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Abstract—The creation of quiet zones in a diffuse sound field due to a multipole spherical primary source by
means of a radially vibrating surface set in the side of a rigid sphere (secondary source) is investigated in this
article. The formulation utilizes the appropriate wave field expansions along with the translational addition the-
orems for spherical wave functions to develop a closed-form solution in the form of an infinite series. The
numerical results reveal that using a baffled spherical piston model as a secondary source instead of a monopole
control source will obviously improve the sound minimization efficiency of such noise-control systems in all
cases, especially for a dipolar primary source. © 2005 Pleiades Publishing, Inc.
1 1. INTRODUCTION

Active noise control (ANC) of a spherical source
using a secondary control source to cancel the pressure
at a particular location or to reduce the output acoustic
power is an old concept [1–10]. Local active cancella-
tion of acoustic pressure using a closed control source
was originally studied by Olson and May [1]. Fedoryuk
[2] considered the problem of active sound suppression
by means of continuous arrays of monopoles. In this
research, two receiving and two radiating surfaces filled
continuously with point monopole receivers and radia-
tors are assumed to simulate a sound-control system.
Later, active suppression of sound fields by the method
of spatial harmonics was examined by Mazanikov et al.
[3]. In this problem, monopole sources and sensors dis-
tributed on the surface of a concentric sphere were
brought into play to show an ANC system. In the same
way, Nelson et al. [4, 5] studied the minimum power
output of a pair of free-field monopole sources. It has
been demonstrated that, for the numbers and arrange-
ments of the secondary sources considered, significant
reductions in power output may only be achieved if, in
general, secondary sources are placed within a distance
of half of the wavelength of the primary source. Later,
Joseph et al. [6] investigated the near-field zone of quiet
created when the total pressure is driven to zero at a
field point on the axis of a flat piston source. By assum-
ing a uniform pure tone sound field and a feedforward
control arrangement, they found that the near-field
characteristics of the secondary source are very impor-
tant in determining the resulting on-axis pressure distri-
bution. David and Elliott [7] performed a computer
simulation to estimate both the on-axis and off-axis
extent of the near-field zone of quiet created by a local
active control system in which the secondary source is

1 The text was submitted by the author in English.
1063-7710/05/5106- $26.00 0609
modeled as a flat piston in an infinite baffle. It was
shown that the zone of quiet becomes larger as the con-
trol microphone is moved further away from the control
source, until, for large separations, the 10-dB zone of
quiet, defined as the spatial zone in which the sound
pressure level of the controlled acoustic field is at least
10 dB below that of the primary field, approaches the
limiting case of a sphere with a diameter that is one-
tenth of a wavelength, as predicted by Elliott et al. [8].
Active cancellation of pressure and the pressure gradi-
ent in a pure diffuse sound field with a remote control
source is studied by Elliott and Garcia-Bonito [9]. Ana-
lytical expressions for the extension of the zones of
quiet generated when the cancellation point is closed or
on the surface of the rigid sphere, a wall, a two-wall
edge, and a corner have been reported by Garcia-Bonito
et al. [10]. In a more related work, Bolton et al. [11] dis-
cussed global free-field cancellation in the region exte-
rior to a monopole primary source by the use of a single
multipole secondary source. It was found that improved
attenuation could be achieved by choosing the second-
ary multipole-component source strength to minimize
the total sound power radiated by the combination of
the primary and secondary sources rather than by using
a direct multipole expansion of the primary sound field.
Also, it was shown that it is more efficient in some
instances to use a single multipole rather than an array
of monopoles for global cancellation. Martin and Roure
[12] used a spherical harmonic expansion to simulate a
primary sound field, and it was shown that, by using
such an expansion, a method can be developed for opti-
mizing the transducer locations for the case of free-field
radiation of a period general (multipole) primary
source. Soon after, active noise cancellation of a dipolar
source using the previous method was studied and
checked experimentally [13]. In a similar problem, an
active spherical volume was used to absorb the energy
© 2005 Pleiades Publishing, Inc.
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of an incident wave [14], and it was shown that using a
spherical active absorber instead of a similar passive
model would improve the efficiency of the control sys-
tem.

On the other hand, acoustic radiation of pistons
placed on baffles has been extensively considered in the
literature for various piston and baffle geometries (i.e.,
planes, spheres, cylinders, and spheroids [15–21]). The
self-radiation impedance for the classic problem of a
radially (axially) vibrating piston set in a rigid sphere is
presented in [15]. The mutual acoustic impedance of
pistons on a sphere and a cylinder are analyzed in [16]
and [17], respectively. Likewise, the acoustic radiation
impedance of curved vibrating caps and rings located
on the hard baffles of an oblate spheroidal obstacle is
formulated in [18]. The self- and mutual radiation
impedances for rectangular piston sources vibrating on
a rigid prolate spheroidal baffle were investigated in
[19]. More recently, Hasheminejad and Azarpeyvand
examined acoustic radiation from a pulsating spherical
cap set on a spherical baffle near a hard/soft flat surface
[20]. Sound radiation from a liquid-filled underwater
spherical acoustic lens with an internal eccentric baf-
fled spherical piston is also studied by the same authors
[21].

Taking into consideration the fact that the attenua-
tion of sound in an active noise-control system is not
only highly dependent on the secondary source number
and location but also on its type [22], the principal
objective of the present work is to study active noise
cancellation of a finite general primary disquieting
source by using a single partially vibrating control
source. Thus, the present work is intended to extend the
previous research carried out in [4, 5]. It is worth men-
tioning here that, in the low-frequency range, each mul-
tipole can be represented by a set of point sources, and
vice versa (see Figs. 1 and 2 in [12]). The organization
of the work is described next. Following the Introduc-
tion, the second section presents a general solution of
the wave equation in terms of scalar generating func-
tions. The solution to the boundary-value problem is
obtained in terms of spherical Bessel and Hankel func-
tions with unknown (modal) coefficients for the radi-
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Fig. 1. Illustration of the geometrical configuration of the
problem.
ated waves. The unknown coefficients are determined
incorporating the appropriate translational addition the-
orem and imposing the proper boundary conditions at
the surfaces. For the given properties of the problem,
namely, the primary source type (i.e., monopole,
dipole, and general case), the excitation frequency, and
the separation distance, the resultant set of coupled lin-
ear algebraic equations is solved numerically. Subse-
quently, the appropriate secondary-source velocity
components (strength and phase) are found to diminish
the sound pressure at a particular point. Later, impor-
tant acoustic-field quantities such as sound attenuation
and acoustic pressure levels after sound reduction are
evaluated and discussed in Section 3.

2. THEORETICAL DEVELOPMENT

The problem can be analyzed by means of the stan-
dard methods of theoretical acoustics. The fluid is
assumed to be inviscid and ideally compressible; it is
assumed that it cannot support shear stresses, making
the state of stress in the fluid purely hydrostatic. In view
of the fact that the spherical cap is supposed to undergo
time-harmonic surface pulsations, the field equations
may conveniently be expressed in terms of a scalar
velocity potential as [23]

(1)

where ω = 2πf is the angular frequency of the harmonic
fluctuations (rad/s) with frequency f, k is the wavenum-
ber, k = ω/c = 2π/λ, λ is the wavelength, ρ is the ambi-
ent fluid density, c is the ideal speed of sound, u is the
fluid particle velocity vector, p is the acoustic pressure
in the inviscid fluid, and where we have assumed har-
monic time variations throughout, with the e–iωt depen-
dence suppressed for simplicity.

Undoubtedly, the sound field radiated by a source
may often be appreciably affected by a neighboring
surface. In fact, the presence of a radiating and reflect-
ing surface (i.e., a finite control source) near a primary
source can affect not only the directional properties of
the source but also the total radiated sound power by the
first source [24, 25]. Consider a spherical piston set on
a rigid spherical baffle positioned at a finite distance
from a primary multipole source (Fig. 1). It is clear that
the proximity of the second vibrating obstacle makes
the problem more difficult to solve. The problem geom-
etry is depicted in Fig. 1. The centers of the two spheres
are separated by a distance D, and the cap angle of the
secondary source is θ0. The origins O1 and O2 of the two
spherical coordinate systems (r1, θ1, ϑ1) and (r2, θ2, ϑ2)
coincide with the centers of the primary and secondary
sources, respectively. The direct distance between the
center of the primary source and the receiver (field
point) is r1; the direct distance between the center of the
control source and the receiver (field point) is r2. The
dynamics of the present multiscattering problem may
be expressed in terms of two scalar potentials: one cor-

u ∇Φ , p– iωρΦ, ∇ 2Φ– k2Φ+ 0,= = =
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Fig. 2. Sound attenuation due to the presence of the secondary partially vibrating source versus velocity strength α and velocity
phase β (rad), f = 100 Hz, D = λ/4 = 86.55 cm.
responding to the waves disseminating from the disqui-
eting source, and the other relating to the waves from
the control source. Each of these waves can be repre-
sented in the form of an infinite (generalized Fourier)
series whose unknown modal coefficients are to be
determined by imposing the proper boundary condi-
tions. Accordingly, for axisymmetric motion in
bispherical coordinates, we set

(2)

where hn( ) = jn( ) + iyn( ) is a spherical Hankel func-
tion [26], n is the circumferential wave number, Pn(ηi)
is a Legendre function (ηi = cosθi, i = 1, 2), and an(ω)
and bn(ω) are unknown modal coefficients.

The general expressions for the normal surface
velocity of the primary multipole spherical radiators is
written as

Φ P( ) r1 θ1 ω, ,( ) anhn kr1( )Pn η1( ),
n 0=

∞

∑=

Φ S( ) r2 θ2 ω, ,( ) bnhn kr2( )Pn η2( ),
n 0=

∞

∑=
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Similarly, the piston set in the surface of the second-
ary rigid sphere pulsates in the region π – θ0 ≤ θ2 ≤ π
with a prescribed complex velocity V(S). The velocity of
the piston can be expressed as a linear combination of
spherical modes in the form of an infinite series:

(4)

where  (n = 0, 1, 2, …) are the complex modal coef-
ficients of surface velocity distributions. These coeffi-
cients can be readily determined after multiplying both
sides of (4) by Pm(η2), (m = 0, 1, 2, …), integrating over

v P( ) θ1 ω,( ) Vn
P( )Pn η1( ).

n 0=

∞

∑=

v S( ) θ2 ω,( ) Vn
S( )Pn η2( )

n 0=

∞

∑=

=  
0 0 θ2 π θ0–≤ ≤

V S( ) π θ0 θ2 π,≤ ≤–



Vn
S( )
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dη2, and applying the orthogonality property of the
Legendre functions:

(5)

where the integrations are performed using the follow-
ing well-known relation [15]:

(6)

Many radiation and scattering problems involve
waves of one characteristic shape (coordinate system)
that are incident upon a boundary of some other shape
(coordinate system). Thus, it is difficult to satisfy the
boundary conditions on that surface. There exists, how-
ever, a class of mathematical relationships called wave
transformations that circumvent this difficulty in many
cases by allowing one to express the incident wave in
terms of wave functions for some other coordinate sys-
tem that is more appropriate for the boundary; i.e., they
simply permit the study of the fields scattered by vari-
ous bodies by referring them all to a common origin
([24, 25]). This transformation (shift of origin) of the
wave functions greatly simplifies the task of satisfying
the specified boundary conditions on the various sur-
faces. In particular, to satisfy orthogonality in the cur-
rent problem (Fig. 1), we need to express the spherical
wave functions of the (r1, θ1) coordinate system in
terms of spherical wave functions of the (r2, θ2) coordi-
nate system and, vice versa, through application of the
classical form of the translational addition theorem for
bispherical coordinates [27]:

(7)

where s, l = 1, 2 (s ≠ l), jn( ) is the spherical Bessel
function of order n [26], θsl is the angle between the
zs axis and the OsOl line (i.e., such that θ12 = 0 or θ21 = π),
r12 = r21 = D is the center–center distance (Fig. 1), and

(8)

Vn
S( ) n

1
2
---+ 

  V S( ) Pn η2( ) η2d

1–

η0–

∫=

=  
V S( ) 1–( )n

2
---------------------- Pn 1– η0( ) Pn 1+ η0( )–[ ] ,

2n 1+( ) Pn η( ) ηd

η0

1

∫ Pn 1– η0( ) Pn 1+ η0( ).–=

hn krs( )Pn θscos( )

=  

Qmn krsl θsl,( ) jm krl( )Pm θlcos( ), rl rsl<
m 0=

∞

∑

Rmn krsl θsl,( )hm krl( )Pm θlcos( ), rl rsl,>
m 0=

∞

∑







Qmn krsl θsl,( ) im n– 2m 1+( )=

× iσbσ
nmhσ krsl( )Pσ θslcos( ),

σ m n–=

m n+

∑
Rmn krsl θsl,( ) im n–=
where  = (nm00|µ0)2, in which the Clebsch–Gordan
coefficients are defined, with q = (µ + n + m)/2 and 2q
being even, as [26]

(9)

and, when 2q is odd, (nm00|µ0) = 0.

Incorporation of the above addition theorem in (2)
allows us to translate the wave components of the first
coordinate system in terms of spherical wave functions
of the second coordinate system and vice versa, i.e.,

(10)

The modal coefficients am(ω) and bm(ω) must be
determined by imposing suitable boundary conditions.
The continuity of radial velocity components at the sur-
face of each sphere implies that

(11)

where ΦT(ri, θi, ω) = Φ(P)(ri, θi, ω) + Φ(S)(ri, θi, ω),
(i = 1, 2). Substitution of velocity potential expan-
sions (2), (5), and (10) into the above boundary condi-
tions leads to

(12)

× iσ 2σ 1+( )bσ
nm jσ krsl( )Pσ θslcos( ),

σ m n–=

m n+

∑

bµ
nm

nm00 µ0( ) 1–( )µ q+ q!
q n–( )! q m–( )! q µ–( )!

----------------------------------------------------------=

× 2µ 1+( )
2q 1+( )!

---------------------- 2q 2n–( )! 2q 2m–( )! 2q 2µ–( )!,

Φ P( ) r2 θ2 ω, ,( )

=  amQmn kD 0,( )
m 0=

∞

∑ jn kr2( )Pn η2( ),
n 0=

∞

∑

Φ S( ) r1 θ1 ω, ,( )

=  bmQmn kD π,( )
m 0=

∞

∑ jn kr1( )Pn η1( ).
n 0=

∞

∑

∂Φ T( ) r1 θ1 ω, ,( )
∂r1

--------------------------------------–
r1 a=

Vn
P( )Pn η1( ),

n 0=

∞

∑=

∂Φ T( ) r2 θ2 ω, ,( )
∂r2

--------------------------------------–
r2 b=

Vn
S( )Pn η2( ),

n 0=

∞

∑=

k hn' ka( )an jn' ka( ) bm ω( )Qmn kD π,( )
n 0=

∞

∑+– Vn
P( ),=

2k 1–( )n 1+ jn' kb( ) am ω( )Qmn kD 0,( )
n 0=

∞

∑
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where the prime symbol indicates the derivative with
respect to the argument. Subsequently, the unknown
coefficients an(ω) and bn(ω) may be readily computed
by solving the linear system of equations (12). Now,
from the second of (1), (2), and (10), the radiated acous-
tic pressure may be written as

+ hn' kb( )bn Pn 1– η0( ) Pn 1+ η0( )–[ ] V S( ),=
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
(13)

As a final point, the acoustic sound attenuation (SA)
due to the presence of the partially vibrating canceller
can be obtained:

p r1 θ1 ω, ,( ) iωρ anhn kr1( )Pn θ1cos( ) ∫
n 0=

∞

∑




–=

+ bmQmn kD π,( ) jn kr1( )Pn η1( )
m 0=

∞

∑




.

(14)SA ω V S( ),( ) 10

anhn kr1( )Pn θ1cos( )
n 0=

∞

∑ bmQmn kD π,( ) jn kr1( )Pn η1( )
m 0=

∞

∑
n 0=

∞

∑+

Vn
P( )

khn' ka( )
-------------------hn kr1( )Pn θ1cos( )

n 0=

∞

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------

 
 
 
 
 
 
 

.log=
3. NUMERICAL RESULTS AND DISCUSSIONS

In order to illustrate the nature and general perfor-
mance of the solution, a number of particular numerical
examples are considered in this section. There are many
conditions under which the active control system works
effectively. In the present paper, among all of the fac-
tors, special attention is given to the following subjects:
primary-source surface vibration type (i.e., monopole,
dipole, and general source), separation distance, and
effective vibrating area of the secondary source. Subse-
quently, a MATLAB program was constructed for treat-
ing the boundary conditions, to determine the unknown
modal coefficients, and to compute the sound attenua-
tion (SA) of the system as functions of V(S) for various
cap angles (θ0 = 30°, 60°, and 180°) at two excitation
frequencies (f = 100, 250 Hz) when the primary source
may vibrate in the monopole (n = 0), dipole (n = 1), or
any of the higher multipole-like (n = 1, 2, 3, 4, …)
modes. It is noteworthy that the first two modes (i.e.,
the pulsating (n = 0) and the oscillating (n = 1) sources)
are of most practical interest, as they are known to best
represent the “expander” and “shaker” type acoustic
transducers, respectively ([24], [25], and [28]). In order
to produce a monopole (dipole) primary source in the

computation process, it is sufficient to assume  = 1

(  = 1); also, for a multipole primary source, i.e., a

general source, it should be assumed that  =  =

 = … = 1. In this example, the ambient fluid is
assumed to be air at atmospheric pressure and room
temperature, and the primary (secondary) finite source
is presumed to be of dimension a = 10 cm (b = 5 cm).
The computations were performed on a Pentium III
personal computer with a truncation constant of N = 20
to assure convergence in the high-frequency range, and

V0
P( )

V1
P( )

V0
P( ) V1

P( )

V2
P( )
also in the case of close proximity of the secondary
source to the primary source.

An important question in the practical application of
a noise-control system is finding the necessary velocity
of the secondary source (the phase and strength) to
achieve maximum sound attenuation. In order to eluci-
date this point, Figs. 2–5 are displayed: they show the
effect of varying the secondary-source velocity charac-
teristics, namely, strength and phase, on the sound
attenuation of the sound-control system presented here.
It is assumed that the secondary control source is pul-
sating with a different amplitude and phase in compar-
ison with the primary source, in order to minimize the
sound pressure at a point within a region downstream of
the secondary source (R = 70 cm, θ1 = 0). Hence, the
secondary-source velocity can be written as V(S) =
α exp(iβ), where

Figures 2 and 3 show the sound attenuation, SA(ω, V(S)),
of the active noise-control system when the sources are
vibrating at a selected frequency of f = 100 Hz and
when the selected separation distances are D = λ/4 =
86.55 cm and D = λ = 346.20 cm, respectively [5].
A comparison of these figures leads to the following
remarks. Using a baffled piston source instead of a
wholly vibrating source (θ0 = 180°) as a sound control-
ler will generally increase the efficiency of the control
system, particularly when the primary source vibrates
as a dipolar or a generally vibrating source (multipole
source). Additionally, Fig. 2 shows that, for a dipolar
disturbing source when the control source is positioned
in close proximity to it (D = λ/4), a secondary source is
needed to vibrate in antiphase (β ≈ π) and with a weak
strength α = 0.769 in comparison with the primary

α  = ℜ V S( )( )2
I V S( )( )2

+  , βtan  = I V S( )( )/ℜ V S( )( ),

0 β 2π≤ ≤( ).
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Fig. 3. Sound attenuation due to the presence of the secondary partially vibrating source versus velocity strength α and velocity
phase β (rad), f = 100 Hz, D = λ = 346.20 cm.
source to gain maximum sound attenuation. Further-
more, achieving an acceptable attenuation level (SA = –
10 dB) for a monopole primary source by means of a
baffled piston (θ0 = 30° or 60°) located λ/4 away from
the primary source requires a more forceful secondary
source (α ≥ 7.5), but the same required attenuation level
can be achieved with a weaker wholly vibrating source
(α = 1.8). To have an all-encompassing study, it is
required to scrutinize the shadow effect of the second-
ary source on the sound reduction at the selected point
(microphone point). The shadow effect of the second-
ary source can be seen from the figures when α = 0 (i.e.,
a rigid sphere). The numerical results reveal that the
presence of a finite secondary source does not have any
apparent effect on the sound attenuation of the system,
so the active noise-cancellation process is the most
important reason for sound attenuation. Moreover, the
figures show that, as the value of the cap angle is
increased, the adequate velocity strength of the second-
ary source is decreased but the velocity phase of the
canceller source remains unchanged; alternatively,
increasing the separation distance D will decrease the
required phase of the secondary source.

Figures 4 and 5 show the sound reduction in a con-
trol system when the separation distances are D = λ/4 =
34.62 cm and D = λ = 138.48 cm respectively, and the
system is excited at a frequency of f = 250 Hz. A com-
parison of Figs. 4 and 5, in addition to the results noted
in the previous paragraph, leads to the following obser-
vations. Although using a secondary source with a
small cap (θ0 = 30°) when the dipole primary source is
located at distance D = λ/4 = 34.62 cm away from the
control source leads to maximum sound attenuation
(SA = –15), the θ0 = 60° case will attain the required
sound attenuation level of 10 dB with a lower velocity
strength (α = 2.56). Finally, the velocity power and
phase angle of the selected secondary source, θ0 = 60°,
as seen from Figs. 2–5, are summarized in the table.

In Figs. 6 and 7, we show the acoustic field com-
puted all around the primary source (360° azimuthal
angle), 10 , versus the angular parame-
ter θ1 for prescribed values of α, β from the table. These

p θ1 ω,( )[ ]log
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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Fig. 4. Sound attenuation due to the presence of the secondary partially vibrating source versus velocity strength α and velocity
phase β (rad), f = 250 Hz, D = λ/4 = 34.62 cm.
figures illustrate that, for a dipole and multipole pri-
mary source, using a baffled piston (θ0 = 60°) not only
decreases the sound pressure at θ1 = 0° (the main objec-
tive of the previous sections) but also allows all-around
sound reduction to be achieved (i.e., this means that, in
addition to minimization of pressure at a single point,
the total output energy from the system is decreased as
well). Also, the figures make clear that, although in all
of the cases noise cancellation at a particular point,
namely, (R = 0.7 m, θ1 = 0°), is achieved with an accept-
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
able attenuation (10 dB), a single secondary source is
not able to cancel the sound pressure of a monopole pri-
mary source all around it. These results demonstrate
that the acceptable zone of quiet, SA = –10 dB, for a
monopole primary source after the sound-cancellation
operation is the region –8° ≤ θ1 ≤ 8°(–4.5° ≤ θ1 ≤ 4.5°)
when f = 100 Hz (f = 250 Hz). The presented results are
comparable with those found in [29] using a wall of
secondary monopole sources. It is worth mentioning
here that the reason for the creation of this quiet region
Secondary-source velocity strength (α) and phase (β) required to minimize the sound pressure at R = 0.7 m, θ1 = 0

f = 100 Hz, D = λ/4 f = 100 Hz, D = λ f = 250 Hz, D = λ/4 f = 250 Hz, D = λ

α β α β α β α β

Monopole 7.9487 4.6721 3.0769 3.0610 10.000 4.3499 5.6410 2.8999

Dipole 0.7692 3.3833 0.2564 1.6111 2.5641 3.0610 1.2821 1.4500

Multipole 8.2051 4.5110 3.0769 2.8999 10.000 4.1888 5.8974 2.5777
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Fig. 5. Sound attenuation due to the presence of the secondary partially vibrating source versus velocity strength α and velocity
phase β (rad), f = 250 Hz, D = λ = 138.48 cm.
is “active noise control,” not the shadow effect due to
the presence of the secondary finite source, but, on the
other hand, the presence of a vibrating obstacle near a
primary source leads to an increase in the number of
lobes after the noise-cancellation process.

Finally, in order to check the overall validity of the
work, the code was used to compute the normalized
average radiation impedance load per unit area for the
case of two vibrating spherical surfaces. The fluctuating
fluid pressure on the surface of a vibrating source con-
stitutes its radiation loading. The normalized average
acoustic radiation impedance load per unit area on the
vibrating piston may be computed by making use of
Foldy’s definition of the radiated power ([15, 30])

Z R iX–
1

4πρc V S( )be( )2
-----------------------------------= =

× p r2 b η2 ω, ,=( ) v S( )( )* η2,d

1–

η0–

∫

where be = bsin(θ0/2) is the effective piston radius (i.e.,
the radius of the sphere that has the same area as the
piston), ρc is the characteristic impedance, the asterisk
indicates the complex conjugate, and R and X are the
average acoustic resistance and reactance, respectively.
Moreover, p(b, η2, ω) is the acoustic pressure on the
surface of the secondary sphere, which can be readily
obtained by incorporating (2) and (10) in the second
equation of (1):

where

p r2 θ2 ω, ,( ) ] r2 b= iωρΦT r2 θ2 ω, ,( ) ] r2 b=–=

=  iωρ Ψn b ω,( )Pn η2( ),
n 0=

∞

∑–

Ψn b ω,( ) jn ka( ) am ω( )Qmn kD 0,( ) hn ka( )bn.+
m 0=

∞

∑=
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After incorporating these two equations in Foldy’s
definition and integrating over dη2, the modal acoustic
impedance can be found. Numerical verifications are
made by executing the general code for the case of a
spherical cap positioned very far (D = 200b) from the
primary sphere, and the corresponding radiation
impedance components precisely reduce to the curves
appearing in Fig. 20.4, page 308 in [15] (for brevity, the
corresponding validation plots are not included). Sub-
sequently, further verifications were made for the
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ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
wholly vibrating cap (θ0 = 180°) positioned close to a
pulsating spherical source. Figure 8 shows that the
acoustic impedance components corresponding to the
wholly radially vibrating sphere (θ0 = 180°, V(S) = 1)

near a monopole source (  = 1) agree very well with
the results presented in Figs. 1 and 2 of Thompson’s
work [25]. Note that each curve is normalized to its cor-
responding value when the source is in an unbounded
medium.
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4. CONCLUSIONS

Active noise control of a generally vibrating spheri-
cal source with a single baffled piston was investigated
in this paper. The presented results are the product of an
exact multiscattering treatment that involves utilization
of the translational addition theorem for spherical wave
functions. Examples are presented for a primary source
acting in the low-frequency range, f = 100, 250 Hz. The
numerical results reveal that the shadow effect of the
secondary finite source is negligible in comparison with
the effect of the sound-cancellation mechanism. Fur-
thermore, using a baffled piston instead of a wholly pul-
sating sphere increases the efficiency of the control sys-
tem, especially for a dipole or multipole unwanted
source, but the prescribed system is not acceptable for
a monopole primary source and the system presented in
[4] (i.e., using a monopole control source) is more effi-
cient. The offered work is an idealized model for active
noise control of a spherical multipole source, which can
be of interest in noise-control engineering, room acous-
tics, and outdoor acoustics. The calculated results may
also possibly be used to validate those found by exper-
iment.
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Abstract—The hydroacoustic coordinate-measuring system of the NT-200 Baikal neutrino telescope is
described. It is a ranging long-base hydroacoustic system constantly operating in an automated or interactive
mode and capable of measuring the coordinates of the detecting modules of the NT-200 to within 20 cm. Special
attention is given to the justification of the estimate of the coordinate measurement errors. As an illustration,
some results of measuring the coordinates of the elements of the NT-200 and the hydrophysical characteristics
of lake Baikal are presented. © 2005 Pleiades Publishing, Inc.
† 1. INTRODUCTION

The idea of developing large deep-water systems for
detecting elementary particles in natural water basins
was put forward by M.A. Markov 40 years ago [1]. The
essence of the idea consists in using an array of photo-
detectors deployed in a deep natural water basin to
detect the Cherenkov radiation of relativistic particles
moving in water, specifically, the particles produced by
the interaction of high-energy neutrinos with the
medium. Such systems were expected to allow the sci-
entists to solve a variety of problems of high-energy
neutrino astrophysics, high-energy physics, and ele-
mentary particle physics [2].

The first deep-water neutrino detector was the NT-
200 Baikal neutrino telescope, which was put into full

† Deceased.
1063-7710/05/5106- $26.00 0619
operation in April 1998 [3]. Today, the ANTARES neu-
trino detector is at the stage of realization in the Tulon
bay [4] and two more deep-water neutrino detectors,
NEMO [5] and NESTOR [6], are under development in
the Mediterranean Sea. All of these systems are
intended for the detection of Cherenkov radiation of the
relativistic charged particles produced by the interac-
tion of neutrinos with the medium. Today, the possibil-
ity to study high-energy neutrinos by detecting the
acoustic signals from cascade showers [7] is at the ini-
tial stage of investigation.

In all the deep-water neutrino detector projects, the
detecting modules are mounted on submerged buoy sta-
tions of different configurations with the distances
between them being much smaller than their lengths.
However, the buoy stations, whose lower ends are
anchored to the bottom, move in space under the effect
© 2005 Pleiades Publishing, Inc.
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of currents, which occur in large natural water basins at
any depth. Therefore, two problems arise:

(i) the determination of the possible evolution of the
buoy stations forming the deep-water system of the
detector and the consideration of the probability of their
confusion due to the inhomogeneity of currents and the
differences in buoy-station configurations;

(ii) the determination of the actual spatial positions
of all detecting modules of the neutrino detector after
their placement and the realization of the long-term
monitoring of their coordinates to provide an adequate
reconstruction of the events.

The problem of determining the spatial position of
an object in the water medium is a common problem of
practical oceanology. As a rule, it is solved using acous-
tic systems that determine the coordinates of objects
with respect to a certain number of reference points—
acoustic beacons [8, 9]. A specific feature of the case of
a deep-water neutrino telescope is the necessity to pro-
vide long-term permanent measurement of the coordi-
nates of many objects distributed over a large water vol-
ume (about one cubic kilometer).

In this paper, we describe the hydroacoustic coordi-
nate-measuring system (HCMS) of the NT-200 neu-
trino telescope. This system is capable of permanent
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Fig. 1. The NT-200 deep-water Baikal neutrino telescope
system: (1) cable communication lines, (2) NT-200 neutrino
telescope, (3) hydrological string, (4) sedimentological
string, (5) master modules, (6) acoustic receivers, and
(7) acoustic beacons.
operation in an automated or interactive mode; it has a
long base and allows one to measure the coordinates of
the detecting modules of the NT-200 with an accuracy
of 20 cm or better. We give special attention to the eval-
uation of the coordinate measurement errors. We also
present some results obtained by measuring the coordi-
nates of the modules of NT-200 and the results of mea-
suring the velocity of sound in the Baikal water.

In the HCMS of NT-200, acoustic signals propagate
over several tens of trajectories in a volume on the order
of one cubic kilometer, which makes it possible to use
this system for studying hydrophysical processes. In
particular, it is possible to monitor the variations of the
mean water temperature in different layers of the lake
over a long period of time. This is an important alterna-
tive method for studying the variations in the heat store
of the lake, the water-exchange processes, and other
phenomena characterized by different space and time
scales.

2. STRUCTURE OF THE HYDROACOUSTIC 
COORDINATE-MEASURING SYSTEM OF NT-200

The general view of the NT-200 deep-water neu-
trino telescope and its HCMS is shown in Fig. 1. The
HCMS includes:

—a shore station consisting of a control computer, a
communication modem, and a power supply unit;

—a cable communication line about 7 km in length;
—transceivers (master modules) and ultrasonic

receivers (acoustic receivers);
—self-contained transponders—bottom beacons.

2.1. Master Modules and Acoustic Receivers

Durable cylindrical casings of the master modules
and acoustic receivers are made of the AMG-6 alumi-
num alloy. Crates with electronics are fixed to the
upper covers of the instruments. A cover has two holes
for the modular parts of pressure-seal connectors. One
of the connectors is used for the power supply and for
communication with the shore station, and the other,
for the connection to the hydrophone. As electroa-
coustic transducers the HCMS uses hydrophones
made on the basis of piezoceramic spheres 50 mm in
diameter. Their maximum sensitivity at a frequency of
30 kHz is 250–300 µV/Pa.

The HCMS contains more than twenty acoustic
receivers and master modules placed on nine buoy sta-
tions, and all of them are connected in parallel to one
conductor of the KG7-70-90 geophysical cable, which
serves for the power supply and communication with
the shore station. To ensure the performance of the sys-
tem in the case of a leak or shortage in one of the instru-
ments, each of the casings contains a sealed optronic
switch through which high voltage arrives at the power
supply unit. In the initial state, all switches are in the
open-circuit position. At the initiation of the system,
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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according to the commands from the shore station, all
the optronic switches are sequentially closed by indi-
vidual codes. If the current consumption in one of the
instruments exceeds the allowed limit, this instrument
is excluded from the configuration and is not turned on
at the next initiation. The electronics of an acoustic
receiver is assembled on the basis of low-consumption
components and includes a power-supply unit, which
transforms the input dc voltage of 300 V to low volt-
ages, and a receiving channel, which contains a selec-
tive amplifier, an envelope detector, a threshold device,
and a signal duration check circuit. A master module
additionally contains an ultrasonic signal generator.

The control over the measurement process and the
communication of the acoustic receivers and master
modules with the shore station occur through
K1821BM85-microprocessor-based controllers. The
latter provide for

—the execution of measurements according to a
preset program,

—the preliminary data processing and the compac-
tion of data,

—the data communication through the cable, and,
finally,

—the data being saved in the internal solid memory.

2.2. Hydroacoustic Beacons

Six beacons of the HCMS are uniformly distributed
over a circle with a radius of 600 m and with the center
at the point of the hydrological string location (Fig. 1).
This number of beacons makes it possible to enhance
the robustness of the system and to improve the mea-
surement accuracy, as well as to obtain additional infor-
mation on the hydrophysical parameters of the water
medium. Figure 2 shows the general view of a short
buoy station with an acoustic beacon. On platform 7
made of pieces of rails welded together, a durable
sealed casing 6 with electronics and power cells and a
rigid arc with a rod 5 are mounted. At the upper end of
the rod, a hydrophone 4 is fixed in the middle of a safety
frame. The distance from the hydrophone to the bottom
is 4 m (here, the fact that the lower layer of the rails is
immersed in bottom sediments is taken into account). A
kapron cord 3 with a length of 30–40 m is tied to the
rod. The cord is held in the vertical position by a bundle
of 20 aluminum floats 1. One meter away from the
floats, the so-called collar 2 is fixed, which serves for
lifting the beacon: in this case, the collar is hooked by
the crabs of a device [10] rotating in the course of its
motion in water because of asymmetry. The instants
when the beacon is hooked and when the bottom is
touched in the process of beacon placement are deter-
mined from the dynamometer readings. The weight of
the beacon in water is about 100 kg.

The electronics of a beacon consists of analog chan-
nels for reception and transmission, a decoder for
coded signals, and a device analyzing the received code
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
and generating the beacon response. The beacons are
powered by galvanic cells, whose service life is 2–
3 years.

2.3. The Shore Station

The shore station includes a computer, a communi-
cation modem providing the communication between
the shore computer and the underwater equipment of
the HCMS, and a high-voltage source. The output volt-
age of the power source is automatically controlled
with allowance for the value of the consumption current
so that, independently of the voltage drop in the 7-km-
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Fig. 2. Deep-water buoy station with an acoustic beacon:
(1) aluminum floats, (2) collar, (3) kapron cord, (4) hydro-
phone, (5) rod, (6) casing, and (7) platform.
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long cable line, the input voltage of the underwater
instruments of the HCMS is 300 V.

The software makes it possible to measure the
coordinates of the buoy stations in both automated and
hand-operated modes of the sequential beacon data
acquisition and data selection from certain master
modules and acoustic receivers or from their group.
The software supports the communication line proto-
col, remote program loading, and running the pro-
gram. It is possible to set the necessary gating times
for the input receivers of instruments positioned at dif-
ferent sites and to change the thresholds of compara-
tors in the receiving channels of the master modules
and acoustic receivers.

2.4. The Coordinate Measurement Cycle 
of the Neutrino Telescope

The coordinate measurement cycle is initiated by
the shore control computer, which sends a sync pulse (a
group start) via cable communication lines to the con-
trollers of all or selected groups of master modules and
acoustic receivers. The controllers of the instruments
execute the preset programs. One of the master mod-
ules sequentially transmits coded interrogation signals
to each of the beacons. The HCMS uses a time–pulse
coding of beacon interrogation at a frequency of 28 kHz.
All the necessary carrier frequencies and signal dura-
tions are obtained from a single quartz oscillator, which
is included in the controller.

The beacon acquisition code contains a 2-ms-long
pulse, which is common to all beacons, and a three-
position code of the beacon number with a bit duration
of 1 ms. The interval between the wave trains is equal
to 2 ms. Thus, the length of the whole ultrasonic trans-
mission packet is 10 ms.

To save battery power, all the electronics of a bea-
con, except for the receiving amplifier, comparator, and
range meter, is usually in “sleep” mode. If a train of
received signals arrives without discontinuities longer
than one period of the carrier frequency and with a train
length exceeding 1.75 ms, the timer unit of the beacon
is turned on. Then, the beacon interrogation code fills
the sequential register of the comparison circuit, and, at
the coincidence of the proper code of the beacon with
the code arriving to the comparison circuit, the beacon
response signal is generated with a duration of 1 ms and
a carrier frequency of 32768 Hz. The controllers of the
acoustic receivers and master modules measure the
travel times of an ultrasonic signal from the instant of
interrogation to the instant of reception of the beacon
response signal. The counters of the master modules fix
the time of sound propagation from the master module
to the beacon and back to the master module. The
acoustic receivers are able to measure the time of sound
propagation along the master module–beacon–acoustic
receiver path and also (by measuring the gating time,
see below) the time of sound propagation from the mas-
ter module to the acoustic receiver. To increase the
noise robustness, a discriminator is used to test the
duration of each packet of the pulse transmission. An
additional measure for increasing the noise robustness
is the gating circuit, which opens the receiving channels
in a master module and an acoustic receiver 20 ms
before the expected arrival time of the response pulse.

Thus, the following times of sound propagation can

be measured: (i), from the kth master module to the

ith beacon and back; (i), along the master module

(k)–beacon (i)–acoustic receiver (j) path; and (0),
from the master module (k) to the acoustic receiver (j).

The distance from the point at which the hydro-
phone of the acoustic receiver(j) is located to the hydro-
phone of the beacon(i), i.e., the slant range Rij, is calcu-
lated by the formula

where Cs(z) = z/ /C(z) is the harmonic mean veloc-

ity of sound and C(z) is the velocity of sound at a
depth z.

The spatial position of the hydrophone of the acous-
tic receiver is determined as the point of intersection of
the spheres whose centers are at the points of the bea-
con locations and radii are equal to the slant ranges
from the beacons to the given hydrophone.

3. ERRORS IN MEASURING THE COORDINATES 
OF THE DETECTING MODULES

The error in the determination of the coordinates of
the detecting modules depends on the accuracy
achieved in measuring the slant ranges and the beacon
coordinates.

3.1. Instrument Errors

Primarily, these are errors in measuring the travel
times of acoustic signals. They consist of the following
components:

—the error due to the asynchronous arrival of the
initiation pulse from the shore station to the instruments
distributed over the buoy stations;

—errors due to the threshold variations in the com-
parators included in the ultrasonic receiving circuits of
the beacons and acoustic receivers; and

—errors due to the discreteness of the coded signal
detection channel of a beacon.

The estimates of the maximum values of these
errors yield 20, 18, and 36 µs, respectively. To deter-
mine the actual accuracy of the time interval measure-
ments by the HCMS, the distribution of the experimen-
tal errors in measuring the signal travel times
(1200 measurements) along one of the master module–
beacon–acoustic receiver paths was obtained. The dis-

τk
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τk
j

τk
j

Rij τk
j i( ) τk
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tribution half-width proved to be about 10 µs, which
makes a contribution of about 2 cm to the error in the
determination of the coordinates of a detecting module.

3.2. Errors Due to the Uncertainty 
in the Parameters of the Medium

The main source of errors associated with the prop-
erties of the medium is the inaccuracy in the determina-
tion of the absolute value of the sound velocity along
the signal propagation paths [11]. An analysis has
shown that, to measure the coordinates of the detecting
modules with a required accuracy of 20 cm, the abso-
lute value of sound velocity should in our case be deter-
mined to within 50 cm/s.

The value of the sound velocity can be measured
directly [12, 13] or calculated from the data on the tem-
perature T, salinity S, and pressure P with the use of
empirical formulas [14–17]. Although the authors in
some publications believe that the systematic errors in
their formulas are small (e.g., 4 cm/s in [13]), the dif-
ference between the values obtained with these formu-
las for the sound velocity in the Baikal water at the tele-
scope depth reaches 2 m/s.

