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Abstract—The interaction of neutrinos with nucleons in the envelope of a remnant of collapsing system with
a strong magnetic field during the passage of the main neutrino flux is investigated. General expressions are
derived for the reaction rates and for the energy–momentum transferred to the medium through the neutrino
scattering by nucleons and in the direct URCA processes. Parameters of the medium in a strong magnetic field
are calculated under the condition of quasi-equilibrium with neutrinos. Numerical estimates are given for the
neutrino mean free paths and for the density of the force acting on the envelope along the magnetic field. It is
shown that, in a strong toroidal magnetic field, the envelope region partially transparent to neutrinos can acquire
a large angular acceleration on the passage time scales of the main neutrino flux. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Collapsing systems with rapidly rotating remnants
are of great interest in astrophysics. Such remnants can
be formed during the explosions of type II supernovae
[1, 2], during the mergers of close neutron-star binaries
[3], and during accretion-driven collapse [4]. About
10% of the released gravitational energy is known to
transform into the thermal energy of the remnant and to
be emitted in the form of neutrinos, irrespective of the
origin of the collapse [1–5]. A core rotating like a solid
and a disk (envelope) rotating with an angular velocity
gradient are formed in the remnant of collapse on time
scales of the order of a second. The compact core of
typical sizes Rc ~ 10 km, subnuclear densities, and high
temperatures (T * 10 MeV) is opaque to neutrinos. Being
less dense and hot (T ~ 3–6 MeV), the envelope with
typical sizes of several tens of kilometers is partially
transparent to neutrinos [2–5]. Within several seconds
after its formation, the remnant of collapse effectively
cools down via neutrino radiation. The neutrino lumi-
nosities during this period are typically Lν ~ 1052 erg s–1

[5] (the passage stage of the main neutrino flux). This
neutrino flux could have a strong effect on the dynamics
of the envelope; in particular, it could trigger its ejec-
tion [6]. Detailed calculations show that, for a spheri-
cally symmetric collapse, the neutrino absorption by
the envelope is not intense enough for its ejection [7].
However, such envelope ejection is possible for a milli-
second remnant of collapse with a strong toroidal mag-
netic field (the magnetorotational model of a supernova
explosion [1]).

Because of its rapid rotation and large viscosity,
convection, a turbulent dynamo, and large angular-
1063-7761/02/9406- $22.00 © 21043
velocity gradients arise in the remnant of collapse.
These processes can lead to the rapid (of the order of
several seconds) generation of a strong poloidal mag-
netic field with a strength up to B ~ 3 × 1015 G on a
coherence length L ~ 1 km in the core of the remnant of
collapse [8]. Having arisen in this way, the strong poloi-
dal field can persist in a young neutron star for about
103–104 years. Duncan and Thompson [8] called such
young pulsars magnetars. There are strong grounds for
suggesting that magnetars are observed in nature as soft
gamma-ray repeaters (SGRR) [9] or as anomalous
X-ray pulsars (AXP) [10]. An angular-velocity gradient
in the envelope leads to the generation of a secondary
toroidal magnetic field through the winding of field
lines of the primary poloidal magnetic field frozen in
the rotating envelope plasma. In this case, strong poloi-
dal magnetic fields of strength B ~ 1015–1017 G can
emerge in the envelope of a millisecond remnant of col-
lapse in typical times of ~1 s [11]. Such strong fields
can significantly affect the envelope dynamics even if
they persist for several seconds. For example, a mag-
netic field of strength B ~ 1017 G can produce an aniso-
tropic gamma-ray burst [12] and, as we already pointed
out above, can trigger the ejection of the supernova
envelope [1].

Significantly, such strong magnetic fields can arise
in the envelope during the passage of the main neutrino
flux through it (within several seconds after collapse).
Therefore, it is of interest to investigate the possible
dynamical effects that emerge when the neutrino flux
passes through a strongly magnetized envelope. Effects
of this kind are discussed in the literature. For example,
Bisnovatyœ-Kogan [13] estimated the magnetar velocity
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gained through a neutrino dynamical kick in the case
where the magnetic-field strengths on its hemispheres
differed significantly. In this case, the kick arises
because the energy transferred from the neutrinos to the
medium in β processes depends on the magnetic-field
strength. However, we will discuss the dynamical
effects of a different nature. Because of the parity vio-
lation in weak processes, neutrinos are known to be
emitted and absorbed in a magnetic field asymmetri-
cally, which can lead to macroscopic momentum trans-
fer from the neutrinos to the medium [14, 15]. Thus, the
envelope region filled with a strong toroidal magnetic
field can acquire a large macroscopic angular momen-
tum when an intense neutrino flux passes through it
[16].

Here, we estimate the asymmetry in momentum
transfer from the neutrinos to the medium during the
neutrino interaction with nucleons in the envelope of a
remnant of collapse at the stage of the main neutrino
radiation. This paper has the following structure. In
Section 2, we stipulate basic physical assumptions
about the parameters of the medium, magnetic-field
strengths, and the neutrino distribution function. In
Section 3, we derive general expressions for the reac-
tion rates and for the components of the energy–
momentum transferred from the neutrinos to a volume
element of the medium per unit time in the direct
URCA processes for a strong magnetic field. In Section 4,
the same quantities are calculated for the scattering of
(anti)neutrinos of all types by nucleons of a magnetized
medium. Numerical estimates for the parameters of the
medium, neutrino mean free paths, and the force den-
sity along the magnetic field are presented in Section 5.
In Section 6, we compare our results with the results of
similar calculations and briefly discuss the possible
dynamical effects of the parity violation in the envelope
of a collapsing star. The calculations of our basic results
are detailed in Appendices A, B, and C. Throughout the
paper, we use a system of units with c = " = kB = 1.

2. PHYSICAL ASSUMPTIONS

Here, we investigate basic neutrino–nucleon pro-
cesses in the envelope of a remnant of collapse with a
strong magnetic field at the stage of the main neutrino
radiation. We consider the direct URCA processes

(1)

(2)

(3)

(4)

and the scattering of neutrinos of all types by nucleons:

(5)

(6)

n νe p e–,+ +

p e– n νe,+ +

p ν̃e n e+,+ +

n e+ p ν̃e+ +

N ν i N ν i,+ +

N ν̃ i N ν̃ i,+ +
JOURNAL OF EXPERIMENTAL 
Note that β decay is suppressed under the conditions con-
sidered. A quantitative estimate of the asymmetry in
momentum transfer follows from the expression for the
energy–momentum transferred in these processes from the
neutrinos to a unit of volume of the medium per unit time:

(7)

Here, dni and dnf are the numbers of initial and final
states in the element of phase volume; fi and ff are the
distribution functions of the initial and final particles;
|Sif |2/7 is the square of the S-matrix element for the
process per unit time; and qα is the 4-momentum trans-
ferred to the medium in a single reaction. An important
quantity that characterizes the process is also its rate Γ
defined as

(8)

In particular, the neutrino mean free paths can be easily
determined from this quantity:

(9)

where Nν is the local neutrino number density and 
is the sum of the absorption and scattering rates for the
neutrinos of a given type.

In the reactions of neutrino interaction with matter,
we separate the medium and the neutrino flux passing
through it. By the medium, we mean free electrons,
positrons, and nucleons with an equilibrium Dirac dis-
tribution function: 

where ηi = µi/T and Ei, and µi are the energy and chem-
ical potential for the particles of a given type. We disre-
gard the effect of envelope rotation on the distribution
functions, because the rotation velocity is nonrelativis-
tic even for a millisecond remnant of collapse. At typi-
cal (for the envelope) densities (ρ ~ 1011–1012 g cm–3)
and temperatures (T ~ several MeV), the e+e– plasma is
ultrarelativistic and the nucleon gas is a Boltzmann
nonrelativistic one.

We consider the case of a strong magnetic field, i.e.,
assume that the parameters of the medium and the mag-
netic-field strength are related by

(10)

ν i νe νµ ντ , N, , n p.,= =

dPα

dt
---------

dQ
dt
------- (, 

  1
V
---= =

× ni f id
i

∏∫ n f 1 f f–( )
Sif

2

7
-----------qα .d

f

∏

Γ 1
V
--- ni f id

i

∏∫ n f 1 f f–( )
Sif

2

7
-----------.d

f

∏=

l ν
Nν

Γν
tot

-------,=

Γν
tot

f i
1

Ei/T η i–( )exp 1+
---------------------------------------------,=

mpT  @ 2eB * µe
2, T2

 @ me
2,
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where mp and me are the proton and electron masses and
e > 0 is an elementary charge. Condition (10) implies
that the electrons and positrons occupy mainly the
lower Landau level, while the protons occupy many
levels.

The quantity (7) is known to be zero [17] for a ther-
mal equilibrium of the neutrinos with the medium.
However, we consider the envelope region where the
neutrino distribution function deviates from the equi-
librium one. In the model of spherically symmetric col-
lapse, the local (anti)neutrino distribution without a
magnetic field can be fitted as follows [5, 18]:

(11)

Here, χ is the cosine of the angle between the neutrino
momentum and the radial direction, ω is the neutrino
energy, Tν is the neutrino spectral temperature, and ην
is the fitting parameter. In this paper, we ignore the
effect of a magnetic field on the neutrino distribution
function. This approximation is good enough when the
neutrino mean free path is larger than or of the order of
the region occupied by a strong magnetic field. In the
model considered in [11], this region does not exceed a
few kilometers in size, whereas the mean free paths for
the neutrinos of different types are estimated to be 2–5 km.
Thus, in our subsequent calculations, we use the neu-
trino distribution function (11). We will return to a dis-
cussion of this issue in Section 5.

3. DIRECT URCA PROCESSES

We used the standard low-energy Lagrangian for the
weak interaction of neutrinos with nucleons to calcu-
late the S-matrix element of the direct URCA pro-
cesses. Our calculations of the square of the S-matrix
element are detailed in Appendix A. In the limit of a
strong magnetic field, where the electrons and positrons
occupy only the ground Landau level, we derived the
expression

(12)

where

(13)

(14)

Here, δ(3) is the delta function of the energy, the
momentum along the magnetic field, and one of its
transverse components that are conserved in the reac-

f ν
Φν r χ,( )

ω/Tν ην–( ) 1+exp
-----------------------------------------------.=

Sif
2

7
-----------

GF
2 θcπ

3cos
2

2LyLzV
2ωε

----------------------------
Q⊥

2

2eB
----------– 

 exp=

×
M+

2

n!
------------

Q⊥
2

2eB
---------- 

 
n

δ 3( )

n 0=

∞

∑ M–
2

n 1–( )!
------------------

Q⊥
2

2eB
---------- 

 
n 1–

δ 3( )

n 1=

∞

∑+ ,

M+
2 4 ε p||+( )=

× 1 ga+( )2 ω k ||+( ) 4ga
2 ω k ||–( )+[ ] ,

M–
2 4 1 ga–( )2 ε p||+( ) ω k ||+( ).=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tions;  is the square of the transferred momentum
across the magnetic field in the corresponding reaction;
n is the index of summation over the proton Landau lev-
els; ε, p||, ω, and k|| are the energy and the momentum
component along the magnetic field for the electron and
neutrino, respectively; 7LxLyLz is the normalization
4-volume; ga is the axial constant of a charged nucleon
current (ga ≈ 1.26 in the low-energy limit); GF is the
Fermi constant; and θc is the Cabibbo angle.

Note that we derived the above expression for |Sif |2
in [16]. It is identical to that from [19] and [20] when
the erroneous sign of the axial constant ga is corrected
(for the formal change ga  –ga). However, the paper
[21], where only the term n = 0 in the square of the
S-matrix element was calculated, contains a difference
in expression (13). To obtain the expression for S2 from

[21], the factor (1 + ) must be substituted for (1 + ga)2

in the first term of the amplitude (13).
For convenience, we calculate the 4-momentum,

dPα/dt, transferred to the medium in the direct URCA
processes involving neutrinos (1), (2) and antineutrinos
(3), (4) separately. Using the T invariance of the square
of the S-matrix element for these processes and explicit
particle distribution functions for the medium, we can
represent the quantity (7) as

(15)

Here, δη = (µe + µp – µn)/T, kα is the 4-momentum of

the (anti)neutrino, and  is the absorption coeffi-
cient in the (anti)neutrino absorption reaction defined
as

(16)

Note that under β-equilibrium conditions, when

,

expression (15) for the transferred momentum is

(17)

Q⊥
2

ga
2

dPα
ν ν̃,( )

dt
----------------

k3d

2π( )3
-------------kα_ ν ν̃,( )∫=

× 1 –
ω
T
---- δη± 

 exp+ 
  f ν ν̃, –

ω
T
---- δη± 

 exp– .

_ ν ν̃,( )

_ ν ν̃,( )
npd nnd ne

Sif
2

7
-----------d∫=

×
f n 1 f p–( ) 1 f

e
––( )

f p 1 f n–( ) 1 f
e

+–( ) 
 
 

.

ην δη
µe µp µn–+

T
-----------------------------= =

dPα
ν ν̃,( )

dt
----------------

k3d

2π( )3
-------------∫=

× kα 1 –
ω
T
---- ην± 

 exp+ 
  _ ν ν̃,( )δ f ν ν̃, ,
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where  is the deviation of the neutrino distribu-
tion function from the equilibrium one. Thus, the
4-momentum transferred from the neutrinos to the
medium is nonzero only in a partially transparent (to
neutrinos) envelope and vanishes in a dense β-equilib-
rium remnant core.

We calculated the absorption coefficient (16) in the
strong-field limit (10) by assuming the nucleon gas to
be nondegenerate. In this case, the calculation tech-
nique is simplified sharply compared to the more gen-
eral case. For this reason, we discuss the details of our
calculation of the absorption coefficient in Appendix B.
Here, we present only the final result that was previ-
ously published [16] without explaining the details of
our calculations:

(18)

where the terms of order eB/mpT were discarded. Here,
Nn, Np, mn, and mp are the neutron and proton number
densities and masses,

Note that the derived expression is identical to that in
[19].

For completeness, we give the expressions for the
energy density dQ/dt and for the rates Γ of the direct
URCA processes (1)–(4):

(19)

(20)

(21)

δ f ν ν̃,

_ ν ν̃,( ) GF
2 θccos

2

2π
-----------------------eBN n p,( )=

× 1 3ga
2+( )

k ||

ω
---- ga

2 1–( )– 
  1 a

ω
T
----–± 

 exp+ 
  1–

,

a
µe ∆–

T
--------------, ∆ mn mp.–= =

Γ
dQ/dt 

 
 

n νe p e
–+→+

=  !Jν
Nn

NB

-------
T3C2 a Tν ην, ,( )

T4C3 a Tν ην, ,( ) 
 
 

,

Γ
dQ/dt 

 
 

p e
–

n νe+→+

!
N p

NB

-------e∆/T=

×
T3B2 a( ) T3JνD2 a Tν ην, ,( )–

–T4B3 a( ) T4JνD3 a Tν ην, ,( )+ 
 
 

,

Γ
dQ/dt 

 
 

p ν̃e n e
++→+

=  !J ν̃
N p

NB

-------
T3C2 a– T ν̃ η ν̃, ,( )

T4C3 a– T ν̃ η ν̃, ,( ) 
 
 

,

JOURNAL OF EXPERIMENTAL 
(22)

where the dimensional coefficient ! is defined as

Our introduced functions Bn, Cn, and Dn can be
expressed in terms of the integrals as follows:

The parameter

(23)

has the meaning of the ratio of the actual local neutrino
number density to the value for the Fermi–Dirac distri-
bution at the same spectral temperature Tν.

Our calculations of the components of momentum
(15) transferred to the medium during neutrino reradia-
tion show that the emerging radial force is much weaker
than the gravitational force and cannot significantly
affect the envelope dynamics. Thus, of interest is the
force component acting along the magnetic field. For a
toroidal field, the density of this force can be repre-
sented as

Γ
dQ/dt 

 
 

n e
+

p ν̃e+→+

!
Nn

NB

-------e ∆/T–=

×
T3B2 a–( ) T3J ν̃D2 a– T ν̃ η ν̃, ,( )–

T4B3 a–( ) T4J ν̃D3 a– T ν̃ η ν̃, ,( )+– 
 
 

,

!
2GF

2 θccos
2

2π( )3
-------------------------- 1 3ga

2+( )eBNB,=

NB Nn N p.+=

Bn a( )
Zn Zd
Z a–( )exp 1+

------------------------------------,

0

∞

∫=

Cn a Tν ην, ,( )

=  
Zn Zd

a Z–( )exp 1+( ) ZT
Tν
------- ην– 

 exp 1+ 
 

------------------------------------------------------------------------------------------,

0

∞

∫

Dn a Tν ην, ,( )

=  
Zn Zd

Z a–( )exp 1+( ) ZT
Tν
------- ην– 

 exp 1+ 
 

------------------------------------------------------------------------------------------.

0

∞

∫

Jν f ν k3d∫( )=

× 1 ω
Tν
----- ην– 

 exp+ 
  1–

k3d∫ 
  1–
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(24)

Here,

(25)

where  is the mean square of the cosine of the
angle between the neutrino momentum and the radial
direction. As follows from this expression, the asym-
metry in momentum transfer is nonzero for two rea-
sons: either the neutrino distribution is anisotropic
(〈χ 2〉  ≠ 1/3), or energy is transferred to the medium in
the URCA processes (1)–(4) (d /dt ≠ 0). Interest-
ingly, for an isotropic neutrino distribution, the force
density is directed along the field when the medium
cools down and opposite to the field when it heats up
through the URCA processes.

4. THE NEUTRINO SCATTERING
BY NUCLEONS

We used the nonrelativistic vacuum wave functions
of nucleons with a certain spin component along the
magnetic-field direction to calculate the S-matrix ele-
ment in the reactions of (anti)neutrino scattering by
nucleons (5) and (6). Our calculations are detailed in
Appendix C. Below, we give only the final expression
for the square of the S-matrix element for the neutrino
scattering by nucleons:

(26)

The expression for |Sif |2/7 for the antineutrino scatter-
ing by nucleons can be derived from (26) by the change
k  k':

(27)

(||
urca 1

6
---

ga
2 1–

3ga
2 1+

-----------------!T4 N p

NB

------- 3 χν
2〈 〉 1–( )e∆/T B3 a( )=

+
Nn

NB

------- 3 χν̃
2〈 〉 1–( )e ∆/T– B3 a–( )

–
1
2
---

ga
2 1–

3ga
2 1+

----------------- 1 χν
2〈 〉–( )

dQν

dt
---------- 1 χν̃

2〈 〉–( )
dQν̃

dt
----------+ .

χν
2〈 〉 χ 2ω f ν k3d∫ 

  ω f ν k3d∫ 
  1–

,=

χν
2〈 〉

Qν ν̃,

Sif ν
2

7
-----------

2π( )4GF
2

2V3ωω'
--------------------δ 4( ) cv

2 3ca
2+( )ωω' cv

2 ca
2–( )k k'⋅+[=

+ 2cv ca ωk ||' ω'k ||+( ) S S'+( )

– 2ca
2 ωk ||' ω'k ||–( ) S S'–( )

+ cv
2 ca

2–( ) ωω' k k'⋅+( )SS' 4ca
2k ||k ||' SS'+ ] .

     

Sif ν̃
2 k k',( ) Sif ν

2 k' k,( ).=
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Here, cv and ca are the vector and axial constants for a
neutral nucleon current. In the low-energy limit [22],

(28)

The conservation of energy–momentum is defined as

where k = (ω, k); k' = (ω', k'); 3 and 3' are the
4-momenta of the initial and final neutrinos and nucle-
ons, respectively; k|| and  are the momentum compo-
nents of the initial and final neutrinos along the mag-
netic field; and S and S' are the components of the polar-
ization vectors for the initial and final nucleons along
the magnetic field (S = ±1).

Analysis of the kinematics of the neutrino scattering
by nucleons shows that the energy transferred in these
reactions to an element of the medium is negligible
compared to the energy transferred in the URCA pro-
cesses. This can also be verified by a direct calculation
using the technique detailed in Appendix C. Therefore,
below, we are concerned only with the momentum
transferred along the magnetic field. This component
arises from a partial polarization of the nucleon gas in
the field, because nucleons with different polarizations
have different energies:

where gN is the nucleon magnetic factor (gn ≈ −1.91 for
the neutron and gp ≈ 2.79 for the proton). Taking into
account the energy of interaction between the nucleon
magnetic moment and the magnetic field, we obtained
the following expression for the force density along the
magnetic field during the scattering of neutrinos of one
type by neutrons or protons (see Appendix C for the
details of our calculations):

(29)

cv
1
2
---, ca

0.91
2

---------- for neutrons,–≈–=

cv
0.07

2
----------, ca

1.09
2

---------- for protons.≈=

δ 4( ) δ 4( ) 3 k 3' k'––+( ),=

k ||'

EN mN
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2

2mN

---------- gNS
eB

2mN

----------,–+=
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ν

 

i

 

( )

 

G

 

F

 

2

 

g

 

N

 

2

 

π

 

-------------

 

eB
m

 

N

 

T

 

-----------

 

N

 

N

 

N

 

ν

 

–=

 

×

 

c

 

v

 

c

 

a

 

ω

 

ν

 

3

 

〈 〉

 

c

 

a

 

2

 

T

 

ω

 

ν
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〈 〉

 

1
3
---–

 

 
 




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a

 

2

 

ω

 

ν

 

3

 

〈 〉

 

5

 

T

 

ω

 

ν
2〈 〉–( ) 5

3
--- χν

2〈 〉– 
 

+ 2ca
2Jν ων

3〈 〉 5Tν ων
2〈 〉–( ) 1 χν

2〈 〉–( )




,
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where

(30)

Jν and  are the quantities defined in the same way
as in the URCA processes, and Nν is the local neu-
trino number density. During the antineutrino scat-
tering (6), the momentum transferred to the medium
per unit time is given by expression (29) with the for-

mal change   – :

(31)

For the Boltzmann neutrino distribution

expression (29) can be simplified:

(32)

Note also that, in the envelope of the remnant of col-
lapse, the parameters of the distribution functions for
the neutrinos and antineutrinos of type µ and τ are vir-
tually identical [23]. This allows a simple expression to
be written for the total (neutrinos plus antineutrinos of
a given type) force density along the magnetic field:

(33)

As can be seen from formulas (29) and (31)–(33),
there is an asymmetry in momentum transfer along the
magnetic field, as in the URCA processes, either for an
anisotropic neutrino distribution (〈χ 2〉  ≠ 1/3) or when
the neutrino spectral temperature differs from the tem-
perature of the medium (Tν ≠ T). Interestingly, the force

densities along the field, , during the scattering by
neutrons and protons are directed oppositely. This fol-
lows from the fact that the expression for the force den-
sity is proportional to the nucleon magnetic factor g
(recall that gn ≈ –1.91 for the neutron and gp ≈ 2.79 for
the proton). Under actual conditions in the envelope of
the remnant of collapse, it is commonly assumed that
Np/NB ! 1. We see from expressions (29) and (31) that
the force density is proportional to the nucleon number

ων
n〈 〉 ω n f ν k3d∫ 

  f ν k3d∫ 
  1–

,=

χν
2〈 〉

ca
2

ca
2

(||
ν̃i( )

ca
2( ) (||

νi( )
ca

2–( ).=

f ν Φν r χ,( ) ω
Tν
-----– 

  ,exp=

(||
νi( ) 6GF

2 gN

π
---------------- eB

mN

-------NN NνTν
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+
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  ca
2 5
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
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  .
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density. Thus, the scattering by neutrons mainly con-
tributes to the quantity (||. 

