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Abstract—The paper deals with the problem of current flow in doubly periodic two-dimensional media whose
unit cell is a parallelogram. Local distributions of currents (fields) are found, and the effective conductivity of
such media is calculated for equal phase concentrations. The dependence of conductivity on the angle of paral-
lelogram is determined. This dependence is shown to be threshold in media of the metal–insulator type. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that Dykhne [1] established the invari-
ance of two-dimensional equations of direct current
with respect to linear transformations of rotation, and,
as a consequence, an expression for effective conduc-
tivity was derived,

(1)

where σi  (i = 1, 2) denotes the phase conductivities.
This expression is valid for both random and doubly
periodic arrangement (“checkerboard”) of phases. For
the checkerboard case, this result was obtained later
using the method of conformal transformations; the
local distribution of currents (fields) was also deter-
mined [2, 3]. Recently, this result was obtained using a
different method [4].

It is the objective of this study to find the distribu-
tions of local currents and to calculate the effective con-
ductivity of two-phase doubly periodic media. Treated
as the initial model was a periodic structure whose unit
cell consists of two contiguous equal parallelograms
(Fig. 1). Because of the symmetry of the problem, the
field pattern is periodically repeated; therefore, it is suf-
ficient to find the distribution in a unit cell consisting of
two parallelograms with different conductivities. We
will explain the solution algorithm of the problem. To
follow Emets [2, 3], we use the Schwarz–Christoffel
integral to construct the mapping of the contiguous par-
allelograms onto the lower and upper half-planes.
Then, the resultant boundary-value problem in the
matrix form is transformed to a set of equations for Rie-
mann scalar problems. The solutions to the scalar prob-
lems are found by the standard method. We perform
inverse transformations to find the local distributions of
fields and currents. On performing the necessary aver-

σeff σ1σ2,=
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agings, we will finally derive the general expression for
the effective conductivity, which depends both on the
phase conductivities and on the geometry of the unit
cell, i.e., the angle of parallelogram. In the case of
square cells, the formula transforms to the known result
of Dykhne given by Eq. (1). In the limiting cases of
stratified media formed by one-dimensional lines,
known expressions for stratified media are obtained.
The step dependence of the effective conductivity on
the angle of parallelogram for a metal–insulator
medium appears to be of the most interest.

The structure of this paper is as follows. In Section 2, a
complex representation is introduced for a two-
dimensional conductivity problem. In Section 3, a
conformal mapping is constructed for contiguous par-
allelograms of a unit cell onto the lower and upper
half-planes. In Section 4, the Riemann boundary-
value problem is formulated, and solutions are
obtained for scalar problems with preassigned bound-
ary conditions. In Section 5, the general expression
for the effective conductivity of the medium is
derived, and the limiting cases are analyzed.
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Fig. 1. A two-color doubly periodic structure with a unit cell
formed by parallelograms.
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2. COMPLEX REPRESENTATION
OF TWO-DIMENSIONAL CONDUCTIVITY 

PROBLEM

We will treat a two-color structure with a unit cell of
equilateral contiguous parallelograms with different
conductivities. We will mark the physical quantities for
the respective phases by the superscripts 1 and 2. The
distribution of electric fields (currents) is described by
the set of equations

(2)

with the boundary conditions of continuity of the nor-
mal components of current and tangential components
of the electric field

(3)

For solving the problem by the methods of the the-
ory of functions of complex variables, we go over to the
plane of complex variable z = x + iy and introduce the
complex values of current density and electric field
strength,

(4)

(5)

As is known, this representation is valid for functions
satisfying the Cauchy–Riemann conditions. In our
case, this is possible, because the conductivity of the
medium varies discretely and assumes constant values
of σi  (i = 1, 2) in the respective cells. Here, the equa-
tions of direct current in the two-dimensional case coin-
cide with the Cauchy–Riemann equations. Indeed, the
equation of continuity for current gives one of these
conditions,

(6)

and the second condition follows from the equation
curle = 0; for cells with constant value of σ, the latter
equation is equivalent to the equation curl j = 0,

(7)

Analogously, the equations curl e = 0 and dive = 0
(following from the equation div j = 0) lead to the
Cauchy–Riemann conditions for the electric field.
Ohm’s law in the complex form is written similarly,

(8)

3. CONFORMAL TRANSFORMATION
ONTO THE ζ PLANE

We will construct a conformal mapping of the inter-
nal regions of contiguous parallelograms onto the lower
and upper half-planes. In the case of doubly periodic
media formed by parallelograms, this is done using the

divj 0, curl e 0, j σ̂e= = =

jn
1( ) jn

2( ), et
1( ) et
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Weierstrass function w = Π(z) (see, for example, [5]). In
this case, parallelogram abcd goes to the lower half-
plane, and parallelogram abc'd', to the upper half-plane
with a section on the axis η = 0. The correspondence of
the transformation points is shown in Fig. 2. In our
case,

where ω1 and ω2 are the periods of the doubly periodic
Weierstass function.

In the particular case of squares, a lemniscatic case
is observed,

4. SOLUTION OF RIEMANN BOUNDARY-VALUE 
PROBLEM IN A MATRIX FORM

The boundary conditions in the ζ plane in the nota-
tion for complex current,

,

hold and have the following form in different portions
of the ξ axis:

(9)

on the segments [ab], [cd], and [c'd'] (here, the bar over
the function indicates complex conjugation); and

(10)

on the segments [bc], [ad], [bc'], and [ad'].

b Π l( ), cΠ l 1 αcos–( ) il αsin+( ),=
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j1 j1– j2 j2,–=
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Fig. 2. The correspondence between points under condi-
tions of conformal mapping of parallelograms on a half-
plane.
ICS      Vol. 94      No. 5      2002
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Therefore, the initial boundary conditions are
reduced to a three-body Riemann boundary-value prob-
lem relative to the piecewise analytic function j(ζ). The
coefficients of the problem have discontinuities on the
ξ axis at points b, c, and d. For solving this problem, we
will formulate an equivalent problem for two pairs of
functions. As follows from the set of equations defining
the boundary conditions, four unknown quantities arise
in the problem: jk and , where k = 1, 2. In accordance
with [2], we will express the boundary values of j2 and

 as functions of j1 and . We will introduce the
piecewise continuous analytic vector function

The introduced function satisfies the symmetry condi-
tion

On the ξ axis, it assumes the following values:

and

As represented, the boundary conditions formulate the
Riemann boundary-value problem in the vector-matrix
form,

(11)

where the matrices Gi have the following form:

on the [ab] interval and 

on the [bc] interval.

jk

j1 j2
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The solution of the matrix problem is constructed by
reducing it to two independent Riemann scalar prob-
lems. For this purpose, it is necessary to simplify the
boundary conditions and diagonalize of the matrices of
boundary condition Gi. For this, we introduce a new
piecewise analytic function

The introduced function is related to the initial vector
function Φ(ζ) by

Let the matrix M coincide with the matrix G3 of bound-
ary conditions on the axis (a3a1). Then, on this axis, the
boundary-value problem take the form

Consequently, on this interval, the function can be ana-
lytically continued from one half-plane to the other. In
the remaining part of the real axis, the boundary condi-
tions take the form

(12)

Here, G = G1 on the [a1a2] segment and G = G2 on the
[a2a3] segment. Further simplification consists in the
diagonalization of the resultant matrices of boundary
conditions (12). For this purpose, we introduce yet
another function F(ζ) by the relation

(13)

Then, the boundary-value problem take the form

(14)

The matrix S is selected such that the relation

should be valid, where E is a unit matrix and λ denotes
the eigenvalues of the characteristic equation

After necessary computations, we derive the values of
the roots of the equation

(15)

Here, a2 = 4σ1σ2 + (σ1 – σ2 )2 . The sought
matrix S is found from the calculations of the eigen-
vectors and is
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2
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.=
As a result, we derive the set of independent boundary-
value problems

(16)

Next, the solution is constructed in a standard manner
using the theory of a Riemann scalar problem [6] and
has the form

(17)

Here, γ = (σ2 – σ1)/a.

One can readily see that, in the particular case of
squares, the derived expressions transform to the
known formulas derived by Emets [2].

Turning back to the initial vector function and prop-
erly determining the phases of the coefficients C1 and
C2 (see [2]), we derive the following expressions for the
distribution of currents:

F1
+ ξ( ) λ1F1

– ξ( ), F2
+ ξ( ) λ2F2

– ξ( ).= =

F1 ζ( ) C1X ζ( ), F2 ζ( ) C2X 1– ζ( ),= =

X ζ( )
ζ e1–( )γ ζ e3–( )γ

ζγ-----------------------------------------.=

j1
i α γ–( )

2
------------------- C1 X z( )exp=

+ i α γ–( )
2

-------------------– C2 X 1– z( ),exp
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(18)

Here,

are constants and moduli |ci| are defined by specifying
the external current.

Thus, we derive the following relations between the
average values of currents and fields:

(19)

Here, allowance is made for the fact that, in the case of
averaging over the unit cell areas, the average values
differ by the phase exp(–iπγ).

5. EFFECTIVE CONDUCTIVITY 
OF TWO-PHASE MEDIA

We use the foregoing results to find the expression
for the effective conductivity of the medium being
investigated,

j2 A
i α γ+( )

2
------------------- C1 X z( )exp=

+ B
i α γ+( )

2
-------------------– C2 X 1– z( ).exp

A
2σ2 1 cot+ α2
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-------------------------------------------, B
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-------------------------------------------= =
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σ1

σ2
-----A e1〈 〉 .= =
(20)σeff σ1

σ1 σ2+( )2 αcot
2

4σ1σ2+ α σ1 σ2–( )cot– 2σ2 1 αcot
2

++

σ1 σ2+( )2 αcot
2

4σ1σ2+ α σ1 σ2–( )cot– 2σ1 1 αcot
2

++
----------------------------------------------------------------------------------------------------------------------------------------------------.=
The derived expression is rather cumbersome.
Therefore, we will investigate the limiting cases which
follow from the derived formula.

(i) Let  = 0 (α = π/2). Then, the expression for
conductivity transforms to the known formula of
Dykhne,

(21)

(ii) In the case of  = +∞ (α = 0), we will have
the limiting case of stratified medium when the resis-
tance is averaged,

(22)

αcot

σeff σ1σ2.=

αcot

σeff

2σ1σ2

σ1 σ2+
-----------------.=
This result may be easily understood because, in the
case of the parallelogram angle tending to zero, we
have a medium consisting of one-dimensional lines
made up of alternating segments of conductivity σ1
and σ2.

(iii) With  = –∞ (α = π/2), we have the other
limiting case of a stratified medium, when the electric
field is averaged,

(23)

In this case, the medium is formed by alternation of
one-dimensional homogeneous conducting filaments
with their conductivities.

The obtained limiting results, namely, the angular
dependence of effective conductivity, may further be

αcot

σeff σ1 σ2+( )/2.=
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interpreted as follows. If the conductivities of the
phases differ strongly as regards their properties, the
current largely flows in the well-conducting phase, and
the flow of current from one phase to another proceeds
in the vicinity of the phase contact via a narrow neck.
In the case of small angles of the cells of the well-con-
ducting phase, the current density increases and,
accordingly, the resistance of the well-conducting
regions increases so that the flow via poorly conducting
regions becomes more profitable: the area of the necks
increases. This corresponds to successive inclusion of
resistances (see Eq. (22)).

On the contrary, when the cell angle increases, the
region of necks in which the current flows in the poorly
conducting phase decreases and, for fairly large angles,
the effect of the poorly conducting phase becomes
unimportant. In this case, the conductivity is described
by expression (23).

(iv) Of the most interest appears to be the step
dependence of the effective conductivity on the cell
angle in the case when one of the phases is dielectric,

This result follows from the foregoing formulas. With
small cell angles and up to the straight angle π/2, i.e.,
with “acute” contact of one-color conducting parallelo-
grams, the current density is such that, for flow from
one unit cell to another with one and the same conduc-
tivity, the other conducting phase must be included.
Because the conductivity of this phase is zero (insula-
tor), the effective conductivity of the system is likewise
zero. In the case of wide contacts corresponding to the

σeff

0, α π 2⁄<
σ1 2⁄ , α π 2⁄ .≥




∼

JOURNAL OF EXPERIMENTAL
obtuse angle of the parallelograms, the current may
flow from one phase to another without involving the
other phase. Therefore, the effective conductivity of the
medium is other than zero.
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Abstract—Experiments on inelastic scattering of neutrons show that the crystal field spectra for high-Tc super-
conductors R1 – yCayBa2Cu3Ox ≈ 7 (R = Ho, Er; 0 < y < 0.25) have two spectral components associated with opti-
mally doped and overdoped clusters, respectively. An increase in the calcium concentration does not affect the
local density of charge carriers in clusters, but changes the concentration of clusters themselves and, hence, the
spectral weights of the spectral components. In light of such a “two-phase” pattern observed earlier for cuprate-
based superconductors with a doping level below optimal, an increase in the charge carrier concentration leads
to a smooth transition (crossover) from the underdoped regime to the overdoped one. The obtained results show,
however, that these two regions of the phase diagram differ qualitatively in the form of charge distribution in
CuO2 planes responsible for superconductivity. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It was assumed for a long time that superconductiv-
ity in cuprates emerges in a homogeneous electron sys-
tem through, say, a magnetic mechanism of supercon-
ducting pairing. However, numerous experimental
results published in recent years indicate the presence
of space charge and spin inhomogeneities and lattice
effects in cuprates associated with them [1–11]. Taking
into account these data, Schneider and Keller [11]
proved recently that the anomalous dependence of the
isotope effect on the doping level in cuprates can be
explained by treating the superconductor–insulator
transition as a 2D quantum phase transition in a hetero-
geneous system, whose critical point depends not only
on the charge carrier concentration, but also on the ion
mass. This result confirms the opinion according to
which charge and spin inhomogeneities emerging for a
low doping level as a result of strong electron–electron
and electron–lattice interactions determine the proper-
ties of cuprates to a considerable extent and are respon-
sible for the emergence of superconductivity in them.
In this connection, the experimental study of the spatial
distribution of doping-induced charges in CuO2 planes
responsible for superconductivity is undoubtedly of
interest.

The crystal field potential at the site of a rare-earth
ion located in a cuprate between two adjacent CuO2
planes is determined by the spatial distribution and
1063-7761/02/9405- $22.00 © 21013
magnitude of the electric charge surrounding this rare-
earth ion. Consequently, the crystal field spectrum of
the rare-earth ion, which is measured with the help of
inelastic neutron scattering, is an ideal tool for studying
doping processes in copper–oxygen perovskites by
charge carriers. The neutron spectroscopy technique
makes it possible to directly observe and describe quan-
titatively the mechanism of charge transfer from CuO
chains to superconducting CuO2 planes during doping
and to obtain unique information on cluster formation
indicating the emergence of “frustrated phase separa-
tion” as well as on the symmetry of the superconduct-
ing order parameter [12–16].

The effect of frustrated phase separation reflects the
considerable difference between the charge density
averaged over the sample volume and the local charge
density in the vicinity of a doping site. This difference
is manifested in the superposition structure of the crys-
tal field spectra whose different spectral components
may be put in correspondence to different local config-
urations in the environment of rare-earth ions, which
coexist in the sample, while the spectral weights of the
components are determined by the probability of
detecting a given configuration for a given doping level
[12, 14]. However, the cluster formation under doping
of high-temperature cuprates has been reliably estab-
lished by the neutron spectroscopy method only for the
compound RBa2Cu3Ox (R stands for a rare-earth ele-
002 MAIK “Nauka/Interperiodica”
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ment) with R = Er, the doping being carried out by
changing the oxygen content (6 < x < 7) [12, 14]. It is
well known that doping in 123 systems can be carried
out not only by varying the oxygen content (off-plane
doping), but also by doping the cation sublattice, e.g.,
upon partial substitution of Ca2+ ions for R3+ ions (in-
plane doping) [17]. The substitution of calcium may
transfer the system to the overdoped regime character-
ized by a decrease in the superconducting transition
temperature Tc upon an increase in the electronic hole
concentration, thus expanding the range of investiga-
tions.

In the present work, neutron spectroscopic study of
the effect of in-plane doping on the fine structure of the
crystal-field spectra of the overdoped compound
Ho1 − yCayBa2Cu3Ox ≈ 7 is carried out. The holmium sys-
tem was chosen by us since the crystal field spectrum of
Ho3+ ions in the orthorhombic phase consists only of
singlets, which makes it possible to interpret unambigu-
ously the experimental spectra of inelastic scattering of
neutrons. In the analysis of the results, we used the data on
neutron inelastic scattering for Er1 –  yCayBa2Cu3Ox ≈ 7
obtained earlier [18, 19]. The crystal field spectra for
both compounds (Ho1 – yCayBa2Cu3Ox and
Er1 − yCayBa2Cu3Ox, 6 < x < 7) were reliably established
in the entire oxygen stoichiometry region 6 < x < 7 [13,
15]. It will be shown below that a combined analysis of
neutron spectroscopic data for the holmium and erbium
systems leads to the conclusion that, first, the effect of
frustrated phase separation is independent of the dop-
ing method (in-plane or off-plane doping) and, second,
clusters with different charge carrier concentrations are
also preserved in the deeply overdoped regime with
Tc = 56 K, although the form of the charge distribution
in CuO2 planes changes qualitatively in the vicinity of
the optimal doping level.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Ceramic samples of Ho1 – yCayBa2Cu3Ox ≈ 7 (y = 0,
0.1, 0.25) were prepared by using the standard tech-
nique from high-purity oxides Ho2O3 and CuO and car-
bonates CaCO3 and BaCO3. The stoichiometric mix-
tures of the initial reagents were annealed in a dynamic
forevacuum under gradual heating from 820 to 850°C
for 20 h until complete decomposition of carbonates.
Subsequent synthesis was carried out in air at 900–
960°C for 80 h with several intermediate homogeniza-
tion processes. The samples were then annealed in an
oxygen flow at 1000°C for several hours and slowly
cooled to 350°C also in oxygen. Such a procedure min-
imizes the emergence of BaCuO2 and Ba4CaCu3O8
impurities, facilitates the most complete substitution of
calcium for rare-earth ions at lattice sites, and makes it
possible to attain a homogeneous distribution of oxy-
gen over the sample volume with an oxygen concentra-
tion close to x = 7 [20]. The phase purity of the synthe-
sis products was controlled by using X-ray diffraction.
JOURNAL OF EXPERIMENTAL
The superconducting properties of the obtained
samples were verified using ac magnetic susceptibility
and dc resistivity measurements by the standard four-
probe technique, and the crystal structure of the sam-
ples was determined using high-resolution neutron
powder diffraction. These results were described in
detail in [21]. The ac susceptibility measurements
revealed that the dependence of Tc on the calcium con-
centration y (Tc ≈ 92, 71, and 56 K for y = 0, 0.1, and
0.25, respectively) is in accord with the results obtained
by other groups of scientists [18, 20]. The absolute val-
ues and temperature dependences of resistivity confirm
that the samples with substituted calcium are in the
overdoped regime [21]. (It should be noted that the
static magnetic susceptibility measurements which are
often used for verifying the presence of overdoping
regime are inapplicable in the present case since the
dominating contribution of the rare-earth ion to the sus-
ceptibility masks the absence of a pseudogap which is
a distinguishing feature of the overdoping regime.)
According to the results of neutron diffraction analysis,
the substitution of calcium leads to a slight increase in
the lattice parameter c and to a decrease in the orthor-
hombicity s = 2(b – a)/(a + b), where a and b are the lat-
tice parameters, and the chemical composition of the
samples (according to the results of profile analysis of
diffraction patterns) can be written in the form
HoBa2Cu3O6.95(1), Ho0.904(6)Ca0.096(6)Ba2Cu3O6.99(2), and
Ho0.754(8)Ca0.246(8)Ba2Cu3O6.86(4) (the error in determin-
ing the occupation numbers is given in parentheses; the
value of the Ca concentration in the samples can be
refined owing to a considerable difference in the neu-
tron scattering amplitudes of Ho and Ca nuclei) [21].

The measurements of the neutron inelastic scatter-
ing spectra associated with transitions between the
crystal field levels of the lower multiplet 5I8 of Ho3+

ions were made on the triple-axis spectrometer Druehal
at the neutron source SINQ (Paul Scherrer Institute,
Switzerland). The crystal field of the ortho-rhombic
symmetry splits the multiplet 5I8 into seventeen sin-
glets, eight of which lie in the low-energy range (∆E <
12 meV), and the remaining nine fall in the high-energy
region (55 meV < ∆E < 74 meV) [15]. Since it is known
from [15] that lower lying levels of the crystal field are
more sensitive to doping, we studied the low-energy
part of the spectrum. Measurements were made at tem-
perature T = 1.5 K, at which transitions can occur only
from the ground state of the multiplet. In the energy
transfer region up to ∆E = 3.0 meV, the spectra were
recorded for the scattering vector modulus Q = 0.85 Å–1

with a fixed energy Ef = 3.5 meV of scattered neutrons.
Neutrons with a higher order energy were suppressed
with the help of a beryllium filter. In the energy spectral
range up to ∆E = 15 meV, the spectra were measured for
Q = 1.8 Å–1 and Ef = 7 meV.
 AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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Fig. 1. Energy spectra of neutrons scattered from Ho1 – yCayBa2Cu3Ox ≈ 7 at T = 1.5 K for y = 0, 0.1 and 0.25 (a, b, and c, respec-

tively). Left diagrams correspond to recording for Q = 0.85 Å–1 and Ef = 3.5 meV. The right diagrams are recorded for Q = 1.8 Å–1 and
Ef = 7 meV. The top diagram shows the splitting of low-lying crystal field levels in HoBa2Cu3O6.95 [15].
3. EXPERIMENTAL RESULTS

The energy spectra of neutrons scattered from the
samples of HoBa2Cu3O6.95, Ho0.9Ca0.1Ba2Cu3O6.99, and
Ho0.75Ca0.25Ba2Cu3O6.86 at T = 1.5 K are shown in
Fig. 1. As expected, the low-energy spectrum of the
optimally doped composition HoBa2Cu3O6.95 consists

of six transitions from the ground state  [15]. In Fig. 1,
these transitions are denoted by A, B, C, D, E, and F.
Partial substitution of calcium for holmium leads to the
emergence of four additional spectral components A',
B', C', and D', whose intensity clearly increases with the
calcium concentration. Since all the levels of the crystal
field of Ho3+ ions are singlets in the orthorhombic sym-
metry, the observed spectral line splitting indicates the

Γ3
1( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
presence of clusters creating electronic inhomogeneity
in Ca-substituted samples. It was mentioned above that
a similar effect of frustrated phase separation is a dis-
tinguishing feature of underdoped cuprates. The results
presented in Fig. 1 demonstrate that the local electron
inhomogeneity in CuO2 planes is also preserved in the
deeply overdoped regime (Tc = 56 K).

Figure 1 shows that the energies and relative inten-
sities of lines A–F in the spectra of Ca-substituted sam-
ples remain virtually unchanged as compared to the
optimally doped Ho-123 (although the lines A, C, E,
and F are slightly shifted upwards). Consequently,
these lines can be put in correspondence with optimally
doped clusters existing in Ca-substituted samples,
while the additional components A', B', C', and D' can
SICS      Vol. 94      No. 5      2002
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Fig. 2. Energy spectra of neutrons scattered from undoped tetragonal HoBa2Cu3O6.3 at T = 1.5 K. Measurements were made under
the same conditions as indicated in Fig. 1. The top diagram shows the splitting of low-lying crystal field levels in a tetragonal field [15].
be juxtaposed to presumably overdoped clusters cre-
ated by the substitution of calcium in the sublattice of
rare-earth ions. Obviously, the ratio Pundist = [IA + IB]/[IA +
IB + IA' + IB' ], where I is the integrated intensity of the
corresponding line, determines the concentration of
optimally doped (i.e., unperturbed by the introduction
of calcium) clusters. It should be noted that, in order to
describe the strongly asymmetric shape of transitions
(see Fig. 1), we used the Naperian logarithmic function.
The origin of the asymmetry is discussed in detail in
[22].We used the results presented in Fig. 1 to obtain
Pundist = 0.74 ± 0.03 and 0.40 ± 0.03 for y = 0.1 and 0.25,
respectively. Since the crystal field potential at a rare-
earth site is a local probe for its surroundings [12], we
can assume that only those holmium ions which are the
nearest neighbors of an implanted calcium ion are sen-
sitive to the substitution of Ca2+ for Ho3+. In the lattice
of a 123 compound, the nearest neighborhood of each
Ho3+ ion contains four sites that can be replaced by
Ca2+. Consequently, the statistical probability of dis-
covering k (0 ≤ k ≤ 4) from the four positions occupied
by calcium is equal to [14]

(1)

where y is the calcium concentration per structural unit.
For given values of y = 0.096 ± 0.006 and 0.246 ± 0.008
(see Section 1), relation (1) for k = 0 leads to Pundist =
0.67 ± 0.03 and 0.33 ± 0.03, respectively. The expected
concentrations of unperturbed clusters calculated in
this way are in reasonable agreement with the concen-
trations obtained as a result of processing of the crystal
field spectra. These numerical estimates confirm that
the superposition effect discovered in Ca-substituted

Pk
4 y( ) 4!

4 k–( )!k!
-----------------------yk 1 y–( )4 k– ,=
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samples is indeed associated with the substitution of
calcium in the sublattice of rare-earth ions.

Figure 2 shows the energy spectrum of neutrons
scattered by an undoped sample of HoBa2Cu3O6.3,
which was measured under the same conditions as the
spectra presented in Fig. 1. It should be noted that,
for a low concentration of oxygen, 123 compounds
have a tetragonal structure. Accordingly, the low-
energy crystal field spectrum consists of four singlets
and two doublets (see Fig. 2) [15]. Note that the transi-

tions    and    are forbidden by
the tetragonal symmetry. This spectrum will be
required for an analysis of the obtained results.

4. ANALYSIS AND DISCUSSION OF RESULTS

4.1. Crystal Field Parameters of the Components 
of the Spectrum of Ho-123 with Calcium Substitutions

Since the total splitting of the lower multiplet 5I8 of
Ho3+ ions (approximately 74 meV) [15] is quite large as
compared to the separation between multiplets
(approximately 620 meV for Ho3+), the effects of mul-
tiplet mixing and spin–orbit interaction (in the interme-
diate-bond approximation) must be taken into account
for a correct description of the experimentally observed
energies and intensities of transitions [13, 15]. Follow-
ing [15], we took into account in our calculations all
multiplets with J = 8, 7, and 6, lying at energies 0, 620,
and 1067 meV, respectively. In order to find the energy
levels and the wave functions of Ho3+ ions, we diago-
nalized simultaneously the Hamiltonians of the crystal
field, electrostatic, and spin–orbit interactions. In this

Γ4
1( ) Γ1

1( ) Γ4
1( ) Γ2

1( )
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case, the crystal field Hamiltonian can be written in the
form of tensor operators [23]:

(2)

where  are the spherical tensor operators and 
are the crystal field parameters to be determined from
the experiment (for the sake of convenience, we will
henceforth use the crystal field parameters in the con-

ventional form B2n2m ≡ / , where  are
numerical factors [23]). It should be recalled that, for a
crystal field of tetragonal symmetry, the crystal field
parameters with an odd m are equal to zero, but for
orthorhombic samples, a set of nine parameters has to
be determined. The procedure of determining the crys-
tal field parameters involves the application of the least
squares technique for fitting the calculated crystal field
spectrum to the experimentally observed spectrum of
inelastic scattering of neutrons, which is determined by
the second derivative of the neutron scattering cross
section [24]:

(3)

where F(Q) is the magnetic form factor, Ei is the energy
of the ith level of the crystal field, Γi is the correspond-
ing irreducible representation, and Jp is the total angular
momentum component perpendicular to the scattering
vector Q. Using this procedure, we determined the
crystal field parameters (i) for undoped HoBa2Cu3O6.3
whose spectrum is shown in Fig. 2, (ii) for optimally
doped HoBa2Cu3O6.95 (Fig. 1a), and (iii) for the spec-
trum component induced by calcium substitutions and
presented by the transitions A', B', C', D', E, and F in
Fig. 1c. The information on the high-energy part of the
spectrum (55 meV < E < 75 meV) was borrowed from
[15] since the energy resolution for large energy trans-
fers does not allow us to resolve the superposition
structure of the spectra.

The results of fitting are presented in Tables 1 and 2
(it should be noted that, for Ca-free samples
HoBa2Cu3Ox (x = 6.3 and 6.95), the values of the crystal
field parameters obtained by us are very close to the results
obtained in [15]). The data presented in Table 2 clearly
demonstrate the general tendency in the variation of all
main crystal field parameters1 (n = 1, 2, 3; m = 0, 2) upon
doping: these parameters for HoBa2Cu3Ox increase as

1 These parameters are often referred to as “tetragonal” in contrast
to the “orthorhombic” parameters corresponding to odd values of
m and vanishing in a tetragonal symmetry field.

HCF B2m
2n Y2m

2n Y 2m–
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∑=
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the value of x increases from 6.3 to 7 and continue to
grow with the calcium concentration (except the sixth-
order parameters for the “calcium” component of the
spectrum; this circumstance will be discussed below).
It is important to emphasize that the same tendency
associated with an increase in the positive charge in
CuO2 planes upon doping was observed earlier in
ErBa2Cu3Ox [13, 25]. Thus, we can draw the prelimi-
nary conclusion that the calcium component of the
spectra is indeed associated with the emergence of
overdoped clusters.

For a further analysis of the obtained results, we will
use the model of the crystal field generated by a peri-
odic array of charged tapes (PACT) [25, 26] proposed
by us for describing the concentration dependence of
the crystal field parameters in high-Tc superconductors
with the 123 structure.

4.2. Model of Periodic Array 
of Charged Tapes (PACT)

According to the PACT model, extra charges emerg-
ing in CuO2 planes as a result of doping form a periodic
array of homogeneously charged tapes extended along
one of the main crystallographic directions in the lat-
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Fig. 3. Schematic diagram of charge distribution in CuO2
planes of cuprates according to the PACT model below
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Table 1.  Energies Ei and relative intensities Ii/IA of spectral lines of the crystal field in Ho-123 at different doping levels
obtained in the present work

1. Undoped HoBa2Cu3O6.3

A B C D E F

Eexp, meV 1.1(1) – 7.50(5) 10.9(1)

Ecalc, meV 1.10 4.89 7.47 10.85

(Ii/ 1 – 0.43(4) 0.30(4)

(Ii/ 1 0 0.62 0.36

2. Optimally doped HoBa2Cu3O6.95

Eexp, meV 0.42(2) 1.8(1) 4.04(2) 8.61(2) 11.1(3) 12.1(3)

Ecalc, meV 0.45 1.72 4.10 8.33 11.02 12.11

(Ii/ 1 0.23(3) 0.25(5) 0.35(5) 0.11(3) 0.11(3)

(Ii/ 1 0.22 0.30 0.47 0.15 0.19

3. Overdoped component Ho0.75Ca0.25Ba2Cu3O6.86

A' B' C' D' E F

Eexp, meV 0.76(3) 1.15(5) 5.4(2) 7.7(2) 11.9(3) 12.8(3)

Ecalc, meV 0.76 1.12 5.67 7.56 11.9 12.7

(Ii/ 1 0.64(6) – –

(Ii/ 1 0.59 – –

4. Er0.8Ca0.2Ba2Cu3O6.93

A B C A' B' C'

Eexp, meV 9.5(3) 10.1(2) 11.2(4) 9.5(3) 12.4(4) 11.2(4)

Ecalc, meV 9.5 10.3 11.2 9.5 12.4 11.2

(Ii/ , ( / 1 0.25 0.69 1 0.41 0.95

Note: Rows 1–3 contain the results obtained by processing the inelastic neutron scattering spectra using the fitting procedure described in
the text. The notation of the transitions A–F correspond to splitting diagrams shown in Figs. 1 and 2. Row 4 contains parameters of
the optimally doped and overdoped components of the crystal field spectrum in Er0.8Ca0.2Ba2Cu3O6.93 [19] (Fig. 5).

IA )exp

IA )calc

IA )exp

IA )calc

IA ')
exp

IA ')
calc

IA )exp
I

i'
IA ')

calc
tice, either along direction a or along b (upper part of
Fig. 3). In the transverse direction, the array of tapes is
characterized by the width W and period T (W < T)
equal to the corresponding crystal lattice parameter so
that the axes of the tapes coincide with lines of chemi-
cal bonds Cu–O–Cu. Each tape carries a charge Z
which is constant for a given doping level, positive for
holes and negative for electrons (in units of |e |/Å2). The
crystal field parameters B2n2m(x) for a sample with the
oxygen concentration x can be presented in the form
[25]

(4)

where parameters B2n2m(x = 6) for an undoped sample
are assumed to be known from experiments, Z is the

B2n2m x( ) B2n2m x 6=( ) B2n2m Z( ),+=
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surface charge density on a tape, and the additional con-
tribution B2n2m(Z) associated with doping is calculated
with the help of the following formulas [25, 26]:

(5)

B20
1
2
---b2, B60

1
16
------b6,= =

B22
1
2
--- 2∆( )b2, B62cos

15
32
------ 2∆( )b6,cos= =

B40
1
8
---b4, B64

3
16
------ 4∆( )b6,cos= =

B42
1
2
--- 2∆( )b4, B66cos

1
32
------ 6∆( )b6,cos= =
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Table 2.  Crystal field parameters B2n2m for compounds Ho-123 and Er-123, obtained in the present work

(2n, 2m) (2,0) (2,2) (4,0) (4,2) (4,4) (6,0) (6,2) (6,4) (6,6)

1. Undoped HoBa2Cu3O6.3

, meV 15.3(8) 0 –34.0(2) 0 158.3(1.5) 3.74(5) 0 121.6(3) 0

2. Optimally doped HoBa2Cu3O6.95

, meV 25.6(8) 14.3(1.6) –33.98(2) 3.6(1.5) 160.3(1.8) 3.97(4) –2.5(1.0) 123.5(4) –0.4(3)

, meV 25.6 10.3 –32.2 7.2 160.1 3.8 0.2 121.7 0.01

nopt 0.19(1)

3. Overdoped component Ho0.75Ca0.25Ba2Cu3O6.86

, meV 30.9(9) 8.4(1.2) –33.2(3) 2.6(1.2) 164.3(1.9) 3.02(4) 1.6(1.0) 123.3(4) 0.5(3)

, meV 30.9 8.9 –33.1 0 161.2 3.98 –2.5 123.5 –0.4

∆n 0.096(5)

4. Optimally doped component Er0.8Ca0.2Ba2Cu3O6.93

, meV 17.9(8) 10.6(1.5) –33.1(3) 10.3(3) 158.5(1.0) 3.67(4) –0.6(2) 103.5(4) 0.6(2)

Overdoped component Er0.8Ca0.2Ba2Cu3O6.93

, meV 23.6(7) 5.2(1.7) –31.6(4) 5.5(2.3) 157.8(1.2) 3.75(4) –0.1(2) 103.6(4) 0.2(2)

, meV 23.6 4.9 –32.1 6.5 159.5 3.68 –0.7 103.5 0.6

∆n 0.10(1)

Note: While calculating the parameters according to the PACT model for overdoped spectral components, we took for the initial values in
relation (4) the crystal field parameters for optimally doped components of the corresponding spectra; nopt and ∆n are the hole con-
centrations per copper ion, calculated by using the model.

B2n2m
calc

B2n2m
calc

B2n2m
PACT

B2n2m
calc

B2n2m
PACT

B2n2m
calc

B2n2m
calc

B2n2m
PACT
Here, ∆ is the azimuth angle between the directions of
the tapes and a chosen crystallographic direction. For
the geometry of a rare-earth position depicted in the
upper part of Fig. 3, coefficients bn are defined by the
following relations [25, 26]:

(6)

where H is the distance between a rare-earth site and
the plane of tapes and 〈rn 〉  is the corresponding moment
of the radial distribution of 4f electrons [27]. Functions
νn(λ) are defined as [25, 26]

B44
1
8
--- 6∆( )b4.cos=

b2 1.44 4Z×–
r2〈 〉
H

---------- ν2 βi( ) ν2 α i( )–{ }
i 1=

N

∑ ,=

b4 1.44– 4Z× r4〈 〉
2H3
---------- ν4 βi( ) ν4 α i( )–{ }

i 1=

N

∑ ,=

b6 1.44– 4Z× r6〈 〉
3H5
---------- ν6 βi( ) ν6 α i( )–{ }

i 1=

N

∑ ,=
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(7)

where α and β are the values of variable λ, correspond-
ing to the boundaries of the tapes. The number of
charge carriers (holes in our case) n per in-plane copper
ion Cu(2) is defined by the relation

(8)

where a is the lattice parameter along the direction of a
tape. All lengths in relations (6)–(8) are in angstroms,
and parameters B2n2m are in electronvolts. In all calcula-
tions carried out by us in this work, the period T is
assumed to be constant and equal to a = b = 3.85 Å
(which, according to the results obtained in [21], corre-

ν2 λ( ) λ
1 λ2+
--------------, ν4 λ( ) λ 3 λ2–( )

3 1 λ2+( )3
-------------------------,= =

ν6 λ( ) λ 5 10λ2– λ4+( )
5 1 λ2+( )5

----------------------------------------,=

λ α β,{ } , α i
iT T W+( )/2–

H
------------------------------------,= =

βi
iT T W–( )/2–

H
------------------------------------,=

n ZaW ,=
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sponds to the mean value of the in-plane crystal lattice
parameter for all the samples under investigation, and a
high degree of accuracy for this parameter is not
required in our calculations). The distance H between a
rare-earth site and the plane of the tapes was calculated
for each composition on the basis of structural data [21]
by using the formula H = (0.5 – z)c, where c is the crys-
tal lattice parameter and z is the coordinate of the Cu(2)
site. We assumed that the linear size of clusters is
approximately equal to 20 Å [28], so that the summa-
tion in relation (6) was carried out to N = 3 (it was
proved earlier [25] that the final result of model calcu-
lations of hole concentration n is weakly sensitive to the
number of terms in the sum). Following Morrison [29],
while calculating the crystal field parameters on the
basis of relation (6), we replaced the moments 〈rn 〉  of
the radial distribution of 4f electrons by 〈rn 〉(1 – σn)/τn

(where σn and τn are parameters depending only on the
number of 4f electrons of the rare-earth ion). This is
done to take into account the screening of the 4f shell
by external electrons and the variation in the radial dis-
tribution of the ion implanted in the solid as compared
to a free ion. Thus, the model calculations can be

reduced to fitting the crystal field parameters 
calculated on the basis of relations (5)–(7) to the values

of parameters  of Hamiltonian (2), determined
from experiments on inelastic scattering of neutrons.
There are only two fitting parameters. These are the
tape width W and the surface charge density Z in a tape
(the hole concentration n is determined automatically).
All remaining features of model calculations are given
in [25]. It is also shown in [25] that, in the geometry of
the doping-induced charge presented in Fig. 3 and for a
positive charge of the tapes, Eqs. (5)–(7) lead to a pos-
itive correction B2n2m(Z) in Eq. (4), i.e., to an increase in
the crystal field parameters relative to the initial values
of B2n2m(6.3), which is actually observed in the experi-
ments.

4.3. Analysis of Crystal Field Spectra in Ho-123 
in the Framework of the PACT Model

The best fitting of the parameters  to the

experimental values of  for the spectrum of opti-
mally doped Ho-123 is attained for the tape width W =
1.4 Å and the hole concentration per copper ion n ≈
0.19 ± 0.1 (see Table 2), which is in good agreement
with the generally accepted value of the hole concentra-
tion near the optimal doping level, i.e., for x = 6.95 ±
0.01 [20]. In our opinion, this circumstance is a strong
argument supporting the realistic nature of the PACT
model. Another qualitatively important argument in
favor of the model is the correlated variation of second-

B2n2m
PACT

B2n2m
calc

B2n2m
PACT

B2n2m
calc
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order parameters predicted by it. Since B22 = 0 for a tet-
ragonal sample, relations (4) and (5) lead to

(9)

The second-order parameters  (see Table 2)
undoubtedly satisfy this relation within the experimen-
tal error. Relation (9), which is valid for the compound
ErBa2Cu3Ox (6 < x < 7) [25], is a direct consequence of
the charge geometry under investigation. It can be seen
from relation (5) that, as the charge density Z increases,
all crystal field parameters vary in accordance with the
same law, which is on the whole in accord with the
experimental data forming precisely the basis of the
PACT model [25, 26]. However, it is more difficult to
establish the regularities predicted by relation (5) for
the variations of the fourth- and sixth-order parameters
(which are important for a correct description of the
spectra) in view of their small magnitude as well as the
error in their experimental determination than the regu-
larities for the second-order parameters whose varia-
tion upon doping is relatively large. This remark prima-
rily concerns the orthorhombic parameters of the fourth
and sixth orders, whose experimental indeterminacy is
quite significant since their variation weakly affects the
position of the crystal field level as well as the intensi-
ties of transitions between them. In addition, the fourth-
order and especially sixth-order parameters are very
sensitive to fine details in the charge distribution in a
unit cell (e.g., to quite probable periodic modulation of
the surface charge density along the tape), which could
be taken into account in our model, but this would lead
to unjustified complications of calculations and would
in fact be reduced to the emergence of additional fitting
parameters. In all probability, a certain discrepancy in
the behavior of the model and experimental sixth-order
parameters for the “calcium” component of the spectra
of Ca-substituted samples is associated with just this
circumstance.

In order to describe the crystal field parameters of
the spectrum component induced by the substitution of
calcium in the framework of the PACT model, we
assume that the tape width is constant, W = 1.4 Å, and

take the values of  for the optimally doped com-
ponent for the initial values in relation (4) (to avoid the
accumulation of computational errors). The best con-
vergence is attained for the extra hole concentration
∆n = 0.1 ± 0.01 per copper atom; i.e., the total hole con-
centration in clusters formed as a result of calcium sub-
stitution is n = 0.29 ± 0.01 holes per copper atom. In
other words, it follows from our analysis that these
clusters are indeed overdoped since the hole concentra-
tion in them exceeds the optimal doping level.

Table 2 shows, however, that the orthorhombic crys-
tal field parameters for the overdoped spectral compo-
nent are smaller than the corresponding values for the
optimally doped component, which can be seen espe-

∆B20 B20 x( ) B20 6( )–[ ] B22 x( ).≈≡

B2n2m
calc

B2n2m
calc
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cially clearly for B22. Moreover, it can be observed that
the empirical correlation

(10)

which is similar to relation (9), but has the opposite
sign, holds in this case. How can this be explained if the
charge density increases in the tapes? This apparent
contradiction is easily resolved using relation (5) if we
assume that the extra holes injected in CuO2 planes by
the substitution of calcium form a new array of tapes
oriented at right angles to the existing array, which con-
tinues to carry the optimally doped charged n ≈ 0.19 per
copper atom (Fig. 3). In accordance with relation (5),
these two mutually perpendicular arrays are character-
ized by the azimuth angles ∆ = 0 and π/2. In this case,
the tetragonal crystal field parameters are the sums of
the contributions from two arrays, while the orthor-
hombic parameters are the differences of these contri-
butions.

Since the positions of the spectral lines of the crystal
field, which correspond to optimally doped and over-
doped clusters, remain virtually unchanged for the
three compositions investigated by us (see Fig. 1), we
conclude that an increase in the Ca concentration does
not affect the local density of charge carriers in clusters,
but changes only the concentrations of clusters them-
selves and, hence, the spectral weights of the compo-
nents. However, the average concentration of holes in
the samples naturally changes and can be easily calcu-
lated for each composition using the following simple
“two-phase” relation:

(11)

where Pundist = 0.74 ± 0.03 and 0.40 ± 0.03 for y = 0.1
and 0.25, respectively (see above). Relation (11) gives
〈n〉  = 0.19 ± 0.01 (y = 0), 0.22 ± 0.02 (y = 0.1), and
0.25 ± 0.01 (y = 0.25) holes per copper atom, which is
in good agreement with the hole concentration V– [30]
calculated in [21] from the structural data obtained for
the same samples using the valence bond method [31]
(V– = –0.024(3) for HoBa2Cu3O6.3, while, for Ca-sub-
stituted samples, V– = 0.188(4), 0.234(5), and 0.258(6)
for y = 0, 0.1, and 0.25, respectively). It should be noted
that the average concentrations 〈n〉  for an optimally
doped sample and for a sample with y = 0.1 are in good
agreement with the in-plane hole concentrations
obtained from the data on position-sensitive X-ray
absorption spectroscopy for the Y-123 compound with
a partial substitution of Ca for Y [32].

Thus, the PACT model makes it possible to deter-
mine the charge carrier concentration in CuO2 planes
directly from the neutron crystal field spectra. It should
be emphasized that it is not the total concentration of
charge carriers introduced by doping in the sample, but
only its part localized in the planes. At the same time, it
should be borne in mind that the resultant hole concen-
tration in the planes determined from the results of neu-
tron spectroscopy of the crystal field, is a function of

B20 over, B20 opt,–[ ] B22 over, B22 opt,–[ ] ,–≈

n〈 〉 Pundistnopt 1 Pundist–( )nover,+=
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both the calcium concentration and the oxygen content,
the latter being slightly different for different samples.
This can explain, in particular, insignificant mutual
energy shifts of identical spectral lines in different sam-
ples (see Fig. 1) and also the virtual nonlinearity in the
values of the above-mentioned hole concentration aver-
aged over the samples. For example, an increase in 〈n〉
as a result of an increase in the calcium concentration
from y = 0.1 to 0.25 is partly compensated by a decrease
in the oxygen content in a sample with a higher calcium
concentration. Thus, in our opinion, the PACT model
establishes a reliable scale of concentrations, which
will be used in our subsequent analysis.

Figure 4 shows the concentration dependences of
the tetragonal crystal field parameters for Er- and Ho-
based 123 cuprates. It can be seen from the figure that,
for n < nopt (the change in n in this case is attained by
varying oxygen nonstiochiometry), the crystal field
parameters in both systems behave almost identically
and in accord with the results of model calculations on
the whole (the reasons for the discrepancy were dis-
cussed above). It should be emphasized once again that,
in this concentration range, the relation between the
change in the crystal field parameters and the increase
in the positive charge in CuO2 planes can be assumed to
be established reliably [12, 13, 15, 25]. Since the crystal
field parameters in the overdoped region continue to
follow the same tendency (and, hence, could be
obtained by simple extrapolation from the region lying
below the optimal doping level if the concentration
scale is known), we conclude once again that the addi-
tional component of the crystal field spectra in Ca-sub-
stituted Ho-123 samples is indeed associated with local
regions in which the hole concentration exceeds the
optimal doping level. In addition, we may conclude that
the changes in the crystal field spectra reflect the
increase in the positive charge in CuO2 planes irrespec-
tive of the method of doping.

4.4. PACT Model and the Crystal Field Spectrum
in Er1 – yCayBa2Cu3Ox

The above algorithm of the analysis of the crystal
field parameters for the Ho-123 system can be applied
to the crystal field spectra of Er3+ ions (the lower J mul-
tiplet 4I15/2) in the analogous system Er1 – yCayBa2Cu3Ox

(x ≈ 7, 0 < y < 0.2) [18, 19], which have not been inter-
preted adequately so far. It is well known that the low-
energy component of the spectrum of optimally doped
ErBa2Cu3Ox ≈ 7 consists of Kramers doublets A, B, and
C with energies EA ≈ 9.2 meV, EB ≈ 10.1 meV, and EC ≈
10.9 meV [13]. Since only one additional transition
with an energy approximately equal to 12.4 meV
appears in Ca-doped samples of this compound (Fig. 5),
whose intensity definitely increases with the calcium
concentration, while the energy and the shape of the
spectrum at lower energies do not display any notice-
able changes, Böttger et al. [18, 19] rightfully inter-
SICS      Vol. 94      No. 5      2002
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Fig. 4. Basic (tetragonal) crystal field parameters in Er- and Ho-123 systems as functions of the hole concentration in CuO2 planes.
The results obtained in [13, 15], where the hole concentration was varied by changing the oxygen stoichiometry, are given for com-
parison. Solid lines describe the behavior according to the PACT model. Vertical hatched regions denote the optimal doping level.
preted the transition at 12.4 meV as the only response
of the crystal field spectrum to calcium substitutions,
which is associated with the formation of overdoped
clusters in the samples. However, they could not prove
JOURNAL OF EXPERIMENTAL 
this assumption, the more so that the concentration
dependence of the intensity of the additional transition
with an energy approximately equal to 12.4 meV, which
was interpreted by them as the C transition in over-
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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doped clusters, considerably differs from the depen-
dence predicted by relation (1). It will be proved below
that the crystal field spectrum depicted in Fig. 5 can be
processed exactly in the same way as the spectrum of
Ho0.75Ca0.25Ba2Cu3O6.86 (see Fig. 1c).

For this purpose, it is sufficient to assume that the
spectrum of Er0.8Ca0.2Ba2Cu3Ox ≈ 7 also consists of two
components associated with optimally doped and over-
doped clusters. In this case, the lines A, B, and C in
Fig. 5 must correspond to optimally doped regions
since exactly these lines are present in the spectrum of
pure Er0.8Ca0.2Ba2Cu3Ox ≈ 7 (although the energies cor-
responding to these lines in the latter spectrum are
lower approximately by 0.3 meV) [13]. This set of lines
corresponds to a certain set of crystal field parameters
for Er3+ ions, which can be obtained by diagonalizing
Hamiltonian (2). The overdoped component of the
spectrum of Er0.8Ca0.2Ba2Cu3Ox ≈ 7 must correspond to
its own set of crystal field parameters; it follows from
the PACT model and Fig. 4 that the tetragonal parame-
ters Bnm, over must be larger than Bnm, opt, while the corre-
sponding orthorhombic parameters Bnm, over must be
smaller than Bnm, opt. The results of direct calculations
show that, for any significant increase in parameter B20

relative to B20 opt and for a relatively weak variation of
the remaining tetragonal parameters, the structure of
the crystal field spectrum for Er3+ ions changes consid-
erably (see, for example, Fig. 2 in [25]): the position of
the B line changes the most strongly, its energy becom-
ing higher than the energy of the virtually fixed C line,
while the intensities of the A and C lines are compara-
ble. It may turn out in this case that the energies corre-
sponding to the A lines for both components are almost
identical. Thus, we can logically assume that the spectrum
in Fig. 5 consists of two components with energies
E(A)over ≈ E(A)opt ≈ 9.5 meV, E(B)opt ≈ 10.2 meV,
E(B)over ≈ 12.4 meV, and E(C)over ≈ E(C)opt ≈ 11.2 meV.
In order to determine the relative intensities of transi-
tions, we must diagonalize Hamiltonian (2), fitting only
the energies of the levels (in our calculations, we took
into account all possible states with J = 15/2 (E = 0), J =
13/2 (E = 800 meV), and J = 11/2 (E = 1240 meV)
[13]). The energies of the levels obtained as a result of fit-
ting and the relative intensities of transitions for optimally
doped and overdoped components are given in Table 1,

while the corresponding parameters  are pre-
sented in Table 2 and in Fig. 4. In order to reconstruct
the experimentally observed spectrum of
Er0.8Ca0.2Ba2Cu3Ox ≈ 7, we must fit the background, the
line widths including the energy resolution of the spec-
trometer and the proper line widths (the latter are not
necessarily identical for all lines), and the concentra-
tion of clusters, i.e., Pundist. The best convergence of
such a numerical reconstruction to the experimental
crystal field spectrum of Er0.8Ca0.2Ba2Cu3Ox ≈ 7 (see Fig. 5)
was obtained for the concentration Pundist = 0.43 ± 0.02,

B2n2m
calc
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which is in excellent agreement with the value of  =
0.4 expected for the calcium concentration y = 0.2.

Parameters  for the overdoped spectral com-
ponent for Er0.8Ca0.2Ba2Cu3Ox ≈ 7 can be calculated
from relations (4)–(7) of the PACT model if we take for
the initial values of the crystal field parameters in rela-
tion (4) the values for the optimally doped component
from Table 2 and assume the formation of an array of
charged tapes (see lower part of Fig. 3) in the over-
doped regime. It can be seen from Table 2 that the extra
hole concentration ∆n = 0.1 ± 0.01 per copper atom

required for the reproduction of parameter 
and associated with the substitution of calcium is the
same as for Ca-substituted samples of Ho-123, and the
crystal field parameters themselves behave identically
in both systems in the entire range of n values (see Fig. 4).
It should be emphasized that the transformation of the
crystal field spectrum as a result of substitution of cal-
cium in the Er-123 system is manifested so clearly that
it cannot be interpreted as a purely structural effect. The
estimation of the shift in the crystal field levels as a
result of a change in structural parameters associated
with the substitution of calcium, which was carried out
by us in the point charge approximation [12, 13, 15] on
the basis of structural data on Er0.8Ca0.2Ba2Cu3Ox ≈ 7
[18, 19], gives only a more or less homogeneous
upward shift for the lines A, B, and C by a value smaller
than 0.2 meV, which is comparable with the shift of
these lines in the spectrum of Er0.8Ca0.2Ba2Cu3Ox ≈ 7 rel-
ative to that for pure ErBa2Cu3Ox ≈ 7, but does not match
the “jump” in energy corresponding to line B from 10.2
to 12.4 meV. This transformation can be interpreted
only as an effect associated with a change in the charge
surroundings of a rare-earth ion.

Consequently, the superposition structures of the
spectra shown in Figs. 1 and 2, on the one hand, and in
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Fig. 5. Spectrum of inelastic neutron scattering for
Er0.8Ca0.2Ba2Cu3O6.93 (circles) [15]. The solid curve
shows the numerical reconstruction of the experimental
spectrum in the form of a superposition of optimally doped
(transitions A, B, C; dot-and-dash curve) and overdoped
(transitions A', B', C'; dashed curve) components (see
Table 2).
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Fig. 5, on the other hand, reflects the same physical
effect associated with the coexistence of optimally
doped and overdoped clusters in the samples.

5. CONCLUSIONS

The splitting of the lower J multiplet 5I8 of Ho3+ ions
by the crystal field in overdoped high-temperature
superconductors Ho1 – yCayBa2Cu3Ox ≈ 7 is investigated
with the help of the method of inelastic scattering of
neutrons. It is established reliably for the first time that,
in this concentration range, the crystal field spectra of
superconducting cuprates consist of two components
whose spectral weights are determined by the calcium
concentration y, while the energy and relative intensi-
ties of transitions in both components are virtually
independent of y. An analysis of inelastic neutron scat-
tering spectra in the framework of the PACT model
made it possible to determine the hole concentrations in
clusters. The hole concentration in clusters whose crys-
tal field spectra are similar to the spectra of the samples
of HoBa2Cu3O6.95 (Tc = 92 K) free of calcium substitu-
tions lies near the optimal doping level nopt = 0.19 ±
0.01 per copper atom. In clusters formed as a result of
calcium substitutions in the rare-earth sublattices, the
hole concentration nover = 0.29 ± 0.01 per copper atom.
These values of concentrations are in good agreement
with the results obtained from independent experiments
(see Subsection 4.3). We proved that the crystal field
spectrum of Er0.8Ca0.2Ba2Cu3Ox ≈ 7 measured earlier
also consists of two components, and the features of
this spectrum are such that they can be due only to
charge effects in the vicinity of doping sites. By apply-
ing the PACT model, we proved that the extra hole con-
centration ∆n ~ 0.1 per copper atom in overdoped local
regions of Er0.8Ca0.2Ba2Cu3Ox ≈ 7 is the same as in anal-
ogous clusters of the Ho-123 system. The correspond-
ing numerical results and the established systematic
and identical nature of variation of the main crystal
field parameters as functions of the hole concentration
for the Ho-123 and Er-123 systems lead to the conclu-
sion that the superposition structure of the crystal field
spectra, which is obvious for Ho1 – yCayBa2Cu3Ox ≈ 7,
and the emergence of an additional transition with an
energy about 12.4 meV in the spectrum of
Er0.8Ca0.2Ba2Cu3Ox ≈ 7 are the same physical effect. The
essence of this effect is that extra holes injected in CuO2
planes as a result of calcium substitutions are not dis-
tributed uniformly over the sample volume, but are
localized directly near doping centers. An increase in
the calcium concentration does not affect the local den-
sity of charge carriers in clusters, but changes the con-
centration of clusters themselves and, hence, the spec-
tral weights of spectral components.

It was mentioned in the Introduction that, according
to earlier observations, a similar effect of spatial segre-
gation of charge carriers is a characteristic feature of
cuprates for n < nopt, but this was observed experimen-
JOURNAL OF EXPERIMENTAL 
tally only for off-plane doping (change in the oxygen
stoichiometry). Our experiments on inelastic neutron
scattering show that the local charge inhomogeneity in
CuO2 planes of cuprate superconductors is a character-
istic feature of the doping process, which depends nei-
ther on the method nor on the level of doping. Conse-
quently, from the view point of spatial charge inhomo-
geneity, a smooth transition (crossover) takes place
between underdoped and overdoped regions of the
phase diagram for cuprates. This conclusion is in qual-
itative agreement with the results of recent investiga-
tions of high-energy longitudinal phonons in
YBa2Cu3Ox by the method of inelastic neutron scatter-
ing, indicating a considerable charge inhomogeneity
even at the optimal doping level x = 6.93 [10]. However,
according to our results, the charge distribution in CuO2
planes changes for a doping level higher than optimal
(this change is shown schematically in Fig. 3). In the
framework of the PACT model, this effect is interpreted
as a gradual suppression of the charge ordering existing
in CuO2 planes for n < nopt.
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Abstract—As is well known, fluctuations from a stable stationary nonequilibrium state are described by the
linearized inhomogeneous Boltzmann–Langevin equation. The stationary state itself can be described by the
nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that
there is actually a unique way to obtain a linear equation for the fluctuations. As an example, we consider an
analytical theory of nonequilibrium shot noise in a diffusive conductor under the space-charge-limited regime.
Our approach is compared to that in [11]. We find some difference between the present theory and the approach
in [11] and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the
theory of fluctuation phenomena in a nonequilibrium electron gas. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present paper is devoted to the theory of shot
noise in the space-charge-limited diffusive conduction
regime. The motivation can be formulated as follows. It
is well known that fluctuations from a stable stationary
nonequilibrium state are described by the linearized
inhomogeneous Boltzmann–Langevin equation (see,
e.g., [1–7]). At the same time, the stationary state itself
is described by the nonlinear Boltzmann equation.
There are instances where the ways of linearization of
the nonlinear Boltzmann equation seem to be not
unique. We believe, however, that, in each such case,
there is a unique way to obtain the linearized Boltz-
mann equation for the fluctuations, and we give general
considerations to find this linearization and indicate it
for the particular case treated in the present paper.

We develop a theory of nonequilibrium shot noise in
a nondegenerate diffusive conductor under the space-
charge-limited regime. This regime is extensively dis-
cussed in the literature (see, e.g., [8, 9]). The current
noise under such a regime was recently studied by
Monte Carlo simulation by González et al. [10]. Quite
recently, the noise was analytically studied under the
same conditions by Schomerus, Mishchenko, and
Beenakker [11]. Their general finding was that, because
of the Coulomb correlation between electrons, the shot
noise is reduced below the classical Poisson value. The
authors of both [10] and [11] came to the conclusion
that under certain conditions, the suppression factor in
the nondegenerate 3D case can be close to 1/3.

¶This article was submitted by the authors in English.
1063-7761/02/9405- $22.00 © 21026
Later on, Nagaev [12] showed in a special example
that, unlike the 1/3 noise reduction in degenerate sys-
tems, the noise suppression by the Coulomb interaction
is nonuniversal in nondegenerate systems. The noise
suppression in such systems may depend on the details
of the electron scattering.

We agree with the conclusion in [10, 11] that the
reduction of the shot noise power in nondegenerate dif-
fusive conductors can sometimes be close to the value
of 1/3 theoretically predicted for a three-dimensional
degenerate electron gas. As mentioned above, we also
arrive at some conclusions that may prove important for
the general theory of fluctuations in nonequilibrium
systems. As is well known, the fluctuation phenomena
in nonequilibrium stable systems are described by a lin-
earized Boltzmann equation. We use the example ana-
lyzed in detail in the present paper to show that the lin-
earization must be performed with care. In particular,
there is a difference between the analytical procedures
used in [11] and in the present paper for the calculation
of the shot noise power. We discuss the origin of this
difference and its implications. Because the point lead-
ing to the discrepancy is very subtle, it demands a rather
detailed analysis, which we perform in the present
paper partly repeating the calculations in [11] with
some modifications. Our starting point is the Boltz-
mann equation formulated for the description of the sta-
tionary state; it is then applied to the analysis of fluctu-
ations.

2. BOLTZMANN EQUATIONS

We consider the simplest model, used in [11], for the
diffusion-controlled and space-charge-limited trans-
002 MAIK “Nauka/Interperiodica”



        

THE THEORY OF SHOT NOISE 1027

                                         
port. As the starting point, we use the Boltzmann equa-
tion in the presence of an electric field,

(2.1)

(2.2)

where we have introduced the collision integral Ip
describing the electron scattering,

(2.3)

(we deal with the nondegenerate statistics, and there-
fore fp ! 1).

Splitting the distribution function into even and odd
parts with respect to p, we obtain

We assume that the collision operator acting on the
even (odd) part of the distribution function gives an
even (odd) function. This can be the case either because
of the central symmetry of the crystal itself and the
scatterers or because of the possibility of using the Born
approximation in calculating the scattering probability.
The first split equation is

(2.4)

Being interested in relatively small frequencies of
fluctuations ωτp ! 1, where τp is the characteristic

value of , we can neglect the time derivative and

express as

(2.5)

Inserting this expression into the second split equa-

tion for  ≈ f(ε, r, t) and averaging over the constant-
energy surface in the quasimomentum space, we arrive
at

(2.6)
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–– .=

Ip
1–

f p
–

f p
– Ip

–1 v
∂ f p

+

∂r
--------- eE v

∂ f p
+

∂εp
---------⋅+ 

  .–=
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+
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∂f
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∂
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∂
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xβ∂
∂

eEβ ε∂
∂

+ 
  f–

=  δ ε εp–( )Ip
inel( ) f ,

p

∑–
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where the term on the right-hand side describes the
inelastic collisions, while the density of states ν(ε) and
the diffusion tensor Dαβ(ε) are defined as

(2.7)

The electric field obeys the Poisson equation

(2.8)

where κ is the dielectric susceptibility and neq is the
equilibrium concentration (equal to the concentration
of donors). In what follows, we neglect neq compared to
the nonequilibrium concentration n.

The part of the distribution function contributing to
the current consists of two terms that are proportional
to the spatial and energy derivatives of f(ε, r, t), respec-
tively,

(2.9)

We consider the case where Dτε @ L2, where L is the
sample length and τε is the energy relaxation time (of

the order ). On the right-hand side of Eq. (2.6),
we can then omit the term that describes the energy
relaxation. Under the same conditions, we obtain the
Boltzmann equation for the fluctuations of the distribu-
tion function (we remind the reader that here we con-
sider low-frequency fluctuations with

where τp is the characteristic time of elastic collisions),

(2.10)

(2.11)

ν ε( )Dαβ ε( ) δ ε εp–( )v α Ip
1– v β,

p

∑=

ν ε( ) δ ε εp–( ).
p

∑=

κ∇ E 4πe n r t,( ) neq–[ ] ,=

n r t,( ) εν ε( ) f ε r t, ,( ),d

0

∞

∫=

jα e v f p
–

p

∑=

=  eν ε( )Dαβ ε( )
xβ∂
∂

eEβ ε∂
∂

+ 
  f .–

Ip
inel( )[ ] 1–

ω ! Ip 1/τp,≈

xα∂
∂

eEα ε∂
∂

+ 
  δ jω

α eδEω
α

ε∂
∂

jα+ eyω ε x,( ),=

δ jω
α e v αδ f p

–

p

∑ gω
α eν ε( )Dαβ ε( )–= =

×
xβ∂
∂

eEβ ε∂
∂

+ δ f ω eδEω
β

ε∂
∂

f+ 
  ,
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and the source of the current fluctuations  is related

to the Langevin forces  as

(2.12)

(2.13)

The last equality is a consequence of the elasticity of
scattering, which leads to the particle conservation
within the constant-energy surface in the quasimomen-
tum space.

The correlation function of the Langevin forces is
well known [7],

(2.14)

Integrating Eq. (2.10) over ε, we obtain the continu-
ity equation

(2.15)

which implies that the low-frequency current fluctua-
tions are spatially homogeneous.

3. THE DISTRIBUTION FUNCTION

We consider a semiconductor with a uniform cross
section A connecting two identical metallic electrodes.
The length L of the sample is assumed to be much larg-
ger than the elastic scattering length l and much smaller
than the inelastic one. We use the 1D versions of the
Boltzmann equations describing the distribution func-
tion evolution along the dc current direction.

To obtain the stationary solution of Eq. (2.6) in the
accepted approximation, we rewrite it as

(3.1)

We assume here that the current density at x = 0, j(ε),
is nonvanishing only for ε > 0. In the absence of tunnel-
ing, j(ε) must have the property that 

(3.2)

at the contact x = 0, with T being the temperature. This
condition must be valid, irrespective of whether a
Schottky barrier or an ohmic contact occurs. Evidently,
the total current J given by Eq. (3.3) below must have
the same property.

The solution of Eq. (3.1) is a function of the total
energy %, 

where

gω
α

yp
ω

gω
α e δ ε εp–( )v α Ip

1– yp
ω,

p

∑=

yω ε x,( ) δ ε εp–( )yp
ω

p

∑ 0.= =

yp r( )yp' r'( )〈 〉 ω (p (p'+( )δrr'δpp' f p.=

A
xd

d εδ jω ε x,( )d

0

∞

∫ xd
d δJω x( ) 0= =

x∂
∂

eE ε∂
∂

+ 
  j ε x,( ) δ x( ) j ε( ).=

j ε( ) 0 as T 0

% ε U x( ),+=

U x( ) eϕ x( ) eϕ 0( ).–=
JOURNAL OF EXPERIMENTAL 
It can be found using, e.g., the inverse differential
operator

We have

and j(ε, x) takes nonzero values at a given x only if ε >
–U(x) (% ≥ 0). The total current through the sample is

(3.3)

From Eq. (2.9), we now obtain

(3.4)

or

(3.5)

where

We have taken the boundary condition at the source
into account. Equation (3.5) can be rewritten as

(3.6)

where j(ε) is expressed through the difference of the
distribution functions at x = 0 and x = L,

(3.7)

An advantage of the form chosen for Eq. (3.6) is its
physical transparency. The first term on the right-hand
side gives the contribution of the right boundary, and
the second term gives the contribution of the left bound-
ary. The solution clearly demonstrates that the ther-
mally excited carriers injected from the contact at x = L

1
∂x

-----Φ x( ) ξΦ ξ( ).d

0

x

∫=

j ε x,( )
1

∂x eE x( )∂ε+
------------------------------δ x( ) j ε( )=

=  eϕ x( )∂ε[ ] 1
∂x

----- eϕ x( )∂ε–[ ]δ x( ) j ε( )expexp j %( ),=

J A ε j ε x,( )d

0

∞

∫=

=  A εj ε U x( )+[ ]d

U x( )–

∞

∫ A % j %( ).d

0

∞

∫=

f ε x,( )
1

∂x eE x( )∂ε+
------------------------------ j ε x,( )

eλ ε( )
--------------– f ε U x( )+[ ]+=

f ε x,( ) j %[ ] ξ 1
eλ % U ξ( )–[ ]
--------------------------------- f %[ ] ,+d

0

x

∫–=

λ ε( ) ν ε( )D ε( ).≡

f % U x( )– x,[ ] f % U L( )–[ ] ξ 1
λ % U ξ( )–[ ]
------------------------------d

0

x

∫=

+ f %( ) ξ 1
λ % U ξ( )–[ ]
------------------------------d

x

L

∫ ξ 1
λ % U ξ( )–[ ]
------------------------------d

0

L

∫
1–

,

j %( ) x
1

eλ % U x( )–[ ]
---------------------------------d

0

L

∫ f %( ) f % U L( )–[ ] .–=
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make a negligible contribution to the distribution func-
tion f[% – U(x), x], because

for the parameter |U(L)|/kBT is assumed to be large.
Neglecting this term in our solution to Eq. (3.6), we
arrive at the solution already obtained in [11] by assum-
ing absorbing boundary conditions at the current drain.

4. THE FIELD DISTRIBUTION

We use the Poisson equation to determine the self-
consistent electric field that can be expressed through
the obtained distribution function. We consider the val-
ues of x such that x > , where

(4.1)

We finally obtain

(4.2)

We now check that, for large x, this equation is con-
sistent with the requirement of a uniform total current.
Assuming

and

we integrate Eq. (2.9) over the transverse coordinates
and energy, with the result

(4.3)

We integrate the second term by parts and take into
account that, at x > , we can neglect % as compared

f %( ) @ f % U L( )–[ ] % 0≥( )

xε

U xε( )–  @ % kBT ,∼

κ
4πe2
-----------d2U

dx2
----------– %ν % U x( )–[ ] f % U x( )– x,[ ]d

0

∞

∫=

=  %ν % U x( )–[ ] j %( )
ξd

eλ % U ξ( )–[ ]
---------------------------------

x

L

∫d

0

∞

∫

≈ ν U x( )–[ ] J
eA
------ ξd

λ U ξ( )–[ ]
-----------------------.

x

L

∫

κ
4πe2
----------- 1

ν U x( )–[ ]
----------------------d2U

dx2
----------–

J
eA
------ ξd

λ U ξ( )–[ ]
-----------------------.

x

L

∫=

ν ε( ) ν0ε
d /2 1–=

D ε( ) D0ε
s 1+ ,=

J
A
--- e

xd
d εν ε( )D ε( ) f ε x,( )d

0

∞

∫–=

+
eD0κ d 2s+( )

16π
-------------------------------- U x( )–[ ] s

xd
d

E2 x( ).

x
%
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to |U(x)| and use Poisson equation (2.8). The first term
in Eq. (4.3) can be simplified in the same way1 

(4.4)

In the second equality, we used that % ! |U(x)|. Insert-
ing Eq. (4.4) into Eq. (4.3), we obtain the simplified
equation

(4.5)

It can be used to verify the self-consistency of our
approach. Indeed, multiplying Eq. (4.2) by Us + d/2 and
taking the derivative, we arrive at Eq. (4.5) that was
obtained from the equation for the current. A dimen-
sionless version of Eq. (4.5) is

(4.6)

where the dimensionless potential χ is related to ϕ by

(4.7)

5. THE CURRENT AND FIELD FLUCTUATIONS

In what follows, we consider the particular cases
where

and

We begin by investigating the case of the energy-
independent scattering time, s = 0. This case can be
related to the scattering of electrons by neutral impuri-
ties, such as hydrogen-like shallow donor and acceptor
states. The scattering is analogous to the scattering of
electron by a hydrogen atom [13] (with the effective Bohr
radius aB). The scattering cross section turns out to be

1 We note that, in view of Eq. (3.5), the distribution function f(ε, x)
takes nonzero values only for ε > –U(x).

εν ε( )D ε( ) f ε x,( )d

U x( )–

∞

∫

=  %ν % U x( )–[ ] D % U x( )–[ ] f % U x( )– x,( )d

0

∞

∫

=  D U x( )–[ ] %ν % U x( )–[ ] f % U x( )– x,( )d

0

∞

∫

=  D U x( )–[ ] κ
4πe
---------

xd
d

E.

4π J
D0κA
--------------

xd
d

U–[ ] s 1+ dE
dx
------- 

  e
2s d+

4
--------------- U–[ ] sdE2

dx
---------.+=

χs d 2–
2

------------χ'χ'' χχ'''– 
  1,=

ϕ 4π J L3

D0κA e s 1+
---------------------------

 
 
  1/ s 2+( )

χ x/L( ).=

s 0, D ε( ) D0ε;= =

s 1/2, D ε( )– D0ε
1/2;= =

s 1/2, D ε( ) D0ε
3/2.= =
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about 2π"/paB times larger than the geometrical cross

section π  (that would result in an energy-indepen-
dent scattering time).

In the case of defects with deep energy levels, we
encounter a short-range scattering potential with the
scattering length about the atomic length. The scatter-
ing cross section does not depend on the energy. As a
result, the scattering rate is proportional to the electron
density of states ε1/2 and the diffusion coefficient v 2τ is
proportional to ε1/2, i.e., s = –1/2. (This is one of the
main scattering mechanisms in metals because the scat-
tering length is then determined by the screening
radius, which is of the order of the interatomic dis-
tance.) The cases where s = –1/2 (which, in particular,
describes elastic scattering by acoustic phonons) and
s = 1/2 are discussed at the end of this section.

5.1. Energy-Independent Scattering Time

Integrating Eq. (2.11) over ε, we obtain

(5.1)

We note that, because of Eq. (2.10), the Fourier
transform of the current fluctuations δJω is spatially
homogeneous. Here, Gω is the current fluctuation
source integrated over the energy and transverse coor-
dinates,

(5.2)

(5.3)

The part of the distribution function that is odd with
respect to p  –p vanishes after inserting it into cor-
relation function (2.14) of the Langevin forces and sub-
sequently integrating over p and p'. As a result, we are
left with the integral of the even function

(5.4)

(5.5)

aB
2

1
A
--- δJω Gω–( ) e

xd
d εν ε( )D ε( )δ f ω ε x,( )d

U x( )–

∞

∫–=

+
eD0 κd

8π
----------------

xd
d

E x( )δEω x( ).

Gω x( ) εd r⊥ gω ε r,( ),d

0

∞

∫=

G x( )G x'( )〈 〉 ω e2 εd

0

∞

∫ ε' δ ε εp–( )δ ε' εp'–( )v xv x'
p, p'

∑d

0

∞

∫=

× 1
Ip
---- 1

Ip'
----- r⊥d r⊥' ypyp'〈 〉 ω.d∫

G x( )G x'( )〈 〉 ω δxx' G2 x( )〈 〉 ω,=

G2 x( )〈 〉 ω 2e2A ε f ε x,( ) δ ε εp–( )v x
1
Ip
----v x

p

∑d

0

∞

∫=

=  2e2A εν ε( )D ε( ) f ε x,( ).d

0

∞

∫
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The second term on the right-hand side of Eq. (5.1)
can be simplified in the same way as Eq. (4.4),

(5.6)

and we finally obtain the equation for δEω

(5.7)

In order to justify the simplification in Eq. (5.6), we
now show that δfω(ε, x) is also a function taking non-
zero values only at ε > –U(x). Indeed, from Eq. (2.10)
and Eq. (2.11), we can obtain the solutions

(5.8)

(5.9)

which show that δf has the aforementioned property.
Here, ∆j(ε) are the fluctuations of the current at the left
boundary x = 0. The fluctuations of the distribution
function ∆f(ε) at the right boundary are assumed to be
zero. If we assume λ(ε) to be a constant (independent
of the energy), taking Eqs. (5.8) and (5.9) and the equa-
tion δfω(ε, 0) = 0 into account, we immediately arrive at
the result 

(5.10)

obtained by Nagaev [12].

