9)" e,
]

where b, = bsin(8,/2) isthe effective piston radius (i.e.,
the radius of the sphere that has the same area as the
piston), pc is the characteristic impedance, the asterisk
indicates the complex conjugate, and R and X are the
average acoustic resistance and reactance, respectively.
Moreover, p(b, n,, w) is the acoustic pressure on the
surface of the secondary sphere, which can be readily
obtained by incorporating (2) and (10) in the second
equation of (1):

P(ro 0 W)], oy = =P (15 6, )], -,

= —ioopz W, (b, @)P,(n,),
n=0

where

Wi(b, @) = ja(ka) B an(w)Qma(kD, 0) + hy(ka)bs,
m=0
No. 6
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Fig. 6. Sound pressure levels versus the angular parameter 6,

for prescribed values of a, 3 from thetable, f = 100Hz, D =
N4 = 86.55 cm.

After incorporating these two equations in Foldy’s
definition and integrating over dn,, the modal acoustic
impedance can be found. Numerical verifications are
made by executing the general code for the case of a
spherical cap positioned very far (D = 200b) from the
primary sphere, and the corresponding radiation
impedance components precisely reduce to the curves
appearing in Fig. 20.4, page 308 in [15] (for brevity, the
corresponding validation plots are not included). Sub-
sequently, further verifications were made for the
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f=250HZ, r; =213.48 cm, D = 138.48 cm
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Fig. 7. Sound pressure levels versus the angular parameter 6,

for prescribed values of a, 3 from thetable, f = 250 Hz, D =
A =138.48 cm.

wholly vibrating cap (6, = 180°) positioned close to a
pulsating spherical source. Figure 8 shows that the
acoustic impedance components corresponding to the
wholly radially vibrating sphere (6, = 180°, V® = 1)
near amonopolesource(vgp) =1) agreevery well with
the results presented in Figs. 1 and 2 of Thompson's
work [25]. Note that each curveisnormalizedto its cor-

responding value when the source is in an unbounded
medium.
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Relative modal impedance
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Fig. 8. Moda impedance curves of a pair of pulsating
spheres in an infinite medium. Solid line: relative modal
resistance; dotted line: relative modal reactance.

4. CONCLUSIONS

Active noise control of agenerally vibrating spheri-
cal source with a single baffled piston was investigated
inthis paper. The presented results are the product of an
exact multiscattering treatment that involves utilization
of the translational addition theorem for spherical wave
functions. Examples are presented for aprimary source
acting in the low-frequency range, f = 100, 250 Hz. The
numerical results reveal that the shadow effect of the
secondary finite sourceisnegligiblein comparison with
the effect of the sound-cancellation mechanism. Fur-
thermore, using abaffled piston instead of awholly pul-
sating sphereincreases the efficiency of the control sys-
tem, especialy for a dipole or multipole unwanted
source, but the prescribed system is not acceptable for
amonopol e primary source and the system presented in
[4] (i.e., using amonopole control source) is more effi-
cient. The offered work is an idealized model for active
noise control of aspherical multipole source, which can
be of interest in noise-control engineering, room acous-
tics, and outdoor acoustics. The calculated results may
also possibly be used to validate those found by exper-
iment.
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Abstract—The hydroacoustic coordinate-measuring system of the NT-200 Baikal neutrino telescope is
described. It is a ranging long-base hydroacoustic system constantly operating in an automated or interactive
mode and capabl e of measuring the coordinates of the detecting modules of the NT-200 to within 20 cm. Special
attention is given to the justification of the estimate of the coordinate measurement errors. As an illustration,
some results of measuring the coordinates of the elements of the NT-200 and the hydrophysical characteristics
of lake Baikal are presented. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Theideaof devel oping large deep-water systemsfor
detecting elementary particles in natural water basins
was put forward by M.A. Markov 40 yearsago [1]. The
essence of theidea consistsin using an array of photo-
detectors deployed in a deep natural water basin to
detect the Cherenkov radiation of relativistic particles
moving in water, specifically, the particles produced by
the interaction of high-energy neutrinos with the
medium. Such systems were expected to allow the sci-
entists to solve a variety of problems of high-energy
neutrino astrophysics, high-energy physics, and ele-
mentary particle physics|[2].

The first deep-water neutrino detector was the NT-
200 Baika neutrino telescope, which was put into full

T Deceased.

operation in April 1998 [3]. Today, the ANTARES neu-
trino detector is at the stage of realization in the Tulon
bay [4] and two more deep-water neutrino detectors,
NEMO [5] and NESTOR [6], are under development in
the Mediterranean Sea. All of these systems are
intended for the detection of Cherenkov radiation of the
relativistic charged particles produced by the interac-
tion of neutrinos with the medium. Today, the possibil-
ity to study high-energy neutrinos by detecting the
acoustic signals from cascade showers [7] is at the ini-
tial stage of investigation.

In al the deep-water neutrino detector projects, the
detecting modul es are mounted on submerged buoy sta-
tions of different configurations with the distances
between them being much smaller than their lengths.
However, the buoy stations, whose lower ends are
anchored to the bottom, move in space under the effect

1063-7710/05/5106-0619$26.00 © 2005 Pleiades Publishing, Inc.
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1366 m

Fig. 1. The NT-200 deep-water Baikal neutrino telescope
system: (1) cable communication lines, (2) NT-200 neutrino
telescope, (3) hydrological string, (4) sedimentological
string, (5) master modules, (6) acoustic receivers, and
(7) acoustic beacons.

of currents, which occur in large natural water basins at
any depth. Therefore, two problems arise:

(i) the determination of the possible evolution of the
buoy stations forming the deep-water system of the
detector and the consideration of the probability of their
confusion due to the inhomogeneity of currents and the
differences in buoy-station configurations;

(ii) the determination of the actual spatial positions
of all detecting modules of the neutrino detector after
their placement and the realization of the long-term
monitoring of their coordinates to provide an adequate
reconstruction of the events.

The problem of determining the spatial position of
an object in the water medium is acommon problem of
practical oceanology. Asarule, it is solved using acous-
tic systems that determine the coordinates of objects
with respect to a certain number of reference points—
acoustic beacons[8, 9]. A specific feature of the case of
adeep-water neutrino telescope is the necessity to pro-
vide long-term permanent measurement of the coordi-
nates of many objects distributed over alarge water vol-
ume (about one cubic kilometer).

In this paper, we describe the hydroacoustic coordi-
nate-measuring system (HCMS) of the NT-200 neu-
trino telescope. This system is capable of permanent

AINUTDINOV et al.

operation in an automated or interactive mode; it has a
long base and allows one to measure the coordinates of
the detecting modules of the NT-200 with an accuracy
of 20 cm or better. We give specia attention to the eval-
uation of the coordinate measurement errors. We aso
present some results obtained by measuring the coordi-
nates of the modules of NT-200 and the results of mea-
suring the velocity of sound in the Baikal water.

Inthe HCM S of NT-200, acoustic signals propagate
over severa tens of trajectoriesin avolume onthe order
of one cubic kilometer, which makes it possible to use
this system for studying hydrophysical processes. In
particular, it is possible to monitor the variations of the
mean water temperature in different layers of the lake
over along period of time. Thisisan important alterna-
tive method for studying the variationsin the heat store
of the lake, the water-exchange processes, and other
phenomena characterized by different space and time
scales.

2. STRUCTURE OF THE HYDROACOUSTIC
COORDINATE-MEASURING SYSTEM OF NT-200

The general view of the NT-200 deep-water neu-
trino telescope and its HCMS is shown in Fig. 1. The
HCMS includes:

—ashore station consisting of acontrol computer, a
communication modem, and a power supply unit;

—a cable communication line about 7 kmin length;

—transceivers (master modules) and ultrasonic
receivers (acoustic receivers);

—self-contained transponders—bottom beacons.

2.1. Master Modules and Acoustic Receivers

Durable cylindrical casings of the master modules
and acoustic receivers are made of the AMG-6 alumi-
num alloy. Crates with electronics are fixed to the
upper covers of theinstruments. A cover hastwo holes
for the modular parts of pressure-seal connectors. One
of the connectorsis used for the power supply and for
communication with the shore station, and the other,
for the connection to the hydrophone. As electroa-
coustic transducers the HCMS uses hydrophones
made on the basis of piezoceramic spheres 50 mm in
diameter. Their maximum sensitivity at afrequency of
30 kHz is 250-300 pV/Pa.

The HCMS contains more than twenty acoustic
receivers and master modules placed on nine buoy sta-
tions, and all of them are connected in paralel to one
conductor of the KG7-70-90 geophysical cable, which
serves for the power supply and communication with
the shore station. To ensure the performance of the sys-
teminthe case of aleak or shortage in one of theinstru-
ments, each of the casings contains a sealed optronic
switch through which high voltage arrives at the power
supply unit. In the initial state, all switches are in the
open-circuit position. At the initiation of the system,
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according to the commands from the shore station, al
the optronic switches are sequentialy closed by indi-
vidual codes. If the current consumption in one of the
instruments exceeds the allowed limit, this instrument
is excluded from the configuration and is not turned on
a the next initiation. The electronics of an acoustic
receiver is assembled on the basis of low-consumption
components and includes a power-supply unit, which
transforms the input dc voltage of 300 V to low volt-
ages, and a receiving channel, which contains a selec-
tive amplifier, an envelope detector, a threshold device,
and a signal duration check circuit. A master module
additionally contains an ultrasonic signal generator.

The control over the measurement process and the
communication of the acoustic receivers and master
modules with the shore station occur through
K1821BM85-microprocessor-based controllers. The
latter provide for

—the execution of measurements according to a
preset program,

—the preliminary data processing and the compac-
tion of data,

—the data communication through the cable, and,
finaly,

—the data being saved in the internal solid memory.

2.2. Hydroacoustic Beacons

Six beacons of the HCM S are uniformly distributed
over acirclewith aradius of 600 m and with the center
at the point of the hydrological string location (Fig. 1).
This number of beacons makes it possible to enhance
the robustness of the system and to improve the mea-
surement accuracy, aswell asto obtain additional infor-
mation on the hydrophysical parameters of the water
medium. Figure 2 shows the general view of a short
buoy station with an acoustic beacon. On platform 7
made of pieces of rails welded together, a durable
sealed casing 6 with electronics and power cells and a
rigid arc with arod 5 are mounted. At the upper end of
therod, ahydrophone 4 isfixed in the middle of asafety
frame. The distance from the hydrophone to the bottom
is4 m (here, the fact that the lower layer of therailsis
immersed in bottom sedimentsistaken into account). A
kapron cord 3 with a length of 3040 m istied to the
rod. The cordisheld in the vertical position by abundle
of 20 aluminum floats 1. One meter away from the
floats, the so-called collar 2 is fixed, which serves for
lifting the beacon: in this case, the collar is hooked by
the crabs of a device [10] rotating in the course of its
motion in water because of asymmetry. The instants
when the beacon is hooked and when the bottom is
touched in the process of beacon placement are deter-
mined from the dynamometer readings. The weight of
the beacon in water is about 100 kg.

The electronics of abeacon consists of analog chan-
nels for reception and transmission, a decoder for
coded signals, and adevice analyzing the received code
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Fig. 2. Deep-water buoy station with an acoustic beacon:
(1) duminum floats, (2) collar, (3) kapron cord, (4) hydro-
phone, (5) rod, (6) casing, and (7) platform.

and generating the beacon response. The beacons are
powered by gavanic cells, whose service life is 2—
3years.

2.3. The Shore Sation

The shore station includes a computer, a communi-
cation modem providing the communication between
the shore computer and the underwater equipment of
the HCMS, and a high-voltage source. The output volt-
age of the power source is automatically controlled
with allowancefor the value of the consumption current
so that, independently of the voltage drop in the 7-km-
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long cable line, the input voltage of the underwater
instruments of the HCM S is 300 V.

The software makes it possible to measure the
coordinates of the buoy stationsin both automated and
hand-operated modes of the sequential beacon data
acquisition and data selection from certain master
modules and acoustic receivers or from their group.
The software supports the communication line proto-
col, remote program loading, and running the pro-
gram. It is possible to set the necessary gating times
for theinput receivers of instruments positioned at dif-
ferent sites and to change the thresholds of compara-
tors in the receiving channels of the master modules
and acoustic receivers.

2.4. The Coordinate Measurement Cycle
of the Neutrino Telescope

The coordinate measurement cycle is initiated by
the shore control computer, which sendsasync pulse (a
group start) via cable communication lines to the con-
trollers of all or selected groups of master modules and
acoustic receivers. The controllers of the instruments
execute the preset programs. One of the master mod-
ules sequentially transmits coded interrogation signals
to each of the beacons. The HCMS uses a time—pulse
coding of beacon interrogation at afrequency of 28 kHz.
All the necessary carrier frequencies and signal dura-
tions are obtained from asingle quartz oscillator, which
isincluded in the controller.

The beacon acquisition code contains a 2-ms-long
pulse, which is common to all beacons, and a three-
position code of the beacon number with a bit duration
of 1 ms. The interval between the wave trains is equal
to 2 ms. Thus, the length of the whole ultrasonic trans-
mission packet is 10 ms.

To save battery power, al the electronics of a bea-
con, except for the receiving amplifier, comparator, and
range meter, is usualy in “sleegp” mode. If atrain of
received signals arrives without discontinuities longer
than one period of the carrier frequency and with atrain
length exceeding 1.75 ms, the timer unit of the beacon
is turned on. Then, the beacon interrogation code fills
the sequential register of the comparison circuit, and, at
the coincidence of the proper code of the beacon with
the code arriving to the comparison circuit, the beacon
response signal isgenerated with aduration of 1 msand
acarrier frequency of 32768 Hz. The controllers of the
acoustic recelvers and master modules measure the
travel times of an ultrasonic signal from the instant of
interrogation to the instant of reception of the beacon
response signal. The counters of the master modul es fix
the time of sound propagation from the master module
to the beacon and back to the master module. The
acoustic receivers are able to measure the time of sound
propagation along the master modul e-beacon—acoustic
receiver path and also (by measuring the gating time,
see below) thetime of sound propagation from the mas-
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ter module to the acoustic receiver. To increase the
noise robustness, a discriminator is used to test the
duration of each packet of the pulse transmission. An
additional measure for increasing the noise robustness
isthe gating circuit, which opensthereceiving channels
in a master module and an acoustic receiver 20 ms
before the expected arrival time of the response pulse.

Thus, the following times of sound propagation can
be measured: T::(i), from the kth master module to the

ith beacon and back; T|j((i), aong the master module

(K)—beacon (i)—acoustic receiver (j) path; and T (0),
from the master module (k) to the acoustic receiver (j).

The distance from the point at which the hydro-
phone of the acoustic receiver(j) islocated to the hydro-
phone of the beacon(i), i.e., the slant range R;;, is calcu-
lated by the formula

R; = (th(i) —14(1)/2)C(2),

where C¥(2) =7/ o dz/C(2) isthe harmonic mean veloc-

ity of sound and C(2) is the velocity of sound at a
depth z.

The spatial position of the hydrophone of the acous-
tic receiver is determined as the point of intersection of
the spheres whose centers are at the points of the bea-
con locations and radii are equa to the dant ranges
from the beacons to the given hydrophone.

3. ERRORS IN MEASURING THE COORDINATES
OF THE DETECTING MODULES

The error in the determination of the coordinates of
the detecting modules depends on the accuracy
achieved in measuring the slant ranges and the beacon
coordinates.

3.1. Instrument Errors

Primarily, these are errors in measuring the travel
times of acoustic signals. They consist of the following
components:

—the error due to the asynchronous arrival of the
initiation pulse from the shore station to theinstruments
distributed over the buoy stations;

—errors due to the threshold variations in the com-
parators included in the ultrasonic receiving circuits of
the beacons and acoustic receivers; and

—errors due to the discreteness of the coded signal
detection channel of a beacon.

The estimates of the maximum values of these
errors yield 20, 18, and 36 s, respectively. To deter-
mine the actual accuracy of the time interval measure-
ments by the HCM S, the distribution of the experimen-
tal errors in measuring the signal travel times
(1200 measurements) along one of the master module—-
beacon—acoustic receiver paths was obtained. The dis-
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tribution half-width proved to be about 10 us, which
makes a contribution of about 2 cm to the error in the
determination of the coordinates of a detecting module.

3.2. Errors Due to the Uncertainty
in the Parameters of the Medium

The main source of errors associated with the prop-
erties of the medium istheinaccuracy in the determina-
tion of the absolute value of the sound velocity along
the signal propagation paths [11]. An analysis has
shown that, to measure the coordinates of the detecting
modules with a required accuracy of 20 cm, the abso-
lute value of sound velacity should in our case be deter-
mined to within 50 cm/s.

The value of the sound velocity can be measured
directly [12, 13] or calculated from the data on the tem-
perature T, salinity S, and pressure P with the use of
empirical formulas [14-17]. Although the authors in
some publications believe that the systematic errorsin
their formulas are small (e.g., 4 cm/sin [13]), the dif-
ference between the values obtained with these formu-
lasfor the sound velocity in the Baikal water at thetele-
scope depth reaches 2 m/s.

To perform a direct experimental measurement of
sound velocity and to test different empirical formulas
for calculating C, we measured the time of sound prop-
agation with an acoustic base 100 m in length, which
was determined to within +2 cm (with allowancefor the
extension of the cable in water). In this experiment, we
measured the integral sound velocity over the base
length, but the linearity of the depth dependence of C
(see below) alowed usto determine the sound velocity
at given depths by shifting the measuring system in
depth within the interval from 800 to 1300 m. Simulta-
neously, we performed temperature and pressure mea-
surements with an SBE 25-01 probe. As a result, we
found that the data of the direct measurements per-
formed as described above with an error no greater than
30 cm/s agree well with the results of calculation by the
formulas taken from [13] with the use of the tempera-
ture data obtained from the SBE 25-01 probe, which
were accurate to within 0.002 deg (the corresponding
contribution to the error in calculating C(2) is 1 cm/s).
Figure 3 shows the results of calculating the vertical
distribution of sound velocity according to [13] and
according to the temperature data from [18] for the
region where NT-200 was deployed; the distributions
are given for different seasons. The greatest sound
velocity variations associated with temperature varia-
tions are observed near the surface of thelake and reach
40 m/s. At large depths, where the temperature varia-
tions are very small, the depth dependence of sound
velocity is mainly determined by pressure and can be
approximated by the formula

C(z) = 1418.96 + 0.0153645zm s,

where zis the depth in meters.
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Fig. 3. Vertical sound velocity distribution in Baikal in
March (the solid line) and in August (the dashed line).

According to long-term temperature observations
[19], at the telescope depth, only slight temperature
variations within several hundredths of a degree are
possible. Therefore, we can use the sound-vel ocity pro-
file shown in Fig. 3 as a reference in the HCM S data
processing. At the same time, we observe relatively
short temperature variations (Figs. 7 and 8) that should
be taken into account in cal culating the harmonic-mean
sound velocity used in the computations. For this pur-
pose, the temperature variations were monitored over a
period of one year with the use of a series of TR-1000
termistors spaced at 100 m in depth and placed at the
hydrological and neighboring sedimentological buoy
stations (Fig. 1).

The average mineralization of Baikal water is about
96 mg/l [20], and its variations do not exceed 30%,
which makes a contribution to sound velocity on the
order of 12 cm/swith possible variations of about 4 cn/s.
Thus, in our case, sdinity variations can be ignored.

The currents that occur at the telescope depth in the
southern part of Baikal usually do not exceed 20 cm/s
[21] and practically do not affect the accuracy of coor-
dinate measurements.

3.3. Errorsin the Determination
of the Beacon Positions

The beacons are placed at the sites of their operation
in winter, by lowering them from the ice cover of the
lake. The positions of the points of beacon submer-
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gence are determined by alaser ranger and atheodolite
towithin 0.2 m. In winter, when the system is deployed,
the currents in the upper layer of Baikal usually do not
exceed 2 cm/s and logarithmically decrease with depth
[21]. According to our estimates, in the presence of
these currents, the points where beacons of the given
configuration are placed on the bottom deviate from the
corresponding points on the surface by no more than
several tens of centimeters.

An independent determination of the beacon posi-
tions was performed with the use of an acoustic array
consisting of four master modules, whose hydrophones
were fixed on two vertical cables at distances of 4 and
104 m from the bottom. The distance between the
cableswas 336 m. An analysis has shown that the accu-
racy achieved by us in these measurements was 40 cm,
and the average values of the beacon coordinates
agreed well with the results of geodetic measurements.

The relative depths of the beacon placement were
measured using a contact switch, which was closed at
the instant of touching the bottom. This closure was
detected by the ohmmeter positioned on the lake sur-
face. The measurement accuracy was 1 cm. The scatter
in the sea depths at the beacon sites was 5.69 m. With
allowance for the uncertainty in the depth of anchor
submergencein the silty bottom, the error intherelative
depths does not exceed 5 cm.

3.4. Conclusions

—The main sources of errors in the HCMS are the
errorsin the determination of the sound velocity profile
and the beacon coordinates.

—The HCMS provides the possibility to carry out
long-term measurements of the coordinates of the detect-
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neutrino telescope between June 28, 1994, and July 18,
1994: (1, 2) acoustic receivers at depth of 1171 and 1106 m
(theleft and bottom axes); (3) an acoustic receiver at adepth
of 22 m (right and top axes).

ing modules of the NT-200 to an accuracy of 20 cm or
better.

4. RESULTS OF MEASURING
THE COORDINATES OF THE NEUTRINO
TELESCOPE

The first measurements of the coordinates of the
detecting modules by the HCMS were performed in
1994. These measurements are in progress at the
present time. As a rule, they are carried out in four
cycles with a periodicity of 10-12 h (or more often, if
necessary). The HCM S also allows one to observe the
variations that occur in the positions of the telescope
strings as the telescope is submerged and placed on the
bottom (Fig. 4). It is of interest that, from year to year,
after the placement of the system, the strings prove to
be almost at the same points. The distances between the
hydrophones of the lower and upper acoustic receivers
that are fixed on the same string are also retained. They
usually differ by no morethan 10 cm from the distances
measured with a measuring reel before the placement.

During the year, the coordinate motion of the NT-200
as awhole was observed (Fig. 5). The maximum devi-
ations of the buoy stations are observed in the period of
autumn storms, in September and October. For the
upper buoy (a depth of about 20 m), they exceed 50 m
(Fig. 6), while the upper detecting modules deviate by
no more than 1.3 m and the lower modules, by 1 m. In
all cases, the telescope deviates from the vertical posi-
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tion by no more than 1 deg, and the rel ative coordinates
of the detecting modules vary by no more than 10 cm.

5. INVESTIGATION OF THE WATER MEDIUM
BY THE HYDROACOUSTIC SYSTEM OF NT-200

The data obtained from the HCM S can also be used
to study the hydrophysical processes in the lake. The
simplest information of thiskind is obtained by observ-
ing the behavior of the buoy stations of the telescope.
The predominant displacement of the submerged buoy
stationsto the west confirmsthe concept concerning the
globa water circulation in the Southern trench of the
lake [21]. Fourier analysis of the buoy station devia-
tions revealed, e.g., the presence of oscillations with
periods close to the periods of seiche oscillations in
Lake Baika [22, 23].

A much greater amount of information on the
hydrophysical fields can be obtained by analyzing the
data on the times of sound propagation between differ-
ent points in the water medium. For this purposg, it is

ACOUSTICAL PHYSICS Vol. 51
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especially convenient to use paths with a fixed length.
Such paths primarily are the paths along the bottom,
from the master module to each of the beacons. With
the accuracy of time measurementsin the HCM S being
At= 10 ps, the resolution of the observation of mean
temperature variations on a path of length L is

ATC?
aL

where a = 5.0371 is the proportionality coefficient in
the formula determining the relation between the sound
velocity and temperature [13].

The accuracy achieved in measuring the absolute
value of the mean temperature also depends on the
accuracy of determining the distance AL between the
transmitting and receiving hydrophones. For the master
modul e-beacon—master module path with AL = 40 cm
and L = 1.2 km, this accuracy is not high (about
0.1 deg), and, therefore, we compare the results with
the absol ute reference measurements by a TR-1000 ter-
mistor. Figure 7 compares the results of temperature

AT (deg) = = 0.004/L (km), (1)
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measurements on the master module-beacon path with
the help of the HCM S and a TR-1000 termistor placed
at a distance of 4 m from the bottom. On the whole, a
gualitative agreement is observed between the temper-
ature behavior at a point (the TR-1000 data) and the
mean temperature of the layer (the HCMS data). After
the period characterized by an ailmost constant temper-
ature in March—May, both methods reliably detected a
considerable temperature decrease in mid June and the
subsequent decaying temperature variations, which tes-
tify to a considerable intrusion of cold waters into the
near-bottom region in the homothermal period [18]. For
clarity, the errors are not shown in Fig. 7. For the data
obtained with TR-1000, the errors are on the order of
the dots, and for the HCM S data, according to Eq. (1),
they are about £0.004°C inthe given case. The spikesin
the HCM S data may presumably be related to failures
in the system’'s operation, for example, because of
acoustic noise.

For tracing the hydrophysical characteristics of the
water mass, in addition to the horizontal pathsaong the

lake bottom, it is possible to use the vertical paths of
sound propagation between the instruments positioned
on the hydrological buoy station. As an example, in
Fig. 8, we show the temperature variation in the deep
300-m-thick near-bottom layer with time starting from
October 13, 1995. In thefirst part of the period of mea-
surements, the data were taken at a step of 20 s. The
large temperature variations (up to 0.4°C, the measure-
ment error is about £0.015°C), which are observed at
large depthsin the southern part of Lake Baikal, where,
as arule, a stable stratification of water temperature is
observed in the layer from 300 to 1300 m during the
whole year [19], may be related to the incursion of
warmer near-surface waters due to the storm that
occurred at the beginning of this period. Observations
of thiskind are very important for the understanding of
the water-exchange processes in Lake Baikal and tes-
tify to the fact that the role of dynamic factors (such as
atmospheric pressure variations or wind) should be
taken into account in studying the hydrophysical pro-
cesses in the lake.
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6. CONCLUSIONS

The HCMS of the NT-200 makesit possibleto mon-
itor the spatial positions of the elements of the neutrino
telescope during along period of time with an accuracy
of 20 cm (or better). The architecture of the HCMS
alows its further development with the expansion of
the NT-200. The methodical and engineering solutions
found in developing the HCM S of NT-200 can be used
for designing other distributed acoustic systems
intended for positioning various objects and for study-
ing the hydrophysical processes in the water medium.
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Abstract—Experimental data on the long-range propagation of explosion-generated signals are analyzed. The
experiments were performed in the northeastern Atlantic under the conditions of a two-axis underwater sound
channel. The sound field in the upper channel was governed by the vertical redistribution of the ray structure
and sound energy under the influence of a smooth increase in the depth of the channel’s axis along the propa-
gation path. The explosions were produced in the upper sound channel at a depth of 200 m, which was constant
along the path. The time structure of the sound field is analyzed for the upper channel (a reception depth of
200 m) and for deeper layers lying somewhat below the boundary between the upper and lower sound channels
(areception depth of 1200 m). The deviation of the decay law obtained for the sound field level in the upper
channel from the cylindrical law is used to estimate the attenuation coefficient. The low-frequency (several hun-
dreds of hertz) attenuation coefficients experimentally determined with allowance for the sound field redistri-
bution agree well with the calculated sound absorption in seawater. The attenuation coefficients determined by
the differential method also agree well with the absorption calculated by the formulas proposed earlier. The
analysis of the time structure of the sound field near the boundary between the upper and lower channelsreveals
a permanent insonification of this horizon by weak water-path signals propagating with the velocity typical of

the signals traveling in the upper channel. © 2005 Pleiades Publishing, Inc.

The Acoustics Ingtitute has repeatedly performed
experiments on long-range sound propagation in the
northeastern part of the Atlantic Ocean. The character-
istics of the sound field were studied on different prop-
agation paths, in theregionsthat differed in their ocean-
ographic properties. Tonal, pulsed, and explosion-gen-
erated signalswere used in the experiments. The results
of the measurements were published in Akusticheskir
Zhurnal (Acoustical Physics) [1-4] and reported at dif-
ferent scientific seminars.

In this paper, the experimental data on long-range
propagation of explosion-generated signals are pre-
sented for the Iberian and West-European Basins. In
these regions, the water bulk is formed by the Mediter-
ranean waters passing into the Atlantic Ocean through
the Strait of Gibraltar. Therefore, atwo-axisunderwater
sound channel is characteristic of these regions.

Experimental conditions. The experiment was car-
ried out in June. The propagation path was oriented in
a direction close to the meridian. The path originated
and terminated at the points 47° 00" N, 13° 30" W and
37°40' N, 15° 15" W, respectively. The path length was
1160 km. The explosions were produced at a depth of
200 m. Charges were dropped and exploded at the full
speed of the transmitting vessel that went off the recep-
tion point. In total, 145 charges with pressure-sensitive
detonators were dropped. The omnidirectional receiv-
ing systems were at depths of 200 and 1200 m. The
receiver positioned at a depth of 200 m was near the
axis of the upper sound channel (Chl). The main mini-
mum in the sound speed profile, which corresponded to

the axis of the lower sound channel (Ch2), was at a
depth of about 1600 m.

The ISTOK-3 instrument was used to measure the
vertical distributions of temperature and conductivity
of water. The maximum depth of profiling was 1800—
2000 m. These data were recalculated to the sound
speed by using the Wilson formula[5]. The data on the
sound speed at deep (near-bottom) horizons were
obtained by bathometric measurements. Some of the
data obtained are shown in Fig. 1. The profile measured
at the beginning of the path (Fig. 1a) gives an overview
of the propagation conditionsin the region under study,
namely, the distribution of the sound speed over the
entire water column, from the surface to the bottom.
The c(2) profiles shown in Fig. 1b are measured at dif-
ferent distances from the reception point; they charac-
terize the changes in the propagation conditions for the
upper sound channel along the path.

The upper layer of the ocean, down to depths of
130-170 m, was formed by the Canary waters, which
are characterized by rather low temperatures (13—-14°C)
and high salinity (35.7-36.7%0). The spring—summer
warming covered a layer of 3040 m. The temperature
discontinuity was weakly pronounced. The unstable
surface channel was observed only in the southern part
of the path, at depths of 10-25 m. The near-surface
sound speed increased in the north—south direction,
from 1505 m/s (at the beginning of the path) to
1515 m/s (at the end of the path).

The water layer occupying the depths between
150 and 600 m was formed by the well-mixed subtrop-

1063-7710/05/5106-0629$26.00 © 2005 Pleiades Publishing, Inc.
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ical masses with small positive gradients of tempera-
ture and salinity. As a consegquence, a positive gradient
of the sound speed was present, and the underwater
sound channel had an axisthat became deeper along the
path: its depth varied from 110 m at the initial point of
the path to 350400 m at the terminal point. The sound
speed at the axis varied from 1495 to 1503 m/s in the
southward direction.

The water layer occupying the depths from 600 to
1300 m was represented by the water mass produced by
mixing of three types of waters: deep Mediterranean
waters, North Atlantic ones, and the waters embedded
in the Newfoundland convergence zone [6]. This water
layer had a temperature of 11-12°C, which was rather
high for such depths, and a salinity of 35.5-36.0%o.
The intense mixing led to a decrease in the vertical
temperature gradient. The maximum in the sound
speed was at 1000 m in this layer, and, at this depth,
the sound speed increased in the southern direction
from 1506 to 1510 m/s. In lower layers, the tempera-
ture rapidly decreased to 3.5-4°C.

The deep waters were comparatively homogeneous,
with a temperature of 2.5-3.0°C and a salinity of
34.9%o.. The gradient of the sound speed was close to
the hydrostatic one in these waters. The near-bottom
sound speed reached 1550 m/s. The minimum in the
sound speed occurred at depths of 1500-1600 m.

The hydrological environment at the experimental
site was characterized by the presence of a two-axis
sound channel. The difference between the sound
Speeds at the surface and at the axis of the upper chan-
nel reached 8-12 m/s, and the corresponding difference
between the surface and the axis of the lower channel

was 12-15 m/s. The difference in the sound speed at the
intermediate maximum (between Chl and Ch2) and at
the axis of the upper channel was 4-10 m/s. With the
source positioned at the axis of Chl, the angles of the
rays captured by this channel were within +4°-5.5°
along the entire path. With such a position of the sound
source, the sound field at adepth of 1200 m wasformed
by both purely water-path rays (that are common for
Ch1 and Ch2) and the rays reflected from the surface
and the bottom.

Figure 2a shows the field of the sound speed at
depths shallower than 800 m. These data are obtained
from the hydrological survey of the path. The data
clearly exhibit a smooth increase in the depth of the
Chl axis in the southward direction. The sound speed
at the axis increases monotonically. Figure 3 shows the
ray pattern that illustrates the sound propagationin Chl
with the sound source at adepth of 200 m (the departure
angles of the rays are limited by +4.2°). It is quite evi-
dent that the channeled rays become deeper because of
the smooth changes in the parameters of Chl along the
path.

The path passed over the West-European and | berian
Basins with mean depths of 44004800 and 5200-
5300 m, respectively. The sea-floor relief plotted using
echo-sounding data is presented in Fig. 2b. At four
points along the path, samples of the bottom material
were picked up. All the samples contained lime silt with
adensity of 1.51-1.58 g/cm?.

In the experiment (carried out over three days), the
wind speed varied within 4.5-12 m/s and the sea state
was Beoufort 5. In thefirst day, aswell with aperiod of
8 sand a height of 2 m was predominant. In the second

ACOUSTICAL PHYSICS Vol.51 No.6 2005
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and third days, wind waves were the main cause of sur-
face roughness.

Time structure of the sound field. In the case of
single-ray propagation, the explosion-generated signal
received in the bandwidth from 40-60 Hz to 1-2 kHz at
a distance of 10-20 km and more has the following
form in the time domain: it consists of two short pulses
with a duration smaller than 1 ms, with equal ampli-
tudes, and with the same sign (the shock wave and the
first oscillation of the gas bubble). The pulses are sepa-
rated in time by an interval equa to the period of the
gas-bubble oscillation (about 35 msin our case). In the
case of multipath propagation, apair of such pul sescor-
responds to each ray in the time structure of the explo-
sion-generated signal.

ACOUSTICAL PHYSICS Vol. 51
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To illustrate the range-dependent duration of the
multipath signal and its time structure, Fig. 4 presents
the signalsreceived by a 200-m receiving system at dis-
tances of 100 to 1000 km from the source, at a 100-km
step in distance. All the signals presented in this and
the following figures are normalized to their maximal
values.

Note that there are no well-resolved “classical”
guartets that usually advance the most intense main
group of signals. The shape of the total (multipath)
water-path signal is also rather peculiar: neither the
leading nor trailing edges of the signal are clearly
defined. A gradual increase in the signal level is fol-
lowed by an equally gradual (or even slower) decrease.
If one neglects the elementary signals reflected by the
bottom, the duration of such a multipath signal will be
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proportional to the distance with a proportionality coef-
ficient of approximately 0.0013 s/km.

The 100-km step in distance, which was chosen to
illustrate the general changes in the multipath signal, is
apparently insufficient to reveal thelawsthat governthe
signal structure variation with distance. Figure 5 shows
the signals received and recorded at distances from 25
to 100 km from the source at astep of about 5 km. Such
steps allow one to analyze some features of the fine
structure formation in the explosion-generated signal.
Up to a distance of 100 km, the total multipath signal
produced by the shock wave and the signal produced by
the first gas-bubble oscillation are clearly separated. In
addition to the group of signals propagating in the
upper channel, another comparatively strong signal
appears at a distance of 56 km from the source. This
signal, being refracted at the lower boundary of Ch2,
has a delay of 110-120 msrelative to the leading edge
of the main signal and an amplitude that is a factor of
2-3 higher than that of the main signal.

After the main group of signas (to the right), the
guartets of signalsthat are reflected by the bottom (and
the surface) are observed. These signals arrive at the
receiver with atime delay. The amplitudes of these sig-
nals are much lower than those of the main water sig-
nals. Their delay relative to the main group monotoni-
cally decreases asthe distanceincreases. The quartet of
thesignalssingly reflected by the bottom isfollowed by
the quartets of signals with two, three, or more bottom
reflections. In the experiment at hand, multiply
reflected signalswere observed at all distancesfrom the
source, up to the ultimate one (1160 km).

For the sake of comparison, Fig. 6 presents the same
signals received at a depth of 1200 m. For signas
received at this depth, the time scale is matched to the
arrival of thefirst, relatively compact group of signals.

After this group, two more groups of elementary sig-
nals arrive. They are coupled with each other, corre-
spond to equal numbers of bottom reflections, and have
delays that decrease with distance. Each group consists
of two elementary (single-ray) signals of the same
guartet, this feature being confirmed by the calcula-
tions. If the source and the receiver are at different
depths, the quartet splits into two pairs of signals. The
greater the depth separation of the source and the
receiver, the higher the time interval between the pairs.
In our case, the time interval between the initial pairs
was about 400 ms (with a depth separation of 1000 m).
The amplitudes of the bottom-reflected signals are
quite comparable with those in the compact group of
signalsthat arefirst to arrive at the receiver.

The calculations performed with the use of Teby-
akin’s computer code [7] (ray approximation and a hor-
izontally layered medium) for distances shorter than
100 km agree well with the experiment in the time
delays between the pairs of the bottom-reflected signals
within the corresponding quartets. The observed delays
of these signals relative to the first compact group sat-
isfactorily agree with the computed delays relative to
the water signals propagating in the upper channel.
However, according to the calculations, the water sig-
nals propagating in the upper waveguide do not arrive
at the depth of 1200 m at all. With the computer code
by Avilov [8, 9] used to calculate the vertical structure
of the sound field at distances from 20 to 40 km, the
conclusion was drawn that a diffraction-induced inson-
ification of the 1200-m horizon takes place. Thelevel of
theinsonification proved to be 20-30 dB lower than the
level of the sound field in the Chl. This result agrees
well with the experiment.

Attenuation and absor ption of sound. One of the
main objectives of the experiment on the long-range
propagation of explosion-generated signals in the
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Fig. 4. Time structure of the signals received at a depth of 200 m at different distances. The distance from the source varies from
100 to 1000 km at a step of 100 km. Here and in the following figures, the signals are normalized to their maximal values.

northeastern Atlantic consisted in studying the fre-
guency dependence of sound attenuation. The attenua-
tion coefficient is usually determined from the devia-
tion of the experimental decay of the sound-field level
in the underwater channel from the cylindrical law of
the geometrical spread (strictly speaking, such an
approach is valid only for the channeled signals in a
horizontally layered medium).

For explosive sources of sound, the following quan-
tity istaken to be equivalent to the signal energy within
the frequency band Af:

T

E; = jp?(t)dt,
0

ACOUSTICAL PHYSICS Vol.51 No.6 2005

where T is the duration of the explosion-generated sig-
nal and p;(t) is the acoustic pressure normalized to the
frequency band Af. Although the quartets of bottom-
reflected signals were much lower than the main groups
of the near-axis signalsin their amplitudes, these quar-
tetswereartificially eliminated from the signal process-
ing, so that their contribution to the sound field in the
channel was minimal.

Theresults of the analysis performed for the signals
received at a depth of 200 m are summarized in the
table. The attenuation coefficients at frequencies lower
than 630 Hz were determined from the deviation of the
decay law observed for the sound field at distances of
50-1160 km from the cylindrical law. At 630 Hz and
higher, the path fraction used for estimating the attenu-
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ation coefficient was shorter (50-850 km at 630 Hz and
50-350 km at 1600 Hz) because of the lower signal-to-
noise ratio at higher frequencies.