To perform a direct experimental measurement of
sound velocity and to test different empirical formulas
for calculating C, we measured the time of sound prop-
agation with an acoustic base 100 m in length, which
was determined to within ±2 cm (with allowance for the
extension of the cable in water). In this experiment, we
measured the integral sound velocity over the base
length, but the linearity of the depth dependence of C
(see below) allowed us to determine the sound velocity
at given depths by shifting the measuring system in
depth within the interval from 800 to 1300 m. Simulta-
neously, we performed temperature and pressure mea-
surements with an SBE 25-01 probe. As a result, we
found that the data of the direct measurements per-
formed as described above with an error no greater than
30 cm/s agree well with the results of calculation by the
formulas taken from [13] with the use of the tempera-
ture data obtained from the SBE 25-01 probe, which
were accurate to within 0.002 deg (the corresponding
contribution to the error in calculating C(z) is 1 cm/s).
Figure 3 shows the results of calculating the vertical
distribution of sound velocity according to [13] and
according to the temperature data from [18] for the
region where NT-200 was deployed; the distributions
are given for different seasons. The greatest sound
velocity variations associated with temperature varia-
tions are observed near the surface of the lake and reach
40 m/s. At large depths, where the temperature varia-
tions are very small, the depth dependence of sound
velocity is mainly determined by pressure and can be
approximated by the formula

where z is the depth in meters.

C z( ) 1418.96 0.0153645z m s 1– ,+=
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According to long-term temperature observations
[19], at the telescope depth, only slight temperature
variations within several hundredths of a degree are
possible. Therefore, we can use the sound-velocity pro-
file shown in Fig. 3 as a reference in the HCMS data
processing. At the same time, we observe relatively
short temperature variations (Figs. 7 and 8) that should
be taken into account in calculating the harmonic-mean
sound velocity used in the computations. For this pur-
pose, the temperature variations were monitored over a
period of one year with the use of a series of TR-1000
termistors spaced at 100 m in depth and placed at the
hydrological and neighboring sedimentological buoy
stations (Fig. 1).

The average mineralization of Baikal water is about
96 mg/l [20], and its variations do not exceed 30%,
which makes a contribution to sound velocity on the
order of 12 cm/s with possible variations of about 4 cm/s.
Thus, in our case, salinity variations can be ignored.

The currents that occur at the telescope depth in the
southern part of Baikal usually do not exceed 20 cm/s
[21] and practically do not affect the accuracy of coor-
dinate measurements.

3.3. Errors in the Determination 
of the Beacon Positions

The beacons are placed at the sites of their operation
in winter, by lowering them from the ice cover of the
lake. The positions of the points of beacon submer-
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Fig. 3. Vertical sound velocity distribution in Baikal in
March (the solid line) and in August (the dashed line).
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gence are determined by a laser ranger and a theodolite
to within 0.2 m. In winter, when the system is deployed,
the currents in the upper layer of Baikal usually do not
exceed 2 cm/s and logarithmically decrease with depth
[21]. According to our estimates, in the presence of
these currents, the points where beacons of the given
configuration are placed on the bottom deviate from the
corresponding points on the surface by no more than
several tens of centimeters.

An independent determination of the beacon posi-
tions was performed with the use of an acoustic array
consisting of four master modules, whose hydrophones
were fixed on two vertical cables at distances of 4 and
104 m from the bottom. The distance between the
cables was 336 m. An analysis has shown that the accu-
racy achieved by us in these measurements was 40 cm,
and the average values of the beacon coordinates
agreed well with the results of geodetic measurements.

The relative depths of the beacon placement were
measured using a contact switch, which was closed at
the instant of touching the bottom. This closure was
detected by the ohmmeter positioned on the lake sur-
face. The measurement accuracy was 1 cm. The scatter
in the sea depths at the beacon sites was 5.69 m. With
allowance for the uncertainty in the depth of anchor
submergence in the silty bottom, the error in the relative
depths does not exceed 5 cm.

3.4. Conclusions

—The main sources of errors in the HCMS are the
errors in the determination of the sound velocity profile
and the beacon coordinates.

—The HCMS provides the possibility to carry out
long-term measurements of the coordinates of the detect-
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Fig. 4. Positions of the buoy stations of the NT-200 neutrino
telescope in the course of their lowering. The numbers near
the buoy stations indicate the depths of the upper acoustic
receivers.
ing modules of the NT-200 to an accuracy of 20 cm or
better.

4. RESULTS OF MEASURING
THE COORDINATES OF THE NEUTRINO 

TELESCOPE

The first measurements of the coordinates of the
detecting modules by the HCMS were performed in
1994. These measurements are in progress at the
present time. As a rule, they are carried out in four
cycles with a periodicity of 10–12 h (or more often, if
necessary). The HCMS also allows one to observe the
variations that occur in the positions of the telescope
strings as the telescope is submerged and placed on the
bottom (Fig. 4). It is of interest that, from year to year,
after the placement of the system, the strings prove to
be almost at the same points. The distances between the
hydrophones of the lower and upper acoustic receivers
that are fixed on the same string are also retained. They
usually differ by no more than 10 cm from the distances
measured with a measuring reel before the placement.

During the year, the coordinate motion of the NT-200
as a whole was observed (Fig. 5). The maximum devi-
ations of the buoy stations are observed in the period of
autumn storms, in September and October. For the
upper buoy (a depth of about 20 m), they exceed 50 m
(Fig. 6), while the upper detecting modules deviate by
no more than 1.3 m and the lower modules, by 1 m. In
all cases, the telescope deviates from the vertical posi-
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Fig. 5. Fragment of motion of a buoy station of the NT-200
neutrino telescope between June 28, 1994, and July 18,
1994: (1, 2) acoustic receivers at depth of 1171 and 1106 m
(the left and bottom axes); (3) an acoustic receiver at a depth
of 22 m (right and top axes).
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Fig. 6. Motion of an acoustic receiver located at a depth of 22 m under the upper float at a buoy station of NT-200 in 1994. The
Y axis is directed along the coast to the west.
tion by no more than 1 deg, and the relative coordinates
of the detecting modules vary by no more than 10 cm.

5. INVESTIGATION OF THE WATER MEDIUM 
BY THE HYDROACOUSTIC SYSTEM OF NT-200

The data obtained from the HCMS can also be used
to study the hydrophysical processes in the lake. The
simplest information of this kind is obtained by observ-
ing the behavior of the buoy stations of the telescope.
The predominant displacement of the submerged buoy
stations to the west confirms the concept concerning the
global water circulation in the Southern trench of the
lake [21]. Fourier analysis of the buoy station devia-
tions revealed, e.g., the presence of oscillations with
periods close to the periods of seiche oscillations in
Lake Baikal [22, 23].

A much greater amount of information on the
hydrophysical fields can be obtained by analyzing the
data on the times of sound propagation between differ-
ent points in the water medium. For this purpose, it is
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
especially convenient to use paths with a fixed length.
Such paths primarily are the paths along the bottom,
from the master module to each of the beacons. With
the accuracy of time measurements in the HCMS being
∆τ= 10 µs, the resolution of the observation of mean
temperature variations on a path of length L is

(1)

where α = 5.0371 is the proportionality coefficient in
the formula determining the relation between the sound
velocity and temperature [13].

The accuracy achieved in measuring the absolute
value of the mean temperature also depends on the
accuracy of determining the distance ∆L between the
transmitting and receiving hydrophones. For the master
module–beacon–master module path with ∆L = 40 cm
and L = 1.2 km, this accuracy is not high (about
0.1 deg), and, therefore, we compare the results with
the absolute reference measurements by a TR-1000 ter-
mistor. Figure 7 compares the results of temperature

∆T  deg( ) ∆τC2

αL
------------- 0.004/L km( ),= =
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Fig. 7. Results of temperature measurements carried out in 2000 on the master module–beacon path by the HCMS (crosses) and by
a TR-1000 termistor positioned 4 m above the bottom (full circles). The errors are not shown in the plot.
measurements on the master module–beacon path with
the help of the HCMS and a TR-1000 termistor placed
at a distance of 4 m from the bottom. On the whole, a
qualitative agreement is observed between the temper-
ature behavior at a point (the TR-1000 data) and the
mean temperature of the layer (the HCMS data). After
the period characterized by an almost constant temper-
ature in March–May, both methods reliably detected a
considerable temperature decrease in mid June and the
subsequent decaying temperature variations, which tes-
tify to a considerable intrusion of cold waters into the
near-bottom region in the homothermal period [18]. For
clarity, the errors are not shown in Fig. 7. For the data
obtained with TR-1000, the errors are on the order of
the dots, and for the HCMS data, according to Eq. (1),
they are about ±0.004°C in the given case. The spikes in
the HCMS data may presumably be related to failures
in the system’s operation, for example, because of
acoustic noise.

For tracing the hydrophysical characteristics of the
water mass, in addition to the horizontal paths along the
lake bottom, it is possible to use the vertical paths of
sound propagation between the instruments positioned
on the hydrological buoy station. As an example, in
Fig. 8, we show the temperature variation in the deep
300-m-thick near-bottom layer with time starting from
October 13, 1995. In the first part of the period of mea-
surements, the data were taken at a step of 20 s. The
large temperature variations (up to 0.4°C, the measure-
ment error is about ±0.015°C), which are observed at
large depths in the southern part of Lake Baikal, where,
as a rule, a stable stratification of water temperature is
observed in the layer from 300 to 1300 m during the
whole year [19], may be related to the incursion of
warmer near-surface waters due to the storm that
occurred at the beginning of this period. Observations
of this kind are very important for the understanding of
the water-exchange processes in Lake Baikal and tes-
tify to the fact that the role of dynamic factors (such as
atmospheric pressure variations or wind) should be
taken into account in studying the hydrophysical pro-
cesses in the lake.
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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Fig. 8. Measurements of the mean temperature of water in the 300-m-thick near-bottom layer starting from October 13, 1995. Each
of the points is a result of a cycle of measurements. The errors are not shown.
6. CONCLUSIONS

The HCMS of the NT-200 makes it possible to mon-
itor the spatial positions of the elements of the neutrino
telescope during a long period of time with an accuracy
of 20 cm (or better). The architecture of the HCMS
allows its further development with the expansion of
the NT-200. The methodical and engineering solutions
found in developing the HCMS of NT-200 can be used
for designing other distributed acoustic systems
intended for positioning various objects and for study-
ing the hydrophysical processes in the water medium.
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Abstract—Experimental data on the long-range propagation of explosion-generated signals are analyzed. The
experiments were performed in the northeastern Atlantic under the conditions of a two-axis underwater sound
channel. The sound field in the upper channel was governed by the vertical redistribution of the ray structure
and sound energy under the influence of a smooth increase in the depth of the channel’s axis along the propa-
gation path. The explosions were produced in the upper sound channel at a depth of 200 m, which was constant
along the path. The time structure of the sound field is analyzed for the upper channel (a reception depth of
200 m) and for deeper layers lying somewhat below the boundary between the upper and lower sound channels
(a reception depth of 1200 m). The deviation of the decay law obtained for the sound field level in the upper
channel from the cylindrical law is used to estimate the attenuation coefficient. The low-frequency (several hun-
dreds of hertz) attenuation coefficients experimentally determined with allowance for the sound field redistri-
bution agree well with the calculated sound absorption in seawater. The attenuation coefficients determined by
the differential method also agree well with the absorption calculated by the formulas proposed earlier. The
analysis of the time structure of the sound field near the boundary between the upper and lower channels reveals
a permanent insonification of this horizon by weak water-path signals propagating with the velocity typical of
the signals traveling in the upper channel. © 2005 Pleiades Publishing, Inc.
The Acoustics Institute has repeatedly performed
experiments on long-range sound propagation in the
northeastern part of the Atlantic Ocean. The character-
istics of the sound field were studied on different prop-
agation paths, in the regions that differed in their ocean-
ographic properties. Tonal, pulsed, and explosion-gen-
erated signals were used in the experiments. The results
of the measurements were published in Akusticheskiœ
Zhurnal (Acoustical Physics) [1–4] and reported at dif-
ferent scientific seminars.

In this paper, the experimental data on long-range
propagation of explosion-generated signals are pre-
sented for the Iberian and West-European Basins. In
these regions, the water bulk is formed by the Mediter-
ranean waters passing into the Atlantic Ocean through
the Strait of Gibraltar. Therefore, a two-axis underwater
sound channel is characteristic of these regions.

Experimental conditions. The experiment was car-
ried out in June. The propagation path was oriented in
a direction close to the meridian. The path originated
and terminated at the points 47° 00′ N, 13° 30′ W and
37° 40′ N, 15° 15′ W, respectively. The path length was
1160 km. The explosions were produced at a depth of
200 m. Charges were dropped and exploded at the full
speed of the transmitting vessel that went off the recep-
tion point. In total, 145 charges with pressure-sensitive
detonators were dropped. The omnidirectional receiv-
ing systems were at depths of 200 and 1200 m. The
receiver positioned at a depth of 200 m was near the
axis of the upper sound channel (Ch1). The main mini-
mum in the sound speed profile, which corresponded to
1063-7710/05/5106- $26.00 0629
the axis of the lower sound channel (Ch2), was at a
depth of about 1600 m.

The ISTOK-3 instrument was used to measure the
vertical distributions of temperature and conductivity
of water. The maximum depth of profiling was 1800–
2000 m. These data were recalculated to the sound
speed by using the Wilson formula [5]. The data on the
sound speed at deep (near-bottom) horizons were
obtained by bathometric measurements. Some of the
data obtained are shown in Fig. 1. The profile measured
at the beginning of the path (Fig. 1a) gives an overview
of the propagation conditions in the region under study,
namely, the distribution of the sound speed over the
entire water column, from the surface to the bottom.
The c(z) profiles shown in Fig. 1b are measured at dif-
ferent distances from the reception point; they charac-
terize the changes in the propagation conditions for the
upper sound channel along the path.

The upper layer of the ocean, down to depths of
130–170 m, was formed by the Canary waters, which
are characterized by rather low temperatures (13–14°C)
and high salinity (35.7–36.7‰). The spring–summer
warming covered a layer of 30–40 m. The temperature
discontinuity was weakly pronounced. The unstable
surface channel was observed only in the southern part
of the path, at depths of 10–25 m. The near-surface
sound speed increased in the north–south direction,
from 1505 m/s (at the beginning of the path) to
1515 m/s (at the end of the path).

The water layer occupying the depths between
150 and 600 m was formed by the well-mixed subtrop-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Sound speed profiles c(z) measured at different distances from the source.
ical masses with small positive gradients of tempera-
ture and salinity. As a consequence, a positive gradient
of the sound speed was present, and the underwater
sound channel had an axis that became deeper along the
path: its depth varied from 110 m at the initial point of
the path to 350–400 m at the terminal point. The sound
speed at the axis varied from 1495 to 1503 m/s in the
southward direction.

The water layer occupying the depths from 600 to
1300 m was represented by the water mass produced by
mixing of three types of waters: deep Mediterranean
waters, North Atlantic ones, and the waters embedded
in the Newfoundland convergence zone [6]. This water
layer had a temperature of 11–12°C, which was rather
high for such depths, and a salinity of 35.5–36.0‰.
The intense mixing led to a decrease in the vertical
temperature gradient. The maximum in the sound
speed was at 1000 m in this layer, and, at this depth,
the sound speed increased in the southern direction
from 1506 to 1510 m/s. In lower layers, the tempera-
ture rapidly decreased to 3.5–4°C.

The deep waters were comparatively homogeneous,
with a temperature of 2.5–3.0°C and a salinity of
34.9‰. The gradient of the sound speed was close to
the hydrostatic one in these waters. The near-bottom
sound speed reached 1550 m/s. The minimum in the
sound speed occurred at depths of 1500–1600 m.

The hydrological environment at the experimental
site was characterized by the presence of a two-axis
sound channel. The difference between the sound
speeds at the surface and at the axis of the upper chan-
nel reached 8–12 m/s, and the corresponding difference
between the surface and the axis of the lower channel
was 12–15 m/s. The difference in the sound speed at the
intermediate maximum (between Ch1 and Ch2) and at
the axis of the upper channel was 4–10 m/s. With the
source positioned at the axis of Ch1, the angles of the
rays captured by this channel were within ±4°–5.5°
along the entire path. With such a position of the sound
source, the sound field at a depth of 1200 m was formed
by both purely water-path rays (that are common for
Ch1 and Ch2) and the rays reflected from the surface
and the bottom.

Figure 2a shows the field of the sound speed at
depths shallower than 800 m. These data are obtained
from the hydrological survey of the path. The data
clearly exhibit a smooth increase in the depth of the
Ch1 axis in the southward direction. The sound speed
at the axis increases monotonically. Figure 3 shows the
ray pattern that illustrates the sound propagation in Ch1
with the sound source at a depth of 200 m (the departure
angles of the rays are limited by ±4.2°). It is quite evi-
dent that the channeled rays become deeper because of
the smooth changes in the parameters of Ch1 along the
path.

The path passed over the West-European and Iberian
Basins with mean depths of 4400–4800 and 5200–
5300 m, respectively. The sea-floor relief plotted using
echo-sounding data is presented in Fig. 2b. At four
points along the path, samples of the bottom material
were picked up. All the samples contained lime silt with
a density of 1.51–1.58 g/cm3.

In the experiment (carried out over three days), the
wind speed varied within 4.5–12 m/s and the sea state
was Beoufort 5. In the first day, a swell with a period of
8 s and a height of 2 m was predominant. In the second
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Fig. 2. Data of the hydrological and echo-sounder surveys of the path: (a) the sound speed field down to a depth of 800 m and (b) the
bottom relief.
and third days, wind waves were the main cause of sur-
face roughness.

Time structure of the sound field. In the case of
single-ray propagation, the explosion-generated signal
received in the bandwidth from 40–60 Hz to 1–2 kHz at
a distance of 10–20 km and more has the following
form in the time domain: it consists of two short pulses
with a duration smaller than 1 ms, with equal ampli-
tudes, and with the same sign (the shock wave and the
first oscillation of the gas bubble). The pulses are sepa-
rated in time by an interval equal to the period of the
gas-bubble oscillation (about 35 ms in our case). In the
case of multipath propagation, a pair of such pulses cor-
responds to each ray in the time structure of the explo-
sion-generated signal.
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To illustrate the range-dependent duration of the
multipath signal and its time structure, Fig. 4 presents
the signals received by a 200-m receiving system at dis-
tances of 100 to 1000 km from the source, at a 100-km
step in distance. All the signals presented in this and
the following figures are normalized to their maximal
values.

Note that there are no well-resolved “classical”
quartets that usually advance the most intense main
group of signals. The shape of the total (multipath)
water-path signal is also rather peculiar: neither the
leading nor trailing edges of the signal are clearly
defined. A gradual increase in the signal level is fol-
lowed by an equally gradual (or even slower) decrease.
If one neglects the elementary signals reflected by the
bottom, the duration of such a multipath signal will be
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Fig. 3. Ray pattern in the upper channel with the source at a depth of 200 m. The departure angles are within ±4.2°.
proportional to the distance with a proportionality coef-
ficient of approximately 0.0013 s/km.

The 100-km step in distance, which was chosen to
illustrate the general changes in the multipath signal, is
apparently insufficient to reveal the laws that govern the
signal structure variation with distance. Figure 5 shows
the signals received and recorded at distances from 25
to 100 km from the source at a step of about 5 km. Such
steps allow one to analyze some features of the fine
structure formation in the explosion-generated signal.
Up to a distance of 100 km, the total multipath signal
produced by the shock wave and the signal produced by
the first gas-bubble oscillation are clearly separated. In
addition to the group of signals propagating in the
upper channel, another comparatively strong signal
appears at a distance of 56 km from the source. This
signal, being refracted at the lower boundary of Ch2,
has a delay of 110–120 ms relative to the leading edge
of the main signal and an amplitude that is a factor of
2–3 higher than that of the main signal.

After the main group of signals (to the right), the
quartets of signals that are reflected by the bottom (and
the surface) are observed. These signals arrive at the
receiver with a time delay. The amplitudes of these sig-
nals are much lower than those of the main water sig-
nals. Their delay relative to the main group monotoni-
cally decreases as the distance increases. The quartet of
the signals singly reflected by the bottom is followed by
the quartets of signals with two, three, or more bottom
reflections. In the experiment at hand, multiply
reflected signals were observed at all distances from the
source, up to the ultimate one (1160 km).

For the sake of comparison, Fig. 6 presents the same
signals received at a depth of 1200 m. For signals
received at this depth, the time scale is matched to the
arrival of the first, relatively compact group of signals.
After this group, two more groups of elementary sig-
nals arrive. They are coupled with each other, corre-
spond to equal numbers of bottom reflections, and have
delays that decrease with distance. Each group consists
of two elementary (single-ray) signals of the same
quartet, this feature being confirmed by the calcula-
tions. If the source and the receiver are at different
depths, the quartet splits into two pairs of signals. The
greater the depth separation of the source and the
receiver, the higher the time interval between the pairs.
In our case, the time interval between the initial pairs
was about 400 ms (with a depth separation of 1000 m).
The amplitudes of the bottom-reflected signals are
quite comparable with those in the compact group of
signals that are first to arrive at the receiver.

The calculations performed with the use of Teby-
akin’s computer code [7] (ray approximation and a hor-
izontally layered medium) for distances shorter than
100 km agree well with the experiment in the time
delays between the pairs of the bottom-reflected signals
within the corresponding quartets. The observed delays
of these signals relative to the first compact group sat-
isfactorily agree with the computed delays relative to
the water signals propagating in the upper channel.
However, according to the calculations, the water sig-
nals propagating in the upper waveguide do not arrive
at the depth of 1200 m at all. With the computer code
by Avilov [8, 9] used to calculate the vertical structure
of the sound field at distances from 20 to 40 km, the
conclusion was drawn that a diffraction-induced inson-
ification of the 1200-m horizon takes place. The level of
the insonification proved to be 20–30 dB lower than the
level of the sound field in the Ch1. This result agrees
well with the experiment.

Attenuation and absorption of sound. One of the
main objectives of the experiment on the long-range
propagation of explosion-generated signals in the
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Fig. 4. Time structure of the signals received at a depth of 200 m at different distances. The distance from the source varies from
100 to 1000 km at a step of 100 km. Here and in the following figures, the signals are normalized to their maximal values.
northeastern Atlantic consisted in studying the fre-
quency dependence of sound attenuation. The attenua-
tion coefficient is usually determined from the devia-
tion of the experimental decay of the sound-field level
in the underwater channel from the cylindrical law of
the geometrical spread (strictly speaking, such an
approach is valid only for the channeled signals in a
horizontally layered medium).

For explosive sources of sound, the following quan-
tity is taken to be equivalent to the signal energy within
the frequency band ∆f:

E f p f
2

t( ) t,d

0

T

∫=
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where T is the duration of the explosion-generated sig-
nal and pf(t) is the acoustic pressure normalized to the
frequency band ∆f. Although the quartets of bottom-
reflected signals were much lower than the main groups
of the near-axis signals in their amplitudes, these quar-
tets were artificially eliminated from the signal process-
ing, so that their contribution to the sound field in the
channel was minimal.

The results of the analysis performed for the signals
received at a depth of 200 m are summarized in the
table. The attenuation coefficients at frequencies lower
than 630 Hz were determined from the deviation of the
decay law observed for the sound field at distances of
50–1160 km from the cylindrical law. At 630 Hz and
higher, the path fraction used for estimating the attenu-
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ation coefficient was shorter (50–850 km at 630 Hz and
50–350 km at 1600 Hz) because of the lower signal-to-
noise ratio at higher frequencies.

In the third and fourth columns of the table, the cal-
culated absorption coefficients are presented for the fre-
quency band at hand. The calculations were based on
the semiempirical equations derived from the analysis
of the experimental data on long-range sound propaga-
tion in a number of ocean regions that noticeably dif-
fered in water temperature (– 2 to 13.5°C) and salinity
(18 to 38‰) [10]:

1 s

24 km

31 km

36 km

40 km

44 km

52 km

56 km

60 km

68 km

72 km

76 km

80 km

87.5 km

92 km

95 km

102 km

Fig. 5. Time structure of the signals received at a depth of
200 m at different distances. The distance from the source
varies from 25 to 100 km at a step of 5 km.
(1)

Here, f is the frequency (kHz), K = 1.42 × 10–8 × 101240/T

(dB/km × kHz2),  = 1.125 × 10(9 – 2038/T) (kHz),

 = 62.5ST × 10–6 (dB/km × kHz), fB = 37.9S0.8 ×
10–780/T (kHz), AB = 1.65S × 10(4 + 0.78pH – 3696/T) (dB/km ×
kHz), S is the salinity (‰), T is the temperature (K), and
pH is the effective pH value.
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Fig. 6. Time structure of the signals received at a depth of
1200 m at different distances. The distance from the source
varies from 25 to 100 km at a step of 5 km.
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The first term on the right-hand side of Eq. (1) char-
acterizes the relaxation absorption caused by boron, the
second term corresponds to the relaxation absorption
caused by magnesium sulfate, and the third term deter-
mines the sound attenuation in seawater.

In accordance with the measured characteristics of
Ch1 with the axis at a depth of 200–400 m, the temper-
ature and salinity were specified as 11.5°C and 36‰,
respectively. Unfortunately, no data were found on the
vertical distributions of the pH value in the archives
available to the author. In view of the general informa-
tion given in [11] for this region of the Atlantic Ocean,
the pH values were specified as 8.05 and 8.1 in the cal-
culations.

The fifth column of the table contains the values of
the excess of the experimental attenuation coefficients
over the calculated coefficients of sound absorption.
The differences are within –0.008 to +0.008 dB/km.
At frequencies of 100–500 Hz, the values of the excess
fall within a narrower range, 0.005 to 0.008 dB/km; that
is, they are nearly independent of frequency. At these
frequencies, the attenuation was determined from the
decay of the sound field over nearly the entire path (50–
1160 km). At frequencies higher than 800 Hz, the decay
over a shorter path fraction (50–500 km or less that is,
about half of the path length) was used in calculating
the attenuation.

In view of the aforementioned changes in the hydro-
logical parameters along the path, namely, the gradual
increase in the depth of the Ch1 axis, the estimation was
performed for the deviation of the geometrical-spread
decay of the sound field from the cylindrical law. The
calculations were based on the wave-field computer
code by Avilov with a zero-valued sound absorption in
seawater and a perfectly absorbing bottom. The result-
ing curves of the sound field decay at the distances of
50–1100 km were approximated by the cylindrical
decay law with an exponential attenuation. The best
agreement between the calculated and approximating
curves was obtained for an exponent equal to 0.006-
0.007 dB/km. The calculated exponent in the exponen-
tial attenuation caused by the variation of the hydrolog-
ical parameters along the path agrees well with the
excess ∆ of the experimental attenuation coefficients
over the ones calculated according to [10] for frequen-
cies up to 800 Hz. Thus, the decay of the sound field at
the 200-m horizon is fully determined by the sound
absorption in seawater and by the geometrical spread
that differs from the cylindrical law under the influence
of the monotonic increase in the depth of the CH1 axis
along the path with increasing distance from the recep-
tion point. Therefore, the decay law proved to be quite
predictable in our case.

In the case under study, the predictability of the geo-
metrical spread law is the consequence of the gradual
changes in the characteristics of Ch1 along the propa-
gation path. However, one cannot predict the changes in
the hydrological parameters for the ocean regions
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
where various disturbing factors (strong currents, fron-
tal zones, and others) exist. To estimate the frequency
dependence of the attenuation coefficient in such zones,
we have repeatedly used the so-called differential
method ([12, 13], for instance) proposed by Sheehy and
Hally [14] in the mid-fifties. This method is based on
two assumptions. The first one states that the law of the
geometrical spread is unknown but is the same for the
entire frequency band. The second assumption implies
that the frequency dependence of the attenuation coef-
ficient is described by a power-law function with a
zero-valued constant component. The decays of the
sound field at individual frequencies are normalized to
the decay at a single frequency treated as a reference.
Thus, the unknown law of the geometrical spread is
eliminated. From the normalized spread at each of the
frequencies, the differential attenuation coefficient is
determined, which can be shown to be equal to the dif-
ference between the total attenuation coefficients at two
frequencies: the frequency to be analyzed and the refer-
ence frequency. By approximating the frequency
dependence of the differential attenuation coefficient
with the power law and neglecting the absolute term,
we obtain the following explicit form for the conven-
tionally used attenuation coefficient: β = kf n.

The differential method of estimating the attenua-
tion was applied to the data of the experiment at hand.
The resulting estimates for a frequency band of 100–
800 Hz with a reference frequency of 250 Hz are

Comparison of the experimental data on sound attenuation
(for the 200-m reception depth) with the frequency depen-
dence of the absorption coefficient calculated by the formu-
las given in [10]

Frequen-
cy, Hz

β,
dB/km

α, dB/km

∆,
dB/km

β,
dB/km 
(differ-
ential

method)

t = 11.5°C, S = 36‰

pH = 8.05 pH = 8.1

100 0.008 0.001 0.001 0.007 0.0029

125 0.008 0.0016 0.0018 0.0063 0.0016

160 0.010 0.0027 0.0029 0.0072 0.0039

200 0.012 0.0041 0.0045 0.0077 0.0058

250 0.015 0.0063 0.0069 0.0084 0.0088

315 0.018 0.0098 0.0107 0.0078 0.012

400 0.023 0.0153 0.0166 0.0075 0.017

500 0.029 0.0228 0.0247 0.0053 0.022

630* 0.040 0.0336 0.0364 0.0050 0.034

800* 0.057 0.0486 0.0526 0.0064 0.048

1000* 0.070 0.0661 0.0715 0.0012 –

1250* 0.084 0.0865 0.0934 –0.006 –

1600* 0.108 0.112 0.120 –0.008 –

Note: Frequencies at which the sound attenuation was determined
from the decay of the sound field within a fraction of the path.
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Fig. 7. Experimental values of the differential attenuation coefficient and the scheme of transforming it into the conventional atten-
uation coefficient.
0.0674 and 1.52 for k and n, respectively. Figure 7
shows the results of applying the differential method to
our experimental data and illustrates the scheme of
transforming the differential values into the conven-
tional attenuation coefficients. The transformation con-
sists in nothing but a shift of the scale by the constant
component of the power-law dependence that approxi-
mates the frequency dependence of the differential
attenuation coefficient. The last column of the table
contains the conventional attenuation coefficients
obtained with the use of the differential method. One
can state that the application of this method confirms
the main conclusion of this work: with the unknown
law of the geometrical spread being eliminated, the
attenuation is fully determined by the sound absorption
in the sea medium. The attenuation coefficient esti-
mated by the differential method agrees well with the
calculated values: the deviations are lower than 0.001–
0.002 dB/km.

In conclusion, let us formulate the main results
obtained from analyzing the data of the experiment on
long-range propagation of explosion-generated signals
in a two-axis underwater sound channel in the north-
eastern Atlantic.

—The experiment was performed in a fully devel-
oped two-axis underwater sound channel with a mono-
tonic increase in the depth of the axis of the upper chan-
nel from 100–140 m at the beginning to 350–400 m at
the end of the 1160-km-long propagation path. The axis
of the lower channel was at a depth of 1500–1600 m.
The signals were received at depths of 200 and 1200 m.
The charges used as the sound sources exploded at a
depth of 200 m along the entire path.

—The time structure of the sound field in the upper
channel is characterized by the absence of the “classi-
cal” signal quartets advancing the main group of water-
path signals. At distances that are multiples of 55–65 km,
water signals that arrive with delays relative to the main
group of signals and propagate in both the upper and
lower channels were observed. Signals multiply
reflected by the surface and the bottom were observed
at all distances, up to the longest one. The shape of the
signals in the main group, which are not separated in
time, is worth noting: the leading and trailing edges are
not clearly defined, and the total duration of this group
is proportional to the distance with a proportionality
factor of about 0.0013 s/km.

—The time structure of the sound field below the
boundary between the upper and lower channels (at a
reception depth of 1200 m) is characterized by a pro-
nounced set of signals multiply reflected from the bot-
tom and the surface. The structure of this set agrees
well with the calculations. In addition to this set, com-
pact groups of signals are steadily observed with the
propagation velocity equal to that of the water signals
propagating in the upper channel. The existence of this
group can be explained by the calculations based on the
wave-field computer code by Avilov.

—On the basis of the analysis of the explosion-gen-
erated signals received and recorded at 200 m, the fre-
quency dependence of attenuation is estimated. Two
methods of determining the attenuation coefficient are
used: with the method of estimating the deviation of the
decay of the sound field level from the cylindrical law
and with the differential method that eliminates the
unknown geometrical spread law (the latter being other
than the cylindrical one). The attenuation coefficients
obtained with these two methods differ from each other
by 0.006–0.008 dB/km. This value is virtually indepen-
dent of frequency and is determined by the variation of
the hydrological parameters along the propagation
path. For the experiment under study, this value agrees
well with the calculations based on the computer code
by Avilov. The attenuation coefficients obtained with
the differential method agree well with the values
obtained for the absorption coefficients in the sea
medium from the formulas proposed in [10].
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Abstract—An inverse boundary-value problem, namely, the reconstruction of the spatial distribution of a con-
tact load from the displacements given on a part of a free surface, is considered. The model is formulated as the
generalization of results obtained earlier for an elastic layer. It is found that viscosity produces no special effects
that may hamper the reconstruction, except for the attenuation of quasi-homogeneous modes at long distances.
At the same time, it is shown that a successful reconstruction requires a consideration of viscosity. The latter
statement is illustrated by a numerical example calculated at a frequency equal to the inverse relaxation time;
the corresponding dissipation factor is about 0.05. © 2005 Pleiades Publishing, Inc.
Inverse boundary-value problems of the theory of
elasticity form a topical branch of the mechanics of
deformable solids [1–12]. The formulation of these
problems is characterized by nonclassical boundary
conditions that are specified on certain parts of a body’s
surface rather than on the whole surface. The interest in
such problems follows from the engineering problems
of strength analysis, nondestructive testing, structural
intensimetry, and vibration resistance of structures. In
the dynamical theory of elasticity, inverse boundary-
value problems were studied for stationary wave fields
[4–12]; these problems were discussed for isotropic [4–
6, 10] and anisotropic [7–9] elastic media, as well as for
viscoelastic materials [11, 12]. Mathematical methods
used for solving inverse problems depend on their ill-
posed nature and include analytical methods of bound-
ary integral equations, finite-difference schemes with
the Tikhonov regularization [13, 14], and (see [1–6, 9,
10]) different versions of the projection method [15]
with a discrete regularization. The ill-posed character
of inverse boundary-value problems makes it necessary
to focus special attention on the analysis of model
examples that give an idea about the actual possibilities
of the wave field reconstruction. No such analysis was
carried out in the context of models with allowance for
the wave absorption. Here, we extend the inverse
boundary-value problem considered earlier [10] to the
case of a viscoelastic medium [16, 17]. The goal of this
work consists in the determination of the extent to
which the reconstruction efficiency depends on viscos-
ity and the extent to which the consideration of viscos-
ity is needed for a successful reconstruction of the field
of a contact load.
1063-7710/05/5106- $26.00 0638
Consider a homogeneous layer of a viscoelastic iso-
tropic material occupying the region [–∞ < x, z < ∞,
0 ≤ y ≤ h] in the Cartesian coordinates (x, y, z). The
lower boundary of the layer (y = 0) is rigidly fixed, and
the upper boundary (y = h) is loaded by an external nor-
mal load

(1)

distributed over a certain region x ∈  [X1, X2]. We
assume that the load brings the layer in the state of
forced stationary vibrations under the conditions of pla-
nar deformation (under these conditions, the wave field
components are independent of the z coordinate and the
displacement vector u is parallel to the (x, y) coordinate
plane). In the steady-state regime, the generalized
Hooke’s law [16, 17] holds:

(2)

where σij and εij are the stress and strain tensors, respec-
tively; λ(–iω) and µ(–iω) are the complex moduli that
grade into the Lamé coefficients in the case of an elastic
layer; here and below, symbols of all dynamical vari-
ables, such as u and εij, denote the corresponding com-
plex amplitudes. According to Eq. (2), the amplitude of
displacements satisfies the equation

(3)

where  is the gradient operator, ∆ = , and ρ is the
density. At the layer boundaries, the following bound-
ary conditions hold:

qy x t,( ) Re iωt–( )q x( )exp{ } ,=

σij λ iω–( )δijεkk 2µ iω–( )εij,+=

ρω2u λ iω–( ) µ iω–( )+[ ]∇ ∇ u( )+

+ µ iω–( )∆u 0,=

∇ ∇
2
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(4)

where u is the vector operator of boundary stress
with the components

(5)

Boundary conditions (4) generate a mixed boundary-
value problem whose solution describes forced vibra-
tions of the layer under the action of source (1). We
consider this problem to be the direct one.

Let us now formulate the inverse problem that con-
sists in the reconstruction of the load field q(x) from the
normal displacements of the free surface of the layer,
uy(x), that are given on a surface part x ∈  [X3, X4], where
[X3, X4] ∩ [X1, X2] = ∅ . In the inverse problem, the
boundary conditions for Eq. (3) have the form

(6)

where the function u(x) is assumed to be known
approximately (for example, from measurements) and

the components of vector u are given by Eqs. (5).
Now, we have to complement the inverse problem

formulation with formulas for the complex moduli. In
the framework of the conventional theory of a vis-
coelastic solid [16, 17], for definiteness, we use the
four-parameter model that implies the following
expressions for the moduli:

(7)

where G1(0), C, K, and τ are real constants. The con-
stant K is the bulk modulus and G1(0), C, and τ are the
parameters of the relaxation function for shear strains
[16] (τ is the relaxation time).

We introduce the scale of stress as λ∞ + 2µ∞:

M̂u( )x M̂u( )y 0,= =

y h x X1 X2,[ ]∉,=( ),

M̂u( )x 0, M̂u( )y q x( ),= =

y h x X1 X2,[ ]∈,=( ),

u 0, y 0=( ),=









M̂

M̂u( )x µ iω–( ) uy x, ux y,+( ),=

M̂u( )y λ iω–( )ux x, λ iω–( ) 2µ iω–( )+[ ] uy y, .+=



M̂u 0, y h x X1 X2,[ ]∉,=( ),=

uy u x( ), y h x X3 X4,[ ]∈,=( ),=

u 0, y 0=( ),=





M̂

µ iω–( ) 1
2
---G1 0( ) 1

2
---C

1 iωτ+

1 ω2τ2+
--------------------,–=

λ iω–( ) 2µ iω–( )+

=  K
2
3
---G1 0( ) 2

3
---C

1 iωτ+

1 ω2τ2+
--------------------;–+

λ∞ 2µ∞+  = λ iω–( ) 2µ iω–( )+[ ]
ω ∞→
lim  = K

2
3
---G1 0( ).+
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The formulated model can be parameterized using the
following set of dimensionless physical constants:

(8)

is the dimensionless frequency,

(9)

is the dimensionless relaxation time, and

(10)

The layer thickness h will be used below as the unit of
length.

By analogy with [10], the inverse problem can be
reduced to a Fredholm integral equation of the first
kind:

(11)

where k(x – x') is Green’s function (the solution to the
direct problem for a point source). In the case of an
elastic layer, Green’s matrix was constructed using the
method of integral transformations [18]. The corre-
sponding extension to the case of a viscoelastic layer
can be obtained using the conformity principle [16, 17]
by replacing the Lamé coefficients with the complex
moduli. As a result, we obtain Green’s function in the
integral representation:

(12)

where ζ = x – x',

(13)

(the subscript yy corresponds to the tensor component
of Green’s matrix),

Using Eqs. (7), one can easily express Eqs. (11)–(13) in
terms of the dimensionless variables (8)–(10).