5.2. Comparison with the Approach in [4]

We now embark on setting forth the crucial point of
the paper. Equation (5.7) does not coincide with the
equation for the field fluctuations obtained in [11] by
directly linearizing Eq. (4.5) for s = 0,

(5.11)

The origin of this discrepancy must be understood.
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∞
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∂

f ε U ξ( )– ξ,[ ]d

x

L
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----------------------------------------------------------------------------------,d

x

L

∫

∆J
1
L
--- x εg ε U x( )– x,[ ]d∫d

0
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∫=

xd
d δUω x( )

xd
d

E x( )
xd

d
U x( )

xd
d δEω x( )+

+ e
d
2
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4π

AD0κ
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First, we temporarily adopt the scheme of [11] and
reconsider Eq. (4.3) for the current

(5.12)

For the total current (the dc current plus fluctua-
tions), the equation reads

(5.13)

Taking Eq. (5.12) into account, we obtain the linear-
ized equation

(5.14)

If one linearized the Poisson equation in the spirit of
[11], one would see that the term in the curly brackets
in Eq. (5.14) would coincide with (κ/4πe)(dδE/dx), and
therefore,

(5.15)
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∞
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Simplifying the first, third, and fourth terms on the
right-hand side of Eq. (5.14) with the help of Eq. (5.6)
and inserting (κ/4πe)(dδE/dx) instead of the term in the
curly brackets, we arrive at

(5.16)

We can see that the last term on the right-hand side
of this equation coincides with the first term on the left-
hand side of Eq. (5.11). To avoid confusion, we note
that we believe Eq. (5.15) to be also wrong. We have
written it here only for the detailed comparison with the
approach in [11]. We believe that the correct Poisson
equation for the fluctuation field is

(5.17)

In Eq. (4.3) for the dc current, we now add the terms
that actually vanish because they are proportional to the
integrals of the distribution function over ε with the
upper limit –U(x), whereas the distribution function
f(ε, x) = 0 for ε < –U(x). The point is that, when we cal-
culate the fluctuations by the replacement

they give a nonvanishing result. We have

(5.18)

Rewriting this equation for the total current, we
obtain
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(5.19)

Linearizing this equation and using relations similar to

(5.20)

we arrive at Eq. (5.1) that has been derived above. We
see that the contributions to Eq. (5.19) that are linear in
δU cancel because of the terms that vanish in the equa-
tion for the dc current but must be taken into account in
considering fluctuations. This is why the linearization
of Eq. (4.5) leads to Eq. (5.11) that we believe to be
wrong because it does not take all the sources of fluctu-
ations into account, or in other words, all the terms in
Eq. (5.18) containing U(x).

The solution to Eq. (5.7) with the boundary condi-
tions

(5.21)

is given by

(5.22)

where C is the integration constant. Requiring a non-
fluctuating applied voltage

we find from Eq. (5.22) that the constant is

(5.23)
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where

(5.24)

We now require

(5.25)

at the right boundary and obtain

(5.26)

where

(5.27)

(5.28)

The noise power P is then given by

(5.29)

In accordance with Eq. (5.5), we have

(5.30)

We finally arrive at

(5.31)

The potential distribution can be found by following
the method in [11], i.e., by solving Eq. (4.5) with
boundary condition (4.2) at x = L. Using Eqs. (5.24),
(5.27), (5.28), and (5.31), we calculate the suppression
factor P/PPoisson. For physically relevant different values
of the dimensionality d, we obtain

(5.32)

In this particular case, our results therefore differ
from those calculated in [11] both analytically (which
is of principal importance in our opinion) and numeri-
cally (although in this particular case the difference is
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not great). Naturally, there is essentially no difference
from the results calculated within an ensemble Monte
Carlo scheme in [10].

5.3. Energy-Dependent Scattering Time

Here, we calculate the noise power for s = ±1/2 and
d = 3. The equation for the fluctuations is

(5.33)

Introducing the dimensionless potential χ by Eq. (4.7)
and the fluctuation of the field ∆E by

(5.34)

we can rewrite Eq. (5.33) as

(5.35)

Setting s = –1/2 and d = 3, we obtain

(5.36)

This equation differs from that derived in [11], while
the equation for the potential χ coincides with

(5.37)

To calculate the Green’s function of Eq. (5.36), we
need the function ψ1(x) obeying the homogeneous
equation

(5.38)

and satisfying the boundary condition  = 0. The
second function ψ2 satisfying the boundary condition

 = 0 can be expressed through the functions χ
and ψ1 as

(5.39)
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-------------=
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----------------------------
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---+ 
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The solution to Eq. (5.36) can be written using the
Green’s function

(5.40)

as

(5.41)

Requiring a nonfluctuating applied voltage, we
obtain

(5.42)

where

(5.43)

(5.44)

Expressing the correlation function 〈G2(x)〉  through
χ, we obtain the power supression factor

(5.45)

for the shot noise. We determine the potential χ follow-
ing [11] and numerically find ψ1 from Eq. (5.38). The
functions ψ2, Π and the constant Z can be found from
Eqs. (5.39), (5.43), and (5.44). The suppression factor
can be evaluated as

(5.46)

which is about 10% larger than the result obtained in
[11]. The numerical simulation result in [10] for s =
−1/2 is

(5.47)

This interval is noticeably closer to the value given by
Eq. (5.46) than the result in [11].

In the case where s = 1/2, the suppression factor can
be evaluated as

(5.48)

which is slightly smaller than the result in [10].
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6. CONCLUSION

In summary, we have developed an analytical theory
of shot noise in a diffusive conductor under the space-
charge-limited regime. We find that the present theory
is different from the approach developed earlier and
indicate a possible origin of the difference.

We now make several concluding remarks. The cal-
culated nonequilibrium shot noise power in a nonde-
generate diffusive semiconductor for two types of phys-
ically relevant elastic scattering mechanisms turned out
to be very close to the ones obtained in numerical sim-
ulations by the authors of [10]. The computed noise
suppression factor P/PPoisson for the energy-independent
scattering time is also rather close to the analytical
results obtained earlier by Schomerus et al. [11]. How-
ever, for the energy-dependent scattering, the numerical
difference between our results and those in [11] is con-
siderable.

We clarify once more why the authors of [11]
arrived at the equations that differ from ours. As an
example, we take the Poisson equation. According to
[11], one could write

(6.1)

where n and U are the exact total concentration and
potential energy and f is the total distribution function
(the mean value plus the fluctuating part). The linear-
ization of this equation leads to the equations in [11].
The authors of [11] could have argued that, because the
voltages in the reservoirs do not fluctuate and U is set
to zero at the left boundary and because the total energy
% = ε + U remains positive, the total distribution func-
tion is zero for ε < –U.

Our point is that Eq. (6.1) cannot be justifed for the
total values of these variables including the stationary
and fluctuating parts. This is readily seen from the fact
that the fluctuating part of the distribution function
itself implicitly depends on the mean value of the dis-
tribution function through the correlation function. One
should bear in mind that an equation involving both the
mean and the fluctuating quantities must be regarded
symbolically. Indeed, such an equation is in fact equiv-
alent to two equations, one for the mean values and the
other for the fluctuating part. Regarded literally, it can
lead to confusion. For example, analyzing the equation

,

one can come to the wrong conclusion that the mean

value  depends on such an average as .

n εν ε( ) f ε x,( ),d

U x( )–

∞

∫=

n δn+ εν ε( ) f δf+( )d

–U δU–

∫=

n δUδf
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We add several words about the boundary condi-
tions for the potential. The boundary conditions used
here are not applicable within the length

near the electrodes. Because the nonequilibrium noise
power is a bulk property (we note, e.g., the integration
over the coordinate in Eq. (5.45)), this approximation is
justified since we assume that the sample length L is
much greater than RV .

Being interested in the analysis of the fluctuation
phenomena in the simplest situation of the space-
charge limited diffusive conduction regime, we have
not taken the electron–electron collisions into account.
These collisions can lead to an additional electron–
electron correlation [7] that must be considered in ana-
lyzing a more general case.
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Abstract—Galvanomagnetic phenomena in organic conductors with a quasi-two-dimensional energy spectrum
of an arbitrary form in the presence of several groups of charge carriers whose states belong to Fermi surface
sheets with different topological structures are considered. The dependences of magnetoresistance, Shubnikov–
de Haas oscillations, and Hall field on the intensity and orientation of a strong magnetic field with respect to
the normal to layers n are analyzed for a Fermi surface consisting of a weakly corrugated cylinder and a plane
weakly corrugated along the pz = pn plane. © 2002 MAIK “Nauka/Interperiodica”.
Interest in low-dimensional conductors of organic
origin, which arose in the 1960s because of practical
demands for new superconducting materials, does not
seem to lessen. After the discovery of the superconduct-
ing state of fullerenes doped with various organic mol-
ecules (the transition to the superconducting state in
these materials was observed at Tc = 52 K [1] and, more
recently, at 120 K [2]), the preparation of organic high-
Tc superconductors has become quite realistic. Along-
side metal oxide superconductors, these materials will
find wide applications in diverse fields of modern elec-
tronics. In addition, unusual behavior of organic com-
pounds in the normal (not superconducting) state also
attracts attention of researchers because of the presence
of peculiar phase transitions in them and their very sen-
sitive response to external magnetic fields. Reviews [3,
4] include more than three hundred publications con-
cerned with studying electronic processes in organic
conductors in the superconducting and normal states,
especially in strong magnetic fields H. Under these
conditions, experimental studies of magnetic suscepti-
bility [5, 6] and transport phenomena can be used to
solve the inverse problem of reproducing electronic
energy spectra. This requires preparing fairly perfect
samples with the free path of charge carriers l suffi-
ciently long for frequency Ω of electron rotations in the
magnetic field to be much higher than the frequency of
its collisions 1/τ. This strong magnetic field condition
(Ωτ @ 1) was fulfilled in fields of the order of several
dozen tesla units in radical-ion salts based on tetrathi-
afulvalene with layered structures. This is a likely cause
of a considerable interest in studying electronic pro-
cesses in organic conductors based on tetrathiaful-
valene in strong magnetic fields, especially galvano-
magnetic phenomena and quantum oscillation effects.
These conductors are layered structures with sharp
anisotropy of metal-type conduction, in which the elec-
1063-7761/02/9405- $22.00 © 21035
trical conductivity along layers is several orders of
magnitude higher than that across layers.

In addition to quantum oscillation effects in tetrathia-
fulvalene salts observed as angle ϑ  between the mag-
netic field and normal to layers n changed, periodic
recurring narrow maxima were observed in the depen-
dence of resistance to current across layers on tanϑ  [7,
8]. This orientation effect arose because of the quasi-
two-dimensional character of the energy spectrum of
charge carriers and was absent in usual metals.

The sharp anisotropy of the conduction of layered
conductors is likely to be related to a sharp anisotropy
of the distribution of charge carrier velocities v =
∂ε(p)/∂p over the Fermi surface ε(p) = εF. The energy
of charge carriers,

(1)

therefore weakly depends on the momentum projection
pz = pn, and the max{ε(p) – ε0(px , py)} maximum func-
tion value equal to ηεF is much smaller than the εF

Fermi energy.
The energy of an elementary excitation of a charge

carrier in form (1) with arbitrary periodic functions
εn(px , py) and arbitrary phases αn(px , py) satisfies trans-
lational symmetry and ε(p) function parity, which fol-
lows from the Hermitian character of the Hamiltonian.
Here, a is the distance between layers and " is the
Planck’s constant.

The quasi-two-dimensional character of the energy
spectrum of charge carriers in organic layered conduc-
tors favors stronger manifestations of Shubnikov–de
Haas [9] and de Haas–van Alphen [10] oscillation

ε p( ) εn px py,( )
an pz

"
----------- αn px py,( )+

 
 
 

,cos
n 0=

∞

∑=

εn px py,( ) εn px py–,–( ),=

αn px py,( ) α– n px py–,–( ),=
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effects in them because their formation involves a fairly
large number of conduction electrons with Fermi
energy εF. Shubnikov–de Haas oscillations of magne-
toresistance in the (BEDT-TTF)2IBr2 and (BEDT-TTF)2I3
organic conductors discovered in 1988 [7, 8, 11–14]
and then virtually in all tetrathiafulvalene salts and tet-
raselenotetracene halides [15] at various magnetic field
orientations with respect to the layers are evidence that
at least one Fermi surface sheet is a weakly corrugated
cylinder with the openness direction along the pz axis.
All sections of this cylinder by the pH = const plane are
closed if the ϑ  angle between the n and H vectors equal
to (0, Hsinϑ , Hcosϑ) differs from π/2 and conduction
electron energy levels are quantized. These energy lev-
els should be determined by the Schrödinger equation

(2)

where e is the electron charge and c is the velocity of
light in the vacuum.

Here, we use the Landau calibration on the assump-
tion that magnetic field vector-potential A only depends

on coordinate x; that is, the (  – eA/c) Hamiltonian
contains a single differential operator , and the py

and pz generalized momentum projections are good
quantum numbers.

In the quasi-classical approximation, when the dis-
tance between quantized levels ∆εN = hΩ is much
smaller than ηεF, the energy spectrum of charge carri-
ers can be determined for an arbitrary form of Hamilto-

nian , which coincides with expression (1) for

energy, if kinematic momentum p is replaced by (  –
eA/c). If ε0(px , py) is a quadratic function of the con-
duction electron momentum, for instance,

and all the other εn(px , py) functions with n ≥ 1 on the
Fermi surface equal constant values An, that is, do not
depend on px and py , then the energy spectrum of
charge carriers can easily be obtained at an arbitrary
ratio between ∆εN and ηεF. In the main approximation
with respect to the a/rH parameter, where rH is the
radius of curvature of the trajectory of charge carriers in
the magnetic field, the φ(x) function is, as for free elec-
trons, a Hermitian function with the argument shifted
with respect to the center, and the energy of conduction
electrons in the quantizing magnetic field has the form

Ĥ P̂
e
c
--A– 

  φ x( )exp
i
"
---y py

i
"
---z pz+ 

 

=  εN py pz,( )φ x( ) i
"
---y py

i
"
---z pz+ 

  ,exp

Ĥ P̂
p̂x

Ĥ

P̂

ε0 px py,( )
px

2 py
2+

2m
-----------------,=

εN pH( ) N
1
2
---+ 

  g"Ω=
JOURNAL OF EXPERIMENTAL 
(3)

where

and

(4)

The cyclotron effective mass of conduction elec-
trons with energy spectrum (3) has the form

(5)

and, because of the quasi-two-dimensional character of
the electronic energy spectrum, is almost identical at all
sections of the Fermi surface by the pH = const plane.
Generalized moments Px and Py, as in the quasi-classi-
cal approximation for an arbitrary spectrum of charge
carriers, enter into the expression for energy only in the
form of the integral of charge motion in magnetic field
Pzcosϑ  + Pysinϑ  = pH = pH/H.

If hΩ ! ηεF and the εn(px , py) functions have an
arbitrary form, the quantized energy spectrum of charge
carriers is easy to determine with the use of the rule for
quantizing areas [5, 6],

(6)

where S0(ε, pH) = dpx is the projection onto the

px py plane of the section of the isoenergy surface S(ε,
pH) by the pH = const plane.

Consider galvanomagnetic phenomena in a conduc-
tor in which the Fermi surface has the form of a weakly
corrugated cylinder with an arbitrary cross section. The
relation between current density and electric field E,

, (7)

can be found by solving the quantum kinetic equation

for the  =  +  statistical operator, where  is the
statistical operator describing the equilibrium state of
the system of electrons whose diagonal components
coincide with the Fermi function of the distribution of

charge carriers  = f0{εN(Py , Pz)}. The  operator
describes the perturbation of the electronic system by

+ An
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the electric field, and  is the operator of the velocity
of electrons.

In the linear approximation with respect to a weak
electric field, the kinetic equation has the form [16]

(8)

where { } is the linear operator that describes scat-
tering of conduction electrons on crystal defects and
crystal lattice vibrations.

In a quantizing magnetic field, the density of con-
duction electron states has singularities periodically
recurring as 1/H varies, which is the reason for oscilla-
tions of kinetic coefficients in a strong magnetic field.
These singularities appreciably manifest themselves
when the summation over conduction electrons is per-
formed not only in Eq. (7) for current density, but also

in the integral of collisions , which results in the
appearance of terms oscillating with 1/H in the eigen-
values of the integral operator of conduction electron
scattering. Taking them into account is very important
in crossed fields E ⊥  H, when there are stationary con-
duction electron states in the collisionless limit (τ = ∞).
Ignoring the oscillating quantum addition to the relax-
ation time of charge carriers τosc then leads to a differ-
ent, substantially underestimated amplitude of Shubni-
kov–de Haas oscillations [17, 18].

In a strong magnetic field, when not only Ωτ @ 1,
but also "Ω/εF ≥ η, the periodic dependence of kinetic
coefficients on 1/H is fairly complex. At "Ω/εF ! η,
this dependence, however, has a harmonic form and can
easily be identified in the equation for current density
with the use of the Poisson formula.

When current flows over layers, the Hall field at
Ωτ @ 1, as in a usual metal, substantially exceeds the
electric field along the current if the magnetic field is
appreciably deflected from the surface of layers. How-
ever, if current flows across layers, the galvanomag-
netic characteristics (magnetoresistance and the Hall
field) of a layered conductor show an essentially differ-
ent behavior. At η2Ωτ ! 1, the Hall field is much lower
than the electric field Ez along the normal to layers, and
the electric field vector is therefore directed mainly
along the electric current. The resistance to current
across layers ρ = ρzz is then determined fairly accurately
by the single σzz component of the electrical conductiv-
ity tensor, and ρzz = 1/σzz, because the velocity of the
drift of charge carriers along the z axis,

, (9)

is proportional to the η quasi-two-dimensionality
parameter, and, at (π/2 – ϑ) @ η, the expansion in pow-

v̂

i
h
--- εN εN '–( ) f 1

NN ' ŴNN ' f̂ 1{ }+

=  eEvNN '

f 0 εN( ) f 0 εN '( )–
εN εN '–

---------------------------------------,
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----------------- ϑcos=
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ers of η of the electrical conductivity tensor compo-
nents σij with at least one index coinciding with z
begins with quadratic terms [19, 20].

In the quasi-classical approximation ("Ω ! εFη),
the σzz asymptote in a strong magnetic field at γ =
1/Ωτ ! 1 can be calculated with the use of the solution
to the kinetic equation in the τ approximation on the

assumption that the { } operator of collisions of

electrons is an operator of multiplying  by the ν =
1/τ + νosc frequency of collisions. This results in loss of
significance of low-importance numerical coefficients
of the order of one, which does not change the amount
of information about the form of the energy electronic
spectrum contained in galvanomagnetic characteristics.

The Poisson formula yields the following asymp-
totic equation for σzz at γ ! 1:

(10)

where

is the cyclotron effective mass.
The part of the electrical conductivity across layers that

monotonically changes as the magnetic field varies,

, (11)

substantially depends on the magnetic field orientation
with respect to layers [20, 21] because, at some ϑ  val-
ues, the velocity of conduction electrons along the nor-
mal to layers averaged over the T = 2π/Ω period,

(12)

sharply decreases. Here,

(13)

The ε = const and pH = const electron orbits at η ! 1
are almost indistinguishable, and the px and py functions
and, therefore, In{ϑ , pH} weakly depend on pH, in
accordance with the smallness of the quasi-two-dimen-
sionality parameter η. It follows that the ∆In{ϑ , pH} =
In{ϑ , pH} – In{ϑ} difference should only be taken into
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account in the vicinity of the ϑc angles at which In{ϑ}
vanishes. If the εn(px , py) functions fairly rapidly
decrease as the n number increases, a minimum electri-
cal conductivity value across layers should be expected
at the ϑ  = ϑc values at which I1{ϑc} = 0. We must then
take into account terms of higher orders in the expan-

sion of  in powers of γ and η,

(14)

where the ϕi(ϑ) functions, which depend on the special
form of the law of dispersion of charge carriers, are of
the order of one and σ0 coincides in order of magnitude
with the electrical conductivity along layers in the
absence of a magnetic field.

At  @ 1, rapidly oscillating functions in the
integrand in (13) contribute to the integral mainly close
to the neighborhood of the stationary phase points,
where

The distance between these points is the electron orbit
diameter Dp along the py axis. When ϑ  varies, the In{ϑ}
function, like , experiences periodic changes with
the period

(15)

and experimental studies of the dependence of magne-
toresistance at various strong magnetic field orienta-
tions make it possible to completely reproduce the
shape of the Fermi surface [19–22].

Zeros of the function In{ϑ} with various n do not

coincide, and the first term in Eq. (14) for  there-
fore never vanishes. If we assume that, at ϑ  = ϑc, when
I1{ϑc} = 0, all the other terms in the sum over n in (14)
are together proportional to η taken to a higher power
than η2, for instance, to η2(1 + q), then, at ηq ! γ ! 1,
magnetoresistance ρzz should increase proportionally to
H2, and the angular dependence of ρzz should be
expected to contain fairly sharp peaks at ϑ  = ϑc. In addi-
tion, ρmax/ρmin ≈ γ–2 @ 1. The experimentally observed
magnetoresistance maxima of tetrathiafulvalene salts
[7, 8] (also see [3, 4]), however, have the same order of
magnitude as the magnetoresistance between the max-
ima. The small height of the maxima in the angular
dependence of magnetoresistance is evidence that the
εn(px , py) functions decrease fairly slowly as n
increases, and ignoring the n ≥ 2 terms in the equation
for the dispersion of charge carriers is incorrect.

σzz
mon

σzz
mon ae2τm*

ϑcos

2π"( )4
----------------- n2In

2 ϑ( )
n 1=

∞

∑=

+ η2σ0 η2ϕ1 ϑ( ) γ2ϕ2 ϑ( )+{ } ,

ϑtan

py∂
t∂

--------
eH
c

-------v x ϑcos 0.= =

ϑtan

∆ ϑtan( ) 2π"
anDp

-------------,=

σzz
mon
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Consider the equation for the part of the electrical
conductivity across layers that oscillates with 1/H

(16)

.

Here, not only  but also the exp{2πikN(ε, pH)} mul-
tipliers, which rapidly oscillate at "Ω ! ηεF, essen-
tially depend on pH. The first term on the right-hand
side of (16) has the same order of magnitude as any
terms in the sum over k with a small k index. As the sig-
nificance of numerical coefficients of the order of one
in the equation for σzz was lost in selecting the model of
the collision integral, we will only analyze the sum over
k in (16) ignoring the τνosc value, which is small com-
pared with one, in the denominator.

The major contribution to  is made by the inte-
gration of a small neighborhood of stationary phase
points, which are found from the condition

(17)

The stationarity condition when S(ε, pH) is almost
constant is only fulfilled at

The conduction electron state density has singularities
at ∂ε/∂pH = 0, that is, either on the extremal section of
the isoenergy surface, when ∂S/∂pH = 0, or on a self-
intersecting orbit, where

The Fermi surface has no orbits with self-intersections

at η  ! 1, and the major contribution to  is
made by electron states from a small neighborhood of
the extremal Fermi surface section by the pH = const
plane.

Integrating (16) by parts yields  in the form

σzz
osc 2
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f 0 ε( )∂
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----------------d∫=

× pH2πm*e2v z
2τ2νoscd∫ 2
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-----------------–

× 2Re ε
f 0 ε( )∂

ε∂
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2 τ
1 τν osc+
--------------------d∫d∫

k 1=

∞

∑
× 2πikN ε pH,( ){ }exp

v z

σzz
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dN ε pH,( ) S∂
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1
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----- ∞.= =

ϑtan σzz
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σzz
osc
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osc 2
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-----------------2Re ε
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ikc
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k 1=
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(18)

Further calculations of  by the stationary phase
method pose no difficulties. As a result, the oscillating
part of electrical conductivity across layers takes the
form

(19)

where λ = 2π2θ/"Ω and θ is the temperature in energy
units.

If the εn(px , py) functions decrease fairly rapidly as

n increases, a substantial decrease in  is observed at

the same ϑ  = ϑc angles as for , and the amplitude

of Shubnikov–de Haas magnetoresistance  oscilla-

tions, which is proportional to /( )2, sharply
increases at ϑ  = ϑc. As a result, sharp maxima appear in

the dependence of  on the angle ϑ  between the H
and n vectors. If I2(ϑ) and I1(ϑ) are values of approxi-
mately the same order, the maxima in the angular

dependence of  are shifted with respect to the max-

ima of . The shift value can be used to estimate the
quasi-two-dimensionality parameter of the electronic
energy spectrum.

Equations (10), (11) for  and (16), (18), (19) for

 are valid at γ ! 1, that is, when an electron man-

× pHexp
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ages to perform many revolutions in its orbit in the

magnetic field during the mean free time and  can
be calculated ignoring quantum level broadening
caused by collisions of charge carriers in the form of the
so-called Dingle factor exp{–γ} [23].

The larger , the smaller the contribution to
electrical conductivity of the functions in the integrand
in (13) that rapidly oscillate at  @ 1, and the resis-
tance of the sample grows proportionally to  as ϑ
increases as long as γ ! 1. Strongly prolate orbits, in
which an electron fails to perform a complete revolu-
tion during the mean free time, appear as ϑ  approaches
π/2. At γ = γ0cosϑ  ≥ 1, σzz begins to grow as ϑ
increases, and, at η  = 1, when self-intersecting
orbits appear, the magnetoresistance to current across
layers reaches a minimum [24, 25]. The γ0 = 1/Ω0τ
parameter, where Ω0 is the frequency of electron revo-
lutions in the magnetic field at ϑ  = 0, can be assigned
the meaning of the ratio of the time of electron move-
ment in an orbit strongly prolate along the pz axis by a
distance of the order of 2π"/a. At η  > 1, the resis-
tance again increases as the ϑ  angle widens and reaches
a maximum at ϑ  = π/2. The ρzz maximum grows as the
magnetic field increases first linearly at η ! γ0 ! 1 and
then proportionally to H2 at η ≥ γ0 [21, 22]. The magne-
toresistance along the normal to layers experiences
unlimited growth at ϑ  = π/2 because (pH) vanishes
in all Fermi surface sections, and we must retain expan-
sion terms of higher order in small parameter γ0 in the

expression of σzz. The major contribution to  is
made by a small fraction of electrons with orbits close
to the self-intersecting orbit, the period of revolution in
which logarithmically diverges.

Azbel’ showed that the self-intersecting orbit for

 stands out in the same sense as the extremal sec-
tion of the Fermi surface [26, 27]. In some special situ-
ations, electrons from the vicinity of the self-intersect-
ing orbit can form high-temperature oscillations [28].

Their contribution to  is, however, negligibly small
compared with the amplitude of oscillations for which
electrons with the extremal Fermi surface section are
responsible. A theoretical analysis of the fine effects
predicted by Azbel’ requires the collision integral in the
quantum kinetic equation to be handled more accu-
rately. For this reason, we do not pay due attention to
these effects and interference oscillation effects, which
arise when νosc is taken into account in the sum over k
in (16) and which appear in the higher terms of the
expansion in powers of the "Ω/ηεF small magnetic
parameter. Although the amplitude of these oscillations
is exceedingly small, the authors of [29] were able to
observe them. Among the interference oscillations in a
quasi-two-dimensional conductor, there are low-fre-

σzz
osc

ϑtan

ϑtan
ϑtan

ϑtan

ϑtan

v z

σzz
mon

σzz
osc

σzz
osc
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quency oscillations determined by the dimensionality
of the maximum and minimum sections of the Fermi
surface by the pH = const plane. The amplitude of these
magnetoresistance oscillations slowly decreases as the
temperature increases as long as γ ≤ 1 [29].

The Fermi surface of organic layered conductors
containing more than a hundred atoms in the unit cell is
fairly complex and can consist of elements with differ-
ent topological structures. In addition to a corrugated
cylinder, sheets in the form of planes weakly corrugated
along the pz axis are possible. For instance, the Fermi
surface of (BEDT-TTF)2MHg(SCN)4 salts, where M is
K, Rb, Tl, or NH3, contains not only a weakly corru-
gated cylinder but also two quasi-one-dimensional
sheets according to band calculations of the electronic
energy spectrum [30]. These sheets are weakly corru-
gated planes, and their pH = const sections are open at
almost any magnetic field orientation. Although con-
duction electrons with a quasi-one-dimensional energy
spectrum weakly respond to the presence of an external
magnetic field, the existence of such a group of charge
carriers can substantially change the magnetoresistance
of a conductor. At magnetic field orientations at which
open electronic trajectories appear in the momentum
space, the magnetoresistance becomes sharply aniso-
tropic even in the plane of layers. Experimental studies
of the anisotropy of the transverse magnetoresistance
(j ⊥  H) are a reliable method for determining the topol-
ogy of the Fermi surface [31, 32] (also see the review
by Novikov and Mal’tsev [33]).

Consider galvanomagnetic phenomena in an
organic conductor whose Fermi surface consists of a
weakly corrugated cylinder and sheets weakly corru-
gated along the pz axis, and let the normal to the plane
tangent to these sheets make angle φ with the px axis.

In the presence of several groups of charge carriers,
all of them contribute to electric current. When charge
JOURNAL OF EXPERIMENTAL
carriers collide with the boundary of the sample, the
transfer from one Fermi surface sheet to another is pos-
sible, which results in intermingling of electron states
during the mean free time with respect to dissipative
collisions in the bulk of the conductor. In thin conduc-
tors, such transfer processes substantially influence the
magnetoresistance value [34]. In massive samples
whose thickness is much larger than the mean free path
of electrons, the total electrical conductivity can, how-
ever, fairly accurately be represented by the sum of the
electrical conductivities of all groups of conduction
electrons,

(20)

where  is the contribution of charge carriers whose
state belongs to weakly corrugated plane Fermi surface

sheets and  is the contribution of conduction elec-
trons that belong to the weakly corrugated cylinder.

Charge carriers involved in finite motion in the
plane orthogonal to the magnetic field have a discrete-
continuous energy spectrum. There is no quantization
of the integral of motion pH at ε = const for conduction
electrons on open isoenergy surface sections. It follows
that the major contribution to the oscillating part of
electrical conductivity is made by charge carriers
whose states belong to the Fermi surface sheet having
the form of a weakly corrugated cylinder. It can, there-

fore, be taken that  =  to a fairly high accu-
racy.

If η  ! 1, there is no self-intersecting closed
sections of the corrugated cylinder by the pH = p · H/H =

const plane, and the asymptotic equation for the 
matrix in a strong magnetic field takes a fairly simple
form, namely,

σik σik
1( ) σik

2( ),+=

σik
1( )

σik
2( )

σzz
osc σzz

2( )osc

ϑtan

σik
mon
(21)σik
mon

γ2axx σ1 φcos
2

+ γaxy σ1 φ φcossin+ γη2axz

γayx σ1 φ φcossin+ σ1 φsin
2 γ2ayy σzz ϑtan

2
+ + γη2ayz σzz ϑtan+

γη2azx γη2azy σzz ϑtan+ σzz 
 
 
 
 
 

,=
where σ1 is the largest contribution to electrical con-
ductivity over layers at H = 0 made by charge carriers
whose states belong to the open Fermi surface sheet in
the form of a corrugated plane; the aij matrix compo-
nents coincide with σ0 in order of magnitude, that is,
with the contribution to electrical conductivity over lay-
ers made by the other conduction electrons in the
absence of a magnetic field.

The drift of charge carriers with open trajectories in
the momentum space does not coincide with the mag-
netic field direction, and the fan of all possible drift
 

directions covers the whole plane as pH changes [31]. In
the direction orthogonal to this plane, all charge carriers
cannot, however, be displaced by a considerable dis-
tance. It is easy to see that, in the coordinate system in
which one of the axes is directed along the magnetic
field, electrical conductivity in the plane orthogonal to
the magnetic field is sharply anisotropic at γ ! 1, and
one of the diagonal electrical conductivity tensor com-
ponents is proportional to γ2. As a result, the determi-

nant of the  matrix is also proportional to γ2 no
matter what the form of the energy spectrum of the

σik
mon
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topological structure specified above. Simple calcula-
tions lead to the following asymptotic equations for the
resistance over and across layers at η ! cosϑ  and γ0 !
cosϑ :

(22)

(23)

Unimportant numerical coefficients of the order of
one, which depend on the special form of the dispersion
law for charge carriers, are, as previously, omitted in
(22) and (23).

At η ! γ0 ! 1, the electric field vector is, as previ-
ously, almost parallel to the current that flows along the

normal to layers, and the  ratio is of the same
order of magnitude as when the Fermi surface is a sin-
gle corrugated cylinder. At γ0 ≤ η, the presence of an
additional Fermi surface sheet in the form of a corru-
gated surface, however, results in an unlimited increase
in the resistance to current across layers, and the Hall
field

(24)

which is proportional to H2 in the whole region of
strong magnetic fields satisfying the γ0 ! cosϑ  condi-
tion, is already comparable with Ez. 

The existence of a group of charge carriers belong-
ing to the Fermi surface sheet in the form of a corru-
gated plane is easy to determine from quadratic growth
in magnetoresistance or the Hall field as H increases at
various magnetic field orientations with respect to lay-
ers.

Equations (14)–(21) for the magnetoresistance and
Hall field are valid for arbitrary Fermi surface corruga-
tion in the px py plane. The amplitude of corrugation or
its absence in one of the Fermi surface sheets does not
influence the character of the dependence of the galva-
nomagnetic characteristics of a two-dimensional con-
ductor as long as η  < 1. In the opposite limiting
case of η  @ 1, the contribution of charge carriers
with a quasi-one-dimensional energy spectrum to elec-
trical conductivity across layers is, however, inversely
proportional to H2 in the whole region of strong mag-
netic fields γ0 ! 1, and the contribution of charge carri-
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ers with a quasi-two-dimensional spectrum is propor-
tional to γ0 at η < γ0 ! 1.

To summarize, the dependence of magnetoresis-
tance and the Hall field on the strong magnetic field value
at various field orientations with respect to layers allows us
to answer the question to what extent the suggestion of the
existence of a group of charge carriers with a quasi-one-
dimensional energy spectrum in the organic charge trans-
fer complexes (BEDT-TTF)2MHg(SCN)4 is justified.
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Abstract—We consider the quantum vacuum of a fermionic field in the presence of a black hole background
as a possible candidate for the stabilized black hole. The stable vacuum state (as well as thermal equilibrium
states at an arbitrary temperature) can exist if we use the Painlevé–Gullstrand description of the black hole and
the superluminal dispersion of the particle spectrum at high energy, which is introduced in the free-falling
frame. This choice is inspired by the analogy between the quantum vacuum and the ground state of quantum
liquid, in which the event horizon for the low-energy fermionic quasiparticles can also arise. The quantum vac-
uum is characterized by the Fermi surface that appears behind the event horizon. We do not consider the back
reaction, and therefore, there is no guarantee that the stable black hole exists. But if it does exist, the Fermi sur-
face behind the horizon would be the necessary attribute of its vacuum state. We also consider the exact discrete
spectrum of fermions inside the horizon, which allows us to discuss the problem of fermion zero modes. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In 1981, Unruh proposed to study black hole phys-
ics using its sonic analogue [1]. Originally suggested
for classical liquids, this was later extended to quantum
systems such as superfluids and Bose condensates [2–
4]. The main advantage of the quantum liquids and
gases is that, in many respects, they are similar to the
quantum vacuum of fermionic and bosonic fields. This
analogy forms a view on the quantum vacuum as a spe-
cial type of condensed matter—the “ether”—where the
physical laws that we have at present can arise emer-
gently as the energy or temperature of the “ether”
decreases [5]. A particular scenario of the emergent for-
mation of the effective gravity together with gauge
fields and chiral fermions can be found in the recent
review paper [6].

According to the topology in the momentum space,
there are three types (universality classes) of fermionic
vacua. One of them has a trivial topology, and its fermi-
onic excitations are therefore fully gapped (massive
fermions). The other two have a nontrivial momentum-
space topology characterized by certain topological
invariants in the momentum space [6]. One of the two
nontrivial universality classes contains systems with
Fermi points; their excitations are chiral fermions,
whose energy vanishes at points in the momentum
space. Another class represents systems with a wider
manifold of zeroes: their gapless fermionic excitations
are concentrated in the vicinity of the 2D surface in

¶This article was submitted by the authors in English.
1063-7761/02/9405- $22.00 © 20853
momentum space, the Fermi surface. This class con-
tains Fermi liquids.

Here, we discuss the properties of the quantum vac-
uum in the presence of the event horizon. We assume
that, in the absence of the horizon, the fermionic vac-
uum belongs either to the trivial class (such as the Stan-
dard Model below the electroweak transition, where all
fermions are massive) or to the class of Fermi points
(such as the Standard Model above the electroweak
transition, with its excitations being chiral massless fer-
mions).

In the presence of a horizon, the region behind the
horizon becomes the ergoregion: particles acquire neg-
ative energy there. In the true vacuum state, these neg-
ative-energy levels must be occupied, which means that
the old vacuum must be reconstructed by filling these
levels. We do not study the process of filling, which can
be the smooth Hawking radiation process [7] or some
other more violent process; we discuss the structure of
the true vacuum state assuming that this state can be
reached without destroying the horizon. In other words,
we assume that the stable black hole can exist as a final
ground state of the gravitational collapse. We find that,
behind the horizon, the fermionic vacuum belongs to
the class of the Fermi surface.

The main sources for the appearance of the Fermi
surface originate in the following properties of the
event horizon. First, the emergence of Planck physics in
the vicinity of (and behind) the horizon. The event hori-
zon serves as a magnifying glass through which the
phenomena at the Planck length scale could be visual-
002 MAIK “Nauka/Interperiodica”
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ized. At some scales, the Lorentz invariance—a prop-
erty of low-energy physics—inevitably becomes
invalid and deviations from the linear (relativistic)
spectrum become important. This violation of the
Lorentz invariance is now popular in the literature [1,
9–13]. It leads to either subluminal or superluminal
propagation at high energy, e.g.,

where pp is the Planck momentum. In accordance with
the condensed matter analogy, we assume that high-
energy (quasi)particles are superluminal, i.e., the sign is
plus. Because of the superluminal dispersion, there is a
bottom in the Dirac sea, and the process of filling the
negative-energy levels is therefore limited. When all of
these levels are occupied, we come to a global vacuum
state (or the global thermodynamical equilibrium with
a positive heat capacity, if the temperature is finite).
Thus, the superluminal dispersion of the particle energy
gives rise to the energetic stability of the vacuum in the
presence of a black hole.

The second important consequence of the event
horizon, due to which the vacuum belongs to the class
of systems with the Fermi surface, is that the horizon
violates the time reversal symmetry of the system: the
incoming and outgoing particles have different trajecto-
ries. In condensed matter, the appearance of the Fermi
surface due to the violation of the time reversal symme-
try is a typical phenomenon (see, e.g., [8] and also Sec-
tion 12.4 in [6]).

In [4, 14], a stable black hole that exhibits a finite
positive heat capacity, an arbitrary temperature, and no
Hawking radiation is also considered. However, it is
assumed there that the time reversal symmetry is not
broken in the final state (or is actually restored in the
final state). The existence of such a stable black hole
with unbroken time reversal symmetry is also sup-
ported by the condensed matter analogies [4, 15, 16], in
which stable infinite-redshift surfaces arise. An exam-
ple of the infinite-redshift surface with no time reversal
symmetry breaking is also provided by the extremal
black hole, whose condensed matter analogue is dis-
cussed in Section 12.6 of review [6]. In all these exam-
ples, the Fermi surface does not appear. The black hole
ground states with time reversal symmetry are in some
sense exceptional (in the same manner as the extremal
black hole), and we do not discuss them here.

2. STATIONARY METRIC WITH EXPLICITLY 
VIOLATED TIME REVERSAL SYMMETRY

The vacuum can be well defined only if the metric is
stationary. In general relativity, the stationary metric for
the black hole is provided in the Painlevé–Gullstrand

E2 p( ) c2 p2 1 p2/ pp
2±( ),=
JOURNAL OF EXPERIMENTAL
spacetime [17]. The line element of the Painlevé–Gull-
strand metric is

(1)

where

(2)

Here, M is the mass of the hole, rh is the radius of the
horizon, and G is the Newton gravitational constant; the
minus sign in Eq. (2) gives the metric for the black hole,
while the plus sign characterizes the white hole. The
time reversal operation t  –t transforms the black
hole into the white whole. The stationary property of
this metric and the fact that it describes the spacetime
in both the exterior and the interior regions are very
attractive features that were explored starting from [18]
(see [19–21]; an extension of the Painlevé–Gullstrand
spacetime to the rotating black hole can be found in
[22]).

In the case of the black hole, the field v(r) has a sim-
ple interpretation: it is the velocity of the observer who
freely falls along the radius towards the center of the
black hole with zero initial velocity at infinity. The
motion of the observer obeys the Newtonian laws all
the way through the horizon,

(3)

and his velocity is therefore given by

(4)

The time coordinate t is the local proper time for the
observer who drags the inertial coordinate frame with
him.

As was first noticed by Unruh [1], the effective met-
ric of type (1) is experienced by quasiparticles propa-
gating in moving fluids. The field v(r) is then the veloc-
ity field of the liquid, and c is the “maximum attainable
velocity” of quasiparticles in the low-energy limit, for
example, the speed of sound in the case of phonons (see
also [23–26, 6]). The horizon could be produced in liq-
uids when the flow velocity becomes greater than c.
The black hole and the white hole can be reproduced by
the liquid flowing radially inward and outward, respec-
tively. This is an explicit realization of the time reversal
symmetry breaking by a flowing liquid: the time rever-
sal operation reverses the direction of the flow of the
“vacuum,”

This Painlevé–Gullstrand spacetime, although not

static, is stationary. That is why the energy  of a

ds2 –c2dt2 dr vdt–( )2+=

=  – c2 v 2–( )dt2 2vdrdt– dr2,+

v r( ) r̂c
rh

r
----, rh± 2MG

c2
-------------.= =

d r2

dt2
-------

GM

r2
---------,–=

v r( )
dr
dt
------≡ r̂ 2GM

r
-------------.–=

7v r( ) v r( ).–=

Ẽ
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(quasi)particle in this spacetime is determined in both
the exterior and the interior regions. It can be obtained
as the solution to the equation

with p0 = – , which gives

(5)

where E( p) is the energy of the particle in the free-fall-
ing frame,

(6)

For the “sonic” black hole, it is the energy of the quasi-
particle in the frame comoving with the superfluid vac-
uum.

We now consider a massless (quasi)particle moving
in the radial direction from the black hole horizon to
infinity; i.e., with a positive radial momentum pr .
Because the metric is stationary, the energy of a particle
in the Painlevé–Gullstrand frame (or of a quasiparticle

in the laboratory frame) is conserved and we have  =
const. Its energy in the free-falling (superfluid comov-
ing) frame is then given by

(7)

This energy, which is very big near the horizon,
decreases as the (quasi)particle moves away from the
horizon. This is the gravitational red shift superim-
posed on the Doppler effect [27], because the emitter is
freely falling with the velocity v  = v s(r). The frequency
of the spectral line measured by the observer at infinity
is

(8)

where ω is the nominal frequency of this line. The sur-
face r = rh is the infinite redshift surface, and the energy
in Eq. (7) diverges there. This means that, if we observe
particles coming to us from a very close vicinity of the
horizon, these outgoing particles originally had a huge
energy approaching the Planck energy scale. The event
horizon can therefore serve as a magnifying glass that
allows us to see what happens at the Planck length
scale. At some point, the low-energy relativistic
approximation inevitably becomes invalid and the
Lorentz invariance is violated.

In quantum liquids, the nonlinear dispersion enters
the velocity-independent energy E(p) in the superfluid
comoving frame. Taking the analogy with quantum liq-
uids into account, we assume that, in our vacuum, the
Planck physics also enters the energy in the free-falling

gµν pµ pν m2+ 0=

Ẽ

Ẽ p( ) E p( ) p v r( ),⋅+=

E2 p( ) p2c2 m2.+=

Ẽ

E p( ) c pr
Ẽ

1 v r( )/c+
------------------------

Ẽ

1 rh/r–
----------------------.= = =

ω̃ ω g00–
1 v 2/c2–
1 v /c–

-------------------------- ω 1
rh

r
----– 

  ,= =
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frame. The energy spectrum of particles is therefore
given by Eq. (5), where

(9)

As for the incoming massless particle, its radial
momentum pr < 0, and its energy in the comoving
frame is given by

(10)

It has no pathology at the horizon: the observer falling
freely across the horizon sees no inconveniences when
he crosses the horizon, and the Planck physics is there-
fore not evoked here.

The pathology reappears when one tries to construct
the thermal global equilibrium state (or the vacuum
state) in the presence of a horizon. In the global equilib-
rium, according to the Tolman law, the temperature
measured by an observer in the comoving frame
diverges at the horizon,

(11)

At some point, this temperature again becomes so high
that the Planck physics becomes relevant. In the pres-
ence of a horizon, the global equilibrium is possible
only for the superluminal dispersion, i.e., for the plus
sign in Eq. (9). The reason is as follows. Behind the
horizon, at r < rh, the frame-dragging velocity exceeds
the speed of light. In the relativistic domain, this
implies that the radial coordinate r becomes timelike,
because a (quasi)particle can move along the r coordi-
nate in only one direction behind the horizon, towards
the singularity. However, with the plus sign for the
energy spectrum in Eq. (9), the (quasi)particles can go
back and forth even behind the horizon. The spacelike
nature of the r coordinate is therefore restored by the
superluminal dispersion and the global equilibrium
becomes possible.

Finally, the condensed matter analogue of the for-
mation of quantum field theory as an emergent phe-
nomenon at low energy suggests that our vacuum is fer-
mionic, while all the bosonic degrees of freedom can be
obtained as collective modes of the fermionic vacuum.
It is the Pauli principle for fermions that allows us to
construct a stable vacuum in the presence of a horizon.
Thus, there are three main necessary conditions for the
existence of a stable vacuum with the broken time
reversal symmetry in the presence of a black hole: the
vacuum is fermionic, its fermionic excitations have
superluminal dispersion, and the black hole is
described by the Painlevé–Gullstrand metric. All the
three conditions are motivated by the quantum liquid
similarities.

E2 p( ) m2 p2c2 1
p2

pp
2

-----±
 
 
 

.+=

E p( ) c pr– Ẽ
1 v r( )/c–
------------------------

Ẽ
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----------------------.= = =

T r( )
TTolman

g00 r( )–
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TTolman

1 v 2/c2–
--------------------------.= =
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3. THE DIRAC EQUATION
IN THE PAINLEVÉ–GULLSTRAND METRIC

In [28], fermions were considered in the semiclassi-
cal approximation. Here, we extend this analysis to the
exact quantum-mechanical one. In the presence of a
nontrivial gravitational background, fermions are
described by the tetrad formalism. Here, we follow

[29]. The metric gµν can be written in terms of  as

(12)

where ηab = diag(–1, 1, 1, 1). The Dirac equation in a
curved spacetime is

(13)

where the dual tetrad field  obeys

(14)

(15)

and the torsion field is

(16)

The vielbeins corresponding to the general “flow” met-
ric in Eq. (1) are

(17)

The only nonzero correction to the tetrad field  for
Minkowski spacetime is

For the Painlevé–Gullstrand metric of the black hole in
spherical coordinates, we have

(18)

where v (r) = –r –1/2, assuming that c = rh = 1.

The violation of the Lorentz invariance at high
energy can be introduced by adding a nonlinear γ5 term
that leads to the superluminal dispersion. As a result,
we obtain the Dirac equation in the Painlevé–Gull-
strand metric [22], which is now modified by a non-
Lorentzian term,

(19)

eµ
a

gµν eµ
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µEb
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µ,= = =
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c Ea
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=  Ea
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a δµ

a ẽµ
a , ẽµ

a+ v iδi
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δµ
a

ẽ0
i v i 0.≠=
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0 1 0 0 0, , ,( ), eµ

1 v 1 0 0, , ,( ),= =
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2 0 0 r 0, , ,( ), eµ

3 0 0 0 r θsin, , ,( ),= =

i∂tΨ –icα i∂iΨ mγ0Ψ H pΨ HgΨ.+ + +=
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Here, Hp and Hg are the respective Hamiltonians com-
ing from the Planck physics and from the gravitational
field,

(20)

The γ matrices that we use are given by

, (21)

and

(22)

After the multiplication by rh/"c, we obtain a dimen-
sionless form and write " = c = rh = 1 and p0 = pprh/" @ 1.

4. EIGENSTATES OF FERMIONS
IN THE PAINLEVÉ–GULLSTRAND BLACK 

HOLE

Because ∂t is a timelike Killing vector in the Pain-

levé–Gullstrand black hole, the energy  is a well-
defined quantity and the variables t and r can be sepa-
rated by writing

(23)

The r equations are now given by

(24)

where pi = –i∂i. Using spherical symmetry, we intro-
duce spherical harmonics in the standard way. These
are eigenstates of the operators J2 and Jz, where J is the
total angular momentum,

(25)

and Li is the orbital angular momentum operator in R3.
Because we are interested in the states with high
momenta J ~ p0 @ mrh/", we can neglect the mass term.
We then obtain the ansatz

(26)

H p
c
pp

-----γ5∂i
2, Hg– ic

rh

r
---- 3

4r
----- ∂r+ 

  .= =

α i 0 σi

σi 0 
 
 
 

, γ0 1 0

0 1– 
 
 

= =

γ5 iγ0γ1γ2γ3
0 i–

i 0 
 
 

.= =

Ẽ
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(27)

where the spherical harmonics are given by

(28)

with l = J – 1/2. The radial functions satisfy the equa-
tions

(29)

(30)

Taking the complex conjugation of (29), we obtain
Eq. (30) with the reversed sign of energy. This implies
that the matrices cannot be diagonalized simulta-

neously unless  = 0, and therefore, either (f +, g+) or

(f –, g–) is nonzero for the eigenstate with  ≠ 0.

Equations (29) and (30) are the starting point for our
analysis of the fermionic vacuum and excitations.
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5. FERMIONS IN THE SEMICLASSICAL 
APPROXIMATION

In the classical limit, with (f, g) ∝  exp , we

obtain the energy spectrum

(31)

where we neglected small terms of the relative order
1/p0. We are interested in the states with the lowest
energy, because they give the main contribution to ther-
modynamics. For a given l, the energy of the fermion
becomes zero at the following values of the radial
momentum:

(32)

This coincides with Eq. (13) in [28], where the quasi-
classical approximation was used from the very begin-
ning.

Within the completely classical analysis, with p⊥  =
l/r representing the transverse momentum of the fer-

mion, Eq. (31) at  = 0 gives the closed 2D surface in
the 3D momentum space. This surface, on which the
energy of particles is zero, represents the Fermi surface;
it exists only inside the horizon, i.e., at r < rh (r < 1).

Figure 1 demonstrates the Fermi surface (p) = 0 at
two values of the radius r behind the horizon: r = 2rh/3
and r = rh/3. The area of the Fermi surface increases
with decreasing r.

In the true ground state, all the levels inside the

Fermi surface (i.e., those with (p) < 0) must be occu-
pied. Of course, this reconstruction of the vacuum
involving the Planck energy scale can have tremendous
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Fig. 1. Fermi surface  = 0 at two positions inside the
black hole: r = 2rh/3 and r = rh/3.
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consequences for the black hole itself. These cannot be
described by phenomenological low-energy physics.
Nevertheless, we can claim that, if the horizon survives
the vacuum reconstruction, the Fermi surface also sur-
vives because of its topological robustness. In this case,
the statistical physics of the black hole microstates is
entirely determined by the fermionic states in the vicin-
ity of the Fermi surface. In particular, the entropy and
the heat capacity of the black hole are linear in the tem-
perature T,

(33)

where N(0) is the density of states at  = 0. From the
general dimensionality arguments together with the
fact that the density of states must be proportional to the
volume of the Fermi liquid, we obtain

(34)

where NF is the number of fermionic species and γ is a
dimensionless constant of the order of unity. In our
oversimplified model, γ = 4/35π [28].

In the ulterior region, the equation of state is

Incidentally, this coincides with the equation of state of
the perfect fluid inside the horizon required to obtain
the Bekenstein–Hawking entropy (see [30, 31] and
[14]). In the Sakharov induced gravity [32], the Planck
momentum and the gravitational constant are related by

NF  ~ "c3/G. This actually implies that the micro-
scopic parameters of the system, the fermion number

S C
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Fig. 2. Closed trajectories of the radial motion inside the

black hole at zero energy  = 0 for different values of the
angular momentum l.

Ẽ
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NF and the Planck momentum pp, are combined to form
the phenomenological parameter of the effective the-
ory, the gravitational constant G. If we assume that only
the thermal fermions are gravitating, we obtain

This gives estimates for the temperature and entropy of
the black hole,

which are in correspondence with the Hawking–Beken-
stein entropy and the Hawking temperature. Only the
phenomenological parameters G and c are involved
here, while the microscopic parameters NF and pp drop
out. This is in agreement with the observation made by
Jacobson [33] that the black hole entropy and the grav-
itational constant are renormalized such that the rela-
tion between them is preserved. All this means that sta-
tistical properties of the black hole can be produced by
the Fermi liquid in the interior of the black hole.

6. EXACT ENERGY LEVELS

Another problem that can be investigated using our
scheme is that of the fermion zero modes: Are there fer-
mionic modes that have exactly zero energy in the exact
quantum mechanical problem? If yes, this would justify
the conjectures that the black hole has a nonzero
entropy even at T = 0 and also that the area of the black
hole is a quantized quantity [34–36]. For this reason,
we now proceed to solving eigenvalue equations (29)
and (30).

It is impossible to solve these equations analytically,
but one can choose the region of parameters where they
can be solved using the perturbation theory expansion
in the small parameter 1/p0. To find this region, we con-
sider semiclassical trajectories of the radial motion

pr(r) at  = 0 for different l, Eq. (32). These trajectories
are shown in Fig. 2 (we used p0 = 10000). If l is small
compared to p0, these trajectories are highly asymmet-
ric: the incoming and outgoing particles experience
essentially different motions. The conventional relativ-
istic particles with a small momentum compared to the
Planck momentum pp can move only towards the singu-
larity. However, when they acquire a large momentum,
the nonlinear dispersion allows them to move away
from the singularity. As a result, the trajectories of par-
ticles become closed. This asymmetry reflects the vio-
lation of the time reversal symmetry by the horizon.

However, as l increases, the trajectories become
more and more symmetric. Near the maximum value

(35)
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Ẽ
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they become perfectly elliptic and increasingly more
concentrated in the vicinity of the center point

(36)

(37)

This implies that, in vicinity of r (c) and p (c), the Hamil-
tonian describing the radial motion becomes that of
oscillators. We can therefore expand the equations in
the vicinity of p (c) and r (c) using the small parameter
1/p0,

(38)

It can be seen that the regions where x and ∂x are con-
centrated,

(39)

become really small compared to r (c) and p (c) as p0
increases. As a result, after lengthy but straightforward
expansion of Eq. (29) near the point with p (c) > 0, we
obtain (keeping the terms of the order of unity) the
effective oscillator Hamiltonian

(40)

where

(41)

Diagonalization gives the energy spectrum

(42)

where nr = 0, 1, … is the radial quantum number.
Accordingly, the expansion near the point with p (c) < 0
and the same procedure for Eq. (30) give the other three
sets of energy levels,
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Finally, in dimensional units, we have the discrete lev-
els of fermions in the vicinity of the Fermi surface,

(46)

where all four signs must be taken into account. This
equation is valid for J smaller than but close to the max-
imum value

at which zero-energy states can still exist.
Equation (46) allows us to answer the question

whether the true fermion zero modes exist in the pres-
ence of a black hole. For general values of pprh and,
hence, for the general values of the black hole area A =

4π , there are no states with exactly zero energy. A
zero-energy eigenstate can be found for some special
values of A. However, because of the incommensurabil-
ity between the radial and orbital quantum numbers, the

degeneracy of the  = 0 levels is small, and the fermion
zero modes cannot therefore produce the entropy at T =
0 that is proportional to the area of the horizon. Accord-
ingly, there are no microscopic reasons for the quanti-
zation of the area of the horizon.

There are no topological arguments ensuring the
existence of the exact fermion zero modes. On the other
hand, the momentum-space topology prescribes the
existence of zero-energy fermion modes at the semi-
classical level. These modes form a surface in the
momentum space—the Fermi surface—in Fig. 1. The
existence of the Fermi surface is a robust property of
the fermionic vacuum; the Fermi surface survives when
the back reaction is introduced (of course, if the horizon
survives). It is the Fermi liquid whose thermal states
give rise to the entropy proportional to the area, as was
discussed in the previous section.

7. CONCLUSION

In deriving the fermionic microstates responsible
for the statistical mechanics of the black hole, we used
an analogy between quantum liquids and the quantum
vacuum, the ether. We know that there are two preferred
reference frames in superfluids. One of them is the
“absolute” spacetime (x, t) of the laboratory frame,
which can be Galilean as well as Minkowskian with c
being the real speed of light. In the effective gravity
experienced by the low-energy excitations in quantum

liquids, the effective “acoustic” metric  appears
as a function of this “absolute” spacetime (x, t). The
other preferred reference frame is the local frame,
where the metric is Minkowskian in the acoustic sense,
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i.e., with c being the maximum attainable speed of low-
energy quasiparticles. This frame is comoving with the
superfluid condensate. In this frame, the energy spec-
trum does not depend on the velocity v of the conden-
sate and has the form given in Eq. (9). It is therefore in
this frame that the Planck energy physics is properly
introduced: if the energy becomes big in the superfluid
comoving frame, the acoustic Lorentz symmetry is vio-
lated.

As for the quantum vacuum, the attainable energies
are still so low that we cannot select the preferred ref-
erence frame. In particular, we cannot say in which ref-
erence frame the Planck energy physics must be intro-
duced, and whether there is an absolute spacetime. The
magnifying glass of the event horizon can serve as a
possible source of spotting these reference frames.

In our low-energy corner, the Einstein action is
covariant: it does not depend on the choice of the refer-
ence frame. That is why the Einstein equations can be
solved in any coordinate system. However, in the pres-
ence of a horizon or ergoregion, some of the solutions
are not defined in the entire spacetime of the quantum
vacuum. In these cases, the discrimination between dif-
ferent solutions arises and one must choose between
them. In quantum liquids, the choice is natural because
the absolute coordinates are used from the very begin-
ning. But in general relativity, the ambiguity in the
presence of a horizon imposes the problem of properly
choosing the solution. This problem cannot be solved
within the effective theory, while the fundamental
“microscopic” background is still not known, and one
can only guess the proper solution of Einstein equations
through which the vacuum state can be constructed.

It is clear that the Schwarzschild solution is not the
proper choice, in particular, because the entire space-
time is not covered by the Schwarzschild coordinates.
According to the quantum liquid analogy, the Painlevé–
Gullstrand metric with inward frame dragging can be a
reasonable choice. Its analogue can really be repro-
duced (at least in principle) in quantum liquids. The
analogy also suggests that the Painlevé–Gullstrand
spacetime can be considered as the absolute one in
which the true vacuum must be determined. On the
other hand, the local frame of the free-falling observer
can be considered as an analogue of the superfluid
comoving frame in which the Planck energy physics
must be introduced. We again warn that this choice can-
not be justified from the standpoint of the effective the-
ory alone.

If the Planck physics is in addition superluminal, as
is also suggested by the quantum liquid analogy, the
stable quantum vacuum can even be constructed in the
presence of a horizon. We argue that the main property
of such a quantum vacuum, distinguishing it from the
original vacuum of the Standard Model, is the existence
JOURNAL OF EXPERIMENTAL 
of the Fermi surface inside the horizon. The statistical
mechanics of the Fermi liquid formed inside the hori-
zon is responsible for the thermodynamics of the black
hole.

ACKNOWLEDGMENTS
G.E.V. thanks Jan Czerniawski and Pawel Mazur for

fruitful discussions. This work was supported by the
ESF COSLAB Programme. The work of G.E.V. was
supported in part by the Russian Foundation for Basic
Research.

REFERENCES
1. W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981); Phys.

Rev. D 51, 2827 (1995).

2. T. Jacobson and G. E. Volovik, Phys. Rev. D 58, 064021
(1998).

3. L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys.
Rev. Lett. 85, 4643 (2000); Phys. Rev. A 63, 023611
(2001).

4. G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I. San-
tiago, Philos. Mag. B 81, 235 (2001).

5. R. Laughlin and D. Pines, Proc. Natl. Acad. Sci. USA 97,
28 (2000).

6. G. E. Volovik, Phys. Rep. 351, 195 (2001).

7. S. W. Hawking, Nature 248, 30 (1974).

8. G. E. Volovik, Phys. Lett. A 142, 282 (1989).

9. S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996).

10. S. Corley, Phys. Rev. D 57, 6280 (1998).

11. S. Corley and T. Jacobson, Phys. Rev. D 59, 124011
(1999).

12. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 73, 415
(2001) [JETP Lett. 73, 371 (2001)].

13. T. Jacobson, gr-qc/0110079; T. Jacobson and D. Mat-
tingly, Phys. Rev. D 63, 041502 (2001); gr-qc/0007031.

14. P. O. Mazur and E. Mottola, gr-qc/0109035.

15. M. Mohazzab, J. Low Temp. Phys. 121, 659 (2000).

16. G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 70, 717 (1999)
[JETP Lett. 70, 711 (1999)].

17. P. Painlevé and C.R. Hebd, Acad. Sci., Paris 173, 677
(1921); A. Gullstrand, Ark. Mat., Astron. Fys. 16, 1
(1922).

18. P. Kraus and F. Wilczek, Mod. Phys. Lett. A 9, 3713
(1994).

19. K. Martel and E. Poisson, Am. J. Phys. 69, 476 (2001).

20. R. Schützhold, Phys. Rev. D 64, 024029 (2001).

21. M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042
(2000).

22. C. Doran, Phys. Rev. D 61, 067503 (2000).

23. M. Visser, Class. Quantum Grav. 15, 1767 (1998).

24. S. Liberati, S. Sonego, and M. Visser, Class. Quantum
Grav. 17, 2903 (2000).
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002



FERMIONIC MICROSTATES WITHIN THE PAINLEVÉ–GULLSTRAND BLACK HOLE 861
25. M. Stone, cond-mat/0012316.

26. M. Sakagami and A. Ohashi, gr-qc/0108072.

27. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 2: The Classical Theory of Fields (Nauka,
Moscow, 1973; Pergamon, Oxford, 1975).

28. G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 73, 721 (2001)
[JETP Lett. 73, 637 (2001)].

29. S. Weinberg, Gravitation and Cosmology: Principles
and Applications of the General Theory of Relativity
(Wiley, New York, 1972).

30. W. H. Zurek and Don N. Page, Phys. Rev. D 29, 628
(1984).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
31. G. 't Hooft, Nucl. Phys. (Proc. Suppl.) 68, 174 (1998).

32. A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967)
[Sov. Phys. Dokl. 12, 1014 (1968)].

33. T. Jacobson, gr-qc/9404039.

34. J. D. Bekenstein, in Proceedings of the 8th Marcel
Grossman Meeting, Ed. by Tsvi Piran (World Sci., Sin-
gapore, 1999); gr-qc/9710076.

35. H. A. Kastrup, Phys. Lett. B 413, 267 (1997).

36. V. F. Mukhanov, Pis’ma Zh. Éksp. Teor. Fiz. 44, 78
(1986) [JETP Lett. 44, 63 (1986)].
SICS      Vol. 94      No. 5      2002



  

Journal of Experimental and Theoretical Physics, Vol. 94, No. 5, 2002, pp. 862–868.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 121, No. 5, 2002, pp. 1004–1011.
Original Russian Text Copyright © 2002 by Andreev, Van’kov, Platonov, Rozhdestvenski

 

œ

 

, Chizhov, Yashin.

                                 

NUCLEI, PARTICLES, 
AND THEIR INTERACTION
Determination of the Radiation Cross Sections 
of Low-Energy Transitions of Isomeric Nuclei from Observation 

of Laser-Induced g Fluorescence
A. A. Andreev, A. K. Van’kov, K. Yu. Platonov, Yu. V. Rozhdestvenskiœ*, 

S. P. Chizhov, and V. E. Yashin
Institute of Laser Physics, St. Petersburg, 199034 Russia

*e-mail: RozdYu@soi.spb.su, Rozd-Yu@mail.ru
Received December 14, 2001

Abstract—Theoretical estimates are given along with the first experimental results on the observation of reso-
nance fluorescence in nuclei of rubidium isomer under conditions of laser plasma X-ray pumping of the con-
tiguous transition with an energy of 3.4 keV. The laser plasma is prepared by irradiating a silver target by a pow-
erful radiation of a Nd laser with a pulse duration of 600 ps. It is demonstrated how one can use the recorded
number of emitted γ quanta to determine the probability of low-energy nuclear transition excited by laser
plasma X rays. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The acquisition of spectroscopic information about
low-energy transitions (1 to 100 keV) in isomeric
nuclei is one of the urgent problems of nuclear spec-
troscopy. For example, the confirmation (or refutation)
of the Axel–Brink theory, according to which the cross
sections of low-energy transitions in nuclei depend on
the energy difference alone rather than on the absolute
values of level energies [1], requires direct measure-
ments of the probabilities of low-energy transitions. In
addition, a knowledge of cross sections of X-ray
absorption by nuclei is essential from the standpoint of
practical realization of both coherent (laser) and inco-
herent sources of the γ range when using two-stage
pumping [2].

At present, one tries to obtain such spectroscopic
information by conventional methods of nuclear spec-
troscopy: the possibilities of the latter decrease with the
energy of nuclear transition employed. As a result, due
to special features of the detection techniques used in
nuclear spectroscopy [3], such conventional methods
fail to produce adequate information even at transition
energies of the order of 100 keV. On the other hand, the
development of intense sources of thermal X-radiation
enables one to detect such low-energy transitions using
methods that are characteristic of laser, rather than
nuclear, spectroscopy.

For example, an attempt was made to observe γ flu-
orescence in an isomer of 178Hf, induced by X-radiation
of a medical source [4]. However, in spite of the fact
that the hafnium isomer selected for experiment fea-
tures a number of indisputable advantages over other
isomers (the lifetime of 31 years and a significant cross
section of radiative absorption of X-ray quanta), the
1063-7761/02/9405- $22.00 © 20862
obtained results cannot be regarded as reliable, prima-
rily because of the weak intensity of the X-ray source
employed (see [4]). In [5], observations were per-
formed of the excitation of nuclei of the stable isotope
181Ta, which has a low-lying nuclear level with an
energy of 6.238 keV [5]. In this case, the nuclei were
excited by the intrinsic X-radiation of a laser plasma,
which was obtained as a result of irradiation of a tanta-
lum target with subpicosecond optical pulses having an
intensity of 1016 W/cm2. The choice of stable isotope in
this case necessitated the use of complex techniques of
time selection in recording the signal from excited
nuclei. The point is that, because in [5] the X-ray pump-
ing of a low-lying level of tantalum from the ground
state was performed, the energy of spontaneously emit-
ted quanta coincided with that of pumping quanta.
Therefore, special techniques were required for separa-
tion in time of the useful signal from excited nuclei and
the signal from the intrinsic radiation of a dense
plasma. As a result, as was pointed out in [5], most
promising in this situation is the use of unstable nuclear
isomers, when the energy of X-ray pumping is much
lower than the energy of the γ quantum being recorded.
In this case, all of the advantages offered by the use of
a laser plasma as a source of X-radiation are retained
and, at the same time, the system of recording sponta-
neously emitted quanta is simplified considerably.

In this paper, we present the first experimental
results and theoretical estimates of the potential of the
new method of determining radiative low-energy γ tran-
sitions in isomeric nuclei. The method suggested by us
is based on the observation of γ fluorescence of strong
nuclear transition under conditions of X-ray pumping
of a low-strength contiguous transition in isomeric
002 MAIK “Nauka/Interperiodica”
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nuclei. In order to validate this method, we used rubid-
ium nuclei in the isomeric state |0〉  with a lifetime of
20.26 min (Fig. 1). Such isomeric nuclei were obtained
as a result of irradiation of a bromine target in the
cyclotron at the St. Petersburg State University. Then, a
target activated by isomeric nuclei of rubidium was
subjected to the thermal X-radiation of a laser plasma
produced as a result of irradiation of a silver plate with
the optical radiation of a neodymium laser with a dura-
tion of 600 ps. The intensity of laser radiation was
selected to be such that the intensity of X-ray pumping
reached its maximal value at an energy close to that of
the low-energy |0〉–|1〉  transition in rubidium isomer
(3.4 keV), see Fig. 1.

We emphasize that the information about such a
transition with an energy of 3.4 keV was previously
obtained indirectly in analyzing the spectral distribu-
tion of conversion electrons. It was our objective to
obtain the spectroscopic characteristics of this transi-
tion by way of direct observation of γ fluorescence of
isomeric nuclei on the contiguous transition |1〉–|2〉
with an energy of the order of 200 keV. Because, as a
result of X-ray pumping of the |0〉–|1〉  transition, a por-
tion of the isomeric nuclei must change to the upper
excited state with a lifetime of several nanoseconds
with subsequent spontaneous decay to the |2〉  state, we
would have to record γ quanta with an energy of the
order of 200 keV, which exceeds considerably the
energy of X-ray pumping. Note that, because of the sig-
nificant difference between the energies of absorbed
and emitted quanta, there was no need for us to use the
techniques for time selection of emitted γ quanta, as
was done in [5] in the case of X-ray pumping of thal-
lium nuclei. By measuring the number of spontane-
ously emitted γ quanta with an energy of 200 keV, we
can determine the interaction cross section of the |0〉–|1〉
transition if we allow for the dependence of the number
of emitted quanta on the interaction cross section, the
intensity of X-ray pumping, and the geometry of the
observation scheme.

This paper is organized as follows. In Section 2, the
procedure of determining the cross section of radiative
transitions in isomeric nuclei by the number of sponta-
neously emitted quanta is analyzed, and the possibili-
ties of increasing the sensitivity of the suggested
method are examined. In Section 3, the experimental
facility is described; in Section 4, the obtained results
are discussed. The Conclusion gives the inferences
made as a result of our investigations.

2. PROCEDURE FOR DETERMINING THE CROSS 
SECTIONS OF RADIATIVE TRANSITIONS

IN ISOMERIC NUCLEI

We will estimate the sensitivity of the method of
determining the cross section of low-energy nuclear
transitions by way of observation of resonance γ fluo-
rescence induced by X-radiation. In order to validate
this method, we will treat the excitation of a nuclear
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
isomer by laser plasma X rays; the diagram of the iso-
mer levels is given in Fig. 1. The pumping of the |0〉–|1〉
low-energy transition of a nuclear isomer is accom-
plished by thermal X-radiation of laser plasma. As a
result, during the laser plasma de-excitation time τ, a
portion of the isomeric nuclei go to the |1〉  state with
subsequent spontaneous decay both back to the |1〉  state
and to the low-lying |2〉  state. In the latter case, hard
γ quanta with an energy of the order of 100 to 500 keV
are obtained, the number of which will define the radi-
ation cross section Σx of the weak |0〉–|1〉  transition of
nuclear isomer.

It must be emphasized that this method enables us to
measure the radiation cross section Σx of the low-
energy |0〉–|1〉  transition of nuclear isomer rather than
the total cross section Σtot. The total absorption cross
section in the |0〉–|1〉  transition may be written as

where Σ01 is the cross section for nonradiative transi-
tions due to internal conversion for the |0〉–|1〉  transi-
tion. Note that, for transitions in the energy range from
1 to 50 keV, Σx ! Σ01 [1].

The total number of γ quanta obtained during the
laser plasma de-excitation time τ may be defined as

(1)

where Nis is the total number of isomeric nuclei in an
activated target irradiated by X rays with the energy Ex;
ωx and λx denote the X-radiation frequency and wave-
length, respectively; Ssp is the area of the spot of optical
radiation on a metal target; Sis is the area of a target acti-
vated by isomeric nuclei; µ is the mean absorption path
of the quanta of X-ray pumping in an activated target;

Σtot Σx Σ01,+=

Nγ 2N isωxτ Ssp/Sis( )Σxµ/lExλ x
2,=

1

2

0

467 keV, 9 ns

248 keV, 0.31 ns

463.6 keV, 20.26 min

ground
state

Fig. 1. A diagram of the levels of  isomer used in our

experiment. The irradiation of a bromine target in a cyclo-
tron produces a target activated by nuclei of this isomer in
the long-lived state 0. Laser plasma X rays are effective in
the 0–1 transition. A portion of nuclei change to the state 1
and decay spontaneously with the relative probability of 1/2
to the states 0 and 2. In the latter case, γ quanta with an
energy of 219 keV must be observed.
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Fig. 2. A diagrammatic view of the experimental facility.
and l is the depth of alloying the target with isomeric
nuclei (see Fig. 2). In deriving Eq. (1), we assumed that
the laser plasma radiation is described by the Planck
formula for blackbody radiation, and the energy of
X-ray quantum corresponds to the plasma temperature
Tcold,

Therefore, the radiation absorption cross section Σx

is related to the number Nγ of emitted γ quanta by the
laser radiation parameters and activated target parame-
ters,

(2)

where α is a dimensional numerical factor.
For the typical values of the parameters involved in

our experiment with isomeric nuclei of 87Rb (Fig. 2),
namely, Nis = 1011, Ssp = 4 × 10–6 cm2, Sis = 0.25 cm2,
µ ≈ (1–2) × 10–3 cm, and the energy of the |0〉–|1〉  tran-
sition of 3.4 keV, assuming the plasma de-excitation
time to be equal to the laser pulse duration of 600 ps, we
derive the following expression for the radiation
absorption cross section:

(3)

From this, after measuring the number of γ quanta, one
can determine the value of Σx and compare it with the
respective value from [6],

Therefore, if a single “shot” of optical radiation pro-
duces several γ quanta, the value of the radiation
absorption cross section of the |0〉–|1〉  transition in an

hωx 2π 2.822kBTcold.×≈

Σx α Ex τ Ssp; Sis µ l N is, , , , ,( )Nγ,=

Σx 10 26–  cm2 eV Nγ.≈

Σx' 10 26–  cm2 eV.=
JOURNAL OF EXPERIMENTAL 
isomer of 87Rb will coincide with that measured previ-
ously,

Note further that the numerical values of transition
cross sections obtained in [6] call for further verifica-
tion, because these quantities are given with a question
mark. Therefore, our method may be used to either
refine these data or confirm that the true values of the
respective quantities do not exceed the values given in
[6]. This is true of all nuclear isomers featuring low-
energy transitions.

We will now discuss the increase in the sensitivity of
the suggested method of measuring the cross sections
of low-energy transitions in isomeric nuclei. As was
demonstrated above, the increase in the sensitivity in
this case is directly related to the increase in the number
Nγ of γ quanta emitted in the |1〉–|2〉  transition, which
may be accomplished by increasing the total amount of
isomeric nuclei or by increasing the number of X-ray
quanta in the |0〉–|1〉  transition.

The number of isomeric nuclei may be increased,
for example, by using radiochemical methods in pre-
paring the target. This enables one to increase the num-
ber of isomeric nuclei in a target approximately a hun-
dred times. However, the use of radiochemical methods
(in view of the relatively slow rate of chemical reac-
tions) is justified only in cases in which we deal with a
long-lived isomer; for the rubidium isomer employed
by us, the number of isomeric nuclei may hardly be
increased more than ten times.

On the other hand, it is impossible to accomplish a
significant increase in the number of quanta of X-ray
pumping by simply raising the laser pulse intensity
because, to raise the pumping yield in the desired

Σx Σx' .≈
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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energy range a hundred times, it is necessary to raise
laser radiation intensity by a factor of at least 104.
Therefore, we believe that, instead of increasing the
total number of X-ray quanta, it appears promising to
increase only the number of pumping quanta with an
energy of the order of 3.4 keV in the case of the 87Rb
isomer. This, in principle, may be accomplished when
the ion emission lines in a laser plasma are sufficiently
close to the desired nuclear transition [7]. In this case,
the number of quanta of X-ray pumping increases
sharply, because, along with the thermal radiation of
laser plasma, powerful line radiation of plasma ions is
present in the desired energy range.