In the third and fourth columns of the table, the cal-
cul ated absorption coefficients are presented for the fre-
guency band at hand. The calculations were based on
the semiempirical equations derived from the analysis
of the experimental data on long-range sound propaga-
tion in a number of ocean regions that noticeably dif-
fered in water temperature (— 2 to 13.5°C) and salinity
(18 to 38%o) [10]:
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Fig. 6. Time structure of the signals received at a depth of
1200 m at different distances. The distance from the source
varies from 25 to 100 km at a step of 5 km.

a = Asl Augeo, f +
o+ Tol T T lmgm, * Trgsod |

Kf2 (1)

Here, fisthefrequency (kHz), K=1.42 x 1078 x 1012407
(dB/km x kHZ?), fygso, = 1.125 x 109721 (kH2),

Avgso, = 62.5ST x 10 (dB/km x kH2), 5 = 37.99'%

1077807 (kHz), Ag = 1.65Sx 10 +0.78pH=3696/T) (dB/km x

kHz), Sisthesalinity (%o), T isthetemperature (K), and

pH is the effective pH value.
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Thefirst term on the right-hand side of Eq. (1) char-
acterizesthe relaxation absorption caused by boron, the
second term corresponds to the relaxation absorption
caused by magnesium sulfate, and the third term deter-
mines the sound attenuation in seawater.

In accordance with the measured characteristics of
Ch1 with the axis at a depth of 200400 m, the temper-
ature and salinity were specified as 11.5°C and 36%o,
respectively. Unfortunately, no data were found on the
vertical distributions of the pH value in the archives
available to the author. In view of the general informa-
tion given in [11] for this region of the Atlantic Ocean,
the pH values were specified as 8.05 and 8.1 in the cal-
culations.

The fifth column of the table contains the values of
the excess of the experimental attenuation coefficients
over the calculated coefficients of sound absorption.
The differences are within —0.008 to +0.008 dB/km.
At frequencies of 100-500 Hz, the values of the excess
fall within anarrower range, 0.005 to 0.008 dB/km; that
is, they are nearly independent of frequency. At these
frequencies, the attenuation was determined from the
decay of the sound field over nearly the entire path (50—
1160 km). At frequencies higher than 800 Hz, the decay
over a shorter path fraction (50-500 km or less that is,
about half of the path length) was used in calculating
the attenuation.

In view of the aforementioned changesin the hydro-
logical parameters along the path, namely, the gradual
increasein the depth of the Chl axis, the estimation was
performed for the deviation of the geometrical-spread
decay of the sound field from the cylindrical law. The
calculations were based on the wave-field computer
code by Avilov with a zero-valued sound absorption in
seawater and a perfectly absorbing bottom. The result-
ing curves of the sound field decay at the distances of
50-1100 km were approximated by the cylindrical
decay law with an exponential attenuation. The best
agreement between the calculated and approximating
curves was obtained for an exponent equal to 0.006-
0.007 dB/km. The calculated exponent in the exponen-
tial attenuation caused by the variation of the hydrol og-
ical parameters along the path agrees well with the
excess A of the experimental attenuation coefficients
over the ones calculated according to [10] for frequen-
cies up to 800 Hz. Thus, the decay of the sound field at
the 200-m horizon is fully determined by the sound
absorption in seawater and by the geometrical spread
that differsfrom the cylindrical law under the influence
of the monotonic increase in the depth of the CH1 axis
along the path with increasing distance from the recep-
tion point. Therefore, the decay law proved to be quite
predictable in our case.

In the case under study, the predictability of the geo-
metrical spread law is the consequence of the gradual
changes in the characteristics of Chl along the propa-
gation path. However, one cannot predict the changesin
the hydrological parameters for the ocean regions
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Comparison of the experimental data on sound attenuation
(for the 200-m reception depth) with the frequency depen-
dence of the absorption coefficient calculated by the formu-
lasgivenin[10]

a, dB/km B,
Frequen- B, [t=115°C,S=36%| & gj?f/]!(er_
cy,Hz | dB/km dB/km ential
pH=8.05pH =8.1 method)
100 0.008 | 0.001 0.001 0.007 | 0.0029
125 0.008 | 0.0016 | 0.0018 | 0.0063| 0.0016
160 0.010 | 0.0027 | 0.0029 | 0.0072| 0.0039
200 0.012 | 0.0041 | 0.0045 | 0.0077| 0.0058
250 0.015 | 0.0063 | 0.0069 | 0.0084| 0.0088
315 0.018 | 0.0098 | 0.0107 | 0.0078| 0.012
400 0.023 | 0.0153 | 0.0166 | 0.0075| 0.017
500 0.029 | 0.0228 | 0.0247 | 0.0053| 0.022
630* | 0.040 | 0.0336 | 0.0364 | 0.0050| 0.034
800* | 0.057 | 0.0486 | 0.0526 | 0.0064| 0.048
1000* | 0.070 | 0.0661 | 0.0715 | 0.0012 -
1250* | 0.084 | 0.0865 | 0.0934 |-—-0.006 -
1600* | 0.108 | 0.112 0.120 |-0.008 -

Note: Frequencies at which the sound attenuation was determined
from the decay of the sound field within afraction of the path.

where various disturbing factors (strong currents, fron-
tal zones, and others) exist. To estimate the frequency
dependence of the attenuation coefficient in such zones,
we have repeatedly used the so-called differential
method ([12, 13], for instance) proposed by Sheehy and
Hally [14] in the mid-fifties. This method is based on
two assumptions. Thefirst one states that the law of the
geometrical spread is unknown but is the same for the
entire frequency band. The second assumption implies
that the frequency dependence of the attenuation coef-
ficient is described by a power-law function with a
zero-valued constant component. The decays of the
sound field at individual frequencies are normalized to
the decay at a single frequency treated as a reference.
Thus, the unknown law of the geometrical spread is
eliminated. From the normalized spread at each of the
frequencies, the differential attenuation coefficient is
determined, which can be shown to be equal to the dif-
ference between thetotal attenuation coefficients at two
frequencies: the frequency to be analyzed and the refer-
ence frequency. By approximating the fregquency
dependence of the differential attenuation coefficient
with the power law and neglecting the absolute term,
we obtain the following explicit form for the conven-
tionally used attenuation coefficient: 3 = kf ".

The differential method of estimating the attenua-
tion was applied to the data of the experiment at hand.
The resulting estimates for a frequency band of 100—
800 Hz with a reference frequency of 250 Hz are
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uation coefficient.

0.0674 and 1.52 for k and n, respectively. Figure 7
shows the results of applying the differential method to
our experimental data and illustrates the scheme of
transforming the differential values into the conven-
tional attenuation coefficients. The transformation con-
sists in nothing but a shift of the scale by the constant
component of the power-law dependence that approxi-
mates the frequency dependence of the differential
attenuation coefficient. The last column of the table
contains the conventional attenuation coefficients
obtained with the use of the differential method. One
can state that the application of this method confirms
the main conclusion of this work: with the unknown
law of the geometrical spread being eliminated, the
attenuation is fully determined by the sound absorption
in the sea medium. The attenuation coefficient esti-
mated by the differential method agrees well with the
calculated values: the deviations are lower than 0.001—
0.002 dB/km.

In conclusion, let us formulate the main results
obtained from analyzing the data of the experiment on
long-range propagation of explosion-generated signals
in a two-axis underwater sound channel in the north-
eastern Atlantic.

—The experiment was performed in a fully devel-
oped two-axis underwater sound channel with a mono-
tonic increase in the depth of the axis of the upper chan-
nel from 100-140 m at the beginning to 350400 m at
the end of the 1160-km-long propagation path. The axis
of the lower channel was at a depth of 1500-1600 m.
The signalswere received at depths of 200 and 1200 m.
The charges used as the sound sources exploded at a
depth of 200 m aong the entire path.

—The time structure of the sound field in the upper
channel is characterized by the absence of the “classi-
ca” signal quartets advancing the main group of water-
path signals. At distancesthat are multiples of 55-65 km,
water signalsthat arrive with delaysrelative to the main

group of signals and propagate in both the upper and
lower channels were observed. Signals multiply
reflected by the surface and the bottom were observed
at all distances, up to the longest one. The shape of the
signals in the main group, which are not separated in
time, isworth noting: the leading and trailing edges are
not clearly defined, and the total duration of this group
is proportional to the distance with a proportionality
factor of about 0.0013 s/km.

—The time structure of the sound field below the
boundary between the upper and lower channels (at a
reception depth of 1200 m) is characterized by a pro-
nounced set of signals multiply reflected from the bot-
tom and the surface. The structure of this set agrees
well with the calculations. In addition to this set, com-
pact groups of signals are steadily observed with the
propagation velocity equal to that of the water signals
propagating in the upper channel. The existence of this
group can be explained by the calcul ations based on the
wave-field computer code by Avilov.

—On the basis of the analysis of the explosion-gen-
erated signals received and recorded at 200 m, the fre-
guency dependence of attenuation is estimated. Two
methods of determining the attenuation coefficient are
used: with the method of estimating the deviation of the
decay of the sound field level from the cylindrical law
and with the differential method that eliminates the
unknown geometrical spread law (the latter being other
than the cylindrical one). The attenuation coefficients
obtained with these two methods differ from each other
by 0.006—-0.008 dB/km. Thisvalueisvirtually indepen-
dent of frequency and is determined by the variation of
the hydrological parameters along the propagation
path. For the experiment under study, this value agrees
well with the cal culations based on the computer code
by Avilov. The attenuation coefficients obtained with
the differential method agree well with the values
obtained for the absorption coefficients in the sea
medium from the formulas proposed in [10].
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Abstract—An inverse boundary-val ue problem, namely, the reconstruction of the spatial distribution of acon-
tact load from the displacements given on apart of afree surface, is considered. The model isformulated asthe
generalization of results obtained earlier for an elastic layer. It isfound that viscosity produces no special effects
that may hamper the reconstruction, except for the attenuation of quasi-homogeneous modes at long distances.
At the same time, it is shown that a successful reconstruction requires a consideration of viscosity. The latter
statement isillustrated by a numerical example calculated at a frequency equal to the inverse relaxation time;
the corresponding dissipation factor is about 0.05. © 2005 Pleiades Publishing, Inc.

Inverse boundary-value problems of the theory of
elasticity form a topical branch of the mechanics of
deformable solids [1-12]. The formulation of these
problems is characterized by nonclassical boundary
conditionsthat are specified on certain parts of abody’s
surface rather than on the whole surface. Theinterestin
such problems follows from the engineering problems
of strength analysis, nondestructive testing, structural
intensimetry, and vibration resistance of structures. In
the dynamical theory of elasticity, inverse boundary-
value problems were studied for stationary wave fields
[4-12]; these problemswere discussed for isotropic [4—
6, 10] and anisotropic [ 7-9] elastic media, aswell asfor
viscoelastic materials [11, 12]. Mathematical methods
used for solving inverse problems depend on their ill-
posed nature and include analytical methods of bound-
ary integral equations, finite-difference schemes with
the Tikhonov regularization [13, 14], and (see [1-6, 9,
10]) different versions of the projection method [15]
with a discrete regularization. The ill-posed character
of inverse boundary-value problems makesit necessary
to focus special attention on the analysis of model
examples that give an ideaabout the actual possibilities
of the wave field reconstruction. No such analysis was
carried out in the context of models with alowance for
the wave absorption. Here, we extend the inverse
boundary-value problem considered earlier [10] to the
case of aviscoelastic medium [16, 17]. The goal of this
work consists in the determination of the extent to
which the reconstruction efficiency depends on viscos-
ity and the extent to which the consideration of viscos-
ity is needed for a successful reconstruction of thefield
of a contact load.

Consider ahomogeneous layer of aviscoelastic iso-
tropic material occupying the region [-o < X, Z < o,
0<y <h] in the Cartesian coordinates (X, Yy, 2). The
lower boundary of the layer (y = 0) isrigidly fixed, and
the upper boundary (y = h) isloaded by an external nor-
mal load

a,(x, 1) = Re{ exp(-iwt)q(x)} ey

distributed over a certain region x O [X,, X,]. We
assume that the load brings the layer in the state of
forced stationary vibrations under the conditions of pla-
nar deformation (under these conditions, the wave field
components are independent of the z coordinate and the
displacement vector u is parallel to the (%, y) coordinate
plane). In the steady-state regime, the generalized
Hooke's law [16, 17] holds:

Ojj = M= w) ;g + 2u(- w)gy), (2)

where g;; and g;; are the stress and strain tensors, respec-
tively; A(-iw) and p(—iw) are the complex moduli that
grade into the Lamé coefficientsin the case of an elastic
layer; here and below, symbols of all dynamica vari-
ables, such as u and g;;, denote the corresponding com-
plex amplitudes. According to Eqg. (2), the amplitude of
displacements satisfies the equation

2 . i > >
pw U+ [A(-w) +u(-Hw)]dl u)
+U(—w)Au = 0,

3)

where 5 is the gradient operator, A = Ez, and p isthe
density. At the layer boundaries, the following bound-
ary conditions hold:

1063-7710/05/5106-0638$26.00 © 2005 Pleiades Publishing, Inc.
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Mu)x = (Mu)y = 0,

y =h, xO[Xy, Xj]),

C(Mu)x = 0, (Mu)y = q(x), )
%(y=h,xﬂ[xl, Xal),

=0 (y=0),

!
¢
O

]

where Mu is the vector operator of boundary stress
with the components

O Mu)y =
a .
OMu)y

Boundary conditions (4) generate a mixed boundary-
value problem whose solution describes forced vibra-
tions of the layer under the action of source (1). We
consider this problem to be the direct one.

Let us now formulate the inverse problem that con-
sistsin thereconstruction of theload field g(x) from the
normal displacements of the free surface of the layer,
uy(X), that are given on asurface part x [ [X;, X,], where
[Xs, X4] N [X;, X;] = O. In the inverse problem, the
boundary conditions for Eg. (3) have the form

M= @) (Uy,x+ Uy y), &)
AUy + [A(Hw) + 2p(-iw)] uy .

U =0, (y = h, X0 [Xy, Xg]),
Ly, (y=h,xO[X3 X]), (6)
v =0, (y=0),

where the function u(x) is assumed to be known
approximately (for example, from measurements) and

the components of vector M u are given by Egs. (5).

Now, we have to complement the inverse problem
formulation with formulas for the complex moduli. In
the framework of the conventiona theory of a vis-
coelastic solid [16, 17], for definiteness, we use the
four-parameter model that implies the following
expressions for the moduli:

= u(x),

1 11+t
(i) = 56,(0) -3¢,

A=) + 2p (=i w) %)

2 2 1l+iwt
= + = - ——
K 361(0) 3Cl AP
where G,(0), C, K, and T are rea constants. The con-
stant K is the bulk modulus and G,(0), C, and T are the
parameters of the relaxation function for shear strains
[16] (T isthe relaxation time).

We introduce the scale of stressas A, + 2|

A+ 21, = lim [ (=iw) + 2u(—iw)] = K + %GI(O).
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The formulated model can be parameterized using the
following set of dimensionless physical constants:

K = wh/p/(A, +2),) ®)
is the dimensionless frequency,
T, = th™/(h. +20,)/p )

is the dimensionless relaxation time, and
X, = %61(0)/@00 +2u.), C, = CI(\,+24). (10)

The layer thickness h will be used below as the unit of
length.

By analogy with [10], the inverse problem can be
reduced to a Fredholm integral equation of the first
kind:

Xz

J’k(x—x‘)q(x’)dx’ = u(x), xO[Xg X, (1)

where k(x — X) is Green’s function (the solution to the
direct problem for a point source). In the case of an
elastic layer, Green's matrix was constructed using the
method of integral transformations [18]. The corre-
sponding extension to the case of a viscoelastic layer
can be obtained using the conformity principle[16, 17]
by replacing the Lamé coefficients with the complex
moduli. As a result, we obtain Green’s function in the
integral representation:

Q) = 55, [K(PYe™dp, (12

where{ = x-X,

K(p) = (A +211,) "0, (p)/A(p) (13)

(the subscript yy corresponds to the tensor component
of Green’s matrix),

A(p) = (4Q3Q5x2p% + 4xip° —4x.< pt + k' p)

SananZ 2 4 2. 2 4
ki il + _
2.9, (—=8Xip +4X:K P —K")
x cosQ,cosQ, + 8x°p* — 4x,K?p’,
snQ
Q,

K Xn(0) = p%,  (n=1;2),

A=) + 2 (=i 0)
Ao + 2l '

A, (p) = KZ%OSQlesinQ2+ p’ LcosQ.H

Xn=Xn(w), Q, =

p(=iw)
Ao + 21,

X1(w) = v Xo(w) =

Using Egs. (7), one can easily express Egs. (11)—(13) in
terms of the dimensionless variables (8)—10).
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Wave numbers of homogeneous and quasi-homogeneous
modes

Model P, P, Ps
Elastic layer 1.1007 3.7744 6.8141
Viscodastic | 11007+ | 37744+ | 6.8141+
layer 0.0002 | 0.0010 | 0.00085 i

Note the fundamental properties of kernel (12) and
its Fourier transform (13). Function K(p) in Eqg. (13) is
an even meromorphic function. In the model of an elas-
tic layer, at high frequencies, this function has rea
poles, which correspond to homogeneous wave modes
[18] (the integration contour in Eq. (12) must bypass
these poles according to the rules dictated by the prin-
ciple of limiting absorption [18]). In a viscoelastic
layer, homogeneous modes are generally absent. We
can suppose that homogeneous modes may appear for
specialy adjusted parameters;, however, we do not
investigate here the possibility of such special casesand
exclude them from consideration. For low and high fre-
guencies, or, equivalently, for short and long relaxation
times (ktg<< 1 and kty> 1), the limiting conformity
with the model of an elastic layer [10] takes place. In
these cases, the spectrum may contain weakly attenuat-
ing modesthat passinto the homogeneous modesin the
absence of viscosity. Such quasi-homogeneous modes
appear for K > K , where K isthecritical dimensionless
frequency [18]; in the approximation of long relaxation
times (kT[> 1), it isgiven by the expression

K = T0/X./2. (14)

For small arguments, function (12) can be described
by the following asymptotic formula:

(A +2,) "
21X, (w)[X (w) — 1]
(— 0,

where X(w) = X;(w)/X(w). Formula (15) clearly shows
that, irrespective of the presence of quasi-homogeneous
modes, the kernel k(¢) has anonzero imaginary compo-
nent (it disappears in the case of an elastic layer) that
causes the vibrations to be shifted in phase; this phase
shift can be interpreted as the viscosity-induced effect
of retardation. For large arguments, kernel (12) degen-
erates, because the corresponding asymptotics is gov-
erned by the contribution of the pole nearest to the real
axis:

k(€) = iRexp(ipl¢|){ 1 + Ol exp(—c|Z))]}
(12 — ).

Here, R, p, and ¢ are complex constants, Imp > 0, and
Imc > 0. The kernel’s logarithmic singularity explicitly
givenin Eg. (15) falls outside the integration interval in
Eg. (11). The smooth behavior of the kernel leadsto the

k(¢) =

In|¢| + O(1), (15)

(16)
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ill-posed character of the inverse problem and to the
necessity of itsregularization [13].

We perform a further analysis for a specific set of
parameters: G,(0) = 10C=10>mPa, 1=0.01s, andK =
4.67 x 10° mPa (these parameters fall into the region
typical of polymer materials). The corresponding
dimensionless variables (10) take the following values.
Xo = 0.0937 and C7= 0.0188. We specify the dimen-

sionless relaxation time (9) to be t;= 200, which, for

the density p ~ 10° kg/m’, corresponds to a layer of
thickness h ~ 10-' m. Note that the dimensionless
parameter Trjincreases with decreasing thickness, so

that values of 1< 200 can hardly occur in practice for
polymer items.

It is instructive to derive some rough estimates.
A measure of deviation from the classical Hooke's law
is the so-called dissipation factor, i.e., the ratio of the
imaginary part of the complex modulus to its real part
[16]. In our model, the maximum of the dissipation fac-

toris0.5y//1—y, wherey = C/G,(0); thismaximumis

reached at the frequency K, = /1 —yr;l. If K > K,, the
layer iscloseto an elastic layer inits properties. For the

above parameters, we havey=0.1andk, = T, < 1.At
the same time, critical frequency (15) is comparable
with unity, K = 0.481. Because K > K,, we can con-
clude that, for frequencies exceeding the critical fre-
guency, the wave pattern appears to be almost the same
asthat in the case of an elastic layer with the only dif-
ference that homogeneous modes transform into
weakly decaying modes.

This inference is supported by the following exam-
ple. At afrequency of Kk = 2, only three quasi-homoge-
neous modes are present; for these modes, we calcu-
lated the complex wave numbers p,, that coincide with
the poles of the function K(p). In the table, these wave
numbers are compared with the corresponding wave
numbers determined in the approximation of an elastic
layer, i.e., for C = 0. As may be seen from the table, the
imaginary additions to wave numbers do not exceed
0.03% and the real parts remain intact within the calcu-
lation error. The viscosity-induced corrections to the
kernel k() (Eg. (12)) are mainly related to the attenua-
tion of quasi-homogeneous modes. For relatively small
distances || = |x — x| such that [{|Imp,] < 1072, these
corrections appear to be smaller than one percent. It
becomes obvious that, if we assume that the measure-
ment error is estimated as 1% [4], we can perform the
reconstruction in thisregion of parameters by using the
elastic-layer approximation (see [10] for examples of
reconstruction of model functionsfor kK > K ). The con-
sideration of viscosity in this parameter region should
be worthwhile only for a much smaller measurement
error, because the class of functions q(x) that allow an
adequate reconstruction enlarges very sowly with
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increasing measurement accuracy. The latter conclu-
sion can be explained in terms of singular decomposi-
tions [4, 5, 10]; namely, in view of the fast decrease of
singular numbers, adecreaseininput errorsby 1-2 dec-
imal digits allows, as a rule, reconstruction of at most
1-2 additional terms in the generalized Fourier expan-
sion of the desired function.

Thus, the consideration of viscosity for K > K is of
little interest with the exception of situations when an
additional small or large parameter appears in the
model. These situations are realized (i) if the distances
between the points x' O [X;, X;] and x [ [X;, X,] areon
the order of |Im |Imp, | or greater, so that the attenua-
tion of quasi-homogeneous modes becomes apparent;
(ii) if the frequency is close to the resonance frequency
(see paper [18] for the theory of resonancesin the case
of an elastic layer). In these cases, viscosity will be an
essential factor. Note that both the above situations are
unfavorable for the wave field reconstruction. Indeed,
different quasi-homogeneous modes are characterized
by different logarithmic decrements (see table as an
example), so that the modes decaying more weakly
become predominant at large distances and only one
mode prevails in the asymptotics, in agreement with
Eq. (16). For this reason, the degeneration characteris-
tic of the far zone (see discussion in [10]) becomes still
stronger in the case under discussion. A similar degen-
eration occurs near the resonance frequencies, where
only the resonance mode can be observed distinctly and
other modes can hardly be distinguished against the
background of the resonance mode, which resultsin a
loss of information about the source (in [5] the opposite
effect of improved reconstruction near the resonances
was reported; however, this effect refers to the recon-
struction of integral characteristics of the wave field
rather than its spatial configuration).

Consider now the frequency range Kk ~ T, , where

dissipation becomes most apparent. Figure 1 showsthe
typical behavior of Green's function k(¢) (Eg. (12)) for
such frequencies (these curves and the following

numerical results are obtained for the frequency k = T, =
0.005). For |{| = 3, the main term of asymptotics (16)
prevails and approximates function (12) with an error
smaler than 1%; for these distances, the kernel
approaches its degenerate form and the field recon-
struction is hardly possible. Viscosity only dlightly
affects the real part of the function k(¢), and its main
effect consists in the appearance of the imaginary part
of the kernel. The curves describing the real and imag-
inary parts are similar in shape (see Fig. 1); this means
that traveling waves (which are absent for low frequen-
cies in the case of an elastic layer) are weakly pro-
nounced. Hence, the main consequence of viscosity is
the above effect of retardation, i.e., the appearance of an
additional common phase in the displacement function.
It is obvious that this effect by no means affects the
basic possibility of reconstruction. The viscosity-
No. 6
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Fig. 1. Green's function k({) (Eq. (12)) for k = 0.005; the
solid line shows Re{k(()}, and the dashed line shows
Im{kQ)} x 10.

induced imaginary corrections to Green’s function
come to about 10% (as expected, these corrections are
about y = 0.1). To estimate how important these correc-
tions are in solving the inverse problem, direct numeri-
cal experiments are required.

Such experiments with the reconstruction of model
load functions were carried out according to the known
scheme; namely, for a given original function q(x), we
determined the numerical solution to the direct problem
by using Egs. (11) and (12) and then used the resulting
function of displacements astheinitial datain the recon-
struction problem. To solve integral equation (11), we
used the finite-difference algorithm with the first-order
stabilizer [12, 13] that was derived in the framework of
the Tikhonov approach. Random errors were simulated
according to the procedure used in paper [10]. We used
real model original functions; in addition, as was done
in [10], we passed to the modified integral equation
with the kernel k(¢) = Re{exp(iB)k({)} and the right-
hand side U (x) = Re{exp(i8)u(x) }. For the real phase 6
corresponding to an observation instant t = 8/w, we
specified avalue of 174; in this case, the real and imag-
inary parts of kernel (12) contribute to the kernel k (x—X)
with identical weights, which yields an objective esti-
mate of the viscosity contribution.

Figures 2 and 3 show examples of reconstructing
the fields of the load acting on the viscoelastic layer
(we used model load functions of the form q(x) =
a,sin(kx + b) + a,;). These figures show the whole of
the region [X,, X,] of load application, and the solid
lines show the original functions. In the figure captions,
we give the values of the following parameters. the
number of observation points J uniformly distributed
on the segment [X;, X,], the number of nodes n of the
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1+

Fig. 2. Reconstruction of the model function. The parame-
ters are as follows; [X3, X4] =[1.5,6]; J=15;n=21; A=
0.03; and o = 10™™ wherem=6, 7, ..., 10.

finite-difference mesh on the segment [X,, X,], therel-
ative level of random errors A [10], and the regulariza-
tion parameter a [13]. We present here the results
obtained for different parameters a to give a clear idea
about the reconstruction fidelity. The two dashed lines
in each of the figures correspond to the maximum and
minimum values used for the parameter a (as usual,
results appear unstable for very small a and smoothed

-0.5 0 0.5
X

VATUL’YAN et al.

for large a); the dots show the results obtained with
intermediate optimum values of the regularization
parameter.

According to our experience with calculations, the
contact stress reconstruction at low frequencies (bel ow
critical frequency (14)) is ineffective in comparison
with the case of high frequencies, at which (quasi-
Yhomogeneous modes are present. Thisfact isunrelated
to the presence of viscosity and is characteristic of the
elastic layer as well (the interpretation of this fact
requires separate research and is beyond the scope of
this paper). In the absence of weakly decaying modes
and for relative random errors A ~ 10-1072, a satisfac-
tory quality of reconstruction can be achieved only for
simple functions that have no more than one prominent
extremum (see Figs. 2 and 3 and compare with the
examples of reconstruction for frequencies exceeding
the critical frequency [10]).

For the example of Fig. 3, we carried out calcula-
tions using two different procedures. In the first case
(Fig. 3a), we solved the inverse problem by simulat-
ing the transition to the elastic-layer approximation;
for this purpose, we rejected the imaginary part of the
kernel k(¢) (EqQ. (12)). In the other case (Fig. 3b), we
constructed the solution to the inverse problem with-
out additional approximations. As may be seen from
the curves, the attempt to neglect the viscosity-
induced complex correctionsresultsin adeterioration
of images; moreover, the results appear to be less sta-
ble with respect to the value of the regularization
parameter.

L v J

-0.5 0 0.5
X

Fig. 3. Reconstruction of the model function (a) without considering the imaginary part of the kernel and (b) with allowance for the
imaginary part of the kernel. The parameters are as follows: [X3, X4] =[1, 3]; J=21; n=41; A=0.001; and a = 10™™, where

(@m=7,8,...,11and (b) m=9, 10, ..., 13.
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Thus, in the framework of the proposed model, we
realized the numerical solution of the inverse bound-
ary-value problem for stationary wave fields excited in
a viscoelastic body. With the chosen parameters of the
model, we successfully performed a detailed compari-
son with asimilar model [10] developed in the approx-
imation of the classical Hooke's law. As can be seen
from our analysis, inelastic effects do not affect the effi-
ciency of the reconstruction of a contact load, except
for the natural restrictions related to the attenuation of
guasi-homogeneous modes at large distances. At the
same time, a successful reconstruction generally
requires that viscosity-induced corrections be taken
into account. First and foremost, this refers to the
reconstruction of the fields at frequencies of about the
inverse relaxation time and at frequencies close to res-
onance. The example given in this paper shows that, at
least for dissipation factors of about 10~! and greater,
the neglect of relaxation in inverse problemsis undesir-
able.
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Abstract—The frequency and time averaging of the fluctuations that occur in the cross-correlation function of
aradiated noiselike acoustic signa with the signal received after its reflection from a rough water surface is
considered. The variance and temporal correlation function are calculated for the output effect of a correlation
receiver for different ratios between the averaging time and the time correlation interval of fluctuations, the band
width of the radiated signal, and the frequency correlation interval of the transfer function fluctuations. © 2005

Pleiades Publishing, Inc.

In solving different problems by means of sonar
monitoring (underwater observation), it is necessary to
take into account the effect of random variationsin the
parameters of the underwater sound channel, which are
caused by the dynamic processes arising at the surface
and in the water column of the ocean. This effect man-
ifestsitself in the distortion of theinitial information on
the objects under observation. In the general case, the
characteristics of signals propagating in channels with
random parameters, the underwater sound channel
being one of them, depend on both the properties of the
initial radiation and the features of the linear stochastic
filter of the medium, which determines the distortions
of the initial signals. The measure of such distortions
can be the cross-correlation function Qg, between the
received signal s(t) and the radiated signal u(t). This
function is a significant element of various algorithms
for optimized processing of received signals and, in
particular, characterizes the noise immunity of the
coherent and incoherent reception in channelswith ran-
dom parameters [1-3]. Investigations showed that the
decrease in the cross-correlation of radiated noiselike
sonar signals with the received onesis due to both mul-
tipath sound propagation and sound scattering by ran-
dom volume inhomogeneities of the refractive index,
the rough sea surface, and the roughness and inhomo-
geneities of the sea bottom [4-9]. Note that different
aspects related to investigations of the efficiency of the
correlation reception of noise and noiselike sonar sig-
nals were also considered in later works, including the
series of works published in recent years [10-12].

Using the known relationships of the theory of lin-
ear stochasticfilters[1, 3, 13], the estimate of the output
effect of a correlation receiver (a synchronous detec-
tor), after integrating over time T, can be presented as

Qulte) = F[sOu(t-toct
0

L (D
= 2 [ [Pl Ut -t)u(t)

0 —o0 —00

x exp[io(t, —t;)] dt,dt,dew,,

where P(w,, t,) is the transfer function of the propaga-
tion channel for acoustic signals; t4 is the time delay of
the reference signal which is the replica of the radiated
signal delayed by the time of its propagation; and u(t)
and s(t) arereal random processes. The quantity Ay isa
constant factor equal to the product of the transfer coef-
ficients of linear tracks (devices) for the formation and
reception of signals, the sensitivity of the transducer in
the radiation mode [14], and the sensitivity of the sound
receiver. These quantities are assumed to be frequency-
independent within the signal frequency band. In what
follows, we set A, = 1. Expression (1) allows one to
calculate the temporal autocorrelation function of the
signal a the output of the correlation receiver:
Ko(At, ty) = [Qq,(ty) Qg (ty — At)LI The angular brackets
denote statistical averaging over the ensemble of ran-
dom parameters of the signal propagation channel. This
is sufficient for the case of deterministic signals, for
example, for signalswith the intrapul se modul ation that
follows a given law. For a noiselike signal, it is neces-
sary to carry out an additional statistical averaging over
the ensemble of the initial random signals u(t). In this
case, we assume that u(t) isanormally distributed sta-
tionary random function with zero mean value, a vari-

ance oﬁ, and a frequency spectrum G,(w). In spite of

1063-7710/05/5106-0644$26.00 © 2005 Pleiades Publishing, Inc.
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the fact that the cal culations presented below were car-
ried out for continuous noiselike acoustic radiation,
their results are applicable to pulsed signals whose
duration noticeably exceeds the integration time.

The transfer function P can be represented as the
sum of the mean field PCand the fluctuations AP. Then,
the cross-correlation function Qg, can be written in the
form of the sum of the mathematical expectation [Qg,[]
and the fluctuation part AQg,. The autocorrelation func-
tion (ACF) of the signal at the output of the correlation
receiver can be represented as Ko(At, ty) = KAt ty) +
Kag(At, ty), where KpAt, ty) = [Qg(ty) Ity — At)TI
is the part of the ACF caused by the coherent field and
Kag(At, ty) = [AQg,(t)AQy(ty — At)is the temporal
correlation moment of the fluctuation part of the output
effect of the correlation receiver. In the case of the
transfer function fluctuations described by a stationary
random process, we have

TT

K oA, tg) = T%Udtldtz [ [Cue)C(w)
00

—00 —00

00 00

x exp(i ,At){ 2 [P (0, )OP* (w,)0

x expli(w; —w,) 4] expli(w, + w,)(t; —t,)/2]  (2)

x cos[(wy + wy)(t; —t;)/2]

+ OP(0oy)| Texpli (03, — 03,) (t; — t,)] } oy,

Kao(At ty) = Ti [tz [ [ Gu(@)Gy(c)
00

x exp(iw,At){ ZRAp(ool, w,, At)

x expli(w; —w,) 4] expli(w, + w,)(t, —t,)/2]  (3)

x cos[(wy + wy)(t; —t;)/2]
+ Kap(0dy, @y, At) expli (6 — w,) (t; — t,)] } o, ded,,

where Kap (W, w,, At) is the frequency—time correla-
tion moment of fluctuations of the transfer function
envelope P = Pexp(iwt,) (in genera case, a complex
one), T4 =ty —t,, and t, is the propagation time of the
signal (its coherent part). In deriving Egs. (2) and (3),
we used the property of the transfer function that
P(-w, t) = P*(w, t), where the asterisk means complex
conjugation, and took into account the parity of the
power spectrum of the initial signal: G, (-w) = G,(w).
At At = 0, Egs. (2) and (3) describe, respectively, the
intensity of the coherent component, |4, and the signal

variance at the output of the correlation receiver oé,
while their sum describes the mean signal intensity
lo=lge+ 04 = Kg(0, ty) for different ime delayst,. Let
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us denote by At, and Awy the time and frequency cor-
relation scales of the transfer function fluctuations at
the central frequency wy, of the radiated narrowband
signal and by Aw,, the effective bandwidth of the spec-
trum for this signal. In the limiting cases At, < T and
Aty > T (rapid and slow fluctuations), Aws > Aw, and
Awp < Awy, (synchronous and selective fading accord-
ing to the terminology of the statistical theory of com-
munication [2]), one can obtain approximate estimates
of the intensity of the fluctuation component (the vari-

ance oé) and thetotal energy, | o, of the output effect of

the correlation receiver. These estimates do not depend
on thefluctuation naturein the signal propagation chan-
nel, the form of frequency—time correlation moment

Kar (0, W, At), or that of theradiated signal C,(w) [8].
In order to obtain the results in a wider range of
parameter variations, it is necessary to specify the
forms of the frequency-time correlation moment of
the transfer function and the spectrum of the noiselike
radiated signal.

As an example of a channel with random parame-
ters, consider the reflection of acoustic signals from a
rough sea surface. As is known, rather intense sound
scattering from the rough sea surface is observed in a
wide frequency range beginning from tens of hertz,
which gives rise to rapid random fluctuations and a
reduction of the coherence of the sound field reflected
from the surface. Assume that surface displacements
(X, Y, t) (deviations from the mean plane) are described
by a random function stationary in time and homoge-
neous in space, normally distributed with a variance

of . Assume that the energy spectrum of the initia
noiselike signal hasthe form

2
o, O 00— Wy
G(w) = —ex [—4— }

)

+ w0
+ exp[—4D A, O }%

which corresponds to the time correlation function

K, (At) = 02 expl—(Aw,At)?/16]cos(wyAt). Consider first

the coherent signa component at the correlation

receiver output. Let us substitute the known expression

for the reflected mean field (the envel ope of the transfer
function) into Eq. (2):

- 0 2wl

Pl = Ry'epE22o0),

O 2w, U

&)

where R, = (z + z)/siny; Y isthe grazing angle at the
point of specular reflection from the mean plane; z, and
z are the depths of sound radiation and reception,
respectively; @, = 2(wy/cyo;siny is the Rayleigh
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parameter at the central frequency of the spectrum wy;
and ¢ isthe sound speed. For the spectrum G,(w) given
by Eq. (4), after some calculations, we obtain an
expression containing a weighted sum of single inte-
grals:

5
KAt Tg) = 5 Nydy. ©)
n=1

Here, the following notations are introduced:
J; = cos(wyBAL) + cos(w,Plo),

3, TI%L

x [exp(_CnT)COS(bnT + dn)
n=2..5;

Hexp(-a,T%)

+ exp(c,t)cos(b,T—d,)]dr,
B = (1+05025%)", &, = 0.5000,/wp,

to = At+215, Ny = Noexp(—hy—hy),
N = 0.5R;’ 0, Bexp(-D3p), (7

N,s = Noexp(—h,—h,), h; = (Aw,BAL)?/32,

h, = (Awi0)?/32, a5 = (Bw,B)’/8,
~.2
a5 = (Aw,B) /(8B), by = 2wB, by =0,
b4 = 2@0[’%/8, b5 - CL)OB6 q)Ov

Crs = (DW,B)?AUSB, s = (Aw,B)°AUS,

d, = w,PAt, d; = wOBfO, dys = ooo|~3At.

The quantities No and B are obtained from N, and
with CDS in place of 2CD§.
An analysisof sum (6) showsthat, for Aw,T> 1, the

first term prevails. Because §,, <1, for CDS < 1 wehave
B=1,AwPL = Aw, and w,B = wy,. In this case, the
intensity of the coherent component of the noiselike
signal iscloseto the mean intensity of thetotal reflected
field and does not depend on the bandwidth Aw,. The
time correlation function Ko(At) at 14 = O, after the
introduction of the delay for the signal propagation
time ty = Ry/c,, coincides within a constant factor with
thetime correlation function of theinitial signal K (At).
As the Rayleigh parameter ®,, increases, the effective
bandwidth Aw,3 and the central frequency w3 of the
coherent component of the radiated noiselike signa
decreases due to the stronger decrease in the high-fre-
guency part of the spectrum. Theintensity of the coher-
ent field, the time correlation scale, and the period of

GULIN

the correlation function oscillations Kg{At) increases
as the initial signal band increases according to the
expression

K g(At) = Ry o Bexp(-P5B)
x exp[—(Aw,BAL)°/16] cos(wyBAL).

These effects are most pronounced for <D§ 52 > 1; how-

ever, in this case, the intensity of the coherent compo-
nent is negligibly small compared to the mean intensity
of thetotal field. A noticeable influence of these effects
appears only in the region ®, = 1 for arelatively wide
frequency band of the initia noiselike signal.

