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Abstract—The paper deal s with the problem of current flow in doubly periodic two-dimensional mediawhose
unit cell is aparallelogram. Local distributions of currents (fields) are found, and the effective conductivity of
such mediais calculated for equal phase concentrations. The dependence of conductivity on the angle of paral-
lelogram is determined. This dependenceis shown to be threshold in media of the metal—insulator type. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is known that Dykhne [1] established the invari-
ance of two-dimensional equations of direct current
with respect to linear transformations of rotation, and,
as a conseguence, an expression for effective conduc-
tivity was derived,

Ot = /0107, (1)

where g; (i = 1, 2) denotes the phase conductivities.
This expression is valid for both random and doubly
periodic arrangement (“checkerboard”) of phases. For
the checkerboard case, this result was obtained later
using the method of conformal transformations; the
local distribution of currents (fields) was also deter-
mined [2, 3]. Recently, this result was obtained using a
different method [4].

It is the objective of this study to find the distribu-
tionsof local currentsand to cal cul ate the effective con-
ductivity of two-phase doubly periodic media. Treated
astheinitial model was a periodic structure whose unit
cell consists of two contiguous equal parallelograms
(Fig. 1). Because of the symmetry of the problem, the
field pattern is periodically repeated; therefore, it is suf-
ficient to find the distribution in aunit cell consisting of
two parallelograms with different conductivities. We
will explain the solution algorithm of the problem. To
follow Emets [2, 3], we use the Schwarz—Christoffel
integral to construct the mapping of the contiguous par-
alledlograms onto the lower and upper half-planes.
Then, the resultant boundary-value problem in the
matrix formistransformed to aset of equationsfor Rie-
mann scalar problems. The solutionsto the scalar prob-
lems are found by the standard method. We perform
inverse transformationsto find the local distributions of
fields and currents. On performing the necessary aver-

agings, we will finally derive the general expression for
the effective conductivity, which depends both on the
phase conductivities and on the geometry of the unit
cell, i.e, the angle of paralelogram. In the case of
square cells, the formulatransformsto the known result
of Dykhne given by Eq. (1). In the limiting cases of
dtratified media formed by one-dimensiona lines,
known expressions for stratified media are obtained.
The step dependence of the effective conductivity on
the angle of paradlelogram for a meta-insulator
medium appears to be of the most interest.

The gtructure of this paper isasfollows. In Section 2, a
complex representation is introduced for a two-
dimensional conductivity problem. In Section 3, a
conformal mapping is constructed for contiguous par-
allelograms of a unit cell onto the lower and upper
half-planes. In Section 4, the Riemann boundary-
value problem is formulated, and solutions are
obtained for scalar problems with preassigned bound-
ary conditions. In Section 5, the general expression
for the effective conductivity of the medium is
derived, and the limiting cases are analyzed.
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Fig. 1. A two-color doubly periodic structurewith aunit cell
formed by parallelograms.
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2. COMPLEX REPRESENTATION
OF TWO-DIMENSIONAL CONDUCTIVITY
PROBLEM

Wewill treat atwo-color structure with aunit cell of
equilateral contiguous parallelograms with different
conductivities. We will mark the physical quantitiesfor
the respective phases by the superscripts 1 and 2. The
distribution of electric fields (currents) is described by
the set of equations

divj = 0, j = oe 2
with the boundary conditions of continuity of the nor-

mal components of current and tangential components
of the electric field

iD= @ e =e?, 3)

For solving the problem by the methods of the the-
ory of functions of complex variables, we go over to the
plane of complex variable z = x + iy and introduce the
complex values of current density and electric field
strength,

curle = 0,

iY@ = Py -iiPxy), @)
E“2) = EV(x y)—iEP(xy), k=1,2. (5)

As is known, this representation is valid for functions
satisfying the Cauchy—Riemann conditions. In our
case, this is possible, because the conductivity of the
medium varies discretely and assumes constant values
of g; (i =1, 2) in the respective cells. Here, the equa-
tions of direct current in the two-dimensional case coin-
cide with the Cauchy—Riemann equations. Indeed, the
equation of continuity for current gives one of these
conditions,

aJ (k) J (k)
x - _Yly
ox oy’ ©)

and the second condition follows from the equation
curle = O; for cells with constant value of o, the latter
equation is equivalent to the equation curl j = 0,

oy ox
Anaogously, the equations curl e = 0 and dive=0
(following from the equation divj = 0) lead to the

Cauchy—Riemann conditions for the electric field.
Ohm’slaw in the complex form is written similarly,

i(2) = oE(2). (8)

3. CONFORMAL TRANSFORMATION
ONTO THE ¢ PLANE

We will construct a conformal mapping of the inter-
nal regionsof contiguous parallelograms onto the lower
and upper half-planes. In the case of doubly periodic
mediaformed by parallelograms, thisis done using the
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Fig. 2. The correspondence between points under condi-
tions of conformal mapping of parallelograms on a half-
plane.

Welerstrassfunctionw =T1(2) (see, for example, [5]). In
this case, paralelogram abcd goes to the lower half-
plane, and parallelogram abc'd', to the upper half-plane
with a section on the axisn = 0. The correspondence of
the transformation points is shown in Fig. 2. In our
case,

b= T(l),

d = M(-lcosa +ilsina),

cn(l(1—-cosa) +ilsina),

w, =1, w, = —icosa +ilsina,

where w; and w, are the periods of the doubly periodic
Welerstass function.

In the particular case of squares, a lemniscatic case
is observed,

b=Tnd), c=n@+il), d=n(il.

4. SOLUTION OF RIEMANN BOUNDARY-VALUE
PROBLEM IN A MATRIX FORM

The boundary conditions in the { plane in the nota-
tion for complex current,

1“0 = iPE ) =R EnN),

hold and have the following form in different portions
of the & axis:

jl_j-l = jz—j_2a
9

O, ,. - . -
o—j(llﬂl) = o+

on the segments[ab], [cd], and [¢'d] (here, the bar over
the function indicates complex conjugation); and

ji*+Ja—i(ji—]J1)cota
= jo+j2—i(jo—]2)cota,
%uh+hmma40rﬁm 49
= (j, + J2)cota—i(j,— J2)

on the segments [bc], [ad], [bc], and [ad].
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Therefore, the initial boundary conditions are
reduced to athree-body Riemann boundary-value prob-
lem relative to the piecewise analytic function j({). The
coefficients of the problem have discontinuities on the
& axisat pointsb, ¢, and d. For solving this problem, we
will formulate an equivalent problem for two pairs of
functions. Asfollowsfrom the set of equations defining
the boundary conditions, four unknown quantities arise
inthe problem: j,and j«, wherek = 1, 2. In accordance
with [2], we will express the boundary values of j, and

j1 as functions of j; and j,. We will introduce the
piecewi se continuous analytic vector function

O O
o) = 014%g
OjiQ) 0
The introduced function satisfies the symmetry condi-
tion
- Op10
o) = 091 oe).
0100
Onthe € axis, it assumesthe following values:
N O O
Oji(g) 0
and
L] [l
(&) = O {1(2) 0.
Oja(&)td
As represented, the boundary conditions formulate the

Riemann boundary-value problem in the vector-matrix
form,

®°(€) = GO (2), (11)
where the matrices G, have the following form:
1l —(o, — U
Gj_ - 1 D 202 (01 02) |:|
0:+*000,-0, 20, O
on the [ab] interval and
G, = —1
0,%0;
[l ol
0 g _g SOt
o O 202 (01-%) e =i
] to —i O
O(g, —0,) 29— 0
0 (02-02) Gt 7 20, 0

on the [bc] interval.
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The solution of the matrix problem is constructed by
reducing it to two independent Riemann scalar prob-
lems. For this purpose, it is necessary to simplify the
boundary conditions and diagonalize of the matrices of
boundary condition G;. For this, we introduce a new
piecewise analytic function

LIJ(Z) — % qu(Z) %
OW,(O) 0

The introduced function is related to the initial vector
function ®(Q) by

_O®(), ImZ>0
P = EM®(2), ImZ <0.

Let the matrix M coincide with the matrix G5 of bound-
ary conditions on the axis (a;a,). Then, on thisaxis, the
boundary-value prablem take the form

Wi(E) = W(2).
Consequently, on thisinterval, the function can be ana-
Iytically continued from one half-plane to the other. In
the remaining part of the real axis, the boundary condi-
tions take the form
W'(E) = GMTWT(E). (12
Here, G = G; on the [a,a,] segment and G = G, on the
[a,35] segment. Further simplification consists in the
diagonalization of the resultant matrices of boundary
conditions (12). For this purpose, we introduce yet
another function F(¢) by the relation

W(q) = SF(Q). (13)
Then, the boundary-value problem take the form
F'(£) = S'"GM'SF(%). (14)

The matrix Sis selected such that the relation
(AE-GM™HS =0

should be valid, where E is aunit matrix and A denotes
the eigenvalues of the characteristic equation

det\E-G;M7| = 0.

After necessary computations, we derive the values of
the roots of the equation

_ati(0,—0y)

_ a-i(0,-0,)
' a-i(0,-0y)’

* 7 @ i(o,ma) ™
Here, a? = 40,0, + (0, — 0,)2cot’a. The sought
matrix Sis found from the calculations of the eigen-
vectorsand is
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20,[a—i(0,—0,)] 40,0, +i[cota (o, + 0,)° + a(0, — 0,)]
40,0, +i[cota (o, + 0,)° —a(o, — 0,)] 20,[a+i(0,-0,)]
i o

S =

[ |
o |

Asaresult, we derive the set of independent boundary- ) i(o+Y)
value problems j2 = Aexp[——i_}|cl|x(2) (18)

F1(8) = MF1(8), Fa(8) = MFa(8).  (16)

Next, the solution is constructed in a standard manner
using the theory of a Riemann scalar problem [6] and

+ Bexp[—@ﬁcﬂ X(2).

has the form ere,
FiQ) = CX(@), FaQ) = &XHQ), oo 201reot’a o 20,1+ cofa
(C-e)"(l-ey)’ (17) a—cota (o, —0,)’ a+ cota(o,—0,)
X(Q) = ' are constants and moduli |c;| are defined by specifying

Y
¢ the external current.
Here, y=(0,—0;)/a. Thus, we derive the following rel ations between the
One can readily see that, in the particular case of ~average values of currents and fields:

squares, the derived expressions transform to the o,

known formulas derived by Emets[2]. g,0= A0,d [ed= ;A (e, (29
Turning back to theinitial vector function and prop- _ 2 _

erly determining the phases of the coefficients C; and  Here, allowance is made for the fact that, in the case of

C, (see[2]), we derive the following expressionsfor the ~ @veraging over the unit cell areas, the average values

distribution of currents: differ by the phase exp(-imy).
iy = exp[w}|cl|X(z) 5. EFFECTIVE CONDUCTIVITY
2 OF TWO-PHASE MEDIA
(o —y) We use the foregoing results to find the expression
+ exp[— Y ]|C2| X(2), for the effective conductivity of the medium being
2 investigated,

ot (0, + 0,)cot’a + 40,0, — cota (0, — G,) + 20,41 + cot’a
eff — Y1 .
J(ol + oz)zcotza +40,0,—cota (o, —0,) + 20,41+ cot’at

(20)

The derived expression is rather cumbersome. This result may be easily understood because, in the
Therefore, we will investigate the limiting caseswhich  case of the parallelogram angle tending to zero, we

follow from the derived formula. have a medium consisting of one-dimensiona lines
(i) Let cota =0 (a = 192). Then, the expression for made up of alternating segments of conductivity o,
o and o,.

conductivity transforms to the known formula of e
Dykhne, (iii) With cota = —o (a = 102), we have the other
limiting case of a stratified medium, when the electric

Ogi = A/0,0,. (21) fiedisaveraged,

(i) Inthe case of cota =+ (a = 0), we will have Oy = (0,+0,)/2. (23)

the limiting case of stratified medium when the resis-  In this case, the medium is formed by aternation of

tance is averaged, one-dimensional homogeneous conducting filaments
5 with their conductivities.

Ogr = 9102 . (22) The obtained limiting results, namely, the angular

0,+0; dependence of effective conductivity, may further be
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interpreted as follows. If the conductivities of the
phases differ strongly as regards their properties, the
current largely flowsin the well-conducting phase, and
the flow of current from one phase to another proceeds
in the vicinity of the phase contact via a narrow neck.
In the case of small angles of the cells of the well-con-
ducting phase, the current density increases and,
accordingly, the resistance of the well-conducting
regionsincreases so that the flow viapoorly conducting
regions becomes more profitable: the area of the necks
increases. This corresponds to successive inclusion of
resistances (see Eq. (22)).

On the contrary, when the cell angle increases, the
region of necksin which the current flowsin the poorly
conducting phase decreases and, for fairly large angles,
the effect of the poorly conducting phase becomes
unimportant. In this case, the conductivity is described
by expression (23).

(iv) Of the most interest appears to be the step
dependence of the effective conductivity on the cell
angle in the case when one of the phasesis dielectric,

0, a<t/2
Ot L0
0.2, azm/2.

This result follows from the foregoing formulas. With
small cell angles and up to the straight angle 172, i.e.,
with “acute” contact of one-color conducting parallelo-
grams, the current density is such that, for flow from
one unit cell to another with one and the same conduc-
tivity, the other conducting phase must be included.
Because the conductivity of this phase is zero (insula-
tor), the effective conductivity of the systemislikewise
zero. In the case of wide contacts corresponding to the
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obtuse angle of the paralelograms, the current may
flow from one phase to another without involving the
other phase. Therefore, the effective conductivity of the
medium is other than zero.
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Abstract—Experiments on inelastic scattering of neutrons show that the crystal field spectrafor high-T, super-
conductorsR; _,CaBa,Cuz0y - 7 (R =Ho, Er; 0 <y < 0.25) have two spectral components associated with opti-
mally doped and overdoped clusters, respectively. An increase in the calcium concentration does not affect the
local density of charge carriersin clusters, but changes the concentration of clusters themselves and, hence, the
spectral weights of the spectral components. In light of such a*“two-phase” pattern observed earlier for cuprate-
based superconductors with a doping level below optimal, an increase in the charge carrier concentration leads
to asmooth transition (crossover) from the underdoped regime to the overdoped one. The obtai ned results show,
however, that these two regions of the phase diagram differ qualitatively in the form of charge distribution in
CuO, planes responsible for superconductivity. © 2002 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

It was assumed for along time that superconductiv-
ity in cuprates emerges in a homogeneous electron sys-
tem through, say, a magnetic mechanism of supercon-
ducting pairing. However, numerous experimental
results published in recent years indicate the presence
of space charge and spin inhomogeneities and lattice
effectsin cuprates associated with them [1-11]. Taking
into account these data, Schneider and Keller [11]
proved recently that the anomalous dependence of the
isotope effect on the doping level in cuprates can be
explained by treating the superconductor—insulator
transition as a 2D quantum phase transition in a hetero-
geneous system, whose critical point depends not only
on the charge carrier concentration, but also on theion
mass. This result confirms the opinion according to
which charge and spin inhomogeneities emerging for a
low doping level asaresult of strong electron—electron
and electron attice interactions determine the proper-
ties of cupratesto a considerable extent and are respon-
sible for the emergence of superconductivity in them.
In this connection, the experimental study of the spatial
distribution of doping-induced chargesin CuO, planes
responsible for superconductivity is undoubtedly of
interest.

The crystal field potential at the site of arare-earth
ion located in a cuprate between two adjacent CuO,
planes is determined by the spatial distribution and

magnitude of the electric charge surrounding this rare-
earth ion. Consequently, the crystal field spectrum of
the rare-earth ion, which is measured with the help of
inel astic neutron scattering, isan ideal tool for studying
doping processes in copper—oxygen perovskites by
charge carriers. The neutron spectroscopy technique
makesit possibleto directly observe and describe quan-
titatively the mechanism of charge transfer from CuO
chains to superconducting CuO, planes during doping
and to obtain unique information on cluster formation
indicating the emergence of “frustrated phase separa-
tion” as well as on the symmetry of the superconduct-
ing order parameter [12—16].

The effect of frustrated phase separation reflects the
considerable difference between the charge density
averaged over the sample volume and the local charge
density in the vicinity of a doping site. This difference
is manifested in the superposition structure of the crys-
tal field spectra whose different spectral components
may be put in correspondence to different local config-
urations in the environment of rare-earth ions, which
coexist in the sample, while the spectral weights of the
components are determined by the probability of
detecting a given configuration for a given doping level
[12, 14]. However, the cluster formation under doping
of high-temperature cuprates has been reliably estab-
lished by the neutron spectroscopy method only for the
compound RBa,Cu;z0O, (R stands for a rare-earth ele-
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ment) with R = Er, the doping being carried out by
changing the oxygen content (6 < x < 7) [12, 14]. Itis
well known that doping in 123 systems can be carried
out not only by varying the oxygen content (off-plane
doping), but also by doping the cation sublattice, e.g.,
upon partial substitution of Ca?* ions for R3* ions (in-
plane doping) [17]. The substitution of calcium may
transfer the system to the overdoped regime character-
ized by a decrease in the superconducting transition
temperature T, upon an increase in the electronic hole
concentration, thus expanding the range of investiga-
tions.

In the present work, neutron spectroscopic study of
the effect of in-plane doping on the fine structure of the
crystal-field spectra of the overdoped compound
Ho, _,CaBa,Cu,0 - 7 iscarried out. The holmium sys-
tem was chosen by us sincethe crystal field spectrum of
Ho** ions in the orthorhombic phase consists only of
singlets, which makes it possible to interpret unambigu-
oudly the experimental spectra of inelastic scattering of
neutrons. Inthe analysis of theresults, we used the dataon
neutron inelagtic scattering for Er;_ ,CaBa,Cuz0y-+
obtained earlier [18, 19]. The crystal field spectra for
both compounds (Ho, _,CaBa,Cu;0, and
Er, _,CaBa,Cu;0,, 6 <x < 7) werereliably established
in the entire oxygen stoichiometry region 6 <x<7[13,
15]. It will be shown below that a combined analysis of
neutron spectroscopic datafor the holmium and erbium
systems leads to the conclusion that, first, the effect of
frustrated phase separation is independent of the dop-
ing method (in-plane or off-plane doping) and, second,
clusterswith different charge carrier concentrations are
also preserved in the deeply overdoped regime with
T, = 56 K, athough the form of the charge distribution
in CuO, planes changes qualitatively in the vicinity of
the optimal doping level.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Ceramic samples of Ho,_,CaBa,Cu;0,~; (y = 0,
0.1, 0.25) were prepared by using the standard tech-
nigue from high-purity oxides Ho,0O5 and CuO and car-
bonates CaCO; and BaCO;. The stoichiometric mix-
tures of theinitial reagents were annealed in adynamic
forevacuum under gradual heating from 820 to 850°C
for 20 h until complete decomposition of carbonates.
Subsequent synthesis was carried out in air at 900—
960°C for 80 h with several intermediate homogeniza-
tion processes. The samples were then annealed in an
oxygen flow at 1000°C for severa hours and slowly
cooled to 350°C also in oxygen. Such a procedure min-
imizes the emergence of BaCuO, and Ba,CaCu;Oq4
impurities, facilitates the most complete substitution of
calcium for rare-earth ions at lattice sites, and makes it
possible to attain a homogeneous distribution of oxy-
gen over the sample volume with an oxygen concentra-
tion closeto x = 7 [20]. The phase purity of the synthe-
sis products was controlled by using X-ray diffraction.
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The superconducting properties of the obtained
samples were verified using ac magnetic susceptibility
and dc resistivity measurements by the standard four-
probe technique, and the crystal structure of the sam-
ples was determined using high-resolution neutron
powder diffraction. These results were described in
detail in [21]. The ac susceptibility measurements
revealed that the dependence of T, on the calcium con-
centrationy (T, = 92, 71, and 56 K for y = 0, 0.1, and
0.25, respectively) isin accord with the results obtained
by other groups of scientists[18, 20]. The absolute val-
ues and temperature dependences of resistivity confirm
that the samples with substituted calcium are in the
overdoped regime [21]. (It should be noted that the
static magnetic susceptibility measurements which are
often used for verifying the presence of overdoping
regime are inapplicable in the present case since the
dominating contribution of the rare-earth ion to the sus-
ceptibility masks the absence of a pseudogap which is
a distinguishing feature of the overdoping regime.)
According to the results of neutron diffraction analysis,
the substitution of calcium leads to a slight increase in
the lattice parameter ¢ and to a decrease in the orthor-
hombicity s= 2(b—a)/(a+ b), whereaand b arethelat-
tice parameters, and the chemical composition of the
samples (according to the results of profile analysis of
diffraction patterns) can be written in the form
HOBa,Cu;0¢ g5(1), H00.9046)C.006(6)B2CU306 9912, and
HOy 754(8)Cab 2468 B3 CU306 g6(4) (the error in determin-
ing the occupation numbersis given in parentheses; the
value of the Ca concentration in the samples can be
refined owing to a considerable difference in the neu-
tron scattering amplitudes of Ho and Ca nuclei) [21].

The measurements of the neutron inelastic scatter-
ing spectra associated with transitions between the
crystal field levels of the lower multiplet 515 of Ho%*
ions were made on the tripl e-axis spectrometer Druehal
a the neutron source SINQ (Paul Scherrer Ingtitute,
Switzerland). The crysta field of the ortho-rhombic
symmetry splits the multiplet 515 into seventeen sin-
glets, eight of which lie in the low-energy range (AE <
12 meV), and the remaining ninefall in the high-energy
region (55 meV < AE <74 meV) [15]. Sinceitisknown
from [15] that lower lying levels of the crystal field are
more sensitive to doping, we studied the low-energy
part of the spectrum. M easurements were made at tem-
perature T = 1.5 K, at which transitions can occur only
from the ground state of the multiplet. In the energy
transfer region up to AE = 3.0 meV, the spectra were
recorded for the scattering vector modulus Q = 0.85 A~
with afixed energy E; = 3.5 meV of scattered neutrons.
Neutrons with a higher order energy were suppressed
withthe help of aberyllium filter. In the energy spectral
range up to AE = 15 meV, the spectrawere measured for
Q=18A"1andE =7 meV.
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rgl)rgl) r%]) r(ll) r§2) r(12) 1—*52) r4(‘2)
|
D E ‘
- 5 C
A
T T T T T 200 T T T T T T
160+ & A B _

Number of neutrons

Transferred energy, meV

Fig. 1. Energy spectra of neutrons scattered from Ho, _,CaBaCuzO,~7a T=15K fory=0, 0.1 and 0.25 (a b, and c, respec-

tively). Left diagrams correspond to recording for Q = 0.85 Al and E; = 3.5 meV. Theright diagrams are recorded for Q = 1.8 Aland
E; = 7 meV. The top diagram shows the splitting of low-lying crystal field levelsin HoBa,Cu3Og o5 [15].

3. EXPERIMENTAL RESULTS

The energy spectra of neutrons scattered from the
samples of HoBa,Cu;04 o5, HOp Cay 1Ba,Cu;0g o9, and
HOy75Ca 5BaCusOggs @ T = 1.5 K are shown in
Fig. 1. As expected, the low-energy spectrum of the
optimally doped composition HoB&a,Cu;Og g5 CONSiSts

of six trangitionsfrom theground state I'él) [15].InFig. 1,
these transitions are denoted by A, B, C, D, E, and F.
Partial substitution of calcium for holmium leads to the
emergence of four additional spectral components A',
B', C', and D', whose intensity clearly increaseswith the
calcium concentration. Since all thelevelsof thecrystal
field of Ho®* ions are singlets in the orthorhombic sym-
metry, the observed spectral line splitting indicates the
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presence of clusters creating electronic inhomogeneity
in Ca-substituted samples. It was mentioned above that
asimilar effect of frustrated phase separation is a dis-
tinguishing feature of underdoped cuprates. Theresults
presented in Fig. 1 demonstrate that the local electron
inhomogeneity in CuO, planesis also preserved in the
deeply overdoped regime (T, = 56 K).

Figure 1 shows that the energies and relative inten-
sities of lines A—F in the spectra of Ca-substituted sam-
ples remain virtually unchanged as compared to the
optimally doped Ho-123 (although the lines A, C, E,
and F are dightly shifted upwards). Consequently,
these lines can be put in correspondence with optimally
doped clusters existing in Ca-substituted samples,
while the additional components A, B', C', and D' can
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Fig. 2. Energy spectraof neutrons scattered from undoped tetragonal HoBa,CuzOg 3 at T = 1.5 K. Measurements were made under
the same conditions asindicated in Fig. 1. The top diagram shows the splitting of low-lying crystal field levelsin atetragond field [15].

be juxtaposed to presumably overdoped clusters cre-
ated by the substitution of calcium in the sublattice of
rare-earth ions. Obvioudy, the ratio Pyg = [1a + Ig]/[1a +
lg+ 14 *+ 1g], where | is the integrated intensity of the
corresponding line, determines the concentration of
optimally doped (i.e., unperturbed by the introduction
of calcium) clusters. It should be noted that, in order to
describe the strongly asymmetric shape of transitions
(seeFig. 1), we used the Naperian logarithmic function.
The origin of the asymmetry is discussed in detail in
[22] .We used the results presented in Fig. 1 to obtain
Pundis =0.74+ 0.03and 0.40 £ 0.03 for y= 0.1 and 0.25,
respectively. Since the crystal field potential at a rare-
earth siteis alocal probe for its surroundings [12], we
can assume that only those holmium ionswhich arethe
nearest neighbors of an implanted calcium ion are sen-
sitive to the substitution of Ca?* for Ho*'. In the lattice
of a 123 compound, the nearest neighborhood of each
Ho®" ion contains four sites that can be replaced by
Ca?*. Consequently, the statistical probability of dis-
covering k (0 £ k < 4) from the four positions occupied
by calcium is equal to [14]

4

PlY) = oy @0 1)

wherey isthe calcium concentration per structural unit.
For given values of y = 0.096 = 0.006 and 0.246 + 0.008
(see Section 1), relation (1) for k = 0 leads to P44 =
0.67 £ 0.03 and 0.33 + 0.03, respectively. The expected
concentrations of unperturbed clusters calculated in
this way are in reasonable agreement with the concen-
trations obtained as aresult of processing of the crystal
field spectra. These numerical estimates confirm that
the superposition effect discovered in Ca-substituted
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samples is indeed associated with the substitution of
calcium in the sublattice of rare-earth ions.

Figure 2 shows the energy spectrum of neutrons
scattered by an undoped sample of HoBa,CusOg s,
which was measured under the same conditions as the
spectra presented in Fig. 1. It should be noted that,
for a low concentration of oxygen, 123 compounds
have a tetragonal structure. Accordingly, the low-
energy crystal field spectrum consists of four singlets
and two doublets (see Fig. 2) [15]. Note that the transi-

tionsTSY —~ " and rY — " areforbidden by

the tetragonal symmetry. This spectrum will be
required for an analysis of the obtained results.

4. ANALY SIS AND DISCUSSION OF RESULTS

4.1. Crystal Field Parameters of the Components
of the Spectrum of Ho-123 with Calcium Substitutions

Since the total splitting of the lower multiplet °lg of
Ho** ions (approximately 74 meV) [15] isquite large as
compared to the separation between multiplets
(approximately 620 meV for Ho®**), the effects of mul-
tiplet mixing and spin—orbit interaction (in the interme-
diate-bond approximation) must be taken into account
for acorrect description of the experimentally observed
energies and intensities of transitions [13, 15]. Follow-
ing [15], we took into account in our calculations al
multipletswith J=8, 7, and 6, lying at energies 0, 620,
and 1067 meV, respectively. In order to find the energy
levels and the wave functions of Ho®* ions, we diago-
nalized simultaneously the Hamiltonians of the crystal
field, electrostatic, and spin—orbit interactions. In this
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case, the crystal field Hamiltonian can be written in the
form of tensor operators [23]:

3 n

Hee = 5 S Bon(Yan+ Y0, e

n=1m=0

where Y are the spherical tensor operators and B,

are the crystal field parameters to be determined from
the experiment (for the sake of convenience, we will
henceforth use the crystal field parameters in the con-

. 2 2 2
ventional form By, = Bom/Dsn, Where D5y are

numerical factors[23]). It should be recalled that, for a
crystal field of tetragonal symmetry, the crystal field
parameters with an odd m are equal to zero, but for
orthorhombic samples, a set of nine parameters has to
be determined. The procedure of determining the crys-
tal field parameters involves the application of the least
squares technique for fitting the calculated crystal field
spectrum to the experimentally observed spectrum of
inelastic scattering of neutrons, which is determined by
the second derivative of the neutron scattering cross
section [24]:

d’o 2 0 B
d0de " (D &P
]

x |0|3,|T O°3(E,; - E; + Aiw),

©)

where F(Q) isthe magnetic form factor, E; isthe energy
of theith level of the crystal field, I'; is the correspond-
ing irreducible representation, and J, isthetotal angular
momentum component perpendicular to the scattering
vector Q. Using this procedure, we determined the
crystal field parameters (i) for undoped HoBa,Cu;Og 5
whose spectrum is shown in Fig. 2, (ii) for optimally
doped HoB&a,Cu;04 o5 (Fig. 1a), and (iii) for the spec-
trum component induced by calcium substitutions and
presented by the transitions A, B', C', D', E, and F in
Fig. 1c. The information on the high-energy part of the
spectrum (55 meV < E < 75 meV) was borrowed from
[15] since the energy resolution for large energy trans-
fers does not alow us to resolve the superposition
structure of the spectra.

Theresults of fitting are presented in Tables 1 and 2
(it should be noted that, for Cafree samples
HoBa,Cu,;0, (x = 6.3 and 6.95), the values of the crystal
field parametersobtained by usarevery closeto theresults
obtained in [15]). The data presented in Table 2 clearly
demonstrate the generd tendency in the variaion of al
main crystal field parameterst (n=1, 2, 3; m= 0, 2) upon
doping: these parameters for HoBa,Cu;0, increase as

1 These parameters are often referred to as “tetragonal” in contrast
to the “orthorhombic” parameters corresponding to odd values of
mand vanishing in atetragonal symmetry field.
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Fig. 3. Schematic diagram of charge distribution in CuO,

planes of cuprates according to the PACT model below
(top) and above (bottom) the optimal doping level.

the value of x increases from 6.3 to 7 and continue to
grow with the calcium concentration (except the sixth-
order parameters for the “calcium” component of the
spectrum; this circumstance will be discussed below).
It is important to emphasize that the same tendency
associated with an increase in the positive charge in
CuO, planes upon doping was observed earlier in
ErBa,Cu;0, [13, 25]. Thus, we can draw the prelimi-
nary conclusion that the calcium component of the
spectra is indeed associated with the emergence of
overdoped clusters.

For afurther analysis of the obtained results, wewill
use the model of the crystal field generated by a peri-
odic array of charged tapes (PACT) [25, 26] proposed
by us for describing the concentration dependence of
the crystal field parameters in high-T, superconductors
with the 123 structure.

4.2. Model of Periodic Array
of Charged Tapes (PACT)

According to the PACT model, extracharges emerg-
ing in CuO, planesas aresult of doping form aperiodic
array of homogeneously charged tapes extended along
one of the main crystallographic directions in the lat-
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Table 1. Energies E; and relative intensities |;/1 5 of spectral lines of the crystal field in Ho-123 at different doping levels
obtained in the present work

1. Undoped HoBa,Cu;0g 5

A B C D E F
E®P, meV 1.1(1) - 7.50(5) 10.9(2)
Ece meV 1.10 4.89 7.47 10.85
(171 4)%P 1 — 0.43(4) 0.30(4)
(111 ,)2° 1 0 0.62 0.36
2. Optimally doped HoB&a,Cu3Og g5
E=P, meV 0.42(2) 1.8(1) 4.04(2) 8.61(2) 11.1(3) 12.1(3)
Ec@c meV 0.45 1.72 4.10 8.33 11.02 12.11
(1:1,)°° 1 0.23(3) 0.25(5) 0.35(5) 0.11(3) 0.11(3)
(111 ,)2° 1 0.22 0.30 0.47 0.15 0.19
3. Overdoped component Hog 75Cag 25Ba,Cus0g g6
A B c D' E F
ESP, meV 0.76(3) 1.15(5) 5.4(2) 7.7(2) 11.9(3) 12.8(3)
Eac meV 0.76 1.12 5.67 7.56 11.9 12.7
(/1 )P 1 0.64(6) - -
(111 4) 1 0.59 - -
4. ErggCa 2Ba;Cu30¢ g3
A B C A B c
E®P, meV 9.5(3) 10.1(2) 11.2(4) 9.5(3) 12.4(4) 11.2(4)
Eac meV 95 10.3 11.2 9.5 12.4 11.2
(AP N (PY] ) 1 0.25 0.69 1 0.41 0.95

Note: Rows 1-3 contain the results obtained by processing the inelastic neutron scattering spectra using the fitting procedure described in
the text. The notation of the transitions A—F correspond to splitting diagrams shown in Figs. 1 and 2. Row 4 contains parameters of

the optimally doped and overdoped components of the crystal field spectrum in Erg gCaq ,Bay,CuzOg 93 [19] (Fig. 5).

tice, either along direction a or along b (upper part of
Fig. 3). In the transverse direction, the array of tapesis
characterized by the width W and period T (W < T)
equal to the corresponding crystal lattice parameter so
that the axes of the tapes coincide with lines of chemi-
cal bonds Cu—O-Cu. Each tape carries a charge Z
which is constant for a given doping level, positive for
holes and negative for electrons (in units of [e[/A?). The
crystal field parameters B,,,m(X) for a sample with the
oxygen concentration x can be presented in the form
[25]

BZn2m(X) = BZan(X = 6) + BZan(Z)v (4)

where parameters B, (X = 6) for an undoped sample
are assumed to be known from experiments, Z is the
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surface charge density on atape, and the additional con-
tribution B,,,,,(Z) associated with doping is calculated
with the help of the following formulas[25, 26]:

1

1
By = ébzl 16

Beo = De.

Bzz = %COS(ZA)bz, BGZ = g_gCOS(ZA)b61

1 3

B, = %Cos(zA)b4, By = 312cos(6A)b6,
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Table 2. Crystal field parameters B, for compounds Ho-123 and Er-123, obtained in the present work

(2n, 2m) (2,0 2.2 40 42 4.4 (6,0 (6.2 (6,4) (6.,6)
1. Undoped HoBa,Cu3Og 3
B .meV | 153(8) | 0 -3402) | © 158.3(15)| 3.745)| O 121.6(3) | ©
2. Optimally doped HoBa,Cu3zO¢ g5
BXS mev | 256(8) | 14.3(1.6)|-33.98(2) | 3.6(15)| 160.3(18)| 3.97(4) | —2.5(1.0)| 1235(4) | —0.4(3)
BT mev | 256 103 |-322 72 |1601 338 02 [1217 0.01
Nopt 0.19(1)
3. Overdoped component Hog 75Cag 25Ba,Cu0g g6
BOS  mev | 30.9(9 | 84(12)|-332(3) | 26(12)|164.3(1.9)| 3.02(4) | 16(10)[1233(4) | 05(3)
Borsm, meV | 30.9 89 [-331 0 161.2 398 | 25 1235 -0.4
An 0.096(5)
4. Optimally doped component Er gCag -:Ba,Cu;0g g3
BOS  mev | 17.9(8) | 10.6(15)|-331(3) | 10.3(3) |1585(1.0)| 3.67(4) | —0.6(2) |1035(4) | 0.6(2
Overdoped component Erj gCay ,Ba,CuzOg o3

BSOS meV | 236(7) | 52(17)|-316(4) | 55(23)|157.8(12)| 3.75(4) | -0.1(2) [103.6(4) | 022
BT mev | 236 49  |-321 65 [1595 368 | -07 1035 0.6
An 0.10(2)

Note: While calculating the parameters according to the PACT model for overdoped spectral components, we took for theinitial valuesin
relation (4) the crystal field parameters for optimally doped components of the corresponding spectra; nyg; and An are the hole con-

centrations per copper ion, calculated by using the model.

By = %cos(GA)b4.

Here, A isthe azimuth angle between the directions of
the tapes and a chosen crystallographic direction. For
the geometry of a rare-earth position depicted in the
upper part of Fig. 3, coefficients b, are defined by the
following relations [ 25, 26]:

b, = ~1.44x 4252 {V(B) ~val(ct)}

i=1

b, = —1.44x42%?z{v4(&)—v4(ai)} .

i=1

6 N
be = —1.44x4zg*?5i;{v6(8i)—vs(ai)} ,

where H is the distance between a rare-earth site and
the plane of tapes and " [is the corresponding moment
of theradial distribution of 4f electrons[27]. Functions
v,(A) are defined as [25, 26]
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A _ AB=)\)

A = L2 v\ = 2222

v = e v 3(1+1%)°
Ve(h) = )\(5—10)\2+5)\4)
2 b

A={a,p}, a = w

T —(T=W)/2
B=—77

where a and 3 are the values of variable A, correspond-
ing to the boundaries of the tapes. The number of
charge carriers (holesin our case) n per in-plane copper
ion Cu(2) is defined by the relation

n = Zaw, (8)

where a is the lattice parameter along the direction of a
tape. All lengths in relations (6)—(8) are in angstroms,
and parameters B, arein electronvolts. In al calcula-
tions carried out by us in this work, the period T is
assumed to be constant and equal to a = b = 3.85 A
(which, according to the results obtained in [21], corre-
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sponds to the mean value of the in-plane crystal lattice
parameter for al the samples under investigation, and a
high degree of accuracy for this parameter is not
required in our calculations). The distance H between a
rare-earth site and the plane of the tapes was calculated
for each composition on the basis of structural data[21]
by using theformulaH = (0.5—2)c, wherecisthe crys-
tal lattice parameter and z isthe coordinate of the Cu(2)
site. We assumed that the linear size of clusters is
approximately equal to 20 A [28], so that the summa-
tion in relation (6) was carried out to N = 3 (it was
proved earlier [25] that the final result of model calcu-
lations of hole concentration nisweakly sensitiveto the
number of termsin the sum). Following Morrison [29],
while calculating the crystal field parameters on the
basis of relation (6), we replaced the moments 1" [Cof
the radial distribution of 4f electrons by i"[{1 — g,,)/T"
(where g,, and T" are parameters depending only on the
number of 4f electrons of the rare-earth ion). This is
done to take into account the screening of the 4f shell
by external electrons and the variation in theradial dis-
tribution of the ion implanted in the solid as compared

to a free ion. Thus, the model calculations can be

reduced to fitting the crystal field parameters Bhaxy

calculated on the basis of relations (5)—(7) to the values

of parameters B%m of Hamiltonian (2), determined

from experiments on inelastic scattering of neutrons.
There are only two fitting parameters. These are the
tape width W and the surface charge density Z in atape
(the hole concentration n is determined automatically).
All remaining features of model calculations are given
in[25]. It isalso shown in [25] that, in the geometry of
the doping-induced charge presented in Fig. 3 and for a
positive charge of the tapes, Egs. (5)—7) lead to a pos-
itive correction B,.,(2) IN EQ. (4), i.e.,, toanincreasein
the crystal field parametersrelative to theinitial values
of B,om(6.3), which is actually observed in the experi-
ments.

4.3. Analysis of Crystal Field Spectra in Ho-123
in the Framework of the PACT Model

The best fitting of the parameters Bhos to the

cac

experimental values of B, for the spectrum of opti-
mally doped Ho-123 is attained for the tape width W =
1.4 A and the hole concentration per copper ion n =
0.19 £+ 0.1 (see Table 2), which is in good agreement
with the generally accepted val ue of the hole concentra-
tion near the optimal doping level, i.e., for x = 6.95 +
0.01 [20]. In our opinion, this circumstance is a strong
argument supporting the redlistic nature of the PACT
model. Another qualitatively important argument in
favor of the model isthe correlated variation of second-
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order parameters predicted by it. Since B,, = 0 for atet-
ragona sample, relations (4) and (5) lead to

AByy = [Byo(X) — By (6)] = Bx(X)- 9

The second-order parameters B%m (see Table 2)

undoubtedly satisfy this relation within the experimen-
tal error. Relation (9), which isvalid for the compound
ErBa,Cu;0, (6 < x < 7) [25], isadirect consequence of
the charge geometry under investigation. It can be seen
from relation (5) that, asthe charge density Z increases,
all crystal field parameters vary in accordance with the
same law, which is on the whole in accord with the
experimental data forming precisely the basis of the
PACT model [25, 26]. However, it is more difficult to
establish the regularities predicted by relation (5) for
the variations of the fourth- and sixth-order parameters
(which are important for a correct description of the
spectra) in view of their small magnitude aswell asthe
error in their experimental determination than the regu-
larities for the second-order parameters whose varia-
tion upon doping isrelatively large. Thisremark prima-
rily concernsthe orthorhombic parameters of the fourth
and sixth orders, whose experimental indeterminacy is
quite significant since their variation weakly affectsthe
position of the crystal field level aswell as the intensi-
ties of transitions between them. In addition, the fourth-
order and especidly sixth-order parameters are very
sensitive to fine details in the charge distribution in a
unit cell (e.g., to quite probable periodic modulation of
the surface charge density along the tape), which could
be taken into account in our model, but this would lead
to unjustified complications of calculations and would
in fact be reduced to the emergence of additional fitting
parameters. In all probability, a certain discrepancy in
the behavior of the model and experimental sixth-order
parameters for the “calcium” component of the spectra
of Ca-substituted samples is associated with just this
circumstance.

In order to describe the crystal field parameters of
the spectrum component induced by the substitution of
calcium in the framework of the PACT model, we
assume that the tape width is constant, W= 1.4 A, and

calc

take the values of B,,,,, for the optimally doped com-

ponent for theinitial valuesin relation (4) (to avoid the
accumulation of computational errors). The best con-
vergence is attained for the extra hole concentration
An =0.1+0.01 per copper atom; i.e., thetotal hole con-
centration in clusters formed as aresult of calcium sub-
stitution is n =0.29 £ 0.01 holes per copper atom. In
other words, it follows from our analysis that these
clusters are indeed overdoped since the hole concentra-
tion in them exceeds the optimal doping level.

Table 2 shows, however, that the orthorhombic crys-
tal field parameters for the overdoped spectral compo-
nent are smaller than the corresponding values for the
optimally doped component, which can be seen espe-
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cialy clearly for B,,. Moreover, it can be observed that
the empirical correlation

[ BZO, over — BZO, opt] = _[ 822, over BZZ, opt] ’ (10)

which is similar to relation (9), but has the opposite
sign, holdsin this case. How can thisbe explained if the
charge density increases in the tapes? This apparent
contradiction is easily resolved using relation (5) if we
assume that the extra holes injected in CuO, planes by
the substitution of calcium form a new array of tapes
oriented at right anglesto the existing array, which con-
tinuesto carry the optimally doped charged n= 0.19 per
copper atom (Fig. 3). In accordance with relation (5),
these two mutually perpendicular arrays are character-
ized by the azimuth angles A = 0 and 102. In this case,
the tetragonal crystal field parameters are the sums of
the contributions from two arrays, while the orthor-
hombic parameters are the differences of these contri-
butions.

Sincethe positions of the spectral lines of the crystal
field, which correspond to optimally doped and over-
doped clusters, remain virtually unchanged for the
three compositions investigated by us (see Fig. 1), we
conclude that an increase in the Ca concentration does
not affect thelocal density of charge carriersin clusters,
but changes only the concentrations of clusters them-
selves and, hence, the spectral weights of the compo-
nents. However, the average concentration of holes in
the samples naturally changes and can be easily calcu-
lated for each composition using the following simple
“two-phase” relation:

O] = IDundistnopt + (1 - Pundist) Novers (11)

where P4 = 0.74 £ 0.03 and 0.40 + 0.03 for y = 0.1
and 0.25, respectively (see above). Relation (11) gives
(mO= 0.19 + 0.01 (y = 0), 0.22 £ 0.02 (y = 0.1), and
0.25+ 0.01 (y = 0.25) holes per copper atom, which is
in good agreement with the hole concentration V_ [30]
calculated in [21] from the structural data obtained for
the same samples using the valence bond method [31]
(V_ = -0.024(3) for HoBa,Cu;O4 3, While, for Ca-sub-
dtituted samples, V_ = 0.188(4), 0.234(5), and 0.258(6)
fory=0, 0.1, and 0.25, respectively). It should be noted
that the average concentrations mdfor an optimally
doped sample and for asample withy = 0.1 arein good
agreement with the in-plane hole concentrations
obtained from the data on position-sensitive X-ray
absorption spectroscopy for the Y-123 compound with
apartial substitution of CaforY [32].

Thus, the PACT model makes it possible to deter-
mine the charge carrier concentration in CuO, planes
directly from the neutron crystal field spectra. It should
be emphasized that it is not the total concentration of
charge carriersintroduced by doping in the sample, but
only its part localized in the planes. At the sametime, it
should be borne in mind that the resultant hole concen-
tration in the planes determined from the results of neu-
tron spectroscopy of the crystal field, is a function of
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both the calcium concentration and the oxygen content,

the latter being dightly different for different samples.

This can explain, in particular, insignificant mutual

energy shiftsof identical spectral linesin different sam-

ples (see Fig. 1) and aso the virtual nonlinearity in the
values of the above-mentioned hole concentration aver-

aged over the samples. For example, an increase in M
as aresult of an increase in the calcium concentration

fromy=0.1t00.25ispartly compensated by adecrease
in the oxygen content in asample with ahigher calcium

concentration. Thus, in our opinion, the PACT model

establishes a reliable scale of concentrations, which

will be used in our subsequent analysis.

Figure 4 shows the concentration dependences of
the tetragonal crystal field parameters for Er- and Ho-
based 123 cuprates. It can be seen from the figure that,
for n < ny, (the change in n in this case is attained by
varying oxygen nonstiochiometry), the crystal field
parameters in both systems behave almost identically
and in accord with the results of model calculations on
the whole (the reasons for the discrepancy were dis-
cussed above). It should be emphasized once again that,
in this concentration range, the relation between the
change in the crystal field parameters and the increase
in the positive chargein CuO, planes can be assumed to
beestablished reliably [12, 13, 15, 25]. Sincethe crystal
field parameters in the overdoped region continue to
follow the same tendency (and, hence, could be
obtained by simple extrapolation from the region lying
below the optima doping level if the concentration
scale is known), we conclude once again that the addi-
tional component of the crystal field spectrain Ca-sub-
stituted Ho-123 sampl esisindeed associated with local
regions in which the hole concentration exceeds the
optimal doping level. In addition, we may conclude that
the changes in the crystal field spectra reflect the
increasein the positive charge in CuO, planesirrespec-
tive of the method of doping.

4.4, PACT Model and the Crystal Field Spectrum
in Er, _,CaBa,CuzO,

The above algorithm of the analysis of the crystal
field parameters for the Ho-123 system can be applied
to the crystal field spectraof Er3* ions (the lower J mul-
tiplet *l;5,,) in the analogous system Er; _,Ca Ba,Cus0y
(x=7,0<y<0.2)[18, 19], which have not been inter-
preted adequately so far. It iswell known that the low-
energy component of the spectrum of optimally doped
ErBa,Cu,0, . ; consists of Kramers doublets A, B, and
CwithenergiesE, = 9.2 meV, Eg = 10.1 meV, and E¢ =
10.9 meV [13]. Since only one additional transition
with an energy approximately egual to 12.4 meV
appears in Ca-doped samples of this compound (Fig. 5),
whose intensity definitely increases with the calcium
concentration, while the energy and the shape of the
spectrum at lower energies do not display any notice-
able changes, Bottger et al. [18, 19] rightfully inter-
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Fig. 4. Basic (tetragonal) crystal field parametersin Er- and Ho-123 systems as functions of the hole concentration in CuO, planes.

The results obtained in [13, 15], where the hole concentration was varied by changing the oxygen stoi chiometry, are given for com-
parison. Solid lines describe the behavior according to the PACT model. Vertical hatched regions denote the optimal doping level.

preted the transition at 12.4 meV as the only response
of the crystal field spectrum to calcium substitutions,
which is associated with the formation of overdoped
clusters in the samples. However, they could not prove

this assumption, the more so that the concentration
dependence of the intensity of the additional transition
with an energy approximately equal to 12.4 meV, which
was interpreted by them as the C transition in over-
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doped clusters, considerably differs from the depen-
dence predicted by relation (1). It will be proved below
that the crystal field spectrum depicted in Fig. 5 can be
processed exactly in the same way as the spectrum of
H0p 75C 3 25Ba,CU30¢ g6 (SEE Fig. 10).

For this purposg, it is sufficient to assume that the
spectrum of ErygCay,Ba,Cu;0, - ; also consists of two
components associated with optimally doped and over-
doped clusters. In this case, the lines A, B, and C in
Fig. 5 must correspond to optimally doped regions
since exactly these lines are present in the spectrum of
pure Er, sCa, ,Ba,Cus0, - ; (although the energies cor-
responding to these lines in the latter spectrum are
lower approximately by 0.3 meV) [13]. Thisset of lines
corresponds to a certain set of crystal field parameters
for Er®* ions, which can be obtained by diagonalizing
Hamiltonian (2). The overdoped component of the
spectrum of Er,gCa,,Ba,CusO, - ; must correspond to
its own set of crystal field parameters; it follows from
the PACT model and Fig. 4 that the tetragonal parame-
ters By, over Must be larger than By, o, While the corre-
sponding orthorhombic parameters B, o Must be
smaller than By, o. The results of direct calculations
show that, for any significant increase in parameter B,
relative to By o and for arelatively weak variation of
the remaining tetragonal parameters, the structure of
the crystal field spectrum for Er3* ions changes consid-
erably (see, for example, Fig. 2in[25]): the position of
the B line changes the most strongly, its energy becom-
ing higher than the energy of the virtually fixed C line,
while the intensities of the A and C lines are compara-
ble. It may turn out in this case that the energies corre-
sponding to the A lines for both components are almost
identical. Thus, we canlogically assumethat the spectrum
in Fig. 5 consists of two components with energies
E(A)over = E(A)opr = 9.5 meV, E(B)oy = 10.2 meV,
E(B)over = 12.4 meV, and E(C) e = E(C) o = 11.2 MEV.
In order to determine the relative intensities of transi-
tions, we must diagonalize Hamiltonian (2), fitting only
the energies of the levels (in our calculations, we took
into account all possible stateswithJ=15/2 (E=0),J =
13/2 (E = 800 meV), and J = 11/2 (E = 1240 meV)
[13]). The energies of the levels obtained asaresult of fit-
ting and the relative intengities of trangtions for optimally
doped and overdoped components are given in Table 1,

while the corresponding parameters B, are pre-
sented in Table 2 and in Fig. 4. In order to reconstruct
the experimentally observed  spectrum  of
Er,sCay,Ba,Cu;0, - 7, we must fit the background, the
line widths including the energy resolution of the spec-
trometer and the proper line widths (the latter are not
necessarily identical for al lines), and the concentra-
tion of clusters, i.e., P,qg The best convergence of
such a numerical reconstruction to the experimental
crystd field spectrum of Er, ¢Ca, ,.Ba,Cus0, - 7 (SeeFig. 5)
was obtained for the concentration P44 = 0.43 + 0.02,
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Fig. 5. Spectrum of inelastic neutron scattering for
ErggCag ,BaCuz0Og g3 (circles) [15]. The solid curve
shows the numerical reconstruction of the experimental
spectrum in the form of a superposition of optimally doped
(transitions A, B, C; dot-and-dash curve) and overdoped
(transitions A', B', C'; dashed curve) components (see
Table 2).

which isin excellent agreement with the value of Pé =
0.4 expected for the calcium concentrationy = 0.2.

cac

Parameters B,,,,, for the overdoped spectral com-

ponent for Er,sCay,Ba,CusO,., can be caculated
from relations (4)—(7) of the PACT model if wetake for
theinitial values of the crystal field parametersin rela-
tion (4) the values for the optimally doped component
from Table 2 and assume the formation of an array of
charged tapes (see lower part of Fig. 3) in the over-
doped regime. It can be seen from Table 2 that the extra
hole concentration An = 0.1 + 0.01 per copper atom

cac

required for the reproduction of parameter B,z over

and associated with the substitution of calcium is the
same as for Ca-substituted samples of Ho-123, and the
crystal field parameters themselves behave identically
in both systemsin the entire range of n values (see Fig. 4).
It should be emphasized that the transformation of the
crystal field spectrum as a result of substitution of cal-
cium in the Er-123 system is manifested so clearly that
it cannot beinterpreted asapurely structural effect. The
estimation of the shift in the crystal field levels as a
result of a change in structural parameters associated
with the substitution of calcium, which was carried out
by usin the point charge approximation [12, 13, 15] on
the basis of structural data on Er,gCay,Ba,Cus0, -,
[18, 19], gives only a more or less homogeneous
upward shift for thelines A, B, and C by avalue smaller
than 0.2 meV, which is comparable with the shift of
these linesin the spectrum of Er, ¢Ca, ,.Ba,Cu0, - ; rel-
ativeto that for pure ErBa,Cu;0, - 7, but does not match
the*jump” in energy corresponding to line B from 10.2
to 12.4 meV. This transformation can be interpreted
only as an effect associated with a change in the charge
surroundings of arare-earth ion.

Consequently, the superposition structures of the
spectrashown in Figs. 1 and 2, on the one hand, and in
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Fig. 5, on the other hand, reflects the same physical
effect associated with the coexistence of optimally
doped and overdoped clustersin the samples.

5. CONCLUSIONS

The splitting of thelower J multiplet ®lg of Ho* ions
by the crystal field in overdoped high-temperature
superconductors Ho, _,CaBa,Cus0; - ; is investigated
with the help of the method of inelastic scattering of
neutrons. It is established reliably for thefirst time that,
in this concentration range, the crystal field spectra of
superconducting cuprates consist of two components
whose spectral weights are determined by the calcium
concentration y, while the energy and relative intensi-
ties of transitions in both components are virtually
independent of y. An analysis of inelastic neutron scat-
tering spectra in the framework of the PACT model
made it possibleto determine the hole concentrationsin
clusters. The hole concentration in clusters whose crys-
tal field spectraare similar to the spectra of the samples
of HoBa,Cu;04 g5 (T, = 92 K) free of calcium substitu-
tions lies near the optimal doping level n,, = 0.19 +
0.01 per copper atom. In clusters formed as a result of
calcium substitutions in the rare-earth sublattices, the
hole concentration n,,, = 0.29 £ 0.01 per copper atom.
These values of concentrations are in good agreement
with the results obtained from independent experiments
(see Subsection 4.3). We proved that the crystal field
spectrum of Er,¢Cay,Ba,Cu;0, ., measured earlier
also consists of two components, and the features of
this spectrum are such that they can be due only to
charge effectsin the vicinity of doping sites. By apply-
ing the PACT model, we proved that the extra hole con-
centration An ~ 0.1 per copper atom in overdoped local
regions of Er,Ca,,Ba,Cu;0, - ; isthe sameasin anal-
ogous clusters of the Ho-123 system. The correspond-
ing numerical results and the established systematic
and identical nature of variation of the main crysta
field parameters as functions of the hole concentration
for the Ho-123 and Er-123 systems lead to the conclu-
sion that the superposition structure of the crystal field
spectra, which is obvious for Ho, _,CaBa,Cus0; -+,
and the emergence of an additional transition with an
energy about 124 meV in the spectrum of
ErysCay,Ba,Cu;0, - ; are the same physical effect. The
essence of thiseffect isthat extraholesinjected in CuO,
planes as a result of calcium substitutions are not dis-
tributed uniformly over the sample volume, but are
localized directly near doping centers. An increase in
the calcium concentration does not affect the local den-
sity of charge carriersin clusters, but changes the con-
centration of clusters themselves and, hence, the spec-
tral weights of spectral components.

It was mentioned in the Introduction that, according
to earlier observations, asimilar effect of spatial segre-
gation of charge carriers is a characteristic feature of
cuprates for n < nyy, but this was observed experimen-
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taly only for off-plane doping (change in the oxygen
stoichiometry). Our experiments on inelastic neutron
scattering show that the local charge inhomogeneity in
CuO, planes of cuprate superconductorsis a character-
istic feature of the doping process, which depends nei-
ther on the method nor on the level of doping. Conse-
guently, from the view point of spatial charge inhomo-
geneity, a smooth transition (crossover) takes place
between underdoped and overdoped regions of the
phase diagram for cuprates. This conclusion isin qual-
itative agreement with the results of recent investiga-
tions of high-energy longitudinal phonons in
Y Ba,Cu;0, by the method of inelastic neutron scatter-
ing, indicating a considerable charge inhomogeneity
even at the optimal doping level x=6.93[10]. However,
according to our results, the charge distribution in CuO,
planes changes for a doping level higher than optimal
(this change is shown schematically in Fig. 3). In the
framework of the PACT model, thiseffect isinterpreted
asagradual suppression of the charge ordering existing
in CuO, planesfor n < ngy.
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Abstract—As is well known, fluctuations from a stable stationary nonequilibrium state are described by the
linearized inhomogeneous Boltzmann—Langevin equation. The stationary state itself can be described by the
nonlinear Boltzmann eguation. The ways of its linearization sometimes seem to be not unique. We argue that
there is actually a unique way to obtain a linear equation for the fluctuations. As an example, we consider an
analytical theory of nonequilibrium shot noise in a diffusive conductor under the space-charge-limited regime.
Our approach is compared to that in [11]. We find some difference between the present theory and the approach
in [11] and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the
theory of fluctuation phenomenain a nonequilibrium electron gas. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The present paper is devoted to the theory of shot
noise in the space-charge-limited diffusive conduction
regime. The motivation can be formulated asfollows. It
iswell known that fluctuations from a stable stationary
nonequilibrium state are described by the linearized
inhomogeneous Boltzmann—Langevin equation (see,
e.g., [1-7]). At the sametime, the stationary state itself
is described by the nonlinear Boltzmann equation.
There are instances where the ways of linearization of
the nonlinear Boltzmann equation seem to be not
unique. We believe, however, that, in each such case,
there is a unique way to obtain the linearized Boltz-
mann equation for the fluctuations, and we give general
considerations to find this linearization and indicate it
for the particular case treated in the present paper.

We devel op atheory of honequilibrium shot noisein
a nondegenerate diffusive conductor under the space-
charge-limited regime. This regime is extensively dis-
cussed in the literature (see, eg., [8, 9]). The current
noise under such a regime was recently studied by
Monte Carlo simulation by Gonzalez et al. [10]. Quite
recently, the noise was analytically studied under the
same conditions by Schomerus, Mishchenko, and
Beenakker [11]. Their general finding wasthat, because
of the Coulomb correlation between electrons, the shot
noiseis reduced below the classical Poisson value. The
authors of both [10] and [11] came to the conclusion
that under certain conditions, the suppression factor in
the nondegenerate 3D case can be closeto 1/3.

TThis article was submitted by the authors in English.

Later on, Nagaev [12] showed in a specia example
that, unlike the 1/3 noise reduction in degenerate sys-
tems, the noise suppression by the Coulomb interaction
is nonuniversal in nondegenerate systems. The noise
suppression in such systems may depend on the details
of the electron scattering.

We agree with the conclusion in [10, 11] that the
reduction of the shot noise power in nondegenerate dif-
fusive conductors can sometimes be close to the value
of 1/3 theoretically predicted for a three-dimensional
degenerate electron gas. As mentioned above, we also
arrive at some conclusionsthat may proveimportant for
the general theory of fluctuations in nonegquilibrium
systems. As is well known, the fluctuation phenomena
in noneguilibrium stable systems are described by alin-
earized Boltzmann equation. We use the example ana-
lyzed in detail in the present paper to show that the lin-
earization must be performed with care. In particular,
there is a difference between the analytical procedures
used in [11] and in the present paper for the calculation
of the shot noise power. We discuss the origin of this
difference and itsimplications. Because the point |ead-
ing to the discrepancy isvery subtle, it demandsarather
detailed analysis, which we perform in the present
paper partly repeating the calculations in [11] with
some modifications. Our starting point is the Boltz-
mann equation formulated for the description of the sta-
tionary state; it isthen applied to the analysis of fluctu-
ations.

2. BOLTZMANN EQUATIONS

We consider thesimplest model, used in [11], for the
diffusion-controlled and space-charge-limited trans-

1063-7761/02/9405-1026%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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port. As the starting point, we use the Boltzmann equa-
tion in the presence of an electric field,

[0 _
@_tw%fp =0, (2.1)
9pfp—§/a +1.5f, (2.2)

where we have introduced the collision integral |,
describing the electron scattering,

fp = Z(Wp'pfp
S

(we deal with the nondegenerate statistics, and there-
foref, < 1).

~ W, f ) 23

Splitting the distribution function into even and odd
parts with respect to p, we obtain

E—-(f f o).

We assume that the collision operator acting on the
even (odd) part of the distribution function gives an
even (odd) function. This can bethe case either because
of the central symmetry of the crystal itself and the
scatterersor because of the possibility of using the Born
approximation in calculating the scattering probability.
Thefirst split equation is

oy i g0l (o

ot TVar TeEgp (24)

Being interested in relatively small frequencies of
fluctuations wt, < 1, where 1, is the characteristic

value of 15", we can neglect the time derivative and
express f,as

- ot ot

fo = - 52 reE s s & (2.5)

Inserting this expression into the second split equa-

tion for f; = f(g, r, t) and averaging over the constant-
energy surface in the quasimomentum space, we arrive

v(s) DT +eE EV(E)D“B(S)DT + eEB%f

(2.6)
= -5 8(e-g) 1",
p
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where the term on the right-hand side describes the
inelastic collisions, while the density of statesv(g) and
the diffusion tensor Dg(€) are defined as

V(€) Dygle) = Za(e—ap)valglvﬁ,
P (2.7)

V() = Zé(s—sp).
p

The electric field obeys the Poisson equation

KOE = 4me[n(r, t) —n®Y,

(2.8)
nr,t) = Idev(e)f(s,r,t),
0

where K is the dielectric susceptibility and n® is the
equilibrium concentration (equal to the concentration
of donors). In what follows, we neglect n® compared to
the nonequilibrium concentration n.

The part of the distribution function contributing to
the current consists of two terms that are proportional
to the spatial and energy derivatives of f(g, r, t), respec-
tively,

azezvf;

= —ev(g) DGB(S) DT + eEﬁ%f .

(2.9)

We consider the case where D1, > L2, whereL isthe
sample length and t, is the energy relaxation time (of

theorder [18™] ™). Onthe right-hand side of Eq. (2.6),

we can then omit the term that describes the energy
relaxation. Under the same conditions, we obtain the
Boltzmann equation for the fluctuations of the distribu-
tion function (we remind the reader that here we con-
sider low-frequency fluctuations with

w<l,=1/r,
where 1, isthe characteristic time of elastic collisions),

9+ e, 0], + e5EL 0 J, = eyu(e, ¥, (210)

djg, = ez Vv df, = gi—ev(€)Dyg(e)
(2.12)

0 d B0 ([
X%a—X;eEBa }6f +e6E(A,a fo
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and the source of the current fluctuations g, is related
to the Langevin forces y;, as

Q¢ = ez 3(e— &)Vl 'Yy (2.12)

Yol€ X) = 26(s—£p)y‘5’ =0 (2.13)

Thelast equality isaconsequence of the elasticity of
scattering, which leads to the particle conservation
within the constant-energy surface in the quasimomen-
tum space.

The correlation function of the Langevin forces is
well known [7],

B’p(r)yp'(rl)Qu = (9'3 + ﬁp')arr 6pp fp (214)

Integrating Eqg. (2.10) over €, we abtain the continu-
ity equation

Ide{)] oS, %) = 6J o) =0 (2.15)

which implies that the low-frequency current fluctua-
tions are spatially homogeneous.

3. THE DISTRIBUTION FUNCTION

We consider a semiconductor with a uniform cross
section A connecting two identical metallic electrodes.
Thelength L of the sampleis assumed to be much larg-
ger than the el astic scattering length | and much smaller
than the inelastic one. We use the 1D versions of the
Boltzmann equations describing the distribution func-
tion evolution along the dc current direction.

To obtain the stationary solution of EQ. (2.6) in the
accepted approximation, we rewrite it as

0 4ot d0je ) = siE). (3D

We assume herethat the current density at x =0, j(€),
isnonvanishing only for € > 0. In the absence of tunnel-
ing, j(€) must have the property that

j€)—0as T—0 (3.2

at the contact x = 0, with T being the temperature. This
condition must be valid, irrespective of whether a
Schottky barrier or an ohmic contact occurs. Evidently,
the total current J given by Eqg. (3.3) below must have
the same property.

The solution of Eg. (3.1) is a function of the total
energy €,

€ = e+ U(X),
where

U(x) = ed(x) —ed(0).
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It can be found using, e.g., the inverse differential
operator

1 ) X
5,20 = [eE0)

We have

i€ = 3 agpga 016

= exp[ep(92,] 3 eP[-ep(92.15()i(e) = (),

and j(g, X) takes nonzero values at agiven x only if € >
-U(X) (€ = 0). Thetota current through the sampleis

00

J = AJ’dsj(e, X)
0

i ] (3.3)
= A [ dej[e+UX)] = A[d€j(€).
& J
From Eq. (2.9), we now obtain
fe, %) = — ax+elE(x) aeje(;’(:)) Ffle+UM)] (34)
or
f(e.) = ~i[€] <& m +1[%€], (35)

where
A€) =v(e)D(g).

We have taken the boundary condition at the source
into account. Equation (3.5) can be rewritten as

A€ - U(E)]

-1

f[€-U(x),x = {f[% U(L)]IOE
(3.6)

L

1
”(%)fdzxt% wzn}[fd&x[%—u&)]} ’

where j(g) is expressed through the difference of the
distribution functionsat x=0and x= L,

1

AZ_um - @-

L
J(%S)J’dx f[€-UL)]. (37
0
An advantage of the form chosen for Eq. (3.6) isits
physical transparency. The first term on the right-hand
side gives the contribution of the right boundary, and
the second term gives the contribution of theleft bound-
ary. The solution clearly demonstrates that the ther-
mally excited carriersinjected fromthe contact at x = L
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make a negligible contribution to the distribution func-
tion f[€ —U(X), X], because

(&) > f[€-UWL)] (€20)

for the parameter |U(L)|/ksT is assumed to be large.
Neglecting this term in our solution to Eq. (3.6), we
arrive at the solution already obtained in [11] by assum-
ing absorbing boundary conditions at the current drain.

4. THE FIELD DISTRIBUTION

We use the Poisson equation to determine the self-
consistent electric field that can be expressed through
the obtained distribution function. We consider the val-

ues of x such that x > x, , where

—U(x;) > € OkgT,

K d U
4mie dX J'd%v [€-UXIf[€-U(x), ¥
0 e[ -U(Q)]
~v) eAfA[ =Tk
We finally obtain
K 1 d U J )

We now check that, for Iarge X, this equation is con-
sistent with the requirement of a uniform total current.
Assuming

and

1

D(e) = Dye®" ",

we integrate Eq. (2.9) over the transverse coordinates
and energy, with the result

% = _ed%stv(e)D(E)f(& X)
(4.3)
eDyk(d + 29) sd 2
N OlT[—U(X)] GxE ™)

We integrate the second term by parts and take into
account that, at X > X , we can neglect ¢ as compared
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to |U(x)| and use Poisson equation (2.8). The first term
in Eq. (4.3) can be simplified in the same way?

J’ dev(e)D(g) f (g, X)
-U(x)
= Id%v[% —U(X)] D[€ —UX)] f(€ —U(x), X)
(4.9)

00

= D[—U(x)]Id%v[% —UX)] F (€ -U(X), X)

DI-U(X)] 7

In the second equality, we used that ‘€ < |U(x)|. Insert-
ing Eqg. (4.4) into Eq. (4.3), we obtain the simplified
equation

4mJ| _ st 1d_E:| 2s+d sdE
DoKA de Ul de+|e| ™

It can be used to verify the self-consistency of our
approach. Indeed, multiplying Eq. (4.2) by Us*92 and
taking the derivative, we arrive a Eq. (4.5) that was
obtained from the equation for the current. A dimen-
sionless version of Eqg. (4.5) is

=2
xgjz XX =xx"g =

4nedx ’

- (4.5)

(4.6)

where the dimensionless potential x isrelated to ¢ by
1/(s+2)

D 3
41J|L X (XIL).

b= DoKAle* T

(4.7)

5. THE CURRENT AND FIELD FLUCTUATIONS

In what follows, we consider the particular cases
where

s =0, D(g) = Dg;

s = —12, D(g) = D"

and
s = 1/2, D(€) = D™

We begin by investigating the case of the energy-
independent scattering time, s = 0. This case can be
related to the scattering of electrons by neutral impuri-
ties, such as hydrogen-like shallow donor and acceptor
states. The scattering is analogous to the scattering of
electron by ahydrogen atom [13] (with the effective Bohr
radius ag). The scattering cross section turns out to be

1 We note that, in view of Eq. (3.5), the distribution function f(g, X)
takes nonzero values only for € > —-U(X).
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about 21%2/pag times larger than the geometrical cross

section Tta; (that would result in an energy-indepen-
dent scattering time).

In the case of defects with deep energy levels, we
encounter a short-range scattering potential with the
scattering length about the atomic length. The scatter-
ing cross section does not depend on the energy. As a
result, the scattering rate is proportional to the electron
density of states €¥2 and the diffusion coefficient v21 is
proportional to €2, i.e.,, s = =1/2. (This is one of the
main scattering mechanismsin metal s because the scat-
tering length is then determined by the screening
radius, which is of the order of the interatomic dis-
tance.) The cases where s = —1/2 (which, in particular,
describes elastic scattering by acoustic phonons) and
s=1/2 are discussed at the end of this section.

5.1. Energy-Independent Scattering Time
Integrating Eqg. (2.11) over €, we obtain

00

1(63,-G,) = =2 [ ev(E)DE)BT e, )
Iy 5
+ 20 0 B3 ().

81

We note that, because of Eg. (2.10), the Fourier
transform of the current fluctuations dJ,, is spatialy
homogeneous. Here, G, is the current fluctuation
source integrated over the energy and transverse coor-
dinates,

00

G,(X) = J‘dsdr 09, 1), (5.2

[ [

[G(X)G(x), = eJ’dsJ’dsZé(e €,)0(€ —€,) ViV
0o 0 PP (5.3

1 1
T rIdr ndr o YL,
plp

The part of the distribution function that is odd with
respect to p — —p vanishes after inserting it into cor-
relation function (2.14) of the Langevin forces and sub-
sequently integrating over p and p'. As aresult, we are
left with the integral of the even function

[GG(X)T, = 8y G (X, (5.4)

00

2 1
2e AIdsf(s, x)Zé(s— ep)vxmvX
0 p

[G° (X
(5.5)

00

26°A J'dsv(s) D(e) f (g, ).
0
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The second term on the right-hand side of Eq. (5.1)
can be simplified in the same way as Eq. (4.4),

00

J’dsv(e)D(e)éfm(s X) = D(-U(X))z s d

OEw (56)

and we finally obtain the equation for dE,,

diXBJ(x)dixéEw(x)H " egdiXE(x)eSEw(x) -

(0J,—Gy)-

_AD

In order to justify the simplification in Eqg. (5.6), we
now show that &f (€, X) is aso a function taking non-
zero values only at € > —U(x). Indeed, from Eq. (2.10)
and Eqg. (2.11), we can obtain the solutions

djo[e-U(X), X = 6Uw(x)%j(8)+Aj(8)wv (5.8)

- IOE €E(8) 2 [e~U(E), &
(5.9)

of [e-U(X), X]

gol€—U(E), &l —3j,[e—U(E), &
eAle —U(&)] ’

g

which show that of has the aforementioned property.
Here, Aj(g) are the fluctuations of the current at the left
boundary x= 0. The fluctuations of the distribution
function Af(g) at the right boundary are assumed to be
zero. If we assume A(g) to be a constant (independent
of the energy), taking Egs. (5.8) and (5.9) and the equa-
tion &f (g, 0) = 0 into account, we immediately arrive at
the result

- % {dxfdeg[s—U(x), x] (5.10)

obtained by Nagaev [12].

5.2. Comparison with the Approach in [4]

We now embark on setting forth the crucial point of
the paper. Equation (5.7) does not coincide with the
equation for the field fluctuations obtained in [11] by
directly linearizing Eq. (4.5) for s=0,

O?[esu L0 E(x)} [U(x) d5e (x)}
(5.11)
+e9'iE(x)5Ew(x) A‘[‘)T;K(& G,).

The origin of this discrepancy must be understood.
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First, we temporarily adopt the scheme of [11] and
reconsider Eq. (4.3) for the current

00

_ _e%( [ devE)DE) f(e, %)

)

>la

(5.12)

00

+§DOe2E(x) [ devE)f(e 9.
-U(x)

For the total current (the dc current plus fluctua-
tions), the equation reads

J+dJ-G _ d
— A T o I dev(€) D(g)
—U(x) —8U(x)

x[f(g, x) +Of(g, X)] + gDOeZ[E(x) +0E(x)] (5.13)
X I dev(e)[ f(g, X) + df (g, X)].
—U(x) —0U(x)
Taking Eq. (5.12) into account, we obtain the linear-
ized equation
5-G _ __d
= eﬁf dev(e)D(g)df (g, X)

Ui

+§D0e E(X)D.r dev(e)df (g, X)

—U(X)

+0U 5U()J’dsv(s)f(s x)D

-U(¥)

(5.14)

©0

+gDoe26E(x) [ Ve (e
-U(x)

d
e—6U 6U( 3 I dev(e) D(e) f (€, X).
-U(

I one linearized the Poisson equation in the spirit of
[11], one would see that the term in the curly brackets
in Eg. (5.14) would coincide with (k/4Te)(doE/dx), and
therefore,

K d6E

e dx J’ dev(e)df(e, X)

-U(x)

5 (5.15)
ouU %(x) J’ dev(e) f(g, X).

-U(x)
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Simplifying the first, third, and fourth terms on the
right-hand side of Eq. (5.14) with the help of Eq. (5.6)
and inserting (k/41e)(dOE/dX) instead of theterm in the
curly brackets, we arrive at

6J G _ K d8E]
Cax ajo ()41'[ dx O
g g 5 g (5.16)
3 K K E
+ D5 ESE + €Dy dxauw[ua}.

We can see that the last term on the right-hand side
of this equation coincides with thefirst term on the | eft-
hand side of Eqg. (5.11). To avoid confusion, we note
that we believe Eg. (5.15) to be also wrong. We have
written it here only for the detailed comparison with the
approach in [11]. We believe that the correct Poisson
equation for the fluctuation field is

K d6E

41e dx (5.17)

I dev(e)of(g, X).
-U(x)

In Eq. (4.3) for the dc current, we now add the terms
that actually vanish because they are proportional to the
integrals of the distribution function over € with the
upper limit —=U(X), whereas the distribution function
f(e, X) = 0for € <-U(X). The point is that, when we cal-
culate the fluctuations by the replacement

U(X) — U(X) + dU(x),
they give a nonvanishing result. We have
-U(x)

% _ _% [ devE)DE) f(e, )

d 00
_e&J' dev(e) D(g) f (€, X)
-U(x)
-U(x)

+gD0e2E(x) J' dev(e) f (e, X)

(5.18)

+gDoe2E(x) J' dev(e) f (g, X).
-U(¥)
Rewriting this equation for the total current, we
obtain

J+0J- G ei
A dax
—U(x) —3U

J’ dev(e)D(e)[ f (g, X) + 0 (g, X)]
0

—e%( dev(e) D(e)[ (g, X) + 8 (€, X)]

-U(x) —8U(x)
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+ 2D ETE() + SE(X)]
-U(x) —8U(x)
|

0

(5.19)
dev(e)[ f(g, X) + df (g, X)]

+ 3D E(Y) + SE(X)]

X J’ dev(e)[ f(g, X) + df(g, X)].
-U(x) —dU(x)
Linearizing this equation and using relations similar to

[

6U(x)%(x) [)dsv(e) D(e) (€, X)
—U(x
—U(x) —8U(x)

-

-U(x)

we arrive at Eqg. (5.1) that has been derived above. We
see that the contributions to Eq. (5.19) that are linear in
oU cancel because of the termsthat vanish in the equa-
tion for the dc current but must be taken into account in
considering fluctuations. This is why the linearization
of Eq. (4.5) leads to Eq. (5.11) that we believe to be
wrong because it does not take all the sources of fluctu-
ations into account, or in other words, all the termsin
Eq. (5.18) containing U(X).