κ ωh ρ/ λ∞ 2µ∞+( )=

τ* τh 1– λ∞ 2µ∞+( )/ρ=

χ∞ = 
1
2
---G1 0( )/ λ∞ 2µ∞+( ), C* = C/ λ∞ 2µ∞+( ).

k x x'–( )q x'( ) x'd

X1

X2

∫ u x( ), x X3 X4,[ ] ,∈=

k ζ( ) 1
2π
------ K p( )e ipζ– p,d

∞–

∞

∫=

K p( ) λ∞ 2µ∞+( ) 1– ∆yy p( )/∆ p( )=

∆ p( ) 4Ω1
2Ω2

2χ1
2 p2 4χ1

2 p6 4χ1κ
2
p4– κ4 p2+ +( )=

×
Ω1 Ω2sinsin
Ω1Ω2

----------------------------- 8χ1
2 p4– 4χ1κ

2 p2 κ4–+( )+

× Ω1 Ω2coscos 8χ1
2
p4 4χ1κ

2 p2,–+

∆yy p( ) κ2 Ω1cos Ω2 Ω2sin p2 Ω1sin
Ω1

-------------- Ω2cos+ 
  ,=

χn χn ω( ), Ωn≡ κ2/χn ω( ) p2– , n 1; 2=( ),=

χ1 ω( ) µ iω–( )
λ∞ 2µ∞+
----------------------, χ2 ω( ) λ iω–( ) 2µ iω–( )+

λ∞ 2µ∞+
---------------------------------------------.= =
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Note the fundamental properties of kernel (12) and
its Fourier transform (13). Function K(p) in Eq. (13) is
an even meromorphic function. In the model of an elas-
tic layer, at high frequencies, this function has real
poles, which correspond to homogeneous wave modes
[18] (the integration contour in Eq. (12) must bypass
these poles according to the rules dictated by the prin-
ciple of limiting absorption [18]). In a viscoelastic
layer, homogeneous modes are generally absent. We
can suppose that homogeneous modes may appear for
specially adjusted parameters; however, we do not
investigate here the possibility of such special cases and
exclude them from consideration. For low and high fre-
quencies, or, equivalently, for short and long relaxation
times (kτ∗  ! 1 and kτ∗  @ 1), the limiting conformity
with the model of an elastic layer [10] takes place. In
these cases, the spectrum may contain weakly attenuat-
ing modes that pass into the homogeneous modes in the
absence of viscosity. Such quasi-homogeneous modes
appear for κ > , where  is the critical dimensionless
frequency [18]; in the approximation of long relaxation
times (κτ∗  @ 1), it is given by the expression

(14)

For small arguments, function (12) can be described
by the following asymptotic formula:

(15)

where χ(ω) = χ1(ω)/χ2(ω). Formula (15) clearly shows
that, irrespective of the presence of quasi-homogeneous
modes, the kernel k(ζ) has a nonzero imaginary compo-
nent (it disappears in the case of an elastic layer) that
causes the vibrations to be shifted in phase; this phase
shift can be interpreted as the viscosity-induced effect
of retardation. For large arguments, kernel (12) degen-
erates, because the corresponding asymptotics is gov-
erned by the contribution of the pole nearest to the real
axis:

(16)

Here, R, p, and c are complex constants, Imp > 0, and
Imc > 0. The kernel’s logarithmic singularity explicitly
given in Eq. (15) falls outside the integration interval in
Eq. (11). The smooth behavior of the kernel leads to the

κ κ

κ π χ∞/2.=

k ζ( )
λ∞ 2µ∞+( ) 1–

2πχ1 ω( ) χ ω( ) 1–[ ]
------------------------------------------------ ζ O 1( ),+ln–=

ζ 0,

k ζ( ) iR ip ζ( ) 1 O c ζ–( )exp[ ]+{ } ,exp=

ζ ∞( ).

Wave numbers of homogeneous and quasi-homogeneous
modes

Model P1 P2 P3

Elastic layer 1.1007 3.7744 6.8141

Viscoelastic 
layer

1.1007 +
0.0002 i

3.7744 +
0.0010 i

6.8141 +
0.00085 i
ill-posed character of the inverse problem and to the
necessity of its regularization [13].

We perform a further analysis for a specific set of
parameters: G1(0) = 10C = 103 mPa, τ = 0.01 s, and K =
4.67 × 103 mPa (these parameters fall into the region
typical of polymer materials). The corresponding
dimensionless variables (10) take the following values:
χ∞ = 0.0937 and C∗  = 0.0188. We specify the dimen-
sionless relaxation time (9) to be τ∗  = 200, which, for
the density ρ ~ 103 kg/m3, corresponds to a layer of
thickness h ~ 10–1 m. Note that the dimensionless
parameter τ∗  increases with decreasing thickness, so
that values of τ∗  ! 200 can hardly occur in practice for
polymer items.

It is instructive to derive some rough estimates.
A measure of deviation from the classical Hooke’s law
is the so-called dissipation factor, i.e., the ratio of the
imaginary part of the complex modulus to its real part
[16]. In our model, the maximum of the dissipation fac-

tor is 0.5γ/ , where γ = C/G1(0); this maximum is

reached at the frequency κ0 = . If κ @ κ0, the
layer is close to an elastic layer in its properties. For the

above parameters, we have γ = 0.1 and κ0 ≈  ! 1. At
the same time, critical frequency (15) is comparable
with unity,  = 0.481. Because  @ κ0, we can con-
clude that, for frequencies exceeding the critical fre-
quency, the wave pattern appears to be almost the same
as that in the case of an elastic layer with the only dif-
ference that homogeneous modes transform into
weakly decaying modes.

This inference is supported by the following exam-
ple. At a frequency of κ = 2, only three quasi-homoge-
neous modes are present; for these modes, we calcu-
lated the complex wave numbers pm that coincide with
the poles of the function K(p). In the table, these wave
numbers are compared with the corresponding wave
numbers determined in the approximation of an elastic
layer, i.e., for C = 0. As may be seen from the table, the
imaginary additions to wave numbers do not exceed
0.03% and the real parts remain intact within the calcu-
lation error. The viscosity-induced corrections to the
kernel k(ζ) (Eq. (12)) are mainly related to the attenua-
tion of quasi-homogeneous modes. For relatively small
distances |ζ| = |x – x'| such that |ζ||Impm| < 10–2, these
corrections appear to be smaller than one percent. It
becomes obvious that, if we assume that the measure-
ment error is estimated as 1% [4], we can perform the
reconstruction in this region of parameters by using the
elastic-layer approximation (see [10] for examples of
reconstruction of model functions for κ > ). The con-
sideration of viscosity in this parameter region should
be worthwhile only for a much smaller measurement
error, because the class of functions q(x) that allow an
adequate reconstruction enlarges very slowly with

1 γ–

1 γ– τ*
1–

τ*
1–

κ κ

κ
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increasing measurement accuracy. The latter conclu-
sion can be explained in terms of singular decomposi-
tions [4, 5, 10]; namely, in view of the fast decrease of
singular numbers, a decrease in input errors by 1–2 dec-
imal digits allows, as a rule, reconstruction of at most
1–2 additional terms in the generalized Fourier expan-
sion of the desired function.

Thus, the consideration of viscosity for κ >  is of
little interest with the exception of situations when an
additional small or large parameter appears in the
model. These situations are realized (i) if the distances
between the points x' ∈  [X1, X2] and x ∈  [X3, X4] are on
the order of |Im |Impm|–1 or greater, so that the attenua-
tion of quasi-homogeneous modes becomes apparent;
(ii) if the frequency is close to the resonance frequency
(see paper [18] for the theory of resonances in the case
of an elastic layer). In these cases, viscosity will be an
essential factor. Note that both the above situations are
unfavorable for the wave field reconstruction. Indeed,
different quasi-homogeneous modes are characterized
by different logarithmic decrements (see table as an
example), so that the modes decaying more weakly
become predominant at large distances and only one
mode prevails in the asymptotics, in agreement with
Eq. (16). For this reason, the degeneration characteris-
tic of the far zone (see discussion in [10]) becomes still
stronger in the case under discussion. A similar degen-
eration occurs near the resonance frequencies, where
only the resonance mode can be observed distinctly and
other modes can hardly be distinguished against the
background of the resonance mode, which results in a
loss of information about the source (in [5] the opposite
effect of improved reconstruction near the resonances
was reported; however, this effect refers to the recon-
struction of integral characteristics of the wave field
rather than its spatial configuration).

Consider now the frequency range κ ~ , where
dissipation becomes most apparent. Figure 1 shows the
typical behavior of Green’s function k(ζ) (Eq. (12)) for
such frequencies (these curves and the following

numerical results are obtained for the frequency κ =  =
0.005). For |ζ| * 3, the main term of asymptotics (16)
prevails and approximates function (12) with an error
smaller than 1%; for these distances, the kernel
approaches its degenerate form and the field recon-
struction is hardly possible. Viscosity only slightly
affects the real part of the function k(ζ), and its main
effect consists in the appearance of the imaginary part
of the kernel. The curves describing the real and imag-
inary parts are similar in shape (see Fig. 1); this means
that traveling waves (which are absent for low frequen-
cies in the case of an elastic layer) are weakly pro-
nounced. Hence, the main consequence of viscosity is
the above effect of retardation, i.e., the appearance of an
additional common phase in the displacement function.
It is obvious that this effect by no means affects the
basic possibility of reconstruction. The viscosity-

κ

τ*
1–

τ*
1–
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induced imaginary corrections to Green’s function
come to about 10% (as expected, these corrections are
about γ = 0.1). To estimate how important these correc-
tions are in solving the inverse problem, direct numeri-
cal experiments are required.

Such experiments with the reconstruction of model
load functions were carried out according to the known
scheme; namely, for a given original function q(x), we
determined the numerical solution to the direct problem
by using Eqs. (11) and (12) and then used the resulting
function of displacements as the initial data in the recon-
struction problem. To solve integral equation (11), we
used the finite-difference algorithm with the first-order
stabilizer [12, 13] that was derived in the framework of
the Tikhonov approach. Random errors were simulated
according to the procedure used in paper [10]. We used
real model original functions; in addition, as was done
in [10], we passed to the modified integral equation

with the kernel (ζ) = Re{exp(iθ)k(ζ)} and the right-
hand side (x) = Re{exp(iθ)u(x)}. For the real phase θ
corresponding to an observation instant t = θ/ω, we
specified a value of π/4; in this case, the real and imag-

inary parts of kernel (12) contribute to the kernel (x – x')
with identical weights, which yields an objective esti-
mate of the viscosity contribution.

Figures 2 and 3 show examples of reconstructing
the fields of the load acting on the viscoelastic layer
(we used model load functions of the form q(x) =
a0sin(kx + b) + a1). These figures show the whole of
the region [X1, X2] of load application, and the solid
lines show the original functions. In the figure captions,
we give the values of the following parameters: the
number of observation points J uniformly distributed
on the segment [X3, X4], the number of nodes n of the

k̃
ũ

k̃

1
ζ

Rek, Imk

0.2

0
2 3 4 5 6 7 8

0.1

0.3

–0.1

–0.2

Fig. 1. Green’s function k(ζ) (Eq. (12)) for κ = 0.005; the
solid line shows Re{k(ζ)}, and the dashed line shows
Im{k(ζ)} × 10.



642 VATUL’YAN et al.
finite-difference mesh on the segment [X1, X2], the rel-
ative level of random errors ∆ [10], and the regulariza-
tion parameter α [13]. We present here the results
obtained for different parameters α to give a clear idea
about the reconstruction fidelity. The two dashed lines
in each of the figures correspond to the maximum and
minimum values used for the parameter α (as usual,
results appear unstable for very small α and smoothed

1

0.5

q

x

0

–1

2

1.0

Fig. 2. Reconstruction of the model function. The parame-
ters are as follows: [X3, X4] = [1.5, 6]; J = 15; n = 21; ∆ =
0.03; and α = 10–m, where m = 6, 7, …, 10.
for large α); the dots show the results obtained with
intermediate optimum values of the regularization
parameter.

According to our experience with calculations, the
contact stress reconstruction at low frequencies (below
critical frequency (14)) is ineffective in comparison
with the case of high frequencies, at which (quasi-
)homogeneous modes are present. This fact is unrelated
to the presence of viscosity and is characteristic of the
elastic layer as well (the interpretation of this fact
requires separate research and is beyond the scope of
this paper). In the absence of weakly decaying modes
and for relative random errors ∆ ~ 10–3–10–2, a satisfac-
tory quality of reconstruction can be achieved only for
simple functions that have no more than one prominent
extremum (see Figs. 2 and 3 and compare with the
examples of reconstruction for frequencies exceeding
the critical frequency [10]).

For the example of Fig. 3, we carried out calcula-
tions using two different procedures. In the first case
(Fig. 3a), we solved the inverse problem by simulat-
ing the transition to the elastic-layer approximation;
for this purpose, we rejected the imaginary part of the
kernel k(ζ) (Eq. (12)). In the other case (Fig. 3b), we
constructed the solution to the inverse problem with-
out additional approximations. As may be seen from
the curves, the attempt to neglect the viscosity-
induced complex corrections results in a deterioration
of images; moreover, the results appear to be less sta-
ble with respect to the value of the regularization
parameter.
(b)

–0.5 0 0.5
x

3

2

1

(‡)

–0.5 0 0.5
x

3

2

q q

1

Fig. 3. Reconstruction of the model function (a) without considering the imaginary part of the kernel and (b) with allowance for the
imaginary part of the kernel. The parameters are as follows: [X3, X4] = [1, 3]; J = 21; n = 41; ∆ = 0.001; and α = 10–m, where
(a) m = 7, 8, …, 11 and (b) m = 9, 10, …, 13.

1
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Thus, in the framework of the proposed model, we
realized the numerical solution of the inverse bound-
ary-value problem for stationary wave fields excited in
a viscoelastic body. With the chosen parameters of the
model, we successfully performed a detailed compari-
son with a similar model [10] developed in the approx-
imation of the classical Hooke’s law. As can be seen
from our analysis, inelastic effects do not affect the effi-
ciency of the reconstruction of a contact load, except
for the natural restrictions related to the attenuation of
quasi-homogeneous modes at large distances. At the
same time, a successful reconstruction generally
requires that viscosity-induced corrections be taken
into account. First and foremost, this refers to the
reconstruction of the fields at frequencies of about the
inverse relaxation time and at frequencies close to res-
onance. The example given in this paper shows that, at
least for dissipation factors of about 10–1 and greater,
the neglect of relaxation in inverse problems is undesir-
able.
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Abstract—The frequency and time averaging of the fluctuations that occur in the cross-correlation function of
a radiated noiselike acoustic signal with the signal received after its reflection from a rough water surface is
considered. The variance and temporal correlation function are calculated for the output effect of a correlation
receiver for different ratios between the averaging time and the time correlation interval of fluctuations, the band
width of the radiated signal, and the frequency correlation interval of the transfer function fluctuations. © 2005
Pleiades Publishing, Inc.
In solving different problems by means of sonar
monitoring (underwater observation), it is necessary to
take into account the effect of random variations in the
parameters of the underwater sound channel, which are
caused by the dynamic processes arising at the surface
and in the water column of the ocean. This effect man-
ifests itself in the distortion of the initial information on
the objects under observation. In the general case, the
characteristics of signals propagating in channels with
random parameters, the underwater sound channel
being one of them, depend on both the properties of the
initial radiation and the features of the linear stochastic
filter of the medium, which determines the distortions
of the initial signals. The measure of such distortions
can be the cross-correlation function Qsu between the
received signal s(t) and the radiated signal u(t). This
function is a significant element of various algorithms
for optimized processing of received signals and, in
particular, characterizes the noise immunity of the
coherent and incoherent reception in channels with ran-
dom parameters [1–3]. Investigations showed that the
decrease in the cross-correlation of radiated noiselike
sonar signals with the received ones is due to both mul-
tipath sound propagation and sound scattering by ran-
dom volume inhomogeneities of the refractive index,
the rough sea surface, and the roughness and inhomo-
geneities of the sea bottom [4–9]. Note that different
aspects related to investigations of the efficiency of the
correlation reception of noise and noiselike sonar sig-
nals were also considered in later works, including the
series of works published in recent years [10–12].

Using the known relationships of the theory of lin-
ear stochastic filters [1, 3, 13], the estimate of the output
effect of a correlation receiver (a synchronous detec-
tor), after integrating over time T, can be presented as
1063-7710/05/5106- $26.00 ©0644
(1)

where P(ω1, t1) is the transfer function of the propaga-
tion channel for acoustic signals; td is the time delay of
the reference signal which is the replica of the radiated
signal delayed by the time of its propagation; and u(t)
and s(t) are real random processes. The quantity Asr is a
constant factor equal to the product of the transfer coef-
ficients of linear tracks (devices) for the formation and
reception of signals, the sensitivity of the transducer in
the radiation mode [14], and the sensitivity of the sound
receiver. These quantities are assumed to be frequency-
independent within the signal frequency band. In what
follows, we set Asr = 1. Expression (1) allows one to
calculate the temporal autocorrelation function of the
signal at the output of the correlation receiver:
KQ(∆t, td) = 〈Qsu(td)Qsu(td – ∆t)〉 . The angular brackets
denote statistical averaging over the ensemble of ran-
dom parameters of the signal propagation channel. This
is sufficient for the case of deterministic signals, for
example, for signals with the intrapulse modulation that
follows a given law. For a noiselike signal, it is neces-
sary to carry out an additional statistical averaging over
the ensemble of the initial random signals u(t). In this
case, we assume that u(t) is a normally distributed sta-
tionary random function with zero mean value, a vari-

ance , and a frequency spectrum Gu(ω). In spite of

Qsu td( ) 1
T
--- s t( )u t td–( ) td

0

T

∫=

=  
Asr

2πT
---------- P ω1 t1,( )u t1 td–( )u t2( )

∞–

∞

∫
∞–

∞

∫
0

T

∫
× iω1 t1 t2–( )[ ] t1 t2 ω1,dddexp

σu
2

 2005 Pleiades Publishing, Inc.



        

FLUCTUATIONS OF NOISELIKE SIGNALS REFLECTED FROM A ROUGH SURFACE 645

                                                  
the fact that the calculations presented below were car-
ried out for continuous noiselike acoustic radiation,
their results are applicable to pulsed signals whose
duration noticeably exceeds the integration time.

The transfer function P can be represented as the
sum of the mean field 〈P〉  and the fluctuations ∆P. Then,
the cross-correlation function Qsu can be written in the
form of the sum of the mathematical expectation 〈Qsu〉
and the fluctuation part ∆Qsu. The autocorrelation func-
tion (ACF) of the signal at the output of the correlation
receiver can be represented as KQ(∆t, td) = K〈Q〉(∆t, td) +
K∆Q(∆t, td), where K〈Q〉(∆t, td) = 〈Qsu(td)〉〈 Qsu(td – ∆t)〉
is the part of the ACF caused by the coherent field and
K∆Q(∆t, td) = 〈∆Qsu(td)∆Qsu(td – ∆t)〉  is the temporal
correlation moment of the fluctuation part of the output
effect of the correlation receiver. In the case of the
transfer function fluctuations described by a stationary
random process, we have

(2)

(3)

where (ω1, ω2, ∆t) is the frequency–time correla-
tion moment of fluctuations of the transfer function

envelope  = Pexp(iωt0) (in general case, a complex
one), τd = td – t0, and t0 is the propagation time of the
signal (its coherent part). In deriving Eqs. (2) and (3),
we used the property of the transfer function that
P(−ω, t) = P*(ω, t), where the asterisk means complex
conjugation, and took into account the parity of the
power spectrum of the initial signal: Gu(–ω) = Gu(ω).
At ∆t = 0, Eqs. (2) and (3) describe, respectively, the
intensity of the coherent component, IQc, and the signal

variance at the output of the correlation receiver ,
while their sum describes the mean signal intensity

IQ = IQc +  = KQ(0, td) for different time delays td. Let

K Q〈 〉 ∆t td,( ) 1

T2
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us denote by ∆tP and ∆ωP the time and frequency cor-
relation scales of the transfer function fluctuations at
the central frequency ω0 of the radiated narrowband
signal and by ∆ωu, the effective bandwidth of the spec-
trum for this signal. In the limiting cases ∆tp ! T and
∆tP @ T (rapid and slow fluctuations), ∆ωP @ ∆ωu and
∆ωP ! ∆ωu (synchronous and selective fading accord-
ing to the terminology of the statistical theory of com-
munication [2]), one can obtain approximate estimates
of the intensity of the fluctuation component (the vari-

ance ) and the total energy, IQ, of the output effect of
the correlation receiver. These estimates do not depend
on the fluctuation nature in the signal propagation chan-
nel, the form of frequency–time correlation moment

(ω1, ω2, ∆t), or that of the radiated signal Cu(ω) [8].
In order to obtain the results in a wider range of
parameter variations, it is necessary to specify the
forms of the frequency–time correlation moment of
the transfer function and the spectrum of the noiselike
radiated signal.

As an example of a channel with random parame-
ters, consider the reflection of acoustic signals from a
rough sea surface. As is known, rather intense sound
scattering from the rough sea surface is observed in a
wide frequency range beginning from tens of hertz,
which gives rise to rapid random fluctuations and a
reduction of the coherence of the sound field reflected
from the surface. Assume that surface displacements
ζ(x, y, t) (deviations from the mean plane) are described
by a random function stationary in time and homoge-
neous in space, normally distributed with a variance

. Assume that the energy spectrum of the initial
noiselike signal has the form

(4)

which corresponds to the time correlation function

Ku(∆t) = exp[–(∆ωu∆t)2/16]cos(ω0∆t). Consider first
the coherent signal component at the correlation
receiver output. Let us substitute the known expression
for the reflected mean field (the envelope of the transfer
function) into Eq. (2):

(5)

where R0 = (zs + zr)/sinψ; ψ is the grazing angle at the
point of specular reflection from the mean plane; zs and
zr are the depths of sound radiation and reception,
respectively; Φ0 = 2(ω0/cs)σζ sinψ is the Rayleigh

σQ
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parameter at the central frequency of the spectrum ω0;
and cs is the sound speed. For the spectrum Gu(ω) given
by Eq. (4), after some calculations, we obtain an
expression containing a weighted sum of single inte-
grals:

(6)

Here, the following notations are introduced:

(7)

The quantities  and  are obtained from N0 and β
with  in place of 2 .

An analysis of sum (6) shows that, for ∆ωuT @ 1, the

first term prevails. Because δω <1, for  ! 1 we have
β . 1, ∆ωuβ . ∆ωu, and ω0β . ω0. In this case, the
intensity of the coherent component of the noiselike
signal is close to the mean intensity of the total reflected
field and does not depend on the bandwidth ∆ωu. The
time correlation function K〈Q〉(∆t) at τd = 0, after the
introduction of the delay for the signal propagation
time td = R0/cs, coincides within a constant factor with
the time correlation function of the initial signal Ku(∆t).
As the Rayleigh parameter Φ0 increases, the effective
bandwidth ∆ωuβ and the central frequency ω0β of the
coherent component of the radiated noiselike signal
decreases due to the stronger decrease in the high-fre-
quency part of the spectrum. The intensity of the coher-
ent field, the time correlation scale, and the period of

K Q〈 〉 ∆t τd,( ) NnJn.
n 1=

5

∑=

J1 ω0β∆t( )cos= ω0β t̃0( ),cos+
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1
T
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T
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2–( )exp
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2δω
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N0 0.5R0
2– σu
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N4 5, Ñ0 h1– h2–( ), h1exp ∆ωuβ∆t( )2/32,= =

h2 ∆ωu t̃0( )2
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2
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2
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2
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2 Φ0
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2

the correlation function oscillations K〈Q〉(∆t) increases
as the initial signal band increases according to the
expression

These effects are most pronounced for  @ 1; how-
ever, in this case, the intensity of the coherent compo-
nent is negligibly small compared to the mean intensity
of the total field. A noticeable influence of these effects
appears only in the region Φ0 . 1 for a relatively wide
frequency band of the initial noiselike signal.

We now turn to calculations of the correlation of the
fluctuation component of the reflected signal at the out-
put of the correlation receiver. Calculations for the fre-
quency–time correlation moment of the transfer func-

tion fluctuations (ω1, ω2, ∆t) were performed in
[15–17]. The limiting cases of strong and weak fluctu-

ations were considered for exp(– ) ! 1 and  ! 1,
respectively, where the values of the Rayleigh parame-
ter Φω were taken for the frequency range ωmin ≤ ω ≤
ωmax occupied by the noiselike signal. According to the
expressions obtained in the general case for an arbitrary
frequency band, the scattered field cannot be consid-
ered as statistically homogeneous in frequency. Let us
use approximate expressions suitable for the descrip-
tion of the transmission of relatively narrow-band sig-
nals through a linear stochastic filter caused by the scat-
tering from a quasi-harmonic roughness of the water
surface. In the small-slope approximation and for low
scattering angles with respect to the specular reflection
from the mean surface, in the framework of the two-
dimensional model of the sea roughness, when the sur-
face displacements depend on the single horizontal
coordinate, the frequency–time correlation moment

(∆ω, ∆t) is determined by the expression

(8)

in the case of strong fluctuations and by the expression

(9)

K Q〈 〉 ∆t( ) . R0
2– σu
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in the case of weak fluctuations. Expression (8)
obtained for a quasi-harmonic gravity wave on the sur-
face of a deep basin does not depend on the form of the
correlation function Γζ(ρ, ∆t) or the random sea spec-
trum Gζ(ω) and is determined only by the spectral

moments  = 2 (Ω)ΩndΩ. Expression (9) was

obtained for the frequency spectrum of the random sea Gζ
corresponding to time correlation function Γζ(∆t) =
exp[–(∆t/∆tζ)2]cos(Ωζ∆t). The parameters ∆ωP1 and
∆ωP2 in Eqs. (8) and (9) have the meaning of frequency
correlation scales for the transfer function fluctuations.
One of them describes the decay of the frequency cor-
relation by the power law, the second, by the exponen-
tial law. In the case of strong fluctuations, ∆ωP1 =

g2(zs + zr)sin3ψ[ zszrcs(1 – cos2ψsin2α)]–1,

∆ωP2 = ω0/Φ0, g =9.81 m/s2, ∆tP0 = /( Φ0) is
the time correlation scale of the transfer function fluc-
tuations at the frequency ω0, α is the angle in the hori-
zontal plane between the direction of surface wave
propagation and the vertical plane containing the sound
source and the receiver. In the case of weak fluctua-
tions, ∆ωP1 = 2ω0/[Dα(l + 1)l2], ∆ωP2 = 2ω0/(DαΩζ∆tζl),
Dα = csR(1 – cos2ψsin2α)/[ω0sin2ψv 2(∆tζ)2], v  is the
phase speed of gravity waves on the basin surface, R =
2zszr/[(zs + zr)sinψ], ∆td = Ωζ∆tζ/(2l∆ωP2), l = l for a
shallow basin, and l = 2 for a deep basin. At l = 2,
Eq. (9) is an approximate one that is valid for a quasi-
harmonic sea surface when Ωζ∆tζ @ 1 (in this case, v  .
g/Ωζ). For a quasi-harmonic sea surface, ∆ωP2/∆ωP1 .
(Ωζ∆tζ)–1 ! 1 and, therefore, the frequency correlation
decay is mainly determined by the smaller scale (∆ωP2).

With allowance for the statistical homogeneity of
the frequency fluctuations of the transfer function,
according to Eqs. (8) and (9), the initial integral expres-
sion (3) is reduced to the form

(10)

Consider first the case of strong fluctuations. For calcu-
lating integral (10), we use the one-dimensional model
of the frequency correlation function by assuming that
conditions (∆ωP2/∆ωP1)2 ! 1 and ∆ωP1 ≥ ∆ωu are valid.
In this case, the decay of the frequency correlation

+ ∆t
∆tζ
------- ∆ω

∆ωP2
------------– 

  2 1

1 i ∆ω/∆ωP1( )+
-------------------------------------------– iΩζ∆t+exp





,

Ωζ
n Gζ0

∞∫

ω0
2 Φ0

2Ωζ
4

2 2 Ωζ
2

K∆Q ∆t td,( ) . 
2σu

4

T
--------- 1 τ

T
---– 

  Gu ω Ω/2+( )
∞–

∞

∫
∞–

∞

∫
0

T

∫
× Gu ω Ω/2–( ) i ω Ω/2–( )∆t[ ]exp

× 2K̃∆P Ω τ,( ) iΩτd( ) ωτ( )cos
2

exp{

+ K̃∆P 0 τ,( ) Ωτ( )cos } τ ω Ω .ddd
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
within the signal frequency band is determined by the
exponential factor with the correlation scale ∆ωP2.
A similar model was also considered in [18]. In the
framework of this model, the frequency decorrelation
of acoustic field fluctuations is related to the change in
wave dimensions (the number of Fresnel zones) of the
scattering region along the vertical as the frequency
varies [15, 19]. Substituting Eqs. (4) and (8) into
Eq. (10), after calculating the integrals with respect to
the variables ω and Ω, we arrive at a result that can be
represented as the weighted sum of the integrals Jn

coinciding in the form with integral (7):

(11)

Parameters an, bn, cn, and dn involved in Jn, as well as
the weighting coefficients Mn, in Eq. (11) take the fol-
lowing values:

(12)

Integrating over τ in Eq. (7), the correlation function
K∆Q can be evaluated in terms of the tabulated probabil-
ity integrals of the complex argument [20, 21] w(Z) .

exp(–Z2) , where Z = X + iY. The

tables are composed for the region X > 0, Y > 0. For cal-
culating w(Z) beyond this region, one can use the rela-
tionships w(–Z) = 2exp(–Z2) – w(Z) and w(Z*) =
2exp[−(Z*)2] – w*(Z). Upon integration in Eq. (7), we
obtain

K∆Q ∆t τd,( ) . KQ ∆t τd,( ) MnJn.
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(13)

where

A comparative analysis of the terms entering into sum
(11) shows that, for narrow-band signals (∆ωu/ω0)2 ! 1)
at the rather small interval of frequency correlation
((∆ωP2/ω0)2 ! 1) and weak restrictions that are usually
satisfied in practice for composite noiselike signals
(∆ωuT @ 1, ∆ωu∆tP0 @ 1, and |∆t|/T ! 1), the main con-
tribution is made by the first term, M1J1. The next term
in order of magnitude is the term with the number n = 5.
As a result, we obtain the following approximate
expression for the correlation function K∆Q:

Here, ε denotes the ratio ε = T/∆tP0 and Φ(ε) =

dx is the probability integral. Then, for

small integration times T compared to the time correla-
tion scale ∆tP0 (the case of slow fluctuations) and a
completely compensated time delay of the signal (td =
R0/cs, τd = 0, and  = ∆t), we obtain

+
π
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(14)

Let us introduce the normalized variance of fluctuations

(NVF),  = (2 / ) = K∆Q(0, R0/cs)(2 / ),
which in the case of strong fluctuations is almost equal
to the normalized mean intensity of the output effect of

the correlation receiver . From Eq. (14), we obtain

For (∆ωu/∆ωP2)2 ! 1 (slow synchronous fluctuations

within the signal frequency band), γup . 1 and  . 1 +

[2 /∆ωuT]. For(∆ωu/∆ωP2)2 @ 1 (slow selective

fluctuations),  . ( ∆ωP2/∆ωu) + [2 /∆ωuT].
For large integration times compared to the correlation
scale ∆tP0 (the case of rapid fluctuations), we have

Therefore, at (∆ωu/∆ωP2)2 ! 1, we obtain  .

( ∆tP0/T) + (2 /∆ωuT), whereas for (∆ωu/∆ωP2)2 @

1 –  . ( ∆ωP2∆tP0/∆ωuT) + [ /∆ωuT]. From

the formulas presented above, it follows that NVF 
characterizes the extent of frequency and time averag-

ing of fluctuations. The quantity  is the sum of two
terms. The first term strongly depends on the ratios
∆tP0/T and ∆ωP2/∆ωu and determines the averaging of
fluctuations caused by the scattering from the rough
surface. The second term only depends on the parame-
ters of the initial signal and the correlation processing.
It is determined by the remainder of fluctuations (not
completely averaged) of the initial noiselike signal. To
neglect this term in the above limiting cases, it is suffi-
cient to impose the conditions min(∆fu, ∆fP2)T @ 1 and
min(∆fu, ∆fP2)∆tP0 @ 1, where ∆fu = ∆ωu/2π, and ∆fP2 =
∆ωP2/2π. When these conditions are met, the normaliz-

ing coefficient 0.5  (the ratio of the true variance

to the normalized one, / ) is approximately equal

to the maximum value of the variance , which cor-
responds to the case of slow synchronous fluctuations
when the averaging over frequency and time is absent. In
the case of strong fluctuations at (∆ωu/ωP2)2 @ 1, the fre-
quency averaging leads to a decrease in the mean inten-
sity of the signal at the output of the correlation
receiver.
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The normalized AKF of the output effect of the cor-

relation receiver, Γ∆Q = K∆Q/ , for both small and
large times of integration, is determined by the relation-
ship

For (∆ωu/∆ωP2)2 ! 1, it coincides with the normalized
temporal correlation function of the initial noiselike sig-

nal: Γ∆Q . Γu = Ku/  = exp[–(∆ωu∆t)2/16]cos(ω0∆t). For
(∆ωu/∆ωP2)2 @ 1, Γ∆Q . exp[–(∆ωu∆t)2/32]cos(ω0∆t).
In this case, the frequency averaging of fluctuations
leads to an increase in the time correlation scale and a
narrowing of the spectrum of the noiselike signal by a

factor of .
If, along with the signal reflected from the surface, a

weakly fluctuating direct signal without any contacts
with the surface is received, then, with the compensa-
tion for the time its propagation, the mean intensity of
the fluctuating part of the field will additionally be
weakened:

Here, ∆R is the path difference between the direct sig-
nal and of the signal reflected from the surface.

The analytical estimates obtained are valid for com-
posite noiselike signals and do not allow the transition
to the case of monochromatic radiation. Substituting
u(t) = A0cos(ω0t – ϕ0) in Eq. (1), at ω0T @ 1, we arrive
at the following expression for the variance of mono-

chromatic signal fluctuations  at the output of the
correlation receiver:

Taking into account that, at (∆ωP/ω0)2 ! 1, we have

|Re (ω0, –ω0, τ)| ! |Re (ω0, ω0, τ)|, and, in the case
of small integration times when (T/∆tP0)2 ! 1, we

obtain  .  . /8. For identical values of
the mean square of the noiselike signal amplitude dis-
tributed by the Rayleigh law and the square of the

monochromatic signal amplitude, we have  = 2 .
With allowance for this equality, the ratio of the vari-
ance of the noiselike signal fluctuations and that of the

monochromatic signal equals NVF , which deter-
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mines the extent of averaging over frequency and time
of noiselike signal fluctuations.

Consider now the case of weak fluctuations. Carry-
ing out the same transformations as for strong fluctua-
tions, in the framework of one-dimensional model Tak-
ing into account only the exponential decay of the fre-
quency correlation in Eq. (9),1 we arrive at the

expression K∆Q(∆t, τd) = . The latter repre-
sents the weighted sum of nine integrals coinciding in
their form with intergal (7) but with different values of
parameters entering in Jn:

The coefficients  have the following form:  =

0.5 exp(–H1 – H2),

The quantities H1, H2, and H3 have the same form as in
the case of strong fluctuations (Eqs. (12)). As in the

case of exp(– ) ! 1, the integration results can be
expressed in terms of the probability integrals of the
complex argument (see Eq. (13)).

An analysis of the sum of integrals shows that the

terms Jn with numbers n = 7–9 do not depend on the
time delay in the channel of the reference signal td or
the frequency correlation scale ∆ωP2. They are propor-

1 In this model, the frequency decorrelation of fluctuations is
related to the shift of intensely scattering regions of the surface
with a change in frequency.
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tional to (∆ωuT)–1 and characterize incompletely aver-
aged fluctuations of the initial noiselike signal. The
terms with numbers n = 3, 4, 7–9 do not depend on the
ratio between the integration time T and the correla-
tion scale of random sea ∆tζ, the term with the number
n = 9 being predominant in the absolute value. At

∆ T @ 1, this term approximately equals J9 .

0.5(Φ0/R0)2 exp(–2H1)cos(ω0∆t) /(∆ T). By the
assumption that the signal is narrow-band ((∆ωu/ω0 ! 1),

we have | Jn| ! | J1| at n = 2, 5, 6. As a result, as
in the case of strong fluctuations and with the same
restrictions, we arrive at the approximate expression in
the form of two terms with numbers n = 1 and 9. The

main contribution is given by the first term J1 while

J9 is the next term in order of magnitude with
respect to (∆fuT)–1.

Consider the limiting cases on the assumption that
(∆fuT)–1 ! 1. In this case, at small integration times

when the condition T ! 1 is satisfied, we have

(15)

According to Eq. (15), the position of the maximum of
the AKF envelope, K∆Q(∆t), depends on the time delay
in the reference signal channel. Only with the introduc-
tion of the delay for the arrival time of the scattered
(incoherent) component of the received signal, td =
(R0/cs) + (∆td/2), the maximum fits the zero shift, ∆t = 0.
In this case, the normalized AKF, Γ∆Q(∆t) =
K∆Q(∆t)/K∆Q(0), has the same form as for strong fluctu-
ations. With the introduction of the delay for the prop-
agation time of the coherent signal component, td =
R0/cs, the maximum of the envelope of Γ∆Q(∆t) is

shifted by ∆tm = ∆td/(1 + ) but the effective width
of the correlation maximum remains the same as in the

case of τd = ∆td/2. Note that the condition T ! 1,
under which Eq. (15) is valid, is almost equivalent to
the inequality ΩζT ! 1 for temporal delays varying

ω̃u M̃9
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within the effective width of the correlation maximum
near the values τd = ∆td/2 and τd = 0.

The expression for the NVF, which for weak fluctu-

ations we define by the relationship  = K∆Q(0,

τd)2 / , has the form

(16)

The power factor in Eq. (16) is equal to the maximal

value of NVF, , which corresponds to the ref-
erence signal delay, td = (R0/cs) + (∆td/2). The quan-

tity , which characterizes the extent of fre-
quency averaging at the maximum of the incoherent
signal component, coincides with the maximum value
of the NVF for the case of strong fluctuations and cor-
responds to the delay td = R0/cs. With the introduction

of the delay td = R0/cs, the quantity  in the case of
weak fluctuations decreases due to the shift in time of
the maxima of coherent and incoherent signal compo-
nents at the output of the correlation receiver and
becomes equal to

 . [1 + 0.5(∆ωu/∆ωP2)2]–1/2

× exp[–(∆ωuγupΩζ∆tζ/l∆ωP2)2/32]. 

The frequency averaging at the maximum of the
coherent component, i.e., at td = R0/cs, can also be char-
acterized by the variation coefficient of the output

effect of the correlation receiver ηQ = σQ  =

. In the limiting cases (∆ωu/∆ωP2)2 ! 1
(synchronous fluctuations) and (∆ωu/∆ωP2)2 @ 1

(selective fluctuations), we have  . 0.5  .

0.5 exp[–(∆ωuΩζ∆tζ/l∆ωP2)2/32] and  .

0.707 (∆ωP2/∆ωu)exp[–(Ωζ∆tζ)2/16l2], respectively.
In the first case, for a sufficiently small ∆ωu, the quan-
tity ηQ approaches the value determined by the ampli-
tude variation coefficient of the monochromatic signal
reflected from the statistically rough surface.

For large integration times (at εζ = T/∆tζ ≥ 1), we
have

(17)
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In the intermediate region, at T ≥ 1, (Tγup/∆tζ)2 ! 1

(this may be at (∆ωu/∆ωP2)2 @ 1, when  ! 1), we
have

(18)

The form of the function Γ∆Q(∆t) is determined by the
same expressions as at ΩζT ! 1, i.e., almost does not
depend on the ratio between the integration time and
the correlation scales of random sea, Ωζ and ∆tζ.
Expressions in the braces in Eqs. (17) and (18) describe

the NVF of signals for τd = ∆td/2 (in this case,  ≡ Ωζ
but, in general, depending on the ratio between ∆ωu and

∆ωP2,  can take values in the interval 0.5Ωζ/l <  <
Ωζ). At τd = 0, these expressions are acquire the factor

exp[–(∆ωu∆tdγup)2/32(1 + )] characterizing, as in the

case of T ! 1, the additional smoothing of fluctu-
ations caused by time shifts of the maxima of coherent
and incoherent components. Along with averaging
over frequency, averaging over time is also present in
Eqs. (17) and (18).

Thus, in this paper, the variance and time correlation
of fluctuations were studied for the output effect of a
correlation receiver at the reflection of acoustic noise-
like signals from a rough sea surface for different val-
ues of the radiation bandwidth, the scale of frequency
correlation of the transfer function fluctuations, and the
time delay in the reference signal channel. Calculations
are carried out on the basis of the general expression
obtained for arbitrary linear channels with random
parameters and the expression for the frequency–time
correlation moment of the transfer function fluctuations
in the channel with reflections from a water surface
with two-dimensional quasi-harmonic roughness. The
cases of strong and weak fluctuations are considered in
the framework of a single-scale model of frequency
correlation. According to these calculations, under the
conditions of a rapid selective fading, the fluctuations
of the reflected signal at the output of the correlation
receiver are substantially averaged, as compared to the
case of a slow synchronous fading. Under these condi-
tions, at comparable intensities of the coherent and
incoherent components or with the predominance of
the coherent component, the extension of the frequency
band of the radiated signals, which promotes the aver-
aging of fluctuations, leads to an improvement of the
reception quality owing to the suppression of distor-
tions associated with amplitude and phase fluctuations
and to an increase in the signal coherence. Under the
same conditions, at a low level of the coherent compo-
nent (strong fluctuations), the frequency averaging of
fluctuations, which increases as the signal frequency
band broadens, leads to a considerable decrease in the
total intensity of the output effect of the correlation
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receiver for the signals reflected from the sea surface
and, therefore, to an energy loss, as compared to the
case of synchronous slow fading, which is realized for
small integration times and narrowband radiation. At
the same time, in the presence of a weakly fluctuating
direct signal, the suppression of the reflected signal
arriving with a small delay raises the efficiency of the
correlation reception. The results of the calculations
presented above can be used in choosing the signal
parameters matched with the propagation channel, as
well as the algorithms and parameters of signal pro-
cessing, in underwater monitoring systems based on the
active sonar technique and in underwater sound com-
munication in the presence of reflections from the sea
surface.