We now turn to calculations of the correlation of the
fluctuation component of the reflected signal at the out-
put of the correlation receiver. Calculations for the fre-
guency—time correlation moment of the transfer func-

tion fluctuations Kap (W, w,, At) were performed in
[15-17]. The limiting cases of strong and weak fluctu-

ations were considered for exp(—®2) < 1 and @7, <1,

respectively, where the values of the Rayleigh parame-
ter @, were taken for the frequency range Wy, < W <
Wrax Occupied by the noiselike signal. According to the
expressions obtained in the general casefor an arbitrary
frequency band, the scattered field cannot be consid-
ered as statistically homogeneous in frequency. Let us
use approximate expressions suitable for the descrip-
tion of the transmission of relatively narrow-band sig-
nalsthrough alinear stochastic filter caused by the scat-
tering from a quasi-harmonic roughness of the water
surface. In the small-slope approximation and for low
scattering angles with respect to the specular reflection
from the mean surface, in the framework of the two-
dimensional model of the sea roughness, when the sur-
face displacements depend on the single horizontal
coordinate, the frequency—time correlation moment

Kap (Aw, At) is determined by the expression

Aw 7
K Aw, At) = +i
ap( ) Ro%l Ao
Aw At Aw ™0 ®)
| ug _ At i [
g eXWEAmpp (At [“'mwmﬂ} g

in the case of strong fluctuations and by the expression

CD -1/2
Kap(Aw, At) = —[1 +idAw D}
2R; (A

DAt Aw [P
ChAt, AwPF

X exp(—iAooAtd)%exp[
O

©)
x—* —i sz]
J1+i(Aw/Awp,)
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2
+exp[_gg_ Aw ] 1

At Awpd [T+i(D0/Dop,)

. O
+ |QZAt} 0
O

in the case of weak fluctuations. Expression (8)
obtained for a quasi-harmonic gravity wave on the sur-
face of adeep basin does not depend on the form of the
correlation function IM,(p, At) or the random sea spec-
trum G;(w) and is determined only by the spectral

moments Q; = 2 [ G (Q)Q"dQ. Expression (9) was

obtained for the frequency spectrum of the random sea G,
corresponding to time correlation function I';(At) =
exp[—(At/At;)*]cos(Q;At). The parameters Awp, and
Awp, in Egs. (8) and (9) have the meaning of frequency
correlation scales for the transfer function fluctuations.
One of them describes the decay of the frequency cor-
relation by the power law, the second, by the exponen-
tial law. In the case of strong fluctuations, Awy, =

WPE + ZSPYPIQIzzc(l - coSYSIM)] Y,

D, = +/203/P, g =9.81 M/, Aty = ﬁ/(@ Py is
the time correlation scale of the transfer function fluc-
tuations at the frequency w,, a is the angle in the hori-
zontal plane between the direction of surface wave
propagation and the vertical plane containing the sound
source and the receiver. In the case of weak fluctua-
tions, Awp; = 26y/[Dy(l + DI?], Ak, = 26/(D QAL D),
Dy =CR(1 — cogysinta)/[w, S Pvi(At)?], v is the
phase speed of gravity waves on the basin surface, R=
22z2/[(zs + z)Siny], Aty = QAt;/(2l1Awk,), | = | for a
shallow basin, and | = 2 for a deep basin. At | = 2,
Eqg. (9) is an approximate one that is valid for a quasi-
harmonic seasurface when Q,At; > 1 (inthiscase, v =
9/Q;). For aquasi-harmonic sea surface, Awp,/Awp, =
(QZAtZ)—l < 1 and, therefore, the frequency correlation
decay ismainly determined by the smaller scale (Awy,).

With allowance for the statistical homogeneity of
the frequency fluctuations of the transfer function,
according to Egs. (8) and (9), theinitial integral expres-
sion (3) is reduced to the form

4Toooo

Kao(At, ty) = -2-?_— (] %L—%Gu(uﬁ Q/2)

0 —0—0
x G,(0— QI2) exp[i(w— QI2)At]

3 10
x { 2Kap(Q, T) exp(iQTy) cos’ (wT) (10

+Kap(0, T)coS(QT) } di do Q..

Consider first the case of strong fluctuations. For calcu-
lating integral (10), we use the one-dimensional model
of the frequency correlation function by assuming that
conditions (Awp,/Awe,)*> < 1 and Awp, = Aw, are valid.
In this case, the decay of the frequency correlation
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within the signal frequency band is determined by the
exponential factor with the correlation scale Awp,.
A similar model was also considered in [18]. In the
framework of this model, the frequency decorrelation
of acoustic field fluctuationsis related to the change in
wave dimensions (the number of Fresnel zones) of the
scattering region along the vertical as the frequency
varies [15, 19]. Substituting Egs. (4) and (8) into
Eqg. (10), after calculating the integrals with respect to
the variables w and Q, we arrive at a result that can be
represented as the weighted sum of the integrals J,
coinciding in the form with integral (7):

6

n=1

Parameters a,, b, ¢,, and d, involved in J,, as well as
the weighting coefficients M,,, in Eq. (11) take the fol-
lowing values:

a5 = U(Ate)®, 836 = (AR)/8 = (Aw,)?/8 +ay,

D1245=0, b3g=2w, ¢C,=0,

Cas = (Dw)’AU/8, dyzse = WAL,

dys = Gol, @y = WoYap T = 2T4+At,

(12)
M, , = 0.5Mgexp(—H;—H,—Hj),

Ms s = 0.5MoYgo€xp(—2H;),

-1/2

Mo = OuRVup:  Vup = [1+0.5(A0,/Awp,)
H, = (AwAt)?/32,

H, = (Awuf)zyﬁplszv H; = (szIAwPZ)Zyﬁp'

Integrating over Tin Eq. (7), the correlation function
Kag Ccan be evaluated in terms of the tabul ated probabil-
ity integrals of the complex argument [20, 21] W(Z) =

2i 2 .

_ 72 + = =
exp( Z)[l Jﬁﬁ exp(t )dt},wherez X+iY.The
tables are composed for the region X> 0, Y > 0. For cal-
culating w(Z) beyond this region, one can use the rela-
tionships W(-2) = 2exp(-Z%) — wW(Z) and wW(Z*) =
2exp[—(Z*)?] — w*(Z). Upon integration in Eq. (7), we
obtain

3, = ——exp(-a,T?)

2
n

x [ eXp(CnT) COS(bnT - dn)
cosd,

+ exp(—c,T)cos(b, T+d,)] - >
a, T




A

Tt
* L R OPE Xt Vi)
o (_ YnoC'OS(I)n + XnSinq)n + /\/gnTCOSq)n)
+ (U nano + VnoXn) COSdn
- Nnano - Unoxn) S ndn]

Jm

2
n

x{ exp(c,T)[cos(b,T —d,)(YnyUns + X;Vis)
+sin(b,T—d,)(XUni = Yn1Via)]
+ exp(—c,T)[cos(b, T +d,)(Yn2Uns + X,Vio)
+sin(b, T +d) (X Upz = YiaVi2) 13

(13)

exp(-a,T?)

where
Unm = ReW(an)’ Vnm = ‘]mW(an)’
(n=1...6,m=0,1,2), ¢, = 2Y,X,—d,,
an = Xnm+ iYnml

XnO = an = Xn2 = Xn = bn/(2/\/5n)1
YnO = cn/(ZA/En),
Ynl = /\/EHT_Cn/ZA/anI Yn2 = /\/gnT"'Cn/zA/an'

A comparative anaysis of thetermsentering into sum
(11) showsthat, for narrow-band signals (Aw,/wy)? < 1)
at the rather small interval of frequency correlation
((Awp,/0y)? < 1) and weak restrictions that are usually
satisfied in practice for composite noiselike signals
(Aw, T> 1, AwAtpy > 1, and |At)/T < 1), the main con-
tribution is made by the first term, M,J,. The next term
in order of magnitude is the term with the number n=5.
As a result, we obtain the following approximate
expression for the correlation function K,:

Kao(At, tg) = 0.503 Ry Y pe
x exp(—H; —H,)cos(wyAt)
x {8~ [1-exp(-¢)]
+[2/2meexp(Ho)] B, Tyyp) '}
Here, € denotes the ratio € = T/Atp, and P(g) =
%T ﬁ) exp(—xz) dx is the probability integral. Then, for

small integration times T compared to the time correla-
tion scale Atp, (the case of slow fluctuations) and a
completely compensated time delay of the signal (ty =

Ry/Cs Tg=0, and t = At), we obtain

GULIN

Kao(At, Ry/Cs) = 0.50,Ry Yy,
x exp(—H; — H,) cos(wyAt)

x {1+ 2./2mexp(H,) (Do, Tyy) '} -

L et usintroduce the normalized variance of fluctuations

(NVF), 55 = 05(2R5/0%) = Kagl0. Ry/CI2RS/0}),
which in the case of strong fluctuations is almost equal
to the normalized mean intensity of the output effect of

the correlation receiver 1o . From Eqg. (14), we obtain

(14)

-1/2

o = [1+0.5(Aw/Awp,)" "+ [242T0Aw,T].

For (Aw/Awp,)*> < 1 (dow synchronous fluctuations
within the signal frequency band), y,, = 1 and Gg ~ 1 +
[2./2T1/Aw,T]. For(Aw/Awm,)? > 1 (slow selective

fluctuations), Gg = (V2AWk/AG,) + [2/2T1/Aw,T].
For large integration times compared to the correlation
scale Atp, (the case of rapid fluctuations), we have

Kag = 0.50Ry{ € 'Yyp/Ttexp(—H; —H,) cos(w,At)
+(2./2T0AW,T) exp(—=H,) cos(wyAt) } .

Therefore, at (Aw/Awp,)? < 1, we obtain Gé ~
(JTUALT) + (2 /2T1/Aw,T), whereas for (Aw,/Aw,)? >
1— G = (J2TtAGKAteyAw,T) + [ /BTT/AG,T]. From

the formulas presented above, it follows that NVF 6é
characterizes the extent of frequency and time averag-

ing of fluctuations. The quantity 8% is the sum of two
terms. The first term strongly depends on the ratios
Atp/T and Awp,/Aw, and determines the averaging of
fluctuations caused by the scattering from the rough
surface. The second term only depends on the parame-
ters of theinitial signal and the correlation processing.
It is determined by the remainder of fluctuations (not
completely averaged) of the initial noiselike signal. To
neglect thisterm in the above limiting cases, it is suffi-
cient to impose the conditions min(Af,, Afp,) T > 1 and
min(Af,, Afp))Atp, > 1, where Af, = Aw/2T1, and Afp, =
Awp,/2TL When these conditions are met, the normaliz-

ing coefficient 0.5 03 Ry’ (theratio of the true variance
to the normalized one, oé /Bé ) is approximately equal

. . 2 .
to the maximum va ue of the variance 0., Which cor-

responds to the case of dow synchronous fluctuations
when the averaging over frequency and timeisabsent. In
the case of strong fluctuations at (Aw,/wp,)?> > 1, the fre-
guency averaging leadsto adecreasein the mean inten-
sity of the signal at the output of the correlation
receiver.
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The normalized AKF of the output effect of the cor-
relation receiver, ['yg = KAQ/oé, for both small and
largetimes of integration, is determined by therelation-
ship

[ aq = exp[—(Aw,At)*(1 +y5,)/32] cos(w,At).

For (Aw/Awy,)* < 1, it coincides with the normalized
tempora corrdation function of the initial noisdike sig-

nal:Tyo=T,= Ku/oﬁ = exp[—(Aw At)*/16]cos(wy,At). For
(Aw/AWpy)* > 1, T o = exp[—(AwAt)?/32]cos(tyAt).
In this case, the frequency averaging of fluctuations
leads to an increase in the time correlation scale and a
narrowing of the spectrum of the noiselike signal by a
factor of /2.

If, dlong with the signal reflected from the surface, a
weakly fluctuating direct signal without any contacts
with the surface is received, then, with the compensa-
tion for the time its propagation, the mean intensity of
the fluctuating part of the field will additionally be
weakened:

4

lo= 06 = ;—R”g[l +0.5(800,/B00p)]

x exp[~(A,ARY,p)*/(8¢0)]
Here, AR is the path difference between the direct sig-
nal and of the signal reflected from the surface.

The analytical estimates obtained are valid for com-
posite noiselike signals and do not allow the transition
to the case of monochromatic radiation. Substituting
u(t) = Ajcos(ut — ¢y) in Eq. (1), at w,T > 1, we arrive
at the following expression for the variance of mono-
chromatic signal fluctuations oéo at the output of the

correlation receiver:

AL

2 2 LN

= I o =eessssm — —

900 = oo W{% T

x { Rekp(ooo, Wo, T)[1 + cos(2w,T)]
+ Rekp(ooo, -y, 1))} d .

Taking into account that, at (Awe/0y)? < 1, we have

|Re|~<p((o0, -y, )| < |Re|~<p(wo, wy, )|, and, inthe case
of small integration times when (T/Atp)? < 1, we
obtain g = lgo = AgR,’ /8. For identical values of
the mean square of the noiselike signal amplitude dis-
tributed by the Rayleigh law and the square of the
monochromatic signal amplitude, we have A5 = 2a0°>.
With alowance for this equality, the ratio of the vari-
ance of the noiselike signal fluctuations and that of the

monochromatic signal equals NVF 6(23, which deter-
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mines the extent of averaging over frequency and time
of noiselike signal fluctuations.

Consider now the case of weak fluctuations. Carry-
ing out the same transformations as for strong fluctua-
tions, in the framework of one-dimensional model Tak-
ing into account only the exponentia decay of the fre-
quency correlation in Eqg. (9),! we arive at the

expression Kyo(At, 1y) = Zﬁ . I\N/InJn . The latter repre-
sents the weighted sum of nine integrals coinciding in

their form with intergal (7) but with different values of
parameters entering in J,;:
a1, = (Yu/Bt)'s 855 = (803,)78+ (VyplAty)”,
a4 = (A®)°/8 = (Aw,)/8[1+ 8/(Aw Aty)7],
b1 256 = EZZ = Q
—0.25000p,Y (AW, Awp,)*(T/AL,),
b; = 20, +b;, b, = 20,—Dby,
b, = 20+ Q;, by = 20— Q,
by = Q;, € =0, ¢, = (4/At)(0/Awp,)Yop,
Casro = (Dw)’AL/8, C5 = C,+C,,
Co = Co—Cs Uigazg = WAL, dys6 = ot,
U)oVﬁm

t = At+214-Aty, Aty = Q At/ (1Awp,).

d9=0, (I)Oz

The coefficients M, have the following form: My =
0.5Moexp(—H, — Hy),

M, = 0.5exp(=H,—H,—Hs) = Miexp(=H.),
M3,4 = 0.5|\7|1, '\7|5,6 = O.5|\~/|2,
Mz = 0.25(Moly,,) exp(—2H,),

Mo = 2|\7I7cos(w0At), Mo = Gﬁcbgyup/Rg'

The quantitiesH,, H,, and H, have the sameform asin
the case of strong fluctuations (Egs. (12)). As in the
case of exp(-®;) < 1, the integration results can be
expressed in terms of the probability integrals of the
complex argument (see Eq. (13)).

An analysis of the sum of integrals shows that the
terms Mp J,, with numbers n = 7-9 do not depend on the
time delay in the channel of the reference signal ty or
the frequency correlation scale Awy,. They are propor-

LIn this model, the frequency decorrelation of fluctuations is
related to the shift of intensely scattering regions of the surface
with a change in frequency.
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tional to (Aw,T)~! and characterize incompletely aver-
aged fluctuations of the initial noiselike signal. The
termswith numbersn = 3, 4, 7-9 do not depend on the
ratio between the integration time T and the correla-
tion scale of random sea At;, the term with the number
n = 9 being predominant in the absolute value. At

Aw, T > 1, this term approximately equals I\N/IgJ9 =
0.5(Py/Ry)> 0, eXp(—2H,)cos(exAt) BT/ G, T). By the
assumption that thesignal is narrow-band ((Aw/w, < 1),
we ha\/e|l\7Ian| < |l\~/I1J1| an=25 6.Asaresult, as
in the case of strong fluctuations and with the same

restrictions, we arrive at the approximate expression in
the form of two terms with numbersn =1 and 9. The

main contribution is given by thefirst term I\~/I1J1 while

'\7|ng is the next term in order of magnitude with
respect to (Af, T)~..

Consider the limiting cases on the assumption that
(Af, ! < 1. In this case, at small integration times

when the condition £~2<T < | issatisfied, we have
Kag(At, Tg) = M1J; = 0.5(®/Ro)’0tyup
x cos(woAt) exp(—H;, —H)

= 0.5(Py/Ry)*04Y1pCOS(0pAL)
x exp{ —(Aw,) [AtY1+ Y,

(214 Dty)Y2 /1 +y2] 132)

x exp[—(DooYyp) (214 — Atg)*132(1 + y2o)] -

According to Eq. (15), the position of the maximum of
the AKF envelope, Kyo(At), depends on the time delay
inthereference signal channel. Only with theintroduc-
tion of the delay for the arrival time of the scattered
(incoherent) component of the received signa, ty =
(Ry/cy + (Aty/2), the maximum fits the zero shift, At = 0.
In this case, the normalized AKF, T,o(At) =
Kag(At)/Ko(0), has the same form as for strong fluctu-
ations. With the introduction of the delay for the prop-
agation time of the coherent signal component, t, =
Ry/Cs, the maximum of the envelope of I'\o(At) is

shifted by At,, = y2, Aty/(1+ y5, ) but the effective width
of the correlation maximum remains the same asin the

case of 14 = Aty/2. Note that the condition f)z T<1,
under which Eqg. (15) is valid, is amost equivalent to
the inequality Q,T < 1 for temporal delays varying

(15)
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within the effective width of the correlation maximum
near the values 14 = Aty/2 and 14 = 0.

The expression for the NVF, which for weak fluctu-
ations we define by the relationship G5 = Kyg(0,
192 R5 /D0, , hasthe form

00 = [1+0.5(Aw,/Awp,)’] e

(16)
x exp[—(Aw,Yyp) (214 — Aty)?/32] .

The power factor in Eq. (16) is equal to the maximal

value of NVF, Erémax, which corresponds to the ref-
erence signal delay, ty = (Ry/cy + (Aty/2). The quan-

tity Goma» Which characterizes the extent of fre-

guency averaging at the maximum of the incoherent
signal component, coincides with the maximum value
of the NV for the case of strong fluctuations and cor-
responds to the delay t, = R,/c.. With the introduction

of the delay ty = Ry/c,, the quantity 62Q in the case of
weak fluctuations decreases due to the shift in time of
the maxima of coherent and incoherent signal compo-

nents at the output of the correlation receiver and
becomes equal to

o = [1 +0.5(A0/A0p,)2] 2

X X0 Yp QA /180,321,

The frequency averaging at the maximum of the
coherent component, i.e., at ty= R,/c,, can aso be char-

acterized by the variation coefficient of the output

effect of the correlation receiver ng = GQI(‘;C’2 =

JKo(0, 0)/1 .. Inthe limiting cases (Aw,/Awp,)* < 1
(synchronous fluctuations) and (Aw/Awe,)*> > 1
(selective fluctuations), we have né = 0.5 cpf,&é =
0.5 D; expl—(Aw QA /1 Awk,)?/32]

0.707 D (A6k/AG,)eXp—(Q:AL)Y/1612],  respectively.
In the first case, for a sufficiently small Aw,, the quan-
tity nq approaches the value determined by the ampli-
tude variation coefficient of the monochromatic signal
reflected from the statistically rough surface.

For large integration times (at &; = T/At, > 1), we
have

and ng =

Kag(Bt, 1) = 0.5(®Py/Ro) 0

x exp(—H,; —H,) cos(w,At)
- ) (17)
x { (/T I T) exp[—(0.5QeAt;/Y,p) ]

2.2 ~2_5
+2[1— exp(—€;Yyp)] /1Qc T}
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In the intermediate region, at fzzT 2 1, (Ty,/At)? < 1

(this may be at (Awy/Awp,)? > 1, when yi, < 1), we
have

Kag(At, Tg) = 0.5(Pg/Ry)°0yexp(—H, —H,) )
x oS WeAt){ 2y,,[1 - coS(Q;T)] 10T |

The form of the function I \o(At) is determined by the
same expressions as at Q,T < 1, i.e., amost does not
depend on the ratio between the integration time and
the correlation scales of random sea, Q; and At;.
Expressionsin the bracesin Egs. (17) and (18) describe

the NVF of signalsfor 14 = Aty2 (inthiscase, Q; =Q,
but, in general, depending on the ratio between Aw, and

Awx,, Q¢ cantakevaluesintheinterval 0.5Q,/I < Q¢ <
Q7). At 14 = 0, these expressions are acquire the factor

expl—(Aw Atgyyp)/32(1 + Y5, )] characterizing, asin the

case of Q; T < 1, the additional smoothing of fluctu-
ations caused by time shifts of the maxima of coherent
and incoherent components. Along with averaging
over frequency, averaging over timeis also present in
Egs. (17) and (18).

Thus, in this paper, the variance and time correl ation
of fluctuations were studied for the output effect of a
correlation receiver at the reflection of acoustic noise-
like signals from a rough sea surface for different val-
ues of the radiation bandwidth, the scale of frequency
correlation of the transfer function fluctuations, and the
timedelay in thereference signal channel. Calculations
are carried out on the basis of the general expression
obtained for arbitrary linear channels with random
parameters and the expression for the frequency—time
correlation moment of the transfer function fluctuations
in the channel with reflections from a water surface
with two-dimensional quasi-harmonic roughness. The
cases of strong and weak fluctuations are considered in
the framework of a single-scale model of frequency
correlation. According to these calculations, under the
conditions of a rapid selective fading, the fluctuations
of the reflected signal at the output of the correlation
receiver are substantially averaged, as compared to the
case of aslow synchronous fading. Under these condi-
tions, at comparable intensities of the coherent and
incoherent components or with the predominance of
the coherent component, the extension of the frequency
band of the radiated signals, which promotes the aver-
aging of fluctuations, leads to an improvement of the
reception quality owing to the suppression of distor-
tions associated with amplitude and phase fluctuations
and to an increase in the signal coherence. Under the
same conditions, at alow level of the coherent compo-
nent (strong fluctuations), the frequency averaging of
fluctuations, which increases as the signal frequency
band broadens, |eads to a considerable decrease in the
total intensity of the output effect of the correlation
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receiver for the signals reflected from the sea surface
and, therefore, to an energy loss, as compared to the
case of synchronous slow fading, which is realized for
small integration times and narrowband radiation. At
the same time, in the presence of a weakly fluctuating
direct signal, the suppression of the reflected signal
arriving with a small delay raises the efficiency of the
correlation reception. The results of the calculations
presented above can be used in choosing the signal
parameters matched with the propagation channel, as
well as the algorithms and parameters of signal pro-
cessing, in underwater monitoring systems based on the
active sonar technigue and in underwater sound com-
munication in the presence of reflections from the sea
surface.

A closer investigation of the frequency and time
averaging of fluctuations can be performed on the basis
of numerical calculations by using the expressions
obtained in this paper for different ratios between the
parameters of the probing signas, the parameters of the
correlation processing, and the characteristics of the
transfer function of the channel with reflections from
the rough surface, as well as with the use of the results
of calculations for a more general two-scale model of
frequency correlation.
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Abstract—Results of atheoretical calculation of the directional characteristics of elastic waves excited by an
oscillating point forcein afluid-saturated porous medium are presented. Based on Boit's theory and the theory
of elementary acoustic sources, the wave amplitude and radiation power are calculated for two kinds of longi-
tudinal waves and the transverse wave. An analysis of the spatial angular characteristics of elastic wavesis per-
formed for two types of rock, namely, water- and gas-saturated sandstones. The angular distributions of vibra-
tions in the solid and liquid (gaseous) phases of the medium and the frequency dependences of the radiation
power associated with each of the three types of acoustic waves are presented in graphical form. © 2005 Ple-

iades Publishing, Inc.

This paper is devoted to analyzing the characteris-
tics of longitudinal waves of the first and second kinds
and the transverse waves radiated into an infinite fluid-
saturated two-component porous medium under the
excitation of the medium by an oscillating force applied
at a certain spatial point. Among the approaches used
for analyzing the acoustic wave processes in porous
media and solving a number of applied problems, the
Frenkel-Biot wave theory occupies an important place;
in addition, this theoretical model has found further
development in many investigations. As follows from
the recent literature concerned with this subject [1],
modifications of this theory are mostly directed toward
an adequate description of the processes occurring
when a seismoacoustic wave propagates in actual
(characterized by complex structural and physical
properties) rocks forming layers of fluid-saturated col-
lectors and toward an explanation of the accompanying
effects. These papers investigate the features related to
the complication of acoustic wave processes induced
by the multicomponent structure of a porous medium.
At the same time, there are only a few works that
develop the analysis of the efficiency of acoustic radia-
tion by vibration sources in such media. Presumably,
this occurs because of the lack of reliable data on the
measurements of both fast and slow Biot waves that
would be obtained from actual seismicinvestigationsor
practical works on borehol e acoustics, which putsinthe
forefront the necessity of analyzing the conditions for
the existence of the mentioned waves while the prob-
lem of wave excitation in a complex multicomponent
medium is shifted to the background. However, in order
to explain the absence of recent experimental datawith
measured seismoacoustic signals that can be identified
with confidence with longitudinal Biot waves of both

kinds, it isworthwhile to analyze the efficiency of their
excitation by different sourcesin amode medium imi-
tating fluid-saturated rocks. Of fundamental interest is
the calculation of acoustic fields excited by elementary
vibrators (in particular, by a dipole vibrator) similar to
that carried out in [2] for thefield of a pulsating source.
The cited paper considered the excitation of elastic
waves described by Biot’s model by a monopol e source
in a two-phase medium. The wave amplitude and the
acoustic power carried by the waves were calculated
under the assumption that the pore-filling fluid is either
water or gas (air), the skeleton parameters being the
samein both versions of the problem. The present paper
deals with a similar analysis under conditions of the
same two-component medium with water or air satura-
tion of open pores, but in the case of elastic wave radi-
ation by a vibrator known in acoustics as a dipole
source or a source of alternating force.

In addition, the enhancement of the efficiency of
seismoacoustic radiation in the form of the desired
waves (i.e., elastic waves of a certain required type) is
an important stage in solving the problems of localiza-
tion and diagnosis of producing collectors saturated
with hydrocarbons, aswell as the problems of an active
vibration action on oil and gas pools with the aim of
increasing the discharge of oil and gaswells[3].

The calculation is carried out under the assumption
that the two-phase medium described by Biot's theory
[4] isunbounded and is excited at acertain spatial point
by an aternating force. Basically, such an analysis
could be performed on the basis of modeling the oper-
ation of borehole sources, which would be in better
agreement with actual conditions. However, such a
statement would complicate the problem by the neces-
sity of considering the structural features of the source

1063-7710/05/5106-0653$26.00 © 2005 Pleiades Publishing, Inc.
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and the boreholg; to omit this necessity, we consider the
above problem in the simplest statement. We use the
same idedlizations as in the basic theory and take into
account all the normal waves excited by the force
source; each of these waves makes its own contribution
to the total energy balance, and the calculation of these
contributionsis also part of the problem on the acoustic
excitation of a porous medium. Solving this problem,
we use the approach in which the force source is mod-
eled as arigid foreign massless sphere of a small wave
size, which is embedded in the medium and can oscil-
late in the axia direction with a given displacement
amplitude [5].

Monograph [5] includes the derivation of the formu-
las for the spatial distribution of elastic particle dis-
placements and stresses in a single-phase eastic
medium under the action of an aternating force source
in the form of a periodically pulsating sphere whose
walls are in good contact with the particles of the
medium. Such a source is also known as a dipole
source, and the corresponding dipole moment is deter-
mined in terms of the vector of elastic displacements of
the medium u, which coincides with the vector of the
displacements of the oscillating sphere at the sphere—
medium contact boundary under the condition that the
sphereradiusr, tendsto zero [5]. If this source operates
in a solid or liquid medium, the dipole moment is
related to the displacement vector by the following
expressions; in asolid medium, Ng = Iimo—lznrou(r =

lg -

ro)/w(2/c + 1/c’), where ¢, and ¢, are the vel ocities of
propagation of longitudinal and transverse waves and
wisthefrequency of theaction; inaliquid medium, N; =
Iim0—2nr§u (r = 1y). In both cases, the dipole moment
is related to the force acting on the medium by the
expression Fg ; = —pw?N; ¢, where p isthe density of
the medium. In what follows, we assume that inequali-
ties Ju| < r, < 21C,/W hold; we aso omit everywhere
the temporal factor e,

We start with the expressions given in the aforemen-
tioned monograph for theradial and meridional compo-
nents of oscillating displacements in a conventional
elastic medium driven longitudinally by axia vibra-
tions of the sphere. In view of the fact that our medium
is composed of two phases, namely, skeleton and fluid,
we modified these expressions by considering the con-
tributions of al norma modes to the oscillating dis-
placements of particles of each fraction. Then, we can
represent the spatial dependence of thetotal field of dis-
placements in the form

ZASLAVSKII
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where u, and ug are the radial and meridional compo-
nents of the oscillating displacements of the skeleton;
v, istheradial component of displacementsof thefluid,;
indices|1 and |2 of the wave numbers and phase veloc-
ities, k, = w/g, and k;, = wy/c,,, correspond to the longi-
tudina waves of the first and second kinds (Biot
waves); and index t of the wave number and phase
velocity, k; = wy/c,, corresponds to the shear (transverse)
wave.

The coefficients C, D, and E are unknown, and they
are to be determined in solving the problem on wave
excitation. We do not draw here the component vginan
explicit form, because it does not appear in the bound-
ary conditions at the source-medium contact interface
in view of the slippage of the liquid fraction. However,
this component is taken into account in the calculation
of the total acoustic power, because it is present in the
radiation field of the shear wave. It can be expressed in
the form vy = M, [6]; the meaning of the quantity M,
will be explained below.

Thewave numbersk,, k,, and k; can be determined,

in accordance with [4, 6], as k3 = z, (WV,)?, ki =
2, (W), and K = (0/6)* = (WVA(E, - iE)), where
V, isthevelocity of shear wavesin the skeleton material

and z,, and z, arethe roots of the dispersion equation

that governs the velocities and attenuation coefficients
of longitudinal waves of the first and second kinds:

(z—2z)(z—2z)—-iM(z-1) = 0. 4)

Explicit expressions for the parameters appearing in
this equation, including the quantity M and the charac-
ACOUSTICAL PHYSICS  Vol. 51
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teristic velocity of longitudinal wavesV,, aswell asfre-
guency correction functions E, and E; that govern the
transverse wave dispersion and attenuation, will be
given below.

A further analysis of acoustic radiation characteris-
tics is preceded by the numerical solution of EQ. (4),
whose roots z; , define the phase velocities and atten-
uation coefficients of longitudinal waves by the rela-

tionships ¢,, = V /Re(Jz, ad a,, =
wIm( /2, »)/Vy. The parameters z, and z, appearing in
Eq. (4) are expressed as follows: z, = V4 /¢’ and z, =

V2 /¢t wherec, and ¢, are the vel ocities of longitudinal
waves in the materials of the skeleton and the fluid.

Biot [4] introduced a number of parameters, which
include acombination of the densities of the skeleton (py)
and the fluid (py) p = ps— B(ps— Py), the effective inter-
phase density parameter p,, the parameter b = 8u3&/a?,
the coefficient of fluid dynamic viscosity y, the dimen-
sionless porasity 3, the dimensionless pore winding &,
and the average pore radius a. In addition, Biot intro-
duced the dimensionless density and elasticity con-
stants (how called Biot's constants) determined in
terms of the above parameters as follows:

EV - (1_B)ps+pa — pa
E Y pstB(pr—ps)’ TP pst+ B(Pr—ps)’ -
% - Bpf + por
5% pstB(pi—pY)’
O C/((1=B)Ps+ Pa)

1 = 7 2
E Cs((l_B)ps"' p(x) +2Q+ Cf(Bpf + pa)
0. _ Q

= 6

2 T (1 B)pet po) +2Q + C(Bpr +pa)
O 2
E]Pzz _ Ci(Bps + Py) .
0 ' ((1=PB)Ps+ Pa) +2Q + CH(BP;s + Py)

The squared characteristic velocity V§ isexpressed
by the following explicit relationship:

v2 = GUL=B)P:+pa) + 2Q +Ci(Bp; + po)
’ Ps* B(Pi —ps)

where Q is the interphase stiffness and parameter M in
Eq. (4) isgiven by the formula

g, +ie
M = 1—22 )
01102, —0p
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Here, the functions €, and €, describe the deviations of
the fluid flow from Poiseuille flow in the presence of
vibrations of the liquid along open cylindrical channels
that model the pores of the medium. These functions
arerelated to the special function

1 KT(K)

41+i(2/k)T(K)

that Biot [4] introduced to correct the frequency char-
acteristics of longitudinal waves. The quantity T(K) is

expressed in terms of the zero-order Kelvin cylindrical
function and its derivative

d -
g (ber (0, k) +ibei(0, k)

(ber (0, K) +1bei (0, K))

F(k) =

T(K) =

the argument of these functionsisk 02./f/f., and the
characteristic (or critical) frequency is given by the
relationship f. = b/21p(Y;, + Y»n)- The aforementioned
relationship is asfollows:

fe
e =W+ Yzz)T Re(F(K)),

fe
&=+ sz)T Im(F(K)).

The functions used to correct the frequency character-
istics of transverse waves are al so expressed in terms of
the functions g, and &,:

_ (Y11Y22 —Viz) (Yo + &) +Y0Er + Si + 33

E
(Y2 t S2)2 + ei

bl

_ &yt Yz)*
(Voo + €2)° + €3
The frequency-dependent velocity of transverse waves
is described by the relationship ¢, = V/Re( J/E, —iE,).
The coefficients M, and M, in Eq. (3) can be derived
by correlating the results obtained by Biot [4] with
those of paper [6]. The corresponding expressions in

terms the dimensionless constants are given by the for-
mulas

—Y1p+ 2,04, — M(01,0,,— 0%)
Y22 =202 —M(01,0,, — oiz) ,

—Y1p+ 2,01, — M(01,0,,—0%,)
Y22 = 2,02 —M(01,0, — Giz)

The system of equationsin coefficients C, D, and E
can be obtained by drawing the conditions that express
the dipole forcesin terms of the corresponding limiting
values of the elastic displacement vectors of both frac-
tions of the medium at the sphere boundary in the limit
ro — 0. Inthe general case, an acoustic dipole applies

M,

)
M,
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to the skeleton and the fluid the forces that can be rep-
resented in the form [5]

F. = lim 12mrpu(r = rp)/(2/cf + 1/cP),

rog -0

F; =

_ s o ()
I|m02nroo) pv(r =ry).

g —

Along with the normal and tangential components of
acoustic displacements, it is convenient to introduce the
corresponding components of the forces acting on the
medium from the part of the sphere by the relationships
Fs = |F4cos8,
Fe = —-|[F{sin®, F; = |F{|cos6.

Then, substituting Egs. (1)—(3) into Eg. (8), we obtain
the system of equationsin coefficients C, D, and E

)

Epsr = %COSG(C +D-E),

E ro(Z/Vt + 1/C| )

OFe = ——P_qing(C/2+Di2—-E), (10
E ro(2/Vi +1/c))

EF” w’pcosB(M,C + M,D),

whose solution can be expressed as follows:

1
C= ——
pP(M;—M,)

11
><[2|r§(2/v$+1/c,2) OF« Feg  Fa }()

3 2|:bose_5ing:|_w2cose
1
pP(M;—M,)
|:|Fsr

2
X[Zré(Z/Vt+1/c|2) _Fen  Fu }

D =
(12)

3 ! l:bose sin Gj wz cosO

ro(2IVi+1/ch)qFy  2Fen

E= 3p [tos® sing’

(13)

Description of the field of vibrations assumes that the
relationship be specified between the forces acting
from the part of the dipole source on the skeleton and
the fluid; physically, the most justified assumption for
the medium with open pores is the assumption that the
source immediately acts only on the solid skeleton:
[Fd=F, |F;] = 0. The use of Egs. (9) simplifies expres-
sions (11)—(13) for the coefficients, reducing them to
the form

_ 2FM,r(2/Vi +1/c))
3p(M;—M,) ’
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2FM,r5(2IV? + 1/c?)

D= ,
3p(M;—M,)

(14)

_ Fry(2ivEi+1c)
= > ,

In these expressions, the factor r2(2/V? + 1/¢) should
be considered as the square of a certain inverse fre-
quency w2 = ro(2/V: + 1/¢’) that depends on the
parameters of the medium and the size of the source.

Substituting Egs. (14) into Egs. (1)—(3), we arrive at
the desired expressions for the wave displacements in
the far (radiation) zone:

E

Fw’M,cosf .

u, = exp(ikyr),

" GH(I’chlzlr(Ml_Mz) " (15)
Fw’M,M,cos6 .

Ver 2 P20 exp(ikyr)

) anzpclzlr(Ml_ M2)

for vibrations in the first longitudinal wave in the solid
and liquid fractions and

Fw’M, cos8 .
U, = 5 . exp(ikar),
BTG PCHr (M — M,) 06
Fw’M,M,cos8 .
Vio = L2 exp(iki,r)

6nai2pc|22r(M1 -M,)
for vibrations in the second longitudinal wave in the
solid and liquid fractions.

Taking into account the expression for coefficient E
in Egs. (14) and the rel ationship between the oscillation
amplitudes of transverse waves in the skeleton and the
fluid,

Vo = MUy,
where
2
M. = — Y1 = M(01,05,—01,)
t— 2 )
Y22 —M(01,0,,—0,)

which can be derived by analogy with Egs. (7), we can
represent the wave displacements of each fractioninthe
transverse wave by the formulas

_ Fw’sin® .
Up = ————-exp(ikr),
anas pc’r
Fw’sind 4
w’sin .
Vg = M{———————exp(ikr).
[¢] t4T[lI;pCt2|’ p( t )

Prior to analyzing the results of calculating the spa-
tial angular behavior of acoustic field and radiated
power, we give the values of parameters used in the
subseguent calculations for rocks of two types, namely,
No. 6
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Fig. 1. Frequency dispersion of the propagation velocity of acoustic waves in water-saturated sandstone: (a) velocities of the first
longitudinal, ¢j;, and transverse, ¢;, waves; (b) velocity of the second longitudinal wave cj,.

for highly porous sandstone with water-filled pores in
the first case and with air-filled pores in the second
case. In both cases, we use the following parameters: &
=1,B=0.45, and @’ = 10 D. We specify the skeleton
parameters as follows: ps = 2.5 g/cm?, ¢, = 3 km/s, and
V, = 1.73 km/s; it is clear that the use of reference data
for specifying these values is not quite appropriate,
because reference data correspond to the medium with
pores, whose presence reduces the stiffness and the
density. In contrast to this approximation, which is suit-
able only in the context of qualitative demonstrative
analysis, the assumption that p; = 1 g/lcm® and ¢ =
1.5 km/s for water taken as the fluid is fairly rigorous,
because these parameters remain practically intact for
the moaisture filling the pores. In the case of gasilled
pores, we suggest the following values of the fluid
parameters: p; = 0.001 g/cm?® and ¢; = 340 m/s. As is
known, in the pores of rocks located at large depths,
these values can appreciably differ from the values
measured under room conditions. The basic parameters
being fixed, the interphase stiffness Q and interphase
density p,, i.e., the parameters that determine the rela-
tionship between the subsystems of the skeleton—fluid
system, can be found from the relationship that holds
for Biot's dimensionless stiffness and density con-
stants: 0, + Oy, + 20, = Y + Yo + 2V;, = 1. Asaresult,
wefind that, in the case when the pore fluid iswater, the
dimensionless constants are as follows: the elasticity
constantsa,, =0.87, 0,, =0.0244, and 0,, = 0.0811 and
the density constantsy;; = 0.80822, y,, = —0.0548, and
V», = 0.30137. Calculating these constants, we obtained
theinterphase elasticity Q = 3.75 x 10® Paand theinter-
phase density p, = 0.1 g/cm?®. In this case, the correspond-
ing values of the characterigtic velocity of longitudina
waves and the critical frequency are V, = 2.893 km/s and
f. =232 kHz for this type of rock.