The solution to Eq. (5.7) with the boundary condi-
tions

(5.20)
dev(e)D(e) f (g, X),

E(x)6E CI—}

U(x) OF —0 (2D
isgiven by ﬁ
Lo sEx) = U
X g (5.22)

x[c +J’ dmlzjdn(éJ —G(n)m)}
0

where C is the integration constant. Requiring a non-
fluctuating applied voltage

L

J’dx{)Ew =0,

we find from Eq. (5.22) that the constant is

J»dX[HJ(X) O

1 X
(D) T O Gl 629
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where
W) = [dEUTE). (5.24)
0
We now require
d _
HOEM| =0 (5.25)
at the right boundary and obtain
L
53, = % [XNXIG09, (5.26)
0
where
dULUL) xw(x)
Z= L+ =0 Idx T (5.27)
_ 1 dUOUTL) ()
nx =1+ ) [& TG (5.28)
The noise power P isthen given by
L
_ 2 2 2
P = - Jo'dxl‘l (X) [G°(X) 0. (5.29)
In accordance with Eq. (5.5), we have
[G (X0, = 2€°A J'dev(s)D(s) f(e, X)
0 (5.30)
k d’U
= 26 AD, U(X)Ll?ed—
Wefinadly arrive at
P= 4AD° Id xM%( )U(x)— (5.31)

The potential distribution can be found by following
the method in [11], i.e, by solving Eg. (4.5) with
boundary condition (4.2) a x = L. Using Egs. (5.24),
(5.27), (5.28), and (5.31), we calcul ate the suppression
factor P/Ppyieon. FOr physically relevant different values
of the dimensionality d, we obtain

[00.3188 for d = 3,

0
= [0.4512 for d = 2, (5.32)
H0.682 for d = 1.

In this particular case, our results therefore differ
from those calculated in [11] both analytically (which
is of principal importance in our opinion) and numeri-
cally (although in this particular case the difference is

P

Poisson
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not great). Naturally, there is essentially no difference
from the results calculated within an ensemble Monte
Carlo schemein [10].

5.3. Energy-Dependent Scattering Time

Here, we calculate the noise power for s = +1/2 and
d = 3. The equation for the fluctuationsis

i[(—U ) 1d25w}

(E6Ew)

41t _
—m(mw -G,) =

(5.33)
23 +d

(-U)y

Introducing the dimensionless potentiad x by Eqg. (4.7)
and the fluctuation of the field AE by

4T[|J| LS |:llj(s,+2)
O0E(x) = AEEY , 5.34
09 = [ A 77 (634
we can rewrite Eq. (5.33) as
XAE" ax”
AE" +E1*1_- AE—%+§DXAE
(5.35)
__1 (G- 6J)
Xs+1 |J|
Setting s=-1/2 and d = 3, we obtain
nE - Inp Xpap = 2(C=0) (53

2X X |J]

This equation differs from that derived in [11], while
the equation for the potential X coincides with

1 ... 12 m _
ZXUZXX -X X = (5.37)

To calculate the Green's function of Eq. (5.36), we
need the function Y,(X) obeying the homogeneous
equation

w"—‘—wl—"wl =0 (5.38)
and satisfying the boundary condition |, _, = 0. The
second function ), satisfying the boundary condition
W/, = 0 can be expressed through the functions x
and Y, as

)
WD) wy(2)

Pa(X) = -, + dEXUZ(E)}. (5.39)

WiE)
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The solution to Eg. (5.36) can be written using the
Green's function

1
G(x, X) = ——
*20 = 7 (5.40)
X [B(X=X) P30V W0 + BX — X)W () o(X)]
as
(6(x)~53)
d e .
AE = IxG(x X) 20 (5.41)

Requiring a nonfluctuating applied voltage, we
obtain

_ 10y, G
oJ Z{dxx(x)n( ), (5.42)
where
M) = () _[ dew,(&) +qJ2(X)IquJl(E)v (5.43)
Mn(x)
Z= J’ dx R (5.44)

Expressing the correlation function [G2(x) Cthrough
X, we obtain the power supreesi on factor

-2 .rdx X 2 (5.45)

3/2( )

for the shot noise. We determl nethe potential x follow-
ing [11] and numerically find g, from Eq. (5.38). The
functions s, N and the constant Z can be found from
Egs. (5.39), (5.43), and (5.44). The suppression factor
can be evaluated as

P
I:)Pomon

which is about 10% larger than the result obtained in
[11]. The numerical simulation result in [10] for s =
-12is

PPOISSOFI

= 0.4257, (5.46)

P
Poisson

Thisinterval is noticeably closer to the value given by
Eqg. (5.46) than theresult in [11].

In the case where s = 1/2, the suppression factor can
be evaluated as

= 0.42-0.44.

(5.47)

P
Poisson

which is dightly smaller than the result in [10].

= 0.1974, (5.48)
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6. CONCLUSION

In summary, we have devel oped an analytical theory
of shot noise in a diffusive conductor under the space-
charge-limited regime. We find that the present theory
is different from the approach developed earlier and
indicate a possible origin of the difference.

We now make several concluding remarks. The cal-
culated nonequilibrium shot noise power in a nonde-
generate diffusive semiconductor for two types of phys-
ically relevant elastic scattering mechanisms turned out
to be very close to the ones obtained in numerical sim-
ulations by the authors of [10]. The computed noise
suppression factor P/Ppy;«n, fOr the energy-independent
scattering time is also rather close to the anaytica
results obtained earlier by Schomeruset al. [11]. How-
ever, for the energy-dependent scattering, the numerical
difference between our results and thosein [11] is con-
Siderable.

We clarify once more why the authors of [11]
arrived at the equations that differ from ours. As an
example, we take the Poisson eguation. According to
[11], one could write

n= [ devie)f(e ), (6.1)

-U(x)

where n and U are the exact total concentration and
potential energy and f is the total distribution function
(the mean value plus the fluctuating part). The linear-
ization of this equation leads to the equations in [11].
The authors of [11] could have argued that, because the
voltages in the reservoirs do not fluctuate and U is set
to zero at the left boundary and because the total energy
€ = ¢ + U remains positive, the total distribution func-
tioniszerofor e <-U.

Our point isthat Eq. (6.1) cannot be justifed for the
total values of these variables including the stationary
and fluctuating parts. Thisis readily seen from the fact
that the fluctuating part of the distribution function
itself implicitly depends on the mean value of the dis-
tribution function through the correlation function. One
should bear in mind that an equation involving both the
mean and the fluctuating quantities must be regarded
symbolically. Indeed, such an equation isin fact equiv-
alent to two equations, one for the mean values and the
other for the fluctuating part. Regarded literally, it can
lead to confusion. For example, analyzing the equation

n+on = Idev(e)(f_+6f),
—U-5U

one can come to the wrong conclusion that the mean
value n depends on such an average as dU of .
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We add several words about the boundary condi-
tions for the potential. The boundary conditions used
here are not applicable within the length

Ry = JkV/4men(0)

near the electrodes. Because the nonequilibrium noise
power is abulk property (we note, e.g., the integration
over the coordinatein Eq. (5.45)), thisapproximationis
justified since we assume that the sample length L is
much greater than R,.

Being interested in the analysis of the fluctuation
phenomena in the simplest situation of the space-
charge limited diffusive conduction regime, we have
not taken the electron—electron collisions into account.
These collisions can lead to an additional electron—
electron correlation [7] that must be considered in ana-
lyzing amore general case.
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Abstract—Galvanomagnetic phenomenain organic conductors with a quasi-two-dimensional energy spectrum
of an arbitrary form in the presence of several groups of charge carriers whose states belong to Fermi surface
sheetswith different topological structures are considered. The dependences of magnetoresistance, Shubnikov—
de Haas oscillations, and Hall field on the intensity and orientation of a strong magnetic field with respect to
the normal to layers n are analyzed for a Fermi surface consisting of aweakly corrugated cylinder and aplane
weakly corrugated along the p, = pn plane. © 2002 MAIK “ Nauka/Interperiodica” .

Interest in low-dimensional conductors of organic
origin, which arose in the 1960s because of practica
demands for new superconducting materials, does not
seem to lessen. After the discovery of the superconduct-
ing state of fullerenes doped with various organic mol-
ecules (the transition to the superconducting state in
these materials was observed at T, = 52 K [1] and, more
recently, at 120 K [2]), the preparation of organic high-
T, superconductors has become quite realistic. Along-
side metal oxide superconductors, these materials will
find wide applicationsin diverse fields of modern elec-
tronics. In addition, unusual behavior of organic com-
pounds in the normal (not superconducting) state also
attracts attention of researchers because of the presence
of peculiar phase transitionsin them and their very sen-
sitive response to external magnetic fields. Reviews[3,
4] include more than three hundred publications con-
cerned with studying electronic processes in organic
conductors in the superconducting and normal states,
especialy in strong magnetic fields H. Under these
conditions, experimental studies of magnetic suscepti-
bility [5, 6] and transport phenomena can be used to
solve the inverse problem of reproducing electronic
energy spectra. This requires preparing fairly perfect
samples with the free path of charge carriers | suffi-
ciently long for frequency Q of electron rotationsin the
magnetic field to be much higher than the frequency of
its collisions 1/1. This strong magnetic field condition
(Qt > 1) was fulfilled in fields of the order of several
dozen tesla units in radical-ion salts based on tetrathi-
afulvalenewith layered structures. Thisisalikely cause
of a considerable interest in studying €electronic pro-
cesses in organic conductors based on tetrathiaful-
valene in strong magnetic fields, especialy galvano-
magnetic phenomena and quantum oscillation effects.
These conductors are layered structures with sharp
anisotropy of metal-type conduction, in which the elec-

trical conductivity along layers is several orders of
magnitude higher than that across layers.

In addition to quantum oscillation effects in tetrathia-
fulvalene salts observed as angle 9 between the mag-
netic field and normal to layers n changed, periodic
recurring narrow maxima were observed in the depen-
dence of resistance to current across layers on tand [7,
8]. This orientation effect arose because of the quasi-
two-dimensional character of the energy spectrum of
charge carriers and was absent in usual metals.

The sharp anisotropy of the conduction of layered
conductorsis likely to be related to a sharp anisotropy
of the distribution of charge carrier velocities v =
0s(p)/op over the Fermi surface €(p) = €. The energy
of charge carriers,

- Canp, O
£(P) = 3 nlPu P,)COSTET: + to(P P,

n=0 U 0

En(pX! py) = sn(_le _py)l (1)

an(pw py) = _an(_va_py)v

therefore weakly depends on the momentum projection
p, = pn, and the max{ &(p) — &y (py, Py)} Maximum func-
tion value equal to neg is much smaller than the ¢
Fermi energy.

The energy of an elementary excitation of a charge
carrier in form (1) with arbitrary periodic functions
&n(px, py) and arbitrary phases a,(py, py) satisfiestrans-
lational symmetry and €(p) function parity, which fol-
lows from the Hermitian character of the Hamiltonian.
Here, a is the distance between layers and # is the
Planck’s constant.

The gquasi-two-dimensional character of the energy
spectrum of charge carriersin organic layered conduc-
tors favors stronger manifestations of Shubnikov—de
Haas [9] and de Haas—van Alphen [10] oscillation
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effectsin them because their formation involves afairly
large number of conduction electrons with Fermi
energy €:. Shubnikov—de Haas oscillations of magne-
toresistanceinthe (BEDT-TTF),IBr, and (BEDT-TTF),l;
organic conductors discovered in 1988 [7, 8, 11-14]
and then virtually in al tetrathiafulvalene salts and tet-
rasel enotetracene halides [15] at various magnetic field
orientations with respect to the layers are evidence that
at least one Fermi surface sheet is aweakly corrugated
cylinder with the openness direction along the p, axis.
All sections of this cylinder by the pH = const plane are
closed if the 9 angle between then and H vectors equal
to (0, Hsind, Hcosd) differs from 172 and conduction
electron energy levels are quantized. These energy lev-
els should be determined by the Schrédinger equation

. S
AEP - ZAHe(9expEEyp, + 22
i @
= en(Py, P XPELYP, + 22D,

where e is the electron charge and c is the velocity of
light in the vacuum.

Here, we use the Landau calibration on the assump-
tion that magnetic field vector-potential A only depends

on coordinate x; that is, the H (P — eA/c) Hamiltonian
contains a single differential operator p,, and the p,
and p, generalized momentum projections are good
guantum numbers.

In the quasi-classical approximation, when the dis-
tance between quantized levels Agy = hQ is much
smaller than neg, the energy spectrum of charge carri-
ers can be determined for an arbitrary form of Hamilto-

nian H, which coincides with expression (1) for

energy, if kinematic momentum p is replaced by (IAD -
eAlc). If & (py, py) is aquadratic function of the con-
duction e ectron momentum, for instance,

ppy

SO( px’ py) = 2m

and all the other €,(py, py) functions with n > 1 on the
Fermi surface equal constant values A, that is, do not
depend on p, and p,, then the energy spectrum of
charge carriers can easily be obtained at an arbitrary
ratio between Agy and neg. In the main approximation
with respect to the a/ry parameter, where ry is the
radius of curvature of thetrgjectory of chargecarriersin
the magnetic field, the @(x) function is, asfor free elec-
trons, a Hermitian function with the argument shifted
with respect to the center, and the energy of conduction
electronsin the quantizing magnetic field has the form

en(pn) = a\l + %QhQ
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- Danpy0 1
+ ) A,Cos[} 3
Zl DﬁcosSD ghQ
- . 0
x Z (A,n)’asin® Eﬁ_%
=1
where
o = azeH sin’9 _ eH cosd
ficcosd ’ mc ’
N=0123,...,
and

1/2
Z na COSD% s 8% . (4

The cyclotron effective mass of conduction elec-
trons with energy spectrum (3) has the form

* = m
gcosd ©)

and, because of the quasi-two-dimensional character of
the electronic energy spectrum, isalmost identical at all
sections of the Fermi surface by the p,, = const plane.
Generalized moments P, and P, asin the quasi-classi-
cal approximation for an arbitrary spectrum of charge
carriers, enter into the expression for energy only inthe
form of the integral of charge motion in magnetic field
P,cosd + P sind = p, = pH/H.

If hQ < neg and the €,(py, py) functions have an
arbitrary form, the quantized energy spectrum of charge
carriersis easy to determine with the use of therule for
quantizing areas [5 6],

S, pu) =

-5 po) = 2m RN+, (9)

cosf)

where $,(g, py) = $p, dp, is the projection onto the

P« Py plane of the section of the isoenergy surface S,
pu) by the p, = const plane.

Consider galvanomagnetic phenomenain a conduc-
tor in which the Fermi surface hasthe form of aweakly
corrugated cylinder with an arbitrary cross section. The
relation between current density and electric field E,

Ji = Sp{ er/i,f} =0 iEy, (7)
can be found by solving the quantum kinetic equation
forthe f = fo + f1 Statistical operator, where f, isthe
statistical operator describing the equilibrium state of
the system of electrons whose diagonal components
coincide with the Fermi function of the distribution of
charge carriers fo = fo{en(Py, P,)}. The f1 operator
describes the perturbation of the electronic system by
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the electric field, and V is the operator of the velocity
of electrons.

In the linear approximation with respect to a weak
electric field, the kinetic equation has the form [16]

[
FEn—en) f)

f —f ,
= eEvyy 0(82:‘_8’:F8N )'1

Ny WNN‘{ ?1}
(8)

where W{ f1} isthelinear operator that describes scat-
tering of conduction electrons on crystal defects and
crystal lattice vibrations.

In a quantizing magnetic field, the density of con-
duction electron states has singularities periodically
recurring as 1/H varies, which is the reason for oscilla-
tions of kinetic coefficients in a strong magnetic field.
These singularities appreciably manifest themselves
when the summation over conduction electronsis per-
formed not only in Eq. (7) for current density, but also

in the integral of collisions W, which results in the
appearance of terms oscillating with 1/H in the eigen-
values of the integral operator of conduction electron
scattering. Taking them into account is very important
in crossed fields E [0 H, when there are stationary con-
duction electron statesin the collisionless limit (T = ).
Ignoring the oscillating quantum addition to the relax-
ation time of charge carriers 1,4 then leads to a differ-
ent, substantially underestimated amplitude of Shubni-
kov—de Haas oscillations [17, 18].

In a strong magnetic field, when not only Qt > 1,
but also AQ/er = n, the periodic dependence of Kinetic
coefficients on 1/H is fairly complex. At £Q/ex < 1,
this dependence, however, has aharmonic form and can
easily be identified in the equation for current density
with the use of the Poisson formula.

When current flows over layers, the Hall field at
Q1 > 1, asin ausua metal, substantially exceeds the
electric field along the current if the magnetic field is
appreciably deflected from the surface of layers. How-
ever, if current flows across layers, the galvanomag-
netic characteristics (magnetoresistance and the Hall
field) of alayered conductor show an essentially differ-
ent behavior. At n2Qt < 1, the Hall field is much lower
than the electric field E, along the normal to layers, and
the electric field vector is therefore directed mainly
along the electric current. The resistance to current
acrosslayersp = p,, isthen determined fairly accurately
by the single g,, component of the electrical conductiv-
ity tensor, and p, = 1/0,, because the velocity of the
drift of charge carriers along the z axis,

050
VZ(pH’ 8F) = aS/apSHC

is proportional to the n quasi-two-dimensionality
parameter, and, at (T2 —9) > n, the expansion in pow-

0S9 , 9
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ers of n of the electrical conductivity tensor compo-
nents g;; with at least one index coinciding with z
begins with quadratic terms[19, 20].

In the quasi-classical approximation (AQ << ggn),
the 0, asymptote in a strong magnetic field at y =
1/Qt < 1 can be calculated with the use of the solution
to the kinetic equation in the T approximation on the

assumption that the W{ fl} operator of collisions of

electrons is an operator of multiplying f1 by thev =
1T + v, frequency of collisions. Thisresultsin loss of
significance of low-importance numerical coefficients
of the order of one, which does not change the amount
of information about the form of the energy electronic
spectrum contained in galvanomagnetic characteristics.

The Poisson formula yields the following asymp-
totic equation for o, at y < 1:

Oz (2nh) kz Joe

XIdeZHm*e Vv exp{ 2TikN(e, py)}

af0(8)

(10)

where
1 9(e, py)
21t 0

isthe cyclotron effective mass.
The part of theeectrical conductivity acrosslayersthat
monotonically changes asthe magnetic field varies,

afo( )

m* =

2 (2T[ﬁ)3-[

substantially depends on the magnetic field orientation
with respect to layers [20, 21] because, at some 9 val-
ues, the velocity of conduction e ectrons along the nor-
mal to layers averaged over the T = 217/Q period,

J‘d p2mm*e’vit, (11)

= _ : DaanD
VPr.€) = Zl CsnE—HI(9, i, (12)
sharply decreases. Here,
T
1
0(9, ) = F[dten{ p(t, Pu). Py Pr}
’ (13)

x cosEnhln py(t, pH)tanSE.
Oh 0

The € = congt and p, = const dectron orbitsatn < 1
are almost indistinguishable, and the p, and p, functions
and, therefore, 1,{8, py} weakly depend on py, in
accordance with the smallness of the quasi-two-dimen-
sionality parameter n. It follows that the Al {3, py} =
1,{3, pa} —1,{8} difference should only be taken into
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account in the vicinity of the 9. angles at which I, ,{9}
vanishes. If the €,(py, py) functions fairly rapidly
decrease as the n number increases, a minimum electri-
cal conductivity value across layers should be expected
at thed =9, valuesat which 1,{8} = 0. We must then
take into account terms of higher orders in the expan-

sionof oy in powersof yand n,

cosd <
0_:1Zon - aesz* 0S Z 2 i( )
( n=1

(14)

+N°06{N°01(8) + Y 0(9)} ,

wherethe ¢, (8) functions, which depend on the special
form of the law of dispersion of charge carriers, are of
the order of one and g, coincidesin order of magnitude
with the electrical conductivity along layers in the
absence of amagnetic field.

At tand > 1, rapidly oscillating functions in the
integrand in (13) contribute to the integral mainly close
to the neighborhood of the stationary phase points,
where

opy _
ot

The distance between these points is the electron orbit
diameter D, along the p, axis. When & varies, the | {9}
function, like tand , experiences periodic changes with
the period

v cosd = 0.
c

21th
anD,’

P

A(tand) =

(15)

and experimental studies of the dependence of magne-
toresistance at various strong magnetic field orienta-
tions make it possible to completely reproduce the
shape of the Fermi surface [19-22].

Zeros of the function | {9} with various n do not

mon

coincide, and the first term in Eq. (14) for 0,," there-

fore never vanishes. If we assumethat, at § =9, when
1,{9 =0, dl the ather termsin the sum over nin (14)
are together proportional to n taken to a higher power
than n?, for instance, to N1+ 9, then, at n% < y < 1,
magnetoresistance p,, should increase proportionally to
H?, and the angular dependence of p, should be
expected to containfairly sharp peaksat & =9.. In addi-
tion, Pmax/Pmin = Y = 1. The experimentally observed
magnetoresistance maxima of tetrathiafulvalene salts
[7, 8] (also see[3, 4]), however, have the same order of
magnitude as the magnetoresi stance between the max-
ima. The small height of the maxima in the angular
dependence of magnetoresistance is evidence that the
€(px, py) functions decrease fairly slowly as n
increases, and ignoring the n = 2 terms in the equation
for the dispersion of charge carriersisincorrect.
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Consider the equation for the part of the electrical
conductivity across layers that oscillates with 1/H
of 0(e)

osC __
zz —

(2Tth) I

XJ'deZHm* VTV g —

(2mh)®
(16)
T
21+ Ve

2mm* €272

x exp{ 21 kN(g, py)} .

Here, not only v, but also the exp{ 2rikN(g, p4)} mul-
tipliers, which rapidly oscillate at £Q < ngg, essen-
tially depend on py. The first term on the right-hand
side of (16) has the same order of magnitude as any
termsin the sum over k with asmall kindex. Asthesig-
nificance of numerical coefficients of the order of one
inthe equation for 0, waslost in selecting the model of
thecollisionintegral, wewill only analyze the sum over
k in (16) ignoring the Tv . value, which is small com-
pared with one, in the denominator.

The major contribution to a5, is made by the inte-

gration of a small neighborhood of stationary phase
points, which are found from the condition

(PpS _c
dN(e, py) = E;ds aloHde SheH - = 0. (17)

The stationarity condition when S(g, py) is amost
constant is only fulfilled at

oe _ _0S0py

opy 0S/0e
The conduction electron state density has singularities
at de/dpy = 0, that is, either on the extremal section of

the isoenergy surface, when 0Sdp, = 0, or on a self-
intersecting orbit, where

mt = 10S _
2moe

The Fermi surface has no orbits with self-intersections

at ntand < 1, and the major contribution to o, is
made by electron states from a small neighborhood of
the extremal Fermi surface section by the p, = const
plane.

Integrating (16) by partsyields a5, in the form

0 2 afo(E) o eHA
oy = ~2Re’ (de -1
(2mh)° ZI ke e D'
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OkeS(e, py)d

XIdPHeXPE—D

eH#A (18)

© 2
E:UN 0anPu
* 2 00 ©rcoss 1%
n=
Further calculations of oy by the stationary phase

method pose no difficulties. As aresult, the oscillating
part of electrical conductivity across layers takes the
form

o _ w— o [BHAF? KA
Oz = kzleTD ke 0 Snh(kh)

4%’ (-1)"
(2mh)*|o*Sap? | A2

Oc 2 O KC(Shax— Sin))
azl(Zn - 1) Sln% - ZGTE
(19)
[kc(smax + Smin)

O
(" _
><cosD el EIZn 1(®)

DT[ kc(smax _ Smin)l:J

+ Y (2n)’cos[ — 0
nzl D4 2eH#n 0

; |:kC(Smax'l'Sh1in)D g
O—er7
XS0 ens 90

where A = 2120/4Q and 6 is the temperature in energy
units.

If the &,(py, py) functions decrease fairly rapidly as
nincreases, asubstantial decreasein o5 isobserved at

mon

the same 9 = 9. anglesasfor g,, , and the amplitude
of Shubnikov—de Haas magnetoresistance py, oscilla-

mon

tions, which is proportional to a5, /(0% )2, sharply
increasesat 4 = 9. Asaresult, sharp maximaappear in
the dependence of py; on the angle 9 between the H
and n vectors. If 1,(3) and 1,(9) are values of approxi-
mately the same order, the maxima in the angular

dependence of pyy are shifted with respect to the max-

mon

imaof p,, . Theshift value can be used to estimate the

guasi-two-dimensionality parameter of the electronic
energy spectrum.

Equations (10), (11) for oy, and (16), (18), (19) for
oy arevalid at y < 1, that is, when an electron man-
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ages to perform many revolutions in its orbit in the

magnetic field during the mean free time and a5, can
be caculated ignoring quantum level broadening
caused by collisions of charge carriersintheform of the
so-called Dingle factor exp{—vy} [23].

The larger tand , the smaler the contribution to
electrical conductivity of the functionsin the integrand
in (13) that rapidly oscillateat tand > 1, and theresis-

tance of the sample grows proportionally to tand asd
increases as long as y < 1. Strongly prolate orbits, in
which an electron fails to perform a complete revolu-
tion during the mean free time, appear as 9 approaches
2. At y = y,cosd = 1, g, begins to grow as 3
increases, and, at ntand = 1, when self-intersecting
orbits appear, the magnetoresistance to current across
layers reaches a minimum [24, 25]. The y, = 1/Qgt
parameter, where Q, is the frequency of electron revo-
[utions in the magnetic field at 9 = 0, can be assighed
the meaning of the ratio of the time of electron move-
ment in an orbit strongly prolate along the p, axis by a

distance of the order of 2i/a. At ntand > 1, theresis-
tance again increases asthe§ angle widens and reaches
amaximum at 9 = 1/2. The p, maximum grows as the
magnetic field increasesfirst linearly at n <y, < 1and
then proportionally to H2 at n >y, [21, 22]. The magne-
toresistance along the normal to layers experiences
unlimited growth at 9 = 172 because v, (py) vanishes

inall Fermi surface sections, and we must retain expan-
sion terms of higher order in small parameter vy, in the

mon

expression of g,. The major contribution to 0,, s

made by a small fraction of electrons with orbits close
to the salf-intersecting orbit, the period of revolution in
which logarithmically diverges.

Azbel’ showed that the self-intersecting orbit for

Oy stands out in the same sense as the extremal sec-

tion of the Fermi surface [26, 27]. In some specia situ-
ations, electrons from the vicinity of the self-intersect-
ing orbit can form high-temperature oscillations [28].
Their contribution to a5 is, however, negligibly small
compared with the amplitude of oscillations for which
electrons with the extremal Fermi surface section are
responsible. A theoretical analysis of the fine effects
predicted by Azbel’ requiresthe collision integral in the
guantum kinetic equation to be handled more accu-
rately. For this reason, we do not pay due attention to
these effects and interference oscillation effects, which
arise when v is taken into account in the sum over k
in (16) and which appear in the higher terms of the
expansion in powers of the AQ/ner small magnetic
parameter. Although the amplitude of these oscillations
is exceedingly small, the authors of [29] were able to
observe them. Among the interference oscillationsin a
guasi-two-dimensional conductor, there are low-fre-
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guency oscillations determined by the dimensionality
of the maximum and minimum sections of the Fermi
surface by the p,, = const plane. The amplitude of these
magnetoresistance oscillations slowly decreases as the
temperature increasesaslong asy < 1[29].

The Fermi surface of organic layered conductors
containing more than a hundred atomsin the unit cell is
fairly complex and can consist of el ements with differ-
ent topological structures. In addition to a corrugated
cylinder, sheetsintheform of planesweakly corrugated
along the p, axis are possible. For instance, the Fermi
surface of (BEDT-TTF),MHg(SCN), sdts, where M is
K, Rb, Tl, or NH3, contains not only a weakly corru-
gated cylinder but aso two quasi-one-dimensional
sheets according to band calculations of the electronic
energy spectrum [30]. These sheets are weakly corru-
gated planes, and their py = const sections are open at
amost any magnetic field orientation. Although con-
duction electrons with a quasi-one-dimensional energy
spectrum weakly respond to the presence of an external
magnetic field, the existence of such a group of charge
carriers can substantially change the magnetoresistance
of a conductor. At magnetic field orientations at which
open electronic trajectories appear in the momentum
space, the magnetoresistance becomes sharply aniso-
tropic even in the plane of layers. Experimental studies
of the anisotropy of the transverse magnetoresistance
( OH) areareliable method for determining the topol -
ogy of the Fermi surface [31, 32] (also see the review
by Novikov and Mal’tsev [33]).

Consider galvanomagnetic phenomena in an
organic conductor whose Fermi surface consists of a
weakly corrugated cylinder and sheets weakly corru-
gated along the p, axis, and let the normal to the plane
tangent to these sheets make angle @ with the p, axis.

In the presence of severa groups of charge carriers,
all of them contribute to electric current. When charge

2 2
mon _ .
Ok = Qyay,+ 0,SNQCoS @

yn“ay

I o |

where g, is the largest contribution to electrical con-
ductivity over layers at H = 0 made by charge carriers
whose states belong to the open Fermi surface sheet in
the form of a corrugated plane; the a; matrix compo-
nents coincide with g, in order of magnitude, that is,
with the contribution to electrical conductivity over lay-
ers made by the other conduction electrons in the
absence of amagnetic fied.

The drift of charge carriers with open trgjectoriesin
the momentum space does not coincide with the mag-
netic field direction, and the fan of al possible drift
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carriers collide with the boundary of the sample, the
transfer from one Fermi surface sheet to another is pos-
sible, which results in intermingling of electron states
during the mean free time with respect to dissipative
collisions in the bulk of the conductor. In thin conduc-
tors, such transfer processes substantially influence the
magnetoresistance value [34]. In massive samples
whose thickness is much larger than the mean free path
of electrons, the total electrical conductivity can, how-
ever, fairly accurately be represented by the sum of the
electrical conductivities of all groups of conduction
electrons,

_ ~(1 (2)
Oik = Oj Oy,

(20)
where oi(l? isthe contribution of charge carriers whose
state belongsto weakly corrugated plane Fermi surface

sheets and off) is the contribution of conduction elec-
trons that belong to the weakly corrugated cylinder.

Charge carriers involved in finite motion in the
plane orthogonal to the magnetic field have a discrete-
continuous energy spectrum. There is ho quantization
of theintegral of motion p, at € = const for conduction
€l ectrons on open isoenergy surface sections. It follows
that the major contribution to the oscillating part of
electrical conductivity is made by charge carriers
whose states belong to the Fermi surface sheet having
the form of aweakly corrugated cylinder. It can, there-

fore, be taken that 6% = 62 to afairly high accu-
racy.

If ntand < 1, there is no self-intersecting closed
sections of the corrugated cylinder by thep, =p - H/H =

mon

const plane, and the asymptotic equation for the o;,

matrix in a strong magnetic field takes a fairly smple
form, namely,

yn’a,

yn‘a,, + o,tand [ (21)

OOogood

OZZ

directions coversthe whole plane asp, changes[31]. In
the direction orthogonal to thisplane, all charge carriers
cannot, however, be displaced by a considerable dis-
tance. It is easy to see that, in the coordinate system in
which one of the axes is directed along the magnetic
field, electrical conductivity in the plane orthogonal to
the magnetic field is sharply anisotropic at y < 1, and
one of the diagonal electrical conductivity tensor com-

ponents is proportional to y>. As a result, the determi-
nant of the oy matrix is also proportional to y2 no

matter what the form of the energy spectrum of the
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topological structure specified above. Simple calcula-
tions lead to the following asymptotic equations for the
resistance over and across layersat n < cosd and y, <<
CosY:

0,sin° Qcos’ 9 + Y30,
0= Ve0,(0, + 0,)
O2 0 02 1 , (22)
_ 0,C0S (Ccos ¥ +Yq0,
pyy - 2
YoOo(0o + 03)
2 . 2
Ccos @sin ¥
P, = _1._ + gl___(g.__._ (23)

Oz VSGO(UO + 01).

Unimportant numerical coefficients of the order of
one, which depend on the specia form of the dispersion
law for charge carriers, are, as previously, omitted in
(22) and (23).

Atn <y, < 1, the eectric field vector is, as previ-
ously, amost paralel to the current that flows along the

normal to layers, and the pys /Py ratio is of the same

order of magnitude as when the Fermi surfaceisasin-
gle corrugated cylinder. At y, < n, the presence of an
additional Fermi surface sheet in the form of a corru-
gated surface, however, resultsin an unlimited increase
in the resistance to current across layers, and the Hall
field

_0,SIN2@Qsin23%

E, =

Yo 0o(0o + 07)
PN (24)
(gt o,8in"@)sind

+
Yo 00(0p + 04)

which is proportional to H? in the whole region of
strong magnetic fields satisfying the y, < cosd condi-
tion, is aready comparable with E,.

The existence of a group of charge carriers belong-
ing to the Fermi surface sheet in the form of a corru-
gated planeis easy to determine from quadratic growth
in magnetoresistance or the Hall field as H increases at
various magnetic field orientations with respect to lay-
ers.

Equations (14)—(21) for the magnetoresistance and
Hall field are valid for arbitrary Fermi surface corruga
tion in the p,p, plane. The amplitude of corrugation or
its absence in one of the Fermi surface sheets does not
influence the character of the dependence of the galva
nomagnetic characteristics of a two-dimensional con-
ductor aslong as ntan® < 1. In the opposite limiting

case of ntanB® > 1, the contribution of charge carriers
with a quasi-one-dimensional energy spectrum to elec-
trical conductivity across layersis, however, inversely
proportional to H? in the whole region of strong mag-
netic fields y, < 1, and the contribution of charge carri-
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ers with a quasi-two-dimensional spectrum is propor-
tiond toypatn <y, << 1.

To summarize, the dependence of magnetoresis-
tance and the Hall field on the strong magnetic field vaue
at variousfield orientationswith respect tolayersalows us
to answer the question to what extent the suggestion of the
existence of a group of charge carriers with a quasi-one-
dimensional energy spectrum in the organic charge trans-
fer complexes (BEDT-TTF),MHQ(SCN), isjustified.
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Abstract—We consider the quantum vacuum of a fermionic field in the presence of a black hole background
as a possible candidate for the stabilized black hole. The stable vacuum state (as well as thermal equilibrium
states at an arbitrary temperature) can exist if we use the Painlevé—Gullstrand description of the black hole and
the superluminal dispersion of the particle spectrum at high energy, which is introduced in the free-falling
frame. This choice isinspired by the analogy between the quantum vacuum and the ground state of quantum
liquid, in which the event horizon for the low-energy fermionic quasi particles can aso arise. The quantum vac-
uum is characterized by the Fermi surface that appears behind the event horizon. We do not consider the back
reaction, and therefore, there is no guarantee that the stable black hole exists. But if it does exist, the Fermi sur-
face behind the horizon would be the necessary attribute of its vacuum state. We al so consider the exact discrete
spectrum of fermionsinside the horizon, which allows usto discuss the problem of fermion zero modes. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In 1981, Unruh proposed to study black hole phys-
ics using its sonic analogue [1]. Originaly suggested
for classical liquids, thiswas later extended to quantum
systems such as superfluids and Bose condensates [2—
4]. The main advantage of the quantum liquids and
gases is that, in many respects, they are similar to the
guantum vacuum of fermionic and bosonic fields. This
analogy forms aview on the quantum vacuum as a spe-
cial type of condensed matter—the “ ether”—where the
physical laws that we have at present can arise emer-
gently as the energy or temperature of the “ether”
decreases[5]. A particular scenario of the emergent for-
mation of the effective gravity together with gauge
fields and chiral fermions can be found in the recent
review paper [6].

According to the topology in the momentum space,
there are three types (universality classes) of fermionic
vacua. One of them hasatrivia topology, and itsfermi-
onic excitations are therefore fully gapped (massive
fermions). The other two have anontrivial momentum-
space topology characterized by certain topological
invariants in the momentum space [6]. One of the two
nontrivial universality classes contains systems with
Fermi points; their excitations are chiral fermions,
whose energy vanishes at points in the momentum
space. Another class represents systems with a wider
manifold of zeroes: their gapless fermionic excitations
are concentrated in the vicinity of the 2D surface in

TThis article was submitted by the authors in English.

momentum space, the Fermi surface. This class con-
tains Fermi liquids.

Here, we discuss the properties of the quantum vac-
uum in the presence of the event horizon. We assume
that, in the absence of the horizon, the fermionic vac-
uum belongs either to thetrivial class (such asthe Stan-
dard Model below the electrowesak transition, where all
fermions are massive) or to the class of Fermi points
(such as the Standard Model above the electroweak
transition, with its excitations being chiral masslessfer-
mions).

In the presence of a horizon, the region behind the
horizon becomes the ergoregion: particles acquire neg-
ative energy there. In the true vacuum state, these neg-
ative-energy levels must be occupied, which meansthat
the old vacuum must be reconstructed by filling these
levels. We do not study the process of filling, which can
be the smooth Hawking radiation process [7] or some
other more violent process; we discuss the structure of
the true vacuum state assuming that this state can be
reached without destroying the horizon. In other words,
we assume that the stable black hole can exist asafinal
ground state of the gravitational collapse. We find that,
behind the horizon, the fermionic vacuum belongs to
the class of the Fermi surface.

The main sources for the appearance of the Fermi
surface originate in the following properties of the
event horizon. First, the emergence of Planck physicsin
the vicinity of (and behind) the horizon. The event hori-
zon serves as a magnifying glass through which the
phenomena at the Planck length scale could be visual-

1063-7761/02/9405-0853%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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ized. At some scales, the Lorentz invariance—a prop-
erty of low-energy physics—inevitably becomes
invalid and deviations from the linear (relativistic)
spectrum become important. This violation of the
Lorentz invariance is now popular in the literature [1,
9-13]. It leads to either subluminal or superluminal
propagation at high energy, e.g.,

E*(p) = c*p*(1% p’/p3),

where p, is the Planck momentum. In accordance with
the condensed matter analogy, we assume that high-
energy (quasi)particlesare superluminal, i.e., thesignis
plus. Because of the superluminal dispersion, thereisa
bottom in the Dirac sea, and the process of filling the
negative-energy levelsistherefore limited. When al of
these levels are occupied, we come to aglobal vacuum
state (or the global thermodynamical equilibrium with
a positive heat capacity, if the temperature is finite).
Thus, the superluminal dispersion of the particle energy
givesrise to the energetic stability of the vacuum in the
presence of ablack hole.

The second important consequence of the event
horizon, due to which the vacuum belongs to the class
of systems with the Fermi surface, is that the horizon
violates the time reversal symmetry of the system: the
incoming and outgoing particles have different trajecto-
ries. In condensed matter, the appearance of the Fermi
surface dueto the violation of the time reversal symme-
try isatypica phenomenon (see, e.g., [8] and also Sec-
tion 12.4in[6]).

In [4, 14], a stable black hole that exhibits a finite
positive heat capacity, an arbitrary temperature, and no
Hawking radiation is aso considered. However, it is
assumed there that the time reversal symmetry is not
broken in the final state (or is actually restored in the
final state). The existence of such a stable black hole
with unbroken time reversal symmetry is also sup-
ported by the condensed matter analogies[4, 15, 16], in
which stable infinite-redshift surfaces arise. An exam-
ple of the infinite-redshift surface with no time reversal
symmetry breaking is aso provided by the extremal
black hole, whose condensed matter analogue is dis-
cussed in Section 12.6 of review [6]. In all these exam-
ples, the Fermi surface does not appear. The black hole
ground states with time reversal symmetry are in some
sense exceptiona (in the same manner as the extremal
black hole), and we do not discuss them here.

2. STATIONARY METRIC WITH EXPLICITLY
VIOLATED TIME REVERSAL SYMMETRY

The vacuum can bewell defined only if themetricis
stationary. In general relativity, the stationary metric for
the black hole is provided in the Painlevé-Gullstrand
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spacetime [17]. The line element of the Painlevé-Gull-
strand metric is

ds’ = —c?dt® + (dr —vdt)?

2 2 2 2 (1)
= —(c"—v)dt"—2vdrdt +dr~,
where
v(r) = ifcﬁ, r, = 2|\/|2G. 2
r c

Here, M is the mass of the hole, r,, is the radius of the
horizon, and G isthe Newton gravitational constant; the
minussign in Eq. (2) givesthe metric for the black hole,
while the plus sign characterizes the white hole. The
time reversal operation t —= —t transforms the black
hole into the white whole. The stationary property of
this metric and the fact that it describes the spacetime
in both the exterior and the interior regions are very
attractive features that were explored starting from [18]
(see [19-21]; an extension of the Painlevé-Gullstrand
spacetime to the rotating black hole can be found in
[22]).

In the case of the black hole, thefield v(r) hasasim-
ple interpretation: it isthe velocity of the observer who
freely falls along the radius towards the center of the
black hole with zero initial velocity at infinity. The
motion of the observer obeys the Newtonian laws all
the way through the horizon,

d’r GM
— = -, 3
dt® r? )
and his velocity istherefore given by
_dr _ . [2GM
v(r)_dt = — 4

The time coordinate t is the local proper time for the
observer who drags the inertial coordinate frame with
him.

Aswasfirst noticed by Unruh [1], the effective met-
ric of type (1) is experienced by quasiparticles propa
gating in moving fluids. Thefield v(r) isthen the veloc-
ity field of theliquid, and ¢ isthe “maximum attainable
velocity” of quasiparticles in the low-energy limit, for
exampl e, the speed of sound in the case of phonons (see
also [23-26, 6]). The horizon could be produced in lig-
uids when the flow velocity becomes greater than c.
The black hole and the white hole can be reproduced by
the liquid flowing radially inward and outward, respec-
tively. Thisisan explicit realization of the time reversal
symmetry breaking by aflowing liquid: the time rever-
sal operation reverses the direction of the flow of the
“vacuum,”

Tv(r) = =v(r).
This Painlevé-Gullstrand spacetime, although not
static, is stationary. That is why the energy E of a
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(quasi)particle in this spacetime is determined in both
the exterior and the interior regions. It can be obtained
as the solution to the equation

g"'pup, +m* = 0
with p, = —E, which gives

E(p) = E(p) + p OV(r), )

where E(p) isthe energy of the particlein the free-fall-
ing frame,

E*(p) = p'c*+m’”. (6)
For the “sonic” black hole, it isthe energy of the quasi-

particle in the frame comoving with the superfluid vac-
uum.

We now consider a massless (quasi)particle moving
in the radial direction from the black hole horizon to
infinity; i.e., with a positive radial momentum p;.
Because the metric is stationary, the energy of aparticle
in the Painlevé-Gullstrand frame (or of a quasiparticle
in the laboratory frame) is conserved and we have E =
const. Its energy in the free-falling (superfluid comov-
ing) frameisthen given by
E _ E
1+v(r)lc

E(p) = cp; = (7)

ryfr

This energy, which is very big near the horizon,
decreases as the (quasi)particle moves away from the
horizon. This is the gravitationa red shift superim-
posed on the Doppler effect [27], because the emitter is
freely falling with the velocity v = v(r). The frequency
of the spectral line measured by the observer at infinity

-l 8

where w is the nominal frequency of thisline. The sur-
facer =r, istheinfinite redshift surface, and the energy
in Eq. (7) divergesthere. Thismeansthat, if we observe
particles coming to us from avery close vicinity of the
horizon, these outgoing particles originally had a huge
energy approaching the Planck energy scale. The event
horizon can therefore serve as a magnifying glass that
allows us to see what happens at the Planck length
scale. At some point, the low-energy relativistic
approximation inevitably becomes invalid and the
Lorentz invariance is violated.

In guantum liquids, the nonlinear dispersion enters
the velocity-independent energy E(p) in the superfluid
comoving frame. Taking the analogy with quantum lig-
uids into account, we assume that, in our vacuum, the
Planck physics also entersthe energy in the free-falling

J1-v'Ic ?Ic?

© = 00 “1-vic
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frame. The energy spectrum of particles is therefore
given by Eq. (5), where

E(p)-m+pc%+p@ ©)
e

As for the incoming massless particle, its radial
momentum p, < 0, and its energy in the comoving
frameis given by

E _ E

1-v(iec 1+ Jrir
It has no pathology at the horizon: the observer falling
freely across the horizon sees no inconveniences when

he crosses the horizon, and the Planck physicsisthere-
fore not evoked here.

The pathology reappears when one triesto construct
the therma globa equilibrium state (or the vacuum
state) in the presence of ahorizon. Inthe global equilib-
rium, according to the Tolman law, the temperature
measured by an observer in the comoving frame
diverges at the horizon,

E(p) =

—<p, = (10)

TToIman — TToIman
J900(r)  J1- v

At some point, this temperature again becomes so high
that the Planck physics becomes relevant. In the pres-
ence of a horizon, the global equilibrium is possible
only for the superluminal dispersion, i.e., for the plus
sign in Eqg. (9). The reason is as follows. Behind the
horizon, at r < r;, the frame-dragging vel ocity exceeds
the speed of light. In the rdativistic domain, this
implies that the radial coordinate r becomes timelike,
because a (quasi)particle can move aong the r coordi-
nate in only one direction behind the horizon, towards
the singularity. However, with the plus sign for the
energy spectrum in Eq. (9), the (quasi)particles can go
back and forth even behind the horizon. The spacelike
nature of the r coordinate is therefore restored by the
superluminal dispersion and the global equilibrium
becomes possible.

Finally, the condensed matter analogue of the for-
mation of quantum field theory as an emergent phe-
nomenon at low energy suggeststhat our vacuumisfer-
mionic, while all the bosonic degrees of freedom can be
obtained as collective modes of the fermionic vacuum.
It is the Pauli principle for fermions that alows us to
construct a stable vacuum in the presence of a horizon.
Thus, there are three main necessary conditions for the
existence of a stable vacuum with the broken time
reversal symmetry in the presence of ablack hole: the
vacuum is fermionic, its fermionic excitations have
superluminal dispersion, and the black hole is
described by the Painlevé—Gullstrand metric. All the
three conditions are motivated by the quantum liquid
similarities.

T(r) = (11)
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3. THE DIRAC EQUATION
IN THE PAINLEVE-GULLSTRAND METRIC

In [28], fermions were considered in the semiclassi-
cal approximation. Here, we extend this analysis to the
exact quantum-mechanical one. In the presence of a
nontrivial gravitational background, fermions are
described by the tetrad formalism. Here, we follow

. - . a
[29]. The metric g,,, can be written in terms of € as

gpv = eﬁe\tjﬂ ab (12)

where n® = diag(-1, 1, 1, 1). The Dirac equation in a
curved spacetime is

(iyaEg‘Du—m)qJ =0,
1 a (13)
D =0 +4wu abY yb,
where the dual tetrad field E, obeys
g = €&Na Enel = 8, EEN™ = ¢, (19)
eﬁ = guvnabE\l;’ evb = esr]ab = gquE’ (15)
and thetorsion field is
Wy = ExNpedy€ = En0,(9y4Ep
W; bv r]b u?\) p(g b) (16)
= EaDpe\;b = Ea(apevb_rrweyb)-

The vielbeins corresponding to the general “flow” met-
ricin Eq. (1) are

a _ wxa , ~a ~a _ ixax0
e, =9, +te, € = Voo,

. a7

The only nonzero correction to the tetrad field &, for
Minkowski spacetimeis
& = v'z0.

For the Painlevé—Gullstrand metric of the black holein
spherical coordinates, we have

el = (1,0,0,0),
e = (0,0,r,0),

e = (v,1,0,0),

(18)
e = (0,0,0,rsind),

where v(r) = —+ Y2, assuming that c = r, = 1.

The violation of the Lorentz invariance at high
energy can be introduced by adding anonlinear ys; term
that leads to the superluminal dispersion. As a result,
we obtain the Dirac equation in the Painlevé-Gull-
strand metric [22], which is now modified by a non-
Lorentzian term,

i0W = —ica'dW+myW+HW+HW. (19
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Here, H, and H,, are the respective Hamiltonians com-
ing from the Planck physics and from the gravitational
field,

- _Cy.9 = ic /MO8 4 50
H, ppy56|, Hy = ic T +0 (20)
The y matrices that we use are given by
. _Hodg U1 0
0('=% _GE, v’ =0 O, (21)
and
— Uo -
Y5 = iYoY1Y2Ys = O D- (22)
Oi o0

After the multiplication by r,/Ac, we obtain a dimen-
sionlessform and writes =c=r,=1and py = pry/i > 1.

4. EIGENSTATES OF FERMIONS
IN THE PAINLEVE-GULLSTRAND BLACK
HOLE

Because 0; is atimelike Killing vector in the Pain-

levé-Gullstrand black hole, the energy E is a well-
defined quantity and the variablest and r can be sepa-
rated by writing

_ o) Bt (23)
ax(r) D
Ther equations are now given by
E(P = UEDX+m(P—'aIO X+ Hg®,
(24)

EX = 0 Cho—mx + i5p2<p+ H X,
0

where p; = —id;. Using spherical symmetry, we intro-
duce spherical harmonics in the standard way. These
are eigenstates of the operators J2 and J,, where J isthe
total angular momentum,

3 =L+ =1L+27908

(25)

200 0,0

and L, isthe orbital angular momentum operator in Re.

Because we are interested in the states with high

momentaJ ~ p, = mr /%, we can neglect the massterm.
We then obtain the ansatz

-1
0,5, T (26)

x((F7(n) + F7)Q + (F7(N = F7(N)Qi4),
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Xy, = =
o (27)
x((g' (N ="M +(g'(N+g(N)Q.1),
where the spherical harmonics are given by
0 prL,
o =gV 2 g
0 22,000
(28)
0 =341 0
Q. = 9 2J+2 Ve, ZE,
SR

with | = J— 1/2. The radial functions satisfy the equa-
tions

O .0
= O 10 0 0
edf 0=]io0%1g+i2n 0 15
59°0 Oi1o00 T D—lOD
+ 20 4 o0
+|_1'+1E_af+wgm 105 (29)
Por”  Po r> Y00 10
20
/IR, - 4@}5 L
09 0
O O
oo - O 10 0 0
ED" 0= lia %o+ it150 1
590 0100 ' 0O-100
|+1 (1+ )30
por po 2 Ugo-10

1gjof O
+IF@ }Dg‘g

Taking the complex conjugation of (29), we obtain
Eq. (30) with the reversed sign of energy. Thisimplies
that the matrices cannot be diagonalized simulta-

neously unless E =0, and therefore, either (f*, g or
(f~, g) isnonzero for the eigenstate with E # 0.

Equations (29) and (30) are the starting point for our
analysis of the fermionic vacuum and excitations.
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5. FERMIONS IN THE SEMICLASSICAL
APPROXIMATION

In the classical limit, with (f, g) O exp(lerdr) we
obtain the energy spectrum

%+prm = p; |—2+—-%)+

where we neglected small terms of the relative order
1/p,- We are interested in the states with the lowest
energy, because they give the main contribution to ther-
modynamics. For a given |, the energy of the fermion
becomes zero at the following values of the radial
momentum:

(31)

2

|
r)—r—2

+—J—p(1—) Bl

This coincides with Eq. (13) in [28], where the quasi-
classical approximation was used from the very begin-
ning.

Within the completely classical analysis, with py =
I/r representing the transverse momentum of the fer-

mion, Eq. (31) at E = 0 givesthe closed 2D surface in
the 3D momentum space. This surface, on which the
energy of particlesiszero, representsthe Fermi surface;
it exists only inside the horizon, i.e, at r <r, (r <1).
Figure 1 demonstrates the Fermi surface E(p) = 0 at
two values of the radius r behind the horizon: r = 2r,/3
and r = r,/3. The area of the Fermi surface increases
with decreasing r.

In the true ground state, all the levels inside the
Fermi surface (i.e., those with E (p) < 0) must be occu-

pied. Of course, this reconstruction of the vacuum
involving the Planck energy scale can have tremendous

2, =~ _ _ 1 2.
pr(r’ E_ 01 I) - 2rp0(1

(32)

Fig. 1. Fermi surface E(p) = 0 at two positions inside the
black hole: r = 2r/3and r = r}/3.
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Fig. 2. Closed trgjectories of the radial motion inside the

black hole at zero energy E = 0 for different values of the
angular momentum |.

consequences for the black hole itself. These cannot be
described by phenomenological low-energy physics.
Nevertheless, we can claim that, if the horizon survives
the vacuum reconstruction, the Fermi surface also sur-
vives because of itstopological robustness. In this case,
the statistical physics of the black hole microstates is
entirely determined by the fermionic statesin thevicin-
ity of the Fermi surface. In particular, the entropy and
the heat capacity of the black hole are linear in the tem-
perature T,

v

s=C=ZNOT, (33)

where N(0) is the density of states at E = 0. From the
general dimensionality arguments together with the

fact that the density of states must be proportional to the
volume of the Fermi liquid, we obtain

N(0) = yNz—==, (34)
h°c
where N is the number of fermionic speciesandyisa
dimensionless constant of the order of unity. In our
oversimplified model, y = 4/351[28].
In the ulterior region, the equation of stateis

p=pOT.

Incidentally, this coincides with the equation of state of
the perfect fluid inside the horizon required to obtain
the Bekenstein—Hawking entropy (see [30, 31] and
[14]). In the Sakharov induced gravity [32], the Planck
momentum and the gravitational constant arerelated by

Nep; ~ #c¥G. This actually implies that the micro-
scopic parameters of the system, the fermion number
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N and the Planck momentum p,,, are combined to form
the phenomenological parameter of the effective the-
ory, the gravitational constant G. If we assumethat only
the thermal fermions are gravitating, we obtain

M Ofav T°M°G*.

This gives estimates for the temperature and entropy of
the black hole,

TO1/GM, SOGM?,

which arein correspondence with the Hawking—Beken-
stein entropy and the Hawking temperature. Only the
phenomenological parameters G and ¢ are involved
here, while the microscopic parameters Ne and p, drop
out. Thisisin agreement with the observation made by
Jacobson [33] that the black hole entropy and the grav-
itational constant are renormalized such that the rela-
tion between them is preserved. All this meansthat sta-
tistical properties of the black hole can be produced by
the Fermi liquid in the interior of the black hole.

6. EXACT ENERGY LEVELS

Another problem that can be investigated using our
schemeisthat of thefermion zero modes: Aretherefer-
mionic modesthat have exactly zero energy in the exact
guantum mechanical problem?If yes, thiswould justify
the conjectures that the black hole has a nonzero
entropy even at T = 0 and also that the area of the black
hole is a quantized quantity [34—36]. For this reason,
we now proceed to solving eigenvalue equations (29)
and (30).

Itisimpossibleto solve these equations analytically,
but one can choose the region of parameters where they
can be solved using the perturbation theory expansion
inthe small parameter 1/p,. To find thisregion, we con-
sider semiclassical trgjectories of the radial motion

p.(r) a E =0for different |, Eq. (32). Thesetrgjectories
are shown in Fig. 2 (we used py = 10000). If | is small
compared to p,, these trajectories are highly asymmet-
ric: the incoming and outgoing particles experience
essentially different motions. The conventional relativ-
istic particles with a small momentum compared to the
Planck momentum p, can move only towards the singu-
larity. However, when they acquire alarge momentum,
the nonlinear dispersion alows them to move away
from the singularity. As aresult, the trajectories of par-
ticles become closed. This asymmetry reflects the vio-
lation of the time reversal symmetry by the horizon.

However, as | increases, the trgectories become
more and more symmetric. Near the maximum value

I(c) - 3—3/2p07 (35)
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they become perfectly eliptic and increasingly more
concentrated in the vicinity of the center point
© _1

=3

o, 2
p = t[g}po-

Thisimpliesthat, in vicinity of r © and p ©, the Hamil-
tonian describing the radial motion becomes that of
oscillators. We can therefore expand the equations in
the vicinity of p© and r © using the small parameter
Vpo,

(36)

(37)

© 4 x
’ (38)

pr = p(C) —i ax-

It can be seen that the regions where x and 9, are con-
centrated,

X —— p (C), axD/\/EO<|p(C)|a
0

become really small compared to r © and p© as p,
increases. As aresult, after lengthy but straightforward
expansion of Eq. (29) near the point with p© > 0, we
obtain (keeping the terms of the order of unity) the
effective oscillator Hamiltonian

(39)

H st =—3[6I+23? X2 + é}? 2
[ i (40)
343
Xp + pX) + ——
2[( p+ px)
where
3 =19—(1+1). (42)
Diagonalization gives the energy spectrum
E; = —3f’6l +3n, +§ 3J§ (42)

where n, = 0, 1, ... is the radial quantum number.
Accordingly, the expansion near the point with p© < 0
and the same procedure for Eg. (30) give the other three
sets of energy levels,

E2—3[5| 3n, — gsfs (43)
E3——3/\/75|+3n +§—3£%——~2. (44)

and
E, =3 @’&-3 ‘;’Bﬁ’ “E. (45
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Finaly, in dimensional units, we have the discrete lev-
els of fermionsin the vicinity of the Fermi surface,

E@,n,) = +1C
In
(46)
Dl pprh 3/\/3%]+1‘D_3n _§+%:|
05 4 DTN T E D

where al four signs must be taken into account. This
equationisvalid for J smaller than but close to the max-
imum value

I = pori/3./3%

at which zero-energy states can still exist.

Equation (46) allows us to answer the question
whether the true fermion zero modes exist in the pres-
ence of a black hole. For general values of p,r, and,
hence, for the general values of the black hole area A =

4nrf, , there are no states with exactly zero energy. A

zero-energy eigenstate can be found for some specia
values of A. However, because of theincommensurabil-
ity between theradia and orbital quantum numbers, the

degeneracy of the E =0levelsissmall, and thefermion
zero modes cannot therefore produce theentropy at T =
Othat isproportional to the area of the horizon. Accord-
ingly, there are no microscopic reasons for the quanti-
zation of the area of the horizon.

There are no topological arguments ensuring the
existence of the exact fermion zero modes. On the other
hand, the momentum-space topology prescribes the
existence of zero-energy fermion modes at the semi-
classical level. These modes form a surface in the
momentum space—the Fermi surface—in Fig. 1. The
existence of the Fermi surface is a robust property of
the fermionic vacuum; the Fermi surface surviveswhen
the back reaction isintroduced (of course, if the horizon
survives). It is the Fermi liquid whose thermal states
give rise to the entropy proportional to the area, aswas
discussed in the previous section.

7. CONCLUSION

In deriving the fermionic microstates responsible
for the statistical mechanics of the black hole, we used
an analogy between quantum liquids and the quantum
vacuum, the ether. We know that there are two preferred
reference frames in superfluids. One of them is the
“absolute” spacetime (X, t) of the laboratory frame,
which can be Galilean as well as Minkowskian with ¢
being the real speed of light. In the effective gravity
experienced by the low-energy excitations in quantum

liquids, the effective “acoustic” metric g’y appears
as a function of this “absolute” spacetime (x, t). The
other preferred reference frame is the local frame,
where the metric is Minkowskian in the acoustic sense,
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i.e., with ¢ being the maximum attainable speed of low-
energy quasiparticles. Thisframe is comoving with the
superfluid condensate. In this frame, the energy spec-
trum does not depend on the velocity v of the conden-
sate and has the form given in Eq. (9). It isthereforein
this frame that the Planck energy physics is properly
introduced: if the energy becomes big in the superfluid
comoving frame, the acoustic L orentz symmetry isvio-
lated.

As for the quantum vacuum, the attainable energies
are till so low that we cannot select the preferred ref-
erence frame. In particular, we cannot say in which ref-
erence frame the Planck energy physics must be intro-
duced, and whether there is an absolute spacetime. The
magnifying glass of the event horizon can serve as a
possible source of spotting these reference frames.

In our low-energy corner, the Einstein action is
covariant: it does not depend on the choice of the refer-
ence frame. That is why the Einstein equations can be
solved in any coordinate system. However, in the pres-
ence of a horizon or ergoregion, some of the solutions
are not defined in the entire spacetime of the quantum
vacuum. In these cases, the discrimination between dif-
ferent solutions arises and one must choose between
them. In quantum liquids, the choice is natural because
the absolute coordinates are used from the very begin-
ning. But in general relativity, the ambiguity in the
presence of a horizon imposes the problem of properly
choosing the solution. This problem cannot be solved
within the effective theory, while the fundamental
“microscopic” background is still not known, and one
can only guessthe proper solution of Einstein equations
through which the vacuum state can be constructed.

It is clear that the Schwarzschild solution is not the
proper choice, in particular, because the entire space-
time is not covered by the Schwarzschild coordinates.
According to the quantum liquid anal ogy, the Painlevé—
Gullstrand metric with inward frame dragging can be a
reasonable choice. Its analogue can realy be repro-
duced (at least in principle) in quantum liquids. The
analogy also suggests that the Painlevé-Gullstrand
spacetime can be considered as the absolute one in
which the true vacuum must be determined. On the
other hand, the local frame of the free-falling observer
can be considered as an analogue of the superfluid
comoving frame in which the Planck energy physics
must be introduced. We again warn that this choice can-
not be justified from the standpoint of the effective the-
ory alone.

If the Planck physicsisin addition superluminal, as
is also suggested by the quantum liquid analogy, the
stable quantum vacuum can even be constructed in the
presence of a horizon. We argue that the main property
of such a quantum vacuum, distinguishing it from the
original vacuum of the Standard Model, isthe existence
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of the Fermi surface inside the horizon. The statistical
mechanics of the Fermi liquid formed inside the hori-
zon isresponsible for the thermodynamics of the black
hole.
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Abstract—Theoretical estimates are given along with the first experimental results on the observation of reso-
nance fluorescence in nuclei of rubidium isomer under conditions of laser plasma X-ray pumping of the con-
tiguoustransition with an energy of 3.4 keV. Thelaser plasmaisprepared by irradiating asilver target by apow-
erful radiation of a Nd laser with a pulse duration of 600 ps. It is demonstrated how one can use the recorded
number of emitted y quanta to determine the probability of low-energy nuclear transition excited by laser

plasma X rays. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The acquisition of spectroscopic information about
low-energy transitions (1 to 100 keV) in isomeric
nuclei is one of the urgent problems of nuclear spec-
troscopy. For example, the confirmation (or refutation)
of the Axel-Brink theory, according to which the cross
sections of low-energy transitions in nuclei depend on
the energy difference alone rather than on the absolute
values of level energies [1], requires direct measure-
ments of the probabilities of low-energy transitions. In
addition, a knowledge of cross sections of X-ray
absorption by nuclei is essential from the standpoint of
practical realization of both coherent (laser) and inco-
herent sources of the y range when using two-stage
pumping [2].

At present, one tries to obtain such spectroscopic
information by conventional methods of nuclear spec-
troscopy: the possibilities of the latter decrease with the
energy of nuclear transition employed. As aresult, due
to special features of the detection techniques used in
nuclear spectroscopy [3], such conventional methods
fail to produce adequate information even at transition
energies of the order of 100 keV. On the other hand, the
development of intense sources of thermal X-radiation
enables one to detect such low-energy transitions using
methods that are characteristic of laser, rather than
nuclear, spectroscopy.

For example, an attempt was made to observey flu-
orescencein anisomer of 1®Hf, induced by X-radiation
of a medical source [4]. However, in spite of the fact
that the hafnium isomer selected for experiment fea-
tures a number of indisputable advantages over other
isomers (the lifetime of 31 years and a significant cross
section of radiative absorption of X-ray quanta), the

obtained results cannot be regarded as reliable, prima-
rily because of the weak intensity of the X-ray source
employed (see [4]). In [5], observations were per-
formed of the excitation of nuclei of the stable isotope
181Ta, which has a low-lying nuclear level with an
energy of 6.238 keV [5]. In this case, the nuclei were
excited by the intrinsic X-radiation of a laser plasma,
which was obtained as aresult of irradiation of atanta-
lum target with subpicosecond optical pulses having an
intensity of 10 W/cm?. The choice of stableisotopein
this case necessitated the use of complex techniques of
time selection in recording the signal from excited
nuclei. The point isthat, becausein [5] the X-ray pump-
ing of a low-lying level of tantalum from the ground
state was performed, the energy of spontaneously emit-
ted quanta coincided with that of pumping quanta.
Therefore, special techniques were required for separa-
tion in time of the useful signal from excited nuclei and
the signal from the intrinsic radiation of a dense
plasma. As a result, as was pointed out in [5], most
promising in this situation isthe use of unstable nuclear
isomers, when the energy of X-ray pumping is much
lower than the energy of the y quantum being recorded.
In this case, al of the advantages offered by the use of
a laser plasma as a source of X-radiation are retained
and, at the same time, the system of recording sponta-
neously emitted quantais simplified considerably.

In this paper, we present the first experimental
results and theoretical estimates of the potential of the
new method of determining radiative low-energy ytran-
sitions in isomeric nuclei. The method suggested by us
is based on the observation of y fluorescence of strong
nuclear transition under conditions of X-ray pumping
of a low-strength contiguous transition in isomeric
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nuclel. In order to validate this method, we used rubid-
ium nuclel in the isomeric state [00with a lifetime of
20.26 min (Fig. 1). Such isomeric nuclei were obtained
as a result of irradiation of a bromine target in the
cyclotron at the St. Petersburg State University. Then, a
target activated by isomeric nuclei of rubidium was
subjected to the thermal X-radiation of alaser plasma
produced as aresult of irradiation of asilver plate with
the optical radiation of a neodymium laser with adura-
tion of 600 ps. The intensity of laser radiation was
selected to be such that the intensity of X-ray pumping
reached its maximal value at an energy close to that of
the low-energy |0[H10transition in rubidium isomer
(3.4 keV), seeFig. 1.

We emphasize that the information about such a
transition with an energy of 3.4 keV was previously
obtained indirectly in analyzing the spectral distribu-
tion of conversion electrons. It was our objective to
obtain the spectroscopic characteristics of this transi-
tion by way of direct observation of y fluorescence of
isomeric nuclei on the contiguous transition |1[2H20]
with an energy of the order of 200 keV. Because, as a
result of X-ray pumping of the |0[1[kransition, a por-
tion of the isomeric nuclei must change to the upper
excited state with a lifetime of several nanoseconds
with subsequent spontaneous decay to the [2[state, we
would have to record y quanta with an energy of the
order of 200 keV, which exceeds considerably the
energy of X-ray pumping. Notethat, because of the sig-
nificant difference between the energies of absorbed
and emitted quanta, there was no need for usto use the
techniques for time selection of emitted y quanta, as
was done in [5] in the case of X-ray pumping of thal-
lium nuclei. By measuring the number of spontane-
ously emitted y quanta with an energy of 200 keV, we
can determinetheinteraction cross section of the |[0=H10
transition if we allow for the dependence of the number
of emitted quanta on the interaction cross section, the
intensity of X-ray pumping, and the geometry of the
observation scheme.

This paper is organized as follows. In Section 2, the
procedure of determining the cross section of radiative
transitions in isomeric nuclei by the number of sponta-
neously emitted quanta is analyzed, and the possibili-
ties of increasing the sensitivity of the suggested
method are examined. In Section 3, the experimental
facility is described; in Section 4, the obtained results
are discussed. The Conclusion gives the inferences
made as aresult of our investigations.

2. PROCEDURE FOR DETERMINING THE CROSS
SECTIONS OF RADIATIVE TRANSITIONS
IN ISOMERIC NUCLEI

We will estimate the sensitivity of the method of
determining the cross section of low-energy nuclear
transitions by way of observation of resonance y fluo-
rescence induced by X-radiation. In order to validate
this method, we will treat the excitation of a nuclear
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[} |
[0 }-1{463.6 keV, 20.26 min

2]

467 keV, 9 ns

} 248 keV, 0.31 ns

ground
state

Fig. 1. A diagram of the levels of ?Rbu isomer used in our

experiment. The irradiation of a bromine target in a cyclo-
tron produces a target activated by nuclel of thisisomer in
the long-lived state 0. Laser plasma X rays are effective in
the O-1 transition. A portion of nuclei change to the state 1
and decay spontaneously with the relative probability of 1/2
to the states 0 and 2. In the latter case, y quanta with an
energy of 219 keV must be observed.

isomer by laser plasma X rays; the diagram of the iso-
mer levelsisgivenin Fig. 1. The pumping of the |0(3H10
low-energy transition of a nuclear isomer is accom-
plished by thermal X-radiation of laser plasma. As a
result, during the laser plasma de-excitation time 1, a
portion of the isomeric nuclei go to the |10state with
subsequent spontaneous decay both back to the |1[ktate
and to the low-lying [20state. In the latter case, hard
y quanta with an energy of the order of 100 to 500 keV
are obtained, the number of which will define the radi-
ation cross section Z, of the weak |01 transition of
nuclear isomer.

It must be emphasi zed that this method enables usto
measure the radiation cross section %, of the low-
energy [O(H1Otransition of nuclear isomer rather than
the total cross section %,,;. The total absorption cross
section in the |O[31transition may be written as

2t = 2t 2o,

where %, is the cross section for nonradiative transi-
tions due to internal conversion for the |O[H1transi-
tion. Note that, for transitionsin the energy range from
1to50keV, Z, < 2y [1].

The total number of y quanta obtained during the
laser plasma de-excitation time T may be defined as

Ny = 2Niswa(Ssp/Ss)zx“/|Ex)\iv (1)

where N;s is the total number of isomeric nuclei in an
activated target irradiated by X rayswith the energy E,;
w, and A, denote the X-radiation frequency and wave-
length, respectively; S, isthe area of the spot of optical
radiation on ametal target; S isthe areaof atarget acti-
vated by isomeric nuclei; W isthe mean absorption path
of the quanta of X-ray pumping in an activated target;
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Vacuum chamber

Parabolic mirror
45° Mirror

Laser target made
of silver (Ag)

multiplier

Lead filter (5 mm) on the
photomultiplier for selecting
the energy range of > 80 keV

Inlet window

ﬁ,/ IMO-2N

Target with isomeric nuclei
of 837Rb, holder made of Al

Lead sleeve for screening
the intrinsic radiation
of laser plasma

Fig. 2. A diagrammatic view of the experimental facility.

and | is the depth of alloying the target with isomeric
nuclel (seeFig. 2). In deriving Eqg. (1), we assumed that
the laser plasma radiation is described by the Planck
formula for blackbody radiation, and the energy of
X-ray quantum corresponds to the plasma temperature

colds
hw, = 211% 2.822Ks T 14-

Therefore, the radiation absorption cross section %,
is related to the number N, of emitted y quanta by the
laser radiation parameters and activated target parame-
ters,

Z>< = G(EwT’Ssp; SypwliNis)Ny’

where a isadimensional numerical factor.

For the typical values of the parametersinvolved in
our experiment with isomeric nuclei of 8Rb (Fig. 2),
namely, Nis = 101, S, = 4 x 10 cm?, S = 0.25 cm?,
U = (1-2) x 103 cm, and the energy of the |01 kran-
sition of 3.4 keV, assuming the plasma de-excitation
timeto be equal to thelaser pulse duration of 600 ps, we
derive the following expression for the radiation
absorption cross section:

)

5,=10° cm’ eV N,. 3)

From this, after measuring the number of y quanta, one
can determine the value of %, and compare it with the
respective value from [6],

s = 10 cm® ev.

Therefore, if a single “shot” of optical radiation pro-
duces several y gquanta, the value of the radiation
absorption cross section of the |0[310transition in an
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isomer of 8Rb will coincide with that measured previ-
ously,

3 =3

Note further that the numerical values of transition
cross sections obtained in [6] call for further verifica
tion, because these quantities are given with a question
mark. Therefore, our method may be used to either
refine these data or confirm that the true values of the
respective quantities do not exceed the values given in
[6]. This is true of al nuclear isomers featuring low-
energy transitions.

Wewill now discusstheincreasein the sensitivity of
the suggested method of measuring the cross sections
of low-energy transitions in isomeric nuclei. As was
demonstrated above, the increase in the sensitivity in
thiscaseisdirectly related to theincreasein the number
N, of y quanta emitted in the |1[3{2[ltransition, which
may be accomplished by increasing the total amount of
isomeric nuclei or by increasing the number of X-ray
guantain the |O[z1transition.

The number of isomeric nuclel may be increased,
for example, by using radiochemical methods in pre-
paring the target. This enables one to increase the num-
ber of isomeric nuclel in atarget approximately a hun-
dred times. However, the use of radiochemical methods
(in view of the relatively slow rate of chemical reac-
tions) isjustified only in cases in which we dea with a
long-lived isomer; for the rubidium isomer employed
by us, the number of isomeric nuclei may hardly be
increased more than ten times.

On the other hand, it is impossible to accomplish a
significant increase in the number of quanta of X-ray
pumping by simply raising the laser pulse intensity
because, to raise the pumping yield in the desired
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energy range a hundred times, it is necessary to raise
laser radiation intensity by a factor of at least 10%
Therefore, we believe that, instead of increasing the
total number of X-ray quanta, it appears promising to
increase only the number of pumping quanta with an
energy of the order of 3.4 keV in the case of the ’Rb
isomer. This, in principle, may be accomplished when
theion emission linesin alaser plasma are sufficiently
close to the desired nuclear transition [7]. In this case,
the number of quanta of X-ray pumping increases
sharply, because, along with the thermal radiation of
laser plasma, powerful line radiation of plasmaionsis
present in the desired energy range.

The radiation intensity of plasma ions (in W/cm?)
may be defined as [§]

|, = 4x 10°AE,E, 22 3;¥%d?, (4)

whereE; istheion transition energy (inkeV), E, =0.1Jis
the laser pulse energy, Z, = 10 isthe nuclear charge, J,
is the atom ionization energy (in keV), and d = 20 um
is the focal waist diameter of optical radiation. Com-
pare expression (4) with the expression used to estimate
the intensity of blackbody radiation in the same range
of quantum energy,

Iy =25x 10" T /T)(AE/T)?

4 S
x[exp(AE/T)-1] "d ",
where T is the temperature (in keV), I'; = AE;(v;/c) is
the line width, and d = 20 um.

For example, for T=1keV, E, =1J, AE; = 3.4 keV,
Z,=16,J,=50, and A= 32, we have

/1y = 2.4 % 10°.

Therefore, we have found that, as a result of radiation
of the plasma ions, the intensity of X-ray pumping is
two orders of magnitude higher than the intensity of
thermal radiation pumping. We will select sulfur (Z, =
16, A= 32) asthe material for the laser target. Then, the
lower state energy estimated by the hydrogen-like spec-
trumis 3.482 keV. Thisvalueis very close to the value
of energy of the |0[H10transition in the nucleus of the
8Rb isomer, which is 3.4 keV. In addition, because the
sulfur atoms in a laser plasma are partly ionized, they
possess a spectrum of free crowding high-lying states
with level energies

AE, = 3.482(1-1/n%).

By way of exhaustion of the number n of the high-lying
state, one can select the transition energy of sulfur ions
so asto be closeto the energy of nuclear level. Note that
the Doppler line width for pumping amounts to several
electronvolts, and this also contributes to the fact that
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the transition energies in the sulfur atom and in the
nuclear isomer of rubidium coincide. So, the number of
quanta of X-ray pumping may be increased more than
ahundred times.

Asaresult, one can use radiochemical methods and
excite the lines of respectiveionsin the plasmato raise
the yield of y quanta in the |L[Z{0Ctransition to 10°. In
this case, even with the existing recording of y quanta,
we will have about 107 quanta with the given aperture
of the photomultiplier, which will result in a consider-
ableincreasein the sensitivity of the suggested method.

3. EXPERIMENTAL FACILITY
FOR THE OBSERVATION OF y RADIATION
OF ISOMERIC NUCLEI

Figure 2 isadiagrammatic view of the experimental
facility for the observation of resonance y fluorescence
of isomeric nuclei of rubidium, induced by X-radiation
of alaser plasma. The optical radiation of an Nd laser
with a duration of 600 ps and total energy of 1-2 Jis
introduced via awindow into asteel chamber 10 cmin
size in which a vacuum is maintained. A parabolic
10-cm mirror focuses the optical radiation onto the pol-
ished surface of asilver plate (we used silver to provide
for a higher yield of thermal X-radiation) by means of
a rotating flat mirror. As a result of such focusing, a
high-temperature laser plasma is formed on the metal
surface; the radiation spectrum of this plasma has the
form of a blackbody distribution with a maximum cor-
responding to an energy of the order of 3 keV. The pho-
tomultiplier was screened from X-radiation of the laser
plasmaby alayer of lead 15 mm thick.