For completeness, below, we give expressions for
the dominant contribution (with terms on the order of

eB/mNT and  disregarded) to the rate (8) of scat-
tering of (anti)neutrinos of any type by nucleons:

(34)

Recall that cv and ca are the vector and axial constants
of a neutral nucleon current, which change only when
the type of nucleon changes [see (28)] in the scattering
reactions. Note that the scattering reaction rates and,
hence, the neutrino mean free paths in these processes
are virtually independent of the magnetic field.

5. NUMERICAL ESTIMATES

For the force density along the magnetic field gener-
ated in the processes of neutrino interaction with nucle-
ons (1)–(6) to be numerically estimated, the parameters
of the medium and the neutrino radiation must be spec-
ified. Recall that we consider a sufficiently dense (ρ ~
1011–1012 g cm–3) and hot (T ~ several MeV) envelope
region that is partially transparent to neutrinos. Part of
this envelope with a characteristic size of 1–3 km is
assumed to be filled with a strong toroidal magnetic
field of typical strength B * 1016 G. For such envelope
parameters and magnetic-field strengths, condition (10)
is satisfied and, hence, all our expressions are valid.
Recall that we used the local nonequilibrium neutrino
distribution function (11) while disregarding the effect
of the magnetic field on it. Below, we verify the validity
of this approximation by estimating the mean free paths
for the neutrinos of various types and by comparing
them with the size of the region filled with a strong
magnetic field. The results from [23] were used to fit
the neutrino-radiation parameters. In the above paper, a
numerical solution was obtained for the neutrino distri-
bution function at the stage of the main neutrino radia-
tion after spherically symmetric collapse.

Analysis of the numerical values for 〈ων〉  and 
from [23] shows that the distribution functions for the
neutrinos of various types are well fitted by the param-
eters

(35)

For numerical estimates, we chose an envelope region
with a typical density of the medium ρ ≈ 5 × 1011 g cm–3

T /mN

Γ sc GF
2

π
------ cv

2 3ca
2+( )NN Nν ων

2〈 〉=

× 1 Jν 1
4Tν ων〈 〉

ων
2〈 〉

---------------------– 
 – .

ων
2〈 〉

Tνe
3.3 MeV, T ν̃e

4.5 MeV,≈≈

Tνµ τ,
T ν̃µ τ,

6.6 MeV,≈ ≈

ηνe
2.8, ην̃e

2.0, ηνµ ντ, η ν̃µ ν̃τ, 2.2.≈ ≈≈≈
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and assumed the magnetic-field strength in it to be B ≈
4 × 1016 G. The local neutrino number densities in this
region are

(36)

The following values of our introduced parameters Jν
correspond to these number densities:

(37)

Accordingly, the mean square of the cosine of the angle
between the neutrino momentum and the radial direc-
tion is

(38)

At the stage of the main neutrino radiation (within
about 1–3 s after collapse), the parameters of the
medium vary slowly through hydrodynamic processes
compared to the time scales of 10–2–10–3 s on which a
quasi-equilibrium is established through the dominant
URCA processes. For this reason, the medium is
assumed to be in quasi-equilibrium:

(39)

(40)

where Γn → p and Γp → n are the sums of the rates of the
processes with the conversion of a neutron into a proton
and a proton into a neutron, respectively, and dQ/dt is
the total amount of energy transferred in the neutrino
processes to a unit volume of the medium per unit time.
Recall that, under the envelope conditions considered,
the URCA processes give a dominant contribution to
the establishment of equilibrium. Together with the
electroneutrality condition,

(41)

the quasi-equilibrium equations for the medium (39)
and (40) allow only the density of the medium and the
magnetic-field strength to be considered as free param-
eters. Numerically solving this system of equations
yields

(42)

For these parameters, the neutrino mean free paths (9)
are estimated to be

(43)

Comparison of the neutrino mean free paths with the
size of a region, ~1–3 km, filled with a strong magnetic

Nνe
9 1032 cm 3– , N ν̃e

3 1032 cm 3– ,×≈×≈

Nνµ τ,
N ν̃µ τ,

2.7 1032 cm 3– .×≈ ≈

Jνe
0.23, J ν̃e

0.05, Jνµ τ,
J ν̃µ τ,

0.01.≈ ≈≈≈

χνi

2〈 〉 χ ν̃i

2〈 〉 0.385.≈ ≈

Γn p→ Γ p n→ ,=

dQ
dt
------- 0,=

N p

NB

-------
eBµe

2π2NB

----------------,=

T 3.8 MeV, a 2.8,
N p

NB

------- 0.07.≈≈≈

l νe
3 km, l ν̃e

5 km,≈≈

l νµ ντ, l ν̃µ ν̃τ, 2.5 km.≈ ≈
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field shows that the magnetic field cannot significantly
affect the neutrino distribution functions.

Note that the neutrino scattering by nucleons gives a
contribution to the νe mean free path comparable to the
URCA processes and a dominant contribution to the 

mean free path. Thus, the , νµ, and ντ mean free paths
are virtually independent of the magnetic-field
strength.

It is of interest to compare the contributions to the
momentum transfer along the magnetic field from the
URCA processes and from the neutrino scattering by
nucleons. The scattering of µ and τ (anti)neutrinos by
neutrons [see (33)] gives a dominant contribution to the
force density in reactions (5) and (6), whereas the reac-
tions with electron neutrinos [see formula (24) under
the quasi-equilibrium conditions] give a dominant con-
tribution in processes (1)–(4). Therefore, the ratio of the
force densities can be represented as

(44)

where νx = νµ, ντ and Y = Np/(Np + Nn) is the chemical
composition parameter of the medium. By substituting
numerical parameters of the medium and the neutrinos
in this expression, we can easily verify that it is of the
order of unity, although the /mn ratio is small.

Under the quasi-equilibrium conditions for the
medium (39) and (40), the expression for the force den-
sity along the magnetic field in the URCA processes
(24) is greatly simplified. Its numerical estimate for the
above parameters is

(45)

As expected, the scattering of neutrinos of all types by
neutrons gives a numerically larger estimate for the
total [over all types of (anti)neutrinos] force density
than do the URCA processes:

(46)

We numerically analyzed the quasi-equilibrium condi-
tions in the envelope region specified by the range of
densities 2 × 1011 ≤ ρ ≤ 1012 g cm–3 with the neutrino
parameters at a given density from [23]. Our analysis
shows that the force density changes smoothly with
increasing density of the medium. In the scattering pro-
cesses, the force density increases almost linearly; in
the URCA processes, the monotonic rise gives way to a
decrease at ρ ≈ 8 × 1011 g cm–3. The value of ρ = 5 ×
1011 g cm–3 that we chose for our estimates is actually a
point with a mean force density in the above range of

ν̃e
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urca( )---------------
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B5 ηνx

( )
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Y
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T
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 
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densities. Note that the force generated in the two pro-
cesses is directed along the field (i.e., the effect in all
processes of neutrino interaction with nucleons is accu-
mulated) and is large. Interestingly, under the quasi-
equilibrium conditions, the force density is completely
and mainly determined by anisotropy of the angular
neutrino distribution function in the URCA processes
and in the scattering process, respectively.

To discuss the possible macroscopic effects of neu-
trino radiation on the magnetized medium of the enve-
lope, below, we give an estimate of the angular acceler-
ation that arises in an envelope element under the total
force density of neutrino spinup:

(47)

where R is the distance from the envelope volume to the
center of the remnant of collapse. To obtain this esti-
mate, we assumed that the macroscopic momentum is
transferred to the entire envelope element. Note that
this angular acceleration is large enough to spin up the
envelope region filled with a strong magnetic field to
millisecond rotation periods in a time of ~1 s.

6. DISCUSSION
Here, we investigate the possible dynamical effects

of parity violation during the neutrino interaction with
nucleons in the envelope of a collapsing star with a
strong magnetic field. These effects are known to disap-
pear in an optically thick (for neutrinos) medium [19],
where the neutrino mean free path is much smaller than
the characteristic size of the envelope of the remnant of
collapse (see Section 5). This determines the range of
envelope densities and temperatures under consider-
ation.

Another important question is: At what strengths of
the magnetic fields might their significant effect on the
processes under consideration be expected? Currently,
the field effect on individual neutrino–nucleon pro-
cesses is being intensively studied. In particular, Lein-
son and Perez [21] calculated the neutrino luminosity in
the direct URCA processes in the core of a neutron star
(a strongly degenerate nucleon medium with a typical
density ρ > ρnucl = 2.8 × 1014 g cm–3 and temperature T ~
0.1 MeV). It is argued that the magnetic field signifi-
cantly affects the luminosity only upon reaching an
enormous strength B * 7 × 1017 G. Baiko and Yakovlev
[20] showed that the direct URCA processes could have
neutrino luminosities higher than the modified URCA
processes at field strength B * 1016 G. Calculations of
the Rosseland mean absorption coefficients for neutri-
nos in the envelope of a collapsing star indicate that
fields B * 4 × 1015 G are required to change these coef-
ficients at least by 5% [24]. As a continuation of these
studies, Lai and Arras [19] calculated the collision inte-
gral for basic neutrino–nucleon processes in the Boltz-
mann equation for the neutrino distribution function

Ω̇ 103 s 2– B

4.4 1016 G×
----------------------------- 

  R
10 km
--------------- 

  ,∼
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and its first moments. Estimates of the P-odd terms in
the moments of the collision integral show that the
effects of asymmetry in momentum transfer along the
magnetic field in the envelope of a collapsing star can
be significant only when strengths B * 1016 G are
reached. The emergence of such (in order of magni-
tude) magnetic fields when estimating the P-odd effects
is natural. Indeed, only the electrons and positrons at
the ground Landau level contribute to the P-odd part of
the absorption coefficients for the direct URCA pro-
cesses. The significant dynamical effects related to the
parity violation take place at a high e+e– plasma density
at the ground Landau level, which is ensured by condi-
tions (10).

Assuming that the plasma electrons and positrons
are only at the ground Landau level, we derived simple
analytic expressions for the force density along the
magnetic field (24), rate, and energy transferred to a
unit volume of the medium per unit time (19)–(22) in
the URCA processes, as well as general expressions for
the force density (29) and the rate (34) of scattering of
neutrinos of any type by nucleons. The asymmetry in
momentum transfer along the field in these processes is
nonzero only in the envelope region partially transpar-
ent to neutrinos (〈χ 2〉  ≠ 1/3, Tν ≠ T). Assuming that the
medium is in quasi-equilibrium via the dominant
URCA processes specified by Eqs. (39) and (40), we
find the equilibrium parameters of the medium. Numer-
ical estimates of the force density along the field (45)
and (46) for the equilibrium parameters of the medium
show that, in the sum of the processes of neutrino inter-
action with nucleons, the asymmetry in momentum
transfer is accumulated and this asymmetry is quantita-
tively large (47).

It makes sense to compare our estimates with calcu-
lations of the same quantities in the processes of neu-
trino interaction with a strongly magnetized e+e–

plasma [25]. It is important to note that the force den-
sity along the field in these process is directed along the
field and may be of the same order of magnitude as that
in the neutrino–nucleon processes. Thus, the asymme-
try in momentum transfer along the field is accumu-
lated through the parity violation in all significant pro-
cesses of neutrino interaction with the medium. Note,
however, that a Fermi–Dirac distribution with a spectral
temperature Tν used in [25] gives the number of neu-
trino states significantly overestimated under actual
conditions in an envelope partially transparent to neu-
trinos. Indeed, our introduced parameter Jν is much less
than unity in the envelope region with the densities and
temperatures under consideration [see estimate (37)].
Thus, in this envelope region, the force density in the
processes of neutrino interaction with a magnetized
e+e– plasma is low compared to its value in the pro-
cesses of neutrino interaction with nucleons.

An asymmetry in momentum transfer along a toroi-
dal magnetic field gives rise to the angular acceleration
(47) of the envelope region filled with such a strong
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field. This acceleration is large enough to spin up this
envelope region to millisecond rotation periods in a
time of ~1 s. This large (in magnitude) and local (coor-
dinate-dependent) angular acceleration can cause a
rapid change in the gradient of angular velocities in the
envelope, which, in turn, can change the mechanism of
subsequent generation of a toroidal magnetic field.
Indeed, in the presence of an additional angular accel-
eration in the envelope, the toroidal magnetic field can
grow with time much faster than a linear law [11]. This
toroidal-field rearrangement can affect the mechanisms
of supernova envelope ejection [1] and the formation of
an anisotropic gamma-ray burst in a failed supernova
[26]; it can also trigger the growth of MHD instabilities
[27]. However, to investigate the effect of neutrino
spinup on the envelope dynamics and the generation
mechanism of a toroidal field requires analyzing a com-
plete system of MHD equations. This is a complex
problem far outside the scope of this paper. We hope
that it will find its researchers.
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APPENDIX A

Calculating |S |2 for the Direct URCA Processes

In the low-energy limit, the effective S-matrix ele-
ment of the URCA processes (1)–(4) can be repre-
sented as [5]

(A.1)

(we use the γ matrices in spinor representation with a

different sign of γ5 [28]). Here, Ψe, Ψν, Ψnσ', and 
are the wave functions of the electron, neutrino, neu-
tron, and proton (at the nth Landau level), respectively;
θc is the Cabibbo angle; ga is the axial constant of a
charged nucleon current (ga ≈ 1.26 in the low-energy
limit); and σ and σ' are the components of the double
proton and neutron spin along the magnetic field,
respectively. We performed our calculations in a coor-

Sif

GF θccos

2
--------------------- x4 Ψpσ

n( )γα 1 gaγ5+( )Ψnσ'[ ]d∫=

× Ψeγa 1 γ5+( )Ψν[ ]

Ψpσ
n( )
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dinate system where B = (0, 0, B) in the gauge Aµ = (0,
0, Bx, 0). When the e+e– plasma occupies only the
ground Landau level, the wave functions of relativistic
electrons can be chosen in the form

(A.2)

where p = (ε, p1, p2, p3) is the electron 4-momentum and

ε =  is its energy. In what follows,

(A.3)

Hn(x) are the Hermitean polynomials, and

(A.4)

is the normalization volume.

The wave function of the nonrelativistic protons at
the nth Landau level was chosen in the form

(A.5)

where P = (Ep, P1, P2, P3) is the proton 4-momentum,
and 

Ψe

i εt p2y– p3z–( )–[ ]ξ 0 η'( )exp

2εLyLz

------------------------------------------------------------------------Ue,=

η' eB x
p2

eB
------+ 

  ,=

Ue ε me+ U

p3/ ε me+( )U– 
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,=

U 0
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p3
2 me
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2EpLyLz
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is the nonrelativistic energy of a charged particle at the
nth Landau level. The standard wave function for neu-
trons is

(A.6)

where q = (En, q1, q2, q3) is the neutron 4-momentum,
and

We assume the neutrino to be a standard massless Dirac
particle of left-handed helicity with the wave function
[28]

(A.7)

where k = (ω, k1, k2, k3) is the neutrino 4-momentum.
Squaring Sif, integrating over d4x, and summing over
the particle Landau levels and polarizations yields

(A.8)

Here, δ(3) is the delta function of the energy, momentum
along the magnetic field, and one of its transverse com-

ponents conserved in the reactions;  is the square of
the transferred momentum across the magnetic field in
the corresponding reaction; and n is the index of sum-
mation over the proton Landau levels. The quantities
|M+|2 and |M–|2 are defined as

(A.9)

(A.10)

(A.11)

Ψnσ'

i Ent q1x– Q2y– Q3z–( )–[ ]exp
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-----------------------------------------------------------------------------=
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En mn
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2mn

---------.+=

Ψν
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4mpmn
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1
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Lαβ tr ρνγα 1 γ5+( )ρeγβ 1 γ5+( )[ ] ,=

Nαβ
σσ' tr ρnσ'γα 1 gaγ5+( )ρpσγβ 1 gaγ5+( )[ ] .=
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Below, we give the neutrino, electron, neutron, and pro-
ton density matrices that correspond to the wave func-
tions:

(A.12)

Here, Πσ is the projection operator of the density matrix
for a charged fermion in a magnetic field (recall that σ,
σ' = ±1 are the components of the double proton and
neutron spin along the magnetic field). To ensure the
covariance of our calculations, we inserted uµ = (1, 0, 0,
v ), the 4-velocity of the medium along the field, in the
nucleon density matrix (at the end of our calculations,
we assume that v  = 0).

In the subsequent calculations, we used the follow-
ing properties of the projection operator:

(A.13)

where γα|| = γ1, 2 and γα⊥  = γ0, 3. Since the velocity vector
v  of the medium has only longitudinal components, the
nucleon trace (A.11) can be reduced to

(A.14)

In the subsequent calculation of this expression, it is
convenient to separate out the contributions from iden-
tical and different nucleon polarizations. The matrices
γα and γβ have only longitudinal components (γα = γα||,
γβ = γβ||) when σ = σ' and only transverse components
(γα = γα⊥ , γβ = γβ⊥ ) when σ = –σ'. This is easy to obtain
from the properties of the polarization operator (A.13).
To calculate the nucleon trace requires the expressions

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

In what follows, Λµν = (ϕϕ)µν and  = ,

where ϕµν = Fµν/B and  = /B are the tensor and

ρν
k̂ 1 γ5–( )

2
---------------------, ρe p̂|| me+( )Π–,= =

ρnσ' mn 1 û+( )Πσ' , ρpσ mp 1 û+( )Πσ,= =

k̂ kαγα , û uαγα , p̂|| p0γ0 p3γ3,–= = =

Πσ
1 σiγ1γ2+

2
-------------------------.=

Πσ
2 Πσ, ΠσΠ σ– 0, Πσγα|| γα||Πσ,= = =

Πσγα⊥ γα⊥ Π σ– , Πσγ5 γ5Πσ,= =

Nαβ
σσ' mpmnSp Πσ'γαγβ 1 ga

2–( )[ ]=

+ mpmnSp Πσ'γαΠσû||γβû|| 1 ga
2 2gaγ5–+( )[ ] .

tr γα||γβ||Πσ[ ] 2Λαβ,=

tr γα||γβ||γ5Πσ[ ] 2σϕ̃αβ,=

tr γµ||γν||γρ||γδ||Πσ[ ]

=  2 Λ̃µνΛ̃ρδ Λ̃µδΛ̃νρ Λ̃µρΛ̃νδ–+( ),

tr γµ||γν||γρ||γδ||γ5Πσ[ ]

=  2σ Λ̃µνϕ̃ρδ Λ̃ρδϕ̃µν+( ),

Πσγα⊥ γβ⊥ Πσ Λαβ iσϕαβ–( )Πσ.–=

Λ̃µν ϕ̃ ϕ̃( )µν

ϕ̃µν F̃µν
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dual tensor of the external electromagnetic field
reduced to dimensionless form. The calculated nucleon
trace can be reduced to

(A.20)

(A.21)

Since tensors (A.20) and (A.21) have only longitudinal
and transverse components, respectively, it is conve-
nient to break up the lepton trace into the same struc-
tures. When it is convolved with the nucleon trace, only
the completely longitudinal and completely transverse
parts of the lepton trace will give a nonzero answer:

(A.22)

After simple transformations using the properties of the
polarization operator (A.13), the corresponding con-
structions can be reduced to

(A.23)

(A.24)

Using the above properties (A.15)–(A.19), these
expressions can be easily calculated and represented as

(A.25)

(A.26)

For completeness, we present the convolution of the
nucleon and lepton traces in covariant form:

(A.27)

(A.28)

In the selected frame of reference, where the nucleon

medium is at rest [u = (1, 0, 0, 0), (kp)|| = (k p) = k0p0 –
k3p3), these expressions are

(A.29)
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× up( )|| uk( )|| up( )|| uϕ̃k( ) uk( )|| uϕ̃ p( )+ +( ) ] ,

Nαβ
σσ'

σ σ'–= Lαβ
⊥ 16mpmn 1 σ+( )=

× 1 ga
2

+( ) uΛ̃u( ) 1 ga
2–( )–[ ] kΛ̃ p( ) kϕ̃ p( )+[ ] .

Λ̃

Nαβ
σσ'

σ σ'= Lαβ
|| 16mpmn 1 σga+( )2=

× p0 p3+( ) k0 k3+( ),
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(A.30)

Hence, it is easy to obtain the final expression for the
square of the amplitude (A.9) of the process being cal-
culated:

(A.31)

Note that in the case of nonrelativistic nucleons under
consideration, the square of the amplitude depends only
on the longitudinal electron and neutrino momentum
components.

APPENDIX B

The Neutrino Absorption Coefficient

Below, we give the details of our calculation of the
absorption coefficient _(ν) (16) for process (1) involv-
ing neutrinos. We used standard expressions for an ele-
ments of phase volume:

for charged particles and

for uncharged particles. The proton distribution func-
tion was assumed to be the Boltzmann one. Eliminating
the integration over the proton momentum due to the δ(3)

function, we note that the absorption coefficient does not
depend on the p2 component of the electron momentum.
Since p2 = eBxc in a magnetic field (xc is the centroid coor-
dinate of the distribution of the electron wave function
across the magnetic field), we can eliminate the integral
over the p2 component of the electron momentum:

The remaining δ function in energy can be simplified.
Since the electrons and neutrinos are ultrarelativistic
particles and the nucleons are nonrelativistic particles,
their momenta are of the order of P2 ~ Tm (for nucle-
ons) and p2 ~ T 2 (for ultrarelativistic particles). Assum-
ing the nucleon masses to be identical (where this does
not cause any misunderstanding), we obtain

(B.1)

Nαβ
σσ'

σ σ– '= Lαβ
⊥ 32mpmn 1 σ+( )=

× ga
2 p0 p3+( ) k0 k3–( ).