The radiation intensity of plasma ions (in W/cm2)
may be defined as [8]

(4)

where Ei is the ion transition energy (in keV), EL = 0.1 J is
the laser pulse energy, Zn = 10 is the nuclear charge, Jz

is the atom ionization energy (in keV), and d = 20 µm
is the focal waist diameter of optical radiation. Com-
pare expression (4) with the expression used to estimate
the intensity of blackbody radiation in the same range
of quantum energy,

(5)

where T is the temperature (in keV), Γi = ∆Ei(v i/c) is
the line width, and d = 20 µm.

For example, for T = 1 keV, EL = 1 J, ∆Ei = 3.4 keV,
Zn = 16, Jz = 50, and A = 32, we have

Therefore, we have found that, as a result of radiation
of the plasma ions, the intensity of X-ray pumping is
two orders of magnitude higher than the intensity of
thermal radiation pumping. We will select sulfur (Zn =
16, A = 32) as the material for the laser target. Then, the
lower state energy estimated by the hydrogen-like spec-
trum is 3.482 keV. This value is very close to the value
of energy of the |0〉–|1〉  transition in the nucleus of the
87Rb isomer, which is 3.4 keV. In addition, because the
sulfur atoms in a laser plasma are partly ionized, they
possess a spectrum of free crowding high-lying states
with level energies

By way of exhaustion of the number n of the high-lying
state, one can select the transition energy of sulfur ions
so as to be close to the energy of nuclear level. Note that
the Doppler line width for pumping amounts to several
electronvolts, and this also contributes to the fact that

Ii 4 108∆EiELZn
5Jz

1/2– d 2– ,×≈

IT 2.5 10× 11T4 Γ i/T( ) ∆Ei/T( )3≈

× ∆Ei/T( )exp 1–[ ] 1– d 2– ,

Ii/IT 2.4 102.×=

∆Ei 3.482 1 1/n2–( ).≈
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the transition energies in the sulfur atom and in the
nuclear isomer of rubidium coincide. So, the number of
quanta of X-ray pumping may be increased more than
a hundred times.

As a result, one can use radiochemical methods and
excite the lines of respective ions in the plasma to raise
the yield of γ quanta in the |1〉–|0〉  transition to 103. In
this case, even with the existing recording of γ quanta,
we will have about 102 quanta with the given aperture
of the photomultiplier, which will result in a consider-
able increase in the sensitivity of the suggested method.

3. EXPERIMENTAL FACILITY 
FOR THE OBSERVATION OF γ RADIATION

OF ISOMERIC NUCLEI

Figure 2 is a diagrammatic view of the experimental
facility for the observation of resonance γ fluorescence
of isomeric nuclei of rubidium, induced by X-radiation
of a laser plasma. The optical radiation of an Nd laser
with a duration of 600 ps and total energy of 1–2 J is
introduced via a window into a steel chamber 10 cm in
size in which a vacuum is maintained. A parabolic
10-cm mirror focuses the optical radiation onto the pol-
ished surface of a silver plate (we used silver to provide
for a higher yield of thermal X-radiation) by means of
a rotating flat mirror. As a result of such focusing, a
high-temperature laser plasma is formed on the metal
surface; the radiation spectrum of this plasma has the
form of a blackbody distribution with a maximum cor-
responding to an energy of the order of 3 keV. The pho-
tomultiplier was screened from X-radiation of the laser
plasma by a layer of lead 15 mm thick.

The thus obtained X-ray quanta fall on a target acti-
vated by isomeric nuclei of rubidium. The distance
between the targets is approximately 1 cm. The acti-
vated target was prepared by irradiation of bromine
nuclei by a flow of fast ions in the cyclotron at the
St. Petersburg State University. The target diameter was
0.5 cm, with the thickness selected from the condition
of total absorption of X-radiation with an energy of
3.4 keV in the activation region. The total number of
isomeric nuclei was monitored by the intensity of natu-
ral decay and did not exceed the standard medical
norms for work with radioactive substances in labora-
tories without special equipment. The photomultiplier
with a lead-plate filter 6 mm thick made it possible to
record X-radiation only above 80 keV (see below); the
inlet window for the photomultiplier was 10 cm in
diameter. The photomultiplier signal indicated the total
number of quanta which came to the recording system
at some moment of time.

The experimental procedure was as follows. First,
an activated target was prepared in a cyclotron and the
total number of isomeric nuclei was estimated, and then
the target was placed in chamber 1 (the time between
preparing the target and placing it into the chamber was
approximately equal to the decay period of 0 to
SICS      Vol. 94      No. 5      2002
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1
2

Fig. 3. The time dependence of the signal from the photomultiplier (a) in the absence of activated target and (b) in the presence of

a target activated by  isomer. The target for laser radiation is made of silver. Curve 1 indicates the signal of induced γ fluo-

rescence of excited nuclei, and curves 2 correspond to the signal of X-radiation of plasma ions with a quantum energy above 80 keV.

Rb
84
37 47

25 ns 25 ns
20 min); after producing a vacuum in chamber 1 (the
evacuation time was equal to two decay periods), a
“shot” of optical radiation was produced, after which a
metal plate 4 was shifted, and one more “shot” was
made. Five targets with isomeric nuclei of rubidium
were investigated.

4. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

We will first treat the results of measurements with-
out a rubidium target. Figure 3a gives the time depen-
dence of the photomultiplier photocurrent under condi-
tions of irradiation of a silver target with optical radia-
tion. One can see from the result of measurement of the
photocurrent that an X-ray pulse exists with an energy
above 80 keV (see above). Also observed is a weak
dependence of the intensity of such radiation on the
material of the holder securing the activated target.

The quanta of such energy (above 80 keV) may
form in two ways, namely, as a result of de-excitation
of nuclei and as a result of bremsstrahlung of fast parti-
cles, both electrons and ions. Here, the ions themselves
do not emit because of the large mass. However, when
an ion hits the target, recoil electrons arise with an
energy of up to the energy of the ion itself. It is these
electrons that generate bremsstrahlung.

In order to determine the source of generation of
hard quanta, an experiment was performed without a
holder and a working target. In this case, the photomul-
tiplier signal disappeared completely. This means that
the bremsstrahlung in the hot laser plasma and
bremsstrahlung from the chamber walls do not produce
a working signal. The former is screened from the pho-
JOURNAL OF EXPERIMENTAL
tomultiplier by the layer of lead, and the latter is low
due to the remoteness of the walls (because the intensi-
ties of the particle flows are relatively low).
Bremsstrahlung always arises in the case of interaction
between the ions and fasteners (the holder, etc.),
because such radiation is recorded; in the absence of
isomeric nuclei, it is this radiation that presents a spuri-
ous signal. We will estimate quantitatively the intensity
of the spurious signal and the possibility of recording
the desired signal from excited isomeric nuclei against
the background of bremsstrahlung. With the selected
intensity of laser radiation I = 1015 W/cm2, the temper-
ature of hot electrons, according to [9], may be

which amounts to 6.5 keV for Tcold ≈ 1 keV. This value
of Tcold follows from the scaling formulas for estimating
the laser plasma parameters given in [8].

Note that this temperature of hot electrons is obvi-
ously insufficient for the generation of quanta in the
range above 80 keV. However, the hot electrons escap-
ing from a laser target entrain ions due to the emerging
electrostatic field. The energy of such ion is given by
[10]

(6)

where Z* and Ωpi denote the effective charge and the
plasma frequency of escaping ions, respectively, and τL

is the laser pulse duration. Therefore, multiply charged
ions with Z* ≥ 10 possess an energy sufficient for the
generation of hard X rays.

Thot 14Tcold I/1016 W/cm2[ ] 1/3
 keV,=

εi 2Z*Thot 0.9ΩpiτL( ),ln=
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We will estimate the number of such ions. The effec-
tive degree of ionization of silver Zeff at a given temper-
ature Tcold is defined as [8]

and has a value of the order of 16. It is more difficult to
estimate the fraction of multiply charged ions relative
to the total number of ions. The thing is that, in addition
to silver ions, protons escape intensely from the target
(hydrogen is contained in the target as a part of water
vapors adsorbed by the surface and of traces of polish-
ing pastes). By virtue of quasineutrality, the total
charge of all ions is approximately equal to the charge
of fast electrons leaving the target. For estimating the
number of multiply charged ions, we will use the exper-
imental data of [11], which were obtained for similar
parameters of laser pulse for a copper target. The num-
ber of copper ions with a charge of more than eight was
approximately 103 per shot.

The number of hard radiation quanta with an energy
of 0.3 to 1.0 of the ion energy which arise during decel-
eration of a single ion is estimated by the formula [12]

where ne is the electron concentration in the holder
material (Al). For Z* ≈ 10, the quantum yield is approx-
imately 0.04 quantum per ion. Therefore, silver ions in
an amount of the order of 103 develop a signal corre-
sponding to tens of hard quanta, which is the lower
limit of sensitivity of our detector. The desired signal
from the de-excitation of nuclei is of the same or some-
what lower level. We can isolate this signal against the
background of bremsstrahlung only owing to its time
characteristics. The desired signal arises after t ~ 10–9 s
(the lifetime of the excited state of nuclei), while
bremsstrahlung arises after tens of nanoseconds (the
transit time of ions from the laser target to the working
one). Therefore, in the case of nuclear decay, we must
see a characteristic double-peak structure of the signal.
Note that, if there existed a superfast electron compo-
nent that would also generate bremsstrahlung of requi-
site energies, the photomultiplier signal would always
have a double-peak form (electrons with an energy
equal to that of ions fly tens of times faster). In our case,
in the absence of excited nuclei in all experiments
(24 shots), we observed a single-peak form of signal.

Figure 3b gives the results of measurements in the
presence of a second target activated by isomeric nuclei
of 87Rb. One can see that the measured signal has in this
case a clearly defined double-peak structure. The origin
of these peaks may be explained as follows: the X-radi-
ation of laser plasma transforms the isomeric nuclei of
rubidium to the upper excited state, and, as a result of
spontaneous decay, X-ray quanta are formed with an
energy of about 200 keV; we observe the signals from
these quanta as the first peak. Then, after the transit

Zeff 16 Tcold/1 keV( )1/3=

Nγ
16
3
------

neZ*2e6τL

me
2c4

"
------------------------,≈
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time necessary for the laser plasma ions to reach the tar-
get fastenings, the second peak is observed in the pho-
tomultiplier signal; the origin of this peak may be
attributed to the bremsstrahlung of ions (see above).
The time between two peaks in the photomultiplier sig-
nal coincides with the transit time of plasma ions, and
the probability of recording the X-radiation of the
nuclei in our experiment is about 20%. Finally, the sen-
sitivity threshold of the photomultiplier amounts to sev-
eral X-ray quanta. All this leads one to conclude that we
have indeed observed the resonance fluorescence of
isomeric nuclei and obtained the value of the radiative
cross section of the |0〉–|1〉  transition of the order of

which agrees with the previously obtained data.

5. CONCLUSION

We will formulate the basic conclusions reached as
a result of this study.

(i) It has been demonstrated that the X-ray pumping
of low-energy transitions in isomeric nuclei with subse-
quent recording of hard γ quanta in the adjacent nuclear
transition may be used as a new method of nuclear
spectroscopy.

(ii) The potential possibilities have been determined
of increasing the sensitivity of the suggested method
using the Kα line of radiation of matrix ions.

(iii) The spurious signal of X-radiation from fast
ions has been calculated.

(iv) The first qualitative experiments involving the
observation of induced γ fluorescence have been per-
formed.

(v) It has been found that the measured total cross
section Σx of the low-energy transition |0〉–|1〉  of the
rubidium isomer does not exceed 10–26 cm2 eV.
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Abstract—The dynamics of pulses with durations comparable to the inverse transition frequency that propa-
gate in an optical medium is studied in terms of two integrable systems of Maxwell–Bloch equations. The first
model describes the field interaction with a nondegenerate medium with a permanent dipole moment and per-
manent external pumping. A general formula is derived for the N-soliton solution. Particular solutions are used
as examples to investigate the effect of permanent dipole moment and pumping on the soliton dynamics. The
second model describes the interaction between two-component electric-field pulses and a two-level degenerate
medium with permanent upper-level pumping. For different initial magnetic-sublevel populations, soliton solu-
tions are used as examples to show that pumping causes a change in polarization dynamics. A two-soliton solu-
tion is used to analyze the interaction of solitons in a two-level medium with external pumping. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The dynamics and amplification of femtosecond
optical pulses attract constant attention because of their
applications in various fields of physics. In many cases,
these pulses are associated with soliton solutions of the
integrable systems of Maxwell–Bloch equations (see,
e.g., [1, 2] for a review). In general, the application of
integrable models [3] requires imposing a number of
physical constraints. In practice, however, the evolution
of ultrashort pulses in nonlinear media can be described
in detail in terms of these models. One of the integrable
models, the system of Maxwell–Bloch equations
describing the dynamics of quasi-monochromatic elec-
tric-field pulses in a two-level degenerate media, was
studied extensively [4–6]. Related models of three-
level media [7, 8] are also noteworthy. The assumption

of slow (compared to π , where ω0 is the frequency
of the energy transition between electronic levels of the
medium) variations in the amplitudes and phases of the
field components and the rotating-wave approximation
for the nondiagonal elements of the density matrix [1,
9] were used to derive these equations.

The multisoliton periodic solutions and quasi-self-
similar solutions describing the decay of an initial
unstable state of the medium are known for the Max-
well–Bloch equations that describe the dynamics of
quasi-monochromatic fields [1, 2, 10, 11].

Recently, interest in electromagnetic pulses with
characteristic durations close to π/ω0 has increased. In
the literature, these are called ultrashort pulses [12–14],
electromagnetic bubbles, video pulses [16], and
extremely short pulses [17, 18]. The domain of param-
eters for such pulses is restricted by the condition that

ω0
1–
1063-7761/02/9405- $22.00 © 20869
there is no photoionization; i.e., the field amplitude is
no larger than ~108–109 W cm–1, and the lower limit for
the soliton duration is ~10–15–10–16 s [15]. However, the
parameters of light pulses with durations τp ~ π/ω0
make the conditions for applicability of the two-level
model for the medium to describing the actual field
interaction with the medium very stringent. The levels
with energy "ωk that are disregarded when constructing
a model must be at the distance

Thus, we must use an isolated energy transition with a
relatively low frequency ω0 as the laser transition and
restrict the range of pulse parameters to

The conditions for applicability of the two-level model
are improved if the coefficient of nonlinear susceptibil-
ity or the dipole moment corresponding to the chosen
laser transition is much larger than the same coeffi-
cients for adjacent transitions [19]. Effects related to
the generation of such pulses are observable within the
scope of the currently available laser technology. The
generation of pulses with durations that are longer than
the oscillation half-period by only several times was
described, for example, in [19–22].

When the femtosecond range is investigated, the
approximation of slowly varying amplitudes and
phases of light fields in the models used for this purpose
is inapplicable. The corresponding Maxwell–Bloch
equations prove to be too difficult to analyze. There-
fore, the assumption of pulse duration τp @ π/ω0 is used
in many theoretical studies [12–18, 23], which simpli-

ωk ω0–  @ π/τ p.

τ p @ π ωk ω0– 1– .
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fies the problem. For soliton solutions, this approxima-
tion is equivalent to the strong-field approximation

(1)

where µ12 and E are the transition dipole moment and
the field amplitude, respectively. When condition (1) is
satisfied, some of the Maxwell–Bloch equations for a
nondegenerate two-level medium can be reduced to the
sine-Gordon equation with well-known soliton and
other solutions [3, 9]. At the same time, the application
of the two-level model approximation for a resonant
atomic or molecular medium in the optical range is
unfeasible under this condition [16].

Gibbon et al. [24] did not use condition (1) to derive
the reduced Maxwell–Bloch equations (RMBE). They
showed that the RMBE could be solved for a nondegen-
erate two-level medium by applying the inverse scatter-
ing transform. The low-density active-medium approx-
imation is used instead of the slow-envelope approxi-
mation to derive the RMBE. As a result, the problem
can be reduced to studying unidirectional wave propa-
gation [24–29].

In [24–29], the inverse scattering transform was
used to find soliton solutions to the RMBE and to study
their properties for a nondegenerate two-level medium.

Light pulses with durations of the order of π/ , at
which the applicability conditions for the two-level
model hold, can be analyzed in terms of these integra-
ble models. Here, our goal is to study the dynamics of
such pulses in media with pumping. Following [2], we
use the term “extremely short pulse” for these pulses.

It is well known that, apart from the dipole moment
µ12, where

ψ1, 2 being the wave functions for the states of levels 1
and 2, a nonzero permanent dipole moment (PDM) is
possible in asymmetric media. It is defined by the dif-
ference

A nonzero PDM arises in polar molecules, in asymmet-
ric semiconductor quantum wells, and in other media.
The PDM contribution to nonlinear absorption and dis-
persion was studied, for example, in [30–33], where it
was found that PDM could play a significant role in
nonlinear multifrequency processes. ˘Kocinac et al. [33]
pointed out that the PDM for quantum wells increases
in importance with wavelength during second-har-
monic generation. These authors gave parameters of the
semiconducting medium for which the ∆µij/µij ratio
varies over the range 0.15–7.1 for various transition fre-
quencies.

Investigation of the PDM effect on the shape and
evolution of pulses with durations comparable to the
oscillation period appears to be restricted to a recent

µ12E/" @ ω0,

ω0
1–

µij ψi*zψ j z,d∫∝

∆µ12 µ11 µ22 0.≠–=
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paper by Agrotis et al. [34]. These authors showed that
the integrable RMBE for a nondegenerate two-level
transition could be generalized to a nonzero PDM.
They derived a general expression for the multisoliton
solution by using the Backlund transformation and
gave one- and two-soliton solutions in explicit form.

During the evolution of an extremely short pulse
with two polarization components in a nonlinear
medium, a number of new nonlinear effects related to
the mutual influence of these components can arise.
The polarization effects in nonlinear media were first
studied in terms of an integrable model by Manakov
[35], who analyzed a two-component nonlinear
Schrödinger equation. The results of this author are of
current interest and have been extensively used up until
now. In a dipole medium with a degenerate two-level
transition, polarized radiation can produce transitions
with a change in magnetic moment by one. For exam-
ple, the J = 0  J = 1 transition interacting with a
light field with two polarization components belongs to
such systems. For quasi-monochromatic fields, this
scheme was investigated in [5, 6, 28] (see also [1] for a
review) for the integrable Maxwell–Bloch equations.
These equations are mathematically equivalent to the
system of equations that describes the field interaction
with a three-level medium with two allowed transitions
[7] arranged in the form of Λ and V schemes. Note that
the soliton solutions for these Maxwell–Bloch equa-
tions often coincide in form and have a number of prop-
erties similar to the properties of the soliton solutions
for the two-component nonlinear Schrödinger equa-
tion.

Sazonov [17] studied the rotation of the field polar-
ization plane for extremely short pulses for which ine-
quality (1) holds. However, as was pointed out by the
author himself, the approximation of extremely short
pulse duration and, accordingly, extremely high field
intensity that he used is more of methodological impor-
tance, because this model is inapplicable to the actual
situation in the optical range. Parkhomenko and
Sazonov [18] investigated the self-induced transpar-
ency for an extremely short pulse by using an approxi-
mate model of a multilevel medium with restrictions on
possible transitions. In these papers, the Maxwell–
Bloch equations were reduced to a single-component
sine-Gordon equation for strong fields and to a modi-
fied nonlinear Schrödinger equation for weak fields.

A similar interaction with a degenerate transition is
possible for an extremely short pulse of duration ~π/ω0.
In general, polarization effects must be taken into
account to construct a full picture of the evolution of
solitons and other solutions. A number of such effects
can be related, for example, to a change in pulse polar-
ization at small distances. For instance, based on the
Maxwell–Bloch model describing the dynamics of
quasi-monochromatic fields, Bol’shov et al. [7] showed
for a three-level medium that a difference between the
initial level populations could result in effective Raman
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scattering of solitons. A similar result was obtained for
a more complex interaction scheme in [8].

When light pulses propagate in very long optical
fibers, pulse amplification on the segments with
implanted erbium atoms periodically arranged along
the fiber length is used to compensate for any losses.
The amplification efficiency depends on parameters of
the nonlinear processes within such a segment. Two
amplification schemes are most commonly used in a
resonant two-level medium. In the first scheme, it is
assumed that the two-level medium is initially inverted
and that the pulse absorbs the stored energy during its
evolution [9]. In the second scheme, the pulse is ampli-
fied through permanent upper-level pumping [36, 37].
The system of Maxwell–Bloch evolution equations
with external pumping is used to model the processes in
gaseous media, solids, and dyes [36, 37]. Three- or
four-level transition schemes are used in such laser
media. These schemes can be reduced to an effective
system of Maxwell–Bloch equations for a two-level
medium with an additional term in the Bloch equations
for the population difference if a number of conditions
are satisfied [36]. Note that the scheme of a two-level
laser transition with external pumping [36] is more
commonly used in nonlinear optics to describe the gen-
eration in lasers than the above scheme of a single-pass
laser amplifier.

In optical fibers, the amplification is nonadiabatic
[38]. Therefore, to describe it requires using appropri-
ate models that describe the dynamics of the nonlinear
stage outside the scope of the approximation theory.
Such models include the integrable Maxwell–Bloch
equations for a two-level medium with permanent
upper-level pumping derived in the slow-envelope
approximation. These equations belong to the so-called
integrable deformations [39–42], i.e., equations inte-
grable by the inverse scattering transform with a vari-
able spectral parameter.

Burtsev and Gabitov [41] showed the RMBE that
describe a two-level laser with permanent level pump-
ing in terms of the inverse scattering transform with a
variable spectral parameter to be integrable. Pumping
causes the upper level to be populated, and laser gener-
ation begins when an inverse population arises. For
small seed pulses, the laser generation is asymptotically
described by the (quasi-)radiative solution associated
with the real continuum of the Zakharov–Shabat prob-
lem, just as for a long laser amplifier [10]. In [44–46],
this solution was shown to consist of nonlinear oscilla-
tions with an amplitude monotonically increasing with
distance z.

At the same time, a two-level laser medium with
pumping can be used to amplify both quasi-monochro-
matic soliton pulses with a carrier frequency close to
the transition frequency and solitons with durations of
the order of π/ω0. Particular soliton and linear solutions
to the integrable Maxwell–Bloch equations for quasi-
monochromatic waves with pumping were obtained in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                

[39–44]. In [40, 41], the dynamics of the soliton asso-
ciated with an isolated eigenvalue of the Zakharov–
Shabat spectral problem with a positive imaginary part
under pumping was reduced to a change in its parame-
ters. At the same time, the effect of the radiative solu-
tion, which is determined by the real continuum of this
problem, on the soliton dynamics must generally be
taken into account.

Studying the dynamics and change in the shape of
optical solitons with durations ~

 

π

 

/

 

ω

 

0

 

 during their
amplification is evidently of practical interest. How-
ever, as far as we know, the soliton dynamics under per-
manent pumping have not yet been investigated in
terms of the integrable RMBE in nondegenerate media
with PDM and polarization effects in degenerate two-
level media.

Here, we study the amplification of an extremely
short pulse in a nondegenerate two-level medium with
PDM and in a degenerate two-level medium with
pumping in terms of the integrable RMBE deforma-
tions. Using these integrable models allows us to aban-
don condition (1) and to investigate the soliton amplifi-
cation dynamics outside the scope of perturbation the-
ory and the adiabatic approximation. In the former
case, we use a generalization of the integrable system
of Maxwell–Bloch equations with PDM derived by
Agrotis 

 

et al. 

 

[34]. Here, we additionally take into
account the level pumping and examine the role of
PDM in the soliton amplification. Subsequently, we
construct an effective integrable RMBE system for a
medium with a degenerate (in magnetic-moment pro-
jections) transition. This system allows us to analyze
the nonlinear polarization effects related to the mag-
netic-sublevel population difference and the soliton
interaction and conversion, as well as a number of other
effects. We use one- and two-soliton solutions as exam-
ples to study the soliton dynamics in the presence of
pumping. As far as we know, no similar studies of the
monochromatic Maxwell–Bloch system for a degener-
ate transition with pumping have been carried out.

The paper has the following structure. In the next
section, we generalize the integrable RMBE to include
pumping and PDM and find soliton solutions. The inte-
grable Maxwell–Bloch equations that describe the
interaction of a two-component light field with a degen-
erate medium for two interaction schemes are derived
in Section 3. In Section 4, we find one- and two-soliton
solutions of this model and analyze their properties.
Our results are discussed in the final section.

2. THE MAXWELL–BLOCH EQUATIONS
WITH PUMPING

The pumping of the upper energy level in a laser
medium is phenomenologically taken into account by
adding an extra term to the right-hand side of the Bloch
equation for the population of this level (see, e.g.,
Eqs. (9.106) in [36]). This effective two-level scheme
SICS      Vol. 94      No. 5      2002
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can be obtained by reducing some models of a three- or
four-level medium interacting with monochromatic
fields that are resonant for these transitions [42]. It is
assumed that there is a pumping mechanism under
which electron transfer from the ground level 0 to level 3
lying above the upper level 1 of the laser transition
takes place in these schemes. For an ion laser, this pop-
ulation results from the passage a strong electric current
through gas. Subsequently, because of the rapid elec-
tron transfer from level 3 to level 1, the population dif-
ference between level 1 and level 2 with a lower energy
increases. In such a system, a population inversion of
levels 1 and 2 and the generation of a field with ampli-
tude E12 on this transition with frequency ω12 can be
obtained. However, to observe the soliton dynamics, a
situation with a large initial population of level 2 is pre-
ferred. In this case, the generation of the nonsoliton part
of the solution, which is associated with the real contin-
uum of the corresponding spectral problem for an inte-
grable model [43], is suppressed. Therefore, a three-
level scheme with the coincident levels 2 and 0 is pre-
ferred for observing the soliton dynamics.

As was pointed out above, the RMBE for a nonde-
generate two-level medium were derived in [23, 24] in
the approximation of a low effective density of the
medium. Agrotis et al. [34] generalized these equations
for a nonzero permanent dipole moment, i.e., for

In this approximation, the pulse group velocity is close
to the speed of light in the medium and the reduced
Maxwell equations reduce to one equation,

(2)

Here, N0 is the density of the active atoms, and e0 and
e∞ are the permittivities of the medium [34]. The non-
diagonal values of the dipole moment were reduced to
real form by a simple phase shift of the density matrix
elements ρ12 and ρ21 with µ12 = µ21.

The Bloch equations for the density matrix with
components ρij (i, j = 1, 2) of a nondegenerate two-level
medium with PDM are [34]

(3)

(4)

(5)

Here,

and µij are the dipole moment components of the
medium. Equations (3)–(5) include the level pumping

µ11 µ22 0.≠–

t∂
∂ c

e∞

---------
z∂

∂
+ 

  E i
N0ωµ12

2e0e∞
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∂tρ12 i
∆µ12

"
-----------E ω– 

  ρ12 i ρ11 ρ22–( )
µ12

"
-------E–

b
2
---,+=

∂tρ11 i
µ12

"
-------E ρ21 ρ12–( ) c1,+=

∂tρ22 i
µ12

"
-------E ρ12 ρ21–( ) c2.+=

∆µ12 µ11 µ22–( ),=
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(∝ c1, c2) and the constant external force (∝ b/2) pro-
duced by an additional field or fields on this transition.

Let us rewrite system (2)–(5) as

(6)

where

The Lax representation of system (6) was found for
b = c = 0 in [34]. In our notation, this representation is

(7)

(8)

here,

Including the arbitrary functions c = c(z) and b =
−ac(z)/2µ gives rise to a dependence of the spectral
parameter λ on variable z. This dependence is described
by the equation

(9)

Note that for c = b = 0 and for large amplitudes at
which inequality (1) holds, system (2)–(5) reduces to
the sine-Gordon equation after discarding the term
iωρ12 in Eq. (3):

(10)

∂zE iR–,=

∂τ R– i aE ω–( )R+ 2iNµE,–=

∂τ R+ i aE ω–( )R– b,+=

∂τ N –2iµER– c,+=

R± ρ12 ρ21, N± ρ11 ρ22,–= =

a ∆µ12/", z xµ12ωN0 2ce0 e∞( ) 1–
,= =

τ t x e∞c 1– , c– c1 c2, µ– µ12/".= = =

τ∂
∂ Ψ

=  iλ– –aωD 1– DE+

aωD 1– DE– iλ
Ψ L1Ψ,≡

z∂
∂ Ψ D

4 λ2D2 µ2ω2–( )
--------------------------------------=

× iD 2µΛN aλ R+–( ) 2A12

2A21 –iD 2µλN aλ R+–( )
Ψ A1Ψ;≡

D2 4µ2 a2,+=

A12 µaωN 2µ2ωR+ λ D2R–,+ +=

A21 –µaωN 2µ2ωR+– λ D2R–.+=

z∂
∂ λ 1

4
--- λ D2

λ2D2 µ2ω2–
------------------------------ b z( )a 2c z( )µ–[ ] .=

∂T∂zθ θ,sin=
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where

Estimation of the field amplitudes indicates that they
are within the scope of the currently available laser
technology [22]. The solutions to the sine-Gordon
equation for various initial–boundary conditions have
been studied extensively. At the same time, as was
pointed out above, the conditions under which the
actual medium can be modeled by a two-level medium
in the visible range are too stringent for such field
amplitudes. Therefore, we must consider the more gen-
eral model (6) for such field amplitudes that

It is easy to show that system (6) at c = b = 0 has the
following constant, linear stable solution:

(11)

This solution is a generalization of the standard vacuum
solution to the RMBE for a = 0 that corresponds to the
Bloch vector

where

For a ≠ 0, the following Bloch vector corresponds to the
vacuum solution (11):

Pumping leads to a dependence of the vacuum solu-
tion on variables. It must be taken into account when
constructing the soliton solutions. For b, c ≠ 0, system
(6) has the vacuum solution

(12)

(13)

The Bloch vector for this solution has a variable length.
For a special choice of the pumping constants, such

that

(14)

the vacuum solution (12) for the field amplitude does
not depend on τ. In this case,

T Dτ , ∂Tθ E, iR– θ,sin= = =

2µN aR+– D θ.cos=

∆µijE"
1– µijE"

1–, ω.∼

Ev
0( ) aωD 2– , Rv

– 0( ) 0,= =

2µRv
+ 0( ) aNv .–=

B R+ iR– N, ,( )≡ 0 0 1–, ,( )N0,=

R+( )2
iR–( )2

N2+ + N0
2.=

B a 0 2µ–, ,( )N0/D.=

Ev
1( ) ω

D2
------ a 2µτ 2µb ac+

DN0 τ ab 2µc–( )+
-----------------------------------------------+ ,=

Rv
1– 0, Rv

+ 1( ) aN0

D
--------- bτ ,+= =

Nv
1( ) –

2µN0

D
------------- cτ .+=

2µb ac,–=

Ev
1( ) aωD 2– .≡
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Physically, this means that the pumping energy does
not enter the radiative part of the solution for the field.
At the same time, as we show below, the soliton ampli-
tude can increase under pumping if condition (14) is

satisfied. Solution (12) for the field amplitude  at
ab – 2µc < 0 is singular; i.e., it becomes infinite in a
finite time at point N0/γs if condition (14) is not satis-
fied. As can be easily shown using (9), the soliton
amplitude increases for ab – 2µc < 0. In this paper, we
consider the parameters and time intervals for which
this singularity may be disregarded. With this goal in
mind, we restrict our analysis to condition (14) or to the
parameters at which

(15)

N-soliton solutions to RMBE (6) for c = b = ∆ = 0 were
found in [24]. To construct similar solutions for system
(6), we must fix the vacuum solution with the solitons
propagating against its background. In the linear
approximation, it is easy to show that solution (12) may
be chosen as the vacuum solution if the approximate
(15) or exact (14) condition is satisfied.

To construct N-soliton solutions for model (6), it
will suffice to modify the corresponding solutions
found in [24]. Indeed, the form of the Marchenko inte-
gral equations used to construct soliton solutions is
determined by the form of the spectral problem and by
the asymptotic behavior of the Jost function (τ  ±∞).
The spectral problem (7) and the Jost function asymp-
totics for the vacuum solution (12) and condition (15)
or (14) match the corresponding spectral problem and
the asymptotics in [24]. The solution is also determined
by the dependence of the scattering data on variable z,
which can be derived by using system (8) for τ  ±∞.
This dependence is significantly simplified if the func-
tions in the expression for matrix A1 obey Eqs. (12) and
(14). In this case, the nondiagonal elements of matrix
A1 become zero and the z dependence of the spectral
data manifests itself only in the appearance of an expo-
nential factor with the exponent

In the presence of pumping, we must also take into
account the z dependence of λ, which is given by
Eq. (9). Repeating the construction of soliton solutions
in [24], we then find the N-soliton solution to system (6)
with PDM and pumping

(16)

where I is a unit (N × N) matrix. Matrix B has the fol-
lowing elements:

(17)

Ev
1( )

DN0 @ τ 2µc ab–( ) 2µτ 2µb ac+( ).,

2 A1[ ] 11 z'; λ z'( )( ) z'.d

0

z

∫–

DE
aω
D

-------–
2 d2

dτ2
-------- det I BB∗+ ,ln=

Bnm

βnβm

ζn ζm*–
----------------- i ζn z( ) ζm* z( )–[ ]τ{ } ,exp=
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where ζn(z) is the solution to the equation

(18)

with the boundary condition

Condition (14) was used to derive Eq. (18). We empha-
size that, since βn also depend on τ in the problem under
consideration, it should be remembered when formally
using formula (16) that the differentiation is performed
only with respect to τ in the exponent on the right-hand
side of (17).

In (17), λn are either purely imaginary or enter in
pairs in the form

and, using (18), we obtain

In the former case, the following soliton solution corre-
sponds to the only eigenvalue λ1 = iη1 and β1 = :

(19)

here,

The solution describes the increase in soliton amplitude

proportional to , z  ∞. The soliton duration does
not change during this increase, which distinguishes
this solution from a similar soliton solution found in
[40] for the Maxwell–Bloch equations with pumping
for quasi-monochromatic waves. The mechanism of the
increase in soliton amplitude attributable to pumping
for c > 0 and b = 0 is known (see [39, 41]). At the same
time, it follows from (9) that the soliton is also ampli-
fied for a medium with a nonzero PDM and ab < 0,
c = 0. Note that the coefficient a in actual media can be
positive or negative [32]. The possibility of the soliton
amplification attributable to a nonzero PDM appears to
be pointed out for the first time. Quasi-monochromatic
fields with the carrier frequency equal to the transition
frequency may be used as pumping proportional to b.

z∂
∂ ζn

i
8µ
------

ζnD4c

ζn
2D

2 µ2ω2–
------------------------------–=

ζn 0( ) λn.=

λn λm*,–=

βn τ z,( ) βn 0 0,( ) i
2µN0 Dcτ–( )

Dc
---------------------------------- ζn z( ) λn–[ ]

 
 
 

.exp=

β1*

DEs
aω
D

-------=

+
4ν1 z( )

2η1τ 2 ν1 z( ) η1–( )µN0 Dc( ) 1– φ1––[ ]cosh
-------------------------------------------------------------------------------------------------------;

Imζ1 z( ) ν1 z( ), ν1 0( ) η1, Reζ1 z( ) 0,≡= =

φ1 β1 0( ) 2ζ1 z( )[ ] 1– .ln=

z
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The following breatherlike solution corresponds to
the pair of boundary (z = 0) eigenvalues λ2, 3 = ±ξ + iη
and β2 = :

(20)

where

The numerical solution of Eq. (18) under the condi-
tion

indicates that the imaginary part of ζn(z) monotonically
increases with z. Depending on the boundary values,
the real part can initially increase (for |ζ2| < ω|µ|), reach
a maximum at ~ωµ, and then asymptotically tend to
zero for all boundary values. The phase shift, i.e., the
last term in the expression for θ1, also tends to zero as z
increases. In particular, this implies that the breather
that corresponds to the pair of eigenvalues λ1 = –  at
the boundary (z = 0) is transformed during the amplifi-
cation into a soliton–antisoliton pair with amplitudes
increasing proportionally to Imζ1(z) and with an
increasing separation between them. Figure 1 shows
solution (20) at equal intervals of the physical time t for
such pumping rates that

In this section, we obtained the soliton solutions for
specially chosen values of constants (14). At the same
time, these solutions also remain approximately valid if
this condition is violated for the finite time τ for which
the pumping contribution is small. Inequalities (15)
imply that the number of electrons transferred to the
upper level during the entire process is small compared
to their total number in the active medium. This condi-
tion can be satisfied if the lower level of a two-level
transition coincides with the ground level. As we see
from our solution, the soliton amplitude can also
increase if conditions (15) are satisfied.

Our soliton solutions are peculiar in that we may
pass to the formal limits a = 0 or µ = 0 in them. In this
case, the solutions do not lose their soliton properties.

β3
*

DEb
aω
D

------- 8Imζ2Reζ2+=

×
Reζ2cosθ1 θ2 Imζ2 θ1 θ2sinhsin–cosh

ζ2
2 Imζ2( )2 2θ1( )cos– Reζ2( )2 2θ2( )cosh+

------------------------------------------------------------------------------------------------------------,

θ1 z τ,( ) 2ξτ 4µN0

Reζ2 z( ) ξ–
Dc

---------------------------–
β 0( )

2ζ2 z( )
-------------- ,arg+=

θ2 z τ,( ) 2ητ 4µN0

Imζ2 z( ) η–
Dc

----------------------------–=

+
Reζ2 z( ) β 0( )
2Imζ2 ζ2 z( )
------------------------------- ,ln

ζ2 0( ) λ2.=

2µc z( ) b z( )a– const 0>=

λ2*

2cµ ba–( )D2 1, DImζ 0( ) DReζ 0( ) 1.= = =
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This suggests that both mechanisms, one related to
electron transfer between the levels (µ ≠ 0 in the Bloch
equations) and the other related to frequency modula-
tion (a ≠ 0), independently produce solitons or breath-
ers. At the same time, the joint action of these mecha-
nisms leads to new, nonsoliton solutions of form (12)
and to new properties of the system.

3. THE INTEGRABLE MAXWELL–BLOCH 
EQUATIONS FOR A DEGENERATE TRANSITION 

WITH PUMPING 

Let us consider a Λ scheme in which the magnetic
moments J = 0 and J = 1 correspond to the upper
(denoted by 1 in Fig. 2) and lower levels, respectively.
The 1  2, 3 transitions occur with a change in mag-
netic-moment projection by one, ∆M = –1, 1. These
transitions interact with the mutually orthogonal polar-
ization projections E2, 3 of the electric field propagating
along the x axis. The Maxwell equations in a low-den-
sity approximation for active molecules similar to that
used above are

(21)

The Bloch equations for the density matrix with com-
ponents ρij (i, j = 1, 2, 3) of a degenerate two-level
medium interacting with this field are

(22)

k = 2, 3.

Here, ∆j = (µ11 – µjj)/", µij are the dipole moment com-
ponents for the medium.

The Lax representation for the system of equa-
tions (21) and (22) can be constructed only if ∆j = 0 and
µ12 = µ13. As above, the coefficients µ1k can be reduced
to real form by a simple phase shift of the nondiagonal
elements in the density matrix by a constant. Let us pass
to the laboratory frame of reference and to the renor-
malized variables

     

t∂
∂ c

e∞

---------
x∂

∂
+ 

  E j i
N0ωj

2ce∞e0
----------------- µ1 j

* ρ1 j µ1 jρ j1–( ),=

j 2 3.,=

i∂t"ρ12– µ13ρ32E3 ∆2E2ρ12+=

– ρ11 ρ22–( )µ12E2 "ω2ρ12,–

–i"∂tρ13 µ12ρ23E2 ∆3E3ρ13+=

– ρ11 ρ33–( )µ13E3 "ω3ρ13,–

–i"∂tρ23 µ21ρ13E2 µ13ρ21E3–( ),=

–i"∂tρ11 E2 µ12ρ21 µ21ρ12–( )=

+ E3 µ13ρ31 µ31ρ13–( ) c,+

–i"∂tρkk Ek µk1ρ1k µ1kρk1–( ) c1,+=

z xω2µ12
2 N0 2"ce∞e0( ) 1– , τ t e∞x/c.–= =
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Denote

and rewrite the Maxwell–Bloch equations for ∆j = 0 and
µ12 = µ13 as

(23)

here, k = 2, 3.
The Lax representation of system (23) is

(24)

(25)

% j E jµ1 j"
1– , R j

± ρ1 j ρ j1, j± 2 3,,= = =

R1
± ρ23 ρ32, ω2± ω3 ω= = =

∂τ Rk
+ i 1–( )k 1+ %kR1

– iωRk
–,–=

∂τ Rk
– i 1–( )k 1+ %kR1

+ iωRk
+ 2i ρ11 ρ jj–( )%k,––=

∂τ R1
+ iR3

–%2 iR2
–%3,+=

∂τ R1
– iR3

+%2 iR2
+%3,–=

∂τρ11 i%2R2
– i%2R3

– c,+––=

∂τρkk i%kRk
– c1,+=

∂z%k iRk
–;=

τ∂
∂ Ψ

2iλ– %2 %3

%2– 0 0

%3– 0 0

Ψ L2Ψ,≡=

z∂
∂ Ψ 1

4λ2 ω2–
--------------------=

×
4iλρ11 ωR2

+ 2λ R2
–+ ωR3

+ 2λ R3
–+

–ωR2
+ 2λ R2

–+ 4iλρ22 –2iλ R1
+ iωR1

–+

–ωR3
+ 2λ R3

–+ –2iλ R1
+ iωR1

–– 4iλρ33

× Ψ A2Ψ.≡
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Fig. 1. The dynamics a growing breather at equal time inter-
vals t. The units are arbitrary.
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System (23) incorporates the pumping of the upper
(∝ c) and lower (∝ c1) levels. Only the upper-level
pumping may be included in the Lax representation
with matrix L2 that we chose in form (24). This pump-
ing is taken into account by an additional dependence
of the spectral parameter on variable z:

(26)

Including the pumping of the lower level ∝ c1 in this
Lax representation involves no difficulty. This requires
adding a matrix proportional to the unit matrix

to L2. However, since this leads to obvious changes in
the results, we set c1 = 0 for simplicity.

The interaction between an extremely short pulse of
duration less than π/ω and a multilevel medium differs
qualitatively from a similar interaction of quasi-mono-
chromatic waves. The nonresonant nature of the inter-
action between extremely short pulses manifests itself
in the fact that the corresponding evolution equations
are more universal and simpler than those for quasi-
monochromatic waves. As a physical example that con-
firms this universality, let us consider a four-level
medium with two pairs of transitions (a double Λ
scheme) for which the magnetic moment changes by
one when passing from level 1 or 4 to levels 2 and 3
during the interaction with a two-component electric
field (see Fig. 2).

Below, we show that the RMBE describing this
interaction can be reduced to the integrable model (23).
Let us write the equations for the wave functions ψk of
levels k = 1–4 as

(27)

z∂
∂ λ 2c z( )λ

4λ2 ω2–
--------------------.–=

–iλ
2c1

c c1–
-------------I

–i"∂tψ1 µ12ψ2E2 µ13ψ3E3 "ω1ψ1,+ +=

M = 0

M = 0

M = 0 M = 1M = –1

1

2 3

4E2

E3

Fig. 2. The transition scheme with a change in magnetic-
moment projection by one.
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(28)

(29)

(30)

The Maxwell equations in the same low-density
approximation as that used above are

(31)

where j = 2, 3. Assuming that ω2 = ω3, µ12 = µ13, and
µ42 = µ43 and that these coefficients are real, we rewrite
system (27)–(31) as

(32)

(33)

(34)

where

For this system to be equivalent to system (23), the last
term on the right-hand side of Eq. (32) must be
removed. This can be done by assuming that ω+ @ ω–.
On the other hand, system (32)–(34) has the solution

which also reduces this system to the integrable system
(23) for all ω±.

4. THE DYNAMICS OF SOLITON 
POLARIZATION IN A DEGENERATE

MEDIUM WITH PUMPING

As was pointed out above, to construct the soliton
solutions of (23) requires fixing a stable vacuum solu-
tion of the model. We assume the populations of the
lower-level sublevels to be larger than the upper-level
population during the entire process. The populations
of the lower-level magnetic sublevels are initially
unequal. For simplicity, we assume that the initial level
populations

–i"∂tψ2 µ12ψ1E2 µ24ψ4E2 "ω2ψ2,+ +=

–i"∂tψ3 µ13ψ1E3 µ34ψ4E3 "ω3ψ3,+ +=
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∂
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-----------------=
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+ ω+ψ ω–
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µ

----------------------------------,+
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∂
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2ce∞e0
----------------- φψj* φ∗ ψ j–( ),=

j 1 2,,=

ω±
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2
------------------, φ

µ12ψ1 µ42ψ4+
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----------------------------------,= =

µ µ12
2 µ42
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.=
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do not depend on z. Note that the upper-level popula-
tion in an actual system can be produced by a thermal
mechanism.

We choose a vacuum solution with the solitons
propagating against its background in the form

(35)

We restrict our analysis to the time interval

In this case, solution (35) is invariable before and after
the soliton passage. A radiative solution is generated for
cτ ≥ N0 – N1. This solution consists of a packet of non-
linear pulsations oscillating about the mean that

increases proportionally to , z  ∞.
The analytic apparatus for our model is basically

similar to the apparatus developed by Manakov for the
two-component nonlinear Schrödinger equation [10].
The results of this author after a modification related to
the evolution of the scattering data and to the z depen-
dence of λ can be applied to our model.

Problem (24), (25) has two sets of solutions: the Jost
functions ϕi(τ, z; λ) and Ψi(τ, z, λ) with the asymptotics

The scattering matrix S = {αij} is given by the relation

The scattering data include the continuum for real λ

(36)

and bound states composed of zeros ζk for Imλ > 0. The
following coefficients correspond to each such zero:

(37)

Here,

The z dependence of these scattering data can be
derived from the formula

(38)

Formula (38) is valid for the asymptotic behavior
described by the vacuum solution (35), because we

E2 3, z τ,( ) 0, R2 3,
± z τ,( ) 0,= =

ρ11 z τ,( ) N1 cτ , ρkk z τ,( )+ Nk,= =

k 2 3.,=

cτ  ! N0 N1, N0– ρ11 ρ22 ρ33.+ +=

cz

ϕ i( )k δik 2Ikλ z( )τ–[ ] , τ ∞ ,–exp=

Ψi( )k δik 2Ikλ z( )τ–[ ] ,exp=

τ ∞ , I1 i, Im 0, m 2 3.,= = =

ϕ i τ z; λ,( ) α ij z; λ( )Ψ j τ z; λ,( ).
j 1=

3

∑=

Rm z; λ( ) α1m z; λ( ) α11 z; λ( )( ) 1– , Imλ 0,= =

Cm z; ζ k z( )( )
α1m z; ζ k z( )( )

α11' z; ζ k z( )( )
------------------------------, m 2 3.,= =

α11'
dα11

dζ
-----------, ζ ζ k.= =

∂zS A2S
τ +∞→
lim S A2.

τ ∞–→
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chose the conditions under which pumping and injected
pulses do not change these asymptotics. If condition
(14) is satisfied, matrix A2 for this solution (35) is diago-
nal for t  ±∞. In this case, the z dependence of Cm(z;
ζk) derived from (38) is

(39)

We do not give a similar expression for Rm(z; λ),
because the contribution from the continuum is disre-
garded here.

For the functions

,

we have the triangular representation

(40)

(41)

Here, δmk is the delta function, m = 2, 3. The integration
is performed along contour #, which includes the real
axis and passes above all poles in the upper half-plane

and along the mirror reflection  of this contour.

For a soliton spectrum composed of such N poles ζk

that either ζk are purely imaginary or they enter in pairs

ζn = – , Eqs. (40) and (41) reduce to the algebraic
system
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(43)

The potential %m(z, t) can be reconstructed using the
formula

(44)

Solving the algebraic system of equations (42) and (43)
for a single pole, λ1 = ζ1(0) = iη, we find that the one-
soliton solution is described by the projector

(45)

Here, mk are the vectors that can be determined by tak-
ing into account the solution to Eq. (26) for λ = iη,
c(z) = const, and ρkk(z) = Nk = const:

(46)

where α1 =  and η(z) is the solution to Eq. (26)

The field components %k are described by the pro-
jector

(47)

For the one-soliton solution (47), we finally obtain
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---------------------------------------------------------------------------------------------------------------------------,

θ̃2 2η 0( )τ N1 N2–( )ξ ,+=

θ̃3 2η 0( )τ N1 N3–( )ξ ,+=
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Let us analyze the asymptotic behavior of solutions
(48) and (49). Let ξ(N3 – N2) > 0. We then have

The derived solutions (48) and (49) describe the trans-
formation of the soliton pair %2, 3(z = 0) into soliton
%3(z  ∞). The energy transfer takes place at dis-
tances

for large z. The estimate is valid for z0c @ η(0), ω. This
effect is similar to the Raman transformation of solitons
found in [7, 8] in terms of a model for the interaction of
quasi-monochromatic waves with a three-level
medium. However, in contrast to the results of these
studies, the conversion here is determined by the pump-
ing rate constant c. The conversion efficiency was
found to decrease with increasing c. As can be seen
from the soliton solution, this is because the soliton
group velocities and amplitudes level off during the
amplification. It can be shown that, in the inverse limit
c  0, the distance at which a complete soliton con-
version takes place is proportional to |N3 – N2|η–1(0).

Let us investigate the dynamics of the solution that
corresponds to two eigenvalues λj. To this end, we sim-
plify the problem by setting N2 = N3. Below, we give a
formal general solution to the algebraic system (42) and
(43) for two arbitrary eigenvalues λ1, 2. However, this
solution for the field amplitudes is generally complex.
Therefore, in order to obtain solutions to model (23),
constraints on the form of λk and the coefficients must
be imposed to ensure that the potential %2, 3 be real.
Recall that for this problem, λ1, 2 either must be purely

imaginary or enter as λ1 = – .

Let λk = iνk, where νk are arbitrary complex num-
bers. The general two-soliton solution is then

(50)

where

ξ 2
c
--- η z( ) η 0( )–[ ] , φk

α1

α k

----- , kln 2 3.,= = =

%3 2η z( ) θ̃3 φ3+[ ] , %2 0, z ∞.sech

z0 c N2 N3–( ) 2–∼

λ2
*

%2

%3 
  a1

b1 
  e

θ1 a2

b2 
  e

θ2+=

+
d1

g1 
  e

θ1 θ1
* θ2+ + d2

g2 
  e

θ1 θ2 θ2
*+ +

+ D 1– ,

D 1 p1e
θ1 θ1*+

p2e
θ1 θ2

*+
p2

*e
θ2 θ1*+

+ + +=

+ p3e
θ2 θ2*+

p4e
θ1 θ1* θ2 θ2

*+ + +
,+

p1

q11

ν1 ν1*+
------------------, p2

q12

ν1 ν2*+
------------------, p3

q22

ν2 ν2*+
------------------,= = =
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The two-soliton solution of (23) corresponds to two
real values of ν1, 2. The breatherlike solution is given by
the relations ν1, 2 = , η > 0. The exponents for the
vacuum solution (35) are

We numerically found that the form of the breather
solution for one component is qualitatively the same as
that shown in Fig. 1.

Let us analyze the asymptotics of solution (50) for
the two-soliton solution with ν1, 2(0) = η1, 2. Let η3 > η2
and let there be no pumping (c = 0). In that case, solu-
tion (50) for large z splits into two solitons, with the
soliton of field %2 with a smaller amplitude having a
higher velocity. The separation between the solitons
linearly increases with z. Pumping causes the dynamics
of the soliton pair to change. We initially restrict our
analysis to one polarization component and choose the
condition

  b1 = 0,  b2 = 0.

Since the initial populations of the lower-level mag-
netic sublevels are equal, no polarization rotation takes
place. We see from Fig. 3 that the amplitudes of the
growing solitons asymptotically level off and that the
separation between them increases much more slowly
than in the absence of pumping.

The presence of a second polarization component
causes the structure of the soliton pair to change. Fig-
ures 4a and 4b show, respectively, the field components
%2 and %3 in the presence of homogeneous pumping,
c(z) = const. The boundary and initial values of the
parameters for %2 are the same as those for the case
shown in Fig. 3, except that b1 = 0.5 and b2 = 2. We see
from this figure that the dynamics of the soliton pairs if
there is amplification differs significantly from the pair
dynamics in the absence of pumping. In the former

d1

ν1 ν2–( ) a1q21 a2q11–( )
ν1 ν1*+( ) ν2 ν1*+( )

---------------------------------------------------------,=

d2

ν2 ν1–( ) a2q12 a1q22–( )
ν2 ν2*+( ) ν1 ν2*+( )

---------------------------------------------------------,=

g1

ν1 ν2–( ) b1q21 b2q11–( )
ν1 ν1*+( ) ν2 ν1*+( )

---------------------------------------------------------,=

g2

ν2 ν1–( ) b2q12 b1q22–( )
ν2 ν2*+( ) ν1 ν2*+( )

---------------------------------------------------------,=

p4

ν1 ν2– 2 q11q22 q12q21–( )

ν1 ν1*+( ) ν2 ν2*+( ) ν2* ν1+
2

---------------------------------------------------------------------,=

qij

aia j* bib j*+

ν i ν j*+
----------------------------= .

η iξ+−

θ2 3, 2ν2 3, 0( )τ
2N12

c
----------- ν2 3, z( ) ν2 3, 0( )–[ ] .+=

ν1 1, ν2 1.1, a1 a2 1,= = = =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
case, a semblance of a quasi-bound soliton state arises.
However, this state is not accompanied by a decrease in
energy and is attributable solely to the asymptotic lev-
eling of the soliton velocities for arbitrary initial data.

5. CONCLUSION

We have investigated the dynamics of pulses with
durations close to the oscillation period in a two-level
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1

0 50 100 150 200 250

%2

z

Fig. 3. The dynamics of a soliton pair for one field compo-
nent %2 at equal intervals t. The units are arbitrary.
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Fig. 4. The two-soliton solution of system (23) for homoge-
neous pumping at equal intervals t. The amplitudes of the
field (a) %2 and (b) %3. The units are arbitrary.
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medium with pumping. The soliton solutions were used
to study the dynamics of extremely short pulses. In par-
ticular, we used the soliton solutions to the RMBE
obtained in Section 2 as examples to show new possi-
bilities for soliton amplification in media with PDM. It
follows from these solutions that solitons can be gener-
ated in a two-level medium virtually without electron
transitions between levels 1 and 2, in contrast to the
standard generation mechanism of 2π pulses [9]. For-
mally, this implies that the dipole moment of the
medium in the Bloch equations (3)–(5) becomes zero.
In this case, the density of the medium must be high
enough. These conditions correspond to the limit

(51)

If, in addition, the PDM contribution is of the order of
unity, then this approximation leads to the simplified
integrable system of equations (6). The soliton solu-
tions associated with self-induced transparency also
exist in this limit. Thus, we note that the integrable
RMBE can be derived not in the low-density approxi-
mation but in the approximation of an extremely small
dipole moment µ12.

The self-induced transparency solitons related to
PDM alone can exist only outside the scope of the
quasi-monochromatic approximation in a time interval
when the medium polarization instantly tracks the
change in level state. Using the Lax representation (7),
(8) after passing to the limit (51), we can show that the
necessary initial condition for the generation of travel-
ing solitons is a partial but not complete inversion of the
medium, i.e., R+(0, z) ≠ 0. An ultrashort field pulse with
a duration of the order of π/ω gives rise to a coherent
coupling between the levels. At the same time, the elec-
tric field produces nonlinear oscillations of the upper-
level electrons, which results in the generation of stable
solitons.

A nonzero PDM also allows a new (compared to the
standard) soliton amplification mechanism to be used.
In the example considered in Section 2, the additional
field that gives rise to a term proportional to b in the
equation for the nondiagonal part of the density matrix
(3) can cause both an increase and a decrease in soliton
amplitude, depending on the sign. This property can be
used to modulate a pulse packet. It is of interest to use
this amplification mechanism of extremely short pulses
to compensate for any losses of the light pulses that
propagate in long optical fibers.

The PDM varies over a wide range for different
media. The quantum confinement of the carriers in
semiconductors gives rise to discrete bands with large
oscillator strengths related to band-to-band transitions.
A nonzero PDM is possible in asymmetric quantum
wells. The dipole moments for GaAs/Al0.14Ga0.86 with
Al0.3Ga0.3As barriers between the wells are given in
[33]. The dipole moments in a three-band scheme are

µ 0, N0µ 2 1( ).∼

µ12 17.6µ0, µ13 11.1µ0, µ23 33.4µ0,= = =
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and the corresponding permanent dipole moments are

where µ0 = 1.6 × 10–29 C m. It was noted that the cur-
rently available technologies allow the PDM to be
increased relative to the transition dipole moment.

In this paper, we did not consider the contribution of
the real continuum of problem (7) to the radiative solu-
tion. At the same time, the apparatus developed here
allows the phenomena related to the generation of the
corresponding fields to be studied in terms of the
RMBE. In general, for example, when the lower level
of the medium does not coincide with the ground level
and when initial population is small, the contribution of
the radiative solution must be taken into account. This
solution for some initial-value–boundary-value prob-
lems reduces to the Painlevé V transcendent [44].

At the same time, we used the conditions under
which the contribution of the radiative solution may be
disregarded. Physically, these conditions correspond to
the case where the number of electrons transferred to
the upper level through pumping is much smaller than
the total number of electrons. Note that some forms of
weak nonlinearities lead to the relative suppression of the
radiative part of the solution. These can be taken into
account in terms of our perturbation theory for almost inte-
grable systems of equations to which the inverse scattering
transform with a variable spectral parameter is applicable
[42]. A threshold in pumping rate below which no genera-
tion is observed is known to exist in experimental laser
physics [36]. In terms of the models studied above, this gen-
eration corresponds to the radiative solution.

As we showed here, the system of Maxwell–Bloch
equations for a degenerate transition with pumping is
also integrable in terms of the inverse scattering trans-
form and has multisoliton solutions. The polarization
effects in a two-level amplifier can cause a qualitative
change in the dynamics and shape of pulses in a nonlin-
ear regime. Under pumping conditions, the velocity and
interaction of the solitons that correspond to different
polarization components also change. Our solutions
demonstrate an effective transformation of the soliton
polarization components for different initial magnetic-
sublevel populations. The population difference can be
produced by a magnetic field, which leads to an elec-
tron redistribution over magnetic sublevels. Thus, a
soliton counterpart of the Faraday effect arises. It can
be analyzed in terms of the Maxwell–Bloch equations.
Sazonov [17] investigated this effect for solitons in the
low-frequency approximation, which allowed the prob-
lem to be reduced to a differentiated nonlinear
Schrödinger equation. However, for such a reduction of
the system of equations, part of the important informa-
tion related to the medium is lost. Using the RMBE
allows the influence of the initial state of the medium on
the evolution of an extremely short pulse in the medium
to be studied. As our results show, this influence can be
significant.

∆µ12 77.8µ0, ∆µ13– 72.9µ0,–= =

∆µ23 4.9µ0,=
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Equations (6) do not admit a direct integrable gener-
alization of form (23) to a degenerate transition for a
nonzero PDM. On the other hand, in the limit of very
small µ but for a nonzero polarization of the medium on
the 1  2, 3 transitions, system (22) breaks down
into two individually integrable independent systems.
Each of them admits soliton solutions.

In conclusion, note that some of the Maxwell–Bloch
equations considered here can also be used to analyze
the dynamics of an extremely short pulse with dura-
tion @ π/ω0. However, a number of effects predicted
above are possible only for pulse durations * π/ω0. The
self-induced transparency attributable to a nonzero PDM
described above belongs to such effects.
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Abstract—It is shown that it is preferable to perform quantum computations on a system of two-level atoms
with metastable states using optical dipole transitions that occur under the effect of ultrashort light pulses. It is
suggested to measure the quantum information that is passed to qubits using Bloch, rather than pure, quantum
states of two-level atoms. Moreover, the inversion of atoms can be used as the measure of quantum information.
In order to describe the logical operators NOT and CNOT in the system of interacting two-level atoms (qubits),
modified optical equations for the Bloch vectors of individual qubits are derived. These equations are solved in
combination with field equations, without using the slowly varying amplitude approximation, for a small two-
qubit system in the field of ultrashort intense optical pulses of arbitrary shape. A numerical analysis of the solu-
tion shows that it is possible to control the recording of information on individual qubits in a small quantum
system of a dimension much smaller than the length of the optical wave by smoothly varying the irradiation
conditions of qubits. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that a quantum computer can be con-
structed from two logical elements—an arbitrary sin-
gle-qubit unitary transformation and a two-qubit ele-
ment realizing the controlled NOT (CNOT) [1]. It is
shown in [1] that, for the implementation of the NOT
element, one should act upon a quantum particle (qubit)
by an external intense pulse that takes the qubit from
the ground state to an excited state and, conversely,
from the excited to the ground state. The CNOT ele-
ment is implemented by applying an excitation pulse to
two interacting qubits. In the process, one qubit con-
trols the evolution of the other one by means of the
interaction. In [1], it is suggested to implement the
NOT and CNOT operations on the basis of electron and
nuclear spins using magnetic resonance spectroscopy
[2]. In this paper, we show that it is preferable to design
a two-qubit quantum computer on the basis of two-level
atoms with metastable states using optical dipole–
dipole transitions occurring under the effect of
ultrashort light pulses.

By now, suggestions for the implementation of
quantum computers on the basis of ions and molecules
in laser traps [3], on the basis of nuclear spins of 31P in
crystalline silicon [4], on electron spins at quantum
points created in a two-dimensional electron gas in
GaAs heterostructures [5], and on Josephson junctions
[6] have been put forward. Simulation experiments
related to quantum computers were carried out using a
1063-7761/02/9405- $22.00 © 20882
pulse nuclear magnetic spectrometer [7–10] on the
basis of two spins of 13C nuclei and a single proton spin
in the trichloroethylene molecule. However, in these
experiments, a ensemble quantum computer was stud-
ied. The output signals were combined from signals of
a large number of molecules in a liquid solution. In this
paper, we suggest an implementation of a two-qubit
quantum computer on the basis of an arsenic atom
dimer on a pure GaAs surface; those dimers can be
obtained using well-known techniques [11, 12]. It was
shown in [13] that the lines at 3 eV and 4.5 eV, which
were observed in [11, 12] in the spectrum of the aniso-
tropic reflection (100) from GaAs surfaces stabilized by
arsenic, can be explained on the basis of optical dimen-
sional resonances that were theoretically predicted in
[14]. It was also noted that the dispersion properties of
the GaAs surface significantly affect the properties of
dimensional resonances. Therefore, it is reasonable to
implement quantum computers on the basis of two-
level atoms (identical or different) by implanting those
atoms into surfaces with frequency-independent optical
properties.

The concept of quantum information is based on the
quantum mechanical superposition principle, which is
applied to two-level quantum particles [15–17]. In this
paper, we suggest measuring the quantum information
using Bloch states, which are well known in resonance
spectroscopy [18, 19]. In the process, we have to solve
some important problems concerning writing and read-
002 MAIK “Nauka/Interperiodica”
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ing quantum information and transferring it from one
two-level atom to another. We believe that these prob-
lems can be solved using polarizing fields that occur in
a system of interacting atoms in an external radiation
field.

The concept of polarizing field was suggested in
[20–22] on the basis of third-order quantum electrody-
namical effects; it takes into account intermediate states
with a positive and negative energy in the spectrum of
interacting atoms lying at an arbitrary distance from
each other. In accordance with the intermediate state
type, we distinguish between electron and positron
polarizing fields. The scheme of quantum transitions
corresponding to the process of inducing the polarizing
field is as follows. Let two hydrogen-like atoms be in
the ground state with the energy W0. As a result of
exchanging virtual photons, one of the atoms (the
polarizing atom) goes to an intermediate state with the
energy Wl and then returns to the original state with the
energy W0; in the process, the other atom (the observer)
goes to the excited state with the energy W1. This means
that one real photon was absorbed by the two-atom sys-
tem. It was shown in [20–22] that this process is equiv-
alent to inducing a polarizing field with the correspond-
ing vector potential, which is different from the vector
potential of the free photon field at the location of the
observer atom. In the electric dipole approximation for
classical fields, the electron polarizing field is an elec-
tric dipole field induced by the polarization atom at the
location of the observer atom. Then, quantum-mechan-
ical considerations make it possible to reveal the nature
of the electric dipole field, which is considered as a
third-order electrodynamical effect. In [21], a compari-
son of the physical nature of this field considered as
field of virtual photons with another field, which also is
a third-order electrodynamical effect but depends only
on real photons, was made. In contrast to the polarizing
field, as was noted in [21], the transfer of energy from
one atom to the other through the real photon field
occurs with the characteristic time tp = R/c, where R is
interatomic distance and c is the speed of light in vac-
uum. The polarizing field is not associated with the
transfer of energy; therefore, the characteristic time of
inducing this field on one atom of the system when the
other atom is excited by an external field is different. In
this paper, we consider the process of inducing polariz-
ing fields in a strong resonance optical field; in particu-
lar, this is of interest for revealing the physical nature of
the logical CNOT operator.

A full-scale quantum computer includes about
103 qubits [1]; however, the physical foundations of its
operation can be clarified on the basis of a two-atom
quantum computer that is theoretically studied in this
paper. We formulate several key points that provide a
basis for the operation of a quantum computer.

1. Before the computer starts to operate, all qubits
must be in the ground state. The system of N qubits in
the ground state constitutes a memory register [1]. It
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
can store data and perform quantum computations. Evi-
dently, this state is most easily implemented for optical
transitions. In this case, two energy levels, W0 and W1,
exist in the spectrum of two-level atoms such that W1 –
W0 ! kT, where T is the absolute temperature and k is
the Boltzmann constant.

2. A method for controlling the selective action of a
pulse upon individual qubits should be devised. One
such technique was suggested in [19], whereby two
interacting atoms in a nanostructure take different
inversion values under the effect of intense stationary
radiation that acts upon the nanostructure at various
angles. In this paper, we consider a technique for selec-
tively acting upon individual qubits using ultrashort
light pulses.

3. The CNOT operation can be implemented in a
system consisting of N qubits by exploiting the interac-
tion between them. In this paper, we consider this trans-
formation using the electric dipole–dipole interaction
of two-level atoms in the field of pulse radiation in
small systems when one of the qubits is excited.

4. In the process of quantum computations, the com-
puter’s qubits are affected by relaxation processes that
disturb the computation process. The computation pro-
cess acquires random features during the decoherence
time. To increase this time, metastable states can be
used that have the lifetime of about 1 s for optical tran-
sitions. During this time interval, about 1014 elementary
unitary transformations can be performed if femtosec-
ond pulses are used.

5. Qubit states must be measured in the process of
computations and after their completion. A measure-
ment technique based on the trial pulse radiation and an
analysis of interference pattern formed by qubits in the
wave zone was suggested in [23].

In this paper, we focus on the physical implementa-
tion of the NOT and CNOT operators under the effect
of powerful light pulses.

2. MEASURING QUANTUM INFORMATION
ON THE BASIS OF BLOCH STATES

The classical theory [24, 25] considers information
as a negative contribution to entropy. This way of defin-
ing information is appropriate for macroscopic physical
systems. It is evident that we need another way for mea-
suring information in quantum systems consisting of a
small number of qubits.

Classical computers operate with bistable transistor
circuits that demonstrate nonlinear dependence
between the input and output voltage [1]. In a quantum
computer, the corresponding element is a two-level
atom that can be described using the concept of effec-
tive spin [18]. We assign the logical zero “0” ≡ |0〉  to the
state W0 with the wave function |Ψ0〉 and the logical
unity “1” ≡ |1〉  to the state with the wave function |Ψ1〉
and the energy W1 (W1 > W0). Transitions |0〉  |1〉  in
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the quantum system correspond to transitions “0”  “1”
in the bistable transistor circuit. It was noted in [1] that
the quantum bistable element (qubit) has a new prop-
erty compared with the classical element. This is the
superposition property: a qubit can be in any superpo-
sition state |Ψ〉 = a|0〉  + b|1〉 , where a and b are complex
numbers such that |a |2 + |b |2 = 1.

Consider a two-level atom with electric dipole tran-
sitions from one state to the other. The Hamiltonian of
such an atom can be represented in terms of the Pauli
matrices σ1, σ2, and σ3 [18]. In the absence of the radi-
ation field, we have

where  is an identity 2-by-2 matrix. The average val-
ues of the operators σ1, σ2, and σ3 calculated with the
help of the wave functions Ψ of superposition states are
written as

(1)

where W1 – W0 = "ω0. It is easily seen that the conser-
vation law

(2)

holds. The quantity s3(W1 – W0)/2, which is the atomic
energy, differs from the average energy (W1 + W0)/2,
and s3 is the inversion of the two-level atom [18]. s1 and
s2 determine the induced dipole moments of the atom.
Thus, quantum information can be measured, for exam-
ple, using the inversion and taking into account the fact
that Eqs. (1) hold if there are two quantum states that
form a superposition. For a quantum system to store a
bit of quantum information, it is sufficient that the sys-
tem have two states and satisfy the superposition prin-
ciple. It is possible to establish a unique correspon-
dence between the Bloch states s1, s2, s3 and the quan-
tum superposition states.

Taking into account relation (2) between the inver-
sion and the induced dipole moment of the atom, we
may conclude that the measure of quantum information
is determined in terms of physically observable quanti-
ties. The pseudospin vector s = (s1, s2, s3) in the energy
space traces curves on the unit sphere for various values of
the superposition coefficients a and b, which vary under
the effect of the radiation field. For individual atoms that
interact with the radiation field at the frequency ω, it is
convenient to change from the variables s1, s2, and s3 to the
variables u, v, and w using the transformations

(3)

HA
1
2
--- W1 W0+( ) Î

1
2
--- W1 W0–( )σ3,+=

Î

s1 Ψ〈 |σ1 Ψ| 〉 ab∗ e
iω0t

a∗ be
iω0t–

,+= =

s2 Ψ〈 |σ2 Ψ| 〉 i ab∗ e
iω0t

a∗ be
iω0t–

–( ),–= =

s3 Ψ〈 |σ3 Ψ| 〉 b 2 – a 2,= =

s1
2 s2

2 s3
2+ + 1=

s1 u ωt( )cos v ωt( ),sin–=

s2 u ωt( )sin v ωt( ), s3cos+ w.= =
JOURNAL OF EXPERIMENTAL
Here, u2 + v 2 + w2 = 1 and u, v, and w satisfy the Bloch
optical equations [18]

(4)

where κ = 2d0/", E0 is the envelope of the optical pulse
acting on the atom, and d0 is the transition dipole
moment. Thus, the behavior of an individual qubit in
the process of computations can be represented in terms
of the observable quantities u, v, and w, which describe
the atomic local dipole moments and its inversion and,
therefore, the quantum information encoded in the
atom.

All available transformations, such as the Hadamard
transformation [1]

(5)

that contain the variables a and b in the quantum super-
position of states can be replaced by the corresponding
unitary transformations that transform the observable
variables u, v, and w. Comparing (1) with (3) for ω =
ω0, we obtain the following correspondence between
the variables:

(6)

Below, we derive modified optical Bloch equations
that apply to two-level systems with regard for the
interatomic interaction. These new equations will
replace Eqs. (4).

3. EQUATIONS OF MOTION OF A TWO-ATOMIC 
SYSTEM IN A RADIATION FIELD IN TERMS 

OF ATOMIC AND FIELD VARIABLES

In this section, we analyze properties of a single-
qubit NOT element and a two-qubit CNOT element in
the field of optical radiation. To this end, we consider
optical properties of a quantum system consisting of

u̇ – ω0 ω–( )v , v̇ ω0 ω–( )u κ E0v ,+= =

ẇ κ E0v ,–=

H 0| 〉 1

2
------- 0| 〉 1| 〉+( ), H 1| 〉 1

2
------- 0| 〉 1| 〉–( ),==

u 1 v, 0 w, 0 a
1

2
------- b, 1

2
-------,= = = = =

u –1 v, 0 w, 0 a
1

2
------- b, –

1

2
-------,= = = = =

u 0 v, 1 w, 0 a
1

2
------- b, –

i

2
-------,= = = = =

u 0 v, 1– w, 0 a
i

2
-------– b, 1

2
-------,= = = = =

u 0 v, 0 w, 1– a 1 b, 0,= = = = =

u 0 v, 0 w, 1 a 0 b, 1.= = = = =
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two (generally different) atoms in the field of an intense
wave. The Hamiltonian of such a system has the form

(7)

Here E1 and E2 are the electric field strengths at the
location points of the first and second atoms, respec-
tively; ω01 and ω02 are the frequencies of the atoms’
transitions; the dipole moment operators

are determined in terms of the real, , and imaginary,

, parts of the dipole moments of the first and second
atom transitions; and σ±j = σ1j ± iσ2j and σaj are the
operators of effective spin of the jth atom (α = 1, 2, 3
and j = 1, 2). We have

(8)

where δjk is the Kronecker delta.
Let us derive Heisenberg’s equations of motion

using the commutation relations (8) and Hamiltonian
(7) for the operators

Calculations yield the following system of equations:

(9)

We represent the field that acts on the atoms in the
quantum system as

where  and  are the real and imaginary parts of
the field at the location point of the jth atom. If Ej are
not operators, we pass to the mean values in Eqs. (9) in
the usual fashion. For classical fields, the form of
Eqs. (9) does not change when passing to mean values.
Defining the transformations

H
1
2
---" ω0 jσ3 j

1
2
--- σ+ j d0 j' id0 j''+( ) E j⋅

j 1=

2

∑–
j 1=

2

∑=

–
1
2
--- σ j– d0 j' id0 j''–( ) E j.⋅

j 1=

2

∑

d j
1
2
---σ+ j d0 j' id0 j''+( ) 1

2
---σ j– d0 j' id0 j''–( )+=

d0 j'

d0 j''

σ1 j σ2k,[ ] 2iσ3 jδjk, σ2 j σ3k,[ ] 2iσ1 jδjk,= =

σ3 j σ1k,[ ] 2iσ2 jδjk, σ+ j σ k–,[ ] 4σ3 jδjk,= =

σ+ j σ3k,[ ] –2σ+ jδjk, σ– j σ3k,[ ] 2σ– jδjk,= =

σ+ j σ+ j d0 j' id0 j''+( ), σ j– σ j– d0 j' id0 j''–( ).= =

σ̇+ j iσ+ jω0 j
2i
"
----- d0 j' id0 j''+( )σ3 j d0 j' id0 j''–( )E j( ),+=

σ̇– j –iσ– jω0 j=

–
2i
"
----- d0 j' id0 j''–( )σ3 j d0 j' id0 j''+( )E j( ),

σ̇3 j
i
"
---σ+ jE j

i
"
---σ j– E j.–=

E j E0 je
iωt– , E0 j E j' iE j'',–= =

E j' E j''

σ1 j u j ωt( )cos v j ωt( ),sin–=
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and the notation

(10)

we obtain the equations

(11)

Here, we took into account that

This equality is proved for d0j || E0j.
The changeover from Eqs. (9) to Eqs. (11) corre-

sponds to the changeover to the rotating reference
frame that is well known in resonance optical spectros-
copy [18]. Equations (11) obey the following conserva-
tion laws:

therefore,

(12)

We will call Eqs. (11) the modified Bloch equations.
These equations are set up with regard for the fact that
the fields and dipole moments are complex-valued.
Below, we show that this allows us to describe the
mutual influence of dipoles in the two-atom quantum
system.