The thus obtained X-ray quantafall on atarget acti-
vated by isomeric nuclei of rubidium. The distance
between the targets is approximately 1 cm. The acti-
vated target was prepared by irradiation of bromine
nuclel by a flow of fast ions in the cyclotron at the
St. Petersburg State University. Thetarget diameter was
0.5 cm, with the thickness selected from the condition
of total absorption of X-radiation with an energy of
3.4 keV in the activation region. The total number of
isomeric nuclei was monitored by the intensity of natu-
ra decay and did not exceed the standard medical
norms for work with radioactive substances in labora-
tories without specia equipment. The photomultiplier
with a lead-plate filter 6 mm thick made it possible to
record X-radiation only above 80 keV (see below); the
inlet window for the photomultiplier was 10 cm in
diameter. The photomultiplier signal indicated the total
number of quantawhich came to the recording system
at some moment of time.

The experimental procedure was as follows. First,
an activated target was prepared in a cyclotron and the
total number of isomeric nuclei was estimated, and then
the target was placed in chamber 1 (the time between
preparing the target and placing it into the chamber was
approximately equal to the decay period of O to
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Fig. 3. The time dependence of the signal from the photomultiplier (a) in the absence of activated target and (b) in the presence of

atarget activated by ggRb47 isomer. The target for laser radiation is made of silver. Curve 1 indicates the signal of induced y fluo-
rescence of excited nuclei, and curves 2 correspond to the signal of X-radiation of plasmaionswith aquantum energy above 80 keV.

20 min); after producing a vacuum in chamber 1 (the
evacuation time was equal to two decay periods), a
“shot” of optical radiation was produced, after which a
metal plate 4 was shifted, and one more “shot” was
made. Five targets with isomeric nuclei of rubidium
were investigated.

4. DISCUSSION OF THE EXPERIMENTAL
RESULTS

We will first treat the results of measurements with-
out a rubidium target. Figure 3a gives the time depen-
dence of the photomultiplier photocurrent under condi-
tions of irradiation of asilver target with optical radia-
tion. One can see from the result of measurement of the
photocurrent that an X-ray pulse exists with an energy
above 80 keV (see above). Also observed is a weak
dependence of the intensity of such radiation on the
material of the holder securing the activated target.

The quanta of such energy (above 80 keV) may
form in two ways, namely, as a result of de-excitation
of nuclel and as aresult of bremsstrahlung of fast parti-
cles, both electrons and ions. Here, theions themselves
do not emit because of the large mass. However, when
an ion hits the target, recoil electrons arise with an
energy of up to the energy of the ion itsdlf. It is these
electrons that generate bremsstrahlung.

In order to determine the source of generation of
hard quanta, an experiment was performed without a
holder and aworking target. In this case, the photomul-
tiplier signal disappeared completely. This means that
the bremsstrahlung in the hot laser plasma and
bremsstrahlung from the chamber walls do not produce
aworking signal. The former is screened from the pho-
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tomultiplier by the layer of lead, and the latter is low
due to the remoteness of the walls (because the intensi-
ties of the partticle flows are relatively low).
Bremsstrahlung always arises in the case of interaction
between the ions and fasteners (the holder, etc.),
because such radiation is recorded; in the absence of
isomeric nuclei, it isthisradiation that presents a spuri-
ous signal. We will estimate quantitatively the intensity
of the spurious signal and the possibility of recording
the desired signal from excited isomeric nuclel against
the background of bremsstrahlung. With the selected
intensity of laser radiation | = 10'®> W/cn?, the temper-
ature of hot electrons, according to [9], may be

2.1/3

Toe = 14T 4q[1/20"° Wiem?] ™ keV,

which amountsto 6.5 keV for T4 = 1 keV. Thisvalue
of T.yq4followsfrom the scaling formulasfor estimating
the laser plasma parameters givenin [8].

Note that this temperature of hot electrons is obvi-
oudly insufficient for the generation of quanta in the
range above 80 keV. However, the hot electrons escap-
ing from alaser target entrain ions due to the emerging
electrostatic field. The energy of such ion is given by
[10]

Si = 22* Thotln(O.ngiTL), (6)

where Z* and Q,,; denote the effective charge and the
plasma frequency of escaping ions, respectively, and T,
isthe laser pulse duration. Therefore, multiply charged
ions with Z* = 10 possess an energy sufficient for the
generation of hard X rays.
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Wewill estimate the number of such ions. The effec-
tive degree of ionization of silver Zy at a given temper-
ature T4 isdefined as [§]

Zut = 16(Toyq/1 kev)™?

and has avalue of the order of 16. It ismore difficult to
estimate the fraction of multiply charged ions relative
to thetotal number of ions. Thething isthat, in addition
to silver ions, protons escape intensely from the target
(hydrogen is contained in the target as a part of water
vapors adsorbed by the surface and of traces of polish-
ing pastes). By virtue of quasineutrality, the total
charge of al ionsis approximately equal to the charge
of fast electrons leaving the target. For estimating the
number of multiply charged ions, wewill use the exper-
imental data of [11], which were obtained for similar
parameters of laser pulse for a copper target. The num-
ber of copper ionswith acharge of morethan eight was
approximately 103 per shot.

The number of hard radiation quantawith an energy
of 0.3to 1.0 of theion energy which arise during decel-
eration of asingleion is estimated by the formula [12]

N = 16N.2* €1,
y 1
3 mic*h

where n, is the electron concentration in the holder
materia (Al). For Z* = 10, the quantum yield is approx-
imately 0.04 quantum per ion. Therefore, silver ionsin
an amount of the order of 10° develop a signa corre-
sponding to tens of hard quanta, which is the lower
limit of sensitivity of our detector. The desired signal
from the de-excitation of nuclei is of the same or some-
what lower level. We can isolate this signal against the
background of bremsstrahlung only owing to its time
characteristics. The desired signal arisesaftert ~107°s
(the lifetime of the excited state of nuclei), while
bremsstrahlung arises after tens of nanoseconds (the
transit time of ions from the laser target to the working
one). Therefore, in the case of nuclear decay, we must
see a characteristic double-peak structure of the signal.
Note that, if there existed a superfast electron compo-
nent that would &l so generate bremsstrahlung of requi-
Site energies, the photomultiplier signal would always
have a double-peak form (electrons with an energy
equal to that of ionsfly tens of timesfaster). In our case,
in the absence of excited nuclei in al experiments
(24 shots), we observed a single-peak form of signal.

Figure 3b gives the results of measurements in the
presence of asecond target activated by isomeric nuclei
of 8Rb. One can see that the measured signal hasin this
case aclearly defined double-peak structure. The origin
of these peaks may be explained asfollows:. the X-radi-
ation of laser plasma transforms the isomeric nuclei of
rubidium to the upper excited state, and, as a result of
spontaneous decay, X-ray quanta are formed with an
energy of about 200 keV; we observe the signals from
these quanta as the first peak. Then, after the transit
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time necessary for the laser plasmaionsto reach thetar-
get fastenings, the second peak is observed in the pho-
tomultiplier signal; the origin of this pesk may be
attributed to the bremsstrahlung of ions (see above).
The time between two peaksin the photomultiplier sig-
nal coincides with the transit time of plasmaions, and
the probability of recording the X-radiation of the
nuclei in our experiment is about 20%. Finally, the sen-
sitivity threshold of the photomultiplier amountsto sev-
eral X-ray quanta. All thisleads oneto concludethat we
have indeed observed the resonance fluorescence of
isomeric nuclei and obtained the value of the radiative
cross section of the [0[31kransition of the order of

5. =10%cm’ eV,

which agrees with the previously obtained data.

5. CONCLUSION

We will formulate the basic conclusions reached as
aresult of this study.

(i) It has been demonstrated that the X-ray pumping
of low-energy transitionsin isomeric nuclel with subse-
guent recording of hard y quantain the adjacent nuclear
transition may be used as a new method of nuclear
Spectroscopy.

(i) The potentia possibilities have been determined
of increasing the sensitivity of the suggested method
using the K, line of radiation of matrix ions.

(iii) The spurious signal of X-radiation from fast
ions has been calculated.

(iv) The first qualitative experiments involving the
observation of induced y fluorescence have been per-
formed.

(v) It has been found that the measured total cross
section 2, of the low-energy transition |0[H1of the
rubidium isomer does not exceed 1026 cm? eV.
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Abstract—The dynamics of pulses with durations comparable to the inverse transition frequency that propa
gate in an optical medium is studied in terms of two integrable systems of Maxwell-Bloch equations. The first
model describes the field interaction with a nondegenerate medium with a permanent dipole moment and per-
manent external pumping. A general formulais derived for the N-soliton solution. Particular solutions are used
as examples to investigate the effect of permanent dipole moment and pumping on the soliton dynamics. The
second model describestheinteraction between two-component el ectric-field pulses and atwo-level degenerate
medium with permanent upper-level pumping. For different initial magnetic-sublevel populations, soliton solu-
tions are used as examples to show that pumping causes achange in polarization dynamics. A two-soliton solu-
tion is used to analyze the interaction of solitonsin atwo-level medium with external pumping. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The dynamics and amplification of femtosecond
optical pulses attract constant attention because of their
applicationsin variousfields of physics. In many cases,
these pul ses are associated with soliton solutions of the
integrable systems of Maxwell-Bloch equations (see,
e.g. [1, 2] for areview). In general, the application of
integrable models [3] requires imposing a number of
physical constraints. In practice, however, the evolution
of ultrashort pulsesin nonlinear mediacan be described
in detail in terms of these models. One of the integrable
models, the system of Maxwell-Bloch equations
describing the dynamics of quasi-monochromatic elec-
tric-field pulses in a two-level degenerate media, was
studied extensively [4-6]. Related models of three-
level media[7, 8] are also noteworthy. The assumption

of slow (compared to Ttwgl , Where wy, is the frequency

of the energy transition between electronic levels of the
medium) variations in the amplitudes and phases of the
field components and the rotating-wave approximation
for the nondiagonal elements of the density matrix [1,
9] were used to derive these equations.

The multisoliton periodic solutions and quasi-self-
similar solutions describing the decay of an initia
unstable state of the medium are known for the Max-
well-Bloch equations that describe the dynamics of
quasi-monochromatic fields[1, 2, 10, 11].

Recently, interest in electromagnetic pulses with
characteristic durations close to T/wy, has increased. In
the literature, these are called ultrashort pulses[12-14],
electromagnetic bubbles, video pulses [16], and
extremely short pulses[17, 18]. The domain of param-
eters for such pulsesis restricted by the condition that

there is no photoionization; i.e., the field amplitude is
no larger than ~108-10° W cm?, and the lower limit for
the soliton durationis~10"1°-10"1¢ s[15]. However, the
parameters of light pulses with durations 1, ~ Ty,
make the conditions for applicability of the two-level
model for the medium to describing the actua field
interaction with the medium very stringent. The levels
with energy 1w, that are disregarded when constructing
amodel must be at the distance

|y — | > TUT,.

Thus, we must use an isolated energy transition with a
relatively low frequency wy, as the laser transition and
restrict the range of pulse parameters to

T,> -

The conditions for applicability of the two-level model
areimproved if the coefficient of nonlinear susceptibil-
ity or the dipole moment corresponding to the chosen
laser transition is much larger than the same coeffi-
cients for adjacent transitions [19]. Effects related to
the generation of such pulses are observable within the
scope of the currently available laser technology. The
generation of pulses with durations that are longer than
the oscillation half-period by only several times was
described, for example, in [19-22].

When the femtosecond range is investigated, the
approximation of slowly varying amplitudes and
phases of light fieldsin the model s used for this purpose
is inapplicable. The corresponding Maxwell-Bloch
equations prove to be too difficult to analyze. There-
fore, the assumption of pulse duration 1, > Ty, isused
in many theoretical studies [12-18, 23], which simpli-
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fies the prablem. For soliton solutions, this approxima-
tion is equivaent to the strong-field approximation

H1E/f > wy, (1)

where |, and E are the transition dipole moment and
the field amplitude, respectively. When condition (1) is
satisfied, some of the Maxwell-Bloch equations for a
nondegenerate two-level medium can be reduced to the
sine-Gordon equation with well-known soliton and
other solutions[3, 9]. At the same time, the application
of the two-level model approximation for a resonant
atomic or molecular medium in the optical range is
unfeasible under this condition [16].

Gibbon et al. [24] did not use condition (1) to derive
the reduced Maxwell-Bloch equations (RMBE). They
showed that the RM BE could be solved for anondegen-
erate two-level medium by applying the inverse scatter-
ing transform. The low-density active-medium approx-
imation is used instead of the slow-envel ope approxi-
mation to derive the RMBE. As a result, the problem
can be reduced to studying unidirectional wave propa-
gation [24-29].

In [24-29], the inverse scattering transform was
used to find soliton solutionsto the RMBE and to study
their properties for a nondegenerate two-level medium.

Light pulses with durations of the order of TWawy,", at

which the applicability conditions for the two-level
model hold, can be analyzed in terms of these integra-
ble models. Here, our goal is to study the dynamics of
such pulses in media with pumping. Following [2], we
use the term “extremely short pulse” for these pulses.

Itiswell known that, apart from the dipole moment
o, Where

;O J'LIJ;k zy;dz,

;. » being the wave functions for the states of levels 1
and 2, a nonzero permanent dipole moment (PDM) is
possible in asymmetric media. It is defined by the dif-
ference

Apg, = My —Hp 20.

A nonzero PDM arisesin polar molecules, in asymmet-
ric semiconductor quantum wells, and in other media.
The PDM contribution to nonlinear absorption and dis-
persion was studied, for example, in [30-33], where it
was found that PDM could play a significant role in
nonlinear multifrequency processes. Kocinac et al. [33]
pointed out that the PDM for quantum wells increases
in importance with wavelength during second-har-
monic generation. These authors gave parameters of the
semiconducting medium for which the Apy/u; ratio
variesover therange 0.15-7.1 for varioustransition fre-
guencies.

Investigation of the PDM effect on the shape and
evolution of pulses with durations comparable to the
oscillation period appears to be restricted to a recent
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paper by Agrotis et al. [34]. These authors showed that
the integrable RMBE for a nondegenerate two-level
transition could be generalized to a nonzero PDM.
They derived a genera expression for the multisoliton
solution by using the Backlund transformation and
gave one- and two-soliton solutions in explicit form.

During the evolution of an extremely short pulse
with two polarization components in a nonlinear
medium, a number of new nonlinear effects related to
the mutual influence of these components can arise.
The polarization effects in nonlinear media were first
studied in terms of an integrable model by Manakov
[35], who analyzed a two-component nonlinear
Schrodinger equation. The results of this author are of
current interest and have been extensively used up until
now. In a dipole medium with a degenerate two-level
trangition, polarized radiation can produce transitions
with a change in magnetic moment by one. For exam-
ple, the J= 0 ~—— J = 1 transition interacting with a
light field with two polarization components belongs to
such systems. For quasi-monochromatic fields, this
scheme wasinvestigated in [5, 6, 28] (see also[1] for a
review) for the integrable Maxwell-Bloch equations.
These equations are mathematically equivalent to the
system of equations that describes the field interaction
with athree-level medium with two allowed transitions
[7] arranged in the form of A and V schemes. Note that
the soliton solutions for these Maxwell-Bloch equa-
tions often coincidein form and have anumber of prop-
erties similar to the properties of the soliton solutions
for the two-component nonlinear Schrédinger equa
tion.

Sazonov [17] studied the rotation of the field polar-
ization plane for extremely short pulses for which ine-
quality (1) holds. However, as was pointed out by the
author himself, the approximation of extremely short
pulse duration and, accordingly, extremely high field
intensity that he used is more of methodological impor-
tance, because this modé is inapplicable to the actual
situation in the optical range. Parkhomenko and
Sazonov [18] investigated the self-induced transpar-
ency for an extremely short pulse by using an approxi-
mate model of amultilevel medium with restrictionson
possible transitions. In these papers, the Maxwell—
Bloch equations were reduced to a single-component
sine-Gordon equation for strong fields and to a modi-
fied nonlinear Schrodinger equation for wesak fields.

A similar interaction with a degenerate transition is
possiblefor an extremely short pulse of duration ~Tvwy,.
In general, polarization effects must be taken into
account to construct a full picture of the evolution of
solitons and other solutions. A number of such effects
can berelated, for example, to a change in pulse polar-
ization at small distances. For instance, based on the
Maxwell-Bloch model describing the dynamics of
guasi-monochromatic fields, Bol’shov et al. [ 7] showed
for athree-level medium that a difference between the
initial level populations could result in effective Raman
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scattering of solitons. A similar result was obtained for
amore complex interaction schemein [8].

When light pulses propagate in very long optical
fibers, pulse amplification on the segments with
implanted erbium atoms periodically arranged along
the fiber length is used to compensate for any losses.
The amplification efficiency depends on parameters of
the nonlinear processes within such a segment. Two
amplification schemes are most commonly used in a
resonant two-level medium. In the first scheme, it is
assumed that the two-level medium isinitially inverted
and that the pulse absorbs the stored energy during its
evolution [9]. In the second scheme, the pulseis ampli-
fied through permanent upper-level pumping [36, 37].
The system of Maxwell-Bloch evolution equations
with external pumping isused to model the processesin
gaseous media, solids, and dyes [36, 37]. Three- or
four-level transition schemes are used in such laser
media. These schemes can be reduced to an effective
system of Maxwell-Bloch equations for a two-level
medium with an additional term in the Bloch equations
for the population difference if a number of conditions
are satisfied [36]. Note that the scheme of a two-level
laser transition with external pumping [36] is more
commonly used in nonlinear opticsto describe the gen-
eration in lasers than the above scheme of asingle-pass
laser amplifier.

In optical fibers, the amplification is nonadiabatic
[38]. Therefore, to describe it requires using appropri-
ate models that describe the dynamics of the nonlinear
stage outside the scope of the approximation theory.
Such models include the integrable Maxwell-Bloch
equations for a two-level medium with permanent
upper-level pumping derived in the slow-envelope
approximation. These equations belong to the so-called
integrable deformations [39-42], i.e., equations inte-
grable by the inverse scattering transform with a vari-
able spectral parameter.

Burtsev and Gabitov [41] showed the RMBE that
describe a two-level laser with permanent level pump-
ing in terms of the inverse scattering transform with a
variable spectral parameter to be integrable. Pumping
causes the upper level to be populated, and laser gener-
ation begins when an inverse population arises. For
small seed pulses, the laser generation isasymptotically
described by the (quasi-)radiative solution associated
with the real continuum of the Zakharov—Shabat prob-
lem, just as for along laser amplifier [10]. In [44-46],
this solution was shown to consist of nonlinear oscilla-
tions with an amplitude monotonically increasing with
distance z

At the same time, a two-level laser medium with
pumping can be used to amplify both quasi-monochro-
matic soliton pulses with a carrier frequency close to
the transition frequency and solitons with durations of
the order of TVwy,. Particular soliton and linear solutions
to the integrable Maxwell-Bloch equations for quasi-
monochromatic waves with pumping were obtained in
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[39-44]. In [40, 41], the dynamics of the soliton asso-
ciated with an isolated eigenvalue of the Zakharov—
Shabat spectral problem with a positive imaginary part
under pumping was reduced to a change in its parame-
ters. At the same time, the effect of the radiative solu-
tion, which is determined by the real continuum of this
problem, on the soliton dynamics must generally be
taken into account.

Studying the dynamics and change in the shape of
optical solitons with durations ~Tvwy, during their
amplification is evidently of practical interest. How-
ever, asfar aswe know, the soliton dynamics under per-
manent pumping have not yet been investigated in
terms of the integrable RMBE in nondegenerate media
with PDM and polarization effects in degenerate two-
level media

Here, we study the amplification of an extremely
short pulse in a nondegenerate two-level medium with
PDM and in a degenerate two-level medium with
pumping in terms of the integrable RMBE deforma-
tions. Using these integrable models allows usto aban-
don condition (1) and to investigate the soliton amplifi-
cation dynamics outside the scope of perturbation the-
ory and the adiabatic approximation. In the former
case, we use a generalization of the integrable system
of Maxwell-Bloch equations with PDM derived by
Agrotis et al. [34]. Here, we additionally take into
account the level pumping and examine the role of
PDM in the soliton amplification. Subsequently, we
construct an effective integrable RMBE system for a
medium with a degenerate (in magnetic-moment pro-
jections) transition. This system allows us to analyze
the nonlinear polarization effects related to the mag-
netic-sublevel population difference and the soliton
interaction and conversion, aswell asanumber of other
effects. We use one- and two-soliton solutions as exam-
ples to study the soliton dynamics in the presence of
pumping. As far as we know, no similar studies of the
monochromatic Maxwell-Bloch system for a degener-
ate transition with pumping have been carried out.

The paper has the following structure. In the next
section, we generalize the integrable RMBE to include
pumping and PDM and find soliton solutions. The inte-
grable Maxwell-Bloch equations that describe the
interaction of atwo-component light field with adegen-
erate medium for two interaction schemes are derived
in Section 3. In Section 4, we find one- and two-soliton
solutions of this model and analyze their properties.
Our results are discussed in the final section.

2. THE MAXWELL-BLOCH EQUATIONS
WITH PUMPING

The pumping of the upper energy level in a laser
medium is phenomenologically taken into account by
adding an extraterm to the right-hand side of the Bloch
equation for the population of this level (see, eg.,
Egs. (9.106) in [36]). This effective two-level scheme
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can be obtained by reducing some models of athree- or
four-level medium interacting with monochromatic
fields that are resonant for these transitions [42]. It is
assumed that there is a pumping mechanism under
which dectron transfer from the ground level O to level 3
lying above the upper level 1 of the laser transition
takes place in these schemes. For anion laser, this pop-
ulation resultsfrom the passage astrong el ectric current
through gas. Subsequently, because of the rapid elec-
tron transfer from level 3 to level 1, the population dif-
ference between level 1 and level 2 with alower energy
increases. In such a system, a population inversion of
levels 1 and 2 and the generation of afield with ampli-
tude E;, on this transition with frequency w;, can be
obtained. However, to observe the soliton dynamics, a
situation with alargeinitial population of level 2 ispre-
ferred. Inthiscase, the generation of the nonsoliton part
of the solution, which is associated with thereal contin-
uum of the corresponding spectral problem for an inte-
grable model [43], is suppressed. Therefore, a three-
level scheme with the coincident levels 2 and O is pre-
ferred for observing the soliton dynamics.

As was pointed out above, the RMBE for a nonde-
generate two-level medium were derived in [23, 24] in
the approximation of a low effective density of the
medium. Agrotiset al. [34] generalized these equations
for a nonzero permanent dipole moment, i.e., for

My —Ha2 # 0.

In this approximation, the pulse group velocity is close
to the speed of light in the medium and the reduced
Maxwell equations reduce to one equation,

0, _C 00 _ iNowl-hz
ot Jgoa_zD 2€0€,,

Here, N, is the density of the active atoms, and e, and
€, are the permittivities of the medium [34]. The non-
diagonal values of the dipole moment were reduced to
real form by a simple phase shift of the density matrix
elements p;, and py; With g, = Hy;.

The Bloch eguations for the density matrix with
components p;; (i, j = 1, 2) of anondegenerate two-level
medium with PDM are [34]

(P12 —P21)- (2

) . b
0Py = '%p;le—(*Bplzﬂ(pn—pzz)%zE"‘z, (©)
_ Mo
0Py = |7E(p21—p12) +Cy, (4)
_ Mo
0Py = '7E(plz—p21) * Co. 5)

Here,

Apg, = (Mg —Hp),

and |;; are the dipole moment components of the
medium. Equations (3)—(5) include the level pumping
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(Ocy, ¢,) and the constant external force (Ob/2) pro-
duced by an additional field or fields on this transition.

Let us rewrite system (2)—(5) as
J0,E = iR,
0.R” = i(aE-w)R" —2iNuE,
0.R" = i(aE-w)R +b,
0N = =2ipER +c,

(6)

where
R' = pptpu, N = pu—px
a = Auplh, z= XupwNg(2Cey.fen)
T=t-XJ/e,C', C=0C—Cp W= HUplh.

The Lax representation of system (6) was found for
b= c=0in[34]. Inour notation, this representation is

0
Ew
(7
—i — _1+
_ |1)\ awD "+ DE|y, 2 LW,
awD " -DE iA
9¢y-__D
0z 4(7\2D2—|.12002)
: AR )
«|ID(2UAN —aAR") 2A., WA,
2A, —iD(2uAN—aAR")

here,
D? = 4p®+ &,
A = pawN + 2p°wR" + ADR,

Ay = —pawN —2p°wR" + AD°R".

Including the arbitrary functions ¢ = ¢(2) and b =
—ac(2)/2|1 gives rise to a dependence of the spectra
parameter A on variable z. This dependenceisdescribed
by the equation

AD?

0, -1 _AD" _
a_z)\ - 4)\2D2—u2w2[b(2)a 2C(Z)U] ' (9)
Note that for c = b = 0 and for large amplitudes at
which inequality (1) holds, system (2)—5) reduces to
the sine-Gordon equation after discarding the term
iwpy, in EQ. (3):

;0,8 = sin®, (10)
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where

T=Dt, 90 =E, iR = sn®,

2uN—aR" = Dcosé.

Estimation of the field amplitudes indicates that they
are within the scope of the currently available laser
technology [22]. The solutions to the sine-Gordon
equation for various initial-boundary conditions have
been studied extensively. At the same time, as was
pointed out above, the conditions under which the
actual medium can be modeled by a two-level medium
in the visible range are too stringent for such field
amplitudes. Therefore, we must consider the more gen-
eral model (6) for such field amplitudes that

AW EAT pyEAT Do,

It is easy to show that system (6) at c = b = 0 has the
following constant, linear stable solution:

E? = awD?, R =0,
2uR!® = —aN,.

Thissolutionisageneralization of the standard vacuum
solution to the RMBE for a = 0 that corresponds to the
Bloch vector

B=(R',iR,N) = (0,0,—1)N,,

(11)

where
(R + (IR +N? = N2,
For a# 0, thefollowing Bloch vector correspondsto the
vacuum solution (11):
B = (a,0,—2u)Ny/D.

Pumping leads to a dependence of the vacuum solu-
tion on variables. It must be taken into account when
constructing the soliton solutions. For b, ¢ # 0, system
(6) has the vacuum solution

- Wl 2ub+ac }
Ey DZ[a ZHTDNO+T(ab—2pc) (12
R'=0 R = a—§0+br,
13
N(]_) — _2[.J.N0+CT ( )
v D .

The Bloch vector for this solution has avariable length.

For a special choice of the pumping constants, such
that

2ub = —ac, (14

the vacuum solution (12) for the field amplitude does
not depend on T. In this case,

EW = awD™.
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Physically, this means that the pumping energy does
not enter the radiative part of the solution for the field.
At the same time, as we show below, the soliton ampli-
tude can increase under pumping if condition (14) is

satisfied. Solution (12) for the field amplitude E\" at
ab — 2uc < O issingular; i.e., it becomes infinite in a
finite time at point Ny/ys if condition (14) is not satis-
fied. As can be easily shown using (9), the soliton
amplitude increases for ab — 2uc < 0. In this paper, we
consider the parameters and time intervals for which
this singularity may be disregarded. With this goal in
mind, werestrict our analysisto condition (14) or to the
parameters at which

DN, > 1(21Cc—ab), 2ut(2pb + ac). (25
N-soliton solutionsto RMBE (6) for c=b=A =0were
found in [24]. To construct similar solutions for system
(6), we must fix the vacuum solution with the solitons
propagating against its background. In the linear
approximation, it is easy to show that solution (12) may
be chosen as the vacuum solution if the approximate
(15) or exact (14) condition is satisfied.

To construct N-soliton solutions for model (6), it
will suffice to modify the corresponding solutions
found in [24]. Indeed, the form of the Marchenko inte-
gra equations used to construct soliton solutions is
determined by the form of the spectral problem and by
the asymptotic behavior of the Jost function (T —» ).
The spectral problem (7) and the Jost function asymp-
totics for the vacuum solution (12) and condition (15)
or (14) match the corresponding spectral problem and
the asymptoticsin [24]. The solution is also determined
by the dependence of the scattering data on variable z,
which can be derived by using system (8) for T — oo,
This dependence is significantly simplified if the func-
tionsin the expression for matrix A; obey Egs. (12) and
(14). In this case, the nondiagonal elements of matrix
A, become zero and the z dependence of the spectral
data manifestsitself only in the appearance of an expo-
nential factor with the exponent

z

—J'Z[Al] 1u(Z; N2))dz.

In the presence of pumping, we must also take into
account the z dependence of A, which is given by
Eq. (9). Repeating the construction of soliton solutions
in[24], wethen find the N-soliton solution to system (6)
with PDM and pumping
d2
= —Indet|l + BB,
dt’
where | isaunit (N x N) matrix. Matrix B has the fol-
lowing elements:

/BB
Zn - Z:’l

aw|?
DE——
pE-

(16)

Bnm =

exp{i[{(2) — (21T}, (17)
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where ,(2) is the solution to the equation

0, __i_ L&D
9z ~ SUZEDZ—MZO.)Z

(18)

with the boundary condition
(n(0) = A

Condition (14) was used to derive Eg. (18). We empha-
sizethat, since 3, al'so depend on T in the problem under
consideration, it should be remembered when formally
using formula (16) that the differentiation is performed
only with respect to T in the exponent on the right-hand
side of (17).

In (17), A, are either purely imaginary or enter in
pairsin the form

An = AR,

and, using (18), we obtain

O (2uNy—Dcr)

BAT.2) = B0, 0)expT 2z () A I
U g

In the former case, the following soliton solution corre-
sponds to the only eigenvalue A, = in, and B, = B7 :

DE, = %3
. 4,2 -
cosh[ 2T = 2(V4(2) —N1)UN(DO) " — @y
here,
IMZ4(2) = Va2, v4(0) = Ny, Refy(2) =0,

9, = In|B,O) 122,21 7.

The solution describestheincrease in soliton amplitude

proportional to JZ,z —~ 0. The soliton duration does
not change during this increase, which distinguishes
this solution from a similar soliton solution found in
[40] for the Maxwell-Bloch eguations with pumping
for quasi-monochromatic waves. The mechanism of the
increase in soliton amplitude attributable to pumping
for c>0and b =0isknown (see[39, 41]). At the same
time, it follows from (9) that the soliton is also ampli-
fied for a medium with a nonzero PDM and ab < O,
¢ = 0. Note that the coefficient ain actual media can be
positive or negative [32]. The possibility of the soliton
amplification attributable to a nonzero PDM appears to
be pointed out for the first time. Quasi-monochromatic
fields with the carrier frequency egual to the transition
frequency may be used as pumping proportional to b.
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The following breatherlike solution corresponds to
the pair of boundary (z = 0) eigenvalues A, 3 =+ +in

and B, = 3 :

DE, = %’+ 8ImZ,Rel,

ReZ,c0s0, coshB, — ImZ,sing,sinhg, (20

12,|” = (ImZ,)? cos(260,) + (Rel,)’ cosh(26,)
where

0,(z, 1) = 2§14 NoReZéi) = + arg[zg(z(())z)}

Im{,(2 —n
Dc
Rel,(2)|B(0)|
* '“[2|m2z2|z2(z)| |
(0) = A,

The numerical solution of Eq. (18) under the condi-
tion

0,(z,T) = 2nT —4uN,

2uc(z) —b(za = const>0

indicatesthat theimaginary part of {,,(zZ) monotonically
increases with z. Depending on the boundary values,
thereal part caninitially increase (for |{,| < w|Y), reach
a maximum at ~wy, and then asymptotically tend to
zero for al boundary values. The phase shift, i.e., the
last term in the expression for 6,, also tendsto zero asz
increases. In particular, this implies that the breather

that corresponds to the pair of eigenvalues\; = —A3 at

the boundary (z = 0) is transformed during the amplifi-
cation into a soliton—antisoliton pair with amplitudes
increasing proportionally to Im¢,(z2) and with an
increasing separation between them. Figure 1 shows
solution (20) at equal intervals of the physical timet for
such pumping rates that

(2cp—ba)D? = 1, DImZ(0) = DReZ(0) = 1.

In this section, we obtained the soliton solutions for
specially chosen values of constants (14). At the same
time, these solutions also remain approximately valid if
this condition is violated for the finite time t for which
the pumping contribution is small. Inequalities (15)
imply that the number of electrons transferred to the
upper level during the entire processis small compared
to their total number in the active medium. This condi-
tion can be satisfied if the lower level of a two-level
transition coincides with the ground level. As we see
from our solution, the soliton amplitude can aso
increase if conditions (15) are satisfied.

Our soliton solutions are peculiar in that we may
pass to the formal limitsa =0 or u = 0 in them. In this
case, the solutions do not lose their soliton properties.
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This suggests that both mechanisms, one related to
electron transfer between the levels (1 # 0 in the Bloch
equations) and the other related to frequency modula-
tion (a # 0), independently produce solitons or breath-
ers. At the same time, the joint action of these mecha-
nisms leads to new, nonsoliton solutions of form (12)
and to new properties of the system.

3. THE INTEGRABLE MAXWELL-BLOCH
EQUATIONS FOR A DEGENERATE TRANSITION
WITH PUMPING

Let us consider a A scheme in which the magnetic
moments J = 0 and J = 1 correspond to the upper
(denoted by 1 in Fig. 2) and lower levels, respectively.
The 1 2, 3 transitions occur with achangein mag-
netic-moment projection by one, AM = —1, 1. These
transitions interact with the mutually orthogonal polar-
ization projections E, 5 of the electric field propagating
along the x axis. The Maxwell equations in a low-den-
sity approximation for active molecules similar to that
used above are

%4-%0‘%%5 = izl\lcz_:)ej()(Uijlj—Uljpjl)v 1)
j =23
The Bloch equations for the density matrix with com-
ponents p; (i, ] = 1, 2, 3) of a degenerate two-level
medium interacting with thisfield are
—10/ip, = HisPxEs+ DB P10
= (P11 —P2) 1B — WP,
—i710\P13 = H1oPsE; + A3Espys
= (P11 —Pss) H1sEz —7105P13,
—1110iP25 = (H21P13E2 —HasP21 Es), (22)

—i170,p1; = Ex(M12P21 —H21P12)
+ E3(H13P31 — HarP13) + C,

—i1h0:Pu = Ex(My1P1k—HikPr1) + C1,
k=2, 3.

Here, A = (M1, — Wy)/A, W are the dipole moment com-
ponents for the medium.

The Lax representation for the system of equa-
tions (21) and (22) can be constructed only if A, = 0 and
Mo = Mi3. ASs above, the coefficients i, can be reduced
to real form by a simple phase shift of the nondiagonal
elementsin the density matrix by aconstant. L et us pass
to the laboratory frame of reference and to the renor-
malized variables

Z = Xo,MNo(2hCeLey) ™, T = t— Jex/c.
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Fig. 1. Thedynamicsagrowing breather at equal timeinter-
valst. The units are arbitrary.

Denote

é; = Ejuljﬁ_ll R = pytpj, j =23,

R = Pt P,
and rewrite the Maxwell-Bloch equationsfor A; = 0 and
M2 = Hi3 85

d.R: = i(-1)""ER —iwR,,

W, = Wy = W

0.R = 1(-1)"" " ER] — 1R, =21 (Py — Py i
0.R] = iR3%,+iRé,,
0.R; = iIR}¢,-iR}¢,, (23)
0P = —€,R,—1€,R; +c,
0P = i€ R+ ¢y,
az%k = |R;,
here, k=2, 3.
The Lax representation of system (23) is

—2i\ €, €,

a.[ —Cg)z 0 O LIJELZL'IJv
€, 0 0

(24)

0y _1

0z 4\

4iApy, wR; + 2AR;
X1—wR; +2AR,  4iApy,
—-WR; + 2AR; —2iAR] —iwR;
xWY=A,Y,

wR; + 2AR;
—2IAR} +iwR;
4iNp s
(29)
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M=-1 M=0 M=1

Fig. 2. The transition scheme with a change in magnetic-
moment projection by one.

System (23) incorporates the pumping of the upper
(Oc) and lower (Oc;) levels. Only the upper-level
pumping may be included in the Lax representation
with matrix L, that we chose in form (24). This pump-
ing is taken into account by an additional dependence
of the spectral parameter on variable z

i)\ _ _ 2c(9A
0z AN -’
Including the pumping of the lower level Oc, in this

Lax representation involves no difficulty. This requires
adding amatrix proportional to the unit matrix

(26)

2c,
C - Cl

—iA I
to L,. However, since this leads to obvious changes in
the results, we set ¢, = 0 for simplicity.

Theinteraction between an extremely short pul se of
duration less than 1/w and a multilevel medium differs
qualitatively from a similar interaction of quasi-mono-
chromatic waves. The nonresonant nature of the inter-
action between extremely short pulses manifests itself
in the fact that the corresponding evolution equations
are more universal and simpler than those for quasi-
monochromatic waves. As aphysical examplethat con-
firms this universality, let us consider a four-level
medium with two pairs of transitions (a double A
scheme) for which the magnetic moment changes by
one when passing from level 1 or 4 to levels 2 and 3
during the interaction with a two-component electric
field (see Fig. 2).

Below, we show that the RMBE describing this
interaction can be reduced to the integrable model (23).
L et us write the equations for the wave functions s, of
levelsk =14 as

—ih0Y; = UpW,oE, + HigWsEs + Aw, Uy, (27)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

ZABOLOTSKIT

—ih0Y, = UpW By + W, B, + Ak, ,, (28)
—i70,Y3 = W Eg+ HayW,Ez + Az, (29)
=70y, = HapW,oE, + HgWsEs + A,y (30)

The Maxwell equations in the same low-density
approximation as that used above are

M, ¢ 90p -
Bt o

. Now;
2Ce €

(31)

X[(HyWg + Mgy W)W = (K Wg + K Wa)* Wil

where j = 2, 3. Assuming that w, = w;, Hip = 43, and
M4 = Hag and that these coefficients are real, we rewrite
system (27)—«31) as

—i0,p = AT (W,E, + W3E,)

+ o, + w_U12l-|J1_|J24qJ4’ (32)
M

—i0Wy = i EQ@+ Wy, (33)

0, ¢ 90 = HNo® our oy
|ﬁ+ /\/;oa E] |2C€m€0((pl-|"] (PDJJ])’ (34)

i =12,
where
w. = W Wy _ HioWp + Uy
+ 2 ] u ]

1.
w= (e + k)

For this system to be equivalent to system (23), the last
term on the right-hand side of Eg. (32) must be
removed. This can be done by assuming that w, > w_.
On the other hand, system (32)—(34) has the solution

HoW1 = MWy, OXt,

which also reduces this system to the integrabl e system
(23) for al w,.

4. THE DYNAMICS OF SOLITON
POLARIZATION IN A DEGENERATE
MEDIUM WITH PUMPING

As was pointed out above, to construct the soliton
solutions of (23) requires fixing a stable vacuum solu-
tion of the model. We assume the populations of the
lower-level sublevels to be larger than the upper-level
population during the entire process. The populations
of the lower-level magnetic sublevels are initially
unequal. For simplicity, we assume that theinitial level
populations

Ny = p(z0), k=123,

No. 5 2002



AMPLIFICATION OF EXTREMELY SHORT PULSES IN OPTICAL MEDIA

do not depend on z Note that the upper-level popula
tion in an actual system can be produced by a thermal
mechanism.

We choose a vacuum solution with the solitons
propagating against its background in the form
E,5z1) =0, Ry4(z71) =0,
Pu(z 1) = Ny+ct, pu(z 1) = Ny,
k =23.
We restrict our analysis to the time interval
CT < Ng—Nj, Np = Py + P2+ Pas.

In this case, solution (35) isinvariable before and after
the soliton passage. A radiative solution isgenerated for
ct = Ny — N;. This solution consists of a packet of non-
linear pulsations oscillating about the mean that

increases proportionally to ./cz, z— o.

The analytic apparatus for our model is basicaly
similar to the apparatus devel oped by Manakov for the
two-component nonlinear Schrodinger equation [10].
The results of this author after amodification related to
the evolution of the scattering data and to the z depen-
dence of A can be applied to our model.

Problem (24), (25) hastwo sets of solutions: the Jost
functions ¢,(t, z, A) and W,(T, z, A) with the asymptotics

(9)x = dexp[-21,A(DT],
(Wk = duexp[-21,A(DT],

l, =0, m=23.

The scattering matrix S={a;} isgiven by the relation

(35)

T*»—OO’

T—»OO’ Il:|’

3
bi(t,z; A) = Z a;(z; NWi(t, Z, A).
i=1

The scattering data include the continuum for real A
Ri(Z N) = 030z M) (apy(z A)™,  ImA = 0, (36)

and bound states composed of zeros ¢, for ImA >0. The
following coefficients correspond to each such zero:

a1n(Z; ((2)

Cnl2 6d2) = a1y(z; 4(@)’ m=23. @)
Here,
i = T 1=2,

The z dependence of these scattering data can be
derived from the formula

0,S = lim A,S—SIim A,.
Formula (38) is valid for the asymptotic behavior
described by the vacuum solution (35), because we

(38)
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chose the conditions under which pumping and injected
pulses do not change these asymptotics. If condition
(14) is satisfied, matrix A, for this solution (35) is diago-
nal fort — +co. In this case, the z dependence of C,(z
¢,) derived from (38) is

Cul# 40 = Cul0; 20
o 41D [P0 0) ~ Pz O] |0
S T

We do not give a similar expression for R,(z A),
because the contribution from the continuum is disre-
garded here.

For the functions

X(T! Z) = [LlJl(T! Z) eXp(ZiZ(Z)T), LIJZ(T! Z)v l'IJS(T’ Z)]Ta
we have the triangular representation

(39)

X0z 8 = Do0% 5

o |
o |

1
0
0 (40)

Ri(Z; Q)Xm(T, Z; Q) exp(2iL(2)T)
((29-¢2

dg,

12

Xm(T: Z; &)

"
I |

(41)

- Rz DXtz Y exp(-217@)T)
I (-0

£9

Here, o, isthedeltafunction, m= 2, 3. Theintegration

is performed along contour 6, which includes the real
axis and passes above all polesin the upper half-plane

and along the mirror reflection 6 of this contour.

For a soliton spectrum composed of such N poles {;
that either ¢, are purely imaginary or they enter in pairs
¢, = -}, Egs. (40) and (41) reduce to the algebraic
system

dc.

Xl(Ti Z, E) =

o o |
o O Bk
o |

(42)

Con(Z L) Xm(T, Z; () exp(2i,T)
(2 -1 ’

n=1m=23
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0

Xm(T, 2, &) = 05,
5

I o
I

m3

(43)

, & Cin(Z Z)Xa(t, 2 Th) exp(=2i¢5T)
2 G@-1@ |

n=1
The potential ‘€,,(z, t) can be reconstructed using the
formula

Enz 1) = ZlimZinm(T,Z)(l, 0,0). (44)
Solving the algebraic system of equations (42) and (43)
for asingle pole, A, = {4(0) = in, we find that the one-
soliton solution is described by the projector

e (45)
Imy®
2"

Here, m are the vectors that can be determined by tak-
ing into account the solution to Eq. (26) for A = in,
c(2) = congt, and py(2) = N, = const:

my = a,exprn(0)T + Ny 2@ -n (O,
U O

(46)
g 2 0
m, = O(keXpDNkE[r](Z)—ﬂ(o)]D, k=23,
| U

where a; = a; and n(2) isthe solution to Eq. (26)

The field components €, are described by the pro-
jector

%k = - ()\ _)\[b@)lk'

For the one-soliton solution (47), we finally obtain

(47)

€,
. 2@ )
cosh[ 8, + @] +|a 3o, exp[—02 + 28 (N3 — N,)]
€5
o N@ )
cosh[ B3 + @5 +|ad/a,as exp[—6z—2&(N;—N,)]’
where
éz = 2n(0)t + (N;—N,)¢,
és = 2n(0)t + (N;—N3)¢,
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£ = fmE@-nOl, o=n% k=23

ay

Let us analyze the asymptotic behavior of solutions
(48) and (49). Let &(N; — N,) > 0. We then have

€y 2n(D)sech[Bs+ )], €,—>0, z—» oo,

The derived solutions (48) and (49) describe the trans-
formation of the soliton pair €, 5(z = 0) into soliton
€4(z — ). The energy transfer takes place at dis-
tances

2y Oc(N,—N3) ™

for large z. The estimate is valid for z,c > n(0), w. This
effect issimilar to the Raman transformation of solitons
foundin[7, 8] intermsof amodel for the interaction of
guasi-monochromatic waves with a three-level
medium. However, in contrast to the results of these
studies, the conversion hereis determined by the pump-
ing rate constant c. The conversion efficiency was
found to decrease with increasing c. As can be seen
from the soliton solution, this is because the soliton
group velacities and amplitudes level off during the
amplification. It can be shown that, in the inverse limit
¢ — 0, the distance at which a complete soliton con-
version takes placeis proportional to [N; — N,|n™(0).

Let us investigate the dynamics of the solution that
corresponds to two eigenvalues A;. To thisend, we sim-
plify the problem by setting N, = N;. Below, we give a
formal general solution to the algebraic system (42) and
(43) for two arbitrary eigenvalues A, ,. However, this
solution for the field amplitudes is generally complex.
Therefore, in order to obtain solutions to model (23),
constraints on the form of A, and the coefficients must
be imposed to ensure that the potential €, 5 be real.
Recall that for this problem, A, , either must be purely

imaginary or enter asA; = -\ .

Let A, = ivy, where v, are arbitrary complex num-
bers. The general two-soliton solution isthen

b1 = [0, (R
R [Me o (50)

+ gé]%eeffei +8, + %Eeelﬂaffez}D—l’
1

where

0, + 67
D=1+pe’

8,+6;

x 6,401
+ p.e

tpe

0, + 0% 8,+6; +6,+6;
+ps€ * Pse ;

b, = Q11 0, = Qo 0, = 02
1 = ) 2 = ] - ]
v+ V7 Vi +V; ° Vy+ V3
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d. = (Vi=V,) (102 — Q)
1= * *
(Vi +V7)(Vo+V7)

_ (va=vy) (a0, — a10p)

d, = " e
(Vo +V3)(Vy+V3)

_ (vi=v,)(by0,; —b,0y)
1= * *
(Vi +V7)(va+VY)

_ (vy=vy)(byq5, —bi0y)
2 = * *
(Vo +V3)(Vi+V3)

2
Vi =V (011020 — 12021)
4 = 2
(V1+VI)(V2+V§)|V§ +V1|

_aaj +bbyf
ij = W
The two-soliton solution of (23) corresponds to two
real valuesof v, ,. The breatherlike solution is given by
therelationsv, ,=n Fi¢,n >0. The exponentsfor the
vacuum solution (35) are

220y, 42) -V 0]

We numerically found that the form of the breather
solution for one component is qualitatively the same as
that shownin Fig. 1.

Let us analyze the asymptotics of solution (50) for
the two-soliton solution with v, ,(0) =Ny ,. Letns>n,
and let there be no pumping (c = 0). In that case, solu-
tion (50) for large z splits into two solitons, with the
soliton of field €, with a smaller amplitude having a
higher velocity. The separation between the solitons
linearly increases with z. Pumping causes the dynamics
of the soliton pair to change. We initially restrict our
analysis to one polarization component and choose the
condition

8,3 = 2v, 5(0)T +

v;=1, v,=11 a =4a,=1, bj=0, b,=0.

Since the initial populations of the lower-level mag-
netic sublevels are equal, no polarization rotation takes
place. We see from Fig. 3 that the amplitudes of the
growing solitons asymptotically level off and that the
separation between them increases much more slowly
than in the absence of pumping.

The presence of a second polarization component
causes the structure of the soliton pair to change. Fig-
ures 4aand 4b show, respectively, the field components
€, and €5 in the presence of homogeneous pumping,
c(2) = const. The boundary and initial values of the
parameters for ‘€, are the same as those for the case
shownin Fig. 3, except that b, = 0.5 and b, = 2. We see
from this figure that the dynamics of the soliton pairsif
there is amplification differs significantly from the pair
dynamics in the absence of pumping. In the former
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Fig. 3. The dynamics of a soliton pair for one field compo-
nent €, at equal intervalst. The units are arbitrary.

iz oL
im |

1
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0 I I I I
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4

500

Fig. 4. The two-soliton solution of system (23) for homoge-
neous pumping at equal intervals t. The amplitudes of the
field (a) €, and (b) €. The units are arbitrary.

case, a semblance of a quasi-bound soliton state arises.
However, this state is not accompanied by adecreasein
energy and is attributable solely to the asymptotic lev-
eling of the soliton velocities for arbitrary initial data.

5. CONCLUSION

We have investigated the dynamics of pulses with
durations close to the oscillation period in a two-level
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medium with pumping. The soliton solutions were used
to study the dynamics of extremely short pulses. In par-
ticular, we used the soliton solutions to the RMBE
obtained in Section 2 as examples to show new possi-
bilities for soliton amplification in mediawith PDM. It
follows from these solutions that solitons can be gener-
ated in a two-level medium virtually without electron
transitions between levels 1 and 2, in contrast to the
standard generation mechanism of 27t pulses [9]. For-
mally, this implies that the dipole moment of the
medium in the Bloch equations (3)—(5) becomes zero.
In this case, the density of the medium must be high
enough. These conditions correspond to the limit

H—=0, NopuOO(). (51)

If, in addition, the PDM contribution is of the order of
unity, then this approximation leads to the simplified
integrable system of equations (6). The soliton solu-
tions associated with self-induced transparency also
exist in this limit. Thus, we note that the integrable
RMBE can be derived not in the low-density approxi-
mation but in the approximation of an extremely small
dipole moment ;5.

The self-induced transparency solitons related to
PDM alone can exist only outside the scope of the
guasi-monochromatic approximation in atime interval
when the medium polarization instantly tracks the
changein level state. Using the Lax representation (7),
(8) after passing to the limit (51), we can show that the
necessary initial condition for the generation of travel-
ing solitonsisapartial but not completeinversion of the
medium, i.e., R*(0, 2) # 0. An ultrashort field pulse with
a duration of the order of TWw gives rise to a coherent
coupling between the levels. At the sametime, the elec-
tric field produces nonlinear oscillations of the upper-
level eectrons, which resultsin the generation of stable
solitons.

A nonzero PDM also allows anew (compared to the
standard) soliton amplification mechanism to be used.
In the example considered in Section 2, the additional
field that gives rise to a term proportional to b in the
equation for the nondiagonal part of the density matrix
(3) can cause both an increase and a decrease in soliton
amplitude, depending on the sign. This property can be
used to modulate a pulse packet. It is of interest to use
this amplification mechanism of extremely short pulses
to compensate for any losses of the light pulses that
propagate in long optical fibers.

The PDM varies over a wide range for different
media. The guantum confinement of the carriers in
semiconductors gives rise to discrete bands with large
oscillator strengths related to band-to-band transitions.
A nonzero PDM is possible in asymmetric quantum
wells. The dipole moments for GaAg/Al 1,Gay g5 With
Al 3Gay3ASs barriers between the wells are given in
[33]. The dipole moments in a three-band scheme are

Hi = 17.6Ho, Hi3 = 111Ho, Moz = 3344,
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and the corresponding permanent dipole moments are
APy, = —77.8Yy, AWy = —72.91,,
Az = 4.9,

where pp = 1.6 x 102° C m. It was noted that the cur-
rently available technologies alow the PDM to be
increased relative to the transition dipole moment.

In this paper, we did not consider the contribution of
the real continuum of problem (7) to the radiative solu-
tion. At the same time, the apparatus developed here
allows the phenomena related to the generation of the
corresponding fields to be studied in terms of the
RMBE. In general, for example, when the lower level
of the medium does not coincide with the ground level
and when initial populationissmall, the contribution of
the radiative solution must be taken into account. This
solution for some initial-value-boundary-value prob-
lems reduces to the Painlevé V transcendent [44].

At the same time, we used the conditions under
which the contribution of the radiative solution may be
disregarded. Physically, these conditions correspond to
the case where the number of electrons transferred to
the upper level through pumping is much smaller than
the total number of eectrons. Note that some forms of
week nonlinearities lead to the relative suppression of the
radiative part of the solution. These can be taken into
account in terms of our perturbation theory for dmost inte-
grable systems of eguations to which the inverse scattering
transform with a variable spectrd parameter is applicable
[42]. A threshold in pumping rate below which no genera-
tion is observed is known to exist in experimenta laser
physics[36]. Intermsof themodel s studied above, thisgen-
eration corresponds to the radiative solution.

As we showed here, the system of Maxwell-Bloch
equations for a degenerate transition with pumping is
also integrable in terms of the inverse scattering trans-
form and has multisoliton solutions. The polarization
effects in a two-level amplifier can cause a qualitative
changein the dynamics and shape of pulsesinanonlin-
ear regime. Under pumping conditions, the velocity and
interaction of the solitons that correspond to different
polarization components also change. Our solutions
demonstrate an effective transformation of the soliton
polarization components for different initial magnetic-
sublevel populations. The population difference can be
produced by a magnetic field, which leads to an elec-
tron redistribution over magnetic sublevels. Thus, a
soliton counterpart of the Faraday effect arises. It can
be analyzed in terms of the Maxwell-Bloch equations.
Sazonov [17] investigated this effect for solitonsin the
low-frequency approximation, which allowed the prob-
lem to be reduced to a differentiated nonlinear
Schrddinger equation. However, for such areduction of
the system of equations, part of the important informa-
tion related to the medium is lost. Using the RMBE
allowstheinfluence of theinitial state of the medium on
the evolution of an extremely short pulsein the medium
to be studied. As our results show, thisinfluence can be
significant.
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Equations (6) do not admit adirect integrable gener-
alization of form (23) to a degenerate transition for a
nonzero PDM. On the other hand, in the limit of very
small y but for anonzero polarization of the medium on
the 1 —— 2, 3 trangitions, system (22) breaks down
into two individually integrable independent systems.
Each of them admits soliton solutions.

In conclusion, note that some of the Maxwell-Bloch
eguations considered here can also be used to analyze
the dynamics of an extremely short pulse with dura-
tion > 1w, However, a number of effects predicted
above are possible only for pulse durations = T/wy,. The
self-induced transparency attributable to anonzero PDM
described above belongs to such effects.
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Abstract—It is shown that it is preferable to perform quantum computations on a system of two-level atoms
with metastable states using optical dipole transitions that occur under the effect of ultrashort light pulses. Itis
suggested to measure the quantum information that is passed to qubits using Bloch, rather than pure, quantum
states of two-level atoms. Moreover, theinversion of atoms can be used asthe measure of quantum information.
In order to describe the logical operators NOT and CNOT in the system of interacting two-level atoms (qubits),
modified optical equationsfor the Bloch vectors of individual qubits are derived. These equations are solved in
combination with field equations, without using the owly varying amplitude approximation, for a small two-
qubit system in the field of ultrashort intense optical pulses of arbitrary shape. A numerical analysis of the solu-
tion shows that it is possible to control the recording of information on individual qubitsin a small quantum
system of a dimension much smaller than the length of the optical wave by smoothly varying the irradiation
conditions of qubits. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is known that a quantum computer can be con-
structed from two logical elements—an arbitrary sin-
gle-qubit unitary transformation and a two-qubit ele-
ment realizing the controlled NOT (CNOT) [1]. It is
shown in [1] that, for the implementation of the NOT
element, one should act upon aquantum particle (qubit)
by an external intense pulse that takes the qubit from
the ground state to an excited state and, conversely,
from the excited to the ground state. The CNOT ele-
ment isimplemented by applying an excitation pulseto
two interacting qubits. In the process, one qubit con-
trols the evolution of the other one by means of the
interaction. In [1], it is suggested to implement the
NOT and CNOT operations on the basis of electron and
nuclear spins using magnetic resonance spectroscopy
[2]. Inthis paper, we show that it is preferable to design
atwo-qubit quantum computer on the basis of two-level
atoms with metastable states using optical dipole—
dipole transitions occurring under the effect of
ultrashort light pulses.

By now, suggestions for the implementation of
guantum computers on the basis of ions and molecules
in laser traps [3], on the basis of nuclear spins of 3P in
crystalline silicon [4], on electron spins at quantum
points created in a two-dimensiona electron gas in
GaAs heterostructures [5], and on Josephson junctions
[6] have been put forward. Simulation experiments
related to quantum computers were carried out using a

pulse nuclear magnetic spectrometer [7-10] on the
basis of two spins of 13C nuclei and asingle proton spin
in the trichloroethylene molecule. However, in these
experiments, a ensemble quantum computer was stud-
ied. The output signals were combined from signals of
alarge number of moleculesin aliquid solution. Inthis
paper, we suggest an implementation of a two-qubit
guantum computer on the basis of an arsenic atom
dimer on a pure GaAs surface; those dimers can be
obtained using well-known techniques [11, 12]. It was
shown in [13] that the lines at 3 eV and 4.5 eV, which
were observed in [11, 12] in the spectrum of the aniso-
tropic reflection (100) from GaAs surfaces stabilized by
arsenic, can be explained on the basis of optical dimen-
sional resonances that were theoretically predicted in
[14]. It was also noted that the dispersion properties of
the GaAs surface significantly affect the properties of
dimensional resonances. Therefore, it is reasonable to
implement quantum computers on the basis of two-
level atoms (identical or different) by implanting those
atomsinto surfaces with frequency-independent optical
properties.

The concept of quantum information is based on the
quantum mechanical superposition principle, which is
applied to two-level quantum particles [15-17]. In this
paper, we suggest measuring the quantum information
using Bloch states, which are well known in resonance
spectroscopy [18, 19]. In the process, we have to solve
some important problems concerning writing and read-
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ing quantum information and transferring it from one
two-level atom to another. We believe that these prob-
lems can be solved using polarizing fields that occur in
a system of interacting atoms in an external radiation
field.

The concept of polarizing field was suggested in
[20—22] on the basis of third-order quantum electrody-
namical effects; it takesinto account intermediate states
with a positive and negative energy in the spectrum of
interacting atoms lying at an arbitrary distance from
each other. In accordance with the intermediate state
type, we distinguish between electron and positron
polarizing fields. The scheme of gquantum transitions
corresponding to the process of inducing the polarizing
field is as follows. Let two hydrogen-like atoms be in
the ground state with the energy W,. As a result of
exchanging virtual photons, one of the atoms (the
polarizing atom) goes to an intermediate state with the
energy W, and then returnsto the original state with the
energy W, in the process, the other atom (the observer)
goesto the excited state with the energy W;. Thismeans
that one real photon was absorbed by the two-atom sys-
tem. It was shown in [20-22] that this processis equiv-
alent to inducing a polarizing field with the correspond-
ing vector potential, which is different from the vector
potential of the free photon field at the location of the
observer atom. In the electric dipole approximation for
classical fields, the electron polarizing field is an elec-
tric dipole field induced by the polarization atom at the
location of the observer atom. Then, quantum-mechan-
ical considerations make it possible to reveal the nature
of the electric dipole field, which is considered as a
third-order electrodynamical effect. In [21], acompari-
son of the physical nature of this field considered as
field of virtual photonswith another field, which asois
athird-order electrodynamical effect but depends only
on real photons, was made. In contrast to the polarizing
field, as was noted in [21], the transfer of energy from
one atom to the other through the rea photon field
occurs with the characteristic time t, = Ric, where Ris
interatomic distance and c is the speed of light in vac-
uum. The polarizing field is not associated with the
transfer of energy; therefore, the characteristic time of
inducing this field on one atom of the system when the
other atomisexcited by an external field isdifferent. In
this paper, we consider the process of inducing polariz-
ing fields in a strong resonance optical field; in particu-
lar, thisisof interest for revealing the physical nature of
thelogical CNOT operator.

A full-scale quantum computer includes about
108 qubits [1]; however, the physical foundations of its
operation can be clarified on the basis of a two-atom
guantum computer that is theoretically studied in this
paper. We formulate several key points that provide a
basis for the operation of a quantum compulter.

1. Before the computer starts to operate, al qubits
must be in the ground state. The system of N qubitsin
the ground state constitutes a memory register [1]. It
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can store dataand perform quantum computations. Evi-
dently, this state is most easily implemented for optical
trangitions. In this case, two energy levels, W, and W,
exist in the spectrum of two-level atoms such that W, —
W, < KT, where T is the absolute temperature and k is
the Boltzmann constant.

2. A method for controlling the selective action of a
pulse upon individual qubits should be devised. One
such technigque was suggested in [19], whereby two
interacting atoms in a nanostructure take different
inversion values under the effect of intense stationary
radiation that acts upon the nanostructure at various
angles. In this paper, we consider atechnique for selec-
tively acting upon individual qubits using ultrashort
light pulses.

3. The CNOT operation can be implemented in a
system consisting of N qubits by exploiting the interac-
tion between them. In this paper, we consider thistrans-
formation using the electric dipole—dipole interaction
of two-level atoms in the field of pulse radiation in
small systems when one of the qubitsis excited.

4. Inthe process of quantum computations, the com-
puter’'s qubits are affected by relaxation processes that
disturb the computation process. The computation pro-
cess acquires random features during the decoherence
time. To increase this time, metastable states can be
used that have the lifetime of about 1 sfor optical tran-
sitions. During thistimeinterval, about 10** elementary
unitary transformations can be performed if femtosec-
ond pulses are used.

5. Qubit states must be measured in the process of
computations and after their completion. A measure-
ment technique based on thetrial pulseradiation and an
analysis of interference pattern formed by qubitsin the
wave zone was suggested in [23].

In this paper, we focus on the physical implementa-
tion of the NOT and CNOT operators under the effect
of powerful light pulses.

2. MEASURING QUANTUM INFORMATION
ON THE BASIS OF BLOCH STATES

The classical theory [24, 25] considers information
as anegative contribution to entropy. Thisway of defin-
ing information is appropriate for macroscopic physical
systems. It isevident that we need another way for mea-
suring information in quantum systems consisting of a
small number of qubits.

Classical computers operate with bistable transistor
circuits that demonstrate nonlinear dependence
between the input and output voltage [1]. In a quantum
computer, the corresponding element is a two-level
atom that can be described using the concept of effec-
tive spin [18]. We assign the logical zero“0” = [0to the
state W, with the wave function |W¥,Jand the logical
unity “1" = |1to the state with the wave function |W;
and the energy W, (W, >Wj). Transitions |[0C— |100n
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the quantum system correspond totransitions“0” — “1”
in the bistable transistor circuit. It was noted in [1] that
the quantum bistable element (qubit) has a new prop-
erty compared with the classical element. This is the
superposition property: a qubit can be in any superpo-
sition state |\W [+ a0 b|10]where a and b are complex
numbers such that |a]? + |bJ? = 1.

Consider atwo-level atom with electric dipole tran-
sitions from one state to the other. The Hamiltonian of
such an atom can be represented in terms of the Pauli
matrices g, 0,, and 05 [18]. In the absence of the radi-
ation field, we have

Hy = %(Wl + V\/o)T + %(Wl—wo)osv

where 1 is an identity 2-by-2 matrix. The average val-
ues of the operators o, 0,, and g, calculated with the

help of the wave functions W of superposition states are
written as

s, = W0, /W= able™ + albe ",
s, = W0 |WO= —i(able™ —albe ™), (D)
S3 = Wo,|WO= |b|* - [al?,

where W, — W, = #iw,. It is easily seen that the conser-
vation law

si+s+s =1 )

holds. The quantity s;(W; —W;)/2, which is the atomic
energy, differs from the average energy (W, + W)/2,
and s; istheinversion of thetwo-level atom [18]. s; and
s, determine the induced dipole moments of the atom.
Thus, quantum information can be measured, for exam-
ple, using theinversion and taking into account the fact
that Egs. (1) hold if there are two quantum states that
form a superposition. For a quantum system to store a
bit of quantum information, it is sufficient that the sys-
tem have two states and satisfy the superposition prin-
ciple. It is possible to establish a unique correspon-
dence between the Bloch states s;, s,, S; and the quan-
tum superposition states.

Taking into account relation (2) between the inver-
sion and the induced dipole moment of the atom, we
may conclude that the measure of quantum information
is determined in terms of physicaly observable quanti-
ties. The pseudospin vector s = (s, S, S3) in the energy
pacetraces curves on the unit sphere for various values of
the superposition coefficients a and b, which vary under
the effect of the radiation field. For individua atoms that
interact with the radiation field at the frequency « it is
convenient to changefromthevariabless;, s,, and s; tothe
variables u, v, and w using the transformations

s; = ucos(wt) —vsin(wt),
S; = W.

©)

s, = usin(wt) + v cos(wt),
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Here, u? + v2+w?=1and u, v, and w satisfy the Bloch
optical equations [18]
U=—(wy—wvVv, VvV = (w—w)u+KE,v,

(4)

W = KEyv,

where K = 2dy/%, E, isthe envelope of the optical pulse
acting on the atom, and d, is the transition dipole
moment. Thus, the behavior of an individua qubit in
the process of computations can berepresented in terms
of the observable quantities u, v, and w, which describe
the atomic local dipole moments and its inversion and,
therefore, the quantum information encoded in the
atom.

All available transformations, such as the Hadamard
transformation [1]

H|0O= i2(|om+|1g, H|1D=i2(|OD—|1D, )

N .

that contain the variables a and b in the quantum super-
position of states can be replaced by the corresponding
unitary transformations that transform the observable
variables u, v, and w. Comparing (1) with (3) for w =
wy,, We obtain the following correspondence between
the variables:

1 1
u=1,v=0,W:O«—»a—72,b=72,

1 1
u:—l,v=0,W—0<—»a=72,b——72,
u=0,v=1,w=0<—»a=%2,b —'72, (6)

i 1
U:O'V:_l’W:OHa:_J—_Z'b:TZ'

u=0,v=0w=-1—a=1b =0,
u=0v=0w=1-——-a=0,b = 1.

Below, we derive modified optical Bloch equations
that apply to two-level systems with regard for the
interatomic interaction. These new equations will
replace Egs. (4).

3. EQUATIONS OF MOTION OF A TWO-ATOMIC
SYSTEM IN A RADIATION FIELD IN TERMS
OF ATOMIC AND FIELD VARIABLES

In this section, we analyze properties of a single-
gubit NOT element and a two-qubit CNOT element in
the field of optical radiation. To this end, we consider
optical properties of a quantum system consisting of
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two (generally different) atomsin thefield of anintense
wave. The Hamiltonian of such a system has the form

2 2
1 1 T
= éﬁ z Q)Ojogj - E z O-+j(dOj + IdOj) EE]
j=1 , i=1 (7
1 L} - n

j=1
Here E; and E, are the electric field strengths at the
location points of the first and second atoms, respec-
tively; wy; and wy, are the frequencies of the atoms
transitions; the dipole moment operators
1

d =

vy, 1 v
i §0+j(d0j +|d0j)+§0—j(d0j_|d0j)

are determined in terms of thered, dy; , and imaginary,

do; , parts of the dipole moments of the first and second
atom transitions; and o, = 0y; * i0, and o, are the
operators of effective spin of the jth atom (o =1, 2, 3

andj =1, 2). We have
[01j, 02 = 2i05i0), [0z, 03] = 21043,
[03), Oud = 210505, [0y, 0.d = 4050, (8)
[04: Oad = —204;0 [0}, 05 = 20,0,

where g is the Kronecker delta.

Let us derive Heisenberg's equations of motion
using the commutation relations (8) and Hamiltonian
(7) for the operators

0.; = 0,(dg; +idg;), 0 = 0_j(dg;—idy;).

Calculations yield the following system of equations:
2i 1 . n 1

+ %‘(doj' +idg;)03;((do;

0. = —i0_jwy

0, = 10,0 —idg))E;),

i o D 9
—%(dbj—ldm)osj((do]'+|dOj)Ej),

E.

[ [
%O-+JEJ—f_iO-_J IE

We represent the field that acts on the atoms in the
quantum system as

E, = Eqe'™, Ey = E|

G3j =

—iE],

where E; and E| are the real and imaginary parts of
the field at the location point of the jth atom. If E; are
not operators, we pass to the mean valuesin Egs. (9) in
the usua fashion. For classical fields, the form of
Egs. (9) does not change when passing to mean values.
Defining the transformations

01, = u;cos(wt) —v;sin(wt),
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0, = ujsin(wt) + v cos(wt), a3 = w,
_' — (U +V. )e+|wt
0. = (doyzidg) (U £iv,)e™™
and the notation
(uj+iv)dg = X7, (uj—iv;)dy = X, 10
do; = do;—idy;,
we obtain the equations
- : 2i
XT = X} (0p; — ) 1|d01| Styp (11)
i i

Here, we took into account that
doj(d3; CEop) = |doj “Eqj-
This equality is proved for dy || Eg.
The changeover from Egs. (9) to Egs. (11) corre-
sponds to the changeover to the rotating reference
frame that iswell known in resonance optical spectros-

copy [18]. Equations (11) obey the following conserva-
tion laws:

d 2
a(IX,-|2+W,- |doj|®) = 0;
therefore,

uj2+ v12+wj2 =1 (12)
We will call Egs. (11) the modified Bloch equations.
These equations are set up with regard for the fact that
the fields and dipole moments are complex-valued.
Below, we show that this allows us to describe the
mutual influence of dipoles in the two-atom quantum
system.

In the general case, Egs. (11) should be supple-
mented by relaxation terms by phenomenologically
introducing the phase relaxation, T,;, and the energy
relaxation, Ty;, of the jth atom of the system. Then,
instead of Egs. (11), we obtain the equations

X = iX,A+ 5 W|doj| Eo— _7_< :
2j
XF = <iX*A, iL' J|doj|2E0j—>T<—.i,
W, = i%x;* (Eoj— 7| EESJ-—WjT_l\:V"“,
Vol. 94 No.5 2002
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where A = wy —wisthe detuning from thejth atom res-
onance and Wy, is theinitial value of the jth atom inver-
sion. We consider the interaction of atoms with afield
of short light pulses with duration much less than the

relaxation times T,; and Ty;.

The electric field strength obeys the equation

E(r,t) = E/(r,t) + Zcurlcurlp(%z,

=1 !

(13)

wherer is an arbitrary observation point (it may coin-
cide with thelocation of the atoms), E,(r, t) isthe exter-
nal field that affects the system,

p; = %Xje_i“’t +c.C.

(14)
is the induced dipole moment of the jth atom, c is the
speed of light in vacuum, and R, = |r —r;|. The combi-
nation of Eq. (13) with Egs. (11) forms aclosed system
of equations; we will use it to describe various optical
properties of the two-atom quantum system.

Using Eq. (13), we explicitly represent thefields E;
and Ey, in Egs. (11). We single out the negative fre-
guency parts of those fields, which are proportional to
exp(—wt). Let the axis of the two-atom system be
directed along the axis y. Then, atom 1 has the radius
vector r4(0, 0, 0), and atom 2 has the radius vector r ,(0,
R, 0). Thefield at the location of atom 2 has the form

E, = (Ep;—iEp) exp(—iwt) = yorEq exp(ik, [R)e,

2exp(|kO [R)

+2Gexp(iko [R)[ gl + [ 01]

x exp(—iwt) +XoEq exp(ik [R)e;

) K,
—Fexp(ik (R)[ ply] - 22K R) ey

(15)
N 2ik,exp(exp(iky [R))

= [Bo] gexp(—eat)

+ 2ok exp(iko [R)e,, — Fexp(iko [R)[ pgy]

exp(lk0 [R)
cR

[ Pou

» 2P TR ) Bep(cot).
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Here X,, Yo, and z, are the coordinate unit vectors, Eg, is
the real amplitude of the external wave with the polar-

ization vector g = €, +ie,' and the wave vector Ky;

2
1 ko F:G_ﬁ)

Crp R R

| —_—
are the parameters of the dipole—dipole interaction of
the atoms; ky = w/c; pg = X;/2; and the symbol [...]
denotes that the corresponding quantity is determined
at thetime instant t — R/c. A similar expression can be
written for the field E, at the location of atom 1; gener-
aly, thisfield is different from E,.

3.1. A Small Two-Atom System

Expressions for E; and E, become considerably
simpler when kR — 0, i.e., when the system dimen-
sions are much less than the externa radiation wave
length. In this case, we may neglect the lag in the
dipole—dipole interaction of the atoms, which yields
G = F = /RS, we also may neglect the terms propor-
tional to p; in expression (15) for E;. Then, for the
fields at the location points of atoms 1 and 2, we have

1x 1a
Eo = Eo€o +§GX21 Eo = Eq€ +§GX11 (16)
wherethetensor G is
FoO0 O
0 2G 0] (17)
0 0 -F

Substitute (16) into Egs. (11) to obtain a closed system
of equations in the unknowns X; for the given value of
the external field in the form of ashort pulse. Moreover,
Egs. (16) and (11) for the field and atomic variables
hold for optical pulses of an arbitrary shape and dura-
tion, including femtosecond pul ses.

4. NOT OPERATOR IN A SYSTEM
OF INDEPENDENT ATOMS

Consider the case of independent atoms when,
according to (16), the field at the location of the atoms
(for example, of atom 1) is equal to the external field.
This means that, under certain irradiation conditions of
atom 2, X, =0.

Let us write Egs. (11) in matrix form. For atom 1,
we have

Xy i Xy
at iy | = My Iy |’ (18)
W;| 0oy WAL
No. 5 2002
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where

. 2i
—I Al 0 _-ﬁ— | d01| EOly

My = 0 in, %|d01|E’51y . (19)

i i
_%|d01| Egly £|d01| EOly 0

Similar equations can be obtained for the other compo-
nents of the induced dipole moments of atom 1. In the
case of independent atoms, we have Ey; = Eg, in (19).

Consider a rectangular pulse acting on atom 1.
Then, the solution to Eqg. (18) iswritten in the form

Xy ) Xy
o zep(iyd)| x| @)
Wi |dgy Wy|doy| t

where t, istheinitial instant of time. For a rectangular
pulse, the unitary operator exp(M 1yt) can be repre-
sented as
~ ~2 1
exp(Mayt) = My (1 cos(Qy)
Y (21)

. I\A/Ilyésin(Qlyt) +,
y

887

where

4
Q, = /\/Ai + ﬁ_2|d01|2|E01y|2-
Taking into account (20) and (21), we determine the
variation of the atom inversion in time. For t; = 0, we
have

1 1,
) = (1= 005(0s,1))| -3 X4, (0)

ly

1 4 1
- Alfl Eo1y X1,(0) — ﬁ_2|d01| i Eonyl 2W1(0)} + Q_1y (22)

. [ i
x Sin(Quyt)| - 7B Xu(0) * £ B, X5/(0) | + wy(0),

We point out some properties of solution (22). If dy;

and Ey; are zero, this solution coincides with Rabi's

solution [18]. The changein polarization of the external
field does not affect the atom inversion if |Eg;y| = [Egygl,
where 3 = x, z. In the case of the exact resonance, the
inversion of the two-level atom variesin the range from
-1 through 1 for the corresponding values of the field.

In order to obtain a complete description of the
atomic Bloch state, one should, in addition to theinver-
sion w, determine the quantities u and v, which deter-
mine the pseudospin or Bloch vector. Setting w = wy;,
we find from solution (20) that

Coairlh o 22 G .22 . .
J 1-2sin"¢sin DZ% sin2¢sin Dz% sndsin(Qt) g
— 23)
VI T o0 . o 2[R . Vol (
w sn2dsin Dz% 1-2cos ¢st2% cosd sin(Qt) W,
—sing sin(Qt) —cosdp sin(Qt) cos(Qt) |
where state to the inverse one or, in other words, perform the
logical NOT operator.
o - 2dallEal o _ Ex o i
7 ’ Eol’ In the general case, operator (23) correspondsto the

and u,, V,, and w, are the values of the corresponding
guantities at t = 0. For convenience, we omit the sub-
scripts on the variables u, v, and w. At ¢ = 0, solution
(23) to Eq. (20) turns into Rabi’s solution [18] of the
Bloch optical equations for an isolated rectangular
pulse in the case of the exact resonance.