Mσ
2 4 p0 p3+( )=

× 1 σga+( )2 k0 k3+( ) 2 1 σ+( )ga
2 k0 k3–( )+[ ] .

dn e( ) d p2
e( )d p3

e( )LyLz

2π( )2
-----------------------------------=

dn
d2 pV

2π( )3
-------------=

p2d∫ eBLx.=

δ En Ep
n( )– ω ε–+( ) δ q2

2mn

---------
q|| k || p||–+( )2

2mp

---------------------------------–
=

–
eBn
mp

---------- ω ε– mn mp–( )+ + 


≈ δ
q⊥

2

2mn

--------- eBn
mp

----------– ω ε– mn mp–( )+ + 
  ,
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where q⊥  and q|| are the particle momentum compo-
nents across and along the magnetic field, respectively.
Since the dimensionless parameter

we may neglect this term in one of the δ functions in the
expression for the square of the S-matrix element (12)
by combining the two sums. In this case, the expression
for the absorption coefficient is simplified and can be
represented as

(B.2)

Here, x = /2mnT and y = ε/T. Note that the function

F( , b) has a simple asymptotic behavior for b  0,
and bn is a finite number. The latter condition follows
from the fact that, as the magnetic field weakens, the
number of Landau levels that contribute to the sum
under consideration increases in inverse proportion to
field strength. In this case, the sum over the proton Lan-
dau levels may be replaced by an integral. It can also be
shown that, in this limit,

(B.3)

where δ is the Dirac delta function. Hence, it is easy to
find that

(B.4)

Since the function F( , b) does not depend on  in
the limit under consideration, the integration in (B.2)
can be brought to the end. Given the definition of the
neutron number density,

,

b
eB

2mpT
-------------- ! 1,=

_ ν( ) 2GF
2 θ2

ccos

2π( )4
--------------------------eB=

× 1 3ga
2+( )

1 ga
2–( )k ||

ω
-----------------------+ 

  f nF q⊥
2 b,( ) q3 ,d∫

F q⊥
2 b,( )

yd
1 ηe y–( )exp+
-------------------------------------- 1

n!
----- x

b
--- 

 
n

n 0=

∞

∑
0

∞

∫=

× x
b
---– 

  δ x bn– y–
ω mn mp–+

T
-----------------------------+ 

  .exp

q⊥
2

q⊥
2

1
n!b
-------- x

b
--- 

 
n x

b
---– 

 exp
b 0→

bn 0→

lim δ x bn–( ),=

/

F q⊥
2 b,( )[ ]

b 0→
bn 0→

lim

=  
1

1 ηe ω mn mp–+( )/T–( )exp+
---------------------------------------------------------------------------.

/

q⊥
2 q⊥

2

Nn
2

2π( )3
------------- f n q3d∫( )=
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we obtain the final expression for the neutrino absorp-
tion coefficient in the limit considered:

(B.5)

The absorption coefficient for process (3) involving
antineutrinos can be calculated in a similar fashion to
give

(B.6)

APPENDIX C

The Force Density along the Magnetic Field 
for the Neutrino Scattering by Nucleons

In the low-energy limit, the effective Lagrangian for
the neutrino scattering by nucleons is [5]

(C.1)

Here, UN and Uν are the Dirac nucleon and neutrino bi-
spinors, and cv and ca are the vector and axial constants
of a neutral nucleon current. At low energies [22], cv =
–1/2 and ca ≈ –0.91/2 for neutrons and cv = 0.07/2 and
ca ≈ 1.09/2 for protons. Using the nonrelativistic den-
sity matrix for the polarized nucleons, ρ = mN(1 + x · s),
where x = ±B/B is the nucleon polarization vector along
the magnetic field and s are the Pauli matrices, it is
easy to obtain the following expression for the square
of the S-matrix element for the neutrino scattering by
nucleons per unit time:

(C.2)

Here, k = (ω, k) and k' = (ω', k') are the 4-momenta of

the initial and final neutrinos; k|| and  are the compo-
nents of these momenta along the magnetic field; and S,
S' = ±1 (S = x · B/B are the components of the polariza-

_ ν( ) GF
2 θccos

2

2π
-----------------------eBNn=

×
1 3ga

2+( ) 1 ga
2–( )k ||/ω+

1 –ηe ω mn mp–+( )/T–( )exp+
------------------------------------------------------------------------------.

_ ν̃( ) GF
2 θccos

2

2π
-----------------------eBN p=

×
1 3ga

2+( ) 1 ga
2–( )k ||/ω+

1 –ηe ω mn– mp+( )/T–( )exp+
------------------------------------------------------------------------------.

+
GF

2
------- UN 3'( )γα cv caγ5+( )UN 3( )( )=

× Uν k'( )γa 1 γ5+( )Uν k( )( ).

Sif ν
2

7
-----------

2π( )4GF
2

2V3ωω'
--------------------δ 4( ) 3 k 3'– k'–+( )=

× cv
2 3ca

2
+( )ωω' cv

2 ca
2–( )k k'⋅+[

+ 2cv ca S S'+( ) ωk ||' ω'k ||+( )

– 2ca
2 S S'–( ) ωk ||' ω'k ||–( )

+ cv
2 ca

2–( )SS' ωω' k k'⋅+( ) 4ca
2SS'k ||k ||'+ ] .

k ||'
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tion vectors for the initial and final nucleons along the
magnetic field). The square of the S-matrix element for
the antineutrino scattering by nucleons can be derived
from (C.2) by the change k  k':

(C.3)

Since we consider the neutrino scattering by nucleons
in a strong magnetic field, for the subsequent calcula-
tions, it is necessary to take into account the contribu-
tion to the nucleon energy from the interaction of their
magnetic moment with the magnetic field:

where gN is the nucleon magnetic factor (gn ≈ –1.91 for
the neutron and gp ≈ 2.79 for the proton).

Next, we can simplify the δ function in energy.

Using the fact that 3, 3' ~  and k, k' ~ T and dis-

regarding all terms on the order of , we obtain

(C.4)

It is convenient to perform the subsequent calculations
by separating the contributions from S = S' and S = −S'.
Eliminating in momentum of the final nucleon with an
allowance for the δ function and taking into account

that all terms linear in k|| and  give no contribution,
we obtain the following expression for the density of
the force acting along the magnetic field:

(C.5)

(C.6)

Here, we use the fact that the nucleon gas is a Boltz-
mann one and, hence, 1 – fN ≈ 1.

     

Sif ν̃
2 Sif ν

2
k k'( ).=

EN mN
32

2mN

----------
gNSeB
2mN

----------------,–+=

mNT

T /mN

δ ω ω'– EN EN'–+( ) δ ω ω'–
32

2mN

----------+
=

– gN S S'–( ) eB
2mN

---------- 3333 k k'+ +( )2

2mN

--------------------------------– 


≈ δ ω ω'– gN S S'–( ) eB
2mN

----------– 
  .

k ||'

(||
ν( ) (||

ν( )
S S'= (||

ν( )
s S'–=+( ),

S

∑=

(||
ν( )

S S'=

2GF
2 cv ca

2π( )8
--------------------- 3

3
f N 3( ) k3 f ν k( )d∫d∫=

× k'3 1 f ν k'( )–( ) S
ωω'
--------- ω'k ||

2 ωk ||'
2

–( )δ ω ω'–( ),d∫

(||
ν( )

S S– '=

2GF
2 ca

2

2π( )8
--------------- 3

3
f N 3( )d∫=

× k3 f ν k( ) k3 ' 1 f ν k'( )–( )d∫d∫
× S

ωω'
--------- ω'k ||

2 ωk ||'
2

+( )δ ω ω'–
gNSeB

mN

----------------– 
  .
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Since eB/mNT ! 1, the distribution function for the
initial nucleons can be written as

(C.7)

where ηN is the nonrelativistic nucleon degeneracy
parameter. Interacting over the initial-nucleon momen-
tum and using the fact that the nucleon number density
is

(C.8)

we obtain the following expression for (C.5) and (C.6):

(C.9)

(C.10)

(C.11)

(C.12)

Here, y = ω/T, y' = ω'/T, χ = cosθ, and χ' = cosθ', where
θ and θ' are, respectively, the angles between the
momenta of the initial and final neutrinos and the radial
direction; and ϕ and ϕ' are the azimuthal angles. Since
the square of the S-matrix element for the process
involving antineutrinos can be derived by the change
k  k', it is easy to note that the expression for the
momentum transferred along the magnetic field in the
process of antineutrino scattering by nucleons is given

by the formal change   – :

(C.13)

For the integrals (C.10) and (C.12) to be calculated, we
must use an explicit neutrino distribution function. We
choose it in the form (11):

f N 3( ) 1
gNSeB
2mNT
----------------+ 

  –
32

2mNT
-------------- ηN+ 

  ,exp≈

NN
2

2π( )3
------------- 32

2mNT
-------------- ηN+– 

 exp 3
3

,d∫≈

(||
ν( )

S S'=

GF
2 cv ca

2π( )5
-----------------NNT6S 1 gNS

eB
2mNT
--------------+ 

  I1,=

I1 y2 yd

0

∞

∫ y'2 y' χ ϕ χ 'd

1–

1

∫d

0

2π

∫d

1–

1

∫d

0

∞

∫=

× ϕ' f ν y χ,( ) 1 f ν y' χ',( )–( )d

0

2π

∫
× y 1 χ2–( ) ϕcos

2
y' 1 χ'2–( ) ϕ'cos

2
–( )δ y y'–( ),

(||
ν( )

S S– '=

GF
2 ca

2

2π( )5
-------------NNT6S 1 gNS

eB
2mNT
--------------+ 

  I2,=

I2 y2 yd

0

∞

∫ y'2 y'd

0

∞

∫ χd

1–

1

∫ ϕd

0

2π

∫ χ'd

1–

1

∫ ϕ'd

0

2π

∫ f ν y χ,( )=

× 1 f ν y' χ',( )–( ) y 1 χ2–( ) ϕcos
2

y' 1 χ'2–( ) ϕ'cos
2

+( )

× δ y y'– gNS
eB

mNT
-----------– 

  .

     

ca
2 ca

2

(||
ν̃( )

ca
2( ) (||

ν( )
ca

2–( ).=

f ν k( ) Φν r χ,( )Fν ω( ),=
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where

ην being the fitting parameter.

It is convenient to express the final result in terms of
the mean neutrino-flux parameters (23), (25), and (30).
For the distribution function used, these parameters can
be represented as

(C.14)

(C.15)

(C.16)

For completeness, we present the result of our cal-
culation of the contributions to the force density from
different nucleon polarizations separately:

(C.17)

(C.18)

It is easy to verify that each of these expressions is zero
for a thermal equilibrium of the neutrinos with the

medium (Tν = T, Jν = 1,  = 1/3), as follows from
fundamental physical principles.
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Abstract—The probability W of e+e– pair production from a vacuum in an intense variable electric field gen-
erated with powerful optical or X-ray lasers is calculated. Two characteristic ranges are considered: γ ! 1 and
γ @ 1, where γ is the adiabaticity parameter. The probability W is shown to increase sharply with γ (at a fixed
field strength F). The dependence of W and the momentum spectrum of electrons and positrons on the laser
pulse shape is discussed in detail. Numerical calculations were performed for a laser pulse with a Gaussian
envelope and for some pulsed fields. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quantum electrodynamics (QED) predicts the pos-
sibility of electron–positron (e+e–) pair production from
a vacuum in a strong electric field [1]. This nonlinear
effect, which is outside the scope of perturbation theory
and was first considered for a static field, was also the-
oretically studied for time-varying electric-type fields,
i.e., when the following conditions are satisfied:

where J1 and J2 are the electromagnetic field invariants.
In particular, a spatially uniform field

(1)

was considered for ϕ(t) = cost [2–10]. Such a field can
be realized at antinodes of the standing light wave that
emerges when adding two coherent laser beams.1 In
(1), t' is the time, t = ωt ' is a dimensionless time, F is
the amplitude of the electric field, ω is its characteristic
frequency, and the function ϕ(t) specifies the laser pulse
shape. Below, we assume that ϕ is an analytic function
of t 2, ϕ(–t) = ϕ(t), with |ϕ(t)| ≤ ϕ(0) = 1 everywhere
on the real axis (i.e., t = 0 is the time of field maxi-
mum when e+ and e– emerge from beneath the barrier

[3]). Examples of such fields are ϕ(t) = cost, 1/ ,
exp(−t2), etc.

This process (called the Schwinger pair production
mechanism) is of fundamental importance in QED and

1 A plane wave of arbitrary intensity and spectral composition has
the invariants J1 = J2 = 0 and produces no pairs in a vacuum [1].

J1
1
4
---FµνFµν 1

2
--- B2 E2–( ) 0,<= =

J2
1
4
---FµνF̃

µν
0,= =

%%%% t'( ) Fϕ t( ) 0 0, ,{ } , B t'( ) 0= =

tcosh
2

1063-7761/02/9406- $22.00 © 201057
in quantum field theory in general.2 However, previous
estimates [4, 25, 26] show that it could not be observed
with the then available optical lasers. Therefore, the
results of [1–8] were generally believed to be of purely
theoretical interest in QED.

Recently, however, the situation has changed. First,
the power of optical and infrared lasers rose by many
orders of magnitude (fields that exceed the characteris-
tic atomic field Fa ≈ 5.14 × 109 V/cm by one or two
orders of magnitude have been achieved [27, 28]). Sec-
ond, projects to create free-electron X-ray lasers on the
TESLA electron–positron collider in DESY and the
corresponding facilities in SLAC, in which coherent
photon beams with energies of the order of several keV
are supposed to be produced, are being designed (see,
e.g., [10, 29]). Hence, the theory of the Schwinger
effect must be considered in more detail in view of the
new experimental possibilities. This is the subject of
the recently published paper by Ringwald [10] and
Alkofer et al. [30].

Here, we continue to discuss this range of questions.
Let us briefly describe the content of our paper. The
probabilities W of e+e– pair production from a vacuum
for infrared, optical, and X-ray lasers are calculated in

2 Processes similar to the Schwinger pair production are encoun-
tered in various fields of modern physics, for example, in the the-
ory for quantum evaporation of black holes [11, 12], when con-
sidering the early evolutionary stages of the Universe [13, 14], in
the theory for multiphoton ionization of semiconductors [15], etc.
A physically similar process is the spontaneous production of
positrons in the electric field of a superheavy nucleus with change
Z > Zcr [16–19] (Zcr ≈ 170 for a spherical nucleus) or during the
adiabatic approach of two heavy nuclei with Z1 + Z2 > Zcr [17–
22]. See, e.g., [23, 24] for the current status of this problem.
02 MAIK “Nauka/Interperiodica”
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Sections 2 and 3. We discuss two limiting regimes: γ ! 1
and γ @ 1, where γ is the adiabaticity parameter:3

(2)

(here, ωt is the frequency of electron tunneling through
the gap 2mc2 between the lower and upper continua in
an electric field F [3, 8]). We calculated the dependence
of W on the field amplitude F and frequency ω for var-
ious types of lasers (both available and currently
designed ones). The dependence of W and momentum
spectrum of the e+ and e– being produced on the func-
tion ϕ(t) in (1), i.e., on the laser pulse shape, is analyzed
in Section 4. The probability W is shown to increase
sharply with decreasing pulse duration, particularly for
γ @ 1 (i.e., for ω @ ωt). We present the results of our
numerical calculations for a laser pulse with a Gaussian
envelope and consider the e± momentum spectrum in
the adiabatic range γ ! 1 and for γ @ 1. Our results are
discussed in Section 5. Details of our calculations and
auxiliary formulas are given in the Appendices.

Here, we use the following notation: e = F/Fcr is the
reduced electric field; Fcr = m2c3/e" ≈ 1.32 × 1016 V/cm is
the critical (Schwinger [1]) field in QED (eFcrÂe = mc2);
Fa = m2e5/"4 = α3Fcr is the atomic field; α = e2/"c = 1/137;
K0 = 2mc2/"ω = λ/πÂe is the multiquantum parameter
for the process; λ = 2πc/ω is the laser wavelength; Âe =
"/mc = 386 fm; m is the electron mass; and, as a rule,
" = c = 1 (in this case, γ = 2/K0e). Below, we assume
that the conditions e ! 1 and K0 @ 1 are satisfied. These
conditions ensure that the quasi-classical approxima-
tion is applicable to the problem under consideration.

Our results were announced in part in [31].

2. BASIC EQUATIONS

Let us first consider a monochromatic laser field:
ϕ(t) = cost. Using the imaginary-time method [3] to
describe the subbarier electron motion in the relativistic
case (between the boundaries of the lower and upper
continua), we can show that the probability of pair pro-
duction from a vacuum in the state with momenta ±p
for e±, to within a preexponetial factor [2–4], is

(3)

3 It was introduced in [2, 3]. Note that it characterizes the dynamics
of particle tunneling through a time-varying barrier and is similar
to the well-known Keldysh parameter in the theory for multipho-
ton ionization of atoms and ions by laser radiation [15].
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,exp∝
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where the function  and the coefficients  of
the momentum spectrum for γ * 1 significantly
depend on the pulse shape (1) (see Section 4), and

 =  = 1 and  ∝ γ 2 for γ  0 (here, the
tilde means that these functions refer to pair produc-
tion, in contrast to similar functions g(γ) and b1, 2(γ) in
the theory for multiphoton ionization of atoms [32]).
The difference between g(γ) and , etc., is due to
different forms of the dispersion law E(p) for an electron
in subbarrier motion (in addition, γ for these two processes
has different orders of magnitude). The total probability W

per invariant Compton 4-volume /c = m–4 ≈ 7.25 ×
10−53 cm3 s can be determined by integrating (3) over
d3p with allowance for energy conservation during
n-photon absorption. The corresponding (cumbersome)
formulas are given in [4] and can be used for numerical
calculations.

However, these formulas are significantly simpli-
fied4 for γ ! 1 and γ @ 1. In the former case (a low fre-
quency ω and a strong electric field), the nω spectrum
is virtually continuous and

(4)

(4')

(compared to a constant field, the preexponential factor

in (4) contains a small factor proportional to ; its ori-
gin is discussed in Appendix A). The next coefficients
of these expansions can also be calculated (see Appen-
dix C).

Assuming that the maximum electric field F is
reached when laser radiation is focused in the volume
∆V = λ3 (diffraction limit) and that the pulse duration is
T, we find the total number of e+e– pairs produced from
a vacuum:

(5)

4 See Eqs. (20), (21) and (A.12) in [4] for γ ! 1 and γ @ 1, respec-
tively. The formulas used by Ringwald (see (18) in [10]) for γ ! 1
closely match (4), while, for γ @ 1, they differ from (8) only in

the numerical factor 2/  ≈ 1.13, which is unimportant for the
subsequent estimates.
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if the laser pulse spans N' = ωT/2π field periods. For the
pair production rate (in the volume λ3), we obtain

(6)

In the other limit, γ @ 1, we have

(7)

c0 = c1 = 2ln2 – 1 ≈ 0.386, c2 = 2ln2, and the pair pro-
duction probability is represented as the sum of the
probabilities of n-photon processes:

(8)

where n > K0 = 2m/ω, e = 2.718…, and

Since the probability wn in this case rapidly decreases
with increasing n and since q(x) is a weak function of
order unity (its maximum value of 0.541 is reached at
x = xm ≈ 0.427; see [33, p. 121]), the estimates

(9)

(10)

where N' has the same meaning as that in (5), follow
from (8). Comparison of formulas (5) and (10) shows
that (at a fixed electric field F), the pair production
probability for γ @ 1 is many orders of magnitude
higher than that in the adiabatic range γ ! 1 (this is also
the case for multiphoton ionization of atoms [15, 32]
and, generally, for particles tunneling through an oscil-
lating barrier if the frequency of its oscillations ω @ ωt).
At γ ~ 1, expressions (5) and (10) are joined in order of
magnitude.
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3. NUMERICAL CALCULATIONS

Let us turn to numerical estimates. Figure 1 shows
the reduced electric field e that corresponds to the pro-
duction of one e+e– pair in the volume ∆V = λ3 for sev-
eral laser pulse durations: from T = 2π/ω (curve 1, one
field period) to T = 1 s (curve 5). For optical lasers,
these values are similar but the difference between
them increases sharply with ω if "ω * 1 keV. This is in
agreement with the estimates (K0 @ 1) that follow from
(5) and (10):

where e1 and e5 correspond to curves 1 and 5, respec-
tively. The dashed curve in this figure corresponds to
γ = 1, with the adiabaticity parameter for all points
above this curve being γ < 1.

In Figs. 2–4, the total number of pairs (in the volume
λ3) is plotted against electric-field strength; the curve
numbers in Fig. 2 correspond to the photon energies in
Table 1. As we see from these figures, the number of
pairs increases with field strength F so rapidly (partic-
ularly for λ * 1 µm) that there may be said to be a laser
breakdown of vacuum [4]. At a fixed F, the number of
pairs increases with wavelength λ. This is because all
curves refer to the adiabatic range γ ! 1 (see Fig. 1 and
column F(1) in Table 1), in which N is proportional to
the volume ∆V of the focusing region. Since N expo-

e1
π

4 K0ln
---------------, e5

π
3 K0 15+ln( )
--------------------------------,∼∼

0.1

0
2

e

log(m/ω)

0.2

1 3 4 5 6

1

2

3

4

5

e1

e5

Fig. 1. The reduced electric field e = F/Fcr required to pro-

duce one electron–positron pair in the volume ∆V = λ3 in
time T. The solid curves correspond to the following pulse
durations: one field period T = 2π/ω (e1, curve 1), T = 10–12,

10–10, 10–8, and 1 s (curves 2–5, respectively). The domain
of adiabaticity lies above the dashed curve for which γ = 1.
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nentially depends on the field [see (5)], an increase in
pulse duration by many orders of magnitude, from one
period to 1 s, causes a relatively small displacement of
the N = N(e, ω) curves toward weaker fields (for optical
lasers, Fig. 3). For X-ray lasers (Fig. 4), the minimum
required field decreases more appreciably.

Table 2 gives the field strengths FN required for the
production of N electron–positron pairs in one period
T = 2π/ω and in the time T = 1 s. For optical lasers, the
observation threshold of the Swinger effect (i.e., N = 1)
is reached at F = (0.5–1.0) × 1015 V/cm. This value is
one and a half orders of magnitude smaller than the crit-
ical field Fcr (a dash in Table 2 means that the calculated
FN * Fcr and the inverse effect of the particles produced
from a vacuum on the external field must be taken into
account in such fields). Since γ < 1 for all the cases con-
sidered in Table 2, formula (5) is applicable here. Thus,
γ = 1 is reached at F ≈ 4.6 × 1010 V/cm for a ruby laser,
at F ≈ 2.9 × 1011 V/cm for λ = 109 nm [34], etc., which
is significantly lower than the corresponding FN. 