A closer investigation of the frequency and time
averaging of fluctuations can be performed on the basis
of numerical calculations by using the expressions
obtained in this paper for different ratios between the
parameters of the probing signals, the parameters of the
correlation processing, and the characteristics of the
transfer function of the channel with reflections from
the rough surface, as well as with the use of the results
of calculations for a more general two-scale model of
frequency correlation.
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Abstract—Results of a theoretical calculation of the directional characteristics of elastic waves excited by an
oscillating point force in a fluid-saturated porous medium are presented. Based on Boit’s theory and the theory
of elementary acoustic sources, the wave amplitude and radiation power are calculated for two kinds of longi-
tudinal waves and the transverse wave. An analysis of the spatial angular characteristics of elastic waves is per-
formed for two types of rock, namely, water- and gas-saturated sandstones. The angular distributions of vibra-
tions in the solid and liquid (gaseous) phases of the medium and the frequency dependences of the radiation
power associated with each of the three types of acoustic waves are presented in graphical form. © 2005 Ple-
iades Publishing, Inc.
This paper is devoted to analyzing the characteris-
tics of longitudinal waves of the first and second kinds
and the transverse waves radiated into an infinite fluid-
saturated two-component porous medium under the
excitation of the medium by an oscillating force applied
at a certain spatial point. Among the approaches used
for analyzing the acoustic wave processes in porous
media and solving a number of applied problems, the
Frenkel–Biot wave theory occupies an important place;
in addition, this theoretical model has found further
development in many investigations. As follows from
the recent literature concerned with this subject [1],
modifications of this theory are mostly directed toward
an adequate description of the processes occurring
when a seismoacoustic wave propagates in actual
(characterized by complex structural and physical
properties) rocks forming layers of fluid-saturated col-
lectors and toward an explanation of the accompanying
effects. These papers investigate the features related to
the complication of acoustic wave processes induced
by the multicomponent structure of a porous medium.
At the same time, there are only a few works that
develop the analysis of the efficiency of acoustic radia-
tion by vibration sources in such media. Presumably,
this occurs because of the lack of reliable data on the
measurements of both fast and slow Biot waves that
would be obtained from actual seismic investigations or
practical works on borehole acoustics, which puts in the
forefront the necessity of analyzing the conditions for
the existence of the mentioned waves while the prob-
lem of wave excitation in a complex multicomponent
medium is shifted to the background. However, in order
to explain the absence of recent experimental data with
measured seismoacoustic signals that can be identified
with confidence with longitudinal Biot waves of both
1063-7710/05/5106- $26.00 0653
kinds, it is worthwhile to analyze the efficiency of their
excitation by different sources in a model medium imi-
tating fluid-saturated rocks. Of fundamental interest is
the calculation of acoustic fields excited by elementary
vibrators (in particular, by a dipole vibrator) similar to
that carried out in [2] for the field of a pulsating source.
The cited paper considered the excitation of elastic
waves described by Biot’s model by a monopole source
in a two-phase medium. The wave amplitude and the
acoustic power carried by the waves were calculated
under the assumption that the pore-filling fluid is either
water or gas (air), the skeleton parameters being the
same in both versions of the problem. The present paper
deals with a similar analysis under conditions of the
same two-component medium with water or air satura-
tion of open pores, but in the case of elastic wave radi-
ation by a vibrator known in acoustics as a dipole
source or a source of alternating force.

In addition, the enhancement of the efficiency of
seismoacoustic radiation in the form of the desired
waves (i.e., elastic waves of a certain required type) is
an important stage in solving the problems of localiza-
tion and diagnosis of producing collectors saturated
with hydrocarbons, as well as the problems of an active
vibration action on oil and gas pools with the aim of
increasing the discharge of oil and gas wells [3].

The calculation is carried out under the assumption
that the two-phase medium described by Biot’s theory
[4] is unbounded and is excited at a certain spatial point
by an alternating force. Basically, such an analysis
could be performed on the basis of modeling the oper-
ation of borehole sources, which would be in better
agreement with actual conditions. However, such a
statement would complicate the problem by the neces-
sity of considering the structural features of the source
© 2005 Pleiades Publishing, Inc.
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and the borehole; to omit this necessity, we consider the
above problem in the simplest statement. We use the
same idealizations as in the basic theory and take into
account all the normal waves excited by the force
source; each of these waves makes its own contribution
to the total energy balance, and the calculation of these
contributions is also part of the problem on the acoustic
excitation of a porous medium. Solving this problem,
we use the approach in which the force source is mod-
eled as a rigid foreign massless sphere of a small wave
size, which is embedded in the medium and can oscil-
late in the axial direction with a given displacement
amplitude [5].

Monograph [5] includes the derivation of the formu-
las for the spatial distribution of elastic particle dis-
placements and stresses in a single-phase elastic
medium under the action of an alternating force source
in the form of a periodically pulsating sphere whose
walls are in good contact with the particles of the
medium. Such a source is also known as a dipole
source, and the corresponding dipole moment is deter-
mined in terms of the vector of elastic displacements of
the medium u, which coincides with the vector of the
displacements of the oscillating sphere at the sphere–
medium contact boundary under the condition that the
sphere radius r0 tends to zero [5]. If this source operates
in a solid or liquid medium, the dipole moment is
related to the displacement vector by the following

expressions: in a solid medium,  = (r =

r0)/ω2(2/  + 1/ ), where cl and ct are the velocities of
propagation of longitudinal and transverse waves and
ω is the frequency of the action; in a liquid medium,  =

(r = r0). In both cases, the dipole moment

is related to the force acting on the medium by the
expression  = –ρω2 , where ρ is the density of
the medium. In what follows, we assume that inequali-
ties |u| ! r0 ! 2πct/ω hold; we also omit everywhere
the temporal factor e–iωt.

We start with the expressions given in the aforemen-
tioned monograph for the radial and meridional compo-
nents of oscillating displacements in a conventional
elastic medium driven longitudinally by axial vibra-
tions of the sphere. In view of the fact that our medium
is composed of two phases, namely, skeleton and fluid,
we modified these expressions by considering the con-
tributions of all normal modes to the oscillating dis-
placements of particles of each fraction. Then, we can
represent the spatial dependence of the total field of dis-
placements in the form

Ns 12πr0u–
r0 0→
lim

ct
2 cl

2

N f

2πr0
3u–

r0 0→
lim

Fs f, Ns f,
(1)

(2)

(3)

where ur and uθ are the radial and meridional compo-
nents of the oscillating displacements of the skeleton;
v r is the radial component of displacements of the fluid;
indices l1 and l2 of the wave numbers and phase veloc-
ities, kl1 = ω/cl1 and kl2 = ω/cl2, correspond to the longi-
tudinal waves of the first and second kinds (Biot
waves); and index t of the wave number and phase
velocity, kt = ω/ct, corresponds to the shear (transverse)
wave.

The coefficients C, D, and E are unknown, and they
are to be determined in solving the problem on wave
excitation. We do not draw here the component vθ in an
explicit form, because it does not appear in the bound-
ary conditions at the source–medium contact interface
in view of the slippage of the liquid fraction. However,
this component is taken into account in the calculation
of the total acoustic power, because it is present in the
radiation field of the shear wave. It can be expressed in
the form vθ = Mtuθ [6]; the meaning of the quantity Mt

will be explained below.
The wave numbers kl1, kl2, and kt can be determined,

in accordance with [4, 6], as  = (ω/Vα)2,  =

(ω/Vα)2, and  = (ω/ct)2 = (ω/Vt)2(Er – iEi), where
Vt is the velocity of shear waves in the skeleton material
and , and  are the roots of the dispersion equation
that governs the velocities and attenuation coefficients
of longitudinal waves of the first and second kinds:

(4)

Explicit expressions for the parameters appearing in
this equation, including the quantity M and the charac-
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teristic velocity of longitudinal waves Vα, as well as fre-
quency correction functions Er and Ei that govern the
transverse wave dispersion and attenuation, will be
given below.

A further analysis of acoustic radiation characteris-
tics is preceded by the numerical solution of Eq. (4),
whose roots  define the phase velocities and atten-
uation coefficients of longitudinal waves by the rela-

tionships cl1, 2 = Vα/Re(  and α1, 2 =

ωIm( )/Vα. The parameters z1 and z2 appearing in

Eq. (4) are expressed as follows: z1 = /  and z2 =

/ , where cl and cf are the velocities of longitudinal
waves in the materials of the skeleton and the fluid.

Biot [4] introduced a number of parameters, which
include a combination of the densities of the skeleton (ρs)
and the fluid (ρf) ρ = ρs – β(ρs – ρf), the effective inter-
phase density parameter ρα, the parameter b = 8µβξ/a2,
the coefficient of fluid dynamic viscosity µ, the dimen-
sionless porosity β, the dimensionless pore winding ξ,
and the average pore radius a. In addition, Biot intro-
duced the dimensionless density and elasticity con-
stants (now called Biot’s constants) determined in
terms of the above parameters as follows:

(5)

(6)

The squared characteristic velocity  is expressed
by the following explicit relationship:

 = ,

where Q is the interphase stiffness and parameter M in
Eq. (4) is given by the formula
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Here, the functions ε1 and ε2 describe the deviations of
the fluid flow from Poiseuille flow in the presence of
vibrations of the liquid along open cylindrical channels
that model the pores of the medium. These functions
are related to the special function

F(κ) = 

that Biot [4] introduced to correct the frequency char-
acteristics of longitudinal waves. The quantity T(κ) is
expressed in terms of the zero-order Kelvin cylindrical
function and its derivative

T(κ) = ;

the argument of these functions is κ ≅  2 , and the
characteristic (or critical) frequency is given by the
relationship fc = b/2πρ(γ12 + γ22). The aforementioned
relationship is as follows:

ε1 = (γ12 + γ22) Re(F(κ)),

ε2 = (γ12 + γ22) Im(F(κ)).

The functions used to correct the frequency character-
istics of transverse waves are also expressed in terms of
the functions ε1 and ε2:

Er = , 

Ei = .

The frequency-dependent velocity of transverse waves

is described by the relationship ct = Vt/Re( ).

The coefficients M1 and M2 in Eq. (3) can be derived
by correlating the results obtained by Biot [4] with
those of paper [6]. The corresponding expressions in
terms the dimensionless constants are given by the for-
mulas

(7)

The system of equations in coefficients C, D, and E
can be obtained by drawing the conditions that express
the dipole forces in terms of the corresponding limiting
values of the elastic displacement vectors of both frac-
tions of the medium at the sphere boundary in the limit
r0  0. In the general case, an acoustic dipole applies
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to the skeleton and the fluid the forces that can be rep-
resented in the form [5]

(8)

Along with the normal and tangential components of
acoustic displacements, it is convenient to introduce the
corresponding components of the forces acting on the
medium from the part of the sphere by the relationships

(9)

Then, substituting Eqs. (1)–(3) into Eq. (8), we obtain
the system of equations in coefficients C, D, and E

(10)

whose solution can be expressed as follows:

(11)

(12)

(13)

Description of the field of vibrations assumes that the
relationship be specified between the forces acting
from the part of the dipole source on the skeleton and
the fluid; physically, the most justified assumption for
the medium with open pores is the assumption that the
source immediately acts only on the solid skeleton:
|Fs| = F, |Ff | = 0. The use of Eqs. (9) simplifies expres-
sions (11)–(13) for the coefficients, reducing them to
the form
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In these expressions, the factor (2/  + 1/ ) should
be considered as the square of a certain inverse fre-

quency ϖ–2 = (2/  + 1/ ) that depends on the
parameters of the medium and the size of the source.

Substituting Eqs. (14) into Eqs. (1)–(3), we arrive at
the desired expressions for the wave displacements in
the far (radiation) zone:

(15)

for vibrations in the first longitudinal wave in the solid
and liquid fractions and

(16)

for vibrations in the second longitudinal wave in the
solid and liquid fractions.

Taking into account the expression for coefficient E
in Eqs. (14) and the relationship between the oscillation
amplitudes of transverse waves in the skeleton and the
fluid,

vθ = Mtuθ,

where

Mt = ,

which can be derived by analogy with Eqs. (7), we can
represent the wave displacements of each fraction in the
transverse wave by the formulas

(17)

Prior to analyzing the results of calculating the spa-
tial angular behavior of acoustic field and radiated
power, we give the values of parameters used in the
subsequent calculations for rocks of two types, namely,
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Fig. 1. Frequency dispersion of the propagation velocity of acoustic waves in water-saturated sandstone: (a) velocities of the first
longitudinal, cl1, and transverse, ct, waves; (b) velocity of the second longitudinal wave cl2.
for highly porous sandstone with water-filled pores in
the first case and with air-filled pores in the second
case. In both cases, we use the following parameters: ξ
= 1, β = 0.45, and πa2 = 10 D. We specify the skeleton
parameters as follows: ρs = 2.5 g/cm3, cl = 3 km/s, and
Vt = 1.73 km/s; it is clear that the use of reference data
for specifying these values is not quite appropriate,
because reference data correspond to the medium with
pores, whose presence reduces the stiffness and the
density. In contrast to this approximation, which is suit-
able only in the context of qualitative demonstrative
analysis, the assumption that ρf = 1 g/cm3 and cf =
1.5 km/s for water taken as the fluid is fairly rigorous,
because these parameters remain practically intact for
the moisture filling the pores. In the case of gas-filled
pores, we suggest the following values of the fluid
parameters: ρf = 0.001 g/cm3 and cf = 340 m/s. As is
known, in the pores of rocks located at large depths,
these values can appreciably differ from the values
measured under room conditions. The basic parameters
being fixed, the interphase stiffness Q and interphase
density ρα, i.e., the parameters that determine the rela-
tionship between the subsystems of the skeleton–fluid
system, can be found from the relationship that holds
for Biot’s dimensionless stiffness and density con-
stants: σ11 + σ22 + 2σ12 = γ11 + γ22 + 2γ12 = 1. As a result,
we find that, in the case when the pore fluid is water, the
dimensionless constants are as follows: the elasticity
constants σ11 = 0.87, σ12 = 0.0244, and σ22 = 0.0811 and
the density constants γ11 = 0.80822, γ12 = –0.0548, and
γ22 = 0.30137. Calculating these constants, we obtained
the interphase elasticity Q = 3.75 × 108 Pa and the inter-
phase density ρα = 0.1 g/cm3. In this case, the correspond-
ing values of the characteristic velocity of longitudinal
waves and the critical frequency are Vα = 2.893 km/s and
fc = 232 kHz for this type of rock.

In the case when the pore fluid is air, the parameters
determining the subsystem relationship assume the val-
ues ρα = 0.0001 g/cm3 and Q = 6.5 × 103 Pa. In addition,
we obtain new values for Biot’s dimensionless con-
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
stants (they are again calculated by Eqs. (5) and (6)):
σ11 = 0.9999938, σ12 = 5 × 10–7, and σ22 = 5.2 × 10–6 for
the elasticity constants and γ11 = 0.9997455, γ12 =
−0.0000727, and γ22 = 0.0003998 for the density con-
stants. The characteristic velocity of longitudinal waves
now assumes the value Vα = 3 km/s, and the critical fre-
quency becomes much higher: fc ≥ 3 MHz.

Now, we present the frequency-dependent propaga-
tion velocities and attenuation coefficients of acoustic
waves calculated with the use of Biot’s model for both
versions of the two-phase medium with the above-spec-
ified parameters. Our interest lies in the frequency
range 0–4000 Hz, whose low-frequency part corre-
sponds to the seismic prospecting range and whose
high-frequency part is suitable for use in borehole log-
ging measurements or borehole-to-borehole surveys.
Figure 1a shows that velocities cl1 and ct remain nearly
constant; a rapid variation with frequency is character-
istic only of the propagation velocity of the longitudi-
nal wave of the second kind cl2. As may be seen from
Fig. 1b, in the frequency range of interest, its value var-
ies from a few to three hundred meters per second. Fig-
ure 2a shows the frequency-dependent attenuation
coefficients of the longitudinal wave of the first kind
(α1) and the transverse wave (αt), and Fig. 2b shows the
frequency-dependent attenuation coefficient of the lon-
gitudinal wave of the second kind α2. The coefficients
α1 and αt grow with frequency according to quadratic
laws, the increment being somewhat higher (but quite
comparable) in the case of the transverse wave. The

coefficient α2 increases according to a law close to 
and, in the frequency range of interest, exceeds the
coefficients corresponding to the first and transverse
waves by at least three orders of magnitude. This is
indicative of the fact that pore-wall deceleration
becomes the prevailing factor in the loss mechanism, as
distinct from the conventional viscous-volume losses
for the two former wave types. It is obvious that the
strong attenuation makes the measurement of this wave
very difficult.

f
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Fig. 2. Frequency-dependent attenuation coefficients of acoustic waves in water-saturated porous sandstone: (a) attenuation coeffi-
cients of the first longitudinal, α1, and shear, αt, waves; (b) attenuation coefficient of the second longitudinal wave α2.
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Fig. 3. Frequency dispersion of the propagation velocity of acoustic waves in gas-saturated sandstone: (a) velocities of the first lon-
gitudinal, cl1, and transverse, ct, waves; (b) velocity of the second longitudinal wave cl2.
Similar results were calculated for the acoustic char-
acteristics corresponding to another type of rock—the
gas-saturated sandstone. Figure 3a shows the propaga-
tion velocities cl1 and ct that appear to be approximately
constant in the frequency range of our interest, and
Fig. 3b shows the frequency-dependent velocity cl2,
which appears to be abnormally low. Figures 4a and 4b
present the attenuation coefficients calculated by Biot’s
model; from these curves it follows that the attenuation
of the second longitudinal wave appears even higher
(by three orders of magnitude) than in the above case of
water-saturated rock. This is indicative of the fact that
the use of this wave in practice faces even greater diffi-
culties related to the wave attenuation. At the same
time, not only transverse and first longitudinal waves,
but also the second wave is of interest for the diagnosis
of the medium. The use of this wave for active action on
oil or gas pools could be expedient in view of the fact
that precisely the second wave is capable of initiating
relative displacements of fractions, because the fluid
vibrations relative to the skeleton walls are character-
ized in this wave by an appreciable phase shift (at fre-
quencies below the critical one), while the correspond-
ing phase shift in the first and transverse waves is neg-
ligible. As calculations show, sources of the dipole type
efficiently excite these waves, which favorably distin-
guishes dipole sources from monopole sources, and the
analysis of powers radiated in different types of waves
additionally supports this conclusion. In particular, the
results of calculations offer a possibility to analyze the
total energy balance and compare the relative contribu-
tions of different types of acoustic waves excited by
dipole and monopole sources in a two-phase medium.

Consider the acoustic characteristics of the dipole
source that are calculated by Eqs. (15)–(17). In the cal-
culations, we used the data on wave velocities in both
types of rock.

Adverting first to the water-saturated sandstone, we
consider Fig. 5a, which shows the directional patterns
of the first longitudinal wave (one curve for skeleton
vibrations ur1 and the other for fluid vibrations v r1) in
the source plane, the angular coordinate of the observa-
tion point being measured with respect to the direction
of the force vector. In the calculations of the angular
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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sandstone: (a) first longitudinal wave in the skeleton, ur1, and in the fluid, v r1; (b) second longitudinal wave in the skeleton, ur2, and
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in the fluid, v r1; (e) second longitudinal wave in the skeleton, ur2, and in the fluid, v r2; (f) transverse wave in the skeleton, uθ.
and frequency characteristics, we normalized the data
by the maximal amplitude of skeleton vibrations ur2 in
the longitudinal wave of the second kind in water-satu-
rated sandstone (see the circular pattern in Fig. 5b), so
that the levels of vibrations in other waves were mea-
sured relative to this maximal amplitude. Amplitudes
ur1 and v r1 calculated at a frequency of 100 Hz are quite
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
close to each other. As regards the amplitudes ur2 and
v r2, we have drastically different (by more than three
orders of magnitude) levels of vibrations in favor of the
wave of the second kind. Unlike the vibrations in longi-
tudinal waves, the angular distribution of skeleton
vibrations in the transverse wave uθ (see Fig. 5c) is
described by the function sinθ, and the vibration ampli-
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tude exceeds the corresponding amplitude in the longi-
tudinal wave of the first kind by a factor of about ten.
The spatial distribution of fluid vibrations vθ in this
wave coincides with that of skeleton vibrations uθ; for
this reason, we present no such curve, though the
amplitude of these vibrations is somewhat different.

One can expect that this excess of the second longi-
tudinal wave over other waves in level is caused not
only by the specificity of the dipole source action but
also by the reduced velocity of this wave in the
medium. Nevertheless, in the case of excitation of the
medium by a monopole source, there is an inverse ratio
between the levels of the longitudinal waves [2].
Because of the more efficient generation and higher
degree of attenuation of the second waves, the decision
about the possibility of experimental measurements
and practicability of these waves requires a further
analysis of wave characteristics.

The circular patterns in Figs. 5d–5f show the calcu-
lated directional patterns of waves generated by the
same source in gas-saturated rock. The angular behav-
ior of each of the waves coincides with that of the cor-
responding wave considered earlier, and the levels of
the transverse and first longitudinal waves are nearly
the same as in the case of water-saturated sandstone.
However, the level of the second longitudinal wave
increases in this case by 80 dB. Because the attenuation
coefficient of acoustic waves of this type in the gas-sat-
urated medium also increases by orders of magnitude
and far exceeds the attenuation coefficient in the water-
saturated medium (see Fig. 4b), a discussion of other
wave characteristics will be instructive for understand-
ing the whole picture.

In particular, it is of interest to consider the fre-
quency-dependent amplitude of waves generated by the
dipole source in the water- or gas-saturated porous
medium and received at a certain reference distance
from the source (for example, at a distance of 1 m in the
direction of the maximum of the directional pattern for
each wave). Figures 6a–6d show the calculated wave
amplitudes in the frequency range 0–4 kHz for both
medium types (as earlier, we normalize all the data by
the maximal amplitude of wave ur2 for the water-satu-
rated sandstone). Comparing these characteristics, we
should mention the weak frequency dependence of the
skeleton and fluid vibrations in the first longitudinal
and transverse waves (see curves in Figs. 6a and 6c); in
addition, the amplitude of vibrations in the transverse
wave is an order of magnitude greater than the ampli-
tude of the first longitudinal wave. Figures 6b and 6d
show a similar dependence for the second longitudinal
wave in the skeleton and the fluid in both water- and
gas-saturated media. Unlike the previous curves
(Figs. 6a, 6c), this dependence shows that the generated
wave amplitude rapidly decreases with frequency. In
addition, these data support the relationships illustrated
in Fig. 5; namely, the level of the second wave radiated
into the water-saturated sandstone exceeds the levels of
the first and shear waves by at least three orders of mag-
nitude and, when this wave is radiated into the gas-sat-
urated sandstone, it exceeds the level of other waves by
another three orders of magnitude up to ultrasonic fre-
quencies.

In parallel with the displacement wave field, the
total acoustic power carried by the first and second lon-
gitudinal and transverse waves is also an informative
characteristic. The wave energy balance is an integral
characteristic that is important for the optimum choice
of the wave type used for sounding fluid-saturated
rocks. We calculated the powers of each of the three
waves described by Eqs. (15)–(17) according to the fol-
lowing final expressions (also used for calculating the
frequency-dependent curves):

(18)

(19)

(20)

where W1, 2, s are the acoustic powers of the first and
second longitudinal waves and the transverse wave,
respectively.

Consider the powers calculated by Eqs. (18)–(20) at
F = 1 N and ϖ = 2π4000 s–1. The curves in Figs. 7a–7c
show the frequency-dependent acoustic power carried
by the first and second longitudinal waves and the
transverse wave excited in water-saturated sandstone.
The curves in Figs. 7d–7f show similar dependences for
gas-saturated sandstone. One can see that the power of
each type of wave increases with frequency according
to approximately similar laws, the power of transverse
waves exceeding the power of the first longitudinal
waves by a factor of approximately 30 for all frequen-
cies in both media. The frequency-dependent power of
the second longitudinal wave is given in Figs. 7b and 7e
for water- and gas-saturated sandstone, respectively. In
the case of the water-saturated medium, the average
level of this power exceeds the power level of other
wave types by two orders of magnitude, and this excess
increases to seven orders of magnitude in the case of the
gas-saturated medium. Such proportions in the wave
energy balance are indicative of the fact that the energy
of the source is mainly spent for exciting the second
longitudinal wave, though this fact cannot ensure the
predominance of this kind of wave for all distances
because of the acoustic energy dissipation. In order to
take into account the above data on the acoustic wave
attenuation, one must consider the joint effect of the
wave attenuation and the dipole source excitation effi-
ciency, whose competition determines the amplitudes
of acoustic fields for different distances.
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for the (a) first longitudinal wave, W1, (b) second longitudinal wave, W2, and (c) transverse wave, Ws. Gas-saturated sandstone:
power versus frequency for the (d) first longitudinal wave, W1, (e) second longitudinal wave, W2, and (f) transverse wave, Ws.
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Consider now the results that show the law of the
wave level decay in water- and gas-saturated media.
Figure 8 shows the levels of acoustic waves propagat-
ing in the skeleton and the fluid. The curves in Figs. 8a
and 8b are calculated for water-saturated sandstone and
correspond to acoustic waves with frequencies of 100 Hz
and 4 kHz, respectively (the latter frequency imitates
the range of acoustic borehole logging operations). Fig-
ures 8c and 8d show the curves calculated for waves of
the same frequencies, 100 Hz and 4 kHz, in gas-satu-
rated sandstone. We emphasize that the amplitudes
given in these figures take into account only the field of
radiation, although we use distances from the source
that are comparable with the wavelength of the second
longitudinal wave (and smaller than the wavelength of
the first longitudinal and transverse waves) for both
100-Hz and 4-kHz frequencies, which means that non-
wave terms can noticeably contribute to the total level
of vibrations for these distances. Therefore, the curves
in Fig. 8 are no more than an illustration of the distance-
dependent relationship between the levels of acoustic
vibrations (due to the divergence and dissipation) of
different waves without taking into account the near
fields. These curves clearly show that the amplitude of
the second longitudinal wave (propagating in both skel-
eton and fluid) decays with distance faster than the first
longitudinal and transverse waves. The region where
the amplitude of the second longitudinal wave exceeds
the amplitudes of other waves is limited to distances
comparable with the wavelength of this wave, which
means that it certainly falls in the near-field region of
the shear and first longitudinal waves. Therefore, diffi-
culties may arise in detecting this wave against the
background of other waves. Incidentally, we note that
the use of a piston vibrator instead of the point source
considered here can considerably reduce the contribu-
tion of nonwave terms, which were ignored in con-
structing the plots. Nevertheless, the interval of dis-
tances where the amplitude of the second wave exceeds
the amplitudes of other waves in each of the plots of
Fig. 8 represents the distance range (though relatively
small) where this wave can be received in principle. For
example, in the case of water-saturated sandstone, this
interval is 0.5 m at a frequency of 100 Hz and only
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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2.5 cm at a frequency of 4 kHz. Comparing these
results with similar results obtained in [2], one can see
that we obtained a situation opposite to that in the
medium driven by a monopole source. In the latter case,
there is no region where the second longitudinal wave
prevails and its selection against the background of the
first longitudinal and shear waves requires special tech-
niques and special measuring instruments.

Thus, using numerical calculations, we demon-
strated the fundamental possibility of measuring both
Boit waves (the first and second longitudinal waves) in
actual rocks (water- and gas-saturated sandstones). In
low- and middle-frequency ranges, there exists a cer-
tain region of distances from the dipole acoustic source
where vibrations in the form of the second longitudinal
wave prevail in amplitude over other waves, which is
impossible in the case of a monopole acoustic source.
This inference argues in favor of the necessity to solve
the problem on acoustic wave excitation by an oscillat-
ing force source. It is quite possible that a similar result
can be obtained for other, more complex types of vibra-
tors. The numerical calculations performed above also
explain the difficulties that may hinder obtaining reli-
able experimental data on the second longitudinal
waves from seismoacoustic signals measured under the
conditions of actual borehole observations or seismic
surveys. In addition, the results obtained may be useful
for evaluating the possibilities of using both types of
vibrators considered above, as well as newly designed
modern vibrators that ensure an effective acoustic
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
action on oil pools and improve the accuracy of local-
ization of the fluid-saturated regions against the back-
ground of other rocks.
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Abstract—The geometrical-acoustics approach is used to calculate the vertical structure of the sound field in
an oceanic waveguide. The profile of the sound speed is specified to be canonical and range-independent along
a 1000-km propagation path. A monochromatic sound source lies on the waveguide axis. It is shown that, at
long distances from the source, the sound field formed by the water-path rays is mainly concentrated in the caus-
tics, the number of which is determined by the number of the overlapping ray cycles at a given distance.
A method for estimating the amplitude of the sound field produced by individual rays is proposed. The ampli-
tudes obtained are used to calculate the total sound field along the vertical. A possible cause of the chaotic dis-
tribution of ray coordinates is considered. This cause may consist in the arbitrary choice of the number of rays
and their departure angles without taking into account the discrete character of one of the variables. This mech-
anism of ray chaos formation furnishes an explanation for the fact that the chaos obtained in calculations is
mainly associated with the flat rays. © 2005 Pleiades Publishing, Inc.
An important problem of ocean acoustics is the
study of long-range sound propagation. The urgency of
this problem is particularly determined by the develop-
ment of the methods of ocean tomography. In [1–3],
experiments on superlong-range propagation of pulsed
signals are described, and the data obtained are inter-
preted using calculations based on different theoretical
models, both with and without taking into account the
fluctuations in the medium. In computations, the ray-
theory representation of the sound field prevails. The
ray trajectories are calculated by solving the Hamilton–
Jacobi equations that are derived from the wave equa-
tion in view of the analogy between a material particle
trajectory and a ray path.

The authors of the cited publications argue that, in
the vertical plane, the ray chaos is formed at long
ranges both in the presence of the fluctuations in the
medium (caused by internal waves, for instance) and in
the absence of any disturbances. The major part of [3]
consists in a study of the ray chaos, which is considered
to be a consequence of the Hamiltonian structure of the
ray equations. According to such considerations, the
strongest chaos corresponds to the near-axis flat rays. In
this case, multimicropaths appear that hinder the sepa-
ration of individual sound pulses. For the arrivals of
steep rays, multimicropaths are few in number and the
characteristic features of the undisturbed time structure
of the sound field persists in the vertical plane, though
on the background of the ray chaos. The difference in
the chaos of flat and steep rays is explained in [3] by the
fact that the ray chaos in these utmost angular ranges of
the rays obey different statistical descriptions. How-
1063-7710/05/5106- $26.00 0664
ever, no mechanism linking the statistical description
and the chaos is considered in [3]. Therefore, the prob-
lem arises to study the origin of the ray chaos by numer-
ical computations in view of the structure of the wave
field and to elucidate the origin of the observed relation
between the characteristics of the chaos and the ray
parameters. In [4], the vertical structure of the sound
field is calculated for a natural underwater sound chan-
nel (USC) at a long distance (1500 km) from the source.
By using the methods of geometrical acoustics, a
highly ordered structure of the vertical coordinates of
rays and the vertical projections of their wave numbers
is obtained with no traces of ray chaos. However, the
conditions of sound propagation in [4] differ from those
in [1–3]. According to [4], the sound source was located
at the near-surface maximum of the sound speed.
Hence, the sound field was formed by a relatively small
group of rays whose lower turning points were at a
depth where the sound speed was greater than that at
the near-surface maximum. As a result, a large group of
channel rays fell out of the consideration.

The objective of this work is to use the canonical
waveguide as an example for calculating the vertical
distribution of the sound field produced by a number of
rays that is sufficient for the ray chaos to be formed. For
this purpose, the calculation is performed for a long dis-
tance (1000 km) from a source positioned at the chan-
nel axis.

The calculations show that the sound field at long
ranges in the canonical waveguide is mainly concen-
trated at the caustics, whose number is proportional to
the number of the overlapping ray cycles at the distance
© 2005 Pleiades Publishing, Inc.
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dashed curves): (a) the distribution of the ray coordinates in the departure angle, z(θ); (b) the projections of the wave numbers onto
the z axis, γ(z).
in question. The field amplitude in the caustics is much
higher than between them. Note that the presence of a
number of caustics in the vertical field structure at long
ranges can be experimentally verified.

The vertical structure of the sound field was calcu-
lated for the canonical model of the USC, which is
fairly close to the actual profiles of the sound speed in
some ocean regions [7]. A monochromatic sound
source with a frequency of 233.6 Hz was positioned at
the channel axis lying at the depth z0 = 1 km; the
waveguide thickness was 4 km. Only pure water rays
were considered. By using the method described in [4],
the following characteristics were computed: the angu-
lar distribution (AD) of the vertical coordinates of the
rays and the vertical projections of their wave numbers
(PWN) as functions of the departure angle. The depen-
dences obtained were used to calculate the total sound
field produced by individual rays at all depths.

One of the main results of the calculations is the
determination of the role of the function z(θ) (Fig. 1)
that represents the AD of the rays at the maximal dis-
tance xc = 1000 km from the source, where θ is the
departure angle relative to the z axis (the vertical). Here
and in the following figures, the solid and dashed
curves correspond to the rays leaving the source
towards the surface and the bottom, respectively. The
lines that envelop the z(θ) curves from above and from
below carry important information about the sound
field: they show the depths of the turning points of the
rays near the surface and the bottom. The inset in
Fig. 1a shows the functions z(θ) near θ = 90° on an
enlarged scale. The oscillating form of the AD is caused
by the dependence of the length of the ray cycles on the
departure angle. The rays leaving the source at θ close
to 90° produce 24 full cycles at the distance xc; those
with θ ~ 77.3° produce 17 cycles. The difference
between the numbers of cycles produced by the rays
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
with maximal and minimal cycle lengths is 7. The latter
number coincides with the number of oscillations of the
z(θ) curves shown in Fig. 1a (with allowance for the
curves in the inset).

The following features of the AD are most impor-
tant. All the maxima and minima of both curves are the
caustics rather than the turning points, seemingly
because of the closeness of all the extrema, except for
those shown in the box, to the turning points. Each
curve exhibits 14 caustics. The caustics shown in the
box differ from the others in that they are caused by the
existence of the minimum in the cycle length as a func-
tion of the departure angle near θ = 90°. The centers of
these caustics are far from the turning points, which are
shown as the two lines in the box. According to the fig-
ure, these caustics are much wider than the others: their
angular width ∆θ is about 0.8°. In the vicinity of these
caustics, a great number of rays (that is, the major por-
tion of the sound field energy) are concentrated. The
remaining caustics correspond to a monotonic variation
of the cycle length and have smaller angular widths.

Another important characteristic of the wave field is
the projection of the wave numbers (PWN) on the z axis
as a function of the departure angle. Let us denote them
as γ(θ). They are also of an oscillating nature similar to
that of the AD z(θ). The dependence of the PWN on the
depth of the ray arrivals at a given distance is of most
interest. This function, γ(z), is obtained from γ(θ) with
the use of the AD by eliminating the departure angle.
The functions γ(z) are shown in Fig. 1b, again for the
two groups of rays leaving the source towards the sur-
face and the bottom. It is assumed that γ(z) > 0 if the
rays are directed to the bottom and γ(z) < 0 if they are
directed to the surface. In contrast to Fig. 1a, the turning
points are pronounced in Fig. 1b; at these points, γ(z) = 0.
The caustics are hardly visible. Their positions are
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close to those of the turning points, and γ(z) is close to
zero at all the caustics.

Note that the curves given in [1] differ from those
shown in Fig. 1b by a constant factor that is equal to the
cyclic frequency. It seems that this difference prevented
the authors of [1] from noticing the physical meaning of
the curves.

Let us consider the characteristic features of the ver-
tical structure of the sound field at long distances from
the source by using Figs. 1a and 1b. The vertical coor-
dinates of the rays, the AD, and the PWN exhibit a
strictly ordered character. The curves obtained are very
informative, without calculating the sound field itself,
because they determine the depths of ray concentration
(the caustics), the number of rays arriving at all depths,
and the possible set of spatial frequencies for the rays
along the z axis. Along the vertical, a great number of
caustics are formed, and this number is proportional to
the number of the overlapping cycles. At the distance
xc, 28 caustics are present. The calculation of the AD
and the PWN at the distance x = 3250 km, which is con-
sidered in [2, 3], leads to a similar picture. The only dif-
ference consists in the number of caustics: this number
is increased by a factor of approximately 3. The PWN,
γ(z), strongly depends on the depth. This fact leads to a
nonlinear depth dependence of the phase of the total
sound field produced by the rays in the vertical plane.
The areas where the values of γ(z) can be assumed to be
constant are near the channel axis, and their sizes are no
greater than 200 m.

The calculation of the sound field in the vertical
plane was carried out with the use of the functions z(θ)
and γ(z). The field was calculated as a sum of the fields
produced by the rays arriving at the given horizon z.
The sound field of each ray has its own amplitude. We
propose the following technique for the calculations.

Suppose that the amplitude of the field produced by
an individual ray is equal to the ratio of its angular
width, which is supposed to remain constant in the
course of propagation, to the depth interval ∆z occupied
by this ray at the distance xc from the source: ∆θ/∆z.
The quantity ∆θ can be considered as the difference
between the departure angles of the adjacent or close
rays, and ∆z is the difference in the depths at which
these rays arrive. The angular width ∆θ of the ray
depends on the departure angle: according to Snell’s
law, ∆θ decreases as θ decreases. The quantity ∆z is a
function of z and characterizes the density of the rays
along the vertical; it is determined from the AD z(θ).
Instead of calculating the additional rays, we used
interpolation to fill the domains of z(θ) to which the cal-
culated rays do not arrive. The purpose of this proce-
dure was to obtain equal intervals ∆z between the adja-
cent rays. In our case, this interval is equal to that of
sampling along the z axis. The interpolation allowed us
to calculate the amplitudes of both individual fields and
the total field for a greater number of rays than that ini-
tially chosen. In the vicinity of the caustics, many rays
have the same coordinates in depth but different depar-
ture angles, i.e., ∆z = 0. The reason is that a narrower
sampling window is required for these rays to be
resolved in the z direction. In such a situation, the value
of ∆z was specified to be equal to the sampling interval,
that is, to the least vertical spacing of the rays for the
calculation parameters used. This approximation leads
to a decrease in the ray amplitudes in the vicinity of
caustics. Such a decrease is the main inaccuracy in the
proposed technique of calculating the amplitudes of the
sound fields corresponding to individual rays. In our
case, the ray amplitude was calculated by averaging
over two sampling intervals. In [8], the number of rays
used in averaging was not constant: it was chosen in
such a way that ∆z was not lower than the sampling
interval. This method leads to overestimation of the
amplitudes at caustics.

The distribution of the ray amplitudes is shown in
Fig. 2a as a function of the departure angle. The nota-
tions are the same as in Fig. 1. The maxima of the ray
amplitudes are at the centers of the caustics. The ampli-
tudes at the initial near-axis caustics, which are the
broadest ones, are equal for the rays leaving the source
towards the surface and the bottom. At the centers of the
caustics, the amplitudes smoothly decrease as the
departure angle decreases. The real part of the total
sound field is shown in Fig. 2b. Here, all the caustics are
pronounced. The two central caustics that are symmet-
ric about the waveguide axis merge on the scale used in
Fig. 2b. Although a great number of rays are summed in
the gaps between the caustics, the amplitude produced
by these rays is much lower than that at the caustics.
Figure 2b leads to a conclusion that the caustics pre-
dominate in the vertical distribution of the sound field
at long ranges.

Some recent works ([1–3], for instance) concentrate
on the calculations of the arrival times of the pulses and
their coordinates along the z axis. In addition to the cal-
culation of z(θ), we also calculated the time of sound
propagation along the ray trajectories. Figures 3a and
3b show the coordinates of rays along the vertical, z(θ),
as functions of the travel time for the corresponding
rays. In Fig. 3b, the depths of arrivals of the near-axis
rays are shown as functions of time on an enlarged
scale. It can be seen that the arrival times are regular in
the case at hand. The points of inflection are those of the
caustics. According to Fig. 3a, there are few points at
which the travel times coincide for different trajecto-
ries. One can find a depth at which pulses arriving in
sequence can be well resolved if the width of the pulses
is lower than the time interval between them. The long-
est travel times correspond to the near-axis flat rays
whose departure angles are close to 90°. The difference
in the travel times is smaller for the flat rays than for the
steep ones. Figure 3b shows the travel times for the rays
in the vicinity of the three initial near-axis caustics;
here, the caustics nearest to the axis are represented by
a single point. The travel times for these caustics are
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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equal to the time of sound propagation along the
waveguide axis to an accuracy of 0.05 ms. The interval
between the initial symmetric caustics and the second
caustic does no exceed 5 ms. These caustics are spaced
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
by more than 200 m in the vertical. The difference in
the travel times of the pulses should be compared with
1/∆f, where ∆f is the expected frequency bandwidth of
the source determined by the sound absorption in the
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ocean. If we specify ∆f ~ 100 Hz, the duration of the
sound pulse should be no smaller than 10 ms. Usually,
in the experiments on long-range sound propagation in
the ocean, the duration of the pulses is 10–30 ms.
Hence, between the first and second caustics, the near-
axis rays can be resolved in their travel times if the
duration of the pulses is about 1 ms or less, which can
not likely be realized because of the sound absorption.
However, the lack of ability to separate the overlapping
pulses propagating over close rays is no reason to argue
that these rays are chaotic.