In the general case, Eqs. (11) should be supple-
mented by relaxation terms by phenomenologically
introducing the phase relaxation, , and the energy
relaxation, T1j, of the jth atom of the system. Then,
instead of Eqs. (11), we obtain the equations

σ2 j u j ωt( )sin v j ωt( ), σ3 jcos+ w j,= =

σ j± u j v j±( )e iωt± ,=

σ j± d0 j' id0 j''±( ) u j iv j±( )e iωt±=

u j iv j+( )d0 j* X j*, u j iv j–( )d0 j X j,= =

d0 j d0 j' id0 j'' ,–=

Ẋ j iX j ω0 j ω–( )–
2i
"
-----w j d0 j

2E0 j,–=

Ẋ j* iX j* ω0 j ω–( ) 2i
"
-----w j d0 j

2E0 j* ,–=

ẇ j
i
"
---X j* E0 j⋅ i

"
---X jE0 j* .–=

d0 j d0 j* E0 j⋅( ) d0 j
2E0 j.=

td
d

X j
2 w j

2 d0 j
2+( ) 0;=

u j
2 v j

2 w j
2+ + 1.=

T2 j'

Ẋ j iX j∆ j
2i
"
-----w j d0 j

2E0 j*
X j

T2 j'
-------,–+=

Ẋ j* –iX j*∆ j
2i
"
-----w j d0 j

2E0 j–
X j*

T2 j'
-------,–=

ẇ j
i
"
---X j* E0 j⋅ i

"
---X j E0 j*

w j w0 j–
T1 j

-------------------,–⋅–=
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where ∆j = ω0j – ω is the detuning from the jth atom res-
onance and w0j is the initial value of the jth atom inver-
sion. We consider the interaction of atoms with a field
of short light pulses with duration much less than the
relaxation times  and T1j.

The electric field strength obeys the equation

(13)

where r is an arbitrary observation point (it may coin-
cide with the location of the atoms), EI(r, t) is the exter-
nal field that affects the system,

(14)

is the induced dipole moment of the jth atom, c is the
speed of light in vacuum, and Rj = |r – rj|. The combi-
nation of Eq. (13) with Eqs. (11) forms a closed system
of equations; we will use it to describe various optical
properties of the two-atom quantum system.

Using Eq. (13), we explicitly represent the fields E01
and E02 in Eqs. (11). We single out the negative fre-
quency parts of those fields, which are proportional to
exp(–iωt). Let the axis of the two-atom system be
directed along the axis y. Then, atom 1 has the radius
vector r1(0, 0, 0), and atom 2 has the radius vector r2(0,
R, 0). The field at the location of atom 2 has the form

(15)

T2 j'

E r t,( ) EI r t,( ) curlcurl
p j t R j c⁄–( )

R j

------------------------------,
j 1=

2

∑+=

p j
1
2
---X je

iωt– c.c.+=

E2 E02' iE02''–( ) iωt–( )exp y0 E0 I ik0 R⋅( )eIyexp
= =

+ 2G ik0 R⋅( ) p01
y[ ]

2 ik0 R⋅( )exp

cR2
---------------------------------- ṗ01

y[ ]+exp 


× iωt–( )exp x0 E0 I ik0 R⋅( )eIxexp
+

– F ik0 R⋅( ) p01
x[ ]

ik0 R⋅( )exp

cR2
------------------------------ ṗ01

x[ ]–exp

+
2ik0 ik0 R⋅( )exp( )exp

cR
------------------------------------------------------- ṗ01

x[ ] 
 iωt–( )exp

+ z0 E0 I ik0 R⋅( )eIz F ik0 R⋅( ) p01
z[ ]exp–exp



–
ik0 R⋅( )exp

cR2
------------------------------ ṗ01

z[ ]

+
2ik0 ik0 R⋅( )exp( )exp

cR
------------------------------------------------------- ṗ01

z[ ] 
 iωt–( ).exp
JOURNAL OF EXPERIMENTAL
Here x0, y0, and z0 are the coordinate unit vectors; E0I is
the real amplitude of the external wave with the polar-

ization vector eI =  + i  and the wave vector k0;

are the parameters of the dipole–dipole interaction of
the atoms; k0 = ω/c; p0j = Xj/2; and the symbol […]
denotes that the corresponding quantity is determined
at the time instant t – R/c. A similar expression can be
written for the field E1 at the location of atom 1; gener-
ally, this field is different from E2.

3.1. A Small Two-Atom System

Expressions for E1 and E2 become considerably
simpler when k0R  0, i.e., when the system dimen-
sions are much less than the external radiation wave
length. In this case, we may neglect the lag in the
dipole–dipole interaction of the atoms, which yields
G = F = 1/R3; we also may neglect the terms propor-
tional to  in expression (15) for Ej. Then, for the
fields at the location points of atoms 1 and 2, we have

(16)

where the tensor  is

(17)

Substitute (16) into Eqs. (11) to obtain a closed system
of equations in the unknowns Xj for the given value of
the external field in the form of a short pulse. Moreover,
Eqs. (16) and (11) for the field and atomic variables
hold for optical pulses of an arbitrary shape and dura-
tion, including femtosecond pulses.

4. NOT OPERATOR IN A SYSTEM
OF INDEPENDENT ATOMS

Consider the case of independent atoms when,
according to (16), the field at the location of the atoms
(for example, of atom 1) is equal to the external field.
This means that, under certain irradiation conditions of
atom 2, X2 = 0.

Let us write Eqs. (11) in matrix form. For atom 1,
we have

(18)

eI' eI''

G
1

R3
----- i

k0

R2
-----, F– G

k0
2

R
----–= =

ṗ j

E01 E0 Ie0 I
1
2
---ĜX2, E02+ E0 IeI

1
2
---ĜX1,+= =

Ĝ

F– 0 0

0 2G 0

0 0 F–

.

td
d

X1y

X1y*

w1 d01

M̂1y

X1y

X1y*

w1 d01

,=
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where

(19)

Similar equations can be obtained for the other compo-
nents of the induced dipole moments of atom 1. In the
case of independent atoms, we have E01 = E0I in (19).

Consider a rectangular pulse acting on atom 1.
Then, the solution to Eq. (18) is written in the form

(20)

where t0 is the initial instant of time. For a rectangular

pulse, the unitary operator exp  can be repre-
sented as

(21)

M̂1y

i∆1– 0
2i
"
----- d01 E01y–

0 i∆1
2i
"
----- d01 E01y*

i
"
--- d01 E01y*–

i
"
--- d01 E01y 0

.=

X1y

X1y*

w1 d01

M̂1yt( )
X1y

X1y*

w1 d01 t0

,exp=

M̂1yt( )

M̂1yt( )exp M̂1y
2 1

Ω1y
2

-------- 1 Ω1yt( )cos–( )=

+ M̂1y
1

Ω1y

-------- Ω1yt( ) Î ,+sin
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where

Taking into account (20) and (21), we determine the
variation of the atom inversion in time. For t0 = 0, we
have

(22)

We point out some properties of solution (22). If 

and  are zero, this solution coincides with Rabi’s
solution [18]. The change in polarization of the external
field does not affect the atom inversion if |E01y| = |E01β|,
where β = x, z. In the case of the exact resonance, the
inversion of the two-level atom varies in the range from
–1 through 1 for the corresponding values of the field.

In order to obtain a complete description of the
atomic Bloch state, one should, in addition to the inver-
sion w, determine the quantities u and v, which deter-
mine the pseudospin or Bloch vector. Setting ω = ω01,
we find from solution (20) that

Ω1y ∆1
2 4

"
2

----- d01
2 E01y

2+ .=

w1 t( )
1

Ω1y
2

-------- 1 Ω1yt( )cos–( ) ∆1
1
"
---E01y* X1y 0( )–=

– ∆1
1
"
---E01yX1y* 0( )

4

"
2

----- d01
2 E01y

2w1 0( )–
1

Ω1y

--------+

× Ω1yt( ) i
"
---E01y* X1y 0( )–

i
"
---E01yX1y* 0( )+ w1 0( ).+sin

d0 j''

E0 j''
(23)
u

v

w

1 2 ϕsin
2 Ω

2
----t 

 sin
2

– – 2ϕsin
Ω
2
----t 

 sin
2 ϕ Ω t( )sinsin

– 2ϕsin
Ω
2
----t 

 sin
2

1 2 ϕcos
2 Ω

2
----t 

 sin– ϕ Ω t( )sincos

ϕsin Ωt( )sin– – ϕ Ω t( )sincos Ωt( )cos

u0

v 0

w0

,=
where

and u0, v 0, and w0 are the values of the corresponding
quantities at t = 0. For convenience, we omit the sub-
scripts on the variables u, v, and w. At ϕ = 0, solution
(23) to Eq. (20) turns into Rabi’s solution [18] of the
Bloch optical equations for an isolated rectangular
pulse in the case of the exact resonance.

Assume that the initial state of the atom is u = v  = 0,
w = w0, where w0 = ±1. When the atom is affected by a
rectangular pulse of duration τ = π/Ω , it goes to the
state u = 0, v  = 0, w = –w0, as is seen from (23). Thus,
using the so-called 180° pulse, we can change the atom

Ω
2 d01 E01

"
------------------------, eiϕ E01

E01
----------,= =
state to the inverse one or, in other words, perform the
logical NOT operator.

In the general case, operator (23) corresponds to the
rotation of the Bloch vector of the initial state by the
angle Ωt about an axis that lies in the plane uv  and is
determined by the rectangular pulse phase ϕ. If w = ±1
at the initial state, the axis of rotation makes no differ-
ence when the 180° turn is made. If we make a 90° turn,
i.e., use rectangular pulses of duration τ = π/2Ω , the sit-
uation is different.

As in the models of quantum computers based on
the NMR [1], the single-qubit Hadamard operator (5) is
very useful. It can be realized by 90° rotations about the
axes u and v. For such rotations, pulses with the phase
0 and π/2, respectively, should be used.
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Assume that the atom is in the state u = v  = 0, w = –1
or |0〉 . Let it be affected by a sequence of two pulses.
The first of them makes a rotation about the axis u by
180°, and the second one makes the rotation about the
axis v  by 90°. As a result, the atom goes to the state u = 1,
v  = 0, w = 0. According to (6), this state is associated
with the wave function

If the atom is initially in the state |1〉 , then the same
sequence of pulses takes it to the state

5. CNOT OPERATOR IN A SYSTEM 
OF INTERACTING ATOMS

Consider the case of a small quantum system in
which the field at the location of atoms 1 and 2 is deter-
mined by relations (16). In this case, we write the solu-
tion to Eqs. (11) as

(24)

where γ = x, y, z. Depending on the subscript γ in (24),
the corresponding components of tensor (17) should be
used when determining the field that acts on the jth
atom of the quantum system.

We represent the unitary operator in (24) in the form

(25)

where Nt is the number of short time intervals between
the instant t0 of switching on the external field and the
current instant t. We assume that the field that affects
atoms 1 and 2 at every kth interval is a rectangular
pulse. Since these intervals are short, we have

(26)

where the matrices  have the form (19) with the
corresponding numerical values of the involved quanti-
ties for the kth time intervals. Making the number of
time intervals sufficiently large, we can solve Eqs. (11)
with any desired accuracy. Below, we use this algo-
rithm for solving Eqs. (11) to analyze the influence of
various factors on the interaction of atoms in the radia-
tion field and on the evolution of the quantum system
state with time. This will give us a good idea of how the
logical CNOT operator can be implemented.

Ψ| 〉 1

2
------- 0| 〉 1

2
------- 1| 〉 .+=

Ψ| 〉 1

2
------- 0| 〉 1

2
------- 1| 〉 .–=

X jγ t( )

X jγ* t( )

d0 j w j t( )

M̂ jγ t'( ) t'd

t0

t

∫ 
 
  X jγ t0( )

X jγ* t0( )

d0 j w j t0( )

,exp=

M̂ jγ t'( ) t'd

t0

t

∫ 
 
 

exp M̂ jγ
k( )

tk tk 1––( ){ } ,exp
k 1=

Nt

∏=

M̂ jγ
k( )∆tk( )exp M̂ jγ

k( )( )
21
2
--- ∆tk( )2 M̂ jγ

k( )∆tk Î ,+ +=

M̂ jγ
k( )
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5.1. Factors That Determine the Properties
of Atom Interaction

Assume that the qubit atoms of the small system are
identical, i.e., |d01| = |d02|, ω01 = ω02, and the fre-
quency of the external field is such that resonance
condition is fulfilled, i.e., ∆1 = ∆2 = 0 in Eqs. (11) and

in the matrices . Nevertheless, the atomic inver-
sions can be different.

According to (16), the field acting on atoms 1 and 2
is composed of the external and internal fields. More-
over, the internal field is self-consistent. This implies
that the field at the location of atom 1 depends on the
field at the location of atom 2 and inversely. This is
described by the nonlinear terms in Eqs. (11) for inver-
sion and in the evolution operators (25) and (26).

Let us define two time intervals describing the
behavior of the two-atom quantum system. This is Tact =
2π/Ω , where Ω = 2|d01||E0I |/", which corresponds to the
action of the external field, and Tint = 2π/Ωb, which cor-
responds to the interaction of atoms in the small quan-
tum system. Tact and Tint must be considerably less than

the phase and relaxation times T11 = T12 = T1 and  =

 =  of the atoms in the system under consider-
ation.

Let d01 and d02 be directed along the line passing
through each atom and have the same length d. In this
case, the maximum value of the internal field is Eb =
d/R3. It was shown above that the action of any field on
the atom causes the change in its state with the Rabi fre-
quency. In our case, this frequency is Ωb = 2dEb/".

It is important for quantum computations that the
interaction interval is much less than the relaxation
time. Therefore, the atoms and the distance between
them should be chosen so that Tint = 2π/Ωb ! T1j, .
For example, if we take atoms for which d = 10–18 esu
and place them at the distance R = 10 nm, then the inter-
action interval Tint ~ 10–9 s. For the case R = 1 nm, we
have Tint ~ 10–12 s.

If d01 and d02 are directed perpendicularly to the line
connecting the atoms, then Eb = d/2R3. In this case, Ωb

is half as large and the interaction interval is twice as
long.

Note that the interaction interval Tint and the interval
of the external field action Tact can be substantially dif-
ferent. Indeed,

hence, if the external field E0I > d/R3, then the interval
of the external field action is less than the interaction
interval.

M̂ jγ

T21'

T22' T2'

T2 j'

T int

Tact
--------

E0 I R
3

d
-------------;=
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5.2. The Exchange of Information between Qubits 
under Various Initial Conditions

In order to determine the response of a two-atom
system to an action, it is sufficient to know the response
of four basic states |00〉, |10〉, |01〉 , and |11〉  to this
action. For the first state, the inversion of both atoms is
–1; for the second state, the inversion of the first atom
is 1 and of the second one is –1; and so on. Accordingly,
the effect of the CNOT operator on the system is as fol-
lows:

(27)

Although CNOT is one of the basic logical opera-
tions, it can be implemented by a set of elementary uni-
tary transformations in each of which either one qubit
atom or both are involved. Below, we analyze transfor-
mations of the second type assuming that R = 10 nm
and d = 10–18 esu.

Assume that no external field affects any of the
atoms. In this case, there exists a set of initial condi-
tions under which the quantum system does not evolve.
For example, let |w1| = |w2| = 1. Then, first of all, we
have from (12) that u1 + iv 1 = 0 and u2 + iv 2 = 0. Sec-
ond, (16) implies that E1 = E2 = 0. Taking this fact into

account, we obtain from Eqs. (11)  = 0 and the value
of . It is seen that this state of the system does not
vary with time. Such a situation occurs if the value of
u1, v 1, or w1 for one of the atoms is ±1 and, for the other
atom, u2 = ±u1, v 2 = ±v 1, and w2 = ±w1.

We see that in order to use this type of interatomic
interaction for the implementation of the CNOT opera-
tor, one of the atoms should first be put in a superposi-
tion state. Figures 1 and 2 show the evolution of the

00| 〉 10| 〉 , 10| 〉 00| 〉 ,
01| 〉 01| 〉 , 11| 〉 11| 〉 .

Ẋ j

ẇ j

D B

A, C

A, C

DB

B, D

A

C v

u

w

A

C

B, D

v

w

u

(a)

(b)

Fig. 1. Evolution of the quantum state of the system in the
absence of the external field in the case when the second
qubit atom is initially in the ground state and the first atom
is in the state H|0〉  (a) and H|1〉  (b).
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basic states in time when the first qubit atom is affected
by the Hadamard operator. The point determining the
Bloch state of the atom performs a periodic motion
along an arc of unit circle while successively taking the
states A, B, C, D, and A. The time required to complete
a 90° turn about a certain axis is Tint/4 = 7.5 × 10–10 s. It
is easily seen that the evolution proceeds differently in
each case. In particular, the evolution of the first qubit-
atom state depends on the state of the second qubit
atom at the initial instant of time.

Assume that the second atom is known to be in the
ground state and is affected by an external field about
1000 times less strong than the internal field. Figure 3
illustrates the evolution of the Bloch state of the system
in two cases—when the first atom is in the ground and
in the excited state. If both atoms were initially in the
ground state (Fig. 3b), then they will be in the same
state after a while if small amplitude oscillations are
neglected. If the first atom was excited, then it goes to
the ground state after a while, and the second atom goes
to the excited state. In between, there are rather long
time intervals (delays) when nothing happens. These
delays are the longer the less the external field strength.

5.3. Switching between the NOT 
and CNOT Operators

It was mentioned above that the operation of a quan-
tum computer requires that individual qubits could be
affected selectively. The assumption on the localization
of the external field in the region of an individual qubit
does not suggest that the action is selective, since the
qubits interact. We show that, under certain excitation
conditions, the CNOT operator can be transformed into
the NOT operator.

DB

A, C

A, C

D B

B, D

A

C

v

u

w

A

C

B, D

v

w

u

(a)

(b)

Fig. 2. Evolution of the quantum state of the system in the
absence of the external field in the case when the second
qubit atom is initially in an excited state and the first atom
is in the state H|0〉  (a) and H|1〉  (b).
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Let there be two identical atoms the first of which is
affected by an external field with the strength greater
than that of the internal field that affects both the first
and the second atom. Figure 4 illustrates the evolution
of the Bloch state of the system for various strengths of
the external field. In case (a), when the internal field
Eb = 1 esu is ten times as strong as the external one,
there is practically no evolution. In cases (b) and (c), the
states of both atoms vary substantially. In case (d),
when the external field is five times as strong as the
internal one, the state of the second atom varies sub-
stantially, while the first atom state undergoes only
insignificant variations.

6. CONCLUSION

In this paper, a mode of operation of a quantum
computer is suggested. It is based on a small system of
two-level atoms and makes use of optical quantum tran-
sitions and the dipole–dipole interaction of atoms in the
radiation field. Basic problems that must be solved
when designing a quantum computer are formulated,
and it is shown that the mode of operation suggested in

1

0

–1

2

–0.99996

–1
0 1

t/Tint

(b)

(a)

w

Fig. 3. The dependence of inversion on time in the case
when the external field at the location of the second qubit
atom is E0I = 0.005 esu. The bold curve corresponds to the
inversion of the second qubit atom and the normal line cor-
responds to that of the first qubit atom. (a) Atom 1 is initially
in the excited state, and atom 2 is in the ground state;
(b) both atoms are initially in the ground state.
JOURNAL OF EXPERIMENTAL 
the paper has certain advantages over other types of
quantum computers.

In the theory of quantum information and quantum
computations, both individual quantum states of qubits
and entangled states are used. We suggest using Bloch

w
(a)

–0.98

–1

–1

0

1
(b)

(c)

–1

0

1

–1

0

1
(d)

0 1
t/T '''act

0 1
t/T ''act

0 1
t/T 'act

0 1
t/Tact

Fig. 4. The dependence of inversion on time for various
strengths of the external field at the location of the second
atom: E0I = (a) 0.1, (b) 0.5, (c) 1, (d) 5 esu. The bold curve
corresponds to the inversion of the second qubit atom, and
the normal line corresponds to that of the first qubit atom.
The scale of time is different for each figure; 3 × 10–8 s =
Tact >  >  >  = 6 × 10–10 s; Tact = 2π/Ω , where

Ω = 2|d01||E0I |/". The intervals , , and  are dif-

ferent from Tact in the strength of the external field E0I. 

Tact' Tact'' Tact'' '

Tact' Tact'' Tact'' '
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states instead. Bloch states are related to the observable
quantities through such quantities as induced dipole
moments and inversions of qubit atoms. We show that
all operators used in the theory of quantum information
can be implemented on the basis of Bloch states, and
entangled states are implemented with regard for the
dipole–dipole interaction of atoms.

In order to describe the mode of operation of a quan-
tum computer, we derive modified optical Bloch equa-
tions for the vector operators of effective spin of two-
level atoms and the atom inversion that take into
account the amplitude and phase properties of all phys-
ical quantities determining the mutual influence of
qubit atoms in the process of executing the NOT and
CNOT logical operators.

A solution to the modified optical Bloch equations
for ultrashort optical pulses with duration much less
than the time of the phase and energy relaxation of
atoms including femtosecond pulses is obtained.

A numerical analysis of this solution to the consis-
tent system of equations in atomic and field variables
for the small two-atomic quantum system consisting of
two identical atoms in the case of the exact resonance is
carried out. We assume that individual qubit atoms can
be selectively affected by an external field so that the
evolution of the Bloch states of individual qubits and
internal polarizing fields can be traced.

In this paper, we suggest controlling the evolution of
atoms using short and ultrashort light pulses with dura-
tion much less than the time of the phase and energy
relaxation. The external field is considered as a classi-
cal one, which corresponds to powerful pulses that can
substantially change the inversion and local dipole
moments of qubits.

Properties of the NOT and CNOT logical operators
under various excitation conditions and initial inversion
of the atoms are analyzed. It is shown that, when one of
the atoms is excited by an ultrashort external light
pulse, a polarizing field at the location of the other atom
occurs with a certain time delay. The delay is deter-
mined by the strength of the internal and external fields
rather than by the photon transit time of the interatomic
distance. The possibility of switching the NOT and
CNOT operators using a smooth change of the strength
of the external radiation field is shown.

The analysis of the solution to the equations of
motion shows the importance of the results for the
physical implementation of a quantum computer. A fur-
ther analysis of this solution requires a separate consid-
eration.
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Abstract—We investigate, theoretically and numerically, properties of dispersion-managed (DM) solitons in
fiber lines with the dispersion compensation period L much shorter than the amplification distance Za. We
present the path-averaged theory of DM transmission lines with a short-scale management in the case of asym-
metric maps. Applying a quasi-identical transformation, we demonstrate that the path-averaged dynamics in
such systems can be described by an integrable model in some limits. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Realization of soliton-based optical data transmis-
sion has clearly demonstrated how results of fundamen-
tal soliton theory (see, e.g., [1–12]) can be successfully
used in very important practical applications. The dis-
persion management technique proposed recently pro-
vides for an increase in the bit rate per channel and
leads to suppression of the interchannel interaction in
WDM systems in comparison with traditional soliton
transmission [13]. The dispersion-managed (DM) soli-
ton is a novel type of an optical information carrier with
many attractive properties (see, e.g., [15–57] and refer-
ences therein) combining features of the traditional
fundamental soliton and the dispersion-managed non-
return-to-zero transmission. The power of the DM soli-
ton is enhanced [19] compared to the corresponding
fundamental soliton. This increases the signal-to-noise
ratio, reduces the Gordon–Haus jitter, and therefore
improves the transmission system performance. How-
ever, in the systems (transmission regimes) limited by
nonlinear pulse interactions rather than by noise, the
enhanced soliton power can become a less attractive fea-
ture. For instance, data transmission with high bit rates of
40 Gb/s per channel and more requires a dense pulse
packing and, consequently, short soliton widths. The
DM soliton energy increases with the decrease in the
pulse width (or, in other words, with the increase in the
map strength). The average power of the traditional
soliton signal increases with the increase in the bit rate
(assuming the soliton width to be a fraction of the time
slot) as the square of the bit rate. For the DM soliton,
this growth is even more drastic, and for short pulses,
the DM soliton power can therefore become too high to
be realized in practice [55]. Additionally, soliton inter-
action becomes an important issue as the signal power

¶This article was submitted by the authors in English.
1063-7761/02/9405- $22.00 © 20892
increases [55]. The energy control by the correspond-
ing reduction of the average dispersion is limited by
fluctuations of the dispersion along the fiber and by
higher order dispersive effects. Therefore, in designing
soliton-based (and also general return-to-zero signal)
transmission systems, the soliton power must be kept
sufficiently large for the signal-to-noise ratio require-
ment and suppressed jitter and, at the same time, not too
large to avoid strong soliton interaction and to meet the
telecommunication standards on signal power. One
way to find such an optimum for a high-bit-rate DM
transmission is to use a chirped-return-to-zero signal
[55, 56] with less power than the DM soliton power in
the corresponding system. Even though such carriers
are not stable in a rigorous mathematical sense and emit
radiation as they propagate, they can be successfully
used in practical systems. A challenge for the soliton
theory, however, is to find high-bit-rate (≥ 40 Gb/s per
channel) transmission regimes with a truly periodic
soliton-like signal propagation. Short-scale dispersion
management is a means of controlling the DM soliton
energy while keeping the average dispersion not too
small and taking advantage of the four-wave-mixing
(FWM) suppression in the WDM transmission by a
high local dispersion.

The traditional dispersion management for long-
haul transmission assumes the amplification distance
to be much shorter than the dispersion compensation
period (see, e.g., [14]). Another important application
is the implementation of dispersion-compensating
schemes in the existing terrestrial fiber links based on
standard monomode fibers, which typically requires
rather close spacing of the dispersion compensating
fibers because of the high dispersion of standard mono-
mode fibers at 1.55 µm. In this case, the amplification
distance is typically of the order of the compensation
period. The existing technologies make it possible to
002 MAIK “Nauka/Interperiodica”
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manufacture fibers with the continuous alternation of
positive and negative dispersion sections of a few kilo-
meters long without any splicing [27]. The fundamental
properties of the optical signal transmission in this
regime are less studied compared to other regimes. In
this paper, we investigate the optical pulse transmission
in DM fiber systems with a compensation length that is
much shorter than the amplification distance [41]. We
examine the case of an asymmetric dispersion map.
Compared to lossless models, systems with different
periods of the amplification (Za) and dispersion com-
pensation (L) possess an important new degree of free-
dom, the parameter L/Za. A short-scale dispersion com-
pensation (L ! Za) leads to a reduction of the DM soli-
ton power if we fix all system parameters and the pulse
width and vary only L/Za. Below, we show that short-
scale management can be considered as a possibility of
an advantageous practical realization of the weak-map
regime.

2. THE BASIC MODEL

We first recall the basic equations and the notation.
The optical pulse propagation in a cascaded transmis-
sion system with varying dispersion is governed by

(1)

where z is the propagation distance in km, t is the
retarded time in ps, |E |2 = P is the optical power in W,
and D(z) is the group velocity dispersion measured in
ps/(nm km). We assume a periodic dispersion manage-
ment with the period L, D(z + L) = D(z); zk are the
amplifier locations. We consider a periodic amplifica-
tion with the period Za. If γ = γk is constant between two
adjacent amplifiers, then rk = [exp(γkZa) – 1] is the
amplification coefficient after the fiber span between
the kth and (k – 1)th amplifier, n2 is the nonlinear refrac-
tive index, Aeff is the effective fiber area, γ = 0.05ln10α
(with α measured in dB/km) is the fiber loss of the cor-
responding fiber, cl is the speed of light, and λ0 = 1.55 µm
is the carrier wavelength. We consider the general case
where L and Za are rational and commensurable,
namely, nZa = mL = Z0 with integer n and m. In this
paper, we focus on systems with short-scale manage-
ment with n = 1, m > 1, and Z0 = Za = mL. It is custom-
ary to pass from the original optical field E(z, t) to

i
E∂
z∂

------
λ0

2D z( )
4πcl

-----------------∂2E

t2∂
---------

2πn2

λ0Aeff
-------------- E 2E+ +

=  i –γ z( ) rk δ z zk–( )
k 1=

N

∑+ E iG z( )E,=

A z t,( ) E z t,( ) G z '( ) z 'd

0

z

∫ .exp=
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The evolution of the scaled envelope A is then given
by the nonlinear Schrödinger (NLS) equation with peri-
odic coefficients

(2)

where

(3)

3. THE PATH-AVERAGED MODEL

In this section, we briefly recall the derivation of the
path-average model [28, 42] describing the change in
the signal waveform over one compensation period.
Equation (3) governing the z evolution of an optical
pulse can be written in the Hamiltonian form

(4)

with the Hamiltonian

(5)

The true breathing soliton is a solution to Eq. (3) of
the form

with a periodic function F(z + Z0, t) = F(z, t). It is inter-
esting to find a systematic way to describe a family of
periodic solutions F with different quasi-momenta k.
The basic idea suggested in [28] is to use the small
parameter e to derive a path-averaged model that gives
a regular description of the breathing soliton in the
leading order in e. Averaging cannot be performed
directly in Eq. (1) in the case of large variations

where

However, a path-averaged propagation equation can
be obtained in the frequency domain [28]. We show
that, in some important limits, the averaged equation
for the periodic breathing pulse can be transformed to
the integrable NLS equation.

First, to eliminate the periodic dependence of the
linear part, we follow [28] in applying the so-called
Floquet–Lyapunov transformation

(6)

iAz d z( )Att ec z( ) A 2A+ + 0,=

ec z( )
2πn2

λ0Aeff
-------------- 2 G z '( ) z 'd

0

z

∫ ,exp=

d z( )
λ0

2D z( )
4πcl

-----------------.=

i
A∂
z∂
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δA*
---------- –d z( )Att ec z( ) A 2A–= =

H z( ) At
2 ec z( )

2
------------- A 4–d

 
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t.d∫=

A z t,( ) ikz( )F z t,( )exp=

d̃  @ d〈 〉 ,
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Aω φω iω2R z( )–{ } ,
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dz
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where Aω = A(z, ω) is the Fourier transform of

An important observation used in what follows is that,
for a fixed amplitude of d, the amplitude of the variation
of R decreases as m = Za/L increases. It can easily be
found that

In the new variables, the equation becomes

(7)

where

is Za-periodic and

We note that Gω123 depends only on the specific
combination of the frequencies given by the resonance
surface ∆Ω . Both the Fourier transform and Floquet–
Lyapunov transform (6) are canonical, and the trans-
formed Hamiltonian H is given by

(8)

It is important that ε and 〈d〉  are small, and Eq. (7)
therefore has the so-called Bogolyubov standard form
and the averaging procedure can then be applied. We
now apply the Hamiltonian averaging [50, 51]. We
change the variables as

where

with

(9)

A z t,( ) Aω iωt–[ ]exp ω.d∫=

max R z( )[ ] 1/m.∝

i
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z∂
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In the leading order in e, the path-averaged evolu-
tion of signal in the DM line is governed by the Gabi-
tov–Turitsyn model [28]

(10)

The Hamiltonian averaging introduced here repre-
sents a regular way to calculate the next-order correc-
tions to the averaged model. We note that Eq. (10) pos-
sesses a remarkable property. The matrix element
Tω123 = T(∆Ω) is a function of ∆Ω , and on the resonant
surface given by

both Tω123 and its derivative with respect to ∆Ω are reg-
ular. This observation allows us to make a quasi-identi-
cal transformation that eliminates the variable part of
the matrix element Tω123

(11)

where T0 = T(0). This transformation has no singulari-
ties. If the integral part in this transformation is small
compared to aω, then, in the leading order, we obtain

(12)

This is nothing else but the integrable nonlinear
Schrödinger equation written in the frequency domain.
Obviously, this transformation is quasi-identical only if
the integral in Eq. (11) is small compared to aω. This is
not true in the general case, and that is why the path-
averaged DM soliton given by the solution to Eq. (10)
then has a form different from the cosh-shaped NLS
equation soliton [28, 43, 49]. A comprehensive analysis
of the DM soliton solutions to the Gabitov–Turitsyn
equation has been published in [46–48]. The first high-
precision numerical solution of the Gabitov–Turitsyn
equation was presented in [48]. We note that, if the ker-
nel function in Eq. (11) is small,

(13)

then the averaged model can be reduced to the NLS
equation. In other words, this is a condition on the func-
tions c(z) and d(z) that makes the quasi-identical trans-
formation possible. The path-averaged DM soliton
propagation in systems satisfying requirement (13) is
close to the dynamics of the traditional soliton and at

i
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the same time preserves all the advantages of the sup-
pression of FWM by a high local dispersion.

4. SYSTEMS WITH A SHORT-SCALE 
MANAGEMENT

In this section, we calculate the matrix element Tω123
for systems with a short-scale management (L ! Za)
and demonstrate that a path-averaged propagation
(even with large variations of the dispersion) can be
described by the integrable NLS equation in this
regime. The matrix element T plays an important role in
the description of the FWM [52]. To be specific, we
consider a two-step dispersion map with the amplifica-
tion distance Za = Z0 (n = 1) and dispersion compen-
sation period L = Za /m km. The dispersion is

if

and

if

where k = 0, 1, 2, …, m – 1 and the parameter a ∈  (0,
1) describes the position of the step. The mean-free
function R defined above can be found as

if

and

if

Straightforward calculations show that, in this sys-
tem, the matrix element Tω123 is

d z( ) d d〈 〉+=

k
m
---- z

Za

----- k a+
m

------------< <

d z( ) da
a 1–
----------- d〈 〉+=

k a+
m

------------ z
Za

----- k 1+
m

------------,< <

R z( ) d z Zak/m– aZa/ 2m( )–( )=

k
m
---- z

Za

----- k a+
m

------------< <

R z( ) da
a 1–
----------- z

Zak
m

--------–
a 1+( )Za

2m
-----------------------–=

k a+
m

------------ z
Za

----- k 1+
m

------------.< <

Tω123

2γZa( )exp 1–
2γZa 2γZa( )exp
--------------------------------------- 1

id∆Ω
2γ id∆Ω–
--------------------------+=
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(14)

To show a self-similar structure of this matrix ele-
ment, we rewrite Tω123 as

(15)

(16)

where the amplitude B is a function of only G =
exp(2γZa) and is independent of m. The shape F(a, X,
Y) is a function of the parameter a and specific combi-
nations of X = 2γZa/m and Y = d∆ΩZa/m. The real part
(solid curve), the imaginary part (dashed curve), and
the absolute value (dotted curve) of F(a, X, Y) are plot-
ted in Fig. 1. Here, a = 0.21 dB/km, Za = 60 km, m = 2,
and a = 0.5. Minima of the function |F | correspond to
operation regimes with the suppressed FWM [52]. In
the d = 0 limit, we obviously recover results of the tra-
ditional path-averaged (guiding-center) soliton theory
[24–26].

In Fig. 2, the function |F(a, X, Y)|| is plotted versus
Y for different a with the same parameters as in Fig. 1.
We now estimate the matrix element of the quasi-iden-
tical transformation

It can be seen that as m increases (with the other
parameters fixed), the path-averaged model (10) gov-
erning the DM soliton propagation converges to the
integrable NLS equation with

× 1
2γZa/m
2γZa/m )(exp 1–

-------------------------------------------–

×
2 1 a–( )γ iad∆Ω+( )Za/m[ ]exp 1–
2 1 a–( )γ iad∆Ω+( )Za/m

---------------------------------------------------------------------------------------

× iad∆Ω
Za

2m
-------– .exp

Tω123 B G( )F a X Y, ,( ),=

B G( ) G 1–
G Gln
--------------,=

F a X Y, ,( ) 1
iY

X iY–
--------------- 1

X

eX 1–
--------------–+=

× 1 a–( )X iaY+[ ]exp 1–
1 a–( )X iaY+

----------------------------------------------------------- iaY
2

--------– 
  ,exp

S ∆Ω( ) 1
Za

----- c z( ) i∆ΩR z( )( )exp 1–[ ]
∆Ω

------------------------------------------------------------ zd

0

Za

∫≤

≤ max R( ) c〈 〉 ad
2m
------- c〈 〉 .=

T 0( ) G 1–
G Gln
--------------.=
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It is obvious that, in the limit of a very weak loss
(small γ), we again obtain the lossless model approxi-
mation for T,

However, the increase in m (decrease in L) under the
fixed characteristic bandwidth of the signal makes the
oscillatory structure of the kernel insignificant. This
implies that, if T(∆Ω) is practically concentrated in

Tω123
aY( )sin

aY
-------------------.=

–0.2

0 25

R
e[

F
],

 I
m

[F
],

 |F
|

Y
50 75 100

0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Real (solid curve) and imaginary (dashed curve)
parts and the absolute value (dotted curve) of the function
|F(a, X, Y)| are plotted for a = 0.5 and X = 0.63 ln(10)dB.
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Fig. 2. The function |F(a, X, Y)| versus Y for the system with
different a.
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some region, then the corresponding region in ∆Ω is
larger for large m than for small m. For pulses with the
same spectral width, this means that T is much flatter
for large m: as a matter of fact, the function T can be
well approximated by the value T(0) for large m (small
L). As a result, the NLS equation model works rather
well in this limit and the solution (of the path-averaged
model!) should be close to the cosh-like soliton of the
NLS equation. We note that, although it is known that
the DM soliton shape is close to cosh for the lossless
model in the so-called weak-map (S < 1) limit [19, 28,
36, 34], this is not so obvious for a system with loss and
different periods of the amplification and dispersion
variations. In such a system, DM solitons therefore pos-
sess the dual advantages of being chirped (which is
important for the suppression of the four-wave mixing
in WDM systems) and of having integrable path-aver-
aged dynamics, which allows the use of well-developed
mathematical tools in studying practical perturbations.
This additionally implies that all the control techniques
developed for the improvement of the traditional soli-
ton transmission can be directly used in these systems.

5. A SINGLE-PULSE PROPAGATION

In this section, we consider numerical simulation
results for a single pulse propagation in systems with a
short-scale management. In contrast to the lossless
model, the evolution of soliton parameters over one
period is asymmetric here because of the loss. Rapid
variations of the pulse width, peak power, and chirp are
accompanied by the exponential decay of the power
due to the loss. Nevertheless, numerical simulations
have revealed that there exists a true periodic solution
that reproduces itself at the end of the compensation
cell (in this case, at the end of the amplification period).
For the DM soliton with the map strength S = 2, the evo-
lutions of its peak power (right top), chirp (left bottom),
and full width at half maximum (right bottom) along
one section are shown in Fig. 3 for a transmission sys-
tem with the short-scale dispersion map (left top). The
amplification distance is 40 km, and the dispersion
compensation length is 4 km. The following parameters
were used in the simulations: the dispersion in the two-
step map ±16 + 0.1 ps/(nm km) (see Fig. 3), the nonlin-
ear coefficient σ = 2πn2/λ0Aeff = 2.43 W–1 km–1, and the
fiber loss a = 0.21 dB/km.

The observed DM soliton is very stable and propa-
gates without radiation as seen in Fig. 4 (where system
parameters are the same as in Fig. 3). Figure 4 illus-
trates the chirp of the DM soliton versus the width. The
left and right figures show this dependence for the first
and the 140th sections, respectively.

An important feature of solitons in systems with a
short-scale dispersion management is the reduced
power. The DM soliton identified here has a reduced
power compared to the previously studied DM soliton
regimes (L ≥ Za) for the same width propagating in a
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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Fig. 3. Evolution of the soliton peak power (right top), chirp (left bottom), and full width at half maximum (right bottom) along one
section is shown for the transmission system with the short-scale dispersion map (left top). Here, S = 2, the amplification distance
is 40 km, and the dispersion compensation period is 4 km.
fiber system with the same average dispersion (with the
same parameters except the L/Za ratio). This observa-
tion is illustrated by Fig. 5, where we present results of
the modeling based on the zero-mode Gaussian approx-
imation of the DM soliton (in the expansion using a
complete basis of the chirped Gauss–Hermite func-
tions—see [57] for details). Using this approach, we
have built the evolution of the DM soliton peak power
dependence on the pulse width; the dispersion compen-
sation length was changed, but the average dispersion
and the amplification distance were kept the same. In
Fig. 5, the dependence of the DM soliton peak power on
the pulse width at the beginning of the compensation
section z = 0 is shown for different ratios of the disper-
sion period L = Za/m to the amplification distance Za

(40 km here): m = 10 (solid curve), 1 (long-dashed
curve), 0.5 (dashed curve), 0.2 (dotted curve), 0.1
(dash-dotted curve). For control, we also show the peak
power dependence for the true DM soliton found
numerically (in the full model) in the case where m = 10
(squares) and m = 0.2 (rhombuses).

We also note that the energy of the short-scale DM
soliton is very close to that of the conventional soliton
(although the pulse is chirped and experiences breath-
ing oscillations of the width and chirp during propaga-
tion). This is because the effective map strength is small
here due to small L. It is seen from Fig. 5 that the short-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
scale dispersion management (m = 10) indeed provides
a reduced power of the DM soliton for the same pulse
width (and the same average dispersion and the same
other parameters except the ratio L/Za). Because the
soliton power grows very rapidly with the reduction of
the pulse width (after the curves in Fig. 5 pass some
critical turning points; for instance, for m = 1 such a
point is around 16 ps), this effect can be very important
for high-bit-rate transmissions using short pulses.

6. SOLITON INTERACTION

The nonlinear pulse-to-pulse interaction is one the
main limiting factors in high-bit-rate optical data trans-
mission. In this section, we present results on the soli-
ton interaction in systems with a short-scale manage-
ment with the amplification period Za = 60 km and the
dispersion compensation period L = 4 km (m = 15), L =
6 km (m = 10), and L = 12 km (m = 5). Numerical sim-
ulations in this section include the third-order disper-
sion and Raman effects. An important advantage of
operating close to the integrable limit (weak maps) dis-
cussed above is that the well-developed techniques to
suppress soliton interaction can be applied. Figures 6
and 7 show the effect of the initial phase alternation of
neighboring solitons. Figure 6 shows the propagation
of two in-phase solitons initially separated by 10 ps
(100 Gb/s). The solitons collapse after approximately
SICS      Vol. 94      No. 5      2002
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500 km. In contrast, DM solitons with the initial phase
shift π can propagate over 5000 km without fusion.
Here, D = ±2.4 + 0.0785 ps/(nm km), Za = 60 km, m =
15, the peak power of the single soliton is 5.44 mW, and
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Za/m to the amplification distance Za: m = 10 (solid curve),
1 (long-dashed curve), 0.5 (dashed curve), 0.2 (dotted
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the pulse width is 2.93 ps at the chirp-free point
(0.56 km from the end of the map). We recall that the
interaction of DM solitons with larger S is independent
of the initial phase shift [33].

Figure 8 shows the normalized distance between the
Gaussian pulses for different initial phase shifts along
the total distance z = 1018.5 km. The initial distance is
z = 12.5 ps (80 Gb/s), and the maps are D = ±1.6 +
0.04 ps/(nm km), and D = ±2.4 + 0.04 ps/(nm km), and
D = ±3.2 + 0.04 ps/(nm km), with the respective
strengths S = 1.06, 1.58, and 2.12. Figure 9 shows an
improvement of the system performance resulting from
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Fig. 6. The interaction of two in-phase DM solitons at
100 Gb/s. Here, D = ±2.4 + 0.0785 ps/(nm km), Za = 60 km,
and m = 15; solitons with a peak power of 5.44 mW and
pulse width of 2.93 ps are launched at a chirp-free point
located 0.56 km before the end of the section.
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the initial phase alternation. We plot the total transmis-
sion distance versus the DM soliton energy (at the
beginning of the section) at 80 Gb/s. Here, the disper-
sion is D = ±2.4 + 0.04 ps/(nm km), L = 6 km, and Za =
60 km. The total transmission distance has been defined
as the distance at which the Q factor becomes less than
6 for two test random 128-bit patterns. The solid lines
are for the initial signals with a phase alternation, and
dashed lines are for the in-phase input pulses. It can be
seen that short-scale dispersion-managed systems are
quite attractive candidates for the transmission of optical
data at ultrahigh-bit rates. Optimization of such lines will
lead to a further improvement of the system performance.

7. CONCLUSION

We have identified a stable optical pulse propaga-
tion regime in fiber systems with short-scale dispersion
management when the compensation period is much
shorter than the amplification distance. In systems with
a short-scale management, the DM soliton has a
reduced power compared to the usual DM soliton (L >
Za) of the same width (and the same amplification dis-
tance and average dispersion). Short-scale management
is a means of controlling the strength of the map (and,
consequently, pulse energy, interactions, etc.) while
keeping the average dispersion finite and taking advan-
tage of the FWM suppression in WDM by a high local
dispersion. We show that the path-averaged dynamics
of chirped DM solitons in systems with a short-scale
management for weak maps is close to that in the inte-
grable model. Therefore, DM solitons in such systems
possess the dual advantages of being chirped (which is
important for the suppression of the four-wave mixing
in WDM systems) and of possessing integrable path-
averaged dynamics, which allows the use of well-devel-
oped mathematical tools for studying practical pertur-
bations.
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Abstract—A theoretical and experimental study is made into the combined manifestation of local and nonlocal
optical responses in a cubic nonlinear isotropic medium such as an aggregated colloidal silver solution. The
phenomenological treatment of polarization effects is performed for the general case with due regard for the
frequency dispersion of both local and nonlocal nonlinearities and for the noncollinear propagation of pump
and probe light waves. The inverse Faraday effect, the optical Kerr effect, and the self-rotation of the polariza-
tion ellipse in a fractal-disordered nonlinear medium are observed for the first time. The tensor components of
the local and nonlocal cubic nonlinearities of colloidal silver solutions are measured for different degrees of
aggregation. It is demonstrated that, as the size of silver aggregate increases, the nonlocal nonlinear response
increases much more strongly than the local one. An inference is made that the mechanical motion of metal
nanoparticles because of their dynamic interaction with the light wave field can contribute to the nonlinear
polarization effects. © 2002 MAIK “Nauka/Interperiodica”.
 1. INTRODUCTION

The nonlinear-optical properties of aggregated
metal nanocomposites have been subjected to intensive
studies for well over ten years (see the review [1]).
Interest in such media is primarily due to the special
character of interaction between a light wave and an
ensemble of highly polarizable nanoparticles which
form a disordered structure referred to as aggregate or
cluster. Large clusters, which form, in particular, during
aggregation in colloidal solutions, consist of hundreds
and thousands of nanoparticles and have a fractal struc-
ture [2]. The interaction between the induced dipole
moments of particles results in the formation of collec-
tive modes of dipole excitation in clusters, and it is
these modes that define the optical properties of nano-
composites. The spatial configurations of collective
modes, characterized by the electric field distribution,
may be highly diversified; in particular, a localization
of optical excitation is possible in a region which is
small compared with the aggregate size [3, 4]. This
implies a considerable increase in the local electric field
in this cluster region. The latter fact proves to be of spe-
cial significance from the standpoint of nonlinear-opti-
cal processes depending on the square, cube, and higher
powers of the electric field. Butenko et al. [5] predicted
a considerable increase in the nonlinear-optical
responses of aggregates compared with isolated nano-

 §Present address: Purdue University, School of Electrical and
Computer Engineering, West Lafayette, IN 47907 USA.
1063-7761/02/9405- $22.00 © 20901
particles. In subsequent experiments involving colloi-
dal silver solutions, a giant amplification was observed
of degenerate four-photon scattering [6], as well as of
nonlinear refraction and nonlinear absorption [7] dur-
ing aggregation of silver particles into clusters.

Polarization effects in the case of nonlinear self-
action of a light wave in an aggregated colloidal silver
solution were first observed and experimentally inves-
tigated by us in [8], where a nonlinear optical activity
of fractal aggregates of silver was observed, which was
due to spatial dispersion of nonlinear response of the
third order (in other words, to the nonlocality of inter-
action between the medium and the light wave field). It
is well known, however, that the polarization of a wave
in an isotropic medium may also change due to purely
local cubic nonlinearity. If the radiation polarization is
other than strictly linear or circular, polarization self-
action is observed, which consists in the rotation of the
polarization ellipse [9]. Nonlinear polarization effects
may be studied using the probe field method as well.
The interaction between two waves (pump and probe
ones) in a nonlinear medium with a local response
brings about a variation of the polarization of the probe
wave (except for the situation in which both waves are
linearly polarized in a single plane). Such phenomena
include, in particular, the inverse Faraday effect (IFE),
i.e., the rotation of the plane of polarization of the probe
field under the effect of circular-polarized pumping
[10], and the optical Kerr effect (OKE) [11], i.e., the
002 MAIK “Nauka/Interperiodica”
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induction of birefringence in an isotropic medium by a
linearly polarized pump wave.

The nonlinear polarization of an isotropic medium
is characterized by three independent constants [12]
(and, if the frequency dispersion of nonlocal response
is taken into account, by four constants; see below). As
a rule, the above-identified effects of nonlinear optical
activity, inverse Faraday effect, and optical Kerr effect
depend on the combination of these constants.

It is known that the ratio between nonlinear coeffi-
cients are important parameters of the theory. In partic-
ular, it follows from the theory of optical activity that
the local and nonlocal parts of polarizability correlate
by the order of magnitude as the wavelength and some
effective dimension characterizing an optically active
medium [12]. In the case of small molecules, this effec-
tive dimension is provided by the distance between at
least two groups with anisotropic polarizability. For
spiral macromolecules, the pitch of the helix serves as
such an effective geometric parameter. In exciton tran-
sitions of crystals, the exciton radius [13] (10 nm)
serves as the parameter of nonlocality. It is of interest to
clarify the physical meaning of the nonlocality param-
eter for fractal clusters of silver and to directly measure
this parameter.

The relative magnitude of two nonlinear constants
corresponding to linear response depends on the nature
of nonlinearity [9]. For example, for the orientation
mechanism, this ratio is six; it is equal to unity for a
nonresonant electron response and tends to zero for
electrostriction [14]. No measurements were previ-
ously performed of the totality of the components of the
tensor of local cubic susceptibility of colloidal aggre-
gates of silver.

This paper deals with the investigation of polariza-
tion nonlinearities of colloidal aggregates of silver. The
experiments were performed with samples of different
degrees of aggregation of nanoparticles in order to
reveal the dependence of the magnitude of cubic sus-
ceptibility on the geometric structure of the aggregate.
The measurements of nonlinear optical activity, inverse
Faraday effect, optical Kerr effect, and self-rotation of
ellipse were performed with identical samples and with
light beams of identical spatial and time properties,
which enabled us to find nonlinear coefficients of the
medium for local and nonlocal responses.

Our measurements produced fairly high magnitudes
of the IFE and OKE for nanoaggregates of silver. The
angle of rotation of the polarization plane of the probe
field in the process of IFE was 0.66 deg/cm MW (αIFE ≈
23 deg/cm with the strong field intensity of 35 MW/cm2),
and the induced birefringence (OKE) was ∆n ≈ 3 × 10−6

with the intensity of 8 MW/cm2. No saturation of the
intensity dependence of the rotation angle αIFE and ∆n
was observed.

The next, second, section gives the relations
between the polarization and the field with due regard
JOURNAL OF EXPERIMENTAL 
for the frequency dispersion of nonlocal nonlinear
response and noncollinear propagation of interacting
waves. The third section contains a description of the
procedures of measurements and preparation of sam-
ples. The results of measurements of polarization non-
linearities are given in Section 4. In Section 5, the
obtained intensity dependences of induced birefrin-
gence and nonlinear angle of rotation are discussed.
The Appendix deals with the results of qualitative anal-
ysis of the motion of nanoparticles of silver in the
aggregate due to the light-induced interaction of mono-
mers.

2. POLARIZATION SELF-ACTION
AND INTERACTION OF LIGHT WAVES

IN A CUBIC NONLINEAR MEDIUM
WITH DUE REGARD FOR SPATIAL 
DISPERSION: PHENOMENOLOGY

2.1. Basic Relations

We will write the electric field of a light wave in the
form

(1)

The cubic nonlinear polarization of the medium in
the general case contains two terms,

(2)

The first term in the right-hand part of relation (2) is
responsible for the third-order local nonlinear response
of the medium. Corresponding to this term is the non-
linear polarization of the medium, whose Fourier com-
ponent on the frequency ω has the form

(3)

In the case of an isotropic medium, the tensor

 may be represented as [14]

(4)

which enables one to write Eq. (3) as

(5)

The second term in Eq. (2) describes the spatial dis-
persion of nonlinear polarization of the third order. We
will derive the expression for the nonlinear polarization

 related to spatial dispersion,

E r t,( ) A r( ) iωt–( )exp c.c.+=
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∫=
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(6)

We will further perform integration with respect to t1
and leave only the terms proportional to exp(±iωt) to
derive the following expression for the Fourier harmonic
of nonlocal response on the frequency ω (the subscripts of
the tensor Γijklm are omitted for simplicity):

(7)

We use the frequency-commutation relations for the

tensor  [14]

(8)

as well as the equality

(9)

× t2 Ake
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+ ∇ m Al*( )eiωtΓ ijklm t1 t2 ω–, ,( ) ]

=  t1d

0

∞

∫ …( ) Ak∇ mAle
2iωt– Γ ijklm t ω ω, ,( )[
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to derive

(10)

In an isotropic medium, the tensor  has
four nonzero components (of which only one is inde-
pendent). We will direct the unit vector e3 along the
vector ∇ ×  A. Then, the relations

(11a)

are valid between the components . Analo-
gous relations are valid for the components of the ten-

sor  as well,

(11b)

Therefore, in an isotropic medium, the nonlocal
nonlinear response in view of frequency dispersion is
described by two constants.

With due regard for the introduced notation, we
derive the following expression for nonlinear polariza-
tion associated with the nonlinear response of the
medium:

(12)

2.2. Self-Action of Elliptically Polarized Radiation

On substituting nonlinear polarizations given by
Eqs. (5) and (12) into the wave equation, one can derive
the equation (analogously with that obtained in [12])
for the slow amplitude of a wave propagating in a non-
linear medium,

(13)

where δ = (ω2/2kc2)Imε0 is the linear absorption coeffi-
cient, k = ωn0/c, ε0 is the linear permittivity of the
medium, n0 is the refractive index, c is the velocity of
light, and A± denotes circular components of the com-
plex amplitude

(14)

which are related to the Cartesian components A1, 2 as

(15)
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The unit vectors  and  correspond to right-hand
and left-hand circular polarization, respectively, and
satisfy the relations

(16)

Equation (13) may be used to derive the equations
for the azimuth of polarization ellipse α =

 under conditions of wave propagation in
the medium,

(17)

The first term on the right-hand side corresponds to the
known effect of rotation of polarization ellipse [9] in an
isotropic medium with local cubic nonlinearity. The
second term describes the nonlinear optical activity
caused by the spatial dispersion of nonlinear response.
One can see that the magnitude of specific rotation is
proportional to the combination of nonlinear constants
2g1 – g2. If the frequency dispersion of the nonlocal
nonlinear response of the medium is ignored (i.e., if it
is assumed that g1 = g2), Eq. (17) agrees with that
derived in [12] within the term corresponding to the
natural (linear) activity, which is not treated in this
paper.

2.3. The Effect of an Pump Wave on a Probe Wave
under Conditions of Noncollinear Propagation

We will assume that the electric field is the sum of
two quasi-plane waves with identical frequencies but
with different wave vectors. Then, the complex ampli-
tude introduced in Eq. (1) may be represented as

(18)

where F, K and S, k are the complex amplitudes and
wave vectors of pump and probe waves, respectively.
The dependence of F and S on r will be assumed to be
slow compared with the exponential factor.

We will substitute expression (18) into relation (5)
and, assuming the probe wave to be weak, retain only the
terms linear with respect to S. As a result, we will derive
the following expression for the complex amplitude of
nonlinear polarization caused by the local response of
the medium (from here on, we omit the complex conju-
gate terms on the right-hand side, assuming that P (with-
out the tilde) implies the complex amplitude):

σ̂+ σ̂–
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A∗ A⋅ A+*A+ A–*A–+ A+
2 A–

2,+= =
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dz
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+
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------------- A 2Re 2g1 g2–( ).
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Ploc r ω,( ) χ1 F∗ F⋅( )S ik r⋅( )exp[=

+ F S∗⋅( )F i 2K k–( ) r⋅[ ]exp
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(19)

Similarly, we use Eq. (12) to find the contribution to
polarization due to nonlocal interaction,

(20)

We will be interested in the part of PNL = Ploc + Pnonloc
that propagates in the form of a plane wave with the
wave vector k and, therefore, is under conditions of
wave synchronism with the probe wave. We retain in
Eqs. (19) and (20) the terms proportional to exp(ikr) to
derive the expressions for the Fourier amplitudes of
nonlinear polarization,

(21)

We will further substitute the electric field in the
form

and nonlinear polarization

into the wave equation

. (22)

The Laplacian will be approximately written as

(23)

ignoring the transverse derivatives and the second
derivative with respect to z. In this approximation, we
derive the following equation for the complex ampli-
tude of the probe field:

(24)
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We will direct the unit vector e3 along the vector k
and will assume that the angle between the wave vec-
tors K and k to be small enough for the components F3
and K1, K2 to be ignored. We will use relations (16) and
rewrite Eqs. (21) in the circular components,

(25)

(26)

In the case of arbitrary polarization of strong and
probe fields, the slow amplitude S(z) satisfies the equa-
tion

(27)

In the general case, the effect of a strong field on the
polarization of a probe field may result in two effects,
namely, the rotation of the polarization plane (or, to be
more precise, the rotation of the polarization ellipse)
and the variation of ellipticity, i.e., of the ratio between
the ellipse semiaxes. We will analyze Eq. (27) as
applied to these effects.
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We will treat in more detail two particular cases of
the ratio between the polarizations of strong and probe
fields.

Inverse Faraday Effect

Let an pump wave have a circular polarization
(right-hand, for definiteness) and a probe wave be lin-
early polarized. We will be interested in the rotation of
the polarization plane of the probe wave. This nonlinear
effect (ignoring the spatial dispersion of nonlinearity) is
known in the literature as the inverse Faraday effect.

We assume in Eq. (27) that F– = 0 to derive

(28)

whence we derive the following equation for the angle
of rotation of the polarization plane:

(29)

Therefore, the angle of rotation in the general case
depends on all four constants of cubic susceptibility of
the medium.

Optical Kerr Effect

Let both waves have a linear polarization, with the
pump wave along the axis x, F2 = 0, and the polarization
of the probe wave forming an angle of 45° with respect to
the pump wave, so that S1 = S2. It is known that a strong
field of linear polarization induces in the medium an
anisotropy of the refractive index, i.e., the medium
becomes birefringent. As a result, a phase shift arises
between the probe field components S1 and S2, which
leads to a variation of the ellipticity of polarization.

In order to find the expression for induced birefrin-
gence, we will rewrite Eq. (27) in Cartesian compo-
nents and assume that F2 = 0,

(30)
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On turning to equations for the real and imaginary
parts S1, 2 ≡ s1, 2exp(iϕ1, 2), we derive the following set
of equations:

(31)

where the notation

is used for brevity.
The main contribution in the right-hand part of the

latter equation is made by the first two terms, because
the third term describes a nonlinear effect of a higher
order, the difference of the ratio s1/s2 from unity per se
being a consequence of nonlinearity of the medium. In
view of the foregoing, the nonlinear phase shift
between the x and y components ∆ϕNL = ϕ1 – ϕ2 is
described with a good accuracy by the following equa-
tion:

(32)

The nonlocal response of the medium (constants g1 and
g2) in the adopted approximation makes no contribution
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Fig. 1. Absorption spectra of colloidal solutions of silver.
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to the phase difference between the Cartesian compo-
nents.

Thus, we have clarified the correlation between the
nonlinear polarization effects, i.e., OKE and IFE, and
the coefficients of polarizability of the medium of the
third order.

3. EXPERIMENT

3.1. Preparation of Aggregated Colloids

Colloidal solutions of metals may be obtained in dif-
ferent solvents such as water, ethyl alcohol, and others.
Several methods exist for the preparation of metal
nanoparticles in reducing reactions in salt solutions and
further stabilization of colloidal solution. In our exper-
iments, we investigated an alcoholic colloidal solution
of silver prepared by reduction of silver from AgNO3 in
a solution containing NaOH and polyvinylpyrrolidone
with a mean molecular weight of 360 000. This proce-
dure was described by Hirai [15]; such a colloid will be
designated below as Ag(PVP). In accordance with the
results of an electron-microscopic study, a typical
diameter of nanoparticles in a colloidal solution pre-
pared by this formula is approximately 14 nm.

We had at our disposal two colloid samples with dif-
ferent degrees of aggregation, namely, a less aggregated
sample no. 2 and more aggregated sample no. 1. Figure 1
gives spectra of linear (i.e., in a weak field) absorption
of these samples. A powerful long-wave wing of the
absorption band of sample no. 1 is indicative of aggre-
gation of nanoparticles [1]. According to the data of
electron micrography, the spectrum of the more aggre-
gated solution no. 1 corresponds to the presence in the
colloid of large clusters consisting of hundreds of par-
ticles; such aggregates have a fractal structure with the
fractal dimension Df ≈ 1.8. However, most of the nano-
particles are contained in small (of the order of ten par-
ticles) aggregates. The less aggregated solution (no. 2)
contains clusters consisting of several particles and,
apparently, a significant number of isolated nanoparti-
cles.

For experimental purposes, colloids of both types
were diluted with alcohol in one and the same propor-
tion (approximately 1 : 5) so that the transmission of
colloid no. 1 on the wavelength of 532 nm (at a low
intensity of light) would be approximately 50%.

3.2. Measurement Procedure

The second harmonic of a YAG:Nd pulsed laser with
the pulse duration τp ≈ 10 ns and wavelength of 532 nm
was used in the experiments. After the frequency dou-
bler, the radiation passed through a polarizer, i.e., a
Glan prism, which provides for residual ellipticity on a
level of the order of 10–5 with respect to intensity. Then,
the radiation was separated into two beams, pump and
probe ones, which were focused to a cuvette of fused
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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quartz 3 mm thick containing the silver solution being
investigated. In so doing, the waist diameter of both
beams (with respect to the 1/e level) was 0.5–0.6 mm,
and the power ratio between the pump and probe beams
was approximately 13. The signals were recorded by
photodiodes with a response time of 10 µs.

In experiments with a probe field (IFE, OKE), the
parameters of the probe beam that passed through a
polarimeter were measured. In experiments involving
the investigation of self-action effects (nonlinear opti-
cal activity, self-rotation of the polarization ellipse), the
probe beam was shut off, and the parameters of the
pump field were measured.

Self-Action Effects

In developing the measuring method, the following
circumstances were taken into account. In a medium
that is nongyrotropic in a linear approximation, the
nonlinear rotation of the plane of polarization of a lin-
early polarized wave (|A+|2 = |A–|2 is caused by the non-
locality of nonlinear response alone. In Eq. (17), the
term containing (2g1 – g2) corresponds to this effect. In
the case of elliptic polarization, an additional rotation
of the polarization plane occurs, which is associated
with the local nonlinear response (the term with Reχ2).
Because, under the experimental conditions, the polar-
ization of radiation is always “weakly elliptic,” both
terms must be taken into account. In order to separate
the contributions by the local and nonlocal responses,
use was made of the method suggested by us in [8].
This method is essentially as follows. Note that, in
Eq. (17),

where |Ax, y| and φx, y denote the amplitudes and phases
of linearly polarized field components. By varying the
phase difference φx – φy, one can vary the local response
contribution, while the nonlocal response contribution
will remain constant.

The scheme of measurements of self-action effects
is given in Fig. 2. The radiation passed successively
through a polarizer 1 (Glan prism), a phase element 2,
a cuvette 3 of thickness l = 3 mm with the colloid being
investigated, and an analyzer 4 (calcite wedge) and was
registered by two silicon photodiodes 5 and 6. For mea-
suring the intensity, a part of the radiation was directed
by a beam-splitting plate to a photodiode (not shown in
the scheme). The radiation that passed through the
polarizer had a weak ellipticity with the semiaxis ratio

A+
2 A–

2– 2 Ax Ay φx φy–( ),sin=

Ay
2/ Ax

2 5 10 5–×≈
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(the x axis is directed along the polarizer axis, and the
y axis is directed normally to the x axis and to the wave
vector). The components of the complex amplitude of
radiation that passed through the phase element assume
an additional phase shift,

(33)

So, the effect of the phase element brings about a vari-
ation of the azimuth and ratio of the semiaxes of the
radiation polarization ellipse at the inlet to the medium.
The ellipse azimuth α(0) relative to the polarizer in
view of the smallness of |Ay|/|Ax| ! 1 is given by

(34)

The radiation that passed through the medium being
investigated falls on the analyzer, whose axis is ori-
ented at an angle of 45° to the polarizer. The orthogo-
nally polarized components isolated by the analyzer hit
the photodiodes 5 and 6. The difference of the signals
from the photodiodes was recorded,

(35)

where α is the azimuth of the polarization ellipse at the
outlet from the medium; here, we use the fact of α ! 1,
as well as the smallness of ellipticity.

The ∆I(∆φ0) dependence for different radiation
intensities at the inlet to the medium was measured in
the experiment. We will assume that

Ax 0( ) Ax 0( ) e
iφx 0( )

,=

Ay 0( ) Ay 0( ) e
iφy 0( )

,=

∆φ0 φx 0( ) φy 0( ).–=

α 0( )
Ay 0( )
Ax 0( )

--------------- ∆φ0( ).cos=

∆I I2 I1 Ax
22α ,≈–=

∆φ z( ) ∆φ0 ∆φNL z( )+=

1

3 4 5

6

x

y
α g

2

αm±

Fig. 2. The scheme of measurements of rotation of the
polarization plane in the self-action configuration. The
transformation of the state of polarization of a wave passing
through optical elements including the medium being inves-
tigated is demonstrated.
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and, in view of the smallness of ∆φNL(z) ! 1, derive,
from Eqs. (17) and (35),

(36)

where

∆I ∆φ0( ) a b ∆φ0 c+( ),cos+=

a 2ρ1' Ax l( ) 2 Ax
2 z, bd

0

l

∫ 2 Ax l( ) 2 Ay 0( )
Ax 0( )

---------------,= =

c 2σ2'
Ay 0( )
Ax 0( )

--------------- Ax Ay z,d

0

l

∫–=

σ2'
2πω
n0c
-----------Reχ2, ρ1'

2πω2

c2
-------------Re 2g1 g2–( ).= =

probe wave

pump wave

1

3

4

x

y

2

3°

Fig. 3. The scheme of the experimental facility for the
investigation of the inverse Faraday effect: (1) 3-mm
cuvette with a colloidal silver solution, (2) analyzer, (3, 4)
photodetectors.

probe wave

pump
1

3

4

x

y

2

3°

5

wave

Fig. 4. The scheme of the facility for measuring the optical
Kerr effect: (1) 3-mm cuvette with a colloidal silver solu-
tion, (2) phase element, (3) analyzer, (4, 5) photodetectors.
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One can see that the local (σ2) and nonlocal (ρ1)
nonlinearities manifest themselves in ∆I(∆φ0) differ-
ently as the inlet intensity varies: the term with  may

cause some phase shift, while the term with  causes
a shift of the ∆I(∆φ0) curve as a whole on the ordinate.
By the sign of vertical shift, one can determine the
direction of rotation, considering that the plus sign cor-
responds to counterclockwise rotation if one looks
toward the beam.

Inverse Faraday Effect

The scheme of the experiment in recording the IFE
is given in Fig. 3. In this case, a strong beam was
imparted clockwise circular polarization with the aid of
a phase element.

The experiment involved measurements of the rota-
tion angle of the polarization plane of the probe beam.
For this purpose, the beam was directed to the analyzer
(calcite wedge), whose axes were oriented at an angle
of 45° to the x axis. The analyzer divided the probe field
into two orthogonally polarized beams, which then fell
on photodetectors. The signals from the detectors are
expressed in terms of the angle α between the x axis and
the polarization plane of the probe field,

(37)

For small values of α, 

(38)

is valid.

Optical Kerr Effect

The scheme given in Fig. 4 was used for measuring
the OKE. The probe beam polarization was directed at
an angle of 45° to the pump beam polarization. A phase
element, which makes possible the introduction of the
phase difference between the x and y components, was
placed in the way of the probe beam after the cuvette.
Then, the probe beam passed through the analyzer ori-
ented as in the previous scheme (the axis at 45° to the
x axis). The beams isolated by the analyzer fell on pho-
todetectors, the signals from which may be written as
follows:

(39)

where ∆ϕ is the phase difference between the x and
y components; ∆ϕ contains the nonlinear phase shift

σ2'

ρ1'

I1 Sx
2 45° α–( ),cos

2
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.=

α
I1 I2–
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--------------≈ ∆I
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-------------=
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∆ϕNL accumulated in the medium and the phase differ-
ence introduced by the phase element ∆ϕ0,

(40)

In the experiment, the difference signal I2 – I1 was mea-
sured; with a small nonlinear phase shift, this signal
may be written as

(41)

The phase element set the shift ∆ϕ0 = –π/2; in so doing,
the nonlinear shift is expressed as follows in terms of
the quantities being measured (in view of the fact that
|Sx | = |Sy |):

(42)

3.3. Inclusion of Time and Space Averagings

In a real experiment, the pumping field intensity is
always characterized by some distribution in time and
space. Nevertheless, the phenomenological treatment
performed above for plane monochromatic waves may
be applied directly if the nonlinearity relaxation time
(both local and nonlocal) is short compared with the
pulse duration and the characteristic size of nonlocality
of interaction is small compared with the beam diame-
ter.

We used photodetectors with the reaction time T @
τp (T = 10 µs), so that time-average quantities were
actually measured. The size of the photodiode pad
exceeded the light beam diameter; therefore, cross-sec-
tion-averaged signals were recorded during measure-
ments. On assuming the Gaussian distribution of intensity
in time and in the cross section, one can readily find that,
in processing the experimental data, the values obtained

from Eqs. (38) and (42) must be multiplied by .
The reduction of the pump field during the propaga-

tion along the medium due to linear absorption is taken
into account by introducing the effective intensity

4. MEASUREMENT RESULTS
The results of measurement of the angle of nonlin-

ear rotation of the polarization plane, which will be des-
ignated as αg, are given in Fig. 5. In the I0 < 2 MW/cm2

range, the value of αg for sample no. 1 depends approx-
imately linearly on I0 (I0 is the intensity before the
cuvette on the beam axis at the pulse maximum). For
sample no. 2, the linear dependence αg(I0) persists until

∆ϕ ∆ϕ 0 ∆ϕNL.+=

∆I I2 I1–≡

≈ 2 Sx Sy ∆ϕ0cos ∆ϕNL ∆ϕ0sin–( ).

∆ϕNL ∆I

2 Sx
2

-------------.=

2 2

Ieff

I z( ) zd

0

l

∫
l

-----------------.=
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I0 ≈ 30 MW/cm2. If we reduce the measurement results
to the same concentration of silver, the value of

in this linear range for a more aggregated colloid no. 1
is approximately 80 times that for colloid no. 2. Note
the decrease in the nonlinear constant at the intensity
I0 > 2–3 MW/cm2 approximately corresponding to the
threshold of photomodification of fractal clusters of sil-
ver, i.e., to the variation of their structure under the light
pulse effect [16]. Previously, a similar manifestation of
photomodification was observed for nonlinear refrac-
tion of Reχ(3) measured by dispersion interferometry
[17]. A fivefold decrease in |χ(3) | was observed using
the method of degenerate four-photon scattering [7].
The absence of any special features in αg(I0) for colloid
no. 2 in the I0 ≈ 2 MW/cm2 range supports this assump-
tion indirectly: nonaggregated particles of silver in col-
loid no. 2 do not experience the photomodification that
is characteristic of clusters in sample no. 1.

The combination of components of the tensor Γ(3)

may be found from the relation

(43)

where all quantities, except for the intensity, are
expressed in units of the CGS electrostatic system
(CGSE) and n0 is the refractive index of colloid. We
take into account the difference between the concentra-
tions of silver in colloids and perform the averaging
with respect to time and beam cross section, which pro-

duces the factor , to derive

Re(2g1 – g2) ≈ 0.9 × 10–16 SGSE units for colloid no. 1,

Re(2g1 – g2) ≈ 1.1 × 10–18 SGSE units for colloid no. 2.

αg/Ieff ReΓ 3( )∝

αg
16π4l

n0cλ2
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Fig. 5. The angle of rotation of the polarization plane due to
nonlinear optical activity as a function of the intensity of
incident radiation. The main graph, colloid no. 1; the inset,
colloid no. 2.
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In both cases, the medium turned out to be levorotatory.

In order to find the constant χ2, we performed an
experiment involving the measurement of the rotation
angle of polarization ellipse of pump field through a
nonlinear medium. The measurements were performed
for colloidal solution no. 1. With the intensity before
the cuvette varying from ≈0.7 to ≈5 MW/cm2, the
ellipse rotation was αSR ≈ –1.8 ± 0.2 mrad for right-
hand polarization and αSR ≈ 2.1 ± 0.2 mrad for left-hand
polarization, with the ellipticity |Fy |2/|Fx |2 ≈ 1 : 6. One
can see that the rotation angles for left-hand and right-
hand polarizations differ somewhat in magnitude; this
is apparently a manifestation of nonlinear gyrotropy in
accordance with Eq. (17) and approximately corre-
sponds to nonlinear optical activity at 5 MW/cm2. By
taking a half-difference of these values, one can elimi-
nate the effect of nonlinear optical activity and use for-
mula (17) to calculate χ2,

(44)

These experiments further involved measurements
of the nonlinear absorption of the light wave in colloi-
dal solution no. 1, which enabled one to determine the
imaginary part of the sum of the components χ1 and χ2,

(45)

where T is the transmission coefficient (with respect
to intensity), δ = 1.15 cm–1, and l = 3 mm. In the

Reχ2 1.3 0.2±( ) 10 11–  CGSE units.×=

Im χ1 χ2+( ) 2 2
δ e 2δl– T–( )
T 1 e 2δl––( )
----------------------------=

×
cn0λ  CGSE units[ ]

16π3 1013I0 MW/cm2[ ]×
--------------------------------------------------------------

–1.1 10 10–  CGSE units,×≈
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Fig. 6. The rotation angle of the polarization plane of probe
field as a function of the intensity of pump field with circu-
lar polarization. Solid squares, colloid no. 1; crosses, col-
loid no. 2. Hollow squares indicate the results of subtraction
of the angle of rotation due to nonlinear optical activity,
according to the data of Fig. 5 (for colloid no. 1).
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experiment, the transmission was T ≈ 0.65 with I0 ≈
6 MW/cm2.

Figure 6 gives the rotation angle of the polarization
plane of probe beam, αIFE, in the IFE scheme as a func-
tion of the pump beam intensity for two colloidal solu-
tions with different degrees of aggregation. The value
of the angle α was found by formula (38) with due

regard for the averaging factor . The results of
measurements of the OKE for the same samples are
given in Fig. 7. Given in the graph is the value of the
nonlinear phase shift between the x and y components
of the probe beam as a function of the pumping inten-
sity, determined from the experimental data according
to Eq. (42).

The values of errors given in Figs. 6 and 7 are reflec-
tive of the estimates for the random error of measure-
ment at each point. However, the error in the values of
the nonlinear constants χ1 and χ2 given below is largely
preassigned by the systematic error of determination of
the radiation intensity at the inlet to the medium;
according to our estimates, this latter error is ±10%.

Note that the experiments described by us failed to
reveal any saturation of either the IFE or the OKE with
increasing intensity of incident radiation up to
35 MW/cm2. The possible reason for this is discussed
below (see Section 5).