If γ @ 1, then the dependence of N on the field ampli-
tude is no longer exponential but a power law:

which corresponds to a multiphoton regime (the pertur-
bation theory of high order K0 in external field F). In
this case, (10) gives values that are many orders of mag-
nitude larger than those extrapolated with the adiabatic
formula (5). The ratio of the corresponding numbers is

N γ
2K0–

F
2K0,∝ ∝

ρ K0e( )
2K0 π/e( ),exp∼

–4
0.04 0.08

logN

e
0.12 0.16 0.20 0.24

0

4

8

1 2
4 6

7

8

2 6

8

Fig. 2. The number N of e+e– pairs produced in the volume
λ3 in time T: in one period (solid curves) and in T = 1 ps
(dashed curves). The curve numbers correspond to the
lasers listed in Table 1.
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so that, for example, ρ ~ 4 × 1010 at K0 = 5 and e = 0.1;
ρ ~ 1021 at K0 = 10 and e = 0.05; ρ ~ 1035 at K0 = 10 and
e = 0.03; etc. Therefore, it would be easier to observe
the Schwinger effect for γ * 1 (at a given field F), which
is also clear from physical considerations: in this case,
the external field changes its direction many times in

2

0
6

logN

F, 1014 V/cm

4

6

8

10

4 8 10 12 14

T = 1 s T = 2π/ω

Fig. 3. The number N of e+e– pairs versus field amplitude F
for a Ti–sapphire laser. The curves (from right to left) corre-
spond to the pulse durations T = 2.6 fs (one field period),
0.01 ps, 1 ps, 100 ps, 10 ns, and 1 s; ∆V = λ3.

2

–4
0.2

logN

F, 1014 V/cm

4

6

8

10

0 0.4 0.6 0.8 1.0

0

–2

8

9

10

11

Fig. 4. Same as Fig. 2 for X-ray lasers (at T = 2π/ω).
Curves 8 and 9 correspond to the numbers in Table 1; the
photon energies for curves 10 and 11 are "ω = 50 and
100 keV, respectively.
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Table 1.  Laser parameters

No. λ, nm "ω, eV K0 F(1) Type of laser

1 1.24(4) 0.1 1.02(7) 2.59(9) –

2 1.06(4) 0.117 8.74(6) 3.02(9) CO2 [34]

3 1064 1.165 8.77(5) 3.01(10) Nd–YAG [34]

4 785 1.58 6.47(5) 4.08(10) Ti–sapphire

5 694 1.786 5.72(5) 4.64(10) Ruby

6 109 11.4 8.97(4) 2.94(11) Free-electron laser [35]

7 25 50 2.06(4) 1.29(12) –

8 1.24 1.0(3) 1.02(3) 2.59(13) X-ray laser [10]

9 0.1 1.24(3) 82.4 3.20(14) [10]

Note: λ is the wavelength, K0 is the multiquantum parameter, and F(1) is the electric field with γ = 1; the notation a(b) ≡ a × 10b.
the tunneling time; as a result the barrier width
decreases and its penetrability increases sharply (which
is clearly seen from the imaginary-time method [3, 8]).

Unfortunately, γ @ 1 only in weak fields (e ! 1/K0),
where the probability W itself is extremely low. As with
multiphoton ionization of atoms, K0 & 10–20 are actu-
ally required here, implying that "ω * 100 keV. In this
case, for example, at K0 = 10, γ ~ 3, and T = 1 s, we
would have e ≈ 0.03 and N ~ 1010, while, according to
the adiabatic approximation, virtually no pairs are pro-
duced in such fields. However, such γ-ray lasers are
likely to be produced only in the rather distant future.

4. THE DYNAMIC SCHWINGER EFFECT

In the optical range, extremely intense fields can be
achieved by shortening the laser pulse; its duration
becomes comparable to the optical period, and its shape
is far from an ideal sine wave [27, 28]. To all appear-
ances, the same is also true for X-ray lasers. Therefore,
let us consider the effect of pulse shortening on the
probability of the Schwinger effect.

The momentum spectrum of the electrons and
positrons produced from a vacuum by the electric field
(1) is given by formula (3), in which5

(11)

5 The derivation of these formulas by the imaginary-time method
[43] is omitted here.
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and the function χ(u) is completely determined by the
shape of the field pulse ϕ(t) and has the same form as in
the theory for multiphoton ionization of atoms. Thus,
χ(u) = (1 + u2)–1/2 for monochromatic radiation ϕ(t) =
cost, χ(u) = 1/(1 + u2) for a soliton-like pulse ϕ(t) =

1/ , etc. (see [32] for more detail).

For a Gaussian pulse, ϕ(t) = exp(–t2/2σ2), the
inverse function u = u(χ) is defined explicitly:

tcosh
2

u σ 2 χ1ln– F1 1/2; 3/2; χln–( ),=

0 χ 1,≤<

 
Table 2.  Typical parameters for observing the Schwinger
effect

λ, nm
FN, 1015 V/cm

N = 1 N = 103 N = 106 N = 109

1.06(4) 0.739 0.838 0.967 1.14

0.481 0.521 0.570 0.627

1064 0.873 1.02 1.21 1.49

0.521 0.570 0.628 0.698

785 0.899 1.05 1.25 1.56

0.527 0.577 0.636 0.707

694 0.902 1.06 1.27 1.59

0.530 0.580 0.640 0.712

109 1.07 1.29 1.61 2.13

0.569 0.627 0.697 0.785

25 1.26 1.56 2.04 2.91

0.605 0.671 0.752 0.855

0.1 3.15 5.74 – –

0.774 0.890 1.04 1.25

Note: FN is the electric-field strength at which N electron–
positron pairs are produced in the volume ∆V = λ3: in one
field period (first row) and in 1 s (second row, at given N and
λ). The notation a(b) ≡ a × 10b.
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where 1F1 is a degenerate hypergeometric function.
Similarly, for

(12)

we have

(12')

where F(…) ≡ 2F1(…) is the Gaussian hypergeometric
function. Eliminating the parameter τ, we obtain a sim-
ple equation,

(12'')

which defines the inverse function u(χ) for any α ≥ 1.
Hence,

(13)

and for u  ∞,

(13')
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Fig. 5. The function  for the Schwinger effect versus
adiabaticity parameter γ. Curves 1–5 refer to the following
fields: (1) ϕ(t) = cost; (2) ϕ(t) = exp(–t2); (3) ϕ(t) =

1/ ; (4) ϕ(t) = 1/(1 + t2); and (5) ϕ(t) = (1 + t2)–2.

g̃ γ( )

tcosh
2
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The larger the exponent α, the more rapid the decay of
the field pulse (12) when t  ∞, and the slower the
decrease in χ(u) at infinity. In [32], we present a general
recipe for calculating the function χ(u) from the speci-
fied pulse shape ϕ(t). As we see from (11), the problem
then reduces to quadratures.

Note also that for numerical calculations, it is con-
venient to rewrite (11) as

(14)

Using these equations, we calculated the function

 and the coefficients  of the momentum
spectrum for several pulse fields. The results of our cal-
culations for  are shown in Figs. 5 and 6. In all
cases, the function  monotonically decreases with
increasing adiabaticity parameter; the probability W at
a given field F increases sharply (because e ! 1) and
begins to depend significantly on the pulse shape ϕ(t).
This phenomenon arising at high frequencies ω * ωt

may be called the dynamic Schwinger effect.
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Fig. 6. Same as the preceding figure for a pulse ϕ(t) = (1 –
t2)/(1 + t2)2 (solid curve). For comparison, the plot of 
versus γ is shown for monochromatic light (dashed curve).
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Below, we also present the results of our calcula-
tions for a modulated electromagnetic pulse with a
Gaussian envelope:6

(15)

which (for an appropriate choice of σ) can serve as a
model of an ultrashort laser pulse or the electric field in
a standing light wave. In this case, the function χ(u) can
be numerically determined from the equations

(16)

(here, τ is a parameter, 0 < τ < ∞). The pulse (15) short-
ens with decreasing σ: its amplitude decreases in one
laser-field period by the factor δ ≈ exp(–2π2/σ2). As we
see from Fig. 7, the decrease of  in the exponent
shows up at σ ~ 5 and is significant at σ = 1. As for the
coefficients b1, 2(γ), their dependence on σ may be
ignored for σ ≥ 3, but for σ & 1, the momentum spec-
trum broadens appreciably (see [31] for more detail).

However, these effects show up in full measure for
γ * 1, while, for γ ! 1, the dependence on γ is contained
only in the terms of order γ2. Assuming that near the
maximum of the electric field

(17)

we obtain the adiabatic expansions

(18)

To a first approximation in γ2, the dependence on the
laser-pulse shape is universal:

(19)

where  = γ and a2 = –ϕ''(0) is the curvature of the

pulse near its top. In this case, p⊥  ~ ∆p⊥  ~  =

m  ! m and p|| ~ γ–1p⊥  ~ mK0e
3/2. Thus, the transverse

e± pulse is nonrelativistic (because e ! 1). In the longi-
tudinal direction, however, p|| * m if the field strength

satisfies the conditions  ! e ! 1 or γ & . Since
K0 ~ 106 for optical lasers, these conditions are satisfied
with a margin. The next corrections to (18) and (19) can

6 This model is commonly used in laser physics. The full width of

the envelope at half maximum is σ  ≈ 2.4σ.8 2ln
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also be determined (see Appendix B, where the antiadi-
abatic case γ @ 1 is also discussed).

As we see from (19), the angular distribution of the
e± being produced for γ ! 1 is sharply anisotropic and
elongated along the electric field. On the other hand,
we have p|| ≈ p⊥  for γ @ 1 and the e± momentum spec-
trum approaches an isotropic one. [see (B.12) in
Appendix B].

Note now that the curves in Figs. 1–3 were calcu-
lated using formulas (5) and (10), which are valid for a
monochromatic field (σ = ∞). However, they refer to
the adiabatic range. Therefore, it follows from Fig. 6
that their change with decreasing laser-pulse duration
may be disregarded up to σ ~ 1. For example, for the
pulse, we have a2 = 1 + σ–2 and

(20)

On the other hand, in the limit γ  ∞,

(21)

(see Appendix C). Inserting the truncating factor
exp(−t2/2σ2) in (15), i.e., reducing the laser-pulse dura-
tion, causes the asymptotic behavior of the function

 to change: for monochromatic radiation, lnγ
changes to σ , but the asymptotic behavior
changes only at γ @ max(1, σ2). Thus, pulse shortening
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Fig. 7. The function  versus adiabaticity parameter for
a modulated light pulse (15). For the curves (from the bot-
tom upward), σ = 1, 2, 3, 5, and ∞ (the last case corresponds
to a monochromatic laser field).

g̃ γ( )
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decreases the function  and, thereby, increases the
probability W and facilitates an experimental observa-
tion of the Schwinger effect.

5. CONCLUDING REMARKS

(1) Above, we assumed that (1) represents a classi-
cal coherent field with "ω ! mc2. Therefore, our results
do not refer to a collision of two γ-ray beams from
accelerators [where e+e– pairs can also be produced if
"(ω1 + ω2) > 2mc2 but incoherently].

(2) Since the Schwinger mechanism for currently
available lasers can be realized only in the adiabatic
regime, it operates almost in the same way as in a con-
stant field (see Appendix A). For γ @ 1, the pair produc-
tion probability (at a fixed field amplitude F) increases
sharply, but this regime is possible only after the cre-
ation of γ-ray lasers with photon energies of several
tens of keV.

(3) As we see from formula (C.4), the coefficients of
γ2n (n ≥ 2) in the adiabatic expansions (4') are numeri-
cally small and decrease with increasing n. As a result,
the range of applicability of these expansions extends
up to γ * 1, while, for γ < 1, the Schwinger pair produc-
tion is closer to the tunneling regime than to the mul-
tiphoton one. When calculating the probability W for
currently available lasers, we may restrict ourselves to
several terms in expansions (4') for the functions 

and .

(4) Our calculations refer to the case where the total
time of periodic-field action T spans many periods and
satisfies the conditions

(22)

In this case, the switching-on and switching-off of the
field may be ignored and, on the other hand, the total
transition probability is still low: wT ! 1. Under these
conditions (which are generally satisfied in experi-
ments, except for very strong fields), the number of
pairs Np(t) with momenta ±p is a linear function of time
and has the meaning of pair production probability w
per unit time. For e ! 1, the probability w is exponen-
tially small and conditions (22) are satisfied.

If, alternatively, wT * 1, then Np(t) is no longer a lin-
ear function and a more accurate analysis is needed. As
was first shown by Narozhnyœ and Nikishov [6], Np(t) is
nontrivial in this case: for scalar bosons, the function
Np(t) can either periodically oscillate with increasing t
or increase exponentially (depending on which region,
stability or instability, the solution to the Mathieu equa-
tion is in). At the same time, for fermions, Np(t) is
always a periodic function of time t. Subsequently,
these results were confirmed by independent calcula-
tions [4, 7].

The following theoretical-group fact underlies the
appearance of various functions Np(t) for bosons and

g̃ γ( )

g̃ γ( )

b̃1 2, γ( )

2π/ω ! T  ! 1/w.
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fermions: the problem of pair production from a vac-
uum in a uniform electric field %(t) has the dynamic
symmetry group SU(1, 1) for scalar particles and the
group SU(2) for spinor particles [36]. The group SU(1, 1)
contains three one-parameters subgroups such that any
other one-parameter subgroup is conjugate (g' = S–1gS)
with one of them:

(23)

(θ is the real transformation parameter). The group
SU(1, 1) is known [37] to be isomorphic to the second-
order group SL(2, R) of real matrices  with the deter-
minant equal to unity:

(24)

with

(25)

Hence, we immediately see that gi(θ1)gi(θ2) = gi(θ1 +
θ2) and, therefore, [gi(θ)]N = gi(Nθ). Accordingly, we
obtain for these three classes of matrices

(26)

(the last case lies at the boundary between the stability
and instability regions and can hardly be realized in
practice). Here, N is the number of field periods, and
ρ = lnµ and µ are the multipliers. Calculating the latter
for a specific periodic field %(t) is a separate problem
[according to the Floquet theorem, ψ(t + 2π/ω) =
µψ(t)]. Formulas (24) describe three possible types of
Np(t) for bosons.

On the other hand, any element of the (compact)
group SU(2) can be reduced by rotation to the canonical

g1
θ/2( )cosh θ/2( )sinh

θ/2( )sinh θ/2( )cosh 
 
 

,=

g2
e iθ/2– 0

0 e iθ/2–
 
 
 
 

,=

g3
1 iθ/2+ θ/2

θ/2 1 iθ/2– 
 
 

=

g̃

g̃ θ( ) S+g θ( )S, S i
π
4
---σx– 

  ,exp= =

g̃1 θ( ) g1 θ( ),≡

g̃2
θ/2( )cos θ/2( )sin

θ/2( )sin– θ/2( )cos 
 
 

,=

g̃3
1 θ
0 1 

 
 

.=

Np t( )

Nρ( )sinh
2

2Nρ( ) for g1,exp∼

Nρ( )/ ρsinsin[ ] 2 for g2,

N2 for g3





∝
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form g2(θ). Therefore, only the oscillatory regime is
possible in the problem of Dirac particle pair produc-
tion.7 Note that this case is analogous to the transitions
in a two-level atom under the effect of a periodic per-
turbation close to resonance (see [39], Para. 40).

We emphasize that solutions (24) refer to the case of
wT * 1, which can actually be realized only for very
strong fields with F * Fcr. The possibility of achieving
this regime in experiments is presently not obvious.

(5) In the theory of solids and, in particular, for
semiconductors, the following dispersion law is used
[15, 40]:

(27)

where m* is the effective mass and ∆ is the width of the

band gap that separates the valence band from the con-
duction band. Formally, (27) is the same as that for a
free particle in relativistic mechanics:

Therefore, our results can be used after obvious trans-
formations in the theory for multiphoton ionization of
semiconductors by a laser pulse (for a monochromatic
light field, this was already done in [15]). Here, fields
of ~105 V/cm act as Fcr; as a result, the corresponding
effects are much easier to investigate experimentally.

(6) Presently, QED is in excellent agreement with
experiment. In the record case of anomalous magnetic
moments of e– and µ–, the accuracy reaches 10–12,
which is confirmed by calculations of the higher orders
of perturbation theory in QED up to (α/π)4 (see, e.g.,
[41]). Therefore, the following question can arise: Is it
necessary to carry out experiments to test the
Schwinger e+e– pair production mechanism in the first
place? It may be noted that observation of this process
would imply testing the Dirac equation and QED for
very strong external fields outside the scope of pertur-
bation theory. Indeed, the fact that the probability (4)
exponentially tends to zero as e  0 is directly related
to a factorial increase in the higher orders of perturba-
tion theory and to the divergence of the series of pertur-
bation theory in QED (the so-called Dyson phenome-
non [42]). Since this nonperturbative effect cannot be
obtained by the summation of a finite number of terms
in the series of perturbation theory, its observation is of
fundamental interest in QED and in the quantum field
theory in general.

It is unlikely that the Schwinger effect for other
(apart from e±) charged particles will ever be observed
experimentally: the critical field Fcr ∝  m2 and has a fan-
tastic value Fcr ~ 1021 V/cm even for π±. 

7 The theoretical-group aspect of the problem of pair production
from a vacuum for particles of arbitrary spin s was considered in
[38].

ε p( ) ∆ 1 p2/m*∆+ ,=

ε p( ) m2 p2+ .=
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(7) In recent years, rapid progress has been made in
laser technology both toward decreasing the wave-
length λ8 and toward increasing the intensity J: J *

1021 W cm–2 for petawatt laser radiation [28], which
corresponds to electric fields F ~ 1012 V/cm that are two
orders of magnitude higher than the atomic ones, has
already been reached.

As was noted by Ringwald [10], if X-ray lasers
("ω * 1 keV) are created and if it is possible to focus
their radiation in a volume of λ3, then the minimum
laser powers Pmin required for the Schwinger effect to
be observed will significantly decrease, because F ∝

/λ. Thus, for λ = 0.1 nm and the pulse duration T =
0.1 ps, Pmin ≈ 4 × 1016 W is required to produce one e+e–

pair. Such powers have long been reached in the optical
range, but the possibilities for creating such facilities
and for beam focusing in X-ray optics are not yet clear
and are for future development (see [10]). The calcula-
tions presented above show that it will be possible to
observe the Schwinger effect experimentally most
likely by further increasing the power of infrared and
optical lasers.9
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APPENDIX A

Below, we derive a general relationship between the
static (wst) and adiabatic (wa) tunneling probabilities.
Let, in a constant electric field F,10

(A.1)

8 The creation of a free-electron laser with λ = 109 nm in the vac-
uum ultraviolet [35] is a record. The recording of laser radiation
with λ = 80 nm ("ω ≈ 15 eV) is also reported [29]. Of course, the
powers of these lasers are still too low.

9 It has to be recognized that use of the terms “Schwinger effect”
and “Schwinger pair production” in this paper (and in [31]) may
be not fully justified. Indeed, it was assumed above that (accord-
ing to the experimental situation considered) the electric field
strength F is small compared to Fcr and, hence, exp(−2πFcr/F) ! 1.
In this case, the Schwinger formula [1] reduces (to within expo-
nentially small terms) to the first term of a series obtained previ-
ously by Heisenberg and Euler [43]. The author is grateful to
V.I. Ritus for this remark. 

10Here, A, B, λ, and µ are constants; see, e.g., [32, 39].

P

wst F( ) Ae
λ Be

µ––( ), eexp F/F0 0= =
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[this formula, just as (A.3)–(A.5), is asymptotically
exact in the weak-field limit]. For a periodic field, for
which F(t + T) = –F(t + T/2) = F(t), ω ! ωt, and expan-
sion (15) holds near the field maximum, the transition
probability per unit time can be determined by averag-
ing (A.1) over the period:

(A.2)

(t = ωt '); hence

(A.3)

Consider two examples.
(1) For the ionization of atoms and ions by an elec-

tric field (B = 2/3, µ = 1, F0 ≡ Fa = m2e5/"4; see [39]) and
according to [44], we have

(A.4)

[the parameters A and λ in (A.1) depend on the quantum
numbers of the state; for instance, λ = –1 and A = 4 for the
ground level of the hydrogen atom, λ = –(2n2 + |m| + 1)
for the state with parabolic quantum numbers |n1, n2, m〉,
λ = 1 for a three-dimensional δ potential, etc.].

(2) For the Schwinger effect, B = π, λ = 2, µ = 1, and
F0 = Fcr. Therefore,

(A.5)

Since the coefficient A = m4/4π3 [1], we immediately
obtain the correct preexponential factor in (4). In all
cases where µ = 1 and wst ∝  exp(–const/F) for F  0,
the adiabatic tunneling probability contains, compared

to wst, an additional small factor proportional to ,
which does not become unity at an arbitrarily low fre-
quency ω.

So far, we assumed the wave polarization to be lin-
ear; i.e., the field F(t) preserves its direction in space.
For elliptical polarization, the relation between the
probabilities wa and wst is more complex and was given
in [44]; its derivation has recently been published in
[45].

Note that, for a low-frequency field, the probability
wa(F, ξ) can be obtained [45] by averaging expression
(A.2) also for strong fields (for any light ellipticity ξ),
when the asymptotic expression (A.1) no longer holds
but wst(F) can be taken from numerical calculations
[46]. In this case, it turns out that, in the suprabarrier
range 0.25 & F & 1.5, the dependence of the ionization
probabilities wa and wst on field F is remarkably close

wa F( )
2
T
--- wst F t'( )( ) t'd

T /4–

T /4

∫=

≈ 2A
ωT
--------e

λ Be
µ––( ) B

µa2

2e
µ--------t2– 

 exp td

∞–

∞

∫exp

wa F( ) 2
πµa2B
----------------e

µ/2wst F( ), e ! 1.=

wa F( ) 3F/πF0wst F( )=

wa F( )
1
π
--- 2F

Fcr
-------wst F( ).=

e
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to a linear one (which holds neither for weak fields with
[39] w(F) ∝  exp(−2/3F) nor in the limit F  ∞, where
[47, 48] ImE(F) ∝  (FlnF)2/3 for Stark resonances). Fol-
lowing [49], this regime can be called the intermediate
asymptotics: w(F) ≈ k(F – F0); the parameters k and F0
depend on the quantum numbers of the state and can be
determined by numerical fitting.

Previously [50], we qualitatively explained the
existence of such asymptotics for the problem of the
Stark effect in a strong field by using a 1/n expansion.
Recent numerical calculations (for the ground state of
the helium atom in a constant electric field [51] and for
H– in the field of a circularly polarized wave [52]) con-
firm the presence of a portion of the linear dependence
of w on F in the suprabarrier range of fields up to F ~ Fa.