Assumethat theinitial state of theatomisu=v =0,
W = W,, Wwhere w, = 1. When the atom is affected by a
rectangular pulse of duration T = 17/Q, it goes to the
stateu =0, v = 0, w = W, asis seen from (23). Thus,
using the so-called 180° pulse, we can change the atom

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

rotation of the Bloch vector of the initial state by the
angle Qt about an axis that lies in the plane uv and is
determined by the rectangular pulse phase ¢. If w=%1
at theinitial state, the axis of rotation makes no differ-
ence when the 180° turn is made. If we make a90° turn,
i.e., userectangular pulsesof durationt = T172Q, thesit-
uation is different.

As in the models of quantum computers based on
the NMR [1], the single-qubit Hadamard operator (5) is
very useful. It can berealized by 90° rotations about the
axes u and v. For such rotations, pulses with the phase
0 and 172, respectively, should be used.
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Assumethat theatomisinthesateu=v =0,w=-1
or [OCI Let it be affected by a sequence of two pulses.
The first of them makes a rotation about the axis u by
180°, and the second one makes the rotation about the
axis v by 90°. Asaresult, the atom goesto the tateu =1,
v =0, w= 0. According to (6), this state is associated
with the wave function

W= = o0 |10
J2

J2
If the atom is initialy in the state |1[] then the same
sequence of pulsastak& it to the state

wo= Lo

N

5. CNOT OPERATOR IN A SYSTEM
OF INTERACTING ATOMS

Consider the case of a small quantum system in
which the field at the location of atoms 1 and 2 is deter-
mined by relations (16). In this case, we write the solu-
tionto Egs. (11) as

ij(t) . ij(tO)
XE(D) | = expB’ij(t')th Xi(t) | (24
|dojf w;(t) o |dojl w;(to)

wherey =X, y, z. Depending on the subscript y in (24),
the corresponding components of tensor (17) should be
used when determining the field that acts on the jth
atom of the quantum system.

We represent the unitary operator in (24) inthe form
SN R & (9
engij(t)dtD = |_| exp{ Mjy (tc—t_1)} , (29)
T u k=1

where N, is the number of short time intervals between
the instant t, of switching on the external field and the
current instant t. We assume that the field that affects
atoms 1 and 2 at every kth interval is a rectangular
pulse. Since these intervals are short, we have

exp(M¥at) = (M%)°L 5(8t) 2emint, +1, (26)

where the matrices ME'\? have the form (19) with the
corresponding numerical values of theinvolved quanti-
ties for the kth time intervals. Making the number of
time intervals sufficiently large, we can solve Egs. (11)
with any desired accuracy. Below, we use this ago-
rithm for solving Egs. (11) to analyze the influence of
various factors on the interaction of atomsin the radia-
tion field and on the evolution of the quantum system
state with time. Thiswill give usagood idea of how the
logical CNOT operator can be implemented.
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5.1. Factors That Determine the Properties
of Atom Interaction

Assume that the qubit atoms of the small system are
identical, i.e., [dgi| = [doal, W1 = Wy, and the fre-
guency of the external field is such that resonance
condition is fulfilled, i.e.,, A, = A, =0in Egs. (11) and
in the matrices M;,. Nevertheless, the atomic inver-
sions can be different.

According to (16), thefield acting on atoms 1 and 2
is composed of the external and internal fields. More-
over, the interna field is self-consistent. This implies
that the field at the location of atom 1 depends on the
field at the location of atom 2 and inversely. This is
described by the nonlinear termsin Egs. (11) for inver-
sion and in the evolution operators (25) and (26).

Let us define two time intervals describing the
behavior of the two-atom quantum system. Thisis T, =
211Q , where Q = 2|dy||Eq |/, which correspondsto the
action of the external field, and T;,,, = 217Q,, which cor-
responds to the interaction of atoms in the small quan-
tum system. T, and T, must be considerably less than

the phase and relaxationtimes T;; = T, =Ty and Ty, =

T,, = T, of the atoms in the system under consider-
ation.

Let dy; and dy, be directed along the line passing
through each atom and have the same length d. In this
case, the maximum value of the internal field is E, =
d/Re. It was shown above that the action of any field on
the atom causesthe changeinits state with the Rabi fre-
guency. In our case, thisfrequency is Q, = 2dE/A.

It is important for guantum computations that the
interaction interval is much less than the relaxation
time. Therefore, the atoms and the distance between

them should be chosen so that T, = 217Q,, < Ty, Ty;.
For example, if we take atoms for which d = 108 esu
and place them at the distance R= 10 nm, then theinter-
action interval T;,; ~ 10 s. For the case R =1 nm, we
have T, ~ 10 s.

If dy; and dy, are directed perpendicularly to theline
connecting the atoms, then E, = d/2R8. In this case, Q,
is half as large and the interaction interval is twice as
long.

Note that theinteraction interval T, and theinterval
of the external field action T, can be substantially dif-
ferent. Indeed,

EoqR’.
d 1

Tint —

Ta

hence, if the external field Ey > d/R®, then the interval
of the external field action is less than the interaction
interval.
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w (a)
D B

e

AC

ﬁ

B,D

w (b)
D

VAR,

AC

Fig. 1. Evolution of the quantum state of the system in the
absence of the externa field in the case when the second
qubit atom isinitialy in the ground state and the first atom
isin the state H|00(a) and H|1[(b).

5.2. The Exchange of Information between Qubits
under Various Initial Conditions

In order to determine the response of a two-atom
systemto an action, it is sufficient to know the response
of four basic states |00L] |100] |010) and |1100to this
action. For the first state, the inversion of both atomsis
—1; for the second state, the inversion of the first atom
is1and of the second oneis—1; and so on. Accordingly,
the effect of the CNOT operator on the systemisasfol-
lows:

J000— |105) 100~ |00
010~ |01 110~ 110

Although CNQOT is one of the basic logical opera-
tions, it can beimplemented by a set of eementary uni-
tary transformations in each of which either one qubit
atom or both are involved. Below, we analyze transfor-
mations of the second type assuming that R = 10 nm
and d = 1078 esu.

Assume that no externa field affects any of the
atoms. In this case, there exists a set of initial condi-
tions under which the guantum system does not evolve.
For example, let |w,| = |w,| = 1. Then, first of al, we
have from (12) that u; +iv; =0and u, +iv, = 0. Sec-
ond, (16) impliesthat E, = E, = 0. Taking this fact into
account, we obtain from Egs. (11) X j =0andthevalue
of w;. It is seen that this state of the system does not
vary with time. Such a situation occurs if the value of
uy, v4, or w, for one of theatomsis+1 and, for the other
atom, u, = U, v, = xv,, and w, = £w;.

We see that in order to use this type of interatomic
interaction for the implementation of the CNOT opera-

tor, one of the atoms should first be put in a superposi-
tion state. Figures 1 and 2 show the evolution of the

(27)
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w (@) AC

w (b)
A, C

Fig. 2. Evolution of the quantum state of the system in the
absence of the externa field in the case when the second
qubit atom isinitialy in an excited state and the first atom
isin the state H|00(a) and H|1[(b).

basic statesin time when the first qubit atom is affected
by the Hadamard operator. The point determining the
Bloch state of the atom performs a periodic motion
along an arc of unit circle while successively taking the
states A, B, C, D, and A. The time required to complete
a90° turn about acertain axisis T;,/4=7.5x 109s. It
is easily seen that the evolution proceeds differently in
each case. In particular, the evolution of the first qubit-
atom state depends on the state of the second qubit
atom at theinitial instant of time.

Assume that the second atom is known to be in the
ground state and is affected by an externa field about
1000 times less strong than the internal field. Figure 3
illustrates the evolution of the Bloch state of the system
in two cases—when the first atom isin the ground and
in the excited state. If both atoms were initialy in the
ground state (Fig. 3b), then they will be in the same
state after a while if small amplitude oscillations are
neglected. If the first atom was excited, then it goes to
the ground state after awhile, and the second atom goes
to the excited state. In between, there are rather long
time intervals (delays) when nothing happens. These
delays arethe longer the lessthe external field strength.

5.3. Switching between the NOT
and CNOT Operators

It was mentioned above that the operation of aquan-
tum computer requires that individual qubits could be
affected selectively. The assumption on the localization
of the external field in the region of an individual qubit
does not suggest that the action is selective, since the
qubits interact. We show that, under certain excitation
conditions, the CNOT operator can be transformed into
the NOT operator.
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(b)
—0.99996 .
-1
0 1 2

t/ Tint

Fig. 3. The dependence of inversion on time in the case
when the external field at the location of the second qubit
atom is Eg = 0.005 esu. The bold curve corresponds to the

inversion of the second qubit atom and the normal line cor-
respondsto that of thefirst qubit atom. (&) Atom lisinitially
in the excited state, and atom 2 is in the ground state;
(b) both atoms are initially in the ground state.

L et there be two identical atoms thefirst of whichis
affected by an external field with the strength greater
than that of the internal field that affects both the first
and the second atom. Figure 4 illustrates the evolution
of the Bloch state of the system for various strengths of
the external field. In case (a), when the internal field
E, = 1 esu is ten times as strong as the external one,
thereispractically no evolution. In cases (b) and (c), the
states of both atoms vary substantialy. In case (d),
when the external field is five times as strong as the
internal one, the state of the second atom varies sub-
stantially, while the first atom state undergoes only
insignificant variations.

6. CONCLUSION

In this paper, a mode of operation of a quantum
computer is suggested. It is based on a small system of
two-level atoms and makes use of optical quantum tran-
sitions and the dipol e-dipol e interaction of atomsinthe
radiation field. Basic problems that must be solved
when designing a quantum computer are formulated,
and it is shown that the mode of operation suggested in
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w
(a)
-0.98 7
-1
0 1
t/TaCl
1
(b)
oF ,
—1 M
0 1
1 Toet
1
()
oF
1
0 1
1Tyt
l —
(d
0 - .
-1
0 1
1T

Fig. 4. The dependence of inversion on time for various
strengths of the external field at the location of the second
atom: Eg = () 0.1, (b) 0.5, (c) 1, (d) 5 esu. The bold curve

corresponds to the inversion of the second qubit atom, and
the normal line corresponds to that of the first qubit atom.

The scale of time is different for each figure; 3 x 108s=
Tact> Ti > Tigy > Ty =6x 107105, T = 20Q, where

Q =2|dgy|[Eq [/A. Theintervals To , Toy » and Ty, aredif-
ferent from T, in the strength of the external field Eg,.

the paper has certain advantages over other types of
quantum computers.

In the theory of quantum information and quantum
computations, both individual quantum states of qubits
and entangled states are used. We suggest using Bloch
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statesinstead. Bloch states are rel ated to the observable
guantities through such quantities as induced dipole
moments and inversions of qubit atoms. We show that
all operators used in the theory of quantum information
can be implemented on the basis of Bloch states, and
entangled states are implemented with regard for the
dipole—dipole interaction of atoms.

In order to describe the mode of operation of aquan-
tum computer, we derive modified optical Bloch equa-
tions for the vector operators of effective spin of two-
level atoms and the atom inversion that take into
account the amplitude and phase properties of al phys-
ical quantities determining the mutual influence of
qubit atoms in the process of executing the NOT and
CNOT logical operators.

A solution to the modified optical Bloch equations
for ultrashort optical pulses with duration much less
than the time of the phase and energy relaxation of
atoms including femtosecond pulses is obtained.

A numerical analysis of this solution to the consis-
tent system of equations in atomic and field variables
for the small two-atomic quantum system consisting of
two identical atomsin the case of the exact resonanceis
carried out. We assume that individual qubit atoms can
be selectively affected by an externa field so that the
evolution of the Bloch states of individual qubits and
internal polarizing fields can be traced.

In this paper, we suggest controlling the evolution of
atoms using short and ultrashort light pulses with dura-
tion much less than the time of the phase and energy
relaxation. The external field is considered as a classi-
cal one, which corresponds to powerful pulsesthat can
substantially change the inversion and local dipole
moments of qubits.

Properties of the NOT and CNOT logical operators
under various excitation conditionsand initial inversion
of the atoms are analyzed. It is shown that, when one of
the atoms is excited by an ultrashort external light
pulse, apolarizing field at the location of the other atom
occurs with a certain time delay. The delay is deter-
mined by the strength of the internal and external fields
rather than by the photon transit time of the interatomic
distance. The possibility of switching the NOT and
CNOT operators using a smooth change of the strength
of the external radiation field is shown.

The analysis of the solution to the equations of
motion shows the importance of the results for the
physical implementation of aquantum computer. A fur-
ther analysis of this solution requires a separate consid-
eration.
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Abstract—We investigate, theoretically and numerically, properties of dispersion-managed (DM) solitonsin
fiber lines with the dispersion compensation period L much shorter than the amplification distance Z,. We
present the path-averaged theory of DM transmission lines with a short-scale management in the case of asym-
metric maps. Applying a quasi-identical transformation, we demonstrate that the path-averaged dynamics in
such systems can be described by an integrable model in some limits. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Redlization of soliton-based optical data transmis-
sion hasclearly demonstrated how results of fundamen-
tal soliton theory (seg, e.g., [1-12]) can be successfully
used in very important practical applications. The dis-
persion management technigque proposed recently pro-
vides for an increase in the bit rate per channel and
leads to suppression of the interchannel interaction in
WDM systems in comparison with traditional soliton
transmission [13]. The dispersion-managed (DM) soli-
tonisanovel type of an optical information carrier with
many attractive properties (see, e.g., [15-57] and refer-
ences therein) combining features of the traditional
fundamental soliton and the dispersion-managed non-
return-to-zero transmission. The power of the DM soli-
ton is enhanced [19] compared to the corresponding
fundamental soliton. This increases the signal-to-noise
ratio, reduces the Gordon—Haus jitter, and therefore
improves the transmission system performance. How-
ever, in the systems (transmission regimes) limited by
nonlinear pulse interactions rather than by noise, the
enhanced soliton power can become a less attractive fea
ture. For instance, data transmission with high bit rates of
40 Gb/s per channel and more requires a dense pulse
packing and, consequently, short soliton widths. The
DM soliton energy increases with the decrease in the
pulse width (or, in other words, with the increase in the
map strength). The average power of the traditional
soliton signal increases with the increase in the bit rate
(assuming the soliton width to be afraction of thetime
dlot) as the sguare of the bit rate. For the DM soliton,
this growth is even more drastic, and for short pulses,
the DM soliton power can therefore becometoo high to
be realized in practice [55]. Additionally, soliton inter-
action becomes an important issue as the signal power

TThis article was submitted by the authors in English.

increases [55]. The energy control by the correspond-
ing reduction of the average dispersion is limited by
fluctuations of the dispersion along the fiber and by
higher order dispersive effects. Therefore, in designing
soliton-based (and also genera return-to-zero signal)
transmission systems, the soliton power must be kept
sufficiently large for the signal-to-noise ratio require-
ment and suppressed jitter and, at the sametime, not too
large to avoid strong soliton interaction and to meet the
telecommunication standards on signal power. One
way to find such an optimum for a high-bit-rate DM
transmission is to use a chirped-return-to-zero signal
[55, 56] with less power than the DM soliton power in
the corresponding system. Even though such carriers
arenot stablein arigorous mathematical sense and emit
radiation as they propagate, they can be successfully
used in practical systems. A challenge for the soliton
theory, however, is to find high-bit-rate (=40 Gb/s per
channel) transmission regimes with a truly periodic
soliton-like signal propagation. Short-scale dispersion
management is a means of controlling the DM soliton
energy while keeping the average dispersion not too
small and taking advantage of the four-wave-mixing
(FWM) suppression in the WDM transmission by a
high local dispersion.

The traditional dispersion management for long-
haul transmission assumes the amplification distance
to be much shorter than the dispersion compensation
period (see, e.g., [14]). Ancther important application
is the implementation of dispersion-compensating
schemes in the existing terrestrial fiber links based on
standard monomode fibers, which typically requires
rather close spacing of the dispersion compensating
fibers because of the high dispersion of standard mono-
mode fibers at 1.55 pm. In this case, the amplification
distance is typicaly of the order of the compensation
period. The existing technologies make it possible to

1063-7761/02/9405-0892%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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manufacture fibers with the continuous aternation of
positive and negative dispersion sections of afew kilo-
meterslong without any splicing [27]. The fundamental
properties of the optical signa transmission in this
regime are less studied compared to other regimes. In
this paper, we investigate the optical pulse transmission
in DM fiber systems with acompensation length that is
much shorter than the amplification distance [41]. We
examine the case of an asymmetric dispersion map.
Compared to lossless models, systems with different
periods of the amplification (Z,) and dispersion com-
pensation (L) possess an important new degree of free-
dom, the parameter L/Z,. A short-scale dispersion com-
pensation (L < Z,) leadsto areduction of the DM soli-
ton power if wefix al system parameters and the pulse
width and vary only L/Z,. Below, we show that short-
scale management can be considered as a possibility of
an advantageous practical realization of the weak-map
regime.

2. THE BASIC MODEL

We first recall the basic equations and the notation.
The optical pulse propagation in a cascaded transmis-
sion system with varying dispersion is governed by

a_E A D(z)a E 2mn,

"oz 41C;  Ht? }\AefflEl E

N )
=i|l=y(z)+r 6(2—2)}E = iG(2)E,
[ L

where z is the propagation distance in km, t is the
retarded time in ps, |EJ? = P is the optical power in' W,
and D(2) is the group velocity dispersion measured in
ps/(nm km). We assume a periodic dispersion manage-
ment with the period L, D(z + L) = D(2); z are the
amplifier locations. We consider a periodic amplifica-
tion with the period Z,,. If y =y is constant between two
adjacent amplifiers, then r, = [exp(wZy) — 1] is the
amplification coefficient after the fiber span between
thekth and (k—1)th amplifier, n, isthe nonlinear refrac-
tiveindex, Ay isthe effective fiber area, y = 0.05In10a
(with a measured in dB/km) is the fiber loss of the cor-
responding fiber, ¢ isthe speed of light, and A= 1.55 um
isthe carrier wavelength. We consider the general case
where L and Z, are rational and commensurable,
namely, nZ, = mL = Z, with integer n and m. In this
paper, we focus on systems with short-scale manage-
ment withn=1, m> 1, and Z,=Z, = mL. It is custom-
ary to pass from the original optical field E(z, t) to

z

A(z,t) = E(z t)exp[J’G(z')dz}.
0
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The evolution of the scaled envelope A isthen given
by the nonlinear Schrédinger (NLS) equation with peri-
odic coefficients

iA,+d(2)A, + ec(2)|A°A = 0, 2
where

[Z}G(z')dz},

A AoD(2)
4mc,

ec(2) = )\ZTZ o
d(z) =

3. THE PATH-AVERAGED MODEL

In this section, we briefly recall the derivation of the
path-average model [28, 42] describing the change in
the signa waveform over one compensation period.
Equation (3) governing the z evolution of an optical
pulse can be written in the Hamiltonian form

OA _ dH _ _ 2
I3, = s = U@DA—ec@IA’A (@)
with the Hamiltonian
O
H = [EH@IA -2 AT ©
0 O

The true breathing soliton is a solution to Eq. (3) of
the form

A(z t) = exp(ik2)F(zt)

with aperiodic function F(z+ Z,, t) = F(z t). It isinter-
esting to find a systematic way to describe a family of
periodic solutions F with different quasi-momenta k.
The basic idea suggested in [28] is to use the small
parameter e to derive a path-averaged model that gives
a regular description of the breathing soliton in the
leading order in e. Averaging cannot be performed
directly in Eq. (1) in the case of large variations

d>
where

d(2) = d+ 0 with 0= 0.

However, a path-averaged propagation equation can
be obtained in the frequency domain [28]. We show
that, in some important limits, the averaged equation
for the periodic breathing pulse can be transformed to
the integrable NL S equation.

First, to eliminate the periodic dependence of the
linear part, we follow [28] in applying the so-called
Floguet—Lyapunov transformation

dR(2)

Ao = uexp{-WR(Z)}, == = d(2)- [0 (6)
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where A, = A(z, w) isthe Fourier transform of

A(z,t) = IA“,exp[—i wt] dw.

An important observation used in what follows is that,
for afixed amplitude of d, the amplitude of the variation
of R decreases as m = Z,/L increases. It can easily be
found that

max[ R(2)] O 1/m.
In the new variables, the equation becomes

30,

1B~ 00, € [Cun(DB(0r @ -wp-w)
x @] @p3dw, dw,dw; = 0,

where

Guizs(2) = c(2)exp{iAQR(z)}
is Z,-periodic and
AQ = W+ W — w5 — 5.

We note that G,;,; depends only on the specific
combination of the frequencies given by the resonance
surface AQ. Both the Fourier transform and Floquet—
Lyapunov transform (6) are canonical, and the trans-
formed Hamiltonian H is given by

G
H = 0 ’|@,)°dw—& [—225(w+ ) — W, — W
Jwled 72 0(wr wmemw) o
X @ @ @,0;dwdw, dw,dw;.
It is important that € and [dCare small, and Eqg. (7)
therefore has the so-called Bogolyubov standard form
and the averaging procedure can then be applied. We

now apply the Hamiltonian averaging [50, 51]. We
change the variables as

Qp =0+ e[Viyad(W+ ) —w,—ws)

X 07 ¢05dw, dw,dws + ...,

where
Vs(2) = iI[GleS(T) = Trza] AU +1V 123(0),
V1= 0
with

Torzs = [Bypd! = IGw123(Z)dZ
. ° ©)
= J’c(z) exp{iAQR(2)} dz.
0
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In the leading order in €, the path-averaged evolu-
tion of signal in the DM line is governed by the Gabi-
tov—Turitsyn model [28]

00,

957 ~ [eld0°0,, + GITm1235(00+ W) — 0, — Ws)

(10)
x ¢7 ¢,03dw,dw,dw; = 0.

The Hamiltonian averaging introduced here repre-
sents a regular way to calculate the next-order correc-
tions to the averaged model. We note that Eg. (10) pos-
sesses a remarkable property. The matrix element
Tos = T(AQ) isafunction of AQ, and on the resonant
surface given by

W+ w-—w,—w; = 0,
2 2 2 2
AQ = W +w—w,—w; = 0,

both T, ;3 and its derivative with respect to AQ arereg-
ular. This observation allows us to make a quasi-identi-
cal transformation that eliminates the variable part of
the matrix element T ;.3

_ € TO_Tw123
(I)(.o - aw_ d AO

X af 3,a30( W+ ) — W, — W;)dw, dw,dws,,

(11)

where T, = T(0). This transformation has no singulari-
ties. If the integral part in this transformation is small
compared to a,,, then, in the leading order, we obtain

080 _ Dﬂozaw+eJ’T06(oo+ 0 — Wy — )

0z (12)

x aj a,a;dw,dw,dw,; = 0.

This is nothing else but the integrable nonlinear
Schrédinger equation written in the frequency domain.
Obviousdly, thistransformation is quasi-identical only if
theintegral in Eq. (11) issmall compared to a,,. Thisis
not true in the general case, and that is why the path-
averaged DM soliton given by the solution to Eq. (10)
then has a form different from the cosh-shaped NLS
equation soliton [28, 43, 49]. A comprehensive analysis
of the DM soliton solutions to the Gabitov—Turitsyn
equation has been published in [46-48]. Thefirst high-
precision numerical solution of the Gabitov—Turitsyn
equation was presented in [48]. We notethat, if the ker-
nel function in Eq. (11) issmall,

— |To—Tu23(AQ)
IS(AQ)| = Lo~ Twiz
S(AQ) e

then the averaged model can be reduced to the NLS
eguation. In other words, thisisacondition on the func-
tions ¢(2) and d(2) that makes the quasi-identical trans-
formation possible. The path-averaged DM soliton
propagation in systems satisfying requirement (13) is
close to the dynamics of the traditional soliton and at

<1, (23
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the same time preserves al the advantages of the sup-
pression of FWM by ahigh local dispersion.

4. SYSTEMS WITH A SHORT-SCALE
MANAGEMENT

In this section, we calcul ate the matrix element T, ;55
for systems with a short-scale management (L < Z,)
and demonstrate that a path-averaged propagation
(even with large variations of the dispersion) can be
described by the integrable NLS equation in this
regime. The matrix element T playsan important rolein
the description of the FWM [52]. To be specific, we
consider atwo-step dispersion map with the amplifica-
tion distance Z, = Z, (n = 1) and dispersion compen-
sation period L = Z,/m km. The dispersionis

d(z) = d+ @0
if

m Z, m
and

da
——+

d(2) — fa
if

k+a<£ +11

m Z, m
wherek=0, 1, 2, ..., m—1 and the parameter a [J (0,

1) describes the position of the step. The mean-free
function R defined above can be found as

R(z) = d(z—Z,kim—-aZ,/(2m))

z

<k+a
Z, m

Six
N

and
_ da Zk (a+t1)Z,
R(2) = a—l[z_ m  2m }

k+a z <k+

m Z, m’

Straightforward calculations show that, in this sys-
tem, the matrix element T3 iS

Tors =

exp(2yZ,) -1, . _idAQ
2yZaexp(2yZa)[ 2y —idAQ
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N [ 3 2yZ,/m

exp(2yZ,/m) — 14

exp[(2(1-a)y +iadAQ)Z,/m] —1
(2(1-a)y +iadAQ)Z,/m H
) Z,
X exp[—l adAQErTJ'
To show a salf-similar structure of this matrix ele-
ment, we rewrite T3 as
Twizs = B(G)F(a, X,Y), (15)
G-1
GInG’

iy [1— X
X—IY ex_l

B(G) =

F(a X,Y) = [1 + (16)

y exp[(1—a)X+iaY] —1H e

0iaYn
(I—a)X +iaY P
where the amplitude B is a function of only G =
exp(2yZ,) and is independent of m. The shape F(a, X,
Y) isafunction of the parameter a and specific combi-
nations of X = 2yZ,/mand Y = dAQZ,/m. The real part
(solid curve), the imaginary part (dashed curve), and
the absol ute value (dotted curve) of F(a, X, Y) are plot-
tedin Fig. 1. Here, a=0.21 dB/km, Z, = 60 km, m= 2,
and a = 0.5. Minima of the function |F| correspond to
operation regimes with the suppressed FWM [52]. In
the d = 0 limit, we obvioudly recover results of the tra-
ditional path-averaged (guiding-center) soliton theory
[24-26].

In Fig. 2, the function |F(a, X, Y)|| is plotted versus
Y for different a with the same parametersasin Fig. 1.
We now estimate the matrix element of the quasi-iden-
tical transformation

S(80) < Ic(z)[exp(nAQR(z)) 1,
< max(R) (6] = ;r?]Edﬂ

It can be seen that as m increases (with the other
parameters fixed), the path-averaged model (10) gov-
erning the DM soliton propagation converges to the

integrable NL S equation with
_G-1
(o) = GInG’
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Re[F], Im[F], IFI

-0.2+ .

1
100

Fig. 1. Real (solid curve) and imaginary (dashed curve)
parts and the absolute value (dotted curve) of the function
|[F(a, X, Y)| are plotted for a = 0.5 and X = 0.63 In(10)dB.
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Fig. 2. Thefunction |F(a, X, Y)| versus Y for the system with
different a.

It is obvious that, in the limit of a very weak loss
(small y), we again obtain the lossless model approxi-
mation for T,

_ sin(ay)
T(.o123 - aY .

However, theincreasein m (decreasein L) under the
fixed characteristic bandwidth of the signal makes the
oscillatory structure of the kernel insignificant. This
implies that, if T(AQ) is practically concentrated in

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

MEDVEDEV et al.

some region, then the corresponding region in AQ is
larger for large mthan for small m. For pulses with the
same spectral width, this means that T is much flatter
for large m: as a matter of fact, the function T can be
well approximated by the value T(0) for large m (small
L). As aresult, the NLS equation model works rather
well in thislimit and the solution (of the path-averaged
model!) should be close to the cosh-like soliton of the
NLS equation. We note that, although it is known that
the DM soliton shape is close to cosh for the lossless
model in the so-called weak-map (S< 1) limit [19, 28,
36, 34], thisisnot so obviousfor a system with lossand
different periods of the amplification and dispersion
variations. In such asystem, DM solitonstherefore pos-
sess the dua advantages of being chirped (which is
important for the suppression of the four-wave mixing
in WDM systems) and of having integrable path-aver-
aged dynamics, which allowsthe use of well-devel oped
mathematical tools in studying practical perturbations.
Thisadditionally implies that al the control techniques
developed for the improvement of the traditional soli-
ton transmission can be directly used in these systems.

5. A SINGLE-PULSE PROPAGATION

In this section, we consider numerical simulation
results for a single pulse propagation in systems with a
short-scale management. In contrast to the lossless
model, the evolution of soliton parameters over one
period is asymmetric here because of the loss. Rapid
variations of the pulse width, peak power, and chirp are
accompanied by the exponential decay of the power
due to the loss. Nevertheless, numerical simulations
have revealed that there exists a true periodic solution
that reproduces itself at the end of the compensation
cell (inthiscase, at the end of the amplification period).
For the DM soliton with the map strength S= 2, the evo-
lutions of its peak power (right top), chirp (left bottom),
and full width at half maximum (right bottom) along
one section are shown in Fig. 3 for atransmission sys-
tem with the short-scale dispersion map (left top). The
amplification distance is 40 km, and the dispersion
compensation length is4 km. Thefollowing parameters
were used in the simulations:. the dispersion in the two-
step map £16 + 0.1 ps/(nm km) (see Fig. 3), the nonlin-
ear coefficient 0 = 2,/ A Ay = 2.43 WL km?, and the
fiber lossa = 0.21 dB/km.

The observed DM soliton is very stable and propa-
gates without radiation as seen in Fig. 4 (where system
parameters are the same as in Fig. 3). Figure 4 illus-
trates the chirp of the DM soliton versusthe width. The
left and right figures show this dependence for the first
and the 140th sections, respectively.

An important feature of solitons in systems with a
short-scale dispersion management is the reduced
power. The DM soliton identified here has a reduced
power compared to the previously studied DM soliton
regimes (L = Z,) for the same width propagating in a
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Fig. 3. Evolution of the soliton peak power (right top), chirp (Ieft bottom), and full width at half maximum (right bottom) along one
section is shown for the transmission system with the short-scal e dispersion map (left top). Here, S= 2, the amplification distance

is40 km, and the dispersion compensation period is 4 km.

fiber system with the same average dispersion (with the
same parameters except the L/Z, ratio). This observa-
tionisillustrated by Fig. 5, where we present results of
the modeling based on the zero-mode Gaussi an approx-
imation of the DM soliton (in the expansion using a
complete basis of the chirped Gauss—Hermite func-
tions—see [57] for details). Using this approach, we
have built the evolution of the DM soliton peak power
dependence on the pul se width; the dispersion compen-
sation length was changed, but the average dispersion
and the amplification distance were kept the same. In
Fig. 5, the dependence of the DM soliton peak power on
the pulse width at the beginning of the compensation
section z= 0 is shown for different ratios of the disper-
sion period L = Z,/m to the amplification distance Z,
(40 km here): m = 10 (solid curve), 1 (long-dashed
curve), 0.5 (dashed curve), 0.2 (dotted curve), 0.1
(dash-dotted curve). For control, we also show the peak
power dependence for the true DM soliton found
numerically (inthefull model) in the casewherem= 10
(squares) and m = 0.2 (rhombuses).

We aso note that the energy of the short-scale DM
soliton is very close to that of the conventional soliton
(although the pulse is chirped and experiences breath-
ing oscillations of the width and chirp during propaga-
tion). Thisisbecause the effective map strength is small
here dueto small L. It is seen from Fig. 5 that the short-
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scal e dispersion management (m = 10) indeed provides
areduced power of the DM soliton for the same pulse
width (and the same average dispersion and the same
other parameters except the ratio L/Z,). Because the
soliton power grows very rapidly with the reduction of
the pulse width (after the curves in Fig. 5 pass some
critical turning points; for instance, for m = 1 such a
point is around 16 ps), this effect can be very important
for high-bit-rate transmissions using short pulses.

6. SOLITON INTERACTION

The nonlinear pulse-to-pulse interaction is one the
main limiting factorsin high-bit-rate optical datatrans-
mission. In this section, we present results on the soli-
ton interaction in systems with a short-scale manage-
ment with the amplification period Z, = 60 km and the
dispersion compensation period L =4 km (m=15),L =
6 km (m=10), and L = 12 km (m=5). Numerical sim-
ulations in this section include the third-order disper-
sion and Raman effects. An important advantage of
operating closeto the integrable limit (weak maps) dis-
cussed above is that the well-developed techniques to
suppress soliton interaction can be applied. Figures 6
and 7 show the effect of the initial phase alternation of
neighboring solitons. Figure 6 shows the propagation
of two in-phase solitons initially separated by 10 ps
(100 Gb/s). The solitons collapse after approximately
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Fig. 4. Chirp versus width of the DM soliton for thefirst (left) and the 140th (right) sections.

500 km. In contrast, DM solitons with the initial phase
shift 11 can propagate over 5000 km without fusion.
Here, D = +2.4 + 0.0785 ps/(nm km), Z, = 60 km, m=
15, the peak power of the single soliton is5.44 mW, and
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Fig. 5. The dependence of the DM soliton peak power on
the pulse width at the beginning of the compensation sec-
tion z = 0O for different ratios of the dispersion period L =
Z,/mto the amplification distance Z,: m= 10 (solid curve),
1 (long-dashed curve), 0.5 (dashed curve), 0.2 (dotted
curve), and 0.1 (dash-dotted curve). The same dependences
for the true DM soliton found numerically (in the full
model) are shown for m= 10 (squares) and m= 0.2 (rhom-
buses).
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the pulse width is 2.93 ps at the chirp-free point
(0.56 km from the end of the map). We recall that the
interaction of DM solitons with larger Sisindependent
of theinitial phase shift [33].

Figure 8 shows the normalized distance between the
Gaussian pulses for different initial phase shifts along
the total distance z=1018.5 km. The initia distanceis
z=12.5 ps (80 Gh/s), and the maps are D = £1.6 +
0.04 ps/(nm km), and D = +£2.4 + 0.04 ps/(nm km), and
D=432 + 0.04 ps/(nm km), with the respective
strengths S= 1.06, 1.58, and 2.12. Figure 9 shows an
improvement of the system performance resulting from
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Fig. 6. The interaction of two in-phase DM solitons at
100 Gb/s. Here, D = £2.4 + 0.0785 ps/(nm km), Z, = 60 km,
and m = 15; solitons with a peak power of 5.44 mW and
pulse width of 2.93 ps are launched at a chirp-free point
located 0.56 km before the end of the section.
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Fig. 7. Thesame asin Fig. 6 but with theinitial phase alter-
nation (out-of-phase solitons).

—_
—_

—_
(=]

07 1 1 1
0 2 T 312 21

Initial pulse difference

Normalized output pulse separation
o
\O
T
|

Fig. 8. The normalized pulse separation versus the initial
phase shift (the total distance z = 1018.5 km) for different
map strengths: S = 1.06 (solid curve 1), S = 1.58 (long-
dashed curve 2), and S= 2.12 (dashed curve 3). Here, Z, =
60 kmand L = 6 km.
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Fig. 9. The transmission distance at 80 Gb/s with (solid
curve) and without (dashed curve) theinitial phase alter-
nation versus the DM soliton energy. Here, D = +2.4 +
0.04 ps/(nm km), L = 6 km, and Z, = 60 km.
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theinitial phase alternation. We plot the total transmis-
sion distance versus the DM soliton energy (at the
beginning of the section) at 80 Gb/s. Here, the disper-
sionisD =+2.4+0.04 ps/(nm km), L =6km, and Z, =
60 km. Thetotal transmission distance has been defined
as the distance at which the Q factor becomes less than
6 for two test random 128-bit patterns. The solid lines
are for the initid signds with a phase dternation, and
dashed lines are for the in-phase input pulses. It can be
seen that short-scale disperson-managed systems are
quite attractive candidates for the transmission of optica
data at ultrahigh-bit rates. Optimization of such lines will
lead to afurther improvement of the system performance.

7. CONCLUSION

We have identified a stable optical pulse propaga-
tion regime in fiber systems with short-scale dispersion
management when the compensation period is much
shorter than the amplification distance. In systems with
a short-scale management, the DM soliton has a
reduced power compared to the usual DM soliton (L >
Z,) of the same width (and the same amplification dis-
tance and average dispersion). Short-scale management
isameans of controlling the strength of the map (and,
consequently, pulse energy, interactions, etc.) while
keeping the average dispersion finite and taking advan-
tage of the FWM suppression in WDM by a high local
dispersion. We show that the path-averaged dynamics
of chirped DM solitons in systems with a short-scale
management for weak maps is close to that in the inte-
grable model. Therefore, DM solitons in such systems
possess the dual advantages of being chirped (whichis
important for the suppression of the four-wave mixing
in WDM systems) and of possessing integrable path-
averaged dynamics, which allowsthe use of well-devel -
oped mathematical tools for studying practical pertur-
bations.
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Abstract—A theoretical and experimental study is made into the combined manifestation of local and nonlocal
optical responses in a cubic nonlinear isotropic medium such as an aggregated colloidal silver solution. The
phenomenological treatment of polarization effects is performed for the general case with due regard for the
frequency dispersion of both local and nonlocal nonlinearities and for the noncollinear propagation of pump
and probe light waves. The inverse Faraday effect, the optical Kerr effect, and the self-rotation of the polariza-
tion elipse in afractal-disordered nonlinear medium are observed for the first time. The tensor components of
the local and nonlocal cubic nonlinearities of colloidal silver solutions are measured for different degrees of
aggregation. It is demonstrated that, as the size of silver aggregate increases, the nonlocal nonlinear response
increases much more strongly than the local one. An inference is made that the mechanical motion of metal
nanoparticles because of their dynamic interaction with the light wave field can contribute to the nonlinear
polarization effects. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The nonlinear-optical properties of aggregated
metal nanocomposites have been subjected to intensive
studies for well over ten years (see the review [1]).
Interest in such media is primarily due to the special
character of interaction between a light wave and an
ensemble of highly polarizable nanoparticles which
form a disordered structure referred to as aggregate or
cluster. Large clusters, which form, in particular, during
aggregation in colloidal solutions, consist of hundreds
and thousands of nanoparticles and have afractal struc-
ture [2]. The interaction between the induced dipole
moments of particles resultsin the formation of collec-
tive modes of dipole excitation in clusters, and it is
these modes that define the optical properties of nano-
composites. The spatial configurations of collective
modes, characterized by the electric field distribution,
may be highly diversified; in particular, a localization
of optical excitation is possible in a region which is
small compared with the aggregate size [3, 4]. This
impliesaconsiderableincreaseinthelocal electricfield
inthiscluster region. Thelatter fact provesto be of spe-
cial significance from the standpoint of nonlinear-opti-
cal processes depending on the square, cube, and higher
powers of the electric field. Butenko et al. [5] predicted
a considerable increase in the nonlinear-optica
responses of aggregates compared with isolated nano-

SPresent address: Purdue University, School of Electrical and
Computer Engineering, West Lafayette, IN 47907 USA.

particles. In subsequent experiments involving colloi-
dal silver solutions, a giant amplification was observed
of degenerate four-photon scattering [6], as well as of
nonlinear refraction and nonlinear absorption [7] dur-
ing aggregation of silver particlesinto clusters.

Polarization effects in the case of nonlinear self-
action of alight wave in an aggregated colloida silver
solution were first observed and experimentally inves-
tigated by usin [8], where a nonlinear optical activity
of fractal aggregates of silver was observed, which was
due to spatial dispersion of nonlinear response of the
third order (in other words, to the nonlocality of inter-
action between the medium and the light wave field). It
iswell known, however, that the polarization of awave
in an isotropic medium may also change due to purely
local cubic nonlinearity. If the radiation polarization is
other than strictly linear or circular, polarization self-
action is observed, which consistsin the rotation of the
polarization ellipse [9]. Nonlinear polarization effects
may be studied using the probe field method as well.
The interaction between two waves (pump and probe
ones) in a nonlinear medium with a local response
brings about a variation of the polarization of the probe
wave (except for the situation in which both waves are
linearly polarized in a single plane). Such phenomena
include, in particular, the inverse Faraday effect (IFE),
i.e., therotation of the plane of polarization of the probe
field under the effect of circular-polarized pumping
[10], and the optical Kerr effect (OKE) [11], i.e., the

1063-7761/02/9405-0901$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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induction of birefringence in an isotropic medium by a
linearly polarized pump wave.

The nonlinear polarization of an isotropic medium
is characterized by three independent constants [12]
(and, if the frequency dispersion of nonlocal response
istaken into account, by four constants; see below). As
arule, the above-identified effects of nonlinear optical
activity, inverse Faraday effect, and optical Kerr effect
depend on the combination of these constants.

It is known that the ratio between nonlinear coeffi-
cients are important parameters of the theory. In partic-
ular, it follows from the theory of optical activity that
the local and nonlocal parts of polarizability correlate
by the order of magnitude as the wavelength and some
effective dimension characterizing an optically active
medium [12]. In the case of small molecules, this effec-
tive dimension is provided by the distance between at
least two groups with anisotropic polarizability. For
spiral macromolecules, the pitch of the helix serves as
such an effective geometric parameter. In exciton tran-
sitions of crystals, the exciton radius [13] (10 nm)
serves asthe parameter of nonlocality. Itisof interest to
clarify the physical meaning of the nonlocality param-
eter for fractal clusters of silver and to directly measure
this parameter.

The relative magnitude of two nonlinear constants
corresponding to linear response depends on the nature
of nonlinearity [9]. For example, for the orientation
mechanism, this ratio is six; it is equal to unity for a
nonresonant electron response and tends to zero for
electrostriction [14]. No measurements were previ-
ously performed of thetotality of the components of the
tensor of local cubic susceptibility of colloidal aggre-
gates of silver.

This paper deals with the investigation of polariza-
tion nonlinearities of colloidal aggregates of silver. The
experiments were performed with samples of different
degrees of aggregation of nanoparticles in order to
reveal the dependence of the magnitude of cubic sus-
ceptibility on the geometric structure of the aggregate.
The measurements of nonlinear optical activity, inverse
Faraday effect, optical Kerr effect, and self-rotation of
ellipse were performed with identical samplesand with
light beams of identical spatial and time properties,
which enabled us to find nonlinear coefficients of the
medium for local and nonlocal responses.

Our measurements produced fairly high magnitudes
of the IFE and OKE for nanoaggregates of silver. The
angle of rotation of the polarization plane of the probe
fieldinthe process of IFE was 0.66 deg/cm MW (0 =
23 deg/cm with the strong field intensity of 35 MW/cm?),
and the induced birefringence (OKE) wasAn= 3 x 107°
with the intensity of 8 MW/cm?. No saturation of the
intensity dependence of the rotation angle o,z and An
was observed.

The next, second, section gives the relations
between the polarization and the field with due regard
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for the frequency dispersion of nonlocal nonlinear
response and noncollinear propagation of interacting
waves. The third section contains a description of the
procedures of measurements and preparation of sam-
ples. The results of measurements of polarization non-
linearities are given in Section 4. In Section 5, the
obtained intensity dependences of induced birefrin-
gence and nonlinear angle of rotation are discussed.
The Appendix dealswith the results of qualitative anal-
ysis of the motion of nanoparticles of silver in the
aggregate due to the light-induced interaction of mono-
mers.

2. POLARIZATION SELF-ACTION
AND INTERACTION OF LIGHT WAVES
IN A CUBIC NONLINEAR MEDIUM
WITH DUE REGARD FOR SPATIAL
DISPERSION: PHENOMENOLOGY

2.1. Basic Relations

We will write the electric field of alight wavein the
form

E(r,t) = A(r)exp(-iwt) +c.c. D

The cubic nonlinear polarization of the medium in
the general case contains two terms,

~NL ~

P, = R PEee +F®EECE. )
The first term in the right-hand part of relation (2) is
responsible for the third-order local nonlinear response
of the medium. Corresponding to this term is the non-
linear polarization of the medium, whose Fourier com-
ponent on the frequency w has the form
(Pioc)i(r, @) = 3x{a(w, 0 —WAAAf +cc. (3)
In the case of an isotropic medium, the tensor
%9 (0, w, —0) may be represented as [14]

XO+ W= @) = Xy @+ W— &)(8;;8y + 5, ;)

+ X1221(W + W= ) ;0
which enables oneto write Eq. (3) as
Pioc(r, @) = X:A(AA)D + X, AHAA) +cc., (5)

(4)

X\ = BX X2 =3xS

i,j =1,2, i#]j.
The second term in Eq. (2) describes the spatial dis-

persion of nonlinear polarization of the third order. We
will derive the expression for the nonlinear polarization

I5n0n|oc related to spatial dispersion,

(3).

X1

[

—iw(t—t,)

(E)nonloc)i(l', t) = Idtl(Aje + A]* elw(t—tl))
0
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oot —ty)

x J’dtz(Ake_iw(t_tZ) + Axg )
0

00

—iw(t—t3)
x |:J-rijklm(t1’ ty, to) O(A)e dt,
0

i(t—tg)

+Irijklm(t11 to, ta) On(A")e dt,
0

= feta(- ) feta(- )1 OnlA)E T jam(ty, to, 00)
> > (6)

+ Dm(Ar)eiwtrijklm(tlv t,, —w)]

00

= Idtl(---)[AkDmAIe_Ziwtrijklm(t’ W, 0
0

+ AL O AT am(ts, —0, )

+ AORAT am(ty, 0, —w)

+ AL ORAf e2iwtrijklm(t1= -, -0 ].
We will further perform integration with respect to t,
and leave only the terms proportional to exp(xiwt) to
derive the following expression for the Fourier harmonic

of nonlocal response on the frequency w (the subscripts of
the tensor I, are omitted for smplicity):

(Pronioe)i (r, @) = AJAY AT (W, —w, 0)
+ AALOAT (0, w,-wW
*
+AFALNAT (-0, 0, W @
+ AA LA (0, -0, —0)
+ AT AL OLAT (-, —0, w)
+ AT AORAT (W, 0, —0).

We use the frequency-commutation relations for the
tensor % [14]

Cijkm(@1, Wa, W3) = Ty m(0, Wy, ), (8)
aswell asthe equality

Ciikm(Qn, Wy, Wa) = T im(—00g, =0, =), 9)
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to derive

(Isnonloc)i(ra W) = 2l jm(-w, w, YA AOLA, (10)

+ T jam(@, 0 —)AAOLAS +c.C.

In an isotropic medium, the tensor " (—w, w, &) has
four nonzero components (of which only one is inde-
pendent). We will direct the unit vector e; along the
vector [x A. Then, therelations

[ 11103(—00, @, @) = T 15555~ W, )

(119
= T o113(—00, @, W) = —T 5p15(—W, W, W) =04

are valid between the components " (-w, w, w). Analo-
gous relations are valid for the components of the ten-

sor (W, w,—u) aswell,
r W, W — = r w, W —
11123( 0‘) 12223( 0‘) _ (11b)

= T o1a(0, W =0 = =T pp3(W, W —W) =gy,

Therefore, in an isotropic medium, the nonlocal
nonlinear response in view of frequency dispersion is
described by two constants.

With due regard for the introduced notation, we
derive the following expression for nonlinear polariza-

tion associated with the nonlinear response of the
medium:

Isnonloc(r, W) = —Zgl(ADDB\)D x A

(12)
—0,(A A)O x AU+ c.c.

2.2. Self-Action of Elliptically Polarized Radiation

On substituting nonlinear polarizations given by
Egs. (5) and (12) into the wave equation, one can derive
the equation (analogously with that obtained in [12])
for the slow amplitude of awave propagating in a non-
linear medium,

dz - kC2

x L (Xal A + 2Xo| As|®) 2 2k(g:|A” — go| AL )} A,

where d = (w?/2kc?)Ime, isthe linear absorption coeffi-
cient, kK = wny/c, &, is the linear permittivity of the
medium, n, is the refractive index, c is the velocity of
light, and A, denotes circular components of the com-
plex amplitude

A = 0,A,+G_A,

(13)

(14

which are related to the Cartesian components A; , as

A EiA
A, = a-'e (15)
J2
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The unit vectors 6, and G_ correspond to right-hand

and left-hand circular polarization, respectively, and
satisfy the relations

ADDA = A%A, +ATA = [AP+|A2, (19

ATA = A/ A_+AA,.

Equation (13) may be used to derive the equations
for the azimuth of polarization €llipse a =

arg(A,A*)/2 under conditions of wave propagation in
the medium,

da

_ 2T[
& = oReAl A

2Trc§ (17)
c?

|A| Re(29; - 9,).

The first term on the right-hand side corresponds to the
known effect of rotation of polarization ellipse[9] inan
isotropic medium with local cubic nonlinearity. The
second term describes the nonlinear optical activity
caused by the spatial dispersion of nonlinear response.
One can see that the magnitude of specific rotation is
proportional to the combination of nonlinear constants
29, — 0,. If the frequency dispersion of the nonlocal
nonlinear response of the medium isignored (i.e,, if it
is assumed that g, = g,), Eq. (17) agrees with that
derived in [12] within the term corresponding to the
natural (linear) activity, which is not treated in this

paper.

2.3. The Effect of an Pump Wave on a Probe Wave
under Conditions of Noncollinear Propagation

We will assume that the electric field is the sum of
two quasi-plane waves with identical frequencies but
with different wave vectors. Then, the complex ampli-
tude introduced in Eq. (1) may be represented as

A(r) = F(nNexp(iK ) + S(r)exp(ik ), (18)

where F, K and S, k are the complex amplitudes and
wave vectors of pump and probe waves, respectively.
The dependence of F and S on r will be assumed to be
slow compared with the exponential factor.

We will subgtitute expression (18) into relation (5)
and, assuming the probe wave to be weak, retain only the
termslinear with respect to S. Asaresult, we will derive
the following expression for the complex amplitude of
nonlinear polarization caused by the local response of
the medium (from here on, we omit the complex conju-
gate terms on the right-hand side, assuming that P (with-
out the tilde) implies the complex amplitude):

Pioo(r, @) = Xa[ (FUCF)Sexp(ik )
+(F (8D Fexp[i(2K —k) (1]
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+ (FUB)Fexp(ik [T)]
+X,[2(F [B)Flexp(ik [T)

+(F [F)SCexp[i (2K —k) [1]].

Similarly, we use Eq. (12) to find the contribution to
polarization due to nonlocal interaction,

Pronioc(r @) = —2g,{ (FUCF) DO x Sexp(ik 1)

(19)

+(FOB) expli(k —K) [F]0 x Fexp(iK [F)
+(SOCF) x exp[i(K —k) (]0 x Fexp(iK )} (20)
—9{ (F (F)exp(2iK )0 x Sexp(-ik [F)
+2(F B)exp[i(k + K) [F]0 x Flexp(—iK [I)}.

We will be interested in the part of PN- = P, + Pronoe
that propagates in the form of a plane wave with the
wave vector k and, therefore, is under conditions of
wave synchronism with the probe wave. We retain in
Egs. (19) and (20) the terms proportional to exp(ikr) to
derive the expressions for the Fourier amplitudes of
nonlinear polarization,

Pioe(k, ) = X4[(FUIF)S + (FUIB)F]
+ 2,(F [5)FL]
Pronoc(k, 00) = 2igy{ (FUIF)Sx k
+ (FODB)F x K } - 2ig,(F (B)FOx K.

We will further substitute the electric field in the
form

(21)

E = Sexp[-i(wt—kz)]
and nonlinear polarization

~NL

P = (Ploc + Pnonloc) exp[—i (wt - kZ)] +C.C
into the wave equation

€00°E(z 1) 4na
D°Ez t) = 20—+ 22 p (7 t 22
(z1) JER 2502 ). (2
The Laplacian will be approximately written as
2
DZE(Z,t):(ii’t)
0Z (23)

- %I kaA

ignoring the transverse derivatives and the second
derivative with respect to z. In this approximation, we
derive the following equation for the complex ampli-
tude of the probefield:

ds 2nos
d_z = —65+ k (Ploc + Pnonloc)

exp[—l (wt—k2)] +c.c.,

(24)
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We will direct the unit vector e; along the vector k
and will assume that the angle between the wave vec-
torsK and k to be small enough for the components F5
and K, K, to beignored. We will use relations (16) and
rewrite Egs. (21) in the circular components,

(Pic)s = Xa(IFI°S. +|F.|"S, + F.F}S;) 5)
+2Xo(|F4|°S. + F3F.S;),

(Poonioc)1 = 2i0:{ (FOF) Sk, + (FOB)F,K 3
—2igy(F (B)F3Ks = 20, {|FI*(S. - S )ks
+Ky(|FL?S, —|F?S)} +20,K,(|F.)°S —|F%S,),
(Pronioc)2 =

+2ig,(F (B)FI Ky = —i/20,{ IFI*(S. + S)ks

~2ig,{ (FOF) Sk, + (FOMB)F K3
+Ky(|F.|*S, +|F]%s)} (26)
+2ig,Ka(|F.I"S + |FS)),

(Pnonloc)+ = 291{ |F|28+k3 +
—292K3|F—|25+,

IF.I°K3S)

~20,{ [FI*S ks + |F—|2K3S—}
+29,K;|F.|°S..

In the case of arbitrary polarization of strong and
probe fields, the slow amplitude S(2) satisfies the equa:
tion

(Pnonloc)_ =

0g. O
dBS.H_ _5nSg. 2
dzhs O 0s O kgc
- - @7)
0 M, FIF.(0+ 2 05 S 5
HFF* (X0 + 2X0) M_ ED s 0

M., = Xa(IFI* + [Fuf?) + 2x,|F |
+ 291k3||:|2 + 2K3(91|F+|2 - 92|F—|2)1

_ = Xo(IFP+|F?) +2x,|F.?

—20;k3| F|2 - 2K3(91|F—|2 - 92|F+|2)-

In the general case, the effect of astrong field on the
polarization of a probe field may result in two effects,
namely, the rotation of the polarization plane (or, to be
more precise, the rotation of the polarization ellipse)
and the variation of ellipticity, i.e., of the ratio between
the ellipse semiaxes. We will anayze Eq. (27) as
applied to these effects.
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We will treat in more detail two particular cases of
the ratio between the polarizations of strong and probe
fields.

Inverse Faraday Effect

Let an pump wave have a circular polarization
(right-hand, for definiteness) and a probe wave be lin-
early polarized. We will be interested in the rotation of
the polarization plane of the probe wave. Thisnonlinear
effect (ignoring the spatial dispersion of nonlinearity) is
known in the literature as the inverse Faraday effect.

We assumein Eq. (27) that F_ = 0 to derive

g, O s
4555 = 50 D+|2"‘5|F k
dzhs O 0S O ks
(28)
% E2X1 +29,(ks + Ky) 0 ED S, E
O 0 X1+ 2X,+20,K;,00S 0

whence we derive the following equation for the angle
of rotation of the polarization plane:

da _ mw 2
dz ~ cn(:jF+|
x Re[X1—2X, + 20:(ks + K3) —20,K ] .

Therefore, the angle of rotation in the general case
depends on al four constants of cubic susceptibility of
the medium.

(29)

Optical Kerr Effect

Let both waves have a linear polarization, with the
pump wave along the axisx, F, = 0, and the polarization
of the probe wave forming an angle of 45° with respect to
the pump wave, so that S, = S,. It is known that a strong
field of linear polarization induces in the medium an
anisotropy of the refractive index, i.e, the medium
becomes birefringent. As a result, a phase shift arises
between the probe field components S, and S,, which
leadsto avariation of the dlipticity of polarization.

In order to find the expression for induced birefrin-
gence, we will rewrite Eqg. (27) in Cartesian compo-
nents and assume that F, = 0,

d D o_ O .2
dzis0 Os0 ok,
% E 2(X1* X2) 1[20:K;3 + K3(91 — g2)] E
O—i[29:k; + K3(9: — 92)] X1 u
Us O 30
x [ S1 . (30)
0s,0
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Fig. 1. Absorption spectra of colloidal solutions of silver.

On turning to equations for the real and imaginary
parts S , ='s; ,exp(id, ,), we derive the following set
of equations:

ds

d_zl = -8s,
—Bl2IM(X1 + X2)S; + S;ReGcos(d, —b,)],
2 = 55, + Bls;ReGeos(, — ) - simxd, (31)
d(¢:([j;¢2) — B[ReX1+ 2ReX2

~ImGEEsn(9: - 62) - Zsin(91 -6,
where the notation

_ondf

g c’k

IF%, G=2g.ks+K3(g;—0y)
3

is used for brevity.

The main contribution in the right-hand part of the
latter equation is made by the first two terms, because
the third term describes a nonlinear effect of a higher
order, the difference of the ratio s,/s, from unity per se
being a consequence of nonlinearity of the medium. In
view of the foregoing, the nonlinear phase shift
between the x and y components AN~ = ¢, — ¢, is
described with a good accuracy by the following equa-
tion:

qu)NL
dz

The nonlocal response of the medium (constants g, and
0,) inthe adopted approximation makes no contribution

Tt
= R Re(u+2X). (32
0
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to the phase difference between the Cartesian compo-
nents.

Thus, we have clarified the correlation between the
nonlinear polarization effects, i.e., OKE and IFE, and
the coefficients of polarizability of the medium of the
third order.

3. EXPERIMENT
3.1. Preparation of Aggregated Colloids

Colloidal solutions of metalsmay be obtainedin dif-
ferent solvents such as water, ethyl alcohol, and others.
Several methods exist for the preparation of metal
nanoparticlesin reducing reactionsin salt solutions and
further stabilization of colloidal solution. In our exper-
iments, we investigated an alcoholic colloidal solution
of silver prepared by reduction of silver fromAgNO;in
a solution containing NaOH and polyvinylpyrrolidone
with a mean molecular weight of 360 000. This proce-
durewas described by Hirai [15]; such acolloid will be
designated below as Ag(PVP). In accordance with the
results of an electron-microscopic study, a typical
diameter of nanoparticles in a colloidal solution pre-
pared by thisformulais approximately 14 nm.

We had at our disposal two colloid sampleswith dif-
ferent degrees of aggregation, namely, aless aggregated
sample no. 2 and more aggregated sample no. 1. Figure 1
gives spectra of linear (i.e., in aweak field) absorption
of these samples. A powerful long-wave wing of the
absorption band of sample no. 1 isindicative of aggre-
gation of nanoparticles [1]. According to the data of
electron micrography, the spectrum of the more aggre-
gated solution no. 1 corresponds to the presence in the
colloid of large clusters consisting of hundreds of par-
ticles; such aggregates have a fractal structure with the
fractal dimension D; = 1.8. However, most of the nano-
particles are contained in small (of the order of ten par-
ticles) aggregates. The less aggregated solution (no. 2)
contains clusters consisting of severa particles and,
apparently, a significant number of isolated nanoparti-
cles.

For experimental purposes, colloids of both types
were diluted with alcohol in one and the same propor-
tion (approximately 1:5) so that the transmission of
colloid no. 1 on the wavelength of 532 nm (at a low
intensity of light) would be approximately 50%.

3.2. Measurement Procedure

The second harmonic of aYAG:Nd pulsed laser with
the pulse duration T, = 10 ns and wavelength of 532 nm
was used in the experiments. After the frequency dou-
bler, the radiation passed through a polarizer, i.e, a
Glan prism, which provides for residual elipticity on a
level of the order of 10-° with respect to intensity. Then,
the radiation was separated into two beams, pump and
probe ones, which were focused to a cuvette of fused
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guartz 3 mm thick containing the silver solution being
investigated. In so doing, the waist diameter of both
beams (with respect to the 1/e level) was 0.5-0.6 mm,
and the power ratio between the pump and probe beams
was approximately 13. The signals were recorded by
photodiodes with aresponse time of 10 us.

In experiments with a probe field (IFE, OKE), the
parameters of the probe beam that passed through a
polarimeter were measured. In experiments involving
the investigation of self-action effects (nonlinear opti-
cal activity, self-rotation of the polarization ellipse), the
probe beam was shut off, and the parameters of the
pump field were measured.

Salf-Action Effects

In devel oping the measuring method, the following
circumstances were taken into account. In a medium
that is nongyrotropic in a linear approximation, the
nonlinear rotation of the plane of polarization of alin-
early polarized wave (JA.]? = |A_? is caused by the non-
locality of nonlinear response alone. In Eq. (17), the
term containing (29, — g,) corresponds to this effect. In
the case of eliptic polarization, an additional rotation
of the polarization plane occurs, which is associated
with the local nonlinear response (the term with Rex.,).
Because, under the experimental conditions, the polar-
ization of radiation is always “weakly dliptic,” both
terms must be taken into account. In order to separate
the contributions by the local and nonlocal responses,
use was made of the method suggested by us in [8].
This method is essentially as follows. Note that, in

Eq. (17),
AL = [AS = 2/Al|Asin(e- @),

where |A, | and @, , denote the amplitudes and phases
of linearly polarized field components. By varying the
phase difference @, —@,, one can vary thelocal response
contribution, while the nonlocal response contribution
will remain constant.

The scheme of measurements of self-action effects
is given in Fig. 2. The radiation passed successively
through a polarizer 1 (Glan prism), a phase element 2,
acuvette 3 of thickness| = 3 mm with the colloid being
investigated, and an analyzer 4 (cal cite wedge) and was
registered by two silicon photodiodes 5 and 6. For mea-
suring the intensity, a part of the radiation was directed
by a beam-splitting plate to a photodiode (not shown in
the scheme). The radiation that passed through the
polarizer had aweak dlipticity with the semiaxisratio

AJ’lAJ*=5x%107
Y
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Fig. 2. The scheme of measurements of rotation of the
polarization plane in the self-action configuration. The
transformation of the state of polarization of awave passing
through optical elementsincluding the medium being inves-
tigated is demonstrated.

(the x axis is directed along the polarizer axis, and the
y axisisdirected normally to the x axis and to the wave
vector). The components of the complex amplitude of
radiation that passed through the phase element assume
an additional phase shift,

i <Px(0)

A(0) = |A0)e
A/0) = |Ay(0)|e""Y‘°),
Agy = 9(0) —9,(0).

So, the effect of the phase element brings about a vari-
ation of the azimuth and ratio of the semiaxes of the
radiation polarization ellipse at the inlet to the medium.
The dlipse azimuth a(0) relative to the polarizer in
view of the smallness of |A|/|A,| < 1isgiven by

_ |AJ0)]
a© = &)

(33)

cos(Ag). (34)

The radiation that passed through the medium being
investigated falls on the analyzer, whose axis is ori-
ented at an angle of 45° to the polarizer. The orthogo-
nally polarized components isolated by the analyzer hit
the photodiodes 5 and 6. The difference of the signals
from the photodiodes was recorded,

Al = 1,—-1,=|AJ*2q, (35)
where a isthe azimuth of the polarization ellipse at the
outlet from the medium; here, we use thefact of a < 1,
aswell as the smallness of ellipticity.

The Al(Ag,) dependence for different radiation
intensities at the inlet to the medium was measured in
the experiment. We will assume that

AQ(2) = Agy + Ay (2
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pump wave

Fig. 3. The scheme of the experimental facility for the
investigation of the inverse Faraday effect: (1) 3-mm
cuvette with a colloidal silver solution, (2) analyzer, (3, 4)
photodetectors.

£

Fig. 4. The scheme of the facility for measuring the optical
Kerr effect: (1) 3-mm cuvette with a colloidal silver solu-
tion, (2) phase element, (3) analyzer, (4, 5) photodetectors.

and, in view of the smallness of Agy (2 < 1, derive,
from Egs. (17) and (35),

Al(Agy) = a+bcos(Ag, +c),
|

1 A 0
a= 2pl|Ax(|)|ZI|AX|2dZ, b = 2|AX(I)|2IAy§0;I’
0 X (36)
I
[AL0)]
c = -20 Ax A dZ,
2|Ax(o)|{| 1A
where
AL . _2ndf
o, = O‘)Rexz, P, = _Z——Re(zgl_gz)-
NeC c
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One can see that the loca (o,) and nonloca (p,)
nonlinearities manifest themselves in Al(Ag,) differ-

ently astheinlet intensity varies: theterm with o, may

cause some phase shift, while the term with p; causes
a shift of the Al(Aqy,) curve as awhole on the ordinate.
By the sign of vertical shift, one can determine the
direction of rotation, considering that the plus sign cor-
responds to counterclockwise rotation if one looks
toward the beam.

Inverse Faraday Effect

The scheme of the experiment in recording the IFE
is given in Fig. 3. In this case, a strong beam was
imparted clockwise circular polarization with the aid of
aphase element.

The experiment involved measurements of the rota-
tion angle of the polarization plane of the probe beam.
For this purpose, the beam was directed to the analyzer
(calcite wedge), whose axes were oriented at an angle
of 45° tothex axis. The analyzer divided the probefield
into two orthogonally polarized beams, which then fell
on photodetectors. The signals from the detectors are
expressed interms of theangle a betweenthex axisand
the polarization plane of the probefield,

I, = |S%cos’(45° —q),

. (37
I, = |S]"sin"(45° —a).
For small values of q,
azll—lzz Al (38)

2ls®  2Is/?

isvalid.

Optical Kerr Effect

The scheme given in Fig. 4 was used for measuring
the OKE. The probe beam polarization was directed at
an angle of 45° to the pump beam polarization. A phase
element, which makes possible the introduction of the
phase difference between the x and y components, was
placed in the way of the probe beam after the cuvette.
Then, the probe beam passed through the analyzer ori-
ented as in the previous scheme (the axis at 45° to the
x axis). The beamsisolated by the analyzer fell on pho-
todetectors, the signals from which may be written as
follows:

2(S/*+ IS ~2/S/|S | cosip),

Iy

(39)

LS+ )7 + 21818 cosat).

where A¢ is the phase difference between the x and
y components; A¢ contains the nonlinear phase shift

I
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APN- accumulated in the medium and the phase differ-
ence introduced by the phase element Ag,,

Ad = Apy+Ad"". (40)

In the experiment, the difference signal |, — 1, was mea-
sured; with a small nonlinear phase shift, this signa
may be written as

Al=l,—1,

=2|3)|S)|(cosAd,— AP " SiNAP,).

The phase element set the shift Ap, =-112; in so doing,
the nonlinear shift is expressed as follows in terms of
the quantities being measured (in view of the fact that

IS =1SD:

(41)

A¢NL _ Al

= (42)
2|s

3.3. Inclusion of Time and Space Averagings

In areal experiment, the pumping field intensity is
always characterized by some distribution in time and
space. Nevertheless, the phenomenological treatment
performed above for plane monochromatic waves may
be applied directly if the nonlinearity relaxation time
(both local and nonlocal) is short compared with the
pulse duration and the characteristic size of nonlocality
of interaction is small compared with the beam diame-
ter.

We used photodetectors with the reaction time T >
T, (T = 10 ps), so that time-average quantities were
actually measured. The size of the photodiode pad
exceeded the light beam diameter; therefore, cross-sec-
tion-averaged signals were recorded during measure-
ments. On assuming the Gaussian distribution of intensity
in time and in the cross section, one can readily find that,
in processing the experimental data, the values obtained

from Egs. (38) and (42) must be multiplied by 2./2.

The reduction of the pump field during the propaga-
tion along the medium due to linear absorption is taken
into account by introducing the effective intensity

|
J’I (2dz

I - 0
eff — I

4. MEASUREMENT RESULTS

The results of measurement of the angle of nonlin-
ear rotation of the polarization plane, which will be des-
ignated as oy, aregivenin Fig. 5. Inthe |, < 2 MW/cm?
range, the value of o, for sample no. 1 depends approx-
imately linearly on I, (I, is the intensity before the
cuvette on the beam axis at the pulse maximum). For
sample no. 2, the linear dependence a (1) persists until
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Fig. 5. Theangle of rotation of the polarization plane dueto
nonlinear optical activity as a function of the intensity of
incident radiation. The main graph, colloid no. 1; the inset,
colloid no. 2.

I, = 30 MW/cm?. If we reduce the measurement results
to the same concentration of silver, the value of

04/l ¢ O Rel®

in this linear range for a more aggregated colloid no. 1
is approximately 80 times that for colloid no. 2. Note
the decrease in the nonlinear constant at the intensity
l, > 2-3 MW/cm? approximately corresponding to the
threshold of photomodification of fractal clusters of sil-
ver, i.e., tothevariation of their structure under thelight
pulse effect [16]. Previously, a similar manifestation of
photomodification was observed for nonlinear refrac-
tion of Rex® measured by dispersion interferometry
[17]. A fivefold decrease in |x®| was observed using
the method of degenerate four-photon scattering [7].
The absence of any specia featuresin a(l,) for colloid
no. 2inthel, =2 MW/cn? range supports this assump-
tion indirectly: nonaggregated particles of silver in col-
loid no. 2 do not experience the photomodification that
is characteristic of clustersin sample no. 1.

The combination of components of the tensor )
may be found from the relation

A
oy = &T;\sz 10°Re(29; — g,) & [MW/cm?], (43)
NoC

where al quantities, except for the intensity, are
expressed in units of the CGS electrostatic system
(CGSE) and n, is the refractive index of colloid. We
take into account the difference between the concentra-
tions of silver in colloids and perform the averaging
with respect to time and beam cross section, which pro-

duces the factor 2./2, to derive
Re(2g; — g,) = 0.9 x 10716 SGSE unitsfor colloid no. 1,
Re(2g9; —0,) = 1.1 x 1078 SGSE unitsfor colloid no. 2.
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Fig. 6. The rotation angle of the polarization plane of probe
field as afunction of the intensity of pump field with circu-
lar polarization. Solid sguares, colloid no. 1; crosses, col-
loid no. 2. Hollow squaresindicate the results of subtraction
of the angle of rotation due to nonlinear optical activity,
according to the data of Fig. 5 (for colloid no. 1).

In both cases, the medium turned out to be levorotatory.

In order to find the constant x,, we performed an
experiment involving the measurement of the rotation
angle of polarization ellipse of pump field through a
nonlinear medium. The measurements were performed
for colloidal solution no. 1. With the intensity before
the cuvette varying from =0.7 to =5 MW/cm?, the
ellipse rotation was ag; = —1.8 = 0.2 mrad for right-
hand polarization and oz = 2.1 £ 0.2 mrad for left-hand
polarization, with the elipticity |F,[/|F,]?=1: 6. One
can see that the rotation angles for left-hand and right-
hand polarizations differ somewhat in magnitude; this
is apparently a manifestation of nonlinear gyrotropy in
accordance with Eqg. (17) and approximately corre-
sponds to nonlinear optical activity at 5 MW/cm?. By
taking a half-difference of these values, one can elimi-
nate the effect of nonlinear optical activity and use for-
mula (17) to calculate X5,

Rex, = (1.3+0.2) x 10" CGSE units.  (44)

These experiments further involved measurements
of the nonlinear absorption of the light wave in colloi-
dal solution no. 1, which enabled one to determine the
imaginary part of the sum of the components x, and X,

—20|
Im(x, + xo) = 24228 =T)
T(l-e™)

cngA [CGSE unitg]

16T x 101, [MW/cm’]
~_1.1x 10™° CGSE units,

(45)

where T is the transmission coefficient (with respect
to intensity), 6 = 1.15 cm™, and | = 3 mm. In the
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Fig. 7. The nonlinear phase shift between the x and y com-
ponents of probefield as afunction of the intensity of pump
field. Solid squares, colloid no. 1; crosses, colloid no. 2.

experiment, the transmission was T = 0.65 with |5 =
6 MW/cm?,

Figure 6 gives the rotation angle of the polarization
plane of probe beam, a,¢, in the IFE scheme as afunc-
tion of the pump beam intensity for two colloidal solu-
tions with different degrees of aggregation. The value
of the angle a was found by formula (38) with due

regard for the averaging factor 2./2. The results of
measurements of the OKE for the same samples are
given in Fig. 7. Given in the graph is the value of the
nonlinear phase shift between the x and y components
of the probe beam as a function of the pumping inten-
sity, determined from the experimental data according
to Eq. (42).

Thevaluesof errarsgiveninFigs. 6 and 7 are reflec-
tive of the estimates for the random error of measure-
ment at each point. However, the error in the values of
the nonlinear constants X, and X, given below islargely
preassigned by the systematic error of determination of
the radiation intensity at the inlet to the medium;
according to our estimates, thislatter error is +10%.

Note that the experiments described by us failed to
reveal any saturation of either the IFE or the OKE with
increasing intensity of incident radiation up to
35 MW/cm?. The possible reason for this is discussed
below (see Section 5).

It follows from Eqg. (29) that both the local and non-
local responses of the nonlinear medium contribute to
the rotation of the plane of polarization of the probe
wave, |IFE. In our case, the rotation due to nonlinear
optical activity proceedsin the opposite direction com-
pared with the IFE; this brings about a deviation of the
dependence of the IFE (curve 1 in Fig. 6) from linear
with theintensity of up to 3 MW/cm?. Theresult of sub-
traction (with due regard for the sign) of the effect of
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nonlinear optical activity isaso givenin Fig. 6 (hollow
squares). In the case of high intensity, the contribution
by nonlocal nonlinearity becomesinsignificant, and the
slope of the dependence is in fact defined by the local
part alone, which enables one to find the following
quantity:

A e

Re(X1—2X2) = 242

46
nc [CGSE units] (46)

41 x 101 o [MW/cm?]

The absorption in colloid no. 1 with the cuvette
thickness | = 3 mm was 50%, which corresponds to
I = 0.721,. We substitute numerical valuesto derive

Re(X; — 2X,) = (1.8 £ 0.23) x 10719 CGSE units
for colloid no. 1,

Re(X; — 2X,) = —(4.0 £ 0.55) x 107'* CGSE units
for colloid no. 2.

This error includes also the systematic error caused by
possible nonoptimal overlapping of beams of pump and
probe fields in the cuvette with colloid.

The magnitude of birefringence due to the OKE is
proportional to the sum of two nonlinear coefficientsx,;
and 2x,. We approximate the data in Fig. 7 by alinear
dependence to find

CGSE units.

NL
Re(X + 2X,) [CGSE units] = 2@%

47
nac [ CGSE units] (47

81 x 10°1 4 [MW/cm?]
and the following numerical values:

Re(Xy + 2X,) = —(2.1 £ 0.35) x 1070 CGSE units
for colloid no. 1,

Re(X; + 2X,) = —(1.0 £ 0.42) x 1070 CGSE units
for colloid no. 2.

One can find x; by combining the results of mea-
surements of the IFE and OKE,

Rex, = —(1.9+0.21) x 10™'° CGSE units
for colloid no. 1,
Rex, = —(7+2.1) x 10" CGSE units
for colloid no. 2.

(49)

The error of our measurements prevents us from
finding X, using these data.

5. DISCUSSION

The polarization measurements of Re(x; + X,) and
the values of Im(x; + X,) (it will berecaled that X1111 =
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(X1 *+ X2)/3) produce the value of |[Xy111] = 6.7 X
10 CGSE units, which is close to the susceptibility of
the most aggregated aqueous colloid ([X3114| ~ 107°° CGSE
units), measured by the efficiency of degenerate four-
photon scattering [18] on the wavelength of 532 nm,
and considerably exceeds the nonlinear susceptibility
of monomers [x114| ~ 10723 CGSE units [18]. Accord-
ing to the results of our measurements of the OKE and
IFE, the local nonlinear susceptibility depends little on
the cluster size.! Note that, according to the data of [6]
obtained for agueous borohydride colloid using the
method of degenerate four-photon scattering, the cubic
susceptibility increases most rapidly in the early stages
of aggregation, when monomers unite into small aggre-
gates. In the case of comparison, the colloids were
taken to have the same degree of aggregation if the con-
tours of the linear absorption band were similar. There-
fore, asignificant increasein x® compared with mono-
mer occurs even for a weakly aggregated colloid, in
which, according to the data of electron microscopy,
monomers form small groups of two—three particles. A
further increase of clusters to 100-1000 particles
causes aweaker growth of X®. This means that it is of
key importance from the standpoint of amplification of
nonlinear responses to provide for the conditions of
collective resonance on the frequency of incident radi-
ation, which may well be accomplished even inthe case
of two fairly closely arranged monomers owing to the
interaction between induced dipoles (or multipoles).
Indeed, an increase in alocal field with respect to an
incident one for resonant modesin abinary approxima:
tion produces

E, /E,=€’/3¢,e, = 18 for A = 532 nm,

where € = g; + i€, and g, denote the permittivity of
metal particle and surrounding medium, respectively,
which is comparable with the estimate for large aggre-
gates.