It follows from Eq. (29) that both the local and non-
local responses of the nonlinear medium contribute to
the rotation of the plane of polarization of the probe
wave, IFE. In our case, the rotation due to nonlinear
optical activity proceeds in the opposite direction com-
pared with the IFE; this brings about a deviation of the
dependence of the IFE (curve 1 in Fig. 6) from linear
with the intensity of up to 3 MW/cm2. The result of sub-
traction (with due regard for the sign) of the effect of
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Fig. 7. The nonlinear phase shift between the x and y com-
ponents of probe field as a function of the intensity of pump
field. Solid squares, colloid no. 1; crosses, colloid no. 2.
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nonlinear optical activity is also given in Fig. 6 (hollow
squares). In the case of high intensity, the contribution
by nonlocal nonlinearity becomes insignificant, and the
slope of the dependence is in fact defined by the local
part alone, which enables one to find the following
quantity:

(46)

The absorption in colloid no. 1 with the cuvette
thickness l = 3 mm was 50%, which corresponds to
Ieff ≈ 0.72I0. We substitute numerical values to derive

Re(χ1 – 2χ2) = –(1.8 ± 0.23) × 10–10 CGSE units
for colloid no. 1,

Re(χ1 – 2χ2) = –(4.0 ± 0.55) × 10–11 CGSE units
for colloid no. 2.

This error includes also the systematic error caused by
possible nonoptimal overlapping of beams of pump and
probe fields in the cuvette with colloid.

The magnitude of birefringence due to the OKE is
proportional to the sum of two nonlinear coefficients χ1
and 2χ2. We approximate the data in Fig. 7 by a linear
dependence to find

(47)

and the following numerical values:

Re(χ1 + 2χ2) = –(2.1 ± 0.35) × 10–10 CGSE units
for colloid no. 1,

Re(χ1 + 2χ2) = –(1.0 ± 0.42) × 10–10 CGSE units
for colloid no. 2.

One can find χ1 by combining the results of mea-
surements of the IFE and OKE,

(48)

The error of our measurements prevents us from
finding χ2 using these data.

5. DISCUSSION

The polarization measurements of Re(χ1 + χ2) and
the values of Im(χ1 + χ2) (it will be recalled that χ1111 =

Re χ1 2χ2–( ) 2 2
λα IFE

l
-------------=

×
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4π3 1013Ieff MW/cm2[ ]×
------------------------------------------------------------- CGSE units.

Re χ1 2χ2+( ) CGSE units[ ] 2 2
λ∆ϕ NL

l
----------------=

×
n0
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8π3 1013Ieff MW/cm2[ ]×
-------------------------------------------------------------
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for colloid no. 2.
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(χ1 + χ2)/3) produce the value of |χ1111| ≈ 6.7 ×
10−11 CGSE units, which is close to the susceptibility of
the most aggregated aqueous colloid (|χ1111| ~ 10–10 CGSE
units), measured by the efficiency of degenerate four-
photon scattering [18] on the wavelength of 532 nm,
and considerably exceeds the nonlinear susceptibility
of monomers |χ1111| ~ 10–13 CGSE units [18]. Accord-
ing to the results of our measurements of the OKE and
IFE, the local nonlinear susceptibility depends little on
the cluster size.1 Note that, according to the data of [6]
obtained for aqueous borohydride colloid using the
method of degenerate four-photon scattering, the cubic
susceptibility increases most rapidly in the early stages
of aggregation, when monomers unite into small aggre-
gates. In the case of comparison, the colloids were
taken to have the same degree of aggregation if the con-
tours of the linear absorption band were similar. There-
fore, a significant increase in χ(3) compared with mono-
mer occurs even for a weakly aggregated colloid, in
which, according to the data of electron microscopy,
monomers form small groups of two–three particles. A
further increase of clusters to 100–1000 particles
causes a weaker growth of χ(3). This means that it is of
key importance from the standpoint of amplification of
nonlinear responses to provide for the conditions of
collective resonance on the frequency of incident radi-
ation, which may well be accomplished even in the case
of two fairly closely arranged monomers owing to the
interaction between induced dipoles (or multipoles).
Indeed, an increase in a local field with respect to an
incident one for resonant modes in a binary approxima-
tion produces

where ε = ε1 + iε2 and εh denote the permittivity of
metal particle and surrounding medium, respectively,
which is comparable with the estimate for large aggre-
gates.

A singular feature of the results of our measure-
ments of local nonlinear response in Ag(PVP) is that
Reχ(3) (OKE and IFE) and Imχ(3) (nonlinear absorp-
tion) almost do not vary with intensity up to 30 MW/cm2

(the corresponding energy density, 300 mJ/cm2), which
exceeds the known thresholds of photomodification of
aggregates of silver in colloids [19]. In previous stud-
ies, a significant variation of nonlinear responses was
observed for the energy density exceeding the threshold
value, namely, a reduction of |χ(3) | in experiments with
30-ps pulses for an aggregated colloid of silver with
denaturated proteins [18] and a reduction, in experi-

1 It must be borne in mind that strongly and weakly aggregated
solutions usually differ by the concentration of metallic silver as
well; naturally, this reflects on the magnitude of the nonlinear
effect. The data in Figs. 6 and 7 correspond to the concentration
of nanoparticles in colloid no. 1 exceeding that in colloid no. 2 by
a factor of approximately 2.4; the inclusion of this difference will
bring about the convergence of the curves for colloids with differ-
ent degrees of aggregation.

Ei res/E0 εi
2/3εhε2≈ 18 for λ 532 nm,= =
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ments with 15-ns pulses, of Imχ(3) in a borohydride col-
loid [7] and of Reχ(3) in a borohydride colloid and in
Ag(PVP) [17] (use was made of PVP with a molecular
weight of 40 000).2 The photomodification thresholds
for colloids of different types are in the limits from 5 to
10 mJ/cm2 and are approximately the same for pico-
and nanosecond ranges. At the same time, in some col-
loids containing polymer molecules (for example, in
collargol [16] and in AG(PVP)), higher values of the
threshold energy of photomodification were observed.
Presumably, the reason for photomodification is the
integration of resonant monomers as a result of their
heating by laser radiation and subsequent motion of
dislocations, which arises in heated particles upon their
contact owing to a high shear stress [4]. Such a mecha-
nism may be realized directly in coalescent aggregates
consisting of nanoparticles in contact with one another.
Colloidal silver aggregates prepared by the borohy-
dride technique, as well as under conditions of reduc-
tion of AgNO3 in a mixture of EDTA and NaOH, often
have a coalescent structure [20]. However, in the case
of coagulation aggregates in which the monomer
boundaries are separated by some distance, this mech-
anism of photomodification presumes a preliminary
mutual approach of particles. Characteristic distances
between particles are as follows [20]: in collargol, 2 to
2.5 nm (with the average diameter dav ≈ 14 nm); in
Ag(PVP), 1–2 nm (dav ≈ 14 nm); in silver colloid pre-
pared by the Carey–Lee method, 1 nm (with dav ≈ 12 ±
3 nm); and, in aggregated gold colloid prepared by the
citrate technique, 0.7 nm (dav ≈ 19 to 22 nm). There-
fore, Ag(PVP) colloid belongs to a fairly frequently
occurring coagulation type.

The motion of monomers may occur owing to the
particle interaction induced by the field [21, 22]. Esti-
mates (see the Appendix) indicate that the particle dis-
placement in such colloids during the time of a nano-
second pulse may be of the order of 1 nm.

The results of analysis performed in the Appendix
lead one to three important conclusions.

(i) The interaction of particles in the field of laser
radiation may lead to appreciable shifts (1 nm at
20 mJ/cm2; the time of relaxation of the process to
steady state, 100 ps) which enable the particles to pass
the potential barrier and converge to a distance at which
the dispersion forces of attraction are effective. Given
the same energy, the pulse duration (pico- or nanosec-
onds) is of no importance.

(ii) The result of mutual approach of particles
(whether or not it leads to adhesion required for photo-
modification) depends strongly on the potential curve
of particle interaction in the absence of a field, i.e., on
the double-layer parameters. Note that, in some col-
loids, the so-called steric force is significant, which

2 For gold (and some types of silver) colloids, χ(3) first increases
somewhat, as the threshold intensity is exceeded [19], and then
decreases.
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arises as a result of overlapping of the adsorption layers
of surfactants and polymers. The steric force has an
additional stabilizing effect. Therefore, in polymer col-
loids, the threshold of integration of particles may be
much higher.

(iii) The particle displacement must bring about
nonlinear optical effects, i.e., contribute to χ(3), because
the range of distances between particles, in which a pair
is in resonance with low-frequency radiation, is of the
order of 1 nm, which is comparable with the estimate
for induced shift of particles.

The particle shift occurs with a characteristic relax-
ation time of 100 ps (see the Appendix). This inertia
may serve as an explanation of the following result of
our measurements: according to Eqs. (44) and (48), we
have

which is an order of magnitude less than the typical
value (approximately 0.5) characteristic of the nonres-
onance electron nonlinearity of solids [23]. This fact
may be treated as evidence of the existence of an iner-
tial contribution to the nonlinear optical response of sil-
ver colloids. In [20], the variation of the particle tem-
perature due to radiation absorption and the associated
variation of ε were treated as the inertial mechanism of
nonlinearity of aggregated colloids of silver. The clari-
fication of the relative importance of thermal and
mechanical inertia calls for additional investigation.

We will now discuss the differences in the depen-
dences of local and nonlocal responses on the degree of
aggregation. Unlike the IFE, OKE, and linear absorption,
the effect of nonlinear optical activity at low intensity
increases approximately eighty times for colloid no. 1
compared with colloid no. 2 and, for I > 2 MW/cm2, it
decreases several times. In our opinion, this difference
is associated with the fact that, in the case of nonlocal
effects, it is the size of the region occupied by the reso-
nant mode relative to the wavelength that is important
and, consequently, the size of aggregates in the colloid.
As was already mentioned, the presence of small aggre-
gates resonant to the field is sufficient to amplify local
effects. For illustration, we will turn to the general form
of solution of a set of equations of interacting dipoles.

The optical activity effects are associated with dif-
ferent responses of the medium to the radiation with
clockwise and anticlockwise polarizations,

(49)

where  and  are coordinate unit vectors. The solu-
tion of the set of equations of bound dipoles is
expressed in terms of the components of eigenvectors
|n) of the interaction matrix V [24],

(50)

where v n denotes the eigenvalues. For a cluster consist-
ing of N particles, the eigenvector has 3N components

Re χ2( /χ1 ) 0.07,–≈

E± E0 x̂ kzz ωt–( )cos ŷ kzz ωt–( )sin±( )/ 2,=

x̂ ŷ

V |n ) v n|n ),=
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niβ ≡ (iβ|n) corresponding to the amplitude of the plas-
mon mode on the ith particle with Cartesian component
β (β assumes the values {x, y, z}). The dipole moment
induced by the field of a wave with circular polarization
on the ith particle is

(51)

where

is the resonance-normalization factor of the nth mode,

 = X + iδ is the polarizability of an isolated mono-
mer, and δ and X are parameters which have the meaning
of the width of the resonant mode and its detuning from
the resonance frequency of an isolated particle. The main
contribution to the dipole moment of a particle is made by

the resonant modes for which Re(  + vn) < δ.

For the extinction cross section

(52)

in view of Eqs. (49) and (51), we have

(53)

The difference in extinction for clockwise- and anti-
clockwise-polarized radiation is expressed as

(54)

One can see that zero contribution to ∆σ is produced by
the terms with i = j, as well as at niy = nix and njy = njx

(isotropic case). Therefore, resonant modes of a cluster
with a high anisotropic factor

which cover distances comparable with the wavelength
(for increasing sinkz(zi – zj) are of importance from the
standpoint of optical activity effects. This means that
the magnitude of nonlocal effects must increase with
the emergence of large aggregates.

diβ( )R L, niβCn

n 1=

3N

∑=

× n jx kzz j ωt–( ) n jy kzz j ωt–( )sin±cos[ ] E0/ 2,
j 1=

N

∑

Cn n j'α
2

j' α,
∑ 

 
 

α0
1– v n+( )

1–

=

α0
1–

α0
1–

σe
4πk

E0
2

----------Im di E∗ zi( )⋅
i 1=

N

∑=

σe( )R L, πkIm Cn nixn jx niyn jy+( )[
i j, 1=

N

∑
n 1=

3N

∑=

× kz zi z j–( ) niyn jx nixn jy–( ) kz zi z j–( )sin±cos ] .

∆σ σe( )R σe( )L–≡ 2πkIm Cn

n 1=

3N

∑=

× niyn jx nixn jy–( ) kz zi z j–( ).sin
i j, 1=

N

∑

f niyn jx nixn jy–( )=
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Not only does the constant ReΓ(3) of nonlinear opti-
cal activity increase in the case of strong aggregation,
but it increases in approximately the same manner rel-
ative to Reχ(3) (ReΓ(3)/Reχ(3) increased by a factor of
30). This means that the rise of nonlinear optical activ-
ity occurs mainly due to the effective geometric factor
(including the anisotropic factor) rather than due to the
factor of local field amplification (the latter must have a
similar effect on Γ(3) and on χ(3)).

6. CONCLUSION

We have studied polarization effects in an aggre-
gated colloidal silver solution, caused by the cubic non-
linearity of optical response in view of spatial disper-
sion. It was for the first time that the inverse Faraday
effect, the optical Kerr effect, and the self-rotation of
the polarization ellipse were observed for fractal clus-
ters. The constant of nonlinear optical activity was
measured under the same conditions.

The results of measurements of the tensor  of
local nonlinear susceptibility have demonstrated that
no decrease in nonlinear constants is observed for
Ag(PVP) colloid at least at intensities of &30 MW/cm2.
Apparently, one can say that no appreciable modifica-
tion of local configurations of monomers occurs in this
colloid in the above-identified range of intensities. In
other words, those groups of several monomers for
which the condition of collective response is valid
largely remain unchanged; by virtue of this, a high
magnitude of nonlinear response is retained. At the
same time, the decrease in the nonlocal nonlinearity
with the intensity above some value (2–3 MW/cm2) is
indicative of threshold variation of the structure of
aggregates over sizes of the order of wavelength.

The results of measurements of nonlinear optical
activity have demonstrated a considerable increase in
the spatial scale of nonlocality of the correlation
between polarization and exciting field upon transition
from a weakly aggregated colloid to a more aggregated

one. In this case, unlike the effects associated with ,
the value of nonlinear optical activity decreases consid-
erably at I * 3 MW/cm2. Based on the results of analy-
sis, one can assume a decrease in the effective geomet-
ric factor at high intensities, which is responsible for
nonlocal effects.

The existing theories of nonlinear-optical properties
of colloidal aggregates of metals are used to analyze
collective modes associated with induced dipole
moments, while assuming the particles proper to be sta-
tionary and rigidly secured. Our results lead to a gen-
eral physical inference about the need to include in the
treatment the mechanical motion of particles as a result
of dynamic interaction of dipoles. Such motion may
show up in the magnitude of nonlinear constants, in the
time properties of responses, in polarization effects,
and in the processes of photomodification of clusters.

χ̂ 3( )

χ̂ 3( )
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APPENDIX

Let two spherical particles (dimer) of mass m and
radius R be located at a distance 2R + D from each other
(D is the minimal distance between the surfaces of the par-
ticles). Newton’s equation for their relative motion is

(A.1)

where µ is the reduced mass, c1 = 6πηR is a coefficient
in the Stokes formula, and η is the viscosity coefficient
of the medium. According to Eq. (A.1), the relaxation
time defined by the viscosity of the medium is τ =
m/c1 ≈ 100 ps (R = 7 nm, η = 10–3 Pa s). The conditions
of validity of the Stokes formula differ from our condi-
tions; however, for estimation calculations, the friction

force µτ–1  in (A.1) is sufficient. The force F(D, t) is
related to the particle interaction potential,

(A.2)

Here, UEM is defined by radiation, and U0 is the poten-
tial in the absence of an external field. With coagulation
colloidal aggregates in mind, we will assume that
U0(D) is a potential curve with a well providing for the
dimer stability and with a barrier at small distances D
which prevents the particles from adhering to one another
[25]. For typical conditions, the potential well depth is
∆U0 ≈ 0.2 eV. Our measurements using electron micro-
photographs gave the mean distance D ≈ 1.5 nm.

We will analyze Eq. (A.1) from the standpoint of the
magnitude of possible particle shift (i.e., variation of D)
under the effect of the light-induced force FEM. In so
doing, we will ignore the variation of the “undisturbed”
potential U0. In other words, we will assume that the
potential well U0(D) has a fairly gentle slope compared
with the scale of variation of UEM(D). We leave only
FEM(D, t) in the right-hand part of Eq. (A.1) to derive
the solution

(A.3)

Ḋ̇ τ 1– Ḋ+ µ 1– F D t,( ),=

µ m/2, τ m/c1,= =

Ḋ

U U0 UEM, F+ F0 FEM,+= =

F0

∂U0

∂D
---------, FEM–

∂UEM

∂D
-------------.–= =

Ḋ t( )
1
µ
--- t t'–

τ
----------– 

  FEM D t'( ) t',[ ]exp t'.d

0

t

∫=
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If the light pulse duration τp is much shorter than τ, the
following approximation is valid: 

(A.4)

In the opposite case of τp @ τ, the approximate solution
is

(A.5)

Note that the estimation of the shift during some
time t0 > max{τp, τ} in both limiting cases gives one
and the same result,

(A.6)

The potential of interaction of two metal particles
UEM(D, ω, θ) induced by an electromagnetic field was
calculated in [21, 22]. In the dipole approximation,

(A.7)

where θ is the angle between the vector E and the dimer
axis. In view of the dependence of UEM on θ, the
moment of forces –∂UEM/∂θ is active, which turns the
dimer axis of maximal polarizability toward E. The
relaxation time for angular motion coincides with τ by
the order of magnitude. For polarization effects, the
angular motion is significant (Kerr effect); however, we
will not treat this motion in more detail and will restrict
ourselves to the estimation of the variation of D.

In the case of Ag colloid [21],

(A.8)

where γ(D, ω, θ) is the dimensionless energy, R is in
µm, and I is the power density in W/cm2. In the dipole
approximation (A.7) for a low-frequency (compared
with the frequency of plasmon resonance for a sphere,
ωps) region, as D increases, a potential barrier first
arises, and then a potential well whose position is found
for a greater D than the minimum of U0(D).

The results of calculations of γ(D, ω, θ) with due
regard for higher order multipoles performed by Claro
and Rojas [21] demonstrate that, in the D < 2 nm
region, a minimum of the UEM(D, ω, θ) curve may form,
which is absent from the dipole approximation.

Ḋ t( )
1
µ
---e t /τ– FEM D t'( ) t',[ ] t'.d

0

t

∫≈

Ḋ t( )
τ
µ
---FEM D t( ) t,[ ] 1 e t /τ––( ).≈

∆D
2
c1
---- FEM D t'( ) t',[ ] t'.d

0

t0

∫≈

UEM D ω θ, ,( )
R3

2
-----–=

× Re α|| D ω,( ) θcos
2 α⊥ D ω,( ) θsin

2 α0 ω( )–+[ ] E0
2,

α||
α0

1 α0/4ξ3–
-------------------------, α⊥

α0

1 α0/8ξ3+
--------------------------,= =

α0 ω( )
ε εh–

ε 2εh+
-----------------, ξ 1

D
2R
-------,+= =

UEM D ω θ, ,( ) eV[ ] 2.2 10 2– γ D ω θ, ,( )× R3I ,≈
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We substitute the quantity

(A.9)

into Eq. (A.6) and approximately assume ∂γ/∂D to be
constant in some small interval δD to derive the result

(A.10)

which depends on the energy density in the pulse
(under the experimental conditions, this energy density
was 20 mJ/cm2). Expression (A.10) at ∂γ/∂D = 7 nm–1

gives the value of the shift under the effect of a 10-ns
pulse of ∆D ≈ 1 nm.

It must be emphasized that the dissipation of energy
due to viscous friction will bring about an increase in
the temperature of the medium and metal particles,
which, generally speaking, must also be taken into
account because of the temperature dependence of ε.
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Abstract—The evolution of an electromagnetic wave with slowly varying polarization, which interacts reso-
nantly with the medium formed by degenerate two-level atoms, is studied using the wave function approach
under the conditions of electromagnetically induced transparency. It is shown that the amplitude of the wave
field propagates at the velocity of light in such a medium. The equation obtained for the polarization parameter
has a solution in the form of a simple wave. The breaking length is determined. It is shown that the velocity of
propagation of polarization waves may be much smaller than the velocity of light. The proposed approach is
common for two-level systems with an arbitrary degeneracy. The case of a system with Zeeman degeneracy is
analyzed in detail. The dependence of the velocity of propagation of the polarization structure on the amplitude
and polarization is determined for an arbitrary level degeneracy. The evolution of the polarization structure in
such a medium is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of coherent population trapping and
electromagnetically induced transparency associated
with it [1–3] stimulated the development of new ten-
dencies in the optics of resonance media. The formation
of a transparency window upon resonant interaction of
wave fields in multilevel systems is obviously accom-
panied by a noticeable elongation of the path of propa-
gation of laser radiation. Strong dispersion under the
conditions of electromagnetically induced transparency
leads to an anomalously strong deceleration of a probe
pulse in the field of the driving wave. Under special
conditions of radiation control, “light stoppage” (i.e., in
fact, the realization of optical memory) is possible [4,
5]. The combination of the low velocity of the wave
packet propagation and the elongation of the path over
which fields interact under the resonance conditions
makes the electromagnetically induced transparency
mode promising for the investigation of nonlinear
effects. The analysis of relevant processes for a small
number of photons [6] is of special interest.

A theoretical analysis of this mode is usually carried
out on the basis of scalar equations for the field. The
influence of electromagnetic wave polarization on tran-
sition probabilities is obvious and is naturally mani-
fested during experimental investigations of electro-
magnetically induced transparency in “three-level” sys-
tems. The role of polarization becomes decisive in
systems with degeneracy. The behavior of the system in
this case considerably depends on the mutual orienta-
tion of polarizations of optical fields [7–9]. This is asso-
ciated with population trapping in the dark state, viz.,
the superposition of sublevels which does not interact
1063-7761/02/9405- $22.00 © 0916
with the field. The existence of the dark state and the
trapping of population in it is the general property of
degenerate systems, which has been studied exten-
sively. In particular, coherent population trapping in a
two-level system exhibiting Zeeman degeneracy and
interacting with polarized radiation was studied in
detail in the early publications devoted to the theory of
this effect [10, 11].

Thus, at the first stage of investigation of the fea-
tures of polarization effects, it is natural to consider the
electromagnetically induced transparency mode by
using the simple model of a two-level degenerate sys-
tem. In this case, the excitation channels are separated
due to different polarizations acting on the system of
electromagnetic waves, and the emerging configura-
tions are determined by the selection rules for transi-
tions between sublevels. It is important to note that, in
the case of accompanying wave propagation, the close-
ness (and even equality in the case of exact resonance)
of the frequencies of the fields used in such systems
makes it possible to eliminate almost completely the
Doppler broadening of the two-photon transition corre-
sponding to electromagnetically induced transparency.
In addition, the possibility of using a common source of
interacting waves makes it possible to considerably
improve the coherence of exciting effects, which pro-
duces a positive effect on the observed characteristics.
This renders degenerate systems convenient objects for
observing electromagnetically induced transparency. In
particular, the so-called storage of light [4] was
obtained on the transition 5s1/2, F = 2  5p1/2, F = 1
for 87Rb using polarized radiation. It should be noted
that the effect of electromagnetically induced transpar-
ency in systems with Zeeman degeneracy may be used

        
2002 MAIK “Nauka/Interperiodica”



ELECTROMAGNETICALLY INDUCED TRANSPARENCY 917

                
in spectroscopic applications [8] as well as in the mea-
surements of weak magnetic fields [12]. The applica-
tion of this model for an analysis of excitation of the
polarization-squeezed state of light [13] is of special
interest.

The study of electromagnetically induced transpar-
ency involves, as a rule, the analysis of the behavior of
a weak probe wave in the presence of a high-intensity
driving wave. In a degenerate system, such an approach
is modified as follows. The field of any pre-set polariza-
tion can be regarded as driving, and its variation, as a
probe wave. The present work aims at an analysis of
evolution of the wave field with a slowly varying polar-
ization interacting resonantly with the medium of
degenerate two-level atoms. We will study the behavior
of the intensity and parameter of polarization during the
propagation of a wave through such a medium. The
approach proposed by us was found to be convenient
for describing two-level degenerate systems irrespec-
tive of the number and the specific structure of the sub-
levels. The paper has the following structure. In Section 2,
basic equations are presented and the approximations
of the model used in the present work are discussed.
Section 3 is devoted to an analysis of processes in the Λ
scheme with polarization-aided separation of lower lev-
els. In Section 4, an arbitrary multiply degenerate two-
level system is considered. In Section 5, the general
approach developed in the present work is applied to
the important particular case of a two-level system with
Zeeman degeneracy. A brief review and discussion of
the obtained results are carried out in Conclusions.

2. FORMULATION OF THE PROBLEM:
BASIC EQUATIONS

Let us consider a two-level degenerate system (Fig. 1)
resonantly interacting with the field

(2.1)

where ω is the transition frequency and e(z, t) is the
slow amplitude. We will seek the wave function of the
system in the form

(2.2)

where the origin is taken at the energy of the lower
level, {ψ1(r), …, ψN(r)}, {χ1(r), …, χM(r)}, are certain
orthonormal bases at the lower and upper energy levels,
respectively, and ai and bj are nonstationary probability
amplitudes.

The system of equations for the probability ampli-
tudes ai and bj, supplemented by taking into account the

E z t,( ) e z t,( ) –iωt ikz+( ) c.c.,+exp=

ψ r t,( ) aiψi r( )
i 1=

N

∑=

+ b jχ j r( ) –iωt ikz+( ),exp
j 1=

M

∑
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spontaneous decay of the upper level, can be written in
the form

(2.3)

(2.4)

where dij =  are the dipole moments of the

corresponding transitions, γ is the decay constant, the
term –γbj was introduced for describing the relaxation
of the population of the upper level, and the dot denotes
the partial derivative with respect to time.

In order to describe the space–time evolution of the
field, we use the truncated wave equation

(2.5)

where ν = 2πNω/c, N being the concentration of atoms.
It is convenient for subsequent analysis to decom-

pose the slow field amplitude e in a certain orthonormal
basis e1, e2 in a plane perpendicular to the direction of
propagation:

(2.6)

As a result, Eqs. (2.3)–(2.5) will be written in the form

(2.7)

(2.8)

(2.9)

(2.10)

where  = (e1 · dij),  = (e2 · dij) (the scalar

product is introduced here as (p · q) = ).

ȧi
i
"
--- b j dij e⋅( )∗ ,

j 1=

M

∑=

ḃ j
i
"
--- ai dij e⋅( ) γb j,–

i 1=

N

∑=

ψi*dχ j r3d∫

z∂
∂ 1

c
---

t∂
∂

+ e iν ai*b jdij,
i j,
∑=

e ε1e1 ε2e2.+=

z∂
∂ 1

c
---

t∂
∂

+ ε1 iν a D̂1b⋅( ),=

z∂
∂ 1

c
---

t∂
∂

+ ε2 iν a D̂2b⋅( ),=

ȧ
i
"
--- ε1*D̂1 ε2*D̂2+( )b,=

ḃ
i
"
--- ε1D̂1

+ ε2D̂2
+

+( )a γb,–=

D̂1( )ij D̂2( )ij

pi*qi

M{

N{

|1〉

|0〉

E

Fig. 1. Two-level degenerate system resonantly interacting
with the field E; M and N are the degeneracies of the upper
and lower energy levels, respectively.
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These equations lead to the following conclusion for
a steady-state field (ε1 = const, ε2 = const). If the degen-
eracy of the lower level exceeds the degeneracy of the
upper level, the lower level always contains a state
which does not interact with the field (dark state) and
satisfies the relation

(2.11)

This relation corresponds to the vacant upper level

(2.12)

In this case, the right-hand sides in Eqs. (2.7), (2.8) for
the field are equated to zero; i.e., the medium does not
interact with the field. Relaxation processes in the sys-
tem ensure the stability of the dark state. Thus, in the
case of steady-state fields, coherent population trapping
in the dark state and electromagnetically induced trans-
parency emerge in the system. In the subsequent analy-
sis, we will describe the evolution of the wave field
which is slow over the time of stabilization of coherent
population trappings by using the adiabatic approxima-
tion for studying the system response.

It should be noted that the approach proposed for
describing the evolution of the quantum system with
the simplified inclusion of relaxation cannot be used for
obtaining a correct description of the processes of pro-
found rearrangement of population in the system and
the establishment of coherent population trapping asso-
ciated with it. Indeed, the term –γb in Eq. (2.10) actu-
ally describes the depopulation of the system. In this
case, the relaxation of population from the upper level
to the lower level is disregarded as well as the relax-
ation processes within the levels. However, the analysis
of the corresponding processes in systems of the Λ type
on the basis of the density matrix formalism leads to the
following conclusion [1]. If the system is in the state of
coherent population trapping at the initial instant, a
slow (on the scale of relaxation time) variation of the
fields is accompanied by an adiabatic rearrangement of
the dark state. To be more precise, in fields stronger
than the threshold field for the coherent population
trapping, the evolution of the system is independent of
the relaxation constants.

3. POLARIZATION Λ SCHEME

In order to illustrate the features of the problem, we
first consider the case when the lower level is doubly
degenerate, while the upper level is not degenerate, i.e.,
the so-called Λ scheme of energy levels with the polar-
ization-aided separation of excitation channels. In this
case, we can easily obtain an explicit equation for the
dark state. For the sake of simplicity, we assume that
the dipole moments of the transitions between the
lower sublevels are equal and orthogonal (|d1| = |d2| = d,

ε1D̂1
+ ε2D̂2

+
+( )a 0.=

b 0.=
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(d1 · d2) = 0). In the components along the orthogonal
directions,

. (3.1)

Equations (2.7)–(2.10) can be written in the form

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

In the case of steady-state fields, the system of con-
stituent equations (3.4)–(3.6) has eigenvalues λ1 = 0,

λ2, 3 = –γ/2 ± , where |ε|2 = |ε1|2 + |ε2|2.
It can be seen that Reλ2, 3 < 0. Thus, during the time
τR = 1/min(|Reλ2, 3|), the dark state, which does not
interact with the field and corresponds to zero eigen-
value, will set in, for which

(3.7)

For fields much weaker than the fields saturating the
transition, Ω ! γ (Ω = |ε|d/" is the Rabi frequency), the
time of stabilization of the dark state is given by

(3.8)

It should be noted that, in more realistic models, we
must take into account the processes of relaxation in the
lower level, which ultimately lead to degradation of
coherent population trapping (3.7). In this case, the life-
time of the dark state can be estimated as

(3.9)

where Γ is the constant of relaxation processes in the
lower level.

A comparison of Eqs. (3.8) and (3.9) shows that the
field-induced process of stabilization of the state (3.7)
dominates over its “spontaneous” decay (3.9) in the
fields

(3.10)

It is this threshold condition (imposed on the field) of
coherent population trapping that appears when relax-
ation is taken into account correctly on the basis of the
density matrix formalism in Λ-type systems [1].

e1

d1

d
-----, e2

d2

d
-----= =

z∂
∂ 1

c
---

t∂
∂

+ ε1 iνda1*b,=

z∂
∂ 1

c
---

t∂
∂

+ ε2 iνda2*b,=

ȧ1
id
"
-----ε1*b,=

ȧ2
id
"
-----ε2*b,=

ḃ
id
"
----- ε1a1 ε2a2+( )b γb.–=

γ2/4 d2 ε 2/"2–

a1ε1 a2ε2+ 0, b 0.= =

τR γ/Ω2.=

τ s Γ 1– ,=

Ω2
 @ Γγ .
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For fields much stronger than the threshold field
(3.10) and smooth over the τR scale, we can assume that
the quasi-stationary relations (3.7) are satisfied in the
initial approximation (in slowness). Since Eqs. (3.2)
and (3.3) for the field contain the products  and

, we will be interested in the nonstationary correc-
tion to the population of the upper level only. It should
be noted that relations (3.4), (3.5), and (3.7) lead to the
conservation of population in the system, which should
naturally be normalized to unity:

(3.11)

Taking into account this relation, we have the following
relations in the zeroth order of perturbation theory:

(3.12)

where κ is a certain phase factor, |κ| = 1.

Substituting  and  into Eqs. (3.4) and (3.5),
we can easily find the nonstationary correction to b:

(3.13)

Finally, we arrive at the following self-consistent equa-
tions for the field:

(3.14)

(3.15)

As applied to a three-level Λ scheme, the system of
equations (3.2)–(3.6) describes the interaction of
bichromatic radiation in a resonant medium [14–17].
The peculiarities of the dynamics of an accompanying
Raman-type interaction were investigated analytically
and numerically in [14–16]. Among other things, it was
proved that the adiabatic approximation (3.14), (3.15)
correctly describes the evolution of the central part of
the pulses.

As applied to our case, it is convenient to write
Eqs. (3.14) and (3.15) in terms of the polarization
parameter

(3.16)

and intensity |ε|2. Finally, we have

(3.17)

(3.18)

a1*b

a2*b

a1
2 a2

2+ 1.=

a1
0( ) κε2/ε, a2

0( ) κε1/ε, b 0( )– 0,= = =

a1
0( ) a2

0( )

b
"k

id ε 3
------------- ε1 t∂

∂ ε2 ε2 t∂
∂ ε1– 

  .=

z∂
∂ 1

c
---

t∂
∂

+ ε1
"ν
ε 4
------- ε1 t∂

∂ ε2 ε2 t∂
∂ ε1– 

  ε2*,=

z∂
∂ 1

c
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t∂
∂

+ ε2 –
"ν
ε 4
------- ε1 t∂

∂ ε2 ε2 t∂
∂ ε1– 

  ε1*.=

q ε1/ε2=

z∂
∂ 1

c
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+ ε 2 0,=

z∂
∂ 1

c
--- "ν

ε 2
-------+ 

 
t∂

∂
+ q 0.=
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It can be seen that the energy of an electromagnetic
wave propagates in a system with the velocity of light
(as in the conventional Λ scheme), while the polariza-
tion wave propagates at a certain effective velocity

(3.19)

where Wmax = N"ω is the maximum energy density
which can be “pumped” to the medium and WE = |ε|2/8π
is the electromagnetic energy density. Thus, for Wmax @
WE, the velocity of the polarization wave turns out to be
considerably smaller than the velocity of light.

It should be noted that expression (3.19) coincides
with the expression for the velocity of a probe wave
under the conditions of electromagnetically induced
transparency in the presence of a powerful driving wave
whose intensity is much higher than the threshold
intensity (3.10) obtained in the framework of the den-
sity matrix formalism [18]. This is obvious for a small
change in polarization which can be regarded as a low-
intensity probe wave. In the case of a strong change in
polarization, the occurring processes can be interpreted
as resonance Raman scattering of an electromagnetic
wave of a certain polarization into another wave at the
low-frequency coherence induced in the medium. The
adiabaticity condition imposes the following limitation
on the length LF of the rearrangement wave front:

(3.20)

For fields much weaker than the saturation field

(3.21)

or in the case in the case of radiation-induced relaxation
γ = 4ω3d2/3"c3, we obtain

(3.22)

where λ is the wavelength.

In particular, for experiments with rubidium (D1
and D2 lines), we have Lmin(T = 300 K) ≈ 4 × 10–1 cm
and Lmin(T = 350 K) ≈ 4 × 10–3 cm.

4. TWO-LEVEL SYSTEM 
WITH MULTIPLE LEVEL DEGENERACY

Let us generalize the results obtained above in the
adiabatic approximation to a multiply degenerate two-
level system. We assume that, in the zeroth approxima-
tion, the atomic system is in the dark state; i.e., relations
(2.11) and (2.12) are satisfied. As in the previous sec-
tion, we will determine nonstationary corrections to the
population of the upper level. It should be noted that
Eqs. (2.9) and (2.11) lead to a condition of conservation

V eff
1
c
--- "ν

ε 2
-------+ 

  1–
c 1

Wmax

4WE

------------+ 
  1–

,= =

LF @ Lmin τRV eff.=

Lmin
γ"c

2πNωd2
---------------------,=

Lmin
8π

3λ2N
-------------,=
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of population in the system, which is similar to relation
(3.11):

(4.1)

We will describe the space–time evolution of the wave
field in terms of the polarization parameter q and inten-
sity |ε|2. Using relations (2.7), (2.8), and (2.11), we can
easily find that the behavior of the intensity is
described, as in the case of a Λ scheme, by Eq. (3.17).

We will rewrite Eqs. (2.7)–(2.9) and (2.11), singling
out the polarization parameter in explicit form:

(4.2)

(4.3)

(4.4)

In the case when Eq. (4.4) has a one-dimensional space
of solutions, on account of the population conservation
condition (4.1), we have

(4.5)

where a0(q) is a certain normalized solution of Eq. (4.4)
and κ is an arbitrary phase factor, |k | = 1.

In order to find the corrections to the population of
the upper level, which are associated with the rear-
rangement of the dark state (4.5), we differentiate rela-
tion (4.4) with respect to time:

. (4.6)

Taking into account relation (4.3), we obtain

(4.7)

where

(4.8)

Substituting the obtained expression (4.7) into Eq. (4.2)
for the polarization parameter and using relation (4.4),
we obtain

(4.9)

The substitution of a in the form (4.5) into Eq. (4.9)
shows that the expression contains only the modulus of

a 2 1.=
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a · T 1– D̂1
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a · T 1– D̂2

+
a( )+( ).
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the phase factor κ, which is equal to unity. Finally, we
can write

(4.10)

where

(4.11)

a0(q) being a certain (any) normalized solution of
Eq. (4.4).

It follows hence that the polarization structure of the
field propagates at a certain effective velocity depend-
ing on the intensity and (in the general case) the direc-
tion of polarization:

(4.12)

Thus, the analysis of the evolution of the wave field is
reduced to determining the dependence of the deceler-
ation factor u(q) on the polarization of the wave.

5. BEHAVIOR OF POLARIZATION 
OF AN ELECTROMAGNETIC WAVE 

UNDER THE CONDITIONS 
OF ELECTROMAGNETICALLY INDUCED 

TRANSPARENCY IN A TWO-LEVEL QUANTUM 
SYSTEM WITH ZEEMAN DEGENERACY

By way of an application of the theory developed in
the previous section, we consider the resonant interac-
tion of polarized radiation with a quantum system with
Zeeman degeneracy. Let the lower and upper energy
levels of the two-level system under investigation cor-
respond to the states with the angular momenta L0 and
L1, respectively, while in zero magnetic field these lev-
els are characterized by degeneracy 2L0 + 1 and 2L1 + 1
in the angular momentum component (the so-called
Zeeman degeneracy, or degeneracy in the magnetic
quantum number). This example is of practical impor-
tance, in particular, for transitions between the sublev-
els of the hyperfine structure, which are widely used for
obtaining electromagnetically induced transparency. In
accordance with the selection rules, transitions with

(5.1)

are possible. An analysis of the coherent population
trapping in the given case is carried out in [10]. As
applied to the problem under investigation, the results
obtained in [10] can be presented as follows. The sys-
tem of sublevels splits into two noninteracting sub-
systems (if we disregard the relaxation processes
between the sublevels). In this case,

(a) for ∆L = +1, no coherent population trapping can
take place in either of the subsystems;

z∂
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c
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(b) for ∆L = 0, no coherent population trapping is
possible in either of the systems with a half-integer
momentum for an arbitrary field polarization; in sys-
tems with integer spins, except for the special case of
L0 = 0  L1 = 0, when transition is forbidden, coher-
ent population trapping is impossible in one of the sys-
tems (V-type system) and possible in the other (Λ-type)
system;

(c) for ∆L = –1, coherent population trapping is pos-
sible in both subsystems (Λ-type systems); in this case,
the subsystems make additive contributions to the
equation for the field and, accordingly, to the expres-
sion for the deceleration factor. (In the special case of
L0 = 1  L1 = 0, the Λ scheme + the “pocket” |L0 =
1, L0z = 0〉 does not interact with the field of any polar-
ization.)
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 = 0 and an integer
angular momentum. The subsystems in which coherent
population trapping is possible (

 

Λ

 

-type) are presented by
solid lines, while the subsystems in which it is impossible
(

 

V

 

-type) are shown by dashed lines.
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In the framework of the proposed approach, it is
possible to consider the subsystems separately. Their
responses appear additively in the expression for the
field and, accordingly, for the retardation factor (4.11).
As a result, the expression for this factor assumes the
form

(5.2)

Here, ua(q) and ub(q) are the deceleration factors and na

and nb are the populations of the subsystems a and b,
respectively. It should be noted that, in accordance with
Eq. (4.1), the quantities na and nb are conserved.

Let us consider, by way of an illustration, the dia-
grams of some transitions in which coherent population
trapping is possible (Figs. 2 and 3). In these figures, the
numbers denote the angular momentum components
corresponding to the sublevels. The quantization axis is
chosen along the direction of propagation of the wave,
and, hence, the field component along the quantization
axis is equal to zero. Transitions with ∆Lz = –1 and
∆Lz = +1 correspond to the left (σ–) and right (σ+) cir-
cular polarizations. It is important to note that, in all the
subsystems under investigation for which a dark state
exists (Λ-type systems), the number of lower sublevels
is larger by unity than the number of the upper sublev-
els, and the dimensionality of the dark state is equal to
unity.

Let us now use the approach developed by us for
systems with a one-dimensional dark state for analyz-
ing two-level systems with Zeeman degeneracy.

For describing the transitions between magnetic
sublevels, it is convenient to choose the right and left
circular polarizations of the electric field as the basis
polarizations:

u q( ) naua q( ) nbub q( ).+=

                                                        
–3/2 –1/2 1/2
L0 = 3/2 ↔ L1 = 1/2

–3/2 –1/2 1/2

–3/2 –1/2 1/2
L0 = 5/2 ↔ L1 = 3/2

3/2

3/2–5/2

3/2

–1/2 1/2

5/2

–1 0 +1

–1 0 +1 +2–2

–1 0 +1

0

L0 = 1 ↔ L1 = 0

L0 = 2 ↔ L1 = 1

Fig. 3. Diagrams of some transitions with ∆L = –1. In both subsystems (depicted by solid and dashed lines), coherent captures of
population is possible (Λ-type). The special case is L0 = 1  L1 = 0. This transition splits into the Λ diagram (solid line) and a
“pocket,” viz., isolated sublevel |L0 = 1, L0z = 0〉  (dashed line).
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Fig. 4. Dependence of the deceleration factor on the polarization parameter for one of the subsystems of the transition L0 = 2 
L1 = 1 (which corresponds to the subsystem depicted by the solid line in Fig. 3).
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(5.3)

(5.4)

In this case, for the dipole moments of transitions, we
obtain

(5.5)

(5.6)

where

(5.7)

(5.8)

It turns out that with such a choice, the retardation fac-
tor depends only on the modulus of the polarization
parameter,

(5.9)

This is apparently associated with the axial symmetry
of the eigenfunctions of the magnetic sublevels relative
to the quantization axis (which was chosen so that it
coincides with the direction z of wave propagation). By

e1
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way of an illustration, Fig. 4 shows the curve u(q) cal-
culated by formulas (4.11), (4.8), and (4.4) for one of
two subsystems of the Λ type, which is formed by three
sublevels of the lower level and by two sublevels of the
upper transition L0 = 2  L1 = 1 (the subsystem
depicted by the solid line in Fig. 3). The radial symme-
try of u(q) confirms the above conclusion (5.9). In addi-
tion, it was found that the deceleration factor is inde-
pendent of the absolute value of the dipole moment and
is determined only by the relation between the
moments of transitions between different sublevels.
This can easily be explained as follows. If we multiply

the matrices  and  by a certain factor, it will be
canceled out after the substitution into formulas (4.8)
and (4.11). It is also clear that, since the deceleration
factor is a function of the modulus of q only, it does not
change after the multiplication of one of the matrices

 by a number whose magnitude is equal to unity.
Indeed, such a change in the matrix of dipole moments
is equivalent to the multiplication of the polarization
parameter q in expressions (4.4), (4.8), and (4.11)
defining the function u(q) by the corresponding phase
factor. The nonzero matrix elements of transitions
between the Zeeman sublevels are given by [19]

(5.10)

     

D̂1 D̂2

D̂

n' L M 1 d̂– n L M, ,–, ,〈 〉

=  L M– 1+( ) L M+( )
L L 1+( ) 2L 1+( )

------------------------------------------------- n' L d̂ n L,,〈 〉 ,
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(5.11)

(5.12)

(5.13)

where 〈n', L'|| ||n, L〉  = 〈n, L|| ||n', L'〉* are the reduced
matrix elements.

It follows from the above arguments that the decel-
eration factor u(q) is independent of the magnitude of
reduced matrix elements. Thus, the behavior of the
wave field in the adiabatic approximation is the same
for different substances irrespective of the dipole
moment of the transition.

We will now consider the results of calculations of
the deceleration factor u(q) on the basis of Eqs. (5.10)–
(5.13) for various transitions under the conditions of
coherent capture.

(a) ∆L = 0; L is an integer. In this case, we assume
that optical evacuation of population from the sub-
system possessing no dark state takes place during the
establishment of coherent population trapping (see
Fig. 2). In this case, the response of the medium is
determined by the subsystem with coherent population
trapping. The form of the deceleration factor corre-
sponding to such subsystems is shown in Fig. 5 for sev-
eral small values of angular momentum. It can be seen
that the deceleration factor possesses symmetry relative
to the change of left circular polarization to right polar-
ization, and vice versa (which corresponds to the sub-
stitution q  1/q). Such a symmetry is in accord with
the initial symmetry of the system (see Fig. 3). For the
transition L0 = 1  L1 = 1, the value of u(|q|) is equal
to unity. For the remaining transitions, the peak of the
deceleration factor and, hence, the minimum of the
velocity of the polarization wave correspond to the lin-
ear polarization (|q| = 1), while the minimum of the
deceleration factor and the maximum of velocity corre-
spond to circular polarizations (|q| = 0, |q| = ∞).

(b) ∆L = –1. In this case, both subsystems (see
Fig. 3) make additive contributions to deceleration
(5.2). The dependences of the deceleration factor on the
modulus of the polarization parameter for two different
subsystems of some transitions with half-integer angu-
lar momenta are shown in Figs. 6a and 6b, respectively.
It can be seen that, when the right circular polarization
is replaced by the left polarization (q  1/q), Fig. 6a
is transformed into Fig. 6b, which corresponds to the
initial symmetry of the subsystems. Figure 3 shows
that, for a half-integer momentum, one subsystem is

n' L M 1 d̂– n L 1 M,–,–, ,〈 〉

=  L M– 1+( ) L M–( )
L 2L 1–( ) 2L 1+( )

------------------------------------------------ n' L d̂ n L 1–,,〈 〉 ,

n' L 1– M 1 d̂– n L M, ,–, ,〈 〉

=  – L M 1–+( ) L M+( )
L 2L 1–( ) 2L 1+( )

------------------------------------------------- n' L 1– d̂ n L,,〈 〉 ,

n' L' M' d̂+ n L M, ,, ,〈 〉

=  n L M d̂– n' L' M', ,, ,〈 〉 ∗ ,

d̂ d̂
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Fig. 5. Dependence of the deceleration factor on the modu-
lus of the polarization parameter for some transitions with
∆L = 0 and with an integer angular momentum.
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transformed into the other, and vice versa, as a result of
such a replacement.

Similar dependences for transitions with integer
momenta are shown in Figs. 7a and 7b; in this case, the
subsystems (see Fig. 3) and the corresponding deceler-
ation factors are symmetric relative to the substitution
of the left circular polarization for the right polariza-
tion. Special attention should be paid to the transition
L0 = 1  L1 = 0, which is not depicted in Figs. 7a and
7b and which decays (see Fig. 3) into the Λ diagram for
which uΛ(|q|) = 1 and a “pocket,” viz., the sublevel 
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〉

 

, which does not interact with a field of any
polarization.

In accordance with Eq. (5.2), in order to obtain the
total deceleration factor of the corresponding transi-
tion, we must add the deceleration factors of the sub-
systems constituting this transition with the weight fac-
tors equal to the populations of these subsystems. It is
natural to assume that the population will be divided
between the subsystems in proportion to the number of
sublevels at their lower level. The dependence of the
deceleration factor on the magnitude of the polarization
parameter obtained under this assumption is presented
in Fig. 8. As in the case of transitions with 

 

∆

 

L

 

 = 0, the
total retardation factor is symmetric relative to the
replacement of the left circular polarization by the right
polarization, and vice versa (

 

q

 

  1/

 

q

 

), which corre-
sponds to the initial symmetry of the quantum system.
For the transition 
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) =
const. For the remaining transitions, the maximum of
the deceleration factor and, hence, the minimum of the
velocity of polarization wave correspond to circular
polarizations (
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), while the minimum of
the deceleration factor and the maximum of velocity
correspond to the linear polarization (
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Thus, we find that, for all transitions except 
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 = 0 and 
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 = 1, the deceleration factor
depends on the direction of polarization; in this case,
the deceleration in the propagation of a polarization
pulse is accompanied by a change in its shape. For our
subsequent analysis, we consider the case when decel-
eration is significant; i.e., 
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. It should be
noted that this situation is most important for the prac-
tical realization of the predicted effects. In this case, we
can disregard unity in expression (4.12) for the velocity
of the polarization wave and, accordingly, 1/

 

c

 

 in
Eq. (4.10). Taking this into account, we can write the
Eq. (4.10) for the polarization parameter as

(5.14)

In the case of a constant field intensity, Eq. (5.14) has a
solution in the form of a simple wave:

(5.15)
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For transitions with ∆L = 0, the peak of u(q) corre-
sponds to the linear polarization (|q| = 1), while its min-
imum corresponds to the linear polarization (|q| = 0,
|q| = ∞); for transitions with ∆L = –1, the opposite situ-
ation is observed. Let us consider for definiteness the
transition with ∆L = −1, for which the front of rear-
rangement of the linear polarization into a circular
polarization is extended during the propagation and is
contracted upon a transition from a circular to the linear
polarization.

The breaking length can be estimated as the distance
over which the “rapid” polarization catches up with the
“slow” polarization,

(5.16)

where T is the time of variation of polarization at the
entrance in the medium.

Over paths shorter than the breaking length, disper-
sion and dissipation effects must be taken into consid-
eration.

6. CONCLUSIONS

We have analyzed the evolution of an electromag-
netic wave with a slowly varying polarization upon the
resonant interaction with the medium formed by degen-
erate two-level atoms under the conditions of electro-
magnetically induced transparency. It was found that
the wave field amplitude propagates at the velocity of
light, while the polarization wave propagates at a cer-
tain effective velocity which generally depends on the
intensity and polarization and may be considerably
smaller than the velocity of light. We propose a method
of determining this velocity for systems with a one-
dimensional dark state. The knowledge of the depen-
dence of deceleration on polarization makes it possible
to describe the change in the shape of a polarization
pulse as a result of its passage through the medium. It
is interesting to note that the behavior of polarization is
independent of the magnitude of the dipole moment of
the transition and is determined only by the relation
between the moments of transitions between different
sublevels. The proposed approach is applied for analyz-
ing a two-level system with Zeeman degeneracy, which
is often used in experiments on electromagnetically
induced transparency. It was found that for all systems
of this type, in which electromagnetically induced
transparency is possible (except 1  0 and 1  1
transitions), the velocity of propagation of a polariza-
tion pulse is a function of polarization, which leads to
deformation of the pulse during its propagation. The
form of the velocity of propagation was analyzed for
transitions with a small value of the angular momen-
tum.

In the present work, we disregarded the relaxation
processes in the lower level, which inevitably emerge in
real systems. It is known that the finite lifetime of low-

L
4WE

Wmax
------------ 1

umax umin–
------------------------cT ,=
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frequency coherence leads to a threshold [1] for the
emergence of coherent population trapping and electro-
magnetically induced transparency associated with it.
However, the fact that the results obtained in this work
are the consequence of coherent population trapping in
the dark state allow us to assume that these results are
also valid for fields of a strength exceeding the thresh-
old value considerably.

We can propose the following scheme for observing
the effect predicted in this work, which is similar in
many respects to that used in [4]. Use should be made
of a laser with a certain fixed polarization and a Pockels
cell forming radiation with a polarization varying in
time. By comparing the polarization structure of the
wave passing through the resonant medium and outside
this medium, one can observe a delay and variation in
the form of a polarization pulse. Since the velocity of
propagation of a polarization wave coincides with the
velocity of a probe wave under the conditions of elec-
tromagnetically induced transparency, the conditions
for observing the polarization effects considered by us
here correspond to the conditions of other experiments
with degenerate systems (see, for example, [4]). The
estimates of the polarization rearrangement front
length, which sets the limit on the sample size, are
given (for rubidium) at the end of Section 3.
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Abstract—General kinetic equations are derived for nuclear reactions in dense plasmas by taking into account
first-order collective plasma effects. We show that, apart from the corrections proportional to the product of the
charges Zi and Zj of two reacting nuclei i and j, new corrections comparable in magnitude and proportional to

the squares of the nuclear charges  and  arise. The Salpeter corrections [1] to the nuclear reaction proba-
bilities due to the plasma screening of the interaction potential are shown to be at least a factor of r/d (r is the
nuclear size and d is the Debye screening length) smaller than those assumed previously. These are zero in the
approximation where the terms of order r/d are disregarded. The correlation corrections proportional to ZiZj
have a different physical meaning than those in [1], can have a different sign, and arise for reactions with zero
Salpeter corrections. For the correlation corrections that substitute for the previously used Salpeter corrections,
strong correlations are difficult to describe analytically. The interpolation formulas between weak and strong
Salpeter screenings previously used in many astrophysical applications are inapplicable, because the interpola-
tion formulas between weak and strong correlations cannot yet be obtained. We found a new type of corrections
that are proportional to the squares of the charges of reacting nuclei. These are attributable to a change in the
collective electrostatic self-energy of the plasma system during nuclear reactions. Plasma corrections for the
hydrogen-cycle nuclear reactions are numerically calculated for the temperature, density, and abundances in the
solar interior. © 2002 MAIK “Nauka/Interperiodica”.

Zi
2 Z j

2

1. INTRODUCTION

In his widely known paper, Salpeter [1] showed that
the probability of nuclear reactions in dense plasmas
for a Debye-screened Coulomb potential is appreciably
higher than that for an unscreened Coulomb potential.
This effect was called the plasma screening of thermo-
nuclear reactions. It was widely used to describe stellar-
evolution models [2] and nuclear reactions in the solar
interior [3] (see reviews [4, 5]). For the hydrogen-cycle
reactions in the solar interior, the effect contributes
from 5 to 20% to the nuclear reaction rates. This contri-
bution is large enough both for solar neutrinos and for
the speed of solar sound oscillations, which are clearly
detectable by currently available methods of solar seis-
mology. Only 35 years later did Carraro et al. [9] notice
that the static screening of nuclear reactions (as consid-
ered in [1]) is physically meaningless, because the reac-
tions take place at energies much higher than the mean
thermal energies (at the so-called Gamov energies), at
which there is no static screening for plasma particles
(see, e.g., [7]). For such energies, the screening
becomes dynamic, vanishing in the limit of high veloc-
ities. Subsequently, many serious studies using a
sophisticated diagram technique in quantum statistics
appeared [8, 9]. These show that the corrections to the
nuclear reaction rates must correspond precisely to
static screening. As we show here, the authors of [8, 9]
1063-7761/02/9405- $22.00 © 20927
actually calculated an effect different from that consid-
ered in [1]. Although there are no errors in their calcu-
lations [8, 9], the physical interpretation of their results
is inaccurate. The coincidence itself between the results
of [8, 9] and [1] is apparently accidental and arises only
in the zero approximation in small parameters, which
are different in [1] and [8, 9]. In this paper, we obtain
new, previously disregarded corrections to the nuclear
reaction rates, which are proportional to the squares of
the charges of reacting nuclei.

The debate on whether the screening of nuclear
reactions is dynamic or static is still going on. To
resolve this problem, it was necessary to abandon the
original assumption [1, 6] that the interaction of nuclei
is determined by an average potential. In [10–12], we
derived the equations of nuclear kinetics in plasma
from the first principles by averaging the microequa-
tions over plasma fluctuations. Only this approach is
appropriate for systems of many particles. The
approach of [1, 6] deals with only two reacting probe
particles for which a screened potential is used without
proof. The fluctuational approach, as applied to Cou-
lomb collisions in plasma, was able to rigorously prove
that collisions take place between dynamically
screened particles [7]. Previously [10–12], we found a
possible resolution to the dilemma of static or dynamic
screening of nuclear reactions. More specifically, we
obtained a cancellation of all static corrections. In this
002 MAIK “Nauka/Interperiodica”



 

928

        

TSYTOVICH

                                         
paper, we develop and refine the method of deriving the
kinetic equations for nuclear reactions in plasma used
in [10–12] or, more specifically, we take into account
the change in fluctuations through nuclear reactions.
This dilemma is resolved here differently. We show that
there is no Salpeter static screening at all and that, to a
first approximation in a small parameter (the number of
particles within a Debye sphere), the correlation effects
in plasma lead to a result that matches the zero approx-
imation of static screening. The existing paradox is
resolved, because the physical interpretation of the
effect changes radically: the correlation effects can be
determined by static permittivity (which is well known
for a number of processes in plasma physics, e.g., for
wave scattering [7]), while the screening cannot be
determined by the latter. These effects coincide only in
the zero approximation and only for the corrections
proportional to the product ZiZj of the charges of react-
ing nuclei i and j. In the next approximations, the
screening and correlation effects yield completely dif-
ferent results. Here, we consider only weak correla-
tions, which would correspond to weak screening in the
Salpeter approach.

A qualitatively new result of [10–12] is the detection
of collective corrections proportional to the squares of

the nuclear charges (  and ), which were absent in
all the previous approaches. These corrections are not
related to the correlations of interacting nuclei; they are
specific to systems in which direct thermonuclear reac-
tions take place but inverse reactions are not possible.
Such systems are open. Precisely these nuclear reac-
tions involving neutrinos take place in stellar interiors
and on the Sun if neutrinos are capable of freely leaving
the region with nuclear reactions. Including this effect
in the collision integral (which was ignored previously)
gives additional contributions that depend on time
derivatives and, thus, on nuclear reaction rates. This
leads to a renormalization of the distribution functions
for reacting nuclei and to corrections proportional to
the squares of the nuclear charges. Like the correlation
effects, these effects are related to changes in the distri-
butions of nuclei but not to the nuclear reactions them-
selves; i.e., these are kinetic collective effects. The
renormalization of the particle distributions is known to
be a standard operation in any kinetic theory [13, 14],
and the necessity of its use in the kinetics of nuclear
reactions seems obvious.

Here, the time evolution of nuclear reactions in
plasma is investigated in the statement that is most nat-
ural for any temporal problems. We assume that there
were no nuclear reactions before the initial time t = 0
and analyze the asymptotic behavior of the system at
large t. Landau used this statement of the problem to
investigate the damping of plasma waves. As applied to
nuclear reactions in plasma, it yields corrections qua-
dratic in charges. Here, in contrast to [10–12], we
assume the plasma fluctuations to be modified by
nuclear reactions. The final corrections depend on the

Zi
2 Z j

2
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entire nuclear cycle and asymptotically differ from
those obtained in [10–12].

Thus, in this study, we obtained the results in the
approximation of small plasma corrections propor-
tional both to the product of the charges of reacting
nuclei and to their squares.

The general results are used for specific numerical
calculations of the plasma corrections to the hydrogen-
cycle nuclear reaction rates for the parameters of the
current solar interior.

2. THE VANISHING 
OF SALPETER SCREENING

Recall the salient points of [1]. The interaction
potential of the nuclei is assumed to be a Debye-
screened Coulomb potential:

(1)

where r is the distance between two nuclei, which is
much smaller than the Debye screening length d. The
correction to the Coulomb potential, the constant in the
interaction energy, may be included in the energy Er of
relative motion of the nuclei. The nuclear reaction prob-
ability depends only on the latter:

(2)

The thermonuclear reaction rate can be obtained by
integrating the probability over the Maxwellian distri-
bution. When integrating by parts, the derivative with
respect to the relative energy reduces to the factor 1/T
in the zero approximation in parameter

where EG is the Gamov energy (the derivative of the
phase factor has such a smallness compared to the
derivative of the Maxwellian distribution). For the
nuclear reaction rate Rij, we have

(3)

(4)

where  is the reaction rate without plasma correc-
tions and ek, 0 is the static permittivity (ek, 0 |ω = 0). As
was noted above, its presence in the final result for
screening is physically unacceptable.

The error in this derivation is veiled. It stems from
the fact that the screening polarization charge is not a
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fixed spatial charge around the nuclei. This charge
arises from the motion of the remaining particles that
produce fluctuating potentials and fields for the entire
system of particles. The nuclear reactions for a specific
pair of nuclei take place in the external fluctuating
potential φ produced by all the remaining nuclei. The
average value of this potential does not determine the
nuclear reaction rate, because the averaging time is
much longer than the nuclear tunneling time. Inserting
the fluctuating potential φ in the expression for the
nuclear reaction probability, expanding it in terms of
this potential, and averaging over fluctuations yield a
value proportional to the fluctuating potential. How-
ever, this calculation, which formally gives (4), also
seems to be incorrect. It is presented below. For the
terms proportional to ZiZj, the change in average prob-
ability is

(5)

The fluctuating potential φ is determined by the dynam-
ically screened particles, but the standard expression
for the fluctuating potential together with the fluctua-
tion–dissipation theorem and integration over the Max-
wellian distribution again leads to expression (4) con-
taining the static permittivity. This result shows that
when using the standard theory of plasma fluctuations,
the error is made somewhere before the averaging. The
calculation yielding (4) and (5) uses the fact that there
is a natural small parameter, namely, the ratio of the
nuclear tunneling size to the fluctuation scale size. This
small parameter is used below.

If we introduce the center-of-mass coordinate R for
two reacting nuclei, their relative coordinate r, and the
coordinates ri and rj of each of these nuclei and if take
into account the fact that the coordinates of the two
nuclei are almost equal in the nuclear reaction, r ! R,
then the following expansion can be used for the addi-
tional energy:

(6)

The first term in the latter expression is a constant for
the nuclear reactions, but it depends on the center-of-
mass coordinate. Therefore, if the second term in (6) is
disregarded when separating the variables, it contrib-
utes to the center-of-mass wave function, gives rise to a
phase factor in the center-of-mass wave function for the
system of reacting nuclei, and causes no change in the
nuclear reaction probability. The second term in (6),
which depends on the relative coordinate and electric
field, is small in the ratio of the nuclear tunneling size
to the fluctuation scale size. Thus, a constant energy
shift arises not in the relative motion but in the transla-
tional motion, and there is actually no Salpeter screen-
ing of the nuclear reactions. The result (5) is obtained if

δ wij〈 〉 ZiZ je
2 φ2〈 〉 ∂2

∂Er
2

---------wij Er( ).=

eZiφ ri( ) eZ jφ r j( )+
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the first term in (6) is erroneously considered as a
perturbation in the relative motion of the nuclei. This
result becomes obvious if the averaging is performed
after the nuclear reaction and if the average potential
is not used. This, in turn, requires that the tunneling
time scale be much shorter than the fluctuation time
scale (which determines the averaging time scale).
The latter is satisfied to a good accuracy if, as usual,
the reciprocal of the plasma frequency is taken as the
fluctuation time scale. The central point here is the
fact established in plasma physics that the screening is
produced in fluctuations, which was disregarded in the
approaches of [1, 6].

3. CORRELATION EFFECTS

The correlation effects describe the correlation
between the states of two reacting nuclei. If the nuclei
are close to each other more frequently, then the aver-
age reaction rate increases. This effect differs from that
discussed in [1, 6], where the charge in the rates of the
reactions themselves was considered. The kinetics of
fluctuations in the system of reacting nuclei is impor-
tant in describing the correlation effects. To investigate
this effect, we will use microequations, as in [10–12],
but in an improved form. This improvement is needed
to construct a more detailed theory of correlations.
Here, we do not present this theory but provide only its
final result, which matches that previously obtained in
the zero approximation [10–12]. Therefore, the above
improvement is used only for a guaranteed justification
of the correlation corrections found in [10–12]. The
basic equation used in developing an improved theory
of correlations is

(7)

where fi and fij are the one- and two-particle distribution
functions, respectively. The former and the latter can be
obtained by integrating the total distribution over the
variables of all particles except particle i and particles i
and j, respectively. The approximation fij ≈ fi fj was used
in [10, 12]. Equation (7) is more accurate than that used
in [10, 12]. This equation can be investigated by analyz-
ing the equation for fij that can be derived by integration
over all variables except i and j rather than over all vari-
ables except the variables of particle i, as in the deriva-
tion of Eq. (7). It allows the correlation effects to be
studied in more detail. This approach is more detailed
than that in [10, 12] but much more cumbersome. The
correlation effects are contained in the approach used in
[10, 12], because the average product of two one-parti-
cle distribution functions is not equal to the product of
the average distributions. We present only the result of
an extensive analysis of the correlation problem using
Eq. (7): to a first nonzero approximation, the correla-
tion corrections are equal to those obtained in [10, 12]
by assuming that fij ≈ fi fj. This equality is not possible

t∂
∂

f i v
r∂

∂
f i ZieE
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f i⋅+⋅+ wij f ij
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2π( )3
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in the next approximations. Recall that to obtain the
correlation corrections, we introduce the fluctuation-
averaged distributions

(8)

Averaging Eq. (7) and taking into account the fact that,
to a first approximation, the nuclear reaction probabil-
ity does not depend on the fluctuating potential (this
dependence was taken into account in [10, 12]), we
derive on the right-hand side

(9)

As the above studies showed, the second term in
Eq. (9) correctly describes the correlations in the first
nonzero approximation. The smallness of the reaction
rate compared to the fluctuation frequency can be used
to calculate these explicitly. Subsequently, standard
expressions for fluctuations of the particle distributions
in plasma in the absence of nuclear reactions can be
used. Although general expressions can be written for
any nonequilibrium distributions of nuclei, we present
the result for equilibrium thermal distributions, where
the fluctuation–dissipation theorem can be used to inte-
grate the fluctuations over frequencies. In this limit, the
corrections can be expressed in terms of static permit-
tivity:

(10)

Here, we took into account the fact that the Coulomb
field of two reacting nuclei should be disregarded in the
fluctuating potential produced by all the remaining
plasma particles. The correlation effect itself bears no
relation to the possible change in the probability of
nuclear reactions between two reacting nuclei: because
of the correlations, the number of reacting nuclei
proves to be large, on average. In [10, 12], apart from
the correlations, we also took into account the change
in probability, an effect that interfered with the correla-
tion effect in [10, 12]. Since no change in probability is
found in this study, we consider only the correlation
corrections. The proportionality of the corrections to
the product of the average distribution functions allows
us to introduce some effective nuclear reaction proba-
bilities, which lead to the same result in the equations
for nuclear reactions in plasma as allowance for the cor-
relations:

(11)

The formal coincidence of the corrections  in

(11) with the Salpeter corrections  (4) should not
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mislead us, because the corrections (11) have a differ-
ent physical meaning. An example shows that these
also differ quantitatively. There is no nuclear barrier in
the reaction of 7Be with electrons, and the Salpeter cor-
rections are zero, while the correlation corrections are
nonzero and are described by Eq. (11).

Since the calculations in [8, 9] were performed by
statistically averaging the unperturbed probability over
the electron and ion distributions, they allow for the
correlations. Thus, the result obtained here also agrees
with the result of [8, 9].

4. FLUCTUATIONS
IN A TIME-EVOLVING SYSTEM

Since there are no inverse processes with neutrino
absorption, the system is open and evolves with time.
The plasma fluctuations are not stationary (as is usual
in the absence of nuclear reactions), with the rate of
their change with time being determined by the nuclear
reaction rates. Although this rate is small compared to
the characteristic fluctuation frequency, the effects
related to the time evolution of plasma fluctuations
must be taken into account when calculating all effects
linear in nuclear reaction rate. Previously, these effects
were ignored. The effects related to a collective electric
field lead to plasma corrections. Therefore, let us first
consider those effects for which the electric field is neg-
ligible. Since the total corrections are treated as small
ones, we will take into account the effects related to
collective fields by using perturbation theory; the
absence of collective fields corresponds to the zero
approximation of this theory. Denote this approxima-
tion by the superscript (0). The basic equation for linear
fluctuations then takes the form

(12)

A similar equation can be written for :

(13)

Having written this system of equations for the Fourier
components,
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we can derive an equation that contains only fluctua-
tions in the distribution function of one of the nuclei:

(14)

where the quantities

(15)

describe the fluctuation damping due to the nuclear
reactions. The right-hand side of Eq. (14) describes the
correlation of fluctuations due to the nuclear reactions
and their additional damping. Given that the character-
istic fluctuation frequency is kvT i ≈ ωpi for k of the order
of the inverse Debye length 1/d, where ωpi is the plasma
frequency of ions i, this correlation can be easily esti-
mated. The right-hand side of Eq. (14) is a factor of

/ωpi smaller than the damping on the left-hand side
of Eq. (14) and may, therefore, be disregarded. For the
spatial components of the fluctuations in the distribu-
tion function

,

the corresponding equation can be written as

(16)

Here, we state a temporal problem with initial condi-
tions for the system at time t = 0. This statement is nec-
essary in an open system, which cannot come to a com-
plete equilibrium because of the absence of inverse pro-
cesses with neutrinos. We assume that the nuclear
reactions are switched on at time t = 0 and consider
their rate asymptotically at large times. Thus, we
assume that νi = 0 at t < 0. This statement of the prob-
lem is close to the actual situation in stars, where
nuclear burning starts at a certain contraction stage of
the protostellar cloud. For t < 0, the solution to (16) is
then

(17)

while, for t > 0,

(18)

Below, we restrict ourselves to a spatially homoge-
neous problem. The average values of δfi, k(p) must then
be the same as those for a stationary (on average) system:

(19)

ω k v⋅ iν i v( )δ f i k ω, ,
0( ) v( )+–( ) Φi v( )–=

×
wij p p',( )wij p'' p',( )
ω k v' iν j v'( )+⋅–
---------------------------------------------Φ j v'( )δ f i k ω, ,

0( ) v''( )
p'd p''d

2π( )6
----------------,∫

ν i p( ) wij p p',( )Φ j p'( )
p'd

2π( )3
-------------,∫=

ν j p'( ) wij p p',( )Φi p( )
pd

2π( )3
-------------∫=

ν i
2

δ f i
0( ) v r t, ,( ) δ f i k,

0( ) v t,( ) ik r⋅( )exp kd∫=

t∂
∂

ik v⋅ ν i v( )+ + 
  δ f i k,

0( ) v t,( ) 0.=

δ f i k,
0( ) p t,( ) δ f i k,

0( ) p( ) ik vt⋅–( ),exp=

δ f i k,
0( ) p t,( ) δ f i k,

0( ) –ik vt⋅ iν i v( )t–( ).exp=

δ f i k,
0( ) p( )δ f j k',

0( ) p'( )〈 〉  = Φi p( )δi j, δ p p'–( )δ k k'+( ).
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This leads to the following law for the averaging of
temporal fluctuations in the presence of nuclear reac-
tions used below:

(20)

In the limit νi, j  0, the law (20) matches the stan-
dard averaging law for a stationary system (we denote
the corresponding distributions by the superscript (0, 0)):

(21)

The change in the fluctuation-averaged distribution
of nuclei with time should be determined by using (20),
which yields the change in nuclear reaction rates due to
collective plasma effects. Apart from the change in fluc-
tuations with time, the evolution of the average distri-
bution function for nuclei is of considerable impor-
tance.

5. THE INFLUENCE OF TIME-EVOLVING 
FLUCTUATIONS ON THE NUCLEAR 

REACTION RATES

The basic equation for calculating the collective cor-
rections to the nuclear reaction rates is the equation
obtained by averaging (7) over plasma fluctuations:

(22)

As in the calculation of fluctuations, we assume the
average distribution to be homogeneous but time-
dependent. This dependence is attributable to the
nuclear reactions, the plasma corrections to which are
investigated. In the absence of such a dependence, the
first term on the right-hand side of Eq. (22) is known to
lead to a collision integral that rapidly (on the collision
time scale) approaches zero, making the particle distri-
bution a thermal one. However, in the presence of time
variations (which are proportional to the nuclear reac-
tion rates in our case), this term gives an additional non-
zero contribution proportional to the rate of change in
fluctuations and to the rate of time evolution of the aver-
age distribution of nuclei. Our objective is to take into
account effects of the first order in nuclear reaction
rates, i.e., linear in the time derivatives of the average

δ f i k ω, ,
0( ) p( )δ f j k' ω', ,

0( ) p'( )〈 〉

=  
1

4π2
--------Φi p( )δi j, δ p p'–( )δ k k'+( )–

× 1
ω k v⋅– i0–
------------------------------- 1

ω k v⋅– iν i v( )+
----------------------------------------–

× 1
ω' k' v'⋅– i0–
---------------------------------- 1

ω' k' v'⋅– iν i v'( )+
--------------------------------------------– .

δ f i k ω, ,
0 0,( ) p( )δ f j k' ω', ,

0 0,( ) p'( )〈 〉 Φ i p( )δi j, δ p p'–( )=

× δ k k'+( )δ ω ω'+( )δ ω k v⋅–( ).

t∂
∂ Φi Zie p∂

∂ δ f i∇φ〈 〉=

– wij ΦiΦ j δ f iδ f j〈 〉+( ) p'd

2π( )3
-------------.∫
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distribution and linear in wij. The last term on the right-
hand side of Eq. (22) contains the correlation correc-
tions. Since the effect of time evolution and the correla-
tion effects in our approximation linear in wij add up
additively, we ignore the correlation effects in this sec-
tion. Finally, if we disregard the corrections attributable
to time evolution of the fluctuations, then Eq. (22)
reduces to

(23)

In this equation, the frequency νi should be assumed to
be constant, because allowance for its time dependence
would imply allowance for the corrections of higher
orders in wij. For fluctuations, we have instead of
Eq. (16)

(24)

where φ is the potential of the fluctuating electric field.
The solution to the latter equation is

(25)

where  is the solution to the homogeneous equa-
tion (24), which describes the fluctuations in a time-
evolving system discussed in the previous section.
Since the average distribution function varies with time
much more slowly than the plasma fluctuations ω' ! ω,
the expansion in terms of ω' and νi can be written as

(26)

Using (23), we obtain

(27)

We use the Poisson equation to derive an expression
for the fluctuating potential in which the terms with a
time derivative are considered based on perturbation
theory:

(28)

t∂
∂ Φi

0( ) Φi
0( ) wijΦi'

p'd

2π( )3
-------------∫– ν iΦi

0( ).–= =

–i ω k v⋅– iν i+( )δ f i k ω, , Zie ∇δφ
p∂
∂ Φi⋅ 

 
k ω,

,=

δ f i k ω, , δ f i k ω, ,
0( ) Zie

ω k v⋅ iν i+–
---------------------------------–=

× φk ω ω'–, k
p∂
∂ Φi ω',⋅ 

  ω',d∫
δ f i k ω, ,

0( )

φk ω ω'–, φk ω, ω' ω∂
∂ φk ω, ,–≈

ω'Φi ω', ω'd∫ i
t∂

∂ Φi.≈

δ f i k ω, , δ f i k ω, ,
0( ) 1 i

t∂
∂

ω∂
∂

– 
 –=

×
Zie

ω k v⋅– i0+
--------------------------------φk ω, k

p∂
∂ Φi⋅ 

  .