APPENDIX B

According to [2, 3, 15], for a monochromatic field
ϕ(t) = cost,

(B.1)

(B.2)

where γ is the adiabaticity parameter, and K and D are
the complete elliptic integrals of the first and third
kinds, respectively, [33, 53] with modulus v,

Below, we give expansions for small and large γ. In
the former case, expanding(1 + γ2u2)–1/2 in a Taylor
series, we derive from (B.1)

(B.3)

(B.4)

i.e., g1 = 1/8, g2 = 3/64, g3 = 25/1024, and gn ≈ 1/πn2 for
n  ∞. It can be shown that

(B.5)

whence

(B.6)

g̃ γ( )
4
π
--- 1 u2–

1 γ2u2+
------------------- ud

0

1

∫ 4v
πγ
-------D v( ),= =

b̃1 γ( )
1
2
---v 1g̃ γ( ),=

b̃2 γ( )
2
π
--- ud

1 u2–( ) 1 γ2u2+( )
------------------------------------------------

0

1

∫ 2v
πγ
-------K v( ),= =

v
γ

1 γ2+
------------------

γ 1
2
---γ3– …, γ ! 1,+

1 1

2γ2
-------- …, γ @ 1.+–







= =

g̃ γ( ) 1–( )ngnγ
2n, γ 1,≤

n 0=

∞

∑=

gn
Γ2 n 1/2+( )
n! n 1+( )!π
----------------------------

1
n 1+( )

----------------- 2n 1–( )!!
n!2n

------------------------
2

,= =

b̃1 γ( ) γb̃2' γ( ), b̃2 γ( )–
1

2γ
------

γd
d γ2g̃ γ( )[ ] ,= =

b̃1 γ( ) 4 g1γ
2 3g2γ

4– …+( ),=

b̃2 γ( ) 1 2g1γ
2– 3g2γ

4 … .+ +=
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Thus, the series for the coefficients  of the momen-
tum spectrum are expressed in terms of the same coef-
ficients gn as in (B.3).

The angular e± distribution for γ ! 1 is sharply
anisotropic: the transverse momentum is nonrelativis-

tic, p⊥  ~ m  ! m, while the characteristic longitudi-
nal momentum is much larger: p|| ~ γ–1p⊥ ; this is
because the electron and positron can be accelerated
along a slowly varying electric field Fϕ(t). In this case,

p|| * m if e @ . Since K0 * 106 for optical lasers
(see Table 1), this condition is always satisfied. Inte-
grating (2) over d3p/(2π)3 and adding up the n-photon
absorption probabilities wn (given that the nω spectrum
in this case is virtually continuous), we obtain formula
(4) for the total probability W. Note that it can also be
derived by averaging the static probability wst [1] over
the external-field period; see (A.5).

In the opposite case γ @ 1 (or ω @ ωt, a rapidly vary-
ing field), using formulas (8.112.5), (8.113.3), and
(8.114.3) from [53] for the elliptic functions, we have

(B.7)

(B.8)

where q =  = 1/   0,

(B.9)

Finally, we obtain11

(B.10)

11These expansions are accurate even at small γ: thus, the error δ in
the approximation (B.10) is 1, 0.2, and 0.03%, respectively, for
γ = 1.5, 2, and 3.

b̃1 2,

e

K0
2/3–

g̃ γ( )
4

πγ
------ A q( )

4
q
--- 

 ln B q( )– ,=

b̃i γ( )
2

πγ
------ Ai

4
q
--- 

 ln Bi– , i 1 2,,= =

1 v 2– 1 v 2+

A q( ) 1
1
4
---q2 13

64
------q4 …,+ + +=

B q( ) 1
1
2
---q2 …,+ +=

A1 1
3
4
---q2–

3
64
------q4– …,+=

B1 1
1
2
---q2– …,+=

A2 1
1
4
---q2–

7
64
------q4– …,+=

B2
1
4
---q2 ….+=

g̃ γ( )
4

πγ
------=

× 1 1

4γ2
-------- 3

64γ4
-----------–+ 

  4γ( )ln 1– O γ 4–( )+
 
 
 
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and

(B.11)

where the terms of order 1/γ2 or lower were discarded.
In the limit g  ∞, the e± momentum distribution
approaches (with a logarithmic accuracy) an isotropic
one:

(B.12)

and the escaping electrons and positrons are nonrelativ-
istic:

APPENDIX C

Here, we describe the derivation of asymptotic
expression (21). For τ  ∞, the equations for the
function χ(u) are

(C.1)

Solving the second equation by the iteration method
yields

(C.2)

which allows the following expression to be derived by
eliminating τ from (C.1):

. (C.3)

Writing (11) as

(C.4)

we arrive at expression (21) for .
On the other hand, in the limit σ = ∞ (strictly mono-

chromatic radiation),

b̃1
2

πγ
------ 1 3

4γ2
--------– 

  4γ( )ln 1– …+ ,=

b̃2
2

πγ
------ 1 1

4γ2
--------– 

  4γ( )ln …+ ,=

w p( ) –K0 4γ( )p2/m2ln{ } ,exp∝

p|| p⊥
mω

4γ( )ln
----------------

m

K0 4γ( )ln
--------------------------- ! m.∼ ∼ ∼

χ 2 τ2

2σ2
--------- τ+ 

 –
 
 
 

,exp=

u
σ2

2τ
----- τ2

2σ2
--------- τ+ 

  .exp=

τ σ 2
2u

σ2
------ 

 ln 1 O
σ

uln
------------ 

 + ,=

χ u( )
σ

u 2 2u/σ2( )ln
-----------------------------------, u ∞≈

g̃ γ( )
4

πγ
------ χ u( ) 1 u2

γ2
-----– ud

0

γ

∫ 4
πγ
------ χ u( ) u …,+d

0

γ

∫= =

γ ∞,

g̃ γ( )

χ u( )
1

1 u2+
------------------ 1

u
---,≈=
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and, accordingly, the asymptotic behavior of 
changes. Indeed, as follows from (C.4),

(C.5)

Thus, the function  decreases when γ  ∞ more
slowly than 1/γ if the exponent β ≤ 1. The cases consid-
ered above correspond to β = 0 and β = 1/2.
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Abstract—It is shown that, in the Markov approximation, relaxation of two noninteracting atoms in the field
of a common thermostat leads not only to decoherence but also to the opposite process of the entanglement of
atomic states, which can take on a stationary value depending on the initial conditions. This region of initial
conditions narrows as the mean number of photons in the thermostat increases. The main radiative mechanism
destroying an arbitrary initial entanglement of atoms is interaction of each atom with its own thermostat inde-
pendent of the other. All Markov relaxation models under consideration are based on the Lindblad equations.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Currently, several related but slightly different pro-
cesses are called decoherence. Traditionally, atomic
decoherence is damping of the off-diagonal elements of
the atomic density matrix; these elements determine
atomic polarization and various phase relations and
coherence [1, 2]. A consideration of such a process is
accompanied by passage from describing an atom with
the use of a wave function to describing it with the use
of the density matrix (transition from a pure to a mixed
state), which also corresponds to decoherence. Relax-
ation caused by interactions between an atom and a
thermostat is accompanied by the entanglement of
atomic states with the states of thermostat particles [3–
5]. However, decoherence also implies the removal of
entanglement in a separate system of particles [6]. This
work is concerned with the arising (and removal) of
entanglement of atomic states in a system of two atoms
caused by radiative decay.

Recall that entangled states are such states of quan-
tum systems in which the wave function (density
matrix) of the system of particles cannot be represented
in the form of the product of wave functions (density
matrices) of separate particles even if the particles do
not interact with each other. Entangled states are a spe-
cial case of quantum correlations, because simple quan-
tum correlations, for instance, differences between
two-particle density matrices and the products of one-
particle density matrices, do not always cause entangle-
ment. Such entangled states of a selected system of
quantum particles (atoms or photons), rather than of an
atom and thermostat particles, have recently been given
much attention, in part because entangled states are one
of the main resources of quantum information, quan-
tum calculations, quantum teleportation, etc. Well-
known Bell states are an example of maximally entan-
1063-7761/02/9406- $22.00 © 21070
gled states of systems of two two-level particles. An
example of the entanglement of photon states is the so-
called squeezed light [7] used in experiments on tele-
portation of photon states [8, 9]. Entangled states of
noninteracting atoms determine several optical effects
[10–12], of which the best known one is superradiation
[13, 14]. Dicke states are then entangled states in a sys-
tem of N particles.

Obtaining entangled atomic states is considered in
recent works [15–19]. It is, as a rule, assumed that
atoms interact with each other [15–17]. Entanglement
then appears to be quite natural. In this work, noninter-
acting atoms that decay in a common thermostat field
are considered. This consideration leads to the conclu-
sion, paradoxical at first sight, that a relaxation process,
which usually causes loss of quantum correlations, etc.,
results in the arising of entanglement in an ensemble of
noninteracting atoms. For simplicity, our consideration
will be limited to two atoms.

The well-known Dicke model and other models [13,
14] are used to describe collective atomic decay. In this
work, new models based on the Lindblad equations are
introduced. These models allow the dynamics of atomic
states both symmetrical and antisymmetric with respect
to particles to be discussed. A general solution to the
simplest model equations was obtained; the other equa-
tions were studied numerically. The Peres–Horodecki
criterion [20, 21], which is stronger than Bell’s inequal-
ities, was used as a criterion of the entanglement of
atomic states. The eigenvalues of the two-particle
atomic density matrix transposed according to Peres
and Horodeckis were calculated to find that there
existed a region of problem parameters in which atomic
states resulting from the decay of nonentangled initial
atomic wave functions become entangled. It was found
that one of the principal conditions of the entanglement
002 MAIK “Nauka/Interperiodica”
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of atomic states during radiative decay was the pres-
ence of a common thermostat. The degree of entangle-
ment of atomic states is very sensitive to the mean num-
ber of photons in the thermostat. The region of param-
eter values at which entanglement arises narrows as the
mean number of photons increases. A common thermo-
stat is, however, incapable of completely destroying
initial entanglement related to atomic states antisym-
metric with respect to particles. The main factor that
destroys entanglement is interaction of each atom with
“its own” thermostat independent from the others. Note
that we do not take into account interaction between
atoms to most clearly reveal the effect of entanglement
caused by interaction with a common thermostat. As far
as the thermostat is concerned, it is understood to be an
arbitrary broadband electromagnetic radiation whose
initial state satisfies the δ-correlation condition and
whose mean photon creation and annihilation operator
values are zero. Such a radiation can be created by para-
metric generators, and its state may be squeezed [1, 2].
In the latter case, electromagnetic radiation is often
called squeezed vacuum.

The paper is organized as follows. In Section 2, Ito
quantum stochastic equations are derived, and collec-
tive relaxation approximations and models used in what
follows are discussed. One-particle equations for the
atomic density matrix are used in Section 3 to deter-
mine the most favorable conditions for the entangle-
ment of atomic states. In Section 4, a general solution
for the model of the decay of atoms in a common ther-
mostat field at zero temperature in the unidirectional
approximation is obtained, and the Peres–Horodecki
criterion of the entanglement of atomic states is consid-
ered. Effects of the temperature, thermostat squeezing,
phase parameter, and model type on the minimum
eigenvalue of the Peres–Horodecki matrix characteriz-
ing the degree of entanglement of atoms are considered
in Section 5. In Conclusion, we discuss the mechanisms
responsible for either atomic entanglement or complete
atomic decoherence and point to an analogy between
the results of this work and some quantum information
theory results.

2. MAIN COLLECTIVE RELAXATION MODELS

The interaction of two identical two-level quiescent
atoms with a quantized electromagnetic field in the
electric dipole approximation is described by the
Hamiltonian

(1)

* *A *F 9,+ +=

*A "ω0

2
--------- C3 1̂ 1̂ C3⊗+⊗( ),=

*F
"qc bqλ

+ bqλ
1
2
---+ 

  ,
qλ
∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here, * is the Hamiltonian of the system of two two-
level atoms situated at points r1 and r2, and C– = |0〉〈 1|
and C+ = |1〉〈 0| are the operators of annihilation and cre-
ation, respectively, of two-level atom excitations.
Together with the C3 operator, they provide a realiza-
tion of the SU(2) algebra, [C+, C–] = C3, [C3, C±] =
±2C±. Symbols |0〉  and |1〉  denote the vectors of atomic
states corresponding to the lower and upper energy lev-
els, respectively, and "ω0 is the energy difference
between these levels. The d10 value is the matrix ele-
ment of the dipole moment of the atom. *F is the
Hamiltonian of the electromagnetic field whose opera-
tors of creation and annihilation of photons with wave

vector q and polarization eqλ are given by bqλ and ,

respectively, [bqλ, ] = δqq'δλλ '. Next, 9 is the opera-
tor of resonance interaction between the atoms and the
transverse component of the electromagnetic field, and
Vs is the volume within which the electromagnetic field
is confined. For simplicity, 9 is written without taking
into account recoil effects of photon absorption and
emission. In what follows, we also ignore polarization
effects (omit vector signs). In addition, (1) implies that
the interaction of atoms with the longitudinal electro-
magnetic field component, which determines the oper-
ator of dipole–dipole interaction of atoms, is not taken
into account to more definitely separate the entangle-
ment effects due to relaxation processes in a common
thermostat field.

First, consider the simplest situation when the elec-
tromagnetic field propagates in one direction. Note that all
known exactly integrable models of resonance interaction
between quantized fields and two-level atoms correspond
to precisely this situation [22, 23]. For instance, let q =
qez = ωez/c. The interaction operator takes the form

(2)

where bω ≡  and, for simplicity, r1 is set equal to 0.
We assume the initial electromagnetic field state |Φ0〉  to
be δ-correlated,

(3)

9
i

Vs

--------- 2π"qc eqλ d10⋅( )
qλ
∑–=

× bqλ e
iq r1⋅

C+ 1̂⊗ e
iq r2⋅

1̂ C+⊗+( ) H.c.+

bqλ
+

bq'λ'
+

9 i g w( )d10bω

ω
∑–=

× C+ 1̂⊗
iωr2 ez⋅

c
-------------------- 

  1̂ C+⊗exp+ 
  H.c.,+

bωez/c

Φ0〈 |bω
+ bω' Φ0| 〉 N ω( )δ ω ω'–( ),=

Φ0〈 |bωbω'
+ Φ0| 〉 1 N ω( )+( )δ ω ω'–( ),=

Φ0〈 |bωbω' Φ0| 〉 M ω( )δ 2ΩΓ ω– ω'–( ),=

Φ0〈 |bω
+ bω'

– Φ0| 〉 M∗ ω( )δ 2ΩΓ ω– ω'–( ).=
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This means that the electromagnetic field is treated as a
thermostat with central frequency ΩΓ, photon density
N(ω) at frequency ω, and squeezing parameter M(ω),

The interaction with this thermostat will be
described in the Markov approximation. It is assumed
that the g(ω) coupling constant, the N(ω) and M(ω) elec-
tromagnetic field parameters, and the exp(iωr2 · ez/c)
exponential function are independent of frequency, and
the photon annihilation operator in the Heizenberg
approximation is described by free evolution and,
therefore, the Heizenberg equation for an arbitrary
atomic operator is as follows:

(4)

Here,

(5)

As photons with frequencies close to the ω0 resonance
frequency are only effective in resonance interactions,
the frequency integration is performed from –∞ to +∞.
Note also that photons emitted by atoms do not influ-
ence the evolution of the thermostat, and the interaction
of atoms in absorption of a photon emitted by one of
them is therefore not taken into account in (4).

Equation (4) is the Langevin quantum equation and,
like all Langevin equations with multiplicative noise, is
not defined mathematically. To supplement the defini-
tion of (4), let us introduce quantum Wiener processes
B(t, t0) as follows:

Using the standard definitions of the Ito integral and
differential [1, 24], we obtain the Ito quantum stochas-
tic equation for the atomic operator A in the form

M ω( ) N ω( ) N ω( ) 1+( ).≤

!̇
i
"
--- ! *A,[ ]–=

+ χ ! #+,[ ] b t( ) χ ! #–,[ ] b+ t( ).–

#± C± 1̂⊗ e iθ+− 1̂ C±,⊗+=

θ
ωr2 ez⋅

c
------------------, χ 2πg2 ω0( ),= =

N N ω0( ), M M ω0( ),= =

bω bω t0( )e
iω t t0–( )–

,=

b t( )
1

2π
---------- ωe

iω t t0–( )–
bω t0( ).d∫=

B t t0,( ) t'b t'( ),d

t0

t

∫=

B t t0,( ) B+ t t0,( ),[ ] t t0.–=
JOURNAL OF EXPERIMENTAL 
(6)

where

(7)

Such a “refinement” provides the fulfillment of the Ito
differentiation rule; namely, for arbitrary atomic opera-
tors !1 and !2, we have

Ito quantum stochastic equation (6) with algebra (7)
completely describes the evolution of atoms that inter-
act with a “unidirectional” thermostat in the Markov
approximation. Applying standard methods to this
equation, we easily obtain the equation for the diatomic
density matrix 5,

(8)

which contains the relaxation operator

(9)

d!
i
"
--- ! *A,[ ] dt–=

+ χd10 ! #+,[ ] dB t( ) χd10* ! #–,[ ] dB+ t( )–

+
χ d10

2

2
--------------- N 1+( ) #+ ! #–,[ ] #+ !,[ ] #–+( )dt

+
χ d10

2

2
---------------N #– ! #+,[ ] #– !,[ ] #++( )dt

–
χd10

2

2
----------M #+ ! #+,[ ] #+ !,[ ] #++( )dt

–
χ d10*( )2

2
-----------------M∗ #– ! #–,[ ] #– !,[ ] #–+( )dt,

dB+ t( )dB t( ) Ndt,=

dB t( )dB+ t( ) 1 N+( )dt,=

dB t( )dB t( ) Mdt, dB+ t( )dB+ t( ) M∗ dt,= =

dtdt = dtdB t( ) = dtdB+ t( ) = dB t( )dt = dB+ t( )dt = 0.

d !1!2( ) d!1( )!2 !1d!2 d!1( ) d!2( ).+ +=

d5
dt

--------
i
"
--- 5 *A,[ ] Γ̂ 5,+=

Γ̂5
χ d10

2

2
--------------- N 1+( )=

× 5#+#– #+#–5 2#–5#+–+( )

+
χ d10

2

2
---------------N 5#–#+ #–#+5 2#+5#––+( )

+
χd10

2

2
---------- 2#+5#+ 5#+#+– #+#+5–( )M

+
χ d10

*( )2

2
----------------- 2#–5#– 5#–#–– #–#–5–( )M∗ .
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Equations (8) and (9) describe collective relaxation
of two atoms in unidirectional electromagnetic field
(3). They are easy to generalize to one-dimensional and
three-dimensional fields.

In the one-dimensional model, in addition to opera-
tors (5), we introduce the operators

(10)

which differ from (5) by the replacement of θ with –θ.
The equation for the diatomic density matrix then takes
the form

(11)

where  differs from  by the replacement of #± with

. We assume that the χ, N, and M parameters in 

also differ from similar parameters in ; these param-
eters will be primed. The primed and unprimed param-
eters may differ because the system of two atoms is
irradiated from two sides by two different broadband
fields, for instance, created by degenerate parametric
generators [2]. Note that the derivation of (11) is fully
analogous to the case of unidirectional electromagnetic
field propagation with the exception that, in addition to
one pair of Wiener quantum processes B(t, t0) and
B+(t, t0), we must consider the second pair B'(t, t0) and
B'+(t, t0) corresponding to the field that propagates in
the opposite direction ez. These pairs of processes are
independent of each other,

Note that, if χ = χ', N = N', M = M', and θ = 0, (11) coin-
cides with (8) and (9) for θ = 0 and the χ constant renor-
malized as χ  2χ.

For the three-dimensional electromagnetic field
model, the kinetic equation for the diatomic density
matrix can most simply be obtained if the atoms are sit-
uated in a volume whose linear dimensions are much
smaller than the wavelengths of resonance modes, that
is, on the assumption r1 = r2. We can then conveniently
introduce photon annihilation and creation operators
averaged over various wave vector orientations, for
instance,

Using the additional assumption that the initial state of
the electromagnetic field is δ-correlated with respect to
averaged operators and applying standard reasoning,
we obtain the Ito quantum equations in form (6); these
equations correspond to Wiener processes constructed
on averaged operators. They yield the same expressions
(8) and (9) for the diatomic density matrix with θ = 0.

#±' C± 1̂ e iθ± 1̂ C±,⊗+⊗=

d5
dt

--------
i
"
--- 5 *A,[ ] Γ̂ 5– Γ 'ˆ 5,–=

Γ 'ˆ Γ̂

#±' Γ 'ˆ

Γ̂

dB t( )dB' t( ) dB t( )dB'+ t( )=

+ dB+ t( )dB' t( ) dB+ t( )dB'+ t( ) 0.= =

bω
1

4π
------ Ωkbk.d∫=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The form of (8), (9), and (11) is common to kinetic
equations that describe relaxation in the Markov
approximation, which has for the first time been proved
by Lindblad [25] for the case of the absence of squeez-
ing on very general assumptions about the properties of
the thermostat and the character of evolution of the
dynamic system. For this reason, a brief derivation of
the kinetic equations through constructing Ito quantum
stochastic equation (6) is only necessary from the point
of view of atomic dynamics for determining the form of

the #± and  operators and similar operators respon-
sible for coupling of the quantum system with indepen-
dent thermostats. Note that stochastic equations (6) and
(7) are much more informative than the corresponding
kinetic equations because they can also be used to draw
conclusions about photon dynamics through handling
in- and out-fields and the stochastic equation for the
evolution operator [1]. The approach based on the use
of Ito quantum stochastic equations also makes it pos-
sible to consider repeat actions of the same quantum
Wiener process realization on an atomic system. Such
implications are, however, not discussed in this work.

For generality, models (8), (9), and (10) should be
augmented by two relaxation operators Γ1 and Γ2
describing interactions of each atom with independent
thermostat fields. The most general model of Markov
relaxation of a diatomic system interacting with broad-
band quantized electromagnetic fields is therefore
given by the equations

(12)

Here,  and  are defined by (9) (with , χ', N', and

M' for ), and Γ1 and Γ2 are defined by an expression
similar to (9) but with other main values,

(13)

where

(14)

#±'

d5
dt

--------
i
"
--- 5 *A,[ ] Γ̂ 5– Γ 'ˆ 5– Γ̂15 Γ̂25.––=

Γ̂ Γ 'ˆ #±'

Γ 'ˆ

Γ̂ j5
χ j( ) d10

2

2
-------------------- N j( ) 1+( )=

× 5#+
j( )#–

j( ) #+
j( )#–

j( )5 2#–
j( )5#+

j( )
–+( )

+
χ j( ) d10

2

2
--------------------

× N j( ) 5#–
j( )#+

j( ) #–
j( )#+

j( )5 2#+
j( )5#–

j( )
–+( )

+
χ j( )d10

2

2
---------------M j( ) 2#+

j( )5#+
j( ) 5#+

j( )#+
j( )

– #+
j( )#+

j( )5–( )

+
χ j( )d10

*2

2
-----------------M

j( )* 2#–
j( )5#–

j( ) 5#–
j( )#–

j( )
– #–

j( )#–
j( )5–( ),

#±
1( ) #± 1̂, #±

2( )⊗ 1̂ C±.⊗= =
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Equations (12) and (9), (10), (13), and (14) make it
possible to consider collective effects in a system of
two atoms that arise when the atoms interact with the
field of a common thermostat. A wider range of prob-
lems can be covered if *A is understood not only as a
Hamiltonian of a system of two isolated quiescent two-
level atoms but also as interaction operators between
atoms and external classical electromagnetic fields.