Let us now consider one of the main tasks of this
work: the analysis of the possible origin of the ray
chaos. Note that the chaos is observed in numerical cal-
culations that have their own specific features, in partic-
ular, the discreteness of the data representation. As
reported earlier [9], the discreteness of the data influ-
ences the accuracy of calculating the diffraction of the
wave field. Let us consider the role of the discreteness
in the formation of the ray chaos. If we show that the
origin of the chaos lies in the calculation errors caused
by the discretization, this statement will be true for [2,
3] as well, at least until one proves that the discreteness
of data representation in [2, 3] does not lead to calcula-
tion errors.

In our paper, the discrete coordinate is the depth z,
which is specified with the step ∆z. Rays that are close
in their departure angles are commonly treated as dif-
ferent if the depths of their turning points are different.
Hence, the number of rays (the number of discrete val-
ues of departure angles) should not exceed the number
of points in depth, from the waveguide axis to its most
distant boundary. Let us denote the latter number as N.
If calculations involve rays whose number is greater
than N, some of the rays will have the same depths of
their turning points. By definition, these rays are the
same, although they have different vertical coordinates
because of their different departure angles. This differ-
ence is just what causes the ray chaos. These rays are
redundant or phantom rays. Another origin of the chaos
is the arbitrary choice of the ray departure angle. Let us
consider rays that differ by ∆θ in their departure angles
and by ∆z in the depths of their turning points. From
Snell’s law, we can obtain the approximate relation of
the step ∆θ in the departure angle to the quantities ∆z,
θ, and c(z):

(1)

According to Eq. (1), the angular step ∆θ depends
on the departure angle θ and the interval ∆z. If ∆z is
constant, ∆θ decreases as the departure angle
decreases. If one chooses a constant angular step (∆θ =
const), the turning points of individual rays may occur
between the discrete depth points, which leads to errors
in calculating the AD, the PWN, and the travel times for
the ray trajectories because of the inaccuracy in deter-

∆θ
∆z
------- θ( )tan

∆z
---------------- ∆c

c z( )
---------- .=
mining the depth of the turning points. Therefore, the
ray departure angle should be chosen so that its turning
point coincides with some of the discrete points of the
z axis. Another important feature of the ray structure
follows from Eq. (1). The angular density ∆θ/∆z of the
rays decreases as the departure angle θ decreases.
Hence, a conclusion can be drawn that the greatest den-
sity of the rays can be observed near the waveguide axis
for flat rays. This conclusion has been repeatedly con-
firmed by experiments and calculations. Let us illus-
trate the aforementioned statements by calculation.

Figure 4a shows the AD calculated for rays whose
number exceeds the admissible one (N) by a factor of
2.3. The rays involved in the calculation were those
leaving the source towards the bottom at a constant step
in angle. Comparison with the similar curve of Fig. 1a,
which corresponds to the optimal number of rays and
the choice of the departure angle matched with the posi-
tion of the turning point, shows that the general charac-
ter of the curve persists for the excessive number of
rays. The reason is that the relation between the depar-
ture angle and the turning point is violated for none of
the rays except those turning at the depths between the
adjacent discrete points. The coordinates of the rays
whose departure angles were matched with the turning
points remained unchanged. The greatest number of
phantom rays corresponds to the near-axis region (flat
rays), because, according to Eq. (1), the highest density
of rays occurs in this region. The greatest angular inter-
val separating the adjacent rays corresponds to the
vicinity of the waveguide axis: it may contain several
phantom rays. In the region of steep rays with smaller
values of θ, the number of phantom rays between the
adjacent rays decreases or is even equal to zero. In this
case, the matched angular step ∆θ decreases by a factor
of about 3 from the beginning to the end of the angular
range. Figure 4b illustrates the calculation, in which the
matching between the departure angle and the turning
points is completely excluded. The number of rays
taken for the calculation was N. Figure 4b corresponds
to a constant step in the departure angle. Here, one can
see no regular structure similar to that observed in
Figs. 1a and 4a. The greatest number of points is also
concentrated near the USC axis and corresponds to
departure angles close to 90°. The reason for such a
concentration is the same as above. The PWN, which is
not shown in the figure, is also chaotic in this case.

However, the depth dependence of the travel time
along the ray (Fig. 4c) retains its basic structure, as in
Figs. 3a and 3b, in spite of the apparent chaos in the
AD, z(θ). The explanation of such stability of the travel
time with respect to the unmatched departure angles
may consist in the fact that, in calculating z(θ), the
accuracy of computing the horizontal coordinate of the
trajectory is much lower that in the case of travel-time
calculations. Note that the chaos illustrated in Figs. 4a–
4c and obtained by the incorrect calculations does not
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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differ from that presented in [1, 3] for the case of the
sound speed fluctuations along the path. Hence, the fact
that the chaos shown in [1, 3] is caused by the fluctua-
tions rather than by the discreteness of calculation has
to be verified.

In [1, 3], the differential equations of the ray trajec-
tories were solved by the Runge–Kutta method. This
method implies a constant-step sampling of the hori-
zontal coordinate (the distance to the source), and the
angular step is also constant. Note that the main prob-
lem of this method is the need to specify the sound
speed at all depths passed by the rays. Therefore, the
ray chaos can be caused by the violation of the main
property of the ray trajectories, namely, the equality of
the sound speed at the upper and lower turning points.
This condition can be satisfied only approximately, the
accuracy of the approximation being different for dif-
ferent trajectories. The effect of the violation is that the
upper and lower parts of the trajectories may belong to
different but close rays. This fact was also mentioned in
[3]: the authors reported the appearance of multimi-
crotrajectories of new rays near the main ones and
interpreted them as the proper rays. The greatest num-
ber of new rays corresponds to the near-axis region,
near the flat rays. This feature is quite understandable:
the gradient of the sound speed is small in the near-axis
region, and, hence, the difference in the values of c(z) is
also small at the turning points of the adjacent rays,
which favors the splitting of the trajectories.

The results obtained from the calculation of the ver-
tical structure of the sound field in the canonical
waveguide can be summarized as follows. At long
ranges from the source positioned at the waveguide
axis, the ray coordinates and the spatial frequencies
along the vertical, as calculated in the framework of the
ray theory, are described by regular functions of the
angles at which the rays leave the source. These regular
dependences have an obvious physical explanation. At
long ranges, the sound field along the vertical is mainly
determined by groups of rays that form the caustics,
within which the major portion of the signal energy is
concentrated. The remaining rays produce an acoustic
background, whose amplitude is much smaller than the
field amplitude at the caustics. It is precisely the caus-
tics that create the regular and predictable structure of
the sound field at long ranges. This conclusion is drawn
from the calculations and can be verified by experi-
ments on long-range sound propagation with vertically
extended antenna arrays.
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Abstract—Experimental results concerning the influence of both the parameters of magnetic fluid and the con-
ditions of vibration excitation on the elastic, electrodynamic, and kinetic properties of a breaking magnetic-fluid
membrane are presented. The mechanism of the sound excitation in the air cavity due to the closure of the mag-
netic-fluid membrane is discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The possibility of using a magnetic fluid (MF) as a
source of ultrasonic vibrations was studied in [1–7]. In
these publications, an MF was considered as a continu-
ous compressible medium characterized by a strong
magnetic susceptibility. Some recent publications [8–
10] described vibratory systems with controlled mag-
netic-fluid sealants. In particular, in [9–11], a vibratory
system with an inert magnetic-fluid element that was
spring-loaded by a gas cavity and a pondermotive elas-
ticity was investigated. Such a system can be consid-
ered as a magnetic-fluid membrane (MFM).

An MFM has the form of a magnetic colloid drop
that plugs the cross section of a glass tube under the sta-
bilizing effect of an inhomogeneous magnetic field pro-
duced by a coaxial ring magnet [12]. If the tube has a
bottom, the MFM isolates the air cavity lying below it.
In this case, the MF functions as an incompressible
medium and properties such as its magnetic controlla-
bility of the free surface, fluidity, and inertness become
important [12, 13]. Unlike conventional fluid films, an
MFM is capable of self-recovery. The breakage–recov-
ery of the MFM is accompanied by the generation of
decaying acoustic and electromagnetic pulses [10, 11].

Studies of the physical properties of MFMs are of
interest from both theoretical and applied points of
view. In particular, it is of interest to consider the pos-
sibility of using an MFM as a metering valve for a con-
trolled gas supply to a reactor with a corresponding
indication in the form of acoustic and electromagnetic
pulses. Such a device could be used in certain chemical,
physical-biological, and pharmaceutical technologies.

In this paper, we report the experimental study of the
effect of the MF parameters and vibration excitation
conditions on the elastic (the pondermotive and gas
elasticities, the vibration frequency, and the critical
pressure drop), electrodynamic (the initial amplitude of
the generated electromagnetic pulse, the dynamical
range, and the sensitivity), and kinetic (the gas flow
velocity in the membrane hole, the lifetime of the hole,
1063-7710/05/5106- $26.00 0671
the displacement of the membrane, and the mass of gas
passed) properties of an MFM. We also discuss the
mechanism of sound excitation in the air resonator at
the instant of membrane closure.

ELASTIC AND ELECTRODYNAMIC 
PROPERTIES

Since the pondermotive elasticity of an MFM
strongly depends on the strength and degree of inhomo-
geneity of magnetic field [12, 14], we performed both
experimental and theoretical studies of the magnetic
field produced by the ring magnet included in the
experimental setup.

The thin line in Fig. 1 approximates the results of
measuring the magnetic field strength along the axis
with a Hall-type teslameter. The abscissa axis repre-
sents the distance from the center in ring-magnet half-
thickness units.
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Fig. 1. Magnetic field strength versus the coordinate of the
corresponding point on the axis.
© 2005 Pleiades Publishing, Inc.
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The theoretical analysis of the magnetic field was
performed on the basis of the model, according to
which the ring magnet possesses a volume-constant
magnetization M oriented along its axis. Then, the mag-
netic induction components are determined by the for-
mula B = –gradψ, where the scalar potential has the
form

Here, k1 = 2 , k2 =

2 , R1, and R2 are the inner and
outer radii of the magnet, l is its half-width, and K(k) is
an elliptical integral of the first kind.

The magnitude of magnetization was determined
from the magnetic induction measured at the center of
the magnet. The outer and inner radii of the magnet
divided by its half-thickness are equal to 5.78 and 2.19,
respectively.

The thick line in Fig. 1 shows the value obtained in
the framework of the given model for Hz averaged over
the cross section of the tube. The difference between
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Fig. 2. (a) Isolines of the axial projection of magnetic induc-
tion: (1) 90, (2) 86, (3) 81, (4) 77, (5) 68, (6) 60, (7) 42, and
(8) 25 mT. (b) Isolines of the radial projection of magnetic
induction: (1) –3, (2) 3, (3) –7, (4) 7, (5) –7, (6) 7, (7) –10,
(8) 10, (9) –23, (10) 23, and (11) 0 mT.
the average data and the results of measurements along
the axis does not exceed 8.5%.

Figures 2a and 2b show the isolines of the axial Hz

and radial Hr components of magnetic field. The dashed
lines show the contour of the MFM, and the solid hori-
zontal line bounds the magnetic field region enclosed
inside the tube.

The data obtained suggest the following conclu-
sions: (i) the magnetic field within the contour of the
drop is predominantly directed along the axis of the
ring magnet; i.e., the axial field component Hz predom-
inates; (ii) the field is approximately uniform over the
cross section of the tube, and the gradient of the field
strength has a predominant axial component G =
∂Hz/∂z; (iii) in the radial direction, Hz slightly
increases; (iv) in the plane z = 0, the radial field compo-
nent Hr is absent and shows a tendency to increase in
the vicinity of the axis. The presence of a relatively
small radial component of magnetic field near the axis
and a relatively small radial gradient of the axial com-
ponent favors the flow of the fluid to the maximum field
region. As a result, the free surface of the membrane
acquires a biconcave-lens shape [9, 10]. At the center,
on both sides of the membrane, one can see small peaks
caused by the instability of the MF surface in a trans-
verse field that exceeds some threshold strength value
[15, 16]. According to our estimates, the volume frac-
tion of these peaks is less than 0.5% of the membrane
volume [10].

The expression for the coefficient of pondermotive
elasticity was obtained in [9, 10] in the framework of
the model in which the magnetic field was symmetric
with respect to the maximum strength surface and the
equilibrium position of the MFM coincided with this
surface. However, in a more general case, the magnetic
field can be asymmetric and the center of mass of the
membrane can be displaced from the maximum field
region. Such a situation occurs, e.g., in MF sealants at
a certain configuration of the poles in the presence of a
pressure drop [17].

The weakly-magnetic medium approximation
adopted in [9–11] and the aforementioned geometrical
features of magnetic field in the region of the mem-
brane can be used to calculate the coefficient of ponder-
motive elasticity in the case under study according to
the simple scheme shown in Fig. 3.

Inside a tube 1 with a cross section S, an MF plug 2
of height b is present. Because of the pressure differ-
ence between the gas cavities 3, the center of mass of
the plug is shifted to the point with the coordinate z = a.

A small displacement of the center of mass by δz
should lead to an increase in the plug volume by Sδz at

the point with the coordinate z =  + a and to a decrease

in its volume by the same value at the point z = –  + a.

The appearance (disappearance) of the virtual MF disk 4

b
2
---

b
2
---
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in the vicinity of the upper and lower free surfaces of
the MF drop gives rise to a perturbation of the ponder-
motive force:

(1)

In addition, at the upper and lower free surfaces of
the plug, the normal component of magnetic field
exhibits a discontinuity, which gives rise to a magnetic
pressure force. The perturbation of this force can be
represented as [12]

Using the expression Mz = χH, where χ is the local
magnetic susceptibility, we obtain

(2)

With Eqs. (1) and (2) taken into account, the for-
mula for the restoring pondermotive force takes the
form
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The coefficient of elasticity of the vibratory system,
k, is the sum of the coefficient of pondermotive elastic-
ity kp ≡ δfp/δz and the coefficient of elasticity of the gas
cavity kg [11]:

(3)

where ρg and c are the density of gas and the sound
velocity in it and V0 is the volume of the isolated gas
cavity. The vibration frequency ν of the system is cal-
culated by the formula
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Fig. 3. Scheme used for calculations.
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where ρ is the density of the MF.
When the magnetic field is symmetric about the

plane z = 0 and a = 0, the expression for kp is reduced to
the form [9, 10]

(5)

From the methodological point of view, one of the
key points is the presence of a linear dependence of the
emf induced in the inductance coil positioned inside the
ring magnet on the displacement of the center of the
MFM with respect to the equilibrium position, i.e., the
determination of the limits of the dynamical range. To
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determine the aforementioned dependence, an experi-
ment was carried out with an MFM described in [11].
In this experiment, the MFM plugs the cross section of
a tube that is the neck of a glass flask with a volume of
0.5 l. The inner diameter of the neck is 16.5 mm.

When the flask is shifted upwards by ∆z above the
stand and fixed in this position, the membrane is shifted
from the equilibrium position by δz, so that

When the flask abruptly returns to the initial posi-
tion, the membrane proves to be shifted from the equi-

δz
kg

kg kp+
----------------∆z.=
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librium position by δz because of its inertia, which
leads to the development of a vibratory process. At the
instant when the plug passes through the equilibrium
position, the maximum emf is reached: εm. The abrupt
motion of the flask occurs under the impact of a falling
body with a mass of 125 g. The induced signal is sup-
plied to the input of an oscilloscope operating in exter-
nal synchronization mode. The oscillogram is photo-
graphed by a digital video camera and entered in a com-
puter where it is processed an analyzed with the Corel
Draw program. This method of obtaining and process-
ing the results of vibration frequency measurements
provides a confidence interval of 5% with a confidence
level of 0.95.

We used MFs common to mechanical engineering:
colloid solutions of single-domain particles of Fe3O4
magnetite in kerosene (MF-1 and MF-2) and in silicon
organics (MF-3) [17]. The physical parameters of mag-
netic colloids are given in Table 1: ρ is the density of the
MF, χ is the initial magnetic susceptibility, and ηs is the
static shear viscosity of the colloid. These parameters
were determined by standard methods [12, 17].

The fluid was introduced into the neck of the flask
by a syringe, which was weighted with MF before and
after the introduction of the drop.

As a result of the measurements, we determined
—the dynamical range for the MFMs (at T = 24 ±

0.5°C, the dependences εm(∆z) obtained for the MFMs
on the basis of MF-1 and MF-2 are approximated by
segments of a straight line in the intervals 0–4.5 mm
and 0–3.5 mm, respectively, with the confidence level
of approximation being 0.99 and 0.98, respectively);

—the sensitivity of the device to displacement, β,
which is determined as the tangent of the slope angle of
the approximated straight line;

—the amplitude of the first vibration, εm0, at ∆z = 0,
this vibration being a consequence of the pressure pro-
duced by the flask on the damping cotton pad and the
excitation of elastic vibrations of the flask walls at the
instant of impact.

Table 1

Sample ρ, kg/m3 ηs, Pa s Ms, kA/m χ

MF-1 1294 3.2 × 10–3 52 ± 1 6.2

MF-2 1499 8.1 × 10–3 60 ± 1 7.5

MF-3 1424 – 43 ± 1 5.0
Table 2 presents the values of β and εm0 obtained
from the experiments with different fall distances of the
load, h'.

For the MFM consisting of the more concentrated
colloid MF-2, the parameter β is almost twice as large
as that in the case of MF-1. This result can presumably
be explained by the negative role of viscous forces,
which lead to a decrease in the amplitude of initial
membrane displacement from the equilibrium position
at the instant of impact. The small increase in β with
increasing distance of fall h', which is more pronounced
for MF-1, is presumably caused by the inertial proper-
ties of the membrane. A considerable increase in β
should be obtained under the condition kg @ kp, and this
can be achieved by reducing the volume of the isolated
gas cavity V0.

The calculation of the vibration frequency of the
MFM is in good agreement with experimental data [9,
10]. In the present study, we performed a direct experi-
ment on determining the parameter kp by the added-
cavity method. The essence of this method is as fol-
lows. The vibration frequency is sequentially measured
with the tube open on one end, ν1, and with the tube
closed on both ends, ν2. When the tube is open on one
end, the MFM is string-loaded with the elasticity of the
isolated gas cavity and the pondermotive elasticity.
When the tube is closed on both ends, the MFM is
loaded with the two aforementioned elasticities and the
elasticity of the added gas cavity. The coefficient kp is
calculated by the formula

where Vac is the volume of the added cavity and n ≡
ν2/ν1.

Let us compare the results of calculating kp by
Eq. (5), (kp)theor, and the experimental results obtained
by the aforementioned method, (kp)exp. In the experi-
ments, the MFM is placed in a cylindrical neck of a
glass flask. The added cavity is formed by applying a
ground stopper. From preliminary measurements of the
field dependence of the magnetization of magnetic col-
loids, we obtained the data necessary for calculating
(kp)theor.

For the MF-1 membrane, we obtained b = 1.68 cm,
M = 34.5 kA/m, G = 4.6 × 106 A/m2, χ = 0.25, and
(kp)theor = 100 N/m. From the measurements by the

kp

π2ρgc2d4

16Vac

--------------------- 1

n2 1–
--------------

Vac

V0
--------– ,=
Table 2

Colloid h', mm β, mV/mm εm0, mV Colloid h', mm β, mV/mm εm0, mV

MF-1 9.0 4.6 0.5 MF-2 10.8 2.5 0.7

14.6 4.9 0.5 20.3 2.6 0.5

19.4 5.3 0.5
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added cavity method, we obtained hac = 4.64 cm, ν1 =
24 Hz, ν2 = 68 Hz, and (kp)exp = 98 N/m.

For the MF-2 membrane: b = 2 cm, M = 42 kA/m,
G = 4.6 × 106 A/m2, χ = 0.4, hac = 6.3 cm, n = 1.9,
(kp)theor = 136 N/m, and (kp)exp = 137 N/m.

Taking into account the estimated character of the
model calculations and the errors inherent in the
adopted method of measurements, we should expect a
difference between (kp)theor and (kp)exp of about ten per-
cent. Presumably, in the case under study, the good
agreement between the calculated and measured values
of kp is partially caused by the mutual compensation of
errors in the determination of individual parameters.

The model theory makes it possible to predict qual-
itatively the behavior of the elasticity and vibration fre-
quency of the MFM as functions of the displacement of
its equilibrium position. For example, from Eqs. (3) and
(4), it follows that, by virtue of the symmetry of mag-
netic field with respect to the plane z = 0 (Fig. 1), a dis-
placement of the membrane should not lead to consid-
erable changes in the magnetic elasticity and vibration
frequency. However, as the free surface of the mem-
brane approaches the maximum-field plane, we obtain
∂Hz/∂z  0 and, hence, the values of kp and ν also
decrease. This position of the MFM is critical [12, 17],
because a further increase in the pressure drop leads to
its breakage.

The above conclusions of the model theory were
experimentally tested with MF-1 and MF-2 colloids.
The MF covers the cross section of the neck of a flask.
The use of a flask with a large volume in the MFM sys-
tem allows us to obtain a considerable predominance of
the pondermotive elasticity over the elasticity of the gas
cavity. The displacement of the equilibrium position of
the membrane is obtained by raising the ring magnet,
which is rigidly bound to the kinematic unit of a cathe-
tometer, to a height ∆z measured with an accuracy of
0.01 mm. The vibrations are excited by a mechanical
shock in the vertical direction.

As a result, it was found that
—at ∆z ≤ 30 mm, the dependence ν(∆z) has virtually

the same form of a segment of a straight line parallel to
the abscissa axis for both colloids (the prediction of the
model theory is confirmed in this part of the experi-
ment);

—in both cases, several 0.5-mm steps of magnet
displacement before the breakage of the membrane, the
vibrations acquire strongly pronounced nonlinear prop-
erties: the oscillograms of damped vibrations first
become saw-toothed; then, the second harmonic
appears; and, finally, the vibration frequency is dou-
bled.

Thus, the conclusion of the model theory concern-
ing the sharp drop of the vibration frequency near the
critical position of the MFM could not be confirmed or
disproved in our experiments because of the strong
nonlinearity of the vibratory process. Therefore, the
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
model theory based on the applicability of Hooke’s law
should be extended with allowance for the actual non-
linearity of the expression for the restoring force in the
vicinity of membrane breakage.

KINETIC PROPERTIES

Let us consider the results of measuring the critical
pressure drop Pk causing the breakage of the MFM. To
form the MFM, in this case we used a glass tube with a
flat bottom, a length of 350 mm, and an inner diameter
of 13.5 mm. To eliminate the reactive oscillatory
motion of the tube, the latter was rigidly fixed in a mas-
sive brass holder. In part of the experiments, the mem-
brane formation was realized through the “self-trap-
ping” of a portion of MF by the ring magnet moved
from the bottom of the tube to a height h0 above the
fluid level. The pressure drop in the isolated gas cavity
was obtained by the displacement of the ring magnet
along the tube with an accuracy of 0.01 mm.

Figures 4a–4c represent the results of measuring hk

(hk is the distance between two sequential breakings of
the membrane) as a function of the height h0 of the air
column isolated by the fluid for the MF-1, MF-2, and
MF-3 colloids, respectively. Presumably, the scatter in
the values of hk could be reduced by taking additional
measures for the vibration, acoustic, and thermal insu-
lation of the MFM.
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Fig. 4. Dependence hk(h0) for the MFMs on the basis of
(a) MF-1, (b) MF-2, and (c) MF-3.
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Table 3

h0, mm , mm Pc, kPa ∆m, mg εm1, mV kg, N/m kp, N/m hd, mm vg, m/s τ, ms

MF-1 161 0.24 0.078 0.042 6.6 135 145 0.12 17.5 2.40

177 0.25 0.076 0.045 6.0 123 145 0.12 17.0 2.60

194 0.26 0.075 0.045 6.0 112 145 0.11 16.5 2.70

204 0.26 0.074 0.046 5.9 106 145 0.11 16.4 2.80

MF-2 90 0.06 0.027 0.010 4.8 242 166 0.04 27.2 0.36

164 0.06 0.021 0.010 3.5 132 166 0.03 23.6 0.42

181 0.05 0.016 0.009 3.0 120 166 0.02 22.8 0.40

MF-3 150 0.97 0.280 0.17 7.5 144 107 0.55 26.4 6.40

161 0.96 0.260 0.17 7.3 135 107 0.54 25.7 6.50

170 1.03 0.280 0.18 8.2 127 107 0.56 25.6 6.90

181 1.05 0.270 0.19 6.8 120 107 0.56 25.1 7.30

hk
By averaging over a great number of experimental
data (no less than 50 for MF-1 and 150 for MF-2) in a
narrow interval of magnetic head displacement from h0

to h0 + ∆h (∆h ≈ 1 cm) for several different values of the
air column height h0, we obtained the average value of

 and determined the law governing the increase in 
with increasing h0. The corresponding data are pre-
sented in Table 3.

The breakage of the MFM is not observed when the
magnetic head moves in the reverse direction within the
region of a certain width 2Γ. Thus, Γ is the cathetome-
ter-measured distance between the initial equilibrium
position and the first displaced equilibrium position.
For MF-1, MF-2, and MF-3, we obtained: Γ1 = 1.77,
Γ2 = 3.04, and Γ3 = 4.53 mm.

Figure 5 shows the thermodynamic process as a
function P(z) under the assumption that the magnetic
head moves slowly upwards along a tube of constant
cross section.

hk hk

h0+hg

Pcr

h0+hg+hd

h0+ hg+hk
h0+hg+hk+hd

h0+hg+2hkh0

Pe

Pa

P

z

1

2

3
3' 6'

5

764

8

Fig. 5. Thermodynamical process in the gas cavity.
Regions 1–2, 4–5, and 7–8 correspond to the iso-
thermal expansion of the gas cavity (by a hyperbola).
The displacement hk between two breakings of the
MFM, which is measured by the cathetometer, consists
of the increment of the gas cavity height  and the dis-
placement of the membrane hd, which are related as

/hd = kp/kg. The calculated values of kp, kg, and hd are
presented in Table 3.

The critical pressure drop Pc1 = Pa – Pcr, which
causes the breakage of the membrane when it is dis-
placed from the initial equilibrium position (z = h0), is
determined from the relation

Pc1 = ,

where γ ≡ .

For the samples of MF-1, MF-2, and MF-3, the val-
ues of Pc1 are as follows: Pc1 = 0.57, 1.04, and 1.24 kPa,
respectively.

In states 2, 5, and 8, the continuity of the membrane
fails and a hole appears in its central part. Under the
effect of the pressure difference, air passes through this
hole, which results in a jumplike pressure increase. At
this stage of the process, the membrane is shifted
towards the equilibrium position, i.e., in the direction of
∇ H. This leads, on the one hand, to a certain increase in
the gas cavity volume and, on the other hand, to condi-
tions favorable for the closure of the cavity.

Within the period when the hole is present in the
membrane (the lifetime of the hole τ), the state of the
gas in the gas cavity may vary according to one of the
two variants of the transition to the new state with an
equilibrium pressure Pe, each of them leading to the
excitation of free vibrations of the MFM.

hg'

hg'

γPaΓ
h0 γΓ+
-----------------

kp

kp kg+
----------------
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The first variant (2–3, 5–6, etc.) is characterized as
follows: the displacement of the membrane is very
small because of its inertness and because of the “rigid”
connection of the process of self-recovery of continuity
with the topography of the magnetic field, while the
pressure increase in the cavity is caused by adiabatic air
flow through the hole. One can also assume that, by the
instant of full recovery of the membrane continuity, the
gas flow velocity is maximum and the pressure on the
walls of the hole is minimum.

In the second variant (2–3', 5–6', etc.; the dashed
lines in Fig. 5), within the time τ, the membrane passes
through the equilibrium position and, by the instant of
closure (points 3' and 6'), it stops and then moves
toward the equilibrium position. This situation is theo-
retically possible if no rigid connection exists between
the continuity of the membrane and the topography of
magnetic field while the process of deceleration of the
membrane and closure of its hole is mainly determined
by the gas-dynamic effect of the increasing gas flow
drag with increasing gas flow velocity.

Upon the termination of the damped vibrations and
the establishment of thermodynamic equilibrium, the
gas in the cavity proves to be in a state corresponding to
points 4 and 7 in Fig. 5. As the magnet is raised further,
the breakage of the membrane occurs at a smaller pres-
sure increase in the gas cavity. The expression for cal-
culating the critical pressure drop for the subsequent
membrane breakings, Pc ≡ Pe – Pcr, has the form

Pc = Pa .

For h0 @ γ(Γ – hk) and h0 @ γΓ + hk, we have Pk ≅
Paγ .

The results of calculating the parameter Pc with the use

of the values of  are shown in Table 3.

These data confirm the physically predictable result
that Pc is independent of the height h0 of the isolated gas
cavity. A slight decrease in Pc with height h0 is observed
for the MFM on the basis of MF-2. It is related to the
decrease in the mass of the membrane because of the
loss of its part remaining on the inner surface of the
tube, which is confirmed by visual observations.

The MFM made of the MF-1 colloid, which is char-
acterized by a lower concentration of magnetic phase
and, hence, lower values of Ms and χ than those charac-
terizing the MF-2 colloid, exhibits a much higher value
of the critical pressure drop Pc (for the parameter Pc1,
there is an inverse ratio). This seems to be unexpected
at first glance. We believe that the physical origin of this
result lies in the “more rigid” connection of the mem-
brane continuity with the topography of magnetic field
in the case of the membrane made of the MF with the

h0γhk

h0 γΓ γhk–+( ) h0 γΓ hk+ +( )
-----------------------------------------------------------------------

hk/h0

hk
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higher value of χ. The recovery of its continuity occurs
at a smaller displacement in the direction of ∇ H, within
a shorter time interval, and at a relatively small velocity
of displacement.

In the framework of the assumed thermodynamic
process (Fig. 5), the mass of the gas portion passing
through the MFM can be calculated by the formula

where µ is the molar mass of the gas, R is the universal
gas constant, and T is the absolute temperature. Taking
the air parameters µ = 30 kg/kmol, Pe ≅  105 Pa, d =
13.6 mm, and T = 298 K, we obtain

Table 3 presents the values of ∆m for the MFMs
under investigation. The minimum value ∆mmin =
0.009 mg belongs to the MFM on the basis of MF-2,
and the maximum value ∆mmax = 0.17 mg characterizes
the MFM on the basis of MF-3. Varying the amount of
colloid introduced in the MFM, one can slightly extend
the range of values of ∆m. For example, a considerable
decrease in ∆m is obtained by reducing to a minimum
the amount of MF-2 in the membrane. In this case, in
the absence of special measures for thermal stabiliza-
tion and vibration and sound insulation, the breakage–
recovery process in the MFM becomes uncontrolled.

To estimate the velocity of the air flow through the
hole, v g, we use the relation between the pressure drop
at the hole, ∆Pg, and the velocity at the point of maxi-
mum compression of the flow, v g, [18]:

∆Pg = ρg ,

where σ is the area of the hole and ξ is the hydraulic
drag coefficient, which depends on the area of the hole
and on the Reynolds number. Using the results of [18],
for the case of σ ! S, we take ξ = ξ0 = 2.9. Then, we can
write

v g = .

Taking into account that the pressure drop is

∆Pg = Pa –  =  

+  ≈ Pa,

we obtain

v g ≈ .

∆m
µPeπd2hk

4RT
------------------------,=

∆m 1.76 10 4– hk.×=

1
2
--- v g

2ξ σ
S
--- 

 

2∆Pg

ρgξ0
-------------

Pe Pcr–
2

-------------------
γPa

2
---------

Γ hk–
h0 γ Γ hk–( )+
----------------------------------

Γ
h0 γΓ+
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h0
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2γPaΓ
ρgξ0h0
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The lifetime of the hole, τ, can be estimated by the
formula

In our experiments, we did not perform any direct mea-
surements of σ, but, according to visual observations,
the diameter of the hole was within 1–3 mm. To esti-
mate τ from above, we use the minimum value of the
diameter. In Table 3, we present the kinetic parameters,
v g and τ, for the MFMs under study.

Thus, the proposed approach allows one to experi-
mentally estimate the following kinetic parameters of
the MFM: the displacement of the membrane, hd; the
mass of the passed gas portion, m; the velocity of the air
flow through the hole in the membrane, v g; and the life-
time of the hole, τ.

The lifetime of the hole proved to be smaller than
the period of membrane vibrations [10, 11], which sug-
gests that the first variant of transition of the MFM to
the equilibrium state (Fig. 5) is more probable. An argu-
ment in favor of this conclusion is the fact that the for-
mula for the increase in the potential energy of the
vibratory system at the instant of membrane breakage,

∆Ep = 0.5(kp  = kg ),

yields a value as small as 2 × 10–6 J (for the experiment
with MF-1), whereas the kinetic energy calculated from
the average velocity of the membrane displacement
(according to the second variant) is

VIBRATION EXCITATION IN THE AIR CAVITY

If the membrane is at rest at the instant of its closure,
the hydraulic impact of the air flow on the obstacle
gives rise to a set of sound waves in the upper open part
of the tube. These waves are described by the expres-
sion [19]

where kn is the wave number of the nth harmonic and
u0 is the velocity of the air flow in the tube at the instant
of closure. For the fundamental harmonic (a quarter-
wavelength tube), we have

δP1 = – u0ρgccos sin t,

where L is the length of the open part of the tube. The
pressure acting on the membrane (z = 0) is expressed as

δP1 = – u0ρgcsin t.

τ ∆m
ρgσv g

---------------.=

hd
2

hg'
2

Ek

πρd2bhd
2

4τ2
--------------------- 2.6 10 5–  J.×≈≥

δP
4u0ρgc

π
-----------------

knzcos
2n 1–
---------------- ωnt,sin

n 1=

n ∞=

∑–=

4
π
--- πz

2L
------ πc

2L
------

4
π
--- πc

2L
------
The relations between the parameters of the vibra-
tory systems under consideration determine the charac-
ter of membrane oscillations [20]. In particular, beats
are possible with a frequency equal to the difference
between the frequencies of initial oscillations, i.e., the
frequency detuning:

The above considerations do not contradict the
results of our experiments with a tube 51 cm in length
and 1.35 cm in diameter for the MF-2 colloid with b =
1.5 cm. The oscillograms exhibited clearly pronounced
beats at a fundamental frequency of about 170 Hz when
the magnetic head approached the bottom of the tube
(h0 ≈ 1–0.5 cm). The beats occurred twice: first, due to
the excess over the frequency of acoustic vibrations of
the air column, and, second, due to the excess over the
frequency of membrane vibrations; between these two
regions, the oscillogram has the form of “classical”
damped oscillations. When the head moved in the back-
ward direction, the beats also appeared, but, in this
case, the frequency detuning occurred in the reverse
order.

As was noted above, a membrane on the basis of
MF-2 is characterized by small values of displacement
and velocity of displacement at the instant of closure. In
this respect, compared to other membranes, it fits better
the Rayleigh conditions of vibration excitation in an air
cavity [19].
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Abstract—Heart sounds are associated with impulses of force acting on heart valves at the moment they close
under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an
acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast
surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas,
an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves
onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is
found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spec-
trum. © 2005 Pleiades Publishing, Inc.
Auscultation of heart sounds with a stethoscope is
the most widespread method of the original study of
heart activity. Sounds produced by the heart are con-
ventionally divided into heart sounds and cardiac mur-
mur. The fundamental heart sounds are produced at the
beginning of the main phases of cardiac contraction,
systole (contraction of the myocardium and pushing of
the blood out to arteries) and diastole (relaxation of the
myocardium and filling of ventricles with blood) and
are designated as the first and second heart sounds,
respectively (Fig. 1).

The first sound is produced at the moment of closure
of the heart valves between the atria and ventricles: the
left (mitral) and right (tricuspid) ones. Normally, the
duration of the first sound is about 150 ms and the pres-
sure amplitude (in the stethoscope’s bell) is about 3 Pa
[1]. In spite of the seemingly clear connection between
the first sound and the oscillations of the atrioventricu-
lar valves, the origin of the first sound is not yet consid-
ered to be ultimately ascertained. This uncertainty
arose under the influence of such scholars of authority
as Rushmer, who considered the first sound to result
from oscillations of the muscular tunic as a whole in the
process of deceleration of the blood flow from atria to
ventricles [2], and Luisada, who considered that the
first sound is produced by oscillations of the left half of
the heart alone [3]. For example, Gitterman and
Lewkowiz’s physical model [4] considers the oscilla-
tions of the elastic spherical tunic as the main source of
the first heart sound and describes the oscillations of the
valves with allowance for the elastic properties of the
constituting tissues as a possible complement.

There is a greater amount of certainty in understand-
ing the second sound, which appears at the moment
when the aortic and pulmonic valves between the ven-
1063-7710/05/5106- $26.00 0680
tricles and corresponding arteries close. It is universally
recognized that the second sound is caused by the clo-
sure and further oscillations of the arterial valve [1].
The second sound lasts for 100–120 ms, its pressure
amplitude (in the stethoscope’s bell) is about 3 Pa, and
it has a somewhat higher frequency spectrum than the
first sound.
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Fig. 1. Time dependences of pressure in the (1) left ventri-
cle, (2) right ventricle, (3) aorta, and (4) pulmonary artery
[9, 11]. The plot at the bottom is a phonocardiogram of the
first T1 and second T2 sounds.
© 2005 Pleiades Publishing, Inc.
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Thus, although possible origins of the heart sounds
are named and indicated in the literature, the primary
mechanism of heart sound generation, in particular, that
for the first sound, is as yet undetermined. Previous
efforts to physically describe the phenomenon of sound
generation seem to be qualitative or preliminary in
character, and the results are far from solving the prob-
lem [1, 2, 4–6].

This paper proposes an original acoustic approach
to formulating a physical model of heart sound forma-
tion from the generation of sounds to their reception
with a stethoscope or a microphone.

It is important to note that the following facts known
from auscultation practice were still beyond the scope
of discussion. First, the sounds can only be heard over
very small areas of the breast (variations in the intensity
are noticeable with shifting the stethoscope’s bell by 1–
2 cm [7]). Second, in the aforementioned limited areas,
only one of the sound components is heard best: the
mitral, aortic, pulmonary, or tricuspid component [8].
Third, these areas of best hearing do not coincide with
the projections of the corresponding valves onto the
breast surface [9].

As we will show below, the proposed theory gives a
clear and unique explanation of these facts.

1. GENERALIZED THEORY OF HEART VALVES

Heart valves are soft flexible shells. Under the
excess pressure of backward blood flow, they take a
filled shape and block the flow; under the pressure of
forward flow, they lose their shape and are pushed by
the blood flow to the vessel or ventricular cavity walls.
All four valves are different in size, structure, and
shape.

Consider the heart valves in their closed state, when
they can emit sound. Because the heart valves are soft
shells, they acquire their shape under the action of the
pressure difference: between the artery and ventricle in
the diastole and between the ventricle and atrium in the
systole; the shell tension is determined by this pressure
difference alone. Acting upon the valve surfaces, this
pressure difference creates an external nonstationary
force, under the action of which the valves execute
forced and free oscillations. If the time of variation of
the external force is longer than the decay time of the
free oscillations, the oscillation spectrum is determined
by the spectrum of the external force. Otherwise, if the
action takes a short time and the Q factor of the oscil-
lating system is high, the oscillation spectrum is deter-
mined by the eigenfrequencies of this system.

Consequently, the fundamental question concerning
the choice of the valve model is determined by the
valve’s Q factor. If the Q factor is high, the eigenmodes
of valve oscillation (i.e., the valve structure and the
elastic parameters of the constituent tissues) are signif-
icant [1, 4, 5]. If the Q factor of the valves as oscillating
systems is low, their motion is determined by the exter-
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
nal force and the time dependence of this force alone is
important, whereas the valve structure is of minor sig-
nificance. In the latter case, the source of acoustic radi-
ation of all four valves is described in terms of a single
simple model: a time-varying external force applied to
the aperture closed by a given valve.

The Q factor of a valve as an oscillating system can
be directly determined only from sufficient experimen-
tal data on the heart valve oscillations, which are pres-
ently unavailable. However, indirect evidence of the
valve’s Q factor being small is given by the fact that the
duration of the heart sounds coincides with that of the
external force. That is, the duration of the sound pro-
duced by the valve itself is apparently negligibly small
compared to the duration of the external force’s action.

As will be shown below, a variable external force
applied to the valve tissues provides a satisfactory
explanation for the main acoustic features of the heart
sounds.