φk ω, φk ω,
0( ) φk ω,

1( ) …,+ +≈

φk ω,
0( ) 4π

k2
ek ω,

0( )-------------- Zαe δ f k ω,
0( ) pd

2π( )3
-------------,∫

α
∑=
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(29)

(30)

Here, the summation over α is extended to include all
types of plasma particles: electrons and all ions, includ-
ing the reacting nuclei. We have

(31)

(32)

The effects related to the time evolution of the system
are described by the equation for the fluctuation-aver-
aged distribution. Disregarding the correlations, we
obtain from (22)

(33)

where  is determined by the time-evolving fluctua-

tions ,

(34)

and  is determined by the time variation in the aver-
age distribution of reacting nuclei,

φk ω,
1( ) i

ek ω,
0( )---------

ω∂
∂ φk ω,

0( )

t∂
∂

ek ω,
0( )

 
  ,=

ek ω,
0( ) 1

4π
k2
------ Zα

2 e2 1
ω k v⋅– i0+
--------------------------------∫

α
∑+=

× k
p∂
∂ Φα⋅ 

  pd

2π( )3
-------------.

δ f i k ω, , δ f i k ω, ,
0( )=

–
Zie

ω k v⋅– i0+
--------------------------------φk ω,

0( ) k
p∂
∂ Φi⋅ 

  δ f i k ω, ,
1( ) ,+

δ f i k ω, ,
1( ) i

t∂
∂   

ω∂
∂
 

Z
 

i 
e

 
ω
 

k v
 

⋅
 

–
 

i
 

0+
-------------------------------- φ k ω, 

0
 

( ) k
p

 
∂
∂ Φ i ⋅ 

  =

–

 

Z

 

i

 

e

 

ω

 

k v

 

⋅

 

–

 

i

 

0+
--------------------------------

 

φ

 

k

 

ω,

 

1

 

( )

 

k
p

 

∂
∂ Φ

 

i

 

⋅ 
 

 

.

t∂
∂ Φi Zie p∂

∂
ik' δ f i k ω, , φk' ω',〈 〉∫⋅=

× i k k'+( ) r⋅ i ω ω'+( )t–[ ] dkdk'dωdω'exp

– wijΦiΦ j∫ dp'

2π( )3
-------------

=  Ii
0( ) Ii

t( ) wijΦiΦ j∫ dp'

2π( )3
-------------,–+

Ii
0( )

δ f i k ω, ,
0( )

Ii
0( ) –Zie p∂

∂
ik δ f i k ω, ,

0( ) ---∫⋅=

–
Zie

ω k v⋅– i0+
-------------------------------- k

∂Φi

∂p
---------⋅ 

  φk ω,
0( ) φk' ω',

0( )

× i ω ω'+( )t–[ ] dkdk'dωdω',exp

Ii
t( )

Ii
t( ) Zie p∂

∂
k kd k'

t∂
∂

ω∂
∂









d∫⋅=
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(35)

Here, we took into account the fact that, according to
(20) (homogeneity of the fluctuations), k' = –k.
Whereas the time evolution of fluctuations must be
included in Eq. (34), in Eqs. (35), which already con-
tain a time derivative of the average distribution, it will
suffice to use the approximate relation (21). In the latter
case, we denote the corresponding correlation func-
tions by the superscript (0,0), just like the distribution
functions in (21). We obtain from (21)

(36)

(37)

Here, we assume that the average distribution function
in the terms of (35) may be considered to be thermal
(Maxwellian) with sufficient accuracy. The small devi-
ations of the distributions from Maxwellian ones must
be taken into account only in the terms that do not con-
tain small time derivatives of the average distributions
(see below). Substituting the approximate relations (36)
and (37) for the correlation functions (35), we find that
the first term in (35) containing the total derivative with
respect to frequency becomes zero when integrating
over frequencies and that

(38)

–
1

ek' ω',
0( )----------

ω'∂
∂

t∂
∂

ek' ω',
0( ) 1

ek ω,
0( )---------

ω∂
∂

t∂
∂

ek ω,
0( )+





×
Zie

ω k v⋅– i0+
-------------------------------- k

∂Φi

∂p
---------⋅ 

  φk ω,
0( ) φk' ω',

0( )〈 〉

+
1

ek' ω',
0( )----------

ω'∂
∂ ∂ek' ω',

0( )

∂t
-------------- δ f i k ω, ,

0( ) φk' ω',
0( )〈 〉





× ω ω'+( )t–[ ] dωdω'.exp

φk' ω',
0 0,( )φk ω,

0 0,( )〈 〉 k'd∫
=  

T

2π3k2ω
------------------Im

1

ek ω,
0( )--------- 

  δ ω ω'+( ),–

f i k' ω', ,
0 0,( ) φk ω,

0 0,( )〈 〉 k'd∫
=  

Zie

2π2k2
ek ω,

0( )-----------------------Φiδ ω k v⋅–( )δ ω ω'+( ).

Ii
t( ) Zi

2e2

2π3
----------

p∂
∂ k

k2
----Φi ωd kd∫⋅–=

× πδ ω k v⋅–( )
∂ek ω,

0( )

∂t
------------ 1

ek ω,
0( )---------

ω∂
∂ 1

ek ω,
0( )---------–





+
k v⋅

ω k v⋅– i0+
-------------------------------- 1

ek ω,
0( )---------

ω∂
∂ ∂ek ω,

0( )

∂t
------------ 1

ω
----Im

1

ek ω,
0( )--------- 

 




+
1
ω
----Im

1

ek ω,
0( )--------- 

  ∂e k– ω–,
0( )

∂t
----------------

ω∂
∂ 1

e k– ω–,
0( )-------------









.
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To calculate the change in reaction rate due to the
time evolution of the fluctuations described by relation
(30), it should be borne in mind that these effects must
be taken into account in the first nonvanishing order in
reaction rates. In this limit, we derive the following
relation from (20) [cf. (27) and (28)]:

(39)

The first term on the right-hand side of Eq. (39)
leads to the standard Coulomb collision integral, which
turns the particle distributions into thermal ones in very
short time intervals. For a thermal distribution, the first
term in (39) is exactly equal to zero. Below, we take
into account the renormalization corrections, for which
the first term in (39) is of the order of 1/Nd ! 1 and
which may also be disregarded. In the corrections pro-
portional to the time derivative of the average distribu-
tion, the latter may be assumed to be thermal. We obtain

(40)

This expression can be simplified as follows. The first
term in square brackets can be integrated by parts over
frequencies. The emerging combination with the sec-
ond term in square brackets but without the derivative
of the factor 1/(ω – k · v + i0) with respect to frequency,

(41)

does not change when substituting ω  –ω and
k  –k. The remaining factors

do not change either during this substitution. Therefore,
only the term 1/(ω – k · v + i0), which does not change
during this substitution, i.e., –iπδ(ω – k · v), remains in
the expression. This implies that only the imaginary
part remains in expression (41). In the remaining deriv-

δ f i k ω, ,
0( ) p( )δ f j k' ω', ,

0( ) p'( )〈 〉 e– ω ω'+( )t k'd p'd∫
=  δi j, Φi

i
2
---

∂Φi

∂t
---------

ω∂
∂

ω'∂
∂+ 

 – δ ω ω'+( )δ ω k v⋅–( ).

Ii
0( ) Zi

2e2

4π3
----------

p∂
∂ k

k2
---- kd ωd∫⋅–=

× πδ ω k v⋅–( )
∂Φi

∂t
---------

ω∂
∂ 1

ek ω,
0( )---------





+
k v⋅( )Φi

ω k v⋅– i0+( )ek ω,
0( )----------------------------------------------

× ω∂
∂ 1

ωe k– ω–,
0( )------------------

t∂
∂

Imek ω,
0( ) 1

ω
----

t∂
∂

Imek ω,
0( )

ω∂
∂ 1

e k– ω–,
0( )-------------+





.

–
1

e k– ω–,
0( )-------------

ω∂
∂ 1

ek ω,
0( )--------- 1

ek ω,
0( )---------

ω∂
∂ 1

e k– ω–,
0( )-------------,+

k k v⋅( )
ω ∂/∂t( )Imek ω,
------------------------------------
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ative of 1/(ω – k · v + i0) with respect to frequency, we
can again perform integration by parts to give

(42)

Similarly, we can simplify the first term in square
brackets in (38). Integrating by parts over frequencies
yields

(43)

The sum of (42) and (43) admits further simplifica-
tions. Separating out the terms with δ(ω – k · v), we

write Ii =  +  as

(44)

Ii
0( ) Zi

2e2

4π3
----------
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∂
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∂t
------------

∂ek ω,
0( )
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The following equalities were used to derive these rela-
tions:

(45)

(46)

The expression in the first square brackets of (44) can
be transformed to

(47)

After integration over frequencies, the first term in (47)
becomes zero. To make sure that this is the case, we
must factor the signs of the imaginary part and time
integration outside the sign of the frequency integration
and take into account the fact that the derivative of
1/(ω – k · v + i0) with respect to frequency has no poles

in the upper half-plane of complex ω, just like 1/
(the latter due to the analytic properties of permittivity).
The second term in (47) transforms to an expression
without any poles in the upper half-plane of complex ω
by adding and subtracting the corresponding expres-
sion with Im(1/ω + i0) = –πδ(ω). Thus, the first square
bracket in (44) transforms to

(48)

Relation (48) is used only to write the final result in
compact form containing δ(ω – k · v) alone. Thus,

(49)

6. RENORMALIZATION 
OF THE PARTICLE DISTRIBUTIONS

Just like the correlation effects, the effects due to the
time evolution of fluctuations can be reduced to an
effective change in the nuclear reaction probability.
Note that the corresponding equation (33), which
includes the effects of time evolution with the correla-
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tions ignored, differs in form from the equation that is
commonly used to describe nuclear reactions without
plasma corrections. More specifically, the equation
with plasma corrections is

(50)

while the equation without plasma corrections is

(51)

Here, it is worth recalling that we restrict our analysis
only to the first-order plasma corrections. With this
accuracy, Eq. (50) can be reduced to the standard form
by renormalizing the particle distribution function.
Consider the problem of reducing Eq. (50) to form (51)
by renormalizing the particle distribution and by intro-
ducing an effective probability. We introduce the renor-

malized distribution function  as a solution to the
equation

(52)

Assume that the solution to Eq. (52) is

(53)

Given that the corrections are small and that both distri-
bution functions of reacting nuclei are renormalized,
the final equation with correlation corrections in the
standard form is

(54)

where

(55)

When solving the equation for , it should be borne
in mind that the rate of particle redistribution in
momenta is much higher than the nuclear reaction rate.
Therefore, only the particle density depends on time,
and the distribution function is a product of the time-
dependent density and the momentum distribution. The
time derivative of the permittivity in Ii is determined by
all reacting nuclei and by the rates of change in their
distribution functions with time, i.e., by the time deriv-
atives of their densities. The dependence on momentum
in the particle distribution is the same as that for ordi-
nary permittivity.

Below, we consider the nuclear cycle (in applica-
tions to the solar interior, the hydrogen cycle) and deal
with the asymptotic behavior of the system at large
times when the rates of all reactions have already stead-
ied and are determined by the slowest cycle reaction.
By the time the reaction rates are equalized, the renor-
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malized distribution has also steadied. As will be seen
from the subsequent analysis, it describes the collective
energy shift in the distribution of each type of nuclei.
Since the rates of all reactions coincide in the asymp-
totic limit, the relative time derivatives in Eq. (50) are
equal, which allows the renormalization coefficient to
be easily determined. In this case, it should be kept in
mind that we consider small corrections and there is no
need to make a distinction between the renormalized
and nonrenormalized distributions in the renormaliza-

tion term. The expression for  derived in this way is

(56)

where

(57)

Here, the summation is performed only over the nuclei

 involved in the nuclear cycle under consideration and
over the electrons involved in the nuclear reactions (as
is the case for the hydrogen cycle).

It should be emphasized that the probability wij

depends on the relative nuclear energy Er alone and has
a sharp maximum near the Gamov energy EG in the
limit Er @ T. At the same time, the effective probability
(55) also depends on the momentum of each of the
reacting particles, i.e., on the particle velocities relative
to the medium (plasma), which is natural enough for
collective processes.

7. CHANGE IN THE COLLECTIVE 
ELECTROSTATIC ENERGY 

OF NUCLEI AND THE ENERGY SHIFT

Each nucleus i in plasma is surrounded by a polar-
ization screening charge and has an additional self-

energy . The latter can be calculated only in a non-
dissipative medium if the imaginary part of the plasma
permittivity may be disregarded. This does not corre-
spond to our problem, because dissipative processes
play a significant role. However, in the asymptotically
steady state, it is possible to determine the rate of
change in the total electrostatic energy of the system
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per nucleus with time. This energy is proportional to the
square of the nuclear charge and acts as an effective
self-energy of the reacting nuclei. In a large system, the
polarization charges around individual nuclei are pro-
duced by collective fluctuations of the remaining
nuclei. In the presence of interacting and reacting
nuclei in the system, when the associated dissipative
processes do not allow the electrostatic self-energy of
the nuclei to be unambiguously introduced, the change
in the total electrostatic energy of the system cannot be
equal to the sum of the self-energies of individual
nuclei. However, after the rates of all reactions are
equalized, the renormalization corrections reduce to an
energy shift in their distribution and, in this sense, act
as some effective self-energy. Before the rate equaliza-
tion, this physical interpretation is not possible and the
emerging corrections cannot be mathematically repre-
sented as some effective energy shift of individual
nuclei.

The derived effective self-energy is not equal to the
sum of the electrostatic self-energies of individual par-
ticles in nondissipative systems. The effective electro-
static self-energy of a single nucleus naturally depends
on its velocity relative to the medium (plasma). The
corrections introduced by the renormalization of the
particle distribution per nucleus are similar to the elec-
trostatic self-energy of individual nuclei, but their
structure, magnitude, and sign are different. In contrast
to the self-energy, the complete integral of the effective
energy shift over momenta is zero. The sign and mag-
nitude of the corrections are determined by the nuclear
reactions, which show what nuclear energies and
momenta give the largest contribution to the renormal-
izations.

In a dissipative system, we can analyze the rate of
change in the total electrostatic energy of the system
and can show that the derived renormalization correc-
tions are actually determined by this rate. For the rate
of change in the total electrostatic energy of the system
with time, we have

(58)

This relation should be compared with the first term
on the right-hand side of Eq. (33). The change in parti-
cle energy can be calculated by multiplying the left-
hand side of Eq. (33) by the energy of a single particle
and by integration over the particle distribution. When
integrating by parts, the derivative with respect to
momenta leads to the factor k · v and, in view of (40)
and (41), the product k · v can be substituted by ω.
Thus, it is easy to see that (42) and (43) correspond to
such changes in the particle distributions that describe
the changes in the total electrostatic energy of the sys-
tem due to its evolution with time through nuclear reac-
tions. That is why the collective corrections to each
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nuclear reaction depend on the rates of other reactions
of the entire cycle.

The renormalization terms described above can be
easily interpreted as the appearance of an energy shift
δei, p or as an addition to the nuclear energy,

where ei, p is the energy of particles i and δei, p is the col-

lective energy shift of particles i. Given that  =

Φi(1 – ), we obtain

(59)

where  arises from the normalization. Relation
(59) only assumes that the distribution of reacting
nuclei remained thermal. Therefore, the corrections are
attributable only to the appearance of an energy shift in
the nuclei.

The integral of (56) over the thermal particle distri-
bution is zero, implying that

(60)

Expression (60) differs from that used in [10, 12],
where we took into account the time evolution of the
average distribution but ignored the time evolution of
fluctuations and the collective change in distribution
due to nuclear reactions, which lead to expressions (49)
and (56). The latter are more general than the relations
derived in [10, 12], because they include the change in
fluctuations with time through nuclear reactions. For
comparison with (56), we give the expression for the
self-energy of a nondissipative system from [10, 12]:

(61)

In contrast to (57), the integral (61) over momenta is
nonzero. The collective energy shift (60) clearly
depends only on the magnitude of the particle velocity,
i.e., on the particle energy. Therefore, it must change
sign at a certain energy, because the integral over
momenta becomes zero. In the integration with a
weight determined by the nuclear reaction rate wij, the
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relative energy is close to the Gamov energy and the
translational energy is of the order of the thermal
energy. However, angular averaging is also important in
determining the effective sign of the energy shift.

Since the particle distribution is assumed to be ther-
mal, the corrections can be interpreted only as an effec-
tive energy shift. The energy shift described above is
collective and, to a certain measure, is an analog of the
Lamb shift. The shift itself acts as an effective renor-
malized nuclear self-energy.

8. TRANSFORMATION
OF THE CORRECTIONS

The ratio of the nuclear reaction rate Rij with collec-

tive plasma corrections to their rate  in the absence
of plasma is

(62)

where  describes the correlation corrections and
Λ(T) describes the corrections due to time evolution (the
subscript T points to the time evolution). As a momen-

tum-independent quantity,  matches the previously
derived expression (11), while Λ(T) is given by

(63)

By introducing the relative velocity vr = v – v' and
the center-of-mass velocity

of two reacting nuclei, expression (63) may be treated
as an averaging over the relative motion and the center-
of-mass motion:

(64)
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Depending on the relative energy Er = µij /2, the
integrands have a sharp maximum near the Gamov

energy  = µij( )2/2, where

is the reduced mass. Therefore, the integration over the
relative energy reduces to its substitution by the Gamov

energy. However, the sum  +  depends on the
relative plasma particle momenta. Consequently, apart
from the absolute values of the relative and transla-
tional energies, it depends on angles. Relation (64) con-
tains the corresponding angular averaging. After sepa-
rating out the angular dependence, we may perform
integration over the absolute value of k by taking into
account the fact that the w/kvTα ratio (vTα is the thermal
velocity of particles α) does not depend on the absolute
value of k in view of ω = k · v.

Simultaneously with the separation of the angular
dependence, the corrections must be transformed to a
form containing the relative mass fractions of various
nuclei to explicitly calculate the corrections for actual
applications to a plasma that is a mixture of various
reacting nuclei. We assume the ions to be completely
ionized, i.e., to be bare nuclei with their charges offset
by free plasma electrons:

We use the permittivity in the form

(65)

where the summation is performed only over the ions
and their velocity is assumed to be much lower than the
thermal electron velocity. Therefore, the Debye screen-
ing approximation [the second term in the first equality
in (65)] is used for the electron response. Here, d is the
total Debye length and W(s) is the standard plasma dis-
persion function,

(66)
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and

(67)

Thus, both si and W(si) depend on the angular vari-
ables alone. If

describes the relative mass density of the nuclei, then

(68)

Note that  contains sums over the types of ions
j ' of the functions that depend on k2 and on the angular

variables appearing in si, j, j ', while  contains sums
over the types of ions j ' of the functions that depend on
k2 and on the angular variables appearing in si, j, j ', where

(69)

(70)

Here, x is the cosine of the angle between vector k and
the relative velocity vr of the two reacting nuclei, z is
the cosine of the angle between vector k and the trans-
lational velocity V of the two reacting nuclei, y is the
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normalized translational velocity, and λij is the normal-
ized velocity corresponding to the Gamov energy

(71)

Using the relation

(72)

and

(73)

it is convenient to reduce Eq. (56) to a form containing
only the operators ω∂/∂ω:

(74)

(75)

(76)

The integration over k in (76) can be performed ana-
lytically, and finding the collective corrections reduces
to averaging over y with the form factor
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Table

No. Reaction λi, j  + 

1 p + p 4.280 1 1 0.357 1.357

2 p + 2H 4.757 1 1 0.313 1.313

3 3He + 3He 8.150 4 4 0.98 4.98

4 3He + 4He 8.420 4 4 0.943 4.943

5 7Li + p 10.234 3 3 0.676 3.676

6 7Be + p 11.264 4 4 1.056 5.056

7 7Be + e 0 0 –4 0.788 –3.212

Λi j N,
S( ) Λi j N,

C( ) Λi j N,
T( ) Λi j N,

C( ) Λi j N,
T( )
over x with

,

and over z with

Using (66), we finally obtain

(77)

where (y, x, z) and (y, x, z) are determined by
the averaging of (75) and (76), respectively; the expres-

sions for (y, x, z) and (y, x, z) are given in the
Appendix. Upon the change i  j, (A.1) and (A.2)
will contain (70) instead of (69) and, accordingly, sj, i, j

appears instead of si, j, i and  appears instead of .
Since the nuclear masses enter into the numerators and
denominators of (A.1) and (A.2) with the same powers,
the nuclear mass in (76) can be measured in proton
masses; i.e., m in (69), (70) and (A.1), (A.2) corre-
sponds to the atomic weight of the nuclei.

Relations (A.1) and (A.2) allow the rates of the
nuclear reactions between nuclei i and j to be calculated
for an arbitrary mixture of plasma nuclei. The summa-
tion over plasma ions j ' includes both the reacting and

nonreacting nuclei, while the summation over 
includes only the reacting nuclei.
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9. NUMERICAL RESULTS

Below, we present the results of our calculations for
the central part of the Sun using the following parame-
ters [3]: XH = 0.3411, XHe = 0.6387, XC = 0.00003, XN =
0.0063, and XO = 0.0085. We have Zeff = 2.551 and

 = 0.661. The parameter e2dT depends on

temperature and density. For the temperature T =
1.5 keV and density n = 5 × 1025 cm–3

 

 assumed in cur-
rent solar models, we have 

 

e

 

2

 

/
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 = 0.05, which for the
Salpeter corrections gives 5% for the 
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reactions (the
beginning of the hydrogen cycle) and 4
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 20% for
the reactions with Be (the end of the hydrogen cycle).
In order not to be attached to specific temperature and
density, it is appropriate to present the results of our
numerical calculations for the corrections in units of
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. The table gives the collective
plasma corrections that were numerically calculated
using expressions (77), (A.1), and (A.2). This table
contains the assumed values for the relative Gamov

energies 

 

λ

 

i j

 

; the correlation corrections , ,

and ; and the total corrections  + .

10. DISCUSSION

Previously, it was assumed that all collective correc-
tions were the Salpeter corrections and that they
enhanced the rates of all reactions. As can be seen from
the table, not all of the collective corrections lead to an
increase in the reaction rates but only some of them. For
example, the reaction rates decrease in the reaction with
electron capture by 

 

7

 

Be nuclei. The latter effect is
important, because the reaction with 

 

7

 

Be nuclei is a
branching one (see the sixth column in the table). This
branching has been and is still one of the outstanding
problems for neutrino-producing reactions in the solar
interior. The decrease in the rate of the reaction with
electron capture by 

 

7

 

Be nuclei causes a decrease in the
number of B nuclei and in the number of neutrinos pro-
duced during their decay. For all the remaining hydro-
gen-cycle reactions, the reaction rates are larger than
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those assumed previously. The net effect for these reac-
tions is the sum of the suppression effect found in [10–
12] and the effect due to time evolution through nuclear
reactions with neutrinos freely leaving the system. The
latter effect prevails, causing an enhancement of the
reactions. On the other hand, the proven equality of the
Salpeter corrections to zero is confirmed in that, if these
corrections are nonzero, then their interference with the
correlation corrections will lead to a result contradicting
the observations. Indeed, in this case, the corrections are a
factor of 4 larger than the Salpeter ones, i.e., about 80% for
reactions 3 and 4 of the table, which is in conflict with
solar seismology. The correlation effects lead to correc-
tions that, to a certain extent, “restore” the result com-
monly used in standard solar models, but the total correc-
tions given in the last column of the table differ from those
used. Numerical calculations of solar models show that
even relatively small corrections can appreciably affect the
final parameters of an evolving nuclear system. The last
row in the table indicates that the correlation corrections
for the reactions of electron capture by 7Be nuclei are sig-
nificant and negative, with the zero Salpeter corrections
giving a wrong answer. The correlation corrections for 7Be
nuclei must be taken into account when constructing solar
models. Their inclusion is important in the existing prob-
lem of branching of nuclear reactions involving 7Be
nuclei.

Let us discuss the following question: With what
accuracy can we disregard the terms that lead to zero
Salpeter screening? This is determined by the possibil-
ity of disregarding the second term in Eq. (6). It
describes the influence of the actually emerging, fluctu-
ating electric fields on the thermonuclear reaction rates.
The current theory of plasma fluctuations gives expres-
sions for the latter effect that diverge at large k. If we
use kmax ≈ 1/r for our estimates, where r is the characteris-
tic nuclear size, then we find that the effects related to fluc-
tuating electric fields are a factor of r/R smaller than those
taken into account here (R is the scale size of the fluctuat-
ing fields). If, alternatively, kmax ≈ Nd/d (large angles in col-
lisions), then the relative contribution of the second term
in Eq. (6) is even smaller, being ≈ r2Nd/R2.

It is worth noting that the plasma density in labora-
tory laser experiments can be higher than that in the
solar interior, while the temperatures are of the same
order of magnitude. Then, e2/dT is an order of magni-
tude larger than its value in the solar interior and the
correlation corrections for the D + T reactions are 50%
instead of 5% in the solar interior. The total corrections
calculated numerically by using the present theory are
larger than the correlation corrections (which give
50%) by a factor of 1.194, which corresponds to an
increase in the reaction rate to 51%.

According to our results, the physical meaning of
the collective corrections is related to a change in the
(correlation and time) distribution of nuclei but not to a
change in the probabilities of nuclear reactions, as
assumed previously. In this sense, the corrections are
JOURNAL OF EXPERIMENTAL 
not specific to nuclear reactions and arise for any other
reactions, in particular, chemical ones (however, for our
numerical results to be applicable, their rates must be
larger than the rate of fluctuations and the specific aver-
aging results under opposite conditions will be differ-
ent). This emphasizes a major physical difference
between our calculated corrections and those that could
be related to the screening of nuclear reactions taken
into account previously. Thus, the paradox between
dynamic and static screenings is resolved.

The zero approximation of weak Salpeter screening
was assumed to be insufficient to describe the nuclear
reactions in the solar interior and in stars at other evo-
lutionary stages. The interpolation formulas that
describe the nuclear reactions in the intermediate
region between strong and weak screenings were com-
monly used for this purpose. It follows from our results
that this approach is inapplicable. There is no screen-
ing, and the correlation effects must be described more
accurately to derive the interpolation formulas. Here,
we obtained the result for weak correlations by expan-
sion in a small parameter, the number of particles
within a Debye sphere. This parameter differs from that
used previously for the Salpeter corrections—the ratio
of thermal energy to Gamov energy. The correct inter-
polation formulas for the correlation corrections could
be derived if the result for strong correlations were
known. Although various methods were used to
describe strong correlations in plasma, they are all
based on several as yet unproven hypotheses. Even the
problem of weak correlations, which we studied here,
has not yet been completely solved. Using our results,
we can propose a method for describing the correlation
effects of the next order in parameter 1/Nd, as well as
formulate and analyze the corresponding equations.
However, it is unlikely that the effects of strong corre-
lations in general form, which could be used to derive
the interpolation formulas, will be analyzed in detail in
the foreseeable future. Thus, the accuracy of the cur-
rently available models for describing nuclear reactions
during stellar evolution that use the Salpeter interpola-
tion formulas is called into question.
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APPENDIX

Our calculations yield the following expressions for

(y, x, z) and , respectively:Λ ij
T( ) Λ̃ ij
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Here, as above, the subscript  allows only for the
nuclei that are involved in the nuclear reactions and
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Abstract—An approach to the exact description of exchange in disordered quantum systems at finite temper-
atures is formulated in terms of Feynman path integrals, which eliminates rigid restrictions on the number of
particles and allows numerical simulation of the equilibrium characteristics of the electron component of a
dense plasma to be performed by the Monte Carlo method. The combinatorial weight factors for all diagrams
involving the linked Feynman paths for systems including up to 50 electrons were determined, and the corre-
sponding distributions over spin states were found. Based on the data obtained, a mechanism responsible for
the formation of a spin state of a many-electron system at finite temperatures is studied. The combinatorial
weights of the diagrams grow rapidly on the passage from short to long cycles of linked paths. In the system at
a finite temperature, this growth is compensated by a decrease in statistical weights of the diagrams with long
cycles. The proposed path-integral Monte Carlo formalism was used for the numerical simulation of a dense
hydrogen plasma under the conditions corresponding to the boundary of degeneracy of the electron component.
The periodic cell contained 100 electrons and 100 protons. The results of numerical calculations show that,
despite a high temperature, a dense plasma is far from a classical regime. Energetics of the plasma is formed at
small interparticle distances, where the quantum character of the electron motion plays a determining role. The
degree of ionization and the correlation functions are calculated, and the correlation radius is estimated. The
formation of proton–electron pairs in the course of plasma cooling is studied in detail. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

During the time that has passed since the original
publication of Metropolis [1], extensive development
of computer simulation techniques has given rise to an
independent direction in statistical mechanics which is
engaged in solving problems recognized as hopeless
within the framework of traditional approaches.
Description of the thermal and structural properties of
a dense, strongly nonideal plasma occupies a special
place among such problems because this system has a
number of important applications, ranging from metal
processing and magnetogasdynamics to controlled
thermonuclear fusion [2].

As the particle number density decreases, the degree
of collectivization in a system of charged particles
increases due to a rapid expansion of the Debye sphere
[3], rather than drops as in a system with short-range
interactions. The Debye screening proves to be the only
factor preventing the thermodynamic potentials from
divergence. Using the idea of Mayer [4], according to
which the group integrals are expanded over the clus-
ters linked by simpler bonds, with their subsequent
rearrangement, it is possible to write expressions for the
virial coefficients in terms of converging cluster inte-
grals. Summing the Fourier images of ring diagrams
with the aid of the convolution theorem leads to the
Debye mean force potential of the interaction between
1063-7761/02/9405- $22.00 © 20943
ions. The other contributions exhibit convolution into
prototype diagrams with Debye screening in the links,
which provides for their convergence. These compo-
nents represent high-order corrections (in powers of the
plasma density) to the limiting Debye law. The Mayer
ideas were subsequently developed. Salpeter [5] sug-
gested a method for passing to high-connectivity dia-
grams in the expansion over density powers, and
Meeron [6] obtained cluster expansions for the mean
force potential and a binary distribution function, while
Stell and Lebowitz [7] obtained such expansions for the
Ursel function. Friedman [8] suggested a generaliza-
tion of the Mayer theory to a non-pairwise potential of
the interaction between ions.

Despite later achievements in the development of
analytical approaches, the Mayer theory still remains
an asymptotic theory of the plasma of extremely low
densities and high temperatures. The most significant
particular results for ion systems were obtained using
the methods of integral equations—a traditional
approach in the theory of fluids—rather than using vir-
ial expansions. Martynov [9] analytically solved the
Bogolyubov equation for the binary distribution func-
tion in a superposition approximation [10]. Rasaiah and
Friedman [11] considered a solution to the integral
equations for a system of ions in the hyperchain
approximation; Carley [12] employed the Percus–
002 MAIK “Nauka/Interperiodica”
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Yewick integral equation with the hyperchain approxi-
mation in order to obtain a binary distribution function.
The results obtained in [11, 12] refer to a domain where
the Coulomb interaction can be considered as a small
perturbation relative to the short-range repulsion
between ions. The corresponding perturbation theory
developed by Henderson and Blum [13] leads to a high-
temperature expansion of the free energy, the leading
term of which includes the Debye contribution and the
spherical model corrections [14].

Even the first applications of the Monte Carlo
method [15] led to progress in the study of dense ion
systems, up to a transition to the condensed state [16–
23]. A comparison of the results obtained by the Monte
Carlo method to the numerical solution of the Percus–
Yewick integral equation and the results obtained
within the framework of a spherical model in the hyper-
chain approximation [23] showed that the latter approx-
imation gives the results that are the closest to those
obtained using the Monte Carlo simulations. In a sys-
tem of charged particles, even the gas phase features
extensive cluster formation as reflected by the equilib-
rium properties of the plasma [24–27]. Traversing the
point of minimum correlation radius in the gas phase is
accompanied by sharp changes in the equilibrium ther-
modynamic characteristics of the ion system, resem-
bling the second-order phase transition. The region in
the vicinity of a critical point of the ion plasma was
exhaustively studied by Vorontsov-Velyaminov et al.
[28–31]. Shiff [32–34] used the Monte Carlo method to
study the nonsymmetric systems of classical charged
particles. In the past decade, the interest of researchers
in the ion plasma has not weakened. Wolf et al. [35]
thoroughly studied the problem of taking into account
the long-range interaction and screening; Caillol [36]
developed the idea of replacing the periodic boundary
conditions by modeling on a four-dimensional hyper-
sphere surface. Investigations into the problem of a
phase transition to the condensed phase were continued
as well [37–44].

The formation of ion clusters was studied in detail
by various researchers [45–56]. A broad region of sta-
bility of the ion chain clusters was found in the phase
diagram of an electroneutral plasma. The ion systems
with violated charge symmetry exhibit a reversed situ-
ation: the mean force potential of ion triplets favors
their repulsion and hinders nucleation [53].

A considerable effort in the investigation of thermo-
dynamic characteristics of classical charged particles
led to the formation of a relatively complete pattern. On
this background, the thermodynamic properties and
structure of a dense ion–electron plasma offer a much
less studied direction. Development of an effective
computer simulation method for the study of quantum
particles has begun only quite recently and has pro-
gressed rather slowly, encountering a number of basic
difficulties. The approach to modeling quantum sys-
tems at finite temperatures is based on the Feynman
JOURNAL OF EXPERIMENTAL
representation of the quantum mechanics in terms of
the path integrals [57]. Fosdick and Jordan [58, 59]
applied the path integral Monte–Carlo (PIMC) method
to modeling a simplest system of helium atoms.
Attempts at simulating the electron plasma component
were made in [60–63]. The main difficulty in the devel-
opment of PIMC was related to the description of
exchange in the electron system. The proposed
approaches either referred to hypothetical “spinless fer-
mions” [64–74] or completely ignored the exchange
[75–78].

A principal requirement for the exact description of
the permutation symmetry in systems at finite tempera-
tures consists in constructing a complete set of antisym-
metric wave functions. A simple symmetrization is
insufficient for calculating the mean equilibrium val-
ues, while the trace of a statistical operator in the
incomplete set representation is not a partition function
[79]. Recently [80, 81], an exact procedure was sug-
gested for constructing a complete set of wave func-
tions and introducing spin into the PIMC formalism.
Test calculations were performed for the electron shells
of a hydrogen molecule [82, 83] and beryllium and lith-
ium ions [84]; the spin state of an electron pair occur-
ring in a microvoid (in the context of the problem of
electrodes) was calculated in [85]. This study, which is
a continuation of the previous publication [81], consid-
ers application of the ideas formulated there to the
numerical calculation of the equilibrium properties of a
dense hydrogen plasma.

2. THE PROBLEM OF DESCRIPTION 
OF THE PERMUTATION SYMMETRY

IN A SYSTEM WITH A LARGE NUMBER
OF QUANTUM PARTICLES

The complete wave function of a system of indistin-
guishable fermions must be antisymmetric with respect
to simultaneous permutations of spin and coordinate
variables. However, the coordinate part of the wave
function in the general case is not antisymmetric: the
symmetry type depends on the spin state. The coordi-
nate part of the wave function becomes antisymmetric
in the state with a maximum spin. This simplest partic-
ular case is usually treated in numerical statistical cal-
culations [64–74], although the state of maximum spin
usually corresponds to a relatively high energy and is
not of much interest.

In contrast to the calculations of pure quantum
states, the statistical description of a system implies
summation over all accessible spin states and, hence,
over all possible types of the permutation symmetry of
the coordinate function. A basis set in the symmetrized
space is constructed with the aid of the Young symme-
try operators [86, 87]. Each particular Young’s scheme
generates its own basis of irreducible representation of
the permutation group. Completeness of the combined
basis set is confirmed by direct calculation of the total
 AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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dimensionality of all disjoint subspaces generated by
all the possible Young’s schemes [86].

It can be shown that the space of complete wave
functions satisfying the requirement of permutation
symmetry is exhausted by all direct products of the sub-
spaces of spin and coordinate functions generated by
the Young operators with dual (obtained by reflection
from diagonal) schemes. For particles with the spin 1/2,
each subspace of this kind corresponds to a particular
eigenvalue of the square spin operator of the whole sys-
tem [87].

Acting upon the wave function of an N-particle sys-
tem, the Young operator converts this function into a
linear combination including (depending on the spin
state and the parity of N) from 2N/2[(N/2)!]2 to N! terms.
The square of this yields the number of terms in the cor-
responding matrix elements of the statistical operator.
For calculating the mean equilibrium values, the
expression should be integrated with respect to all N
variables. In the general case, a multidimensional inte-
gral cannot be calculated analytically, while a numeri-
cal realization of such calculations becomes impossible
(because of the rapid growth of N!) even for a system of
several fermions.

Previously [81], it was demonstrated that the set of
diagrams of linked paths can be reduced to a much
lower number without introducing approximations,
after which the numerical integration becomes feasible.
Upon such reduction, one can obtain the control tables
of combinatorial weights and determine the distribu-
tions over spin states for each prototype diagram. How-
ever, the number of operations necessary for calculat-
ing the control tables grows faster than N! and, hence,
the calculation is realizable only for N ≤ 10. A method
described below removes these restrictions.

A basic requirement posed upon any variant of the
Monte Carlo method is that the modification must not
introduce systematic errors. This requirement was
taken into account in developing a variant of the
method applicable to systems with large numbers of
particles. Here, by saying “large number” we imply a
situation excluding all the particle number limitations
related to the description of exchange; only restrictions
typical of the systems obeying classical statistics are
retained. For modern computer facilities, the upper
limit determined by these restrictions is on the order of
several hundred to several thousand particles. The mod-
eling of macroscopic systems requires using periodic
boundary conditions so as to eliminate the problem of
edge effects.

The action of the Young operator leads to the
appearance of about N! terms in the matrix element of
the statistical operator, each of these terms representing
a certain permutation of the coordinate variables. In
terms of the path integral formalism, such a permuta-
tion corresponds to a certain structure of linked paths
[81]. It would be senseless to attempt to calculate this
linear combination numerically and, the more so, to
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
integrate this combination in a system of, for example,
100 fermions: such a linear combination contains
100! ~ 10157 terms. The idea of an approach proposed in
this paper consists in extending the concept of essential
set to the procedure of symmetrization of the wave
function. It is suggested to perform, parallel to wander-
ing in the coordinate space, a Markov random walk pro-
cess over elements of the set of all permutations gener-
ated by the Young symmetry operator. Although the
combinatorial weights of all such permutations equal
±1, the corresponding contributions to the partition
function and canonical means strongly depend on a par-
ticular structure of linked paths generated by the given
scheme.

The Markov random walk process in the combined
space of the coordinate variables and various path link-
ing modes (permutations) leads to an essential set
selected from the vast number of terms contained in the
Young symmetry operator. Permutations generating
like structures of linked Feynman paths can be com-
bined into classes, so that the random walk would pro-
ceed over such classes rather than over particular per-
mutations. Various classes contain different numbers of
elements and, hence, possess significantly different
combinatorial weights. The essential set will involve
primarily the most significant classes with respect to
their combinatorial weights. It should be emphasized
that less significant contributions are not rejected, but
postponed. As the Markov random walk proceeds, the
accumulated statistics involves the terms with smaller
contributions; in the limit of an infinitely long process,
the calculated quantum-mechanical mean values coin-
cide with the corresponding exact values.

A change in the arrangement of variables over cells
of the Young scheme leads onto to renumbering of the
vertices of the diagram of linked Feynman paths of the
quantum particles under consideration [81]. Since the
results of integration of these diagrams is independent
of the numbering of vertices, calculation of the canoni-
cal means reduces to the integration of the family of
diagrams for any one arrangement of arguments in the
Young scheme. Such an arrangement is conveniently
selected in the form of the fundamental sequence,
whereby the argument number coincides with the cell
number [81].

The Young operator represents sequentially applied
operators of pair symmetrization (1 + ) and antisym-

metrization (1 – ) with respect to the argument num-
ber:

(1)

Here, , , … are the operators of pair commutation
over the numbers of arguments occurring in the same
column of the Young scheme; , , … are the anal-
ogous operators for argument pairs occurring in the
same row of the scheme [81]. After opening of the

n̂ij

n̂ij

Ĵ S( ) 1 n̂a–( ) 1 n̂b–( )… 1 n̂v+( ) 1 n̂w+( ).=

n̂a n̂b

n̂v n̂w
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parentheses, the product (1) acquires the following
form:

(2)

where summation is performed over all N! permuta-
tions of the argument numbers. The combinatorial
weights αS(n) of the permutations take one of three val-
ues: +1, –1, and 0.

If a permutation operator in the sum of Eq. (2) can
be represented as the product

(3)

where ,  are the operators of argument permuta-
tion in the first and second columns of the Young

scheme and  is the operator of argument permuta-
tion in the rows of this scheme, the corresponding
weight can be written as

where c(k) and c(l) are the parities of permutations 

and , respectively. Any operator  which cannot be
represented in the form (3) is in fact not contained in the

symmetry operator  corresponding to the eigen-
value of the square spin operator S(S + 1) and the fun-
damental arrangement of arguments over cells of the
Young scheme. In this case, the corresponding combi-
natorial weight in Eq. (2) is αS(n) = 0. Equation (2) is
essentially an expansion of the Young operator in terms

of the unit vectors  in the operator space of all pos-
sible permutations, so that a vector of this space with
the components

uniquely determines the Young operator.
Previously [81], it was shown that the partition func-

tion of a system of N undistinguishable nonrelativistic
fermions with the spin 1/2 can be written as

(4)

where β ≡ 1/kBT is the reciprocal temperature and kB is
the Boltzmann constant; the symbol S over the summa-
tion sign indicates that summation is performed only
over the permutation operators contained in the Young

Ĵ S( ) αS n( )N̂n,
n

∑=

N̂n N̂k N̂l N̂m,=

N̂k N̂l

N̂m

αS n( ) 1–( )c k( ) c l( )+ ,=

N̂k

N̂l N̂n

Ĵ S( )

N̂n

αS n( ){ } α S 1( ) αS 2( ) … αS N!( ), , ,( )=

Z
1
N!
------ 2S 1+( ) 1–( )c l( ) c k( )+

n

S

∑
S

∑=

× rN ri{ } β Ĥ–( )exp N̂n ri{ }d∫
=  

1
N!
------ 2S 1+( ) αS n( )

n

∑
S

∑
× r ri{ } β Ĥ–( )exp N̂n ri{ } ,

N
d∫
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operator . During the calculation of matrix ele-

ments in the integrand of (4), each permutation  gen-
erates a certain diagram of linked virtual numbered
paths. The subsets of such diagrams differing only by
numbering of the vertices form classes. These subsets
can be combined with a common factor

(5)

and the summation over all N! permutations can be
replaced by summation over all classes with a proto-

type graph  of the given class. Here, the multidi-
mensional subscript {νi} = (ν1, ν2, …, νN) determines
the diagram structure: νi is the number of cycles includ-
ing i linked paths; the symbol {νi} over the summation
sign in (5) indicates that summation is performed only

over n values for which the operators  belong to the

class with a prototype graph  and enter into the

symmetry operator . In these terms,

(6)

where

The structure of expressions for the canonical mean
values is analogous to that of the partition function (6).

It is possible to construct a procedure of wandering
over particular permutations, but this pathway is not
optimum since the Markov transitions between permu-
tations belonging to the same class do not in fact
improve the statistics. The random walk over permuta-
tions is expediently replaced by the random walk over
permutation classes. In each class, a random (equiprob-
able) set of permutations is taken from the manifold of

all permutations  upon checking for their simulta-
neous belonging to the given class {νi} and to the

Young operator . The permutation is given a com-
binatorial coefficient  = αS(n) provided that

both conditions are satisfied and  = 0 if at
least one of the two conditions is violated. In each step
of this random process, we obtain an unbiased estimate
of the combinatorial coefficient ωS({νi}):

(7)

Ĵ S( )

N̂n

ωS ν i{ }( ) αS n( ),
n

νi{ }

∑=

Π̂ νi{ }

N̂n

Π̂ νi{ }

Ĵ S( )

Z
1
N!
------ ω νi{ }( )

νi{ }
∑=

× ri{ } β Ĥ–( )exp Π̂ νi{ } ri{ } ,
N

d∫

ω νi{ }( ) 2S 1+( )ωS ν i{ }( ).
S

∑=

N̂n

Ĵ S( )
αS νi{ }, n( )

αS νi{ }, n( )

ω̃S ν i{ } nk{ } l, ,( )
N!
l

------ αS νi{ }, nk( ),
k 1=

l

∑=
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002



A DENSE HYDROGEN PLASMA MODELED 947
where l is the volume of set {nk}. It is of basic impor-
tance that the approximate character of estimate (7) for

 obtained using a finite set {nk} on a
single step of the Markov process does not mean that
the entire calculation procedure is approximate, pro-
vided that it is based on the combinatorial weights

 rather than ωS({νi}). Indeed, expres-
sion (5) can be alternatively written as

(8)

where {nk} = n1, n2, …, nl is a set of l numbers from the
complete series of integers from 1 to N! (numbers in the
set {nk} may be repeated). The symbol {nk} at the sum
in (8) indicates that summation is performed over all
possible sets; the coefficient 1/l(N!)l – 1 takes into
account the repeated terms. The last equality in (8)
reduces calculation of the combinatorial coefficients
ωS({νi}) to taking a sum over sets {nk} from the series
of all possible permutations (instead of summing over
permutations inside the class {νi} as in expression (5)).
Upon substituting (8) into (6) and representing the
matrix element in the integrand as a product of the
matrix elements for which the analytical expressions
are known [57], the partition function acquires the form

(9)

Note that, despite being written in terms of coefficients
 determined for finite sets, expression

(9) is exact. Writing the partition function in the form
of (9) allows the particle number limitations related to
the exchange to be removed and the Markov random
process for a system of several hundred or even several
thousand particles to be constructed.

ωS ν i{ } nk{ } l, ,( )

ω̃S ν i{ } nk{ } l, ,( )

ωS ν i{ }( ) 1

l N!( )l 1–
-------------------- αS nk( )

νi{ }

k 1=

l

∑
nk{ }
∑=

=  
1

l N!( )l 1–
-------------------- αS νi{ }, nk( )

k 1=

l

∑
nk{ }
∑

=  
1

N!( )2l 1–
-------------------- ω̃S ν i{ } nk{ } l, ,( ),

nk{ }
∑

Z
1

N!( )3l 1–
-------------------- 2S 1+( )ω̃S ν i{ } nk{ } l, ,( )

S

∑
nk{ }
∑

νi{ }
∑=

× rN 1( ) rN 2( )…dd rN M( )d∫
× ri M( ){ }〈 | βĤ

M
--------– 

  ri 1( ){ }| 〉exp

× ri 1( ){ }〈 | βĤ
M

--------– 
  ri 2( ){ }| 〉…exp

× ri M 1–( ){ }〈 | βĤ
M

--------– 
  Π̂ νi{ } ri M( ){ }| 〉 .exp

ω̃S ν i{ } nk{ } l, ,( )
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Each microstate of the Markov process based on the
partition function (9) is determined as a combination of
sets X = ({ri(j)}, {νi}, {nk}) representing coordinates of
the vertices of broken (polygonal) paths {{ri(j)}, the
mode of linking nonnumbered paths into cycles {νi},
and the sets of L permutations with numbers {nk} from
all the possible N! permutations. The values of matrix
elements are determined by the set ({ri(j)}, {νi}); the
combinatorial coefficients are determined by the set
({νi}, {nk}) and are independent of {ri(j)}. According
to the theory of Markov processes [15], the matrix of
transition probabilities p(X, Y) for a process with preset
limiting distribution ω(X) is not uniquely determined.
In order to obtain the preset limiting distribution, it is
sufficient to satisfy the detailed balance condition

(10)

and the ergodicity condition; the latter requires that a
given microstate could be accessed from any other via
a sequence of intermediate transitions with nonzero
probabilities.

In the proposed method, the calculation algorithm
consists in sequentially accomplishing transitions of
five types:

1. Shifting one vertex of the polygonal path {ri(j)},
while retaining {νi} and {nk};

2. Shifting a path or a cycle of linked paths as a
whole, while retaining {νi} and {nk};

3. Rotating a path or a cycle of linked paths as a
whole, while retaining {νi} and {nk};

4. Forming a new cycle by linking two cycles or
paths with simultaneously passing to a new set {nk} and
changing positions of a part of the vertices in {ri(j)};

5. Separating a cycle into two cycles or paths with
simultaneously passing to a new set {nk} and changing
positions of a part of the vertices in {ri(j)}.

The vertices, paths, and cycles to be shifted are
selected in a random way. The probabilities of transi-
tions are played using a random number generator
according to the Metropolis algorithm [15]. Optimum
values of the limiting spatial shift and rotation are
determined by the program (with the aid of a special
algorithmic feedback system) in the initial segment of
the process. This segment is not involved in calculation
of the equilibrium mean values. According to the algo-
rithm, M steps of type 1 for one path are accompanied
with one step of type 2 and three steps of type 3 (rota-
tions about three Cartesian coordinate axes). Optimum
frequencies of the steps of types 3 and 4 are also deter-
mined by the program in the initial segment of the ran-
dom process. Besides quantum particles (electrons), the
system contains heavy particles (protons) which are
treated according to the standard Metropolis procedure
of the classical particle simulation. All the Coulomb
interactions of any particle with all others are explicitly
taken into account: protons interact with each other and
with all vertices of the paths of electrons; electrons

ω X( ) p X Y,( ) ω Y( ) p Y X,( )=
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interact via vertices with identical numbers. In the
regime of simulation with periodic boundary condi-
tions, the interactions are taken into account by the
closest image method [15].

The experience of numerical calculations showed
that the frequency of transitions into new microstates
via direct events of path linking and separation is usu-
ally too low for accumulating necessary statistics. For
this reason, the probabilities of such transitions are
selected using a special procedure. However, these
probabilities still obey the detailed balance condition
(10) that provides for the attainment of a limiting Gibbs
distribution [15]. The path linking and separation
events are played only for the pairs of vertices with
identical numbers under the condition that a distance r
from the separated vertex to the newly connected one is
below certain fixed value rmax. Linking via vertices with
the numbers different from unity reduces to the
exchange of path fragments. When r exceeds a certain
fixed value rmin, the linked vertices are brought closer to
each other with simultaneous uniform stretching of the
path over a fragment with the length Mstr ≤ M. The opti-
mum values of rmax, rmin, and Mstr are established in the
preliminary simulation stage using a special algorith-
mic feedback system.

The steps of types 4 and 5 lead to a change in the
current values of combinatorial weights ({νi}, {nk},
l), which have to recalculated. The calculation of sum
(7) is conducted as follows. First, the Young scheme of
N empty cells is formed that corresponds to the given
spin value S; the scheme comprises j1 = N/2 + S cells in
the first column and j2 = N/2 – S cells in the second col-
umn. Then, numbers from 1 to N are equiprobably
assigned to the cells with the aid of a random number
generator. This assignment represents a particular per-

mutation  selected randomly and equiprobably
from N! possible permutations. Finally, the combinato-
rial weight of the given permutation is determined by
searching for and analyzing of the inverse permutation

 converting the given arrangement of numbers in
cells of the Young scheme into the fundamental
sequence. It was demonstrated previously [81] that
symmetrization of any eigenfunction of the coordinate
operator f({ri}; {xi}) achieved by the action of a certain

linear combination of the permutation operators 
upon arguments {xi} is equivalent to the action of the

same linear combination of inverse operators  on
the eigenvalues {ri}. Therefore, the permutation opera-

tors  must act upon {ri} in the reverse order: anti-
symmetrization with respect to numbers in the columns
of the Young scheme, followed by symmetrization over
the rows. This operator is referred to as the alternative
Young operator.

ω̃S

N̂nk

N̂nk

1–

N̂n

N̂n
1–

N̂n
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Although the change of all permutations in the
Young operator modifies the type of symmetry of the
wave function, the values of matrix elements in the
integrand of (6) remain unchanged. Indeed, the inverse
operators correspond to the path diagrams with reori-
ented segments, but the orientations of segments do not
influence the values of matrix elements of the statistical
operator [81]. Owing to this invariance, there are two
equivalent methods for calculating the weights

({νi}, {nk}, l). The difference is in the way of sym-
metrization with respect to {ri} in the basis wave func-
tions—with the Young operators or with the same oper-
ators in which all permutations are replaced by inverse
ones. We will use the latter approach. In this case, the
alternative Young operator contains a given permuta-

tion  provided that it has a structure of the type

 = , where the first operator in the right-
hand part produces permutation in the rows of the
Young scheme and the latter two operators, in the first
and second columns of this scheme. Therefore, the
inverse permutation must possess a structure of the type

 = (11)

This is checked by sequentially commuting numbers in
the rows of the Young scheme so as to transfer all the
first j1 numbers to the first column and the other j2 num-
bers to the second column of the scheme. If this rear-

rangement is possible, the structure of the  operator

satisfies condition (11). Otherwise, permutation  is
assigned the combinatorial weight

Once condition (11) is obeyed, the combinatorial

weight of the  permutation is

Here, the parities c(k) and c(i) of permutations  and

, respectively, are calculated as follows. Each per-
mutation corresponds to a permutation graph, analo-
gous to a diagram of linked Feynman paths. Any pair
commutation leads either to the merge of two cycles
into one or to the decay of one cycle into two; that is,
the number of cycles in the graph always changes by
unity. Therefore, the number of cycles γ(k) in the graph
is related to the number of pair commutations c(k) con-

tained in a given permutation  by the formula

which allows the combinatorial coefficient of permuta-

tion  to be expressed via the numbers of cycles:

ω̃S

N̂nk

N̂nk
N̂m

1–
N̂i

1–
N̂k

1–

N̂nk

1–
N̂k N̂i N̂m.

N̂nk

1–

N̂nk

αS νi{ }, nk( ) 0.=

N̂nk

αS νi{ }, nk( ) 1–( )c k( ) c i( )+= .

N̂k

N̂i

N̂k

1–( )N c k( )– 1–( )γ k( ),=

N̂nk

αS νi{ }, nk( ) 1–( )γ k( ) γ i( )+ .=
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The numbers of cycles γ(k) and γ(i) in the permutations

 and  are calculated numerically. For this pur-
pose, one has to analyze the sequence of numbers in
both columns of the Young scheme after accomplishing

permutation . The presence of number i in the cell j
corresponds to the path segment directed from the ith
to jth vertex in the permutation graph. In this way, the
graph structure is sequentially restored and the num-
bers of cycles for both permutations are determined.
The entire procedure is repeated l times, and the sum in
Eq. (7) is calculated. After accomplishing this calcula-
tion for all possible spin states S = 0, …, N/2 (for even
N) and S = 1/2, …, N/2 (for odd N), the sum over spin
states is taken with an allowance for degeneracy with
respect to the eigenvalues of the spin projection opera-
tor:

Unlike coefficients ωS({νi}), the values of ({νi},
{nk}, l) are only calculated in the course of the Markov
random walk and not stored in the computer memory.
As the set volume l increases, the latter values approach
ωS({νi}) the faster, the greater N. In fact, essential infor-
mation on ωS({νi}) is contained in a number of ele-
ments that is much smaller than (N!)l—the number of
elements in the right-hand part of Eq. (8). This circum-
stance makes the essential set method especially effec-
tive.

The probabilities of transitions between microstates
X = ({ri(j)}, {νi}, {nk}) and Y = ( , , )
involved in the Markov process contain combinatorial
weights in the form of ratios [15]

(12)

where a({ri(j)}, {νi}, β) denotes the chain of high-tem-
perature matrix elements of the density matrix operator
in the integrand of Eq. (9).

As demonstrated above, constructing a fundamen-
tally exact procedure does not require that ({νi},
{nk}, l) coincide with ωS({νi}). However, the relation-
ship between the two quantities depending on the vari-
ation of l is of independent theoretical interest. A com-
parison of Eqs. (5) and (7) shows that the two expressions
coincide for l = N! and {nk} = 1, 2, 3, …, N!. It is naturally
expected that ({νi}, {nk}, l)  ωS({νi}) as l  N!
(uniformly or nonuniformly over {nk}). The proof of
this statement is omitted, but a reason for this behavior
is evident, at least from the following fact. As the vol-
ume l of set {nk} increases, the relative fraction of the
possible combinations containing repeated numbers in
the sequence {nk} decreases; most of such combina-

N̂k N̂i

N̂m

ω̃ ν i{ } nk{ } l, ,( ) 2S 1+( )ω̃S ν i{ } nk{ } l, ,( ).
S

∑=

ω̃S

ri' j( ){ } ν i'{ } nk'{ }

p X Y,( )

=  min
ω̃ ν i'{ } nk'{ } l, ,( )
ω̃ ν i{ } nk{ } l, ,( )
-----------------------------------------

a ri' j( ){ } ν i'{ } β, ,( )
a ri j( ){ } ν i{ } β, ,( )
--------------------------------------------- 1, 

  ,

ω̃S

ω̃S
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tions are close to the fundamental sequence {nk} = 1, 2,
3, … for which Eqs. (5) and (7) exactly coincide.

From the standpoint of the efficacy of a calculation
procedure, not only the fact of convergence ({νi},
{nk}, l)  ωS({νi}) is important, but the rate of this
process is significant as well. Only sufficiently rapid
convergence would allow us to check for correctness of
the numerical calculation of ({νi}, {nk}, l). Such a
verification based on the identity (8) can only be per-
formed for sufficiently small N and l because the right-
hand part of this equation contains (N!)l l terms. The
check implies a comparison of the numerical values of

({νi}, {nk}, l) and ωS({νi}) calculated using inde-
pendent computer programs. This comparison is possi-
ble only for N ≤ 10, because the calculation of ωS({νi})
by direct summation over all possible permutations for
greater N would require about 104–106 hours of
medium-speed computer operation. Since the computa-
tion algorithm is independent of the particular N value,
coincidence of the ({νi}, {nk}, l) and ωS({νi}) values
for small N guarantees that the weights ωS({νi}) are
correctly calculated using ({νi}, {nk}, l) for any N
values (including those for which direct calculation is
impossible).

In this study, such a verification was performed for
various N values. The rate of convergence is illustrated
by the data presented in Table 1. As can be seen, even a
relatively small set of l = 100 provides for the weight
factors differing from exact values by only 1–2%. In
order to determine the value of one coefficient, it is nec-
essary to take a set from all the possible Young’s
schemes: the set has a volume of l(N/2 + 1) for even N
and l((N – 1)/2 + 1) for odd N. Since the exact calcula-
tion of equilibrium means does not require the weight
factors to be calculated exactly in each step of the
Markov process, there exists an optimum set volume l
ensuring the obtainment of canonical means at a mini-
mum computation time. An overly small l value hinders
distribution of the computation effort between states in
proportion to their contributions to the equilibrium
means. On the contrary, overly large l values slow down
accomplishing the procedure in each step. Apparently,
the optimum l value decreases with growing N. The
experience of calculations performed within the frame-
work of this study shows that, for N = 100, the optimum
set volume is about l ≈ 10.

The data for N = 10 in Table 1 can illustrate the
behavior of weight factors depending on the number of
linked trajectories. As the table is traversed bottom to
top, the number of linked paths increases and the cycle
length grows. As can be seen, an increase in the cycle
size is accompanied by the growth in absolute values of
the combinatorial weights, with oscillations in their
signs. The maximum weight is observed for a configu-
ration where all electrons form a common cycle (the
first row in Table 1).

ω̃S

ω̃S

ω̃S

ω̃S

ω̃S
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Table 1.  Generalized combinatorial weights ω'({νi}) = ω({νi})/ω(N00...0) of various modes of the distribution of nonnumbered
virtual electron trajectories over cycles (νi is the number of cycles including i linked trajectories) in a system of N = 10 electrons:
the results of calculations performed by method of random sampling in permutations with various set volumes l are compared to
the exact values determined by direct summation for all spin states and permutations contained in the Young symmetry operators

νi

ω'({νi})

l = 10 l = 100 l = 107 Exact value

1 0000000001 –1.058 × 105 –1.101 × 105 –1.0086 × 105 –1.00800 × 105

2 1000000010 1.232 × 105 1.222 × 105 1.2097 × 105 1.20960 × 104

3 0100000100 6.867 × 104 6.212 × 104 6.3836 × 104 6.38400 × 104

4 2000000100 –8.001 × 104 –7.560 × 104 –7.3919 × 104 –7.39200 × 104

5 0010001000 6.048 × 104 4.752 × 104 4.8158 × 104 4.81600 × 104

6 1100001000 –7.344 × 104 –8.042 × 104 –7.8981 × 104 –7.89600 × 104

7 3000001000 3.624 × 104 3.125 × 104 3.0791 × 104 3.08000 × 104

8 0001010000 4.410 × 104 4.292 × 104 4.2057 × 104 4.20400 × 104

9 1010010000 –7.112 × 104 –6.128 × 104 –6.0707 × 104 –6.07200 × 104

10 0200010000 –2.268 × 104 –2.115 × 104 –2.1574 × 104 –2.15800 × 104

11 2100010000 4.368 × 104 4.726 × 104 5.0152 × 104 5.01600 × 104

12 4000010000 –1.190 × 104 –9.961 × 103 –9.8953 × 103 –9.90000 × 103

13 0000200000 1.956 × 104 2.109 × 104 2.0264 × 104 2.02560 × 104

14 1001100000 –5.897 × 104 –5.116 × 104 –5.4729 × 104 –5.47200 × 104

15 0110100000 –3.427 × 104 –3.331 × 104 –3.4329 × 104 –3.43200 × 104

16 2010100000 3.058 × 104 3.891 × 104 3.9758 × 104 3.97600 × 104

17 1200100000 2.848 × 104 2.838 × 104 2.8201 × 104 2.82000 × 104

18 3100100000 –2.050 × 104 –2.222 × 104 –2.2073 × 104 –2.20800 × 104

19 500010000 2.570 × 103 2.693 × 103 2.6480 × 103 2.64800 × 103

20 0102000000 –1.638 × 104 –1.405 × 104 –1.5994 × 104 –1.59900 × 104

21 2002000000 1.937 × 104 1.945 × 104 1.8667 × 104 1.86600 × 104

22 0021000000 –1.218 × 104 –1.422 × 104 –1.4105 × 104 –1.41067 × 104

23 1111000000 4.242 × 104 4.628 × 104 4.6498 × 104 4.64800 × 104

24 3011000000 –1.876 × 104 –1.708 × 104 –1.8265 × 104 –1.82667 × 104

25 0301000000 5.145 × 103 5.324 × 103 5.4820 × 103 5.48000 × 103

26 2201000000 –1.780 × 104 –1.983 × 104 –1.9325 × 104 –1.93200 × 104

27 4101000000 7.140 × 103 7.996 × 103 7.6964 × 103 7.70000 × 103

28 6001000000 –5.915 × 102 –6.475 × 102 –6.2656 × 102 –6.26667 × 102

29 1030000000 7.280 × 103 7.031 × 103 6.7988 × 103 6.80000 × 103

30 0220000000 7.420 × 103 7.322 × 103 7.3064 × 103 7.30667 × 103

31 2120000000 –1.582 × 104 –1.644 × 104 –1.7002 × 104 –1.70000 × 104

32 4020000000 3.827 × 103 3.309 × 103 3.4001 × 103 3.40000 × 103

33 1310000000 –8.400 × 103 –7.924 × 103 –8.0659 × 103 –8.06000 × 103

34 3210000000 1.057 × 104 9.388 × 103 9.5715 × 103 9.56667 × 103

35 5110000000 –2.450 × 103 –2.283 × 103 –2.3407 × 103 –2.34000 × 103

36 7010000000 1.773 × 102 1.4733 × 102 1.4003 × 102 1.40000 × 102

37 0500000000 –3.045 × 102 –2.648 × 102 –2.8274 × 102 –2.82500 × 102

38 2400000000 2.074 × 103 1.706 × 103 1.6962 × 103 1.69500 × 103

39 4300000000 –1.313 × 103 –1.383 × 103 –1.3752 × 103 –1.37500 × 103

40 6200000000 3.780 × 102 3.614 × 102 3.4666 × 102 3.46667 × 102

41 8100000000 –3.038 × 101 –3.209 × 101 –3.2515 × 101 –3.25000 × 101

42 10000000000 1.000 1.000 1.0000 1.00000
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The combinatorial coefficients presented in Table 1
are independent of the temperature. On heating, the
probability of forming large cycles decreases because
the region of spatial localization of each path exhibits
narrowing. The resulting distribution over cycles is a
compromise between two opposite trends: the increase
in absolute values of the combinatorial coefficients and
the decrease in the temperature weight factors a({ri(j)},
{νi}, β) for long cycles. As the temperature grows, the
second tendency begins to prevail and shifts the equi-
librium toward shorter cycles. The competition of the
two trends takes place on the background of partial
compensation of the positive and negative weight fac-
tors. The role of this compensation increases with a
decrease in the temperature, which leads to a growth in
the weight of configurations involving high-connectiv-
ity diagrams.

3. SPIN

Table 2 presents the distributions over spin states

determined for various modes of linking the Feynman
trajectories {νi} in a system of ten electrons. Each link-
ing mode bears contributions from all possible spin
states of the system, which are proportional to the
weights presented in the table taken from [81]. At first
glance, the configurations with strongly linked paths
(i.e., those formed at low temperatures) must possess a
lower spin and, hence, the corresponding distributions
with respect to the spin must exhibit higher probabili-
ties for the states with lower S values. However, calcu-
lations reveal a more complicated pattern.

As can be seen in the first row of Table 2, which cor-
responds to the formation of a longest cycle, the proba-
bilities of states with small S values are zero. Traversing
the table from top to bottom, one can see how the paths
separate and the low-spin states appear. In a configura-
tion with fully separated paths (bottom row in Table 2),
the distribution over spins exhibits a trivial pattern
determined by degeneracy with respect to the eigenval-
ues of the spin projection operator (∝ 2S + 1). This high-
temperature state corresponds to a transition to the clas-
sical limit with complete absence of the exchange.
When the temperature is varied, the relative contribu-
tions from various path linking modes to the average
spin change as well. At high temperatures, only the
state presented in the last row exists.

At low temperature, a decisive factor is the mutual
compensation of contributions with opposite signs. The
prevalence of one or another mode of path linking
depends both on the Coulomb repulsion between elec-
trons and on the external field geometry. The resultant
spin (and, hence, the permutation symmetry) of the sys-
tem is determined by a particular configuration of the

Γ νi{ } S( ) 2S 1+( )
ωS ν i{ }( )

ω νi{ }
----------------------=
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applied field. In a spatially homogeneous system, the
spin usually decreases with the temperature. In a
strongly inhomogeneous system, the spin of the ground
quantum state can be nonzero. A example of such
behavior is offered by spins of the atomic electron
shells, which are maximum for elements from the mid-
dle of the Periodic Table.

In order to study the temperature-induced evolution
of the spin state of a many-electron system, it is neces-
sary to order the diagrams of linked paths with respect
to a certain factor which is common of the diagrams
exhibiting a similar response of the statistical weights
to the temperature variations. There is no universal
solution to this problem, since the distribution of
weights depends on the external field geometry, and a
rather laborious statistical modeling has to be per-
formed in each particular case. Nevertheless, we may
study common features in the spin behavior in suffi-
ciently homogeneous systems upon ordering the dia-
grams with respect to the parameter of connectivity.
With neglect of oscillations in the sign of the weight
factors, the distribution over configurations of the vir-
tual electron trajectories is close to the statistical distri-
bution of classical polymer chains.

The simplest quantitative measure of connectivity is
the number of cycles in the diagram:

The connectivity parameter

acquires the value αC = 0 for the diagrams with γ = N
including no linked trajectories. On the contrary, a dia-
gram of maximum connectivity represents a single
cycle including all the virtual trajectories linked in
series, in which case γ = 1 and αC = 1. Intermediate
cases correspond to 0 < αC < 1. The diagrams charac-
terized by the same values of connectivity parameter
represent connectivity classes, the number of which is
equal to the number of particles N in the system.

The signs of the total combinatorial weights of var-
ious connectivity classes

(13)

depend on the parity of N – γ. The prime sign at the sum
in (13) indicates that only diagrams possessing the
same connectivity are added:

γ νi{ }( ) ν i.
i 1=

N

∑=

αC ν i{ }( ) N γ–
N 1–
-------------≡

ω' αC( ) ω' ν i{ }( )
νi{ }

'∑=

αC

N ν i

i 1=

N

∑–

N 1–
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Table 2.  Generalized combinatorial weights of various spin states contained in each mode of the distribution {νi} of non-
numbered virtual electron trajectories over cycles for a system of N = 10 electrons (S is the eigenvalue of the square spin oper-
ator; normalization condition: (S) = 1

{νi}
(S)

S = 0 S = 1 S = 2 S = 3 S = 4 S = 5

1 0000000001 0 0 0 0 –0.100000 1.100000
2 1000000010 0 0 0 –0.018519 0 1.018519
3 0100000100 0 0 –0.006579 0.019737 –0.098684 1.085526
4 2000000100 0 0 –0.005682 –0.017046 0.085227 0.937500
5 0010001000 0 –0.003322 0.006645 0 –0.099668 1.096346
6 1100001000 0 –0.003039 0 0 0 1.003039
7 3000001000 0 –0.002597 –0.010390 0 0.155844 0.857143
8 0001010000 –0.002379 0.003330 0 0 –0.099905 1.098953
9 1010010000 –0.002196 0 0.006148 –0.018445 0 1.014493

10 0200010000 –0.002317 0.003244 –0.012975 0.0389249 –0.097312 1.070436
11 2100010000 –0.001994 –0.002791 0 0 0.083732 0.921053
12 4000010000 –0.001684 –0.007071 –0.009428 0.028283 0.212121 0.777778
13 0000200000 0.004739 0 0 0 –0.099526 1.094787
14 1001100000 0.002193 0.003070 0 –0.018421 0 1.013158
15 0110100000 0.004662 –0.003263 0 0.019580 –0.097902 1.076923
16 2010100000 0 0.002817 0 –0.016901 0.084507 0.929578
17 1200100000 0.002128 –0.002979 0 0.017872 0 0.982979
18 3100100000 –0.001812 –0.002536 0 0.015217 0.152174 0.836957
19 500010000 –0.004532 –0.010574 0 0.063444 0.253776 0.697885
20 0102000000 –0.004690 0.006567 –0.006567 0.019700 –0.098499 1.083490
21 2002000000 0.004019 0.005627 –0.005627 –0.016881 0.084405 0.928457
22 0021000000 –0.002363 –0.003308 0.013233 0 –0.099244 1.091682
23 1111000000 0 0 0.006024 0 0 0.993976
24 3011000000 0.003650 0.005110 –0.005110 0 0.153285 0.843066
25 0301000000 –0.009124 0.012774 –0.019161 0.057482 –0.095803 1.053832
26 2201000000 0 0 0.005435 0.016304 0.081522 0.896739
27 4101000000 0 0 0.004545 0.040909 0.204546 0.750000
28 6001000000 –0.005319 –0.007447 0.01862 0.100532 0.279255 0.614362
29 1030000000 –0.006536 0 0.018301 –0.018301 0 1.006536
30 0220000000 0.006843 –0.003193 0 0.038321 –0.095803 1.053832
31 2120000000 –0.009608 0.002745 0.010980 0 0.082353 0.905882
32 4020000000 0.004902 0.006863 0 0.027451 0.205882 0.754902
33 1310000000 0.004136 0 0.005790 0.034740 0 0.955335
34 3210000000 0 0.004879 0.014634 0.029268 0.146342 0.804878
35 5110000000 0.002849 0.007977 0.019943 0.071795 0.239316 0.658120
36 7010000000 0 0.009524 0.047619 0.133333 0.285714 0.523810
37 0500000000 –0.022124 0.030974 –0.030973 0.092920 –0.092920 1.022124
38 2400000000 0.003687 0.005162 0.015487 0.046460 0.077434 0.851770
39 4300000000 0.003030 0.012727 0.029697 0.063636 0.190901 0.700000
40 6200000000 0.007212 0.023558 0.050481 0.111058 0.252404 0.555288
41 8100000000 0.028205 0.043590 0.089744 0.161539 0.269231 0.423077
42 10000000000 0.027777 0.083333 0.138889 0.194444 0.250000 0.305556

Γ νi{ }
S
∑

Γ νi{ }
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The data in Table 3 illustrate the relations between
various classes for the systems with different N. The
numerical calculation was conducted by direct summa-
tion over all diagrams with nonnumbered vertices, with
the weights ω'({νi}) calculated by the random sampling
method. For the final sample set {nk} with a volume of
l, formula (13) can be written as

(14)

Figure 1 shows the plots of ω'({νi}) calculated by
formula (14) for 10, 20, 30, 40, and 50 electrons. The
total set used for calculating each curve included (1–5) ×
1010 diagrams. For example, in the system of 50 elec-
trons, the values of ({νi}, {nk}, l) with l = 10 000
were calculated by the random sampling method for
each of the 204 226 diagrams with nonnumbered verti-
ces. The volume of the random sampling set (taken over
all spin states) used to calculate each value of the
weight was l(N/2) = 2.5 × 105. Then, the connectivity
parameter was calculated for each of the 204 226 dia-
grams and the weights of diagrams possessing equal αC

values were added. These calculations required
10 hours of processor operation (IBM Pentium III pro-
cessor with a clock frequency of 600 MHz).

As can be seen from Fig. 1, the generalized combi-
natorial weights of the diagrams rapidly grow in abso-
lute value with increasing connectivity parameter. As
the temperature increases, the statistical weights pro-
portional to a({ri(j)}, {νi}, β) of high-connectivity dia-
grams exhibit a rapid decrease, whereby only low-con-
nectivity diagrams survive. As the temperature drops,
the average length of the Feynman path increases and

ω'˜ αC nk{ } l, ,( ) ω' ν i{ } nk{ } l, ,( ).
νi{ }

'∑=

ω'˜

–1050
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~ω'
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Fig. 1. Plots of the generalized combinatorial weights
(αC, {nk}, l) (logarithmic scale) versus the degree of con-

nectivity αC for various numbers of electrons in the system:
N = 10 (1), 20 (2), 30 (3), 40 (4), 50 (5). Solid and dashed
curves refer to the diagrams with positive and negative
weight coefficients.

ω'˜
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the low-connectivity diagrams lose their advantage.
Under these conditions, the contribution from high-con-
nectivity diagrams increases. Simultaneously, the statisti-
cal weight coefficients become more sensitive with
respect to positions of the virtual trajectories in space
{ri(j)}. For this reason, the electron exchange correlations
tend to increase at low temperatures.

A mechanism of decrease in the spin of the system
on cooling is elucidated by analysis of the distributions
over spin states, which are presented in Fig. 2 for the
diagrams with positive combinatorial weight factors.
Analogous distributions are obtained for the diagrams
with negative combinatorial weights as well. At a suffi-
ciently high temperature, only the diagram with com-
pletely separated paths (αC = 0) and a linear distribution
over spin states survives (Fig. 2, curve 1). The forma-
tion of cycles of linked paths (the growth in αC) with
decreasing temperature is accompanied by a redistri-

Table 3.  The numbers of diagrams of linked Feynman tra-
jectories generated by application of the Young symmetry
operators to systems with various numbers of electrons N

N

Number
of diagram

for numbered
trajectories

Number
of diagram

for nonnumbered 
trajectories

Number of classes
with different

αC values

5 120 7 5
10 362800 42 10
20 2.433 × 1018 627 20
30 2.653 × 1032 5604 30
40 8.159 × 1047 37338 40
50 3.041 × 1064 204226 50

0.05

0 5

~Γ

S

0.10

0.15

0.20

0.25

10 15 20 25

1
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4

Fig. 2. The combinatorial distributions (αC, S, {nk}, l)
over spin states contained in all diagrams with positive com-
binatorial weights and a fixed connectivity parameter αC =
0 (1), 0.0408 (2), 0.0816 (3), and 0.1224 (4) for a system of
50 electrons. The dashed curve shows (schematically) an
expected form of the resulting distribution at a sufficiently
high temperature.