In the case when the pore fluid is air, the parameters
determining the subsystem rel ationship assumethe val-
ues p, =0.0001 g/cm? and Q=6.5 x 10° Pa. In addition,
we obtain new values for Biot's dimensionless con-
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stants (they are again calculated by Egs. (5) and (6)):
0,,=0.9999938, 6,, =5 x 107, and 0,, = 5.2 x 10 for
the elasticity constants and y;; = 0.9997455, y,, =
—-0.0000727, and v,, = 0.0003998 for the density con-
stants. The characteristic velocity of longitudinal waves
now assumesthe value V, = 3 km/s, and the critical fre-
quency becomes much higher: f.= 3 MHz.

Now, we present the frequency-dependent propaga
tion velocities and attenuation coefficients of acoustic
waves calculated with the use of Biot’s model for both
versions of the two-phase medium with the above-spec-
ified parameters. Our interest lies in the frequency
range 04000 Hz, whose low-frequency part corre-
sponds to the seismic prospecting range and whose
high-frequency part is suitable for use in borehole log-
ging measurements or borehole-to-borehole surveys.
Figure 1a shows that velocities ¢, and ¢, remain nearly
constant; arapid variation with frequency is character-
istic only of the propagation velocity of the longitudi-
nal wave of the second kind c;,. As may be seen from
Fig. 1b, in the frequency range of interest, itsvalue var-
iesfrom afew to three hundred meters per second. Fig-
ure 2a shows the frequency-dependent attenuation
coefficients of the longitudinal wave of the first kind
(a,) and thetransverse wave (a,), and Fig. 2b showsthe
frequency-dependent attenuation coefficient of the lon-
gitudinal wave of the second kind a,. The coefficients
o, and a, grow with frequency according to quadratic
laws, the increment being somewhat higher (but quite
comparable) in the case of the transverse wave. The

coefficient a, increases according to alaw closeto ./f
and, in the frequency range of interest, exceeds the
coefficients corresponding to the first and transverse
waves by at least three orders of magnitude. This is
indicative of the fact that pore-wall deceleration
becomesthe prevailing factor in the loss mechanism, as
distinct from the conventional viscous-volume losses
for the two former wave types. It is obvious that the
strong attenuation makes the measurement of thiswave
very difficult.



658 ZASLAVSKII
1/m
@  0.050 N ég% _
0.038 | p ] ‘—

oy (f) p

----- l 2 () 450}

alf) S ) |

ST 0.013¢ ) L’ e

- ’L _________ T-----_____I __________ ;

0 1000 2000 3000 4000
|, Hz

1 1 1 ]
0 1000 2000 3000 4000
f.Hz

Fig. 2. Frequency-dependent attenuation coefficients of acoustic wavesin water-saturated porous sandstone: (a) attenuation coeffi-
cients of thefirst longitudinal, o, and shear, o, waves; (b) attenuation coefficient of the second longitudinal wave .

m/s
(a) 3200 -

2400
(N
""" 1600
cff)

800

1 1 1 ]

0 1000 2000 3000 4000
f, Hz

m/s
®) 201

L5t
W o

0.5

0 1000 2000 3000 4000

f.Hz

Fig. 3. Frequency dispersion of the propagation velocity of acoustic waves in gas-saturated sandstone: (a) velocities of thefirst lon-
gitudinal, ¢, and transverse, ¢, waves; (b) velocity of the second longitudinal wave ¢,.

Similar resultswere calculated for the acoustic char-
acteristics corresponding to another type of rock—the
gas-saturated sandstone. Figure 3a shows the propaga-
tion velocities ¢, and ¢, that appear to be approximately
constant in the frequency range of our interest, and
Fig. 3b shows the frequency-dependent velocity c,,
which appears to be abnormally low. Figures 4aand 4b
present the attenuation coefficients calculated by Biot's
model; from these curvesit follows that the attenuation
of the second longitudinal wave appears even higher
(by three orders of magnitude) than in the above case of
water-saturated rock. This is indicative of the fact that
the use of this wave in practice faces even greater diffi-
culties related to the wave attenuation. At the same
time, not only transverse and first longitudinal waves,
but also the second wave is of interest for the diagnosis
of the medium. The use of thiswavefor active action on
oil or gas pools could be expedient in view of the fact
that precisely the second wave is capable of initiating
relative displacements of fractions, because the fluid
vibrations relative to the skeleton walls are character-
ized in this wave by an appreciable phase shift (at fre-

guencies below the critical one), while the correspond-
ing phase shift in the first and transverse wavesis neg-
ligible. As calculations show, sources of the dipoletype
efficiently excite these waves, which favorably distin-
guishes dipole sources from monopol e sources, and the
analysis of powers radiated in different types of waves
additionally supports this conclusion. In particular, the
results of calculations offer a possibility to analyze the
total energy balance and compare the relative contribu-
tions of different types of acoustic waves excited by
dipole and monopol e sources in a two-phase medium.

Consider the acoustic characteristics of the dipole
source that are calculated by Egs. (15)—(17). In the cal-
culations, we used the data on wave velocities in both
types of rock.

Adverting first to the water-saturated sandstone, we
consider Fig. 5a, which shows the directional patterns
of the first longitudinal wave (one curve for skeleton
vibrations u,; and the other for fluid vibrations v,,) in
the source plane, the angular coordinate of the observa-
tion point being measured with respect to the direction
of the force vector. In the calculations of the angular
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Fig. 5. Directiona patterns of acoustic waves (radial components for the longitudina waves and meridional component for the
transverse wave) at afrequency f = 100 Hz; the amplitudes are normalized by maxu,, in water-saturated sandstone). Water-saturated
sandstone: (a) first longitudinal wavein the skeleton, u,¢, and in thefluid, v,;; (b) second longitudinal wavein the skeleton, u,,, and
inthefluid, v,,; (c) transverse wave in the skeleton, ug. Gas-saturated sandstone: (d) first longitudinal wave in the skeleton, u,, and
in the fluid, v,; (€) second longitudinal wave in the skeleton, u,,, and in the fluid, v,,; (f) transverse wave in the skeleton, ug.

and frequency characteristics, we normalized the data
by the maximal amplitude of skeleton vibrations u,, in
the longitudinal wave of the second kind in water-satu-
rated sandstone (see the circular pattern in Fig. 5b), so
that the levels of vibrations in other waves were mea-
sured relative to this maxima amplitude. Amplitudes
u,, and v,, calculated at afrequency of 100 Hz are quite
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close to each other. As regards the amplitudes u,, and
V., We have drastically different (by more than three
orders of magnitude) levels of vibrationsin favor of the
wave of the second kind. Unlikethe vibrationsin longi-
tudina waves, the angular distribution of skeleton
vibrations in the transverse wave ug (see Fig. 5¢) is
described by the function sin®, and the vibration ampli-



660

tude exceeds the corresponding amplitude in the longi-
tudinal wave of the first kind by a factor of about ten.
The gpatial distribution of fluid vibrations vy in this
wave coincides with that of skeleton vibrations ug; for
this reason, we present no such curve, though the
amplitude of these vibrations is somewhat different.

One can expect that this excess of the second longi-
tudinal wave over other waves in level is caused not
only by the specificity of the dipole source action but
aso by the reduced velocity of this wave in the
medium. Nevertheless, in the case of excitation of the
medium by a monopol e source, thereisan inverseratio
between the levels of the longitudina waves [2].
Because of the more efficient generation and higher
degree of attenuation of the second waves, the decision
about the possibility of experimental measurements
and practicability of these waves requires a further
analysis of wave characteristics.

The circular patternsin Figs. 50-5f show the calcu-
lated directional patterns of waves generated by the
same source in gas-saturated rock. The angular behav-
ior of each of the waves coincides with that of the cor-
responding wave considered earlier, and the levels of
the transverse and first longitudina waves are nearly
the same as in the case of water-saturated sandstone.
However, the level of the second longitudinal wave
increasesin this case by 80 dB. Because the attenuation
coefficient of acoustic waves of thistypein the gas-sat-
urated medium also increases by orders of magnitude
and far exceeds the attenuation coefficient in the water-
saturated medium (see Fig. 4b), a discussion of other
wave characteristics will be instructive for understand-
ing the whole picture.

In particular, it is of interest to consider the fre-
guency-dependent amplitude of waves generated by the
dipole source in the water- or gas-saturated porous
medium and received at a certain reference distance
from the source (for example, at adistance of 1 minthe
direction of the maximum of the directional pattern for
each wave). Figures 6a—6d show the calculated wave
amplitudes in the frequency range 04 kHz for both
medium types (as earlier, we normalize all the data by
the maximal amplitude of wave u,, for the water-satu-
rated sandstone). Comparing these characteristics, we
should mention the weak frequency dependence of the
skeleton and fluid vibrations in the first longitudinal
and transverse waves (see curvesin Figs. 6aand 6¢); in
addition, the amplitude of vibrations in the transverse
wave is an order of magnitude greater than the ampli-
tude of the first longitudinal wave. Figures 6b and 6d
show a similar dependence for the second longitudinal
wave in the skeleton and the fluid in both water- and
gas-saturated media. Unlike the previous curves
(Figs. 6a, 6¢), this dependence showsthat the generated
wave amplitude rapidly decreases with frequency. In
addition, these data support the relationshipsillustrated
in Fig. 5; namely, the level of the second wave radiated
into the water-saturated sandstone exceeds the level s of
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thefirst and shear waves by at |east three orders of mag-
nitude and, when thiswave is radiated into the gas-sat-
urated sandstone, it exceedsthe level of other waves by
another three orders of magnitude up to ultrasonic fre-
guencies.

In paralel with the displacement wave field, the
total acoustic power carried by the first and second lon-
gitudinal and transverse waves is also an informative
characteristic. The wave energy balance is an integral
characteristic that is important for the optimum choice
of the wave type used for sounding fluid-saturated
rocks. We calculated the powers of each of the three
waves described by Egs. (15)—(17) according to thefol-
lowing final expressions (also used for calculating the
frequency-dependent curves):

_ P’ M+ (M)
Wl - 3 4 2 ’ (18)
S4mpc; @ M —My|
_ P’ M+ M)
WZ - 3 4 2 ’ (19)
S4mpc,w M —My|
FPw’(1+[M]?
WS = A (20)

24mpeew’

where W, ,  are the acoustic powers of the first and
second longitudina waves and the transverse wave,
respectively.

Consider the powers calculated by Egs. (18)—20) at
F=1N andw=2m000 s'. Thecurvesin Figs. 7a-7c
show the frequency-dependent acoustic power carried
by the first and second longitudinal waves and the
transverse wave excited in water-saturated sandstone.
Thecurvesin Figs. 7d-7f show similar dependencesfor
gas-saturated sandstone. One can see that the power of
each type of wave increases with frequency according
to approximately similar laws, the power of transverse
waves exceeding the power of the first longitudinal
waves by afactor of approximately 30 for all frequen-
ciesin both media. The frequency-dependent power of
the second longitudinal waveisgivenin Figs. 7band 7e
for water- and gas-saturated sandstone, respectively. In
the case of the water-saturated medium, the average
level of this power exceeds the power level of other
wave types by two orders of magnitude, and this excess
increasesto seven orders of magnitudein the case of the
gas-saturated medium. Such proportions in the wave
energy balance areindicative of the fact that the energy
of the source is mainly spent for exciting the second
longitudinal wave, though this fact cannot ensure the
predominance of this kind of wave for all distances
because of the acoustic energy dissipation. In order to
take into account the above data on the acoustic wave
attenuation, one must consider the joint effect of the
wave attenuation and the dipole source excitation effi-
ciency, whose competition determines the amplitudes
of acoustic fields for different distances.

ACOUSTICAL PHYSICS  Vol. 51

No. 6 2005



CHARACTERISTICS OF BIOT WAVES PRODUCED BY A VIBRATION EXCITER 661

() 0.0020 (b) 0.60 1,
Uy 0.0015 - 0.45 K
V_ U :
rl —_— \
ue 0.0010 - o 0.30
500003 x 1074} 0.15
3.67 x 1070 T R E—
0 2000 4000 0
f.Hz
(c) 00020 (d 20000,
0.0015 - 15000
Uy
Upp
Vel 0.0010 - 10000
----- - Vi
lee """ -
----- 0.0005 - 5000
| | | | |~ ...... [ ket 3
0 2000 4000 0 2000 4000
[, Hz f,Hz

Fig. 6. Frequency-dependent amplitude of waves in the directions of the maxima of their directional patterns (the amplitudes are
normalized by maxu,, in water-saturated sandstone). Water-saturated sandstone: (a) first longitudinal wave in the skeleton, u,;, and
thefluid, v,{, and the transverse wave in the skeleton, ug; (b) second longitudinal wave in the skeleton, u,,, and the fluid, v,,. Gas-
saturated sandstone: (c) first longitudinal wave in the skeleton, u,, and the fluid, v,{, and the transverse wave in the skeleton, ug;
(d) second longitudinal wave in the skeleton, uy,, and the fluid, v,,.
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Fig. 8. Distance-dependent amplitude of acoustic waves propagating in the skeleton and the fluid of the (a, b) water-saturated and
(c, d) gas-saturated sandstones at frequencies of (a, ¢) 100 Hz and (b, d) 4 kHz. Notation: U, is the first longitudinal wave in the
skeleton, V, isthefirst longitudinal wave in the fluid, U, is the second longitudinal wave in the skeleton, V, is the second longitu-
dinal wave in the fluid, and Ug is the transverse wave in the skeleton.

Consider now the results that show the law of the
wave level decay in water- and gas-saturated media.
Figure 8 shows the levels of acoustic waves propagat-
ing in the skeleton and the fluid. The curvesin Figs. 8a
and 8b are caculated for water-saturated sandstone and
correspond to acoustic waveswith frequencies of 100 Hz
and 4 kHz, respectively (the latter frequency imitates
the range of acoustic borehol e logging operations). Fig-
ures 8c and 8d show the curves calculated for waves of
the same frequencies, 100 Hz and 4 kHz, in gas-satu-
rated sandstone. We emphasize that the amplitudes
given in these figures take into account only thefield of
radiation, although we use distances from the source
that are comparable with the wavelength of the second
longitudinal wave (and smaller than the wavelength of
the first longitudinal and transverse waves) for both
100-Hz and 4-kHz frequencies, which means that non-
wave terms can noticeably contribute to the total level
of vibrations for these distances. Therefore, the curves
inFig. 8 areno morethan anillustration of the distance-
dependent relationship between the levels of acoustic
vibrations (due to the divergence and dissipation) of

different waves without taking into account the near
fields. These curves clearly show that the amplitude of
the second longitudinal wave (propagating in both skel-
eton and fluid) decays with distance faster than the first
longitudinal and transverse waves. The region where
the amplitude of the second longitudinal wave exceeds
the amplitudes of other waves is limited to distances
comparable with the wavelength of this wave, which
means that it certainly falls in the near-field region of
the shear and first longitudinal waves. Therefore, diffi-
culties may arise in detecting this wave against the
background of other waves. Incidentally, we note that
the use of a piston vibrator instead of the point source
considered here can considerably reduce the contribu-
tion of nonwave terms, which were ignored in con-
structing the plots. Nevertheless, the interval of dis-
tances where the amplitude of the second wave exceeds
the amplitudes of other waves in each of the plots of
Fig. 8 represents the distance range (though relatively
small) where thiswave can bereceived in principle. For
example, in the case of water-saturated sandstone, this
interval is 0.5 m at a frequency of 100 Hz and only
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25cm a a frequency of 4 kHz. Comparing these
results with similar results obtained in [2], one can see
that we obtained a situation opposite to that in the
medium driven by amonopole source. Inthelatter case,
there is no region where the second longitudinal wave
prevails and its selection against the background of the
first longitudinal and shear waves requires special tech-
nigues and special measuring instruments.

Thus, using numerical calculations, we demon-
strated the fundamental possibility of measuring both
Boit waves (the first and second longitudinal waves) in
actual rocks (water- and gas-saturated sandstones). In
low- and middle-frequency ranges, there exists a cer-
tain region of distances from the dipole acoustic source
where vibrations in the form of the second longitudinal
wave prevail in amplitude over other waves, which is
impossible in the case of a monopole acoustic source.
This inference argues in favor of the necessity to solve
the problem on acoustic wave excitation by an oscillat-
ing force source. It is quite possible that asimilar result
can be obtained for other, more complex types of vibra-
tors. The numerical calculations performed above also
explain the difficulties that may hinder obtaining reli-
able experimental data on the second longitudinal
waves from seismoacoustic signals measured under the
conditions of actua borehole observations or seismic
surveys. In addition, the results obtained may be useful
for evaluating the possihilities of using both types of
vibrators considered above, as well as newly designed
modern vibrators that ensure an effective acoustic
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action on oil pools and improve the accuracy of local-
ization of the fluid-saturated regions against the back-
ground of other rocks.
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Abstract—The geometrical -acoustics approach is used to calculate the vertical structure of the sound field in
an oceanic waveguide. The profile of the sound speed is specified to be canonical and range-independent along
a 1000-km propagation path. A monochromatic sound source lies on the waveguide axis. It is shown that, at
long distances from the source, the sound field formed by the water-path raysis mainly concentrated in the caus-
tics, the number of which is determined by the number of the overlapping ray cycles at a given distance.
A method for estimating the amplitude of the sound field produced by individual raysis proposed. The ampli-
tudes obtained are used to calculate the total sound field along the vertical. A possible cause of the chaotic dis-
tribution of ray coordinatesis considered. This cause may consist in the arbitrary choice of the number of rays
and their departure angles without taking into account the discrete character of one of the variables. This mech-
anism of ray chaos formation furnishes an explanation for the fact that the chaos obtained in calculations is
mainly associated with the flat rays. © 2005 Pleiades Publishing, Inc.

An important problem of ocean acoustics is the
study of long-range sound propagation. The urgency of
this problem is particularly determined by the develop-
ment of the methods of ocean tomography. In [1-3],
experiments on superlong-range propagation of pulsed
signals are described, and the data obtained are inter-
preted using calculations based on different theoretical
models, both with and without taking into account the
fluctuations in the medium. In computations, the ray-
theory representation of the sound field prevails. The
ray trajectories are calcul ated by solving the Hamilton—
Jacobi equations that are derived from the wave equa-
tion in view of the analogy between a materia particle
trajectory and aray path.

The authors of the cited publications argue that, in
the vertical plane, the ray chaos is formed at long
ranges both in the presence of the fluctuations in the
medium (caused by internal waves, for instance) and in
the absence of any disturbances. The major part of [3]
consistsin astudy of theray chaos, whichis considered
to be a consequence of the Hamiltonian structure of the
ray equations. According to such considerations, the
strongest chaos correspondsto the near-axisflat rays. In
this case, multimicropaths appear that hinder the sepa-
ration of individual sound pulses. For the arrivals of
steep rays, multimicropaths are few in number and the
characteristic features of the undisturbed time structure
of the sound field persistsin the vertical plane, though
on the background of the ray chaos. The difference in
the chaos of flat and steep raysisexplainedin [3] by the
fact that the ray chaosin these utmost angular ranges of
the rays obey different statistical descriptions. How-

ever, no mechanism linking the statistical description
and the chaos is considered in [3]. Therefore, the prob-
lem arisesto study the origin of the ray chaos by numer-
ical computations in view of the structure of the wave
field and to elucidate the origin of the observed relation
between the characteristics of the chaos and the ray
parameters. In [4], the vertica structure of the sound
field is calculated for anatural underwater sound chan-
nel (USC) at along distance (1500 km) from the source.
By using the methods of geometrical acoustics, a
highly ordered structure of the vertical coordinates of
rays and the vertical projections of their wave numbers
is obtained with no traces of ray chaos. However, the
conditions of sound propagation in [4] differ from those
in[1-3]. Accordingto [4], the sound source was|ocated
at the near-surface maximum of the sound speed.
Hence, the sound field was formed by arelatively small
group of rays whose lower turning points were a a
depth where the sound speed was greater than that at
the near-surface maximum. As aresult, alarge group of
channel raysfell out of the consideration.

The objective of this work is to use the canonical
waveguide as an example for calculating the vertical
distribution of the sound field produced by anumber of
raysthat is sufficient for the ray chaosto be formed. For
this purpose, the calculation is performed for along dis-
tance (1000 km) from a source positioned at the chan-
nel axis.

The calculations show that the sound field at long
ranges in the canonical waveguide is mainly concen-
trated at the caustics, whose number is proportional to
the number of the overlapping ray cyclesat the distance
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Fig. 1. Vertical structure of the sound field for the rays leaving the source towards the surface (the solid curves) and the bottom (the
dashed curves): (a) the distribution of the ray coordinatesin the departure angle, z(0); (b) the projections of the wave numbers onto

the zaxis, y(2).

in question. The field amplitude in the causticsis much
higher than between them. Note that the presence of a
number of causticsin the vertical field structure at long
ranges can be experimentally verified.

The vertical structure of the sound field was calcu-
|lated for the canonical model of the USC, which is
fairly close to the actual profiles of the sound speed in
some ocean regions [7]. A monochromatic sound
source with afrequency of 233.6 Hz was positioned at
the channel axis lying at the depth z, = 1 km; the
waveguide thickness was 4 km. Only pure water rays
were considered. By using the method described in [4],
the following characteristics were computed: the angu-
lar distribution (AD) of the vertical coordinates of the
rays and the vertical projections of their wave numbers
(PWN) as functions of the departure angle. The depen-
dences obtained were used to calculate the total sound
field produced by individual rays at all depths.

One of the main results of the calculations is the
determination of the role of the function z(0) (Fig. 1)
that represents the AD of the rays at the maximal dis-
tance x. = 1000 km from the source, where 0 is the
departure angle relative to the zaxis (the vertical). Here
and in the following figures, the solid and dashed
curves correspond to the rays leaving the source
towards the surface and the bottom, respectively. The
lines that envelop the z(6) curves from above and from
below carry important information about the sound
field: they show the depths of the turning points of the
rays near the surface and the bottom. The inset in
Fig. 1a shows the functions z(8) near 6 = 90° on an
enlarged scale. The oscillating form of the AD is caused
by the dependence of the length of the ray cyclesonthe
departure angle. The rays leaving the source at 0 close
to 90° produce 24 full cycles at the distance x.; those
with 8 ~ 77.3° produce 17 cycles. The difference
between the numbers of cycles produced by the rays
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with maximal and minimal cyclelengthsis7. Thelatter
number coincideswith the number of oscillations of the
Z(8) curves shown in Fig. 1la (with allowance for the
curvesin the inset).

The following features of the AD are most impor-
tant. All the maximaand minima of both curves are the
caustics rather than the turning points, seemingly
because of the closeness of all the extrema, except for
those shown in the box, to the turning points. Each
curve exhibits 14 caustics. The caustics shown in the
box differ from the othersin that they are caused by the
existence of the minimum in the cycle length as afunc-
tion of the departure angle near 6 = 90°. The centers of
these caustics are far from the turning points, which are
shown as the two lines in the box. According to the fig-
ure, these caustics are much wider than the others: their
angular width A8 is about 0.8°. In the vicinity of these
caustics, agreat number of rays (that is, the major por-
tion of the sound field energy) are concentrated. The
remaining causti cs correspond to amonotonic variation
of the cycle length and have smaller angular widths.

Another important characteristic of thewavefieldis
the projection of the wave numbers (PWN) onthezaxis
as afunction of the departure angle. L et us denote them
asy(0). They are also of an oscillating nature similar to
that of the AD z(8). The dependence of the PWN on the
depth of the ray arrivals at a given distance is of most
interest. This function, y(2), is obtained from y(8) with
the use of the AD by eliminating the departure angle.
The functions y(z) are shown in Fig. 1b, again for the
two groups of rays leaving the source towards the sur-
face and the bottom. It is assumed that y(2) > O if the
rays are directed to the bottom and y(2) < O if they are
directed to the surface. In contrast to Fig. 1a, theturning
points are pronounced in Fig. 1b; at these paints, y(2) = 0.
The caustics are hardly visible. Their positions are
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close to those of the turning points, and y(2) is close to
zero at all the caustics.

Note that the curves given in [1] differ from those
shown in Fig. 1b by aconstant factor that isequal to the
cyclicfrequency. It seemsthat this difference prevented
the authors of [1] from noticing the physical meaning of
the curves.

L et us consider the characteristic features of the ver-
tical structure of the sound field at long distances from
the source by using Figs. 1aand 1b. The vertical coor-
dinates of the rays, the AD, and the PWN exhibit a
strictly ordered character. The curves obtained are very
informative, without calculating the sound field itself,
because they determine the depths of ray concentration
(the caustics), the number of rays arriving at al depths,
and the possible set of spatial frequencies for the rays
along the z axis. Along the vertical, a great number of
caustics are formed, and this number is proportional to
the number of the overlapping cycles. At the distance
X, 28 caustics are present. The calculation of the AD
and the PWN at the distance x = 3250 km, whichiscon-
sideredin[2, 3], leadsto asimilar picture. The only dif-
ference consists in the number of caustics: this number
isincreased by afactor of approximately 3. The PWN,
V(2), strongly depends on the depth. Thisfact leadsto a
nonlinear depth dependence of the phase of the total
sound field produced by the rays in the vertical plane.
The areas where the values of y(z) can be assumed to be
constant are near the channel axis, and their sizesareno
greater than 200 m.

The calculation of the sound field in the vertical
plane was carried out with the use of the functions z(6)
and y(2). The field was calculated as a sum of the fields
produced by the rays arriving at the given horizon z
The sound field of each ray has its own amplitude. We
propose the following technique for the calculations.

Suppose that the amplitude of the field produced by
an individual ray is equal to the ratio of its angular
width, which is supposed to remain constant in the
course of propagation, to the depth interval Az occupied
by this ray at the distance x, from the source: AB/Az.
The quantity A8 can be considered as the difference
between the departure angles of the adjacent or close
rays, and Az is the difference in the depths at which
these rays arrive. The angular width A8 of the ray
depends on the departure angle: according to Snell’'s
law, AB decreases as 0 decreases. The quantity Azisa
function of z and characterizes the density of the rays
along the vertical; it is determined from the AD z(0).
Instead of calculating the additional rays, we used
interpolation to fill the domains of z(0) to which the cal-
culated rays do not arrive. The purpose of this proce-
dure was to obtain equal intervals Az between the adja-
cent rays. In our case, this interval is equal to that of
sampling along the z axis. The interpolation allowed us
to calculate the amplitudes of both individual fields and
thetotal field for agreater number of rays than that ini-
tially chosen. In the vicinity of the caustics, many rays
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have the same coordinates in depth but different depar-
ture angles, i.e., Az = 0. The reason is that a narrower
sampling window is required for these rays to be
resolved in the z direction. In such a situation, the value
of Azwas specified to be equal to the sampling interval,
that is, to the least vertical spacing of the rays for the
calculation parameters used. This approximation leads
to a decrease in the ray amplitudes in the vicinity of
caustics. Such a decrease is the main inaccuracy in the
proposed technique of calculating the amplitudes of the
sound fields corresponding to individual rays. In our
case, the ray amplitude was calculated by averaging
over two sampling intervals. In [8], the number of rays
used in averaging was not constant: it was chosen in
such a way that Az was not lower than the sampling
interval. This method leads to overestimation of the
amplitudes at caustics.

The distribution of the ray amplitudes is shown in
Fig. 2a as a function of the departure angle. The nota-
tions are the same as in Fig. 1. The maxima of the ray
amplitudes are at the centers of the caustics. The ampli-
tudes at the initial near-axis caustics, which are the
broadest ones, are equal for the rays leaving the source
towardsthe surface and the bottom. At the centers of the
caustics, the amplitudes smoothly decrease as the
departure angle decreases. The real part of the tota
soundfieldisshowninFig. 2b. Here, all the causticsare
pronounced. The two central caustics that are symmet-
ric about the waveguide axis merge on the scaleused in
Fig. 2b. Although agreat number of raysare summedin
the gaps between the caustics, the amplitude produced
by these rays is much lower than that at the caustics.
Figure 2b leads to a conclusion that the caustics pre-
dominate in the vertical distribution of the sound field
at long ranges.

Some recent works ([1-3], for instance) concentrate
on the calculations of the arrival times of the pulsesand
their coordinates along the z axis. In addition to the cal-
culation of z(8), we also calculated the time of sound
propagation along the ray trgjectories. Figures 3a and
3b show the coordinates of rays along the vertical, z(0),
as functions of the travel time for the corresponding
rays. In Fig. 3b, the depths of arrivals of the near-axis
rays are shown as functions of time on an enlarged
scale. It can be seen that the arrival times are regular in
the case at hand. The points of inflection are those of the
caustics. According to Fig. 3a, there are few points at
which the travel times coincide for different trajecto-
ries. One can find a depth at which pulses arriving in
sequence can be well resolved if the width of the pulses
islower than the time interval between them. Thelong-
est travel times correspond to the near-axis flat rays
whose departure angles are close to 90°. The difference
inthetravel timesissmaller for theflat raysthan for the
steep ones. Figure 3b showsthe travel timesfor therays
in the vicinity of the three initia near-axis caustics;
here, the caustics nearest to the axis are represented by
a single point. The travel times for these caustics are
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equal to the time of sound propagation along the
waveguide axisto an accuracy of 0.05 ms. The interval
between the initial symmetric caustics and the second
caustic does no exceed 5 ms. These caustics are spaced
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by more than 200 m in the vertical. The difference in
the travel times of the pulses should be compared with
1/Af, where Af is the expected frequency bandwidth of
the source determined by the sound absorption in the
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ocean. If we specify Af ~ 100 Hz, the duration of the
sound pulse should be no smaller than 10 ms. Usually,
in the experiments on long-range sound propagation in
the ocean, the duration of the pulses is 10-30 ms.
Hence, between the first and second caustics, the near-
axis rays can be resolved in their travel times if the
duration of the pulsesis about 1 ms or less, which can
not likely be realized because of the sound absorption.
However, the lack of ability to separate the overlapping
pul ses propagating over closeraysisno reason to argue
that these rays are chagtic.

Let us now consider one of the main tasks of this
work: the analysis of the possible origin of the ray
chaos. Note that the chaosis observed in numerical cal-
culationsthat have their own specific features, in partic-
ular, the discreteness of the data representation. As
reported earlier [9], the discreteness of the data influ-
ences the accuracy of calculating the diffraction of the
wave field. Let us consider the role of the discreteness
in the formation of the ray chaos. If we show that the
origin of the chaos liesin the calculation errors caused
by the discretization, this statement will be true for [2,
3] aswell, at least until one proves that the discreteness
of datarepresentationin[2, 3] does not lead to calcula-
tion errors.

In our paper, the discrete coordinate is the depth z,
which is specified with the step Az. Rays that are close
in their departure angles are commonly treated as dif-
ferent if the depths of their turning points are different.
Hence, the number of rays (the number of discrete val-
ues of departure angles) should not exceed the number
of points in depth, from the waveguide axis to its most
distant boundary. Let us denote the latter number as N.
If calculations involve rays whose number is greater
than N, some of the rays will have the same depths of
their turning points. By definition, these rays are the
same, although they have different vertical coordinates
because of their different departure angles. This differ-
ence isjust what causes the ray chaos. These rays are
redundant or phantom rays. Another origin of the chaos
isthe arbitrary choice of theray departure angle. Let us
consider raysthat differ by A6 in their departure angles
and by Az in the depths of their turning points. From
Snell’s law, we can obtain the approximate relation of
the step A6 in the departure angle to the quantities Az,
0, and c(2):

A6 - ‘ta“_(e) ‘& . )

Az Az ||c(2)

According to Eq. (1), the angular step A8 depends
on the departure angle 6 and the interval Az If Az is
constant, AB® decreases as the departure angle
decreases. If one chooses a constant angular step (A6 =
const), the turning points of individual rays may occur
between the discrete depth points, which leads to errors
in calculating the AD, the PWN, and the travel timesfor
the ray trajectories because of the inaccuracy in deter-
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mining the depth of the turning points. Therefore, the
ray departure angle should be chosen so that its turning
point coincides with some of the discrete points of the
z axis. Another important feature of the ray structure
follows from Eg. (1). The angular density AB/Az of the
rays decreases as the departure angle 0 decreases.
Hence, a conclusion can be drawn that the greatest den-
sity of therays can be observed near the waveguide axis
for flat rays. This conclusion has been repeatedly con-
firmed by experiments and calculations. Let us illus-
trate the af orementioned statements by calculation.

Figure 4a shows the AD calculated for rays whose
number exceeds the admissible one (N) by a factor of
2.3. The rays involved in the calculation were those
leaving the source towards the bottom at a constant step
in angle. Comparison with the similar curve of Fig. 1a,
which corresponds to the optima number of rays and
the choice of the departure angle matched with the posi-
tion of the turning point, shows that the general charac-
ter of the curve persists for the excessive number of
rays. The reason is that the relation between the depar-
ture angle and the turning point is violated for none of
the rays except those turning at the depths between the
adjacent discrete points. The coordinates of the rays
whose departure angles were matched with the turning
points remained unchanged. The greatest number of
phantom rays corresponds to the near-axis region (flat
rays), because, according to Eqg. (1), the highest density
of raysoccursin thisregion. The greatest angular inter-
val separating the adjacent rays corresponds to the
vicinity of the waveguide axis: it may contain several
phantom rays. In the region of steep rays with smaller
values of 6, the number of phantom rays between the
adjacent rays decreases or is even equal to zero. In this
case, the matched angular step A8 decreases by afactor
of about 3 from the beginning to the end of the angular
range. Figure 4b illustrates the cal culation, in which the
matching between the departure angle and the turning
points is completely excluded. The number of rays
taken for the calculation was N. Figure 4b corresponds
to aconstant step in the departure angle. Here, one can
see no regular structure similar to that observed in
Figs. 1a and 4a. The greatest number of pointsis aso
concentrated near the USC axis and corresponds to
departure angles close to 90°. The reason for such a
concentration isthe same as above. The PWN, whichis
not shown in the figure, is also chaotic in this case.

However, the depth dependence of the travel time
along the ray (Fig. 4c) retains its basic structure, asin
Figs. 3a and 3b, in spite of the apparent chaos in the
AD, z(6). The explanation of such stability of the travel
time with respect to the unmatched departure angles
may consist in the fact that, in calculating z©), the
accuracy of computing the horizontal coordinate of the
trajectory is much lower that in the case of travel-time
calculations. Note that the chaosillustrated in Figs. 4a—
4c and obtained by the incorrect calculations does not
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differ from that presented in [1, 3] for the case of the
sound speed fluctuations al ong the path. Hence, the fact
that the chaos shown in [1, 3] is caused by the fluctua-
tions rather than by the discreteness of calculation has
to be verified.

In[1, 3], the differential equations of the ray trajec-
tories were solved by the Runge-Kutta method. This
method implies a constant-step sampling of the hori-
zontal coordinate (the distance to the source), and the
angular step is also constant. Note that the main prob-
lem of this method is the need to specify the sound
speed at all depths passed by the rays. Therefore, the
ray chaos can be caused by the violation of the main
property of the ray trajectories, namely, the equality of
the sound speed at the upper and lower turning points.
This condition can be satisfied only approximately, the
accuracy of the approximation being different for dif-
ferent trgjectories. The effect of the violation isthat the
upper and lower parts of the trajectories may belong to
different but closerays. Thisfact wasalso mentionedin
[3]: the authors reported the appearance of multimi-
crotragjectories of new rays near the main ones and
interpreted them as the proper rays. The greatest num-
ber of new rays corresponds to the near-axis region,
near the flat rays. This feature is quite understandable:
the gradient of the sound speed is small in the near-axis
region, and, hence, the differenceinthevaluesof ¢(z) is
also small at the turning points of the adjacent rays,
which favors the splitting of the trgjectories.

The results obtained from the calculation of the ver-
tical structure of the sound field in the canonical
waveguide can be summarized as follows. At long
ranges from the source positioned at the waveguide
axis, the ray coordinates and the spatial frequencies
along the vertical, as calcul ated in the framework of the
ray theory, are described by regular functions of the
angles at which the raysleave the source. These regular
dependences have an obvious physical explanation. At
long ranges, the sound field along the vertical ismainly
determined by groups of rays that form the caustics,
within which the major portion of the signal energy is
concentrated. The remaining rays produce an acoustic
background, whose amplitude is much smaller than the
field amplitude at the caustics. It is precisely the caus-
tics that create the regular and predictable structure of
the sound field at long ranges. This conclusion isdrawn
from the calculations and can be verified by experi-
ments on long-range sound propagation with vertically
extended antenna arrays.
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Abstract—Experimental results concerning the influence of both the parameters of magnetic fluid and the con-
ditions of vibration excitation on the el astic, el ectrodynamic, and kinetic properties of abreaking magnetic-fluid
membrane are presented. The mechanism of the sound excitation in the air cavity dueto the closure of the mag-
netic-fluid membrane is discussed. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

The possibility of using a magnetic fluid (MF) asa
source of ultrasonic vibrations was studied in [1-7]. In
these publications, an MF was considered as a continu-
ous compressible medium characterized by a strong
magnetic susceptibility. Some recent publications [8—
10] described vibratory systems with controlled mag-
netic-fluid sealants. In particular, in [9-11], avibratory
system with an inert magnetic-fluid element that was
spring-loaded by a gas cavity and a pondermotive elas-
ticity was investigated. Such a system can be consid-
ered as a magnetic-fluid membrane (MFM).

An MFM has the form of a magnetic colloid drop
that plugsthe cross section of aglasstube under the sta-
bilizing effect of aninhomogeneous magnetic field pro-
duced by a coaxial ring magnet [12]. If the tube has a
bottom, the MFM isolates the air cavity lying below it.
In this case, the MF functions as an incompressible
medium and properties such as its magnetic controlla
bility of the free surface, fluidity, and inertness become
important [12, 13]. Unlike conventiona fluid films, an
MFM is capable of self-recovery. The breakage—recov-
ery of the MFM is accompanied by the generation of
decaying acoustic and electromagnetic pulses[10, 11].

Studies of the physical properties of MFMs are of
interest from both theoretical and applied points of
view. In particular, it is of interest to consider the pos-
sibility of using an MFM as ametering valve for a con-
trolled gas supply to a reactor with a corresponding
indication in the form of acoustic and electromagnetic
pulses. Such adevice could be used in certain chemical,
physical-biological, and pharmaceutical technologies.

Inthis paper, we report the experimental study of the
effect of the MF parameters and vibration excitation
conditions on the elastic (the pondermotive and gas
elasticities, the vibration frequency, and the critical
pressure drop), electrodynamic (theinitial amplitude of
the generated electromagnetic pulse, the dynamical
range, and the sensitivity), and kinetic (the gas flow
velocity in the membrane hole, the lifetime of the hole,

the displacement of the membrane, and the mass of gas
passed) properties of an MFM. We aso discuss the
mechanism of sound excitation in the air resonator at
the instant of membrane closure.