2. A MODEL VALVE AS AN ACOUSTIC DIPOLE

The acoustic model of heart valves is based on the
following two assumptions. First, from the viewpoint
of propagation of longitudinal waves, the human body
in the first approximation is a continuous homogeneous
waterlike medium, because the density and the elastic
properties of its tissues are close to uniform and the
wavelengths of the heart sounds far exceed any dimen-
sion of the body (and, all the more, the dimension of
any of its organs). Second, the external force is directed
along the flow (the valve axis) and is a product of the
pressure gradient and the cross-sectional area of the
valve aperture. As an acoustic source, a force applied to
a homogeneous medium can be represented by a dipole
with its axis coinciding with the force vector and the
dipole force being equal to the magnitude of the exter-
nal force [10]. The radiation produced by this dipole is
equal to the scalar product of the force vector and the
gradient of the monopole field:

(1)

where p is the sound pressure, F is the vector of the
external force, k is the wave number, r is the length of
the position vector of the observation point, and ∇  is the
Hamiltonian.

Thus, as an acoustic source, any heart valve can be
represented by a dipole located at a small (in terms of
the wavelength of its own radiation) distance under the
body–air boundary. Consequently, the problem of
sound radiation by the heart valves is reduced to the
determination of the normal velocity field at a perfectly
soft boundary lying in the near field of a dipole.

p F ∇ ikr( )exp
4πr

--------------------- 
 ⋅ F q r( ),⋅= =
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3. THE NEAR FIELD OF A DIPOLE
IN THE VICINITY OF A PERFECTLY SOFT 

PLANE BOUNDARY

In the first approximation, the body–air boundary
can be considered to be plane. The field near this
boundary can be represented as a superposition of the
fields produced by two dipoles: the given dipole and its
mirror image with an oppositely directed axis [10],
because the images of the monopoles forming the
dipole change their sign at a soft boundary. Consider a
rectangular coordinate system (Fig. 2) such that its XY
plane coincides with the boundary and the dipole axis
lies in the XZ plane and makes an angle α with the
X axis.

The normal velocity of the boundary can be found
using the Euler equation, from the pressure fields of the
real dipole and its mirror image:

(2)

where M1 and M2 are the dipole moments related to the
dipole force through the general expression M =

1/ρ , r1 and r2 are the distances between dipole

centers and the observation point (Fig. 2), and ρ is the
density of the medium.

Let the depth of the dipole under the boundary be h,
the distance from the dipole projection onto the bound-
ary to the observation point P along the boundary be r,
and the angle between the projection of the dipole axis
onto the boundary and direction to the observation
point be ϕ. Then, after some algebra (see the appendix),

Vn
∂
∂z
----- M1 q r1( )⋅ M2 q r2( )⋅+( ), z 0,= =

F td∫

M2

r2

r1

M1

r

h

P

Y

X

Z

ϕ

α

Fig. 2. Spatial position of the real dipole M1 and its image
M2 with respect to the boundary XY; P is the observation
point.
the following general expression for the normal veloc-
ity of the boundary can be obtained:

(3)

where R = , and ξ = r/h.
In the near-field region kR ! 1, expression (3) can

be considerably simplified:

(4)

Formula (4) is the basis for the subsequent esti-
mates. The distributions of the normal velocity ampli-
tude Vn over the boundary for different angles α
between the dipole axis and the boundary are plotted in
Fig. 3.

Consider a dipole that is normal to the boundary
(curve 4 in Fig. 3). In this case, the amplitude of the
normal velocity at the boundary is independent of the
angle and gradually decreases as the inverse cube of the
distance from the projection of the dipole onto the
boundary to the observation point:

(5)

This case does not agree with the actual valve posi-
tions, in which the valve axes are almost parallel to the
breast surface, as shown in Fig. 4 borrowed from [9].

Consider the case of a dipole parallel to the bound-
ary (Fig. 3, curve 1). The distribution of the normal
velocity at the boundary is described by a cosine func-
tion:

(6)

In addition, the normal velocity is zero above the
dipole and maximum at two symmetric points posi-
tioned at equal distances r ≈ h/2 from the projection of
the dipole onto the boundary along the direction paral-
lel to the dipole axis. The normal velocity amplitude
decreases with distance from the maxima as the fourth
power of distance from the dipole projection onto the
boundary; i.e., the maxima are sharp.

Thus, formula (6) gives a complete qualitative
explanation for, first, the pronounced localization of the
places on the breast where the heart sounds are dis-
tinctly audible, second, the displacement of these
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Fig. 3. Amplitude distribution of the normal velocity of the boundary for the dipole inclined at α = (1) 0°, (2) 30°, (3) 45°, and (4) 90°.
places from projections of the valves onto the breast
surface, and, third, the difference in the positions of
these places for different valves. The best audibility
areas are schematically shown in Fig. 4 together with
the heart valves. As can be seen from this figure, in
accordance with Eq. (6), the best audibility areas lie on
the valve axes and are displaced along these axes by
certain distances, which are different for different
valves, because the depths of the valves and their incli-
nations relative to the breast’s surface are different.

4. THE PHYSICAL MODEL
OF THE STETHOSCOPE

To correctly compare the results of the model valve
description, we must allow for the transfer properties of
the heart’s sound receivers, because Eqs. (4) and (6) refer
to a point velocity receiver located on the breast’s sur-
face. Actually, the receiver of heart sounds may be a
stethoscope or an air or contact microphone. All of these
receivers contact the breast over a limited contact area.
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
Let us begin with the contact microphone, which is
actually a detector of normal acceleration, or an accel-
erometer.

P

åí

Ä

Fig. 4. Schematic representation of the heart valve positions
and the best-audibility areas for heart sounds of the (A) aor-
tic, (P) pulmonary, (M) mitral, and (T) tricuspid valves [9].
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Only a small part of the data on heart sounds
reported in the literature refer to measurements with
this kind of receiver, which hampers its comparison
with the theory. However, this receiver offers certain
advantages worthy of note. In fact, as follows from
Eq. (6), the normal acceleration is proportional to the
dipole force or to the driving force:

(7)

This means that the output signal of a perfect con-
tact microphone directly gives the driving force spec-
trum.

An air microphone, such as a stethoscope, has a
bell-shaped cavity, which, being applied to the breast
surface, forms a closed air-filled cavity. Normal dis-
placements of the breast surface cause pressure oscilla-
tions in this cavity, which are detected by the micro-
phone or by ear in the case of the stethoscope’s bell.
Since these receivers are identical, we consider a
stethoscope with given parameters: the cross-sectional
area of the bell opening and the total internal volume,
which includes the internal volume of the bell and the
guiding pipes. Assuming that the air compression in the
internal space of the stethoscope under the action of a
small displacement of the breast surface is adiabatic, in
the first approximation we obtain the following expres-
sion for the sound pressure in the stethoscope:

(8)
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Fig. 5. Ratio of the surface integral in Eq. (9) to the area of
the stethoscope’s bell versus the distance along the dipole
axis from the bell center to the projection of the valve onto
the boundary (the distance is normalized by the depth of the
valve) for different ratios of the bell radius to the valve
depth: (1) 0.1, (2) 0.3, (3) 0.5, (4) 1.0, and (5) 2.0.
where γ is the adiabatic index, U is the internal volume
of the stethoscope, S is the area of the bell opening, and
Pa is the atmospheric pressure.

Substituting expression (6) for the normal velocity
into the time integral in Eq. (8), we obtain the sound
pressure in the stethoscope as a function of the external
force that acts upon the valve:

(9)

The ratio Int of the surface integral in Eq. (9) to the
area of the stethoscope’s bell is plotted in Fig. 5 versus
the distance along the dipole axis from the bell center
to the projection of the valve onto the boundary (the
distance is normalized by the depth of the valve) for five
values of the ratio of the bell opening radius to the valve
depth. As can be seen from this figure, the greater the
bell radius, the more the pronounced the audibility
maximum of each valve is shifted along its axis and dis-
placed from the projection of the valve, because, when
the relative bell radius is greater than 0.3, the effect of
the symmetric antiphase region (Fig. 3) disappears only
when the shift is equal to the bell radius. This theoreti-
cal result is in good qualitative agreement with the
aforementioned experimental facts known from auscul-
tation practice [7–9].

As can be seen from Fig. 5, at a given valve depth
and a given internal volume of the stethoscope, the sig-
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Fig. 6. Heart sound spectra measured in one-third-octave
bands for the (triangles) first and (squares) second sounds
and the corresponding calculations for the (1) mitral and
(2) aortic valves.
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nal reaches its maximum at a particular radius of the
bell opening (no more than 0.3 of the valve depth), and
the auscultation signal decreases with a further increase
in the bell size. This behavior is explained by the pro-
nounced localization of the normal surface displace-
ments produced by the valve oscillations and by their
dipole character. Therefore, to achieve the maximum
heart sound loudness, real stethoscope designs use an
empirical bell diameter of 2–3 cm, which, according to
the above physical model, corresponds to realistic valve
depths of 5–9 cm. As is known, fetoscopes use greater
aperture diameters of 5–6 cm, because a fetus’s heart
valves are at a longer distance from the surface of a
mother’s body.

5. THE MODEL SPECTRUM 
OF THE DIPOLE FORCE

Let us show that the dipole model of a valve predicts
not only the true spatial characteristics of acoustic
fields produced by the valves with localization of aus-
cultation areas observed in practice but also the true
levels and spectra of radiation.

The analysis of classical plots [9, 11] of simulta-
neous pressure variation in auricles, ventricles, and
arteries (Fig. 1) shows that, first, these pressures
increase fast in the left part of the heart and the pressure
differences are substantial, and, second, all variations
are continuous; i.e., the curves are everywhere smooth
in the mathematical sense. For clarity, we consider the
process of closure of the mitral valve. It can be con-
cluded from Fig. 1 that the first sound begins when the
pressure in the left ventricle starts rising, and it ends
when the aortic valve opens. It is therefore natural to
model the pressure behavior in time by the following
exponential function:

(10)

where P0 is the blood pressure amplitude for each of the
valves and β is the characteristic frequency of pressure
variation.

The characteristic time intervals, reciprocal of β, are
equal to the interval of the isometric contraction (0.02–
0.04 s) for the mitral and tricuspid valves and to the
interval of sharp pressure drop in the ventricle (0.02–
0.04 s) for the aortic and pulmonary valves.

The spectrum of the variable pressure difference
that acts upon the valves and is described by Eq. (10)
can be calculated through the Fourier transform:

(11)

where ω = 2πf is the circular frequency.
The magnitude of spectrum (11) decreases in

inverse proportion to frequency; that is, above the fre-
quency ω = β, the spectrum of the driving force falls off
at a rate of 6 dB/octave. Such a spectrum slope must

p P0 βt( ), t 0, p≤exp 0, t 0,>= =

Gp ω( ) P0
1

β iω+
---------------,=
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also characterize the response of a perfect accelerome-
ter to the heart sounds.

For the air microphone and the stethoscope, the sig-
nal spectrum is steeper: its magnitude varies in inverse
proportion to the cube of frequency, or at a rate of
18 dB/octave. Indeed, the double integral with respect
to time in Eq. (9) gives rise to an additional factor, the
squared frequency, in the denominator. Precisely this
kind of frequency spectrum was reported for the heart
sounds in the literature [7, 8] and was measured by the
author of this paper (experimental points in Fig. 6).

Thus, the heart sound spectrum is in good agree-
ment with that predicted by the model.

Let us use Eqs. (9)–(11) to calculate the sound pres-
sure created by the heart valves in the stethoscope’s
bell. We use the initial data on the pressure exerted on
the valves and the data on the valve cross sections bor-
rowed from the literature [2, 9, 11] and summarized in
the table. The right-hand column of the table contains
the data on the amplitudes of the heart sounds (data for
the tricuspid valve are absent) from [1].

The solid lines in Fig. 6 show the three-octave spec-
tra of the first (mitral valve, upper curve) and second
(aortic valve, lower curve) sounds recorded with a
stethoscope, as calculated from the dipole model. Fig-
ure 6 also shows the experimental points obtained by
the author for the mitral (triangles) and aortic (squares)
valves. As shown in Fig. 6, the calculated sound pres-
sure in the stethoscope’s bell is close to the experimen-
tal values. According to the table, the proportions
between the pressure amplitudes of sound radiation
from different valves are primarily determined by the
differences in the driving forces. Therefore, the radia-
tion of the tricuspid and, especially, pulmonary valves
contributes little to the first and second sounds, which
is well known from the auscultation practice.

CONCLUSIONS

The dipole model of heart sound generation
described in this paper is in good agreement with exper-
imental data on the spatial, spectral, and amplitude
characteristics of the acoustic field of the heart. The fol-
lowing conclusions can be drawn from the analysis pre-
sented above:

Table

Heart
valve

Pressure 
on the 

valve (kPa)

Valve 
cross sec-
tion (cm2)

Dipole 
force (N)

Sound 
pressure 

(Pa)

Aortic 12 0.9 1 2.9–3.3

Mitral 9 1.6 1.4 2.6–2.8

Pulmonary 2 0.8 0.16 1.5–1.8

Tricuspid 3 2.9 0.87 –
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(i) The heart sounds are generated by the oscilla-
tions of closed heart valves under the action of the time-
varying pressure difference upon the valve, whereas the
free oscillations of healthy valves contribute little to the
heart sound generation because of the low Q factor of
the valves. The physical model of heart sound genera-
tion is the same for all the four valves: the external force
(the product of the aperture cross section of the closed
valve by the pressure gradient) applied to a homoge-
neous waterlike medium, which, as an acoustic source,
can be represented by a dipole with its axis being par-
allel to the force.

(ii) The dipole model of the heart sound generation
is the only model that explains the localization of audi-
bility areas for each valve and associates the positions
of these areas relative to the valves with the orientation
of the valve (dipole) axis and with the valve (dipole)
distance from the breast surface.

(iii) The dipole model of heart sound generation
provides a good agreement between theoretical and
experimental data on the heart sound levels and spectra,
which allows one to uniquely relate the heart sound
parameters to the time behavior of the pressure gradient
at the valve and to the cross-sectional area of the valve’s
aperture.

(iv) The dipole model can be used to calculate the
heart sound pressure perceived through the stethoscope
as a function of stethoscope parameters (the internal
volume and the cross-sectional area of the bell) and
spatial parameters (the position of the bell on the breast
relative to the valve and the valve’s orientation and
depth under the brest surface).

(v) For a given valve depth, the optimum size of the
stethoscope’s bell is determined. The empirically estab-
lished difference in the stethoscope and fetoscope bell
diameters is shown to be dictated by the difference in
the depths of the auscultated valves.

This paper contains only the main experimental
results, which corroborate the dipole theory of the heart
valve radiation. A further application of the theory to
explaining particular facts of auscultation and phono-
cardiographic examinations requires a dedicated paper.

APPENDIX

Let us introduce the notations

Then, formula (2) takes the form

r1 x2 y2 h2 2hz z2+ + + +( ),=

r2 x2 y2 h2 2hz– z2+ + +( ).=

Vn
1

4π
------ ∂

∂z
-----

z 0=

M α ∂
∂x
------

ikr1( )exp
r1

------------------------cos
=

– M α ∂
∂x
------

ikr2( )exp
r2

------------------------cos M α ∂
∂z
-----

ikr1( )exp
r1

------------------------sin+
where W1 = exp(ikr1), W2 =  ×

exp(ikr2), W3 = exp(ikr1), and W4 =

exp(ikr2).

The differentiation of expressions for Wj with
respect to z yields

The substitution of these expressions into formula (2) at
z = 0 gives formula (3) for the normal velocity of the
boundary:

where R =  and ξ = r/h.
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Abstract—The change of orientation of a nematic liquid crystal layer and the associated optical effect under
an obliquely incident ultrasonic wave are considered. The theoretical analysis is performed under the assump-
tion that the acoustic flows caused by convective stress in the boundary layers are responsible for the orientation
effects in the nematic liquid crystal layer. An analytical description of the acoustooptic effect is developed for
low ultrasonic frequencies, and for high frequencies, a numerical calculation is performed. It is demonstrated
that the theoretical results agree both qualitatively and quantitatively with experimental data. The hypothesis
that the effect produced by ultrasound on nematic liquid crystals is caused by the relatively strong elastic anisot-
ropy of these crystals is analyzed. © 2005 Pleiades Publishing, Inc.
The sensitivity of the orientational structure of liq-
uid crystal layers to ultrasonic action determines the
prospects for the use of these objects in the visualiza-
tion of sound fields and, in particular, in the develop-
ment of acoustic flaw detectors on their basis. These
prospects stimulate the long-term interest in studying
the effect of sound upon the structure of liquid crystals
from both experimental and theoretical points of view
(for example, see [1, 2]). The optical effects in liquid
crystals are caused by the reorientation of crystal mol-
ecules in the sound field. In theoretical publications,
various mechanisms of the effect of sound on a nematic
liquid crystal have been suggested: parametric instabil-
ity [3]; threshold action caused by the second-order vis-
cosities [4]; anisotropy of sound absorption, which,
according to Prigozhin’s principle, must lead to the
alignment of long nematic molecules in the direction of
acoustic wave propagation [5]; and acoustic flows, in
which viscous moments rotate the molecules of the
crystal [6–8]. I support the point of view that the reori-
entation of molecules occurs in the acoustic flows that
arise due to the convective stress in the boundary layers,
whose thickness is on the order of the viscous wave-
length. This point of view is confirmed by the qualita-
tive agreement of theoretical calculations, which were
performed for different geometries of sound action,
with experimental data and also by the agreement
within order of magnitude between the theoretical and
experimental values of ultrasonic intensity at which the
effect is observed (see reviews [1, 2]). At the same time,
the absence of detailed information on the parameters
of the liquid crystal cells used in the experiments often
prevents the numerical comparison of the theory with
experimental data and the verification of the assump-
tion concerning the responsibility of acoustic flows for
crystal reorientation. This situation leads to the appear-
1063-7710/05/5106- $26.00 0688
ance of new hypotheses explaining the sound effect on
the nematic liquid crystal structure.

A recent paper [9] gives the most complete informa-
tion on the parameters of the liquid crystal cell, which
provides the opportunity to conduct a numerical (not on
the order of magnitude) comparison of the theoretical
pattern with experimental results. This paper considers
the translucence of a nematic liquid crystal layer
immersed in water in the case of the oblique incidence
of an ultrasonic wave upon it. The paper gives the thick-
nesses of the nematic liquid crystal layers and the
boundary plates and also their densities and the veloci-
ties of longitudinal waves in the plates. The authors
conventionally evaluate the degree of molecule reorien-
tation according to the change of the optical properties
(saturation) of the layer. They suggest a new theoretical
explanation for the observed phenomenon on the basis
of the anisotropy of the elastic properties of the nem-
atic.

Let us again consider the acoustooptic effect in a
layer of a normally oriented nematic liquid crystal at
the oblique incidence of an ultrasonic wave upon it and
perform a numerical comparison of theoretical results
with the experimental data given in [9]. The theoretical
explanation of the effect that was suggested in [9] is
discussed in the final part of the paper.

The analysis of the effect is carried out as follows.
Under the assumption that the motion of the boundaries
of the nematic liquid crystal layer are preset, we deter-
mine the wave field in the layer. Retaining the terms
quadratic in the velocities in the hydrodynamic equa-
tions, we determine the velocities of the stationary flow,
and, according to the rotation angle of molecules in the
flow, we determine the optical effect. The motion of the
boundaries of a nematic liquid crystal layer in the case
© 2005 Pleiades Publishing, Inc.
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of the incidence of an ultrasonic wave on the cell is
determined at high frequencies by numerical calcula-
tion using a computer and at low frequencies, analyti-
cally.

We restrict our calculations to the sound frequencies
ω at which the viscous wavelength in the layer is much
smaller than the layer thickness h:

(1)

Describing the longitudinal waves, we ignore the
viscous stress compared to the elastic one (ηω ! ρc2).
In the calculation of the wave field in the layer, the vis-
cous effects are taken into account only by the presence
of viscous waves propagating from the layer bound-
aries along the normal. The dynamic viscosity in these
waves is equal to η = (α4 + α5 – α2γ2/γ1)/2, where αk are
the Leslie viscosity coefficients and γ1 = α3 – α2, γ2 =
α3 + α2 [10, 11].

Let us direct the z axis along the normal to the layer
and choose the origin of coordinates at the lower
boundary of the layer. Let the x axis be directed along
the layer in the plane of the ultrasonic wave incidence.
In this case, the acoustic oscillations of particles, the
stationary flow, and the molecule rotation occur in the
(xz) plane.

Let us preset the oscillation velocities of the bound-
aries of the nematic liquid crystal layer, v x and v z, in the
form

(2)

Here, v 0 is the amplitude of particle velocity in the
wave incident upon the liquid crystal cell, the index κ =
x, z determines the velocity component, the index β = 0,
h indicates the layer boundary, kx = ω/csinθ is the x
component of the wave number in the ultrasonic wave
incident upon the layer, c is the sound velocity in the
liquid, and θ is the angle of incidence. The coefficients
v κβ are complex:

The solution to the wave equation of the liquid
motion in the layer

with the boundary conditions given by Eq. (2) has the
form
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(3)

where k = ω/ccosθ and q =  is the wave number
in the viscous wave propagating along the axis of the
nematic crystal.

The convective stress arising in the wave field in the
nematic liquid crystal layer gives rise to stationary
flows, and the viscous moments in the flows cause the
rotation of the crystal molecules through the angle ϕ,
both the liquid motion and the molecule rotation occur-
ring in the plane of sound incidence. We will discuss the
sound effect upon the nematic liquid crystal layer
according to the translucence of the layer positioned
between crossed polarizers. The degree of the effect
will be determined by the optical transparency M,
which is maximal at the orientation of crossed polariz-
ers at 45° with respect to the rotation plane of nematic
liquid crystal molecules. In this case, this quantity
acquires the form [12]

(4)

Here, ∆n is the optical anisotropy of the nematic crystal
and k0 is the wave number of light in the ordinary wave.
The intensities of the sound effect at which the rotation
angle of molecules remains small, ϕ ! 1, are of practi-
cal significance. For small values of ϕ, we assume that,
in Eq. (4), we have sinϕ ≈ ϕ and linearize the equations
of hydrodynamics for the nematic liquid crystal with
respect to ϕ.

The determination of the transparency of the layer is
reduced to the determination of the rotation angle of
molecules ϕ. Taking into account the fact that the time-
average quantities in the case under consideration do
not depend on x, we obtain (following [10, 11]) the
equations for the velocity of the stationary flow, v x, and
the angle ϕ in the form

(5)
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Here η2 = (α4 + α5 – α2)/2; the overbar means aver-
aging over time; (*) are terms of the form

α(d2/dz2)  and α(d2/dz2) , which provide
a small contribution to the solution of the equation; and
K33 is Frank’s elastic constant.

Solving system of equations (5) with zero boundary
conditions for the angle θ2|z = 0, h = 0 and velocity
v2x|z = 0, h = 0 under the condition that the flow is closed,

 = 0, we determine ϕ as

(6)

where Q and S are parameters independent of v 0:

Substituting the angle ϕ from Eq. (6) into Eq. (4) for
the transparency and integrating ϕ2 over z, we obtain

(7)

where

J = ρ c is the sound intensity in the wave incident
upon the layer; and Λ is the dimensionless parameter
determined by the characteristics of the cell, the angle
θ, and the frequency ω through the coefficients Q and S:

Thus, the optical properties of the liquid crystal cell
are determined by the acoustic field formed in the liquid
crystal layer at the incidence of the ultrasonic wave on
the cell. To calculate this field, we consider a typical
liquid crystal cell in which the layer of a normally ori-
ented nematic crystal is placed between two transparent
substrates with thicknesses H1 and H2. We assume that
the cell is completely immersed in water and a sound
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wave is incident upon it at an angle θ from the side of
the first plate (H1). We assume that the boundary plates
are made of identical materials with the density ρg and
the velocities of longitudinal and transverse waves cl

and ct. We also assume the values of the density ρ and
the sound velocity c in water and in the liquid crystal to
be identical.

To determine the coefficients vαβ and, hence, the
optical effect, we consider the wave problem on the
transmission of a sound wave through the liquid–solid
plate–liquid–solid plate–liquid multilayer system. Let
us introduce (for the wave transmission through the liq-
uid crystal cell) the scalar potentials of velocity in the
sound waves propagating in the liquid and in the longi-
tudinal waves propagating in the boundary plates:

and the vector potentials of velocity in the shear waves
propagating in the boundary plates:

Here, Φ0 is the amplitude of the scalar potential in
the wave incident upon the layer; R and D are the coef-
ficients of reflection and transmission of the sound

wave; kl =  and kt =  are the z projec-
tions of wave numbers of the longitudinal and shear
waves in the boundary plates, respectively; kt0 = ω/ct;
and kl0 = ω/cl.

The coefficients involved in the potentials are deter-
mined from the boundary conditions, which include the
equality of the normal velocities v z of the liquid and the
solid plate and the equality of the normal stresses in the
solid and the pressure in the liquid. Ignoring the viscous
stresses in the liquid in comparison with the shear ones

in the solid plates (their ratio is equal to ρω/ρg  ! 1),
we represent the equations for the coefficients in the
form

Φk Φ0 ikxx iωt–( )

eikz Re ikz–+

a1e
iklz b1e

iklz–
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d1eikz d2e ikz–+
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








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exp=

A1 2, Φ0 r1 2, e
iktz s1 2, e
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2 kx

2– kt0
2 kx
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ct
2

a1e
iklH1–

b1e
iklH1–
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iklH1–( )+ +  = 
ρ 1 R+( )

ρgκ
---------------------,

r1e
ikt H1–

s1e
ikt H1 ξ l a1e

iklH1–
b1e

iklH1–( )–+ 0,=

a1 b1–
k

klκ
------- d1 d2–( ),=
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005



DEFORMATION OF A HOMEOTROPIC NEMATIC LIQUID CRYSTAL LAYER 691
(8)

Here, we have introduced the notations ξl = 2kxkl/(kt0 –

2 ), ξt = 2kxkt/(kt0 – 2 ), and κ = /(  – 2 ).

Let us analyze the results of calculation. At low
sound intensities, the dependence of the transparency
of the nematic liquid crystal layer on the intensity of the

sound wave is determined by the relation M ~ J4 ~ .
However, in a real experiment, a nematic liquid crystal
layer has a finite “background” transparency and the
comparison of calculation with experimental data at
small values of J is difficult. Therefore, we compare
theoretical and experimental results in the sound inten-
sity J1 at which the optical transparency reaches its first
maximum:
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ρ
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Fig. 1. Ultrasonic intensity J1 versus the angle of incidence θ.
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The analytical description of the acoustic wave field
in a liquid crystal layer is cumbersome in the general
case and does not lead to physically illustrative results.
Therefore, in the case of arbitrary cell parameters, fre-
quencies, and angles of sound incidence, the wave field
in the liquid crystal layer is determined by the numeri-
cal solution to system of equations (8). Thus, the coef-
ficients vαβ, the optical transparency of the layer M, and
the intensity J1 are determined.

In the numerical calculation, we take the sound fre-
quency f and the cell parameters to be equal to the cor-
responding values given in [9]: f = 3.3 × 106 Hz, H1 =
H2 = 0.09 cm, h = 0.015 cm, c = 1.5 × 105 cm s–1, cl =
6 × 105 cm s–1, ρ = 1 g cm–3, and ρg = 2.5 g cm–3. We
assume that the velocity of shear waves in the boundary
plates, which is not given by the authors of [9], to be
equal to ct = 3.6 × 105 cm s–1, i.e., to the velocity in
crown glass [13]. We take the viscosity coefficients for
the liquid crystal and Frank’s elastic constant to identi-
cal to those for a typical MBBA liquid crystal [10]: α4 =
0.83 P, α2 = –0.78 P, α5 = 0.46 P, α6 = –0.34 P, α3 =
−0.01 P, and K33 = 0.7 × 10–6 dyn.

The results of calculation are given in Figs. 1 and 2.
The intensity J1 as a function of the angle of sound inci-
dence is plotted in Fig. 1. At angles θ < 11°, the inten-
sity J1 and, therefore, the layer transparency are charac-
terized by a smooth dependence on θ. The singularity
in the curve J1 = J1(θ) at θ ≈ 11° corresponds to the total
reflection of longitudinal waves at the solid–liquid
boundary. As the angle of incidence grows further, the
smooth dependence of J1 on θ vanishes. In the case of the
incidence angle θ = 8°, the theoretical value of the inten-
sity J1 is equal to 31 mW cm–2. This value almost coin-
cides with the experimental value of J1 ≈ 30 mW cm–2

given in [9] for the same conditions for one of the liquid
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Fig. 2. (1) Acoustic and (2) optical transparencies of the
layer versus the angle of sound incidence.
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crystal mixtures (5SV) and is somewhat smaller than
the value of J1 = 40 mW cm–2 indicated in the same
paper for another mixture.

In the case of small angles of sound wave incidence,
when the relations klHαθ2/2 ! 1 and khθ2/2 ! 1 are
valid, the acoustic field in the system is determined
from the solution of the problem on the transmission of
a sound wave incident normally upon a nematic liquid
crystal cell, and the coefficients v zβ do not depend on
the angle θ. The boundary velocities v xβ are determined
from the condition of zero shear stress in the boundary
plates. For the coefficients v xβ, we have v xβ ~ kx/k ~ θ.
In this case, Q, S ~ θ, and Λ ~ θ2, while the dependence
of the layer transparency on the incidence angle of the
sound wave is determined by the relation M =
sin2(constJ2θ2). The dependence J1 ~ θ–1 for small
angles of incidence of the sound wave and the given
above parameters at θ < 4° is also shown in Fig. 1.

The curves in Fig. 2 demonstrate the correlation of
acoustic and optical transparencies for a nematic liquid
crystal cell in a wide range of angles of sound inci-
dence. It is necessary to note that this correlation was
indicated earlier in an experiment [14] and in the theo-
retical analysis of the effect [8] for different parameters
of the nematic liquid crystal layer.

The correlation |D| and Λ in a wide range of angles
of incidence and also the numerical coincidence of the
values of J1 in the theory and the experiment confirm
the major prerequisite lying at the basis of the above
theoretical calculation: namely, the effect of sound on a
nematic liquid crystal layer in the case of an oblique
incidence is caused by the acoustic flows caused by
convective stresses in the boundary layers whose thick-
ness is on the order of the viscous wavelength.

Let us separately consider the saturation of a nem-
atic liquid crystal cell at low sound frequencies and
small angles of sound incidence by assuming that the
inequalities

(9)

are valid and by limiting the frequencies from below by
Eq. (1), as before.

In this case, the solution to the system of Eqs. (8) has
a simple analytical form, which yields the following
expressions for the coefficients vαβ:

kl0Hα kt0Hα 1, kh 1,<< <
θ ! 1, kx kθ ! kt0≈

v x0
ν2 2–( )ρ

ν2ρg

----------------------θ,–≈

v xh
1 ν– ν2
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---------------------------------------------------------------θeikh,–≈

v z0 1 i
m

2
1+

2m
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m
2

1–
2m

---------------klH2e2ikh+ 
 + ,≈
where ν = cl/ct and m = ρgk/ρkl is the ratio of the imped-
ances of longitudinal waves in the plate and the liquid;
in the case of normal incidence of ultrasound, m is
equal to the ratio of acoustic resistances: m = ρgcl/ρc.

The parameter Λ at low frequencies is determined
by the expression

(10)

and, at identical thicknesses of the boundary plates
H1 = H2 = H, it takes on the form

(11)

For small values of the layer thickness, when
klH1, 2, < [ν2(ρg/ρ – 1) + 2]/[m(ν2 – 2)], we obtain

In this case, the longitudinal (mass) impedance of
the boundaries vanishes and the nematic liquid crystal
cell becomes almost transparent for the sound waves;
the appearance of flows and, hence, the layer saturation
can be explained only by the difference in the shear
impedances of the boundary plates and the liquid and
does not depend on the values of H1 and H2. If the thick-
ness of the plates increases, the mass impedance of the
layer boundaries grows linearly in H1 and H2, which
leads to the variation of the velocities v z in the liquid
crystal layer and a linear dependence of the parameter
Λ on H1 and H2. For real values of the parameters ν ≈ 2,
m ≈ 10, and ρg/ρ ≈ 2.5, the fractional coefficients mul-
tiplying klH1 and klH2 in Eq. (10) are positive. Thus, the
increase of the thickness H1 reduces (and the increase
of the second plate thickness H2 enhances) the optical
transparency of the nematic liquid crystal layer. In the
case of equal values of H1 = H2 = H, as H increases, the
value of Λ (Eq. (11)) and the optical transparency grow.
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The thickness of the nematic liquid crystal layer is
absent in the expression for Λ at low frequencies.

In the range of frequencies satisfying the inequality

we have Λ ~ kl ~ ω. In this case, the layer transparency
does not depend on the sound frequency, and its depen-
dence on the thickness of the nematic liquid crystal
layer, sound intensity, and incidence angle is deter-
mined by the relation M = sin2(consth3J2θ2), while the
constant at different thicknesses of the boundary plates
is proportional to H.

The dependence of the optical effect on the sound
frequency and the thickness of the boundary plates in
the frequency range determined by Eqs. (1) and (9) is
illustrated in Fig. 3, where the values of the product J1θ
are plotted as functions of frequency for the layer
parameters indicated above and the thicknesses of the
boundary plates H1 = H2 = 0.05, 0.1, and 0.5 cm.

In conclusion, let us consider the theory of the
acousto-optic effect at oblique incidence of ultrasound,
which was proposed in [9]. The authors treat the effect
as a consequence of the elastic anisotropy of the nem-
atic liquid crystal by introducing it through additional
terms in the free energy of the nematic:

(12)

Here, uk are certain coefficients.
If the sound wave propagates in the crystal, the aver-

aging of the second term in Eq. (12) over the period of
oscillations contributes to the energy in proportion to
the intensity of the sound wave. This contribution
depends on the angle between the directions of wave
propagation and molecule orientation β:

Variation of the energy δg' over the angle β leads to
the moments δΓ rotating the crystal molecules,

and, as a consequence, to the layer saturation with the
transparency Me in the form

(13)

where

In [9], only a qualitative agreement of the theory
predicting the dependence Me = sin2[constJ2] with
experimental data is noted.

1 klH1

ν2 ρg/ρ 1–( ) 2+

m ν2 2–( )
---------------------------------------,> >

δg u1nin j∂i∂ jρ u2 n∇( )ρ[ ] 2+{ } .=

δg'
1
2
---u2 ∆ρ( )2 kn( )2 1

2
---

u2ρJ

c3
------------ β.cos

2
= =

δΓ
u2ρk2J 2β( )sin

c3
-------------------------------------,=

Me LJ2 2β( )sin
2{ } ,sin

2
=

L
u2

2∆nρ2k0k4h5

240c6K33
2

----------------------------------.=
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
Let us analyze the provisions lying at the basis of the
theoretical construction [9]. Variation of the liquid den-
sity is connected with the displacement of liquid parti-
cles U: ∆ρ = –ρdivU. Let us represent the additional
term containing u2 in the energy given by Eq. (12) in
terms of the displacement:

(14)

The elastic energy given by Eq. (14) leads to addi-
tional mass forces and changes the form of the equation
for elastic waves in the liquid crystal:

The propagation velocity of such waves depends on
the angle β between the propagation direction of waves
and the crystal orientation. A simple calculation leads
to the following expression for the velocity of sound
waves c(β):

(15)

Here, τ =  is a certain characteristic time
arising in the calculation and c is the sound velocity
obtained without taking into account the anisotropy of
elasticity.

Equation (15) predicts the dispersion of velocity
with a value depending on the propagation direction of
the sound wave. If the wave propagates perpendicularly
to the crystal axis (β = π/2), the dispersion is absent:
c(π/2) = c. In the case of the propagation along the crys-
tal axis (β = 0), the wave must be subjected to a consid-
erable dispersion: at low frequencies, when ωτ ! 1, we
have c(0) = c, and at high frequencies, when ωτ @ 1, we

δg' u2ρ
2 nα∂α∂iUi[ ] 2

.=
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Fig. 3. Ultrasonic intensity J1 versus the frequency of the
sound wave f for H = (1) 0.05, (2) 0.1, and (3) 0.5 cm.
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have c(0) ≈ c . Let us determine the time τ by
preliminarily finding the coefficient u2. The intensity of
the sound wave in the nematic liquid crystal layer J is
determined by the intensity J0 of the wave incident on
the cell and by the acoustic transparency of the layer
|D|: J = J0|D|2. Equating J1 involved in Eq. (13),

to the experimental value J1 = 30 mW cm–2 given in [9]
for the angle of ultrasound incidence equal to 8° and
using the value |D| = 0.36 determined by numerical cal-
culation, we obtain u2 = 6.25 × 105 cm7 g–1 s–2. The time
τ in this case is equal to τ = 3.3 × 10–8 s. At the frequen-
cies f > 10 MHz, the velocity of sound propagating
along the crystal axis must increase with frequency
according to the law c(0) ~ ω1/2; the anisotropy of sound
velocity must also increase analogously. At the fre-
quency f = 7 MHz, the sound velocity c(0) and the rel-
ative anisotropy of velocity determined according to
Eq. (15) must be equal to c(0) ≈ 2c and ∆c/c = c(0)/c –
1 = 1. In reality, the sound velocity in a crystal exhibits
only a small dispersion and a small anisotropy. The rel-
ative dispersion jump of velocity Dc = c(ω = ∞)/c(ω =
0) – 1 in a nematic crystal, which is maximal near the
point of orientation melting, does not exceed the value
Dc = 0.15, and the relative anisotropy does not exceed
the value ∆c/c = 10–2 [1, 2]. Thus, the assumption that
the relatively strong anisotropy of elasticity in a nem-
atic liquid crystal may be responsible for orientation
effects under the action of sound on a nematic crystal,
which was put forward in [9], does not agree with real-
ity and is inconsistent.

ωτ/2

J1
π

2L D 2 2β( )sin
2

--------------------------------------,=
REFERENCES

1. A. P. Kapustin and O. A. Kapustina, Acoustics of Liquid
Crystals (Nauka, Moscow, 1986) [in Russian].

2. D. Demus, in Physical Properties of Liquid Crystals
(Wiley, Berlin, 2000), pp. 447–466.

3. I. A. Chaban, Akust. Zh. 25, 124 (1979) [Sov. Phys.
Acoust. 25, 67 (1979)].

4. W. Helfrich, Phys. Rev. Lett. 29 (24), 1583 (1972).

5. J.-L. Dion, J. Appl. Phys. 50 (4), 2965 (1979).

6. K. Miyano and Y. R. Shen, Appl. Phys. Lett. 28 (9), 473
(1976).

7. S. Candau, A. Ferre, A. Petters, et al., Mol. Cryst. Liq.
Cryst. 61, 7 (1980).

8. E. I. Zhukovskaya, E. N. Kozhevnikov, and
V. M. Podol’skiœ, Zh. Éksp. Teor. Fiz. 83 (1), 207 (1982)
[Sov. Phys. JETP 56 (1), 113 (1982)].

9. J. V. Selinger, M. S. Spector, V. A. Greanya, et al., Phys.
Rev. E66, 051708 (2002).

10. M. J. Stephen and J. P. Straley, Rev. Mod. Phys. 46 (4),
617 (1974).

11. P. de Gennes, The Physics of Liquid Crystals (Claren-
don, Oxford, 1974; Mir, Moscow, 1977).

12. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 8: Electrodynamics of Continuous Media
(Nauka, Moscow, 1982; Pergamon, New York, 1984).

13. Small Encyclopedia: Ultrasound, Ed. by I. P. Golyamina
(Sov. Éntsiklopediya, Moscow, 1979) [in Russian].

14. J. N. Perbet and M. Hareng, Rev. Phys. Appl. 14, 569
(1979).

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005



  

Acoustical Physics, Vol. 51, No. 6, 2005, pp. 695–704. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 6, 2005, pp. 802–812.
Original Russian Text Copyright © 2005 by I. Margulis, M. Margulis.