3. KINETIC EQUATIONS FOR ONE ATOM

As we assume that atoms do not interact with each
other, it would be interesting to consider the kinetic
equations for each of them. This would allow us to draw
conclusions about the range of parameter values within
which the entanglement of atomic states caused by col-
lective radiative decay can be expected.

The one-particle density matrix and the one-particle
relaxation parameter are as usual determined by taking
the trace over the states of the second atom, ρ = tr25,

 = tr2 . Let us denote the one-particle density
matrix to which the first space in the tensor product ⊗
corresponds by ρ f = trl5 (indices f, from “first,” and l,
from “last,” are used to describe the first and second
atoms, respectively). Its matrix elements will be written
in the form

where the following notation is used:

Here, | f 〉  is the state of the two-particle system in which
the first atom is excited and the second is in the ground
state, etc. The following equation for the monatomic
density matrix can easily be obtained:

(15)

where, for definiteness, the one-particle density matrix
is assumed to describe the first atom. The notation used
in (15) is as follows. The value

is the sum of the Hamiltonian of the isolated quiescent
two-level atom with transition frequency ω0 and the
interaction operator between the atom and external par-
ticles and fields not considered or mentioned above (for

Γ̂ρ Γ̂5

ρ11
f 5ee 5 ff , ρ00

f+ 5ll 5gg,+= =

ρ10
f 5el 5 fg,+=

ρ10
f 1〈 |ρ f 0| 〉 , etc., 5el e〈 |5 l| 〉 , etc.,= =

g| 〉 0| 〉 0| 〉 , e| 〉⊗ 1| 〉 1| 〉 ,⊗= =

f| 〉 1| 〉 0| 〉 , l| 〉⊗ 0| 〉 1| 〉 .⊗= =

dρ f

dt
---------

i
"
--- ρ f H f,[ ] Γ̂ f ρ f ,–=

H f 1
2
---"ω0C3 V+=
JOURNAL OF EXPERIMENTAL 
instance, with a classical electromagnetic field). The
relaxation operator

is the sum of the  operator of the relaxation of the
first atom caused by its interaction with “its own” ther-
mostat (with which the second atom does not interact),

and the  relaxation operator determined by collec-
tive relaxation of the system of two atoms in the field of
the common thermostat. The matrix elements of the
relaxation operators mentioned above are as follows:

(16)

(17)

The  relaxation operator differs from  in the
replacement of θ with –θ and χ, N, and M with χ', N',
and M'.

The dynamics of a single atom without taking into
account any other atoms is described by (15) with the

relaxation operator  =  + , where  is given

by (16) and , by (17) without terms containing the
matrix elements of two-particle density matrix 5. It
follows that, in spite of the absence of interaction
between atoms, the presence of a common thermostat
substantially changes monatomic dynamics. For the
specified effects to be most pronounced, the following
conditions should be met:

(1) Neither of the atoms should have “its own” ther-

mostat independent of the others (that is,  = 0).
(2) The common thermostat should have zero temper-

ature (that is, should not contain photons, N = M = 0).

Γ̂ f Γ̂1
f Γ̂0

f Γ̂0'
f

+ +=

Γ̂1
f

Γ̂0
f

Γ̂1
f ρ11

f χ 1( ) N 1( ) 1+( ) d10
2ρ11

f χ 1( )N 1( ) d10
2ρ00

f ,–=

Γ̂1
f ρ00

f –χ 1( ) N 1( ) 1+( ) d10
2ρ11

f=

+ χ 1( )N 1( ) d10
2ρ00

f ,

Γ̂1
f ρ10

f χ 1( ) N 1( ) 1
2
---+ 

  d10
2ρ10

f χ 1( ) d10( )2M 1( )ρ00
f *;+=

Γ̂0
f ρ11

f χ N 1+( ) d10
2ρ11

f= χN d10
2ρ00

f–

+
1
2
---χ d01

2 5 fle
iθ– 5lf e

iθ+( ),

Γ̂0
f ρ00

f –χ N 1+( ) d01
2ρ11

f= χN d10
2ρ00

f+

–
1
2
---χ d01

2 e iθ– 5 fl eiθ5lf+( ),

Γ̂0
f ρ10

f χ N
1
2
---+ 

  d01
2ρ10

f= χd10
2 Mρ10

f *+

–
1
2
---χ d10

2eiθ 5ef 5lg–( ).

Γ̂0'
f

Γ̂0
f

Γ̂
f

Γ̂1
f Γ̂0

f Γ̂1
f

Γ̂0
f

Γ̂1
f
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The differences in monatomic dynamics become
smoothed as the temperature of the common thermostat
increases, which is clearly seen at N @ 1. The terms in
(17) that contain the matrix elements of the two-particle
density matrix 5 can then be ignored. Importantly, the
squeezing of the common thermostat at N @ 1 generally
does not have a significant influence on the differences
in monatomic dynamics. However, at small N values,
we can, as usual, expect a substantial effect of thermo-
stat squeezing at nonzero phases θ.

If each atom has a thermostat of its own, the influ-
ence of the common thermostat will also become neg-
ligible at some instant.

It follows from the aforesaid that very favorable
conditions for the arising of entanglement in a system
of two noninteracting atoms is the presence of only one
common thermostat with zero temperature. At nonzero
temperatures, favorable conditions may also appear in
the presence of thermostat squeezing.

4. THE PERES–HORODECKI CRITERION

Consider the simplest model of collective decay (8),
(9), (5) in the absence of photons in the thermostat, N =
M = 0. In addition to the matrix notation introduced
above, we will use 5ij, where index i runs over the val-
ues 1, 2, 3, and 4, or g, f, l, and e.

Clearly, the nonzero matrix elements of the #± oper-
ators are

In the matrix form, we have

Let us find a general solution to (8) and (9). Note
that the #± operator matrix elements between the two-
particle entangled state

f〈 |#+ g| 〉 g〈 |#– f| 〉 1,= =

l〈 |#+ g| 〉 g〈 |#– l| 〉∗ eiθ,= =

e〈 |#+ f| 〉 f〈 |#– e| 〉∗ e–iθ,= =

e〈 |#+ l| 〉 l〈 |#– e| 〉 1.= =

#+

0 0 0 0

1 0 0 0

e iθ– 0 0 0

0 e iθ– 1 0 
 
 
 
 
 
 

,=

#–

0 2 eiθ 0

0 0 0 eiθ

0 0 0 1

0 0 0 0 
 
 
 
 
 
 

.=

a| 〉 2 1/2– f| 〉 iθ–( ) l| 〉exp–( )=
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and |g〉  or |e〉  are zero,

The |a〉  and

vectors together with |g〉  and |e〉  form a new orthonor-
malized basis in the space of diatomic system states. In
this basis, (8) and (9) take the simplest form, namely,

(18)

Here, τ = χ|d10|2t is the dimensionless time, and a tilde
denotes the slow [compared with exp(±iω0t)] part of the
density matrix, for instance,

A general solution to (4) is given by

(19)

where superscript (0) labels the initial density matrix
value. We have the obvious relations

e〈 |#+ a| 〉 g〈 |#– a| 〉 0.= =

s| 〉 2 1/2– f| 〉 iθ–( ) l| 〉exp+( )=

d5gg

dτ
------------- 25ss,

d5ee

dτ
------------ –25ee,= =

d5ss

dτ
------------ 25ee 25ss,

d5aa

dτ
-------------–

d5̃ag

dτ
------------- 0,= = =

d5̃ae

dτ
------------- 5̃ae,

d5sa

dτ
------------– 5sa,–= =

d5̃sg

dτ
------------ 2eiθ5̃es 5̃sg,

d5̃se

dτ
------------– 25̃se,–= =

d5̃eg

dτ
------------- 5̃eg.–=

5sg 5̃sg iω0t–( ),exp=

5eg 5̃eg 2iω0t–( ), etc.exp=

5ss 25ee
0( )τ 5ss

0( )
+( )e 2τ– , 5ee 5ee

0( )
e 2τ– ,= =

5aa 5aa
0( )

,=

5gg 1 5aa
0( )

– 5ss
0( ) 5ee

0( )
1 2τ+( )+{ } e 2τ– ,–=

5̃ag 5̃ag
0( )

, 5̃ae 5̃ae
0( )

e τ– ,= =

5sa 5sa
0( )

e τ– , 5̃se 5̃se
0( )

e 2τ– ,= =

5̃eg 5̃eg
0( )

e τ– ,=

5sg 5sg
0( )

e τ– 2eiθ5̃es
0( )

e τ– e–2τ–( ),+=

5 ff
1
2
--- 5ss 5aa 5as 5sa+ + +( ),=

5ll
1
2
--- 5ss 5aa 5as– 5sa–+( ),=
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(20)

Equations (19) and (20) are the general solution to
the problem of radiative decay of two quiescent and
noninteracting identical atoms placed into one thermo-
stat, whose action on the atoms is described in the
Markov approximation.

Consider a stationary solution to (8), (9). The non-
zero two-particle density matrix elements have the
form

5̃el
1

2
-------eiθ 5̃es 5̃ea–( ),=

5̃ef
1

2
------- 5̃ea 5̃es+( ),=

5̃gl
1

2
-------eiθ 5̃gs 5̃ga–( ),=

5̃gf
1

2
------- 5̃ga 5̃gs+( ),=

5̃ fl
1
2
---eiθ 5̃as 5̃ss 5̃aa– 5̃sa–+( ).=
JOURNAL OF EXPERIMENTAL
(21)

To determine whether or not stationary solution (21) is
entangled, let us use the Peres–Horodecki criterion [20,
21], which is as follows. Consider the two-particle den-
sity matrix transposed with respect to the indices of one
of the atoms, for instance, the second atom. We will call
this matrix the Peres–Horodecki matrix. The necessary
condition of the factorizability of the density matrix is
positiveness of all its eigenvalues. For entangled states,
at least one eigenvalue of such a density matrix is neg-
ative. For instance, for entangled states |s〉  and |a〉 , the
negative eigenvalue in question is –1/2. The negative
Peres–Horodecki matrix eigenvalue can be used as an
entangled state characteristic. The stationary Peres–
Horodecki matrix has the form

5gg
st

1 5aa
0( )

, 5 ff
st

– 5ll
st 1

2
---5aa

0( )
,= = =

5̃gl
st 1

2
-------eiθ5̃ga

0( )
, 5̃gf

st
–

1

2
-------5̃ga

0( )
,= =

5̃ fl
st 1

2
---eiθ5̃aa

0( )
.–=
5P Hst–

1 5aa
0( )

–
1

2
-------5̃ga

0( ) 1

2
-------e iθ– 5̃ga

0( )*–
1
2
---e iθ– 5aa

0( )
–

1

2
-------5̃ga

0( )* 1
2
---5aa

0( )
0 0

1

2
-------eiθ5̃ga

0( )
– 0

1
2
---5aa

0( )
0

1
2
---eiθ5̃aa

0( )
– 0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 

.=
Its eigenvalues are determined by the equations

(22)

An analysis of (22) shows that there are parameter
regions in which one of the eigenvalues of the Peres–
Horodecki matrix is negative. It only makes sense to
discuss the possibility of the entanglement of atomic
states for the initial conditions that correspond to the
factorized diatomic density matrix 5(0) = ρ f(0) ⊗ ρ l(0).

λ1
1
2
---5aa

0( )
,=

4λ λ 1
2
---5aa

0( )
– 

  1 5aa
0( ) λ––( ) 5̃ga

0( ) 2
+

 
 
 

+ λ 1
2
---5aa

0( )
– 

  5aa
0( )2

.

First consider pure atomic states, for which mona-
tomic density matrices can be represented in the form

(23)

We then have

ρ f 0( ) 0| 〉 0〈 | α f* 0| 〉 1〈 | α f 1| 〉 0〈 | α f
2 1| 〉 1〈 |+ + +

1 α f
2+

-----------------------------------------------------------------------------------------------,=

ρl 0( ) 0| 〉 0〈 | α l* 0| 〉 1〈 | α l 1| 〉 0〈 | α l
2 1| 〉 1〈 |+ + +

1 α l
2+

--------------------------------------------------------------------------------------------.=

5aa
0( ) 1

2
--- 5 ff

0( ) 5ll
0( )

eiθ5lf
0( )

– e iθ– 5 fl
0( )

–+( )=

=  
α f α le

iθ–
2

2 1 α f
2+( ) 1 α l

2+( )
----------------------------------------------------- 2a,≡
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and the second equation in (22) can be written as

where 0 < β < 1 and the a parameter changes from zero
[for identical initial atomic states and θ = 0) to 1/4 [for

αf = – exp(iθ) and also for all |αf | @ 1 @ |αl | and
vice versa, |αf | ! 1 ! |αl |].

One of the eigenvalues denoted by λ– becomes neg-
ative for different initial purely quantum atomic states.
The larger the a and β parameter values, the smaller λ–. If

a = 1/4 and αf = – exp(iθ), the β parameter takes on
a maximum value of 1/4 at |αf | = 1. We then have a min-
imum λ– value, λ– ≈ –0.17. It follows that stationary
entanglement arises in the atomic system, and the λ–
parameter monotonically decreases during collective
decay. An interesting situation arises when one of the
atoms populates the lower level. The decay of the sec-
ond atom excites the first one and causes entanglement
in this system of two atoms.

Depending on the initial conditions and phase θ
incursion, stationary entanglement may well be absent,
for instance, at identical states and θ = 0. Nevertheless,
atomic states become somewhat entangled during col-
lective decay. For the case considered above, the mini-
mum λ– value is λ– ≈ –0.026.

Next, consider mixed initial atomic states. Let

Let the atoms be unpolarized, p = q = 0. Then,  =
0, and one of the Peres–Horodecki matrix eigenvalues
is always

This eigenvalue is always negative except when both
atoms populate either the upper or the lower level. The
λ– ≈ –0.1 minimum value is determined by the largest
possible a value, a = 1/4. One of the atoms is then not
excited, the other populates the upper level, and the
atoms are in the pure state.

Radiative decay of two atoms in a common thermo-
stat also causes the arising of atomic correlations in the

5ag
0( ) 2 1

2
--- 5 fg

0( )
eiθ5lg

0( )
–

2
=

=  
α f α le

iθ–
2

2 1 α f
2+( )2

1 α l
2+( )2

--------------------------------------------------------- 2aβ,≡

β 1– 1 α f
2+( ) 1 α l

2+( ),=

λ3 λ2 a 1–( ) λa 3a 1– 2β+( ) a3+–+ 0,=

α l
1–

α l
1–

ρ f 0( ) n0 p∗

p 1 n0– 
 
 

, ρl 0( ) m0 q∗

q 1 m0– 
 
 

.= =

5ag
0( )

λ–
1
2
--- 1 2a– 1 4a 8a2+––( ),=

a
1
4
--- 1 n0–( )m0 n0 1 m0–( )+{ } .=
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absence of entanglement. An example is the decay of
the excited atomic state |1>. For a monatomic system,
we have usual radiative decay

(24)

Collective decay of two excited atoms is described by
the equations

(25)

or, in the g, f, l, and e variables,

Here, the initial condition is the occurrence of both

atoms in the excited state (only the  = 1 matrix ele-
ment is nonzero). The one-particle density matrix of
each atom evolves as follows:

(26)

According to the Peres–Horodecki criterion, state (25)
is not entangled, although the equation for the one-par-
ticle density matrix is not closed and is governed by the
dynamics of the two-particle density matrix,

5. THE INFLUENCE OF MODEL PARAMETERS 
ON ENTANGLEMENT

Our analysis shows that effective entanglement of
atomic states almost always occurs in the model of col-
lective radiative decay in a thermostat field at zero tem-
perature. We consider the factors that interfere with
such an entanglement.

According to (17), stationary entanglement should
disappear as the density of photons in the thermostat
increases no matter what the degree of thermostat
squeezing. The dependence of the minimum Peres–
Horodecki matrix eigenvalue λ– on the density of pho-
tons in the common thermostat at zero and maximum
squeezing degrees and phase shifts θ = 0 and π/2 is
shown in Fig. 1. According to this figure, maximum

ρ10
f 0, ρ11

f e τ– , ρ00
f 1 e τ– .–= = =

5ss 2τe 2τ– , 5ee e 2τ– ,= =

5gg 1 1 2τ+( )e 2τ– ,–=

5ag 5aa 5ae 5sa= = =

=  5se 5eg 5sg 0,= = =

5 ff 5ll τe 2τ– , 5 fl eiθτe 2τ– ,= = =

5ef 5el 5gl 5gf 0.= = = =

5ee
0( )

ρ11
f e 2τ– 1 τ+( ), ρ00

f 1 1 τ+( )e 2τ– ,–= =

ρ10
f 0.=

Γ̂ρ11
f ρ11

f 1
2
--- 5 fle

iθ– 5lf e
iθ+( ),+=

Γ̂ρ00
f ρ11

f– e iθ– 5 fl eiθ5lf+( ),–=

Γ̂ρ10
f ρ10

f 1
2
---eiθ 5ef 5lg–( ).–=
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thermostat squeezing at a low photon density increases
the degree of entanglement at a θ = π/2 phase shift.

The phase shift dependence of λ– is shown in Fig. 2.
The unidirectional and one-dimensional models give
equal λ– extrema, also when the atoms have different
coupling constants for waves propagating in different
directions. Numerical simulation results therefore show
that λ– extrema weakly depend on whether the thermo-

0

λ–

N/χ|d10|2

–0.20

–0.15

–0.10

–0.05

0

–0.25

1 2

3

4

2 4 6 8 10

Fig. 1. Minimum Peres–Horodecki matrix eigenvalue as a
function of photon density. Curves 1 and 2 correspond to
phase shift θ = 0 and squeezing factors |M| = 0 and |M| =

, respectively. Curves 3 and 4 correspond to
phase shift θ = π/2 and squeezing factors |M| = 0 and |M| =

, respectively. Initial atomic states are taken in
form (23) with αf = –αl.

N N 1+( )

N N 1+( )

–0.20
0 1

λ–

θ

–0.16

–0.12

–0.08

–0.04

0

2 3 4 5 6

12 34

Fig. 2. Minimum Peres–Horodecki matrix eigenvalue as a
function of phase shift for (1, 3) unidirectional and (2, 4) one-
dimensional models at zero temperature. The curves corre-
spond to initial states in form (23) with (1, 2) αf = –αl = 1 and
(3, 4) αf = αl = 1.
JOURNAL OF EXPERIMENTAL
stat model is unidirectional or one-dimensional and
allow us to suggest that the unidirectional model
(which coincides with the three-dimensional model at
θ = 0) is a good abstraction for studying atomic entan-
glement under different conditions including simulta-
neous action of several independent thermostats and
different coherent field resonance actions on atoms.

Note that a nonzero phase value destroys stationary
entanglement in the one-dimensional model, but the
rate of this process is substantially lower than that of
attaining a stationary value at a zero phase.

So far as the role played by independent thermo-
stats, each acting on one of the atoms, is concerned, it
is clear from (16) that they destroy any stationary
entanglement in the system of atoms, even if the initial
state of the atoms is entangled. In time dynamics,
entanglement can also arise in the atomic system when
independent thermostats act on the atoms. Numerical
calculations show that, when each atom is under the
action of a single “its own” thermostat, we obtain an
interesting dependence of minimum Peres–Horodecki
matrix eigenvalues on the coupling constants between
atoms and “their own” thermostats. For initial condi-
tions (23) at αf = –αl = 1 and in the absence of squeez-
ing of either common or “own” thermostat, the depen-
dence of λ– on χ(1) is very close to that shown by
curve 4 in Fig. 1.

6. CONCLUSION

Recall that we ignored longitudinal electric-field-
induced dipole–dipole interatomic interaction effective
at small interatomic distances and all other interatomic
interaction types to elucidate the role played by the
common thermostat in the entanglement of atomic
states. The thermostat itself is described by a Wiener
quantum process independent of the state of the atoms.
For this reason, the inverse effect of emission and
absorption of quanta by atoms is also excluded. The
interaction of atoms with their common thermostat is
determined by an operator of type (5) with certain sym-
metry properties with respect to permutations of atoms.
At the same time, diatomic states include at least two
types of states (|s〉  and |a〉) different with respect to per-
mutations of atoms. These states participate differently
in relaxation dynamics. In the simplest case, one type of
states (|a〉) evolves in a unitary way, whereas the
dynamics of the second type (|s〉) is nonunitary. As a
result, balance of representing the nonentangled initial
state through the |s〉  and |a〉  basis vectors of the entan-
gled basis is violated. In some time, atomic states there-
fore become entangled. It follows that the role played
by a common thermostat in entanglement reduces to
providing substantially different dynamics of atomic
states that differ in symmetry properties with respect to
permutations. The |a〉  states and the situation under
consideration provide for a simple physical realization
of the so-called “decoherfence free subspaces” [26]
 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002
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extensively discussed in recent years in the quantum
information theory. 

This can be not only the difference between unitary
and nonunitary evolutions of the atomic states of the
entangled basis but also the difference in the rates of
atomic state damping during common nonunitary evo-
lution. As to the decay of two atoms initially populating
the upper excited level, it does not cause entanglement of
atomic states because the initial states are characterized by
only one symmetry type with respect to permutation of the
atoms. Also, the interaction of atoms with one quantized
electromagnetic field mode in the absence of any relax-
ation channels should not result in the entanglement of
atomic states because the dynamics of atomic states of dif-
ferent symmetries will be unitary. This problem, however,
requires additional inquiries.

The results of this work can also be looked at from
a different point of view. The arising of stationary
entanglement means that, in the model under consider-
ation, collective radiative decay of an arbitrary initial
state does not lead to the establishment of thermody-
namic equilibrium, if the thermodynamically equilib-
rium state is understood to be the stationary state of the
model of one atom. This is most clearly seen for zero
temperature and the unidirectional model. On the other
hand, the presence of independent thermostats and arbi-
trarily small coupling constants with these thermostats
destroys stationary entanglement and establishes ther-
modynamic equilibrium in the system solely as a result
of radiative processes. In my opinion, this is evidence
in favor of such a Markov model of radiative decay that
includes independent thermostats in addition to the
common thermostat [see (12) and (13)]. The opposite
assertion also appears to be true. Namely, in studies of
the entanglement of atoms caused by some other rea-
sons, for instance, by dipole–dipole interatomic inter-
action, it is necessary to take into account not only
relaxation of a separate atom caused by interaction with
its own thermostat, as, e.g., in [15–17], but also collec-
tive relaxation, which, according to the conclusions
drawn in this work, is responsible for its own mecha-
nism of the entanglement of atomic states.