ELASTIC AND ELECTRODYNAMIC
PROPERTIES

Since the pondermotive elasticity of an MFM
strongly depends on the strength and degree of inhomo-
geneity of magnetic field [12, 14], we performed both
experimental and theoretical studies of the magnetic
field produced by the ring magnet included in the
experimental setup.

The thin line in Fig. 1 approximates the results of
measuring the magnetic field strength along the axis
with a Hall-type teslameter. The abscissa axis repre-
sents the distance from the center in ring-magnet half-
thickness units.

H,kA/m
70

60
50k
40+
30
20

Fig. 1. Magnetic field strength versus the coordinate of the
corresponding point on the axis.
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Fig. 2. (a) Isolinesof theaxial projection of magnetic induc-
tion: (1) 90, (2) 86, (3) 81, (4) 77, (5) 68, (6) 60, (7) 42, and
(8) 25 mT. (b) Isolines of the radial projection of magnetic
induction: (1) -3, (2) 3, (3) -7, (4) 7, (5) -7, (6) 7, (7) -10,
(8) 10, (9) —23, (10) 23, and (11) O mT.

The theoretical analysis of the magnetic field was
performed on the basis of the model, according to
which the ring magnet possesses a volume-constant
magnetization M oriented along itsaxis. Then, the mag-
netic induction components are determined by the for-
mula B = —grady, where the scalar potential has the
form

R,

R,
M O k,q k,q O
= — [ K(k,)——=dg - [K(k,)—=dd.
¥ = onf] K e [ Kl

1

Here, k, = 24qr/((q+1)2+(z=1)), k =

2A/qr/((q + r)2 +(z+ I)2) , R, and R, aretheinner and
outer radii of the magnet, | isits half-width, and K(k) is
an elliptical integral of thefirst kind.

The magnitude of magnetization was determined
from the magnetic induction measured at the center of
the magnet. The outer and inner radii of the magnet
divided by its half-thickness are equal t0 5.78 and 2.19,
respectively.

Thethick linein Fig. 1 shows the value obtained in
the framework of the given model for H, averaged over
the cross section of the tube. The difference between
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the average data and the results of measurements along
the axis does not exceed 8.5%.

Figures 2a and 2b show the isolines of the axia H,
and radial H, components of magnetic field. The dashed
lines show the contour of the MFM, and the solid hori-
zontal line bounds the magnetic field region enclosed
inside the tube.

The data obtained suggest the following conclu-
sions: (i) the magnetic field within the contour of the
drop is predominantly directed along the axis of the
ring magnet; i.e., the axial field component H, predom-
inates; (ii) the field is approximately uniform over the
cross section of the tube, and the gradient of the field
strength has a predominant axial component G =
0H,/0z, (iii) in the radia direction, H, dlightly
increases; (iv) inthe planez= 0, theradial field compo-
nent H, is absent and shows a tendency to increase in
the vicinity of the axis. The presence of a relatively
small radial component of magnetic field near the axis
and arelatively small radial gradient of the axial com-
ponent favorsthe flow of the fluid to the maximum field
region. As a result, the free surface of the membrane
acquires a biconcave-lens shape [9, 10]. At the center,
on both sides of the membrane, one can see small peaks
caused by the instability of the MF surface in atrans-
verse field that exceeds some threshold strength value
[15, 16]. According to our estimates, the volume frac-
tion of these peaks is less than 0.5% of the membrane
volume [10].

The expression for the coefficient of pondermotive
elasticity was obtained in [9, 10] in the framework of
the model in which the magnetic field was symmetric
with respect to the maximum strength surface and the
equilibrium position of the MFM coincided with this
surface. However, in amore general case, the magnetic
field can be asymmetric and the center of mass of the
membrane can be displaced from the maximum field
region. Such a situation occurs, e.g., in MF sealants at
a certain configuration of the polesin the presence of a
pressure drop [17].

The weakly-magnetic medium  approximation
adopted in [9-11] and the aforementioned geometrical
features of magnetic field in the region of the mem-
brane can be used to cal cul ate the coefficient of ponder-
motive elagticity in the case under study according to
the simple scheme shown in Fig. 3.

Inside atube / with across section S, an MF plug 2
of height b is present. Because of the pressure differ-
ence between the gas cavities 3, the center of mass of
the plug is shifted to the point with the coordinate z= a.

A small displacement of the center of mass by &z
should lead to an increase in the plug volume by Sdz at

the point with the coordinate z= g + aandtoadecrease

inits volume by the same value at the point z= _k_2) +a.

The appearance (disappearance) of the virtual MF disk 4
ACOUSTICAL PHYSICS Vol. 51
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in the vicinity of the upper and lower free surfaces of
the MF drop gives rise to a perturbation of the ponder-

motive force:
oH
= HOSE\AZ 0z %Z_[—)+a
(D

In addition, at the upper and lower free surfaces of
the plug, the norma component of magnetic field
exhibits a discontinuity, which gives rise to a magnetic
pressure force. The perturbation of this force can be
represented as [12]

oM

_ aMﬂ

Using the expression M, = xH, where X is the local
magnetic susceptibility, we obtain

oH
5f, = —uos[%'\/'z az%z-——w

_S(MZ azDz——+a}6Z'

With Egs. (1) and (2) taken into account, the for-
mula for the restoring pondermotive force takes the
form

)

5, = uosﬁ(ux)mza; o

e

[(1+x)|v|
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Fig. 3. Scheme used for calculations.

The coefficient of elasticity of the vibratory system,
k, isthe sum of the coefficient of pondermotive elastic-
ity k, = of/0z and the coefficient of elagticity of the gas
cavity ky [11]:

= pyc —+u08§(1+x)wlz 32 - bea

o7 O
20z i|z: g+a %
where py and ¢ are the density of gas and the sound

velocity in it and V, is the volume of the isolated gas

cavity. The vibration frequency v of the system is cal-
culated by the formula

3)
_[(1+x)|v|

— ngS Ho aHz
21'[/\/pr pbﬁ(lﬂ()Mzd}

where p isthe density of the MF.

When the magnetic field is symmetric about the
planez=0and a=0, the expression for k; is reduced to
the form [9, 10]

H, _oH
Kp = ZMOSMZEQO +X 62%2——— (©)

From the methodological point of view, one of the
key pointsisthe presence of alinear dependence of the
emf induced in theinductance coil positioned inside the
ring magnet on the displacement of the center of the
MFM with respect to the equilibrium position, i.e., the
determination of the limits of the dynamical range. To
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determine the aforementioned dependence, an experi-
ment was carried out with an MFM described in [11].
In this experiment, the MFM plugs the cross section of
atubethat is the neck of a glass flask with a volume of
0.51. The inner diameter of the neck is 16.5 mm.

When the flask is shifted upwards by Az above the
stand and fixed in this position, the membrane is shifted
from the equilibrium position by &z, so that

kg
Az
Kq +Kp
When the flask abruptly returns to the initial posi-
tion, the membrane proves to be shifted from the equi-

0z =
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Tablel
Sample | p,kg/m® | ng, Pas | Mg, kA/m X
MF-1 1294 32x103 52+1 6.2
MF-2 1499 8.1x1072 60+1 7.5
MF-3 1424 - 43+1 5.0

librium position by &z because of its inertia, which
leads to the development of a vibratory process. At the
instant when the plug passes through the equilibrium
position, the maximum emf is reached: €,, The abrupt
motion of the flask occurs under the impact of afalling
body with amass of 125 g. The induced signal is sup-
plied to the input of an oscilloscope operating in exter-
nal synchronization mode. The oscillogram is photo-
graphed by adigital video cameraand entered in acom-
puter where it is processed an analyzed with the Corel
Draw program. This method of obtaining and process-
ing the results of vibration frequency measurements
provides a confidence interval of 5% with a confidence
level of 0.95.

We used MFs common to mechanical engineering:
colloid solutions of single-domain particles of Fe,O,
magnetite in kerosene (MF-1 and MF-2) and in silicon
organics (MF-3) [17]. The physical parameters of mag-
netic colloidsaregiveninTable 1: p isthedensity of the
MF, x istheinitial magnetic susceptibility, and n.isthe
static shear viscosity of the colloid. These parameters
were determined by standard methods [12, 17].

The fluid was introduced into the neck of the flask
by a syringe, which was weighted with MF before and
after the introduction of the drop.

As aresult of the measurements, we determined

—the dynamical range for the MFMs (at T =24 +
0.5°C, the dependences ¢,,(A2) obtained for the MFMs
on the basis of MF-1 and MF-2 are approximated by
segments of a straight line in the intervals 0-4.5 mm
and 0-3.5 mm, respectively, with the confidence level
of approximation being 0.99 and 0.98, respectively);

—the sensitivity of the device to displacement, [3,

which is determined as the tangent of the slope angle of
the approximated straight line;

—the amplitude of thefirst vibration, €, a Az=0,
this vibration being a consegquence of the pressure pro-
duced by the flask on the damping cotton pad and the
excitation of elastic vibrations of the flask walls at the
instant of impact.

Table 2 presents the values of 3 and ¢, obtained

from the experiments with different fall distances of the
load, h'.

For the MFM consisting of the more concentrated
colloid MF-2, the parameter 3 is amost twice as large
asthat in the case of MF-1. Thisresult can presumably
be explained by the negative role of viscous forces,
which lead to a decrease in the amplitude of initial
membrane displacement from the equilibrium position
at the instant of impact. The small increase in 3 with
increasing distance of fall h', which ismore pronounced
for MF-1, is presumably caused by the inertial proper-
ties of the membrane. A considerable increase in 3
should be obtained under the condition k, >k, and this
can be achieved by reducing the volume of the isolated
gas cavity V,,.

The calculation of the vibration frequency of the
MFM isin good agreement with experimental data[9,
10]. In the present study, we performed a direct experi-
ment on determining the parameter k;, by the added-
cavity method. The essence of this method is as fol-
lows. The vibration frequency is sequentially measured
with the tube open on one end, v,, and with the tube
closed on both ends, v,. When the tube is open on one
end, the MFM is string-loaded with the elasticity of the
isolated gas cavity and the pondermotive easticity.
When the tube is closed on both ends, the MFM is
loaded with the two aforementioned elasticities and the
elagticity of the added gas cavity. The coefficient k; is
calculated by the formula

k

_ T[ngczd4[ 1

- _1 \_/_a_C}
TV !

n°—1 - Vo
where V. is the volume of the added cavity and n =
Vo/V,.

Let us compare the results of calculating k, by
Eq. (5), (Kytheorr and the experimental results obtained
by the aforementioned method, (K,)e. IN the experi-
ments, the MFM is placed in a cylindrical neck of a
glass flask. The added cavity is formed by applying a
ground stopper. From preliminary measurements of the

field dependence of the magnetization of magnetic col-
loids, we obtained the data necessary for calculating

(kp)theor-

For the MF-1 membrane, we obtained b = 1.68 cm,
M = 345 kA/m, G = 4.6 x 10 A/m?, x = 0.25, and
(Kp)theor = 100 N/m. From the measurements by the

Table2
Colloid h', mm B, mV/mm €moy MV Colloid h', mm B, mV/mm €mo, MV
MF-1 9.0 4.6 0.5 MF-2 10.8 25 0.7
14.6 49 0.5 20.3 2.6 0.5
194 53 0.5
ACOUSTICAL PHYSICS Vol.51 No.6 2005
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added cavity method, we obtained h,, = 4.64 cm, v, =
24 Hz, v, = 68 Hz, and (K,)eq, = 98 N/m.

For the MF-2 membrane: b =2 cm, M = 42 kA/m,
G=4.6 x10° A/m?, x =04, hp, =63 cm, n= 1.9,
(Kptheor = 136 N/m, and (Ky)exp = 137 N/m.

Taking into account the estimated character of the
model calculations and the errors inherent in the
adopted method of measurements, we should expect a
difference between (K,)meor aNd (K)o, Of @bdout ten per-
cent. Presumably, in the case under study, the good
agreement between the cal culated and measured values
of k, is partially caused by the mutual compensation of
errors in the determination of individual parameters.

The model theory makes it possible to predict qual-
itatively the behavior of the elasticity and vibration fre-
guency of the MFM as functions of the displacement of
itsequilibrium position. For example, from Egs. (3) and
(4), it follows that, by virtue of the symmetry of mag-
netic field with respect to the planez= 0 (Fig. 1), adis-
placement of the membrane should not lead to consid-
erable changes in the magnetic elasticity and vibration
frequency. However, as the free surface of the mem-
brane approaches the maximum-field plane, we obtain
0H,/0z— 0 and, hence, the values of k, and v aso
decrease. This position of the MFM iscritical [12, 17],
because a further increase in the pressure drop leads to
its breakage.

The above conclusions of the model theory were
experimentally tested with MF-1 and MF-2 colloids.
The MF covers the cross section of the neck of aflask.
The use of aflask with alarge volumeinthe MFM sys-
tem allows usto obtain a considerabl e predominance of
the pondermotive el asticity over the el asticity of the gas
cavity. The displacement of the equilibrium position of
the membrane is obtained by raising the ring magnet,
which isrigidly bound to the kinematic unit of a cathe-
tometer, to a height Az measured with an accuracy of
0.01 mm. The vibrations are excited by a mechanical
shock in the vertical direction.

Asaresult, it was found that

—at Az< 30 mm, the dependence v(Az) hasvirtually
the same form of a segment of astraight line parallel to
the abscissaaxis for both colloids (the prediction of the
model theory is confirmed in this part of the experi-
ment);

—in both cases, several 0.5-mm steps of magnet
displacement before the breakage of the membrane, the
vibrations acquire strongly pronounced nonlinear prop-
erties. the oscillograms of damped vibrations first
become saw-toothed; then, the second harmonic
appears; and, finaly, the vibration frequency is dou-
bled.

Thus, the conclusion of the model theory concern-
ing the sharp drop of the vibration frequency near the
critical position of the MFM could not be confirmed or
disproved in our experiments because of the strong
nonlinearity of the vibratory process. Therefore, the
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Fig. 4. Dependence hy(hy) for the MFMs on the basis of
(@ MF-1, (b) MF-2, and (c) MF-3.

model theory based on the applicability of Hooke'slaw
should be extended with allowance for the actual non-
linearity of the expression for the restoring force in the
vicinity of membrane breakage.

KINETIC PROPERTIES

Let us consider the results of measuring the critical
pressure drop P, causing the breakage of the MFM. To
form the MFM, in this case we used a glass tube with a
flat bottom, alength of 350 mm, and an inner diameter
of 13.5 mm. To eliminate the reactive oscillatory
motion of the tube, the latter wasrigidly fixed in amas-
sive brass holder. In part of the experiments, the mem-
brane formation was realized through the “self-trap-
ping” of a portion of MF by the ring magnet moved
from the bottom of the tube to a height h, above the
fluid level. The pressure drop in the isolated gas cavity
was obtained by the displacement of the ring magnet
along the tube with an accuracy of 0.01 mm.

Figures 4a—4c represent the results of measuring h,
(hy is the distance between two sequential breakings of
the membrane) as a function of the height h, of the air
column isolated by the fluid for the MF-1, MF-2, and
MF-3 colloids, respectively. Presumably, the scatter in
the values of h, could be reduced by taking additional
measures for the vibration, acoustic, and thermal insu-
lation of the MFM.
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Table3

hg, mm er mm | PgkPa | Ammg | &y, mV | kg, N/m | ko, N/m | hg, mm | vg, m/s T, ms
MF-1 161 0.24 0.078 0.042 6.6 135 145 0.12 175 240
177 0.25 0.076 0.045 6.0 123 145 0.12 17.0 2.60
194 0.26 0.075 0.045 6.0 112 145 0.11 16.5 2.70
204 0.26 0.074 0.046 5.9 106 145 0.11 16.4 2.80
MF-2 90 0.06 0.027 0.010 4.8 242 166 0.04 272 0.36
164 0.06 0.021 0.010 35 132 166 0.03 23.6 0.42
181 0.05 0.016 0.009 3.0 120 166 0.02 22.8 0.40
MF-3 150 0.97 0.280 0.17 75 144 107 0.55 264 6.40
161 0.96 0.260 0.17 7.3 135 107 0.54 25.7 6.50
170 1.03 0.280 0.18 8.2 127 107 0.56 256 6.90
181 1.05 0.270 0.19 6.8 120 107 0.56 251 7.30

By averaging over a great number of experimental
data (no less than 50 for MF-1 and 150 for MF-2) in a
narrow interval of magnetic head displacement from h,
to hy+ Ah (Ah=1 cm) for severa different values of the
air column height h,, we obtained the average value of

h, and determined thelaw governing theincreasein h,

with increasing h,. The corresponding data are pre-
sented in Table 3.

The breakage of the MFM is not observed when the
magnetic head movesin the reverse direction within the
region of acertain width 2I'. Thus, I' is the cathetome-
ter-measured distance between the initial equilibrium
position and the first displaced equilibrium position.
For MF-1, MF-2, and MF-3, we obtained: ', = 1.77,
M, =3.04,and I; =4.53 mm.

Figure 5 shows the thermodynamic process as a
function P(2) under the assumption that the magnetic
head moves slowly upwards along a tube of constant
Cross section.

hy ho+hyi ho+ hy+hy
hothg+hg hothe+hithy

hothg+2h;  z

Fig. 5. Thermodynamical processin the gas cavity.

Regions 1-2, 4-5, and 7-8 correspond to the iso-
thermal expansion of the gas cavity (by a hyperbola).
The displacement h, between two breakings of the
MFM, which is measured by the cathetometer, consists
of theincrement of the gas cavity height hy and the dis-

placement of the membrane hy, which are related as

hy /hg = ky/Kg. The calculated values of k,, kg, and hy are
presented in Table 3.

The critical pressure drop P, = P, — P, which
causes the breakage of the membrane when it is dis-
placed from the initial equilibrium position (z= hy), is
determined from the relation

YRl
Por = ho+yl’

k
wherey=s —2— |
Kp + Kq
For the samples of MF-1, MF-2, and MF-3, the val-
uesof P, areasfollows: P, =0.57, 1.04, and 1.24 kPa,
respectively.

In states 2, 5, and 8, the continuity of the membrane
fails and a hole appears in its central part. Under the
effect of the pressure difference, air passes through this
hole, which results in a jumplike pressure increase. At
this stage of the process, the membrane is shifted
towardsthe equilibrium position, i.e., in the direction of
OH. Thisleads, on the one hand, to acertain increasein
the gas cavity volume and, on the other hand, to condi-
tions favorable for the closure of the cavity.

Within the period when the hole is present in the
membrane (the lifetime of the hole 1), the state of the
gas in the gas cavity may vary according to one of the
two variants of the transition to the new state with an
equilibrium pressure P,, each of them leading to the
excitation of free vibrations of the MFM.
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The first variant (2-3, 5-6, etc.) is characterized as
follows: the displacement of the membrane is very
small because of itsinertness and because of the“rigid”
connection of the process of self-recovery of continuity
with the topography of the magnetic field, while the
pressureincreasein the cavity is caused by adiabatic air
flow through the hole. One can also assume that, by the
instant of full recovery of the membrane continuity, the
gas flow velocity is maximum and the pressure on the
walls of the hole is minimum.

In the second variant (2-3', 5-6', etc.; the dashed
linesin Fig. 5), within the time T, the membrane passes
through the equilibrium position and, by the instant of
closure (points 3' and 6'), it stops and then moves
toward the equilibrium position. This situation is theo-
retically possible if no rigid connection exists between
the continuity of the membrane and the topography of
magnetic field while the process of deceleration of the
membrane and closure of its holeis mainly determined
by the gas-dynamic effect of the increasing gas flow
drag with increasing gas flow velocity.

Upon the termination of the damped vibrations and
the establishment of thermodynamic equilibrium, the
gasinthe cavity provesto bein astate corresponding to
points4 and 7 in Fig. 5. Asthe magnet is raised further,
the breakage of the membrane occurs at a smaller pres-
sure increase in the gas cavity. The expression for cal-
culating the critical pressure drop for the subsequent
membrane breakings, P, = P,- P, hasthe form

hoyhy

Pe = Palhy T yT —yho(ho +yT + by

For h, > y(I' — hy and h, > yI' + h,, we have P[]
P.yh./hg.

Theresults of calculating the parameter P, with the use
of the values of h, are shown in Table 3.

These data confirm the physically predictable result
that P, isindependent of the height h, of theisolated gas
cavity. A slight decreasein P, with height h, is observed
for the MFM on the basis of MF-2. It is related to the
decrease in the mass of the membrane because of the
loss of its part remaining on the inner surface of the
tube, which is confirmed by visual observations.

The MFM made of the MF-1 colloid, which is char-
acterized by a lower concentration of magnetic phase
and, hence, lower values of M and x than those charac-
terizing the MF-2 colloid, exhibits a much higher value
of the critical pressure drop P, (for the parameter P,
there is an inverse ratio). This seems to be unexpected
at first glance. We believe that the physical origin of this
result lies in the “more rigid” connection of the mem-
brane continuity with the topography of magnetic field
in the case of the membrane made of the MF with the
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higher value of . The recovery of its continuity occurs
at asmaller displacement in the direction of CJH, within
ashorter timeinterval, and at arelatively small velocity
of displacement.

In the framework of the assumed thermodynamic
process (Fig. 5), the mass of the gas portion passing
through the MFM can be calculated by the formula

_ HPd’h,
~ 4RT

where | isthe molar mass of the gas, Ris the universal
gas constant, and T is the absolute temperature. Taking
the air parameters p = 30 kg/kmol, P, 0 10° Pa, d =
13.6 mm, and T = 298 K, we obtain

Am = 176 x 10"*h,.

Table 3 presents the values of Am for the MFMs
under investigation. The minimum vaue Am,;, =
0.009 mg belongs to the MFM on the basis of MF-2,
and the maximum value Am,,, = 0.17 mg characterizes
the MFM on the basis of MF-3. Varying the amount of
colloid introduced in the MFM, one can slightly extend
the range of values of Am. For example, a considerable
decrease in Am is obtained by reducing to a minimum
the amount of MF-2 in the membrane. In this casg, in
the absence of special measures for thermal stabiliza-
tion and vibration and sound insulation, the breakage—
recovery process in the MFM becomes uncontrolled.

To estimate the velocity of the air flow through the
hole, v, we use the relation between the pressure drop
at the hole, AP, and the velocity at the point of maxi-
mum compression of the flow, v, [18]:

1 2
APg=§nggE%,

where o is the area of the hole and ¢ is the hydraulic
drag coefficient, which depends on the area of the hole
and on the Reynolds number. Using the results of [18],
for thecaseof 0 < S wetake& =§,=2.9. Then, we can

write
[2AP,
Vg= .
ngO

Taking into account that the pressure drop is

_ Pe_'Pm _ VPa r'_hk
DRy =Py =5 = T e
r .yl
* ho+yl'} = b P
we obtain

o~ [2yP,I
9 ngOhOI
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The lifetime of the hole, T, can be estimated by the
formula

Am
pgovg'

In our experiments, we did not perform any direct mea-
surements of g, but, according to visual observations,
the diameter of the hole was within 1-3 mm. To esti-
mate T from above, we use the minimum value of the
diameter. In Table 3, we present the kinetic parameters,
vy and 1, for the MFMs under study.

Thus, the proposed approach allows one to experi-
mentally estimate the following kinetic parameters of
the MFM: the displacement of the membrane, hy; the
mass of the passed gas portion, m; the velocity of theair
flow through the hole in the membrane, v; and thelife-
time of the hole, T.

The lifetime of the hole proved to be smaller than
the period of membrane vibrations[10, 11], which sug-
gests that the first variant of transition of the MFM to
the equilibrium state (Fig. 5) ismore probable. An argu-
ment in favor of this conclusion is the fact that the for-
mula for the increase in the potential energy of the
vibratory system at the instant of membrane breakage,

AE, = 0.5(k;h: = kh?),

yieldsavalue as small as2 x 10-¢ J (for the experiment
with MF-1), whereasthekinetic energy calculated from
the average velocity of the membrane displacement
(according to the second variant) is

npd’bh;

T =26 107°7.
T

E, 2

VIBRATION EXCITATION IN THE AIR CAVITY

If themembraneisat rest at theinstant of its closure,
the hydraulic impact of the air flow on the obstacle
givesriseto aset of sound wavesin the upper open part
of the tube. These waves are described by the expres-
sion [19]

cosk z
2n —1

5P = 2P z

where k,, is the wave number of the nth harmonic and
u, isthevelocity of theair flow in the tube at the instant
of closure. For the fundamental harmonic (a quarter-
wavelength tube), we have

4 nz . TC,
uopgccosm_ T

where L is the length of the open part of the tube. The
pressure acting on the membrane (z = 0) isexpressed as

oP, =

4 . TIC
oP, = = UpPgCSiN5—t.

2L
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The relations between the parameters of the vibra-
tory systems under consideration determine the charac-
ter of membrane oscillations [20]. In particular, beats
are possible with a frequency equal to the difference
between the frequencies of initia oscillations, i.e., the
frequency detuning:

Q = |001—002|

The above considerations do not contradict the
results of our experiments with a tube 51 cm in length
and 1.35 cm in diameter for the MF-2 colloid with b =
1.5 cm. The oscillograms exhibited clearly pronounced
beats at afundamental frequency of about 170 Hz when
the magnetic head approached the bottom of the tube
(hy = 1-0.5 cm). The beats occurred twice: first, due to
the excess over the frequency of acoustic vibrations of
the air column, and, second, due to the excess over the
frequency of membrane vibrations; between these two
regions, the oscillogram has the form of “classical”
damped oscillations. When the head moved in the back-
ward direction, the beats also appeared, but, in this
case, the frequency detuning occurred in the reverse
order.

As was noted above, a membrane on the basis of
MF-2 is characterized by small values of displacement
and velocity of displacement at theinstant of closure. In
thisrespect, compared to other membranes, it fits better
the Rayleigh conditions of vibration excitation in an air
cavity [19].
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Abstract—Heart sounds are associated with impul ses of force acting on heart valves at the moment they close
under the action of blood-pressure difference. A unified model for al the valves represents this impulse as an
acoustic dipole. The near pressure field of this dipole creates adistribution of the normal velocity on the breast
surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas,
anindividua areafor each of the valves, and a noncoincidence of these areas with the projections of the valves
onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is
found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spec-

trum. © 2005 Pleiades Publishing, Inc.

Auscultation of heart sounds with a stethoscope is
the most widespread method of the original study of
heart activity. Sounds produced by the heart are con-
ventionally divided into heart sounds and cardiac mur-
mur. The fundamental heart sounds are produced at the
beginning of the main phases of cardiac contraction,
systole (contraction of the myocardium and pushing of
the blood out to arteries) and diastole (relaxation of the
myocardium and filling of ventricles with blood) and
are designated as the first and second heart sounds,
respectively (Fig. 1).

Thefirst soundis produced at the moment of closure
of the heart valves between the atria and ventricles: the
left (mitral) and right (tricuspid) ones. Normally, the
duration of thefirst sound isabout 150 ms and the pres-
sure amplitude (in the stethoscope's bell) is about 3 Pa
[1]. In spite of the seemingly clear connection between
the first sound and the oscillations of the atrioventricu-
lar valves, the origin of thefirst sound is not yet consid-
ered to be ultimately ascertained. This uncertainty
arose under the influence of such scholars of authority
as Rushmer, who considered the first sound to result
from oscillations of the muscular tunic asawholeinthe
process of deceleration of the blood flow from atria to
ventricles [2], and Luisada, who considered that the
first sound is produced by oscillations of the left half of
the heart alone [3]. For example, Gitterman and
Lewkowiz's physical model [4] considers the oscilla
tions of the elastic spherical tunic as the main source of
thefirst heart sound and describesthe oscillations of the
valves with allowance for the elastic properties of the
constituting tissues as a possible complement.

Thereisagreater amount of certainty in understand-
ing the second sound, which appears at the moment
when the aortic and pulmonic valves between the ven-

triclesand corresponding arteriesclose. It isuniversally
recognized that the second sound is caused by the clo-
sure and further oscillations of the arteria valve [1].
The second sound lasts for 100-120 ms, its pressure
amplitude (in the stethoscope’s bell) is about 3 Pa, and
it has a somewhat higher frequency spectrum than the
first sound.

Pressure, mmHg
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Fig. 1. Time dependences of pressurein the (1) left ventri-
cle, (2) right ventricle, (3) aorta, and (4) pulmonary artery
[9, 11]. The plot at the bottom is a phonocardiogram of the
first T1 and second T2 sounds.
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Thus, athough possible origins of the heart sounds
are named and indicated in the literature, the primary
mechanism of heart sound generation, in particular, that
for the first sound, is as yet undetermined. Previous
effortsto physically describe the phenomenon of sound
generation seem to be qualitative or preliminary in
character, and the results are far from solving the prob-
lem[1, 2, 4-6].

This paper proposes an original acoustic approach
to formulating a physical model of heart sound forma-
tion from the generation of sounds to their reception
with a stethoscope or a microphone.

It isimportant to note that the foll owing facts known
from auscultation practice were still beyond the scope
of discussion. First, the sounds can only be heard over
very small areas of the breast (variationsin theintensity
are noticeable with shifting the stethoscope’s bell by 1—
2cm [7]). Second, in the aforementioned limited areas,
only one of the sound components is heard best: the
mitral, aortic, pulmonary, or tricuspid component [8].
Third, these areas of best hearing do not coincide with
the projections of the corresponding valves onto the
breast surface [9].

Aswe will show below, the proposed theory gives a
clear and unique explanation of these facts.

1. GENERALIZED THEORY OF HEART VALVES

Heart valves are soft flexible shells. Under the
excess pressure of backward blood flow, they take a
filled shape and block the flow; under the pressure of
forward flow, they lose their shape and are pushed by
the blood flow to the vessel or ventricular cavity walls.
All four valves are different in size, structure, and
shape.

Consider the heart valvesin their closed state, when
they can emit sound. Because the heart valves are soft
shells, they acquire their shape under the action of the
pressure difference: between the artery and ventriclein
the diastole and between the ventricle and atriumin the
systole; the shell tension is determined by this pressure
difference aone. Acting upon the valve surfaces, this
pressure difference creates an external nonstationary
force, under the action of which the valves execute
forced and free oscillations. If the time of variation of
the external force is longer than the decay time of the
free oscillations, the oscillation spectrum is determined
by the spectrum of the external force. Otherwise, if the
action takes a short time and the Q factor of the oscil-
lating system is high, the oscillation spectrum is deter-
mined by the eigenfrequencies of this system.

Consequently, the fundamental question concerning
the choice of the valve model is determined by the
valve's Q factor. If the Q factor is high, the eigenmodes
of valve oscillation (i.e., the valve structure and the
elastic parameters of the constituent tissues) are signif-
icant[1, 4, 5]. If the Q factor of the valves as oscillating
systemsislow, their motion is determined by the exter-
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nal force and the time dependence of thisforce aloneis
important, whereas the valve structure is of minor sig-
nificance. In the latter case, the source of acoustic radi-
ation of all four valvesis described in terms of asingle
simple moddl: atime-varying externa force applied to
the aperture closed by a given valve.

The Q factor of avalve as an oscillating system can
be directly determined only from sufficient experimen-
tal data on the heart valve oscillations, which are pres-
ently unavailable. However, indirect evidence of the
valve's Q factor being small is given by the fact that the
duration of the heart sounds coincides with that of the
external force. That is, the duration of the sound pro-
duced by the valve itself is apparently negligibly small
compared to the duration of the external force's action.

As will be shown below, a variable external force
applied to the valve tissues provides a satisfactory
explanation for the main acoustic features of the heart
sounds.

2. A MODEL VALVE AS AN ACOUSTIC DIPOLE

The acoustic model of heart valves is based on the
following two assumptions. First, from the viewpoint
of propagation of longitudinal waves, the human body
inthefirst approximation is a continuous homogeneous
waterlike medium, because the density and the elastic
properties of its tissues are close to uniform and the
wavelengths of the heart sounds far exceed any dimen-
sion of the body (and, all the more, the dimension of
any of itsorgans). Second, the external forceisdirected
along the flow (the valve axis) and is a product of the
pressure gradient and the cross-sectional area of the
valve aperture. As an acoustic source, aforce applied to
ahomogeneous medium can be represented by adipole
with its axis coinciding with the force vector and the
dipole force being equal to the magnitude of the exter-
nal force [10]. The radiation produced by thisdipoleis
equal to the scalar product of the force vector and the
gradient of the monopole field:

_ cexp(ikr)g _
p FD]D arr O Fog(r), (D
where p is the sound pressure, F is the vector of the
external force, k is the wave number, r is the length of
the position vector of the observation point, and O isthe
Hamiltonian.

Thus, as an acoustic source, any heart valve can be
represented by a dipole located at a small (in terms of
the wavelength of its own radiation) distance under the
body—air boundary. Consequently, the problem of
sound radiation by the heart valves is reduced to the
determination of the normal velocity field at a perfectly
soft boundary lying in the near field of adipole.
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7,

Fig. 2. Spatia position of the real dipole M; and its image
M, with respect to the boundary XY; P is the observation
point.

3. THE NEAR FIELD OF A DIPOLE
IN THE VICINITY OF A PERFECTLY SOFT
PLANE BOUNDARY

In the first approximation, the body—air boundary
can be considered to be plane. The field near this
boundary can be represented as a superposition of the
fields produced by two dipoles: the given dipole and its
mirror image with an oppositely directed axis [10],
because the images of the monopoles forming the
dipole change their sign at a soft boundary. Consider a
rectangular coordinate system (Fig. 2) such that its XY
plane coincides with the boundary and the dipole axis
lies in the XZ plane and makes an angle a with the
Xaxis.

The normal velocity of the boundary can be found
using the Euler equation, from the pressure fields of the
real dipole and its mirror image:

Vo = S(M[0(r) + M, (1), 220, (@)

where M, and M, are the dipole moments related to the
dipole force through the general expresson M =

1/pfFdt, r, and r, are the distances between dipole

centers and the observation point (Fig. 2), and p is the
density of the medium.

L et the depth of the dipole under the boundary be h,
the distance from the dipol e projection onto the bound-
ary to the observation point P along the boundary ber,
and the angle between the projection of the dipole axis
onto the boundary and direction to the observation
point be ¢. Then, after some algebra (see the appendix),

KASOEV

the following general expression for the normal veloc-
ity of the boundary can be obtained:
M N G
V, = Z—_[exp(lkR)—R—s

x E(s-sikR-szZ)(zcosa cosp +sina) (3
O

2

+R sina(ikr-1)0
h 0

whereR= /r?+h?, and & = r/h.

In the near-field region kR < 1, expression (3) can
be considerably simplified:

M
2mth’(J/1+ 52)5 )
x (3% cosa cosp + 2sina —E°sina).

Formula (4) is the basis for the subsequent esti-
mates. The distributions of the normal velocity ampli-
tude V, over the boundary for different angles a
between the dipole axis and the boundary are plotted in
Fig. 3.

Consider a dipole that is normal to the boundary
(curve 4 in Fig. 3). In this case, the amplitude of the
normal velocity at the boundary is independent of the
angle and gradually decreases astheinverse cube of the
distance from the projection of the dipole onto the
boundary to the observation point:

veM_2-8
n 2T[h3( ll + 2_2)5'
This case does not agree with the actual valve posi-
tions, in which the valve axes are ailmost parallel to the
breast surface, as shown in Fig. 4 borrowed from [9].
Consider the case of adipole parallel to the bound-
ary (Fig. 3, curve I). The distribution of the normal

velocity at the boundary is described by a cosine func-
tion:

V, =

&)

~3M 3

n
2m([1+ £

In addition, the normal velocity is zero above the
dipole and maximum at two symmetric points posi-
tioned at equal distances r = h/2 from the projection of
the dipole onto the boundary along the direction paral-
lel to the dipole axis. The normal velocity amplitude
decreases with distance from the maxima as the fourth
power of distance from the dipole projection onto the
boundary; i.e., the maxima are sharp.

Thus, formula (6) gives a complete qualitative
explanation for, first, the pronounced localization of the
places on the breast where the heart sounds are dis-
tinctly audible, second, the displacement of these

cosd. (6)
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Fig. 3. Amplitude distribution of the normal velocity of the boundary for the dipoleinclined at a = (1) 0°, (2) 30°, (3) 45°, and (4) 90°.

places from projections of the valves onto the breast
surface, and, third, the difference in the positions of
these places for different valves. The best audibility
areas are schematically shown in Fig. 4 together with
the heart valves. As can be seen from this figure, in
accordance with Eq. (6), the best audibility areaslie on
the valve axes and are displaced along these axes by
certain distances, which are different for different
valves, because the depths of the valves and their incli-
nations relative to the breast’s surface are different.

4. THE PHYSICAL MODEL
OF THE STETHOSCOPE

To correctly compare the results of the modd valve
description, we must allow for the transfer properties of
the heart’s sound receivers, because Egs. (4) and (6) refer
to a point velocity receiver located on the breast’s sur-
face. Actually, the receiver of heart sounds may be a
stethoscope or an air or contact microphone. All of these
receivers contact the breast over alimited contact area.
2005
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Let us begin with the contact microphone, which is
actually a detector of normal acceleration, or an accel-
erometer.

Fig. 4. Schematic representation of the heart valve positions
and the best-audibility areasfor heart sounds of the (A) aor-
tic, (P) pulmonary, (M) mitral, and (T) tricuspid valves[9].
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Fig. 5. Ratio of the surface integral in Eq. (9) to the area of
the stethoscope’s bell versus the distance along the dipole
axis from the bell center to the projection of the valve onto
the boundary (the distance is normalized by the depth of the
valve) for different ratios of the bell radius to the valve
depth: (1) 0.1, (2) 0.3, (3) 0.5, (4) 1.0, and (5) 2.0.

Only a small part of the data on heart sounds
reported in the literature refer to measurements with
this kind of receiver, which hampers its comparison
with the theory. However, this receiver offers certain
advantages worthy of note. In fact, as follows from
Eqg. (6), the normal acceleration is proportional to the
dipole force or to the driving force:

a= —?’—E— =Ccosd. @)

2mh® ( /1+ )

This means that the output signal of a perfect con-
tact microphone directly gives the driving force spec-
trum.

An air microphone, such as a stethoscope, has a
bell-shaped cavity, which, being applied to the breast
surface, forms a closed air-filled cavity. Normal dis-
placements of the breast surface cause pressure oscilla-
tions in this cavity, which are detected by the micro-
phone or by ear in the case of the stethoscope's bell.
Since these receivers are identical, we consider a
stethoscope with given parameters. the cross-sectional
area of the bell opening and the total internal volume,
which includes the internal volume of the bell and the
guiding pipes. Assuming that the air compressionin the
internal space of the stethoscope under the action of a
small displacement of the breast surfaceis adiabatic, in
the first approximation we obtain the following expres-
sion for the sound pressure in the stethoscope:

P, = FJ'Vndtl ®)
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Fig. 6. Heart sound spectra measured in one-third-octave
bands for the (triangles) first and (squares) second sounds
and the corresponding calculations for the (1) mitral and
(2) aortic valves.

whereyisthe adiabatic index, U isthe internal volume
of the stethoscope, Sisthe area of the bell opening, and
P, isthe atmospheric pressure.