A singular feature of the results of our measure-
ments of local nonlinear response in Ag(PVP) is that
Rex® (OKE and IFE) and Imx® (nonlinear absorp-
tion) dmost do not vary with intensity up to 30 MW/cm?
(the corresponding energy density, 300 mJ¥cm?), which
exceeds the known thresholds of photomodification of
aggregates of silver in colloids [19]. In previous stud-
ies, a significant variation of nonlinear responses was
observed for the energy density exceeding the threshold
value, namely, a reduction of |x®| in experiments with
30-ps pulses for an aggregated colloid of silver with
denaturated proteins [18] and a reduction, in experi-

11t must be borne in mind that strongly and weakly aggregated
solutions usually differ by the concentration of metallic silver as
well; naturally, this reflects on the magnitude of the nonlinear
effect. The data in Figs. 6 and 7 correspond to the concentration
of nanoparticlesin colloid no. 1 exceeding that in colloid no. 2 by
afactor of approximately 2.4; theinclusion of this difference will
bring about the convergence of the curvesfor colloids with differ-
ent degrees of aggregation.
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mentswith 15-ns pulses, of Imx® in aborohydride col-
loid [7] and of Rex® in a borohydride colloid and in
Ag(PVP) [17] (use was made of PVP with amolecular
weight of 40000).2 The photomodification thresholds
for colloids of different typesarein thelimitsfrom5to
10 mJ¥cm? and are approximately the same for pico-
and nanosecond ranges. At the sametime, in some col-
loids containing polymer molecules (for example, in
collargol [16] and in AG(PVP)), higher values of the
threshold energy of photomodification were observed.
Presumably, the reason for photomodification is the
integration of resonant monomers as a result of their
heating by laser radiation and subsequent motion of
dislocations, which arisesin heated particles upon their
contact owing to a high shear stress [4]. Such a mecha-
nism may be realized directly in coalescent aggregates
consisting of nanoparticles in contact with one another.
Colloidal silver aggregates prepared by the borohy-
dride technique, as well as under conditions of reduc-
tion of AgQNQO; in a mixture of EDTA and NaOH, often
have a coalescent structure [20]. However, in the case
of coagulation aggregates in which the monomer
boundaries are separated by some distance, this mech-
anism of photomodification presumes a preliminary
mutual approach of particles. Characteristic distances
between particles are as follows [20]: in collargol, 2 to
2.5 nm (with the average diameter d,, = 14 nm); in
Ag(PVP), 1-2 nm (d,, = 14 nm); in silver colloid pre-
pared by the Carey—Lee method, 1 nm (withd,, = 12 +
3 nm); and, in aggregated gold colloid prepared by the
citrate technique, 0.7 nm (d,, = 19 to 22 nm). There-
fore, Ag(PVP) colloid belongs to a fairly frequently
occurring coagulation type.

The motion of monomers may occur owing to the
particle interaction induced by the field [21, 22]. Esti-
mates (see the Appendix) indicate that the particle dis-
placement in such colloids during the time of a nano-
second pulse may be of the order of 1 nm.

The results of analysis performed in the Appendix
lead one to three important conclusions.

(i) The interaction of particles in the field of laser
radiation may lead to appreciable shifts (1 nm at
20 mJcm?; the time of relaxation of the process to
steady state, 100 ps) which enable the particles to pass
the potential barrier and convergeto adistance at which
the dispersion forces of attraction are effective. Given
the same energy, the pulse duration (pico- or nanosec-
onds) is of no importance.

(i) The result of mutual approach of particles
(whether or not it leads to adhesion required for photo-
modification) depends strongly on the potentia curve
of particle interaction in the absence of afield, i.e., on
the double-layer parameters. Note that, in some col-
loids, the so-called steric force is significant, which

2 For gold (and some types of silver) colloids, x® first increases
somewhat, as the threshold intensity is exceeded [19], and then
decreases.
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arises asaresult of overlapping of the adsorption layers
of surfactants and polymers. The steric force has an
additional stabilizing effect. Therefore, in polymer col-
loids, the threshold of integration of particles may be
much higher.

(iii) The particle displacement must bring about
nonlinear optical effects, i.e., contribute to x®, because
the range of distances between particles, in which apair
is in resonance with low-frequency radiation, is of the
order of 1 nm, which is comparable with the estimate
for induced shift of particles.

The particle shift occurs with a characteristic relax-
ation time of 100 ps (see the Appendix). This inertia
may serve as an explanation of the following result of
our measurements: according to Egs. (44) and (48), we
have

Re(x,/x,) =-0.07,

which is an order of magnitude less than the typical
value (approximately 0.5) characteristic of the nonres-
onance electron nonlinearity of solids [23]. This fact
may be treated as evidence of the existence of an iner-
tia contribution to the nonlinear optical response of sil-
ver colloids. In [20], the variation of the particle tem-
perature due to radiation absorption and the associated
variation of € were treated as the inertial mechanism of
nonlinearity of aggregated colloids of silver. The clari-
fication of the relative importance of therma and
mechanical inertia calls for additional investigation.

We will now discuss the differences in the depen-
dences of local and nonlocal responses on the degree of
aggregation. Unlike the IFE, OKE, and linear absorption,
the effect of nonlinear optica activity at low intensity
increases approximately eighty times for colloid no. 1
compared with colloid no. 2 and, for | > 2 MW/cn?, it
decreases severa times. In our opinion, this difference
is associated with the fact that, in the case of nonlocal
effects, it is the size of the region occupied by the reso-
nant mode relative to the wavelength that is important
and, consequently, the size of aggregatesin the colloid.
Aswasaready mentioned, the presence of small aggre-
gates resonant to the field is sufficient to amplify local
effects. For illustration, we will turn to the general form
of solution of a set of equations of interacting dipoles.

The optical activity effects are associated with dif-
ferent responses of the medium to the radiation with
clockwise and anticlockwise polarizations,

E, = Ey(Rcos(k,z—wt) = §sin(k,z—wt))/ /2, (49)

where X and § are coordinate unit vectors. The solu-
tion of the set of equations of bound dipoles is
expressed in terms of the components of eigenvectors
[n) of the interaction matrix V [24],

Vin) = vyn), (50)
where v,, denotes the eigenval ues. For a cluster consist-
ing of N particles, the eigenvector has 3N components
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nig = (iBIn) corresponding to the amplitude of the plas-
mon mode on theith particle with Cartesian component
B (B assumes the values {x, v, z}). The dipole moment
induced by thefield of awave with circular polarization
on theith particleis

3N
(dig)g L = Z NigCy
y n=t (51)

x Z [n;,cos(K,z; — wt) + n; sin(k,z; — wt)] Eg/+/2,

=1
2|:| -1 B
Cn =0 nj'QD(aO + Vn)
&0

where

is the resonance-normalization factor of the nth mode,
0(5l = X +id isthe polarizability of an isolated mono-
mer, and o and X are parameters which have the meaning
of the width of the resonant mode and its detuning from

the resonance frequency of an isolated particle. The main
contribution to the dipole moment of a particleis made by

the resonant modes for which Re(ag™ + v,) < 8.
For the extinction cross section

4"k AT m z d, [E(z) (52)
inview of Egs. (49) and (51), we have
3N N
(Ge)R, L = T[kl mnzlcni J'Z:l[(nixnjx + niynjy) (53)

x COSI(z(zi ) * (nly jx nixnjy)Sinkz(Zi

-z)].
The difference in extinction for clockwise- and anti-
clockwise-polarized radiation is expressed as

3N

Ao =(0,)g—(0,), = 21kIm Z C,
\ " (54)
z (nly jx nixnjy)Sinkz(Zi _Zj)-

i,j=1
One can seethat zero contribution to Ao is produced by
the terms with i = j, aswell as at n;, = n, and ny, = N,
(isotropic case). Therefore, resonant modes of a cluster
with a high anisotropic factor

f = (nly jx nixnjy)
which cover distances comparable with the wavelength
(for increasing sink,(z — z) are of importance from the
standpoint of optical activity effects. This means that

the magnitude of nonlocal effects must increase with
the emergence of large aggregates.
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Not only does the constant Rel"® of nonlinear opti-
cal activity increase in the case of strong aggregation,
but it increases in approximately the same manner rel-
ative to Rex® (Rel"®/Rex® increased by a factor of
30). This means that the rise of nonlinear optical activ-
ity occurs mainly due to the effective geometric factor
(including the anisotropic factor) rather than due to the
factor of local field amplification (thelatter must have a
similar effect on F'® and on x©).

6. CONCLUSION

We have studied polarization effects in an aggre-
gated colloidal silver solution, caused by the cubic non-
linearity of optical response in view of spatial disper-
sion. It was for the first time that the inverse Faraday
effect, the optical Kerr effect, and the self-rotation of
the polarization ellipse were observed for fractal clus-
ters. The constant of nonlinear optical activity was
measured under the same conditions.

The results of measurements of the tensor )2(3) of
local nonlinear susceptibility have demonstrated that
no decrease in nonlinear constants is observed for
Ag(PVP) colloid at least at intensities of <30 MW/cm?.
Apparently, one can say that no appreciable modifica-
tion of local configurations of monomers occursin this
colloid in the above-identified range of intensities. In
other words, those groups of several monomers for
which the condition of collective response is valid
largely remain unchanged; by virtue of this, a high
magnitude of nonlinear response is retained. At the
same time, the decrease in the nonlocal nonlinearity
with the intensity above some value (2-3 MW/cn?) is
indicative of threshold variation of the structure of
aggregates over sizes of the order of wavelength.

The results of measurements of nonlinear optical
activity have demonstrated a considerable increase in
the spatial scale of nonlocality of the correlation
between polarization and exciting field upon transition
from aweakly aggregated colloid to a more aggregated

one. Inthiscase, unlike the effects associated with x(s)
the value of nonlinear optical activity decreases consid-
erably at | = 3 MW/cm?. Based on the results of analy-
Sis, one can assume a decrease in the effective geomet-
ric factor at high intensities, which is responsible for
nonlocal effects.

The existing theories of nonlinear-optical properties
of colloidal aggregates of metals are used to analyze
collective modes associated with induced dipole
moments, while assuming the particles proper to be sta-
tionary and rigidly secured. Our results lead to a gen-
eral physical inference about the need to include in the
treatment the mechanical motion of particlesasaresult
of dynamic interaction of dipoles. Such motion may
show up in the magnitude of nonlinear constants, in the
time properties of responses, in polarization effects,
and in the processes of photomodification of clusters.
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APPENDIX

Let two spherical particles (dimer) of mass m and
radius R be located at a distance 2R + D from each other
(D istheminimal distance between the surfaces of the par-
ticles). Newton's equation for their relative motionis

D+1'D = uF(D, 1),

L= 2 (A.2)

T = micy,

where [ isthe reduced mass, ¢, = 61nRis a coefficient
in the Stokes formula, and n isthe viscosity coefficient
of the medium. According to Eq. (A.1), the relaxation
time defined by the viscosity of the medium is t =
m/c, = 100 ps (R=7 nm, n = 102 Pas). The conditions
of validity of the Stokes formula differ from our condi-
tions; however, for estimation calculations, the friction

force ut-1D in (A.1) is sufficient. The force F(D, t) is
related to the particle interaction potential,

U= UO+UEM’ F = l:0"-FEM1
" oD’ "M oD

Here, Uy, is defined by radiation, and U, is the poten-
tial in the absence of an external field. With coagulation
colloidal aggregates in mind, we will assume that
Uy(D) isapotential curve with awell providing for the
dimer stability and with a barrier at small distances D
which prevents the particles from adhering to one another
[25]. For typica conditions, the potential well depth is
AU, = 0.2 eV. Our measurements using electron micro-
photographs gave the mean distance D = 1.5 nm.

Wewill analyze Eq. (A.1) from the standpoint of the
magnitude of possible particle shift (i.e., variation of D)
under the effect of the light-induced force Fgy. In so
doing, wewill ignore the variation of the “undisturbed”
potential U,. In other words, we will assume that the
potential well Uy(D) hasafairly gentle slope compared
with the scale of variation of Ugy(D). We leave only
Fem(D, t) in the right-hand part of Eq. (A.1) to derive
the solution

D(t) = [11 Jexpg—t%tEFEM[D(t'),t'] dt. (A3
0
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If the light pulse duration T, is much shorter than T, the
following approximation is valid:

t
D(t) = 2" [Feul D). U]k (A.4)
u 0
In the opposite case of T, > 1, the approximate solution
is

D(t) = ﬁFEM[D(t), (1-e). (A.5)

Note that the estimation of the shift during some
time t, > max{t,, T} in both limiting cases gives one
and the same resullt,

to

.2 N e g
AD = Z[Fey[D(), ]t (A.6)
0

The potential of interaction of two metal particles
Uem(D, w, 6) induced by an electromagnetic field was
calculated in [21, 22]. In the dipole approximation,

R3
UEM(D’ (k), e) = —E

x Re[a,(D, w)cos’ + a (D, w)sin“8 —dy(w)] |Eq|’,

a, a, (A7)
Oy =——7 = ———"07
1—0 /48 1+0,/88
_ €& _ D
ao(w) - £+2€h1 E - 1+2Rs

where 8 isthe angle between the vector E and the dimer
axis. In view of the dependence of Ug, on 6, the
moment of forces -0Ug,,/00 is active, which turns the
dimer axis of maximal polarizability toward E. The
relaxation time for angular motion coincides with T by
the order of magnitude. For polarization effects, the
angular motion is significant (Kerr effect); however, we
will not treat this motion in more detail and will restrict
ourselves to the estimation of the variation of D.

In the case of Ag colloid [21],
Ugw(D, w, 6) [eV] =2.2x 107%y(D, w, ORI, (A.8)

where y(D, w, 0) is the dimensionless energy, Risin
um, and | isthe power density in W/cm?. In the dipole
approximation (A.7) for a low-frequency (compared
with the frequency of plasmon resonance for a sphere,
Wy region, as D increases, a potential barrier first
arises, and then apotential well whose positionisfound
for agreater D than the minimum of Uy(D).

The results of calculations of y(D, w, 6) with due
regard for higher order multipoles performed by Claro
and Rojas [21] demonstrate that, in the D < 2 nm
region, aminimum of the Ug,(D, w, 6) curve may form,
which is absent from the dipol e approximation.
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We substitute the quantity

Foy = 22 10‘26V[D(t)] RI(1) (A.9)
into Eq. (A.6) and approximately assume dy/dD to be
constant in some small interval dD to derive the result

AD = 2.2x 10‘2iaV[D(t)] R I I(t)dt,  (A.10)

which depends on the energy density in the pulse
(under the experimental conditions, this energy density
was 20 mJcm?). Expression (A.10) at dy/0D = 7 nm
gives the value of the shift under the effect of a 10-ns
pulse of AD = 1 nm.

It must be emphasized that the dissipation of energy
due to viscous friction will bring about an increase in
the temperature of the medium and metal particles,
which, generally speaking, must also be taken into
account because of the temperature dependence of €.
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Abstract—The evolution of an electromagnetic wave with slowly varying polarization, which interacts reso-
nantly with the medium formed by degenerate two-level atoms, is studied using the wave function approach
under the conditions of electromagnetically induced transparency. It is shown that the amplitude of the wave
field propagates at the vel ocity of light in such a medium. The equation obtained for the polarization parameter
has a solution in the form of a simple wave. The breaking length is determined. It is shown that the velocity of
propagation of polarization waves may be much smaller than the velocity of light. The proposed approach is
common for two-level systemswith an arbitrary degeneracy. The case of a system with Zeeman degeneracy is
analyzed in detail. The dependence of the velocity of propagation of the polarization structure on the amplitude
and polarization is determined for an arbitrary level degeneracy. The evolution of the polarization structure in

such amedium is discussed. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The discovery of coherent population trapping and
electromagnetically induced transparency associated
with it [1-3] stimulated the development of new ten-
denciesin the optics of resonance media. Theformation
of atransparency window upon resonant interaction of
wave fields in multilevel systems is obviously accom-
panied by a noticeable elongation of the path of propa-
gation of laser radiation. Strong dispersion under the
conditions of electromagnetically induced transparency
leads to an anomalously strong deceleration of a probe
pulse in the field of the driving wave. Under special
conditions of radiation control, “light stoppage” (i.e., in
fact, the realization of optical memory) is possible [4,
5]. The combination of the low velocity of the wave
packet propagation and the elongation of the path over
which fields interact under the resonance conditions
makes the electromagnetically induced transparency
mode promising for the investigation of nonlinear
effects. The analysis of relevant processes for a small
number of photons [6] is of special interest.

A theoretical analysisof thismodeisusually carried
out on the basis of scalar equations for the field. The
influence of electromagnetic wave polarization on tran-
sition probabilities is obvious and is naturally mani-
fested during experimental investigations of electro-
magnetically induced transparency in “three-level” sys-
tems. The role of polarization becomes decisive in
systemswith degeneracy. The behavior of the systemin
this case considerably depends on the mutual orienta-
tion of polarizations of optical fields[7—9]. Thisisasso-
ciated with population trapping in the dark state, viz.,
the superposition of sublevels which does not interact

with the field. The existence of the dark state and the
trapping of population in it is the general property of
degenerate systems, which has been studied exten-
sively. In particular, coherent population trapping in a
two-level system exhibiting Zeeman degeneracy and
interacting with polarized radiation was studied in
detail in the early publications devoted to the theory of
this effect [10, 11].

Thus, at the first stage of investigation of the fea-
tures of polarization effects, it isnatural to consider the
electromagnetically induced transparency mode by
using the simple model of a two-level degenerate sys-
tem. In this case, the excitation channels are separated
due to different polarizations acting on the system of
electromagnetic waves, and the emerging configura-
tions are determined by the selection rules for transi-
tions between sublevels. It isimportant to note that, in
the case of accompanying wave propagation, the close-
ness (and even equality in the case of exact resonance)
of the frequencies of the fields used in such systems
makes it possible to eliminate amost completely the
Doppler broadening of the two-photon transition corre-
sponding to electromagnetically induced transparency.
In addition, the possibility of using acommon source of
interacting waves makes it possible to considerably
improve the coherence of exciting effects, which pro-
duces a positive effect on the observed characteristics.
Thisrenders degenerate systems convenient objects for
observing el ectromagnetically induced transparency. In
particular, the so-called storage of light [4] was
obtained on the transition 5s,,, F = 2<—5py,, F=1
for Rb using polarized radiation. It should be noted
that the effect of electromagnetically induced transpar-
ency in systems with Zeeman degeneracy may be used
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in spectroscopic applications [8] aswell asin the mea-
surements of weak magnetic fields [12]. The applica-
tion of this model for an analysis of excitation of the
polarization-squeezed state of light [13] is of specidl
interest.

The study of electromagnetically induced transpar-
ency involves, as arule, the analysis of the behavior of
aweak probe wave in the presence of a high-intensity
driving wave. In adegenerate system, such an approach
ismodified asfollows. Thefield of any pre-set polariza-
tion can be regarded as driving, and its variation, as a
probe wave. The present work aims at an analysis of
evolution of the wave field with aslowly varying polar-
ization interacting resonantly with the medium of
degenerate two-level atoms. We will study the behavior
of theintensity and parameter of polarization during the
propagation of a wave through such a medium. The
approach proposed by us was found to be convenient
for describing two-level degenerate systems irrespec-
tive of the number and the specific structure of the sub-
levels. The paper hasthe following structure. In Section 2,
basic equations are presented and the approximations
of the model used in the present work are discussed.
Section 3isdevoted to an analysis of processesinthe A
scheme with pol arization-ai ded separation of lower lev-
els. In Section 4, an arbitrary multiply degenerate two-
level system is considered. In Section 5, the general
approach developed in the present work is applied to
the important particular case of atwo-level system with
Zeeman degeneracy. A brief review and discussion of
the obtained results are carried out in Conclusions.

2. FORMULATION OF THE PROBLEM:
BASIC EQUATIONS

Let us consider atwo-level degenerate system (Fig. 1)
resonantly interacting with the field
E(z t) = &(z t)exp(-iwt +ikz) + c.c., (2.1

where w is the transition frequency and g(z, t) is the
slow amplitude. We will seek the wave function of the
system in the form

g(r, t) = z a;Yi(r)
i=1

M

+ Z b;x;(r)exp(-iwt +ikz),
j=1

(2.2)

where the origin is taken at the energy of the lower

level, {Wy(r), ..., WO}, {Xa(r), ..., Xm(r)}, arecertain
orthonormal bases at the lower and upper energy levels,
respectively, and a; and by are nonstationary probability
amplitudes.

The system of equations for the probability ampli-
tudes a and by, supplemented by taking into account the
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Fig. 1. Two-level degenerate system resonantly interacting
with thefield E; M and N are the degeneracies of the upper
and lower energy levels, respectively.

spontaneous decay of the upper level, can be writtenin
the form

}—%zbwﬂﬂﬁ (23)

. N
"=%Z (d; &) - yb, (24)

where d; = Itpi* dx J-d3r are the dipole moments of the

corresponding transitions, y is the decay constant, the
term —yb; was introduced for describing the relaxation
of the population of the upper level, and the dot denotes
the partial derivative with respect to time.

In order to describe the space-time evolution of the
field, we use the truncated wave equation

0,10
[az at}s = |vZa b;d;;,

wherev = 2rNwy/c, N being the concentration of atoms.

It is convenient for subsequent analysis to decom-
pose the slow field amplitude € in a certain orthonormal
basis e;, e, in a plane perpendicular to the direction of
propagation:

(2.5)

€ = €,6 +E,6,. (2.6)

Asaresult, Egs. (2.3)2.5) will be written in the form

9 107 _ ., =
[az cat}s = iv(a[Dib), 2.7)
9 107 _ ., =
[az cat]s = iv(a[Dsb), 2.8)
a= f'-i(e*;f>1+e§ D2)b, (2.9)
b = %(8151+52I5§)a—yb, (2.10)

where (D1)ij = (e, - dy), (D2)ij = (&, - dy) (the scalar
product isintroduced hereas (p - q) = pf q;).
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These equationslead to the following conclusion for
asteady-statefield (g, = const, €, = congt). If the degen-
eracy of the lower level exceeds the degeneracy of the
upper level, the lower level always contains a state
which does not interact with the field (dark state) and
satisfies the relation

(e,01 +¢,D7)a = 0. (2.12)

This relation corresponds to the vacant upper level

b=0. (2.12)
In this case, the right-hand sides in Egs. (2.7), (2.8) for
the field are equated to zero; i.e., the medium does not
interact with the field. Relaxation processesin the sys-
tem ensure the stability of the dark state. Thus, in the
case of steady-state fields, coherent population trapping
inthe dark state and el ectromagnetically induced trans-
parency emerge in the system. In the subsequent analy-
sis, we will describe the evolution of the wave field
which is slow over the time of stabilization of coherent
population trappings by using the adiabatic approxima-
tion for studying the system response.

It should be noted that the approach proposed for
describing the evolution of the quantum system with
the simplified inclusion of relaxation cannot be used for
obtaining a correct description of the processes of pro-
found rearrangement of population in the system and
the establishment of coherent population trapping asso-
ciated with it. Indeed, the term —yb in Eq. (2.10) actu-
aly describes the depopulation of the system. In this
case, the relaxation of population from the upper level
to the lower level is disregarded as well as the relax-
ation processes within the levels. However, the analysis
of the corresponding processesin systems of the A type
on the basis of the density matrix formalism leadsto the
following conclusion [1]. If the system isin the state of
coherent population trapping at the initial instant, a
slow (on the scale of relaxation time) variation of the
fieldsis accompanied by an adiabatic rearrangement of
the dark state. To be more precise, in fields stronger
than the threshold field for the coherent population
trapping, the evolution of the system is independent of
the relaxation constants.

3. POLARIZATION A SCHEME

In order toillustrate the features of the problem, we
first consider the case when the lower level is doubly
degenerate, while the upper level is not degenerate, i.e.,
the so-called A scheme of energy levels with the polar-
ization-aided separation of excitation channels. In this
case, we can easily obtain an explicit equation for the
dark state. For the sake of simplicity, we assume that
the dipole moments of the transitions between the
lower sublevels are equal and orthogonal (|d,| = |d,| =d,
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(d; - dy) = 0). In the components along the orthogonal
directions,

d d
e = El e = EZ (3.1)
Equations (2.7)—(2.10) can be written in the form
0 10 — uda*
[6_Z+Eﬁ}sl = ivdaj b, 3.2
0 10 — ek
[a_z+Eﬁ}82 = ivdaj b, (3.3
. id
a, = ?L—gl b, (3.4
. id
a, = %82 b, (3.5
- _id
b = %(slaﬁszaz)b—yb. (3.6)

In the case of steady-state fields, the system of con-
stituent equations (3.4)—(3.6) has eigenvalues A; = 0,

Ay 3=—y2 % Jy*l4—d’|e*/h, where|eR = |g P + &2
It can be seen that ReA, 3 < 0. Thus, during the time
Tr= Umin(|ReA, 3|), the dark state, which does not
interact with the field and corresponds to zero eigen-
value, will setin, for which

a.e,+ae, =0, b=0. (3.7)

For fields much weaker than the fields saturating the
transition, Q <y (Q = |e[d/A isthe Rabi frequency), the
time of stabilization of the dark state is given by

TR = V/Q° (3.8)
It should be noted that, in more realistic models, we
must take into account the processes of relaxationinthe
lower level, which ultimately lead to degradation of
coherent population trapping (3.7). Inthiscase, thelife-
time of the dark state can be estimated as

.=, (3.9)

where I is the constant of relaxation processes in the
lower level.

A comparison of Egs. (3.8) and (3.9) shows that the
field-induced process of stabilization of the state (3.7)
dominates over its “spontaneous’ decay (3.9) in the
fields

Q°>Try. (3.10)
It is this threshold condition (imposed on the field) of
coherent population trapping that appears when relax-
ation is taken into account correctly on the basis of the
density matrix formalism in A-type systems[1].
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For fields much stronger than the threshold field
(3.10) and smooath over the T, scale, we can assume that
the quasi-stationary relations (3.7) are satisfied in the
initial approximation (in slowness). Since Egs. (3.2)
and (3.3) for the field contain the products ajb and

a> b, wewill be interested in the nonstationary correc-
tion to the population of the upper level only. It should
be noted that relations (3.4), (3.5), and (3.7) lead to the
conservation of population in the system, which should
naturally be normalized to unity:
lay® +]a)® = 1. (3.12)
Taking into account thisrelation, we have the following
relationsin the zeroth order of perturbation theory:

(0) —

= ke le, a =

= —«ke,le, b =0, (312

where K is a certain phase factor, |K| =
0

Substituting al” and a%” into Egs. (3.4) and (3.5),
we can easily find the nonstationary correction to b:

Ak 0. 3 O
= —E&1-
|d|8| %1(}[ 2= Zat 0

Finally, we arrive at the following self-consistent equa-
tionsfor thefield:

0 168 ﬁv%a saeDs
52" g ot~ e

0,107 _ hvg 9. 9 [
[0_z+ca}82 a | I %1& 2 826t£1D€1'

As applied to a three-level A scheme, the system of
equations (3.2)—«3.6) describes the interaction of
bichromatic radiation in a resonant medium [14-17].
The peculiarities of the dynamics of an accompanying
Raman-type interaction were investigated analytically
and numerically in [14-16]. Among other things, it was
proved that the adiabatic approximation (3.14), (3.15)
correctly describes the evolution of the central part of
the pulses.

As applied to our case, it is convenient to write
Egs. (3.14) and (3.15) in terms of the polarization
parameter

(3.13)

(3.14)

(3.15)

g = &/s, (3.16)
and intensity |eP. Finally, we have
0
5 oo = @17
0 [41 hvOo. _
[6_z+[b Ielﬂ_}q (3.18)
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It can be seen that the energy of an electromagnetic
wave propagates in a system with the velocity of light
(asin the conventional A scheme), while the polariza-
tion wave propagates at a certain effective velocity

Wma)d]_l
4w

V = Dl‘ ﬁ_VD—l =
eff Eb |€|2E|

where W, .« = NA® is the maximum energy density
which can be“pumped” to the medium and W = |ef/8mt
isthe electromagnetic energy density. Thus, for W, >
W, the velocity of the polarization wave turnsout to be
considerably smaller than the velocity of light.

It should be noted that expression (3.19) coincides
with the expression for the velocity of a probe wave
under the conditions of electromagnetically induced
transparency in the presence of apowerful driving wave
whose intensity is much higher than the threshold
intensity (3.10) obtained in the framework of the den-
sity matrix formalism [18]. Thisis obvious for a small
change in polarization which can be regarded as alow-
intensity probe wave. In the case of a strong changein
polarization, the occurring processes can beinterpreted
as resonance Raman scattering of an electromagnetic
wave of a certain polarization into another wave at the
low-frequency coherence induced in the medium. The
adiabaticity condition imposes the following limitation
on the length L of the rearrangement wave front:

(3.20)

(3.19)

Le > Lyin = TrVar-
For fields much weaker than the saturation field
yhc
2riNwd”’

or inthe casein the case of radiation-induced rel axation
y = 4uw°d?/3%c3, we obtain

_ _8m
3A°N’
where A is the wavelength.

In particular, for experiments with rubidium (D1
and D2 lines), we have L,;(T =300 K) =4 x 101 cm
and L;(T=350K) =4 x 102 cm.

Liin = (3.21)

L min (3.22)

4. TWO-LEVEL SYSTEM
WITH MULTIPLE LEVEL DEGENERACY

Let us generalize the results obtained above in the
adiabatic approximation to a multiply degenerate two-
level system. We assume that, in the zeroth approxima-
tion, theatomic systemisinthe dark state; i.e., relations
(2.11) and (2.12) are satisfied. Asin the previous sec-
tion, we will determine nonstationary correctionsto the
population of the upper level. It should be noted that
Egs. (2.9) and (2.11) lead to acondition of conservation

No. 5 2002



920

of population in the system, which issimilar to relation
(3.11):

lal® = 1. 4.1)
We will describe the space-time evolution of the wave
field in terms of the polarization parameter g and inten-
sity |eP. Using relations (2.7), (2.8), and (2.11), we can
easlly find that the behavior of the intensity is
described, asin the case of a/\ scheme, by Eq. (3.17).

We will rewrite Egs. (2.7)—«2.9) and (2.11), singling
out the polarization parameter in explicit form:

el

_ (4.2)
= —(q(aDzb) - (alDib)),
2
a= %E’z‘(qtf)1+ D2)b, (4.3)
(qb1 + D3)a = 0. (4.4)

In the case when Eq. (4.4) has aone-dimensional space
of solutions, on account of the population conservation
condition (4.1), we have

a = Kay,

where ay(q) isacertain normalized solution of Eq. (4.4)
and k is an arbitrary phase factor, [k| =

In order to find the corrections to the population of
the upper level, which are associated with the rear-
rangement of the dark state (4.5), we differentiate rela-
tion (4.4) with respect to time:

(4.5)

gDia+ (gqD1 + D3)a = 0. (4.6)
Taking into account relation (4.3), we obtain
b = BgTBia, (4.7)
2
where
T(@) = (qb1+ D2)(gMD1 + D2). (4.8)

Substituting the obtained expression (4.7) into Eq. (4.2)
for the polarization parameter and using relation (4.4),
we obtain

32 eaila =

x ‘;—‘;‘((bia . T'Di1a) + (Dsa - T'Dsa)).

+1q/%)
4.9)

The substitution of a in the form (4.5) into Eq. (4.9)
shows that the expression contains only the modulus of
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the phase factor kK, which is equal to unity. Finally, we
can write

[ainrEbl o (q)Han =0, (4.10)

where

u(@ = (1+1d°)
x ((D1a, (T D1ay) + (Dra, (T Daay)),
ay(q) being a certain (any) normalized solution of
Eq. (4.4).
It follows hence that the polarization structure of the
field propagates at a certain effective velocity depend-

ing on the intensity and (in the general case) the direc-
tion of polarization:

(4.11)

Vg = (4.12)

Thus, the analysis of the evolution of the wave field is
reduced to determining the dependence of the deceler-
ation factor u(q) on the polarization of the wave.

5. BEHAVIOR OF POLARIZATION
OF AN ELECTROMAGNETIC WAVE
UNDER THE CONDITIONS
OF ELECTROMAGNETICALLY INDUCED
TRANSPARENCY IN A TWO-LEVEL QUANTUM
SYSTEM WITH ZEEMAN DEGENERACY

By way of an application of the theory developed in
the previous section, we consider the resonant interac-
tion of polarized radiation with a quantum system with
Zeeman degeneracy. Let the lower and upper energy
levels of the two-level system under investigation cor-
respond to the states with the angular momenta L, and
L,, respectively, while in zero magnetic field these lev-
elsare characterized by degeneracy 2L+ 1and 2L, + 1
in the angular momentum component (the so-called
Zeeman degeneracy, or degeneracy in the magnetic
quantum number). This example is of practical impor-
tance, in particular, for transitions between the sublev-
elsof the hyperfine structure, which arewidely used for
obtaining electromagnetically induced transparency. In
accordance with the selection rules, transitions with

AL = L,—L, = -1,0,+1 (5.1)

are possible. An analysis of the coherent population
trapping in the given case is carried out in [10]. As
applied to the problem under investigation, the results
obtained in [10] can be presented as follows. The sys-
tem of sublevels splits into two noninteracting sub-
systems (if we disregard the relaxation processes
between the sublevels). In this case,

(a) for AL = +1, no coherent popul ation trapping can
take place in either of the subsystems;
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-1 0 +1
;-
/

-1 0 +1
L0=1 > Ll=1
-2 -1 0 +1 +2

- £ - [ A

-2 -1 0 +1 +2
L0:2 L Ll :2

Fig. 2. Diagrams of transitions with AL = 0 and an integer
angular momentum. The subsystems in which coherent
population trapping is possible (A-type) are presented by
solid lines, while the subsystems in which it is impossible
(V-type) are shown by dashed lines.

(b) for AL = 0, no coherent population trapping is
possible in either of the systems with a half-integer
momentum for an arbitrary field polarization; in sys-
tems with integer spins, except for the special case of
L, =0-~—=L,; =0, when transition is forbidden, coher-
ent population trapping isimpossible in one of the sys-
tems (V-type system) and possible in the other (A-type)
system,

(c) for AL =—1, coherent popul ation trapping is pos-
sible in both subsystems (A-type systems); in this case,
the subsystems make additive contributions to the
equation for the field and, accordingly, to the expres-
sion for the deceleration factor. (In the special case of
Lo =1~— L, =0, the A scheme + the “pocket” |L, =
1, L, = Oldoes not interact with the field of any polar-
ization.)

- — L - JE N

-2 -1 0 +1 +2
L0=2 R Ll=1

-5/2
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In the framework of the proposed approach, it is
possible to consider the subsystems separately. Their
responses appear additively in the expression for the
field and, accordingly, for the retardation factor (4.11).
As aresult, the expression for this factor assumes the
form

u(a) = NaU(a) + NyUy(0)- (5.2)
Here, u,(q) and u,(q) are the deceleration factorsand n,
and n, are the populations of the subsystems a and b,

respectively. It should be noted that, in accordance with
Eqg. (4.1), the quantities n, and n,, are conserved.

Let us consider, by way of an illustration, the dia-
grams of some transitionsin which coherent population
trapping is possible (Figs. 2 and 3). Inthese figures, the
numbers denote the angular momentum components
corresponding to the sublevels. The quantization axisis
chosen along the direction of propagation of the wave,
and, hence, the field component along the quantization
axis is equal to zero. Transitions with AL, = -1 and
AL, = +1 correspond to the left (o) and right (o) cir-
cular polarizations. It isimportant to notethat, in all the
subsystems under investigation for which a dark state
exists (A-type systems), the number of lower sublevels
islarger by unity than the number of the upper sublev-
els, and the dimensionality of the dark state is equal to
unity.

Let us now use the approach developed by us for
systems with a one-dimensional dark state for analyz-
ing two-level systems with Zeeman degeneracy.

For describing the transitions between magnetic
sublevels, it is convenient to choose the right and left
circular polarizations of the electric field as the basis
polarizations:

-1/2 1/2

=32 -12 1/2 32

L0=3/2 > Ll = 1/2

-1/2 1/2 3/2
TR

-3/2

- — sz -

=32 -12 1/2 3/2 5/2

L0=5/2 e Ll =3/2

Fig. 3. Diagrams of some transitions with AL = —1. In both subsystems (depicted by solid and dashed lines), coherent captures of
population is possible (A-type). The special caseisLg=1<—L; = 0. Thistransition splitsinto the A diagram (solid line) and a

“pocket,” viz., isolated sublevel |Lg = 1, Ly, = OC(dashed line).
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PN

Fig. 4. Dependence of the deceleration factor on the polarization parameter for one of the subsystems of thetransitionLg=2<~—>
L, = 1 (which corresponds to the subsystem depicted by the solid linein Fig. 3).

]_|:|1D
e, = =00 (5.3
J20i0
]_DJ_D
e = —0" 0 (5.4
* 200

In this case, for the dipole moments of transitions, we
obtain

(D) = e, = %28_” - %qu;i*a_xjd%, (5.5)
(Do) = &, = =d. = iJLpi*auxder, (5.6)
2 2

where
d. = dy+id,, (5.7)
d_ = dx—idy. (5.8)

It turns out that with such a choice, the retardation fac-
tor depends only on the modulus of the polarization
parameter,

u(@) = u(lql). (5.9)

This is apparently associated with the axial symmetry
of the eigenfunctions of the magnetic sublevelsrelative
to the quantization axis (which was chosen so that it
coincides with the direction z of wave propagation). By
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way of an illustration, Fig. 4 shows the curve u(q) cal-
culated by formulas (4.11), (4.8), and (4.4) for one of
two subsystems of the A type, which isformed by three
sublevels of the lower level and by two sublevels of the
upper transition Ly = 2 < L; = 1 (the subsystem
depicted by the solid linein Fig. 3). The radial symme-
try of u(qg) confirmsthe above conclusion (5.9). In addi-
tion, it was found that the deceleration factor is inde-
pendent of the absolute val ue of the dipole moment and
is determined only by the relation between the
moments of transitions between different sublevels.
This can easily be explained as follows. If we multiply

the matrices D; and D, by a certain factor, it will be

canceled out after the substitution into formulas (4.8)
and (4.11). It is dso clear that, since the deceleration
factor isafunction of the modulus of g only, it does not
change after the multiplication of one of the matrices

D by a number whose magnitude is equal to unity.
Indeed, such a change in the matrix of dipole moments
is equivalent to the multiplication of the polarization
parameter q in expressions (4.4), (4.8), and (4.11)
defining the function u(qg) by the corresponding phase
factor. The nonzero matrix elements of transitions
between the Zeeman sublevels are given by [19]

M, L, M—1|d]n, L, MO

_ J(L=M+2D)(L+M)~, A
- ’\/ L(L+1)(2L+1) DLL"d"n, L

(5.10)
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', L, M—1|d]n, L -1, MO

_ [L=M+DL=M) e 11 (5.11)
B 4/L(2L—1)(2|_+1) o, Lldln, L -1

M, L—1,M—-1|dn, L, MO

__[(LEM-D)(L+M) -, . (5.12)
B _J LeL-D)(2L+D) L—1[dln, L3

', L', M'|d|n, L, MO

R (5.13)
= [h, L, M|d]m, L', MTH

where ', L'||d |, LC= [, L||d |1, L' are the reduced

matrix elements.

It follows from the above arguments that the decel-
eration factor u(q) is independent of the magnitude of
reduced matrix elements. Thus, the behavior of the
wave field in the adiabatic approximation is the same
for different substances irrespective of the dipole
moment of the transition.

We will now consider the results of calculations of
the deceleration factor u(qg) on the basis of Egs. (5.10)—
(5.13) for various transitions under the conditions of
coherent capture.

(8 AL = 0; L is an integer. In this case, we assume
that optical evacuation of population from the sub-
system possessing no dark state takes place during the
establishment of coherent population trapping (see
Fig. 2). In this case, the response of the medium is
determined by the subsystem with coherent population
trapping. The form of the deceleration factor corre-
sponding to such subsystemsis shown in Fig. 5for sev-
eral small values of angular momentum. It can be seen
that the decel eration factor possesses symmetry relative
to the change of left circular polarization to right polar-
ization, and vice versa (which corresponds to the sub-
stitution g — 1/q). Such asymmetry isin accord with
theinitial symmetry of the system (see Fig. 3). For the
transition Ly = 1-——+ L, = 1, the value of u(|q|) is equal
to unity. For the remaining transitions, the peak of the
deceleration factor and, hence, the minimum of the
velacity of the polarization wave correspond to the lin-
ear polarization (Jg| = 1), while the minimum of the
decel eration factor and the maximum of velocity corre-
spond to circular polarizations (|g| = 0, |g| = ).

(b) AL = —1. In this case, both subsystems (see
Fig. 3) make additive contributions to deceleration
(5.2). The dependences of the deceleration factor on the
modulus of the polarization parameter for two different
subsystems of some transitions with half-integer angu-
lar momentaare shown in Figs. 6aand 6b, respectively.
It can be seen that, when the right circular polarization
is replaced by the left polarization (g — 1/g), Fig. 6a
is transformed into Fig. 6b, which corresponds to the
initial symmetry of the subsystems. Figure 3 shows
that, for a half-integer momentum, one subsystem is

12 T

10 - 7

8, -

1-1

103 100 10°
lg

Fig. 5. Dependence of the deceleration factor on the modu-
lus of the polarization parameter for some transitions with
AL =0 and with an integer angular momentum.

25

(@)

7/2-5/2

10
5/2-3/2

3/2-1/2

1073 100 10°

(b)

7/2-5/2

—_
=]
T

5/2-3/2

3/2-1/2

0 I
1073 100 10°
lq]

Fig. 6. Deceleration factors for one of the subsystems of
certain transitions with AL = —1 and a half-integer angular
momentum, corresponding to solid (a) and dashed (b) lines
inFig. 3).
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3r 32 .
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1 - -
2—-1
O 1
107 100 10°
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Fig. 7. Deceleration factors for one of the subsystems of
certain transitions with AL = -1 and an integer angular
momentum, corresponding to solid (a) and dashed (b) lines
inFig. 3.
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=
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Fig. 8. Total deceleration factor as afunction of the mod-
ulus of the polarization parameter for some transitions
with AL =-1.
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transformed into the other, and vice versa, asaresult of
such areplacement.

Similar dependences for transitions with integer
momenta are shown in Figs. 7aand 7b; in this case, the
subsystems (see Fig. 3) and the corresponding deceler-
ation factors are symmetric relative to the substitution
of the left circular polarization for the right polariza-
tion. Specia attention should be paid to the transition
Lo=1-~—L,;=0, whichisnot depicted in Figs. 7aand
7b and which decays (see Fig. 3) into the A diagram for
which ux(|gf) =1 and a“pocket,” viz., thesublevel |L, =1,
Lo, = OL) which does not interact with a field of any
polarization.

In accordance with Eg. (5.2), in order to obtain the
total deceleration factor of the corresponding transi-
tion, we must add the deceleration factors of the sub-
systems constituting this transition with the weight fac-
tors equal to the populations of these subsystems. It is
natural to assume that the population will be divided
between the subsystems in proportion to the number of
sublevels at their lower level. The dependence of the
deceleration factor on the magnitude of the polarization
parameter obtained under this assumption is presented
in Fig. 8. Asin the case of transitions with AL = 0, the
total retardation factor is symmetric relative to the
replacement of theleft circular polarization by theright
polarization, and vice versa (qQ — 1/q), which corre-
sponds to the initial symmetry of the quantum system.
For the transition L, = 1 <— L, = 0, we have u(|q|) =
const. For the remaining transitions, the maximum of
the deceleration factor and, hence, the minimum of the
velocity of polarization wave correspond to circular
polarizations (|g| = O, |g| = ), while the minimum of
the deceleration factor and the maximum of velocity
correspond to the linear polarization (|g| = 1).

Thus, wefind that, for all transitionsexcept Ly=1~—+
L, =0and Ly =1-—L; = 1, the deceleration factor
depends on the direction of polarization; in this case,
the deceleration in the propagation of a polarization
pulse is accompanied by a change in its shape. For our
subsequent analysis, we consider the case when decel-
eration is significant; i.e., Wz < W, It should be
noted that this situation is most important for the prac-
tical realization of the predicted effects. In this case, we
can disregard unity in expression (4.12) for the velocity
of the polarization wave and, accordingly, 1/c in
Eqg. (4.10). Taking this into account, we can write the
Eq. (4.10) for the polarization parameter as

0 Wi 107 _
[a_z+ aw, (@ cﬁ}q =0

In the case of a constant field intensity, Eq. (5.14) hasa
solution in the form of a simple wave:

(5.14)

(5.15)
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For transitions with AL = 0, the peak of u(qg) corre-
spondsto the linear polarization (|g| = 1), whileitsmin-
imum corresponds to the linear polarization (|g] = 0,
|g] = e); for transitions with AL = —1, the opposite situ-
ation is observed. Let us consider for definiteness the
transition with AL = -1, for which the front of rear-
rangement of the linear polarization into a circular
polarization is extended during the propagation and is
contracted upon atransition from acircular to the linear
polarization.

The breaking length can be estimated as the distance
over which the “rapid” polarization catches up with the
“dow” polarization,

_ AW 1
Wmax Umax = Umin

L cT, (5.16)

where T is the time of variation of polarization at the
entrance in the medium.

Over paths shorter than the breaking length, disper-
sion and dissipation effects must be taken into consid-
eration.

6. CONCLUSIONS

We have analyzed the evolution of an electromag-
netic wave with a dowly varying polarization upon the
resonant interaction with the medium formed by degen-
erate two-level atoms under the conditions of electro-
magnetically induced transparency. It was found that
the wave field amplitude propagates at the velocity of
light, while the polarization wave propagates at a cer-
tain effective velocity which generally depends on the
intensity and polarization and may be considerably
smaller than the vel ocity of light. We propose a method
of determining this velocity for systems with a one-
dimensional dark state. The knowledge of the depen-
dence of deceleration on polarization makes it possible
to describe the change in the shape of a polarization
pulse as aresult of its passage through the medium. It
isinteresting to note that the behavior of polarizationis
independent of the magnitude of the dipole moment of
the transition and is determined only by the relation
between the moments of transitions between different
sublevels. The proposed approach isapplied for analyz-
ing atwo-level system with Zeeman degeneracy, which
is often used in experiments on electromagnetically
induced transparency. It was found that for all systems
of this type, in which electromagnetically induced
transparency is possible (except L<—O0and 1~— 1
transitions), the velocity of propagation of a polariza-
tion pulse is a function of polarization, which leads to
deformation of the pulse during its propagation. The
form of the velocity of propagation was analyzed for
transitions with a small value of the angular momen-
tum.

In the present work, we disregarded the relaxation
processesinthelower level, which inevitably emergein
real systems. It is known that the finite lifetime of low-
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frequency coherence leads to a threshold [1] for the
emergence of coherent population trapping and electro-
magnetically induced transparency associated with it.
However, the fact that the results obtained in this work
are the consequence of coherent population trapping in
the dark state allow us to assume that these results are
also valid for fields of a strength exceeding the thresh-
old value considerably.

We can propose the following scheme for observing
the effect predicted in this work, which is similar in
many respects to that used in [4]. Use should be made
of alaser with acertain fixed polarization and a Pockels
cell forming radiation with a polarization varying in
time. By comparing the polarization structure of the
wave passing through the resonant medium and outside
this medium, one can observe a delay and variation in
the form of a polarization pulse. Since the velocity of
propagation of a polarization wave coincides with the
velocity of a probe wave under the conditions of elec-
tromagnetically induced transparency, the conditions
for observing the polarization effects considered by us
here correspond to the conditions of other experiments
with degenerate systems (see, for example, [4]). The
estimates of the polarization rearrangement front
length, which sets the limit on the sample size, are
given (for rubidium) at the end of Section 3.
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Abstract—General kinetic equations are derived for nuclear reactionsin dense plasmas by taking into account
first-order collective plasma effects. We show that, apart from the corrections proportional to the product of the
charges Z; and Z; of two reacting nuclei i and j, new corrections comparable in magnitude and proportional to

the sgquares of the nuclear charges Zi2 and Z]-2 arise. The Salpeter corrections[1] to the nuclear reaction proba-

bilities due to the plasma screening of the interaction potential are shown to be at least a factor of r/d (r isthe
nuclear size and d is the Debye screening length) smaller than those assumed previously. These are zero in the
approximation where the terms of order r/d are disregarded. The correlation corrections proportional to Z;Z;
have a different physical meaning than those in [1], can have a different sign, and arise for reactions with zero
Salpeter corrections. For the correlation corrections that substitute for the previously used Salpeter corrections,
strong correlations are difficult to describe analytically. The interpolation formulas between weak and strong
Salpeter screenings previously used in many astrophysical applications are inapplicable, because the interpola-
tion formulas between weak and strong correlations cannot yet be obtained. We found anew type of corrections
that are proportional to the sgquares of the charges of reacting nuclei. These are attributable to a change in the
collective electrostatic self-energy of the plasma system during nuclear reactions. Plasma corrections for the
hydrogen-cycle nuclear reactionsare numerically calculated for the temperature, density, and abundancesin the

solar interior. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In hiswidely known paper, Salpeter [1] showed that
the probability of nuclear reactions in dense plasmas
for a Debye-screened Coulomb potential is appreciably
higher than that for an unscreened Coulomb potential.
This effect was called the plasma screening of thermo-
nuclear reactions. It waswidely used to describe stellar-
evolution models [2] and nuclear reactions in the solar
interior [3] (seereviews|[4, 5]). For the hydrogen-cycle
reactions in the solar interior, the effect contributes
from 5 to 20% to the nuclear reaction rates. This contri-
bution is large enough both for solar neutrinos and for
the speed of solar sound oscillations, which are clearly
detectable by currently available methods of solar seis-
mology. Only 35 yearslater did Carraro et al. [9] notice
that the static screening of nuclear reactions (as consid-
eredin[1]) isphysically meaningless, because thereac-
tions take place at energies much higher than the mean
thermal energies (at the so-called Gamov energies), at
which there is no static screening for plasma particles
(see, eg., [7]). For such energies, the screening
becomes dynamic, vanishing in the limit of high veloc-
ities. Subsequently, many serious studies using a
sophisticated diagram technique in quantum statistics
appeared [8, 9]. These show that the corrections to the
nuclear reaction rates must correspond precisely to
static screening. As we show here, the authors of 8, 9]

actually calculated an effect different from that consid-
ered in [1]. Although there are no errorsin their calcu-
lations [8, 9], the physical interpretation of their results
isinaccurate. The coincidenceitself between theresults
of [8, 9] and [1] is apparently accidental and arisesonly
in the zero approximation in small parameters, which
are different in [1] and [8, 9]. In this paper, we obtain
new, previously disregarded corrections to the nuclear
reaction rates, which are proportional to the squares of
the charges of reacting nuclel.

The debate on whether the screening of nuclear
reactions is dynamic or static is still going on. To
resolve this problem, it was necessary to abandon the
original assumption [1, 6] that the interaction of nuclei
is determined by an average potential. In [10-12], we
derived the equations of nuclear kinetics in plasma
from the first principles by averaging the microegqua-
tions over plasma fluctuations. Only this approach is
appropriate for systems of many particles. The
approach of [1, 6] deals with only two reacting probe
particles for which a screened potential is used without
proof. The fluctuational approach, as applied to Cou-
lomb collisionsin plasma, was able to rigorously prove
that collisions take place between dynamicaly
screened particles [7]. Previously [10-12], we found a
possible resolution to the dilemma of static or dynamic
screening of nuclear reactions. More specifically, we
obtained a cancellation of al static corrections. In this
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paper, we devel op and refine the method of deriving the
kinetic equations for nuclear reactions in plasma used
in [10-12] or, more specifically, we take into account
the change in fluctuations through nuclear reactions.
Thisdilemmaisresolved here differently. We show that
there is no Salpeter static screening at al and that, to a
first approximation in asmall parameter (the number of
particleswithin a Debye sphere), the correlation effects
in plasma lead to aresult that matches the zero approx-
imation of static screening. The existing paradox is
resolved, because the physical interpretation of the
effect changes radically: the correlation effects can be
determined by static permittivity (which iswell known
for a number of processes in plasma physics, e.g., for
wave scattering [7]), while the screening cannot be
determined by the latter. These effects coincide only in
the zero approximation and only for the corrections
proportional to the product Z;Z; of the charges of react-
ing nuclei i and j. In the next approximations, the
screening and correlation effects yield completely dif-
ferent results. Here, we consider only weak correla-
tions, which would correspond to weak screening inthe
Salpeter approach.

A qualitatively new result of [10-12] isthe detection
of collective corrections proportional to the squares of

the nuclear charges (Z? and Z;'), which were absent in

all the previous approaches. These corrections are not
related to the correlations of interacting nuclei; they are
specific to systemsin which direct thermonuclear reac-
tions take place but inverse reactions are not possible.
Such systems are open. Precisely these nuclear reac-
tions involving neutrinos take place in stellar interiors
and on the Sun if neutrinos are capabl e of freely leaving
the region with nuclear reactions. Including this effect
inthe collisionintegral (which wasignored previously)
gives additional contributions that depend on time
derivatives and, thus, on nuclear reaction rates. This
leads to a renormalization of the distribution functions
for reacting nuclel and to corrections proportional to
the squares of the nuclear charges. Like the correlation
effects, these effects are related to changesin the distri-
butions of nuclei but not to the nuclear reactions them-
selves; i.e, these are kinetic collective effects. The
renormalization of the particle distributionsisknown to
be a standard operation in any kinetic theory [13, 14],
and the necessity of its use in the kinetics of nuclear
reactions seems obvious.

Here, the time evolution of nuclear reactions in
plasmaisinvestigated in the statement that is most nat-
ural for any temporal problems. We assume that there
were no nuclear reactions before the initial timet =0
and analyze the asymptotic behavior of the system at
large t. Landau used this statement of the problem to
investigate the damping of plasmawaves. As applied to
nuclear reactions in plasma, it yields corrections qua-
dratic in charges. Here, in contrast to [10-12], we
assume the plasma fluctuations to be modified by
nuclear reactions. The final corrections depend on the
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entire nuclear cycle and asymptotically differ from
those obtained in [10-12].

Thus, in this study, we obtained the results in the
approximation of small plasma corrections propor-
tiona both to the product of the charges of reacting
nuclei and to their squares.

The general results are used for specific numerical
calculations of the plasma corrections to the hydrogen-
cycle nuclear reaction rates for the parameters of the
current solar interior.

2. THE VANISHING
OF SALPETER SCREENING

Recall the sdlient points of [1]. The interaction
potential of the nuclei is assumed to be a Debye-
screened Coulomb potential:

Z.Z.€ 226 Zz7¢€
- Zig O e A
o) = —epggs =22 ()
where r is the distance between two nuclei, which is
much smaller than the Debye screening length d. The
correction to the Coulomb potential, the constant in the
interaction energy, may be included in the energy E, of

relative motion of the nuclei. The nuclear reaction prob-
ability depends only on the latter:

Z.Z.€
wy =y + =5

, 2
Z,Z,e" 9
d OE,
The thermonuclear reaction rate can be obtained by
integrating the probability over the Maxwellian distri-
bution. When integrating by parts, the derivative with
respect to the relative energy reduces to the factor LT
in the zero approximation in parameter
T_T .
EE <1,
where Eg is the Gamov energy (the derivative of the
phase factor has such a smalness compared to the
derivative of the Maxwellian distribution). For the
nuclear reaction rate R;;, we have

=w;(E) +

wi;(Ey).

R; = RO(L+AY), €)

zz2e ZZg 1
AP = Do - S — =gk, 4
. dT 2T[2TI %L €0~ )

where Ri(jo) is the reaction rate without plasma correc-
tions and ¢, , is the static permittivity (e oly=0)- AS
was noted above, its presence in the final result for
screening is physically unacceptable.

The error in this derivation is veiled. It stems from
the fact that the screening polarization charge is not a
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fixed spatial charge around the nuclei. This charge
arises from the motion of the remaining particles that
produce fluctuating potentials and fields for the entire
system of particles. The nuclear reactions for a specific
pair of nuclei take place in the external fluctuating
potential ¢ produced by all the remaining nuclei. The
average value of this potential does not determine the
nuclear reaction rate, because the averaging time is
much longer than the nuclear tunneling time. Inserting
the fluctuating potential @ in the expression for the
nuclear reaction probability, expanding it in terms of
this potential, and averaging over fluctuations yield a
value proportiona to the fluctuating potential. How-
ever, this calculation, which formally gives (4), aso
seems to be incorrect. It is presented below. For the
terms proportional to ZZ;, the change in average prob-
ability is

02
= Z,Z;¢ EdpzDa—E—zW”(E,). (5)

Thefluctuating potential @isdetermined by the dynam-
icaly screened particles, but the standard expression
for the fluctuating potential together with the fluctua-
tion—dissipation theorem and integration over the Max-
wellian distribution again leads to expression (4) con-
taining the static permittivity. This result shows that
when using the standard theory of plasma fluctuations,
the error is made somewhere before the averaging. The
calculation yielding (4) and (5) uses the fact that there
is a natural small parameter, namely, the ratio of the
nuclear tunneling size to the fluctuation scale size. This
small parameter is used below.

If we introduce the center-of-mass coordinate R for
two reacting nuclei, their relative coordinate r, and the
coordinates r; and r; of each of these nuclei and if take
into account the fact that the coordinates of the two
nuclel are amost equal in the nuclear reaction, r < R,
then the following expansion can be used for the addi-
tional energy:

ez(r;) +eZ;q(r;)
mZ,—mZ; (6)

~e(Z+Z)@R) +er [E mTm

The first term in the latter expression is a constant for
the nuclear reactions, but it depends on the center-of-
mass coordinate. Therefore, if the second termin (6) is
disregarded when separating the variables, it contrib-
utesto the center-of-mass wave function, givesriseto a
phase factor in the center-of-mass wave function for the
system of reacting nuclel, and causes no change in the
nuclear reaction probability. The second term in (6),
which depends on the relative coordinate and electric
field, is small in the ratio of the nuclear tunneling size
to the fluctuation scale size. Thus, a constant energy
shift arises not in the relative motion but in the tranda-
tional motion, and there is actually no Salpeter screen-
ing of the nuclear reactions. Theresult (5) isobtained if
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the first term in (6) is erroneously considered as a
perturbation in the relative motion of the nuclei. This
result becomes obviousif the averaging is performed
after the nuclear reaction and if the average potential
is not used. This, in turn, requires that the tunneling
time scale be much shorter than the fluctuation time
scale (which determines the averaging time scale).
The latter is satisfied to a good accuracy if, as usual,
the reciprocal of the plasma frequency is taken as the
fluctuation time scale. The central point here is the
fact established in plasmaphysicsthat the screening is
produced in fluctuations, which was disregarded inthe
approaches of [1, 6].

3. CORRELATION EFFECTS

The correlation effects describe the correlation
between the states of two reacting nuclei. If the nuclei
are close to each other more frequently, then the aver-
age reaction rate increases. This effect differs from that
discussed in [1, 6], where the charge in the rates of the
reactions themselves was considered. The kinetics of
fluctuations in the system of reacting nuclel is impor-
tant in describing the correlation effects. To investigate
this effect, we will use microequations, as in [10-12],
but in an improved form. This improvement is heeded
to construct a more detailed theory of correlations.
Here, we do not present this theory but provide only its
final result, which matches that previously obtained in
the zero approximation [10-12]. Therefore, the above
improvement is used only for aguaranteed justification
of the correlation corrections found in [10-12]. The
basic equation used in developing an improved theory
of correlationsis

at |+VDa_f +Z;eE Da—f Iwij ij(2 )3, (7

wheref; and f;; are the one- and two-particle distribution
functions, respectively. Theformer and the latter can be
obtained by integrating the total distribution over the
variables of all particles except particlei and particlesi
and j, respectively. The approximation f;; = f; f; was used
in[10, 12]. Equation (7) is more accurate than that used
in[10, 12]. Thisequation can beinvestigated by analyz-
ing the equation for f; that can be derived by integration
over all variablesexcept i and j rather than over al vari-
ables except the variables of particlei, asin the deriva-
tion of Eq. (7). It alows the correlation effects to be
studied in more detail. This approach is more detailed
than that in [10, 12] but much more cumbersome. The
correlation effects are contained in the approach used in
[10, 12], because the average product of two one-parti-
cle distribution functions is not equal to the product of
the average distributions. We present only the result of
an extensive analysis of the correlation problem using
Eq. (7): to afirst nonzero approximation, the correla-
tion corrections are equal to those obtained in [10, 12]
by assuming that f; = f f;. This equality is not possible
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in the next approximations. Recall that to obtain the
correlation corrections, we introduce the fluctuation-
averaged distributions
Averaging Eq. (7) and taking into account the fact that,
to afirst approximation, the nuclear reaction probabil-
ity does not depend on the fluctuating potential (this
dependence was taken into account in [10, 12]), we
derive on the right-hand side

OF, f 0= 0, + (5 5f (1 ©)

As the above studies showed, the second term in
Eq. (9) correctly describes the correlations in the first
nonzero approximation. The smallness of the reaction
rate compared to the fluctuation frequency can be used
to calculate these explicitly. Subsequently, standard
expressions for fluctuations of the particle distributions
in plasma in the absence of nuclear reactions can be
used. Although general expressions can be written for
any nonequilibrium distributions of nuclei, we present
the result for equilibrium thermal distributions, where
the fluctuati on—dissi pation theorem can be used to inte-
grate the fluctuations over frequencies. In thislimit, the
corrections can be expressed in terms of static permit-
tivity:

ZZe 1D

2n2 qwfk %L € g

Here, we took into account the fact that the Coulomb
field of two reacting nuclei should be disregarded in the
fluctuating potential produced by all the remaining
plasma particles. The correlation effect itself bears no
relation to the possible change in the probability of
nuclear reactions between two reacting nuclei: because
of the correlations, the number of reacting nuclei
proves to be large, on average. In [10, 12], apart from
the correlations, we aso took into account the change
in probability, an effect that interfered with the correla-
tion effect in[10, 12]. Since no change in probability is
found in this study, we consider only the correlation
corrections. The proportionality of the corrections to
the product of the average distribution functions allows
us to introduce some effective nuclear reaction proba:
bilities, which lead to the same result in the equations
for nuclear reactionsin plasmaas allowance for the cor-
relations:

L 2 kg 1
Yy = W 2T[2TI K2 2ot ebfk,ODi| (11)
w;(1+A).

5,5 0=

(10)

The formal coincidence of the corrections /\(C) i

(11) with the Salpeter corrections /\i(js) (4) should not
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mislead us, because the corrections (11) have a differ-
ent physical meaning. An example shows that these
also differ quantitatively. There is no nuclear barrier in
thereaction of "Be with electrons, and the Sal peter cor-
rections are zero, while the correlation corrections are
nonzero and are described by Eq. (11).

Since the calculations in [8, 9] were performed by
statistically averaging the unperturbed probability over
the electron and ion distributions, they allow for the
correlations. Thus, the result obtained here also agrees
with the result of [8, 9].

4. FLUCTUATIONS
IN A TIME-EVOLVING SYSTEM

Since there are no inverse processes with neutrino
absorption, the system is open and evolves with time.
The plasma fluctuations are not stationary (as is usual
in the absence of nuclear reactions), with the rate of
their change with time being determined by the nuclear
reaction rates. Although this rate is small compared to
the characteristic fluctuation frequency, the effects
related to the time evolution of plasma fluctuations
must be taken into account when calculating all effects
linear in nuclear reaction rate. Previoudly, these effects
were ignored. The effects related to a collective electric
field lead to plasma corrections. Therefore, let us first
consider those effectsfor which the electric field isneg-
ligible. Since the total corrections are treated as small
ones, we will take into account the effects related to
collective fields by using perturbation theory; the
absence of collective fields corresponds to the zero
approximation of this theory. Denote this approxima-
tion by the superscript (9. The basic equation for linear
fluctuations then takes the form

(0) 61:(0)
B, , PE) _ 6,09
dor (12)
x (3F{"(p)®(p) + 6f§°><p')¢i(p)>(2—%3.
A similar equation can be written for f}o)(p') :
(0) 6f(o)
azsf(,)t(p) yPofi ) _ J’Wu(p 0)
(13
dp
(2m*

Having written this system of equations for the Fourier
components,

3F;.j = [8fi,j.k.wexp(ik [ —wh)dkdo,
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we can derive an equation that contains only fluctua-
tions in the distribution function of one of the nuclei:

(w—k T +iv(v)3F) (V) = —Py(v)

. (i, PYWi(p", P) @ mde dp" (14)
-k o+ iv,() DBy Y on®
where the quantities
vi(p) = ij )P ot
(2;) (15)
Vi) = [w; o

describe the fluctuation damping due to the nuclear
reactions. The right-hand side of Eq. (14) describesthe
correlation of fluctuations due to the nuclear reactions
and their additional damping. Given that the character-
istic fluctuation frequency iskv+; = wy; for k of the order
of theinverse Debye length 1/d, where w, isthe plasma
frequency of ionsi, this correlation can be easily esti-
mated. The right-hand side of Eq. (14) is a factor of

vf/mpi smaller than the damping on the left-hand side

of Eq. (14) and may, therefore, be disregarded. For the
spatial components of the fluctuations in the distribu-
tion function

3f v, r,t) = J’éf,‘ )(v, t)exp(ik [T )dk,

the corresponding equation can be written as

D ikmeveruy =0 a9

Here, we state a temporal problem with initial condi-
tionsfor the system at timet = 0. This statement is nec-
essary in an open system, which cannot come to acom-
plete equilibrium because of the absence of inverse pro-
cesses with neutrinos. We assume that the nuclear
reactions are switched on at time t = 0 and consider
their rate asymptotically at large times. Thus, we
assume that v; = 0 at t < 0. This statement of the prob-
lem is close to the actual sSituation in stars, where
nuclear burning starts at a certain contraction stage of
the protostellar cloud. For t < O, the solution to (16) is
then

5t Up, 1) = 5 Up)exp(—ik Cut), (17)
while, fort> 0,
5fUp, 1) = 3f Yexp(—ik Cvt—iv,(V)t).  (18)

Below, we redtrict oursalves to a spatialy homoge-
neous problem. The average values of of, (p) must then
be the same as those for a stationary (on average) system:

B Up)3f{%(p)0= ®i(p)5,, ;8(p —p')8(k + k). (19)
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This leads to the following law for the averaging of
temporal fluctuations in the presence of nuclear reac-
tions used below:

B o(P)B Tk, (PO
= —ZT—[zq:i(p)ai,ja(p —p)3(k + k)
(20)

x[ 1 B 1 }
w—ky—i0 w-k 7 +iv(v)

x[ 1 ~ 1 }
W-K O/ —i0 w—K O/ +iv,()]

Inthelimitv; ; — 0, thelaw (20) matchesthe stan-
dard averaging law for a stationary system (we denote
the corresponding distributions by the superscript © 9):

B S P)BF e w(P)D = @ ()3, ;3(p —P)
x 3k + k)d(w+ 3)d(w—k V).

The change in the fluctuation-averaged distribution
of nuclei with time should be determined by using (20),
which yields the change in nuclear reaction rates due to
collective plasmaeffects. Apart from the changein fluc-
tuations with time, the evolution of the average distri-
bution function for nuclei is of considerable impor-
tance.

(21)

5. THE INFLUENCE OF TIME-EVOLVING
FLUCTUATIONS ON THE NUCLEAR
REACTION RATES

The basic equation for cal culating the collective cor-
rections to the nuclear reaction rates is the equation
obtained by averaging (7) over plasma fluctuations:

. _ 0
5t = ZegsBh T
(22)

(em)®

Asin the calculation of fluctuations, we assume the
average distribution to be homogeneous but time-
dependent. This dependence is attributable to the
nuclear reactions, the plasma corrections to which are
investigated. In the absence of such a dependence, the
first term on the right-hand side of Eq. (22) isknown to
lead to acollision integral that rapidly (on the collision
time scal€e) approaches zero, making the particle distri-
bution athermal one. However, in the presence of time
variations (which are proportional to the nuclear reac-
tion ratesin our case), thisterm gives an additional non-
zero contribution proportiona to the rate of change in
fluctuations and to the rate of time evolution of the aver-
age distribution of nuclei. Our objective is to take into
account effects of the first order in nuclear reaction
rates, i.e., linear in the time derivatives of the average
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distribution and linear in w;;. The last term on the right-
hand side of Eq. (22) contains the correlation correc-
tions. Since the effect of time evolution and the correla-
tion effects in our approximation linear in w;; add up
additively, we ignore the correlation effectsin this sec-
tion. Finaly, if we disregard the corrections attributable
to time evolution of the fluctuations, then Eq. (22)
reduces to

(2

= @
3t T[)3— v

(23)

In this equation, the frequency v; should be assumed to
be constant, because allowance for itstime dependence
would imply alowance for the corrections of higher
orders in w;;. For fluctuations, we have instead of
Eqg. (16)

. . 0
—i(w-K Q+iv)3F; = ZieHBo %¢igk w,(24)
where @isthe potential of the fluctuating electric field.
The solution to the latter equation is

Ze

XI(pK w—wB( D(f_qui, wawll

where  f ,(OQ «» Isthe solution to the homogeneous equa-

tion (24), which describes the fluctuations in a time-
evolving system discussed in the previous section.
Since the average distribution function varieswith time
much more slowly than the plasma fluctuations w' < w,
the expansion in terms of w' and v; can be written as

0

5o = 0f% o
(25)

(pk,m—w:(pk,w_w'_(pk,wv
Z‘” (26)
J’w¢,wdw~|at
Using (23), we abtain
_ x¢00) 0 o
Of o = Of ik o= %‘- |aﬂ]
(27
gy kEv+|O B(Da_q’

We use the Poisson equation to derive an expression
for the fluctuating potential in which the terms with a
time derivative are considered based on perturbation
theory:

~ 0 (1)
(pk,w"'(ﬁ(w"'(pk oo+ ey

(0) - 2 (0) z J‘éf(o)

(28)
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W _ 1 0000 _opf
v = E(kO) %gpk,waek,um! (29)
0 _
Sk ZZ Iw k Ev+|0
(30)

x tk Da— OD(ZT[)

Here, the summation over a is extended to include al
types of plasmaparticles: electronsand al ions, includ-
ing the reacting nuclei. We have

3w = 8F %,
Zie G0 0 ) (31)
“o—kmv+i0% B(Da_q’ +Ofikw
6 0 Ze

5% = ok Da—qﬂ

(32)

at dww—K OV +i0 kEv+|0

(1)
T w- kEv+|O(ﬂ< B(Da—rb

The effects related to the time evolution of the system
are described by the equation for the fluctuation-aver-
aged distribution. Disregarding the correlations, we
obtain from (22)

0
ot

x exp[i(k +k") O —i(w+ w)t]dkdk'dwdw'
—Iwijcpicpjd—'o'3
(2m)

=19+ |§“—Iw”cb o)

=P = 26—qu [OF; k. P, o

(33)

ap
1(2_‘_[)3’

I(O) is determined by the time-evolving fluctua-

where

tions 5% ,,.,

© _ 5.0 (0)
RE z,ea_q|k<[6f,,k,w

D (0) (0)
Cw- k[v+|OB< ap } >

x exp[—i(w+ w)t]dkdk'dwdw',

(34)

and | i(t’ is determined by the time variation in the aver-

age distribution of reacting nuclei,

®_ >0 o o
l; _Z'ed_qudkdkﬁ-épm
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[166(0)+

1 00 c(© 0
© dw ot K@ }

€ o0
(O)Owat ‘*’D

(0) (0)
* oo kB/+|OH( ap Edn( o (35)

1 00y 50 (0 L
(0) aw at |:Bfl k, w(pk',w'DE

x exp[—-(w+ W)t dwdw'.

Here, we took into account the fact that, according to
(20) (homogeneity of the fluctuations), k' = —k.
Whereas the time evolution of fluctuations must be
included in Eq. (34), in Egs. (35), which already con-
tain atime derivative of the average distribution, it will
suffice to use the approximate relation (21). In the latter
case, we denote the corresponding correlation func-
tions by the superscript (0,0), just like the distribution
functionsin (21). We obtain from (21)

I o o ok’
36)
_ olp (
= 2Tl' % ImDE(O) D2')((A)+ o),
J-Df(o O) (O’O)Edk'
Ze (37
2n2 ) —————P,5(w—k V)d(w+ o).

Here, we assume that the average distribution function
in the terms of (35) may be considered to be thermal
(Maxwellian) with sufficient accuracy. The small devi-
ations of the distributions from Maxwellian ones must
be taken into account only in the terms that do not con-
tain small time derivatives of the average distributions
(see below). Substituting the approximate relations (36)
and (37) for the correlation functions (35), we find that
thefirst term in (35) containing the total derivative with
respect to frequency becomes zero when integrating
over frequencies and that

|0 = ze aap [J‘—cp dwdk

6e“”iai
()% )

0
X +1d w-k V) o
U €k w

. k v
w-k ¥y +i0

g1 9 aék wl Dl 0
DED (k%aw[ ot ool DE(O)D

1 0d

Ll
6(.06(0) 00

1ImD 1 105 0
E}E(O)D ot
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To calculate the change in reaction rate due to the
time evolution of the fluctuations described by relation
(30), it should be borne in mind that these effects must
be taken into account in the first nonvanishing order in
reaction rates. In this limit, we derive the following
relation from (20) [cf. (27) and (28)]:

[k P ()" P dk'dp

oD, (39)
_ 5i’j[ - I26t %’_ —D}é(uw ) S(w—k V).