              
Measurement of Acoustic Power 
in Studying Cavitation Processes

I. M. Margulis and M. A. Margulis
Andreev Acoustics Institute, Russian Academy of Sciences, ul. Shvernika 4, Moscow, 117036 Russia

e-mail: margulis@akin.ru
Received February 9, 2004

Abstract—A comparative calorimetric method for measuring the acoustic power generated by a sound source
under cavitation conditions and the power absorbed by a liquid with bubbles is developed. The conditions under
which the whole of the generated power is absorbed by the liquid with bubbles are determined experimentally. An
instrument for power calibration of sound sources operating under cavitation conditions is designed. The instru-
ment is found to provide a high measurement accuracy (3% or better). The requirements on the dimensions of the
vessel and on the volume of the liquid in which the sound source operates are formulated to make the power gen-
erated under cavitation conditions independent of these parameters. For the first time, it is shown experimentally
(by the example of the reaction of nitric oxide formation under the action of sound) that, if these conditions are
satisfied and the sound intensity exceeds the threshold intensity, the rate of a number of sonochemical reactions is
proportional to the sound intensity in the range from 1.7 to at least 47 W/cm2. It is shown that the dependence of
the rate of cavitation processes on the sound intensity with a maximum at 8.6 W/cm2 and a sharp decrease in the
rate with a further intensity increase is determined by the fact that the measured quantity was the electric power at
the transducer rather than the acoustic one. © 2005 Pleiades Publishing, Inc.
The measurement of acoustic power generated by a
source of ultrasound and the power absorbed in a vol-
ume of liquid under cavitation conditions [1, 2] is an
urgent and important problem of acoustics, which was
not solved until recently, although cavitation had been
studied for many decades [1, 3, 4]. The existing meth-
ods of measuring the radiated and absorbed power
under cavitation conditions (they are considered below)
can be used, at best, only for qualitative estimates [1, 2].
However, the measurement of acoustic power under
cavitation is of great scientific and applied interest for
studying the efficiency of sonochemical processes,
sonoluminescence [1, 4–6], erosion, emulsification,
and ultrasonic cleaning, for the calibration of ultrasonic
equipment, in research, in studying and scaling cavita-
tion processes, etc. Recent investigations show that
cavitation may arise in cells in vivo. Therefore, in
developing and applying the therapeutic and diagnostic
equipment in medicine [1, 7, 8], it is necessary to take
into account the influence of cavitation and perform the
dosimetry of acoustic energy absorbed by a living body.
Because of the uncertainty in the radiated and absorbed
acoustic powers under cavitation conditions, the exper-
imental results obtained by different researchers are
incomparable. The lack of a reliable method for mea-
suring the acoustic power makes it impossible to solve
many scientific problems, for instance, to determine the
dependence of the rate of a sonochemical reaction on
the frequency of ultrasonic waves or to optimize vari-
1063-7710/05/5106- $26.00 0695
ous production processes accompanied by fully devel-
oped cavitation.

It is fairly easy to measure the electric energy deliv-
ered to a transducer, but this quantity cannot character-
ize the energy of the cavitation process. According to
current concepts, in chemical and physicochemical
processes accompanying cavitation, only the absorbed
acoustic energy can be active [1, 9]. This condition is
consistent with the Grotthuss–Draper law [10] for pho-
tochemical reactions, according to which only the
absorbed part of luminous energy can be chemically
active. Therefore, the rates of cavitation processes
should be related to the absorbed acoustic power. The
radiated power is the main energy characteristic of
ultrasonic instruments used in their calibration [9].
However, in the majority of experimental works, even
in the recent ones, the difference between these powers,
as far as we know, was not discussed.

In this paper, a new method (a comparative calori-
metric method) is presented, which makes it possible to
measure quantitatively the acoustic power radiated by a
sound source under cavitation conditions, as well as the
power absorbed by a liquid with bubbles. In addition,
the paper reports the experimental results obtained with
this method.

At present, the following main methods of deter-
mining or estimating the acoustic power radiated by a
source of ultrasound under cavitation are known [1, 2]:

(i) The determination of the radiated power by mea-
suring the vibration amplitude of a waveguide using a
© 2005 Pleiades Publishing, Inc.
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vibration meter [1, 2, 11]. Under cavitation conditions,
this method leads to erroneous results [1, 9], because
the appearance of cavitation bubbles sharply reduces
the acoustic impedance (ρLcL), where ρL is the density
of the medium and cL is the sound speed. This decrease
in (ρLcL) results from an abrupt decrease in the sound
speed in a cavitating liquid: cL can even become much
smaller than the sound speed in gas [12–14]. The rea-
son for the decrease in cL is that the liquid–bubble sys-
tem has a compressibility nearly equal to the compress-
ibility of gas and a density almost equal to that of a liq-
uid [12]. The sound speed in cavitating water can
decrease by two orders of magnitude compared to the
sound speed c0 in pure water (1500 m/s) and reach a
value of 15–50 m/s or less [13, 14]. Under cavitation,
the acoustic impedance of the medium changes consid-
erably and randomly in space and time; there is also a
substantial dispersion of the sound speed [14]. In addi-
tion, following this method, one usually measures only
the amplitude of the waveguide face [1, 2, 11], and the
measurement of the vibration amplitude in other direc-
tions presents a cumbersome and difficult problem. We
can mention, however, that the solution of this problem
makes no sense, because the measurement error, due to
the variation of cL over a wide range, is large.

(ii) Calculation of acoustic intensity by the well-
known formula [2, 11]

(1)

where the conversion coefficient k( f ) depends on the
type of the transducer and is taken to be constant for the
whole line of transducers, U is the voltage at the trans-
ducer, and f is the frequency of ultrasonic waves. The
coefficient k is undefinable (because the value of the
acoustic power is unknown) and, in addition, it can
change in a wide range for every specific transducer
and depending on the conditions of the experiment [1].

(iii) The use of a piezoelectric or magnetostrictive
sensor or a thermoelectric method [2, 11] based on the
sound absorption and the heating of a calibrated “sticky
drop” gives relative parameters at one point [1].

(iv) Optical measurements (the interferometric, or
semishadow, method based on the measurement of the
index of refraction) [2, 11] require a particular configu-
ration of acoustic parameters and the form of the vessel
for performing the measurements, and, in addition, they
are inapplicable under the conditions of fully developed
cavitation. Under cavitation, the distribution of acoustic
parameters in the liquid is random and, obviously, these
methods are inapplicable for measuring the ultrasonic
wave power in solving conventional scientific and tech-
nological problems [1].

(v) The measurement of radiation pressure [2, 11]
(for example, using a balance) after the appearance of
cavitation in the liquid leads to erroneous results [1, 2].
Such results are caused by the numerous reflections of
ultrasonic waves and by the additional pressure pro-

I k f( )U2 ρLcL( ),=
duced by shock waves and jet streams created by cavi-
tation bubbles. The measurement of radiation pressure
requires the absence of cavitation, liquid degassing,
mounting of acoustic screens, employing focused radi-
ators, etc. [2, 11]. The measurement of ultrasonic power
in small volumes of liquid is quite a difficult task.
Moreover, the necessity of producing an acoustic field
of a certain configuration restricts the applicability of
this method, because the distribution of acoustic
parameters in the liquid is random.

Methods (ii)–(v) require the exact determination of
the value of ρLcL; hence, they have the same fundamen-
tal disadvantage as method (i) [1]. All five methods are
relative. Thus, until recently, there were no reliable
methods for determining the radiated acoustic power
under cavitation conditions, and the above-mentioned
methods are suitable only for making an estimate.

For measuring the acoustic power absorbed by a
cavitating volume of liquid, at present, an ordinary cal-
orimetric method is used most often [1, 2]. According
to this method, the increase in the liquid temperature
∆TUS under the action of ultrasound is measured over a
sufficiently long period of time tUS (5–30 min, so that
the heating ∆TUS reaches 5–20°C). The absorbed power
is calculated by the relation

(2)

where cv is the specific heat of water and m is the mass
of water. However, this method has the following
essential disadvantages [1, 9]:

(a) In principle, it is impossible to eliminate the con-
siderable heat transfer through the waveguide; usually,
the heat transfer through the vessel walls is also large.

(b) The difference between the heat capacity of the
liquid cvm and the heat capacity of the liquid–
waveguide–vessel–thermometer system Csys is consid-
erable (sometimes these quantities may differ several
times).

(c) As a rule, in these measurements a mixer is not
used, because it is supposed that ultrasound itself is an
efficient mixer. However, the experiments [9] showed
that mixing is necessary in the calorimetric measure-
ments and, without mixing, the temperature distribu-
tion in the liquid is highly inhomogeneous.

(d) The experiments [9] showed that, if the time of
action of ultrasound tUS exceeds 40–90 s (depending on
the specific type of the waveguide and the efficiency of
the transducer), the heat has enough time to be trans-
ferred from the acoustic transducer to the cavitating liq-
uid through the waveguide (usually made of metal).

Consequently, using an ordinary calorimetric
method, some intermediate value between the electric
power at the transducer and the absorbed acoustic
power is measured approximately; the errors intro-
duced by the heat transfer, the difference in the heat
capacities, etc., are practically undefinable [1, 9].

WUS cvm∆TUS/tUS,=
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Fig. 1. (a) Comparison of the typical experimental dependence ∆TUS(t) under the action of ultrasound and the theoretical depen-
dence ∆Ttm(t) calculated by Eqs. (8) and (9). Experimental conditions: the liquid volume is 600 ml, tUS = 14.7 s (the instant of ter-

mination of the ultrasound is shown by an arrow ↓ ), and WUS = 11.9 W. Parameters of the calculation are α = 0.0063 s–1 and trel =
1.7 s. (b) Diagram illustrating the calculation of ∆Tmax from the curve ∆Ttm(t) approximating the experimental data. Parameters of
the calculation are tUS = 10 s, trel = 5 s (for clarity, trel is shown on an enlarged scale), α = 0.0067, and, according to Eq. (10), texp =
29.6 s. The dot-and-dash line shows the dependence of the temperature rise on time for α = 0 and trel = 0. 
The method proposed in [15] for determining the
absorbed acoustic power from the initial part of the
curve of the temperature rise with time, beginning
from the instant the ultrasound is turned on, eliminates
the influence of the heat transfer on the temperature
rise. However, the drawbacks indicated in items (b)–
(d) persist [1, 9]. An additional error appears, which is
connected with the inertia of the liquid–waveguide–
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
vessel–thermometer system, since, at the initial
instant, the derivative of the temperature rise mea-
sured with a thermometer with respect to time is equal
to zero (see, for example, the initial part of the curve
∆TUS(t) in Fig. 1a). Consequently, the error in measur-
ing the acoustic power using this method turns out to
be considerable [1, 9].
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1. THE COMPARATIVE
CALORIMETRIC METHOD

A comparative calorimetric method for measuring
the acoustic power in cavitation conditions was pro-
posed in paper [16], and later, in [9, 17], it was consid-
erably improved. The essence of this method is as fol-
lows. First, a source of ultrasound is turned on for a
short time tUS and the change in temperature with time
∆TUS(t) is recorded by using a thermoprobe (Fig. 1a).
Then, after cooling, a heater is turned on and the change
in temperature is recorded again. By changing the
power delivered by the heater, the similarity of the run
of the curves ∆TUS(t) is achieved. In this case, the
power, lost by the heater is considered to be the equiv-
alent of the acoustic power absorbed in the volume of
the liquid under study.

Let us consider the change in the temperature of the
liquid with time if a sound source (or a heater) is turned
on at the instant t = 0 and turned off at t = tUS (Fig. 1a).
To a high accuracy, the spatial distribution of tempera-
ture in the liquid can be considered to be homoge-
neous, because an efficient mixer is used (the stirring
is assumed to be efficient if an increase in the mixer
velocity does not change the measured value of
acoustic power). For a small change in temperature,
the heat transfer is proportional to its increase, and
the change in temperature obeys the following set of
equations [9, 17]: 

(3)

(4)

with the initial condition ∆The(0) = 0. In these equa-
tions, W is the acoustic (or heat) power, Csys is the heat
capacity of the liquid–waveguide–vessel–thermometer
system, and α is a constant characterizing the intensity
of the heat transfer.

The solution to the set of equations (3), (4) can be
written as [9, 17]

(5)

(6)

Since the system is inertial, the thermoprobe measures
the liquid temperature with a lag, which is character-

d ∆The( )/dt W /Csys α∆The, t tUS≤( )–=

d ∆The( )/dt α∆The, t tUS>( )–=

∆The t( ) Wt
Csys
--------- 1 α t–( )exp–

α t
-------------------------------- 

  , t tUS≤( )=

∆The t( )
WtUS

Csys
------------

1 α tUS–( )exp–
α tUS

------------------------------------- 
 =

× α t tUS–( )–( ), t tSU>( ).exp
ized by the relaxation time trel; i.e., the thermoprobe
output is determined by the equation

(7)

with the initial condition Ttm(0) = 0. The solution to
Eq. (7) can be written as

(8)

(9)

According to Fig. 1a, the measured experimental
dependence ∆TUS(t) is approximated by the curve
∆Ttm(t) to a very high accuracy. The further theoretical
analysis is aimed at the determination of the algorithm
allowing us, by using the measured dependences
∆TUS(t) approximated by the curves ∆Ttm(t), to compare
quantitatively the thermal powers from two different
heat sources operating during the same time tUS with a
constant heat capacity of the system Csys but with dif-
ferent times of thermal inertia trel and different condi-
tions of heat transfer (parameter α). It should be noted
that the parameter α and the time tUS are determined
from the experiment to a very high accuracy; the accu-
racy of determining trel is not high. We will find the time
texp, beginning from which the difference between the
curve ∆Ttm and curve ∆TUS(t) displaced along the time
axis by the magnitude trel do not exceed the given accu-
racy K. From formula (9), it follows that the inertia of
the thermoprobe influences the result of temperature
measurement if the time is less than

(10)

For instance, for K = 0.003, tUS = 10 s, trel = 2 s, and α <
0.1, we have texp ~ 20 s, and for trel = 5 s and α < 0.03,
we have texp ~ 30 s. Thus, the approximation of the
curve ∆Ttm(t) by an exponent is correct for t > texp.

It seems that the parameter by which it is possible to
compare the absorbed powers using the curves ∆Ttm(t)

d ∆T tm( )/dt ∆The ∆T tm–( )/trel=

∆T tm t( ) W
Csys 1 α trel–( )
---------------------------------=

× 1 α t–( )exp–
α

-------------------------------- trel 1 t/trel–( )exp–( )– 
  ,

t tUS≤( )

∆T tm t( ) W
Csys 1 α trel–( )
---------------------------------=

×
1 α tUS–( )exp–

α α t tUS–( )( )exp
------------------------------------------

– trel 1
tUS

T rel
-------– 

 exp– 
  t tUS–

trel
--------------– 

 exp , t tUS≥( ).

texp tUS

trel

1 α trel–
-------------------

α trel

K
----------

1 tUS/trel–( )exp–
1 α tUS–( )exp–

-----------------------------------------ln+=

t tUS≤( ).
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is the measured maximal temperature. Equating the
derivative d(∆Ttm)/dt to zero, we have

(11)

From this expression it is seen that ∆Ttm max strongly
and in a complicated way depends on trel and α and,
consequently, it cannot be an appropriate parameter for
comparing the curves ∆Ttm(t).

The analysis performed above shows that an alterna-
tive algorithm is needed. On the basis of the experimen-
tal curve approximated by Eqs. (8) and (9), it is possible
to calculate or determine from the plot the tangent to it
at the instant when the source of ultrasound (or the
heater) is turned off (Fig. 1b). The equation of the tan-
gent ∆Tlin(t) to the curve ∆Ttm(t) at the point tUS can be
written as

(12)

where a is the derivative of the temperature rise with
respect to time at the moment the source of ultrasound
is turned off:

(13)

It is easy to show that the straight line ∆Tlin(t) and the
curves ∆The(t) (Eqs. (5) and (6)) displaced along the
t axis by the time trel have a common point of intersec-
tion at the instant (trel + tUS) (see Fig. 1b) characterized
by the temperature

(14)

The quantity ∆The max determined in this way does not
depend on trel (note that trel may be even greater than the
time of operation of the source of ultrasound tUS). From
this expression, we can obtain the maximal temperature
to which the liquid would be heated without heat trans-
fer to the environment:

(15)

The calculated ∆Tmax does not depend either on the
intensity of the heat exchange or on the relaxation time.
Hence, ∆Tmax can be used as a quantitative criterion for
comparing the curves ∆Ttm(t) under different conditions
of heat transfer and with different times of relaxation
trel. This fact was supported by experiments [9]. Thus,
the ratio ∆TUS max/∆TH max calculated from the experi-
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W

Csys
---------

1 α tUS–( )exp–
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------------------------------------- 
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mental dependences ∆TUS(t) and ∆TH(t) is the quantita-
tive measure of the ratio of the absorbed powers (here,
∆TUS(t) and ∆TH(t) are the temperature rises produced
by the source of ultrasound and the heater) [9, 17].

The analysis of these solutions made it possible to
determine the conditions most favorable for performing
the measurements [9, 17]:

—a smallness of the temperature rise (no greater
than 0.1–0.4 K),

—a short time of operation of the sound source (the
experiments showed that tUS should lie in the range 5–
15 s), and

—an efficient stirring of the liquid; in the experi-
ments described below, trel did not exceed 1–2 s.

The absorbed acoustic power was measured as fol-
lows. First, the variation of the temperature of the liquid
with time under the action of sound, ∆TUS(t), is
recorded, and then, by using a computer with an A/D
converter, the approximation is performed and ∆TUS max
is calculated. The selection of the heater power is car-
ried out by a special program with a computer operating
in real time in such a way that ∆TUS max/∆TH max ≈ 1. The
process is performed in one or several successive
approximations, depending on the required accuracy.
The value of the heater power at the first step has no
effect on the final accuracy and only determines the
number of iterations. The operation time of the heater is
taken to be equal to tUS, and the power is calculated as

(16)

Then, the temperature variation with time, ∆TH1(t), is
recorded and ∆TH1max is calculated in the same way as
∆TUS max. From the measured current Ie and voltage Ue
at the heater, the actually released thermal power

WH1real = ( Uedt)/tUS is determined to a high accu-

racy, with the difference between WH1real and WH1set not
exceeding 3%. At the second step, the measurement of
∆TH2(t) is performed similarly to ∆TH1(t). The heating
time is taken to be equal to tUS, and the heater power is

WH2set = WH1real∆TUS max/∆TH1max. (17)

By measuring the current Ie and the voltage Ue at the
heater, WH2real is determined to a high accuracy. The
computed temperature rise ∆TH2max turns out to be
much closer to ∆TUS max than ∆Tç1max, and the absorbed
acoustic power is found by the formula

WUS = Wç2real∆TUS max/∆TH2max. (18)

Note that it is possible to conduct several refining mea-
surements, taking every time the operation time of the
heater equal to tUS and the power at the ith step equal to

Wç(i)set = Wç(i – 1)real∆TUS max/∆TH(i – 1)max. (19)

However, our experiments showed that the required
accuracy of 3% is achieved after two iterations.

WH1set cvm∆TUS max/tUS.=

Ie∫
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Fig. 2. Experimental setup for measuring the absorbed and radiated acoustic powers under cavitation conditions: cover 1 for mount-
ing parts 3–8, body 2, thermoprobe 3, mixer 4, wire of the heater 5, device 6 for fastening the cover to a stand, electric connector 7,
and power connector 8. The setup measures the power of a sound source consisting of an ultrasonic transducer 9 and an ultrasonic
generator 10.
A typical example of the temperature variation
with time under the action of ultrasound and the heater
at the first and second (refining) calibrations is shown
in Fig. 1b. In the measurements, we determined to a
high accuracy the operation time of the sound source
and the current value of the temperature rise (with an
accuracy of 0.005 s and 0.0005 K, respectively). The
total time of measurements did not exceed 8 min,
because three curves ∆TUS(t), ∆TH1(t), and ∆H2(t) were
recorded, every curve for two minutes.

For measuring the absorbed and radiated acoustic
power, we used a setup schematically shown in Fig. 2.
It consists of a calorimetric tank filled with insonified
liquid; a sensor unit, which comprises a mixer, a coil
heater, and sensors (a sensor of the liquid temperature
and sensors of the heater current and voltage); and a
control unit, which comprises a power supply module
and a computer with an A/D converter for data acquisi-
tion. The sensor unit measures the liquid temperature
rise in the calorimetric tank and the heat released by
electric coil 5 of the heater (from the measured current
Ie and voltage Ue); these data are passed to the control
unit. The control unit assigns the electric power WH(i)set

that will be released by the heater, controls the process
of measuring the absorbed acoustic power according to
the algorithm described above, and provides the power
supply for the whole setup. By using the computer, the
interactive mode of operation is performed and the
results are displayed. All the measurements, approxi-
mation, calculations, and other operations are carried
out automatically in real time. On the basis of this
setup, the ARM-1 system was developed and the 3%
accuracy was achieved in the acoustic power measure-
ments.

The specific conditions under which practically the
whole of the radiated power is absorbed in the volume
of the cavitating liquid were determined experimentally
(see below, Subsection 2.2). In this case, by measuring
the absorbed power, we can also find the radiated
acoustic power [9, 17].

The comparative calorimetric method has the fol-
lowing advantages over the known methods described
above [9]:

—Unlike the acoustic methods (i)–(v), it is not nec-
essary to know exactly the impedance of the liquid with
bubbles, the conversion coefficient of the radiator, etc.;
the measurements are conducted independently of the
type of the radiator and the ultrasonic frequency; the
proposed method is an absolute one.

—In contrast to the ordinary calorimetric method, it
is not necessary to eliminate the heat transfer, because
the heat transfer does not affect the accuracy in compar-
ative measurements; the measurements do not depend
on the heat capacity of the liquid–waveguide–vessel–
thermometer system; because of the short time of oper-
ation of the source of ultrasound, the heat has no time
to be transferred from the transducer to the liquid, i.e.,
the measured quantity is precisely the absorbed acous-
tic power.
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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2. EXPERIMENTAL RESULTS OBTAINED 
USING THE COMPARATIVE 
CALORIMETRIC METHOD

In the experiments, four different sound sources
were employed. The first source is an ultrasonic gener-
ator with a magnetostrictive transducer, which is con-
nected to a steel waveguide with the length λ/2, a face
diameter of 15 mm, and a resonance frequency of
21.2 kHz (instrument 1). The second source is a gener-
ator with a piezoelectric transducer, which is connected
to a titanium waveguide with the length λ, a face diam-
eter of 80 mm, and a resonance frequency of 41.0 kHz
(instrument 2). We also used the following ultrasonic
tanks: the first tank with one piezoelectric transducer of
frequency 20.2 kHz (instrument 3) and the second tank
with two piezoelectric transducers of frequency 23.0 kHz
(instrument 4). The measurements were carried out in
four different metal vessels. The first vessel has a cylin-
drical form of circular cross section 60 mm in diameter
and 100 mm in height. The second vessel has a cylin-
drical form of circular cross section 150 mm in diame-
ter and 120 mm in height. The third vessel has the form
of a parallelepiped with a square cross section of 90 ×
90 mm and a height of 105 mm. In the experiments, dis-
tilled water at a temperature of 19–21°C was used.

2.1. Comparison of the Absorbed and Radiated 
Ultrasonic Powers

At the beginning, we assumed that, under the exper-
imental conditions, the radiated acoustic power should
be much greater than the absorbed power. However, the
experiments did not confirm this assumption. In our
previous experiments [9, 17], we determined the condi-
tions under which practically the whole of the radiated
acoustic power is absorbed in the volume of a cavitating
liquid. In this case, by measuring the absorbed power,
we can also determine the radiated acoustic power.

We performed the measurements with instrument 1
at four fixed values of acoustic power, 4.1 ± 0.2, 15.3 ±
0.5, 28.3 ± 0.8, and 45.8 ± 1 W, and with instrument 2
at a fixed power of 13 ± 0.3 W (these values of acoustic
power corresponded to the conditions of fully devel-
oped cavitation). The waveguide was submerged to a
depth of 12 ± 1 mm, and the measurements were carried
out in vessels 1 and 3. The liquid volume was always
equal to 400 cm3. Similar measurements were per-
formed with ultrasonic tanks 3 and 4 at fixed power val-
ues of 53 ± 1.5 and 65.3 ± 1.5 W, and the liquid volume
was 500 and 1500 cm3, respectively. Introducing an
efficient sound absorber made of fibrous polymeric
material into the system, we obtained the same acoustic
power as without the sound absorber (within the accu-
racy of the experiment, 3%). The absorber was intro-
duced in such a way that the form of the cavitation
cloud remained unaffected. The experimental results
can be explained by the fact that, in the absence of effi-
cient absorbers, ultrasonic waves are reflected from the
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
liquid–gas or solid wall–gas boundaries and are almost
completely absorbed by the liquid with bubbles.

At present, a popular method of studying sonochem-
ical processes is based on introducing the ultrasound
into the system through a sound-transparent bottom to
avoid the influence of the contact of the radiator mate-
rial with the insonified liquid on the process under
study (see, for example, [18]). It is believed that, under
cavitation conditions, the whole of the introduced ultra-
sonic energy is absorbed by the liquid volume in the
vessel. We decided to verify this assumption. We used
a cylindrical vessel with a circular cross section of
60 mm in diameter and a height of 100 mm, the bottom
of which was made of a sound-transparent lavsan film.
The sound source was an ultrasonic tank (instrument 3).
The measurements were carried out in two steps. First,
the radiated acoustic power was measured (for this pur-
pose, the power absorbed in the water filling the ultra-
sonic tank was measured). After this, into the liquid fill-
ing the ultrasonic tank, a vessel with a sound-transpar-
ent bottom was submerged just above the radiator, at a
distance of about 3 mm, and the power absorbed in the
vessel was measured. Figure 3 shows the ratio of the
power absorbed in the vessel to the power radiated by
the ultrasonic tank as a function of the power radiated
by the ultrasonic tank. It is seen that, in a wide range of
intensities, only ~40% of the radiated power is
absorbed, but at a low radiated power, the share of the
absorbed power in the vessel with a sound-transparent
bottom considerably decreases.

Such a great difference between the radiated and
absorbed acoustic powers can be explained by the fact
that the sound-transparent film not only allows the
sound to pass into the vessel but, according to the reci-
procity principle, also permits the sound waves to
escape from the vessel. Apparently, the absence of
sound-transparent walls is a necessary condition for the
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Fig. 3. Dependence of the ratio of the absorbed power WUS
to the radiated acoustic power W on the radiated acoustic
power W.
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whole of the radiated power to be absorbed by the liq-
uid with bubbles.

Thus, using the described procedure, it is possible to
measure not only the absorbed power but also the radi-
ated acoustic power [9]. When using a vessel with a
sound-transparent bottom, a portion of the radiated
power can escape from the liquid volume. In this case,
it is possible to measure only the absorbed acoustic
power and then, using a vessel without sound-transpar-
ent elements through which sound can leave the sys-
tem, to measure the radiated power.

2.2. Dependence of the Radiated and Absorbed Powers 
on the Geometrical Parameters 

of the Vessel–Liquid–Radiator System

Usually it is assumed that the radiated and corre-
sponding absorbed acoustic powers under cavitation
conditions strongly depend on the liquid volume and
geometrical parameters of the vessel in which the mea-
surements are performed, as well as on the depth of
submergence of the sound radiator. This opinion is
based on the results obtained from studying a liquid by
the methods of linear acoustics, when the radiated
power depends on the acoustic impedance of the sys-
tem and, consequently, on the boundary conditions for
the radiator, vessel, and liquid. However, experimental
studies of this problem with a cavitating liquid are prac-
tically absent because of the uncertainty in the acoustic
power.

For determining the dependence of the acoustic
power on the vessel geometry and the liquid volume,
we performed the measurements using instrument 1 at
four fixed values of acoustic power: 4.1 ± 0.2, 15.3 ±
0.5, 28.3 ± 1, and 45.8 ± 1.8 W, for a waveguide sub-
mergence depth of 12 ± 0.5 mm. The measurements
were conducted in vessels 1–3 for various liquid vol-
umes (250 and 350 cm3 in the first vessel, 650 and
1000 cm3 in the second vessel, and 1000 and 1350 cm3

in the third vessel). In the experiment, the conditions
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Fig. 4. Dependence of the acoustic power W (the absorbed
and radiated powers coincide) on the distance H between
the waveguide face and the bottom of the vessel.
formulated in the previous section, under which the
whole of the radiated acoustic power was absorbed by
the liquid with bubbles, were met. The geometrical
dimensions were chosen to be considerably greater
than the characteristic size of the cavitation cloud (the
height and width of the cavitation cloud usually varied
from 20 to 60 mm). In spite of the various forms of ves-
sels and various volumes of insonified liquid, in every
case we obtained the same acoustic power. A similar
absence of dependence of the radiated and absorbed
acoustic powers on the liquid volume was obtained
with ultrasonic tanks 3 and 4 for various liquid volumes
(400 and 600 cm3 for ultrasonic tank 3 and 800, 1200,
and 1600 cm3 for tank 4).

The dependence of the acoustic power W (the
absorbed and radiated powers coincide) on the distance
H between the waveguide face and the vessel bottom
was studied with the use of instrument 1 and vessel 3
[9]. The volume of distilled water was 500 cm3, the dis-
tance between the vessel bottom and the water surface
varied from 0.5 to 81 mm, and the submergence depth
of the waveguide was measured accurate to 0.5 mm.
The results obtained are presented in Fig. 4 (to reveal
the effect, the power scale in the plot has a break). The
initial slight increase in the acoustic power with a
decrease in H can be explained by the increase in the
radiating (lateral) surface of the waveguide, whereas
the boundary conditions for the waveguide face remain
practically invariable. With a further slight decrease in
H (less than 5 mm), a sharp increase in the acoustic
power is observed, which can be explained by a drastic
change in the boundary conditions near the waveguide
face when H becomes on the order of the height of the
cavitation cloud. The maximum of the acoustic power
delivered by the radiator was observed for H = 5 mm
(Fig. 4). The origin of this increase in the acoustic
power (by approximately 50%) is not quite clear; how-
ever, we believe that it will be determined in the near
future and the observed effect will find practical appli-
cation. Note that the possibility of revealing this effect
appeared only after the development of an exact
method of measurement of acoustic power under cavi-
tation conditions. Thus, the radiated and absorbed pow-
ers under conditions of fully developed cavitation, to a
first approximation, do not depend on the liquid volume
or the geometrical parameters of the vessel in which the
measurements are carried out if the following condi-
tions are satisfied [9]:

(a) the characteristic dimensions of the vessel are
considerably greater than the characteristic dimensions
of the cavitation cloud;

(b) the distance between the waveguide face and the
vessel bottom is much greater than the height of the
cavitation cloud; and

(c) the whole of the radiated acoustic power is
absorbed by the liquid with cavitation bubbles.
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3. DEPENDENCE OF THE RATE OF CAVITATION 
PROCESSES ON THE ACOUSTIC POWER

Until recently, it was generally accepted that the
dependence of the rate wcav of a number of cavitation
processes (erosion, emulsification, dispersion, as well
as sonoluminescence (SL) and sonochemical reactions)
on the sound intensity I is as follows [1, 3, 4, 19, 20]:
until the intensity I is below the threshold intensity Ithr,
the rate wcav, naturally, equals zero; after Ithr is
exceeded, the rate wcav increases first proportional to
(I – Ithr)2 [1] and then linearly. In a number of papers,
the presence of a maximum in the dependence wcav(I) at
I = Icr is indicated: for the rate of sonochemical reac-
tions [20, 21], the SL flux [20], the erosion activity [3,
19, 20], etc. For I > Icr, the rate of these high-energy
processes sharply decreases.

According to the conclusions made by Rozenberg
and Sirotyuk [3, 19], with a considerable increase in pm,
the maximal radius Rm increases and a bubble does not
have enough time to collapse within one half-period of
oscillations. Equating the Rayleigh time of bubble
compression to half the oscillation period and taking
into account that the tensile stress is equal to 2–0.5pm
[19], we obtain

(20)

which corresponds to the critical intensity Icr =
8.6 W/cm2.

Being capable of measuring the ultrasonic power
under cavitation conditions with a high accuracy, we
decided to verify the dependence of the rate of
sonochemical reaction on the intensity, including the
range of I > Icr. We studied the dependence of the rate
of a typical sonochemical reaction, namely, the forma-

tion of nitric oxides and corresponding ions  in
distilled water in contact with air, on the intensity of
ultrasound [9]. This reaction is best suited for such
experiments for a number of reasons: (a) a purified
water without any additions, which may change its
physicochemical parameters, undergoes sonolysis;
(b) the reaction proceeds only under the action of ultra-
sound or under the conditions of a low-temperature
plasma, in the absence of thermal and redox reactions;
(c) the reaction rate is insensitive to possible microim-
purities, i.e., the reaction products are sufficiently toler-
ant to catalytic or thermal actions; and (4) the corre-
sponding analytical procedures provide for a high accu-
racy [1].

The measurement of ultrasonic power was per-
formed by using the setup shown in Fig. 2 and an ultra-
sonic generator 1 with a frequency of 20 kHz. The
water volume was 100 cm3, a flask with twice-distilled
water was enclosed in a thermostat maintained at a tem-
perature T∞ within 19.5–20.5°C. The quantity of the

pmcr 3 20.5× 0.915( ) 2– ph 5.1 ph,≈≅

NO2
–

ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
resulting  was measured by the calorimetric
method [1].

At first, the dependence of the  concentration
on the time tUS of operation of the source of ultrasound
was determined for various intensities I. At the initial

period of time, the increase in  at a constant rate

 was observed; then, the rate  decreased

and, at large times of sonolysis, a stationary concentra-

tion of  of about 3.5 µmol/l was formed regardless
of the sound intensity. This limit is determined by the
initial quantity of N2 in the air dissolved in water and by
the rate of degassing, which agrees well with reported
experimental data [1].

To eliminate the influence of the degassing on the
dependence of  on I, we determined the rate

 from the initial part of the curves [ ](tUS);

i.e., the rate of the synthesis of  at high intensities
was determined for rather small times of sonolysis (on
the order of 10–30 s). As a result, we obtained a linear
dependence (I), shown in Fig. 5 [9]. Since the

least measured acoustic power in our experiments was
3 W and the diameter of the waveguide face was equal
to 15 mm, the least measured intensity was 1.7 W/cm2,
which is considerably greater than the threshold
(~0.03 W/cm2 [1, 22]). Therefore, these experiments do
not yet make it possible to determine the value of the
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Fig. 5. Dependence of the rate  on the ultrasonic

intensity I. The dashed line shows the previously reported
character of the dependence of the rate wcav of various cav-
itation processes (erosion, emulsification, dispersion, as
well as SL and sonochemical reactions) on the sound inten-
sity [3, 19–21], where Icr is determined from Eq. (20).
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cavitation threshold and the dependence (I) near

the threshold with sufficient accuracy.
At the same time, the maximal measured acoustic

power of 75 W corresponds to I = 47 W/cm2, which is
six times as great as the value of Icr calculated from
Eq. (20). The experimental results obtained for the
dependence (I) allow us to conclude that no sharp

decrease occurs in the rate of formation of , i.e.,
there is no maximum in the rate and, in a wide range of
ultrasonic intensities, the dependence (I) is linear.

The previously reported experimental dependence of
the rate of the cavitation process wcav on the intensity
with a maximum at Icr and a subsequent drop in the rate
with increasing I is presumably determined by the fact
that the quantity measured in those experiments was the
square of the voltage U at the transducer rather than the
acoustic power, and the “acoustic power” shown in
Fig. 5 is actually the quantity proportional to U2.
Although the efficiency of the transducer operating
under cavitation conditions was undefinable, in [3, 4,
19] it was assumed to be constant and equal to the effi-
ciency measured under subcavitation conditions. In
addition, the experiments were conducted at a constant
sound frequency f (i.e., the sound source, apparently,
was not tuned to resonance), although, even with a
slight change in f, the efficiency of the transducer
changes considerably and becomes unknown.

Thus, the extremum observed earlier in the depen-
dence wcav(I) for I > Icr proves to be an instrumental
effect.
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Abstract—A mathematical model describing the dynamics of clustered gas bubbles under the effect of an
acoustic field is presented. The proposed model is used as the basis for an analytical study of small bubble oscil-
lations in monodisperse and polydisperse clusters and for a numerical study of nonlinear bubble oscillations
under high-amplitude external pressures. The following effects are found to occur in a polydisperse cluster: a
synchronization of the collapse phases of bubbles with different radii and a collapse intensification for bubbles
of one size in the presence of bubbles of another size. These effects are explained by the interaction between
bubbles of different radii in the cluster. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Cavitation in a liquid is accompanied by the forma-
tion of bubble clusters. The dynamic processes that
occur in these clusters determine many phenomena
observed in physics, chemistry, and biology, and also
find practical application in engineering.

Up to the present time, most attention has been con-
centrated on studying the dynamics of a single bubble.
This is primarily related to the discovery of single-bub-
ble sonoluminescence [1, 2] and to the possibility of
tracing the motion of the surface of a single bubble with
high-speed photography [3, 4]. Direct experimental
studies of the bubble dynamics in bubble clusters
(clouds) are fairly complicated from the technical point
of view [5–9]. Therefore, the mathematical modeling of
the bubble dynamics in a cluster plays an important
role. The existing theoretical approaches to this prob-
lem can be divided into two groups.

In the first group, a cluster was considered as a bub-
bly liquid, for which the models described in theoreti-
cal publications [10–12] were used. In [13–16], the col-
lapse of a bubble cloud caused by ultrasonic cavitation
was studied both theoretically and experimentally. In
these publications, the following idea was put forward:
the cavities in a cluster collapse sequentially from the
boundary of the cluster toward its center, and this pro-
cess is accompanied by a pressure growth toward the
center of the cloud because of the energy transfer from
collapsing cavities to the neighboring noncollapsing
ones. The model proposed in [13, 15] and used in [16]
does not include the dynamics of an individual bubble
and gives infinite values of pressure and collapse rate at
the center of the cluster. In [14], the dynamics of a bub-
ble was modeled by solving the Rayleigh–Plesset equa-
tion. In [5], an experimental study of a bubble cluster
formed in a liquid layer between a source of ultrasound
and a sample under investigation was described. It was
1063-7710/05/5106- $26.000705
found that the bubble fluctuations are virtually synchro-
nous throughout the whole zone of interest. The inter-
action of a passive cloud of identical spherical bubbles
with a shock wave was considered in [17]. It was shown
that the cluster is able to absorb the energy of such an
external disturbance, amplify this disturbance, and
reradiate it in the form of an acoustic signal. Many of
the publications concerned with this group of investiga-
tions were devoted to studying the linearized dynamics
of a bubble cloud. For example, in [18], oscillations of
a spherical cluster containing identical bubbles were
studied under the assumption that viscosity, compress-
ibility of the liquid, and surface tension of bubbles were
absent. The theoretical consideration was based on the
linearized equations of a uniform flow of a bubbly mix-
ture, which were taken from [19]. It was shown that the
eigenfrequency of a bubble cloud is much lower than
the eigenfrequency of an individual bubble. The same
problem was considered in [20, 21], but with allow-
ances made for all the dissipative mechanisms. In
studying the motion of a bubble cluster near a vibrating
wall [22, 23], the bubble dynamics was taken into
account by solving the Rayleigh–Plesset equation,
which was expanded in a Fourier series to the second-
order terms in the bubble radius. The results obtained in
[20–23] are similar to those obtained in [18]. An exper-
imental study of the cavitation region formed in a liquid
under the effect of an ultrasonic generator was reported
in [24]. In the latter paper, the theoretical description of
the cavitation mode was based on the use of the aver-
aged equations for the sound wave propagation through
a bubbly medium while the interaction between the
bubbles was considered as a size-averaged radiation
interaction between two bubbles. Thus, the models pro-
posed in the first group of publications make it possible
to study the dynamics of a bubble cloud as an individual
object but do not allow one to study in detail the dynam-
ics of an individual bubble in a cluster and to consider
 © 2005 Pleiades Publishing, Inc.
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the interaction between bubbles of different radii within
the cluster.

The second group includes the publications that
focus on the interaction between bubbles. In [25], equa-
tions describing the translational motions and radius
variations of a finite set of bubbles moving in a hydro-
static field were analytically derived. The cited paper
was purely theoretical, and the derived equations were
not applied to specific problems. Collective fluctuations
of a finite number of bubbles, which may occur in a liq-
uid near a gas source or after the separation of a large
bubble into several smaller bubbles, were considered in
[26]. The theory of gas bubble oscillations was devel-
oped with the use of the multiscale expansion method
for the case of a liquid without dissipative mechanisms
and for a polytropic gas. This approach required time-
consuming computations with complete equations,
and, therefore, averaging in the region of rapid bubble
oscillations was used. Such a limitation prevents a
detailed study of the bubble behavior in the cluster. The
dynamics of a cluster containing a small number of
bubbles was numerically studied in [27] with the use of
the three-dimensional boundary-element method. The
results were compared with those obtained analytically
from an asymptotic expansion. It was assumed that the
bubbles experience axisymmetric deformations so that
the symmetry axis passes through the bubble under
observation and the center of the cluster. In [28], the
dynamics of the cluster was studied by representing the
bubble surface as a series expansion in spherical har-
monics. The result proved to be similar to the results
reported in [18, 20–23] for the eigenfrequencies of a
cluster and a single bubble. A cluster consisting of two
or three bubbles lying on a straight line or at the corners
of an equilateral triangle was considered in [29]. In the
analysis, all the oscillation modes of the bubbles and
the interaction between the bubbles were taken into
account. It was shown that, as a result of the interaction
between the bubbles, the resonance frequency of the
cluster was shifted toward lower frequencies. All the
methods proposed in [25–29] for solving the problem
of interest dealt with only small numbers of bubbles
arranged in specific configurations.

Therefore, it seems to be necessary to construct a
mathematical model that makes it possible (i) to study
the dynamics of a bubble cluster as a whole, as an indi-
vidual object; (ii) to study the dynamics of individual
bubbles within the cluster; (iii) to take into account the
presence of bubbles with different radii in the cluster
and their interaction; and (iv) to study the dynamics of
bubble clusters under external actions, in particular,
under the effect of an acoustic field.