Substituting expression (6) for the normal velocity
into the time integra in EqQ. (8), we obtain the sound
pressure in the stethoscope as a function of the external
force that acts upon the valve:

3yF’

P = Sho s J’M(t)dtJ’J’

- | t3V 2> IM(t)dt

(x y) coscb dxdy

)

Theratio Int of the surface integral in Eqg. (9) to the
area of the stethoscope’s bell is plotted in Fig. 5 versus
the distance along the dipole axis from the bell center
to the projection of the valve onto the boundary (the
distanceis normalized by the depth of thevalve) for five
values of theratio of the bell opening radiusto thevalve
depth. As can be seen from this figure, the greater the
bell radius, the more the pronounced the audibility
maximum of each valveisshifted along itsaxisand dis-
placed from the projection of the valve, because, when
the relative bell radius is greater than 0.3, the effect of
the symmetric antiphase region (Fig. 3) disappearsonly
when the shift is equal to the bell radius. This theoreti-
cal result is in good qualitative agreement with the
aforementioned experimental facts known from auscul -
tation practice [7-9].

As can be seen from Fig. 5, at a given valve depth
and agiven internal volume of the stethoscope, the sig-
No. 6
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nal reaches its maximum at a particular radius of the
bell opening (no more than 0.3 of the valve depth), and
the auscultation signal decreaseswith afurther increase
in the bell size. This behavior is explained by the pro-
nounced localization of the normal surface displace-
ments produced by the valve oscillations and by their
dipole character. Therefore, to achieve the maximum
heart sound loudness, real stethoscope designs use an
empirical bell diameter of 2-3 cm, which, according to
the above physical model, correspondsto redlistic valve
depths of 5-9 cm. Asis known, fetoscopes use greater
aperture diameters of 5-6 cm, because a fetus's heart
valves are at a longer distance from the surface of a
mother’s body.

5. THE MODEL SPECTRUM
OF THE DIPOLE FORCE

L et us show that the dipole model of avalve predicts
not only the true spatial characteristics of acoustic
fields produced by the valves with localization of aus-
cultation areas observed in practice but also the true
levels and spectra of radiation.

The analysis of classical plots [9, 11] of simulta-
neous pressure variation in auricles, ventricles, and
arteries (Fig. 1) shows that, first, these pressures
increasefast in theleft part of the heart and the pressure
differences are substantial, and, second, all variations
are continuous; i.e., the curves are everywhere smooth
in the mathematical sense. For clarity, we consider the
process of closure of the mitral valve. It can be con-
cluded from Fig. 1 that the first sound begins when the
pressure in the left ventricle starts rising, and it ends
when the aortic valve opens. It is therefore natural to
model the pressure behavior in time by the following
exponential function:

p = Poexp(PBt), (10)

where P, isthe blood pressure amplitude for each of the
valves and 3 is the characteristic frequency of pressure
variation.

The characteristic timeintervals, reciprocal of 3, are
equal to theinterval of the isometric contraction (0.02—
0.04 s) for the mitral and tricuspid valves and to the
interval of sharp pressure drop in the ventricle (0.02—
0.04 s) for the aortic and pulmonary valves.

The spectrum of the variable pressure difference
that acts upon the valves and is described by Eq. (10)
can be calculated through the Fourier transform:

1
) = Pom,

t<0, p=0, t>0,

Gy(w (11)

where w = 2711 is the circular frequency.

The magnitude of spectrum (11) decreases in
inverse proportion to frequency; that is, above the fre-
guency w= 3, the spectrum of the driving forcefalls off
at arate of 6 dB/octave. Such a spectrum slope must
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Table
Pressure Vave . Sound
\t'zfl?/ré onthe | crosssec- f ODrLZO(ﬁ) pressure
valve (kPa)| tion (cm?) (Pa)

Aortic 12 0.9 1 2.9-3.3
Mitral 9 1.6 14 2.6-2.8
Pulmonary 2 0.8 0.16 1518
Tricuspid 3 2.9 0.87 —

also characterize the response of a perfect accelerome-
ter to the heart sounds.

For the air microphone and the stethoscope, the sig-
nal spectrum is steeper: its magnitude variesin inverse
proportion to the cube of frequency, or at a rate of
18 dB/octave. Indeed, the double integral with respect
totimein Eqg. (9) givesrise to an additional factor, the
squared frequency, in the denominator. Precisely this
kind of frequency spectrum was reported for the heart
sounds in the literature [ 7, 8] and was measured by the
author of this paper (experimental pointsin Fig. 6).

Thus, the heart sound spectrum is in good agree-
ment with that predicted by the model.

Let ususe Egs. (9)—(11) to calculate the sound pres-
sure created by the heart valves in the stethoscope's
bell. We use the initial data on the pressure exerted on
the valves and the data on the valve cross sections bor-
rowed from the literature [2, 9, 11] and summarized in
the table. The right-hand column of the table contains
the data on the amplitudes of the heart sounds (data for
the tricuspid valve are absent) from [1].

The solid linesin Fig. 6 show the three-octave spec-
tra of the first (mitral valve, upper curve) and second
(aortic valve, lower curve) sounds recorded with a
stethoscope, as calculated from the dipole model. Fig-
ure 6 also shows the experimental points obtained by
the author for the mitral (triangles) and aortic (squares)
valves. As shown in Fig. 6, the calculated sound pres-
sure in the stethoscope’s bell is close to the experimen-
tal values. According to the table, the proportions
between the pressure amplitudes of sound radiation
from different valves are primarily determined by the
differences in the driving forces. Therefore, the radia-
tion of the tricuspid and, especialy, pulmonary valves
contributes little to the first and second sounds, which
iswell known from the auscultation practice.

CONCLUSIONS

The dipole model of heart sound generation
described in this paper isin good agreement with exper-
imental data on the spatial, spectral, and amplitude
characteristics of the acoustic field of the heart. Thefol-
lowing conclusions can be drawn from the analysis pre-
sented above:
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(i) The heart sounds are generated by the oscilla-
tions of closed heart valves under the action of thetime-
varying pressure difference upon the valve, whereasthe
free oscillations of healthy valves contribute littleto the
heart sound generation because of the low Q factor of
the valves. The physical model of heart sound genera-
tionisthesamefor all thefour valves: the externa force
(the product of the aperture cross section of the closed
valve by the pressure gradient) applied to a homoge-
neous waterlike medium, which, as an acoustic source,
can be represented by a dipole with its axis being par-
allel to theforce.

(if) The dipole model of the heart sound generation
isthe only model that explains the localization of audi-
bility areas for each valve and associates the positions
of these areas relative to the valves with the orientation
of the valve (dipole) axis and with the valve (dipole)
distance from the breast surface.

(iii) The dipole model of heart sound generation
provides a good agreement between theoretical and
experimental data on the heart sound levels and spectra,
which alows one to uniquely relate the heart sound
parametersto the time behavior of the pressure gradient
at the valve and to the cross-sectional areaof thevalve's
aperture.

(iv) The dipole model can be used to calculate the
heart sound pressure perceived through the stethoscope
as a function of stethoscope parameters (the interna
volume and the cross-sectional area of the bell) and
spatial parameters (the position of the bell on the breast
relative to the valve and the valve's orientation and
depth under the brest surface).

(v) For agiven valve depth, the optimum size of the
stethoscope’sbell is determined. The empirically estab-
lished difference in the stethoscope and fetoscope bell
diameters is shown to be dictated by the difference in
the depths of the auscultated valves.

This paper contains only the main experimental
results, which corraborate the dipol e theory of the heart
valve radiation. A further application of the theory to
explaining particular facts of auscultation and phono-
cardiographic examinations requires a dedicated paper.

APPENDIX
Let us introduce the notations

r, = A/(x2+y2+ h? + 2hz + 22),

r, = JOC+y +h>—2hz+ 7).
Then, formula (2) takes the form

1y 0 exp(lkrl)
n 4Tfaz a\/lcosa Ix
_Meosa 0 exp(lkrz) I\/Ismo(gexp(lkrl)
ax r, oz

KASOEV

+Msina 9 explikry) _ g
0z r, r, 4T[az 20
x (W, cosa —W,cosa + W,sina + W,sina),

where W, = (—Il(—r—l—_g—l—)i(exp(ikrl), W, = Q_Iirz_:a_%)_x x

2r; ry

ikr, — +
expikry, W, = LD 040 ang w, =

I

(|kr21—1)( h+ )exp(ikrz).

rz

The differentiation of expressions for W

[ with
respect to zyields

Oy, = ZRUKI, 4 2)(3-Bikr, —Kr),
0z r>
Oy, = ZRUKI), h+2)(3-3ike, kD),
0z rz

0y - &xp(ikry)

5z = (0

x ((h+2)*(3-3ikr, —K°r2) + 4ikrs - r?),

0 _exp(ikry)
5z = (S

x ((=h+2)%(3=3ikr,—K’r2) + 4ikri —r?).
The substitution of these expressionsinto formula(2) at
z = 0 gives formula (3) for the normal velocity of the
boundary:

M N
V, = 2nexp(|kR) =

0 . .
x 3 — 3ikR— k*R%) (& cosa cosp + sinat )
O

2

+ R sina(ikR-1)0
h a0

whereR= A/r*+h’ and & =r/h.
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Abstract—The change of orientation of a nematic liquid crystal layer and the associated optical effect under
an obliquely incident ultrasonic wave are considered. The theoretical analysisis performed under the assump-
tion that the acoustic flows caused by convective stressin the boundary layers are responsible for the orientation
effects in the nematic liquid crystal layer. An analytical description of the acoustooptic effect is developed for
low ultrasonic frequencies, and for high frequencies, a numerical calculation is performed. It is demonstrated
that the theoretical results agree both qualitatively and quantitatively with experimental data. The hypothesis
that the effect produced by ultrasound on nematic liquid crystalsis caused by therelatively strong el astic anisot-
ropy of these crystalsis analyzed. © 2005 Pleiades Publishing, Inc.

The sensitivity of the orientational structure of lig-
uid crystal layers to ultrasonic action determines the
prospects for the use of these objects in the visualiza-
tion of sound fields and, in particular, in the develop-
ment of acoustic flaw detectors on their basis. These
prospects stimulate the long-term interest in studying
the effect of sound upon the structure of liquid crystals
from both experimental and theoretical points of view
(for example, see [1, 2]). The optical effects in liquid
crystals are caused by the reorientation of crystal mol-
ecules in the sound field. In theoretical publications,
various mechanisms of the effect of sound on anematic
liquid crystal have been suggested: parametric instabil-
ity [3]; threshold action caused by the second-order vis-
cosities [4]; anisotropy of sound absorption, which,
according to Prigozhin's principle, must lead to the
alignment of long nematic moleculesin the direction of
acoustic wave propagation [5]; and acoustic flows, in
which viscous moments rotate the molecules of the
crystal [6-8]. | support the point of view that the reori-
entation of molecules occurs in the acoustic flows that
arise dueto the convective stressin the boundary layers,
whose thickness is on the order of the viscous wave-
length. This point of view is confirmed by the qualita-
tive agreement of theoretical calculations, which were
performed for different geometries of sound action,
with experimental data and also by the agreement
within order of magnitude between the theoretical and
experimental values of ultrasonic intensity at which the
effect isobserved (seereviews[1, 2]). At the sametime,
the absence of detailed information on the parameters
of theliquid crystal cells used in the experiments often
prevents the numerical comparison of the theory with
experimental data and the verification of the assump-
tion concerning the responsibility of acoustic flows for
crystal reorientation. This situation leads to the appear-

ance of new hypotheses explaining the sound effect on
the nematic liquid crystal structure.

A recent paper [9] givesthe most complete informa-
tion on the parameters of the liquid crystal cell, which
providesthe opportunity to conduct anumerical (not on
the order of magnitude) comparison of the theoretical
pattern with experimental results. This paper considers
the translucence of a nematic liquid crystal layer
immersed in water in the case of the oblique incidence
of an ultrasonic wave upon it. The paper givesthe thick-
nesses of the nematic liquid crystal layers and the
boundary plates and also their densities and the veloci-
ties of longitudinal waves in the plates. The authors
conventionally evaluate the degree of moleculereorien-
tation according to the change of the optical properties
(saturation) of the layer. They suggest anew theoretical
explanation for the observed phenomenon on the basis
of the anisotropy of the elastic properties of the nem-
atic.

Let us again consider the acoustooptic effect in a
layer of a normally oriented nematic liquid crystal at
the oblique incidence of an ultrasonic wave upon it and
perform a numerical comparison of theoretical results
with the experimental data given in [9]. The theoretical
explanation of the effect that was suggested in [9] is
discussed in the final part of the paper.

The analysis of the effect is carried out as follows.
Under the assumption that the motion of the boundaries
of the nematic liquid crystal layer are preset, we deter-
mine the wave field in the layer. Retaining the terms
guadratic in the velocities in the hydrodynamic equa-
tions, we determine the vel ocities of the stationary flow,
and, according to the rotation angle of moleculesin the
flow, we determine the optical effect. The motion of the
boundaries of anematic liquid crystal layer in the case

1063-7710/05/5106-0688$26.00 © 2005 Pleiades Publishing, Inc.
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of the incidence of an ultrasonic wave on the cdl is
determined at high frequencies by numerical calcula-
tion using a computer and at low frequencies, analyti-
caly.

We restrict our calculationsto the sound frequencies
w at which the viscous wavelength in the layer is much
smaller than the layer thickness h:

A, <h. (1)

Describing the longitudinal waves, we ignore the
viscous stress compared to the elastic one (Nw < pc?).
In the calculation of the wavefield in the layer, the vis-
cous effects are taken into account only by the presence
of viscous waves propagating from the layer bound-
aries along the normal. The dynamic viscosity in these
wavesisequal ton = (a, + 05— d,\,/Y,)/2, wherea, are
the Ledlie viscosity coefficientsand y, = a5 — 05, Y, =
o5 + 0, [10, 11].

Let usdirect the z axis along the normal to the layer
and choose the origin of coordinates at the lower
boundary of the layer. Let the x axis be directed along
the layer in the plane of the ultrasonic wave incidence.
In this case, the acoustic oscillations of particles, the
stationary flow, and the molecule rotation occur in the
(x2) plane.

L et us preset the oscillation velocities of the bound-
aries of thenematic liquid crystal layer, v, and v,, inthe
form

VK|2:B = vovKBexp(—imt+ikXx). 2)

Here, v, is the amplitude of particle velocity in the
wave incident upon theliquid crystal cell, theindex k =
X, Z determinesthe vel ocity component, theindex 3 =0,
h indicates the layer boundary, k, = wycsin® is the x
component of the wave number in the ultrasonic wave
incident upon the layer, c is the sound velocity in the
liquid, and 6 is the angle of incidence. The coefficients
Vip are complex:

Vig = Vipr ¥V po-

The solution to the wave equation of the liquid
motion in the layer

0°v v

2
—_ + — =
p > necurlcurl ot C'Av =0

with the boundary conditions given by Eqg. (2) has the
form

_ - Cepli(kx—ot)
Vx = VoReTghkh

x {itanB[ v ,cos(k(h—2z)) — v, coskh]
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+e" Vv psinkh —itanB(v ncoskh— v ;)] 3)

+el VA=A, sinkh—itan®(v o — v ,,coskh)] } E
O
Oexp{i(k,x —wt)}

V2 = VoReD™gnkh

x [V psinkz + v osin(k(h—2))] O
|

wherek = w/ccosB and q= /pw/n isthe wave number
in the viscous wave propagating along the axis of the
nematic crystal.

The convective stress arising in the wave field in the
nematic liquid crystal layer gives rise to stationary
flows, and the viscous moments in the flows cause the
rotation of the crystal molecules through the angle ¢,
both the liquid motion and the molecul e rotation occur-
ring in the plane of sound incidence. We will discussthe
sound effect upon the nematic liquid crystal layer
according to the translucence of the layer positioned
between crossed polarizers. The degree of the effect
will be determined by the optical transparency M,
which is maximal at the orientation of crossed polariz-
ers at 45° with respect to the rotation plane of nematic
liquid crystal molecules. In this case, this quantity
acquiresthe form [12]

h
M = sinzgéAnkOJ'sinzq)dzE. )
) 0

Here, Anisthe optical anisotropy of the nematic crystal
and k, isthe wave number of light in the ordinary wave.
The intensities of the sound effect at which the rotation
angle of molecules remains small, ¢ < 1, are of practi-
cal significance. For small values of ¢, we assume that,
in Eq. (4), we havesing = ¢ and linearize the equations
of hydrodynamics for the nematic liquid crystal with
respect to ¢.

The determination of the transparency of thelayer is
reduced to the determination of the rotation angle of
molecules ¢. Taking into account the fact that the time-
average guantities in the case under consideration do
not depend on x, we obtain (following [10, 11]) the
equations for the velocity of the stationary flow, v,, and
the angle ¢ in the form

d*v,, a2 ——
n2_32 = p_z(vxvz)+(*)!
dz dz
o g &)
V X
Ksaa—zgzdz d22 + ().
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Heren, = (a, + a5 — a,)/2; the overbar means aver-
aging over time, («) are terms of the form
a(d*/dz)(60v) and a(d*/dz?)(v® ), which provide

asmall contribution to the solution of the equation; and
K;; is Frank’s elastic constant.

Solving system of equations (5) with zero boundary
conditions for the angle 6,|,_,, = 0 and velocity
Vaulz=0.n = O under the condition that the flow is closed,

JE V,,dz =0, we determine ¢ as

_ pVgazh

b2 = 2qn,K 33

T - SR .
oh CH H’
where Q and Sare parameters independent of v,
Q = Vy02Vz01 = Vxo1Vzoe = Vo1V 201 — Vxo2V 202

tan®
+ _Sinkh(Vzhlvzol + VoV + VionaVoo = Vi Vao2)

2 2
—tanBcotkh(v,y + Vo),
S = ViVt Vi Vo + Viani Va2 — Vin2Vom

tan®

+—(V "4 +Vv "4 +Vv "4 -V "4
smkh( zhlV z01 zh2V 202 zhlV z02 zh2 zOl)

—tanBcotkh(v i, + Va,).

Substituting the angle ¢ from Eg. (6) into Eq. (4) for
the transparency and integrating ¢ over z, we obtain

M = sn’[BAJY, (7
where
: Ankooéh3
 326%K%gP 7

J= pvﬁc is the sound intensity in the wave incident

upon the layer; and A is the dimensionless parameter
determined by the characteristics of the cell, the angle
8, and the frequency wthrough the coefficientsQ and S:

1 2.1 1

A= 16eQ + Q8+ 1S

Thus, the optical properties of the liquid crystal cell
aredetermined by the acoustic field formed in theliquid
crystal layer at the incidence of the ultrasonic wave on
the cell. To calculate this field, we consider a typical
liquid crystal cell in which the layer of a normally ori-
ented nematic crystal is placed between two transparent
substrates with thicknesses H, and H,. We assume that
the cell is completely immersed in water and a sound

KOZHEVNIKOV

wave is incident upon it at an angle 6 from the side of
thefirst plate (H,). We assume that the boundary plates
are made of identical materials with the density p, and
the velocities of longitudinal and transverse waves ¢
and ¢,. We also assume the values of the density p and
the sound velocity ¢ in water and in theliquid crystal to
be identical.

To determine the coefficients v, and, hence, the
optical effect, we consider the wave problem on the
transmission of a sound wave through the liquid—solid
plate-iquid—solid plate-liquid multilayer system. Let
usintroduce (for the wave transmission through the lig-
uid crystal cell) the scalar potentials of velocity in the
sound waves propagating in the liquid and in the longi-
tudinal waves propagating in the boundary plates:

ikz+ Re—ikz
O ikz —ikz
(e +Dbee

. . oo ;
D, = Poexp(ik,x—iwt)d,e" +d,e™

ik z —ikz
%bze +b,e

U~ ~—ikz
DD e
and the vector potentials of velocity in the shear waves
propagating in the boundary plates:

A, = Oy(r, 2eik‘z+sl,ze_iktz)exp(ikxx—imt).

Here, @, is the amplitude of the scalar potentia in
the wave incident upon the layer; Rand D are the coef-
ficients of reflection and transmission of the sound

wave k = ki — I andk = k5 — Ik arethe zprojec-
tions of wave numbers of the longitudinal and shear
waves in the boundary plates, respectively; k, = w/c;
and ki, = wy/c,.

The coefficientsinvolved in the potentials are deter-
mined from the boundary conditions, which include the
equality of the normal velocities v, of theliquid and the
solid plate and the equality of the normal stressesinthe
solid and the pressurein theliquid. Ignoring the viscous
stresses in the liquid in comparison with the shear ones

in the solid plates (their ratio is equal to payp,c; < 1),

we represent the equations for the coefficients in the
form

AkHy o ikHy k(l-R)

a,e b,e = -——-——-—le ,

Sleik‘Hl) = p(;-:—(R)y
g

) =0,

ik H, ik H,

—ilgH
g +&,(r,e

a, +b,e

—ikH,

—ikH ik H
re T —be "

ik, H
+ Slel Tr-8(aye

k
a;—b, = k|_K(d1_dz)’
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Fig. 1. Ultrasonic intensity J; versusthe angle of incidence 6.

a,+ b, +&(r,—s) = £=(d; +dy),
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Here, we have introduced the notations &, = 2k .k /(k,, —
2K3), & = 2kki/(ko — 2K3), and K = kio/(Kio — 2K5).

Let us analyze the results of calculation. At low
sound intensities, the dependence of the transparency
of the nematic liquid crystal layer on theintensity of the

sound wave is determined by the relation M ~ J* ~ vg.
However, in area experiment, a nematic liquid crystal
layer has a finite “background” transparency and the
comparison of calculation with experimental data at
small values of J is difficult. Therefore, we compare
theoretical and experimental resultsin the sound inten-
sity J, at which the optical transparency reachesitsfirst
maximum:

1/2
3, = B

bBAU
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Fig. 2. (1) Acoustic and (2) optical transparencies of the
layer versus the angle of sound incidence.

The analytical description of the acoustic wavefield
in aliquid crystal layer is cumbersome in the general
case and does not lead to physically illustrative results.
Therefore, in the case of arbitrary cell parameters, fre-
guencies, and angles of sound incidence, the wavefield
in the liquid crystal layer is determined by the numeri-
cal solution to system of equations (8). Thus, the coef-
ficients v, the optical transparency of thelayer M, and
the intensity J, are determined.

In the numerical calculation, we take the sound fre-
guency f and the cell parameters to be equal to the cor-
responding values given in [9]: f =3.3 x 10° Hz, H, =
H,=0.09cm, h=0.015cm,c=15x%x10°cms?, ¢ =
6 x105cms?, p=1gcm=, and py = 2.5 g cmr®. We
assume that the vel ocity of shear wavesin the boundary
plates, which is not given by the authors of [9], to be
equal to ¢, = 3.6 x 10° cm s, i.e,, to the velocity in
crown glass [13]. We take the viscosity coefficients for
the liquid crystal and Frank’s elastic constant to identi-
cal tothosefor atypical MBBA liquid crystal [10]: a, =
083R a,=-078P,0;=046 P, a, =-0.34P, a; =
—-0.01 P, and K43 = 0.7 x 107 dyn.

The results of calculation are givenin Figs. 1 and 2.
Theintensity J, asafunction of the angle of sound inci-
denceisplotted in Fig. 1. At angles 8 < 11°, the inten-
sity J, and, therefore, the layer transparency are charac-
terized by a smooth dependence on 6. The singularity
inthecurve J, = J,(6) at 6 =11° corresponds to the total
reflection of longitudinal waves at the solid-iquid
boundary. As the angle of incidence grows further, the
smooth dependence of J, on 6 vanishes. In the case of the
incidence angle 6 = 8°, the theoretica value of the inten-
sity J; isequa to 31 mW cnm. This value dmost coin-
cides with the experimenta value of J, = 30 mW cm?
givenin[9] for the same conditionsfor one of theliquid
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crystal mixtures (5SV) and is somewhat smaller than
the value of J; = 40 mW cm? indicated in the same
paper for another mixture.

In the case of small angles of sound wave incidence,
when the relations kH,0%2 < 1 and kh6?/2 < 1 are
valid, the acoudtic field in the system is determined
from the solution of the problem on the transmission of
a sound wave incident normally upon a nematic liquid
crystal cell, and the coefficients v; do not depend on
the angle 6. The boundary velocities v, are determined
from the condition of zero shear stress in the boundary
plates. For the coefficients v,s, we have v,g ~ k/k ~ 6.

Inthiscase, Q, S~ 0, and A ~ 62, while the dependence
of the layer transparency on the incidence angle of the
sound wave is determined by the relation M =
sin’(constJ?6%). The dependence J, ~ 6! for small
angles of incidence of the sound wave and the given
above parameters at 6 < 4° isalso shownin Fig. 1.

The curves in Fig. 2 demonstrate the correlation of
acoustic and optical transparencies for anematic liquid
crystal cell in a wide range of angles of sound inci-
dence. It is necessary to note that this correlation was
indicated earlier in an experiment [14] and in the theo-
retical analysis of the effect [8] for different parameters
of the nematic liquid crystal layer.

The correlation |D| and A in awide range of angles
of incidence and also the numerical coincidence of the
values of J; in the theory and the experiment confirm
the major prerequisite lying at the basis of the above
theoretical calculation: namely, the effect of sound on a
nematic liquid crystal layer in the case of an oblique
incidence is caused by the acoustic flows caused by
convective stresses in the boundary |ayers whose thick-
nessis on the order of the viscous wavelength.

Let us separately consider the saturation of a nem-
atic liquid crystal cell at low sound frequencies and
small angles of sound incidence by assuming that the
inequalities

kioHa <koHq <1, kh<1,
6<1, k.=kb<ky

arevalid and by limiting the frequencies from below by
Eq. (1), asbefore.

Inthiscase, the solution to the system of Egs. (8) has
a simple analytical form, which yields the following
expressions for the coefficients v g:

€))

2
VXO:_(V 2_2)p91
Vpg
Vo= [1-v-v +m(1+v))]pe.kh
vpg
1+ g‘n2+1kH +m2_1kH 2ikiH ]
[ IDZm 1Hy om H€ D}’
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2m 2 E

wherev = ¢/c, and m= pk/pk; istheratio of the imped-
ances of longitudinal waves in the plate and the liquid;
in the case of normal incidence of ultrasound, m is
equal to the ratio of acoustic resistances. m= pyG/pc.

The parameter A at low frequencies is determined
by the expression

1 -1
[1+,[m kH + ===k H D} e,

1 p’[2+v (pg/p 1)]°
2102 v

/\-..,

2 2
x|p-MrL V=2 g
2m o4y (pg/P—1)

(10)

_12+v(2pg/p 1)
2m 2+v(pg/p l)

and, at identical thicknesses of the boundary plates
H, =H, =H, it takeson the form

1 pPVi(L-pglp) -2

N=

2102 v
, , . (11)
« F+ kpmLe/P =DV +22]—pg/pv 2
O mi(pg/p-1)v-+2] O

For small values of the layer thickness, when
kH1 2, < [VA(py/p — 1) + 2]/[M(V? — 2)], we obtain

2 B p° 2[v¥(1—pglp) — 2
210pg v

M = sinZ[J

In this case, the longitudinal (mass) impedance of
the boundaries vanishes and the nematic liquid crystal
cell becomes almost transparent for the sound waves;
the appearance of flows and, hence, the layer saturation
can be explained only by the difference in the shear
impedances of the boundary plates and the liquid and
does not depend on the values of H, and H,. If thethick-
ness of the plates increases, the mass impedance of the
layer boundaries grows linearly in H, and H,, which
leads to the variation of the velocities v, in the liquid
crystal layer and a linear dependence of the parameter
A onH,; and H,. For real values of the parametersv =2,
m= 10, and py/p = 2.5, the fractional coefficients mul-
tiplying kH, and kH, in Eq. (10) are positive. Thus, the
increase of the thickness H, reduces (and the increase
of the second plate thickness H, enhances) the optical
transparency of the nematic liquid crystal layer. In the
case of equal values of H, = H, = H, as H increases, the
value of A (Eg. (11)) and the optical transparency grow.
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The thickness of the nematic liquid crystal layer is
absent in the expression for A at low frequencies.

In the range of frequencies satisfying the inequality
vz(pg/p -1)+2
m(v®-2)

we have A ~ k ~ w. In this case, the layer transparency
does not depend on the sound frequency, and its depen-
dence on the thickness of the nematic liquid crysta
layer, sound intensity, and incidence angle is deter-
mined by the relation M = sin’(consth*J?6?%), while the
constant at different thicknesses of the boundary plates
is proportional to H.

The dependence of the optical effect on the sound
frequency and the thickness of the boundary plates in
the frequency range determined by Egs. (1) and (9) is
illustrated in Fig. 3, where the values of the product J,0
are plotted as functions of frequency for the layer
parameters indicated above and the thicknesses of the
boundary platesH, = H, = 0.05, 0.1, and 0.5 cm.

In conclusion, let us consider the theory of the
acousto-optic effect at oblique incidence of ultrasound,
which was proposed in [9]. The authors treat the effect
as a consequence of the elastic anisotropy of the nem-
atic liquid crystal by introducing it through additional
terms in the free energy of the nematic:

8g = {unn0:9;p + u[(ND)p] 3 .
Here, u, are certain coefficients.

If the sound wave propagatesin the crystal, the aver-
aging of the second term in Eqg. (12) over the period of
oscillations contributes to the energy in proportion to
the intensity of the sound wave. This contribution
depends on the angle between the directions of wave
propagation and molecule orientation [3:

u,pJ
Zg cos’p.
c

Variation of the energy 0g' over the angle 3 leadsto
the moments I rotating the crystal molecules,

u,pk®Jsin(2p)

c? ’
and, as a consequence, to the layer saturation with the
transparency M, in the form

M, = sin’{LJ%sin*(2B)} ,

1>kH,>

(12)

1 1
3 = Sup(8p)°(kn)* = 3

or =

(13)
where
_ UsAnp’kok*h®
~ 240c%k%,
In [9], only a qualitative agreement of the theory

predicting the dependence M, = sin’[constJ?] with
experimental datais noted.
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Fig. 3. Ultrasonic intensity J; versus the frequency of the
sound wave f for H = (1) 0.05, (2) 0.1, and (3) 0.5 cm.

L et usanalyzethe provisionslying at the basis of the
theoretical construction [9]. Variation of the liquid den-
sity is connected with the displacement of liquid parti-
cles U: Ap = —pdivU. Let us represent the additional
term containing u, in the energy given by Eq. (12) in
terms of the displacement:

89 = U,p°[Na0,0,U]]°. (14)

The elastic energy given by Eq. (14) leads to addi-
tional massforces and changes the form of the equation
for elastic wavesin the liquid crystal:

¢V, —c?9;0, U, — 2u,pnyngd, 80,0, U, = O.

The propagation velocity of such waves depends on
the angle 3 between the propagation direction of waves
and the crystal orientation. A simple calculation leads
to the following expression for the velocity of sound
waves c(p):

c(B) =c

WTCoSP _
A/2(A/1 + w’t’cos’ B —1)

Here, T = A/8u2p/c4 is a certain characteristic time
arising in the calculation and ¢ is the sound velocity
obtained without taking into account the anisotropy of
elasticity.

Equation (15) predicts the dispersion of velocity
with a value depending on the propagation direction of
the sound wave. If the wave propagates perpendicularly
to the crystal axis (B = 172), the dispersion is absent:
c(1T72) = c. Inthe case of the propagation along the crys-
tal axis (3 = 0), the wave must be subjected to a consid-
erable dispersion: at low frequencies, when wt < 1, we
have c(0) = ¢, and at high frequencies, when wt> 1, we

(15)
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have c(0) = c./wT/2. Let us determine the time T by
preliminarily finding the coefficient u,. Theintensity of
the sound wave in the nematic liquid crystal layer J is
determined by the intensity J, of the wave incident on
the cell and by the acoustic transparency of the layer
ID]: J = J,|DJ?. Equating J, involved in Eq. (13),

_ T
J, = /—2,
2L|D|?sin’(2P)

to the experimental value J, = 30 mW cm2 givenin [9]
for the angle of ultrasound incidence equal to 8° and
using the value |D| = 0.36 determined by numerical cal-
culation, we obtain u, = 6.25 x 10° cm’ g* s2. Thetime
Tinthiscaseisequal toT =3.3 x 10-®* s. At the frequen-
cies f > 10 MHz, the velacity of sound propagating
along the crystal axis must increase with frequency
according to thelaw ¢(0) ~ w'/?; the anisotropy of sound
velocity must also increase analogoudly. At the fre-
guency f = 7 MHz, the sound velocity c¢(0) and the rel-
ative anisotropy of velocity determined according to
Eq. (15) must be equal to c(0) = 2c¢ and Ac/c = c(0)/c —
1=1. Inreality, the sound velocity in acrystal exhibits
only asmall dispersion and asmall anisotropy. Therel-
ative dispersion jump of velocity Dc = ¢(w = o)/c(w =
0) — 1 in anematic crystal, which is maximal near the
point of orientation melting, does not exceed the value
Dc = 0.15, and the relative anisotropy does not exceed
the value Ac/c = 102 [1, 2]. Thus, the assumption that
the relatively strong anisotropy of elasticity in a nem-
atic liquid crystal may be responsible for orientation
effects under the action of sound on a nematic crystal,
which was put forward in [9], does not agree with real-
ity and isinconsistent.

KOZHEVNIKOV
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Abstract—A comparative calorimetric method for measuring the acoustic power generated by a sound source
under cavitation conditions and the power absorbed by a liquid with bubblesis devel oped. The conditions under
which the whole of the generated power is absorbed by the liquid with bubbles are determined experimentally. An
instrument for power calibration of sound sources operating under cavitation conditions is designed. The instru-
ment isfound to provide a high measurement accuracy (3% or better). The requirements on the dimensions of the
vessal and on the volume of the liquid in which the sound source operates are formulated to make the power gen-
erated under cavitation conditions independent of these parameters. For the first time, it is shown experimentally
(by the example of the reaction of nitric oxide formation under the action of sound) that, if these conditions are
satisfied and the sound intensity exceeds the threshold intensity, the rate of anumber of sonochemical reactionsis
proportional to the sound intensity in the range from 1.7 to at least 47 W/cn?. It is shown that the dependence of
the rate of cavitation processes on the sound intensity with a maximum at 8.6 W/cm? and a sharp decrease in the
rate with afurther intensity increase is determined by the fact that the measured quantity was the el ectric power at

the transducer rather than the acoustic one. © 2005 Pleiades Publishing, Inc.

The measurement of acoustic power generated by a
source of ultrasound and the power absorbed in a vol-
ume of liquid under cavitation conditions [1, 2] is an
urgent and important problem of acoustics, which was
not solved until recently, although cavitation had been
studied for many decades [1, 3, 4]. The existing meth-
ods of measuring the radiated and absorbed power
under cavitation conditions (they are considered bel ow)
can be used, at best, only for qualitative estimates[1, 2].
However, the measurement of acoustic power under
cavitation is of great scientific and applied interest for
studying the efficiency of sonochemical processes,
sonoluminescence [1, 4-6], erosion, emulsification,
and ultrasonic cleaning, for the calibration of ultrasonic
equipment, in research, in studying and scaling cavita-
tion processes, etc. Recent investigations show that
cavitation may arise in cells in vivo. Therefore, in
devel oping and applying the therapeutic and diagnostic
equipment in medicine [1, 7, 8], it is necessary to take
into account the influence of cavitation and perform the
dosimetry of acoustic energy absorbed by aliving body.
Because of the uncertainty in the radiated and absorbed
acoustic powers under cavitation conditions, the exper-
imental results obtained by different researchers are
incomparable. The lack of a reliable method for mea-
suring the acoustic power makes it impossible to solve
many scientific problems, for instance, to determine the
dependence of the rate of a sonochemical reaction on
the frequency of ultrasonic waves or to optimize vari-

ous production processes accompanied by fully devel-
oped cavitation.

Itisfairly easy to measure the electric energy deliv-
ered to atransducer, but this quantity cannot character-
ize the energy of the cavitation process. According to
current concepts, in chemical and physicochemical
processes accompanying cavitation, only the absorbed
acoustic energy can be active [1, 9]. This condition is
consistent with the Grotthuss-Draper law [10] for pho-
tochemical reactions, according to which only the
absorbed part of luminous energy can be chemically
active. Therefore, the rates of cavitation processes
should be related to the absorbed acoustic power. The
radiated power is the main energy characteristic of
ultrasonic instruments used in their calibration [9].
However, in the majority of experimental works, even
in the recent ones, the difference between these powers,
as far as we know, was not discussed.

In this paper, a new method (a comparative calori-
metric method) is presented, which makesit possible to
measure quantitatively the acoustic power radiated by a
sound source under cavitation conditions, aswell asthe
power absorbed by a liquid with bubbles. In addition,
the paper reportsthe experimental results obtained with
this method.

At present, the following main methods of deter-
mining or estimating the acoustic power radiated by a
source of ultrasound under cavitation are known [1, 2]:

(i) The determination of the radiated power by mea-
suring the vibration amplitude of a waveguide using a

1063-7710/05/5106-0695$26.00 © 2005 Pleiades Publishing, Inc.
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vibration meter [1, 2, 11]. Under cavitation conditions,
this method leads to erroneous results [1, 9], because
the appearance of cavitation bubbles sharply reduces
the acoustic impedance (p, ¢, ), where p, isthe density
of the medium and ¢, isthe sound speed. This decrease
in (p_c,) results from an abrupt decrease in the sound
speed in a cavitating liquid: ¢, can even become much
smaller than the sound speed in gas [12-14]. The rea
son for the decrease in ¢, isthat the liquid—bubble sys-
tem has acompressibility nearly equal to the compress-
ibility of gasand a density ailmost equal to that of alig-
uid [12]. The sound speed in cavitating water can
decrease by two orders of magnitude compared to the
sound speed ¢, in pure water (1500 m/s) and reach a
value of 15-50 m/s or less [13, 14]. Under cavitation,
the acoustic impedance of the medium changes consid-
erably and randomly in space and time; thereis also a
substantial dispersion of the sound speed [14]. In addi-
tion, following this method, one usually measures only
the amplitude of the waveguide face [1, 2, 11], and the
measurement of the vibration amplitude in other direc-
tions presents a cumbersome and difficult problem. We
can mention, however, that the solution of this problem
makes no sense, because the measurement error, due to
the variation of ¢, over awiderange, islarge.

(ii) Calculation of acoustic intensity by the well-
known formula[2, 11]

I = k(f)U*(p.cy), (1)

where the conversion coefficient k(f) depends on the
type of the transducer and istaken to be constant for the
whole line of transducers, U is the voltage at the trans-
ducer, and f is the frequency of ultrasonic waves. The
coefficient k is undefinable (because the value of the
acoustic power is unknown) and, in addition, it can
change in a wide range for every specific transducer
and depending on the conditions of the experiment [1].

(iii) The use of a piezoelectric or magnetostrictive
sensor or athermoelectric method [2, 11] based on the
sound absorption and the heating of acalibrated “ sticky
drop” gives relative parameters at one point [1].

(iv) Optical measurements (the interferometric, or
semishadow, method based on the measurement of the
index of refraction) [2, 11] require a particular configu-
ration of acoustic parameters and the form of the vessel
for performing the measurements, and, in addition, they
areinapplicable under the conditions of fully devel oped
cavitation. Under cavitation, the distribution of acoustic
parametersin theliquid israndom and, obviously, these
methods are inapplicable for measuring the ultrasonic
wave power in solving conventional scientific and tech-
nological problems|[1].

(v) The measurement of radiation pressure [2, 11]
(for example, using a balance) after the appearance of
cavitation in the liquid leads to erroneous results[1, 2].
Such results are caused by the numerous reflections of
ultrasonic waves and by the additional pressure pro-
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duced by shock waves and jet streams created by cavi-
tation bubbles. The measurement of radiation pressure
requires the absence of cavitation, liquid degassing,
mounting of acoustic screens, employing focused radi-
ators, etc. [2, 11]. The measurement of ultrasonic power
in small volumes of liquid is quite a difficult task.
Moreover, the necessity of producing an acoustic field
of a certain configuration restricts the applicability of
this method, because the distribution of acoustic
parameters in the liquid is random.