The first term on the right-hand side of Eq. (39)
leads to the standard Coulomb collision integral, which
turnsthe particle distributionsinto thermal onesin very
short time intervals. For athermal distribution, the first
term in (39) is exactly equal to zero. Below, we take
into account the renormalization corrections, for which
the first term in (39) is of the order of /Ny < 1 and
which may also be disregarded. In the corrections pro-
portional to the time derivative of the average distribu-
tion, the latter may be assumed to be thermal. We obtain

o _ Z€0

I dk dw
' 41 0p qk
O 009 1
-k 5ra5 o
(40)
(k O) P,
(w—k [V +i0)e ),
0 1 o (0) 10 o 0 1 }D
-_— =Ime, —Ime;  — 0
[awwe(o) at at k wa(.oe(_i)y_w [l

This expression can be simplified as follows. The first
term in square brackets can be integrated by parts over
frequencies. The emerging combination with the sec-
ond term in square brackets but without the derivative
of thefactor 1/(w—k - v +i0) with respect to frequency,

1 0 1 10 1

O 90,0 (0) (0
€ -k, wawek,w 000 —k -0

(41)

does not change when substituting w — —w and
k — —K. Theremaining factors

k(k [V)
w(od/ot)Ime,

do not change either during this substitution. Therefore,
only theterm 1/(w—k - v +i0), which does not change
during this substitution, i.e., 4w -k - v), remainsin
the expression. This implies that only the imaginary
part remainsin expression (41). In the remaining deriv-
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ative of 1/(w—k - v +10) with respect to frequency, we
can again perform integration by partsto give

= & 93 a"p q—dkdoo
0 0P g 1
ok [ i+ el
(42)
xo[imE 09 p0l o 1Da|mDiD
DE(O)D_ DE D DE El_ Lo

wh opg 1 9, pH
Toc kB/+|06wEL,| (0)|2at ""’DB

Similarly, we can simplify the first term in square

brackets in (38). Integrating by parts over frequencies
yields

Z e’ 0

® 2

I 6 q @, dwdk

1 ae(o) 66(0)
2
|E(0) €(0) ot Jdw

k, |

x [T -k m{
O

(43)

nlp o,.0l0d ©
2ImQ(0)D[ ImDE(O)DatRe

6 0lpo (0) (&)
96 eEat e || T STk 10

6 l Dlml a9 (0) U

The sum of (42) and (43) admits further simplifica-
tions. Separating out the terms with 6(w — k - v), we

writel; = 1V + 119 as
e’y _ k
1= 289 X godk
220 i

[P; 9 0 1 n.01 nlpn
XD__[ReQ) k v +i0J 6woo|mDe(°>D

x[(ﬂii+ cDi (I)a liRee :|El
tawe(k(")w ley o 0Ot ko 0
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Thefollowing equalities were used to derive theserela
tions:

6 _ 1 (@20 1
RELW ot __|k‘*’6t|(0) ()
(0)
a0 O¢y
Moo B(O) ot o
(46)

_ 1 aRe(‘E ) 10 9 pe nlp
= - D'
ddf o ]

The expression in the first square brackets of (44) can
be transformed to

Im nl a 1 N

Dekwaww k v +i0

» . . (47)
[l L] [

R, ok v +i0)

After integration over frequencies, thefirst termin (47)
becomes zero. To make sure that this is the case, we
must factor the signs of the imaginary part and time
integration outside the sign of the frequency integration
and take into account the fact that the derivative of
V(w—k - v +i0) with respect to frequency has no poles
in the upper half-plane of complex w, just like 1/e(°)
(thelatter dueto the analytic properties of permlttlwty)
The second term in (47) transforms to an expression
without any polesin the upper half-plane of complex w
by adding and subtracting the corresponding expres-
sion with Im(L/w + i0) = —tdw). Thus, thefirst square
bracket in (44) transformsto

I 00—
Relation (48) is used onIy to write thefinal result in
compact form containing o(w—k - v) alone. Thus,

[dond gReq— D/) 6(w k [).(48)

2

l; = —doodké w—-k ¥

4n20p EI ( ) (49)
(BP9 1 Po 1 0190 <o>
*U3t o SO MCRENTIE dwwdt kol

6. RENORMALIZATION
OF THE PARTICLE DISTRIBUTIONS

Just like the correl ation effects, the effects dueto the
time evolution of fluctuations can be reduced to an
effective change in the nuclear reaction probability.
Note that the corresponding equation (33), which
includes the effects of time evolution with the correla-
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tions ignored, differsin form from the equation that is
commonly used to describe nuclear reactions without
plasma corrections. More specifically, the equation
with plasma correctionsis

0P _ @, ® dp'
— = |+ ] = OO ——
n i i IW”qJ'CDJ(Zn)y (50)
while the equation without plasma correctionsis
0¢’i _ dp'
W = _IWIJ¢I¢](2n)3 (51)

Here, it is worth recalling that we restrict our analysis
only to the first-order plasma corrections. With this
accuracy, Eq. (50) can be reduced to the standard form
by renormalizing the particle distribution function.
Consider the problem of reducing Eqg. (50) to form (51)
by renormalizing the particle distribution and by intro-
ducing an effective probability. We introduce the renor-

malized distribution function CDi(R) as a solution to the
equation

0D, 0 . _ 0P
Assume that the solution to Eq. (52) is
®; = (L+AT) . (53)

Given that the corrections are small and that both distri-
bution functions of reacting nuclei are renormalized,
the final equation with correlation corrections in the
standard form is

6<Di(R) _ off + (R) +(R)_dp'
at = _J-WIJ cDi CDJ ﬁ; (54)
where
Wi = wy (L +AD + AR + AR, (55)

When solving the equation for @, it should be borne

in mind that the rate of particle redistribution in
momentais much higher than the nuclear reaction rate.
Therefore, only the particle density depends on time,
and the distribution function is a product of the time-
dependent density and the momentum distribution. The
time derivative of the permittivity in |; is determined by
all reacting nuclei and by the rates of change in their
distribution functions with time, i.e., by the time deriv-
atives of their densities. The dependence on momentum
in the particle distribution is the same as that for ordi-
nary permittivity.

Below, we consider the nuclear cycle (in applica-
tions to the solar interior, the hydrogen cycle) and deal
with the asymptotic behavior of the system at large
timeswhen therates of al reactions have already stead-
ied and are determined by the slowest cycle reaction.
By the time the reaction rates are equalized, the renor-
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malized distribution has also steadied. As will be seen
from the subsequent analysis, it describes the collective
energy shift in the distribution of each type of nuclei.
Since the rates of al reactions coincide in the asymp-
totic limit, the relative time derivatives in Eq. (50) are
equal, which allows the renormalization coefficient to
be easily determined. In this case, it should be kept in
mind that we consider small corrections and thereis no
need to make a distinction between the renormalized
and nonrenormalized distributions in the renormaliza-

tionterm. Theexpressionfor A" derivedinthisway is

R _ Z€ kdkdwnd
LI v

0 1 1
2
K, @ E(k(,))o)

_VO5( o
TDES(w k [V)

(€k,0—1) (56)

1 9d1,.0 O
O |Z%w(€k""_ b 5
k

where
Ek’w = 1+4_.’2T
k
57)
VAlS 0D+ dp' (
j i1_ap
8 wa—k ok Dap'D(Zn)3'
]

Here, the summation is performed only over the nuclei

j involved in the nuclear cycle under consideration and
over the electrons involved in the nuclear reactions (as
isthe case for the hydrogen cycle).

It should be emphasized that the probability w;
depends on the relative nuclear energy E, alone and has
a sharp maximum near the Gamov energy EC in the
limit E, > T. At the same time, the effective probability
(55) also depends on the momentum of each of the
reacting particles, i.e., on the particle velocities rel ative
to the medium (plasma), which is natural enough for
collective processes.

7. CHANGE IN THE COLLECTIVE
ELECTROSTATIC ENERGY
OF NUCLEI AND THE ENERGY SHIFT

Each nucleusii in plasmais surrounded by a polar-
ization screening charge and has an additional self-

energy Ei(s) . The latter can be calculated only in anon-
dissipative medium if the imaginary part of the plasma
permittivity may be disregarded. This does not corre-
spond to our problem, because dissipative processes
play a significant role. However, in the asymptotically
steady state, it is possible to determine the rate of
change in the total electrostatic energy of the system
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per nucleuswith time. Thisenergy isproportional to the
square of the nuclear charge and acts as an effective
self-energy of the reacting nuclei. In alarge system, the
polarization charges around individual nuclei are pro-
duced by collective fluctuations of the remaining
nuclei. In the presence of interacting and reacting
nuclel in the system, when the associated dissipative
processes do not allow the electrostatic self-energy of
the nuclei to be unambiguously introduced, the change
in the total electrostatic energy of the system cannot be
equa to the sum of the self-energies of individua
nuclei. However, after the rates of al reactions are
equalized, the renormalization corrections reduce to an
energy shift in their distribution and, in this sense, act
as some effective self-energy. Before the rate equaliza-
tion, this physical interpretation is not possible and the
emerging corrections cannot be mathematically repre-
sented as some effective energy shift of individual
nuclei.

The derived effective self-energy is not equal to the
sum of the electrostatic self-energies of individua par-
ticles in nondissipative systems. The effective electro-
static self-energy of a single nucleus naturally depends
on its velocity relative to the medium (plasma). The
corrections introduced by the renormalization of the
particle distribution per nucleus are similar to the elec-
trostatic self-energy of individual nuclei, but their
structure, magnitude, and sign are different. In contrast
to the self-energy, the complete integral of the effective
energy shift over momentais zero. The sign and mag-
nitude of the corrections are determined by the nuclear
reactions, which show what nuclear energies and
momenta give the largest contribution to the renormal-
izations.

In a dissipative system, we can analyze the rate of
change in the total electrostatic energy of the system
and can show that the derived renormalization correc-
tions are actually determined by this rate. For the rate
of changeinthetotal electrostatic energy of the system
with time, we have

dw® _ 1 D\ _ o
o E{<E [%> = Iizziemfi,k,w(—|w)(ﬂ<',u£8)

x exp[—i(w+ w)t]dkk'dwdw'.

Thisrelation should be compared with thefirst term
on the right-hand side of Eq. (33). The change in parti-
cle energy can be calculated by multiplying the left-
hand side of Eq. (33) by the energy of asingle particle
and by integration over the particle distribution. When
integrating by parts, the derivative with respect to
momenta leads to the factor k - v and, in view of (40)
and (41), the product k - v can be substituted by .
Thus, it is easy to see that (42) and (43) correspond to
such changes in the particle distributions that describe
the changes in the total electrostatic energy of the sys-
tem dueto its evolution with time through nuclear reac-
tions. That is why the collective corrections to each
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nuclear reaction depend on the rates of other reactions
of the entire cycle.

The renormalization terms described above can be
easly interpreted as the appearance of an energy shift
Oe;,, Or as an addition to the nuclear energy,

2 € . O€
€p = _zeniq)iR(p) 0 exp%——_'l'_p——_ll"%
— om0 €0 O€i
R S S [N

wheree; , istheenergy of particlesi and d¢; , isthecol-
lective energy shift of particles i. Given that dJiR =
o(1- /\i(,'? ), we obtain

5ei’ b~ 66?0)
T ]
[(3e, o/ T) exp(—,/ T)p
- [exp(—e;/T)p

AR =
(59)

56

where 3¢/” arises from the normalization. Relation

(59) only assumes that the distribution of reacting
nuclei remained thermal. Therefore, the corrections are
attributable only to the appearance of an energy shift in
the nuclei.

The integral of (56) over the thermal particle distri-
bution is zero, implying that

T

Expression (60) differs from that used in [10, 12],
where we took into account the time evolution of the
average distribution but ignored the time evolution of
fluctuations and the collective change in distribution
dueto nuclear reactions, which lead to expressions (49)
and (56). The latter are more general than the relations
derived in [10, 12], because they include the changein
fluctuations with time through nuclear reactions. For
comparison with (56), we give the expression for the
self-energy of a nondissipative system from [10, 12]:

Z%€

4TT?

0 1
dWwRe(el )

In contrast to (57), theintegral (61) over momentais
nonzero. The collective energy shift (60) clearly
depends only on the magnitude of the particle velocity,
i.e.,, on the particle energy. Therefore, it must change
sign a a certain energy, because the integral over

momenta becomes zero. In the integration with a

weight determined by the nuclear reaction rate w;;, the

= AR, (60)

Elp

T

(62)
XJ'dkdwE)( w—k ) w’
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relative energy is close to the Gamov energy and the
trandational energy is of the order of the thermal
energy. However, angular averaging isalso important in
determining the effective sign of the energy shift.

Since the particle distribution is assumed to be ther-
mal, the corrections can be interpreted only as an effec-
tive energy shift. The energy shift described above is
collective and, to a certain measure, is an analog of the
Lamb shift. The shift itself acts as an effective renor-
malized nuclear self-energy.

8. TRANSFORMATION
OF THE CORRECTIONS

Theratio of the nuclear reaction rate R; with collec-

tive plasma correctionsto their rate R in the absence
of plasmais

[w'(p)®;(p) dpdp
IWijq)i(p)¢j(p)dpdp
= 1+/\(C)

_1
R (62)

+ A,

where A‘© describes the correlation corrections and

A describes the corrections due to time evolution (the
subscript T points to the time evolution). As a momen-

tum-independent quantity, A matchesthe previously
derived expression (11), while A( is given by

AT = [ [wi (A + A @ (), dpp'|
B (63)
x| [wi @ (@) (p)dpap'|
By introducing the relative velocity v, = v — v' and
the center-of-mass velocity

myv + mV'
m; +m,

V =

of two reacting nuclei, expression (63) may be treated
as an averaging over the relative motion and the center-
of-mass motion:

AD = UW.,(/\(R)+/\(R))
E, V&
exp[ Jl)_l_}dv,dv}

T " 2(m + ©4)
E v -
| fonee| % o ey
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Depending on the relative energy E, = |; vf/2, the
integrands have a sharp maximum near the Gamov

energy E;; = (v )2, where
mm,
Hi = m+m

isthe reduced mass. Therefore, the integration over the
relative energy reducesto its substitution by the Gamov

energy. However, the sum A{Y + A'Y, depends on the

relative plasma particle momenta_ Consequently, apart
from the absolute values of the relative and tranda
tional energies, it depends on angles. Relation (64) con-
tains the corresponding angular averaging. After sepa-
rating out the angular dependence, we may perform
integration over the absolute value of k by taking into
account the fact that the w/kv, ratio (v, isthethermal
velocity of particles a) does not depend on the absolute
valueof kinview of w=k - v.

Simultaneously with the separation of the angular
dependence, the corrections must be transformed to a
form containing the relative mass fractions of various
nuclei to explicitly calculate the corrections for actual
applications to a plasma that is a mixture of various
reacting nuclei. We assume the ions to be completely
ionized, i.e., to be bare nuclei with their charges offset
by free plasma electrons:

Ne = zzini.
i

We use the permittivity in the form

= 1t Y W)
’n. ! 65
. E ZZ, n,W(s)% (65)
=1+ 1+ 0,
k d (1+Zeff)|:| zzini E

where the summation is performed only over the ions
and their velocity is assumed to be much lower than the
thermal electron velocity. Therefore, the Debye screen-
ing approximation [the second term in the first equality
in (65)] is used for the electron response. Here, d isthe
total Debye length and W(s) isthe standard plasmadis-
persion function,

1
o

mQ-NI P
_Q,\,I [

2

2 D 2 D
W(s) = 1+sexp(—s)DJﬁ—2Iexpt di
0 s 0

(66)
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and

2

W de

- ’ 1 + Z ’

S Jokve eff >

Z Z?%n, (67)
Zgs = :

Thus, both s and W(s) depend on the angular vari-
ablesalone. If

X = M
1
Z m;n;
i
describes the relative mass density of the nuclei, then

1

vipenl
m 0

ZXE
m 0

U

lD
E(k(,)z»:l-"zz%'-l-l
o 4

(68)

N
X

=
W
i

™M
3

X
I [
+

™
3|3
(IR

Note that A"y contains sums over the types of ions

j" of the functions that depend on k? and on the angular
variables appearing in s, ; -, while A{Y, contains sums
over thetypes of ionsj' of the functions that depend on
k? and on the angular variables appearingins ; ;;, where

Si.. = kl:v
- e/2vry (69)
_ M U
= mi+mj%/x+)\”zmi+mjm,
S . .= k O/
M kv
(70)

[ m. m,
= J Ay [l
mem S/x )\,szi Fm

Here, x isthe cosine of the angle between vector k and
the relative velocity v, of the two reacting nuclel, z is
the cosine of the angle between vector k and the trans-
lational velocity V of the two reacting nuclel, y is the
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normalized translational velocity, and A;; is the normal-
ized velocity corresponding to the Gamov energy

V

2TI(m +m)’

G
_ Vi

>\|J -
J2TI(m + my)
Using the relation

wa\év(f)s) = Sd\:jVés) = (1-25)W(s) —1

y =
(71)

(72)
and

ok EI:—pé(u)—k W)Ly,
(73)

it is convenient to reduce Eq. (56) to aform containing
only the operators wa/0w:

AT

AR = A+ A, (74)
M _ Zizez
P AT
22 . (75)
dk a Vi ag} o 1
x[—=Re]1+ %l— W=——1] ,
2 2 (0)
I R TR TR
2.2 2. 2
~m _ Zj€e dk_ O kvid
AD = S (SRef + —1
P 4T[2T-r K w0
y [(z‘k% ~1) Re(Eiw- 1)}
(0)]2 (0) |2
€4, 0 €k w (76)
1 0 5. =0 Kvig. ap
o W (ke =)t — B*’m
ek,cu )
ReEcu=1)_ 1 3 .o 0
X TG A
|€k,w |€k,w| R

Theintegration over kin (76) can be performed ana-
Iytically, and finding the collective corrections reduces
to averaging over y with the form factor

4oo 2
2 SA)dy,
ﬁ{ y’exp(-y?)dy
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Table
; S c (©) (M
No. Reaction A Ai(j’)N /\i(j')N Ai(jT)N AN+ Nijn
1 p+p 4.280 1 1 0.357 1.357
2 p+2H 4757 1 1 0.313 1.313
3 SHe + 3He 8.150 4 4 0.98 4.98
4 SHe + “He 8.420 4 4 0.943 4,943
5 Li+p 10.234 3 3 0.676 3.676
6 ‘Be+p 11.264 4 4 1.056 5.056
7 Be+e 0 0 -4 0.788 -3.212
over X with 9. NUMERICAL RESULTS
L Below, we present the results of our calculations for
the central part of the Sun using the following parame-
(1/2) I .. dx, ters[3]: X = 0.3411, X, = 0.6387, X = 0.00003, Xy =
- 0.0063, and X, = 0.0085. We have Z4 = 2.551 and
and over zwith Zi Z;X,/m; =0.661. The parameter e2dT depends on
temperature and density. For the temperature T =
1 1.5 keV and density n =5 x 10?° cm assumed in cur-
(U2)(...dz rent solar models, we have e2/dT = 0.05, which for the
_[ Salpeter corrections gives 5% for the p—p reactions (the

Using (66), we finally obtain

Ay, x. 2) = 2a Y
. x2) 4./ Td./1+zeﬁf ye
. (77)
IdxjdzRe{/\(THf\?,-“} +(i—]),
-1 -1

where /\i(J-T) (¥, X, 2) and 7\?,—” (Y, X, 2) are determined by
the averaging of (75) and (76), respectively; the expres-
sionsfor A" (v, x, 2) and A}’ (y, x, 2) are given in the
Appendix. Upon the change i < j, (A.1) and (A.2)
will contain (70) instead of (69) and, accordingly, s ; ;
appears instead of s ; ; and Z? appears instead of Z7 .

Since the nuclear masses enter into the numerators and
denominators of (A.1) and (A.2) with the same powers,
the nuclear mass in (76) can be measured in proton
masses, i.e., min (69), (70) and (A.1), (A.2) corre-
sponds to the atomic weight of the nuclei.

Relations (A.1) and (A.2) alow the rates of the
nuclear reactions between nuclei i and j to be calculated
for an arbitrary mixture of plasma nuclei. The summa-
tion over plasmaions ' includes both the reacting and

nonreacting nuclei, while the summation over ]
includes only the reacting nuclei.
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beginning of the hydrogen cycle) and 4€%/Td = 20% for
the reactions with Be (the end of the hydrogen cycle).
In order not to be attached to specific temperature and
density, it is appropriate to present the results of our
numerical calculations for the corrections in units of
e?/Tdfor A\ = /N Td/e*. Thetable gives the collective
plasma corrections that were numerically calculated
using expressions (77), (A.1), and (A.2). This table

contains the assumed values for the relative Gamov
energies \;;; the correlation corrections A{L, Ay,

and A}y ; and the total corrections A{x + Al 'y -

ijs

10. DISCUSSION

Previoudly, it was assumed that all collective correc-
tions were the Salpeter corrections and that they
enhanced therates of all reactions. As can be seen from
the table, not all of the collective corrections lead to an
increase in the reaction rates but only some of them. For
example, thereaction rates decreasein the reaction with
electron capture by ’Be nuclei. The latter effect is
important, because the reaction with ’Be nuclei is a
branching one (see the sixth column in the table). This
branching has been and is still one of the outstanding
problems for neutrino-producing reactions in the solar
interior. The decrease in the rate of the reaction with
electron capture by ‘Be nuclel causes a decrease in the
number of B nuclei and in the number of neutrinos pro-
duced during their decay. For al the remaining hydro-
gen-cycle reactions, the reaction rates are larger than
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those assumed previously. The net effect for these reac-
tionsis the sum of the suppression effect found in [10—
12] and the effect due to time evol ution through nuclear
reactions with neutrinos freely leaving the system. The
latter effect prevails, causing an enhancement of the
reactions. On the other hand, the proven equality of the
Salpeter correctionsto zero isconfirmed in that, if these
corrections are nonzero, then their interference with the
correlation corrections will lead to a result contradicting
the observations. Indeed, in this case, the corrections are a
factor of 4 larger than the Sal peter ones, i.e., about 80% for
reactions 3 and 4 of the table, which is in conflict with
solar seismology. The correlation effects lead to correc-
tions that, to a certain extent, “restore” the result com-
monly used in standard solar models, but the total correc-
tionsgiveninthelast column of thetablediffer from those
used. Numerical caculations of solar models show that
evenrelatively smal corrections can appreciably affect the
final parameters of an evolving nuclear system. The last
row in the table indicates that the correlation corrections
for the reactions of electron capture by ‘Be nuclel are sig-
nificant and negetive, with the zero Sapeter corrections
giving awrong answer. The correlation correctionsfor ‘Be
nuclel must be taken into account when constructing solar
models. Their inclusion isimportant in the existing prob-
lem of branching of nuclear reactions involving 'Be
nuclel.

Let us discuss the following question: With what
accuracy can we disregard the terms that lead to zero
Salpeter screening? Thisis determined by the possibil-
ity of disregarding the second term in Eg. (6). It
describesthe influence of the actually emerging, fluctu-
ating electric fields on the thermonuclear reaction rates.
The current theory of plasma fluctuations gives expres-
sions for the latter effect that diverge at large k. If we
use k. = LIr for our estimates, wherer isthe characteris-
tic nuclear size, then wefind that the effectsrel ated to fluc-
tuating dectric fidds are afactor of r/R smaller than those
taken into account here (Ris the scale size of the fluctuat-
ingfields). If, alternatively, k., = Ny/d (largeanglesin col-
lisions), then the relative contribution of the second term
in Eq. (6) iseven smaller, being = r’N/R2.

It is worth noting that the plasma density in labora-
tory laser experiments can be higher than that in the
solar interior, while the temperatures are of the same
order of magnitude. Then, €/dT is an order of magni-
tude larger than its value in the solar interior and the
correlation corrections for the D + T reactions are 50%
instead of 5% in the solar interior. The total corrections
calculated numerically by using the present theory are
larger than the correlation corrections (which give
50%) by a factor of 1.194, which corresponds to an
increase in the reaction rate to 51%.

According to our results, the physical meaning of
the collective corrections is related to a change in the
(correlation and time) distribution of nuclei but not to a
change in the probabilities of nuclear reactions, as
assumed previoudly. In this sense, the corrections are
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not specific to nuclear reactions and arise for any other
reactions, in particular, chemical ones (however, for our
numerical results to be applicable, their rates must be
larger than the rate of fluctuations and the specific aver-
aging results under opposite conditions will be differ-
ent). This emphasizes a magjor physica difference
between our calculated corrections and those that could
be related to the screening of nuclear reactions taken
into account previoudly. Thus, the paradox between
dynamic and static screenings is resolved.

The zero approximation of weak Salpeter screening
was assumed to be insufficient to describe the nuclear
reactions in the solar interior and in stars at other evo-
lutionary stages. The interpolation formulas that
describe the nuclear reactions in the intermediate
region between strong and weak screenings were com-
monly used for this purpose. It follows from our results
that this approach is inapplicable. There is no screen-
ing, and the correlation effects must be described more
accurately to derive the interpolation formulas. Here,
we obtained the result for weak correlations by expan-
sion in a small parameter, the number of particles
within a Debye sphere. This parameter differsfrom that
used previously for the Salpeter corrections—the ratio
of thermal energy to Gamov energy. The correct inter-
polation formulas for the correlation corrections could
be derived if the result for strong correlations were
known. Although various methods were used to
describe strong correlations in plasma, they are all
based on several as yet unproven hypotheses. Even the
problem of weak correlations, which we studied here,
has not yet been completely solved. Using our results,
we can propose amethod for describing the correlation
effects of the next order in parameter 1/N,, as well as
formulate and analyze the corresponding equations.
However, it is unlikely that the effects of strong corre-
lations in general form, which could be used to derive
the interpolation formulas, will be analyzed in detail in
the foreseeable future. Thus, the accuracy of the cur-
rently available modelsfor describing nuclear reactions
during stellar evolution that use the Salpeter interpola-
tion formulasis called into question.
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APPENDIX
Our calculationsyield the following expressions for
/\i(,-T) (y, X, 2 and ;\i(jT)(y, X, 2) , respectively:
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Here, as above, the subscript ] alows only for the

TSYTOVICH

nuclei that are involved in the nuclear reactions and

NP

— 2
Lot = J—
j
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Abstract—An approach to the exact description of exchange in disordered quantum systems at finite temper-
aturesis formulated in terms of Feynman path integrals, which eliminates rigid restrictions on the number of
particles and allows numerical simulation of the equilibrium characteristics of the electron component of a
dense plasma to be performed by the Monte Carlo method. The combinatorial weight factors for all diagrams
involving the linked Feynman paths for systems including up to 50 electrons were determined, and the corre-
sponding distributions over spin states were found. Based on the data obtained, a mechanism responsible for
the formation of a spin state of a many-electron system at finite temperatures is studied. The combinatorial
weights of the diagrams grow rapidly on the passage from short to long cycles of linked paths. In the system at
afinite temperature, this growth is compensated by a decrease in statistical weights of the diagrams with long
cycles. The proposed path-integral Monte Carlo formalism was used for the numerical simulation of a dense
hydrogen plasma under the conditions corresponding to the boundary of degeneracy of the electron component.
The periodic cell contained 100 electrons and 100 protons. The results of numerical calculations show that,
despite a high temperature, a dense plasmais far from aclassical regime. Energetics of the plasmaisformed at
small interparticle distances, where the quantum character of the electron motion plays adetermining role. The
degree of ionization and the correlation functions are calculated, and the correlation radius is estimated. The
formation of proton—electron pairs in the course of plasma cooling is studied in detail. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

During the time that has passed since the original
publication of Metropolis [1], extensive development
of computer simulation techniques has given rise to an
independent direction in statistical mechanics which is
engaged in solving problems recognized as hopeless
within the framework of traditional approaches.
Description of the thermal and structural properties of
a dense, strongly nonideal plasma occupies a specia
place among such problems because this system has a
number of important applications, ranging from metal
processing and magnetogasdynamics to controlled
thermonuclear fusion [2].

Asthe particle number density decreases, the degree
of collectivization in a system of charged particles
increases due to arapid expansion of the Debye sphere
[3], rather than drops as in a system with short-range
interactions. The Debye screening provesto be the only
factor preventing the thermodynamic potentials from
divergence. Using the idea of Mayer [4], according to
which the group integrals are expanded over the clus-
ters linked by simpler bonds, with their subsequent
rearrangement, it ispossibleto write expressionsfor the
virial coefficients in terms of converging cluster inte-
grals. Summing the Fourier images of ring diagrams
with the aid of the convolution theorem leads to the
Debye mean force potential of the interaction between

ions. The other contributions exhibit convolution into
prototype diagrams with Debye screening in the links,
which provides for their convergence. These compo-
nents represent high-order corrections (in powers of the
plasma density) to the limiting Debye law. The Mayer
ideas were subsequently developed. Sapeter [5] sug-
gested a method for passing to high-connectivity dia-
grams in the expansion over density powers, and
Meeron [6] obtained cluster expansions for the mean
force potential and abinary distribution function, while
Stell and L ebowitz [ 7] obtained such expansionsfor the
Ursel function. Friedman [8] suggested a generaliza-
tion of the Mayer theory to a non-pairwise potential of
the interaction between ions.

Despite later achievements in the development of
analytical approaches, the Mayer theory still remains
an asymptotic theory of the plasma of extremely low
densities and high temperatures. The most significant
particular results for ion systems were obtained using
the methods of integral equations—a traditional
approach in the theory of fluids—rather than using vir-
ia expansions. Martynov [9] analytically solved the
Bogolyubov equation for the binary distribution func-
tion in asuperposition approximation [10]. Rasaiah and
Friedman [11] considered a solution to the integral
equations for a system of ions in the hyperchain
approximation; Carley [12] employed the Percus—
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Yewick integral equation with the hyperchain approxi-
mation in order to obtain abinary distribution function.
Theresultsobtained in [11, 12] refer to adomain where
the Coulomb interaction can be considered as a small
perturbation relative to the short-range repulsion
between ions. The corresponding perturbation theory
devel oped by Henderson and Blum [13] leadsto ahigh-
temperature expansion of the free energy, the leading
term of which includes the Debye contribution and the
spherical model corrections[14].

Even the first applications of the Monte Carlo
method [15] led to progress in the study of denseion
systems, up to atransition to the condensed state [16—
23]. A comparison of the results obtained by the Monte
Carlo method to the numerical solution of the Percus—
Yewick integral equation and the results obtained
within the framework of aspherical model in the hyper-
chain approximation [ 23] showed that the | atter approx-
imation gives the results that are the closest to those
obtained using the Monte Carlo ssimulations. In a sys-
tem of charged particles, even the gas phase features
extensive cluster formation as reflected by the equilib-
rium properties of the plasma [24-27]. Traversing the
point of minimum correlation radiusin the gas phaseis
accompanied by sharp changesin the equilibrium ther-
modynamic characteristics of the ion system, resem-
bling the second-order phase transition. The region in
the vicinity of a critical point of the ion plasma was
exhaustively studied by Vorontsov-Velyaminov et al.
[28-31]. Shiff [32—34] used the Monte Carlo method to
study the nonsymmetric systems of classical charged
particles. In the past decade, the interest of researchers
in the ion plasma has not weakened. Wolf et al. [35]
thoroughly studied the problem of taking into account
the long-range interaction and screening; Caillol [36]
developed the idea of replacing the periodic boundary
conditions by modeling on a four-dimensional hyper-
sphere surface. Investigations into the problem of a
phase transition to the condensed phase were continued
aswell [37-44].

The formation of ion clusters was studied in detail
by various researchers [45-56]. A broad region of sta-
bility of the ion chain clusters was found in the phase
diagram of an electroneutral plasma. The ion systems
with violated charge symmetry exhibit a reversed situ-
ation: the mean force potentia of ion triplets favors
their repulsion and hinders nucleation [53].

A considerable effort in the investigation of thermo-
dynamic characteristics of classical charged particles
led to the formation of arelatively complete pattern. On
this background, the thermodynamic properties and
structure of a dense ion—€electron plasma offer a much
less studied direction. Development of an effective
computer simulation method for the study of quantum
particles has begun only quite recently and has pro-
gressed rather slowly, encountering a number of basic
difficulties. The approach to modeling quantum sys-
tems at finite temperatures is based on the Feynman
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representation of the quantum mechanics in terms of
the path integrals [57]. Fosdick and Jordan [58, 59]
applied the path integral Monte-Carlo (PIMC) method
to modeling a simplest system of helium atoms.
Attempts at simulating the electron plasma component
were madein [60—63]. The main difficulty in the devel-
opment of PIMC was related to the description of
exchange in the electron system. The proposed
approaches either referred to hypothetical “ spinlessfer-
mions’ [64—74] or completely ignored the exchange
[75-78].

A principal requirement for the exact description of
the permutation symmetry in systems at finite tempera-
tures consistsin constructing acompl ete set of antisym-
metric wave functions. A simple symmetrization is
insufficient for calculating the mean equilibrium val-
ues, while the trace of a datistical operator in the
incompl ete set representation is not a partition function
[79]. Recently [80, 81], an exact procedure was sug-
gested for constructing a complete set of wave func-
tions and introducing spin into the PIMC formalism.
Test calculations were performed for the electron shells
of ahydrogen molecule [82, 83] and beryllium and lith-
ium ions [84]; the spin state of an electron pair occur-
ring in a microvoid (in the context of the problem of
electrodes) was calculated in [85]. This study, whichis
a continuation of the previous publication [81], consid-
ers application of the ideas formulated there to the
numerical calculation of the equilibrium propertiesof a
dense hydrogen plasma.

2. THE PROBLEM OF DESCRIPTION
OF THE PERMUTATION SYMMETRY
IN A SYSTEM WITH A LARGE NUMBER
OF QUANTUM PARTICLES

The complete wave function of a system of indistin-
guishable fermions must be antisymmetric with respect
to simultaneous permutations of spin and coordinate
variables. However, the coordinate part of the wave
function in the general case is not antisymmetric: the
symmetry type depends on the spin state. The coordi-
nate part of the wave function becomes antisymmetric
in the state with a maximum spin. This simplest partic-
ular case is usually treated in numerical statistical cal-
culations [64—74], although the state of maximum spin
usually corresponds to a relatively high energy and is
not of much interest.

In contrast to the calculations of pure gquantum
states, the statistical description of a system implies
summation over all accessible spin states and, hence,
over al possible types of the permutation symmetry of
the coordinate function. A basis set in the symmetrized
space is constructed with the aid of the Young symme-
try operators [86, 87]. Each particular Young's scheme
generates its own basis of irreducible representation of
the permutation group. Completeness of the combined
basis set is confirmed by direct calculation of the total
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dimensionality of all disoint subspaces generated by
all the possible Young's schemes [86].

It can be shown that the space of complete wave
functions satisfying the requirement of permutation
symmetry isexhausted by all direct products of the sub-
spaces of spin and coordinate functions generated by
the Young operators with dual (obtained by reflection
from diagonal) schemes. For particleswith the spin 1/2,
each subspace of this kind corresponds to a particular
eigenval ue of the square spin operator of thewhole sys-
tem [87].

Acting upon the wave function of an N-particle sys-
tem, the Young operator converts this function into a
linear combination including (depending on the spin
state and the parity of N) from 2NV2[(N/2)!]%to N! terms.
The sgquare of thisyieldsthe number of termsin the cor-
responding matrix elements of the statistical operator.
For calculating the mean equilibrium values, the
expression should be integrated with respect to all N
variables. In the general case, a multidimensional inte-
gral cannot be calculated analytically, while a numeri-
cal realization of such calculations becomesimpossible
(because of therapid growth of N!I') even for asystem of
several fermions.

Previoudly [81], it was demonstrated that the set of
diagrams of linked paths can be reduced to a much
lower number without introducing approximations,
after which the numerical integration becomesfeasible.
Upon such reduction, one can obtain the control tables
of combinatorial weights and determine the distribu-
tions over spin states for each prototype diagram. How-
ever, the number of operations necessary for calculat-
ing the control tables grows faster than N! and, hence,
the calculation is realizable only for N < 10. A method
described below removes these restrictions.

A basic requirement posed upon any variant of the
Monte Carlo method is that the modification must not
introduce systematic errors. This requirement was
taken into account in developing a variant of the
method applicable to systems with large humbers of
particles. Here, by saying “large number” we imply a
situation excluding al the particle number limitations
related to the description of exchange; only restrictions
typical of the systems obeying classical statistics are
retained. For modern computer facilities, the upper
limit determined by these restrictionsis on the order of
several hundred to several thousand particles. The mod-
eling of macroscopic systems requires using periodic
boundary conditions so as to eliminate the problem of
edge effects.

The action of the Young operator leads to the
appearance of about N! terms in the matrix element of
the statistical operator, each of these terms representing
a certain permutation of the coordinate variables. In
terms of the path integral formalism, such a permuta-
tion corresponds to a certain structure of linked paths
[81]. It would be senseless to attempt to calculate this
linear combination numerically and, the more so, to
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integrate this combination in a system of, for example,
100 fermions; such a linear combination contains
100! ~ 10*" terms. Theideaof an approach proposedin
this paper consistsin extending the concept of essential
set to the procedure of symmetrization of the wave
function. Itis suggested to perform, parallel to wander-
ing in the coordinate space, aMarkov random walk pro-
cess over elements of the set of all permutations gener-
ated by the Young symmetry operator. Although the
combinatorial weights of all such permutations equal
1, the corresponding contributions to the partition
function and canonical means strongly depend on apar-
ticular structure of linked paths generated by the given
scheme.

The Markov random walk process in the combined
space of the coordinate variables and various path link-
ing modes (permutations) leads to an essential set
selected from the vast number of terms contained in the
Young symmetry operator. Permutations generating
like structures of linked Feynman paths can be com-
bined into classes, so that the random walk would pro-
ceed over such classes rather than over particular per-
mutations. Various classes contain different numbers of
elements and, hence, possess significantly different
combinatorial weights. The essential set will involve
primarily the most significant classes with respect to
their combinatorial weights. It should be emphasized
that less significant contributions are not rejected, but
postponed. As the Markov random walk proceeds, the
accumulated statistics involves the terms with smaller
contributions; in the limit of an infinitely long process,
the calculated quantum-mechanical mean values coin-
cide with the corresponding exact values.

A change in the arrangement of variables over cells
of the Young scheme leads onto to renumbering of the
vertices of the diagram of linked Feynman paths of the
guantum particles under consideration [81]. Since the
results of integration of these diagrams is independent
of the numbering of vertices, calculation of the canoni-
cal means reduces to the integration of the family of
diagrams for any one arrangement of argumentsin the
Young scheme. Such an arrangement is conveniently
selected in the form of the fundamental sequence,
whereby the argument number coincides with the cell
number [81].

TheYoung operator represents sequentially applied
operators of pair symmetrization (1 + fy;;) and antisym-
metrization (1 — ;) with respect to the argument num-
ber:

9 = 1-A)(1-1)...(1+A,)(1+d,). (D)

Here, A, A, ... arethe operators of pair commutation
over the numbers of arguments occurring in the same
column of theYoung scheme; f, , A, ... arethe anal-

ogous operators for argument pairs occurring in the
same row of the scheme [81]. After opening of the
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parentheses, the product (1) acquires the following
form:

A9 = Y adni, @

where summation is performed over all N! permuta-
tions of the argument numbers. The combinatorial
weights ag(n) of the permutations take one of three val-
ues. +1, -1, and O.

If a permutation operator in the sum of Eq. (2) can
be represented as the product

Nn = NkNINm; (3)

where Ny, N, are the operators of argument permuta-
tion in the first and second columns of the Young

scheme and Ny, is the operator of argument permuta-
tion in the rows of this scheme, the corresponding
weight can be written as

as(n) — (_1)c(k)+c(l),

where c(K) and c(l) are the parities of permutations N

and N, respectively. Any operator N,, which cannot be
represented in theform (3) isin fact not contained in the

symmetry operator J(S) corresponding to the eigen-
value of the square spin operator S(S+ 1) and the fun-
damental arrangement of arguments over cells of the
Young scheme. In this case, the corresponding combi-
natorial weight in Eq. (2) is ag(n) = 0. Equation (2) is
essentially an expansion of the Young operator in terms
of the unit vectors N, in the operator space of all pos-
sible permutations, so that a vector of this space with
the components

{agn} = @ 1), ag?2),...,aqN)

uniquely determines the Young operator.

Previously [81], it was shown that the partition func-
tion of a system of N undistinguishable nonrelativistic
fermions with the spin 1/2 can be written as

S
1 +
2= @Sy ()T
S n

x [d'r({r} lep( F)Na{r})
(@)

- %z(zsn 1)y agn)
S n

x fd'r({r} lexp(8 A)IRnfr) ),

where 3 = U/kgT isthe reciprocal temperature and kg is
the Boltzmann constant; the symbol Sover the summa-
tion sign indicates that summation is performed only
over the permutation operators contained in the Young
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operator J(S) . During the calculation of matrix ele-

mentsin theintegrand of (4), each permutation N, gen-
erates a certain diagram of linked virtual numbered
paths. The subsets of such diagrams differing only by
numbering of the vertices form classes. These subsets
can be combined with a common factor

{vit

ws({v}) = agn), ©®)

and the summation over al N! permutations can be
replaced by summation over al classes with a proto-
type graph I:I{Vi} of the given class. Here, the multidi-
mensional subscript {v;} = (vVq, V,, ..., V) determines
the diagram structure: v; isthe number of cyclesinclud-
ing i linked paths; the symbol {v;} over the summation
sign in (5) indicates that summation is performed only

over n values for which the operators N,, belong to the
class with a prototype graph I:I{v& and enter into the

symmetry operator J(S) . In these terms,

1
Z=15w{v)
N’{vz.} ()

x [d'({r} lexp(B A)IAg) {r}),

where
w({v}) = Z(ZS+ Dwg({v}).
S

The structure of expressions for the canonical mean
valuesis analogousto that of the partition function (6).

It is possible to construct a procedure of wandering
over particular permutations, but this pathway is not
optimum since the Markov transitions between permu-
tations belonging to the same class do not in fact
improve the statistics. The random walk over permuta:
tions is expediently replaced by the random walk over
permutation classes. In each class, arandom (equiprob-
able) set of permutations is taken from the manifold of

all permutations N, upon checking for their simulta-
neous belonging to the given class {v;} and to the

Young operator J(S) . The permutation is given a com-
binatorial coefficient ag,;(n) = ag(n) provided that
both conditions are satisfied and ag,;(n) = 0 if at

least one of the two conditionsis violated. In each step
of thisrandom process, we obtain an unbiased estimate
of the combinatoria coefficient wy({v;}):

|
adivr. (g = TS ag, ). @
k=1
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where | is the volume of set {n,}. It is of basic impor-
tance that the approximate character of estimate (7) for
ws{vi},{ng,1) obtained using afinite set {n} on a
single step of the Markov process does not mean that

the entire calculation procedure is approximate, pro-
vided that it is based on the combinatorial weights

ws{ v}, {n,I) rather than wg({v;}). Indeed, expres-
sion (5) can be aternatively written as

| {vi

|(N.)'—1Z Z

{nk}k 1

ws({vi) = as(ng

1
= Wz Z O vy (NY (8)

{nt k=1

1

= Wm_lz&s({vi}’{nk} 1),

{nd

where{n} =n;, n,, ..., njisaset of | numbersfromthe
complete series of integersfrom 1to N! (numbersin the
set {n} may be repeated). The symbol {n} at the sum
in (8) indicates that summation is performed over all
possible sets; the coefficient L/I(N!)'-1 takes into
account the repeated terms. The last equality in (8)
reduces calculation of the combinatorial coefficients
wg({v;}) to taking a sum over sets{n,} from the series
of al possible permutations (instead of summing over
permutationsinside the class{v;} asin expression (5)).
Upon substituting (8) into (6) and representing the
matrix element in the integrand as a product of the
matrix elements for which the analytical expressions
areknown [57], the partition function acquirestheform

z

—=5 3 T @S+ had{v}.{n} D

{vi{n} s
x J’dNr(l)dNr(Z)...dNr(M)

(N')

x qr (M)} el BHDI{r (1)} O )

< qr 0 e r @) 0.

« qr (M- 1)} exp L BH B (r vy

Note that, despite being written in terms of coefficients
wg{ v}, {nd 1) determined for finite sets, expression
(9) is exact. Writing the partition function in the form
of (9) alows the particle number limitations related to
the exchange to be removed and the Markov random
process for a system of several hundred or even severa
thousand particles to be constructed.
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Each microstate of the Markov process based on the
partition function (9) is determined as acombination of
sets X =({ri()}, {vi}, {ng) representing coordinates of
the vertices of broken (polygonal) paths {{r;(j)}, the
mode of linking nonnumbered paths into cycles {v},
and the sets of L permutations with numbers{n,} from
al the possible N! permutations. The values of matrix
elements are determined by the set ({r;(j)}, {vi}); the
combinatorial coefficients are determined by the set
({vi}, {ng) and are independent of {r;(j)}. According
to the theory of Markov processes [15], the matrix of
transition probabilities p(X, Y) for aprocess with preset
limiting distribution w(X) is not uniquely determined.
In order to obtain the preset limiting distribution, it is
sufficient to satisfy the detailed balance condition

W(X)p(X, Y) = &(Y)p(Y, X) (10)
and the ergodicity condition; the latter requires that a
given microstate could be accessed from any other via
a sequence of intermediate transitions with nonzero
probabilities.

In the proposed method, the calculation algorithm
consists in sequentially accomplishing transitions of
five types:

1. Shifting one vertex of the polygonal path {r;(j)},
whileretaining {v;} and {ny};

2. Shifting a path or a cycle of linked paths as a
whole, whileretaining {v;} and {n,};

3. Rotating a path or a cycle of linked paths as a
whole, whileretaining {v;} and {n,};

4. Forming a new cycle by linking two cycles or
paths with simultaneoudly passing to anew set{n,} and
changing positions of a part of the verticesin {r;(j)};

5. Separating a cycle into two cycles or paths with
simultaneously passing to anew set {n,} and changing
positions of a part of the verticesin {r;(j)}.

The vertices, paths, and cycles to be shifted are
selected in a random way. The probabilities of transi-
tions are played using a random number generator
according to the Metropolis algorithm [15]. Optimum
values of the limiting spatial shift and rotation are
determined by the program (with the aid of a specia
algorithmic feedback system) in the initial segment of
the process. This segment is not involved in calculation
of the equilibrium mean values. According to the algo-
rithm, M steps of type 1 for one path are accompanied
with one step of type 2 and three steps of type 3 (rota-
tions about three Cartesian coordinate axes). Optimum
frequencies of the steps of types 3 and 4 are also deter-
mined by the program in the initial segment of the ran-
dom process. Besides quantum particles (electrons), the
system contains heavy particles (protons) which are
treated according to the standard Metropolis procedure
of the classical particle simulation. All the Coulomb
interactions of any particle with all others are explicitly
taken into account: protons interact with each other and
with al vertices of the paths of electrons; electrons
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interact via vertices with identical numbers. In the
regime of simulation with periodic boundary condi-
tions, the interactions are taken into account by the
closest image method [15].

The experience of numerical calculations showed
that the frequency of transitions into new microstates
via direct events of path linking and separation is usu-
aly too low for accumulating necessary statistics. For
this reason, the probabilities of such transitions are
selected using a specia procedure. However, these
probabilities still obey the detailed balance condition
(20) that providesfor the attainment of alimiting Gibbs
distribution [15]. The path linking and separation
events are played only for the pairs of vertices with
identical numbers under the condition that a distance r
from the separated vertex to the newly connected oneis
below certain fixed valuer ... Linking viaverticeswith
the numbers different from unity reduces to the
exchange of path fragments. When r exceeds a certain
fixed valuer ., thelinked vertices are brought closer to
each other with simultaneous uniform stretching of the
path over afragment with thelength Mg, < M. The opti-
mum values of 1., I'min @d M, are established in the
preliminary simulation stage using a special algorith-
mic feedback system.

The steps of types 4 and 5 lead to a change in the
current values of combinatorial weights ws({Vvi}, {n},
1), which have to recalculated. The calculation of sum
(7) is conducted as follows. Firgt, the Young scheme of
N empty cells is formed that corresponds to the given
spin value S the scheme comprisesj, = N/2 + Scellsin
thefirst column and j, = N/2 — Scellsin the second col-
umn. Then, numbers from 1 to N are equiprobably
assigned to the cells with the aid of a random number
generator. This assignment represents a particular per-

mutation Nnk selected randomly and equiprobably
from N! possible permutations. Finally, the combinato-

rial weight of the given permutation is determined by
searching for and analyzing of the inverse permutation

Nﬁkl converting the given arrangement of numbers in
cells of the Young scheme into the fundamental
sequence. It was demonstrated previousy [81] that
symmetrization of any eigenfunction of the coordinate
operator f({r;}; {x;}) achieved by the action of acertain

linear combination of the permutation operators N
upon arguments {x;} is egquivalent to the action of the

same linear combination of inverse operators N on
the eigenvalues{r;}. Therefore, the permutation opera-

tors N, must act upon {r;} in the reverse order: anti-
symmetrization with respect to numbersin the columns
of the Young scheme, followed by symmetrization over
the rows. This operator is referred to as the alternative
Young operator.
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Although the change of all permutations in the
Young operator modifies the type of symmetry of the
wave function, the values of matrix elements in the
integrand of (6) remain unchanged. Indeed, the inverse
operators correspond to the path diagrams with reori-
ented segments, but the orientations of segments do not
influence the values of matrix elements of the statistical
operator [81]. Owing to this invariance, there are two
equivalent methods for calculating the weights
ws({Vvi}, {nd, ). The difference isin the way of sym-
metrization with respect to {r;} in the basis wave func-
tions—with the'Young operators or with the same oper-
ators in which all permutations are replaced by inverse
ones. We will use the latter approach. In this case, the
aternative Young operator contains a given permuta-

tion Ny, provided that it has a structure of the type
Ny, = N NNy, where the first operator in the right-
hand part produces permutation in the rows of the
Young scheme and the latter two operators, in the first

and second columns of this scheme. Therefore, the
inverse permutation must possess a structure of thetype

N;kl = NkNiNm- (ll)

Thisis checked by sequentially commuting numbersin
the rows of the Young scheme so as to transfer al the
first j; numbersto the first column and the other j, num-
bers to the second column of the scheme. If this rear-

rangement is possible, the structure of the Nﬁkl operator
satisfies condition (11). Otherwise, permutation Ny, is
assigned the combinatorial weight

Osqvy(N) = 0.
Once condition (11) is obeyed, the combinatoria
weight of the N, permutation is

as{v‘} (nk) — (_1)c(k)+c(i).

Here, the parities c(k) and c(i) of permutations Ny and

Ni, respectively, are calculated as follows. Each per-
mutation corresponds to a permutation graph, analo-
gous to a diagram of linked Feynman paths. Any pair
commutation leads either to the merge of two cycles
into one or to the decay of one cycle into two; that is,
the number of cycles in the graph aways changes by
unity. Therefore, the number of cyclesy(k) in the graph
isrelated to the number of pair commutations c(k) con-

tained in a given permutation Ny by the formula

(_1)N—C(k) — (_1)V(k)
which allows the combinatorial coefficient of permuta-
tion Ny, to be expressed viathe numbers of cycles:

Us (v} (n) = (_1)y(k)+y(i).
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The numbers of cyclesy(k) and y(i) in the permutations

Nk and N; are calculated numericaly. For this pur-
pose, one has to analyze the sequence of numbers in
both columns of the Young scheme after accomplishing

permutation N . The presence of number i in the cell |
corresponds to the path segment directed from the ith
to jth vertex in the permutation graph. In this way, the
graph structure is sequentially restored and the num-
bers of cycles for both permutations are determined.
The entire procedure isrepeated | times, and thesum in
Eq. (7) is calculated. After accomplishing this calcula-
tion for al possible spin states S=0, ..., N/2 (for even
N) and S= 1/2, ..., N/2 (for odd N), the sum over spin
states is taken with an allowance for degeneracy with
respect to the eigenvalues of the spin projection opera
tor:

W{v}.{n.h =% @S+ Dad{vi. {nd,]).
S

Unlike coefficients wg({v}), the values of ws({V;},
{ng,1) areonly calculated in the course of the Markov
random walk and not stored in the computer memory.
Astheset volumel increases, the latter values approach
wg{v;}) thefaster, the greater N. Infact, essential infor-
mation on wg({V;}) is contained in a number of ele-
ments that is much smaller than (N!)’—the number of
elementsin the right-hand part of Eq. (8). This circum-
stance makes the essential set method especialy effec-
tive.

The probabilities of transitions between microstates
X=({ri@)} (v} {nd)and Y=({ri(i} . v}, {nd)
involved in the Markov process contain combinatorial
weightsin the form of ratios [15]

p(X, Y)
dod v {ng DladriGy . &3 B) o (12
Joagvd {nd Dladri(} v 3 B) T

wherea({r;(j)}, {vi}, B) denotes the chain of high-tem-
perature matrix elements of the density matrix operator
in the integrand of Eqg. (9).

As demonstrated above, constructing a fundamen-
tally exact procedure does not require that ws({V},
{ng, ) coincide with wy{v;}). However, the relation-
ship between the two quantities depending on the vari-
ation of | is of independent theoretical interest. A com-
parison of Egs. (5) and (7) showsthat the two expressions
coincideforI=N!l'and{n} =1,2,3,...,N.. Itisnaturally

expected that ws({vi}, {nd, 1) — wy{v}) asl — NI
(uniformly or nonuniformly over {ng}). The proof of
this statement is omitted, but a reason for this behavior
is evident, at least from the following fact. As the vol-
ume | of set {n} increases, the relative fraction of the
possible combinations containing repeated numbersin
the sequence {n} decreases; most of such combina

= min
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tions are close to the fundamental sequence{n} =1, 2,
3, ... for which Egs. (5) and (7) exactly coincide.
From the standpoint of the efficacy of a calculation
procedure, not only the fact of convergence ws({V;},
{ng, ) — w({v;}) isimportant, but the rate of this

process is significant as well. Only sufficiently rapid
convergence would allow usto check for correctness of

the numerical calculation of ws({v}, {ng, ). Such a
verification based on the identity (8) can only be per-
formed for sufficiently small N and | because the right-
hand part of this equation contains (N!)'l terms. The
check implies a comparison of the numerical values of
ws{vi}, {nd, ) and wg{v;}) calculated using inde-
pendent computer programs. This comparison is possi-
ble only for N < 10, because the calculation of wg({v;})
by direct summation over all possible permutations for
greater N would require about 10*-10° hours of
medium-speed computer operation. Since the computa:
tion algorithm is independent of the particular N value,
coincidence of the ws({vi}, {n, ) and wy{v;}) values
for small N guarantees that the weights wg({v;}) are
correctly calculated using ws({v}, {ng, 1) for any N
values (including those for which direct calculation is
impossible).

In this study, such a verification was performed for
various N values. The rate of convergenceisillustrated
by the data presented in Table 1. As can be seen, even a
relatively small set of | = 100 provides for the weight
factors differing from exact values by only 1-2%. In
order to determinethe value of one coefficient, itisnec-
essary to take a set from al the possible Young's
schemes: the set has avolume of 1(N/2 + 1) for even N
and I((N—-21)/2 + 1) for odd N. Since the exact calcula-
tion of equilibrium means does not require the weight
factors to be calculated exactly in each step of the
Markov process, there exists an optimum set volume |
ensuring the obtainment of canonical means at a mini-
mum computation time. An overly small | value hinders
distribution of the computation effort between statesin
proportion to their contributions to the equilibrium
means. On the contrary, overly large| values slow down
accomplishing the procedure in each step. Apparently,
the optimum | value decreases with growing N. The
experience of calculations performed within the frame-
work of this study showsthat, for N = 100, the optimum
set volumeis about | = 10.

The data for N = 10 in Table 1 can illustrate the
behavior of weight factors depending on the number of
linked tragjectories. As the table is traversed bottom to
top, the number of linked paths increases and the cycle
length grows. As can be seen, an increase in the cycle
sizeisaccompanied by the growth in absol ute values of
the combinatorial weights, with oscillations in their
signs. The maximum weight is observed for a configu-
ration where al electrons form a common cycle (the
first row in Table 1).
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Table 1. Generalized combinatorial weightsw'({v;}) = w({v;})/e(NQOO...0) of various modes of the distribution of nonnumbered
virtual electron trajectories over cycles (v, isthe number of cyclesincluding i linked trajectories) in asystem of N = 10 electrons:
theresults of calculations performed by method of random sampling in permutations with various set volumes| are compared to
the exact val ues determined by direct summation for al spin states and permutations contained in the Young symmetry operators

v w({vi})

! =10 | =100 | =107 Exact vaue
1 0000000001 -1.058 x 10° -1.101 x 10° -1.0086 x 10° —1.00800 x 10°
2 1000000010 1.232 x 10° 1.222 x 10° 1.2097 x 10° 1.20960 x 10*
3 0100000100 6.867 x 10* 6.212 x 10* 6.3836 x 10* 6.38400 x 10*
4 2000000100 -8.001 x 10* —7.560 x 10* —7.3919 x 10* —7.39200 x 10*
5 0010001000 6.048 x 10* 4.752 x 10* 4.8158 x 10* 4.81600 x 10*
6 1100001000 —7.344 x 10* -8.042 x 10* —7.8981 x 10* —7.89600 x 10*
7 3000001000 3.624 x 10* 3.125 x 10* 3.0791 x 10* 3.08000 x 10*
8 0001010000 4.410 x 10* 4.292 x 10* 4.2057 x 10* 4.20400 x 10*
9 1010010000 -7.112 x 10* —6.128 x 10* -6.0707 x 10* —6.07200 x 10*
10 0200010000 -2.268 x 10* -2.115 x 10* —2.1574 x 10* —2.15800 x 10*
11 2100010000 4.368 x 10* 4.726 x 10* 5.0152 x 10* 5.01600 x 10*
12 4000010000 -1.190 x 10* -9.961 x 10° -9.8953 x 103 -9.90000 x 10°
13 0000200000 1.956 x 10* 2.109 x 10* 2.0264 x 10* 2.02560 x 10*
14 1001100000 -5.897 x 10* -5.116 x 10* —5.4729 x 10* —5.47200 x 10*
15 0110100000 -3.427 x 10* -3.331 x 10* -3.4329 x 10* -3.43200 x 10*
16 2010100000 3.058 x 10* 3.891 x 10* 3.9758 x 10* 3.97600 x 10*
17 1200100000 2.848 x 10* 2.838 x 10* 2.8201 x 10* 2.82000 x 10*
18 3100100000 —2.050 x 10* —2.222 x 10* —2.2073 x 10* —2.20800 x 10*
19 500010000 2.570 x 10° 2.693 x 10° 2.6480 x 103 2.64800 x 103
20 0102000000 -1.638 x 10* -1.405 x 10* -1.5994 x 10* —1.59900 x 10*
21 2002000000 1.937 x 10* 1.945 x 10* 1.8667 x 10* 1.86600 x 10*
22 0021000000 -1.218 x 10* -1.422 x 10* —-1.4105 x 10* -1.41067 x 10*
23 1111000000 4.242 x 10* 4.628 x 10* 4.6498 x 10* 4.64800 x 10*
24 3011000000 -1.876 x 10* -1.708 x 10* -1.8265 x 10* -1.82667 x 10*
25 0301000000 5.145 x 10° 5.324 x 10° 5.4820 x 103 5.48000 x 103
26 2201000000 -1.780 x 10* -1.983 x 10* -1.9325 x 10* -1.93200 x 10*
27 4101000000 7.140 x 10° 7.996 x 10° 7.6964 x 103 7.70000 x 103
28 6001000000 -5.915 x 102 —6.475 x 107 —6.2656 x 102 —6.26667 x 102
29 1030000000 7.280 x 10° 7.031 x 10° 6.7988 x 10° 6.80000 x 103
30 0220000000 7.420 x 108 7.322 x 10° 7.3064 x 103 7.30667 x 10°
31 2120000000 -1.582 x 10* -1.644 x 10* —1.7002 x 10* —1.70000 x 10*
32 4020000000 3.827 x 10° 3.309 x 10° 3.4001 x 103 3.40000 x 10°
33 1310000000 -8.400 x 10° —7.924 x 10° -8.0659 x 103 -8.06000 x 10°
34 3210000000 1.057 x 10* 9.388 x 10° 9.5715 x 10° 9.56667 x 10°
35 5110000000 —2.450 x 103 —2.283 x 10° —2.3407 x 103 —2.34000 x 10°
36 7010000000 1.773 x 102 1.4733 x 102 1.4003 x 102 1.40000 x 10?
37 0500000000 —3.045 x 102 —2.648 x 102 —2.8274 x 102 —2.82500 x 102
38 2400000000 2.074 x 10° 1.706 x 10° 1.6962 x 10° 1.69500 x 10°
39 4300000000 -1.313 x 103 -1.383 x 10° -1.3752 x 103 -1.37500 x 10°
40 6200000000 3.780 x 102 3.614 x 10? 3.4666 x 102 3.46667 x 102
41 8100000000 -3.038 x 10t —3.209 x 10t -3.2515 x 10t —3.25000 x 10t

42 10000000000 1.000 1.000 1.0000 1.00000
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The combinatorial coefficients presented in Table 1
are independent of the temperature. On heating, the
probability of forming large cycles decreases because
the region of spatia localization of each path exhibits
narrowing. The resulting distribution over cycles is a
compromise between two opposite trends: the increase
in absolute values of the combinatorial coefficients and
the decrease in the temperature weight factorsa({r;(j)},
{vi}, B) for long cycles. As the temperature grows, the
second tendency begins to prevail and shifts the equi-
librium toward shorter cycles. The competition of the
two trends takes place on the background of partial
compensation of the positive and negative weight fac-
tors. The role of this compensation increases with a
decrease in the temperature, which leads to agrowth in
the weight of configurations involving high-connectiv-
ity diagrams.

3. SPIN
Table 2 presents the distributions over spin states

ws({ Vi)

w{ v}

determined for various modes of linking the Feynman
trajectories{v;} in asystem of ten electrons. Each link-
ing mode bears contributions from all possible spin
states of the system, which are proportiona to the
weights presented in the table taken from [81]. At first
glance, the configurations with strongly linked paths
(i.e., those formed at low temperatures) must possess a
lower spin and, hence, the corresponding distributions
with respect to the spin must exhibit higher probabili-
ties for the states with lower Svalues. However, calcu-
lations reveal a more complicated pattern.

Ascan be seen in thefirst row of Table 2, which cor-
responds to the formation of alongest cycle, the proba
bilities of stateswith small Svaluesare zero. Traversing
the table from top to bottom, one can see how the paths
separate and the low-spin states appear. In a configura-
tion with fully separated paths (bottom row in Table 2),
the distribution over spins exhibits a trivial pattern
determined by degeneracy with respect to the eigenval-
ues of the spin projection operator (J2S+ 1). Thishigh-
temperature state correspondsto atransition to the clas-
sical limit with complete absence of the exchange.
When the temperature is varied, the relative contribu-
tions from various path linking modes to the average
spin change as well. At high temperatures, only the
state presented in the last row exists.

At low temperature, a decisive factor is the mutual
compensation of contributionswith opposite signs. The
prevalence of one or another mode of path linking
depends both on the Coulomb repulsion between elec-
trons and on the external field geometry. The resultant
spin (and, hence, the permutation symmetry) of the sys-
tem is determined by a particular configuration of the

My (S = (25+1)
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applied field. In a spatially homogeneous system, the
spin usualy decreases with the temperature. In a
strongly inhomogeneous system, the spin of the ground
guantum state can be nonzero. A example of such
behavior is offered by spins of the atomic electron
shells, which are maximum for elements from the mid-
dle of the Periodic Table.

In order to study the temperature-induced evolution
of the spin state of a many-electron system, it is neces-
sary to order the diagrams of linked paths with respect
to a certain factor which is common of the diagrams
exhibiting a similar response of the statistical weights
to the temperature variations. There is no universal
solution to this problem, since the distribution of
weights depends on the external field geometry, and a
rather laborious statistical modeling has to be per-
formed in each particular case. Nevertheless, we may
study common features in the spin behavior in suffi-
ciently homogeneous systems upon ordering the dia-
grams with respect to the parameter of connectivity.
With neglect of oscillations in the sign of the weight
factors, the distribution over configurations of the vir-
tual electron trajectoriesis closeto the statistical distri-
bution of classical polymer chains.

The simplest quantitative measure of connectivity is
the number of cyclesin the diagram:

N
y{{v}) = ZVi-
i=1
The connectivity parameter
N —
ac({vi) ==L

acquires the value o = 0 for the diagrams withy = N
including no linked trajectories. On the contrary, adia-
gram of maximum connectivity represents a single
cycle including all the virtua trajectories linked in
series, in which case y = 1 and a¢ = 1. Intermediate
cases correspond to 0 < a¢ < 1. The diagrams charac-
terized by the same values of connectivity parameter
represent connectivity classes, the number of which is
equal to the number of particles N in the system.

The signs of the total combinatorial weights of var-
ious connectivity classes

W(ae) = JW({v})
{vi

depend on the parity of N—y. The prime sign at the sum
in (13) indicates that only diagrams possessing the
same connectivity are added:

N
NEANRVA
C _1 .

N

(13)
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Table 2. Generalized combinatorial weights of various spin states contained in each mode of the distribution {v;} of non-
numbered virtual electron trajectories over cyclesfor asystem of N =10 electrons (Sisthe eigenval ue of the square spin oper-

ator; normalization condition: ZF (v} 9=1

r{ vi} (S)
{vi}
S=0 S=1 S=2 S=3 S=4 S=5

1 0000000001 0 0 0 0 —0.100000 1.100000

2 1000000010 0 0 0 —0.018519 0 1.018519

3 0100000100 0 0 —0.006579 0.019737 —0.098684 1.085526

4 2000000100 0 0 —0.005682 —0.017046 0.085227 0.937500

5 0010001000 0 —0.003322 0.006645 0 —0.099668 1.096346

6 1100001000 0 —0.003039 0 0 0 1.003039

7 3000001000 0 —0.002597 —0.010390 0 0.155844 0.857143

8 0001010000 —0.002379 0.003330 0 0 —0.099905 1.098953

9 1010010000 —0.002196 0 0.006148 —0.018445 0 1.014493
10 0200010000 —-0.002317 0.003244 —0.012975 0.0389249 —0.097312 1.070436
11 2100010000 —0.001994 —0.002791 0 0 0.083732 0.921053
12 4000010000 —0.001684 —0.007071 —0.009428 0.028283 0.212121 0.777778
13 0000200000 0.004739 0 0 0 —0.099526 1.094787
14 1001100000 0.002193 0.003070 0 —0.018421 0 1.013158
15 0110100000 0.004662 —0.003263 0 0.019580 —0.097902 1.076923
16 2010100000 0 0.002817 0 —0.016901 0.084507 0.929578
17 1200100000 0.002128 —0.002979 0 0.017872 0 0.982979
18 3100100000 —-0.001812 —0.002536 0 0.015217 0.152174 0.836957
19 500010000 —0.004532 —0.010574 0 0.063444 0.253776 0.697885
20 0102000000 —0.004690 0.006567 —0.006567 0.019700 —0.098499 1.083490
21 2002000000 0.004019 0.005627 —0.005627 —0.016881 0.084405 0.928457
22 0021000000 —0.002363 —0.003308 0.013233 0 —0.099244 1.091682
23 1111000000 0 0 0.006024 0 0 0.993976
24 3011000000 0.003650 0.005110 —0.005110 0 0.153285 0.843066
25 0301000000 —0.009124 0.012774 —0.019161 0.057482 —0.095803 1.053832
26 2201000000 0 0 0.005435 0.016304 0.081522 0.896739
27 4101000000 0 0 0.004545 0.040909 0.204546 0.750000
28 6001000000 —0.005319 —0.007447 0.01862 0.100532 0.279255 0.614362
29 1030000000 —0.006536 0 0.018301 —0.018301 0 1.006536
30 0220000000 0.006843 —0.003193 0 0.038321 —0.095803 1.053832
31 2120000000 —0.009608 0.002745 0.010980 0 0.082353 0.905882
32 4020000000 0.004902 0.006863 0 0.027451 0.205882 0.754902
33 1310000000 0.004136 0 0.005790 0.034740 0 0.955335
34 3210000000 0 0.004879 0.014634 0.029268 0.146342 0.804878
35 5110000000 0.002849 0.007977 0.019943 0.071795 0.239316 0.658120
36 7010000000 0 0.009524 0.047619 0.133333 0.285714 0.523810
37 0500000000 —0.022124 0.030974 —0.030973 0.092920 —0.092920 1.022124
38 2400000000 0.003687 0.005162 0.015487 0.046460 0.077434 0.851770
39 4300000000 0.003030 0.012727 0.029697 0.063636 0.190901 0.700000
40 6200000000 0.007212 0.023558 0.050481 0.111058 0.252404 0.555288
41 8100000000 0.028205 0.043590 0.089744 0.161539 0.269231 0.423077
42 | 10000000000 0.027777 0.083333 0.138889 0.194444 0.250000 0.305556
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Fig. 1. Plots of the generalized combinatorial weights
@ (ae, {ngd, ) (logarithmic scale) versusthe degree of con-
nectivity o for various numbers of electronsin the system:
N =10 (1), 20 (2), 30 (3), 40 (4), 50 (5). Solid and dashed
curves refer to the diagrams with positive and negative
weight coefficients.

The data in Table 3 illustrate the relations between
various classes for the systems with different N. The
numerical calculation was conducted by direct summa:
tion over all diagrams with nonnumbered vertices, with
theweights w'({v;}) calculated by the random sampling
method. For the final sample set {n,} with avolume of
[, formula (13) can be written as

Bc{nd.h = Jw{vi.{nd. 0.

{vi

Figure 1 shows the plots of w'({v;}) calculated by
formula (14) for 10, 20, 30, 40, and 50 electrons. The
total set used for calculating each curve included (1-5) x
10% diagrams. For example, in the system of 50 elec-
trons, the values of @ ({v}, {ng, |) with | = 10000
were calculated by the random sampling method for
each of the 204 226 diagrams with nonnumbered verti-
ces. Thevolume of the random sampling set (taken over
al spin states) used to calculate each value of the
weight was I(N/2) = 2.5 x 10°. Then, the connectivity
parameter was calculated for each of the 204226 dia-
grams and the weights of diagrams possessing equal o
values were added. These calculations required
10 hours of processor operation (IBM Pentium 111 pro-
cessor with a clock frequency of 600 MHz).

As can be seen from Fig. 1, the generalized combi-
natorial weights of the diagrams rapidly grow in abso-
lute value with increasing connectivity parameter. As
the temperature increases, the statistical weights pro-
portional to a({r;(j)}, {vi}, B) of high-connectivity dia-
grams exhibit a rapid decrease, whereby only [ow-con-
nectivity diagrams survive. As the temperature drops,
the average length of the Feynman path increases and

(14)
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0.05

Fig. 2. The combinatorial distributions I:(cxc, S {ng. )

over spin states contained in all diagramswith positive com-
binatorial weights and a fixed connectivity parameter o =

0(2), 0.0408 (2), 0.0816 (3), and 0.1224 (4) for a system of
50 electrons. The dashed curve shows (schematically) an
expected form of the resulting distribution at a sufficiently
high temperature.

the low-connectivity diagrams lose their advantage.
Under these conditions, the contribution from high-con-
nectivity diagrams increases. Simultaneoudy, the statisti-
ca weight coefficients become more sendtive with
respect to positions of the virtua trgjectories in space
{ri(D}. For thisreason, the el ectron exchange correlaions
tend to increase a low temperatures.

A mechanism of decrease in the spin of the system
on cooling is elucidated by analysis of the distributions
over spin states, which are presented in Fig. 2 for the
diagrams with positive combinatorial weight factors.
Anaogous distributions are obtained for the diagrams
with negative combinatorial weights aswell. At a suffi-
ciently high temperature, only the diagram with com-
pletely separated paths (o = 0) and alinear distribution
over spin states survives (Fig. 2, curve 1). The forma-
tion of cycles of linked paths (the growth in ac) with
decreasing temperature is accompanied by a redistri-

Table 3. The numbers of diagrams of linked Feynman tra-
jectories generated by application of the Young symmetry
operators to systems with various numbers of electrons N

Num Num

N of (;Jiagt:gm of (;Jl agt;grm N w&% Ic;]; grl ;sts&s

for numbered | for nonnumbered o~ values
trgjectories trgjectories c
5 120 7 5

10 362800 42 10

20 | 2.433x 1018 627 20

30 | 2.653x10% 5604 30

40 | 8.159 x 10% 37338 40

50 | 3.041x 10% 204226 50
Vol. 94 No.5 2002
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Fig. 3. Thesame asin Fig. 2, calculated for lower values
of the spin and higher values of the connectivity param-
eter ac = 0.0408 (1), 0.0816 (2), 0.1224 (3), 0.1633 (4),

and 0.2041 (5).
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Fig. 4. Theplotsof " (a¢, S {ng}, ) inasystem of 50 elec-
trons versus connectivity parameter o for two spin states
with the maximum Svalues 25 (1, 3) and 24 (2, 4), calcu-
lated for the diagramswith (1, 2) positiveand (3, 4) negative
generalized weights.
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Fig. 5. ThesameasinFig. 4, cdculated for the stateswith lower
valuesof thespin S=23(1), 22 (2), 21 (3), 20 (4), 19 (5), 17 (6),
15 (7), and 12 (8) using the diagrams with postive (solid
curves) and negative (dashed curves) generdized weights.
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bution in favor of greater S values (Figs. 2 and 3,
curves 2-4). The resulting distribution is obtained by
summing the partial distributions for various a: with
the corresponding weights and signs. The most signifi-
cant contribution (after that for a = 0) to the mean val-
ues is due to the diagrams with minimum o (with a
single pair of linked paths). The sign of the generalized
weight of these diagrams is opposite to that of the dia-
grams with ac = 0; in Fig. 2, the corresponding distri-
bution over the spin states is subtracted (with a certain
relative weight below unity) from curve 1. As aresult,
the probability of states (primarily those with large S
values) decreases and the resulting curve becomes con-
vex (see dashed curve in Fig. 2), which corresponds to
the redistribution of weights toward low Svalues. Fur-
ther decrease in the temperature leads to a redistribu-
tion of the statistical weights toward high-connectivity
diagrams. For a sufficiently homogeneous system, we
may expect that the tendency of the spin to decrease
will be retained. In a strongly inhomogeneous external
field, the diagrams complementary to the field geome-
try will be favored, the resulting distribution over the
spin states can become more complicated, and the
resulting spin may be nonzero.

With increasing connectivity, the weights of the
states with maximum possible spins (S=N/2 and S=
N/2 —1) monotonically increase in absolute value,
whereasthe weights of the spin stateswith intermediate
Svalues exhibit a extremum in the region of o < 0.25.
Asthe spin Sdecreases further, the monotonic increase
changes to monotonic decrease (Figs. 4 and 5).

4. THE PROBLEM OF “NEGATIVE SIGNS’

Among the difficulties encountered in the devel op-
ment of computer modeling of the systems composed
of quantum particles, most widely discussed is the so-
called problem of “negative signs’ [64—78]. The effi-
cacy of the computational procedure can be signifi-
cantly increased, provided that microstates giving close
contributionswith opposite (oscillating) signswould be
excluded from the Markov random walk process. The
exact result will be obtained by preliminarily taking a
sum over al possible {v;} for each particular arrange-
ment of the vertices of polygonal paths. Inthis case, the
mutual compensation of coefficients with opposite
signs reduces the weight of nonphysical path configu-
rations and naturally displacesthese pathsfrom theran-
dom walk process. For large N values, the problem can
be solved by passing from the summation over {v;} to
taking random sets from the possible {v;}.

In this study, we will use a method of displacing
nonphysical microstates, which allows asimple numer-
ica redlization. The idea of this method consists in
modifying the form of a({r;())}, {vi}, B) so that the
probabilities of microstates not obeying the Pauli prin-
ciple would become low and these states would be not
visited in the course of the Markov random walk pro-
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cess. Obviously, such amodification unavoidably leads
to acertain systematic error, because it isimpossible to
determine with absolute precision the boundaries of
compensated microstates. As aresult, the displacement
of impermissible states will interfere with a part of
physically allowed virtual trajectories. This uncertainty
can be reduced to zero by narrowing the regions of dis-
placed microstates so that their boundaries would occur
beyond the displacement region. In this case, not all of
such states will be excluded from the Markov process
and a part of the computational facilities will be spent
for visiting these states. The wider the region of dis-
placed states, the higher the probability of interfering
with physically realizable states, but the lower the sta-
tistical error. There exists an optimum regime, whereby
the aforementioned systematic error is significantly
smaller than the statistical error related to visiting non-
physical states. For each particular situation, the opti-
mum regime has to be determined by trials.

The displacement of nonphysical microstatesis pro-
vided by replacing a({r;(j)}, {v}, B) with a modified
value

™G, v B)

: . (15)
= a({ri(i}.{vi Blexp(=Vo{ri(i})),
with the directing potential
MO
Vo ({ri(] = D -ra(j+1
{r(t) IanZ:Lg) (r@@) =i + 1))
(16)

M 0
+ Z z (Vo(Iri() —rm(i = 1)) El

l<mj=1

Here, r (M + 1) = r (1) for the linked trgjectories with
the numbers n and k,

Vo) = expihod — 17}

and by and r are the parameters controlling rigidity and
the characteristic radius of interaction. Optimum values
of the parameters b, and r, are set by the calculation
program in the initial segment of the Markov process
with the aid of a special feedback system stipulated in
the algorithm; these values are adjusted so asto provide
that the fraction of visited microstates with oscillating
signs would not exceed 25% of the volume of accumu-
lated statistics. The directing potential (16) leads to a
decrease in the statistical weights of the states with
closely spaced vertices by which the trgectories are
linked. These configurations generate the contributions
with oscillating signs and correspond to the states with
strongly overlapping wave functions. Under the condi-
tions of weakly degenerate plasma, thereis no need for
the repulsive potential and the program automatically
setsr = 0, which corresponds to switching off the dis-
placement mechanism.
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When the temperature decreases, the spin of the sys-
tem al so exhibits atendency to decrease. Interms of the
one-electron approximation, this corresponds to “cou-
pling” of the spins of a fraction of the electrons. The
coincidence of the coordinate wave functions of two
electrons occurring in different spin states does not
contradict the Pauli principle. The states with overlap-
ping wave functions may possess large statistical
weights. For the low-temperature calculations, Eq. (16)
should be replaced by a modified repulsive potential, in
which the term v(r) is operative only between trajec-
tories of the same parity:

M
Vori(h) = 5 5 (Vollra(i) —ran(i + 1))

Imj=1

M
+3 S Wo(ral) = ranli = D))

Imj=1

+ z z (Vo([rai+2(]) =T2m+2(J + 1))

Imj=1

+ z z (Vo(|r2i+1(i) =T am+1(j = D))).