Note that the conclusion of the entanglement of
atomic states drawn in this work is in agreement with
the recent data on an increase in the information capac-
ity of quantum communication channels under the condi-
tions of the action of correlated noise on them [27], if
quantum channel is understood as monatomic dynamics.
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Abstract—The constraints imposed by special relativity on the distinguishability of quantum states are dis-
cussed. An explicit expression relating the probability of an error in distinguishing two orthogonal single-pho-
ton states to their structure, the time t at which a measurement starts, and the interval of time T elapsed from
the start of the measurement until the time at which the outcome is obtained by an observer is given as an exam-
ple. © 2002 MAIK “Nauka/Interperiodica”.
Many issues of nonrelativistic quantum information
theory, for example, information transmission over
quantum communication channels, lead to the problem
of quantum-state distinguishability.

The major postulates of classical, nonrelativistic
physics assume that any measurement of the state of a
physical system by an observer can be made as accu-
rately as one likes and without perturbing the initial
state. Moreover, since the limiting velocity is unre-
stricted, there are no prohibitions on carrying out mea-
surements, including nonlocal ones in space, in an arbi-
trary short (formally, zero) time. Therefore, any two
states of a physical system can be distinguished reli-
ably, instantly, and without their perturbation.

In nonrelativistic quantum mechanics, any measure-
ment in a quantum system generally leads to a pertur-
bation of its initial state. There is a fundamental differ-
ence in distinguishing the states of a quantum system in
one of the two orthogonal or nonorthogonal states. For
orthogonal states, the question of which state a quan-
tum system is in can be answered with confidence (with
a zero probability of error) and without perturbing its
initial state [1, 2]. The possibility of obtaining the out-
come by an observer (for nonlocal measurements) in a
zero time contains in hidden form no restrictions on the
limiting velocity.

Nonorthogonal states are fundamentally indistin-
guishable with confidence; i.e., the question of which
of the two nonorthogonal states a quantum system is in
can never be answered with a zero probability of error.
An exact lower limit for the probability of such error
can be established [3–5]. Therefore, all nonrelativistic
quantum cryptographic exchange protocols use nonor-
thogonal states. There are no fundamental prohibitions
on distinguishing (although with some probability of
error) nonorthogonal states in a zero time.

In relativistic quantum mechanics, additional (com-
pared to nonrelativistic quantum mechanics) con-
1063-7761/02/9406- $22.00 © 21080
straints on the time it takes to distinguish quantum
states must also arise. The fundamental constraints
imposed by special relativity on the measurability of
dynamical variables for quantum systems were first
considered in 1931 by Landau and Pierls [6]. Qualita-
tive considerations based on analysis of uncertainty
relations together with a restriction on the limiting
velocity led the authors of [6] to conclude that, for
example, the momentum cannot be accurately deter-
mined in the relativistic range (in contrast to the nonrel-
ativistic case) in any finite time. In fact, these authors
concluded that no nonlocal dynamical variables of a
quantum system are measurable in the relativistic
range.

In nonrelativistic quantum mechanics, an arbitrarily
accurate measurement of the momentum of a quantum
system is not forbidden, although the eigenvector of the
momentum operator is an infinitely extended (in space)
plane wave. To be more precise, a plane wave is not a
physically realizable state, because it does not belong to
the Hilbert space of quadratically integrable functions
but is a generalized eigenvector of the momentum oper-
ator [7] (a linear continuous functional in framed Hil-
bert space [8]). The generalized eigenvector (plane
wave) can be approximated as closely as one likes by
the normalized state localized in a finite but arbitrarily
large spatial region, by such a state that the mean value
of the momentum operator measured in this state will
be arbitrarily close to the plane-wave momentum. Such
a momentum measurement implies that the state
present in an arbitrarily large spatial region is entirely
measurable. Since access to any region in nonrelativis-
tic quantum mechanics is possible in a zero time, there
are basically no restrictions on an arbitrarily accurate
measurement, for example, of the momentum. Given
the restrictions imposed by special relativity, access to
an infinite region requires an infinite time and, in this
sense, the dynamical variables are indeterminable. To
002 MAIK “Nauka/Interperiodica”
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be more precise, these are indeterminable if we require
their absolutely accurate measurement in a finite time.

The problem of measuring quantum systems in the
relativistic case was further investigated in 1933 by
Bohr and Rozenfeld [9]. The critical remarks made in [9]
regarding the results from [6] do not cancel the restric-
tions imposed in [6], because the latter follow from the
restrictions dictated by special relativity. The contrary
would imply abandoning special relativity. The argu-
ments of [6] were later reproduced in unchanged form
in [10].

The orthogonality of two quantum states is gener-
ally a nonlocal property both in Hilbert space and in
Minkowski space–time. However, this does not imply
that, for example, two orthogonal states cannot be dis-
tinguished by local measurements (local in the sense
that the outcome of the measurement can be assigned to
a certain point of space).

In connection with problems of quantum informa-
tion theory, we will be concerned with the restrictions
imposed by relativistic quantum theory on the time of
obtaining the outcome of a measurement when distin-
guishing two orthogonal states of a quantum system.
Although the considerations that it takes a finite time
for the observer to obtain the outcome are general, this
time itself depends on the state structure.

Here, we give an example of the problem of distin-
guishing two orthogonal single-photon states. For these
states, the error in distinguishing them can be related in
general form to the time interval T from the start of a
measurement until the time when the observer obtains
the outcome.

For our purposes, it will suffice to restrict the analy-
sis to pure states, because any state can be represented
as a statistical mixture of pure states (although this rep-
resentation is generally ambiguous).

Let there be a pair of orthogonal states in Hilbert
space *, |ψ0, 1〉 ∈  * and 〈ψ0|ψ1〉  = 0. Several levels can
be naturally separated by the detail of the measuring
procedure in quantum mechanics [4, 11–14]. The sim-
plest description of the measurement process allows
only the following questions to be answered: What out-
comes are possible in a given measurement (i.e., what
is the space of possible outcomes of the measurement
Θ)? What is the relative frequency (probability) of a
particular outcome (i.e., the outcome of the measure-
ment belongs to the measurable set ∆ ⊂ Θ ) for a given
initial state ρ of the quantum-mechanical system being
measured? In this sense, the measurements are in one-
to-one correspondence with positive decompositions of
unity on Θ in the Hilbert space * of system states [3,
4, 11–14], i.e., the families of Hermitean operators
Mt(∆), ∆ ⊂ Θ in the Hilbert space * that satisfy the fol-
lowing conditions:

(i) Mt(∅ ) = 0, Mt(Θ) = I (normalization);

(ii) Mt(∆) ≥ 0 (positivity); 
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(iii) Mt(∆) =  if ∆ = ∪ j∆j, ∆j ∩ ∆i = ∅  at
i ≠ j (additivity).

In this case, the measure µt, ρ of the set ∆ is given by

(1)

In other words, Mt(∆) defines a positive operator-valued
measure. Different values of t describe physically dif-
ferent measurements. Here, we introduce the parameter
t, the time at which the measurement starts. We empha-
size that, below, the time t is a parameter and does not
belong to the space of outcomes. The time at which the
outcome is obtained by the observer (the acquisition
and delivery of classical information from a nonlocal
instrument to the observer) is denoted by T.

Specifying a positive operator-valued measure is the
formal description of a physical instrument—a black
box. There is a quantum state at its input, and a classical
quantity (function) defining the probability distribution
(1) arises at its output. In general, this is not the most
detailed description of the instrument, because the
same decomposition of unity can be implemented with
different instruments.

A special case of this measure is the spectral orthog-
onal decompositions of unity that correspond to the
families of spectral projectors of self-adjoint operators
in * for which the following equality holds:

However, this approach ignores the question of which
state the system is in after the measurement that yielded
a particular outcome. Since we are not yet concerned
with the system state after the measurement, we will
not use the notion of an instrument (superoperator) [4,
11–14].

The states are clearly distinguishable through a
measurement described by the orthogonal decomposi-
tion of unity in *

(2)

where 30, 1 are the projectors onto the subspaces *0, 1

stretched over |ψ0, 1〉  and 3⊥  is the projector onto the

subspace  = (*0 ⊕  *1)⊥ . The probability of an
outcome in channel 0 on the set of outcomes Θ = {0, 1,
⊥ } if the input state is, for example, |ψ0〉 , is

(3)

while, in channels 31, ⊥ , it is identically equal to zero:

(4)

Mt ∆ j( )
j∑

µt ρ, ∆( ) Prt θ ∆∈( ) Tr ρMt ∆( ){ } .= =

Mt ∆1( )Mt ∆2( ) 0, if ∆1 ∆2∩ 0.= =

30 31 3⊥+ + I , 30 1, ψ0 1,| 〉 ψ0 1,〈 | ,= =

3⊥ I 30– 31,–=

*0 1,
⊥

Pr ψ0| 〉{ } Tr ψ0| 〉 ψ0〈 |30{ } 1,= =

Pr ψ0| 〉{ } Tr ψ0| 〉 ψ0〈 |31 ⊥,{ } 0;= =
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the same is true for the input state |ψ1〉 . Relations (2)–
(4) imply that the orthogonal states are clearly distin-
guishable. Significantly, the duration of the measuring
procedure under consideration has not yet been men-
tioned anywhere.

Our conclusions about the time at which the out-
come is obtained refer to the time at which the out-
come is brought to the observer; to be more precise,
the estimates obtained below give a lower limit for
this time. Obtaining such estimates does not require
knowing the specific measuring procedure [explicitly
specifying the instrument (superoperator)]; the
decomposition of unity [specifying the positive Her-
mitean operators Mt(∆)] will suffice. The set of out-
comes Θ can be arbitrarily complex, but it necessarily
contains explicitly or implicitly spatial regions. This
is enough to deduce the restrictions imposed by a
finite speed of light.

In the relativistic case, as yet there is no clear-cut
and internally consistent answer to the question of
which state the system is in after a measurement, i.e.,
what should be meant by the reduction of the state vec-
tor for a quantum system. Various aspects of this prob-
lem were discussed in [15–18]. A complete, not yet
constructed, theory of quantum-mechanical measure-
ments in the relativistic case must be able to answer the
question of how the state changes after a measurement.
Some questions can also be answered without a full
description of the measurement process.

Up until now, only the properties of the abstract
Hilbert space of states for a quantum system have
been used to prove the statements mentioned above.
Since the states of relativistic quantum fields are
described by rays in the Hilbert space of states, the
measurements are also formally described by the
decompositions of unity. In this case, it does not mat-
ter which particular realization of the abstract Hilbert
space is used; its choice is dictated only by conve-
nience in each particular problem. However, all quan-
tum states must be associated with some physical sys-
tem. All manipulations and measurements on quan-
tum systems take place in coordinate space (or space–
time in the relativistic case). There are no physical
systems that would have the degrees of freedom
described by the states in some Hilbert space in isola-
tion from the spatial degrees of freedom. The latter is
actually dictated by the fact that the various kinds of
particles are classified by irreducible representations
of the Poincaré group containing a subgroup of trans-
lations in Minkowski space–time [7].

In nonrelativistic quantum mechanics, the absence
of restrictions on the limiting velocity does not lead to
any prohibitions on instantly obtaining the outcomes of
nonlocal measurements [even for infinitely extended
(in space) states] at an arbitrarily chosen time. A funda-
mentally different situation arises in relativistic quan-
tum field theory. In quantum field theory, the field states
JOURNAL OF EXPERIMENTAL
are produced by field operators (or, more precisely, by
operator generalized functions) [7]. The smoothing
functions (amplitudes) in momentum representation
are specified on a mass surface. As a result, the field
states are fundamentally nonlocalizable in coordinate
space; i.e., the amplitude carriers are nonzero in the
entire space [7, 19–22]. At the same time, free field
states (for mass and massless fields) localized in space
as strongly as one likes—with a degree of localization
arbitrarily close to an exponential one, of the order of
exp(–α|x|/ln(ln(…|x|))), where α may be arbitrary—are
admissible. This would not lead to any restrictions, as
in the nonrelativistic case, if there were no restrictions
on the limiting velocity of propagation. When there is a
limiting velocity of propagation for quantum and clas-
sical objects, nonlocalizability (which arises from the
requirements of special relativity when quantizing the
field [7]) leads to a new situation different from the
nonrelativistic case. Since access to the entire space is
required to reliably distinguish a pair of orthogonal
states of the quantized field (such a measurement must
be nonlocal in coordinate space), the time it takes for
the observer to obtain the outcome is infinite. However,
the assertion that an infinite time is required to distin-
guish the orthogonal states of the quantized field with
an absolute accuracy (reliably) is unlikely to be physi-
cally satisfactory.

The statement of the problem that requires access to
the entire space to reliably (with a unit probability) dis-
tinguish the states is meaningless. The observer can
never control the entire space. Therefore, it is necessary
to relax the requirement of reliable state distinguish-
ability and reformulate the problem as follows. The
observer controls some finite (but arbitrary large) spa-
tial region where measurements can be carried out. The
question is how the probability of an error in distin-
guishing the states is related to the size of the region
(actually the time T in which the observer can obtain
the outcome) and to the structure of the states them-
selves. To be more precise, an optimal measurement
minimizing the error in distinguishing the states must
be carried out when specifying the input states and the
region size (and, accordingly, the time at which the out-
come is obtained).

Let us now consider the most interesting (in applica-
tions) case of a gauge field—photons. The electromag-
netic field operators are [23]

(5)

and satisfy the commutation relations

(6)

Aµ
± x̂( )

1

2π( )3/2
---------------- kd

2k0

------------e ik̂ x̂± eµ
m k( )am

± k( )∫=

Aµ
– x̂( ) Aν

– x'ˆ( ),[ ] – igµνD0
– x̂ x'ˆ–( ),=
 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002



RELATIVISTIC CONSTRAINTS 1083
where  is the commutator function for a zero-
mass field:

(7)

Here, the quantities with hats denote the four-dimen-

sional vectors:  = (k0, k) and  = (x0, x). Four kinds of
photons can be distinguished: two transverse, longitu-
dinal, and temporal photons. The latter two kinds are
fictitious and may be excluded from the analysis by
introducing an indefinite metric [23]. The shortest way
to the answer is related to using a specific gauge.
Below, we work in the subspace of physical states in the
Coulomb gauge Aµ = (A, ϕ = 0), dealing with two phys-
ical transverse states of the electromagnetic field. The
operator generalized function is the vector in three-
dimensional space

(8)

Here, w(k, s) is the three-dimensional vector that
describes the state of helicity s = ±1,

(9)

where e1, 2(k) are the vectors perpendicular to k. The
field operators satisfy the Maxwell equations

(10)

The smoothed field operators can be written as

(11)

where f(k, s) are the values of  on the mass sur-

face and  is the four-dimensional Fourier trans-
form of an arbitrary function  from the space of
principal functions (( ).

D0
– x̂ x'ˆ–( )

D0
± x̂( )

1

i 2π( )3
--------------- pd

2 p0
--------e i p̂ x̂±∫±=

=  
1

4π
------ε x0( )δ x̂2( ) i

4πx̂2
------------,±

ε x0( )δ x̂2( )
δ x0 x–( ) δ x0 x+( )–

2 x
-------------------------------------------------------.≡

k̂ x̂

y x̂( )
1

2π( )3/2
---------------- kd

2k0

------------∫=

× w k s,( ) a k s,( )e ik̂ x̂– a+ k s–,( )eik̂ x̂+{ } .
s 1±=

∑

w k ±,( )
1

2
------- e1 k( ) ie2 k( )±[ ] ,=

e1 k( )⊥ e2 k( ), w k s,( ) 2 1,=

∇ y x̂( )× i
t∂

∂ y x̂( ), ∇ y x̂( )⋅– 0.= =

y f( ) y x̂ s,( ) f x̂ s,( ) x̂d∫
s 1±=

∑ 1

2π( )3/2
---------------- kd

2k0

------------∫= =

× w k s,( ) f k s,( )a+ k s,( ) f ∗ k s,( )a k s,( )+{ } ,
s 1±=

∑

f k̂ s,( )

f k̂ s,( )
f x̂ s,( )

x̂
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We will consider the problem of distinguishing one
of the two single-photon states that differ only by the
states of helicity. The two single-photon states of a pho-
ton field with orthogonal states of helicity and the same
spatial amplitude f can be written as

(12)

where

(13)

The state with subscript 0 contains components with
different k but only with positive (+) helicity, while the
state with subscript 1 contains components with nega-
tive (–) helicity. A measurement that allows one of the
pair of orthogonal states to be reliably distinguished is
described by the orthogonal decomposition of unity in
single-particle subspace and can be written as

(14)

The operator unity is

(15)

(16)

Let us consider the parameter of time t in the decom-
position of unity (16). The integral over the entire space
in (15) does not depend on this parameter and is identi-
cally equal to the unit operator. Note that t is the same
for all points x [it cannot depend on x; otherwise, (15)
will not be the decomposition of unity]. As will be seen
below, the time t should be interpreted as the time at

y0 1,| 〉 y
+

f 0 1,( )( ) 0| 〉=

=  x f x t,( )y
+

x t ±, ,( ) 0| 〉d∫
=  

1

2π( )3/2
---------------- kd

2k0

------------ f k( )w k ±,( )a+ k ±,( ) 0| 〉 ,∫

y
+

x t ±, ,( )
1

2π( )3/2
----------------=

× kd

2k0

------------w k ±,( )a+ k ±,( )e ik̂ x̂– ,∫
f x t,( ) k f k( )eik̂ x̂.d∫=

I 33330 33331 3333⊥ , 33330 1,+ + y0 1,| 〉 y0 1,〈 | ,= =

3333⊥ I 33330– 33331.–=

I }}}}t x ±,d( )∫
s ±=

∑=

=  k w k s,( ) k s,| 〉( ) k s,〈 |w k s,( )( ),d∫
s 1±=

∑
k, s| 〉 a+ k, s( ) 0| 〉 ,=

}}}}t x ±,d( ) ke ik̂ x̂– w k ±,( ) k ±,| 〉d∫( )=

× k' k' ±,〈 |w k' ±,( )eik'ˆ x̂d∫( ) xd

2π( )3
-------------,

ks k's'〈 〉 δ ss'δ k k'–( ).=
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which a measurement is carried out with a classical
instrument.

The probability of obtaining different outcomes of
the measurements in channels 3j is

(17)

The values of s, s' = + and – correspond to i, j = 0 and 1,
respectively. The field amplitudes f(x, t) and f(x', t') are
related by the cause-and-effect relation through the
propagation effects described by the commutator func-
tion. The amplitudes f(x, t) are the coefficients in the

decomposition of the state vector  in different

bases,  and .
The positive-frequency part of the commutator

function is the scalar product of generalized base vec-
tors:

(18)

It can be interpreted [23] as the amplitude of the pro-
duction of a particle at point x', t', its subsequent prop-
agation, and the destruction at point x, t.

One may get the impression that the interpretation
(18) contradicts (7) and the causality considerations,
because the commutator function is also nonzero out-
side the light cone (where c2|t – t '|2 – |x – x'|2 ≠ 0) and,
thus, admits signal propagation faster than the speed of
light. This contradiction stems from the fact that the
generalized function in this reasoning is represented as
an ordinary one. However, the generalized function, or,
more precisely, the linear continuous functional on the
space of principal functions, is actually not defined on
a point-by-point basis (one cannot speak of the values
of the generalized function at a point). Such a behavior
of the commutator functions is consistent with causal-
ity; this question is discussed in detail in [24, 25].

Because the field amplitude f(x, t) is nonlocalizable
(nonzero in the entire space), measurement (14)–(16)
and obtaining the outcome with confidence imply
access to the entire space at time t [or, more precisely,
to the entire region of space where f(x, t) is nonzero].
Since this region represents the entire space, it takes an
infinite time for the observer to reliably distinguish the
orthogonal states.

Let us now consider the problem of distinguishing
the states where only a finite region of space Ω is acces-
sible to measurements (the complement to complete
space ). The space of outcomes is a Cartesian product
of two sets, Θ = {(+, –) × }. The outcomes of the

Pri y j| 〉{ } Tr yi| 〉 yi〈 |3333 j{ } y j yi
2

= =

=  δs s', xd x' f ∗ x t,( )D0
+ x x'– t t'–,( ) f x' t',( )d∫∫

2

=  
δs s',

2π( )3
------------- f ∗ k( ) f k( )

kd
2 k
---------∫

2
δi j, .=

y0 1,| 〉

y
+

x t ±, ,( ) 0| 〉 y
+

x' t' ±, ,( ) 0| 〉

D0
– x x'– t t'–,( )

=  i 0〈 |y
–

x t ±, ,( ) y
+

x' t' ±, ,( ) 0| 〉 , t t'.>⋅–

Ω
Ω ?∪
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measurements in Ω are accessible to the observer, while
the outcome ?, which formally corresponds to detector
triggering in , is inaccessible. The measurement is
described by the decomposition of unity on this set of
outcomes that refers to time t:

(19)

This decomposition of unity corresponds to a classical
instrument continuously distributed in Ω that can yield
an outcome in each of the two channels, + or –, at each
point x at time t.

Although the formal decomposition of unity (19)
appears nonlocal (contains integration over spatial
regions), the outcomes of the measurements themselves
are local (the triggering of the classical instrument, the
outcome of the measurement, takes place at some spa-
tial point). In the case under consideration, the space of
outcomes is the coordinate space itself where measure-
ments takes place, in contrast to the situation where the
measurement is described by the orthogonal projectors
(2)–(4) in * (which are also nonlocal in coordinate
space but only implicitly, because the state amplitudes
are nonlocal). In this case, the set of outcomes is (0, 1,
⊥ ) (the outcomes in channels 30, 1, ⊥ ) and we cannot say
at which spatial point the instrument triggering
occurred.

Let it be required that one of the states randomly
presented for measurements with known a priori prob-
abilities π0 and π1 (π0 + π1 = 1) be distinguished. When
measuring the states, the outcomes can take place in the
accessible region or can be absent in it (i.e., the formal
outcome ? takes place in the inaccessible region). The
probability of an outcome in the inaccessible region 
is

(20)

where

(21)

(22)

Note that the function p(x, t) is essentially identical to
the Landau–Pierls wave function for a photon in coor-
dinate representation [26].