Methods (ii)—(v) require the exact determination of
thevalue of p, ¢, ; hence, they have the same fundamen-
tal disadvantage as method (i) [1]. All five methods are
relative. Thus, until recently, there were no reliable
methods for determining the radiated acoustic power
under cavitation conditions, and the above-mentioned
methods are suitable only for making an estimate.

For measuring the acoustic power absorbed by a
cavitating volume of liquid, at present, an ordinary cal-
orimetric method is used most often [1, 2]. According
to this method, the increase in the liquid temperature
ATys under the action of ultrasound is measured over a
sufficiently long period of time t,g (5-30 min, so that
the heating AT, s reaches 5-20°C). The absorbed power
is calculated by the relation

Wys = ¢mAT g/tys, )

where ¢, is the specific heat of water and misthe mass
of water. However, this method has the following
essential disadvantages[1, 9]:

(@) Inprinciple, it isimpossible to eliminate the con-
siderable heat transfer through the waveguide; usually,
the heat transfer through the vessel wallsis also large.

(b) The difference between the heat capacity of the
liquid ¢,m and the heat capacity of the liquid—
waveguide-vessel—thermometer system Cg is consid-
erable (sometimes these quantities may differ severa
times).

(c) As arule, in these measurements a mixer is not
used, because it is supposed that ultrasound itself isan
efficient mixer. However, the experiments [9] showed
that mixing is necessary in the calorimetric measure-
ments and, without mixing, the temperature distribu-
tion in theliquid is highly inhomogeneous.

(d) The experiments [9] showed that, if the time of
action of ultrasound t,5 exceeds 40-90 s (depending on
the specific type of the waveguide and the efficiency of
the transducer), the heat has enough time to be trans-
ferred from the acoustic transducer to the cavitating lig-
uid through the waveguide (usually made of metal).

Consequently, using an ordinary calorimetric
method, some intermediate value between the electric
power at the transducer and the absorbed acoustic
power is measured approximately; the errors intro-
duced by the heat transfer, the difference in the heat
capacities, etc., are practically undefinable[1, 9].
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Fig. 1. (8) Comparison of the typical experimental dependence AT 4(t) under the action of ultrasound and the theoretical depen-
dence ATy, (t) calculated by Egs. (8) and (9). Experimental conditions: the liquid volumeis 600 ml, tyg = 14.7 s (the instant of ter-

mination of the ultrasound is shown by an arrow 1), and W5 = 11.9 W. Parameters of the calculation are o = 0.0063 s and t,g =
1.7 s. (b) Diagram illustrating the calculation of AT, from the curve ATy, (t) approximating the experimental data. Parameters of
thecalculation aretys = 10's, tyg = 5 s(for clarity, t,y isshown on an enlarged scale), o = 0.0067, and, according to Eq. (10), te, =
29.6 s. The dot-and-dash line shows the dependence of the temperature rise on time for o = 0 and t,y = 0.

The method proposed in [15] for determining the
absorbed acoustic power from the initial part of the
curve of the temperature rise with time, beginning
from the instant the ultrasound isturned on, eliminates
the influence of the heat transfer on the temperature
rise. However, the drawbacks indicated in items (b)—
(d) persist[1, 9]. An additional error appears, whichis
connected with the inertia of the liquid—-waveguide—
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vessel-thermometer system, since, at the initia
instant, the derivative of the temperature rise mea-
sured with athermometer with respect to time is equal
to zero (see, for example, the initial part of the curve
AT st inFig. 1a). Consequently, the error in measur-
ing the acoustic power using this method turns out to
be considerable [1, 9].
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1. THE COMPARATIVE
CALORIMETRIC METHOD

A comparative calorimetric method for measuring
the acoustic power in cavitation conditions was pro-
posed in paper [16], and later, in [9, 17], it was consid-
erably improved. The essence of this method is as fol-
lows. First, a source of ultrasound is turned on for a
short time t5 and the change in temperature with time
ATyg(t) is recorded by using a thermoprobe (Fig. 1a).
Then, after cooling, aheater isturned on and the change
in temperature is recorded again. By changing the
power delivered by the heater, the similarity of the run
of the curves AT g(t) is achieved. In this case, the
power, lost by the heater is considered to be the equiv-
alent of the acoustic power absorbed in the volume of
the liquid under study.

Let us consider the change in the temperature of the
liquid with timeif a sound source (or aheater) isturned
on at theinstant t = 0 and turned off at t =t 5 (Fig. 1a).
To a high accuracy, the spatia distribution of tempera-
ture in the liquid can be considered to be homoge-
neous, because an efficient mixer is used (the stirring
is assumed to be efficient if an increase in the mixer
velocity does not change the measured value of
acoustic power). For a small change in temperature,
the heat transfer is proportional to its increase, and
the change in temperature obeys the following set of
equations[9, 17]:

d(ATw)/dt = W/IC,—aAT,, (t<tys)  (3)

d(AT,)/dt = —aAT,,, (t>tys) 4
with the initial condition AT,,(0) = 0. In these equa
tions, Wis the acoustic (or heat) power, Cy is the heat
capacity of the liquid-waveguide—vessel-thermometer
system, and a is a constant characterizing the intensity
of the heat transfer.

The solution to the set of equations (3), (4) can be
written as[9, 17]

(tstys) (9

Wit [ — exp(—at
AT,(t) = 2L Ep-ebtaty
syS

Witysil — exp(=atys)
Cys U atys [ (6)

x exp(-a(t-tys)), (t>tg).

ATre(t) =

Since the system isinertial, the thermoprobe measures
the liquid temperature with a lag, which is character-
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ized by the relaxation time t; i.e., the thermoprobe
output is determined by the equation

d(ATtm)/dt = (AThe - ATtm)/trel (7)

with the initia condition T,,(0) = 0. The solution to
Eq. (7) can be written as

_ W
ATtm(t) - m
«F=20CA ¢ o -eputgf,
(t=tys)
- W
ATtm(t) - Csys(l_atrel)

y [ 1—exp(—atys)
aexp(a(t—tys))

O _ aypd o, 0t tug)
tufd— e Hen 0] (121,

)

According to Fig. 1a the measured experimental
dependence AT (t) is approximated by the curve
AT,,(t) to avery high accuracy. The further theoretical
analysisis aimed at the determination of the algorithm
alowing us, by using the measured dependences
AT &) approximated by the curves AT, (1), to compare
quantitatively the thermal powers from two different
heat sources operating during the same time t,s with a
constant heat capacity of the system Cg s but with dif-
ferent times of thermal inertiat,y and different condi-
tions of heat transfer (parameter a). It should be noted
that the parameter o and the time t g are determined
from the experiment to a very high accuracy; the accu-
racy of determining t,y isnot high. Wewill find thetime
tesp, DEginning from which the difference between the
curve AT,,, and curve AT 4(t) displaced along the time
axis by the magnitudet,y do not exceed the given accu-
racy K. From formula (9), it follows that the inertia of
the thermoprobe influences the result of temperature
measurement if the timeisless than

trd |n|:atrel 1- eXp(_tUS/trel )i|
1-aty K 1-exp(-atys) | (10)

(t<tys).

texp = 1:US+

For instance, for K=0.003, t,s=10s,ty=2s,anda <
0.1, we have te, ~ 20 s, and for t,y = 5sand a < 0.03,
we have te,, ~ 30 s. Thus, the approximation of the
curve ATi(t) by an exponent is correct for t >t

It seemsthat the parameter by whichitispossibleto
compare the absorbed powers using the curves AT, (1)
ACOUSTICAL PHYSICS  Vol. 51
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is the measured maximal temperature. Equating the
derivative d(AT,,,)/dt to zero, we have

W L — exp(=atys)

c. O a O

1 Syst atg/(1-at.y) (11)
01— exp(=atys)

M — exp(—tys/te )

From this expression it is seen that AT, max Strongly
and in a complicated way depends on t4 and a and,
consequently, it cannot be an appropriate parameter for
comparing the curves AT, (t).

The analysis performed above showsthat an aterna-
tive algorithmis needed. On the basis of the experimen-
tal curve approximated by Eqgs. (8) and (9), itispossible
to calculate or determine from the plot the tangent to it
at the instant when the source of ultrasound (or the
heater) is turned off (Fig. 1b). The equation of the tan-
gent AT,;(t) to the curve AT,(t) at the point t,g can be
written as

AT)in(t) = a(t —tys) + ATm(tys), (12)

where a is the derivative of the temperature rise with
respect to time at the moment the source of ultrasound
is turned off:

ATtm max =

- d(BTy)
dt t=1ys

— W(exp(—atys) — exp(-tys/ta))
Csys(l - atrel) .

It is easy to show that the straight line AT,;,(t) and the
curves AT, (1) (Egs. (5) and (6)) displaced along the
t axis by the time t,y have a common point of intersec-
tion at the instant (t,y + tys) (see Fig. 1b) characterized
by the temperature

_ Wiysfl — exp(—atys)g

AThemax - Cws 0 atUS 0

(13)

(14)

The quantity ATy ma determined in this way does not
depend ont,y (notethat t,y may be even greater than the
time of operation of the source of ultrasound t,s). From
this expression, we can obtain the maximal temperature
to which the liquid would be heated without heat trans-
fer to the environment:

AT — WtUS Eil — exp(_a tUS)D
"™ Cys O Atys 0

The calculated AT, does not depend either on the
intensity of the heat exchange or on the relaxation time.
Hence, AT, can be used as a quantitative criterion for
comparing the curves AT,,(t) under different conditions
of heat transfer and with different times of relaxation
t.y. This fact was supported by experiments [9]. Thus,
the ratio AT s ma/ATH max Calculated from the experi-

= AThemax/ (15)

ACOUSTICAL PHYSICS Vol.51 No.6 2005

699

mental dependences AT (1) and AT, (t) isthe quantita-
tive measure of the ratio of the absorbed powers (here,
AT,g(t) and AT (t) are the temperature rises produced
by the source of ultrasound and the heater) [9, 17].

The analysis of these solutions made it possible to
determine the conditions most favorable for performing
the measurements [9, 17]:

—a smallness of the temperature rise (no greater
than 0.1-0.4 K),

—a short time of operation of the sound source (the
experiments showed that t,,5 should lie in the range 5
15¢s), and

—an efficient stirring of the liquid; in the experi-
ments described below, t, did not exceed 1-2 s.

The absorbed acoustic power was measured as fol-
lows. First, the variation of the temperature of theliquid
with time under the action of sound, ATygt), is
recorded, and then, by using a computer with an A/D
converter, the approximation is performed and AT max
is calculated. The selection of the heater power is car-
ried out by aspecial program with acomputer operating
inreal timein such away that AT g ma/ATh max = 1. The
process is performed in one or several successive
approximations, depending on the required accuracy.
The value of the heater power at the first step has no
effect on the final accuracy and only determines the
number of iterations. The operation time of the heater is
taken to be equal to ts, and the power is calculated as

(16)

Then, the temperature variation with time, AT, (1), is
recorded and ATy IS calculated in the same way as
AT smax- From the measured current |, and voltage U,
at the heater, the actually released thermal power

Whirea = ([l Udb)/tys is determined to a high accu-

racy, with the difference between Wy ey and Wy, NOL
exceeding 3%. At the second step, the measurement of
AT, (t) is performed similarly to ATy, (t). The heating
timeistaken to be equal to t,s, and the heater power is

WHZSEt = WleeaIATUS max/ATHlmax- (17)

By measuring the current |, and the voltage U, at the
heater, Wi,.eq 1S determined to a high accuracy. The
computed temperature rise AT, tUrns out to be
much closer to AT s max than ATy max. and the absorbed
acoustic power isfound by the formula

WUS = WHZreaIATUS max/ATHZmax- (18)

Notethat it is possible to conduct severa refining mea-
surements, taking every time the operation time of the
heater equal to t;, and the power at theith step equal to

Whiiset = Wit - 1yrea Tus mad 2 Thg - 1ymax- (19)

However, our experiments showed that the required
accuracy of 3% is achieved after two iterations.

Whist = CMAT s mad tus.
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Fig. 2. Experimental setup for measuring the absorbed and radiated acoustic powers under cavitation conditions: cover / for mount-
ing parts 3-8, body 2, thermoprobe 3, mixer 4, wire of the heater 5, device 6 for fastening the cover to a stand, electric connector 7,
and power connector 8. The setup measures the power of a sound source consisting of an ultrasonic transducer 9 and an ultrasonic

generator 10.

A typical example of the temperature variation
with time under the action of ultrasound and the heater
at the first and second (refining) calibrationsis shown
in Fig. 1b. In the measurements, we determined to a
high accuracy the operation time of the sound source
and the current value of the temperature rise (with an
accuracy of 0.005 s and 0.0005 K, respectively). The
total time of measurements did not exceed 8 min,
because three curves AT «(t), ATy, (1), and A, () were
recorded, every curve for two minutes.

For measuring the absorbed and radiated acoustic
power, we used a setup schematically shown in Fig. 2.
It consists of a calorimetric tank filled with insonified
liquid; a sensor unit, which comprises a mixer, a coil
heater, and sensors (a sensor of the liquid temperature
and sensors of the heater current and voltage); and a
control unit, which comprises a power supply module
and a computer with an A/D converter for data acquisi-
tion. The sensor unit measures the liquid temperature
rise in the calorimetric tank and the heat released by
electric coil 5 of the heater (from the measured current
I, and voltage U,); these data are passed to the control
unit. The control unit assigns the electric power Wi ;s
that will be released by the heater, controls the process
of measuring the absorbed acoustic power according to
the algorithm described above, and provides the power
supply for the whole setup. By using the computer, the
interactive mode of operation is performed and the
results are displayed. All the measurements, approxi-
mation, calculations, and other operations are carried
out automatically in real time. On the basis of this

setup, the ARM-1 system was developed and the 3%
accuracy was achieved in the acoustic power measure-
ments.

The specific conditions under which practically the
whole of the radiated power is absorbed in the volume
of the cavitating liquid were determined experimentally
(see below, Subsection 2.2). In this case, by measuring
the absorbed power, we can aso find the radiated
acoustic power [9, 17].

The comparative calorimetric method has the fol-
lowing advantages over the known methods described
above[9]:

—Unlike the acoustic methods (i)—(Vv), it is not nec-
essary to know exactly theimpedance of theliquid with
bubbles, the conversion coefficient of the radiator, etc.;
the measurements are conducted independently of the
type of the radiator and the ultrasonic frequency; the
proposed method is an absolute one.

—In contrast to the ordinary calorimetric method, it
is not necessary to eliminate the heat transfer, because
the heat transfer does not affect the accuracy in compar-
ative measurements; the measurements do not depend
on the heat capacity of the liquid-waveguide-vessel—
thermometer system; because of the short time of oper-
ation of the source of ultrasound, the heat has no time
to be transferred from the transducer to the liquid, i.e.,
the measured quantity is precisely the absorbed acous-
tic power.
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2. EXPERIMENTAL RESULTS OBTAINED
USING THE COMPARATIVE
CALORIMETRIC METHOD

In the experiments, four different sound sources
were employed. Thefirst sourceis an ultrasonic gener-
ator with a magnetostrictive transducer, which is con-
nected to a steel waveguide with the length A/2, aface
diameter of 15 mm, and a resonance frequency of
21.2 kHz (instrument 1). The second source is a gener-
ator with a piezoel ectric transducer, which is connected
to atitanium waveguide with the length A, aface diam-
eter of 80 mm, and a resonance frequency of 41.0 kHz
(instrument 2). We also used the following ultrasonic
tanks: the first tank with one piezoel ectric transducer of
frequency 20.2 kHz (instrument 3) and the second tank
with two piezoel ectric transducers of frequency 23.0 kHz
(instrument 4). The measurements were carried out in
four different metal vessels. Thefirst vessel hasacylin-
drical form of circular cross section 60 mm in diameter
and 100 mm in height. The second vessel has a cylin-
drical form of circular cross section 150 mm in diame-
ter and 120 mm in height. The third vessel hasthe form
of a parallelepiped with a sguare cross section of 90 x
90 mm and aheight of 105 mm. In the experiments, dis-
tilled water at atemperature of 19-21°C was used.

2.1. Comparison of the Absorbed and Radiated
Ultrasonic Powers

At the beginning, we assumed that, under the exper-
imental conditions, the radiated acoustic power should
be much greater than the absorbed power. However, the
experiments did not confirm this assumption. In our
previous experiments [9, 17], we determined the condi-
tions under which practically the whole of the radiated
acoustic power isabsorbed in the volume of acavitating
liquid. In this case, by measuring the absorbed power,
we can also determine the radiated acoustic power.

We performed the measurements with instrument 1
at four fixed values of acoustic power, 4.1 £0.2,15.3 +
0.5,28.3 £0.8, and 45.8 + 1 W, and with instrument 2
at afixed power of 13 £ 0.3 W (these values of acoustic
power corresponded to the conditions of fully devel-
oped cavitation). The waveguide was submerged to a
depth of 12 £ 1 mm, and the measurementswere carried
out in vessels 1 and 3. The liquid volume was always
equal to 400 cm?. Similar measurements were per-
formed with ultrasonic tanks 3 and 4 at fixed power val-
uesof 53 £ 1.5 and 65.3 + 1.5 W, and the liquid volume
was 500 and 1500 cm’, respectively. Introducing an
efficient sound absorber made of fibrous polymeric
material into the system, we obtained the same acoustic
power as without the sound absorber (within the accu-
racy of the experiment, 3%). The absorber was intro-
duced in such a way that the form of the cavitation
cloud remained unaffected. The experimenta results
can be explained by the fact that, in the absence of effi-
cient absorbers, ultrasonic waves are reflected from the
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Fig. 3. Dependence of theratio of the absorbed power W5

to the radiated acoustic power W on the radiated acoustic
power W,

liquid—gas or solid wall—gas boundaries and are almost
completely absorbed by the liquid with bubbles.

At present, apopular method of studying sonochem-
ical processes is based on introducing the ultrasound
into the system through a sound-transparent bottom to
avoid the influence of the contact of the radiator mate-
rial with the insonified liquid on the process under
study (see, for example, [18]). It is believed that, under
cavitation conditions, thewhole of theintroduced ultra-
sonic energy is absorbed by the liquid volume in the
vessel. We decided to verify this assumption. We used
a cylindrical vessel with a circular cross section of
60 mm in diameter and a height of 100 mm, the bottom
of which was made of a sound-transparent lavsan film.
The sound source was an ultrasonic tank (instrument 3).
The measurements were carried out in two steps. First,
the radiated acoustic power was measured (for this pur-
pose, the power absorbed in the water filling the ultra-
sonic tank was measured). After this, into theliquid fill-
ing the ultrasonic tank, a vessel with a sound-transpar-
ent bottom was submerged just above the radiator, at a
distance of about 3 mm, and the power absorbed in the
vessel was measured. Figure 3 shows the ratio of the
power absorbed in the vessel to the power radiated by
the ultrasonic tank as a function of the power radiated
by the ultrasonic tank. It is seen that, in awide range of
intensities, only ~40% of the radiated power is
absorbed, but at alow radiated power, the share of the
absorbed power in the vessel with a sound-transparent
bottom considerably decreases.

Such a great difference between the radiated and
absorbed acoustic powers can be explained by the fact
that the sound-transparent film not only allows the
sound to pass into the vessel but, according to the reci-
procity principle, also permits the sound waves to
escape from the vessel. Apparently, the absence of
sound-transparent wallsis anecessary condition for the
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Fig. 4. Dependence of the acoustic power W (the absorbed
and radiated powers coincide) on the distance H between
the waveguide face and the bottom of the vessel.

whole of the radiated power to be absorbed by the lig-
uid with bubbles.

Thus, using the described procedure, it is possibleto
measure not only the absorbed power but also the radi-
ated acoustic power [9]. When using a vessdl with a
sound-transparent bottom, a portion of the radiated
power can escape from the liquid volume. In this case,
it is possible to measure only the absorbed acoustic
power and then, using a vessel without sound-transpar-
ent elements through which sound can leave the sys-
tem, to measure the radiated power.

2.2. Dependence of the Radiated and Absorbed Powers
on the Geometrical Parameters
of the Viessel-Liquid—Radiator System

Usualy it is assumed that the radiated and corre-
sponding absorbed acoustic powers under cavitation
conditions strongly depend on the liquid volume and
geometrical parameters of the vessel in which the mea-
surements are performed, as well as on the depth of
submergence of the sound radiator. This opinion is
based on the results obtained from studying aliquid by
the methods of linear acoustics, when the radiated
power depends on the acoustic impedance of the sys-
tem and, consequently, on the boundary conditions for
the radiator, vessel, and liquid. However, experimental
studies of this problem with acavitating liquid are prac-
tically absent because of the uncertainty in the acoustic
power.

For determining the dependence of the acoustic
power on the vessel geometry and the liquid volume,
we performed the measurements using instrument 1 at
four fixed values of acoustic power: 4.1 £ 0.2, 15.3
0.5,283 £ 1,and 45.8 + 1.8 W, for a waveguide sub-
mergence depth of 12 £ 0.5 mm. The measurements
were conducted in vessels 1-3 for various liquid vol-
umes (250 and 350 cm’® in the first vessel, 650 and
1000 cm? in the second vessel, and 1000 and 1350 cm?
in the third vessal). In the experiment, the conditions
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formulated in the previous section, under which the
whole of the radiated acoustic power was absorbed by
the liquid with bubbles, were met. The geometrical
dimensions were chosen to be considerably greater
than the characteristic size of the cavitation cloud (the
height and width of the cavitation cloud usually varied
from 20 to 60 mm). In spite of the various forms of ves-
sels and various volumes of insonified liquid, in every
case we obtained the same acoustic power. A similar
absence of dependence of the radiated and absorbed
acoustic powers on the liquid volume was obtained
with ultrasonic tanks 3 and 4 for variousliquid volumes
(400 and 600 cn’ for ultrasonic tank 3 and 800, 1200,
and 1600 cm? for tank 4).

The dependence of the acoustic power W (the
absorbed and radiated powers coincide) on the distance
H between the waveguide face and the vessel bottom
was studied with the use of instrument 1 and vessel 3
[9]. The volume of distilled water was 500 cn?’, the dis-
tance between the vessel bottom and the water surface
varied from 0.5 to 81 mm, and the submergence depth
of the waveguide was measured accurate to 0.5 mm.
The results obtained are presented in Fig. 4 (to revea
the effect, the power scale in the plot has a break). The
initial dlight increase in the acoustic power with a
decrease in H can be explained by the increase in the
radiating (lateral) surface of the waveguide, whereas
the boundary conditions for the waveguide face remain
practically invariable. With a further slight decrease in
H (less than 5 mm), a sharp increase in the acoustic
power is observed, which can be explained by adrastic
change in the boundary conditions near the waveguide
face when H becomes on the order of the height of the
cavitation cloud. The maximum of the acoustic power
delivered by the radiator was observed for H = 5 mm
(Fig. 4). The origin of this increase in the acoustic
power (by approximately 50%) is not quite clear; how-
ever, we believe that it will be determined in the near
future and the observed effect will find practical appli-
cation. Note that the possibility of revealing this effect
appeared only after the development of an exact
method of measurement of acoustic power under cavi-
tation conditions. Thus, the radiated and absorbed pow-
ers under conditions of fully developed cavitation, to a
first approximation, do not depend on theliquid volume
or the geometrical parameters of the vessel inwhich the
measurements are carried out if the following condi-
tions are satisfied [9]:

(@) the characteristic dimensions of the vessel are
considerably greater than the characteristic dimensions
of the cavitation cloud;

(b) the distance between the waveguide face and the
vessel bottom is much greater than the height of the
cavitation cloud; and

(c) the whole of the radiated acoustic power is
absorbed by the liquid with cavitation bubbles.
ACOUSTICAL PHYSICS Vol. 51
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3. DEPENDENCE OF THE RATE OF CAVITATION
PROCESSES ON THE ACOUSTIC POWER

Until recently, it was generally accepted that the
dependence of the rate w,,, of a number of cavitation
processes (erosion, emulsification, dispersion, as well
as sonoluminescence (SL) and sonochemical reactions)
on the sound intensity | is as follows [1, 3, 4, 19, 20]:
until the intensity | is below the threshold intensity |y,
the rate w., naturaly, equals zero; after Iy, is
exceeded, the rate w,,, increases first proportional to
(I = I4)? [1] and then linearly. In a number of papers,
the presence of amaximum in the dependence w,,,(1) at
| = I, isindicated: for the rate of sonochemical reac-
tions[20, 21], the SL flux [20], the erosion activity [3,
19, 20], etc. For | > I, the rate of these high-energy
processes sharply decreases.

According to the conclusions made by Rozenberg
and Sirotyuk [3, 19], with aconsiderableincreasein p,,,
the maximal radius R,, increases and a bubble does not
have enough time to collapse within one half-period of
oscillations. Equating the Rayleigh time of bubble
compression to half the oscillation period and taking
into account that the tensile stress is equal to 2-%p,,
[19], we obtain

P 03 % 2°°(0.915)?p, = 5.1p;,, (20)

which corresponds to the critical intensity I, =
8.6 W/cm?>.

Being capable of measuring the ultrasonic power
under cavitation conditions with a high accuracy, we
decided to verify the dependence of the rate of
sonochemical reaction on the intensity, including the
range of | > |,. We studied the dependence of the rate
of atypical sonochemical reaction, namely, the forma-

tion of nitric oxides and corresponding ions NO, in

distilled water in contact with air, on the intensity of
ultrasound [9]. This reaction is best suited for such
experiments for a number of reasons: (a) a purified
water without any additions, which may change its
physicochemical parameters, undergoes sonolysis,
(b) the reaction proceeds only under the action of ultra-
sound or under the conditions of a low-temperature
plasma, in the absence of thermal and redox reactions,
(c) the reaction rate is insensitive to possible microim-
purities, i.e., the reaction products are sufficiently toler-
ant to catalytic or thermal actions; and (4) the corre-
sponding analytical procedures providefor ahigh accu-
racy [1].

The measurement of ultrasonic power was per-
formed by using the setup shownin Fig. 2 and an ultra-
sonic generator 1 with a frequency of 20 kHz. The
water volume was 100 cm?, a flask with twice-distilled
water was enclosed in athermostat maintained at atem-
perature T, within 19.5-20.5°C. The quantity of the
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Fig. 5. Dependence of the rate WNO_ on the ultrasonic
2

intensity |. The dashed line shows the previously reported
character of the dependence of the rate w,, of various cav-
itation processes (erosion, emulsification, dispersion, as
well as SL and sonochemical reactions) on the sound inten-
sity [3, 19-21], where |, is determined from Eq. (20).

resulting NO, was measured by the calorimetric
method [1].

At first, the dependence of the NO, concentration

on the time t,5 of operation of the source of ultrasound
was determined for various intensities |. At the initial

period of time, the increase in NO, at a constant rate

W___ was observed; then, the rate W___ decreased
NO, NG,

and, at large times of sonolysis, a stationary concentra-
tion of NO, of about 3.5 umol/l was formed regardiess
of the sound intensity. This limit is determined by the
initial quantity of N, intheair dissolved inwater and by
the rate of degassing, which agrees well with reported
experimental data [1].

To eliminate the influence of the degassing on the

dependence of W on I, we determined the rate

W, - from the initial part of the curves [NO; ](ty9);

i.e., the rate of the synthesis of NO, at high intensities
was determined for rather small times of sonolysis (on
the order of 10-30 s). As aresult, we obtained alinear
dependence WNO;(I), shown in Fig. 5 [9]. Since the

least measured acoustic power in our experiments was
3 W and the diameter of the waveguide face was equal
to 15 mm, the least measured intensity was 1.7 W/cm?,
which is considerably greater than the threshold
(~0.03 W/cm? [1, 22]). Therefore, these experiments do
not yet make it possible to determine the value of the
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cavitation threshold and the dependence W, - (1) near

the threshold with sufficient accuracy.

At the same time, the maximal measured acoustic
power of 75 W corresponds to | = 47 W/cm?, which is
Six times as great as the value of |, calculated from
Eqg. (20). The experimenta results obtained for the
dependence W o (I allow usto conclude that no sharp

decrease occurs in the rate of formation of NO3, i.e.,

thereis no maximum in the rate and, in awide range of

ultrasonic intensities, the dependence WN o (hislinear.
2

The previously reported experimental dependence of
the rate of the cavitation process w,,, on the intensity
with amaximum at |, and a subsequent drop in the rate
with increasing | is presumably determined by the fact
that the quantity measured in those experiments wasthe
square of the voltage U at the transducer rather than the
acoustic power, and the “acoustic power” shown in
Fig.5 is actualy the quantity proportiona to U2
Although the efficiency of the transducer operating
under cavitation conditions was undefinable, in [3, 4,
19] it was assumed to be constant and equal to the effi-
ciency measured under subcavitation conditions. In
addition, the experiments were conducted at a constant
sound frequency f (i.e., the sound source, apparently,
was nhot tuned to resonance), although, even with a
dlight change in f, the efficiency of the transducer
changes considerably and becomes unknown.

Thus, the extremum observed earlier in the depen-
dence w,(l) for | > I proves to be an instrumental
effect.
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Abstract—A mathematical model describing the dynamics of clustered gas bubbles under the effect of an
acoustic field is presented. The proposed model isused asthe basisfor an analytical study of small bubble oscil-
lations in monodisperse and polydisperse clusters and for a numerical study of nonlinear bubble oscillations
under high-amplitude external pressures. The following effects are found to occur in a polydisperse cluster: a
synchronization of the collapse phases of bubbles with different radii and a collapse intensification for bubbles
of one size in the presence of bubbles of another size. These effects are explained by the interaction between
bubbles of different radii in the cluster. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Cavitation in aliquid is accompanied by the forma-
tion of bubble clusters. The dynamic processes that
occur in these clusters determine many phenomena
observed in physics, chemistry, and biology, and also
find practical application in engineering.

Up to the present time, most attention has been con-
centrated on studying the dynamics of a single bubble.
Thisisprimarily related to the discovery of single-bub-
ble sonoluminescence [1, 2] and to the possibility of
tracing the motion of the surface of asingle bubblewith
high-speed photography [3, 4]. Direct experimental
studies of the bubble dynamics in bubble clusters
(clouds) are fairly complicated from the technical point
of view [5-9]. Therefore, the mathematical modeling of
the bubble dynamics in a cluster plays an important
role. The existing theoretical approaches to this prob-
lem can be divided into two groups.

In thefirst group, a cluster was considered as a bub-
bly liquid, for which the models described in theoreti-
cal publications[10-12] were used. In[13-16], the col-
lapse of a bubble cloud caused by ultrasonic cavitation
was studied both theoretically and experimentally. In
these publications, the following idea was put forward:
the cavities in a cluster collapse sequentialy from the
boundary of the cluster toward its center, and this pro-
cess is accompanied by a pressure growth toward the
center of the cloud because of the energy transfer from
collapsing cavities to the neighboring noncollapsing
ones. The model proposed in [13, 15] and used in [16]
does not include the dynamics of an individua bubble
and givesinfinite values of pressure and collapserate at
the center of the cluster. In[14], the dynamics of abub-
ble was model ed by solving the Rayleigh—Plesset equa-
tion. In [5], an experimental study of a bubble cluster
formed in aliquid layer between a source of ultrasound
and a sample under investigation was described. It was

found that the bubbl e fluctuations are virtually synchro-
nous throughout the whole zone of interest. The inter-
action of a passive cloud of identical spherical bubbles
with ashock wavewas considered in [17]. It was shown
that the cluster is able to absorb the energy of such an
external disturbance, amplify this disturbance, and
reradiate it in the form of an acoustic signal. Many of
the publications concerned with this group of investiga-
tions were devoted to studying the linearized dynamics
of abubble cloud. For example, in [18], oscillations of
a spherical cluster containing identical bubbles were
studied under the assumption that viscosity, compress-
ibility of theliquid, and surface tension of bubbleswere
absent. The theoretical consideration was based on the
linearized equations of auniform flow of abubbly mix-
ture, which were taken from [19]. It was shown that the
eigenfrequency of a bubble cloud is much lower than
the eigenfrequency of an individual bubble. The same
problem was considered in [20, 21], but with allow-
ances made for al the dissipative mechanisms. In
studying the motion of abubble cluster near avibrating
wall [22, 23], the bubble dynamics was taken into
account by solving the Rayleigh—Plesset eguation,
which was expanded in a Fourier series to the second-
order termsin the bubbleradius. Theresultsobtained in
[20-23] are similar to those obtained in [18]. An exper-
imental study of the cavitation regionformedinaliquid
under the effect of an ultrasonic generator was reported
in[24]. In thelatter paper, the theoretical description of
the cavitation mode was based on the use of the aver-
aged equationsfor the sound wave propagation through
a bubbly medium while the interaction between the
bubbles was considered as a size-averaged radiation
interaction between two bubbles. Thus, the models pro-
posed in thefirst group of publications make it possible
to study the dynamicsof abubble cloud asanindividual
object but do not allow oneto study in detail the dynam-
ics of an individual bubble in a cluster and to consider
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theinteraction between bubbles of different radii within
the cluster.

The second group includes the publications that
focus on theinteraction between bubbles. In[25], equa-
tions describing the trandational motions and radius
variations of afinite set of bubbles moving in a hydro-
static field were analytically derived. The cited paper
was purely theoretical, and the derived equations were
not applied to specific problems. Collective fluctuations
of afinite number of bubbles, which may occurinalig-
uid near a gas source or after the separation of a large
bubbleinto several smaller bubbles, were considered in
[26]. The theory of gas bubble oscillations was devel-
oped with the use of the multiscale expansion method
for the case of aliquid without dissipative mechanisms
and for a polytropic gas. This approach required time-
consuming computations with complete equations,
and, therefore, averaging in the region of rapid bubble
oscillations was used. Such a limitation prevents a
detailed study of the bubble behavior in the cluster. The
dynamics of a cluster containing a small number of
bubbles was numerically studied in [27] with the use of
the three-dimensional boundary-element method. The
results were compared with those obtained analytically
from an asymptotic expansion. It was assumed that the
bubbles experience axisymmetric deformations so that
the symmetry axis passes through the bubble under
observation and the center of the cluster. In [28], the
dynamics of the cluster was studied by representing the
bubble surface as a series expansion in spherical har-
monics. The result proved to be similar to the results
reported in [18, 20-23] for the eigenfrequencies of a
cluster and a single bubble. A cluster consisting of two
or three bubbleslying on astraight line or at the corners
of an equilateral triangle was considered in [29]. In the
analysis, dl the oscillation modes of the bubbles and
the interaction between the bubbles were taken into
account. It was shown that, asaresult of theinteraction
between the bubbles, the resonance frequency of the
cluster was shifted toward lower frequencies. All the
methods proposed in [25-29] for solving the problem
of interest dealt with only small numbers of bubbles
arranged in specific configurations.

Therefore, it seems to be necessary to construct a
mathematical model that makes it possible (i) to study
the dynamics of abubble cluster asawhole, asan indi-
vidual object; (ii) to study the dynamics of individual
bubbles within the cluster; (iii) to take into account the
presence of bubbles with different radii in the cluster
and their interaction; and (iv) to study the dynamics of
bubble clusters under external actions, in particular,
under the effect of an acoustic field.

STATEMENT OF THE PROBLEM
AND THE MATHEMATICAL MODEL
OF A BUBBLE CLUSTER

In this paper, we study a set of many bubbles per-
forming oscillations within a finite volume of an
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unbounded, weakly compressible, viscous liquid under
aperiodic external pressure. In this case, we can sepa-
rate a spherical region with bubbles, i.e., abubble clus-
ter. Thus, the cluster can be considered as alarge spher-
ical drop containing both liquid and a set of microbub-
bles. The problem is modeled under the following
assumptions: first, thesize R of the cluster issmall com-
pared to the sound wavelength A (R < M), and the con-
centration of bubbles in the cluster is also small (i.e,
the condition of nonoverlapping scattering cross sec-
tionsissatisfied [30]: 0'? < |, where o isthe scattering
cross section and | is the average distance between the
bubbles), which alows us to consider the pressure
insidethe cluster to be uniform; second, the gas bubbles
are subjected to adiabatic compression and perform
spherically symmetric radial motions; and third, heat-
and mass-transfer processes are absent in the gas bub-
ble-liquid system.

In the general case, when bubbles with n different
radii are present in the cluster (the case of a polydis-
perse cluster), the dispersed phase fallsinto n fractions,
each of them being characterized by its own bubble
radius (a, for the kth fraction). Then, theradia motions
of the conventional cluster boundary and the bubble
boundaries can be described by the Rayleigh—Plesset
equationswith allowance for the acoustic radiation [31,
32]. The equationsfor the cluster and for the bubblesin
the cluster have the form

= 352 _ Pe— P R d
RR+-R = —— +——=—[p.— P, 1
2 p| p|C|dt[p pl] ()
. 3. aw— P 3 d
akak+§alf = ¥+bﬁd—t[pak_pd’ @
k=1n,

respectively. Here, R = R(1) is the cluster radius, a, =
a(t) isthe bubble radiusin the kth fraction, p, = p.(t) is
the liquid pressure in the cluster, p, is the liquid pres-
sure at infinity, p, isthe gas pressure at the bubble wall
in the kth fraction, p, is the density of the liquid, C, is
the sound velocity in the liquid, and t is time. The dot
over a variable means the derivative with respect to
time. Equations (1) and (2) are written under the
assumption that the velocities of the interfaces are
small compared to the sound velocity intheliquid; i.e.,
Egs. (1) and (2) are valid for small Mach numbers.

Equations (1) and (2) are completed by the conser-
vation law for the liquid volume in the cluster:

n
)3 N,a’a, = R°R, A3)
k=1

where N, is the number of bubblesin the kth fraction.
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In view of the second assumption specified above,
the pressure in a bubble is determined by the formula
_ 20T 4ua 20
ak — +— L | - '
Pa %30 ag-Lagl A 4)

k=1,n,

wherep, istheinitia pressureintheliquid, o isthe sur-
facetension, W isthe viscosity of theliquid, and yisthe
adiabatic index. The pressure variation in the liquid at
infinity obeys the periodic law

P = po—APsin(wt), )

where AP is the external pressure amplitude and w is
the angular frequency.

When the concentration of bubbles in the cluster is
sufficiently high (about 1% or higher), the energy dissi-
pation due to the acoustic radiation from the cluster to
the surrounding liquid predominates over the energy
dissipation from bubbles inside the cluster [33]. Then,
theliquid in the cluster can be considered as an incom-
pressible one and, instead of Egs. (2), we can use the
Rayleigh eguations to determine the radii of the bub-
bles:

.. 3.0 -
akak+'ak — pak pc1

2 P

If it is necessary to take into account the pressure

distribution around the bubbles, it is possible to use the

cell method [34]. According to this method, each bub-

ble of the kth fraction is placed at the center of a spher-

ical cell of radius ry,, which is determined by the for-
mula

k=1n. (6)

a, —
M = 55 (k=
T

Then, the Rayleigh equation with corrections to the
pressure distribution around the bubbles in the cluster
takes the form [35]

4
akD .. 2ak ak D .2
%L—r—bkgakak“‘ g—— + —4

(7
_ Pak — Pc

== k=
P
This equation was derived under the assumption that

the pressure at the outer boundary of a cell is equal
to p..