Γ̃
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Fig. 3. The same as in Fig. 2, calculated for lower values
of the spin and higher values of the connectivity param-
eter αC = 0.0408 (1), 0.0816 (2), 0.1224 (3), 0.1633 (4),
and 0.2041 (5).
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Fig. 4. The plots of (αC, S, {nk}, l) in a system of 50 elec-
trons versus connectivity parameter αC for two spin states
with the maximum S values 25 (1, 3) and 24 (2, 4), calcu-
lated for the diagrams with (1, 2) positive and (3, 4) negative
generalized weights.

Γ̃
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Fig. 5. The same as in Fig. 4, calculated for the states with lower
values of the spin S = 23 (1), 22 (2), 21 (3), 20 (4), 19 (5), 17 (6),
15 (7), and 12 (8) using the diagrams with positive (solid
curves) and negative (dashed curves) generalized weights.
JOURNAL OF EXPERIMENTAL
bution in favor of greater S values (Figs. 2 and 3,
curves 2–4). The resulting distribution is obtained by
summing the partial distributions for various αC with
the corresponding weights and signs. The most signifi-
cant contribution (after that for αC = 0) to the mean val-
ues is due to the diagrams with minimum αC (with a
single pair of linked paths). The sign of the generalized
weight of these diagrams is opposite to that of the dia-
grams with αC = 0; in Fig. 2, the corresponding distri-
bution over the spin states is subtracted (with a certain
relative weight below unity) from curve 1. As a result,
the probability of states (primarily those with large S
values) decreases and the resulting curve becomes con-
vex (see dashed curve in Fig. 2), which corresponds to
the redistribution of weights toward low S values. Fur-
ther decrease in the temperature leads to a redistribu-
tion of the statistical weights toward high-connectivity
diagrams. For a sufficiently homogeneous system, we
may expect that the tendency of the spin to decrease
will be retained. In a strongly inhomogeneous external
field, the diagrams complementary to the field geome-
try will be favored, the resulting distribution over the
spin states can become more complicated, and the
resulting spin may be nonzero.

With increasing connectivity, the weights of the
states with maximum possible spins (S = N/2 and S =
N/2 –1) monotonically increase in absolute value,
whereas the weights of the spin states with intermediate
S values exhibit a extremum in the region of αC < 0.25.
As the spin S decreases further, the monotonic increase
changes to monotonic decrease (Figs. 4 and 5).

4. THE PROBLEM OF “NEGATIVE SIGNS”

Among the difficulties encountered in the develop-
ment of computer modeling of the systems composed
of quantum particles, most widely discussed is the so-
called problem of “negative signs” [64–78]. The effi-
cacy of the computational procedure can be signifi-
cantly increased, provided that microstates giving close
contributions with opposite (oscillating) signs would be
excluded from the Markov random walk process. The
exact result will be obtained by preliminarily taking a
sum over all possible {νi} for each particular arrange-
ment of the vertices of polygonal paths. In this case, the
mutual compensation of coefficients with opposite
signs reduces the weight of nonphysical path configu-
rations and naturally displaces these paths from the ran-
dom walk process. For large N values, the problem can
be solved by passing from the summation over {νi} to
taking random sets from the possible {νi}.

In this study, we will use a method of displacing
nonphysical microstates, which allows a simple numer-
ical realization. The idea of this method consists in
modifying the form of a({ri(j)}, {νi}, β) so that the
probabilities of microstates not obeying the Pauli prin-
ciple would become low and these states would be not
visited in the course of the Markov random walk pro-
 AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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cess. Obviously, such a modification unavoidably leads
to a certain systematic error, because it is impossible to
determine with absolute precision the boundaries of
compensated microstates. As a result, the displacement
of impermissible states will interfere with a part of
physically allowed virtual trajectories. This uncertainty
can be reduced to zero by narrowing the regions of dis-
placed microstates so that their boundaries would occur
beyond the displacement region. In this case, not all of
such states will be excluded from the Markov process
and a part of the computational facilities will be spent
for visiting these states. The wider the region of dis-
placed states, the higher the probability of interfering
with physically realizable states, but the lower the sta-
tistical error. There exists an optimum regime, whereby
the aforementioned systematic error is significantly
smaller than the statistical error related to visiting non-
physical states. For each particular situation, the opti-
mum regime has to be determined by trials.

The displacement of nonphysical microstates is pro-
vided by replacing a({ri(j)}, {νi}, β) with a modified
value

(15)

with the directing potential

(16)

Here, rn(M + 1) = rk(1) for the linked trajectories with
the numbers n and k,

and b0 and r0 are the parameters controlling rigidity and
the characteristic radius of interaction. Optimum values
of the parameters b0 and r0 are set by the calculation
program in the initial segment of the Markov process
with the aid of a special feedback system stipulated in
the algorithm; these values are adjusted so as to provide
that the fraction of visited microstates with oscillating
signs would not exceed 25% of the volume of accumu-
lated statistics. The directing potential (16) leads to a
decrease in the statistical weights of the states with
closely spaced vertices by which the trajectories are
linked. These configurations generate the contributions
with oscillating signs and correspond to the states with
strongly overlapping wave functions. Under the condi-
tions of weakly degenerate plasma, there is no need for
the repulsive potential and the program automatically
sets r ≈ 0, which corresponds to switching off the dis-
placement mechanism.

amod ri j( ){ } ν i{ } β, ,( )

=  a ri j( ){ } ν i{ } β, ,( ) VD ri j( ){ }( )–( ),exp

VD ri j( ){ }( ) νD rl j( ) rm j 1+( )–( )∫



j 1=

M

∑
l m<
∑=

+ νD rl j( ) rm j 1–( )–( )(
j 1=

M

∑
l m<
∑ 




.

νD r( ) b0 1 r
r0
----– 

 
 
  ,exp=
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When the temperature decreases, the spin of the sys-
tem also exhibits a tendency to decrease. In terms of the
one-electron approximation, this corresponds to “cou-
pling” of the spins of a fraction of the electrons. The
coincidence of the coordinate wave functions of two
electrons occurring in different spin states does not
contradict the Pauli principle. The states with overlap-
ping wave functions may possess large statistical
weights. For the low-temperature calculations, Eq. (16)
should be replaced by a modified repulsive potential, in
which the term νD(r) is operative only between trajec-
tories of the same parity:

(17)

5. ESTIMATORS OF QUANTUM-MECHANICAL 
OBSERVABLES IN SYSTEMS WITH EXCHANGE

Calculation of the canonical means of various quan-
tum-mechanical observables reduces to the integration
of estimators representing the functions of position of
the Feynman paths in space. The procedure of symme-
trization with respect to permutations complicates both
the distribution function and the estimators. This prob-
lem will be considered in the following section. The
quantum-mechanical equilibrium means are expressed
through the product of operators

(18)

where  is the Hamiltonian and β = 1/kBT is the recip-
rocal temperature. Note that the denominator of (18)
contains only the diagonal matrix elements of the sta-
tistical operator, while the numerator contains both
diagonal and nondiagonal matrix elements. The pres-
ence of nondiagonal matrix elements implies that, in
the path integral representation, the functionals enter-
ing into the numerator of (18) must be calculated over
open trajectories. The nondiagonal matrix elements in
the numerator can be eliminated by finding an operator

 which is diagonal in the coordinate representation
and obeys the condition

VD ri j( ){ }( ) νD r2l j( ) r2m j 1+( )–( )( )
j 1=

M

∑
l m,
∑=

+ νD r2l j( ) r2m j 1–( )–( )( )
j 1=

M

∑
l m,
∑

+ νD r2l 1+ j( ) r2m 1+ j 1+( )–( )( )
j 1=

M

∑
l m,
∑

+ νD r2l 1+ j( ) r2m 1+ j 1–( )–( )( )
j 1=

M

∑
l m,
∑ .

A〈 〉 tr Â βĤ–( )exp( )
tr βĤ–( )exp( )

---------------------------------------,=

Ĥ

B̂

tr Â βĤ–( )exp( ) tr B̂ βĤ–( )exp( ).=
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The diagonal matrix elements of  represent an esti-

mator of the operator . Let us consider a general
approach to constructing estimators in a system with
exchange in application to a spatial distribution func-
tion of the electron density. In the purely quantum
state described by the wave function Ψ({xi}), the
electron density distribution is described by the
function

(19)

Despite the fact that expression (19) is apparently sim-
ilar to the matrix elements of an operator, the sum of
Dirac delta functions in the integrand of (19) is not a
operator acting upon the wave function, since multiply-
ing by the delta function without subsequent integration
makes no sense. The problem of finding an operator for
the distribution (19) can be solved by introducing an

B̂

Â

ρ r( ) Ψ xi{ }( )∫=

× δ xk r–( )Ψ∗ xi{ }( )dx1dx2…dxN .
k 1=

N

∑
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auxiliary function ρω(r) for which such a quantum-
mechanical operator does exist:

(20)

Here, θω(x) = 1 in the ω vicinity of the point x = 0 and
is zero everywhere outside this small vicinity. On the
one hand, a comparison of (19) and (20) shows that

On the other hand, function (20) is a matrix element of
the operator

(21)

for which the statistical averaging can be performed in
a conventional manner in the representation symme-
trized with respect to permutations. Using the notation
from [81], we can write

ρω r( ) Ψ xi{ }( ) 1
ω
----∫=

× θω xk r–( )Ψ∗ xi{ }( )dx1dx2…dxN .
k 1=

N

∑

ρ r( ) ρω r( ).
ω 0→
lim=

Θ̂ω r( )
1
ω
---- θω xk r–( ),

k 1=

N

∑=
(22)

ρ r( )
tr Θ̂ω r( ) βĤ–( )exp( )

ω 0→
lim

tr βĤ–( )exp( )
----------------------------------------------------------- rN r'Nd'∫d'∫

mi
'{ }

'∑
mi{ }

'∑
S

∑ω 0→
lim= =

× S mi{ } ri{ } Θ̂ ω r( ) S mi'{ } ri'{ }, ,, , S mi'{ } ri'{ } β Ĥ–( )exp S mi{ } ri{ }, ,, , dNrdNr'/tr exp βĤ–( )( ).
The prime signs on the sums and integrals indicate that
both summation and integration are performed over the

sets of {{mi}, { }, {ri}, and { } not related by per-
mutations. Note that the expression (22) contains no
matrix elements nondiagonal with respect to S because
(i) the corresponding spin functions are orthogonal and

(ii) the operator  does not act upon spin variables.
Using a diagonalized form of the complete wave func-
tion [81, Eq. (7)]

(23)

we can write the matrix elements of the operator 
in (22) as

mi' ri'

Θ̂ω r( )

Ψ S mi{ } ri{ } ; σi{ } xi{ },, ,( )

=  1–( )g n( )χ̃ S mi{ } ; P̂n σi{ },( ) f ri{ } P̂n xi{ },( )
n 1=

N!

∑

=  1–( )g n( )χ̃ S P̂n mi{ } ; σi{ },( ) f P̂n ri{ } xi{ },( ),
n 1=

N!

∑

Θ̂ω r( )
 

(24)

Now let us change the variables of summation { } ≡
, { } ≡  and integration { } ≡

, { } ≡  in each term with subscripts n
and k in (24) and use the property of antisymmetry of
the complete wave function in the matrix elements

exp(–β ) with respect to these permutations. Then,
the terms are no longer dependent on n and k and can be
combined with the term (N!)2:

ρ r( ) rNd'∫
σi 1/2±={ }
∑

k 1=

N!

∑
n 1=

N!

∑
mi

'{ }

'∑
mi{ }

'∑
S

∑ω 0→
lim r'Nd'∫=

× 1–( )g n( )χ̃ S P̂n mi{ } ; σi{ },( )

× 1–( )g k( )χ̃ S P̂k mi'{ } ; σi{ },( )

× P̂n ri{ }〈 |Θ̂ω r( ) P̂k ri'{ }| 〉

× S mi'{ } ri'{ },,〈 | βĤ–( )exp S mi{ } ri{ }, ,| 〉

/tr βĤ–( )exp( ).

m̃i

P̂n mi{ } m̃i' P̂k mi'{ } r̃i

P̂n ri{ } r̃i' P̂k ri'{ }

Ĥ
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(25)

This expression is written with an allowance for the
orthogonality of the modified spin functions (S, {mi};

ρ r( ) N!( )2 r̃Nd'∫
σi 1/2±={ }
∑

m̃i
'{ }

'∑
m̃i{ }

'∑
S

∑ω 0→
lim r'˜Nd'∫=

× χ̃ S m̃i{ } ; σi{ },( )χ̃ S m̃i'{ } ; σi{ },( )

× r̃i{ }〈 |Θ̂ω r( ) r̃i'{ }| 〉

×   S m ˜ i ' { } r ˜ i ' { }, ,〈 | β H ˆ– ( ) exp S m ˜ i { } r ˜ i { }, ,| 〉 

/tr
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˜
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i'{ }, ,〈 | βĤ–( ) S m̃i{ } r̃i{ }, ,| 〉exp

/tr βĤ–( )exp( ).

χ̃
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{σi}) for the {mi} sets not related by permutations (as a
result, the summation over  disappears) and with
the use of relations [81, Eqs. (10)–(12)]. Equation (25)
is divided by N! and the prime sign on the integral with
respect to  is omitted.

In the limit ω  0, the matrix elements  in
a nonsymmetrized coordinate representation take the
form

(26)

Therefore, the integration with respect to primed coor-
dinates retains only the diagonal matrix elements of

exp(–β ) in the representation symmetrized with
respect to permutations:

mi'{ }

r'˜

Θ̂ω r( )

ri{ }Θ̃ ω ri'{ }〈 〉
ω 0→
lim

=  δ rk r–( ) δ ri ri'–( ).
i

∏
k 1=

N

∑

Ĥ

(27)

ρ r( ) rN δ rk r–( ) S mi{ } ri{ }, ,〈 | βĤ–( ) S mi{ } ri{ }, ,| 〉/tr βĤ–( )exp( )exp
k 1=

N

∑d'∫
mi{ }

'∑
S

∑=

=  2S 1+( ) WS P̂n( ) rN δ rk r–( ) ri{ }〈 | βĤ–( ) P̂n ri( )| 〉/tr βĤ–( )exp( ).exp
k 1=

N

∑d∫
n

∑
S

∑

This expression is obtained using the same transforma-
tions as those employed in deriving [81, Eq. (9)]. Writ-
ing Eq. (27) in the form of a path integral (prior to the
limiting transition) and taking into account invariance
of the integral with respect to cyclic renumeration of
the path vertices, we obtain an expression for the esti-
mator of the spatial density distribution:

(28)

The numerical averaging of (28) is performed by wan-
dering in the space of trajectories {ri(j)} and path link-
ing modes {νi} with the distribution function

(29)

ρe r( )
1
M
----- δ rk j( ) r–( ).

j 1=

M

∑
k 1=

N

∑=

ω x( ) ω̃ ν i{ } nk{ } M, ,( )a ri j( ){ } ν i{ } β, ,( )=

∝ ω̃ ν i{ } nk{ } M, ,( )

×
Mm0

2β"
2

------------ ri j 1+( ) ri j( )–( )2

j 1=

M

∑
i 1=

N

∑–




exp

+
β
M
----- V ri j( ){ }( )

j 1=

M

∑




.

6. NUMERICAL SIMULATION 
OF A DENSE HYDROGEN PLASMA

The numerical simulation was performed for two
values of the plasma density: ρ1 = 0.696 × 1021 cm–3

(T = 37 130–137 860 K) and ρ2 = 1023 cm–3 (T =
347 220–1 493 000 K). In the first case, the plasma den-
sity is three order of magnitude smaller as compared to
that of a condensed phase, while the second value is
comparable to the density in the condensed state. The
edge effects were eliminated by using periodic bound-
ary conditions. All electrostatic interactions between
particles were explicitly taken into account using the
closest image method. The periodic cubic cell con-
tained 100 protons and 100 electrons described by
method of classical and quantum statistics, respec-
tively. Each electron was represented by a closed Feyn-
man trajectory approximated by a broken line with M
vertices (M = 80, 160, or 320, depending on the temper-
ature).

The Markov random walk process consisted in a
sequence of steps shifting the trajectory vertices, shift-
ing or rotating of the whole trajectories, linking trajec-
tories into cycles, unlinking cycles, or shifting protons.
Each simulation run included 200 to 900 million steps,
of which the first 100 to 300 million were used to pro-
vide for the system thermalization, while the others
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Table 4.  The proton–electron correlation function ρpe(r) (in units of 10–24 cm–3) calculated by the path integral method for a
hydrogen plasma with the density ρ = 6.96 × 1020 cm–3 at various temperatures (the number of segments in the virtual electron
trajectory M = 160)

r, ×10–8 cm 37130 K 48270 K 62750 K 81570 K 106040 K 137860 K

0.05 0.737 0.455 0.290 0.112 0.0640 0.0418
0.15 0.420 0.253 0.159 0.0624 0.0356 0.0221
0.25 0.296 0.177 0.108 0.0429 0.0245 0.0140
0.35 0.209 0.124 0.0729 0.0304 0.0174 0.00929
0.45 0.149 0.0866 0.0495 0.0217 0.0126 0.00652
0.55 0.107 0.0602 0.0339 0.0157 0.00926 0.00490
0.65 0.0764 0.0420 0.0233 0.0114 0.00687 0.00383
0.75 0.0542 0.0295 0.0162 0.00844 0.00512 0.00308
0.85 0.0383 0.0211 0.0116 0.00635 0.00396 0.00257
0.95 0.0270 0.0151 0.00849 0.00494 0.00318 0.00220
1.05 0.0191 0.0110 0.00639 0.00394 0.00264 0.00194
1.15 0.0137 0.00809 0.00493 0.00322 0.00225 0.00174
1.25 0.00986 0.00615 0.00392 0.00270 0.00198 0.00159
1.35 0.00720 0.00481 0.00322 0.00234 0.00178 0.00148
1.45 0.00534 0.00385 0.00272 0.00206 0.00163 0.00138
1.55 0.00405 0.00314 0.00236 0.00185 0.00152 0.00130
1.65 0.00315 0.00264 0.00209 0.00170 0.00143 0.00124
1.75 0.00251 0.00227 0.00189 0.00158 0.00136 0.00119
1.85 0.00206 0.00200 0.00173 0.00148 0.00129 0.00114
1.95 0.00174 0.00180 0.00160 0.00140 0.00124 0.00110
2.05 0.00151 0.00164 0.00150 0.00134 0.00119 0.00107
2.15 0.00135 0.00152 0.00142 0.00128 0.00115 0.00104
2.25 0.00123 0.00143 0.00135 0.00123 0.00111 0.00102
2.35 0.00114 0.00135 0.00129 0.00119 0.00108 0.00099
2.45 0.00107 0.00128 0.00124 0.00115 0.00105 0.00097
2.55 0.00102 0.00123 0.00120 0.00112 0.00102 0.00096
2.65 0.00099 0.00119 0.00116 0.00109 0.00100 0.00094
2.75 0.00096 0.00115 0.00112 0.00106 0.00098 0.00093
2.95 0.00092 0.00108 0.00106 0.00101 0.00095 0.00091
3.25 0.00088 0.00100 0.00099 0.00096 0.00092 0.00087
3.55 0.00086 0.00094 0.00094 0.00092 0.00088 0.00085
3.85 0.00084 0.00090 0.00090 0.00088 0.00086 0.00083
4.25 0.00082 0.00086 0.00086 0.00085 0.00083 0.00081
4.75 0.00079 0.00082 0.00083 0.00082 0.00080 0.00079
were used for the calculation of mean equilibrium val-
ues. The stage of calculating the mean values included
3000 to 10 000 events of trajectory linking and separa-
tion. The volume of random sampling for calculating
the combinatorial coefficients in each step was l = 10
for each of 50 spin states. In the thermalization stage,
the process was accelerated by one to two orders of
magnitude using a procedure of vertex multiplication.

The statistical error of calculated mean values was
estimated (as it was done in [81]) in a standard manner
JOURNAL OF EXPERIMENTAL 
[15], using fluctuations of partial averages. For this pur-
pose, the Markov random walk process in each run was
separated into ten equal segments and the partial aver-
ages were calculated for each segment (the correlations
between segments are negligibly small). The statistical
error of the correlation functions did not exceed a level
of about 1%. Correctness of the computational proce-
dure was checked by simulating special trivial cases,
whereby the given method is applied to the system at
lower temperatures so as to obtain the ground quantum
state for which either the analytical solution is known
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(hydrogen atom) or reliable experimental data are avail-
able (hydrogen molecule). The results of such a com-
parison were reported previously [81]. In addition, the
computation algorithm was tested by calculating a low-
density system of 100 electrons and 100 fixed protons.
On cooling, the system featured the formation of
100 weakly interacting hydrogen atoms and the energy
acquired a value corresponding to the well-known
ground quantum state of such system.

In the system with a density of 6.96 × 1020 cm–3, the
average distance between electrons is 11.3 × 10–8 cm;
the thermal de Broglie electron wavelength at the tem-
perature T = 37 130 K is

In the system with a density of 1023 cm–3, the average
distance between electrons is 2.2 × 10–8 cm and the
thermal electron wavelength at T = 347 220 K is 1.3 ×
10−8 cm. In both cases, the exchange effects are signif-
icant despite relatively high temperatures.

The microstructural characteristics of the plasma are
presented in the form of binary correlation functions.
The proton–electron correlation function ρpe(r) (Table 4)
has the meaning of the density of probability to find an
electron at the distance r from a proton. In the coordi-
nate representation, with an allowance for degeneracy
with respect to the eigenvalues of the spin projection
operator,

(30)

where {xi} ≡ x1, x2, …, xN and {Xi} are the spatial vari-
ables of electrons and protons; {ri} and {Ri} are the
eigenvalues of the coordinate operator; and δ(r) is the
one-dimensional Dirac delta function. The matrix ele-
ments in (30) are calculated in the representation of
wave functions symmetrized with respect to permuta-
tions, in accordance with the eigenvalue of the square
spin operator of the whole system. The electron–elec-
tron ρee(r) and proton–proton ρpp(r) correlation func-
tions are written by analogy to (30) with replacing |xk –
Xn | by |xk – xn | and |Xk – Xn |, respectively, and sum-
ming over n ≠ k.

λ h
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exhibits a bending point (Fig. 7). The degree of ioniza-
tion can be estimated by calculating the area under the
radial distribution peak in Fig. 6. At T = 37130 K, this
value amounts to 1 – ∆Nb = 0.55 (Fig. 7).

At T = 37130 K, the system exhibits, in addition to
the bound proton–electron states, the signs of more
complex associates comprising two protons and two
electrons—a prototype of the hydrogen molecule. In
the proton–proton correlation function ρpp (Fig. 8),
there appears a maximum at a distance of about 1.1 ×
10–8 cm. This value is approximately 20% greater than
the equilibrium distance between protons in the hydro-

0 1

ρpp, ρee,1021 cm–3

r, 10–8 cm

0.2

0.4

2 3 4
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3

1
2

0.6

Fig. 8. The proton–proton (ρpp, solid curves) and electron–
electron (ρee, dashed curves) correlation functions for a

plasma with the density ρ = 0.696 × 1021 cm–3 at various
temperatures (K): (1) 37 130, (2) 48 270, (3) 81 570. 
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Fig. 9. The mean force potentials in a plasma with the den-
sity ρ = 0.696 × 1021 cm–3 and a temperature of 37130 K
(solid curves): (1) electron–electron (Wee), (2) proton–proton
(Wpp), (3) proton–electron (Wpe). Dashed curves show the
energy of the Coulomb interaction between two classical point
elementary charges of the (4) same and (5) opposite signs.
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gen molecule, which is evidence of strongly excited
vibrational modes. These associates disappear almost
completely at temperatures above 50 000 K, although
the bound proton–electron states can be observed at
temperatures up to 150 000 K (Fig. 6). Judging by the
shape of the correlation functions (Fig. 8), a decrease in
the temperature leads to an increase in the average dis-
tance between nearest electrons (the ρee curves shift
rightward), while the distance between nearest protons
remains virtually unchanged. The number of protons at
distances below 3 × 10–8 cm is greater than the number
of electrons with the same spacing, and this effect
increases on cooling.

At temperatures below 40 000 K, the requirement of
spatial delocalization does not allow electrons to follow
protons at a distance below 10–8 cm. As the protons
approach one another, the electrons are driven to the
periphery (rather than localizing between protons);
nevertheless, the electrons still significantly compen-
sate for the electrostatic repulsion of protons, even at
distances less than the Bohr radius. This effect is due to
the bound electron states which appear and disappear at
the pair of protons in the course of thermal fluctuations.
This is confirmed by the shape of the mean force poten-
tial (Fig. 9) described by the formula

(31)

where ρ is the overall bulk number density of particles.
This function has a meaning of interaction between two
particles with an allowance for indirect contacts medi-
ated by other particles of the system. Deviation of the
Wee(r) value from the energy of the Coulomb interac-
tion between point charges (e2/r) reflects the quantum
effects and the interaction with other particles. The
quantum effects are manifested at distances shorter
than the characteristic spatial delocalization length of a
quantum particle, while the electrostatic screening by
particles of the medium increases with the distance r.

At distances r > 2 × 10–8 cm, the interactions of all
three types (Wee, Wpp, and Wpe) are significantly
decreased as a result of the screening effect. In the
interval 0.5 × 10−8 < r < 2 × 10–8 cm, the effective repul-
sion between electrons is stronger than simple electro-
static interaction between classical point charges. This
phenomenon is explained by the quantum character of
electron motion. On the contrary, the interaction
between protons is significantly screened by electrons.
The signs of bound states, manifested by a weak mini-
mum in the Wpp(r) curve, can be traced to a distance of
about 1.1 × 10–8 cm. Determining the correlation radius
as a distance at which the mean force potential is on the
order of kBT and the correlation function differs from the
total particle number density by a factor of ρpe/ρ ≈ e, we
can infer from Table 4 that the proton–electron correlation
radius at T = 37130 K amounts to 1.9 × 10–8 cm. As the
temperature increases, the correlation radius decreases

Wee r( ) kBT
ρee r( )

ρ
-------------,ln–≡
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Table 5.  The proton–electron correlation function ρpe(r) (in units of 10–24 cm–3) calculated by the path integral method for
a hydrogen plasma with the density ρ = 1.0 × 1023 cm–3 at various temperatures (the number of segments in the virtual electron
trajectory M = 80)

r, ×10–8 cm 347220 K 416670 K 500000 K 600000 K 720000 K 1036800 K 1493000 K

0.045 0.639 0.551 0.476 0.409 0.359 0.255 0.199
0.075 0.575 0.495 0.434 0.372 0.331 0.244 0.194
0.105 0.521 0.453 0.399 0.342 0.305 0.232 0.189
0.135 0.474 0.414 0.363 0.315 0.280 0.217 0.179
0.165 0.432 0.377 0.330 0.288 0.257 0.202 0.170
0.195 0.392 0.345 0.300 0.263 0.235 0.188 0.160
0.225 0.357 0.315 0.275 0.243 0.218 0.176 0.152
0.285 0.299 0.266 0.233 0.209 0.190 0.158 0.139
0.345 0.253 0.228 0.203 0.183 0.169 0.145 0.130
0.405 0.220 0.199 0.180 0.165 0.154 0.136 0.124
0.465 0.195 0.177 0.163 0.152 0.143 0.129 0.120
0.525 0.175 0.162 0.151 0.142 0.135 0.124 0.117
0.585 0.160 0.150 0.142 0.134 0.129 0.120 0.114
0.645 0.149 0.141 0.134 0.129 0.125 0.117 0.112
0.705 0.140 0.134 0.129 0.124 0.121 0.115 0.110
0.765 0.134 0.128 0.125 0.121 0.118 0.129 0.110
0.825 0.128 0.125 0.121 0.118 0.116 0.111 0.109
0.885 0.124 0.121 0.118 0.116 0.114 0.110 0.108
0.945 0.121 0.118 0.116 0.114 0.112 0.109 0.107
1.005 0.118 0.115 0.114 0.112 0.111 0.108 0.106
1.065 0.116 0.114 0.112 0.111 0.109 0.107 0.106
1.125 0.114 0.112 0.111 0.110 0.108 0.106 0.105
1.185 0.112 0.110 0.110 0.108 0.107 0.106 0.105
1.245 0.110 0.109 0.108 0.108 0.107 0.105 0.104
1.305 0.109 0.108 0.107 0.107 0.106 0.104 0.103
1.365 0.108 0.107 0.106 0.106 0.105 0.104 0.103
1.425 0.107 0.106 0.106 0.105 0.105 0.104 0.103
1.485 0.106 0.106 0.105 0.105 0.104 0.103 0.103
1.545 0.106 0.105 0.105 0.104 0.104 0.103 0.103
1.605 0.105 0.105 0.104 0.104 0.104 0.103 0.103
1.665 0.104 0.104 0.104 0.104 0.103 0.102 0.102
1.725 0.104 0.104 0.103 0.103 0.103 0.102 0.102
1.965 0.102 0.102 0.102 0.102 0.102 0.102 0.101
2.475 0.101 0.101 0.101 0.101 0.101 0.101 0.101
to reach 1.3 × 10–8 cm at T = 137 860 K. A comparison
of the curves in Fig. 9 shows that the correlations
between electrons are stronger than those between pro-
tons and electrons, although the correlation radii are
close. Minimum correlations are observed between
protons. The correlation radius of proton positions is
close to 10–8 cm and remains virtually unchanged in the
temperature range studied.

The above data confirm correctness of the periodic
cell size selection (52.375 × 10–8 cm) and applicability
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the closest image method. In this case, the electro-
static forces are strongly screened, representing essen-
tially the short-range interactions. The range of these
interactions falls within the interval of distances at
which the quantum character of the motion of particles
plays a determining role. Under these conditions, the
caloric characteristics of the whole system are formed
at interparticle distances for which the quantum nature
of the electron interaction component is dominating.
Even a decrease in the plasma density by two to three
orders of magnitude does not render the system more
SICS      Vol. 94      No. 5      2002
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Fig. 10. Radial distributions of electrons near protons in a
plasma with the density ρ = 1023 cm–3 at various tempera-
tures (K): (1) 347 220, (2) 500 000, (3) 1 493 000.

Fig. 11. The proton–proton correlation functions for a
plasma with the density ρ = 1023 cm–3 at various tempera-
tures (K): (1) 347 220, (2) 600 000, (3) 1 493 000.
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Fig. 12. Distributions of the square spin operator with
respect to the spin S within a periodic cell for a plasma with
the density ρ = 1023 cm–3 at various temperatures (K):
(1) 347 220, (2) 416 670, (3) 1 493 000.
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“classical” since, as a result of screening, the energetics
of the system is still formed at small distances. This cir-
cumstance is especially important if we take into
account that, at these plasma densities, the thermal
wavelength of electrons is much smaller than the aver-
age distance between nearest neighbors and, according
to the formal criterion, the approximation of classical
statistics should be applicable. Our data indicate that
the classical description is already incorrect in this
domain of conditions.

A detailed description of the exchange effects
becomes decisive in the case of a plasma with the den-
sity approaching that in the condensed state. Such
states arise in the initial stage of laser-induced heating
of a deuterium–tritium target in the process of con-
trolled thermonuclear fusion. The hydrogen plasma
with a density of 1023 cm–3 and a temperature above 3 ×
105 K reveals no signs of the bound proton–electron
states. The correlation functions (Table 5) and the radial
distributions of electron density near protons are mono-
tonic, although a thorough analysis still reveals a very
weak rise in the radial distribution curves in the region
of r values about one Bohr radius (Fig. 10). The elec-
tron density near protons weakly changes with the tem-
perature: a fivefold increase in the temperature leads
only to a 10% decrease in the electron density within a
sphere with a diameter of doubled Bohr radius around
a proton (Table 5). Most sensitive to the temperature are
the correlations between ions, for which the corre-
sponding change amounts to 60% (Fig. 11). However,
the temperature sensitivity rapidly drops with increas-
ing distance.

In a dense plasma, the correlation radii are small and
decrease with the temperature. At a temperature of
377 220 K, the proton–electron correlations possess a
characteristic radius of 0.35 × 10–8 cm (Table 5), while
the proton–proton correlation radius does not exceed
0.2 × 10–8 cm. At a distance of 10–8 cm, the proton–pro-
ton correlation function differs only by 10% from the
overall particle number density in the system (Fig. 11).
A comparison of the correlation radius and the average
distance between neighboring particles shows that, in
plasmas with the densities ρ1 = 6.96 × 1020 cm–3 and
ρ2 = 1023 cm–3, the former value is smaller than the lat-
ter by a factor of five and six, respectively. This indi-
cates that the heating and compression of the plasma
leads to an almost proportional decrease in the correla-
tion radius. At the same time, the correlation radius in
the dense plasma decreases by half relative to the ther-
mal wavelength of electrons. Despite a higher tempera-
ture, the latter regime corresponds to a more pro-
nounced quantum character of the motion of particles
in the plasma.

In this context, it is interesting to trace the effect of
the temperature on the type of permutation symmetry
of the electron wave function. The type of permutation
symmetry is uniquely related to the total spin of the sys-
tem. Therefore, the average square spin serves as a
 AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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good indicator of changes in symmetry of the wave
function. Figure 12 shows distributions of the square
spin operator with respect to the total spin S for elec-
trons in the periodic cell. At high temperatures, the dis-
tribution is described by a linearly increasing function,
the growth of which is related to degeneracy with
respect to the eigenvalues of the spin projection opera-
tor (∝ 2S + 1). This behavior shows a statistical equiva-
lence of various spin states and, hence, of various types
of permutation symmetry. However, the linearity is
already violated at T = 416 670 K and the states with
smaller S acquire a greater statistical weight, which is
indicative of the partial “coupling” of the electron
spins. An unexpected result is that the spin coupling in
a high-density plasma begins only at such a high tem-
perature. It should be noted that a decrease in the sys-
tem spin on cooling is not an evident fact and depends
on the configuration of the field applied to the system.

7. CONCLUSION

The exact statistical description of many-body sys-
tems of quantum particles with exchange requires con-
structing a complete set of basis functions symmetrized
with respect to permutations. The symmetrization leads
to a catastrophic multiplication of the diagrams of
linked Feynman paths, making the exact calculation
practically impossible in systems containing more than
ten fermions.

In this study, a method allowing these difficulties to
be surmounted without introducing essential approxi-
mations is formulated. The new approach consists in
applying the method of essential set to calculating lin-
ear combinations of permutations generated by the
Young symmetry operators. The results of numerical
calculations showed that, despite the huge number of
diagrams, the method provides for a sufficiently rapid
convergence. In a system containing about 50 particles,
even a relative small set covering on the order of
1010 diagrams from the total of 3 × 1064 allows the com-
binatorial weight coefficients for various modes of link-
ing Feynman paths, as well as the distributions over
spin states, to be obtained with high precision. The sta-
tistical calculation procedure remains fundamentally
exact at finite temperatures, irrespective of the volume
of sampling from the linear combinations in each step
of the Monte Carlo procedure, because subsequent
steps enrich the statistics with independent sets. This
circumstance allows minimum sets to be taken in each
step, thus practically eliminating restrictions on the
number of particles in the system.

Using the proposed approach, all combinatorial
weights for many-body exchange integrals and the cor-
responding distributions over spin states were calcu-
lated for a system containing up to 50 electrons and a
hydrogen plasma with 100 electrons in a periodic cell
was simulated. A significant feature of the developed
method is that the Monte Carlo simulation is possible
even in cases when a very large number of particles hin-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ders the determination of all weights: a fundamentally
exact simulation procedure can be realized using finite
sets of permutations.

An analysis of the results showed evidence of the
mutual compensation of the positive and negative con-
tributions to the partition function being the main
mechanism of the spin state formation in a system of
fermions at finite temperatures. A decrease in the sys-
tem spin on cooling results from the partial compensa-
tion of states with large S values by negative contribu-
tions from the diagrams with long cycles of linked
paths. The statistical weight of such paths increases
with decreasing temperature.

The calculations on microscopic level reported in
this paper were performed under conditions presenting
considerable difficulties for traditional approaches.
Strong interparticle correlations and the quantum charac-
ter of electron motion play a dominating role. Despite the
long-range character of the Coulomb forces, the interac-
tion under these conditions is strongly screened and
becomes effectively short-range. This circumstance
allows the calculations to be conducted using relatively
small periodic cells. Although the temperatures are rel-
atively high, the energy characteristics of the dense
plasma are formed over small interparticle distances,
where the quantum character of electron motion plays
a determining role. At these temperatures, a decrease in
the plasma density does not render it more “classical,”
since the plasma energetics is formed over small inter-
particle distances even when the formal criterion based
on the thermal de Broglie electron wavelength predicts
the classical regime.

The motion of particles in a dense plasma is strongly
correlated, but the correlation radii are small and com-
parable with atomic dimensions. The correlation radii
in a high-density hydrogen plasma decrease with
increasing temperature, thus changing in the opposite
direction with respect to the Debye radius in a rare ion
plasma. The quantum character of electron motion ren-
ders the electron–electron correlations less sensitive to
the temperature. The proton–proton correlations are the
most temperature-sensitive. In a dense plasma, the cou-
pling of electron spins begins on cooling to a tempera-
ture on the order of several hundred thousand kelvin.
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Abstract—The parameters of a plasma produced upon the interaction of ultrashort laser pulses with cluster tar-
gets are measured by the methods of X-ray spectroscopy. The dependence of the plasma parameters on the ini-
tial properties of a cluster target (the design of a supersonic nozzle, the average size of clusters, the spatial inho-
mogeneity) and the laser pulse properties (its duration and contrast) is studied. The plasma diagnostics is per-
formed using the model of formation of emission spectra, which was proposed earlier and includes a number
of fitting parameters, which provide good agreement with experimental spectra. The systematic experimental
studies performed by us showed that our model of cluster heating by ultrashort pulses is indeed a physical
model, and the fitting parameters represent the average values of plasma parameters in the corresponding
space–time regions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of high-power ultrashort laser pulses
with clusters attracts considerable recent attention [1–
9]. The production of a plasma in cluster targets com-
bines the main mechanisms of plasma formation in gas-
eous and solid targets irradiated by lasers (ionization by
an optical field and resonance absorption). It is known
that ultrashort laser pulses are strongly absorbed by
cluster targets. This property is especially important for
efficient generation of X-rays, which can be used in
microlithography, medicine, and biology. Unfortu-
nately, the experimental results that have been obtained
so far are not systematic because they depend on many
parameters of a laser pulse and irradiated targets. This
complicates the analysis of various physical processes
in the plasma being produced and a detailed verification
of new theoretical models [10, 11] that take into
account the specific features of plasma formation by
ultrashort pulses.

†Deceased.
1063-7761/02/9405- $22.00 © 20966
We have considered the numerical model of cluster
formation in a supersonic gas jet in papers [12–14]. It
has been shown that a detailed study of two-phase gas-
dynamic processes in a nozzle forming the jet allows us
to obtain spatial distributions for all parameters of the
clusters, which are required for the correct calculation
of the cluster heating by ultrashort laser pulses. The cal-
culations performed for nozzles of different designs at
different gas pressures showed that a virtually homoge-
neous cluster target can be formed in some cases,
whereas in other cases the distributions are not only
inhomogeneous but also even nonmonotonic.

We proposed in these papers a simple physical
model of the cluster target heating by femtosecond
laser pulses with a picosecond prepulse, which allows
us to calculate rather simply the X-ray emission spec-
trum of the plasma. The model is valid if the condition

τprepulse ≤ τexpansion (1)

is fulfilled, where τprepulse is the duration of the laser
prepulse and τexpansion is the cluster lifetime. The condi-
002 MAIK “Nauka/Interperiodica”
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tion (1) means that clusters are destroyed only partially
during the prepulse, and when the main femtosecond
pulse arrives, the dense regions that continue to absorb
laser radiation remain in the produced preplasma. The
electron temperature in these regions drastically
increases under the action of the main pulse (up to sev-
eral kiloelectronvolts for the laser power density of
1018 W/cm2), and after the end of the main pulse, the
hot electrons partially penetrate into a much colder
intercluster plasma with the electron temperature of
100–200 eV. Therefore, the X-ray emission spectrum of
the plasma produced in the regime τprepulse ~ τexpansion

should be calculated taking into account the presence of
less dense (with the electron density Ne1 lower than the
critical density Ne, cr) and more dense (with the electron
density Ne2 ≥ Ne, cr) plasma regions heated to different
temperatures (Te1 < Te2). In each of the regions, a frac-
tion fi of hot electrons will be present with the mean
energy E0, which substantially exceeds temperature Te1

and Te2, the relative amount f2 of hot electrons in the
dense region being greater than their amount f1 in the
rarefied plasma region. The simple estimates of the colli-
sion ionization probability show that, for multiply charged
ions with Z ~ 10–20 and typical parameters of femtosec-
ond lasers (τlas ~ 30–60 fs, qlas ~ 1017–1018 W/cm2, con-
trast ~ 105), the ionization state of the plasma in regions 1
and 2 will approximately correspond to its electron
temperature, whereas the influence of hot electrons on
the ionization state can be neglected in the first approx-
imation. This means that the time-integrated emission
spectrum of the plasma calculated within the frame-
work of this model should depend on eight free param-
eters Ne1, Ne2, Te1, Te2, f1, f2, E0, and α (the ratio of con-
tributions from regions 1 and 2 to the total spectrum)
whose values can be found from the best fit of the
experimental spectrum. According to physical concepts
about the plasma formation, we can expect that the val-
ues of these parameters should satisfy the conditions

Ne1 < Ne, cr ≤ Ne2, Te1 < Te2 ! E0, f1 < f2 ! 1.

Moreover, because the temperature Te1 is attained due
to the action of the prepulse with a typical flux den-
sity ~1012–1013 W/cm2, its value should be 100–200 eV,
while the energy E0 of hot electrons produced during
the action of the main pulse should be of the order of
kiloelectronvolts. Note that the correspondence of the
ionization state of the plasma to temperatures Te1 and
Te2 is a rather crude approximation, whose applicability
depends on the values of electron densities Ne1 and Ne2.
When the plasma density is low, the ionization state of
the plasma has no time to achieve a stationary value
during the action of the prepulse, and the values of Te1

and Te2 used in the calculation of the emission spectrum
will correspond to the ionization temperature of the
plasma rather than to the electron temperature. Because
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Ne1 < Ne2, this remark refers in a greater extent to
plasma region 1 and, hence, to the physical meaning of
the temperature Te1.

In this paper, we used the model described above
(see details in [13, 14]) to interpret experiments per-
formed with supersonic nozzles of different types using
heating laser pulses with different parameters. In this
way, we studied the dependence of the parameters of
the plasma being produced on the initial properties of a
cluster target (mean cluster size, spatial inhomogene-
ity) and on the properties of the laser pulse (its duration
and contrast). In most experiments described below, we
used argon as a working target substance; in some
cases, other gases were also used (CO2, Kr, and Xe).

2. EXPERIMENTAL SETUPS AND METHODS
OF CALCULATION

We used in our experiments two femtosecond laser
setups at Centre D’Etudes de Saclay (France) and Uni-
versité Bordeaux (France).

In the first setup, a 0.8-µm, 10 TW UHI10 Ti:sap-
phire laser was used [12]. The duration and power of
the main pulse were 60 fs and 0.6 J, respectively. The
duration of the prepulse was about 1 ps, and its contrast
was of the order of 105. The laser beam was focused on
a cluster target with an off-axis parabolic mirror. The
beam diameter in the focal plane was about 25 µm,
which provided the laser power density on the target up
to 1018 W/cm2.

The second setup also used a Ti:sapphire laser,
which had a lower power (the main pulse energy and
duration were 0.015 J and 20 fs, respectively) [15]. The
duration of the main pulse in this laser could be varied
in a broad range from 20 fs to several picoseconds. The
pulse contrast also could be varied from 10 to 106. An
off-axis parabolic mirror focused laser radiation into a
spot of diameter 12 µm, providing the power density up
to 4 × 1017 W/cm2.

In both cases, two types of a supersonic nozzle were
used: the Laval nozzle and a cone nozzle. The gas pres-
sure in a valve could be varied up to 100 atm. By using
different pressures and different nozzles, we could vary
in a broad range both the average size of clusters and
the spatial distribution of their concentration in the
interaction region.

The X-ray emission of the plasma was detected
simultaneously with several spectrographs with spherical
mica crystals (radii of curvature were 100 and 150 mm).
The spectrographs were arranged in the FSPR-2D
scheme (see [16–18]) and were tuned to the spectral
ranges containing resonance transitions in the He- and
H-like Ar XVII and Ar XVIII ions. The spectral resolv-
ing power was λ/δλ ~ 4000 for a spatial resolution bet-
ter than 80 µm. The spectra were recorded either on a
photographic film or using a CCD camera.
SICS      Vol. 94      No. 5      2002
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The parameters of cluster targets were calculated
using the codes developed at the Institute for Mathe-
matical Modeling, Russian Academy of Sciences,
which were described in detail in papers [13, 19–21].

Kinetic calculations used for simulating the emis-
sion spectra of plasma were performed employing the
codes developed at the Los Alamos National Labora-
tory (USA). In these calculations, multiply charged
argon ions with the number of bound electrons up to
m = 4 were taken into account and all the atomic con-
figurations with principal quantum numbers n < 6 were
considered, including autoionization states. The kinetic
matrix included 1500 levels and took into account all
possible radiative, collision, and autoionization pro-
cesses. The rates of collision processes were calculated
using the model electron distribution function [22, 23],
which included the hot component with the average
energy E0 = 5 keV. The emission spectra were calcu-
lated for experimental spectral regions using kinetic
calculations performed within the framework of the
simplified model of the plasma dynamics described
above. The shape of spectral lines was either assumed
to be instrumental or calculated taking into account the
Stark and Doppler broadening.

The shapes of the spectral lines of argon ions were
determined taking into account the Stark shift in the ion
microfield, the collision broadening caused by elastic
collisions of electrons with ions, and the Doppler
broadening [24]. The latter was taken into account
together with the spectral resolution by introducing the
effective ion temperature. The distribution function of
the ion microfield was used taking into account ion cor-
relations and the Debye screening [25–28].

3. EFFECT OF THE PROPERTIES OF A CLUSTER 
TARGET ON THE PLASMA PARAMETERS

The calculations of formation of clusters in a super-
sonic jet performed in this paper show that the main
factors affecting the properties of the cluster target
being produced, along with the type of gas used, are the
pressure in the valve and the type of nozzle. Note that,
while the initial gas pressure affects the properties of
clusters quite obviously (the average size of clusters
increases with pressure), a change in the nozzle design
can lead to less obvious results. We performed calcula-
tions for nozzles of two types: a Laval nozzle, which is
commonly used for formation of cluster-containing
jets, and a cone nozzle. We found that, all other factors
being the same, the cone nozzle allows one to obtain
considerably larger clusters, which are more uniformly
distributed over across the gas jet.

The initial properties of the cluster target should
affect the radiative characteristics of the laser-induced
plasma. In this section, we consider the influence of the
target inhomogeneity (Section 3.1) and of the average
size of clusters (Section 3.2) on the properties of cluster
laser plasma.
JOURNAL OF EXPERIMENTAL 
3.1 Effect of the Inhomogeneous Distribution 
of the Cluster Concentration in a Gas Jet 

on the Radiative Properties of Laser Plasma

Figure 1 shows the results of calculations of cluster
parameters in a gas jet emerging from a cone nozzle and
a Laval nozzle. The coordinate r in this figure is
directed across the gas jet, i.e., across the propagation
direction of the laser pulse in the laser–cluster experi-
ment. One can see from the figure that, when the Laval
nozzle is used, we have a target that is strongly inhomo-
geneous along the laser beam: the distributions of clus-
ter concentration and of the mean density of cluster
atoms have local minima at the gas-jet axis (r = 0), and
their maximum values are achieved at the distance r ~
1 mm from the axis. This means that the laser pulse
propagating perpendicular to the gas-jet axis passes
through two regions with the maximum cluster density
between which the region of low cluster density is
located. According to our calculations, the distance
between the dense regions should be about 2 mm. The
heating of such an inhomogeneous target should result
in the formation of a plasma with an inhomogeneous
distributions of density and temperature and, hence,
with an inhomogeneous emission.

The inhomogeneity of the plasma emission should
correspond qualitatively to the initial distribution of the
concentration of clusters, which determines the effi-
ciency of their interaction with the laser pulse. How-
ever, because the plasma emission depends not only on
its density but also on its temperature, while the tem-
perature depends on the laser power density, upon
focusing the laser beam into the gas jet, the laser power
density will decrease with distance from the point r = 0.
For this reason, the plasma emission distribution will be
more strongly “pressed down” to the jet axis than the
cluster concentration distribution. In other words, the
distance between two emission maxima should be
somewhat smaller than the distance between the max-
ima of the cluster concentration.

These arguments are illustrated by the experimental
results that were obtained with Laval and cone nozzles
used in setups at Bordeaux and Saclay [15, 29]. In these
experiments, Kr, Xe, and CO2 were used as working
gases along with Ar. The plasma emission was detected
with a spatial resolution in different spectral lines using
X-ray pinhole cameras, and its continuous bremsstrahl-
ung and photorecombination emission was also stud-
ied. The experimental results are presented in Fig. 2.
One can see that the spatial distribution of the plasma
emission is indeed nonmonotonic and the distance
between the maxima is approximately 0.5–1 mm,
which is somewhat smaller than the distance between
the maxima in the cluster concentration distribution.
Note that the coincidence of the results obtained for the
different spectral lines of different ions means that non-
monotonic emission is related to the general parameters
of the plasma such as its temperature and density and
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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Fig. 1. Calculations of the cluster formation for (a) a cone nozzle and (b) a Laval nozzle at a distance of 1.5 mm from the nozzle
outlet. Presented are the density Na of cluster atoms in a target, the average number 〈N〉  of atoms in a cluster, and the density Ncluster
for argon (solid curves) and krypton (dashed curves). The initial gas pressure in a valve is 40 atm.
does not reflect the specific features of the sublevel
kinetics of a specific ion.

The gas-dynamic calculations of the cluster forma-
tion in a cone nozzle (Fig. 1) showed that the cluster
distribution at the nozzle output is virtually homoge-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
neous. In this case, the plasma emission should be max-
imal at the gas-jet axis (where the laser power density
is maximal) and will continuously decrease with the
distance from the point r = 0. This was also confirmed
experimentally. The corresponding spectrograms and
densitograms are presented in Fig. 2.
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Fig. 2. Spatial distributions of plasma emission measured using a spectrograph with a one-dimensional spatial resolution for the
Laval and cone nozzles in experiments with (a) CO2 and (b) argon clusters.
It follows from the theoretical and experimental
studies considered above that the use of a cone nozzle
for the cluster target formation is preferable in most
cases because, first, a more homogeneous target can be
produced and, second, clusters of considerably larger
sizes can be obtained. In this case, by using long-focus
objectives, we can easily obtain a very long (~4–6 mm)
plasma object. Figure 3 shows, for example, the results
obtained for CO2 and Xe clusters using interferometry
and an X-ray pinhole camera. One can see that plasma
stripes had the length of about 4 mm and the width less
than 0.7 mm.

3.2. Effect of the Average Size of Clusters 
on Plasma Parameters

The simplified model of the laser–cluster interaction
considered above allows us to make some qualitative
conclusions about the dependence of plasma parame-
ters on the average size of clusters. According to this
model, an increase in the cluster size should first of all
result in the increase in the role of dense plasma regions
because now the laser prepulse will destroy a smaller
part of the cluster. This should lead, first, to the increase
in the fraction of hot electrons, which are formed upon
JOURNAL OF EXPERIMENTAL 
the interaction of the main femtosecond laser pulse
with the dense plasma and, second, to the rise of the
average density Ne2 and, to a lesser extent, Ne1. In turn,
the increase in the average density will reduce the time
of establishment of the ionization equilibrium, and the
ionization temperature will approach the electron tem-
perature with increasing Ne2 and Ne1; i.e., it will also
increase.

The qualitative conclusions made above are con-
firmed by the results of numerical simulation of the
emission spectra of the argon plasma produced upon
the interaction of a femtosecond laser pulse with clus-
ters of different sizes [30]. To obtain the most homoge-
neous cluster target, a cone nozzle was used, and the
average cluster size was changed by changing the initial
gas pressure in a valve in the range from 15 to 100 atm.
The calculations of the cluster formation showed that
the average number of atoms in the cluster was varied
in this case from 2 × 105 to 2 × 107. The plasma param-
eters, which were determined by fitting the experimen-
tal spectra to the model spectra, are presented in Table 1,
while the quality of fitting is well illustrated by Fig. 4,
where the experimental spectra obtained at pressures of
30 and 100 atm are shown together with the model
spectra.
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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Fig. 3. Cluster plasma produced using a long-focus objective and a cone nozzle: (a) X-ray pinhole images; (b) interference patterns;
(c) electron density distribution.
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Fig. 4. Simulations of spectra in the region of the Heα line of Ar XVII ion at gas pressures of (a) 30 and (b) 100 atm (the values of
plasma parameters are presented in Table 1). The solid curves are model spectra, and the dashed curves are experimental spectra.
One can see from Table 1 that at the initial gas pres-
sure equal to 100 atm, a large amount of hot electrons
are present in dense plasma regions (at a concentration
of 2 × 1019 cm–3). Because the ionization rate of the He-
like Ar XVII ion by such electrons is (for E0 = 5 keV)

〈vσion(Ar XVII – Ar XVIII)〉  ~ 10–11 cm3 s–1,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
a noticeable amount of the H-like Ar XVIII ions should
be formed in the dense plasma regions during their life-
time of the order of 1 ps:

N(Ar XVIII)/N(Ar XVII) ≈ 2 × 10–4.

These ions can be detected by observing the Lyα
emission line. Because the rates of excitation of the
SICS      Vol. 94      No. 5      2002
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Table 1.  Effect of the average size of argon clusters on the plasma parameters

Gas pressure, 
atm

Average number
of atoms in a cluster

Rarefied plasma (region 1) Dense plasma (region 2)

Te1, eV Ne1, cm–3 f1Ne1, cm–3 Te2, eV Ne2, cm–3 f2Ne2, cm–3

15 2 × 105 100 5 × 1019 1.5 × 1013 215 3 × 1020 0.9 × 1017

30 106 160 5 × 1019 5 × 1013 230 5 × 1020 3.5 × 1017

70 7 × 106 140 2 × 1020 2 × 1014 230 2 × 1021 6 × 1017

100 1.6 × 107 195 1.5 × 1021 1.2 × 1017 400 2 × 1021 2 × 1019
1s2 1S0–1s2p1P1 and 1s2S–2p2P transitions by hot elec-
trons are of the same order of magnitude, the intensity
of the Lyα line will be very low (approximately 2 × 10–4 of
the Heα line intensity), but nevertheless it is sufficient
for detecting this line with a CCD camera having a
broad dynamic range. In this connection, we pre-
formed special measurements [31] of the emission
spectrum in the region λ = 3.7–3.8 Å (the wavelengths
of the Lyα1 and Lyα2 components of the Ar XVIII ion
are 3.73110 and 3.73652 Å, respectively). In complete
agreement with the estimates made above for the ini-
tial gas pressure equal to 100 atm, we detected a rather
weak resonance emission line of the H-like argon
(Fig. 5). The intensities of the Lyα and Heα lines were
0.2 and 2000 relative units; i.e., their ratio was
approximately equal to 10–4, which is very close to the
expected ratio of the concentrations of the H- and He-
like ions. We failed to detect the Lyα line at lower gas
pressures, i.e., for lower cluster sizes.
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Fig. 5. Spectrum of the resonance Lyα emission line of the
H-like Ar XVIII ion observed at a gas pressure of 100 atm
(dashed curve) and the model spectrum (solid curve) for the
plasma parameters presented in Table 1.
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4. EFFECT OF THE LASER PULSE PROPERTIES 
ON PLASMA CHARACTERISTICS

In this section, we consider the influence of the
duration and contrast of a laser pulse on the parameters
of the laser-induced plasma.

4.1. Dependence of the Plasma Parameters
on the Contrast of a Femtosecond Laser Pulse

The simplified model of the laser–cluster interaction
predicts that a change in the laser pulse contrast will
affect first of all the temperature of the plasma and the
density of its densest regions (i.e., the value of Ne2). The
increase in the contrast should obviously be accompa-
nied by a decrease in the temperature because the laser
prepulse power density decreases, whereas the value of
Ne2 should increase because the prepulse will destroy a
smaller part of the cluster.

To verify these qualitative predictions, we per-
formed a series of experiments in which the energy and
duration of the main femtosecond pulse and the average
size of clusters were fixed, while the pulse contrast was
varied in a broad range

qpluse/qprepluse = 5 × 101–5 × 103

[32]. The duration of the main pulse was 45 fs. The
clusters were formed using a cone nozzle with an initial
gas pressure of 63 atm; the interaction region was
located at a distance of 1.5 mm from the nozzle outlet.
The parameters of the plasma, as in the previous case,
were determined by fitting the emission spectrum of
plasma in the region of the Heα Ar XVII line by the
model spectrum. One can see from the results presented
in Table 2 that the plasma temperature monotonically
decreases with increasing pulse contrast, while the den-
sity Ne2 increases and exceeds the critical density
Ne, cr = 1.7 × 1021 cm–3 when the pulse contrast ≥103.
Note that the latter result agrees with the case of the
interaction of ultrashort pulses with solid targets [33–
35] when the supercritical-density plasma was also
observed only at high contrasts of laser pulses.
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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Table 2.  Effect of the laser pulse contrast on the plasma parameters

Contrast 500 100 350 1000 5000 @5000

Te2, eV 250 222 215 215 205 215

Ne2, cm–3 3 × 1020 5 × 1020 2 × 1021 5 × 1021 7 × 1021 2 × 1022

f2Ne2, cm–3 5.1 × 1017 3.5 × 1017 1.4 × 1018 8.5 × 1017 1.2 × 1018 3.4 × 1018

Table 3.  Effect of the laser pulse duration on the plasma parameters

τlas , fs
Rarefied plasma (region 1) Dense plasma (region 2)

Te1, eV Ne1, cm–3 f1Ne1, cm–3 Te2, eV Ne2, cm–3 f2Ne2, cm–3

1100 130 3 × 1019 3 × 1011 200 3 × 1021 9 × 1017

700 130 3 × 1019 9 × 1012 215 4 × 1021 1.2 × 1018

45 130 3 × 1019 3 × 1012 200 1022 7 × 1017
4.2. Effect of the Laser Pulse Duration 
on the X-ray Emission Spectrum and Parameters

of a Cluster Plasma

We studied the effect of the pulse duration on the
plasma parameters by fixing the pulse energy at 15 mJ,
so that the change in the pulse duration from 45 fs to
1.1 ps was accompanied by the change in the power
density from 1017 to 3 × 1015 W/cm2. As in the previous
case, clusters were produced using a cone nozzle with
an initial argon pressure of 60 atm.

The plasma parameters determined by fitting the
spectra of the Heα line of Ar XVII and of its dielec-
tronic satellites are presented in Table 3. Analysis of the
rates of excitation of levels of multiply charged argon
ions by thermal and hot electrons showed that even a
small amount of hot 5-keV electrons makes a substan-
tial contributions not only to excitation of the satellites
but also to the resonance line itself. Because the energy
E0 = 5 keV is of the order of the ionization potential of
the He-like Ar XVII ion, such electrons should also
excite efficiently the 1snp1P1 Rydberg states of this ion
with n > 2, whose radiative decay results in emission of
the highest terms in the resonance series of the He-like
argon ion. We detected such emission lines for n = 3–10
in the fifth reflection order of the spectrograph crystal
in the 3.0- to 3.4-Å spectral range containing the
1snp1P1–1s21S0 lines with n > 2. Figure 6a shows an
example of the spectrogram.

By observing the Rydberg transitions, we can per-
form additional independent diagnostics of plasma
because the shape of Rydberg lines strongly depends on
the plasma density and to a lesser extent on its temper-
ature. In this paper (see also [36]), we used the Rydberg
lines to verify the correctness of determining plasma
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
parameters by the method described above, i.e., from
the spectra of the resonance line and its satellites. For
this purpose, the profiles of Rydberg transitions were
calculated for the plasma parameters presented in Table 3,
with an allowance for two spatial regions. The shapes
of spectral lines of Ar XVII were calculated taking into
account the Stark shift in the ion microfield, the colli-
sion broadening caused by elastic collisions of elec-
trons with ions, and the Doppler broadening [24]. The
latter was accounted for together with the spectral res-
olution, which corresponded to the effective ion tem-
perature Ti = 2 keV. We used the distribution function of
the ion microfield taking into account the ion correlations
and Debye screening [25–28].

One can see from Fig. 6b that the results of indepen-
dent calculations with the fitting parameters of the
plasma are in good agreement with the experimental
data. These results show that the electron density of the
plasma that makes the dominant contribution to the
observed spectrum increases with shortening of the
laser pulse. In addition, the relative contribution of the
subcritical electron density (see also [36]) decreases
when shorter pulses are used. As the pulse duration is
increased up to 1 ps, laser radiation is absorbed simul-
taneously with the cluster decay, resulting in a decrease
in the dominating electron density of the emitting
plasma. The electron temperature remains very low for
any pulse duration, and it is insufficient for ionization
and efficient excitation of the levels of the He-like
argon ion. Therefore, the emission lines can be related
only to the Rydberg levels populated due to excitation
by a small amount of hot electrons. Because the elec-
tron temperature is established in the plasma rather
slowly (especially at gas densities), the effect of hot
electrons on the plasma relaxation kinetics can be man-
ifested for a longer time than the laser pulse duration.
SICS      Vol. 94      No. 5      2002
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Fig. 6. (a) Spectrogram of Rydberg transitions in the He-like argon ion; (b) comparison of the measured spectrum of the argon
plasma (thin curves) with the model spectrum (thick curves) for the n1P1–11S0 transitions (n ≥ 5) in Ar XVII for laser pulse durations
of 1.1 ps, 700 fs, and 45 fs.
Therefore, our model of the cluster heating by
ultrashort laser pulses correctly describes not only the
intensities of resonance lines and their satellites but
also the shapes of spectral transitions from the Rydberg
levels of the He-like argon ion. The results of the mea-
surements and calculations show the electron density of
a plasma increases with shortening of the laser pulse.
JOURNAL OF EXPERIMENTAL 
The X-ray emission is mainly determined by a plasma
with a supercritical electron density.

5. CONCLUSIONS

The model [12–14] describing the formation of the
emission spectra of a plasma produced upon the inter-
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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action of femtosecond laser pulses with clusters
includes a number of fitting parameters, which allow
one to reproduce experimental spectra quite accurately.
However, for these parameters to have not only mathe-
matical but also physical meaning, their values should
vary reasonably depending on the laser–cluster interac-
tion. The systematic experimental study performed in
this paper for clusters of different sizes at different
durations and contrasts of laser pulses have shown that
this is the case. As noted above, the change in the inter-
action parameters resulted in all cases in the physically
reasonable change in the values of fitting parameters.
Therefore, our model of the cluster heating by
ultrashort pulses is indeed a physical model, and the fit-
ting parameters represent the average values of the
plasma parameters in the corresponding space–time
regions.

Our study allows us also to make some conclusions
concerning the use of a laser–cluster plasma in applied
problems.

For example, the optimization of heating for
enhancing the brightness of an X-ray lithographic
source is especially important in the development of
this source. According to the results of our measure-
ments presented in Fig. 7, the brightness is a nonmono-
tonic function of the laser pulse duration. The position
of the maximum brightness depends on the cluster size
and the laser pulse contrast. For the experimental con-
ditions of Fig. 7, the optimal pulse duration is 700 fs.

Because the laser–cluster interaction in the τprepulse ~
τexpansion regime allows one to obtain a strongly ionized
plasma, such a plasma source can be used to obtain las-
ing at X-ray transitions in multiply charged Ne- and
Ni-like ions where the optimal conditions for obtaining
large absolute values of the population inversion are
naturally satisfied (see, for example, [37–40]). In this
case, it is important to produce a sufficiently extended
and homogeneous plasma. As shown in Section 3.1, a
homogeneous extended plasma can be obtained by
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Fig. 7. Dependence of the intensity of the Heα1 (h), Heα2 (n),
Heβ (j), and Heδ (s) emission lines of the He-like Ar XVII
ion on the duration of laser pulse with a fixed energy.
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using a cone nozzle for the formation of a cluster target.
Note, however, that upon heating of clusters by a low-
contrast laser pulse, the homogeneous plasma cannot
be produced even using a homogeneous target. This is
explained by the fact that, in the case of the low con-
trast, the prepulse power density in the focal plane
proves to be so large that the prepulse destroys com-
pletely the clusters located near the gas-jet axis. In this
case, as for an inhomogeneous cluster target, the pro-
duced plasma can be strongly inhomogeneous (Fig. 8).
Therefore, the plasma that can be employed for the cre-
ation of X-ray lasers can be produced only using high-
contrast laser pulses and homogeneous cluster targets.
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Abstract—New phase transitions induced by hydrostatic pressure in a cubic (under standard conditions) ScF3

crystal are discovered by the methods of polarization microscopy and Raman scattering. The space groups R c
for Z = 2 and Pnma for Z = 4 are proposed for the high-pressure phases. A nonempirical computation of the
lattice dynamics of the crystal is carried out. It is shown that, under normal pressure, the cubic phase is stable
down to T = 0 K, while the application of a hydrostatic pressure gives rise to a phonon branch in the vibrational
spectrum (between points R and M of the Brillouin zone) with negative values of squares of frequencies. The
condensation of soft mode R5 at the boundary point of the Brillouin zone leads to rhombohedral distortion of
the cubic structure with the unit cell volume doubling. The calculated frequencies at q = 0 of the ScF3 lattice in
the distorted rhombohedral phase are real-valued; the number and position of frequencies active in Raman scat-
tering are in accord with the experimental values. © 2002 MAIK “Nauka/Interperiodica”.

3

1. INTRODUCTION

Fluorides of trivalent metals MeF3 with an ideal or
distorted structure of α-ReO3 belong to the family of
perovskite-like compounds with the general formula
ABX3, in which one of the cation sites is vacant (Fig. 1).
Like all perovskites, these substances experience con-
secutive phase transformations under external effects.
The presence of bulk cavities in the structure makes it
possible to modify the physical properties of these crys-
tals smoothly by creating structural disorder or by
introducing impurities, which makes these crystals
interesting objects for studying the mechanisms of
phase transitions (see, for example, [1]) and also makes
it possible to find their practical applications [2, 3].

Among other compounds with the chemical formula
MeF3, scandium fluoride is apparently the least studied.
The most comprehensive reviews devoted to the
description of structural phase transitions in perov-
skites [4, 5] contain no information on this material. In
the structural database [6], information is given on
three different structures (cubic, rhombohedral, and
orthorhombic) of ScF3 under normal conditions; how-
ever, special stability tests of these phases [7] revealed
that the orthorhombic phase under normal conditions is
metastable, while the cubic phase was not detected at all.

It was noted in [5, 8, 9] that the phase diagram of
these crystals is very sensitive to structural defects and
1063-7761/02/9405- $22.00 © 20977
impurities, which creates additional difficulties in their
investigations. In addition, at least some of the phase
transitions in crystals belonging to this family are fer-
roelastic [1, 4], and the presence of growth stresses in
the samples synthesized at high temperatures may also
considerably affect their behavior upon a change in
external conditions.

In our earlier publication [10], we analyzed the
vibrational spectrum of the lattice for the cubic modifi-
cation of ScF3 at low temperatures down to 4 K, but no
phase transitions were detected. The present work aims
at studying phase transitions in a ScF3 crystal under
pressure by using Raman spectroscopy combined with
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Fig. 1. Structure of the cubic phase of ScF3.
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polarization microscopy on samples synthesized under
the conditions ensuring minimal stresses during their
growth and at establishing the origin of the lattice insta-
bility appearing in this case by using nonempirical cal-
culations of the frequency spectrum of lattice vibrations
in the framework of a microscopic model of an ionic
crystal.

2. SYNTHESIS AND STRUCTURE 
OF SINGLE CRYSTALS

We could not find in the literature any technique for
growing ScF3 single crystals; however, the synthesis of
similar single crystals of iron and aluminum fluorides
from flux in melt is described in [11–13]. It should be
noted that this method makes it possible to lower the
synthesis temperature and, hence, to reduce the proba-
bility of emergence of stresses during the crystal
growth. We used lithium fluoride as the solvent.
Attempts were made to use other compounds, but the
single crystals grown in this case were too small (less
than 1 mm3).

The flux–melt containing 40 mol % ScF3 was her-
metically sealed in an oxygen-free atmosphere in a plati-
num ampule with a wall thickness of 0.2 mm. Over a
period of 14 days, the ampule was lowered at a rate of
20 mm/day in a vertical tube furnace with an axial tem-
perature gradient of 10–20 K/cm from the temperature
region of 1400 K.

After cooling and opening the ampule, we discov-
ered a cylindrical sample in it. The lower transparent
part of the sample having a diameter of 10 mm and a
height of 7 mm did not contain any defects or inclu-
sions that could be seen in the microscope. The X-ray
structural analysis proved the correspondence of the
obtained crystal to the structure of the cubic phase of
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ScF3 with the unit cell parameter a0 = 4.01 Å (a com-
parison was made against the data presented in [6]).
The observation in a polarization microscope revealed
the optical isotropy of the crystal, which is also in
accord with the cubic symmetry.

3. VARIATION OF RAMAN SPECTRA

The vibrational representation of the space group

Pm m of the cubic phase for the center of the Brillouin
zone has the form

(1)

all vibration being inactive in the Raman spectrum.
A similar expansion for the rhombohedral structure

has the form

, (2)

while, for the orthorhombic structure, we have

(3)

In expansions (2) and (3), the active modes in the
Raman spectrum are singled out.

A comparison of expressions (1)–(3) shows that the
selection rules for these structures differ considerably
and, hence, these structures should be easily diagnosed
from the form of their Raman spectra.

We studied ScF3 samples under a high (up to 9 GPa)
hydrostatic pressure at room temperature on a setup
with diamond anvils, which is similar to that used in
[14, 15]; the diameter of the cell containing the sample
was 0.25 mm, and its height was 0.1 mm. The pressure
was determined to within 0.05 GPa from the shift in the
luminescence band of a ruby microcrystal [15, 16]
placed next to the sample. Mixtures of ethyl and methyl
alcohols or glycerene were used as the pressure-trans-
mitting medium. The Raman spectra were generated by
radiation emitted by an Ar+ laser (514.5 nm, 0.5 W) and
were recorded by a multichannel spectrometer
OMARS 89 (Dilor). In view of the small size of the
sample and strong diffuse scattering, the high-fre-
quency (150–600 cm–1) region of the spectrum was
recorded. The domain structure and birefringence
effects in the sample were observed simultaneously
with the help of a polarization microscope.

Under the normal pressure, the crystal has no
Raman spectrum; it is optically isotropic and is dark-
ened in crossed polarizers (slight field blooming
emerges due to anisotropic mechanical stresses appear-
ing in diamond anvils). Under a pressure of 0.7 GPa, the
spectrum acquires two spectral lines (at 260 and
465 cm–1; see Fig. 2), simultaneously, the sample
placed between two crossed polarizers is bleached (Fig. 3),
indicating the emergence of optical anisotropy. Some
samples exhibit splitting into coarse domains (of the

3

Γ0 F2u 3F1u,+=

Γ1 A1g 2A2g 3Eg 2A1u 3A2u 5Eu+ + + + +=

Γ1 7Ag 5B1g 7B2g 5B3g 5Au+ + ++=

+ 7B1u 5B2u 7B3u.+ +
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Fig. 3. Microphotographs of a sample before (left, 0.07 GPa) and after (right, 0.72 GPa) the first phase transition. The polarizers
of the microscope are crossed. The cell diameter is 0.25 mm.

(‡) ·(b)
order of 0.02–0.05 mm) of irregular shape. Upon a fur-
ther increase in pressure, the intensity of these lines
increases monotonically. The frequency of the 260-cm–1

line also increases, attaining a value of 300 cm–1 under a
pressure of 3.8 GPa. In the low-frequency region, one
more line appears, shifting monotonically from 180 cm–1

at 1.4 GPa to 260 cm–1 at 3.8 GPa. This is accompanied
by an enhancement of the birefringence effect and a
change in the interference coloring of the sample asso-
ciated with a change in the shape of the optical indica-
trix.

The changes occurring up to values of 3.8 GPa are
reversible and can be reproduced in different samples
taken from the same product of crystallization and with
different pressure-transmitting liquids (Fig. 4). Within
the experimental error indicated above, no hysteresis
effects are observed. The form of the domain structure
determined to a considerable extent by defects at the
sample boundaries changes from sample to sample and
as afunction of the pressure variation rate; the mono-
domain state can be obtained in well-faceted micro-
crystals subjected to a slowly increasing pressure.

A further increase in pressure leads to one more
transition (at 3.8 GPa). The crystal acquires a complex
system of a large number of small (less than 0.01 mm)
domains which can be seen through a microscope. The
boundaries of these domains strongly scatter light (Fig. 5).
Simultaneously, the form of the Raman spectrum
changes sharply: some lines disappear, and a consider-
able number of new lines and bands consisting appar-
ently of a several closely spaced profiles are formed
(see Figs. 3 and 4). It should be noted that the pressure
of 3.8 GPa corresponding to the transition point is in
accord with the pressure of transition from the rhombo-
hedral to the orthorhombic phase of the crystal under
investigation, which was observed earlier in [8, 9].
Under a further increase in pressure, the high-fre-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
quency (> 200 cm–1) part of the spectrum changes
insignificantly, while, below 200 cm–1, a shift of one of
the lines towards higher frequencies, its intersection
with another line, and, probably, the emergence of one
more line in the vicinity of 160 cm–1 under a pressure
of 7 GPa are observed. The system of domain walls
emerging during the transition is slightly modified upon
an increase in pressure; the total number of domains
slightly decreases, but the system does not disappear
completely. The crystal remains optically anisotropic,
although strong scattering at domain walls complicates
the observation of the effects associated with it.

A decrease in the pressure on a sample in this phase
does not lead to a reverse transition (Fig. 6). The system
of domain walls and the general nature of the spectrum
are preserved, although the spectrum displays the soft-
ening of at least one vibration in the low-frequency

100
0 2

ω
, c

m
–

1

P, GPa

200

300

400

500

600

4 6 8 10

Fig. 4. Pressure dependences of the frequencies of experi-
mentally observed lines. Circles correspond to values
obtained under increasing pressure, while squares and trian-
gles correspond to values obtained on different samples in
the second phase under decreasing pressure.
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Fig. 5. Microphotographs of a sample before (a, 3.06 GPa) and after (b, 3.89 GPa) second phase transition and after its fracture upon
a rapid decrease in pressure (c, 0.1 GPa).
part, which may be due to the emergence of lattice
instability. Under a slow (over several hours) decrease
in pressure from 1 GPa down to normal pressure, the
sample can be preserved (the lower spectrum in Fig. 6
was measured in air on the sample extracted from the
cell). A more rapid decrease in pressure below 1 GPa
leads to crystal breakdown (see Fig. 5c), indicating the
presence of strong mechanical stresses in the sample.