Ibmj=1

(17

5. ESTIMATORS OF QUANTUM-MECHANICAL
OBSERVABLES IN SYSTEMS WITH EXCHANGE

Calculation of the canonical means of various quan-
tum-mechanical observables reduces to the integration
of estimators representing the functions of position of
the Feynman pathsin space. The procedure of symme-
trization with respect to permutations complicates both
the distribution function and the estimators. This prob-
lem will be considered in the following section. The
guantum-mechanical equilibrium means are expressed
through the product of operators

A = (Aexp(-BR))
tr(exp(-BH))

where H isthe Hamiltonian and B = 1/kgT is the recip-
rocal temperature. Note that the denominator of (18)
contains only the diagonal matrix elements of the sta-
tistical operator, while the numerator contains both
diagonal and nondiagonal matrix elements. The pres-
ence of nondiagonal matrix elements implies that, in
the path integral representation, the functionals enter-
ing into the numerator of (18) must be calculated over
open trgjectories. The nondiagonal matrix elements in
the numerator can be eliminated by finding an operator

B which is diagonal in the coordinate representation
and obeys the condition

(18)

tr(Aexp(—BH)) = tr(Bexp(-BH)).
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The diagonal matrix elements of B represent an esti-

mator of the operator A. Let us consider a general
approach to constructing estimators in a system with
exchangein application to a spatial distribution func-
tion of the electron density. In the purely quantum
state described by the wave function W({x;}), the
electron density distribution is described by the
function

p(r) = IW({Xi} )

N (19)
x Z O(x, — ) WH{ x} )dx,dx,...dx,.
k=1

Despite the fact that expression (19) is apparently sim-
ilar to the matrix elements of an operator, the sum of
Dirac delta functions in the integrand of (19) is not a
operator acting upon the wave function, since multiply-
ing by the deltafunction without subseguent integration
makes no sense. The problem of finding an operator for
the distribution (19) can be solved by introducing an

lim tr(Ou(r) exp(—pH))

- W- 0
o) tr(exp(—BH))

= wEnOZEZId rJ’dr

SHEVKUNOV

auxiliary function p(r) for which such a quantum-
mechanical operator does exist:

1
Pulr) = (WX
N (20)
x z 0, (X —r)WH({x} )dx,dX,...dXy.
k=1
Here, 8,(x) = 1 in the w vicinity of the point x = 0 and

is zero everywhere outside this small vicinity. On the
one hand, a comparison of (19) and (20) shows that

p(r) = limpy(r).

On the other hand, function (20) is a matrix element of
the operator

Ou(r) = (21)

N
1
a Z e(.o(xk - r)
k=1
for which the statistical averaging can be performed in
a conventional manner in the representation symme-

trized with respect to permutations. Using the notation
from [81], we can write

x(S{mM} {r} B oIS {m}, {ri){s{m} {r}lexp(8 A)S {m}, {r})d"rd"r/tr(exp(-pA)).

The prime signs on the sums and integral s indi cate that
both summation and integration are performed over the

setsof {{m}, {mi}, {ri}, and {r;} not related by per-
mutations. Note that the expression (22) contains no

matrix elements nondiagonal with respect to Sbecause
(i) the corresponding spin functions are orthogonal and

(ii) the operator ©.(r) does not act upon spin variables.
Using adiagonalized form of the complete wave func-
tion [81, Eq. (7)]

WS {m} {r};{o}.{x})
= Z D*X(S{m}: Po{ o) F({r}, Pu{x})
(23)

= z (~D%X(S Po{m}; {o) F(Pu{r} . {x}),

we can write the matrix elements of the operator O.(r)
in(22) as
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(22)
p(r) = Ilmzzzz z z Id rIdr
{mj{m}n 1k=1{0, =1/
x (1) X (S P{m} ; {0} )
(24)

x (-1)™X(S Pdm} ; {0} )
x Po{ 1} 10u(n) P r} O
x5 {m},{r}|exp(-BA)IS{m} ,{r} O
Itr(exp(—BH)).
Now let us change the variables of summation { m; }
Po{m} , {M}
Po{r} {7} =Pr} ineachtermwithsubscriptsn

and k in (24) and use the property of antisymmetry of
the complete wave function in the matrix elements

exp(-BH ) with respect to these permutations. Then,
thetermsare no longer dependent on n and k and can be
combined with the term (N!)?:

P{m} and integration {7}
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p(r) = lim (N’ 5SS I'dNFI'dNF'
B S {m) {fy {0 =*V3
xX(S{mM};{o})x(S{m};{o})
x QT 0K} O
* SR (FHeR(BRIS (A} ()0
Itr(exp(—BH))

= Iimy Z'I'd”FJ'dNF'[ﬂFi} 10K} D
-0 {m}
x [S { M}, {7} exp(-BH) IS {Mm} ,{F} O

Itr(exp(—BH)).
This expression is written with an allowance for the
orthogonality of the modified spin functions X (S {m};

=33 folNrk;é(rk—nts {m} {r} lexp(-BRIS {m} ,{r} Dir(exp(-BH))

S {m}

957

{o}) for the{m} setsnot related by permutations (asa

result, the summation over {m} disappears) and with

the use of relations [81, Egs. (10)—(12)]. Equation (25)
isdivided by N! and the prime sign on the integral with

respect to r' is omitted.

In the limit w — 0, the matrix elements éw(r) in
a nonsymmetrized coordinate representation take the
form

IimOE{ri}9~w|{r§D

= 3 an-n[]acr-r).
k=1 i

Therefore, the integration with respect to primed coor-
dinates retains only the diagonal matrix elements of

exp(-BH) in the representation symmetrized with
respect to permutations:

(26)

(27)

=3 (@25+1)F WP [d'r 5 8(r—r)Ar} | exp(-BA)Po(r ) tr(exp(-BH)).
S n k=1

This expression is obtained using the same transforma-
tions as those employed in deriving [81, EQ. (9)]. Writ-
ing EQ. (27) in the form of a path integral (prior to the
limiting transition) and taking into account invariance
of the integral with respect to cyclic renumeration of
the path vertices, we obtain an expression for the esti-
mator of the spatial density distribution:

pur) = ﬁk;j;é(rk(n—r).

The numerical averaging of (28) is performed by wan-
dering in the space of trajectories{r;(j)} and path link-
ing modes {v;} with the distribution function
w(x) = a{v}, {n¢, Ma{r(i} v L)
0w ({v},{nd, M)

Mm, & & . .
ZBﬁgiZuZl(ri(J i 1)_ri(1))2 (29)

(28)

D [
x exXp-
O

B Vi) )} 5
j=1
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6. NUMERICAL SIMULATION
OF A DENSE HYDROGEN PLASMA

The numerical simulation was performed for two
values of the plasma density: p; = 0.696 x 10% cm3
(T=37130-137860 K) and p, = 102 cm™3 (T =
347 220-1 493 000 K). In thefirst case, the plasmaden-
sity isthree order of magnitude smaller as compared to
that of a condensed phase, while the second value is
comparable to the density in the condensed state. The
edge effects were eliminated by using periodic bound-
ary conditions. All electrostatic interactions between
particles were explicitly taken into account using the
closest image method. The periodic cubic cell con-
tained 100 protons and 100 electrons described by
method of classical and quantum statistics, respec-
tively. Each electron was represented by a closed Feyn-
man trajectory approximated by a broken line with M
vertices (M = 80, 160, or 320, depending on the temper-
ature).

The Markov random walk process consisted in a
sequence of steps shifting the trajectory vertices, shift-
ing or rotating of the whole trajectories, linking trajec-
toriesinto cycles, unlinking cycles, or shifting protons.
Each simulation run included 200 to 900 million steps,
of which the first 100 to 300 million were used to pro-
vide for the system thermalization, while the others
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(r) (in units of 102* cm) calculated by the path integral method for a
at various temperatures (the number of segmentsin the virtual electron

Table 4. The proton—electron correlation function pp§
hydrogen plasmawith the density p = 6.96 x 102 cm’

trajectory M = 160)

r, x108 cm 37130K 48270 K 62750 K 81570 K 106040 K 137860 K
0.05 0.737 0.455 0.290 0.112 0.0640 0.0418
0.15 0.420 0.253 0.159 0.0624 0.0356 0.0221
0.25 0.296 0.177 0.108 0.0429 0.0245 0.0140
0.35 0.209 0.124 0.0729 0.0304 0.0174 0.00929
0.45 0.149 0.0866 0.0495 0.0217 0.0126 0.00652
0.55 0.107 0.0602 0.0339 0.0157 0.00926 0.00490
0.65 0.0764 0.0420 0.0233 0.0114 0.00687 0.00383
0.75 0.0542 0.0295 0.0162 0.00844 0.00512 0.00308
0.85 0.0383 0.0211 0.0116 0.00635 0.0039%6 0.00257
0.95 0.0270 0.0151 0.00849 0.00494 0.00318 0.00220
1.05 0.0191 0.0110 0.00639 0.00394 0.00264 0.00194
115 0.0137 0.00809 0.00493 0.00322 0.00225 0.00174
125 0.00986 0.00615 0.00392 0.00270 0.00198 0.00159
135 0.00720 0.00481 0.00322 0.00234 0.00178 0.00148
1.45 0.00534 0.00385 0.00272 0.00206 0.00163 0.00138
155 0.00405 0.00314 0.00236 0.00185 0.00152 0.00130
1.65 0.00315 0.00264 0.00209 0.00170 0.00143 0.00124
175 0.00251 0.00227 0.00189 0.00158 0.00136 0.00119
1.85 0.00206 0.00200 0.00173 0.00148 0.00129 0.00114
195 0.00174 0.00180 0.00160 0.00140 0.00124 0.00110
2.05 0.00151 0.00164 0.00150 0.00134 0.00119 0.00107
2.15 0.00135 0.00152 0.00142 0.00128 0.00115 0.00104
2.25 0.00123 0.00143 0.00135 0.00123 0.00111 0.00102
2.35 0.00114 0.00135 0.00129 0.00119 0.00108 0.00099
2.45 0.00107 0.00128 0.00124 0.00115 0.00105 0.00097
2.55 0.00102 0.00123 0.00120 0.00112 0.00102 0.00096
2.65 0.00099 0.00119 0.00116 0.00109 0.00100 0.00094
2.75 0.00096 0.00115 0.00112 0.00106 0.00098 0.00093
2.95 0.00092 0.00108 0.00106 0.00101 0.00095 0.00091
3.25 0.00088 0.00100 0.00099 0.00096 0.00092 0.00087
3.55 0.00086 0.00094 0.00094 0.00092 0.00088 0.00085
3.85 0.00084 0.00090 0.00090 0.00088 0.00086 0.00083
4.25 0.00082 0.00086 0.00086 0.00085 0.00083 0.00081
4.75 0.00079 0.00082 0.00083 0.00082 0.00080 0.00079

were used for the calculation of mean equilibrium val-
ues. The stage of calculating the mean values included
3000 to 10000 events of trajectory linking and separa-
tion. The volume of random sampling for calculating
the combinatorial coefficients in each step was | = 10
for each of 50 spin states. In the thermalization stage,
the process was accelerated by one to two orders of
magnitude using a procedure of vertex multiplication.

The statistical error of calculated mean values was
estimated (as it was donein [81]) in a standard manner
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[15], using fluctuations of partial averages. For this pur-
pose, the Markov random walk processin each run was
separated into ten equal segments and the partial aver-
ageswere cal culated for each segment (the correlations
between segments are negligibly small). The statistical
error of the correlation functions did not exceed alevel
of about 1%. Correctness of the computational proce-
dure was checked by simulating specia trivial cases,
whereby the given method is applied to the system at
lower temperatures so as to obtain the ground quantum
state for which either the analytical solution is known
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(hydrogen atom) or reliable experimental dataare avail-
able (hydrogen molecule). The results of such a com-
parison were reported previoudy [81]. In addition, the
computation algorithm was tested by calculating alow-
density system of 100 electrons and 100 fixed protons.
On cooling, the system featured the formation of
100 weakly interacting hydrogen atoms and the energy
acquired a vaue corresponding to the well-known
ground quantum state of such system.

In the system with adensity of 6.96 x 10?° cm3, the
average distance between electrons is 11.3 x 10 cm;
the thermal de Broglie electron wavelength at the tem-
perature T=37130K is

A= —" = 39x10%cm.

J 2T Kg T

In the system with a density of 10 cm=, the average
distance between electrons is 2.2 x 10 cm and the
thermal electron wavelength at T = 347220 K is 1.3 x
1078 cm. In both cases, the exchange effects are signif-
icant despite relatively high temperatures.

The microstructural characteristicsof the plasmaare
presented in the form of binary correlation functions.
The proton—€lectron correlation function p(r) (Table 4)
has the meaning of the density of probability to find an
electron at the distance r from a proton. In the coordi-
nate representation, with an alowance for degeneracy
with respect to the eigenvalues of the spin projection
operator,

Ppe(r) = 2(28+ 1)‘[dr1dr2...drNde...dRN
S

xt«ﬂri},{R&,s‘

Zé(r — X —=X4|)

{r} . {R},SU4m? (30)

< exp(-pi)|
x N (2S+ 1) (dr dr,...drydR;...dRy
2 (2s+1f

xqr},{R},Slexp(-BH)[[{r},{R}, SO

where{x;} =Xy, X,, ..., Xy and { X;} arethe spatial vari-
ables of electrons and protons; {r;} and {R;} are the
eigenvalues of the coordinate operator; and &(r) is the
one-dimensional Dirac delta function. The matrix ele-
ments in (30) are calculated in the representation of
wave functions symmetrized with respect to permuta-
tions, in accordance with the eigenvalue of the square
spin operator of the whole system. The electron—elec-
tron pe(r) and proton—proton p,(r) correlation func-
tions are written by analogy to (30) with replacing |x, —
Xal by X = X,| @and [ Xy — X,|, respectively, and sum-
ming over n# k.
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P, 108 cm™!
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0.1

r, 1078 cm

Fig. 6. Radial distributions of electrons near protons in a
hydrogen plasmawith the density p = 0.696 x 10?2 cm 2 at
varioustemperatures (K): (1) 37 130, (2) 48 270, (3) 62 750,
(4) 81570, (5) 106 040, (6) 137 860.
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0.50
AN,

0.25

r, 1078 cm

Fig. 7. Plots of the current coordination number of electrons
near protons versus distance for a plasma with the density

p= 0696 x 10?1 cm™ at various temperatures (K):
(1) 37130, (2) 48270, (3) 62750, (4) 81570, (5) 106 040,
(6) 137 860.

In the plasma with the density p, at a temperature
T <10°K, theradial distribution of electronsin thefield
of protons exhibits a maximum (Fig. 6) at adistance of
one Bohr radius, which corresponds to the bound pro-
ton—€electron states. At a temperature of 37130 K, the
peak height amountsto 40% of the value in the ground
state of the hydrogen atom. At a distance of approxi-
mately 2.2 x 10 cm, the radial distribution function
shows a minimum, while the curve of the electron coor-
dination numbers

r

AN(r) = J'4T[x2pie(x) dx
0
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Fig. 8. The proton—proton (p,, solid curves) and electron—
electron (pee dashed curves) correlation functions for a

plasma with the density p = 0.696 x 10°* cm at various
temperatures (K): (1) 37130, (2) 48 270, (3) 81570.

Wees Wips Wpes €V

Fig. 9. The mean force potentials in a plasma with the den-

sity p = 0.696 x 1021 cm 3 and a temperature of 37130 K
(solid curves): (1) electron-dectron (W), (2) proton—proton

(Wpp), (3) proton—electron (We). Dashed curves show the

energy of the Coulomb interaction between two classical point
elementary charges of the (4) same and (5) opposite signs.

exhibits a bending point (Fig. 7). The degree of ioniza-
tion can be estimated by calculating the area under the
radial distribution peak in Fig. 6. At T = 37130 K, this
value amountsto 1 — AN, = 0.55 (Fig. 7).

At T = 37130 K, the system exhibits, in addition to
the bound proton—electron states, the signs of more
complex associates comprising two protons and two
electrons—a prototype of the hydrogen molecule. In
the proton—proton correlation function p,, (Fig. 8),
there appears a maximum at a distance of about 1.1 x
108 cm. This value is approximately 20% greater than
the equilibrium distance between protons in the hydro-
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gen molecule, which is evidence of strongly excited
vibrational modes. These associates disappear almost
completely at temperatures above 50000 K, although
the bound proton—€lectron states can be observed at
temperatures up to 150000 K (Fig. 6). Judging by the
shape of the correlation functions (Fig. 8), adecreasein
the temperature leads to an increase in the average dis-
tance between nearest electrons (the pe curves shift
rightward), while the distance between nearest protons
remains virtually unchanged. The number of protons at
distances below 3 x 108 cm is greater than the number
of electrons with the same spacing, and this effect
increases on cooling.

At temperatures below 40000 K, the requirement of
spatial delocalization does not allow electronsto follow
protons at a distance below 102 cm. As the protons
approach one another, the electrons are driven to the
periphery (rather than localizing between protons);
nevertheless, the electrons till significantly compen-
sate for the electrostatic repulsion of protons, even at
distances|ess than the Bohr radius. This effect isdueto
the bound electron states which appear and disappear at
the pair of protonsin the course of thermal fluctuations.
Thisis confirmed by the shape of the mean force poten-
tial (Fig. 9) described by the formula

We(r) = —kgTIn2el)

p
where p isthe overall bulk number density of particles.
Thisfunction has ameaning of interaction between two
particles with an alowance for indirect contacts medi-
ated by other particles of the system. Deviation of the
W(r) value from the energy of the Coulomb interac-

tion between point charges (e?/r) reflects the quantum
effects and the interaction with other particles. The
guantum effects are manifested at distances shorter
than the characteristic spatial delocalization length of a
guantum particle, while the electrostatic screening by
particles of the medium increases with the distancer.

At distancesr > 2 x 108 cm, the interactions of all
three types (We, Wy, and W) are significantly
decreased as a result of the screening effect. In the
interval 0.5x 1078 <r <2 x 108 cm, the effective repul -
sion between electrons is stronger than simple electro-
static interaction between classical point charges. This
phenomenon is explained by the quantum character of
electron motion. On the contrary, the interaction
between protons is significantly screened by electrons.
The signs of bound states, manifested by aweak mini-
mum in the W,,(r) curve, can be traced to a distance of
about 1.1 x 108 cm. Determining the correlation radius
as a distance at which the mean force potentia is on the
order of kg T and the correlation function differs from the
total particle number density by a factor of ppJ/p = €, we
caninfer from Table 4 that the proton—electron correlation
radiusat T = 37130 K amountsto 1.9 x 108 cm. As the
temperature increases, the correlation radius decreases

(31)
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Table 5. The proton—€lectron correlation function ppe(r) (in units of 10724 cm™3) calculated by the path integral method for
ahydrogen plasmawith the density p = 1.0 x 10 cm at various temperatures (the number of segmentsin thevirtual electron

trajectory M = 80)

r, x108 cm 347220 K 416670 K 500000 K 600000 K 720000 K 1036800 K | 1493000 K
0.045 0.639 0.551 0.476 0.409 0.359 0.255 0.199
0.075 0.575 0.495 0.434 0.372 0.331 0.244 0.194
0.105 0.521 0.453 0.399 0.342 0.305 0.232 0.189
0.135 0.474 0.414 0.363 0.315 0.280 0.217 0.179
0.165 0.432 0.377 0.330 0.288 0.257 0.202 0.170
0.195 0.392 0.345 0.300 0.263 0.235 0.188 0.160
0.225 0.357 0.315 0.275 0.243 0.218 0.176 0.152
0.285 0.299 0.266 0.233 0.209 0.190 0.158 0.139
0.345 0.253 0.228 0.203 0.183 0.169 0.145 0.130
0.405 0.220 0.199 0.180 0.165 0.154 0.136 0.124
0.465 0.195 0.177 0.163 0.152 0.143 0.129 0.120
0.525 0.175 0.162 0.151 0.142 0.135 0.124 0.117
0.585 0.160 0.150 0.142 0.134 0.129 0.120 0.114
0.645 0.149 0.141 0.134 0.129 0.125 0.117 0.112
0.705 0.140 0.134 0.129 0.124 0.121 0.115 0.110
0.765 0.134 0.128 0.125 0.121 0.118 0.129 0.110
0.825 0.128 0.125 0.121 0.118 0.116 0.111 0.109
0.885 0.124 0.121 0.118 0.116 0.114 0.110 0.108
0.945 0.121 0.118 0.116 0.114 0.112 0.109 0.107
1.005 0.118 0.115 0.114 0.112 0.111 0.108 0.106
1.065 0.116 0.114 0.112 0.111 0.109 0.107 0.106
1.125 0.114 0.112 0.111 0.110 0.108 0.106 0.105
1.185 0.112 0.110 0.110 0.108 0.107 0.106 0.105
1.245 0.110 0.109 0.108 0.108 0.107 0.105 0.104
1.305 0.109 0.108 0.107 0.107 0.106 0.104 0.103
1.365 0.108 0.107 0.106 0.106 0.105 0.104 0.103
1.425 0.107 0.106 0.106 0.105 0.105 0.104 0.103
1.485 0.106 0.106 0.105 0.105 0.104 0.103 0.103
1.545 0.106 0.105 0.105 0.104 0.104 0.103 0.103
1.605 0.105 0.105 0.104 0.104 0.104 0.103 0.103
1.665 0.104 0.104 0.104 0.104 0.103 0.102 0.102
1.725 0.104 0.104 0.103 0.103 0.103 0.102 0.102
1.965 0.102 0.102 0.102 0.102 0.102 0.102 0.101
2475 0.101 0.101 0.101 0.101 0.101 0.101 0.101

toreach 1.3 x 108 cmat T = 137860 K. A comparison
of the curves in Fig. 9 shows that the correlations
between electrons are stronger than those between pro-
tons and electrons, athough the correlation radii are
close. Minimum correlations are observed between
protons. The correlation radius of proton positions is
closeto 10 cm and remains virtually unchanged in the
temperature range studied.

The above data confirm correctness of the periodic
cell size selection (52.375 x 1078 cm) and applicability
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of the closest image method. In this case, the electro-
static forces are strongly screened, representing essen-
tidly the short-range interactions. The range of these
interactions falls within the interval of distances at
which the quantum character of the motion of particles
plays a determining role. Under these conditions, the
caloric characteristics of the whole system are formed
at interparticle distances for which the quantum nature
of the electron interaction component is dominating.
Even a decrease in the plasma density by two to three
orders of magnitude does not render the system more
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Fig. 10. Radial distributions of electrons near protonsin a

plasma with the density p = 1022 cm™ at various tempera-
tures (K): (L) 347 220, (2) 500000, (3) 1493 000.
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Fig. 11. The proton—proton correlation functions for a

plasma with the density p = 1022 cm™ at various tempera-
tures (K): (1) 347 220, (2) 600000, (3) 1493000,
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Fig. 12. Didtributions of the square spin operator with
respect to the spin Swithin a periodic cell for aplasmawith
the density p = 10%3 cm™ at various temperatures (K):
(1) 347220, (2) 416670, (3) 1493 000.
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“classical” since, asaresult of screening, the energetics
of the systemistill formed at small distances. Thiscir-
cumstance is especially important if we take into
account that, at these plasma densities, the thermal
wavelength of electrons is much smaller than the aver-
age distance between nearest neighbors and, according
to the formal criterion, the approximation of classical
statistics should be applicable. Our data indicate that
the classical description is already incorrect in this
domain of conditions.

A detailed description of the exchange effects
becomes decisive in the case of a plasma with the den-
sity approaching that in the condensed state. Such
states arise in the initial stage of laser-induced heating
of a deuterium—tritium target in the process of con-
trolled thermonuclear fusion. The hydrogen plasma
with adensity of 10?2 cm and a temperature above 3 x
10° K reveals no signs of the bound proton—electron
states. The correlation functions (Table 5) and the radial
distributions of electron density near protons are mono-
tonic, although a thorough analysis still reveals a very
weak risein theradial distribution curvesin the region
of r values about one Bohr radius (Fig. 10). The elec-
tron density near protons weakly changes with the tem-
perature: a fivefold increase in the temperature leads
only to a 10% decrease in the el ectron density within a
sphere with a diameter of doubled Bohr radius around
aproton (Table5). Most sensitiveto the temperature are
the correlations between ions, for which the corre-
sponding change amounts to 60% (Fig. 11). However,
the temperature sensitivity rapidly drops with increas-
ing distance.

In adense plasma, the correlation radii are small and
decrease with the temperature. At a temperature of
377220 K, the proton—electron correlations possess a
characteristic radius of 0.35 x 108 cm (Table 5), while
the proton—proton correlation radius does not exceed
0.2 x 108 cm. At adistance of 108 cm, the proton—pro-
ton correlation function differs only by 10% from the
overall particle number density in the system (Fig. 11).
A comparison of the correlation radius and the average
distance between neighboring particles shows that, in
plasmas with the densities p; = 6.96 x 10?°° cm and
p, = 10% cm3, the former value is smaller than the lat-
ter by a factor of five and six, respectively. This indi-
cates that the heating and compression of the plasma
leads to an almost proportional decreasein the correla
tion radius. At the same time, the correlation radius in
the dense plasma decreases by half relative to the ther-
mal wavelength of electrons. Despite ahigher tempera-
ture, the latter regime corresponds to a more pro-
nounced quantum character of the motion of particles
in the plasma.

In this context, it is interesting to trace the effect of
the temperature on the type of permutation symmetry
of the electron wave function. The type of permutation
symmetry isuniquely related to the total spin of the sys-
tem. Therefore, the average square spin serves as a
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good indicator of changes in symmetry of the wave
function. Figure 12 shows distributions of the square
spin operator with respect to the total spin Sfor elec-
tronsin the periodic cell. At high temperatures, the dis-
tribution is described by alinearly increasing function,
the growth of which is related to degeneracy with
respect to the eigenvalues of the spin projection opera-
tor (d2S+ 1). This behavior shows a statistical equiva
lence of various spin states and, hence, of various types
of permutation symmetry. However, the linearity is
already violated at T = 416670 K and the states with
smaller Sacquire a greater statistical weight, which is
indicative of the partial “coupling” of the electron
spins. An unexpected result is that the spin coupling in
a high-density plasma begins only at such a high tem-
perature. It should be noted that a decrease in the sys-
tem spin on cooling is ot an evident fact and depends
on the configuration of the field applied to the system.

7. CONCLUSION

The exact statistical description of many-body sys-
tems of quantum particles with exchange requires con-
structing a compl ete set of basisfunctions symmetrized
with respect to permutations. The symmetrization leads
to a catastrophic multiplication of the diagrams of
linked Feynman paths, making the exact calculation
practically impossible in systems containing more than
ten fermions.

In this study, a method allowing these difficulties to
be surmounted without introducing essential approxi-
mations is formulated. The new approach consists in
applying the method of essential set to calculating lin-
ear combinations of permutations generated by the
Young symmetry operators. The results of numerical
calculations showed that, despite the huge number of
diagrams, the method provides for a sufficiently rapid
convergence. |n asystem containing about 50 particles,
even a relative small set covering on the order of
10% diagramsfrom thetotal of 3 x 10% allowsthe com-
binatorial weight coefficientsfor various modes of link-
ing Feynman paths, as well as the distributions over
spin states, to be obtained with high precision. The sta-
tistical calculation procedure remains fundamentally
exact at finite temperatures, irrespective of the volume
of sampling from the linear combinations in each step
of the Monte Carlo procedure, because subsequent
steps enrich the statistics with independent sets. This
circumstance allows minimum sets to be taken in each
step, thus practically eliminating restrictions on the
number of particlesin the system.

Using the proposed approach, all combinatorial
weights for many-body exchange integrals and the cor-
responding distributions over spin states were calcu-
lated for a system containing up to 50 electrons and a
hydrogen plasma with 100 electrons in a periodic cell
was simulated. A significant feature of the developed
method is that the Monte Carlo simulation is possible
evenin caseswhen avery large number of particleshin-
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ders the determination of al weights: a fundamentally
exact simulation procedure can be realized using finite
sets of permutations.

An analysis of the results showed evidence of the
mutual compensation of the positive and negative con-
tributions to the partition function being the main
mechanism of the spin state formation in a system of
fermions at finite temperatures. A decrease in the sys-
tem spin on cooling results from the partial compensa-
tion of states with large Svalues by negative contribu-
tions from the diagrams with long cycles of linked
paths. The statistical weight of such paths increases
with decreasing temperature.

The calculations on microscopic level reported in
this paper were performed under conditions presenting
considerable difficulties for traditional approaches.
Strong interparticle correations and the quantum charac-
ter of electron motion play adominating role. Despite the
long-range character of the Coulomb forces, the interac-
tion under these conditions is strongly screened and
becomes effectively short-range. This circumstance
allowsthe calculations to be conducted using relatively
small periodic cells. Although the temperatures are rel-
atively high, the energy characteristics of the dense
plasma are formed over small interparticle distances,
where the quantum character of electron motion plays
adetermining role. At these temperatures, adecreasein
the plasma density does not render it more “classical,”
since the plasma energetics is formed over small inter-
particle distances even when the formal criterion based
on the thermal de Broglie electron wavelength predicts
the classical regime.

The motion of particlesin adense plasmaisstrongly
correlated, but the correlation radii are small and com-
parable with atomic dimensions. The correlation radii
in a high-density hydrogen plasma decrease with
increasing temperature, thus changing in the opposite
direction with respect to the Debye radiusin arareion
plasma. The quantum character of electron motion ren-
ders the electron—electron correlations less sensitive to
the temperature. The proton—proton correlations are the
most temperature-sensitive. In adense plasma, the cou-
pling of electron spins begins on cooling to atempera-
ture on the order of severa hundred thousand kelvin.
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Abstract—The parameters of aplasma produced upon theinteraction of ultrashort laser pulseswith cluster tar-
gets are measured by the methods of X-ray spectroscopy. The dependence of the plasma parameters on the ini-
tial properties of acluster target (the design of a supersonic nozzle, the average size of clusters, the spatial inho-
mogeneity) and the laser pulse properties (its duration and contrast) is studied. The plasma diagnostics is per-
formed using the model of formation of emission spectra, which was proposed earlier and includes a number
of fitting parameters, which provide good agreement with experimenta spectra. The systematic experimental
studies performed by us showed that our model of cluster heating by ultrashort pulses is indeed a physical
model, and the fitting parameters represent the average values of plasma parameters in the corresponding
space-time regions. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Theinteraction of high-power ultrashort laser pulses
with clusters attracts considerable recent attention [1—
9]. The production of a plasmain cluster targets com-
bines the main mechanisms of plasmaformation in gas-
eous and solid targetsirradiated by lasers (ionization by
an optical field and resonance absorption). It is known
that ultrashort laser pulses are strongly absorbed by
cluster targets. This property isespecially important for
efficient generation of X-rays, which can be used in
microlithography, medicine, and biology. Unfortu-
nately, the experimental results that have been obtained
so far are not systematic because they depend on many
parameters of alaser pulse and irradiated targets. This
complicates the analysis of various physical processes
inthe plasmabeing produced and adetail ed verification
of new theoretica models [10, 11] that take into
account the specific features of plasma formation by
ultrashort pulses.

"Deceased.

We have considered the numerical model of cluster
formation in a supersonic gas jet in papers [12-14]. It
has been shown that a detailed study of two-phase gas-
dynamic processesin anozzle forming thejet allows us
to obtain spatial distributions for al parameters of the
clusters, which are required for the correct calculation
of the cluster heating by ultrashort laser pulses. Thecal-
culations performed for nozzles of different designs at
different gas pressures showed that a virtually homoge-
neous cluster target can be formed in some cases,
whereas in other cases the distributions are not only
inhomogeneous but also even nonmonotonic.

We proposed in these papers a simple physical
model of the cluster target heating by femtosecond
laser pulses with a picosecond prepulse, which allows
us to calculate rather simply the X-ray emission spec-
trum of the plasma. The model isvalid if the condition

Tprepulse s Texpansi on (1)

is fulfilled, where T, iS the duration of the laser
prepulse and Tegpangon 1S the cluster lifetime. The condi-
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tion (1) means that clusters are destroyed only partialy
during the prepulse, and when the main femtosecond
pulse arrives, the dense regions that continue to absorb
laser radiation remain in the produced preplasma. The
electron temperature in these regions drasticaly
increases under the action of the main pulse (up to sev-
era kiloelectronvolts for the laser power density of
108 W/cnv), and after the end of the main pulse, the
hot electrons partially penetrate into a much colder
intercluster plasma with the electron temperature of
100200 eV. Therefore, the X -ray emission spectrum of
the plasma produced in the regime Tpenuse ~ Texpansion
should be cal culated taking into account the presence of
less dense (with the electron density N, lower than the
critical density N,, ;) and more dense (with the electron
density N, = N, ;) plasma regions heated to different
temperatures (T < Ty). In each of the regions, afrac-
tion f; of hot electrons will be present with the mean
energy E,, which substantially exceeds temperature T,
and T, the relative amount f, of hot electrons in the
dense region being greater than their amount f, in the
rarefied plasma region. The smple estimates of the colli-
sionionization probability show that, for multiply charged
ions with Z ~ 10-20 and typical parameters of femtosec-
ond lasers (T, ~ 30-60 fs, g ~ 10Y—10"® W/cm?, con-
trast ~ 10°), the ionization state of the plasmain regions 1
and 2 will approximately correspond to its electron
temperature, whereas the influence of hot electrons on
the ionization state can be neglected in the first approx-
imation. This means that the time-integrated emission
spectrum of the plasma calculated within the frame-
work of this model should depend on eight free param-
eters Ng, Nep, Taa, Tep, T1, T2, Eg, and a (theratio of con-
tributions from regions 1 and 2 to the total spectrum)
whose values can be found from the best fit of the
experimental spectrum. According to physical concepts
about the plasma formation, we can expect that the val-
ues of these parameters should satisfy the conditions
Neg <Ng o SNep, Ty <To<E, fi<f<l

Moreover, because the temperature T, is attained due
to the action of the prepulse with a typical flux den-
sity ~10'%-10' W/cn?, its val ue should be 100-200 eV,
while the energy E, of hot electrons produced during
the action of the main pulse should be of the order of
kiloelectronvolts. Note that the correspondence of the
ionization state of the plasma to temperatures T, and
T, isarather crude approximation, whose applicability
depends on the values of electron densities Ng; and Ng,.
When the plasma density is low, the ionization state of
the plasma has no time to achieve a stationary value
during the action of the prepulse, and the values of Ty
and T, used in the cal culation of the emission spectrum
will correspond to the ionization temperature of the
plasmarather than to the el ectron temperature. Because
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Ny < Ng, this remark refers in a greater extent to
plasmaregion 1 and, hence, to the physical meaning of
the temperature T,.

In this paper, we used the model described above
(see details in [13, 14]) to interpret experiments per-
formed with supersonic nozzles of different typesusing
heating laser pulses with different parameters. In this
way, we studied the dependence of the parameters of
the plasma being produced on the initial properties of a
cluster target (mean cluster size, spatial inhomogene-
ity) and on the properties of thelaser pulse (itsduration
and contrast). In most experiments described bel ow, we
used argon as a working target substance; in some
cases, other gases were also used (CO,, Kr, and Xe).

2. EXPERIMENTAL SETUPS AND METHODS
OF CALCULATION

We used in our experiments two femtosecond laser
setups at Centre D’ Etudes de Saclay (France) and Uni-
versité Bordeaux (France).

In the first setup, a 0.8-um, 10 TW UHI10 Ti:sap-
phire laser was used [12]. The duration and power of
the main pulse were 60 fs and 0.6 J, respectively. The
duration of the prepulse was about 1 ps, and its contrast
was of the order of 10°. The laser beam was focused on
a cluster target with an off-axis parabolic mirror. The
beam diameter in the focal plane was about 25 pum,
which provided the laser power density on the target up
to 108 W/cn?.

The second setup also used a Ti:sapphire laser,
which had a lower power (the main pulse energy and
duration were 0.015 Jand 20 fs, respectively) [15]. The
duration of the main pulse in this laser could be varied
in abroad range from 20 fsto several picoseconds. The
pulse contrast also could be varied from 10 to 106. An
off-axis parabolic mirror focused laser radiation into a
spot of diameter 12 um, providing the power density up
to 4 x 10Y W/cm?,

In both cases, two types of a supersonic nozzle were
used: the Laval nozzle and a cone nozzle. The gas pres-
surein avalve could be varied up to 100 atm. By using
different pressures and different nozzles, we could vary
in a broad range both the average size of clusters and
the spatial distribution of their concentration in the
interaction region.

The X-ray emission of the plasma was detected
simultaneoudly with severa spectrographs with spherical
mica crystals (radii of curvature were 100 and 150 mm).
The spectrographs were arranged in the FSPR-2D
scheme (see [16-18]) and were tuned to the spectral
ranges containing resonance transitions in the He- and
H-like Ar XVII and Ar XVI1I1 ions. The spectral resolv-
ing power was A/dA ~ 4000 for a spatial resolution bet-
ter than 80 pum. The spectra were recorded either on a
photographic film or using a CCD camera.
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The parameters of cluster targets were calculated
using the codes developed at the Ingtitute for Mathe-
matical Modeling, Russian Academy of Sciences,
which were described in detail in papers[13, 19-21].

Kinetic calculations used for simulating the emis-
sion spectra of plasma were performed employing the
codes developed at the Los Alamos National Labora-
tory (USA). In these calculations, multiply charged
argon ions with the number of bound electrons up to
m= 4 were taken into account and all the atomic con-
figurations with principal quantum numbersn < 6 were
considered, including autoionization states. The kinetic
matrix included 1500 levels and took into account al
possible radiative, collision, and autoionization pro-
cesses. Therates of collision processes were calculated
using the model electron distribution function [22, 23],
which included the hot component with the average
energy E, = 5 keV. The emission spectra were calcu-
lated for experimental spectral regions using Kinetic
calculations performed within the framework of the
simplified model of the plasma dynamics described
above. The shape of spectral lines was either assumed
to be instrumental or calculated taking into account the
Stark and Doppler broadening.

The shapes of the spectral lines of argon ions were
determined taking into account the Stark shiftintheion
microfield, the collision broadening caused by elastic
collisions of electrons with ions, and the Doppler
broadening [24]. The latter was taken into account
together with the spectral resolution by introducing the
effective ion temperature. The distribution function of
the ion microfield was used taking into account ion cor-
relations and the Debye screening [25-28].

3. EFFECT OF THE PROPERTIES OF A CLUSTER
TARGET ON THE PLASMA PARAMETERS

The calculations of formation of clustersin a super-
sonic jet performed in this paper show that the main
factors affecting the properties of the cluster target
being produced, along with the type of gas used, arethe
pressure in the valve and the type of nozzle. Note that,
while the initial gas pressure affects the properties of
clusters quite obviously (the average size of clusters
increases with pressure), a change in the nozzle design
can lead to less obvious results. We performed calcul a-
tions for nozzles of two types. aLaval nozzle, whichis
commonly used for formation of cluster-containing
jets, and a cone nozzle. We found that, all other factors
being the same, the cone nozzle allows one to obtain
considerably larger clusters, which are more uniformly
distributed over acrossthe gasjet.

The initial properties of the cluster target should
affect the radiative characteristics of the laser-induced
plasma. In this section, we consider the influence of the
target inhomogeneity (Section 3.1) and of the average
size of clusters (Section 3.2) on the properties of cluster
laser plasma.
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3.1 Effect of the Inhomogeneous Distribution
of the Cluster Concentration in a Gas Jet
on the Radiative Properties of Laser Plasma

Figure 1 shows the results of calculations of cluster
parametersin agasjet emerging fromaconenozzleand
a Laval nozzle. The coordinate r in this figure is
directed across the gas jet, i.e., across the propagation
direction of the laser pulse in the laser—cluster experi-
ment. One can see from the figure that, when the Laval
nozzleisused, we have atarget that is strongly inhomo-
geneous aong the laser beam: the distributions of clus-
ter concentration and of the mean density of cluster
atoms have local minima at the gas-jet axis (r = 0), and
their maximum values are achieved at the distancer ~
1 mm from the axis. This means that the laser pulse
propagating perpendicular to the gas-jet axis passes
through two regions with the maximum cluster density
between which the region of low cluster density is
located. According to our calculations, the distance
between the dense regions should be about 2 mm. The
heating of such an inhomogeneous target should result
in the formation of a plasma with an inhomogeneous
distributions of density and temperature and, hence,
with an inhomogeneous emission.

The inhomogeneity of the plasma emission should
correspond qualitatively to theinitial distribution of the
concentration of clusters, which determines the effi-
ciency of their interaction with the laser pulse. How-
ever, because the plasma emission depends not only on
its density but also on its temperature, while the tem-
perature depends on the laser power density, upon
focusing the laser beam into the gas jet, the laser power
density will decrease with distance from the point r = 0.
For thisreason, the plasmaemission distribution will be
more strongly “pressed down” to the jet axis than the
cluster concentration distribution. In other words, the
distance between two emission maxima should be
somewhat smaller than the distance between the max-
ima of the cluster concentration.

These arguments are illustrated by the experimental
results that were obtained with Laval and cone nozzles
used in setups at Bordeaux and Saclay [15, 29]. In these
experiments, Kr, Xe, and CO, were used as working
gases along with Ar. The plasma emission was detected
with aspatial resolution in different spectral linesusing
X-ray pinhole cameras, and its continuous bremsstrahl -
ung and photorecombination emission was also stud-
ied. The experimental results are presented in Fig. 2.
One can see that the spatial distribution of the plasma
emission is indeed nonmonotonic and the distance
between the maxima is approximately 0.5-1 mm,
which is somewhat smaller than the distance between
the maxima in the cluster concentration distribution.
Note that the coincidence of the results obtained for the
different spectral lines of different ions meansthat non-
monotonic emission isrelated to the general parameters
of the plasma such as its temperature and density and
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Fig. 1. Caculations of the cluster formation for (a) a cone nozzle and (b) a Laval nozzle at a distance of 1.5 mm from the nozzle
outlet. Presented are the density N, of cluster atomsin atarget, the average number INCof atomsin acluster, and the density Ny ster

for argon (solid curves) and krypton (dashed curves). The initial gas pressure in avalve is 40 atm.

does not reflect the specific features of the sublevel
kinetics of a specificion.

The gas-dynamic calculations of the cluster forma-
tion in a cone nozzle (Fig. 1) showed that the cluster
distribution at the nozzle output is virtually homoge-

neous. In this case, the plasmaemission should be max-
imal at the gas-jet axis (where the laser power density
is maximal) and will continuously decrease with the
distance from the point r = 0. This was aso confirmed
experimentally. The corresponding spectrograms and
densitograms are presented in Fig. 2.
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Fig. 2. Spatia distributions of plasma emission measured using a spectrograph with a one-dimensional spatia resolution for the
Laval and cone nozzlesin experiments with (a) CO, and (b) argon clusters.

It follows from the theoretical and experimental
studies considered above that the use of a cone nozzle
for the cluster target formation is preferable in most
cases becausg, first, amore homogeneous target can be
produced and, second, clusters of considerably larger
sizes can be obtained. In this case, by using long-focus
objectives, we can easily obtain avery long (~4—6 mm)
plasma object. Figure 3 shows, for example, the results
obtained for CO, and Xe clusters using interferometry
and an X-ray pinhole camera. One can see that plasma
stripes had the length of about 4 mm and the width less
than 0.7 mm.

3.2. Effect of the Average Sze of Clusters
on Plasma Parameters

The simplified model of the laser—cluster interaction
considered above alows us to make some qualitative
conclusions about the dependence of plasma parame-
ters on the average size of clusters. According to this
model, an increase in the cluster size should first of all
result intheincreasein therole of dense plasmaregions
because now the laser prepulse will destroy a smaller
part of the cluster. Thisshould lead, first, to theincrease
in the fraction of hot electrons, which are formed upon
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the interaction of the main femtosecond laser pulse
with the dense plasma and, second, to the rise of the
average density N, and, to alesser extent, Ny. In turn,
the increase in the average density will reduce the time
of establishment of the ionization equilibrium, and the
ionization temperature will approach the electron tem-
perature with increasing N, and N; i.e., it will aso
increase.

The qualitative conclusions made above are con-
firmed by the results of numerical smulation of the
emission spectra of the argon plasma produced upon
the interaction of a femtosecond laser pulse with clus-
ters of different sizes[30]. To obtain the most homoge-
neous cluster target, a cone nozzle was used, and the
average cluster size was changed by changing theinitial
gas pressure in avalvein the range from 15 to 100 atm.
The calculations of the cluster formation showed that
the average number of atoms in the cluster was varied
in this case from 2 x 10° to 2 x 10’. The plasma param-
eters, which were determined by fitting the experimen-
tal spectrato the model spectra, are presented in Table 1,
while the quality of fitting is well illustrated by Fig. 4,
where the experimental spectraobtained at pressures of
30 and 100 atm are shown together with the model
spectra.
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Fig. 3. Cluster plasma produced using along-focus objective and acone nozzle: (a) X-ray pinholeimages; (b) interference patterns;

(c) electron density distribution.
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Fig. 4. Simulations of spectrain the region of the He, line of Ar XV1I ion at gas pressures of (a) 30 and (b) 100 atm (the values of
plasma parameters are presented in Table 1). The solid curves are model spectra, and the dashed curves are experimental spectra.

One can see from Table 1 that at theinitial gas pres-
sure equal to 100 atm, a large amount of hot electrons
are present in dense plasma regions (at a concentration
of 2 x 10'° cm~3). Because the ionization rate of the He-
like Ar XVII ion by such electronsis (for E, = 5 keV)

VOion(Ar XVII =Ar XV 10 em® s,

anoticeable amount of the H-like Ar XV1I1 ions should
be formed in the dense plasmaregions during their life-
time of the order of 1 ps.

N(Ar XVI/N(Ar XVI1) = 2 x 104,

These ions can be detected by observing the Ly,
emission line. Because the rates of excitation of the
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Table 1. Effect of the average size of argon clusters on the plasma parameters

Rarefied plasma (region 1 Dense plasma (region 2
Gaspressure, | Average number P (reg ) P (reg )
am of atomsin acluster 3 3 s S
Te1, €V Ngg, €M fiNg , cm Te, €V Neo, €M foNgp, Cm
15 2x10° 100 5x 1019 1.5 x 1013 215 3x 100 0.9 x 10%7
30 108 160 5x 1019 5 x 1013 230 5x 100 3.5x 10%
70 7 x 108 140 2 x 102 2 x 10" 230 2 x 102 6 x 107
100 1.6 x 107 195 1.5x 104 1.2 x 10" 400 2 x 102 2 x 1019

1s?1§,-1s2p'P, and 1?S-2p?P transitions by hot elec-
trons are of the same order of magnitude, the intensity
of theLy,, linewill bevery low (approximately 2 x 10~ of
the He, line intensity), but nevertheless it is sufficient
for detecting this line with a CCD camera having a
broad dynamic range. In this connection, we pre-
formed special measurements [31] of the emission
spectrum intheregion A = 3.7-3.8 A (the wavelengths
of the Ly,; and Ly,, components of the Ar XVIII ion
are3.73110 and 3.73652 A, respectively). In complete
agreement with the estimates made above for the ini-
tial gas pressure equal to 100 atm, we detected arather
weak resonance emission line of the H-like argon
(Fig. 5). The intensities of the Ly, and He, lines were
0.2 and 2000 relative units; i.e., their ratio was
approximately equal to 10, which isvery closeto the
expected ratio of the concentrations of the H- and He-
like ions. We failed to detect the Ly, line at lower gas
pressures, i.e., for lower cluster sizes.

e
~
T
!

e
)

Intensity, rel. units

Fig. 5. Spectrum of the resonance Ly, emission line of the
H-like Ar XVII1 ion observed at a gas pressure of 100 atm
(dashed curve) and the model spectrum (solid curve) for the
plasma parameters presented in Table 1.
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4. EFFECT OF THE LASER PULSE PROPERTIES
ON PLASMA CHARACTERISTICS

In this section, we consider the influence of the
duration and contrast of alaser pulse on the parameters
of the laser-induced plasma.

4.1. Dependence of the Plasma Parameters
on the Contrast of a Femtosecond Laser Pulse

The simplified model of the laser—cluster interaction
predicts that a change in the laser pulse contrast will
affect first of al the temperature of the plasma and the
density of itsdensest regions (i.e., thevalue of Ng,). The
increase in the contrast should obviously be accompa-
nied by a decrease in the temperature because the laser
prepulse power density decreases, whereas the value of
N, should increase because the prepulse will destroy a
smaller part of the cluster.

To verify these qualitative predictions, we per-
formed a series of experimentsin which the energy and
duration of the main femtosecond pulse and the average
size of clusters were fixed, while the pul se contrast was
varied in abroad range

ol use/ Oorepluse = 5x 105 x 10°

[32]. The duration of the main pulse was 45 fs. The
clusterswere formed using acone nozzlewith aninitial
gas pressure of 63 atm; the interaction region was
located at a distance of 1.5 mm from the nozzle outlet.
The parameters of the plasma, as in the previous case,
were determined by fitting the emission spectrum of
plasma in the region of the He, Ar XVII line by the
model spectrum. One can see from the results presented
in Table 2 that the plasma temperature monotonically
decreases with increasing pul se contrast, while the den-
sity Ny, increases and exceeds the critical density
N, o = 1.7 x 10?2 cm= when the pulse contrast >10°.
Note that the latter result agrees with the case of the
interaction of ultrashort pulses with solid targets [33—
35] when the supercritical-density plasma was also
observed only at high contrasts of laser pulses.
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Table 2. Effect of the laser pulse contrast on the plasma parameters
Contrast 500 100 350 1000 5000 >5000
T, €V 250 222 215 215 205 215
Nep, cm3 3x10% 5x 10%° 2x10% 5x 10% 7 x10% 2 x 107
f,Ngp, cm3 5.1 x 10%7 3.5x 10%7 1.4 x 1018 8.5 x 10%7 1.2x 1018 34x 108
Table 3. Effect of the laser pulse duration on the plasma parameters
Rarefied plasma (region 1) Dense plasma (region 2)
s 19 Tey, €V Ngg, cm3 f1Ngy, M3 Te, €V N, cm3 f,Ngp, CM3
1100 130 3x10% 3x10%" 200 3x10% 9 x 10"
700 130 3x 1010 9 x 1012 215 4% 102 1.2x1018
45 130 3x101° 3x 1012 200 10% 7 x 1017

4.2. Effect of the Laser Pulse Duration
on the X-ray Emission Spectrum and Parameters
of a Cluster Plasma

We studied the effect of the pulse duration on the
plasma parameters by fixing the pulse energy at 15 mJ,
so that the change in the pulse duration from 45 fs to
1.1 ps was accompanied by the change in the power
density from 10% to 3 x 10'> W/cm?. Asin the previous
case, clusters were produced using a cone nozzle with
an initial argon pressure of 60 atm.

The plasma parameters determined by fitting the
spectra of the He, line of Ar XVII and of its dielec-
tronic satellites are presented in Table 3. Analysis of the
rates of excitation of levels of multiply charged argon
ions by thermal and hot electrons showed that even a
small amount of hot 5-keV electrons makes a substan-
tial contributions not only to excitation of the satellites
but also to the resonance line itself. Because the energy
E, = 5keV isof the order of the ionization potential of
the He-like Ar XVII ion, such electrons should aso
excite efficiently the 1snp'P; Rydberg states of thision
with n> 2, whose radiative decay resultsin emission of
the highest terms in the resonance series of the He-like
argon ion. We detected such emission linesfor n = 3-10
in the fifth reflection order of the spectrograph crystal
in the 3.0- to 3.4-A spectral range containing the
1snp'P,—1s*'S, lines with n > 2. Figure 6a shows an
example of the spectrogram.

By observing the Rydberg transitions, we can per-
form additional independent diagnostics of plasma
because the shape of Rydberg lines strongly dependson
the plasma density and to a lesser extent on its temper-
ature. In this paper (see also [36]), we used the Rydberg
lines to verify the correctness of determining plasma

parameters by the method described above, i.e., from
the spectra of the resonance line and its satellites. For
this purpose, the profiles of Rydberg transitions were
calculated for the plasma parameters presented in Table 3,
with an allowance for two spatial regions. The shapes
of spectral lines of Ar XVI1I were calculated taking into
account the Stark shift in the ion microfield, the colli-
sion broadening caused by elastic collisions of elec-
trons with ions, and the Doppler broadening [24]. The
latter was accounted for together with the spectral res-
olution, which corresponded to the effective ion tem-
perature T; = 2 keV. We used the distribution function of
theion microfield taking into account the ion correlaions
and Debye screening [25-28].

One can seefrom Fig. 6b that the results of indepen-
dent calculations with the fitting parameters of the
plasma are in good agreement with the experimental
data. These results show that the electron density of the
plasma that makes the dominant contribution to the
observed spectrum increases with shortening of the
laser pulse. In addition, the relative contribution of the
subcritical electron density (see also [36]) decreases
when shorter pulses are used. As the pulse duration is
increased up to 1 ps, laser radiation is absorbed simul-
taneously with the cluster decay, resulting in a decrease
in the dominating electron density of the emitting
plasma. The electron temperature remains very low for
any pulse duration, and it is insufficient for ionization
and efficient excitation of the levels of the He-like
argon ion. Therefore, the emission lines can be related
only to the Rydberg levels populated due to excitation
by a small amount of hot electrons. Because the elec-
tron temperature is established in the plasma rather
sowly (especidly at gas densities), the effect of hot
electrons on the plasmarelaxation kinetics can be man-
ifested for alonger time than the laser pulse duration.
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2P, —1'Sy(Heq) 2’P, — 1'Sy(Hey,)
() 0.395 nm 0.397 nm
Li- Be- B- C-like satellites
4th order ’J_‘ ’_4 m/’_‘/
U 21 ’
|1 R
8 6 5 4 n = 3(Hep)
5th order

L1 1 1 1 1 1

0.305 0.313 0.320 0.337 nm
(b)

Intensity, rel. units.

Tjpe = 700 fs

Tpye = 45 fs

1 1 1 1 1 ]
0.304 0.306 0.308 0.310 0.312 0.314
A, nm

Fig. 6. (8) Spectrogram of Rydberg transitions in the He-like argon ion; (b) comparison of the measured spectrum of the argon
plasma (thin curves) with the model spectrum (thick curves) for the anl—llso transitions(n=5) inAr XVI1I for laser pulsedurations
of 1.1 ps, 700 fs, and 45 fs.

Therefore, our model of the cluster heating by The X-ray emission is mainly determined by a plasma
ultrashort laser pulses correctly describes not only the  with asupercritical electron density.
intensities of resonance lines and their satellites but
also the shapes of spectral transitions from the Rydberg
levels of the He-like argon ion. The results of the mea- 5. CONCLUSIONS
surements and cal culations show the el ectron density of The model [12-14] describing the formation of the
a plasma increases with shortening of the laser pulse.  emission spectra of a plasma produced upon the inter-
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100 T —

Intensity, rel. units
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0‘1 1 Lol 1
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T, fs

Fig. 7. Dependence of theintensity of the Heyq (O), Heyo (2),
Heg (m), and Heg (O) emission lines of the He-like Ar XVII
ion on the duration of laser pulse with afixed energy.

action of femtosecond laser pulses with clusters
includes a number of fitting parameters, which allow
one to reproduce experimental spectra quite accurately.
However, for these parameters to have not only mathe-
matical but also physical meaning, their values should
vary reasonably depending on the laser—cluster interac-
tion. The systematic experimental study performed in
this paper for clusters of different sizes at different
durations and contrasts of laser pulses have shown that
thisisthe case. As noted above, the change in the inter-
action parametersresulted in all casesin the physically
reasonable change in the values of fitting parameters.
Therefore, our model of the cluster heating by
ultrashort pulsesisindeed a physical model, and thefit-
ting parameters represent the average values of the
plasma parameters in the corresponding space-time
regions.

Our study alows us also to make some conclusions
concerning the use of alaser—cluster plasmain applied
problems.

For example, the optimization of heating for
enhancing the brightness of an X-ray lithographic
source is especially important in the development of
this source. According to the results of our measure-
ments presented in Fig. 7, the brightness is a nonmono-
tonic function of the laser pulse duration. The position
of the maximum brightness depends on the cluster size
and the laser pulse contrast. For the experimental con-
ditions of Fig. 7, the optimal pulse duration is 700 fs.

Because the laser—cluster interaction in the Tpenyse ~
Texpansion F€giMe alows one to obtain a strongly ionized
plasma, such a plasma source can be used to obtain las-
ing at X-ray transitions in multiply charged Ne- and
Ni-like ions where the optimal conditionsfor obtaining
large absolute values of the population inversion are
naturally satisfied (see, for example, [37-40]). In this
case, it isimportant to produce a sufficiently extended
and homogeneous plasma. As shown in Section 3.1, a
homogeneous extended plasma can be obtained by
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Fig. 8. Spatial distributions of the CO, cluster plasmaemis-

sion observed upon excitation by high- and low-contrast
laser pulses.

using acone nozzlefor the formation of acluster target.
Note, however, that upon heating of clusters by alow-
contrast laser pulse, the homogeneous plasma cannot
be produced even using a homogeneous target. Thisis
explained by the fact that, in the case of the low con-
trast, the prepulse power density in the focal plane
proves to be so large that the prepulse destroys com-
pletely the clusters located near the gas-jet axis. In this
case, as for an inhomogeneous cluster target, the pro-
duced plasma can be strongly inhomogeneous (Fig. 8).
Therefore, the plasmathat can be employed for the cre-
ation of X-ray lasers can be produced only using high-
contrast laser pulses and homogeneous cluster targets.
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Abstract—New phase transitions induced by hydrostatic pressure in a cubic (under standard conditions) ScF

crystal are discovered by the methods of polarization microscopy and Raman scattering. The space groupsR3 ¢
for Z =2 and Pnma for Z = 4 are proposed for the high-pressure phases. A nonempirical computation of the
lattice dynamics of the crystal is carried out. It is shown that, under normal pressure, the cubic phaseis stable
downto T = 0K, while the application of a hydrostatic pressure gives rise to aphonon branch in the vibrational
spectrum (between points R and M of the Brillouin zone) with negative values of squares of frequencies. The
condensation of soft mode Rg at the boundary point of the Brillouin zone leads to rhombohedra distortion of
the cubic structure with the unit cell volume doubling. The calculated frequencies at g = 0 of the ScF; latticein
the distorted rhombohedral phase are real-valued; the number and position of frequencies active in Raman scat-
tering are in accord with the experimental values. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Fluorides of trivalent metals MeF; with an ideal or
distorted structure of a-ReO; belong to the family of
perovskite-like compounds with the general formula
ABX3, in which one of the cation sites is vacant (Fig. 1).
Like all perovskites, these substances experience con-
secutive phase transformations under external effects.
The presence of bulk cavities in the structure makes it
possibleto modify the physical properties of these crys-
tals smoothly by creating structural disorder or by
introducing impurities, which makes these crystals
interesting objects for studying the mechanisms of
phase transitions (see, for example, [1]) and also makes
it possible to find their practical applications[2, 3].

Among other compounds with the chemical formula
MeF,, scandium fluoride is apparently the least studied.
The most comprehensive reviews devoted to the
description of structural phase transitions in perov-
skites[4, 5] contain no information on this material. In
the structural database [6], information is given on
three different structures (cubic, rhombohedral, and
orthorhombic) of ScF; under normal conditions; how-
ever, specia stability tests of these phases [7] reveaed
that the orthorhombic phase under norma conditions is
metastable, while the cubic phase was not detected at all.

It was noted in [5, 8, 9] that the phase diagram of
these crystals is very sensitive to structural defects and

impurities, which creates additional difficultiesin their
investigations. In addition, at least some of the phase
transitions in crystals belonging to this family are fer-
roelastic [1, 4], and the presence of growth stressesin
the samples synthesized at high temperatures may also
considerably affect their behavior upon a change in
external conditions.

In our earlier publication [10], we analyzed the
vibrational spectrum of the lattice for the cubic modifi-
cation of Sck; at low temperatures down to 4 K, but no
phase transitions were detected. The present work aims
at studying phase transitions in a ScF; crystal under
pressure by using Raman spectroscopy combined with
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FQO O/./ ©
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Fig. 1. Structure of the cubic phase of ScFs.
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Fig. 2. Variation of the Raman spectrum of ScF3 upon an
increase in pressure.

polarization microscopy on samples synthesized under
the conditions ensuring minimal stresses during their
growth and at establishing the origin of thelatticeinsta-
bility appearing in this case by using nonempirical cal-
culations of the frequency spectrum of | attice vibrations
in the framework of a microscopic model of an ionic
crystal.

2. SYNTHESIS AND STRUCTURE
OF SINGLE CRYSTALS

We could not find in the literature any technigque for
growing Sck; single crystals; however, the synthesis of
similar single crystals of iron and aluminum fluorides
from flux in melt is described in [11-13]. It should be
noted that this method makes it possible to lower the
synthesis temperature and, hence, to reduce the proba-
bility of emergence of stresses during the crysta
growth. We used lithium fluoride as the solvent.
Attempts were made to use other compounds, but the
single crystals grown in this case were too small (less
than 1 mm3).

The flux—-melt containing 40 mol % Sck; was her-
meticaly seded in an oxygen-free atmosphere in a plati-
num ampule with a wall thickness of 0.2 mm. Over a
period of 14 days, the ampule was lowered at a rate of
20 mm/day in avertical tube furnace with an axial tem-
perature gradient of 10-20 K/cm from the temperature
region of 1400 K.

After cooling and opening the ampule, we discov-
ered a cylindrical sample in it. The lower transparent
part of the sample having a diameter of 10 mm and a
height of 7 mm did not contain any defects or inclu-
sions that could be seen in the microscope. The X-ray
structural analysis proved the correspondence of the
obtained crystal to the structure of the cubic phase of
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ScF; with the unit cell parameter a, = 4.01 A (a com-
parison was made against the data presented in [6]).
The observation in a polarization microscope reveal ed
the optical isotropy of the crystal, which is aso in
accord with the cubic symmetry.

3. VARIATION OF RAMAN SPECTRA
The vibrational representation of the space group

Pm3m of the cubic phase for the center of the Brillouin
zone has the form

Mo = Fou+3Fy, )

all vibration being inactive in the Raman spectrum.

A similar expansion for the rhombohedral structure
has the form

My = A+ 2Ay +3E,+2A,,+3A,,+5E,, (2
while, for the orthorhombic structure, we have
[y = 7Ay+5Byy+ 7B,y + 5By, + 5A,
+ 7By, + 5B,, + 7By,

In expansions (2) and (3), the active modes in the
Raman spectrum are singled out.

A comparison of expressions (1)—3) showsthat the
selection rules for these structures differ considerably
and, hence, these structures should be easily diagnosed
from the form of their Raman spectra.

We studied ScF; samples under a high (up to 9 GPa)
hydrostatic pressure at room temperature on a setup
with diamond anvils, which is similar to that used in
[14, 15]; the diameter of the cell containing the sample
was 0.25 mm, and its height was 0.1 mm. The pressure
was determined to within 0.05 GPafrom the shift in the
luminescence band of a ruby microcrystal [15, 16]
placed next to the sample. Mixtures of ethyl and methyl
alcohols or glycerene were used as the pressure-trans-
mitting medium. The Raman spectrawere generated by
radiation emitted by an Ar* laser (514.5 nm, 0.5W) and
were recorded by a multichannel spectrometer
OMARS 89 (Dilor). In view of the small size of the
sample and strong diffuse scattering, the high-fre-
quency (150600 cm™) region of the spectrum was
recorded. The domain structure and birefringence
effects in the sample were observed simultaneously
with the help of a polarization microscope.

Under the normal pressure, the crystal has no
Raman spectrum; it is optically isotropic and is dark-
ened in crossed polarizers (slight field blooming
emerges due to anisotropic mechanical stresses appear-
ingindiamond anvils). Under apressure of 0.7 GPa, the
spectrum acquires two spectral lines (at 260 and
465 cm; see Fig. 2), simultaneously, the sample
placed between two crossed polarizersis bleached (Fig. 3),
indicating the emergence of optical anisotropy. Some
samples exhibit splitting into coarse domains (of the

©)
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Fig. 3. Microphotographs of a sample before (left, 0.07 GPa) and after (right, 0.72 GPa) thefirst phase transition. The polarizers

of the microscope are crossed. The cell diameter is 0.25 mm.

order of 0.02-0.05 mm) of irregular shape. Upon afur-
ther increase in pressure, the intensity of these lines
increases monotonicaly. The frequency of the 260-cm™
line dlso increases, attaining a value of 300 cn under a
pressure of 3.8 GPa. In the low-frequency region, one
more line appears, shifting monotonicaly from 180 cn
at 1.4 GPato 260 cm™ at 3.8 GPa. Thisis accompanied
by an enhancement of the birefringence effect and a
change in the interference coloring of the sample asso-
ciated with a change in the shape of the optical indica
trix.

The changes occurring up to values of 3.8 GPa are
reversible and can be reproduced in different samples
taken from the same product of crystallization and with
different pressure-transmitting liquids (Fig. 4). Within
the experimental error indicated above, no hysteresis
effects are observed. The form of the domain structure
determined to a considerable extent by defects at the
sampl e boundaries changes from sample to sample and
as afunction of the pressure variation rate; the mono-
domain state can be obtained in well-faceted micro-
crystals subjected to a lowly increasing pressure.

A further increase in pressure leads to one more
transition (at 3.8 GPa). The crystal acquires a complex
system of alarge number of small (less than 0.01 mm)
domains which can be seen through a microscope. The
boundaries of these domains strongly scatter light (Fig. 5).
Simultaneously, the form of the Raman spectrum
changes sharply: some lines disappear, and a consider-
able number of new lines and bands consisting appar-
ently of a several closely spaced profiles are formed
(see Figs. 3 and 4). It should be noted that the pressure
of 3.8 GPa corresponding to the transition point is in
accord with the pressure of transition from the rhombo-
hedral to the orthorhombic phase of the crystal under
investigation, which was observed earlier in [8, 9.
Under a further increase in pressure, the high-fre-
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quency (>200 cm™) part of the spectrum changes
insignificantly, while, below 200 cm™, a shift of one of
the lines towards higher frequencies, its intersection
with another line, and, probably, the emergence of one
more line in the vicinity of 160 cm under a pressure
of 7 GPa are observed. The system of domain walls
emerging during thetransition is slightly modified upon
an increase in pressure; the total number of domains
dlightly decreases, but the system does not disappear
completely. The crystal remains optically anisotropic,
athough strong scattering at domain walls complicates
the observation of the effects associated with it.

A decrease in the pressure on a samplein this phase
doesnot lead to areversetransition (Fig. 6). The system
of domain walls and the general nature of the spectrum
are preserved, although the spectrum displays the soft-
ening of at least one vibration in the low-frequency

600 T T T T
o o o °
5001 -
0 20000 00 8%0 o © o [e]
TE 400r oo 0 © © °
Q
3 L o 0 o o o |
3 300 ‘Pocrs°°°° ZZ Zoo
L oooo o s
200 & gese o ©
100 1 1 1 1
0 2 4 6 8 10
P, GPa

Fig. 4. Pressure dependences of the frequencies of experi-
mentally observed lines. Circles correspond to values
obtained under increasing pressure, while squares and trian-
gles correspond to values obtained on different samplesin
the second phase under decreasing pressure.
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Fig. 5. Microphotographs of asample before (a, 3.06 GPa) and after (b, 3.89 GPa) second phase transition and after itsfracture upon

arapid decrease in pressure (¢, 0.1 GPa).

part, which may be due to the emergence of lattice
instability. Under a slow (over several hours) decrease
in pressure from 1 GPa down to normal pressure, the
sample can be preserved (the lower spectrum in Fig. 6
was measured in air on the sample extracted from the
cell). A more rapid decrease in pressure below 1 GPa
leads to crystal breakdown (see Fig. 5c¢), indicating the
presence of strong mechanical stressesin the sample.

4. LATTICE DYNAMICS

In order to calculate the vibrational spectrum of the
ScF; crystal lattice, we used a nonempirical model of
anionic crystal, generalizing the Gordon—Kim approx-
imation by taking into account the effect of crystal lat-
tice on the deformability and polarizability of ions[17].
The expression for the dynamic matrix was given in

38000 — : : : .
36000F NN At~
34000 )
32000 “W'Z:\'“—M‘./‘\WJ\ il ]
30000 i g e At \ 288 ]
28000+, \mq,/\f N eam 206 -

1, b /.. ]
26000 "U‘M"‘/ \W/\h—f‘v’\ 1.57
24000}« ’.-,.\\V\,-\N;\W\—/\._ﬂ\, 1:09 i
22000+

20000 M\ g0

18000

Intensity, rel. units

1 1 1
400 500 600
, cm™!

1 1
200 300

Fig. 6. Variation of the Raman spectrum of ScF3 upon a
decrease in pressure.
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[18]. In the framework of this model, the | attice dynam-
ics of AlF;, GaF;, and InF; crystals in the cubic phase,
which are isomorphic to Sck;, was calculated earlier
and it was shown that the vibration spectrum of these
crystals does not contain imaginary frequencies, which
indicates the stability of the cubic phase[§].

The equilibrium value of the |attice parameter of the
ScF; crystal was determined from the minimum of the
total energy of the crystal as a function of volume.
Table 1 contains this value together with the experi-
mental value aswell asthe calculated values of polariz-
abilities of scandium and fluorine ions, high-frequency
permittivity €,, and Born dynamic charges. It can be
seen that the calculated unit cell parameter is 5%
smaller than the experimental value. Unfortunately, the
experimental value of ¢, for this crystal is unknown,
but the obtained valueistypical of perovskites contain-

Fig. 7. Results of calculation of the phonon spectrum of the
cubic phase of ScF3. Solid curves correspond to the unit cell
parameter a = 7.22 at. units (normal pressure) and dashed
curves correspond to a = 7.06 at. units.
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ing fluorine. The effective charge tensor for the Sc ion
is isotropic in accordance with the symmetry of the
position of thision in the cubic phase, and its value is
close to the nominal value of theion charge (+3). For a
fluorine ion, there are two tensor components corre-
sponding to the displacement of the F ion paralle

(Z}} ¢) and perpendicular (Z7 ¢ ) to the Sc—F bond.

The calculated spectrum of ScF; lattice vibrationsin
the cubic phaseis shown in Fig. 7 for aunit cell volume
of 52.1 A3 (corresponding to the applied pressure P =
6 GPad). The vibrational spectrum contains no imagi-
nary frequencies (which explainsthe structural stability
down to temperatures of 4 K). However, it contains a
weak dispersion branch (between pointsRand M in the
Brillouin zone) with an anomalously low frequency. In
thisvibrational branch, thetriply degenerate mode R; at
point Rand nondegenerate modesinthe R — M direc-
tion (including point M) correspond to vibrations in
which fluorine ions are displaced [19]. The structural
phase transitions in most halogenides with the perov-
skite structure [4], including MeF; crystals (Me = Al,
Ga, In, ...), areassociated precisely with the mode con-
densation of thisvibrational branch [1, 2].

We aso calculated the vibrational spectrum of the
cubic phase of the ScF; lattice for nonequilibrium
decreasing values of the unit cell parameter, which cor-
responds to the application of a hydrostatic pressure to
the crystal. The value of pressure was estimated from
the numerical differentiation of the total energy of the
crystal with respect to the volume and from the calcu-
lated bulk compression modulus B = (C,; + 2C;,)/3in
terms of elastic constants whose values were obtained
from the dispersion dependence of acoustic vibrational
branchesfor g — O (which are givenin Table 1). The
curve corresponding to the equation of state of ScF; is
shownin Fig. 8.

Figure 7 shows that the most significant changesin
the lattice vibrational spectrum upon the application of
ahydrostatic pressure to the crystal occur in theregions
of high and low frequencies of optical vibrational
modes. The high-frequency vibrational modes become
“harder” upon a decrease in volume, while the branch
of lattice vibrations (between points R and M of the
Brillouin zone) with anomalously low values of fre-
guency becomes “ softer” upon the application of pres-
sure, and the cubic structure of the crystal becomes
unstable.
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Fig. 8. Calculated equation of state of ScF.

5. DISCUSSION

The results of our calculations show that, in accor-
dance with the available experimental data [10], the
cubic phase of the ScF; crystal under normal pressure
remains stable down to T = 0 K. At the same time,
according to the results of our experiments and an anal-
ysis of lattice dynamics, the application of ahydrostatic
pressure leads to cubic phase instability. The calcula-
tions of the frequencies of lattice vibrations under the
action of a hydrostatic pressure show that the softest
mode is the triply degenerate mode R; belonging to the
boundary point R=T17a(1, 1, 1) of the Brullouin zone of
the cubic phase. Consequently, it is natural to assume
that the phase transition observed under a pressure
equal to 0.7 GPais associated with the condensation of
precisely this mode.

The solid lines in Fig. 9 show the volume depen-
dence of the squared frequency «w?(Rs) of this mode. A
decrease in the unit cell volume (increase of pressure)
leads to alinear decrease in the value of o?(Rs), so that
w?(Rs) = 0 for P = 2.5 GPa (see Fig. 9). The lower
experimental value of pressure corresponding to the
transition may be due to nonideality of the samples
used in experiments; according to [8], structural defects
lead to instability of the cubic phase.

A displacement of fluorineionsin the triply degen-
erate R; mode correspondsto the “rotation” of the octa-
hedron ScF, [19] about the spatial diagonal of the cubic
unit cell. The irreducible representation Rs appears in
the vibrational representation of the crystal only once;
consequently, the expression for w?(Rs) in terms of the

Table 1. Results of calculations of the main physical parameters of the cubic phase of ScF;

A, A, * * * 3 3
exggrimem gloeory Ze Zy Zhe | og, A3 ag, A €&, |Cy, GPalCyy, GPa|Cyy, GPa| B, GPa
401 382 | 336 | 071 | 195 | 027 | 072 | 175 | 1727 | 189 | 186 | 70.2
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Fig. 9. Calculated dependence of (a) the squared frequency of the soft mode Rg and (b) dynamic matrix elements determining it on

the unit cell volume.

elements of the dynamic matrix can be obtained in ana-
Iytic form. We can separate the contribution wé from
the Coulomb interaction of ionsto frequency so that the
remaining term ooé includes the short-range and long-
range dipole—dipole contributions:

W'(Rs) = we + 05 @)
Each of these terms can, in turn, be decomposed into
two parts corresponding to different elements of the
dynamic matrix of the crystal:

2 2
we = be—fc, ws = bs—fg, 5)
Tt
b =D, {1 =2(L11H (6)
0.4 T T T
é‘ 0.3
(q\|
a” 0.2r E
=
x 0.1F E
=
=0
S 0} i
_0'2 1 1 1
0 0.01 0.02 0.03 0.04
ula

Fig. 10. Dependence of the total energy of a crystal with the
doubled unit cell on the displacement of fluorine ions from the
equilibrium position of the cubic phase: Ep = —2148.9854;
2Ry isthe total energy of the undistorted phase.
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f =D ™

e, =21

where b and f correspond to longitudinal and transverse
force constants of interaction of fluorine ions, respec-
tively. The volume dependence of the quantities
appearing in expressions (4) and (5) is also shown in
Fig. 9. It can be seen that the Coulomb and short-range
contributions to w?(Rs) have opposite signs, and the
positive Coulomb contribution exceeds in magnitude
the negative short-range contribution under normal
pressure, thus ensuring the stability of the cubic phase.
As the unit cell volume decreases, both contributions
increase in magnitude, but the absolute value of the
short-range contribution increases more rapidly than
that of the Coulomb contribution, leading to instability
of the cubic phase. Figure 9b, presenting the volume
dependences of the Coulomb and short-range contribu-
tions to the dynamic matrix elements, shows that an
increase in the negative short-range contribution to
w?(Rs) is mainly associated with the stronger volume
dependence of the short-range and dipole—dipole con-

tributions to the diagonal element DE'_¢, (q=1a(1, 1,
1)) of the dynamic matrix. It should be noted that the
value of bg and its dependence on pressure are mainly

determined by the contribution from the long-range
dipole—dipole interactions.