Notethat,at n=1, N= 1, and R — a, the bubble
cluster model given by Egs. (1), (3)—«5), and (7) is
reduced to the single-bubble model [10].

By virtue of the first assumption and the condition
that the concentration of bubbles in the cluster is rela-
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tively high, the corrections appearing in Eq. (7) do not
noticeably affect the dynamics of bubblesin the cluster.
Therefore, below, we consider Eq. (6).

SMALL OSCILLATIONS OF BUBBLES
IN THE CLUSTER

In [32], small oscillations of bubbles were studied
and an amplitude—frequency characteristic was
obtained for the case of a monodisperse cluster (aclus-
ter with bubbles of one size, n = 1). In this section, we
consider the case of a polydisperse cluster.

For each fraction of bubbles, the amplitude—fre-
guency characteristic is expressed by the formula

= X +ye, (k=1,n), @®)

where Aak = Ay, /300 Apl = A, /Pp,and A, and A, are

the amplitudes of deviations from the equilibrium val-
ues of the corresponding functions. In Eq. (8), the
unknowns x, and y, are the solutions to the set of linear
equations

D n
%ijxk—ekYK"' z (fix;=9;y)) =—(1+92)

a i=1]%k
O ! 9)
%kak"'deK"‘ z (gix;+ fy;)) =0
i=1]%k
(k=1,n)

with real coefficients expressed as
de = [ = 0%((ay+ 05)CG— ) — 0%y, CG,
& = 903% +0%(Cyly + UszE),

fy —GZGZkaj, O = esazkcczj-

Here, the following dimensionless quantities were
introduced: ', = 3y + 203y — 1)/(aypy,), 6 = WR,/C,

= a5/Ry. Oy = Neagi /Ry, Cy = C/P/Po, My =

4u/(poty), and ty = Ry ./p)/ Po - The quantities o, and iy
represent the ratio of the surface area of a bubble from
the kth fraction to that of the cluster and the concentra-
tion of the bubbles of the kth fraction in the cluster at
theinitial time, respectively.

For the case of a monodisperse cluster without any
energy dissipation due to viscosity or acoustic radia-
tion, the following expression was obtained for the
eigenfrequency of abubble:

20
, 3Vpo+53(3v—1) ,
W = 2 1/3 < W
Piay(l+ay/a;—ay”)

(10)



Monodisperse
cluster

w x10°, 57!

Polydisperse
m cluster

N1=N2=5000

gy =5 pm

NASIBULLAEVA, AKHATOV

w=29x%x10s"!
a(H)/ ay

L _ 10 um

5 pm

O 1 1 1 1 1 1 J
200 250 300 350
t, Us /
w=4.0x%10s""! \
ay(t/ag, > ax(n)/agp,

2 _
R 1.1

1.0

109
100 105

t, us/

80 85 90 95

Fig. 1. Amplitude—frequency characteristics for two monodisperse clusters (top |eft) and a polydisperse cluster with n = 2 (bottom
left); the patterns of bubble oscillations in the two-fraction cluster in the main resonance region (top right) and in the secondary

resonance region (bottom right). The vertical dotted lines indicate the values of Minnaert frequencies w

bubbles with initial radii of 5and 10 um, respectively.

Here and below, in expressionsfor the case of n=1, we
omit the subscripts indicating the fraction number. In
formula (10), w,, isthe frequency of free oscillations of
a single bubble in an unbounded liquid (the Minnaert
frequency). In the case of alow concentration of bub-
blesin the cluster (a, < 1), Eq. (10) takes the form

20
3ypo + 5;(3v—1)

Piag(1+ Nag/Ry)
Introducing the effective parameters a4 and 0 as

At = Aon/1+ Nag/Ry,  Oet = 0./1+ Nag/R,

we represent Eq. (11) in the form
20

3y-1

Beff (3y-1)
p|a§ff

Thus, when the concentration of bubbles is low, the
eigenfrequency of the bubbles of radius a, with the sur-
face tension ¢ in a monodisperse cluster is equal to the

2
W, =

(11)

3ypo +

2
W, =

(10)

and wyy,

S,S) for single

eigenfrequency of asingle bubble of radius ag with the
surface tension Og;.

Figure 1 (the left plots) represents the amplitude—
frequency characteristics calculated from Egs. (8) and
(9) for two monodisperse clusters (the upper plot) and
apolydisperse cluster (atwo-fraction cluster withn=2)
(the lower plot). The values of the physical parameters
that were used for calculation correspond to the param-
eters of water and air: p, = 103 kg/m?, C; = 1500 m/s,
Po=10°Pa, 0 =0.073N/m, p =103 Pas,andy=1.4.
The value of the initial radius of the cluster was taken
tobe R, =10 m. For atwo-fraction cluster, in addition
to the main resonance observed at a low frequency, a
secondary resonance appears at higher frequencies. In
Fig. 1 (theright plots), the patterns of nonlinear bubble
oscillations in an acoustic field (at AP =5 x 10° Pa) in
thevicinities of these two resonances are demonstrated.
One can see that, in the region of the main resonance,
the bubbles of the two fractions oscillate in phase (at
w=2.9 x 10° s7!), and in the region of the secondary
resonance, they oscillate in antiphase: the expansion
period of the bubbles belonging to the first group coin-
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cides with the compression period of the bubbles
bel onging the second group (at w =4 x 10° s!).

From set of equations (1) and (3)—6) we eiminate
all types of kinetic energy dissipation and consider the
free oscillations of bubbles in a two-fraction cluster
(n=2). Then, the given set of equations will represent
a particular case of the equations describing small
oscillations of a conservative system with two degrees

709

of freedom around its equilibrium position [36]:

B,Z1+HZ,+b,Z, +hZ, = 0,
O .. .
DHZ]_"' BzZZ+ th+ bzzz = 0
For the problem under consideration, we have
Z, = Day(t), Z, = Day(t),
%l NlaOIDNlaOI,
2
_ aozDNzaoz _ N1Nzaglaoz
B, = =l+N , H=——H—=,
= NRER, R
do
=M SROCBYPo* 1(3v—1)%
a,
- R 2%%woo 2(3v—1)E,

The normal frequenu&e for the given system are
expressed by the formula

B PBiE (B2 +BY) - axB
Wy, = 2% )

wherex =1 -H?*B,B,, B, = /b,/B,,and 3, = ,/b,/B,.
The quantities B, and 3, determine the frequencies in
the partial coordinate system, i.e., in the system where
one of the coordinates is assumed to be equal to zero.
These frequencies are determined as

(12)

20
3yp,+ =(3y-1
Y Po aOk(v )

B =

. , 1,2,
P1agk(1 + Nyag/ Ro)

The latter expression determines eigenfrequencies (11)
of the bubbles with the initial radii a), (at k= 1) or a,,
(at k = 2) in amonodisperse cluster.

Note that formula (12) is typical of the theory of
coupled oscillators. If we consider the bubblesin differ-
ent fractions as coupled oscillators, this formula will
expressthe splitting and shift of the eigenfrequencies of
bubble oscillations. If we consider other types of inter-
action between the bubbles, for example, Bjerknes
forces [37], in the linear approximation we obtain an

expression similar to Eq. (12) but with another value of
the coupling coefficient X.
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Fig. 2. Oscillations of a single bubble (the dashed line) and
a bubble in a monodisperse cluster (the solid line) with the
sameinitial bubbleradiusay =5 um within the period of the

acoustic field at P = 1.5 x 107 Pa. The number of bubblesin
the cluster isN = 10%,

For the two-fraction cluster illustrated in Fig. 1, the
relative errors in the resonance (normal) frequencies
calculated according to Eq. (12) and Egs. (8), (9) do not
exceed 1%. Thus, viscosity and acoustic radiation pro-
duce no noticeable effect on the eigenfrequencies of
bubbles.

Note that, for the two-fraction cluster under consid-
eration, the coupling coefficient H/,/B;B, = 0.94 is

comparable to the quantity |[3f - [3§ /(BB = 2.6

which meansthat (see[36]) the interaction between the
bubbles bel onging to different fractions within the clus-
ter is fairly strong. Hence, the interaction between the
bubbles considerably affects the dynamics of the bub-
ble cluster and cannot be ignored.

NONLINEAR BUBBLE OSCILLATIONS
IN A CLUSTER

To analyze the nonlinear oscillations of bubblesin a
cluster, we performed numerical calculationsfor the set
of equations (1), (3-6) by using the RungeKutta
method based on the Dorman—Prince formulas with an
automatic step selection [38].

A comparison between the dynamics of a single
bubble and that of abubble in amonodisperse cluster is
represented in Fig. 2. One can see that the bubble oscil-
lations in a monodisperse cluster differ in character

from single-bubble oscillations. for a bubble in a clus-
ter, the oscillation amplitude and the depth of collapse
are smaller than those of a single bubble. This means
that, unlike a single bubble, a bubble in a cluster may
experience externa pressures with high amplitudes.
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Fig. 3. Comparison of bubble oscillations in two monodisperse clusters and in atwo-fraction cluster at AP = 5 x 10° Pa, w = 271 x
20 kHz, and N = 10* (N; =N, = N/2): (a) the dependence of the bubble radius on time and (b) the difference between the maximum
compression phases (ay; =5 pm isfixed and &, varies).
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Fig. 4. Maximum temperaturein abubble with theinitial radiusa,; =5 pm versusthe total number of bubblesin the cluster at AP =
5 x 10° Pa. For the case of n = 2: N, isfixed and N, varies; ay, = 10 um.
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Therefore, one can conclude that sonoluminescence in
acluster should be of lower intensity than single-bubble
sonoluminescence. Experimental studies of multibub-
ble sonoluminescence[8, 9] showed that, after acertain
threshold, an increase in the ultrasonic power leads to
the formation of small bubble clusters, which resultsin
adrastic decrease in the sonoluminescence intensity.

We also studied the effect of polydispersity on the
bubble dynamics in a cluster. The effect of synchroni-
zation of the collapse phases for bubbles in a polydis-
perse cluster isrepresented in Fig. 3. From Fig. 3a, one
can seethat, in two separate monodisperse clusterswith
different initial bubble radii (a,, = 5 pm and a,, =
10 pm), the maximum compression of the bubbles
occurs at different instants of time. However, when
these bubbles are placed into one cluster (which is now
two-fraction), their compression occurs in phase irre-
spective of their size. One can see that, in this case, the
oscillation amplitude of a bubble from the first fraction
has become smaller, whereas the oscillation amplitude
of a bubble from the second fraction has become
greater. This can be explained by the energy transfer
between the bubbles of different radii [36]: bubbles of
thefirst fraction give part of their energy to the bubbles
of the second fraction. Figure 3b shows the difference
between the maximum compression phases of bubbles
with different initial radii as a function of the initial
bubble radius characterizing the second fraction. The
phase difference was calculated by the formula

A(I) — ¢gcol)_ (Zcol); (kcol) — (l)t(kCOI), kK = 1,2,

where t{* istheinstant at which abubble with theini-

tial radius a,, reaches its minimum size. For two mon-
odisperse clusters, the difference between the collapse
phases is represented by dots (the left-hand ordinate
axis), and for a two-fraction cluster, by triangles (the
right-hand ordinate axis). The synchronization
(autophasing) effect in a system consisting of two or
three cavities was experimentally investigated in [39].
In asystem of two cavitiesthat wereinitially excited so
as to oscillate in antiphase, a subsequent synchroniza-
tion of oscillation phases was observed. Note that, in
most cases, the experiments revealed two resonances,
thefirst of which produced a stronger effect on the sys-
tem than the second. This pattern agrees well with
Fig. 1, which refers to a multitude of bubbles of two
different sizes rather than to two cavities.

Figure 4 displays the effect of a bubble collapse
intensification due to the energy transfer between the
fractions. Namely, with the introduction of some bub-
bles of one radius into a cluster containing bubbles of
another radius, one obtains a deeper collapse of the |at-
ter bubbles. Thisresult agrees well with the experiment
[6]: it was found that, in a cluster with bubbles of two
different radii, the smaller bubbles in the presence of
greater bubbles exhibit a stronger collapse. The experi-
mental result was also explained by the energy transfer.
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CONCLUSIONS

The analytical study of small bubble oscillations on
the basis of the bubble cluster model proposed in this
paper showed that the eigenfrequency of bubble oscil-
lations in a monodisperse cluster is lower than the
eigenfrequency of a single bubble with the same initial
radius. It was found that small oscillations of a two-
fraction cluster can be considered as oscillations of a
linear conservative system with two degrees of free-
dom. This explains the presence of the secondary reso-
nance in addition to the main resonance in a two-frac-
tion cluster. In the region of the main resonance, bub-
bles of different fractions oscillate in phase, whereasin
the region of the secondary resonance, in antiphase.
The kinetic energy dissipation due to viscosity and
acoustic radiation does not noticeably affect the behav-
ior of the system.

The numerical analysis of nonlinear bubble oscilla-
tionsin a cluster showed that, unlike a single bubble, a
bubble in a cluster may experience sound pressures of
relatively high amplitudes. For a polydisperse cluster,
the following effects are revealed: a synchronization of
the collapse phases of bubbleswith different radii and a
collapse intensification for bubbles of one size in the
presence of bubbles of another size. The latter effect is
aresult of the energy transfer between bubbles of dif-
ferent radii.
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Abstract—The propagation of a high-intensity sound wave in an unconsolidated medium is considered. Dissi-
pation effects are taken into account on the basis of Buckingham'’s theory of a relaxation mechanism of sound
attenuation in a saturated sediment. The nonlinear evolution equation for the relaxing medium is obtained, and
the solutions of this equation are analyzed. The second-harmonic generation in such a medium decays, as does
the linear sound wave of the same frequency. The stationary weak shock profile has a specific form dueto relax-

ation effects. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

The evolution of a high-intensity sound wave is
determined mainly by nonlinear and dissipative effects.
If aninitially sinusoidal wave is intense, the stegpness
of thewave frontsincreases, resulting in the occurrence
of a discontinuity in each period of the wave. On the
other hand, the influence of dissipative processes tends
to smooth the wave profile, diminishing the gradients of
velocity and temperature. Consequently, during the
propagation of an intense wave, its profileis formed as
a result of the balance of nonlinear and dissipative
effects. Wave propagation in a nonlinear medium with
viscosity and thermal conductivity leading to sguare-
law attenuation was considered both theoretically and
experimentally (see, e.g., [1]). Later, Buckingham [2]
devel oped the theory of sound propagationin amedium
with a memory, where instantaneous stress is followed
by a decrease in stress level with increasing time in
accordance with the equation of relaxation. This
medium can be considered as a model of saturated
marine sediments [3]. The wave eguation in this case
includes a new dissipation term representing internal
losses arising from interparticle contacts. The attenua-
tion coefficient of sound according to thistheory would
scale with the first power of frequency. Marine sedi-
ments usually have the specific linear frequency depen-
dence of the coefficient of sound attenuation [4, 5].
A power-law frequency dependence of the attenuation
is aso found in many biological tissues [6]. The bal-
ance of nonlinearity and dissipation in such a medium
has specific features observed in the experiment dis-
cussed in [7], some of which are considered in the
present paper.

1 The text was submitted by the authorsin English.

EVOLUTION EQUATION

A unified theory of sound propagation in saturated
marine sediments is developed on the basis of alinear
wave eguation that includes a new dissipation term rep-
resenting internal losses arising from interparticle con-
tacts. An unconsolidated sediment is considered as a
two-phase medium consisting of mineral particles and
seawater but possessing no rigid frame. The internal
losses are determined by grain—grain contacts. The
analysis is based on a one-dimensional linear wave
equation in which intergranular dissipation is repre-
sented by aloss term that takes into account the hyster-
esis, or memory, of granular media. The effect of the
memory on the wave equation is accommodated by set-
ting thefrictional stress equal to atemporal convolution
between the particle velocity and the material memory
function h(t) [2]:

¢ 1%, b &
=224+ =2 [h(t)O¢()] =0, (1
pocgataXz[ (1) O ()] (1)

x> ¢ ot

where ¢, is the sound speed in amedium in the absence
of grain—grain losses. The losses can be expressed in
terms of the bulk properties of the two materials—min-
eral grain and seawater [2]—and p, is the equilibrium
density of the medium. The material response function
h(t) can be chosen to be [3]

h(t) = u(t)t HL+ tLH”_ 2)

Here, u(t) is the step function that ensures that the
response of the medium is causal, and t, and n are the
material parameters; t, actually has a sense of the time
of relaxation. The dissipation coefficientsb = 4/3n; + {;

1063-7710/05/5106-0713$26.00 © 2005 Pleiades Publishing, Inc.
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and );, {; correspond to the intergranular friction of the
medium, and the term h(t) O ¢(t) is atemporal convo-
[ution. The dissipation term in EQ. (1) is similar to that
of a hydrodynamic equation having the derivative
0%/0x?, but the operand, instead of being the particle
velocity, isthe convolution of particle velocity with the
impul se response function of the material h(t). If h(t) is
aDirac delta function, the convolution term reduces to
the particle velocity.

Consider the propagation of awavein onedirection,
which alows for the transformation of Eq. (1) into a
first-order equation.

The wave equation operator can be presented as a
product of the two operators:
6(]) 10(1) __EODDO 1ag¢ 3)
axz CO at @X Coat[l@x CoatD

For awave moving in a positive direction x in a perfect
medium,

_109 _ 09
Coot  ox’ @
so, in amedium with weak dissipation, one can use
op 10 a

X Coot 6x

and, after integration of Eq. (1) with respect to X, one
obtains

0 109 _b _
ax | cyot + Zatax[h(t) O¢()] =0. (6
Changing the vari abI es
X — X, t_X/CO =T,
a a —‘i = _C_l_(z + _Q_ (7)
3t _ ot ox 9t ox’
one obtains
0 b
35 - h(t) O T = 0. (8)
X~ oot 2 thr) 0 o) =

Accounting for nonlinear effects leads to an addi-
tional term in evolution equation (8) [1]:

30 e @b’ b o

3% 2Bt~ 3p AN D] = 0. O)

If one transforms the nonlinear term using the equation

19 _ 0
one obtains
00 € [ﬁ(l)D b 0°

ox " 26,00x0 " 50 ¢ O—[h(T)Dd)(T)] = 0. (11)
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To obtain the equation in terms of particle velocity v,
we make the substitution v = d¢/0x’, and differentiate
over X in the nonlinear term; then, we return back to
0/0t

ov eov: b @°

h(t) O ¢(t)] = 0, (12)
3 20 3T 2 a0 6]
or
ov € av b
Fv i Arwe (13)
X 2 9T pp,clat a

the evolution equation of anonlinear wave in the relax-
ing medium.

A stationary wave, in particular, the stationary shock
profile, is governed by the equati on

2pg 06

(14)

which corresponds to the balance condition of nonlin-
ear and dissipative processes.

PROPAGATION OF A LINEAR PLANE WAVE

Let us now consider linear plane wave propagation
in an unconsolidated granular medium. The presence of
a relaxation process in the medium leads to specific
attenuation of a sound wave propagating in it, due to
developing irreversible effects. The evolution equation
can be used to obtain sound-wave attenuation in the
relaxing medium in asimple way similar to that derived
by Buckingham [2] on the basis of the wave equation.
A proper wave equation could be in the form

09, 109, _b
ax 5ot 2pc 2atax[h( )Ee )]
= —S3(1)d(x),

where S is the strength of an impulsive source. The
standard method of solving a linear inhomogeneous
equation isto apply the Fourier transform.

The Fourier transform with respect to timeis

(15)

[1+iw H(m)}——lkOCD(loo) = S3(x),

poco (16)
_w

ko = o

d(iw) and H(iw) are the Fourier transforms of ¢, and

h(t). Convolution reduces this to a product of

H(iw)%—i) . A second Fourier transform with respect to

x leads to the algebraic equation

ACOUSTICAL PHYSICS Vol.51 No.6 2005
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g .
01Ky
O

—[1+im H(Ioo)}ls]d) =_s, (17

poco

where @, is the Fourier transform of ® with respect to
X, S0 that P(iw, X) = J'CDSe_iSde. It follows that

O, = ioobS
is[1+ H(|oo)}+|kO
2poCo
18
_ S i} s (18)
isq+ik _ k
° gk
q
Here,
q=1+-90 SH(iw), (19)
poCo
and

H(iw) = J‘h(t)exp(—i wt)dt
(20)
M(1-n
iwt) ™"

where (1 — n) is the gamma function.

Now, by substituting Egs. (20) into Eg. (19), the
function g can be expressed as

=t J’t‘”exp(—i wt)dt =
0

blr(1
Xf_(_zn)

2PoCoto

q = 1+ (iwt)"Xy, 1)

An inverse transform over the wave number s leads to
the equation

. _ S . kq]_l .
d(iw, x) = 2mqj’%+ a0 exp(isx)ds

S ® ISXd S |k (22)
- > e ads — S 0 "o
214 | k) P07 B
qD
The residue is sy = —Ky/q, and the equation §f (z)dz =

21ia(z) is used; a(zy) is the coefficient of the term
(1/z— zy) in the Loran expansion. Then, after substitu-
tion into Eqg. (21), one obtains

®(iw, X)

S el WX 0

_ (23)
T+(iwt)"Xy 2 co(L+ (iwtg)"X )
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(i, x) = .S o 0 |w|_X| _
1+ (iwty) Xy 0 coRe(1 + (iwtg) X+)
(24)

o L]
Cp L Co 1+ (iwty)"x¢/O

The result obtained is convenient to present in terms of
acomplex wave number. Indeed, introducing

Cp, = CoRe(1+ (iwte)"X+),
25
and B = S, 1 _ (25)
CO 1+ (iwtg) X
the result obtained can be presented as

W :
k= (1-]P). (26)
p
Then, one can use the following representation:
qJ(I(.O X) - e |cox/c e—wa/c (27)

In the particular case where n < 1, the expressions for 3
and ¢, can be approximated. Following [2], one obtains

Cp=CoTHXi[ 1+ B"In(lwlto)} (28)
and
B=Bysgn(w), (29)
where
_ _ NTXs
P e o0

In most circumstances, the dispersion isweak, and one
has

Cp=Cou/1+Xs. 31

Since the loss tangent (3, and the phase speed ¢, are
independent of frequency, the attenuation coefficient is
alinear function of frequency w,

o = OB _enmx
PC a+x)*

and the associated dispersion is expressed by Eqg. (31).

These results of the relaxation theory are consistent
with the observed geoacoustic properties of many
unconsolidated marine sediments. In particular, the
attenuation coefficient of a sound wave propagating in
such amedium is proportional to the first power of fre-
guency. As an example, our previous data can be
offered [7]. Sound attenuation in water-saturated
unconsolidated marine sediment was measured using a
wide-band laser-generated sound pulse. The signal was
registered before and after propagation through a sam-

(32)
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Fig. 1. Transient performance for the sample of crust. Low-
amplitude sound pulse (a), high-intensity sound pulse (b),
and theoretical curve (c).

ple of water-saturated cobalt—manganese crust (CMC).
The measured spectral transient performance is repre-
sented in Fig. 1 (curves a and b). The sample of crust
used in the experiment has a grainy structure with a
granule diameter d of (1-5) x 10> um; for such a
medium, the coefficient 3 = 0.015[2], so, in accordance
with Eqg. (30), o, = 1077w cm™. A corresponding theo-
retical transfer function is presented in Fig. 1 (curvec).
The comparison of experimental and theoretical curves
indicate that the attenuation of sound in an unconsoli-
dated water-saturated medium depends linearly on the
frequency [7], in accordance with the theory of relax-
ation-mechanism attenuation [2].

NONLINEAR WAVE IN A MEDIUM
WITH RELAXATION

The evolution of an initially sinusoidal wave during
propagation may be treated as avariation of its spectral
composition. The growth of high-frequency harmonics
in the course of plane sinusoidal wave propagation in a
viscous heat-conductive medium has been considered
in many papers, such as[8]. The generation of harmon-
ics of a high-intensity wave propagating in a medium
with relaxation that is modeled as an unconsolidated
medium can be considered using the method of succes-
sive approximations in application to evolution equa-
tion (13).

Let us seek the solution as a sum:

b =0, +0b,... (33)

NAUGOLNYKH, ESIPOV

The boundary condition can be chosen as

it

¢, =¢6e ", ¢,=0, x=0. (34)

Then, the first-order (linear) equation, according to
Eqg. (9), is

d b o
D Thmosmi=o 69
X' 2peCo0T
The solution of this equation can be represented as
b, = ‘1>1oe_0(p><lei(k)1T (36)
The second-order equation is
3 b o e 0947
Tl 0] = =55
OX  2p,coot’ 2ot (39
— Nq)ioe—i2m1x'/cpe—2apx'ei2wlr,
N = = (38)
2¢,
The Fourier transform with respect to t and X' gives
O . . .10
D—Ik0—|:1+l(.0 b 2H(|u))}|sr,]q>S = -NSS,, (39)
0 2PoCo 0

where @, is the Fourier transform with respect to X for
¢ and SS, are the Fourier transforms of (d¢,,/01)>.
Here, we are taking into account the dependence of T on
both the time t and spatial variable x according to
Eq. (7). After the inverse transform with respect to X,
the equation for ¢,(iwT) reads

q)z(i(JOT) - ¢zoe |2(Joxx/c:'De 2apxe|2w1T, (40)
the second harmonic of a wave propagating in a relax-
ing medium attenuates as a small-intensity (linear)
wave of the same frequency, unlike the case of conven-
tional attenuation due to viscous effects. Indeed, in that
case, the coefficient of absorption of the second har-
monic is twice, rather than four times, the absorption
coefficient for the first harmonic and, therefore,
increases linearly rather than as the square of the fre-

quency [8].

STATIONARY WEAK SHOCK-WAVE PROFILE

The important characteristic of the medium is the
weak shock-wave stationary profile that indicates the
balance of nonlinear and dissipative effects. A compar-
ison of the stationary shock-wave profile to the initial
profile of the problem under consideration allows usto
predict the evolution of the initial profile and to choose
the proper approximations. Indeed, if the initial profile
is smooth and has a scale of thickness larger than the
stationary wave thickness, it will become steeper in the
process of propagation under the action of nonlinear
effects, and the dissipative effects can be neglected in

ACOUSTICAL PHYSICS  Vol. 51
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this case. In contrast, the thin—in comparison to the
stationary front—initial profile will be smoothed dur-
ing the process of propagation as aresult of the action
of dissipative effects; nonlinear effects are negligiblein
this case.

Consider first the weak shock-wave profilein a con-
ventional viscous medium. If h(t) = &(1), thedissipative
term of Eq. (14) is

b o°

e UORLIY
(41)
__b v b v
2poc§0T2 2pOCST2’

S0 an estimate can be made of the balance of nonlinear
and dissipative effects as follows, using Eq. (14):

2
g b Vv (42)
2CoT  2PoCoT
The estimate of the shock front duration T; is
b b
=L = (43)

Tf D = y - Ty
2€VpoC0 GVCO po

where [ is the kinematic viscosity and the shock front
thickness I;, in agreement with Lighthill [9], is

¢ = cotT =—H-.
f o'f Y

To obtain the solution for the shock-wave profile,
we introduce dimensionless variablesinto Eq. (14):
V(X) = vivy, C=1lty, & = tlt, (45)
wheret, and v, are the new scales of time and velocity.
By choosing these new scales of time and vel ocity,
the dimensionless multiplier e v, p,C,t,/b can betaken to

be unity, so, after one integration, the final equation
appears as

(44)

aVZ 62 OOEHDFI
— = — [ V(& —Q)dE. 46
We consider first the nonrelaxing limit, when
h(t) = 8(1). “47)
In this case, the integral transformsinto
[HE V&0
L e (48)
= J’5(E)V(COE—Z)dE = V(Q),
0
S0 one get the equation
ov: _ d°
—— = —V/(0). 49
7 = '@ (49)
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Fig. 2. Stationary shock-wave profiles. The curve labeled V
corresponds to water; the curves marked as 0.10 and 0.05
correspond to an unconsolidated medium with a memory
index of n=0.1and n=0.05.

Thefirst integral is

VA Y

¢

where the constant of integration is chosen to be equal
to unity. This equation has a solution, namely, V =

tanh{ . Indeed,

o0V _ dtanhl _ 1
0¢ 0¢ coshzZ

Substitution of this result into the previous equation
indicates that tanh{ provides a solution.

(50)

= tanh’7 —1.

(1)

Therefore, for a nonrelaxing medium, the shock-
wave profile is governed by the hyperbolic tangents.
For a medium with relaxation, Eq. (46) is solved
numerically for arange of T and amemory index n. The
smaller the value of n, the longer the memory of the
material. For marine sediments, previous experiments
have given a wide spectrum of memory index n in the
range 0.05-0.30 [4, 5].

Shock-wave profiles formed in an unconsolidated
medium with a memory index of n = 0.1 and n = 0.05
are obtained by numerical solution of Eq. (46) and are
presented in Fig. 2. For comparison, a shock-wave pro-
filein water, where the dissipation is determined by vis-
cosity and heat conductivity, isrepresented by the curve
labeled V. It is seen that the relaxation effects lead to a
change in the profile structure and, as aresult of disper-
sion, cause it to shift.

Notice that the dimensionless argument { = T/, is
normalized to the relaxation time T, so that the dimen-
sional shock front thicknessis proportional to the relax-
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ation time of the material. The profile structure variesas
the material constant n changes.

CONCLUSIONS

The nonlinear theory of high-intensity sound propa-
gation in unconsolidated granular materials is devel-
oped on the basis of Buckingham's [2] relaxing theory
of sound propagation in a medium with grain—grain
interactions. A nonlinear evolution equation is
obtained, and amodel equation for the plane wave case
is derived. The generation of harmonics upon plane
wave propagation is considered, and the specific fea
tures of this effect in a medium with relaxation are dis-
cussed. The structure of a stationary weak shock-wave
profile in unconsolidated materials is obtained by
numerical solution of the evolution eguation.
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The possibility of generating a short acoustic pulse
is one of the main requirements imposed on the equip-
ment that is used in medical acoustic diagnostics and
introscopy. This requirement stems from the need to
minimize the dead space and increase the resolution.
Therefore, considerabl e attention has been drawn to the
development of transducers capable of generating and
receiving such signals. At present, the theory of opera-
tion of piezoelectric transducers in a pulsed mode is
rather well understood. However, the literature often
lacks specific estimates of the pulse durations and
amplitudes in relation to various parameters character-
izing the transducers (the degree of damping of the
active element, the wave thickness of contact layers, the
parameters of correcting circuits, etc.). A number of our
previous works were devoted to studying these prob-
lems[1-6]. Asaload, we used aliquid (water). Of cer-
tain interest isthe consideration of similar problemsfor
the case when the transducer is loaded with a solid
medium, for instance, a metal. It should be noted that,
in this case, for providing areliable acoustic contact, it
is necessary to use a contact layer, which adversely
affects the matching between the transducer and the
medium, as compared to the case without aliquid layer,
i.e., the case of an ideal acoustic contact. The latter is
possible in rare cases, upon a very thorough treatment
of contacting surfaces. Thisleads to the requirement to
minimize the thickness of the contact layer, which is
often a difficult task. A possible way out is to provide
conditions of operation of the piezoel ectric transducer
under which the generated acoustic pulse remains suf-
ficiently short in the widest possible range of wave
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thicknesses of the contact layer. This can be achieved,
for instance, by using various degrees of damping of the
active element or by connecting the plate input with an
electric, for example, RL load.

The abjective of the present study is to obtain com-
parative estimates of amplitudes and durations of
pulses produced by a piezoelectric plate in a solid
medium with the use of the two above-mentioned meth-
ods of reducing the duration of the generated pulsein a
wide range of wave thicknesses of the contact layer.
The statement of the problem is illustrated in Fig. 1.
Figure 1a shows a piezoel ectric plate with a damper on
its rear side, and this plate is loaded with a solid
medium through a contact layer. Figure 1b shows a
similar platewith an RL circuit connected in seriestoits
input (on the rear side, the plate borderstheair). In both
cases, Z,,, Z, and Z, are the acoustic impedances of the
piezoelectric plate, contact layer, and acoustic load,
respectively. The acoustic impedance of the damper is
Z4. We assume that the area of all the layers, including
the contact surface of the medium, which representsthe
acoustic load, is the same and equals S Then, Z, =
PGS Z. = pP.L.S Z = pcS and Z; = pyC,S Asan active
material, we choose the TSTSNV-1 ceramics. We
denote the electric voltage exciting the piezoelectric
plate by U(t). The problem consists in the determina-
tion of the particle velocity v at the boundary between
the contact layer and the metal for the given pulse of the
exciting voltage U(t) for the both variants shown in
Fig. 1. As before [1-6], we assume that the plate is
excited by a voltage pulse representing a half-period of
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Fig. 1. Statement of the problem.
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Fig. 2. Dependences of the pulse duration on the wave
thickness of the contact layer.

asinusoid at the antiresonance frequency of the piezo-
electric plate. We introduce the parameter a, which
allows us to characterize the wave thickness of the
contact layer: a = x./X,, where X, and x, are the wave
thicknesses of the contact layer and piezoceramics,
respectively. In addition to the listed parameters, we
introduce the parameters characterizing the system
shownin Fig. 1b:

w, = 1/,/LCy;

where C, is the capacitance of the repressed piezoel ec-
tric plate and w, is the antiresonance frequency of the
plate. The physical meaning of the introduced parame-
tersisasfollows: w, isthe resonance frequency of the
oscillatory circuit formed by the inductance L and the
proper capacitance C, of the piezoelectric plate, nisthe
relative resonance frequency of the oscillatory circuit,
and Q has the meaning of the quality factor of the oscil-
latory circuit. In the same manner aswas done in previ-
ous works, it is possible to determine the shape of the
generated pulse of particle velocity v(t). For this pur-
pose, for either variant shown in Fig. 1, by considering
the equivalent electric circuit of the radiator that is
loaded through the contact layer with ametal, it is pos-
sible to determine the frequency response of the piezo-
electric radiator. Then, finding the spectral function of
the exciting pulse, we use the Fourier transform to
determine the form of the time dependence of the
acoustic pulse. The result of solving the problem isthe
determination of the values of the specific acoustic
impedances z, (for the case shown in Fig. 1a), at which
the pulse is sufficiently short with an acceptable value
of its maximal amplitude, and the values of the param-

n=w,/w, Q=wl/R,
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eters Q and n (for the case shown in Fig. 1b) corre-
sponding to the minimal durations of the generated
pulses. As in previous papers, the pulse duration is
taken to be the time interval from the beginning of the
pulseto theinstant when the particle velocity amplitude
decreases to one-tenth of its maximal value. For conve-
nience, we introduce the dimensionless time 1 =
t/(Ty/2), where T, isthe period of oscillations at the fre-
guency . Thismakesit possible to measure the dura-
tion of the generated pulses from the number of half-
periods of oscillations at the fundamental frequency of
the piezoelectric plate. The results of calculations are
presented below.

Figure 2 shows a family of curves representing the
dependence of the duration of the generated pulse of
particle velocity 1, on the wave thickness of the contact
layer a. Asalayer material, we chose water. The acous-
tic load is steel. Curve I characterizes the dependence
T,(a) for the case when the plate input is loaded with
the RL circuit, the parameters of which, as a result of
searching through numerous variants of calculations,
are taken to be optimal, i.e., providing the minimal
pulse duration for the chosen materials. It is worth not-
ing that, for the whole range of variation of the param-
eter a, which is presented in Fig. 2, these values are
constant (n,,, = 1.1 and Q. = 2.5). The other curves
correspond to the cases of various degrees of plate
damping. Curve 2 characterizes the dependence 1,(a)
for z;=0, curve 3, for z; =5 x 10°, curve 4, for z;= 10 x
106, curve5, for z; = 15 x 106 Pasg/m, and curve 6 refers
to the case when the specific acoustic impedances of the
damper and the piezoceramics are equal (z; = Z,). From
the comparison of curves 1, 2, and 3, it follows that the
use of correctly chosen parameters of the electric load
allows one to expand the range of variation of the con-
tact layer thicknesses, within which no pronounced
increase occurs in the duration of the generated acous-
tic pulse, as compared to the results achieved with rela-
tively low degrees of damping (up to the values of z,
approximately corresponding to (5-7) x 10° Pas/m). It
isseenthat, for theindicated values of z,, for a closeto O,
the value of 1, is about 4-5 half-periods (curves 2 and
3), whichisvery close to the values of T, obtained with
the use of an electrical circuit for a = 0 (curve 1). The
increase in a to 0.05 leads to a substantial increase in
1,. For the case of z; =0 (curve 2), T, > 25, and for the
case of z; =5 x 106 Pas/m (curve 3), the pulse duration
isT,=11. Whenusing an electric load, evenfor a = 0.1,
T, = 9 (curve 1), and with a further increase in a up to
0.5, although there is an increase in the pulse duration,
it is not as pronounced as in the cases characterized by
curves 2 and 3. It should be noted that, for large values
of a, the use of an electric load |eads to the lengthening
of the trailing edge of the pulse (its “tail”); however,
even in these cases, according to the chosen criterion of
the estimation of the pulse duration, the latter does not
exceed T, = (16-17) for a = 0.5.
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Asseen fromFig. 2, the use of theincreased degrees
of damping of the plate (curves 4, 5, and 6) makes it
possible to obtained shorter pulses than those obtained
using the electric circuit. Specificaly, even for a = 0.5,
the pulse duration does not exceed the value of T, = 11
(curve 4), 1, =9 (curve5), and 1, = 8 (curve 6).

Figure 3 shows the dependences representing the
change in the maximal amplitudes of particle velocity
inthe generated pulse, V., With parameter a. The des-
ignations of the curves are the same as in Fig. 2. The
indicated maxima amplitudes are given in conven-
tional units, which is connected with performing the
calculations accurate to constant factors. It is seen that
the use of the electric circuit with optimal parameters
makes it possible to form signals of higher amplitude
(curve 1) than those with the use of damping. Even for
Z, = 0 (curve 2), the signal amplitude is about 75% of
the signal amplitude obtained by using the electric load.
The increase in z, leads to an even greater difference,
which is clearly seen from the comparison of curves 1
and 3-6.

Using theresultspresented in Figs. 2and 3, it ispos-
sible, by setting the required duration of the generated
acoustic pulse, to find the wave thickness of the contact
layer at which this duration will be retained, as well as
the amplitude of the generated signal. Let us assume
that it isrequired to generate asignal with aduration of
8 half-periods. From Fig. 2, it is seen that this can be
achieved by using awater contact layer with a = 0.015
for zy = 0 (curve 2), a = 0.023 for z; = 5 x 10° Pasm
(curve 3), a = 0.035 for the optimally chosen electric
load (curve 1), etc. From Fig. 3, it is possible to deter-
mine the maximal amplitudes of acoustic pulses, which
areegual to 1.3 (from curve 2), 0.95 (from curve 3), and
1.25 (from curve 1).

Thus, on the basis of a computational study, it is
shown that, by connecting an electric load with optimal
parameters to the input of a piezoelectric plate loaded
with a metal through a water contact layer, in a wide
range of wave thicknesses of thislayer, it is possible to
obtain a shorter acoustic pulse than that obtained using

ACOUSTICAL PHYSICS Vol.51 No.6 2005

721

%4

max

1

10! o

102

1073

1074

Fig. 3. Dependences of the maximal amplitude of the gen-
erated signal on the thickness of the contact layer.

alow degree of damping (z; <7 x 10° Pas/m). With a
higher degree of damping, it is possible to generate a
shorter pulse than that obtained by using an electric
load.
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