4. LATTICE DYNAMICS

In order to calculate the vibrational spectrum of the
ScF3 crystal lattice, we used a nonempirical model of
an ionic crystal, generalizing the Gordon–Kim approx-
imation by taking into account the effect of crystal lat-
tice on the deformability and polarizability of ions [17].
The expression for the dynamic matrix was given in
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Fig. 6. Variation of the Raman spectrum of ScF3 upon a
decrease in pressure.
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[18]. In the framework of this model, the lattice dynam-
ics of AlF3, GaF3, and InF3 crystals in the cubic phase,
which are isomorphic to ScF3, was calculated earlier
and it was shown that the vibration spectrum of these
crystals does not contain imaginary frequencies, which
indicates the stability of the cubic phase [8].

The equilibrium value of the lattice parameter of the
ScF3 crystal was determined from the minimum of the
total energy of the crystal as a function of volume.
Table 1 contains this value together with the experi-
mental value as well as the calculated values of polariz-
abilities of scandium and fluorine ions, high-frequency
permittivity ε∞, and Born dynamic charges. It can be
seen that the calculated unit cell parameter is 5%
smaller than the experimental value. Unfortunately, the
experimental value of ε∞ for this crystal is unknown,
but the obtained value is typical of perovskites contain-

100

–100
É

ScF3

200
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400
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600

0

X M R É M

ω
, c

m
–

1

Fig. 7. Results of calculation of the phonon spectrum of the
cubic phase of ScF3. Solid curves correspond to the unit cell
parameter a = 7.22 at. units (normal pressure) and dashed
curves correspond to a = 7.06 at. units.
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ing fluorine. The effective charge tensor for the Sc ion
is isotropic in accordance with the symmetry of the
position of this ion in the cubic phase, and its value is
close to the nominal value of the ion charge (+3). For a
fluorine ion, there are two tensor components corre-
sponding to the displacement of the F ion parallel
( ) and perpendicular ( ) to the Sc–F bond.

The calculated spectrum of ScF3 lattice vibrations in
the cubic phase is shown in Fig. 7 for a unit cell volume
of 52.1 Å3 (corresponding to the applied pressure P ≈
6 GPa). The vibrational spectrum contains no imagi-
nary frequencies (which explains the structural stability
down to temperatures of 4 K). However, it contains a
weak dispersion branch (between points R and M in the
Brillouin zone) with an anomalously low frequency. In
this vibrational branch, the triply degenerate mode R5 at
point R and nondegenerate modes in the R  M direc-
tion (including point M) correspond to vibrations in
which fluorine ions are displaced [19]. The structural
phase transitions in most halogenides with the perov-
skite structure [4], including MeF3 crystals (Me = Al,
Ga, In, …), are associated precisely with the mode con-
densation of this vibrational branch [1, 2].

We also calculated the vibrational spectrum of the
cubic phase of the ScF3 lattice for nonequilibrium
decreasing values of the unit cell parameter, which cor-
responds to the application of a hydrostatic pressure to
the crystal. The value of pressure was estimated from
the numerical differentiation of the total energy of the
crystal with respect to the volume and from the calcu-
lated bulk compression modulus B = (C11 + 2C12)/3 in
terms of elastic constants whose values were obtained
from the dispersion dependence of acoustic vibrational
branches for q  0 (which are given in Table 1). The
curve corresponding to the equation of state of ScF3 is
shown in Fig. 8.

Figure 7 shows that the most significant changes in
the lattice vibrational spectrum upon the application of
a hydrostatic pressure to the crystal occur in the regions
of high and low frequencies of optical vibrational
modes. The high-frequency vibrational modes become
“harder” upon a decrease in volume, while the branch
of lattice vibrations (between points R and M of the
Brillouin zone) with anomalously low values of fre-
quency becomes “softer” upon the application of pres-
sure, and the cubic structure of the crystal becomes
unstable.

Z || F,* Z ⊥ F,*
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5. DISCUSSION

The results of our calculations show that, in accor-
dance with the available experimental data [10], the
cubic phase of the ScF3 crystal under normal pressure
remains stable down to T = 0 K. At the same time,
according to the results of our experiments and an anal-
ysis of lattice dynamics, the application of a hydrostatic
pressure leads to cubic phase instability. The calcula-
tions of the frequencies of lattice vibrations under the
action of a hydrostatic pressure show that the softest
mode is the triply degenerate mode R5 belonging to the
boundary point R = π/a(1, 1, 1) of the Brullouin zone of
the cubic phase. Consequently, it is natural to assume
that the phase transition observed under a pressure
equal to 0.7 GPa is associated with the condensation of
precisely this mode.

The solid lines in Fig. 9 show the volume depen-
dence of the squared frequency ω2(R5) of this mode. A
decrease in the unit cell volume (increase of pressure)
leads to a linear decrease in the value of ω2(R5), so that
ω2(R5) = 0 for P ≈ 2.5 GPa (see Fig. 9). The lower
experimental value of pressure corresponding to the
transition may be due to nonideality of the samples
used in experiments; according to [8], structural defects
lead to instability of the cubic phase.

A displacement of fluorine ions in the triply degen-
erate R5 mode corresponds to the “rotation” of the octa-
hedron ScF6 [19] about the spatial diagonal of the cubic
unit cell. The irreducible representation R5 appears in
the vibrational representation of the crystal only once;
consequently, the expression for ω2(R5) in terms of the

0.85
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P, GPa
10 15 20 25 30

0.90

0.95
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Fig. 8. Calculated equation of state of ScF3.
Table 1.  Results of calculations of the main physical parameters of the cubic phase of ScF3

a0, Å, 
experiment

a0, Å, 
theory αSc, Å3 αF, Å3 ε∞ C11, GPa C12, GPa C44, GPa B, GPa

4.01 3.82 3.36 –0.71 –1.95 0.27 0.72 1.75 172.7 18.9 18.6 70.2

ZSc
* Z ||F

* Z ⊥ F
*
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Fig. 9. Calculated dependence of (a) the squared frequency of the soft mode R5 and (b) dynamic matrix elements determining it on
the unit cell volume.
elements of the dynamic matrix can be obtained in ana-

lytic form. We can separate the contribution  from
the Coulomb interaction of ions to frequency so that the

remaining term  includes the short-range and long-
range dipole–dipole contributions:

(4)

Each of these terms can, in turn, be decomposed into
two parts corresponding to different elements of the
dynamic matrix of the crystal:

(5)

(6)

ωC
2

ωS
2

ω2 R5( ) ωC
2 ωS

2.+=

ωC
2 bC f C, ωS

2– bS f S,–= =

b DF1 F1–
xx q

π
a
--- 1 1 1, ,( )= 

  ,=
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(E
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 E
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 1
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Fig. 10. Dependence of the total energy of a crystal with the
doubled unit cell on the displacement of fluorine ions from the
equilibrium position of the cubic phase: E0 = −2148.9854;
2Ry is the total energy of the undistorted phase.
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(7)

where b and f correspond to longitudinal and transverse
force constants of interaction of fluorine ions, respec-
tively. The volume dependence of the quantities
appearing in expressions (4) and (5) is also shown in
Fig. 9. It can be seen that the Coulomb and short-range
contributions to ω2(R5) have opposite signs, and the
positive Coulomb contribution exceeds in magnitude
the negative short-range contribution under normal
pressure, thus ensuring the stability of the cubic phase.
As the unit cell volume decreases, both contributions
increase in magnitude, but the absolute value of the
short-range contribution increases more rapidly than
that of the Coulomb contribution, leading to instability
of the cubic phase. Figure 9b, presenting the volume
dependences of the Coulomb and short-range contribu-
tions to the dynamic matrix elements, shows that an
increase in the negative short-range contribution to
ω2(R5) is mainly associated with the stronger volume
dependence of the short-range and dipole–dipole con-

tributions to the diagonal element  (q = π/a(1, 1,
1)) of the dynamic matrix. It should be noted that the
value of bS and its dependence on pressure are mainly
determined by the contribution from the long-range
dipole–dipole interactions.

The structural distortions associated with the con-
densation of the triply degenerate mode R5 lead to a
rhombohedral distortion of the crystal structure and sta-
bilize the lattice. Figure 10 shows the dependence of the
total energy of a crystal with the doubled unit cell on
the displacement of fluorine ions from the equilibrium

f DF1 F2–
yz q

π
a
--- 1 1 1, ,( )= 

  ,=

DF1 F1–
xx
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position of the cubic phase under pressure P = 6 GPa:

(8)

(9)

where a is the lattice parameter of the cubic phase, r =
m1a1 + m2a2 + m3a3 is the translation vector, and qR =
π/a(1, 1, 1). It can be seen that the total energy mini-
mum corresponds to the displacement u ≈ 0.025a (0.7 Å)
of fluorine ions.

Table 2 contains the values of calculated limiting
frequencies of vibrations in the rhombohedral phase in
which the coordinates of atoms correspond to the
obtained values of the displacement of fluorine ions.
The table also gives for comparison the values of fre-
quency at points Γ(q = (0, 0, 0) and R(q = π/a(1, 1, 1))
of the undistorted cubic phase as well as the compati-
bility relations.

After a transition, four lines must be activated in the
spectrum (see relation (2)). Two of these lines (A1g and
Eg) correspond to the restored soft mode which was
split after the transition and, hence, correspond to low
frequencies, which must depend considerably on pres-
sure. The three lines observed experimentally above
P = 0.7 GPa (the frequencies corresponding to these
lines are given in Table 2 in parentheses) are in good
agreement with this description; the line corresponding
to the lowest frequency is noticeably shifted upwards
upon an increase in pressure, and the emerging low-fre-
quency wing apparently corresponds to the second
mode being restored, whose frequency lies below
150 cm–1. The calculated and experimentally obtained
frequencies are in satisfactory agreement. It should be
noted that the position of lines correlates well with the
frequencies in the Raman spectrum for rhombohedral
phases of fluorides of some other trivalent metals [20].
On the whole, we may conclude that the first high-pres-

sure phase is rhombohedral with the space group R c,
Z = 2.

The second point of transition corresponding to a
pressure of 3.8 GPa is in good agreement with the tran-
sition from the rhombohedral to the orthorhombic

( , Z = 4) phase, which was observed earlier in [9].
The strong increase in the number of lines in the Raman
spectrum (3) is also in accord with these observations.
In [9], a strong diffusion-controlled X-ray scattering
was detected above this transition point, which gradu-
ally decreased upon an increase in pressure. This corre-
lates well with the emergence of a developed system of
domain walls observed through the microscope and
with the increase in the domain size under an increase
in pressure. The type of this transition (which is pre-
dominantly a first-order transition) and the existence of
a considerable hysteresis upon a decrease in pressure
are also in accord with the results obtained in [9].
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6. CONCLUSIONS

Thus, we have carried out experimental studies and
numerical calculations of lattice dynamics in a ScF3

crystal induced by a hydrostatic pressure.

The structural phase transition from the cubic to the
rhombohedral phase observed experimentally for the
first time under a pressure of 0.7 GPa is in accord with
the results of nonempirical calculations of the lattice
vibrational spectrum: the calculated spectrum of the
crystal under normal pressure contains no imaginary
frequencies, which indicates the stability of the struc-
ture. However, the vibrational spectrum contains a
branch (between points R and M of the Brillouin zone)
with anomalously low frequencies. As the unit cell vol-
ume decreases (which corresponds to an increase in
pressure), the frequencies corresponding to this branch
decrease and the lattice becomes unstable at a fairly
high pressure. The reason for this decrease in frequency
and, hence, in the emergence of lattice instability is the
violation of the balance of the Coulomb interactions, on
the one hand, and the sum of short-range and dipole–
dipole interactions, on the other hand.

The calculated spectrum of the distorted rhombohe-
dral formed as a result of a transition is in good agree-
ment with the experimental spectrum. The experimen-
tal Raman spectrum displays the restoration of a soft
mode; the frequency of the second expected soft mode
apparently lies below the investigated frequency range,
and only a wing of this mode is observed.

Table 2.  Compatibility relations and values of vibrational
frequencies in the cubic and rhombohedral phases (experi-
mentally measured values of frequencies are given in paren-
theses)

Cubic phase Rhombohedral phase

Frequency, 
cm–1

Symmetry
of vibrations

Symmetry
of vibrations

Frequency, 
cm–1

590 F1u–LO A2u 557

477 F1u–TO Eu 442

154 F1u–LO A2u 210

211 F1u–TO Eu 164

126 F2u A1u 148

Eu 132

542 R1 A2g 513

341 R10 A1u 327

Eu 330

445 R3 Eg 412 (465)

188 R4 A2g 190

Eg 198 (260)

65i R5 A1g 79 (180)

Eg 34
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The pressure and the general type of the second
transition from the rhombohedral to the orthorhombic
phase investigated by us coincide with those observed
earlier [9]; the Raman spectrum of this high-pressure
phase is obtained for the first time. The transition is pre-
dominantly a first-order transition and is accompanied
by strong hysteresis effect. The formation of a complex
system of domain walls is apparently responsible for
the strong diffuse X-ray scattering (reported in [9]) in
this phase. The mechanism of transition to the second
high-pressure phase, its structure, and lattice dynamics
require further investigations.
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Abstract—Multilayer ferromagnet–layered antiferromagnet (Fe/Cr) structures frustrated because of roughness
of interlayer boundaries were studied by mathematical modeling methods. The phase diagram of a three-layer
system (plotted as film thickness versus the degree of roughness of the interfaces) was obtained, and the order
parameter distributions in each phase were determined. The character of phase transitions in this system was
studied. The applicability range of the Slonczewski magnetic proximity model was determined. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Multilayer magnetic structures have been attracting
close attention of researchers since the discovery of the
giant magnetoresistance phenomenon in them [1]. In
the past decade, a huge number of works concerned
with these structures have been published; for instance,
see reviews [2, 3]. Recently, interest of researchers has
shifted to multilayer ferromagnet–layered antiferro-
magnet structures. According to the recent neutron dif-
fraction experiments [4, 5], examples of such structures
are Fe/Cr multilayers in which a chromium layer of
thickness d < 4.5 nm is a set of ferromagnetic planes
with antiparallel spin orientations in neighboring
planes. Chromium atom spins lie in these planes,
which, in turn, are on average parallel to interlayer
boundaries. A similar structure was observed in manga-
nese layers in Fe/Mn structures [6, 7].

Exchange between ferromagnetic layers in multi-
layer ferromagnet–layered antiferromagnet structures
is caused by the interaction through the antiferromag-
netic order parameter, and the Riderman–Kittel–
Kasuya–Yoshida interaction is only a small addition to
this interaction far from the Néel temperature [8]. Slon-
czewski suggested a phenomenological magnetic prox-
imity model to describe the interaction through the anti-
ferromagnetic order parameter [9]. Within this model,
ferromagnetic layers are considered magnetized virtu-
ally uniformly, and substantial order parameter distor-
tions are assumed to occur only in antiferromagnetic
layers [9].

The presence of atomic steps that change the thick-
ness of the antiferromagnet by one monoatomic layer at
interlayer boundaries causes frustrations in the ferro-
magnet–antiferromagnet system (Fig. 1a). A uniform
order parameter distribution in layers ceases to corre-
spond to an energy minimum.
1063-7761/02/9405- $22.00 © 20985
If the distance between atomic steps on the surface
of a layer (step width R) exceeds some critical value,
separation of ferromagnetic layers into domains
becomes energetically favorable [10, 11] (Fig. 1b).
Domain boundaries in the plane of layers coincide with
atomic step edges. Note that the R value substantially
depends on technological conditions [12].

Recent studies of the state of a ferromagnetic iron
film on a rough Cr(001) surface revealed the presence
of several magnetic phases depending on film thickness
and the degree of roughness (on the R value) [13].

The aforesaid shows that the problem of considering
“thickness–roughness” phase diagrams of ferromag-
net–layered antiferromagnet magnetic structures is top-
ical. This problem is the subject matter of the present
communication.

The paper is organized as follows. Section 2 pre-
sents a simple model that allows the system under study
to be qualitatively described. The method for calcula-
tions is considered in Section 3. The phase diagram of a
ferromagnet–antiferromagnet–ferromagnet three-layer
structure, which can be generalized to multilayers, is
obtained in Section 4. The conclusion summarizes the
most important results of this work.

(a) (b)

Fig. 1. Frustrations in the ferromagnet–layered antiferro-
magnet system caused by the presence of steps at the inter-
layer boundary.
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2. MODEL DESCRIPTION

In describing multilayers, we will restrict ourselves
to the mean field approximation. Let us introduce an
order parameter for each layer. This will be the magne-
tization vector for magnetic layers and the antiferro-
magnetic vector equal to the difference of the magneti-
zations of sublattices for antiferromagnetic layers.

In magnetic layers dozens of angstrom units thick,
atomic spins are known to lie in the plane of layers.
Therefore, at T < TC, TN, where TC is the Curie temper-
ature of ferromagnetic layers and TN is the Néel temper-
ature of antiferromagnetic layers, we can characterize
the local value of an order parameter lying in the plane
of layers by angle θ between the order parameter and a
selected axis also lying in the plane of layers. The order
parameter modulus is assumed to be virtually constant
in each layer.

Within the framework of these approximations,
exchange energy Wi caused by inhomogeneity within
the ith layer is written in the form

(1)

where the integral is over the volume of the layer, Ji is
the exchange stiffness, Si is the mean atomic spin value,
and bi is the interatomic distance.

Varying (1) with respect to parameter θi yields the
equation that describes the order parameter distribution
in the layer,

(2)

A more thorough procedure should be applied to
obtain boundary conditions. The θi – θi + 1 difference
can take on fairly large values because of frustrations at
layer boundaries, whereas, within layers, frustrations
are absent, θi varies smoothly, and the difference of θi

in neighboring cells is small. For this reason, in
exchange energy calculations by the X–Y model, the
cosine of the difference of the θi angles in neighboring
cells can be expanded into a power series if the cells
occur in the same layer; this, however, cannot be done
if the cells belong to different layers. We must therefore
write the interaction energy between spins situated
close to the interlayer boundary in the discrete repre-
sentation, differentiate it with respect to angle θi of
rotation of a certain spin, and then pass to the continu-
ous representation. As a result, we obtain the boundary
condition

(3)

where  is the two-dimensional Laplacian in the layer
plane, ∂/∂n is the derivative in the direction of the outer
normal to the layer, the Jf, af exchange constant
describes the interaction of spins in different layers, and

Wi

JiSi
2

2bi

--------- ∇θ i( )2 V ,d∫=

∆θi 0.=

∆̃θi

θi∂
n∂

-------–
J f af, Si 1+

JiSi

--------------------- θi θi 1+–( ),sin±=

∆̃
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all distances are reduced to the dimensionless form
through dividing by the bi = b value considered equal
for all layers. The signs on the right-hand side of (3) are
opposite on opposite atomic step sides at the boundary.
For a free surface, the right-hand side of (3) vanishes.

The exchange interaction energy between neighbor-
ing layers has the form

(4)

where the integration is over the boundary surface
between layers i and i + 1, and the sign on the right-
hand side of (4) is the same as in (3).

Varying the interlayer interaction energy written in
the continuous representation with respect to θi yields
an equation that differs from (3) by the absence of the
first term on the left-hand side. This prevents passage
from (3) to (2) when the bordering layers are identical.

Atomic steps divide the whole interlayer boundary
surface into regions of two types. In regions of the first
and second types, the boundary energy is minimum at
θi = θi + 1 and θi = π – θi + 1, respectively.

Determining the distribution of order parameters in
a multilayer requires solving the system of differential
equations (2) with boundary conditions (3).

Consider the applicability of this simple model to
real multilayers. The continuous representation is valid
when the characteristic distances of the problem are
much larger than interatomic distances. Layer thick-
nesses in multilayers and distances between atomic
steps amount to dozens of angstrom units. It can be
taken that these values are much larger than interatomic
distances, and the continuous representation can there-
fore be used for qualitative consideration and obtaining
order-of-magnitude estimates.

The model under consideration assumes exchange
interaction to be isotropic, that is, the same in the plane
of layers and in the perpendicular direction. A model
with anisotropic interactions reduces to that considered
above by renormalizing the length scale in one of two
nonequivalent directions.

Interdiffusion of neighboring layer atoms only
results in renormalizing the Jf, af constant if the region of
mixing includes one or two monolayers, that is, has the
atomic thickness scale. This constant is found in micro-
scopic calculations [14].

Equations (2) and (3) are written in the exchange
approximation but can easily be generalized to systems
with weak anisotropy in the plane of layers.

To summarize, the suggested model can be used to
qualitatively describe the magnetic characteristics of
multilayer ferromagnet–antiferromagnet structures.

Wi i 1+,
J f af, SiSi 1+

b2
-------------------------- θi θi 1+–( )cos S,d∫±=
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3. METHOD FOR CALCULATIONS
Let the edges of atomic steps be rectilinear and par-

allel to each other. The x axis of the frame of reference
lies in the plane of layers and is normal to step edges,
and the z axis is perpendicular to the layers (a two-
dimensional case).

The initial system of equations includes Laplace
equations (2) for each plane layer, –∞ < x < ∞, 0 < z < ai,
where i = 1, …, n are layer numbers, with nonlinear dis-
continuity conditions (3) at interlayer boundaries. For
numerically solving this system, we will reduce it to a
system of one-dimensional integral equations.

Let us impose the requirement that the θi(x, z) func-
tion be continuous in the region 0 < x < L and the 0 <
z < ai, ∂θi/∂x |x → 0, L  0 additional conditions be met.
Extend the definition of θi(x, z) to period 2L, namely,
θi(–x, z) = θi(x, z), –L < x < L.

Introduce a uniform mesh {xj} with step ∆x in –L <
x < L. Let us represent the θi(x, z) function and the right-
hand side of boundary conditions (3) in the form of the
Fourier series

(5)

(6)

Here, (x) = ±Jf, afSi ± 1 /JiSi is the step function which
changes its value at atomic step boundaries and

Substituting (5) and (6) into the initial equations yields
the ordinary differential equation

(7)

with the boundary conditions

(8)

within layer i for each harmonic k = 1, …, N (here and
throughout, index i is omitted if this cannot cause con-
fusion). A solution to (7) is sought in the form

The  and  constants can be found from boundary
conditions (8). As a result, we obtain

(9)

θi x z,( ) Φ0 i, z( ) Φk i, z( ) i
π
L
---kx 

  ,exp
k 1=

N

∑+=

σi
± x( ) δθi

± x( )( )sin Ψ0 i,
± Ψk i,

± i
π
L
---kx 

  .exp
k 1=

N

∑+=

σi
±

δθi δθi
+ x( )≡ δθi 1+

– x( )– θi 1+ z 0= θi z ai= .–= =

d2Φk

dz2
------------ Ak

2Φk– 0=

Φkd
zd

--------- Ak
2Φk± 

 
z a 0,=

Ψk
±,–=

Ak
1

∆x
----- 1

π
L
---k∆x

 
 cos–=

Φk z( ) C1
k Akz( ) C2

k Akz–( )exp .+exp=

C1
k C2

k

Φk z( ) Kk
+ z( )Ψk

+ Kk
– z( )Ψk

–,+=
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where

Using the equation for the zeroth Fourier coefficients

with the boundary conditions

and taking into account that, for free boundaries of the
top and bottom layers, dΦ0/dz = 0 and, for neighboring
layers, the ratio between the functionals is given by

we obtain  = 0, or, selecting the mean angle

and the variation

we find

Hence, the mean angle is

(10)

Equations (5), (6) and (9), (10) can be used to obtain the
sought integral equation for δθi,

Kk
+ z( ) dKk a z–( )Ak–( )exp=

× 1 Ak+( ) 1 Ak–( ) 2zAk–( )exp+[ ] ,

Kk
– z( ) dKk zAk–( )exp=

× 1 Ak+( ) 1 Ak–( ) 2 a z–( )Ak–( )exp+[ ] ,

dKk Ak
1– 1 Ak+( )2 1 Ak–( )2 2aAk–( )exp–[ ] 1–

.–=

d2Φ0

dz2
------------ 0=

dΦ0

dz
----------

z a 0,=

Ψ0
±–=

Ψ0 i 1–,
+ δθi 1–

+( )/Ψ0 i,
– δθi

–( ) const,=

Ψ0
±

δθ 1
2L
------ δθ x( ) xd

L–

L

∫=

δθ x( ) δθ x( ) δθ,–=

0 σ x( ) δθ x( ) δθ+( )sin xd

L–

L

∫ δθcos= =

× σ x( ) δθ x( )sin xd

L–

L

∫ δθ σ x( ) δθ x( )cos x.d

L–

L

∫sin+

δθ nπ

σ x( ) δθ x( )sin xd

L–

L

∫

σ x( ) δθ x( )cos xd

L–

L

∫
----------------------------------------------

 
 
 
 
 
 
 

.arctan–=

δθi x( ) δθi i
π
L
---kx 

 exp
1

2L
------ i

π
L
---kξ– 

 exp ξd

L–

L

∫
k 1=

N

∑+=
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This equation will be solved using the simple iterative
procedure

Here, 0 < F(x), Fk ≤ 1 are the adaptive filters ensuring
stability of the iterative procedure and increasing the
rate of convergence. Iterations are performed until

becomes smaller than a preset value (usually, ε < 10–6).
The solution in the whole region can then be recon-

structed by the formula

The starting approximation can be selected in the
form

where η(x – xj) is the unit step function with a jump at
defect (step edge xj) positions, and the ± sign means
that this function can enter into the sum with either plus

or minus. As a result, we obtain about  possible ini-
tial approximations, where Nj is the number of defects
in the region to be calculated. Note that one of the solu-
tions to the initial nonlinear equation (a local potential
energy minimum) can correspond to each of the initial
conditions. Finding the global minimum requires com-
paring the energies corresponding to all of the obtained
solutions.

The solution depends on the ai values; characteristic
distance R between step edges (reduced to the dimen-
sionless form through dividing by interatomic distance
b); the parameter

(11)

characterizing the ratio between the exchange interac-
tion energies of the nearest spins belonging to different
layers and to the ferromagnetic layer, respectively; and
the αaf  parameter determined by (11) with replacement
of the f and af indices.

× Ki 1+ k,
– 0( )σi 1+

– δθisin Ki 1+ k,
+ 0( )σi 1+

+ δθi 1+sin+[

– Ki k,
– ai( )σi

– δθi 1–sin Ki k,
+ ai( )σi

+ δθisin– ]

≡ Î K δθi δθi 1±, ,( ).

δθi
n 1+ 1 Fi x( )–( )δθi

n Fi x( ) Î Fk i, K δθi
n δθi 1±

n, ,( ).+=

ε max δθi
n x( ) Î δθi

n δθi 1±
n,( )–=

θi x z,( ) δθi i
π
L
---kx 

 exp
k 1=

N

∑+=

× 1
2L
------ i

π
L
---kξ– 

 exp ξd

L–

L

∫

× Ki k,
– z( )σi

– δθi 1–sin Ki k,
+ z( )σi

+ δθisin+[ ] .

δθi
0 x( ) π η x x j–( ),±

j

∑=

2
N j

α f

J f af, Saf

J f S f

------------------=
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4. A FERROMAGNET–ANTIFERROMAGNET 
MULTILAYER

In [15], we obtained the phase diagram of a ferro-
magnetic film on an antiferromagnetic substrate.

Consider a three-layer system comprising two ferro-
magnetic layers separated by an antiferromagnetic
interlayer. Because of the presence of a large number of
parameters, we will restrict our consideration to equal
thicknesses of all layers. In addition, in Fe/Cr multilay-
ers that we are interested in, the magnetic stiffness of
ferromagnetic layers exceeds that of antiferromagnetic
layers; that is, the γ parameter equal to the ratio
between the exchange energies in the film and in the
substrate,

(12)

is much larger than one (γ @ 1). Otherwise, if the inter-
layer is magnetically hard, interaction of ferromagnetic
layers is weak and the problem reduces to a two-layer
system.

A three-layer system can have three different states.
Phase A. At large parameter R values, all layers are

separated into domains with parallel and antiparallel
orientations of ferromagnetic layer magnetizations.
Domain walls penetrate all three layers, and their coor-
dinates in the plane of layers coincide with atomic step
edges on both boundary surfaces. Ferromagnetic layer
magnetizations experience rotations in opposite direc-
tions in the domain wall. The antiferromagnetic order
parameter rotates together with the magnetization vec-
tor of the ferromagnetic layer whose boundary with the
antiferromagnetic layer does not contain a step at a
given place.

The structure and energy of a domain wall depend
on the αaf a parameter. If αaf a ! 1, the θf(af ) (z) depen-
dence, that is, domain wall broadening, can be ignored,
and the problem becomes one-dimensional.

The |∇θ f | value in the domain wall is of the order of

. Energy w1 per unit domain wall length can be esti-
mated by (1). This gives

(13)

At the same time, spins at the interface are frustrated in
the region |x | & δf, which increases the interaction
energy between layers by

(14)

per unit domain wall length.
Minimizing the w = w1 + w2 sum, we find

(15)

γ
J f S f

2

Jaf Saf
2

--------------
αaf

α f

-------,= =

δ f
1–

wi

J f S f
2a

bδ f

--------------.≈

w2

J f af, S f Saf δ f

b
-----------------------------≈

δ f a/α f .≈
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The domain wall width in the antiferromagnetic inter-

layer is δaf ≈  = δf/  ! δf. The distribution of
order parameters in the wall is shown in Fig. 2a; the
energy of the wall per unit length is

(16)

Exact numerical calculations of δf and w in a wide
range of αf and a parameter values substantiate the esti-
mates given above (this also refers to what follows).

However, if αaf a @ 1, the domain wall width in the
antiferromagnetic interlayer considerably increases as
the distance from the interlayer boundary containing an
atomic step grows larger. The character of the distribu-
tion of order parameters in the domain wall is shown in
Fig. 2b. Its parameters are found by estimations similar
to those made for αaf a ! 1. The major contribution to
wall energy is made by order parameter distortions in
the antiferromagnet. In the region |x | & a, the |∇θ af |
value is inversely proportional to the distance from the
step, whereas at a ! |x | ! , where  is the domain
wall width in ferromagnetic layers, lines of constant θaf

values are virtually parallel to the interlayer boundaries
(Fig. 2c). In this region, |∇θ af | ≈ a–1.

The smallest domain wall thickness in the antiferro-

magnet is  = (1 + αaf ) / αaf , the derivative near the

step is given by ∂δaf/∂z ≈ 1, and the  value equals

(17)

The energy of the domain wall per unit length is

(18)

Clearly,  is of the order of the interatomic dis-
tance, and the mean domain wall width amounts to doz-
ens of angstrom units; that is, domain walls caused by
frustrations are much narrower than usual domain walls
in a ferromagnet whose width is determined by compe-
tition between exchange and anisotropy energies.

Phase B. Because the magnetic stiffness of ferro-
magnetic layers exceeds that of the antiferromagnetic
interlayer (γ @ 1), the transition to the state in which
ferromagnetic layers are virtually uniform occurs at
Rc = δf( ) as R continuously decreases because of
overlap of domain walls. Additional energy is related
either to distortions in the antiferromagnetic interlayer
or to the boundary energy. Close to the interlayer Néel
temperature TN (TN is lower than the Curie temperature
of the ferromagnet), we have γ ∝  TN/(TN – T). The

a/αaf γ

w
J f S f

2

b
----------- aα f

S f

b
----- aJ f J f af, S f Saf .∼≈

δ f' δ f'

δ0
af

δ f'

δ f' a γ @ a.≈

w
Jaf Saf

2

b
-------------- γ a

δ0
af

------ln+ 
  .≈

δ0
af

δ f'
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A  B transition can therefore be effected by heating
the system from the initial temperature T0 < TN.

Precisely in the region of R values where phase B
exists, the Slonczewski magnetic proximity model is
applicable [9].

In the region of values max(a, ) ! R ! Rc, the
dependence of system energy on angle ψ between the
magnetizations of ferromagnetic layers is described by
the formula

(19)

δ0
af

W C1ψ
2 C2 π ψ–( )2.+=
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Fig. 2. Domain wall in three-layer system: (a) αaf a ! 1 and
(b) αaf a @ 1. Different levels of θi angle of order parameter
rotations in radians are shown by different hatching patterns
(see scale). The z = 0 and 16 coordinates correspond to
interlayer boundaries. The step is situated at x = 0, z = 0. The
distributions were obtained for (a) γ = 10, αaf  = 0.01, and
a = 16 and (b) γ = 10, αaf  = 1, and a = 16. The distribution
in Fig. 2c is the central part of the distribution shown in
Fig. 2b.
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Estimation gives the following C1 and C2 constant val-
ues [8]:

(20)

where σ1, 2 is the area of regions of the first (second)
type on the layer surface.

If σ1 = σ2, the energy minimum is attained at ψ =
π/2; that is, mutually perpendicular orientation of the
magnetizations of ferromagnetic layers exists in the
absence of an external magnetic field.

In state A, system energy does not depend on the
direction of order parameter rotations in domain walls.
The situation is different in state B. Overlapping of

C1 2,

Jaf Saf
2

2a
--------------

σ1 2,

b2
---------, αaf a @ 1,

4 2 1–( )
π2

------------------------Jaf S f Saf

σ1 2,

b2
---------, αaf a ! 1,



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Fig. 3. Static spin vortex in the film–substrate system at γ @
1. Different levels of the angle of order parameter rotations
in radians are shown by different hatching patterns (see
scale). The distribution was obtained for γ = 8, αaf  = 1, and
a = 8. The z = 0 value corresponds to the film–substrate
boundary. Step edges are situated at x = ±10.
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Fig. 4. Phase B and C energies as functions of distance R
between steps (a = 64, αf = 1/8, and αaf = 1).
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domain walls removes degeneracy with respect to rota-
tion directions, and a large number of metastable states
arise. These states differ from each other in the direc-
tion and magnitude of the rotation angle of the antifer-
romagnetic order parameter in separate regions
bounded by atomic steps.

What does happen when R decreases further? If
αaf a ! 1, the system occurs in the region of weak dis-
tortions at a ! R ! δaf. In this region, order parameters
are virtually uniform, and the magnetizations of the fer-
romagnetic layers remain perpendicular to each other,
whereas the C1, 2 constants decrease compared with
(20) by a factor of (R/δaf)2.

Phase C. Consider the R ! a region. All distortions
are then concentrated close to interlayer boundaries, the
interaction between ferromagnetic layers becomes
weak, and the key role is played by the interaction
energy between neighboring layers, which we consid-
ered in [15] for the example of a two-layer system.

As a result, the antiferromagnetic order parameter
becomes oriented normally to the magnetizations of
ferromagnetic layers at σ1 = σ2, and these magnetiza-
tions become collinear. This is state C.

If αaf a @ 1, static vortices are formed in the antifer-

romagnetic interlayer at  ! R ! a close to the
boundaries (Fig. 3). At smaller R values, the system
goes into the region of weak distortions.

If αaf a ! 1, the transition from state B to C already
occurs in the region of weak distortions. Like phase B,
phase C is characterized by the presence of a large num-
ber of metastable states. As follows from the results of
our modeling, the transition from phase B to C is a first-
order phase transition. Both states coexist in a consid-
erable range of R values, and their energies become
equal at some R* ~ a (Fig. 4). The phase diagram of the
three-layer system is shown in Fig. 5. In [16], the orien-
tation of spins in a three-layer structure at R ~ a was cal-

δ0
af

R/b

A
B

C
δaf

0

a/bαaf
–1

Fig. 5. Phase diagram of the three-layer system. For conve-

nience, R = a (solid) and R = δf and R =  (dashed) lines

are shown. The region of weak distortions is hatched.

δ0
af
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culated using the discrete model. The magnetizations of
neighboring ferromagnetic layers were assumed to be
mutually orthogonal. The behavior of the system in the
whole range of R values was not analyzed.

The R* value is independent of temperature, and the
B  C phase transition cannot therefore be observed
by varying the temperature of the system. The transi-
tion from the state with strong biquadratic exchange to
the low-temperature state with a weak interaction
between layers described in [17] has no bearing on the
phase transition considered above. This transition
occurs because the interaction of ferromagnetic layers
through the antiferromagnetic order parameter
decreases as the system approaches the Néel tempera-
ture and becomes equal to the interaction through spin
polarization induced in the antiferromagnet (the Rider-
man–Kittel–Kasuya–Yoshida interaction) [8]. At a
higher temperature, the latter interaction predominates.

5. CONCLUSION

The most important results and conclusions of this
work are as follows.

(1) A simple model for determining the distribution
of spins in frustrated layered ferromagnet–antiferro-
magnet structures was suggested.

(2) The thickness–roughness phase diagram for a
three-layer ferromagnet–antiferromagnet–ferromagnet
system was obtained.

(3) The transition from the polydomain (phase A) to
the monodomain (phase B) state of ferromagnetic lay-
ers as the distance between atomic steps at the inter-
layer boundary decreased was shown to occur continu-
ously. Strictly, this transition was shown to be not a
phase transition.

(4) At the same time, the transition from the phase
with a mutually orthogonal orientation of the magneti-
zations of neighboring ferromagnetic layers (phase B)
to the phase with their collinear orientation (phase C)
when the distance between atomic steps became
smaller than the thickness of the antiferromagnetic
interlayer was shown to be a first-order phase transi-
tion.

(5) The Slonczewski phenomenological magnetic
proximity model was only valid for phase B. The
parameters of this model in the whole range of its appli-
cability were determined.
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Abstract—Effects of interference between propagating and localized states in quasi-one-dimensional elec-
tronic waveguides containing finite-size attracting impurities (quantum dots) are investigated. The electron
scattering matrix is calculated in the framework of the Feshbach theory [H. Feshbach, Ann. Phys. 5, 357 (1958);
Ann. Phys. 19, 287 (1962)], when resonant states in closed channels are taken into account exactly, while non-
resonant states are taken into account in perturbation theory. It is shown that finite-size attracting impurities may
generate a series of asymmetric Fano resonances in the waveguide transmission. As a result of interference of
electron states, the characteristics of resonances may oscillate upon a change in the impurity parameters. The
conditions are determined under which the interference of an electron wave leads to a “collapse” and “swing”
of Fano resonances. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quasi-one-dimensional electron waveguides with
impurities (quantum dots) may display in principle new
coherent effects, where a propagating electron wave
interferes with a localized impurity state. In this case,
asymmetric (Fano) resonances may exist against the
background of the waveguide conductance (transmis-
sion) steps [3–5]. The interference effects closely asso-
ciated with Fano resonances [6] have been actively
studied in recent years both theoretically and experi-
mentally. Fano resonances are universal by nature and
were observed earlier in various systems: in photoion-
ization of atoms [7], in electron and neutron scattering
[8, 9], in Raman scattering [10], in photoabsorption in
quantum wells and superlattices [11–13], and in elec-
tron transport through an interferometer [14]. Fano res-
onances are due to interference of waves emerging as a
result of scattering at a heterostructure; they carry
important information on its geometrical relief and
intrinsic potential fields. An analysis of the mechanisms
governing the transmission of electronic waveguides is
important for applications since this effect can be used
for creating resonance nanoelectronic instruments of a
new generation [15]. The solution of this type of prob-
lems necessitates the development of a theory of scat-
tering of electron states in waveguides with impurities.
Earlier, isolated resonances were studied in optics, in
the case of scattering of electrons from atoms and mol-
ecules, and in the theory of nuclear reactions. In [1, 2],
a dispersion representation was obtained for the scatter-
ing matrix of multichannel systems. The resonance
overlapping effects were considered for the first time in
[16]. It should be noted that the pole structure of the
1063-7761/02/9405- $22.00 © 20992
scattering matrix, which determines the transmission
peaks, is quite clear, while the effects associated with
total reflection (existence of transmission dips) are
studied insufficiently. In recent publications [17–19],
the effect of short-range impurities on the transmission
was mainly considered and it was shown that such
impurities lead to the emergence of additional peaks
and valleys against the background of transmission
steps.

In the present work, we study the scattering of elec-
tron waves at finite-size impurities in a quasi-one-
dimensional waveguide. A basically new aspect here is
the possible interference (configuration interaction) of
a propagating wave with a wave trapped in the region of
impurity, which may change qualitatively the
waveguide transmission. First, we formulate the reso-
nance theory of scattering which can be used for solv-
ing a wide range of problems in the theory of electron
transport in nanochannels. Some elements of the proce-
dure applied here are based on the works of Feshbach
[1, 2] and have already been used in [20, 21] for single
resonances. The theory proposed here is based on the
concept of the resonant group of states emerging in the
wells split from the size-quantization subbands. The
electron scattering matrix is calculated under the
assumption that resonant states in closed channels can
be included exactly, while nonresonant states are taken
into account in perturbation theory. The theory devel-
oped in the present work makes it possible to describe
interference between the propagating and localized
states, resulting in the emergence of asymmetric reso-
nances. In the case of a finite-size impurity, a series of
Fano resonances may exist [22], and the interference of
quantum states in open and closed scattering channels
002 MAIK “Nauka/Interperiodica”



        

INTERFERENCE OF QUANTUM STATES IN ELECTRONIC WAVEGUIDES WITH IMPURITIES 993

                                                                    
may lead to oscillations of the characteristics of a Fano
resonance upon a change in the parameters of the sys-
tem [23]. For some specific models of impurities, we
investigate in greater detail the conditions under which
the effects of coherent interaction of states may lead to
the collapse of Fano resonances, when the width of the
resonances vanishes. It is shown that the effect under
investigation is similar to annihilation of a particle (res-
onance) with a hole (resonance zero). We propose a
simple numerical procedure enabling us to calculate the
characteristics of a waveguide with impurities in a
quasi-one-dimensional approximation and describe the
results of simulation upon the variation of the impurity
parameters.

2. MODEL OF AN ELECTRONIC WAVEGUIDE 
AND EQUATIONS

We will study the scattering of electron waves in a
2D electronic waveguide of width W arranged along the
x axis. Let the confining potential in the transverse
direction be described by the function Vc(y). We will
describe the potential of impurities by the function V(x,
y). The waveguide geometry is presented schematically
in Fig. 1 showing the potential field lines in the
waveguide.

The electron wave function can be determined from
the Schrödinger equation

(1)

where m is the electron effective mass. For a channel
free of impurities, V(x, y) = 0, and the solution to
Eq. (1) in this case can be written in the form

(2)

where ϕn(y) and En are defined by the solutions to the
equation

(3)

It is convenient to expand the wave function Ψ(x, y) in
the complete basis of functions describing the trans-
verse motion:

(4)
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Substituting expansion (4) into Eq. (1), we obtain the
equation for ψn(x) in the form

(5)

where

(6)

are the matrix elements of the impurity potential. The
system of equations (5) is completely equivalent to the
2D Schrödinger equation. It should be noted that an
infinite system of coupled equations of type (5) is often
encountered in physics (linear theory of interaction of
waves) and the development of methods for solving
such equations is of independent interest.

It was shown in [24, 25] that the calculation of the
conductance of a waveguide with impurities in the bal-
listic mode is reduced to the solution of the scattering
problem. We will be interested in the transmission
amplitude tnn' describing the scattering of electrons
from the channel with number n' into a channel with
number n. The transmission amplitude can be deter-
mined from the solution to Eq. (5). The conductance
measured by the two-probe method is determined by
the Buttiker–Landauer formula [24, 25]

(7)

where T is the transmission of the waveguide, n and n'
denote the channel numbers for incident and scattered
waves, and summation is carried out over all states with
energy E propagating in the quantum waveguide. It
should be noted that the poles of the scattering ampli-
tude tnn' (E) in the complex plane E correspond to levels
or resonances, while branching points correspond to
threshold singularities [26].
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Fig. 1. Schematic diagram of a 2D electronic waveguide
containing an attracting impurity. Constant-potential lines
are depicted; different shades characterize the variation of
the potential.
ICS      Vol. 94      No. 5      2002
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3. SCATTERING MATRIX 
AND RESONANCE APPROXIMATION

The theory of resonances based on the relation
between a local state and states in open channels was
formulated long ago by Feshbach [1, 2]. In this section,
we will derive the expression for the electron scattering
matrix in a waveguide containing a finite-size impurity
in the framework of the Feshbach theory. We will take
into account an arbitrary number of possible bound
states in the field of the impurity.

A. Scattering Matrix

We begin our analysis with the case of a single open
channel; in other words, the energy of an electron being
scattered lies in the interval E1 < E < E2 (Fig. 2a). Pro-
ceeding in accordance with [1], we retain in the system
of equations (5) only the terms which correspond to the
closest values of energy (resonance terms); the dis-
carded terms can be taken into account later in pertur-
bation theory. In other words, we retain in Eqs. (5) the
terms containing ψ1 and ψ2:

(8)

(9)
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2m
-------
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2
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∂

V11 x( )+ 
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∂
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=  E E2–( )ψ2 x( ),

E2
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E

E2

E1

Vnn(x)

V22(x)

V11(x)

ε1

ε2

(‡) k x(b)

Fig. 2. (a) Dispersion relation for charge carriers in an ideal
waveguide and (b) the diagram of discrete energy levels in
effective wells.
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under the assumption that the matrix element V12
describing the coupling between the channels is smaller
than the interval between the quantization subbands.

It is more convenient to begin the analysis with
Eq. (9). We disregard in Eq. (9) the term containing V21,
it assumes the form of the one-dimensional
Schrödinger equation:

(10)

If potential V22(x) is of the attracting type and has a
large magnitude, bound states exist for certain values of
energy E. Depending on the parameters of the well of
V22(x) in the energy interval E2 – max|V22(x)| < E < E2,
Eq. (10) may have a series of bound states uj with ener-
gies %j (j = 1, …, N) (Fig. 2b), where the functions uj

are normalized by the conditions

(11)

In addition to discrete energy levels, the field of poten-
tial V22(x) usually contains the states belonging to the
continuous spectrum, which will be denoted by uν(x).
Taking into account localized states and the states
belonging to the continuum, we will seek the solution
to Eq. (9) in the form

(12)

where Aλ = (Aj, Aν) are the amplitudes which are arbi-
trary so far and λ = ( j, ν) is the complete set of quantum
numbers, uλ = (uj, uν).

Substituting expression (12) into Eq. (9) and taking
into account the orthogonality of states uλ(x), we obtain
the formal equations for amplitudes Aλ:

(13)

Let us now consider Eq. (8). We write it in the form

(14)

In the present case, we are dealing with the problem of
electron scattering in the potential field V11(x). For-
mally, the solution Eq. (14) can be written using a
Green’s function:

(15)

where  is the solution to Eq. (14) with zero
right-hand side. We have chosen the particular solution
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corresponding to sources at x  –∞. Substituting
solution (15) into Eq. (13), we obtain the following
explicit equation for amplitudes Aλ:

(16)

where

(17)

Function ψ1, in turn, can be obtained from Eq. (15) if
we substitute into its right-hand side the expression for
ψ2 defined by formula (12):

(18)

In order to find the scattering matrix t11 determined
by the asymptotic behavior of ψ1(x) for x  +∞:

ψ1(x) = t11 , we require the following expression for
the Green’s function:

(19)

where  and  are, respectively, the solutions
to the equation

(20)

with sources at x  ±∞. Function  has the fol-
lowing asymptotic forms:

(21)

while the asymptotic forms of  are given by

(22)

where t is the transmission amplitude and r and r' are
the amplitudes of reflection during scattering in the
field V11(x).

After analyzing the asymptotic form of the wave
function ψ1(x) for x  +∞, proceeding from Eq. (18)
and taking into account expressions (19) and (20), we
obtain
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Consequently, the scattering matrix in the channel
1  1 is defined as

(24)

This formula makes it possible to describe the inter-
action of resonances during the scattering of an electron
from impurities in an electronic waveguide in the
energy interval (E1, E2). It should be noted that, in the
energy interval (E2, E3), we must take into account
additional resonant states associated with channel 3;
i.e., we must consider a system of three coupled equa-
tions, etc.

B. Resonance Approximation

If the electron energy is close to the group of energy
levels in the potential well of V22(x), precisely these
bound states will interfere with the incident wave most
strongly. In this group of bound states, the most impor-
tant are those for which the magnitudes of the matrix
elements connecting these states with the states of the
continuous spectrum are comparable with the interval
between the nearest levels.

We retain in Eq. (16) only the resonant terms, omit-
ting nonresonant states belonging to the continuous
spectrum. Let us suppose that the number of amplitudes
being retained is determined by the number N of bound
states in the well. In this case, the explicit equation for
determining amplitudes Aj assumes the form

(25)

where

(26)

Consequently, in the resonance approximation, the
scattering matrix in channel 1  1 is defined as

(27)

The representation for the scattering amplitude in form
(27) is remarkable since it makes it possible to deter-
mine the resonant structure of the channel transmission
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in the general case. The formal solution to system (25)
can be written in the form

(28)

where Mc is the cofactor of matrix M. The scattering
amplitude can be written in the form

(29)

where

(30)

It can be seen from this expression that the poles of the
scattering amplitude are determined by zeros of the
function $(E), while the zeros of the amplitude are
determined by zeros of the numerator of 1(E).

The resonant structure of the scattering matrix
depends to a considerable extent on the properties of
matrix U, which, in turn, is determined by the proper-
ties of the Green’s function and the impurity potential
V(x, y). We will specially consider the case when the
matrix element possesses parity relative to reflections
x  –x (Vn, n'(x) = Vn, n'(–x)). We will also consider the
case of a general-position potential, when Vn, n'(x) ≠
Vn, n'(–x). In accordance with the reciprocity theorem,
the Green’s function possesses the following property:

(31)

If, however, the impurity potential is such that V11(x) =
V1, 1(–x), the equation for the Green’s function leads to
the additional relation

(32)

Using the reciprocity theorem, we can easily verify that
matrix U is symmetric (Uj j ' = Uj 'j). For the case when
the impurity potential possesses parity, we can easily
prove that the matrix elements of U between states with
different symmetries (symmetric s and antisymmetric
a) are equal to zero: Usa = 0.

It can be seen from the above expressions that the
behavior of the scattering amplitude is determined by
the matrix elements Uj j '. Using formula (19) for the
Green’s function, we can easily transform the matrix
element Uj j ' to the form

(33)
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where

(34)

(35)

Using the well-known relations between the wave func-
tions of the scattering problem,

(36)

the matrix elements Uj j ' can be presented in the form

(37)

In particular, the diagonal elements can be written as

(38)

where we have singled out the real and imaginary com-
ponents of Uj j.

The form of the denominator of Eq. (29) can be
determined in the general case. For this purpose, we
reduce the complex symmetric matrix M to the diago-
nal form. The elements of the matrix performing a uni-
tary transformation can be found by solving the system
of homogeneous equations:

(39)

Let us suppose that a set of complex solutions ,
which can be presented in the form
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(41)

It follows from the structure of the expression for

matrix M that  and Γα are in fact functions of

Q j j'
2m

k1"
2 t 2

-----------------–=

× Im u j x( )V12 x( )χ+ x( )

∞–

∞

∫ u j' x'( )V12 x'( )χ+∗ x'( )

x

∞

∫ 
 
 

,

R j χE
–( )∗ V12 u j〈 〉 .=

χE
+ rχE

+* tχE
–*,+=

χE
– r'χE

–* tχE
+*,+=

U j j'
m

2ik1"
2

---------------- F jF j'* R jR j'*+( )=

+
m

2ik1"
2

---------------- r
t
--R jF j'*

r∗
t∗
-----F jR j'*– 

  1
2
--- Q j j' Q j' j+( ).+

U jj i
m

2k1"
2

-------------- F j
2

R j
2+( )–=

+
m

k1"
2

----------Im
r
t
--R jF j* 

  Q jj,+

% jδj j' U j j'+( )Ω j'

j' 1=

N

∑ %̃Ω j.=

%̃α

%̃α %α
R

iΓα ,–=

$ E( ) E %α
R

– iΓα+( ).
α

∏=

%α
R

 AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002



INTERFERENCE OF QUANTUM STATES IN ELECTRONIC WAVEGUIDES WITH IMPURITIES 997
energy; however, the subsequent analysis will prove
that these functions depend on energy only slightly in
the case of a weak coupling between the channels.

The expression for 1(E) appearing in the numerator
of Eq. (29) may have zeros which indicate the possibil-
ity of total reflection of waves in a waveguide with
impurities. Below, we will demonstrate by specific
examples how these zeros are determined and will con-
sider possible consequences for the channel transmis-
sion.

In the case when the well parameters are such that it
contains a small number of energy levels (resonances),
we must obtain the general expression for the scattering
amplitude. Let us consider the case of a symmetric
impurity. We assume that the well contains only one
bound state. Using expressions (29) and (30) and taking
into account Eq. (37), we obtain

(42)

where the real resonance parameters have been intro-
duced:

(43)

(44)

It follows from Eq. (42) that the transmission amplitude
and, hence, the transmission have the structure of a

Fano resonance: a peak of width Γ1 at energy  and a

zero at energy  occur against the potential back-
ground determined by the amplitude t(E). It should be
noted that the peak width is determined by the matrix
element connecting a localized state with the contin-
uum of states of band 1.

In the case when a symmetric well contains two
energy levels, they can interact only through virtual
transitions to the continuum. The transmission ampli-
tude acquires the form
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It can be seen that the “initial” levels do not interact
directly (U12 = 0), but are connected through the matrix
element describing the transition from the local level to
band 1. As a consequence, the positions of two zeros on
the real energy axis depend on the parameter of cou-
pling between localized states and the continuum. The
scattering amplitude also has two poles. Thus, Fano res-
onances may interact effectively. It will be proved
below that this may lead to a number of interesting con-
sequences.

In the case of three energy levels, both the interac-
tion of levels with the continuum and their direct inter-
action are possible since the matrix element between
the states with the same parity differs from zero in this
case (U13 ≠ 0). The transmission amplitude can be writ-
ten in the form

(46)

where

It can easily be verified that the expression in the
numerator of Eq. (46), which can be presented in the
form

is a real function having three zeros in the energy range
under investigation, i.e., in the vicinity of the corre-
sponding three energy levels in the well.

Finally, we can write the expression for the ampli-
tude for a well containing four levels. In this case, we
have

(47)
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Fig. 3. Models of artificial impurities (quantum dots).
where the expression appearing in the formula has a
structure similar to that for the above cases of interac-
tion of resonance pairs. It can be seen that resonances
directly interact in pairs. We can easily verify that the
function

is real and find its four real zeros. In this case, the pole
function $(E) = $13(E)$24(E) defines two pairs of
poles.

In fact, the scattering matrix can be easily calculated
in the resonance approximation by using numerical
methods for any impurity. For this purpose, we must
construct localized states in the one-dimensional well
V22(x) and the scattering states in the well V11(x). Then,
we must determine the matrix elements and solve the
linear system of equations (25). The obtained expres-
sion makes it possible to study the dependence of trans-
mission on the parameters of the scattering potential.
The results of such calculations will be given below.

4. INTERFERENCE OF RESONANT STATES

We will now use the general expressions derived above
for the scattering amplitude in the resonance approxima-
tion to study interesting interference effects in electronic
waveguides with various types of scatterers.

A. Solitary Resonance

To begin with, we will analyze a resonance in the
case of an impurity with a finite transverse dimension;
the size of the impurity along the channel is assumed to

1 E( ) 113 E( )124 E( ) 613 E( )624 E( )–=
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be smaller than the electron wavelength (Fig. 3a). The
matrix elements of the potential are defined as

(48)

where v nn' > 0. In this case, a single level splits from the
subband n = 2; this level interacts with the states of the
subband n = 1. The solution to Eq. (10) may give only
one bound state in the energy interval E1 < E < E2:

(49)

with the wave function

(50)

The scattering amplitude t ≡ t(E) is determined by solv-
ing Eq. (20); it can be written in the form

(51)

In this case, t(E) is a monotonic function of energy
since its pole lies outside the interval E1 < E < E2. The
matrix elements determining the resonance structure of
t11 are given by

(52)

As a result of substitution of the derived expressions
into Eq. (29), we obtain

(53)
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where

(54)

It should be emphasized that it is configuration interac-
tion of a level in the well V22(x) with a state from the
continuous spectrum of the subband n = 1 that leads to
the emergence of an asymmetric resonance in transmis-
sion.

It is useful to compare the expression derived for the
transmission amplitude in the resonance approximation
with the expression obtained as a result of the exact
solution to Eqs. (8) and (9) for potential (48). We can
easily find that

(55)

This expression differs formally from formula (29)
with 1(E) and $(E) defined by formulas (53), but it
can be reduced to the same form by expanding the
numerator and denominator of the expression for t11(E)
in the vicinity of its zero and pole and omitting small
nonresonant terms. The obtained result demonstrates
the obvious fact that the resonance approximation cor-
rectly describes the transmission structure in the energy
range E1 < E < E2.

B. Interference of a Resonant Pair

More interesting interference effects are observed
when resonances can interact with one another. It is
well known that Breit–Wigner resonances repel one
another during their interaction, while Fano resonances
may exhibit a new effect which was called earlier the
collapse of resonances [23]. We will analyze the col-
lapse of resonances in the framework of the theory
developed above applied to two wells (see Fig. 3b) each
of which can be described by a matrix of the type (48).
For this purpose, we require explicit expressions for the
corresponding matrix elements. The matrix elements
Vn, n '(x) for a two-well system are defined as

(56)

In the case under investigation, parity is conserved and
we can consider even and odd states of scattering sepa-
rately. Solving Eq. (10) for even states, we obtain

(57)

where as and bs are constants determined by the bound-
ary conditions and normalization. The condition for the

∆1

"
2v 12

2 v 22v 11

m k1
2 v 11

2+( )
------------------------------, Γ1

"
2v 12

2 v 22k1

m k1
2 v 11

2+( )
----------------------------.= =

t11 E( )
ik1 ik2 v 22+( )

ik1 v 11+( ) ik2 v 22+( ) v 12
2–

------------------------------------------------------------------.=

Vn n', x( )
"

2

m
-----v n n', δ x

L
2
---– 

  δ x
L
2
---+ 

 + 
  .–=

us x( )
as k2 x( ), x L/2,<cosh

bse
k2 x–

, x L/2,>



=

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
existence of a symmetric energy level with energy %s

lying below E2 has the form

(58)

Similarly, we can find the energy %s for an odd state
(this level exists only for certain parameters of the sys-
tem). It is equally easy to solve the scattering problem
for the field of two wells, i.e., to obtain wave ampli-
tudes in the channel n = 1. For our subsequent analysis,
we will need only the transmission and reflection
amplitudes, which have the form

(59)

It can easily be seen that all the matrix elements deter-
mining the resonance scattering amplitude for the
potential under investigation can be expressed in terms
of r, t, and functions of bound states:

(60)

(61)

(these are the explicit expressions for symmetric states
only). Calculating the resonance transmission ampli-
tude, we obtain

(62)

Using the explicit expressions for r and t, we separate
the real and imaginary components of the matrix ele-
ments Uss of a symmetric state:

(63)
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Similarly, for an odd state, we have

(64)

Consequently, the pole part of the scattering amplitude
can be written in the form

(65)

The expression appearing in the numerator of the trans-
mission amplitude and determining its zeros has the
form

(66)

It is important to note that the characteristics of reso-
nances are essentially the oscillating functions of the
parameters of the system. Let us change the distance
between the wells. In this case, one of the widths, say,
the width Γs of a symmetric resonance, may vanish.
This is accompanied by the collapse of the resonance.
It follows from relations (63) that this takes place under
the following condition:

(67)

If this condition is satisfied, the pole shifts to the real
axis and its energy exactly coincides with the energy of
a zero.

Thus, the necessary condition for the collapse of
resonances in the system is vanishing of matrix ele-
ments Fs or Fa. Let us consider it in greater detail for Fs.
We present the wave function χ+(x) in the form of a
superposition of the symmetric and antisymmetric
components:

(68)
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In accordance with relations (17), the matrix element
can be written in the form

(69)

In the case of pointlike potentials, the contribution to
the integral appears from neighborhoods of the points
x = ±L/2. In an open channel, we take the wave function

in the form  = acosk1x. The matrix element may

vanish if the condition (±L/2) = acosk1L/2 = 0 is sat-
isfied. This means that the nodes of a wave in the scat-
tering channel exactly coincide with the positions of
impurities. Obviously, conditions (58) and (67) must be
satisfied simultaneously for this purpose. This may
occur if the levels in the well V22(x) emerging below E2

intersect with virtual energy levels in a rectangular well
of width L. This follows from expression (67).

C. Interference of Resonant States

Let us now consider the case when a potential well
may generate a large number of resonances and analyze
their interaction. We can expect that both nontrivial
interaction between energy levels and the nontrivial
behavior of asymmetric resonances are possible in such
a system [23]. Let us consider a 2D impurity in the
channel (see Fig. 3c). The impurity potential can be
written as

(70)

where ϑ(x) = 0 for x < 0 and ϑ(x) = 1 for x > 1; Xs = 0
and Ys are the coordinates of the center of the well; Vatt

is the well depth; and Watt is its transverse size. For such
a well, the matrix elements Vnn' can be easily found in
explicit form. We will be interested in the transmission
of an electronic waveguide containing the given scat-
terer. It should be noted that, in spite of the apparent
simplicity, the given problem has no exact solution.
Proceeding in accordance with the algorithm proposed
above, we first find solutions for energy levels in the
well V22(x). The energy levels for symmetric and anti-
symmetric states can be determined by solving the tran-
scendental equations

(71)
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where

The number of levels in a well is determined by the

parameter v  = L . We can easily derive the

wave functions  and  corresponding to
energy levels. For example, for even states, we have

(72)

where  and  are the constants determined by the
boundary conditions and normalization (the corre-

sponding quantities for odd states are denoted by 

and ). The solution of the scattering problem gives

(73)

where q1 is the wave vector of a particle in the well,

and k1 is the wave vector in the scattering channel 1,

It follows from expression (73) that the potential scat-
tering amplitude has the pole structure determined by
reflections at the well edges. Such poles correspond to
Breit–Wigner resonances.

We can write the expressions for the matrix ele-
ments determining the resonant structure of the scatter-
ing amplitude:
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and C and S are connected through the relation

(76)

We have also introduced the functions

(77)

Let us present the matrix elements Ujj ' in the form

(78)

where

(79)

and ImQjj ' = 0. In the case of a symmetric well, the
matrix elements Ujj ' between the states with different
parities are equal to zero. It is convenient to introduce
the matrix elements Uss' and Uaa' which connect the
pairs of symmetric (ss') and antisymmetric (aa') states:

(80)

The expression for the transmission amplitude was
derived in the general form in Section 2 for a small
number of resonances. If the value of parameter v  is
such that v  < π/2, the well contains only one energy
level and, hence, one Fano resonance in transmission
(42). In the given interval of v, the parameters of the
resonance are monotonic functions of the well width.
For π/2 < v  < π, the transmission contains two Fano
resonances (45), but the parameters of the resonances
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Fig. 4. Resonant structure of the transmission of a waveguide with an extended impurity for different values of L: 0.7W, 1.3W, 2.7W,
and 3.6W (the energy is measured in units of E1 = π2"2/2mW2) and for the following impurity parameters: V11 = 1.515E1,
V12 = 0.521E1, and V22 = 1.0E1.
in this interval may oscillate since, in the given case,
we have

(81)

and the widths of the resonances are defined as

(82)

The number of Fano resonances is equal to three for π <
v  < 3π/2, four for 3π/2 < v  < 2π, etc.

Let us consider the results of numerical calculations
in the case of a 2D impurity of rectangular shape
(Fig. 3c). We fix the well depth and vary its length L.
Figure 4 shows the probability of transmission through
a waveguide with an extended symmetric attracting
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impurity as a function of energy E (E is measured in
units of E1 = π2"2/2mW2, W being the waveguide width)
for various values of parameter L. It can be seen that for
L = 0.7W, when potential V22(x) contains only one
energy level, the transmission contains one Fano reso-
nance. For L = 1.3W, L = 2.7W, and L = 3.6W, one can
see two, three, and four Fano resonances, respectively.
The above analysis shows that, by varying the impurity
parameters (the parameter L in the present case), we
change the number of energy levels and the number of
resonances in the transmission. The zeros of the trans-
mission amplitude always lie on the real axis, while its
poles lie in the complex plane. We can also see the evo-
lution of Breit–Wigner resonances emerging as a result
of wave interference in the channel n = 1. For the cho-
sen parameters, they lie far in the complex plane. When
the Breit–Wigner resonances intersect Fano reso-
nances, they interact effectively.

Let us now consider the possibility of the collapse of
resonances in the given system. We will study the
behavior of characteristics of resonances as functions
of well parameters, e.g., its width L. An analysis of
expression (82) shows that the function Re(C2/t) cannot
vanish. It can easily be verified that only the functions
fj(E) may have zeros, which occurs when the matrix
AND THEORETICAL PHYSICS      Vol. 94      No. 5      2002
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elements Fs or Fa vanish. Let us consider in greater
detail the matrix element

(83)

where we have used the expression  = Ccosq1x
for the wave function in the well region. It follows from

Eq. (83) that the integral may vanish if  changes
its sign, and the positive contribution to the integral is
exactly compensated by the negative contribution. This
is possible if one of the equalities (71) holds for even
and odd energy levels, respectively. Thus, the collapse
for even states takes place if the following conditions
are satisfied simultaneously:

(84)

the corresponding conditions for odd states being

(85)

Let us consider in greater detail the meaning of the
derived expressions for even states. We will measure
energy from E2. Then, the first equality in (84) can be
interpreted as the condition for the existence of energy
levels in a well of depth |V22| and the second equality as
the condition for the existence of energy levels in a well
of depth E2 – E1 + |V11| (shown by dashed lines in Fig. 5).
Let us now increase the size L of the well. Upon a
change in parameter L, the energy levels of the deeper
well descend more sharply and intersect the energy lev-
els in the shallower well. The intersection of levels
leads to the collapse of resonances. Figure 6 shows the
graphical solution of equations for the two-parametric
spectral problem (84) and (85). The intersection of con-
tinuous curves makes it possible to determine the criti-

cal parameters ( , ) for symmetric states (i = 1,
2, …). Similarly, the intersections of dashed curves
give the critical parameters of asymmetric states of the
system. For example, for the impurity parameters
selected earlier, we can indicate several pairs of critical
parameters for symmetric states: (1.1562W, 3.2987E1),
(2.2512W, 3.1188E1), (3.3310W, 3.0633E1), etc. Figure 7
shows transmission as a function of energy for the fol-
lowing three values of the longitudinal impurity size L:

1.95W,  = 2.25116W, and 2.45 W. It can be seen from
the figure that, as L passes through the critical value, the
matrix element of the interaction of states changes its
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sign, owing to which the collapse and swing (change
from the “zero–pole” to the “pole–zero” positions) of
Fano resonances can be observed.

D. Resonances in a Waveguide 
with Asymmetric Impurity

Let us now consider the case when the impurity
potential does not possess parity relative to the transfor-
mation x  –x: V(x, y) ≠ V(–x, y). For the sake of def-

4

3

2

1

0

0 1 2 3 4
L

E

Fig. 6. Graphic solution of Eqs. (84) and (85) for the two-
parametric problem. The intersection of solid curves gives
critical parameters of symmetric states, while the intersec-
tion of dashed curves gives critical parameters of asymmet-
ric states of the system.

Vnn (x)

V22(x)

V11(x)
E1

E2

x

E1 – |V11|

E2 – |V22|

Fig. 5. Diagram of intersection of energy levels in effective
potential wells |V22 | and E2 – E1 + |V11 |.
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initeness, we consider a 2D two-component impurity
(see Fig. 4d) whose potential field will be chosen in the
form

(86)

V x y Ys–,( )

=  

–Vaϑ La x+( )ϑ
Watt

2
--------- y Ys–– 

  , x 0,<

–Vbϑ Lb x–( )ϑ
Watt

2
--------- y Ys–– 

  , x 0.>







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The position of energy levels in the well V22(x) in this
case is determined by the relation between the quanti-
ties Va and Vb in expression (86) (for the sake of defi-
niteness, we assume that |Va | > |Vb |). The energy levels
can be determined from the equation

(87)

where α = κ/q2b, β = κ/q2a, γ = q2a/q2b, θ2a = q2aLa, θ2b =
q2bLb, and L = La + Lb. The coefficient of transmission
of a particle above the well V11(x) has the form

1 β θ2atan+( ) α θ2btan–( )
=  1 α θ2btan+( ) γ θ2atan α–( ),
(88)t
1

θ1a θ1bcos
i
2
--- β̃ β̃

1–
+( ) θ1bsin– 

  i
2
--- θ1a θ1b α̃ α̃ 1–+( ) i γ̃ γ̃ 1–+( ) θ1bsin–cos( )sin–cos

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
where  = k1/q1b,  = k1/q1a,  = q1a/q1b, θ1a = q1aLa,

θ1b = q1bLb, and q1a, b = /". It
should be noted that, in the case of scattering in an

α̃ β̃ γ̃
2m E E1– V11 a b, ,+( )
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Fig. 7. Swing of a Fano resonance upon the change of zero–
pole to pole–zero positions for three values of parameter L:
1.95W, L = 2.25116W, and 2.45W.
A

asymmetric field V11(x), the transmission associated
with potential scattering (88) also displays a series of
alternating maxima and minima, but in contrast to the
symmetric problem, the values of transmission ampli-
tude at the peaks may be smaller than unity.

In order to determine the resonant contribution to
the transmission amplitude, we must calculate the
matrix elements Fj, Rj, and Ujj ' taking into account the
fact that V12(x) is now a step function. For this reason,
integration is carried out over the two regions (–La, 0)
and (0, Lb). The matrix elements Ujj' can be written, as
before, in the form (33), where Qjj ' is now calculated by
using the formula

(89)

It can be seen that the statement that Im Qjj ' = 0 is also
valid for an asymmetric well; however, in the general
case, the matrix Ujj' may contain nonzero nondiagonal
elements. Let us find out how this circumstance
changes the structure of resonances.

In the case when the well V22(x) contains one energy
level, the expression for the channel transmission for-
mally coincides with formula (42), but the resonance

Q j j'
2m

k1"
2

---------- xV12 x( )u j x( )d

La–

0

∫–=

× x'V12 x'( )uj ' x'( ) q1a x x'–( )sind

x

0

∫


+ x'V12 x'( )uj ' x'( ) q1b x x'–( )sind

0

Lb

∫ 



+
2m

k1"
2

---------- xV12 x( )u j x( ) x'V21 x'( )uj ' x'( ) q1b x x'–( ).sind

x

Lb

∫d

0

Lb

∫
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parameters depend on the type of well. If the well V22(x)
contains two energy levels, we have

(90)

where

It can easily be seen that zeros of the resonance also lie
on the real energy axis. It was noted above that the
denominator of expression (90) can be presented in the

form $(E) = (E – )(E – ), where the positions of

the poles  and  are determined by the solutions to
the equation

If we assume that the asymmetry parameter of the
potential well V(x, y) is small (Vb/Va ≈ 1), the position
of the poles will be determined in accordance with

t11 E( )

= t E( )
E %1

0
–( ) E %2

0
–( ) Q12Q21–

E %1– U11–( ) E %2– U22–( ) U12U12–
----------------------------------------------------------------------------------------------,

%1
0 %1 Q11, %2

0
+ %2 Q22.+= =

%̃1 %̃2

%̃1 %̃2

%̃ %1– U11–( ) %̃ %2– U22–( ) U12U12– 0.=

%̃1 %1 U11

U12
2

%2 %1–
------------------,–+≈

1.2

1.0

0.8

0.6

0.4

0.2

0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.00

0.96

0.94

0.92

0.90

0.98

E

T

(a)

(b)

Fig. 8. Transmission of a channel with a two-component
impurity (the impurity size L = La + Lb = 1.7W, Vb/Va = 0.5).
The remaining parameters are the same as in Fig. 4.
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This means that, in the present case, we are dealing
with a direct interaction of Fano resonances, which is
determined by the matrix element U12. Figure 8 shows
the transmission of a channel with a two-component
impurity (the impurity size is L = La + Lb = 1.7W,
Vb/Va = 0.5). The potential scattering of a particle above
the well V11(x) results in a series of maxima and minima
on the dependence of T on E (Breit–Wigner reso-
nances), while Fano resonances are connected with the
impurity levels split from the E2 band. The examples
considered above show that, in the absence of symme-
try, the structure of Fano resonances remains
unchanged: transmission has zeros on the real axis and
poles corresponding to transmission peaks. However,
the peaks of Fano resonances as well as of Breit–
Wigner resonances become smaller than unity due to
the loss of coherence in the reflection from the edges
of an asymmetric well.

If, however, the asymmetry parameter is small, res-
onances may become narrower, but no resonance col-
lapse takes place in the case of an asymmetric impurity.
Expressing F1R1 and F2R2 explicitly in the regions
(−La, 0) and (0, Lb) as was done for a symmetric impu-
rity, we can easily verify that the widths of Fano reso-
nances cannot vanish exactly in the absence of parity of
states. In this case, the integrands will contain complex-
valued functions, and the vanishing of Fano resonances
requires that the real and imaginary components of
matrix elements become simultaneously equal to zero,
which cannot be achieved with a single free parameter
(e.g., the longitudinal size of the well). However, as in
the symmetric case, a change in the impurity parame-
ters may result in the intersection of the energy levels of

%̃2 %2 U22

U12
2

%2 %1–
------------------.+ +≈

0.00020

0.00015

0.00010

0.00005

0
2.16 2.20 2.24 2.28

É

La + Lb

2

1

3
4

Fig. 9. Dependence of the Fano resonance width on param-
eter L = La + Lb for different values of the impurity asym-
metry parameter Vb/Va: Vb = Va (1), Vb = 0.95Va (2), Vb =
0.9Va (3), and Vb = 0.85Va (4).
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effective wells leading to the swing of a Fano reso-
nance. It should be noted that interacting states in the
given system have no definite parity. Figure 9 demon-
strates the dependences of the width of a Fano reso-
nance on the parameter L = La + Lb for various values of
the impurity asymmetry parameter. Figure 10 shows
the swing of a Fano resonance, when parameter L
passes through a value close to the critical value for a
symmetric impurity (the asymmetry parameter Vb/Va =
0.85). It can be seen from Fig. 10 that the pole and the
zero of an isolated Fano resonance change places upon
a change in parameter L, the width of the resonance
remaining finite.
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Fig. 10. Swing of a Fano resonance. The impurity asymme-
try parameter Vb/Va = 0.85; the parameter L = La + Lb
assumes the following values: (a) 1.95W; (b) 2.25W; and
(c) 2.45W.
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5. CONCLUSIONS

Thus, the proposed approach makes it possible to
analyze the resonance structure of the amplitude of
transmission of a particle through an electronic
waveguide containing attracting impurities of an arbi-
trary shape. It was proved that finite-size impurities cre-
ate a series of quasi-bound states which are manifested
as resonance–antiresonance pairs in transmission. The
results presented above demonstrate explicitly that, in
all cases considered above, Fano resonances are due to
interference of a propagating electron state with quasi-
bound states. Fano resonances possess a universal
structure and are characterized by three real parameters
(%R, %0, Γ). Upon a change in the impurity parameters,
resonance zeros and poles move in accordance with the
change in the position of energy levels in the well. In
the case of a symmetric impurity, a pole and a zero may
collide, which leads to the collapse and swing of a Fano
resonance. The theory developed in this work makes it
possible to study the interaction of asymmetric reso-
nances in wells of an arbitrary shape. The predicted
effects may be discovered in electronic waveguides
with artificial impurities [15].

It should also be noted that the proposed approach
makes it possible to consider problems of resonant
transformation of waves of any origin, e.g., electromag-
netic or acoustic waves.
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