STATEMENT OF THE PROBLEM 
AND THE MATHEMATICAL MODEL 

OF A BUBBLE CLUSTER

In this paper, we study a set of many bubbles per-
forming oscillations within a finite volume of an
unbounded, weakly compressible, viscous liquid under
a periodic external pressure. In this case, we can sepa-
rate a spherical region with bubbles, i.e., a bubble clus-
ter. Thus, the cluster can be considered as a large spher-
ical drop containing both liquid and a set of microbub-
bles. The problem is modeled under the following
assumptions: first, the size R of the cluster is small com-
pared to the sound wavelength λ (R ! λ), and the con-
centration of bubbles in the cluster is also small (i.e.,
the condition of nonoverlapping scattering cross sec-
tions is satisfied [30]: σ1/2 ! l, where σ is the scattering
cross section and l is the average distance between the
bubbles), which allows us to consider the pressure
inside the cluster to be uniform; second, the gas bubbles
are subjected to adiabatic compression and perform
spherically symmetric radial motions; and third, heat-
and mass-transfer processes are absent in the gas bub-
ble–liquid system.

In the general case, when bubbles with n different
radii are present in the cluster (the case of a polydis-
perse cluster), the dispersed phase falls into n fractions,
each of them being characterized by its own bubble
radius (a0k for the kth fraction). Then, the radial motions
of the conventional cluster boundary and the bubble
boundaries can be described by the Rayleigh–Plesset
equations with allowance for the acoustic radiation [31,
32]. The equations for the cluster and for the bubbles in
the cluster have the form

(1)

(2)

respectively. Here, R = R(t) is the cluster radius, ak =
ak(t) is the bubble radius in the kth fraction, pc = pc(t) is
the liquid pressure in the cluster, pI is the liquid pres-
sure at infinity, pak is the gas pressure at the bubble wall
in the kth fraction, ρl is the density of the liquid, Cl is
the sound velocity in the liquid, and t is time. The dot
over a variable means the derivative with respect to
time. Equations (1) and (2) are written under the
assumption that the velocities of the interfaces are
small compared to the sound velocity in the liquid; i.e.,
Eqs. (1) and (2) are valid for small Mach numbers.

Equations (1) and (2) are completed by the conser-
vation law for the liquid volume in the cluster:

(3)

where Nk is the number of bubbles in the kth fraction.

RṘ̇
3
2
--- Ṙ

2
+
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ρl
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dt
----- pc pI–[ ] ,+=
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2
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+
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ρl
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ak

ρlCl
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----- pak pc–[ ] ,+=
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ȧk

k 1=

n

∑ R2Ṙ,=
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In view of the second assumption specified above,
the pressure in a bubble is determined by the formula

(4)

where p0 is the initial pressure in the liquid, σ is the sur-
face tension, µ is the viscosity of the liquid, and γ is the
adiabatic index. The pressure variation in the liquid at
infinity obeys the periodic law

(5)

where ∆P is the external pressure amplitude and ω is
the angular frequency.

When the concentration of bubbles in the cluster is
sufficiently high (about 1% or higher), the energy dissi-
pation due to the acoustic radiation from the cluster to
the surrounding liquid predominates over the energy
dissipation from bubbles inside the cluster [33]. Then,
the liquid in the cluster can be considered as an incom-
pressible one and, instead of Eqs. (2), we can use the
Rayleigh equations to determine the radii of the bub-
bles:

(6)

If it is necessary to take into account the pressure
distribution around the bubbles, it is possible to use the
cell method [34]. According to this method, each bub-
ble of the kth fraction is placed at the center of a spher-
ical cell of radius rbk, which is determined by the for-
mula

Then, the Rayleigh equation with corrections to the
pressure distribution around the bubbles in the cluster
takes the form [35]

(7)

This equation was derived under the assumption that
the pressure at the outer boundary of a cell is equal
to pc.

Note that, at n = 1, N = 1, and R  a, the bubble
cluster model given by Eqs. (1), (3)–(5), and (7) is
reduced to the single-bubble model [10].

By virtue of the first assumption and the condition
that the concentration of bubbles in the cluster is rela-
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tively high, the corrections appearing in Eq. (7) do not
noticeably affect the dynamics of bubbles in the cluster.
Therefore, below, we consider Eq. (6).

SMALL OSCILLATIONS OF BUBBLES
IN THE CLUSTER

In [32], small oscillations of bubbles were studied
and an amplitude–frequency characteristic was
obtained for the case of a monodisperse cluster (a clus-
ter with bubbles of one size, n = 1). In this section, we
consider the case of a polydisperse cluster.

For each fraction of bubbles, the amplitude–fre-
quency characteristic is expressed by the formula

(8)

where  = /a0k,  = /p0, and  and  are
the amplitudes of deviations from the equilibrium val-
ues of the corresponding functions. In Eq. (8), the
unknowns xk and yk are the solutions to the set of linear
equations

(9)

with real coefficients expressed as

Here, the following dimensionless quantities were
introduced: Γk = 3γ + 2σ(3γ – 1)/(a0kp0), θ = ωR0/Cl,

α1k = / , α2k = Nk / , Cd = Cl , µd =

4µ/(p0t0), and t0 = R0 . The quantities α1k and α2k

represent the ratio of the surface area of a bubble from
the kth fraction to that of the cluster and the concentra-
tion of the bubbles of the kth fraction in the cluster at
the initial time, respectively.

For the case of a monodisperse cluster without any
energy dissipation due to viscosity or acoustic radia-
tion, the following expression was obtained for the
eigenfrequency of a bubble:

(10)
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Fig. 1. Amplitude–frequency characteristics for two monodisperse clusters (top left) and a polydisperse cluster with n = 2 (bottom
left); the patterns of bubble oscillations in the two-fraction cluster in the main resonance region (top right) and in the secondary

resonance region (bottom right). The vertical dotted lines indicate the values of Minnaert frequencies  and  for single

bubbles with initial radii of 5 and 10 µm, respectively.
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Here and below, in expressions for the case of n = 1, we
omit the subscripts indicating the fraction number. In
formula (10), ωM is the frequency of free oscillations of
a single bubble in an unbounded liquid (the Minnaert
frequency). In the case of a low concentration of bub-
bles in the cluster (α2 ! 1), Eq. (10) takes the form

(11)

Introducing the effective parameters aeff and σeff as

we represent Eq. (11) in the form

Thus, when the concentration of bubbles is low, the
eigenfrequency of the bubbles of radius a0 with the sur-
face tension σ in a monodisperse cluster is equal to the

ωc
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2σ
a0
------ 3γ 1–( )+

ρla0
2

1 Na0/R0+( )
----------------------------------------------.=

aeff a0 1 Na0/R0+ , σeff σ 1 Na0/R0+ ,= =

ωc
2

3γp0

2σeff

aeff

------------ 3γ 1–( )+

ρlaeff
2

---------------------------------------------------.=
eigenfrequency of a single bubble of radius aeff with the
surface tension σeff.

Figure 1 (the left plots) represents the amplitude–
frequency characteristics calculated from Eqs. (8) and
(9) for two monodisperse clusters (the upper plot) and
a polydisperse cluster (a two-fraction cluster with n = 2)
(the lower plot). The values of the physical parameters
that were used for calculation correspond to the param-
eters of water and air: ρl = 103 kg/m3, Cl = 1500 m/s,
p0 = 105 Pa, σ = 0.073 N/m, µ = 10–3 Pa s, and γ = 1.4.
The value of the initial radius of the cluster was taken
to be R0 = 10–3 m. For a two-fraction cluster, in addition
to the main resonance observed at a low frequency, a
secondary resonance appears at higher frequencies. In
Fig. 1 (the right plots), the patterns of nonlinear bubble
oscillations in an acoustic field (at ∆P = 5 × 105 Pa) in
the vicinities of these two resonances are demonstrated.
One can see that, in the region of the main resonance,
the bubbles of the two fractions oscillate in phase (at
ω = 2.9 × 105 s–1), and in the region of the secondary
resonance, they oscillate in antiphase: the expansion
period of the bubbles belonging to the first group coin-
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cides with the compression period of the bubbles
belonging the second group (at ω = 4 × 106 s–1).

From set of equations (1) and (3)–(6) we eliminate
all types of kinetic energy dissipation and consider the
free oscillations of bubbles in a two-fraction cluster
(n = 2). Then, the given set of equations will represent
a particular case of the equations describing small
oscillations of a conservative system with two degrees
of freedom around its equilibrium position [36]:

For the problem under consideration, we have

The normal frequencies for the given system are
expressed by the formula

(12)

where χ = 1 – H2/B1B2, β1 = , and β2 = .
The quantities β1 and β2 determine the frequencies in
the partial coordinate system, i.e., in the system where
one of the coordinates is assumed to be equal to zero.
These frequencies are determined as

The latter expression determines eigenfrequencies (11)
of the bubbles with the initial radii a01 (at k = 1) or a02
(at k = 2) in a monodisperse cluster.

Note that formula (12) is typical of the theory of
coupled oscillators. If we consider the bubbles in differ-
ent fractions as coupled oscillators, this formula will
express the splitting and shift of the eigenfrequencies of
bubble oscillations. If we consider other types of inter-
action between the bubbles, for example, Bjerknes
forces [37], in the linear approximation we obtain an
expression similar to Eq. (12) but with another value of
the coupling coefficient χ.

B1 Ż̇1 HŻ̇2 b1Z1 hZ2+ + + 0,=

HŻ̇1 B2 Ż̇2 hZ1 b2Z2+ + + 0.=



Z1 ∆a1 t( ), Z2 ∆a2 t( ),= =

B1 1 N1

a01

R0
-------+ 

  N1a01
3

R0
-------------,=

B2 1 N2

a02

R0
-------+ 

  N2a02
3

R0
--------------, H

N1N2a01
2 a02

2

R0
2

----------------------------,= =

b1

N1a01

ρlR0
------------- 3γp0

2σ
a01
------- 3γ 1–( )+ 

  ,=

b2

N2a02

ρlR0
------------- 3γp0

2σ
a02
------- 3γ 1–( )+ 

  , h 0.= =

ω1 2,
2 β1

2 β2
2 β1

2 β2
2+( )

2
4χβ1

2β2
2

–±+
2χ

----------------------------------------------------------------------------,=

b1/B1 b2/B2

βk
2

3γp0
2σ
a0k

------- 3γ 1–( )+

ρla0k
2 1 Nka0k/R0+( )

------------------------------------------------, k 1 2.,= =
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For the two-fraction cluster illustrated in Fig. 1, the
relative errors in the resonance (normal) frequencies
calculated according to Eq. (12) and Eqs. (8), (9) do not
exceed 1%. Thus, viscosity and acoustic radiation pro-
duce no noticeable effect on the eigenfrequencies of
bubbles.

Note that, for the two-fraction cluster under consid-

eration, the coupling coefficient H/  ≈ 0.94 is

comparable to the quantity |  – |/(β1β2) ≈ 2.6,
which means that (see [36]) the interaction between the
bubbles belonging to different fractions within the clus-
ter is fairly strong. Hence, the interaction between the
bubbles considerably affects the dynamics of the bub-
ble cluster and cannot be ignored.

NONLINEAR BUBBLE OSCILLATIONS
IN A CLUSTER

To analyze the nonlinear oscillations of bubbles in a
cluster, we performed numerical calculations for the set
of equations (1), (3–6) by using the Runge–Kutta
method based on the Dorman–Prince formulas with an
automatic step selection [38].

A comparison between the dynamics of a single
bubble and that of a bubble in a monodisperse cluster is
represented in Fig. 2. One can see that the bubble oscil-
lations in a monodisperse cluster differ in character
from single-bubble oscillations: for a bubble in a clus-
ter, the oscillation amplitude and the depth of collapse
are smaller than those of a single bubble. This means
that, unlike a single bubble, a bubble in a cluster may
experience external pressures with high amplitudes.

B1B2

β1
2 β2

2

10 20 30 40 50
t, µs

0

5

10

15
a(t)/a0

Fig. 2. Oscillations of a single bubble (the dashed line) and
a bubble in a monodisperse cluster (the solid line) with the
same initial bubble radius a0 = 5 µm within the period of the

acoustic field at P = 1.5 × 105 Pa. The number of bubbles in
the cluster is N = 104.
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Fig. 3. Comparison of bubble oscillations in two monodisperse clusters and in a two-fraction cluster at ∆P = 5 × 105 Pa, ω = 2π ×
20 kHz, and N = 104 (N1 = N2 = N/2): (a) the dependence of the bubble radius on time and (b) the difference between the maximum
compression phases (a01 = 5 µm is fixed and a02 varies).
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Fig. 4. Maximum temperature in a bubble with the initial radius a01 = 5 µm versus the total number of bubbles in the cluster at ∆P =

5 × 105 Pa. For the case of n = 2: N1 is fixed and N2 varies; a02 = 10 µm.
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005



DYNAMICS OF A BUBBLE CLUSTER IN AN ACOUSTIC FIELD 711
Therefore, one can conclude that sonoluminescence in
a cluster should be of lower intensity than single-bubble
sonoluminescence. Experimental studies of multibub-
ble sonoluminescence [8, 9] showed that, after a certain
threshold, an increase in the ultrasonic power leads to
the formation of small bubble clusters, which results in
a drastic decrease in the sonoluminescence intensity.

We also studied the effect of polydispersity on the
bubble dynamics in a cluster. The effect of synchroni-
zation of the collapse phases for bubbles in a polydis-
perse cluster is represented in Fig. 3. From Fig. 3a, one
can see that, in two separate monodisperse clusters with
different initial bubble radii (a01 = 5 µm and a02 =
10 µm), the maximum compression of the bubbles
occurs at different instants of time. However, when
these bubbles are placed into one cluster (which is now
two-fraction), their compression occurs in phase irre-
spective of their size. One can see that, in this case, the
oscillation amplitude of a bubble from the first fraction
has become smaller, whereas the oscillation amplitude
of a bubble from the second fraction has become
greater. This can be explained by the energy transfer
between the bubbles of different radii [36]: bubbles of
the first fraction give part of their energy to the bubbles
of the second fraction. Figure 3b shows the difference
between the maximum compression phases of bubbles
with different initial radii as a function of the initial
bubble radius characterizing the second fraction. The
phase difference was calculated by the formula

where  is the instant at which a bubble with the ini-
tial radius a0k reaches its minimum size. For two mon-
odisperse clusters, the difference between the collapse
phases is represented by dots (the left-hand ordinate
axis), and for a two-fraction cluster, by triangles (the
right-hand ordinate axis). The synchronization
(autophasing) effect in a system consisting of two or
three cavities was experimentally investigated in [39].
In a system of two cavities that were initially excited so
as to oscillate in antiphase, a subsequent synchroniza-
tion of oscillation phases was observed. Note that, in
most cases, the experiments revealed two resonances,
the first of which produced a stronger effect on the sys-
tem than the second. This pattern agrees well with
Fig. 1, which refers to a multitude of bubbles of two
different sizes rather than to two cavities.

Figure 4 displays the effect of a bubble collapse
intensification due to the energy transfer between the
fractions. Namely, with the introduction of some bub-
bles of one radius into a cluster containing bubbles of
another radius, one obtains a deeper collapse of the lat-
ter bubbles. This result agrees well with the experiment
[6]: it was found that, in a cluster with bubbles of two
different radii, the smaller bubbles in the presence of
greater bubbles exhibit a stronger collapse. The experi-
mental result was also explained by the energy transfer.

∆ϕ ϕ 1
col( ) ϕ2

col( ); ϕk
col( )– ωtk

col( ), k 1 2,,= = =

tk
col( )
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CONCLUSIONS

The analytical study of small bubble oscillations on
the basis of the bubble cluster model proposed in this
paper showed that the eigenfrequency of bubble oscil-
lations in a monodisperse cluster is lower than the
eigenfrequency of a single bubble with the same initial
radius. It was found that small oscillations of a two-
fraction cluster can be considered as oscillations of a
linear conservative system with two degrees of free-
dom. This explains the presence of the secondary reso-
nance in addition to the main resonance in a two-frac-
tion cluster. In the region of the main resonance, bub-
bles of different fractions oscillate in phase, whereas in
the region of the secondary resonance, in antiphase.
The kinetic energy dissipation due to viscosity and
acoustic radiation does not noticeably affect the behav-
ior of the system.

The numerical analysis of nonlinear bubble oscilla-
tions in a cluster showed that, unlike a single bubble, a
bubble in a cluster may experience sound pressures of
relatively high amplitudes. For a polydisperse cluster,
the following effects are revealed: a synchronization of
the collapse phases of bubbles with different radii and a
collapse intensification for bubbles of one size in the
presence of bubbles of another size. The latter effect is
a result of the energy transfer between bubbles of dif-
ferent radii.
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Abstract—The propagation of a high-intensity sound wave in an unconsolidated medium is considered. Dissi-
pation effects are taken into account on the basis of Buckingham’s theory of a relaxation mechanism of sound
attenuation in a saturated sediment. The nonlinear evolution equation for the relaxing medium is obtained, and
the solutions of this equation are analyzed. The second-harmonic generation in such a medium decays, as does
the linear sound wave of the same frequency. The stationary weak shock profile has a specific form due to relax-
ation effects. © 2005 Pleiades Publishing, Inc.
1 INTRODUCTION

The evolution of a high-intensity sound wave is
determined mainly by nonlinear and dissipative effects.
If an initially sinusoidal wave is intense, the steepness
of the wave fronts increases, resulting in the occurrence
of a discontinuity in each period of the wave. On the
other hand, the influence of dissipative processes tends
to smooth the wave profile, diminishing the gradients of
velocity and temperature. Consequently, during the
propagation of an intense wave, its profile is formed as
a result of the balance of nonlinear and dissipative
effects. Wave propagation in a nonlinear medium with
viscosity and thermal conductivity leading to square-
law attenuation was considered both theoretically and
experimentally (see, e.g., [1]). Later, Buckingham [2]
developed the theory of sound propagation in a medium
with a memory, where instantaneous stress is followed
by a decrease in stress level with increasing time in
accordance with the equation of relaxation. This
medium can be considered as a model of saturated
marine sediments [3]. The wave equation in this case
includes a new dissipation term representing internal
losses arising from interparticle contacts. The attenua-
tion coefficient of sound according to this theory would
scale with the first power of frequency. Marine sedi-
ments usually have the specific linear frequency depen-
dence of the coefficient of sound attenuation [4, 5].
A power-law frequency dependence of the attenuation
is also found in many biological tissues [6]. The bal-
ance of nonlinearity and dissipation in such a medium
has specific features observed in the experiment dis-
cussed in [7], some of which are considered in the
present paper.

1 The text was submitted by the authors in English.
1063-7710/05/5106- $26.00 0713
EVOLUTION EQUATION

A unified theory of sound propagation in saturated
marine sediments is developed on the basis of a linear
wave equation that includes a new dissipation term rep-
resenting internal losses arising from interparticle con-
tacts. An unconsolidated sediment is considered as a
two-phase medium consisting of mineral particles and
seawater but possessing no rigid frame. The internal
losses are determined by grain–grain contacts. The
analysis is based on a one-dimensional linear wave
equation in which intergranular dissipation is repre-
sented by a loss term that takes into account the hyster-
esis, or memory, of granular media. The effect of the
memory on the wave equation is accommodated by set-
ting the frictional stress equal to a temporal convolution
between the particle velocity and the material memory
function h(t) [2]:

(1)

where c0 is the sound speed in a medium in the absence
of grain–grain losses. The losses can be expressed in
terms of the bulk properties of the two materials—min-
eral grain and seawater [2]—and ρ0 is the equilibrium
density of the medium. The material response function
h(t) can be chosen to be [3]

(2)

Here, u(t) is the step function that ensures that the
response of the medium is causal, and t0 and n are the
material parameters; t0 actually has a sense of the time
of relaxation. The dissipation coefficients b = 4/3η f + ζ f

∂2ϕ
∂x2
---------

1

c0
2

----∂2ϕ
∂t2
---------–

b

ρ0c0
2

---------- ∂3

∂t∂x2
------------- h t( ) ϕ t( )⊗[ ]+ 0,=

h t( ) u t( )t0
1– 1 t

t0
---+ 

  n–

.=
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and η f, ζ f correspond to the intergranular friction of the
medium, and the term h(t) ⊗  ϕ(t) is a temporal convo-
lution. The dissipation term in Eq. (1) is similar to that
of a hydrodynamic equation having the derivative
∂2/∂x2, but the operand, instead of being the particle
velocity, is the convolution of particle velocity with the
impulse response function of the material h(t). If h(t) is
a Dirac delta function, the convolution term reduces to
the particle velocity.

Consider the propagation of a wave in one direction,
which allows for the transformation of Eq. (1) into a
first-order equation.

The wave equation operator can be presented as a
product of the two operators:

(3)

For a wave moving in a positive direction x in a perfect
medium,

(4)

so, in a medium with weak dissipation, one can use

(5)

and, after integration of Eq. (1) with respect to x, one
obtains

(6)

Changing the variables

(7)

one obtains

(8)

Accounting for nonlinear effects leads to an addi-
tional term in evolution equation (8) [1]:

(9)

If one transforms the nonlinear term using the equation

(10)

one obtains

(11)
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To obtain the equation in terms of particle velocity v,
we make the substitution v  = ∂ϕ/∂x', and differentiate
over x' in the nonlinear term; then, we return back to
∂/∂τ

(12)

or

(13)

the evolution equation of a nonlinear wave in the relax-
ing medium.

A stationary wave, in particular, the stationary shock
profile, is governed by the equation

(14)

which corresponds to the balance condition of nonlin-
ear and dissipative processes.

PROPAGATION OF A LINEAR PLANE WAVE

Let us now consider linear plane wave propagation
in an unconsolidated granular medium. The presence of
a relaxation process in the medium leads to specific
attenuation of a sound wave propagating in it, due to
developing irreversible effects. The evolution equation
can be used to obtain sound-wave attenuation in the
relaxing medium in a simple way similar to that derived
by Buckingham [2] on the basis of the wave equation.
A proper wave equation could be in the form

(15)

where S is the strength of an impulsive source. The
standard method of solving a linear inhomogeneous
equation is to apply the Fourier transform.

The Fourier transform with respect to time is

(16)

Φ(iω) and H(iω) are the Fourier transforms of ϕ, and
h(t). Convolution reduces this to a product of

H(iω) . A second Fourier transform with respect to

x leads to the algebraic equation
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(17)

where Φs is the Fourier transform of Φ with respect to

x, so that Φ(iω, x) = . It follows that

(18)

Here,

(19)

and

(20)

where Γ(1 – n) is the gamma function.
Now, by substituting Eqs. (20) into Eq. (19), the

function q can be expressed as

(21)

An inverse transform over the wave number s leads to
the equation

(22)

The residue is s0 = –k0/q, and the equation  =

2πia(z0) is used; a(z0) is the coefficient of the term
(1/z – z0) in the Loran expansion. Then, after substitu-
tion into Eq. (21), one obtains

(23)

ik0– 1 iω b

2ρ0c0
2

-------------H iω( )+ is–
 
 
 

Φs S,–=

Φse
isx– sd∫

Φs
S

is 1
iωb

2ρ0c0
2

--------------H iω( )+ ik0+
---------------------------------------------------------------=

=  
S

isq ik0+
-------------------- S

iq s
k0

q
----+ 

 
------------------------.=

q 1
iωb

2ρ0c0
2

--------------H iω( ),+=

H iω( ) h t( ) iωt–( )exp td

∞–

∞

∫=

=  t0
n 1– t n– iωt–( ) tdexp

0

∞

∫ Γ 1 n–( )
iωt0( )1 n–

----------------------,=

q 1 iωt0( )nχ f , χ f+
bΓ 1 n–( )
2ρ0c0

2t0

------------------------.= =

Φ iω x,( ) S
2πiq
------------ s

k0

q
----+ 

 
1–

isx( ) sdexp

∞–

∞

∫=

=  
S

2πiq
------------ eisx sd

s
k0

q
----+ 

 
-------------------

∞–

∞

∫ S
q
---

ik0

q
------x– 

  .exp=

f z( ) zd∫°

Φ iω x,( )

=  
S

1 iωt0( )nχ f+
-------------------------------- i

ω x

c0 1 iωt0( )nχ f+( )
------------------------------------------– 

  ,exp
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
(24)

The result obtained is convenient to present in terms of
a complex wave number. Indeed, introducing

(25)

the result obtained can be presented as

(26)

Then, one can use the following representation:

(27)
In the particular case where n ! 1, the expressions for β
and cp can be approximated. Following [2], one obtains

(28)

and

(29)

where

(30)

In most circumstances, the dispersion is weak, and one
has

(31)

Since the loss tangent βp and the phase speed cp are
independent of frequency, the attenuation coefficient is
a linear function of frequency ω,

(32)

and the associated dispersion is expressed by Eq. (31).
These results of the relaxation theory are consistent

with the observed geoacoustic properties of many
unconsolidated marine sediments. In particular, the
attenuation coefficient of a sound wave propagating in
such a medium is proportional to the first power of fre-
quency. As an example, our previous data can be
offered [7]. Sound attenuation in water-saturated
unconsolidated marine sediment was measured using a
wide-band laser-generated sound pulse. The signal was
registered before and after propagation through a sam-
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ple of water-saturated cobalt–manganese crust (CMC).
The measured spectral transient performance is repre-
sented in Fig. 1 (curves a and b). The sample of crust
used in the experiment has a grainy structure with a
granule diameter d of (1–5) × 102 µm; for such a
medium, the coefficient β = 0.015 [2], so, in accordance
with Eq. (30), αp = 10−7ω cm−1. A corresponding theo-
retical transfer function is presented in Fig. 1 (curve c).
The comparison of experimental and theoretical curves
indicate that the attenuation of sound in an unconsoli-
dated water-saturated medium depends linearly on the
frequency [7], in accordance with the theory of relax-
ation-mechanism attenuation [2].

NONLINEAR WAVE IN A MEDIUM 
WITH RELAXATION

The evolution of an initially sinusoidal wave during
propagation may be treated as a variation of its spectral
composition. The growth of high-frequency harmonics
in the course of plane sinusoidal wave propagation in a
viscous heat-conductive medium has been considered
in many papers, such as [8]. The generation of harmon-
ics of a high-intensity wave propagating in a medium
with relaxation that is modeled as an unconsolidated
medium can be considered using the method of succes-
sive approximations in application to evolution equa-
tion (13).

Let us seek the solution as a sum:

(33)ϕ ϕ 1 ϕ2…+=

1.4
f, MHz

S/S0

10–1

1.2 1.6 1.8 2.01.0

100

10–2

a b
c

Fig. 1. Transient performance for the sample of crust. Low-
amplitude sound pulse (a), high-intensity sound pulse (b),
and theoretical curve (c).
The boundary condition can be chosen as

(34)

Then, the first-order (linear) equation, according to
Eq. (9), is

(35)

The solution of this equation can be represented as

(36)

The second-order equation is

(37)

(38)

The Fourier transform with respect to t and x' gives

(39)

where Φs is the Fourier transform with respect to x' for
ϕ and StSx are the Fourier transforms of (∂ϕ11/∂τ)2.
Here, we are taking into account the dependence of τ on
both the time t and spatial variable x according to
Eq. (7). After the inverse transform with respect to x',
the equation for ϕ2(iωτ) reads

(40)

the second harmonic of a wave propagating in a relax-
ing medium attenuates as a small-intensity (linear)
wave of the same frequency, unlike the case of conven-
tional attenuation due to viscous effects. Indeed, in that
case, the coefficient of absorption of the second har-
monic is twice, rather than four times, the absorption
coefficient for the first harmonic and, therefore,
increases linearly rather than as the square of the fre-
quency [8].

STATIONARY WEAK SHOCK-WAVE PROFILE

The important characteristic of the medium is the
weak shock-wave stationary profile that indicates the
balance of nonlinear and dissipative effects. A compar-
ison of the stationary shock-wave profile to the initial
profile of the problem under consideration allows us to
predict the evolution of the initial profile and to choose
the proper approximations. Indeed, if the initial profile
is smooth and has a scale of thickness larger than the
stationary wave thickness, it will become steeper in the
process of propagation under the action of nonlinear
effects, and the dissipative effects can be neglected in
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this case. In contrast, the thin—in comparison to the
stationary front—initial profile will be smoothed dur-
ing the process of propagation as a result of the action
of dissipative effects; nonlinear effects are negligible in
this case.

Consider first the weak shock-wave profile in a con-
ventional viscous medium. If h(τ) = δ(τ), the dissipative
term of Eq. (14) is

(41)

so an estimate can be made of the balance of nonlinear
and dissipative effects as follows, using Eq. (14):

(42)

The estimate of the shock front duration τf is

(43)

where µ is the kinematic viscosity and the shock front
thickness lf, in agreement with Lighthill [9], is

(44)

To obtain the solution for the shock-wave profile,
we introduce dimensionless variables into Eq. (14):

(45)

where t0 and v 0 are the new scales of time and velocity.
By choosing these new scales of time and velocity,

the dimensionless multiplier ev 0ρ0c0t0/b can be taken to
be unity, so, after one integration, the final equation
appears as

(46)

We consider first the nonrelaxing limit, when

(47)
In this case, the integral transforms into
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so one get the equation
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The first integral is

(50)

where the constant of integration is chosen to be equal
to unity. This equation has a solution, namely, V =

. Indeed,

(51)

Substitution of this result into the previous equation
indicates that  provides a solution.

Therefore, for a nonrelaxing medium, the shock-
wave profile is governed by the hyperbolic tangents.
For a medium with relaxation, Eq. (46) is solved
numerically for a range of τ and a memory index n. The
smaller the value of n, the longer the memory of the
material. For marine sediments, previous experiments
have given a wide spectrum of memory index n in the
range 0.05–0.30 [4, 5].

Shock-wave profiles formed in an unconsolidated
medium with a memory index of n = 0.1 and n = 0.05
are obtained by numerical solution of Eq. (46) and are
presented in Fig. 2. For comparison, a shock-wave pro-
file in water, where the dissipation is determined by vis-
cosity and heat conductivity, is represented by the curve
labeled V. It is seen that the relaxation effects lead to a
change in the profile structure and, as a result of disper-
sion, cause it to shift.

Notice that the dimensionless argument ζ = τ/t0 is
normalized to the relaxation time τ, so that the dimen-
sional shock front thickness is proportional to the relax-
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Fig. 2. Stationary shock-wave profiles. The curve labeled V
corresponds to water; the curves marked as 0.10 and 0.05
correspond to an unconsolidated medium with a memory
index of n = 0.1 and n = 0.05.
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ation time of the material. The profile structure varies as
the material constant n changes.

CONCLUSIONS

The nonlinear theory of high-intensity sound propa-
gation in unconsolidated granular materials is devel-
oped on the basis of Buckingham’s [2] relaxing theory
of sound propagation in a medium with grain–grain
interactions. A nonlinear evolution equation is
obtained, and a model equation for the plane wave case
is derived. The generation of harmonics upon plane
wave propagation is considered, and the specific fea-
tures of this effect in a medium with relaxation are dis-
cussed. The structure of a stationary weak shock-wave
profile in unconsolidated materials is obtained by
numerical solution of the evolution equation.
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The possibility of generating a short acoustic pulse
is one of the main requirements imposed on the equip-
ment that is used in medical acoustic diagnostics and
introscopy. This requirement stems from the need to
minimize the dead space and increase the resolution.
Therefore, considerable attention has been drawn to the
development of transducers capable of generating and
receiving such signals. At present, the theory of opera-
tion of piezoelectric transducers in a pulsed mode is
rather well understood. However, the literature often
lacks specific estimates of the pulse durations and
amplitudes in relation to various parameters character-
izing the transducers (the degree of damping of the
active element, the wave thickness of contact layers, the
parameters of correcting circuits, etc.). A number of our
previous works were devoted to studying these prob-
lems [1–6]. As a load, we used a liquid (water). Of cer-
tain interest is the consideration of similar problems for
the case when the transducer is loaded with a solid
medium, for instance, a metal. It should be noted that,
in this case, for providing a reliable acoustic contact, it
is necessary to use a contact layer, which adversely
affects the matching between the transducer and the
medium, as compared to the case without a liquid layer,
i.e., the case of an ideal acoustic contact. The latter is
possible in rare cases, upon a very thorough treatment
of contacting surfaces. This leads to the requirement to
minimize the thickness of the contact layer, which is
often a difficult task. A possible way out is to provide
conditions of operation of the piezoelectric transducer
under which the generated acoustic pulse remains suf-
ficiently short in the widest possible range of wave
1063-7710/05/5106- $26.00 0719
thicknesses of the contact layer. This can be achieved,
for instance, by using various degrees of damping of the
active element or by connecting the plate input with an
electric, for example, RL load.

The objective of the present study is to obtain com-
parative estimates of amplitudes and durations of
pulses produced by a piezoelectric plate in a solid
medium with the use of the two above-mentioned meth-
ods of reducing the duration of the generated pulse in a
wide range of wave thicknesses of the contact layer.
The statement of the problem is illustrated in Fig. 1.
Figure 1a shows a piezoelectric plate with a damper on
its rear side, and this plate is loaded with a solid
medium through a contact layer. Figure 1b shows a
similar plate with an RL circuit connected in series to its
input (on the rear side, the plate borders the air). In both
cases, Zp, Zc, and Zl are the acoustic impedances of the
piezoelectric plate, contact layer, and acoustic load,
respectively. The acoustic impedance of the damper is
Zd. We assume that the area of all the layers, including
the contact surface of the medium, which represents the
acoustic load, is the same and equals S. Then, Zp =
ρpcpS, Zc = ρcccS, Zl = ρlclS, and Zd = ρdcdS. As an active
material, we choose the TsTSNV-1 ceramics. We
denote the electric voltage exciting the piezoelectric
plate by U(t). The problem consists in the determina-
tion of the particle velocity v  at the boundary between
the contact layer and the metal for the given pulse of the
exciting voltage U(t) for the both variants shown in
Fig. 1. As before [1–6], we assume that the plate is
excited by a voltage pulse representing a half-period of
(a) (b)

U(t)U(t)

Zd Zp Zc

Zl

Zp

Zl

ZÒ

v

R L

v

Fig. 1. Statement of the problem.
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a sinusoid at the antiresonance frequency of the piezo-
electric plate. We introduce the parameter α, which
allows us to characterize the wave thickness of the
contact layer: α = xc/xp, where xc and xp are the wave
thicknesses of the contact layer and piezoceramics,
respectively. In addition to the listed parameters, we
introduce the parameters characterizing the system
shown in Fig. 1b:

where C0 is the capacitance of the repressed piezoelec-
tric plate and ω0 is the antiresonance frequency of the
plate. The physical meaning of the introduced parame-
ters is as follows: ωel is the resonance frequency of the
oscillatory circuit formed by the inductance L and the
proper capacitance C0 of the piezoelectric plate, n is the
relative resonance frequency of the oscillatory circuit,
and Q has the meaning of the quality factor of the oscil-
latory circuit. In the same manner as was done in previ-
ous works, it is possible to determine the shape of the
generated pulse of particle velocity v(t). For this pur-
pose, for either variant shown in Fig. 1, by considering
the equivalent electric circuit of the radiator that is
loaded through the contact layer with a metal, it is pos-
sible to determine the frequency response of the piezo-
electric radiator. Then, finding the spectral function of
the exciting pulse, we use the Fourier transform to
determine the form of the time dependence of the
acoustic pulse. The result of solving the problem is the
determination of the values of the specific acoustic
impedances zd (for the case shown in Fig. 1a), at which
the pulse is sufficiently short with an acceptable value
of its maximal amplitude, and the values of the param-

ωel 1/ LC0; n ωel/ω0; Q ω0L/R,= = =

α

τp

5

10

15

10–4 10–3 10–2 10–1

1

2

3

4

5
6

20

1

Fig. 2. Dependences of the pulse duration on the wave
thickness of the contact layer.
eters Q and n (for the case shown in Fig. 1b) corre-
sponding to the minimal durations of the generated
pulses. As in previous papers, the pulse duration is
taken to be the time interval from the beginning of the
pulse to the instant when the particle velocity amplitude
decreases to one-tenth of its maximal value. For conve-
nience, we introduce the dimensionless time τ =
t/(T0/2), where T0 is the period of oscillations at the fre-
quency ω0. This makes it possible to measure the dura-
tion of the generated pulses from the number of half-
periods of oscillations at the fundamental frequency of
the piezoelectric plate. The results of calculations are
presented below.

Figure 2 shows a family of curves representing the
dependence of the duration of the generated pulse of
particle velocity τp on the wave thickness of the contact
layer α. As a layer material, we chose water. The acous-
tic load is steel. Curve 1 characterizes the dependence
τp(α) for the case when the plate input is loaded with
the RL circuit, the parameters of which, as a result of
searching through numerous variants of calculations,
are taken to be optimal, i.e., providing the minimal
pulse duration for the chosen materials. It is worth not-
ing that, for the whole range of variation of the param-
eter α, which is presented in Fig. 2, these values are
constant (nopt = 1.1 and Qopt = 2.5). The other curves
correspond to the cases of various degrees of plate
damping. Curve 2 characterizes the dependence τp(α)
for zd = 0, curve 3, for zd = 5 × 106, curve 4, for zd = 10 ×
106, curve 5, for zd = 15 × 106 Pa s/m, and curve 6 refers
to the case when the specific acoustic impedances of the
damper and the piezoceramics are equal (zd = zp). From
the comparison of curves 1, 2, and 3, it follows that the
use of correctly chosen parameters of the electric load
allows one to expand the range of variation of the con-
tact layer thicknesses, within which no pronounced
increase occurs in the duration of the generated acous-
tic pulse, as compared to the results achieved with rela-
tively low degrees of damping (up to the values of zd

approximately corresponding to (5–7) × 106 Pa s/m). It
is seen that, for the indicated values of zd, for α close to 0,
the value of τp is about 4–5 half-periods (curves 2 and
3), which is very close to the values of τp obtained with
the use of an electrical circuit for α ≈ 0 (curve 1). The
increase in α to 0.05 leads to a substantial increase in
τp. For the case of zd = 0 (curve 2), τp > 25, and for the
case of zd = 5 × 106 Pa s/m (curve 3), the pulse duration
is τp ≈ 11. When using an electric load, even for α = 0.1,
τp ≈ 9 (curve 1), and with a further increase in α up to
0.5, although there is an increase in the pulse duration,
it is not as pronounced as in the cases characterized by
curves 2 and 3. It should be noted that, for large values
of α, the use of an electric load leads to the lengthening
of the trailing edge of the pulse (its “tail”); however,
even in these cases, according to the chosen criterion of
the estimation of the pulse duration, the latter does not
exceed τp ≈ (16–17) for α = 0.5.
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
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As seen from Fig. 2, the use of the increased degrees
of damping of the plate (curves 4, 5, and 6) makes it
possible to obtained shorter pulses than those obtained
using the electric circuit. Specifically, even for α = 0.5,
the pulse duration does not exceed the value of τp = 11
(curve 4), τp = 9 (curve 5), and τp = 8 (curve 6).

Figure 3 shows the dependences representing the
change in the maximal amplitudes of particle velocity
in the generated pulse, vmax, with parameter α. The des-
ignations of the curves are the same as in Fig. 2. The
indicated maximal amplitudes are given in conven-
tional units, which is connected with performing the
calculations accurate to constant factors. It is seen that
the use of the electric circuit with optimal parameters
makes it possible to form signals of higher amplitude
(curve 1) than those with the use of damping. Even for
zd = 0 (curve 2), the signal amplitude is about 75% of
the signal amplitude obtained by using the electric load.
The increase in zd leads to an even greater difference,
which is clearly seen from the comparison of curves 1
and 3–6.

Using the results presented in Figs. 2 and 3, it is pos-
sible, by setting the required duration of the generated
acoustic pulse, to find the wave thickness of the contact
layer at which this duration will be retained, as well as
the amplitude of the generated signal. Let us assume
that it is required to generate a signal with a duration of
8 half-periods. From Fig. 2, it is seen that this can be
achieved by using a water contact layer with α ≈ 0.015
for zd = 0 (curve 2), α ≈ 0.023 for zd = 5 × 106 Pa s/m
(curve 3), α ≈ 0.035 for the optimally chosen electric
load (curve 1), etc. From Fig. 3, it is possible to deter-
mine the maximal amplitudes of acoustic pulses, which
are equal to 1.3 (from curve 2), 0.95 (from curve 3), and
1.25 (from curve 1).

Thus, on the basis of a computational study, it is
shown that, by connecting an electric load with optimal
parameters to the input of a piezoelectric plate loaded
with a metal through a water contact layer, in a wide
range of wave thicknesses of this layer, it is possible to
obtain a shorter acoustic pulse than that obtained using
ACOUSTICAL PHYSICS      Vol. 51      No. 6      2005
a low degree of damping (zd < 7 × 106 Pa s/m). With a
higher degree of damping, it is possible to generate a
shorter pulse than that obtained by using an electric
load.
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Fig. 3. Dependences of the maximal amplitude of the gen-
erated signal on the thickness of the contact layer.
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