The structural distortions associated with the con-
densation of the triply degenerate mode R; lead to a
rhombohedral distortion of the crystal structure and sta-
bilize thelattice. Figure 10 showsthe dependence of the
total energy of a crystal with the doubled unit cell on
the displacement of fluorine ions from the equilibrium
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position of the cubic phase under pressure P = 6 GPa:
i, = -0, = O, = -0, = 05 =0, = u, (®

a

e UE
T Egexp(lqu), ©)

where a is the lattice parameter of the cubic phase, r =
mya, + Mmya, + Mya, is the trandation vector, and gy =
1a(l, 1, 1). It can be seen that the total energy mini-
mum corresponds to the displacement u = 0.025a (0.7 A)
of fluorineions.

Table 2 contains the values of calculated limiting
frequencies of vibrations in the rhombohedral phasein
which the coordinates of atoms correspond to the
obtained values of the displacement of fluorine ions.
The table also gives for comparison the values of fre-
guency at pointsI(q = (0, 0, 0) and R(q = 1va(1, 1, 1))
of the undistorted cubic phase as well as the compati-
bility relations.

After atransition, four lines must be activated in the
spectrum (see relation (2)). Two of these lines (A, and
E,) correspond to the restored soft mode which was
split after the transition and, hence, correspond to low
frequencies, which must depend considerably on pres-
sure. The three lines observed experimentally above
P = 0.7 GPa (the frequencies corresponding to these
lines are given in Table 2 in parentheses) are in good
agreement with this description; the line corresponding
to the lowest frequency is noticeably shifted upwards
upon an increasein pressure, and the emerging low-fre-
guency wing apparently corresponds to the second
mode being restored, whose frequency lies below
150 cm. The calculated and experimentally obtained
frequencies are in satisfactory agreement. It should be
noted that the position of lines correlates well with the
frequencies in the Raman spectrum for rhombohedral
phases of fluorides of some other trivalent metals[20].
On thewhole, we may conclude that thefirst high-pres-

sure phase is rhombohedral with the space group R3c,
Z=2.

The second point of transition corresponding to a
pressure of 3.8 GPaisin good agreement with the tran-
sition from the rhombohedra to the orthorhombic
(D3, Z = 4) phase, which was observed earlier in [9].
The strong increase in the number of linesin the Raman
spectrum (3) is also in accord with these observations.
In [9], a strong diffusion-controlled X-ray scattering
was detected above this transition point, which gradu-
ally decreased upon an increase in pressure. This corre-
lates well with the emergence of a developed system of
domain walls observed through the microscope and
with the increase in the domain size under an increase
in pressure. The type of this transition (which is pre-
dominantly afirst-order transition) and the existence of
a considerable hysteresis upon a decrease in pressure
are also in accord with the results obtained in [9].
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Table 2. Compatibility relations and values of vibrational
frequencies in the cubic and rhombohedral phases (experi-
mentally measured values of frequencies are given in paren-
theses)

Cubic phase Rhombohedral phase
Frequency, Symmetry Symmetry Frequency,
cm? of vibrations | of vibrations cm?
590 F,—LO Ay, 557
477 F.,~TO E, 442
154 F,—LO Ay, 210
211 F.~TO E, 164
126 Fou A 148
E, 132
542 R, Agg 513
341 Rio A 327
E, 330
445 R, = 412 (465)
188 Arg 190
Ey 198 (260)
65i Ry Ay 79 (180)
By 34

6. CONCLUSIONS

Thus, we have carried out experimental studies and
numerical calculations of lattice dynamics in a Sck;
crystal induced by a hydrostatic pressure.

The structural phase transition from the cubic to the
rhombohedral phase observed experimentaly for the
first time under a pressure of 0.7 GPaisin accord with
the results of nonempirical calculations of the lattice
vibrational spectrum: the calculated spectrum of the
crystal under normal pressure contains no imaginary
frequencies, which indicates the stability of the struc-
ture. However, the vibrational spectrum contains a
branch (between points R and M of the Brillouin zone)
with anomalously low frequencies. Asthe unit cell vol-
ume decreases (which corresponds to an increase in
pressure), the frequencies corresponding to this branch
decrease and the lattice becomes unstable at a fairly
high pressure. Thereason for this decreasein frequency
and, hence, in the emergence of lattice instability isthe
violation of the balance of the Coulomb interactions, on
the one hand, and the sum of short-range and dipole-
dipole interactions, on the other hand.

The calculated spectrum of the distorted rhombohe-
dral formed as aresult of atransition isin good agree-
ment with the experimental spectrum. The experimen-
tal Raman spectrum displays the restoration of a soft
mode; the frequency of the second expected soft mode
apparently lies below the investigated frequency range,
and only awing of thismode is observed.
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The pressure and the genera type of the second
transition from the rhombohedral to the orthorhombic
phase investigated by us coincide with those observed
earlier [9]; the Raman spectrum of this high-pressure
phaseisaobtained for thefirst time. Thetransitionispre-
dominantly a first-order transition and is accompanied
by strong hysteresis effect. The formation of acomplex
system of domain walls is apparently responsible for
the strong diffuse X-ray scattering (reported in [9]) in
this phase. The mechanism of transition to the second
high-pressure phase, its structure, and lattice dynamics
require further investigations.
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Abstract—Multilayer ferromagnet— ayered antiferromagnet (Fe/Cr) structuresfrustrated because of roughness
of interlayer boundaries were studied by mathematical modeling methods. The phase diagram of athree-layer
system (plotted as film thickness versus the degree of roughness of the interfaces) was obtained, and the order
parameter distributions in each phase were determined. The character of phase transitions in this system was
studied. The applicability range of the Slonczewski magnetic proximity model was determined. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Multilayer magnetic structures have been attracting
close attention of researchers since the discovery of the
giant magnetoresistance phenomenon in them [1]. In
the past decade, a huge number of works concerned
with these structures have been published; for instance,
seereviews[2, 3]. Recently, interest of researchers has
shifted to multilayer ferromagnet—ayered antiferro-
magnet structures. According to the recent neutron dif-
fraction experiments[4, 5], examples of such structures
are Fe/Cr multilayers in which a chromium layer of
thickness d < 4.5 nm is a set of ferromagnetic planes
with antiparallel spin orientations in neighboring
planes. Chromium atom spins lie in these planes,
which, in turn, are on average paralel to interlayer
boundaries. A similar structure was observed in manga
nese layersin Fe/Mn structures [6, 7].

Exchange between ferromagnetic layers in multi-
layer ferromagnet-ayered antiferromagnet structures
is caused by the interaction through the antiferromag-
netic order parameter, and the Riderman—Kittel—
Kasuya-Yoshida interaction is only a small addition to
thisinteraction far from the Néel temperature [8]. Slon-
czewski suggested a phenomenol ogical magnetic prox-
imity model to describetheinteraction through the anti-
ferromagnetic order parameter [9]. Within this model,
ferromagnetic layers are considered magnetized virtu-
ally uniformly, and substantial order parameter distor-
tions are assumed to occur only in antiferromagnetic
layers[9].

The presence of atomic steps that change the thick-
ness of the antiferromagnet by one monoatomic layer at
interlayer boundaries causes frustrations in the ferro-
magnet—antiferromagnet system (Fig. 1a). A uniform
order parameter distribution in layers ceases to corre-
spond to an energy minimum.

If the distance between atomic steps on the surface
of alayer (step width R) exceeds some critical value,
separation of ferromagnetic layers into domains
becomes energetically favorable [10, 11] (Fig. 1b).
Domain boundariesin the plane of layers coincide with
atomic step edges. Note that the R value substantially
depends on technological conditions[12].

Recent studies of the state of a ferromagnetic iron
film on a rough Cr(001) surface revealed the presence
of several magnetic phases depending on film thickness
and the degree of roughness (on the R value) [13].

The aforesaid showsthat the problem of considering
“thickness—+roughness’ phase diagrams of ferromag-
net—ayered antiferromagnet magnetic structuresistop-
ical. This problem is the subject matter of the present
communication.

The paper is organized as follows. Section 2 pre-
sentsasimple model that allowsthe system under study
to be qualitatively described. The method for calcula-
tions is considered in Section 3. The phase diagram of a
ferromagnet—antiferromagnet—ferromagnet  three-layer
structure, which can be generalized to multilayers, is
obtained in Section 4. The conclusion summarizes the
most important results of thiswork.

[ONONONONORORONONOXNO]
[ONONONONONONONONORONE - RN N - N - NONONONONO]
[ORORONONONONONONOROMN RN X X " NONONONONO]
[ONONONONOJ [ORONONONORRONONONONO] [ONONONOXO)
POPPDPDPDPDDD POPDPOPDPDPDDDD
[ONONONONORORONONONORNONONONONONONONONOXNO)
POPPPDPDPPODDD PODPDPOPDPDPDDODD
() (b)

Fig. 1. Frustrations in the ferromagnet-ayered antiferro-
magnet system caused by the presence of steps at the inter-
layer boundary.
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2. MODEL DESCRIPTION

In describing multilayers, we will restrict ourselves
to the mean field approximation. Let us introduce an
order parameter for each layer. Thiswill be the magne-
tization vector for magnetic layers and the antiferro-
magnetic vector equal to the difference of the magneti-
zations of sublattices for antiferromagnetic layers.

In magnetic layers dozens of angstrom units thick,
atomic spins are known to lie in the plane of layers.
Therefore, at T < T, Ty, Where T is the Curie temper-
ature of ferromagnetic layersand Ty isthe Néel temper-
ature of antiferromagnetic layers, we can characterize
the local value of an order parameter lying in the plane
of layers by angle 6 between the order parameter and a
selected axis also lying in the plane of layers. The order
parameter modulus is assumed to be virtually constant
in each layer.

Within the framework of these approximations,
exchange energy W caused by inhomogeneity within
theith layer iswritten in the form

_J3s 2
Wp = S5 [(B ), (1)

where the integral is over the volume of the layer, J; is
the exchange stiffness, § isthe mean atomic spin value,
and b; is the interatomic distance.

Varying (1) with respect to parameter 6, yields the
equation that describes the order parameter distribution
in the layer,

A6, = 0. 2

A more thorough procedure should be applied to
obtain boundary conditions. The 6, — 6, , ; difference
can take on fairly large values because of frustrations at
layer boundaries, whereas, within layers, frustrations
are absent, 6, varies smoothly, and the difference of 6,
in neighboring cells is small. For this reason, in
exchange energy calculations by the X=Y model, the
cosine of the difference of the 6; anglesin neighboring
cells can be expanded into a power series if the cells
occur in the same layer; this, however, cannot be done
if the cellsbelong to different layers. We must therefore
write the interaction energy between spins situated
close to the interlayer boundary in the discrete repre-
sentation, differentiate it with respect to angle 6, of
rotation of a certain spin, and then pass to the continu-
ous representation. As aresult, we obtain the boundary
condition

~ aei _ Jf,afS+1
NG, — —i—JiS

on
where A is the two-dimensional Laplacian in the layer
plane, d/0n isthe derivative in the direction of the outer
normal to the layer, the J; 4 exchange constant
describestheinteraction of spinsin different layers, and

sin(8;-8;..), ©)
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al distances are reduced to the dimensionless form
through dividing by the b; = b value considered equal
for al layers. The signs on theright-hand side of (3) are
opposite on opposite atomic step sides at the boundary.
For afree surface, the right-hand side of (3) vanishes.

The exchange interaction energy between neighbor-
ing layers has the form

i‘]f,afSS+1

Wi = b2 Icos(ei —-06;,,)dS, 4

where the integration is over the boundary surface
between layersi and i + 1, and the sign on the right-
hand side of (4) isthe same asin (3).

Varying the interlayer interaction energy written in
the continuous representation with respect to 6, yields
an equation that differs from (3) by the absence of the
first term on the left-hand side. This prevents passage
from (3) to (2) when the bordering layers are identical.

Atomic steps divide the whole interlayer boundary
surface into regions of two types. In regions of the first
and second types, the boundary energy is minimum at
Gi = Gi 1 and ei =T—- Gi 1 I‘eSpeCtlver

Determining the distribution of order parametersin
amultilayer requires solving the system of differential
equations (2) with boundary conditions (3).

Consider the applicability of this simple model to
real multilayers. The continuous representation isvalid
when the characteristic distances of the problem are
much larger than interatomic distances. Layer thick-
nesses in multilayers and distances between atomic
steps amount to dozens of angstrom units. It can be
taken that these values are much larger than interatomic
distances, and the continuous representation can there-
fore be used for qualitative consideration and obtaining
order-of-magnitude estimates.

The model under consideration assumes exchange
interaction to be isotropic, that is, the same in the plane
of layers and in the perpendicular direction. A model
with anisotropic interactions reduces to that considered
above by renormalizing the length scale in one of two
nonequivalent directions.

Interdiffusion of neighboring layer atoms only
resultsin renormalizing the J; 5 constant if the region of
mixing includes one or two monolayers, that is, hasthe
atomic thickness scale. This constant isfound in micro-
scopic calculations[14].

Equations (2) and (3) are written in the exchange
approximation but can easily be generalized to systems
with weak anisotropy in the plane of layers.

To summarize, the suggested model can be used to
gualitatively describe the magnetic characteristics of
multilayer ferromagnet—antiferromagnet structures.
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3. METHOD FOR CALCULATIONS

L et the edges of atomic steps be rectilinear and par-
allel to each other. The x axis of the frame of reference
lies in the plane of layers and is normal to step edges,
and the z axis is perpendicular to the layers (a two-
dimensional case).

The initial system of equations includes Laplace
equations (2) for each plane layer, o <x<o,0<z<g,
wherei =1, ..., narelayer numbers, with nonlinear dis-
continuity conditions (3) at interlayer boundaries. For
numerically solving this system, we will reduce it to a
system of one-dimensional integral equations.

Let usimpose the requirement that the 6, (x, 2) func-
tion be continuous in the region 0 < x < L and the 0 <
z<a;,00,/0x|y _ o, — Oadditional conditionsbe met.
Extend the definition of 6;(x, 2) to period 2L, namely,
0,(—x 2 =96,(x, 2, L <x<L.

Introduce a uniform mesh {x} with step A*in-L <
x < L. Let usrepresent the 6,(x, z) function and theright-
hand side of boundary conditions (3) in the form of the
Fourier series

8(x2) = DD+ Y B (DepHToE, )
k=1

N
+ . + T + Tt
a7 (x)sin(36/(x)) = W, +kzlwk,iexp5[k% (6)
Here, o} (X) = +J; S +1/3;S isthe step function which
changesits value at atomic step boundaries and
56,=86(x) = =36, 1(X) = 8111, 0= 6i,- -

Substituting (5) and (6) into theinitial equationsyields
the ordinary differential equation

d q)k—Aquk =0 ©)
dz
with the boundary conditions
gwk s e
Az D = Y,
k {] a0 k
. 8
— 1 1 el a0
A = X 1 COSE]_kAD
within layer i for each harmonick =1, ..., N (here and

throughout, index i is omitted if this cannot cause con-
fusion). A solution to (7) is sought in the form

®y(2) = Ciexp(A2) + Cyexp(-Ac2).

The C‘i and CS constants can be found from boundary
conditions (8). As aresult, we abtain

P (2) = Ki(D Wi + KW, 9)
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where
Ki(2) = dKyexp(—(a—2)Ay)
x[(1+A) +(1-A)exp(-2zA)],
Ki(2) = dK,exp(-zAy)
x[(1+A) +(1-A)exp(-2(a—2) A,
dK, = —A(1+A)*—(1- A exp(-2aA)]

Using the equation for the zeroth Fourier coefficients

d’d,
> =0
dz
with the boundary conditions
dd, =
dZ z=4a,0

and taking into account that, for free boundaries of the
top and bottom layers, d®,/dz = 0 and, for neighboring
layers, the ratio between the functionalsis given by

W;1-1(86]_1)/W;,,(56) = const,

we obtain LIJ§ =0, or, selecting the mean angle
L

56 2LJ’69(x)dx

and the variation

36(x) = 56(x) — 86,
we find
L

0= Io(x)én(%(x)+@)dx = c0sd0

L L

X J’o(x)singé(x)dx + sinaaj’ a(x) cosgé(x)dx.

Hence, the mean angleis
L

0 ~ 0
Dl'o(x)sinée(x)dxm

_ ]
30 = nm— arctanUL 0.
0

[JG(X) cosée(x)dﬂ

(10)

Equations (5), (6) and (9), (10) can be used to obtain the
sought integral equation for 86,

% p% k%ZLJ’exp =i — kEDdE

06,(x) =
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X [K|_+ 1,k(o)0i_+ 1Sin69i + Ki++ 1, k(0)0-i++ 1gn66i +1
—Ki«(a)07sind6,_; —Ki(a)o; sind6]
=1(K, 56,,36,,,).

This equation will be solved using the smple iterative
procedure

36" = (L-Fi(x))36] + Fi(x)1(Fy K, 36, 36L).

Here, 0 < F(X), Fy < 1 are the adaptive filters ensuring
stability of the iterative procedure and increasing the
rate of convergence. Iterations are performed until

€ = max|6ei”(x) —T(éeina 66int1)|

becomes smaller than a preset value (usualy, € < 1079).

The solution in the whole region can then be recon-
structed by the formula

6i(x2) = 86+ Y expHik
)3 ATk

L
1 0, M0 <0
x 2|_‘[expD |LkEDdE
-L
x[K; (2)07 sind8,_; + K/ (2)0; sin36)].

The starting approximation can be selected in the
form

36)(x) = My £n(x-xy),
j

where n(x —x;) is the unit step function with ajump at
defect (step edge X) positions, and the + sign means
that this function can enter into the sum with either plus

or minus. Asaresult, we obtain about 2NJ possibleini-
tial approximations, where N,; is the number of defects
in the region to be calculated. Note that one of the solu-
tions to the initial nonlinear equation (aloca potential
energy minimum) can correspond to each of the initial
conditions. Finding the global minimum requires com-
paring the energies corresponding to all of the obtained
solutions.

The solution depends on the g; values; characteristic
distance R between step edges (reduced to the dimen-
sionless form through dividing by interatomic distance
b); the parameter

‘]f afsaf
o = ——
TS

characterizing the ratio between the exchange interac-
tion energies of the nearest spins belonging to different
layers and to the ferromagnetic layer, respectively; and
the o, parameter determined by (11) with replacement
of the f and af indices.

(11)
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4. A FERROMAGNET-ANTIFERROMAGNET
MULTILAYER

In [15], we obtained the phase diagram of a ferro-
magnetic film on an antiferromagnetic substrate.

Consider athree-layer system comprising two ferro-
magnetic layers separated by an antiferromagnetic
interlayer. Because of the presence of alarge number of
parameters, we will restrict our consideration to equal
thicknesses of all layers. In addition, in Fe/Cr multilay-
ers that we are interested in, the magnetic stiffness of
ferromagnetic layers exceeds that of antiferromagnetic
layers; that is, the y parameter equal to the ratio
between the exchange energies in the film and in the
substrate,

Jat Sif o
is much larger than one (y > 1). Otherwise, if theinter-
layer is magnetically hard, interaction of ferromagnetic

layers is weak and the problem reduces to a two-layer
system.

A three-layer system can have three different states.

Phase A. At large parameter R values, al layers are
separated into domains with parallel and antiparallel
orientations of ferromagnetic layer magnetizations.
Domain walls penetrate al three layers, and their coor-
dinates in the plane of layers coincide with atomic step
edges on both boundary surfaces. Ferromagnetic layer
magneti zations experience rotations in opposite direc-
tions in the domain wall. The antiferromagnetic order
parameter rotates together with the magnetization vec-
tor of the ferromagnetic layer whose boundary with the
antiferromagnetic layer does not contain a step at a
given place.

The structure and energy of a domain wall depend
on the a,a parameter. If aa < 1, the B (2) depen-
dence, that is, domain wall broadening, can beignored,
and the problem becomes one-dimensional .

The|® ;| valueinthedomainwall is of the order of
;. Energy w; per unit domain wall length can be esti-
mated by (1). This gives

J;Sa
w; = .
bd;

At the same time, spins at the interface are frustrated in
the region [x| = &, which increases the interaction
energy between layers by

(12)

(13)

b
per unit domain wall length.
Minimizing thew = w; + w, sum, we find
o = Jala;. (15)
No.5 2002
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The domain wall width in the antiferromagnetic inter-

layer isd = .fala, = &/./y < & Thedistribution of
order parameters in the wall is shown in Fig. 2a; the
energy of thewall per unit length is

JiS S
Wz—f—b—I jad ¢ D‘k;f adiJs oSSy

Exact numerical calculations of & and w in a wide
range of a; and a parameter val ues substantiate the esti-
mates given above (this also refers to what follows).

(16)

However, if a a > 1, the domain wall width in the
antiferromagnetic interlayer considerably increases as
the distance from the interlayer boundary containing an
atomic step grows larger. The character of the distribu-
tion of order parametersin the domain wall isshownin
Fig. 2b. Its parameters are found by estimations similar
to those made for aa < 1. The major contribution to
wall energy is made by order parameter distortions in
the antiferromagnet. In the region |x| < a, the |[B 4]
valueisinversely proportional to the distance from the

step, whereas at a < x| < 9}, where 8} isthe domain
wall width in ferromagnetic layers, lines of constant 0
valuesarevirtually parald to theinterlayer boundaries
(Fig. 2¢). Inthisregion, |B 4| =a™

The smallest domain wall thicknessin the antiferro-
magnet is 5 = (1 + ay) / A, the derivative near the

step is given by d,/0z= 1, and the d; value equals

5 =a.y > a. (17)
The energy of the domain wall per unit lengthis
Ja a
w= fbg‘“m y+In af%' (18)
0

Clearly, 6§f is of the order of the interatomic dis-

tance, and the mean domain wall width amountsto doz-
ens of angstrom units; that is, domain walls caused by
frustrations are much narrower than usual domainwalls
in aferromagnet whose width is determined by compe-
tition between exchange and anisotropy energies.

Phase B. Because the magnetic stiffness of ferro-
magnetic layers exceeds that of the antiferromagnetic
interlayer (y > 1), the transition to the state in which
ferromagnetic layers are virtually uniform occurs at
R.= &(d}) as R continuously decreases because of
overlap of domain walls. Additional energy is related
either to distortions in the antiferromagnetic interlayer
or to the boundary energy. Close to the interlayer Néel
temperature Ty, (T is lower than the Curie temperature
of the ferromagnet), we have y O T\/(Ty — T). The
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Fig. 2. Domainwall in three-layer system: (8) a4a << 1and
(b) azra > 1. Different levelsof 8; angle of order parameter
rotationsin radians are shown by different hatching patterns
(see scale). The z = 0 and 16 coordinates correspond to
interlayer boundaries. Thestepissituatedat x=0,z=0. The
distributions were obtained for (a) y = 10, a4 = 0.01, and

a=16and (b) y=10, a4 = 1, and a= 16. The distribution
in Fig. 2c is the central part of the distribution shown in
Fig. 2b.

A — B transition can therefore be effected by heating
the system from the initial temperature T, < Ty

Precisdly in the region of R values where phase B
exists, the Slonczewski magnetic proximity model is
applicable [9].

In the region of values max(a, 6‘8") < R< R, the
dependence of system energy on angle Y between the
magnetizations of ferromagnetic layersis described by
the formula

W = Cp” + Cy(m— W), (19)
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Fig. 3. Static spin vortex in the film—substrate system at y >
1. Different levels of the angle of order parameter rotations
in radians are shown by different hatching patterns (see
scale). The distribution was obtained for y=8, a4 = 1, and
a = 8. The z = 0 vaue corresponds to the film-substrate
boundary. Step edges are situated at x = £10.

Estimation gives the following C, and C, constant val-
ues[8]:

af§df01 2, agas 1,
- D g2 b (20)
L2 =
A(J2-1 o
D—(—%—_)‘]afsfsaf—é-—z—z! aafa< 11

where 0 , is the area of regions of the first (second)
type on the layer surface.

If 0, = 0y, the energy minimum is attained at Y =
TU2; that is, mutually perpendicular orientation of the
magnetizations of ferromagnetic layers exists in the
absence of an external magnetic field.

In state A, system energy does not depend on the
direction of order parameter rotations in domain walls.
The situation is different in state B. Overlapping of

W, rel. units
25 T T

20

15

10

Fig. 4. Phase B and C energies as functions of distance R
between steps (a = 64, oy = 1/8, and 04 = 1).
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domain walls removes degeneracy with respect to rota-
tion directions, and alarge number of metastabl e states
arise. These states differ from each other in the direc-
tion and magnitude of the rotation angle of the antifer-
romagnetic order parameter in separate regions
bounded by atomic steps.

What does happen when R decreases further? If
o a < 1, the system occursin the region of weak dis-
tortionsat a < R < d,. Inthisregion, order parameters
arevirtually uniform, and the magnetizations of the fer-
romagnetic layers remain perpendicular to each other,
whereas the C; , constants decrease compared with

(20) by afactor of (R/Id,)2.

Phase C. Consider the R < aregion. All distortions
arethen concentrated closetointerlayer boundaries, the
interaction between ferromagnetic layers becomes
weak, and the key role is played by the interaction
energy between neighboring layers, which we consid-
ered in [15] for the example of atwo-layer system.

As aresult, the antiferromagnetic order parameter
becomes oriented normally to the magnetizations of
ferromagnetic layers at 0, = 0,, and these magnetiza-
tions become collinear. Thisis state C.

If oa> 1, static vortices are formed in the antifer-

romagnetic interlayer at 68“ < R < a close to the

boundaries (Fig. 3). At smaller R values, the system
goes into the region of weak distortions.

If aa < 1, thetransition from state B to C already
occursin the region of weak distortions. Like phase B,
phase Cischaracterized by the presence of alarge num-
ber of metastable states. As follows from the results of
our modeling, the transition from phase B to C isafirst-
order phase transition. Both states coexist in a consid-
erable range of R values, and their energies become
equal at some R* ~a (Fig. 4). The phase diagram of the
three-layer systemisshowninFig. 5. In[16], the orien-
tation of spinsin athree-layer structureat R~ awascal-

R/b

Fig. 5. Phase diagram of the three-layer system. For conve-
nience, R=a (solid) and R=;and R= 6gf (dashed) lines
are shown. The region of weak distortionsis hatched.

alb
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culated using the discrete model. The magnetizations of
neighboring ferromagnetic layers were assumed to be
mutually orthogonal. The behavior of the system in the
whole range of R values was not analyzed.

The R* valueisindependent of temperature, and the
B — C phase transition cannot therefore be observed
by varying the temperature of the system. The transi-
tion from the state with strong biquadratic exchange to
the low-temperature state with a weak interaction
between layers described in [17] has no bearing on the
phase transition considered above. This transition
occurs because the interaction of ferromagnetic layers
through the antiferromagnetic order parameter
decreases as the system approaches the Nédl tempera-
ture and becomes equal to the interaction through spin
polarization induced in the antiferromagnet (the Rider-
man-Kittel-Kasuya—Yoshida interaction) [8]. At a
higher temperature, the | atter interaction predominates.

5. CONCLUSION

The most important results and conclusions of this
work are as follows.

(1) A simple model for determining the distribution
of spins in frustrated layered ferromagnet—antiferro-
magnet structures was suggested.

(2) The thickness—roughness phase diagram for a
three-layer ferromagnet—antiferromagnet—ferromagnet
system was obtained.

(3) Thetransition from the polydomain (phaseA) to
the monodomain (phase B) state of ferromagnetic lay-
ers as the distance between atomic steps at the inter-
layer boundary decreased was shown to occur continu-
ously. Strictly, this transition was shown to be not a
phase transition.

(4) At the same time, the transition from the phase
with a mutually orthogonal orientation of the magneti-
zations of neighboring ferromagnetic layers (phase B)
to the phase with their collinear orientation (phase C)
when the distance between atomic steps became
smaller than the thickness of the antiferromagnetic
interlayer was shown to be a first-order phase transi-
tion.

(5) The Slonczewski phenomenological magnetic
proximity model was only valid for phase B. The
parameters of thismodel in the wholerange of itsappli-
cability were determined.
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Abstract—Effects of interference between propagating and localized states in quasi-one-dimensional elec-
tronic waveguides containing finite-size attracting impurities (quantum dots) are investigated. The electron
scattering matrix is calculated in the framework of the Feshbach theory [H. Feshbach, Ann. Phys. 5, 357 (1958);
Ann. Phys. 19, 287 (1962)], when resonant states in closed channels are taken into account exactly, while non-
resonant states are taken into account in perturbation theory. It is shown that finite-size attracting impurities may
generate a series of asymmetric Fano resonances in the waveguide transmission. As a result of interference of
electron states, the characteristics of resonances may oscillate upon a change in the impurity parameters. The
conditions are determined under which the interference of an electron wave leadsto a“ collapse” and “ swing”
of Fano resonances. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Quasi-one-dimensional electron waveguides with
impurities (quantum dots) may display in principle new
coherent effects, where a propagating electron wave
interferes with a localized impurity state. In this case,
asymmetric (Fano) resonances may exist against the
background of the waveguide conductance (transmis-
sion) steps[3-5]. The interference effects closely asso-
ciated with Fano resonances [6] have been actively
studied in recent years both theoretically and experi-
mentally. Fano resonances are universal by nature and
were observed earlier in various systems: in photoion-
ization of atoms [7], in electron and neutron scattering
[8, 9], in Raman scattering [10], in photoabsorption in
guantum wells and superlattices [11-13], and in elec-
tron transport through an interferometer [14]. Fano res-
onances are due to interference of waves emerging asa
result of scattering at a heterostructure; they carry
important information on its geometrical relief and
intrinsic potential fields. An analysis of the mechanisms
governing the transmission of electronic waveguidesis
important for applications since this effect can be used
for creating resonance nanoelectronic instruments of a
new generation [15]. The solution of this type of prob-
lems necessitates the development of a theory of scat-
tering of electron states in waveguides with impurities.
Earlier, isolated resonances were studied in optics, in
the case of scattering of electrons from atoms and mol-
ecules, and in the theory of nuclear reactions. In [1, 2],
adispersion representation was obtained for the scatter-
ing matrix of multichannel systems. The resonance
overlapping effects were considered for thefirst timein
[16]. It should be noted that the pole structure of the

scattering matrix, which determines the transmission
peaks, is quite clear, while the effects associated with
total reflection (existence of transmission dips) are
studied insufficiently. In recent publications [17-19],
the effect of short-range impurities on the transmission
was mainly considered and it was shown that such
impurities lead to the emergence of additional peaks
and valleys against the background of transmission
steps.

In the present work, we study the scattering of elec-
tron waves at finite-size impurities in a quasi-one-
dimensional waveguide. A basically new aspect hereis
the possible interference (configuration interaction) of
apropagating wave with awave trapped in the region of
impurity, which may change qudlitatively the
waveguide transmission. First, we formulate the reso-
nance theory of scattering which can be used for solv-
ing a wide range of problems in the theory of electron
transport in hanochannels. Some elements of the proce-
dure applied here are based on the works of Feshbach
[1, 2] and have already been used in [20, 21] for single
resonances. The theory proposed here is based on the
concept of the resonant group of states emerging in the
wells split from the size-quantization subbands. The
electron scattering matrix is calculated under the
assumption that resonant states in closed channels can
be included exactly, while nonresonant states are taken
into account in perturbation theory. The theory devel-
oped in the present work makes it possible to describe
interference between the propagating and localized
states, resulting in the emergence of asymmetric reso-
nances. In the case of afinite-size impurity, a series of
Fano resonances may exist [22], and the interference of
guantum states in open and closed scattering channels
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may |lead to oscillations of the characteristics of a Fano
resonance upon a change in the parameters of the sys-
tem [23]. For some specific models of impurities, we
investigate in greater detail the conditions under which
the effects of coherent interaction of states may lead to
the collapse of Fano resonances, when the width of the
resonances vanishes. It is shown that the effect under
investigation is similar to annihilation of aparticle (res-
onance) with a hole (resonance zero). We propose a
simple numerical procedure enabling usto calculatethe
characteristics of a waveguide with impurities in a
guasi-one-dimensional approximation and describe the
results of simulation upon the variation of the impurity
parameters.

2. MODEL OF AN ELECTRONIC WAVEGUIDE
AND EQUATIONS

We will study the scattering of electron wavesin a
2D electronic waveguide of width W arranged along the
X axis. Let the confining potential in the transverse
direction be described by the function V. (y). We will
describe the potential of impurities by the function V(x,
y). The waveguide geometry is presented schematically
in Fig. 1 showing the potential field lines in the
waveguide.

The electron wave function can be determined from
the Schrodinger equation

#? Da 6 o
omih 5+ LlJ(X y) Q)

+V(Y)WP(X,y) + V(X y)‘P(X, y) = E¥(x ),

where mis the electron effective mass. For a channel
free of impurities, V(x, y) = 0, and the solution to
Eqg. (2) in this case can be written in the form

WO Y) = €70u(Y),
12K )

= +
E 2m En,

where ¢,(y) and E, are defined by the solutions to the
equation

0 #2 &
%_Zmay +Vc(y)|:|¢n(y) - En¢n(y) (3)

It is convenient to expand the wave function W(x, y) in
the complete basis of functions describing the trans-
verse motion:

W y) = 5 Wi(on(y). (4)
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Fig. 1. Schematic diagram of a 2D electronic waveguide
containing an attracting impurity. Constant-potential lines
are depicted; different shades characterize the variation of
the potential.

X

Substituting expansion (4) into Eg. (1), we obtain the
equation for Y,(x) in the form

h o’
an(x) + nzlvnn(x)lp (X) (5)

= (E_ En)llJn(X),

where

Vin(X) = Id)n(Y)V(X, Y)9n(y)dy (6)

are the matrix elements of the impurity potentia. The
system of equations (5) is completely equivalent to the
2D Schrodinger equation. It should be noted that an
infinite system of coupled equations of type (5) is often
encountered in physics (linear theory of interaction of
waves) and the development of methods for solving
such equationsis of independent interest.

It was shown in [24, 25] that the calculation of the
conductance of awaveguide with impuritiesin the bal-
listic mode is reduced to the solution of the scattering
problem. We will be interested in the transmission
amplitude t,, describing the scattering of electrons
from the channel with number n' into a channel with
number n. The transmission amplitude can be deter-
mined from the solution to Eg. (5). The conductance
measured by the two-probe method is determined by
the Buttiker—Landauer formula[24, 25]

_ 292 _ kn 2
G=FT T= Yl @)

n,n

where T is the transmission of the waveguide, n and n'
denote the channel numbers for incident and scattered
waves, and summation iscarried out over all stateswith
energy E propagating in the quantum waveguide. It
should be noted that the poles of the scattering ampli-
tudet,, (E) in the complex plane E correspond to levels
or resonances, while branching points correspond to
threshold singularities [26].
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Fig. 2. (8) Dispersion relation for charge carriersin an ideal
waveguide and (b) the diagram of discrete energy levelsin
effective wells.

3. SCATTERING MATRIX
AND RESONANCE APPROXIMATION

The theory of resonances based on the relation
between aloca state and states in open channels was
formulated long ago by Feshbach [1, 2]. In this section,
wewill derive the expression for the electron scattering
matrix in awaveguide containing afinite-size impurity
in the framework of the Feshbach theory. We will take
into account an arbitrary number of possible bound
states in the field of the impurity.

A. Scattering Matrix

We begin our analysis with the case of asingle open
channel; in other words, the energy of an electron being
scattered liesin theinterval E; < E < E, (Fig. 2a). Pro-
ceeding in accordance with [1], weretain in the system
of equations (5) only the terms which correspond to the
closest values of energy (resonance terms); the dis-
carded terms can be taken into account later in pertur-
bation theory. In other words, we retain in Egs. (5) the
terms containing Y, and Y,:

E_;L_m% + Vll(X)%llJ 1(X) + V() W2(X) 6)
= (E-Ep)yi(x),

0 i o

D_Zmﬁ + V22(X)ELIJ2(X) + V(X P4(X) 9)

= (E-E)UaAx),
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under the assumption that the matrix element V,,
describing the coupling between the channelsis smaller
than the interval between the quantization subbands.

It is more convenient to begin the analysis with
Eq. (9). Wedisregardin Eq. (9) the term containing V.,
it assumes the form of the one-dimensional
Schrédinger equation:

Dﬁa

Tz T V20 = (E-EJwa).  (10)
If potential V,,(X) is of the attracting type and has a
large magnitude, bound states exist for certain values of
energy E. Depending on the parameters of the well of
V,,(X) in the energy interval E, — max|Vy,(X)| < E < E,,
Eq. (10) may have aseries of bound states u; with ener-
gies€; (j = 1, ..., N) (Fig. 2b), where the functions u;
are normalized by the conditions

[0 w0 =95 (11)

In addition to discrete energy levels, the field of poten-
tial V,,(X) usually contains the states belonging to the
continuous spectrum, which will be denoted by u,(x).
Taking into account localized states and the states
belonging to the continuum, we will seek the solution
to Eg. (9) intheform

Po(X) = Z Au;(x) +J'Avuv(x)dv
=t (12)

= z Au(X),
x

where A, = (A;, A)) are the amplitudes which are arbi-
trary sofar and A = (j, v) isthe complete set of quantum
numbers, u, = (u;, U,).

Substituting expression (12) into Eq. (9) and taking
into account the orthogonality of states u, (), we obtain
the formal equations for amplitudes A,

(E=E)) A, = [V W, (0 (13
Let us now consider Eq. (8). We writeit in the form

L aa # Vi3 .09

= V(X W,(X).

In the present case, we are dealing with the problem of
electron scattering in the potential field Vy;(x). For-
mally, the solution Eq. (14) can be written using a
Green's function:

W, 0= |XED+ GIV12NJ25

where [X|Xg0 is the solution to Eq. (14) with zero
right-hand side. We have chosen the particular solution

[E ~Eu- (14)

(15)
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corresponding to sources at X —= —oo0, Substituting
solution (15) into Eg. (13), we obtain the following
explicit equation for amplitudes Ay:

(E_%)\)A)\_ZU)\,)\'A)\‘ = Fy, (16)
X

where
Upx = Oh|VyuGiViluO
Fr = DU)\|V21|XED

Function ;, in turn, can be obtained from Eq. (15) if
we substitute into its right-hand side the expression for
), defined by formula (12):

W, 0= |XED+ Z GIV12|UA (A,
)

17

(18)

In order to find the scattering matrix t;; determined
by the asymptotic behavior of ,(x) for X —» +oco:
Wy(X) =ty € o , werequirethefollowing expression for
the Green's function:

m EXE(X)XE(X'), X>X,
KAt XE(), X <X,
where xg(X) and Xg(X) are, respectively, the solutions
to the equation

G,(x, X) = (19)

Dﬁa

Foma (20)

5+ Vi (EXE) = (E—E;)Xe(¥)

with sources at x —» +c0. Function Xg(x) has the fol-
lowing asymptotic forms:

e x +00
XE(X) =0 ’ ’

Eblkl + re—iklx (21)

X—> —00’

while the asymptotic forms of Xg(X) are given by

—ikyX ikyx
1 +re 1’

—ikyXx
)

Xe¥) = O T 2

X—> —00,

where t is the transmission amplitude and r and r* are
the amplitudes of reflection during scattering in the
field V;41(X).

After analyzing the asymptotic form of the wave
function Y,(X) for x —»= +oo0, proceeding from Eq. (18)
and taking into account expressions (19) and (20), we
obtain

ik x

me

i) = te+ zuxE)qvnwm (23)
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Consequently, the scattering matrix in the channel
1 — 1lisdefined as

t —tD
H O klﬁt

Z HXE)EIVH' u,UJ
(24)
_ + U
x (E=€—U) DJA.|v21|xEDE

Thisformulamakesit possible to describe the inter-
action of resonances during the scattering of an electron
from impurities in an éectronic waveguide in the
energy interva (E;, E,). It should be noted that, in the
energy interval (E,, Ej), we must take into account
additional resonant states associated with channe 3;
i.e.,, we must consider a system of three coupled equa-
tions, etc.

B. Resonance Approximation

If the electron energy is close to the group of energy
levels in the potential well of V.,,(X), precisely these
bound states will interfere with the incident wave most
strongly. In this group of bound states, the most impor-
tant are those for which the magnitudes of the matrix
elements connecting these states with the states of the
continuous spectrum are comparable with the interval
between the nearest levels.

Weretain in Eq. (16) only the resonant terms, omit-
ting nonresonant states belonging to the continuous
spectrum. Let us suppose that the number of amplitudes
being retained is determined by the number N of bound
statesin the well. In this case, the explicit equation for
determining amplitudes A, assumes the form

N
> MjA; = Fy,

fe1

ji
where

Ujp = O4|VpGi Vo lud  Fy = Oy|Vy Xl (26)

Consequently, in the resonance approximation, the
scattering matrix in channel 1 — 1 isdefined as

U m
ty, = tL+
U ik

(27)
— -1 + D
X z HXE)qVH'qu(M )ii DJ]'|V21|XEDE
iy
The representation for the scattering amplitude in form

(27) is remarkable since it makes it possible to deter-
mine the resonant structure of the channel transmission
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in the general case. The formal solution to system (25)
can be written in the form

A= Y M

i'=1

where M¢ is the cofactor of matrix M. The scattering
amplitude can be written in the form

(28)

_ N(E)
w(®) = (07 5 (29)
where
N =9
(BE) = 9D(E) +- klﬁt
(30)

x z E(XE)qV12|Uj[(MC)Ji‘ EU]'|V21|XED,
N
9(E) = detM.

It can be seen from this expression that the poles of the
scattering amplitude are determined by zeros of the
function Y (E), while the zeros of the amplitude are
determined by zeros of the numerator of N'(E).

The resonant structure of the scattering matrix
depends to a considerable extent on the properties of
matrix U, which, in turn, is determined by the proper-
ties of the Green's function and the impurity potential
V(X, y). We will specially consider the case when the
matrix element possesses parity relative to reflections
X —> X(Vp, n(X) = V,, n(—X)). We will also consider the
case of a general-position potential, when V,, 4(X) #
Vy,, n(=X). In accordance with the reciprocity theorem,
the Green's function possesses the following property:

G,(x, X) = G4(X, X). (31)

If, however, the impurity potential is such that Vy;(X) =
V,, 1(—X), the equation for the Green’s function leads to
the additional relation

Gi(% X) = Gy(—%, —X). (32
Using the reciprocity theorem, we can easily verify that
matrix U is symmetric (U;;- = U;;;). For the case when
the impurity potential possesses parity, we can easily
prove that the matrix elements of U between stateswith
different symmetries (symmetric s and antisymmetric

a) are equal to zero: Uy, = 0.

It can be seen from the above expressions that the
behavior of the scattering amplitude is determined by
the matrix elements U;;. Using formula (19) for the
Green's function, we can easily transform the matrix
element U;;. to the form

FiR; + Qjj, (33)

|k1ﬁ t
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where
___2m
Qij' - k1ﬁ2|t|2
- - ED
x IMO[ U, V00X (%) (Ui () V00X XD
g " a
= Oxe)Valu (35)

Using the well-known rel ations between the wave func-
tions of the scattering problem,

Xe = IXe +1Xe
E E E 1 (36)
- ok +%
Xe = MXe *WXe
the matrix elements UJ- jcan be presented in the form

i = ——(F;F} +RiRY)
ii 2|k1ﬁ it
m . (37)
+2|k ﬁ2|:t j J D IRTD+2(QJJ +Qll)
In particular, the diagonal elements can be written as
... m 2 2
U, = i——(|F| +|R
= i F RI)

(38)
Girig

where we have singled out the real and imaginary com-
ponents of U;;.

The form of the denominator of Eq. (29) can be
determined in the general case. For this purpose, we
reduce the complex symmetric matrix M to the diago-
nal form. The elements of the matrix performing a uni-
tary transformation can be found by solving the system
of homogeneous equations:

+ —lmHR F*D+ij,
1ﬁ

Y (€8;+U;)Q (39)

1

Let us suppose that a set of complex solutions ‘%a,
which can be presented in the form
€ = BRIl (40)
has been determined. In this case, we can write the
denominator of Eq. (30) in the form
BDE) = [T(E-¢4+ily).
)
It follows from the structure of the expression for
matrix M that €5 and I, are in fact functions of

(41)
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energy; however, the subsequent analysis will prove
that these functions depend on energy only dightly in
the case of aweak coupling between the channels.

The expression for N'(E) appearing in the numerator
of Eg. (29) may have zeros which indicate the possibil-
ity of total reflection of waves in a waveguide with
impurities. Below, we will demonstrate by specific
examples how these zeros are determined and will con-
sider possible consequences for the channel transmis-
sion.

In the case when the well parameters are such that it
contains asmall number of energy levels (resonances),
we must obtain the general expression for the scattering
amplitude. Let us consider the case of a symmetric
impurity. We assume that the well contains only one
bound state. Using expressions (29) and (30) and taking
into account Eq. (37), we obtain

E-¢5
t,(E) = t(E) ————0a—o,
u(B) = (B —

where the real resonance parameters have been intro-
duced:

(42)

%(1) = €1+ Qu, %1R = €1+ Qu+Ay,
(43)
Ay = |F ° Im[tD’
r,=-"pF 44
17 k| 2 (44)

It followsfrom Eq. (42) that the transmission amplitude
and, hence, the transmission have the structure of a

Fano resonance: apeak of width I"; at energy %? anda

zero at energy %(1) occur against the potential back-
ground determined by the amplitude t(E). It should be
noted that the peak width is determined by the matrix
element connecting a localized state with the contin-
uum of states of band 1.

In the case when a symmetric well contains two
energy levels, they can interact only through virtual
transitions to the continuum. The transmission ampli-
tude acquires the form

(E-€D(E-$3) + V1Y,

t(E) = t(B) , (45)
H (E—€R+ir ) (E—€R+ily)
where
%2 = €+ Qu, %g = €,+ Q.
Y1 = T1+A, Yo =T+0,,
All = ﬁ_|F1| |m[t[|, AZZ - |F2| ImE‘tD,
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m
M= ——|F
1 ﬁ2k1| 1

|2’ r2 = _| 2|

7%k,

%1R = €,+Qput+Ay, Cfng = €+ Qut+Ay.

It can be seen that the “initial” levels do not interact
directly (U, = 0), but are connected through the matrix
element describing the transition from the local level to
band 1. Asaconsequence, the positions of two zeroson
the real energy axis depend on the parameter of cou-
pling between localized states and the continuum. The
scattering amplitude also hastwo poles. Thus, Fano res-
onances may interact effectively. It will be proved
bel ow that this may lead to anumber of interesting con-
sequences.

In the case of three energy levels, both the interac-
tion of levels with the continuum and their direct inter-
action are possible since the matrix element between
the states with the same parity differs from zero in this
case (U3 # 0). The transmission amplitude can be writ-
tenintheform

%13('5) sz D 7, (46)
15(B) ik, BH(E)(E—€5 +ir,)0

t11(E) = t(E)

where
Ni(E) = (E-€1)(E-63) - QL.
Dia(E) = Ni3(E) + F15(E),
m
ik 7i’t
x (2QuF1F + (E—€3)F] + (E-€1)F3),

F(E) = -

%2R = €1+ Qpu+ly, Ny = |F| ImEL

EtD’

M= _|F2|

%2k,

It can easily be verified that the expression in the
numerator of Eq. (46), which can be presented in the
form

m
— €N 1(E) - 5 —F2F1(E),

1

isareal function having three zeros in the energy range
under investigation, i.e., in the vicinity of the corre-
sponding three energy levelsin the well.

Finally, we can write the expression for the ampli-
tude for a well containing four levels. In this case, we
have

N(E) = (E

13(E)J\f 24(E) S 13(E)97 24(E)D
D 13(E)D 24(E)

tu(E) = (B (47)
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Fig. 3. Models of artificial impurities (quantum dots).

where the expression appearing in the formula has a
structure similar to that for the above cases of interac-
tion of resonance pairs. It can be seen that resonances
directly interact in pairs. We can easily verify that the
function

N(E) = Nis(E)N24(E) —F13(E) L 24(E)

isreal and find itsfour real zeros. In this case, the pole
function Y(E) = D,3(E)D,4(E) defines two pairs of
poles.

Infact, the scattering matrix can be easily calcul ated
in the resonance approximation by using numerical
methods for any impurity. For this purpose, we must
construct localized states in the one-dimensional well
V,,(X) and the scattering states in the well V;4(X). Then,
we must determine the matrix elements and solve the
linear system of equations (25). The obtained expres-
sion makesit possible to study the dependence of trans-
mission on the parameters of the scattering potential.
The results of such calculations will be given below.

4. INTERFERENCE OF RESONANT STATES

Wewill now usethe general expressions derived above
for the scattering amplitude in the resonance approxima:
tion to study interesting interference effects in electronic
waveguides with various types of scatterers.

A. Solitary Resonance

To begin with, we will analyze a resonance in the
case of an impurity with a finite transverse dimension;
the size of the impurity along the channel is assumed to
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be smaller than the electron wavelength (Fig. 3a). The
matrix elements of the potential are defined as

hz
Vnn‘(X) = _m Vnn‘é(x)i (48)
where v, > 0. Inthiscase, asinglelevel splitsfromthe
subband n = 2; thislevel interacts with the states of the
subband n = 1. The solution to Eq. (10) may give only
one bound state in the energy interval E; < E < E;:

h2v2
€ = E- 2 (49)
with the wave function
u(x) = /\/szeXp(—V22|X|)- (50)

The scattering amplitudet = t(E) is determined by solv-
ing Eq. (20); it can be written in the form
ik,

e = ik + vy

(51)

In this case, t(E) is a monotonic function of energy
since its pole lies outside the interval E; < E < E,. The
matrix elements determining the resonance structure of
ty; are given by

2 2 2 2
F2 = h ViVt _ R VLV pt
1 ’ 11 |mkl

- (52)

As a result of substitution of the derived expressions
into Eq. (29), we obtain

N(E) = E-€,, B(E) = E—(€,+A,) +il,, (53)
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where

2.2
_ VRV,

2 2
A _ hvpvk
1= k2 24!
m(ky + v1;)

= : 54

vy
It should be emphasized that it is configuration interac-
tion of alevel in the well V,,(X) with a state from the
continuous spectrum of the subband n = 1 that leads to
the emergence of an asymmetric resonancein transmis-
sion.

It isuseful to compare the expression derived for the
transmission amplitude in the resonance approximation
with the expression obtained as a result of the exact
solution to Egs. (8) and (9) for potential (48). We can
easily find that

ik (iky + V)

(iky+ Vi) (ikp + Vi) — V3,

tu(E) = (55)

This expression differs formally from formula (29)
with N'(E) and 9 (E) defined by formulas (53), but it
can be reduced to the same form by expanding the
numerator and denominator of the expression for t;,(E)
in the vicinity of its zero and pole and omitting small
nonresonant terms. The obtained result demonstrates
the obvious fact that the resonance approximation cor-
rectly describes the transmission structure in the energy
rangeE; <E<E,.

B. Interference of a Resonant Pair

More interesting interference effects are observed
when resonances can interact with one another. It is
well known that Breit-Wigner resonances repel one
another during their interaction, while Fano resonances
may exhibit a new effect which was called earlier the
collapse of resonances [23]. We will analyze the col-
lapse of resonances in the framework of the theory
devel oped above applied to two wells (see Fig. 3b) each
of which can be described by a matrix of the type (48).
For this purpose, we require explicit expressionsfor the
corresponding matrix elements. The matrix elements
Vi, n(X) for atwo-well system are defined as

Va9 = Lov, S-S s+ ST 9

In the case under investigation, parity is conserved and
we can consider even and odd states of scattering sepa-
rately. Solving Eq. (10) for even states, we obtain

rAscosh(|ky|x), [x <L/2,
US(X) =0 —|kg| 1K (57)
[h.e . X >L/2,

where a, and b, are constants determined by the bound-
ary conditions and normalization. The condition for the
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existence of a symmetric energy level with energy €.
lying below E, has the form

2v L

2

1. (58)

Similarly, we can find the energy €. for an odd state
(thislevel exists only for certain parameters of the sys-
tem). It is equally easy to solve the scattering problem
for the field of two wells, i.e., to obtain wave ampli-
tudesin the channel n = 1. For our subsequent analysis,
we will need only the transmission and reflection
amplitudes, which have the form

t =

ki
216, : 210, 7
e (kFivy) e vy (59)

o, . 2i

= 1+ Lk iva)e vy,
1

It can easily be seen that al the matrix elements deter-
mining the resonance scattering amplitude for the
potential under investigation can be expressed in terms
of r, t, and functions of bound states:

#? L/2
F, = —%()(Hrﬂ), R =F, (60)
h2v2,u3(LI2)
Ug = 21;“—;1(1” +1) (61)

(these are the explicit expressions for symmetric states
only). Calculating the resonance transmission ampli-
tude, we obtain

t1(E)

:tEﬂ-'F m_Q Fi - Fz % (62)
O iklﬁzt[E_%s_Uss E_%a_uaa

Using the explicit expressions for r and t, we separate
the real and imaginary components of the matrix ele-
ments Ug of a symmetric state:

Ug = A—ily,
A - 4h2vi2u§(u2)
s m
(k,SiNB; + 2v,; cosH,) cosO, (63)
(k,Sin8, + 2v ,;c0s8,)* + k’cos’0,
- 4ﬁ2v§2u§(|_/2)
s m
Vol. 94 No.5 2002



1000

2
k,cos 6
x 1 1

(K2sin®, + 2v,,cos6,)’ + k2cos?0,

Similarly, for an odd state, we have

Una = A,—il 5,
A, = _4ﬁ2v§2£,(|_/2)

(klcosel_zvllsnel)snel

2 . 2 2 .2~ (64)
(kjcosB, —2v,8inB;) +k;sin"8,
. 4ﬁ2vi2u§(u2)
é m
k,sin’0,

X

(K2cos8, — 2v,,sin8,)’ + K2sin’e,

Consequently, the pole part of the scattering amplitude
can be written in the form

DE) = (E-(€s+A)+ily)
X (E_(%a"'Aa) + ira)-

The expression appearing in the numerator of the trans-
mission amplitude and determining its zeros has the
form

(65)

#2v2
N(E) = (E-€)(E-E,)—4—=
mk,
(66)
x gE—%a)ui%'E—(E—%S)ui%'%sinelcosel.

It is important to note that the characteristics of reso-
nances are essentially the oscillating functions of the
parameters of the system. Let us change the distance
between the wells. In this case, one of the widths, say,
the width I of a symmetric resonance, may vanish.
This is accompanied by the collapse of the resonance.
It follows from relations (63) that thistakes place under
the following condition:

cosB, = 0.

(67)

If this condition is satisfied, the pole shifts to the real
axisand its energy exactly coincides with the energy of
azero.

Thus, the necessary condition for the collapse of
resonances in the system is vanishing of matrix ele-
mentsF;or F,. Let usconsider itin greater detail for Fg.
We present the wave function x*(x) in the form of a
superposition of the symmetric and antisymmetric
components:

X' = X9+ Xa(®)- (68)
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In accordance with relations (17), the matrix element
can be written in the form

00

Fs = Idxus(x)V21(x)x§(x). (69)

In the case of pointlike potentials, the contribution to
the integral appears from neighborhoods of the points
X =%L/2. Inan open channel, we take the wave function

in the form x2(x) = acosk,x. The matrix element may

vanishif the condition x (xL/2) = acosk,L/2 = 0 issat-
isfied. This means that the nodes of awave in the scat-
tering channel exactly coincide with the positions of
impurities. Obviously, conditions (58) and (67) must be
satisfied simultaneoudly for this purpose. This may
occur if the levelsin the well V,,(x) emerging below E,
intersect with virtual energy levelsin arectangular well
of width L. Thisfollows from expression (67).

C. Interference of Resonant States

Let us now consider the case when a potential well
may generate alarge number of resonances and analyze
their interaction. We can expect that both nontrivial
interaction between energy levels and the nontrivial
behavior of asymmetric resonancesare possible in such
a system [23]. Let us consider a 2D impurity in the
channel (see Fig. 3c). The impurity potential can be
written as

V% y=YJ
(70)
= Va5 b T -y - v

whered(x) =0forx<Oand 9(x) =1forx>1; X;=0
and Y; are the coordinates of the center of the well; Vi
isthewell depth; and W,;; isitstransverse size. For such
awell, the matrix elements V,,, can be easily found in
explicit form. We will be interested in the transmission
of an electronic waveguide containing the given scat-
terer. It should be noted that, in spite of the apparent
simplicity, the given problem has no exact solution.
Proceeding in accordance with the algorithm proposed
above, we first find solutions for energy levels in the
well V,,(X). The energy levels for symmetric and anti-
symmetric states can be determined by solving the tran-
scendental equations

tan®, = qﬁ, cot8, = —qﬁ, (72)

2 2
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where

L
/\/"‘(E E,+ |V22|)1 92=§q2,

K = /;—T(EZ—E).

The number of levels in a well is determined by the
parameter v = L ,/m|V,|/ 2% . We can easily derive the
wave functions uj(X) and uf(x) corresponding to
energy levels. For example, for even states, we have

_ [DAJcos(gpx), X <L/2,

ued =0,
Bie™™, X >L/2,

(72)

where A} and B} are the constants determined by the
boundary conditions and normalization (the corre-

sponding quantities for odd states are denoted by A‘}"
and B]f"). The solution of the scattering problem gives
_ iky
~ (q,Sin0; + ik,cosB,) (-0, cosb, + ik,sind;

3’ (73)

where g, is the wave vector of a particle in the well,

L
/\/_(E E, + |V11|)1 91=EQ1,

and k; is the wave vector in the scattering channel 1,

2m
k, = ’?(E_El)'

It follows from expression (73) that the potential scat-
tering amplitude has the pole structure determined by
reflections at the well edges. Such poles correspond to
Breit—-Wigner resonances.

We can write the expressions for the matrix ele-
ments determining the resonant structure of the scatter-
ing amplitude:

Fi(E) = 2V,AJCT(E), Ri(E) = Fi(E),

FE) = 2V,ATSTI(E), (74)
— (a)
Ri(E) = —F"(E),
where
C= 0 ik 0 t
(79)

K,
S= %—I sing, + q—cos(:)ID

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

1001
and C and Sare connected through the relation
k
cSs = -t. (76)
Q:
We have also introduced the functions
1
fE) =
T g-a
gL gL 9. L
qusnTCos— qlCOSTSII’ITD,
(77)
) = —+
' 05— o
gL gL gL . gl
qusm > cos7 +(Q,C0S— > nTD'
L et us present the matrix elements Uj;. in the form
FiR;+Qj, (78)
i Iklh t i
where
_ 2mvy,
Qi = —=
a:f
L/2 L/2 (79)

x J‘ uj(x)Iu](x')sinq(x—X'),

-L/2

and ImQy;: = 0. In the case of a symmetric well, the
matrix elements U;;. between the states with different
parities are equal to zero. It is convenient to introduce
the matrix elements U, and U,, which connect the
pairs of symmetric (ss) and antisymmetric (aa’) states:

mMV2,AA

2
iklﬁz C fsfs'+st'v

USS' =
(80)
mMV2,A A, <5t

+ Q.
ik, %t *

aa'

The expression for the transmission amplitude was
derived in the general form in Section 2 for a small
number of resonances. If the value of parameter v is
such that v < 172, the well contains only one energy
level and, hence, one Fano resonance in transmission
(42). In the given interval of v, the parameters of the
resonance are monotonic functions of the well width.
For 172 < v < T, the transmission contains two Fano
resonances (45), but the parameters of the resonances
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Fig. 4. Resonant structure of the transmission of awaveguide with an extended impurity for different valuesof L: 0.7W, 1.3W, 2.7W,
and 3.6W (the energy is measured in units of E; = T24%2mW?) and for the following impurity parameters: Vy; = 1.515E;,

VlZ = 0521E1, and V22 = 1OE1

in this interval may oscillate since, in the given case,
we have

%(1) = €1+ Qu, %g = €, + Qy,

mV2,A? 2
12741 20y e

%1R =€, +Qu+

2 Ot O
R mVLAS € (8D
€y = €+ Qpt 42 fZ(E)ImDTD’
1
2
Chv2
Vi = Bodi laalins
and the widths of the resonances are defined as
mVoLAY <h .
FJ- = WQJfl(E)ReDTD’ ] = 1,2. (82)

1

The number of Fano resonancesisequal to threefor 1<
v < 3172, four for 3172 < v < 2T, €tC.

Let us consider the results of numerical calculations
in the case of a 2D impurity of rectangular shape
(Fig. 3c). We fix the well depth and vary its length L.
Figure 4 shows the probability of transmission through
a waveguide with an extended symmetric attracting
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impurity as a function of energy E (E is measured in
units of E; = ¢A2/2mWP, W being the waveguide width)
for various values of parameter L. It can be seen that for
L =0.7W, when potential V,,(X) contains only one
energy level, the transmission contains one Fano reso-
nance. For L = 1.3W, L = 2.7W, and L = 3.6W, one can
see two, three, and four Fano resonances, respectively.
The above analysis shows that, by varying the impurity
parameters (the parameter L in the present case), we
change the number of energy levels and the number of
resonances in the transmission. The zeros of the trans-
mission amplitude always lie on the real axis, whileits
polesliein the complex plane. We can also see the evo-
[ution of Breit—-\Wigner resonances emerging as aresult
of wave interference in the channel n = 1. For the cho-
sen parameters, they liefar in the complex plane. When
the Breit-Wigner resonances intersect Fano reso-
nances, they interact effectively.

L et usnow consider the possibility of the collapse of
resonances in the given system. We will study the
behavior of characteristics of resonances as functions
of well parameters, e.g., its width L. An analysis of
expression (82) showsthat the function Re(C?/t) cannot
vanish. It can easily be verified that only the functions
f;(E) may have zeros, which occurs when the matrix
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elements F, or F, vanish. Let us consider in greater
detail the matrix element

[

Fs = IdXUs(X)V21(X)X§(X)
- (83)

L/2
= V,,A.C I dx cos(,xcosq; X,

—-L/2

where we have used the expression x<(x) = Ccosg;x
for thewavefunctioninthewell region. It followsfrom
Eq. (83) that the integral may vanish if X:(X) changes
its sign, and the positive contribution to the integral is
exactly compensated by the negative contribution. This
is possible if one of the equalities (71) holds for even
and odd energy levels, respectively. Thus, the collapse
for even states takes place if the following conditions
are satisfied simultaneously:

K K
tan@, = —, tan@, = —, 84
Iy ) (84)
the corresponding conditions for odd states being
K K
cot0, = —, cotf, = —. 85
2= 1= (85)

Let us consider in greater detail the meaning of the
derived expressions for even states. We will measure
energy from E,. Then, the first equality in (84) can be
interpreted as the condition for the existence of energy
levelsin awell of depth [V.,| and the second equality as
the condition for the existence of energy levelsin awell
of depth E, — E; + [Vy4] (shown by dashed linesin Fig. 5).
Let us now increase the size L of the well. Upon a
change in parameter L, the energy levels of the deeper
well descend more sharply and intersect the energy lev-
els in the shallower well. The intersection of levels
leads to the collapse of resonances. Figure 6 shows the
graphical solution of equations for the two-parametric
spectral problem (84) and (85). Theintersection of con-
tinuous curves makes it possible to determine the criti-
cal parameters (E;, L°) for symmetric states (i = 1,
2, ...). Similarly, the intersections of dashed curves
give the critical parameters of asymmetric states of the
system. For example, for the impurity parameters
selected earlier, we can indicate several pairs of critical
parameters for symmetric states: (1.1562W, 3.2987E,),
(2.2512W, 3.1188E;), (3.3310W, 3.0633E,), €tc. Figure 7
shows transmission as a function of energy for the fol-
lowing three values of the longitudinal impurity sizeL:

1.95W, L; = 2.25116W, and 2.45 W, It can be seen from

thefigurethat, as L passesthrough thecritical value, the
matrix element of the interaction of states changes its
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Vnn (x)

Eyee i
| |
T T

______ [T [T
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Fig. 5. Diagram of intersection of energy levelsin effective
potential wells [Vo, | and E; —E; + [Vqq |-

Fig. 6. Graphic solution of Egs. (84) and (85) for the two-
parametric problem. The intersection of solid curves gives
critical parameters of symmetric states, while the intersec-
tion of dashed curves gives critical parameters of asymmet-
ric states of the system.

sign, owing to which the collapse and swing (change
from the “zero—pole” to the “pole-zero” positions) of
Fano resonances can be observed.

D. Resonancesin a Waveguide
with Asymmetric Impurity

Let us now consider the case when the impurity
potential does not possess parity relative to the transfor-
mation x — —x: V(X, y) # V(=X, y). For the sake of def-
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initeness, we consider a 2D two-component impurity
(see Fig. 4d) whose potential field will be chosen in the
form

V(X y—Yy
EJ—VS(L +x)f)EWaIt ly-YE, x<o0
_o i ' (86)
TV (L9 Ly -V x>0
O

t =

1

KIM et al.

The position of energy levels in the well V,5(X) in this
case is determined by the relation between the quanti-
ties V, and V,, in expression (86) (for the sake of defi-
niteness, we assume that |V;| > |V, |). The energy levels
can be determined from the equation

(1+pBtanB,,)(a
= (1+atanB,,)(ytan8,, —a

—tanf,,)
87
) (87)

where o = K/Gpy, B = K/Gpa, Y = O/ Os 820 = Ozalar 820 =
Ozl and L = L, + L. The coefficient of transmission

of aparticle above the well V,;(X) has the form

: (88)

C056,, 30561, — 5(B + B ) SOy 58in61,(c0sB1,(6 + G =i (Y +V ) SnBy)

where a = Ki/Gp, B = Ki/Qya \7 = O1a/%py 612 = Ghalas
B1p = thplp, and Oy p = J2m(E-E, + Vi1 a0]) /5. It
should be noted that, in the case of scattering in an

T
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Fig. 7. Swing of aFano resonance upon the change of zero—
pole to pole—zero positions for three values of parameter L:

1.95W, L = 2.25116W, and 2.45W.

0
3.10 3.30
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asymmetric field Vy;(x), the transmission associated
with potential scattering (88) also displays a series of
alternating maxima and minima, but in contrast to the
symmetric problem, the values of transmission ampli-
tude at the peaks may be smaller than unity.

In order to determine the resonant contribution to
the transmission amplitude, we must calculate the
matrix elements F, R, and Uj; taking into account the
fact that V;,(X) is now a step function. For this reason,
integration is carried out over the two regions (—L,, 0)
and (O, Ly). The matrix elements U;; can be written, as
before, in theform (33), where Q;;- isnow calculated by
using the formula

0

2m
i = ——— [ dxV () ui(X
Q]J klﬁz_-[ 12( ) j( )

0 .
x gdx'vlz(x') Uj(X) SinQlyo(X = X)
" (89)

Ly

] O]
+ J’dxlvlz(xl) U;(X) singyp(X = X) E

Ly

+ kzl_rfl;z JO' dxV(X)u;(X) -)[' dX' V1 (X) Uj(X) singp(X — X).

Ly

It can be seen that the statement that Im Q;;. = O isalso
valid for an asymmetric well; however, in the general
case, the matrix U;; may contain nonzero nondiagonal
elements. Let us find out how this circumstance
changes the structure of resonances.

In the case when the well V,,(X) contains one energy
level, the expression for the channel transmission for-
mally coincides with formula (42), but the resonance
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0.94r 7

0921 7

0.90 1 1 1 1 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 8. Transmission of a channel with a two-component
impurity (theimpurity sizeL = L, + L= 1.7W, V/V, = 0.5).
The remaining parameters are the same asin Fig. 4.

parameters depend on the type of well. If thewell V,,(x)
contains two energy levels, we have

tu(E)

(E-$€D)(E-$3) —QuQu
(E_%l_ull)(E_%Z_UZZ) _U12U12’

90
I (90)

%2 = €.+ Qu, %g = €,+ Qy.

It can easily be seen that zeros of the resonance also lie
on the real energy axis. It was noted above that the
denominator of expression (90) can be presented in the

form 9(E) = (E— €1)(E - €.), where the positions of

thepoles €, and €, are determined by the solutionsto
the equation

(€—-€1-Up)(€-€,-Uy)—-UpU;, = 0.

If we assume that the asymmetry parameter of the
potential well V(x, y) is small (V/V, = 1), the position
of the poles will be determined in accordance with

~ U2

%12%1+ Ull_cr%’
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Fig. 9. Dependence of the Fano resonance width on param-
eter L = L, + Ly, for different values of the impurity asym-

metry parameter Viy/V,: Vi = V, (1), Vp = 0.95V, (2), Vp, =
0.9V; (3), and V}, = 0.85V, (4).

% Uiz

=€, + + —
€2=€,+ U, s
This means that, in the present case, we are dealing
with a direct interaction of Fano resonances, which is
determined by the matrix element U,,. Figure 8 shows
the transmission of a channel with a two-component
impurity (the impurity sizeisL =L, + L, = 1L.7W,
V/V, =0.5). The potential scattering of aparticle above
thewell V,;(X) resultsin aseries of maximaand minima
on the dependence of T on E (Breit-Wigner reso-
nances), while Fano resonances are connected with the
impurity levels split from the E, band. The examples
considered above show that, in the absence of symme-
try, the structure of Fano resonances remains
unchanged: transmission has zeroson thereal axisand
poles corresponding to transmission peaks. However,
the peaks of Fano resonances as well as of Breit—
Wigner resonances become smaller than unity due to
the loss of coherence in the reflection from the edges
of an asymmetric well.

If, however, the asymmetry parameter is small, res-
onances may become narrower, but no resonance col-
lapse takes place in the case of an asymmetric impurity.
Expressing F;R; and F,R, explicitly in the regions
(-L,, 0) and (0, L,,) as was done for a symmetric impu-
rity, we can easily verify that the widths of Fano reso-
nances cannot vanish exactly in the absence of parity of
states. Inthis case, theintegrandswill contain complex-
valued functions, and the vanishing of Fano resonances
requires that the real and imaginary components of
matrix elements become simultaneously equal to zero,
which cannot be achieved with a single free parameter
(e.g., thelongitudinal size of the well). However, asin
the symmetric case, a change in the impurity parame-
tersmay result in the intersection of the energy levels of
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Fig. 10. Swing of a Fano resonance. The impurity asymme-
try parameter Vp/V, = 0.85; the parameter L = L, + Ly
assumes the following values: (a) 1.95W; (b) 2.25W. and
(c) 2.45W.

effective wells leading to the swing of a Fano reso-
nance. It should be noted that interacting states in the
given system have no definite parity. Figure 9 demon-
strates the dependences of the width of a Fano reso-
nance on the parameter L =L, + L, for various values of
the impurity asymmetry parameter. Figure 10 shows
the swing of a Fano resonance, when parameter L
passes through a value close to the critical value for a
symmetric impurity (the asymmetry parameter V,/V, =
0.85). It can be seen from Fig. 10 that the pole and the
zero of an isolated Fano resonance change places upon
a change in parameter L, the width of the resonance
remaining finite.
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5. CONCLUSIONS

Thus, the proposed approach makes it possible to
analyze the resonance structure of the amplitude of
transmission of a particle through an electronic
waveguide containing attracting impurities of an arbi-
trary shape. It was proved that finite-sizeimpurities cre-
ate a series of quasi-bound states which are manifested
as resonance—antiresonance pairs in transmission. The
results presented above demonstrate explicitly that, in
all cases considered above, Fano resonances are due to
interference of a propagating electron state with quasi-
bound states. Fano resonances possess a universal
structure and are characterized by three real parameters
(éR, €9, ). Upon achange in the impurity parameters,
resonance zeros and poles move in accordance with the
change in the position of energy levels in the well. In
the case of asymmetric impurity, apole and azero may
collide, which leadsto the collapse and swing of aFano
resonance. The theory developed in this work makes it
possible to study the interaction of asymmetric reso-
nances in wells of an arbitrary shape. The predicted
effects may be discovered in electronic waveguides
with artificial impurities[15].

It should aso be noted that the proposed approach
makes it possible to consider problems of resonant
transformation of waves of any origin, e.g., electromag-
netic or acoustic waves.

ACKNOWLEDGMENTS

The authors are grateful to V.A. Volkov, A.A. Gor-
batsevich, D.Z. Kwon, and Yu.A. Romanov for their
interest in this research and for fruitful discussions.

Thiswork was supported financially by the Russian
Foundation for Basic Research (project nos. 01-02-16569
and 02-02-17495). One of the authors (C.S. Kim) is
indebted to the Korea Research Foundation for support.

REFERENCES

H. Feshbach, Ann. Phys. 5, 357 (1958).
H. Feshbach, Ann. Phys. 19, 287 (1962).

. Quantum Transport in Ultrasmall Devices, Ed. by
D. K. Ferry, H. L. Grubin, C. Jacoboni, and A.-P. Jauho
(Plenum, New York, 1995), NATO ASl Ser., Ser. B:
Phys., Vol. 342.

4. B.J.vanWess, H. van Houten, C. W. J. Beenakker, et al.,
Phys. Rev. Lett. 60, 848 (1988).

5. D.A.Wharam, T. J. Thorton, R. Newbury, et al., J. Phys.
C 21, L209 (1988).

6. U. Fano, Phys. Rev. 124, 1866 (1961).

7. U. Fano and J. W. Cooper, Phys. Rev. A 137, 1364
(1965).

8. R.K.Adair, C. K. Bockelman, and R. E. Peterson, Phys.
Rev. 76, 308 (1949).

9. J A. Simpson and U. Fano, Phys. Rev. Lett. 11, 158
(1963).

w NP

No. 5 2002



10

11

12.

13.

14.

15.

16.
17.

18

INTERFERENCE OF QUANTUM STATES IN ELECTRONIC WAVEGUIDES WITH IMPURITIES

F. Cardeira, T. A. Fjeldly, and M. Cardona, Phys. Rev. B
8, 4734 (1973).

J. Feist, F. Capasso, C. Sirtori, et al., Nature (London)
390, 589 (1997).

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Ima-
moglu, Appl. Phys. Lett. 70, 3455 (1997).

C. P. Holfeld, F. Léser, M. Sudzius, et al., Phys. Rev.
Lett. 81, 874 (1998).

O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheey,
et al., PismaZh. Eksp. Teor. Fiz. 71, 366 (2000) [JETP
Lett. 71, 255 (2000)].

S. Yamada and M. Yamamoto, J. Appl. Phys. 79, 8391
(1996).

F. H. Mies, Phys. Rev. 175, 164 (1968).

C. S. Chu and R. S. Sorbello, Phys. Rev. B 40, 5941
(1989).

P. F. Bagwell, Phys. Rev. B 41, 10354 (1990).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

19
20

21

22

23

24,

25
26

1007

E. Tekman and S. Ciraci, Phys. Rev. B 42, 9098 (1990).

S.A. GurvitzandY. B. Levinson, Phys. Rev. B 47, 10578
(1993).

J. U. Nockel and A. D. Stone, Phys. Rev. B 50, 17415
(1994).

C. S.Kimand A. M. Satanin, Zh. Eksp. Teor. Fiz. 115,
211 (1999) [JETP 88, 118 (1999)].

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby,
Phys. Rev. B 60, 10962 (1999).

R. Landauer, Phil. Mag. 21, 863 (1970).
M. Buttiker, Phys. Rev. B 35, 4123 (1987).

A.l.Baz',Ya. B. Zel'dovich, and A. M. Perelomov, Scat-
tering, Reactions and Decays in Nonrelativistic Quan-
tum Mechanics (Nauka, Moscow, 1971, 2nd ed.; Israel
Program for Scientific Trandations, Jerusalem, 1966).

Translated by N. Wadhwa

No. 5 2002



	1008_1.pdf
	1013_1.pdf
	1026_1.pdf
	1035_1.pdf
	853_1.pdf
	862_1.pdf
	869_1.pdf
	882_1.pdf
	892_1.pdf
	901_1.pdf
	916_1.pdf
	927_1.pdf
	943_1.pdf
	966_1.pdf
	977_1.pdf
	985_1.pdf
	992_1.pdf