Equation (20) describes the probability of recording
a photon that has only components with helicity “+”
(π0pt) and “–” (π1pt) in  at time t.

Ω

I IΩ IΩ,+=

IΩ }}}}t xd +,( ) }}}}t xd –,( )+( ).

Ω
∫=

Ω

Pr ρ Ω,{ } Tr ρIΩ{ }=

=  π0Tr ρ0IΩ{ } π 1Tr ρ1IΩ{ }+ π0 pt π1 pt+ pt,= =

pt xd p x t,( ) 2,

Ω

∫=

p x t,( )
1

2π( )3/2
---------------- kd

2 k
------------- f k( )ei k x⋅ k t–( ).∫=

Ω
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Therefore, if there were no outcome in the accessi-
ble region, then the observer should assume with the
probabilities

(23)

that an outcome took place in the inaccessible region

from the states  and , respectively.

Thus, if an outcome took place in the region inac-
cessible to the observer, then the probability of an error
in distinguishing the states is equal to the product of the
probability of an error and the fraction of the outcomes
in :

(24)

If the states are presented with equal probabilities (π0 =
π1 = 1/2), then the probability of an error is equal to the

fraction of the outcomes in . The total probability of
all possible outcomes in the entire space of outcomes
Ω ∪   is equal to 1 because of the normalization

Let us now find the measurement for which the
probability of an error is at a minimum and the outcome
takes place in the accessible region Ω . In this case,

(25)

In the basis of two orthogonal states of helicity “+” and
“–,” the operator Γ is

(26)

The minimizing measurement can be easily found:

(27)

In this case, given (26) and (27), the probability of an
error in distinguishing the states if the outcome took
place in the accessible region is

(28)

Given (25) and (28), the total probability of an error is

(29)

p0 = 
π0 pt

π0 pt π1 pt+
--------------------------- = π0, p1 = 

π1 pt

π0 pt π1 pt+
--------------------------- = π1

y0| 〉 y1| 〉

Ω

Pe Ω( ) π0 p1 π1 p0+( )pt.=

Ω

Ω

xd p x t,( ) 2∫ 1.=

Pe Ω( ) π0Tr ρ0IΩ{ } minTr Γ E0{ } .+=
E0

Γ π1ρ1 π0ρ0–=

=  
π1 y1| 〉   y 1 〈 | 0

0 –

 

π

 

0

 

y

 

0

 

| 〉   y 0 〈 | 
 
 
 

 
.

E0
0 0

0 IΩ 
 
 

, E1
IΩ 0

0 0 
 
 

.= =

Pe Ω( ) 0.=

Pe Ω Ω,( ) Pe Ω( ) Pe Ω( )+=

=  2π0π1 pt 2π0π1 xd p x t,( ) 2,

Ω

∫=
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it is determined by the fraction of the outcomes in the
inaccessible region. Since the region 

 

Ω

 

 and, accord-
ingly, its complement  to the complete space were
specified at the outset, to minimize the error requires
taking such a parameter of time 

 

t

 

 (the time at which a
measurement takes place) that the fraction of the out-
comes in the inaccessible region was at a minimum.
This condition is intuitively obvious: because the
amplitude of 

 

f

 

(

 

x

 

, 

 

t

 

) evolves in space–time, we must
choose a time for the measurement when the integral of
the magnitude of 

 

p

 

(

 

x

 

, 

 

t

 

) squared is at a maximum (min-
imum) in the accessible (inaccessible) region.

In order to find out whether the outcome took place
in the accessible region, the observer must examine it
after the time 

 

t 

 

and ascertain whether the instrument
was triggered at one of the points in 

 

Ω

 

 in one of the
channels for helicities, + or –. The region 

 

Ω

 

 is exam-
ined in the time 

 

T

 

 determined by the condition that it is
covered by the part of the light cone referring to the
past. This is dictated by the requirements of special rel-
ativity.

Note that some authors (e.g., [27]) use a different
quantity for the probability of recording a photon in a
spatial region that describes the degree of localization
of the photon energy and a different measurement than

(19). Indeed, the Hermitian energy operator  can be
represented via the spectral decomposition as

(30)

Here,  is the measuring operator for the
energy density 

 

E

 

(

 

x

 

, 

 

t

 

) [see the difference from (19)].

The mean value of the energy operator 

 

〈 〉

 

 in an arbi-
trary single-photon state [here, in contrast to (8), it is
more convenient for brevity not to introduce the vector
notation for the state 

 

|ψ〉

 

]

(31)

by definition is

(32)

Ω

Ê

 

E

 

ˆ

 

k k

 

s

 

| 〉

 

s

 

k

 

〈 |

 

d

 

k

 

s

 

±

 

=

 

∑

 

x

 

d

 

2

 

π( )

 

3

 

-------------

 

∫

 

= =

 

× k ks| 〉 i k x⋅ k t–( )–[ ]exp kd∫( ){
s ±=

∑
× k' k's〈 | i k' x⋅ k' t–( )[ ]exp k'd∫( ) }

=  }E t xd,( ).
s ±=

∑∫

}E t xd,( )

Ê

ψ| 〉 1

2π( )3/2
---------------- kd

2 k
------------- f ks( ) ks| 〉∫

s ±=

∑=

Ê〈 〉 Tr Ê ψ| 〉 ψ〈 |{ } 1

2 2π( )3
---------------- f ks( ) 2 k.d∫

s ±=

∑= =
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The energy near the point dx at time t is, by definition,

(33)

where

(34)

which is identical to the expression derived in [27].
In the formulated problem, we are concerned not

with the energy density distribution in space but with
the probability of distinguishing two orthogonal single-
photon states (as integral quantum objects) when access
to them is restricted. Therefore, the answer can be
expressed using the Landau–Pierls function [26] rather
than function (34).

We emphasize once again that the measurement for
distinguishing the states described by the decomposi-
tion of unity (19) and the measurement to determine the
energy density are physically different (different phys-
ical devices implementing these measurements corre-
spond to them).

The physical interpretation of the Landau–Pierls
function is not so clear as the interpretation of function
(34) used in [27] to describe the energy density distri-
bution. In [28], a massless particle is used as an exam-
ple to show that the covariant measurement of the event
time can be expressed in terms of the Landau–Pierls
function. Interestingly, the energy measurement given
by (34) and the measurement of the event time lead to
the Lorenz-invariant energy–time uncertainty relation
for a massless particle [28].

Thus, we explicitly found the measurement that
minimizes the probability of an error in distinguishing
the orthogonal states at a given size of the region acces-
sible to measurement (or, equivalently, the time T at
which the outcome is obtained). This minimum possi-
ble probability of an error also depends on the structure
of the states themselves.

The time T should not be understood as the duration
of the measurement process itself. In each specific
experiment, the outcome of the measurement emerges
at some random point x of the region Ω (at time t). It
may turn out that the outcome in a particular experi-
ment will take place exactly at the observer’s location
at time t; the time of distinguishing two states is then
Tmin = 0. In a different experiment, the outcome will
emerge at a different point. In this case, it takes a finite
time for the observer to make sure that the outcome
occurred in Ω in one of the channels for helicity. T is the
minimum time it takes to reliably distinguish the states
when the outcome of the measurement emerges at any
point of Ω .

E x t,( )dx Tr }E t dx,( ) ψ| 〉 ψ〈 |{ }
s ±=

∑=

=  f x t,( ) 2

s ±=

∑ 
 
  dx

2π( )3
-------------,

f x t,( )
1

2π( )3/2
---------------- f k s,( ) i k x⋅ k t–( )[ ] ,exp∫=
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Abstract—Experimental data on the decay of spin polarization in rubidium vapor are compared with infer-
ences of the theory developed by the authors for spin-polarized Boltzmann gases. It is demonstrated that the
nonexponential pattern of polarization decay points to the anisotropy of the indicatrix of inelastic scattering of
rubidium atoms at high temperatures. Estimates are obtained of the degree of anisotropy of such inelastic scat-
tering, i.e., scattering with variation of total spin. Under the experimental conditions, the indicatrix of inelastic
scattering turns out to be highly extended forward, with the degree of anisotropy of the order of 1000. © 2002
MAIK “Nauka/Interperiodica”.
The investigation of spin-polarized atoms in vapors
of alkali metals has been attracting the attention of
numerous researchers recently. This interest is largely
associated with the possibility of cooling such vapors
down to the onset of Bose condensation [1]. However,
spin-polarized gases are of interest as a subject of inves-
tigation at high temperatures as well (room temperature
or higher).

For example, they may be used to attain fairly high
concentrations of polarized 3He atoms employed for
fundamental investigations both in nuclear physics and
in medicine [2]. Wagshul and Chupp [3] observed an
unexpected effect in vapor of polarized rubidium,
namely, a substantially nonexponential decay of spin
polarization. Note that the nonexponential decay of
spin polarization is consistent with the previously
obtained [4, 5] results of theoretical analysis of the
kinetics of spin-polarized Boltzmann gas. Also in [4,
5], the existence of weakly decaying spin waves in
polarized Boltzmann gases (i.e., at high temperatures)
was predicted. Both these effects are associated with
the anisotropy of the indicatrix of elastic and inelastic
scattering of atoms of alkali metals at high tempera-
tures.

Wagshul and Chupp [3] attribute the nonexponential
decay of spin polarization of rubidium to the special
features of the geometry of experiment, namely, the
effect of diffusion of polarized atoms in the region of
observation. As was already mentioned above, the non-
exponential pattern of decay of spin polarization is a
characteristic feature of a polarized gas [4]. The thing is
that, in a polarized gas, the microscopic function of par-
ticle distribution is a spin index matrix, and it is pre-
cisely the elements of the density matrix which are non-
diagonal with respect to spin indices that are required in
order to calculate the magnetic moment. In this case,
1063-7761/02/9406- $22.00 © 21088
one must use the generalized kinetic equation [6] with
a collision integral of a special form. For particles with
a spin of 1/2, the concrete form of collision integral
with due regard for both elastic and inelastic collisions
was obtained by us in [5] (referred to as inelastic colli-
sions are collisions in which the spin is not conserved,
although the energy may be conserved).

As a result, the decay coefficient of macroscopic
magnetic moment in a polarized gas is not a constant
and depends on the magnitude of the magnetic
moment. This is associated with the fact that the initial
equilibrium velocity distribution of particles is dis-
turbed in the process of relaxation, and this leads to the
violation of the exponential law of decay of the polar-
ization vector. Therefore, the relaxation rate of polar-
ization depends both on the cross section of the most
inelastic process (as is usually the case) and on an addi-
tional quantity, namely, the amplitude of inelastic scat-
tering through zero angle. As a result, the equation of
polarization decay does not reduce to a simple balance
equation, but has the form

(1)

where

(2)

Here, M is the dimensionless degree of polarization
(0 < M < 1) proportional to the magnetic moment; the
coefficient γ0 [s–1] defines the decay of magnetic
moment in a nonpolarized gas and is proportional to the
cross section of the respective dissipative process; and
the coefficient γ1 depends on the magnitude of polariza-
tion and is proportional to the real part of the amplitude
of dissipative scattering through zero angle, Re[f(0)].
By measuring γ(M), one can estimate both the spin
decay cross section and the value of Re[f(0)].

Ṁ γ M( )M,=

γ M( ) γ0 γ1 M( ).+=
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At room and higher temperatures, an appreciable
anisotropy of the elastic scattering indicatrix is
observed (the scattering mainly through small angles)
[7]. The estimation of both quantities identified above
enables one to determine to what extent this anisotropy
is characteristic of inelastic (with respect to spin vari-
ables) collisions.

The dependence of γ1 on M has the form

(3)

The value of f(M) is found from the solution of a fairly
complex integral equation [8]. However, as is usually
the case for kinetic coefficients, the order of magnitude
of f(M) may be estimated rather simply.

The curve of decay of the spin polarization of rubid-
ium as a function of time, given in [3], enables one to
determine γ(M) (see Eq. (1)) using the least squares
method. In a first approximation, it was assumed that

(4)

The solution to Eq. (1) may be written as

(5)

where c is the integration constant. It turned out that
even the approximation according to Eq. (3) produced
a good description of experimental data. The least
squares method was used to determine the constants a
and b,

As regards these quantities, the following remarks must
be made. The constant a is determined directly from
calculation in inverse time units (ms–1). The value of the
constant b depends on the units of measurement of M
used in calculation. Wagshul and Chupp [3] used some
arbitrary units for polarization M. It was assumed that,
at the moment of switching off the pumping, the degree
of polarization of rubidium vapor reached a close-to-
limiting (M = 1) value, because it is this situation that
usually arises in such experiments (cf., [2]). This
assumption made it possible to perform the normaliza-
tion of the quantity M and to obtain the above-identified
value of the parameter b.

The approximation results are given in the figure.
The experimental data are indicated in the figure by
points; the solid curve indicates the approximation
results. The dashed curve indicates an analogous
approximation by exponential dependence with a sin-
gle decay constant. One can see in the figure that a sim-
ple exponential approximation is clearly insufficient, as
is pointed out by Wagshul and Chupp [3]. The approx-
imation of the decay constant by formula (4) produces
a better agreement with the experimental data. Note
that the law of polarization decay given by formula (5)
(see Eq. (4)) describes the experimental data very accu-

γ1 M( ) f M( )M2.=

γ M( ) a bM2.+=

M t( ) c a

2at( )exp bc2–
-----------------------------------------,=

a 0.0338 ms 1– , b 1.2 ms 1– .= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rately, starting from the moment of time t = 5 ms. For
shorter times (higher values of M), the law of decay
exhibits, generally speaking, a more complex pattern as
given by Eq. (2).

The constant a determined above and defining the
rate of exponential decay of polarization in a weakly
polarized gas (M ! 1) is approximately three times less
than its values that are usually given in the literature
(see [3] and the references cited there). This corre-
sponds to the similar difference in the values of the
cross section σd of spin deactivation in collisions of
rubidium atoms with one another,

It was assumed in these estimates that, under the exper-
imental conditions, the density of rubidium atoms was
N = 1.3 × 1014 cm–3 (160°C), and the mean thermal
velocity was 5 × 104 cm/s. We will emphasize that the
difference of approximately an order of magnitude
between the experimentally obtained value of the cross
section of spin deactivation in vapor of polarized rubid-
ium and the respective predicted values has been
observed in the literature for quite some time. The cal-
culation gives a value of σd ≤ 10–18 cm2 [9]. The value
of σd obtained by us is less inconsistent with the results
of respective calculations [9].

In our opinion, the nonexponential pattern of decay
of spin polarization observed clearly in rubidium vapor
is associated with the fact that the polarization decay is
defined by at least two parameters rather than one. It is
known that the exact calculation of kinetic coefficients
requires the solution of corresponding integral equa-
tions; however, the order of magnitude of the parameter
b may be estimated rather easily. The resultant formula
contains two parameters, namely, the frequency of elas-
tic atomic collisions and the real part of the amplitude
of inelastic scattering (with variation of total spin)
through zero angle f(0) (see [8]).

In order to estimate the anisotropy of inelastic scat-
tering of rubidium atoms, one must estimate (in addi-

σd 5 10 18–  cm2 and 1.6 10 18–  cm2.××=
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tion to the quantities a and b) the frequency of elastic
collisions of rubidium atoms. Because the vapor of
rubidium atoms at high temperatures have not yet been
sufficiently studied, the elastic cross section was esti-
mated at πr2, where the radius r was taken to be 2.53 Å
[10]. Now we can estimate the ratio between the real
and imaginary parts of the amplitude of inelastic scat-
tering through zero angle f(0). The scattering with vari-
ation of total spin is implied, which is responsible for
the polarization decay (↑↑   ↑↓ ),

(6)

Note that, in accordance with the optical theorem, the
quantity Im[f(0)] is proportional to the total cross sec-
tion of the process being treated (in this case, to the
quantity a). As was to be expected, the indicatrix of
inelastic scattering of rubidium atoms is highly aniso-
tropic (although the given estimate of the degree of
anisotropy of the scattering indicatrix is adequate only
as regards the order of magnitude). Note that, at high
temperatures, the propagation of weakly decaying spin
waves (i.e., of a new collective mode arising under con-
ditions of pronounced anisotropy of elastic atomic scat-
tering [8]) is possible in polarized rubidium vapor.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project no. 99-02-16304).

Re f 0( )[ ]
Im f 0( )[ ]
----------------------- 103.∼
JOURNAL OF EXPERIMENTAL 
REFERENCES

1. R. Fitzgerald, Phys. Today 54, 13 (2001).

2. N. N. Kolachevskiœ, A. A. Papchenko, Yu. V. Pro-
kof’ichev, et al., Kvantovaya Élektron. (Moscow) 30, 81
(2000).

3. M. E. Wagshul and T. E. Chupp, Phys. Rev. A 49, 3854
(1994).

4. T. L. Andreeva and P. L. Rubin, Zh. Éksp. Teor. Fiz. 115,
865 (1999) [JETP 88, 476 (1999)].

5. T. L. Andreeva and P. L. Rubin, Zh. Éksp. Teor. Fiz. 118,
877 (2000) [JETP 91, 761 (2000)].

6. R. F. Snider, J. Chem. Phys. 32, 1051 (1960).

7. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New
York, 1977, 3rd ed.).

8. T. L. Andreeva and P. L. Rubin, Pis’ma Zh. Éksp. Teor.
Fiz. 67, 777 (1998) [JETP Lett. 67, 820 (1998)].

9. E. I. Dashevskaya, Opt. Spektrosk. 51, 71 (1981) [Opt.
Spectrosc. 51, 37 (1981)].

10. N. M. Baron, É. I. Kvyat, E. A. Podgornaya, et al., Con-
cise Reference Book of Physicochemical Quantities
(Goskhimizdat, Leningrad, 1957).

Translated by H. Bronstein
AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002



  

Journal of Experimental and Theoretical Physics, Vol. 94, No. 6, 2002, pp. 1091–1102.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 121, No. 6, 2002, pp. 1273–1284.
Original Russian Text Copyright © 2002 by Alekseev.

                                                                                                                                                                 

PLASMA, 
GASES
The Bose–Einstein Condensation in a Finite One-Dimensional 
Homogeneous System of Noninteracting Bosons

V. A. Alekseev
Lebedev Institute of Physics, Russian Academy of Sciences, Moscow, 119991 Russia

e-mail: valeks@sci.lebedev.ru
Received October 1, 2001

Abstract—Condensation of the ideal Bose gas in a closed volume having the shape of a rectangular parallel-
epiped of length L with a square base of side length l (L @ l) is theoretically studied within the framework of
the Bose–Einstein statistics (grand canonical ensemble) and within the statistics of a canonical ensemble of
bosons. Under the condition N(l/L)4 ! 1, where N is the total number of gas particles, dependence of the aver-
age number of particles in the condensate on the temperature T in both statistics is expressed as a function of
the ratio t = T/T1, where T1 is a certain characteristic temperature depending only on the longitudinal size L.
Therefore, the condensation process exhibits a one-dimensional (1D) character. In the 1D regime, the average
numbers of particles in condensates of the grand canonical and canonical ensembles coincide only in the lim-
iting cases of t  0 and t  ∞. The distribution function of the number of particles in the condensate of a
canonical ensemble of bosons at t ≤ 1 has a resonance shape and qualitatively differs from the Bose–Einstein
distribution. The former distribution begins to change in the region of t ~ 1 and acquires the shape of the Bose–
Einstein distribution for t @ 1. This transformation proceeds gradually that is, the 1D condensation process
exhibits no features characteristic of the phase transition in a 3D system. For N(l/L)4 @ 1, the process acquires
a 3D character with respect to the average number of particles in the condensate, but the 1D character of the
distribution function of the number of particles in the condensate of a canonical ensemble of bosons is retained
at all N values. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rapid development of the methods of confinement
and cooling of atomic gases offers new possibilities for
the investigation of Bose condensates in various spatial
configurations. Shortly after the first theoretical predic-
tion of the possibility of obtaining a one-dimensional
(1D) condensate in a parabolic trap [1], this state was
realized in a gas confined by an optical grating potential
[2]. Almost simultaneously, analogous results were
achieved with magnetic and optical traps [3] where a
change in parameters of the trap potentials was accom-
panied by the transition from 3D to 1D behavior.

In this paper, it is demonstrated that 1D condensa-
tion can also take place in the homogeneous ideal Bose
gas, that is, in the system with a volume bounded by
walls (hard boundaries). We will assume that the gas
fills a rectangular parallelepiped with the dimensions
Lx = Ly = l and Lz = L, where L/l @1. It turns out that the
temperature dependence of the average number of par-
ticles in the ground state (condensate) exhibits qualita-
tively different shapes for various relations between the
total number of gas particles N and the parameter l/L.
For N(l/L)4 !1, the scale of decrease in population of
the ground state of the gas with increasing temperature
in the entire domain of existence of the condensate is
determined by a characteristic temperature T1 depend-
ing only on the longitudinal size L. Therefore, the con-
densation process in this case proceeds in a 1D regime,
1063-7761/02/9406- $22.00 © 21091
and the T1 value can be referred to as the 1D condensa-
tion temperature. For very large N values, when the
reverse condition is valid, N(l/L)4 @ 1, the 1D character
of condensation with respect to the population (i.e., the
average number of particles in the condensate) is real-
ized only at very low temperatures T ! T* =

(T1/N)(L/l)4 (see Eq. (25) below), while at T* ! T ≤ T3

the phenomenon exhibits a 3D character (T3 is the 3D
condensation temperature) [4, 5].

We will consider two cases: (i) the grand canonical
ensemble (i.e., the Bose–Einstein statistics), whereby
only the average number of gas particles in the ensem-
ble is conserved, and (ii) the canonical ensemble of
bosons with strictly fixed total number N of particles,
which more adequately reflects the situation with a gas
confined in a vessel. The statistics of a canonical
ensemble for a 3D gas was recently developed in [6–8].
It was found that, despite a radical difference between
the distribution functions of the numbers of particles in
condensates obeying these statistics, the average num-
ber of particles in the ground state for the 3D case in the
ensembles of both types is the same. As demonstrated
below, the 1D condensation process reveals differences
between the two ensembles both in the particle number
distribution function and in the average numbers of par-
ticles in the ground state (condensate).
002 MAIK “Nauka/Interperiodica”
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It is necessary to note two important features of the
phenomenon of 1D condensation in a homogeneous
ideal gas, distinguishing this process from that in the
3D case. As is known [4, 5], the 3D condensation tem-
perature is proportional to the gas density (T3 ∝  N/V)
and remains constant on the passage to the thermody-
namic limit as N  ∞, V  ∞, N/V  const. In
contrast to this behavior, the 1D condensation tempera-
ture is T1 ∝  N/L2 (see Eq. (5) below) and tends to zero
in the limiting transition N  ∞, L  ∞, N/L 
const retaining the gas density. In the other limit,
whereby N  ∞ and L  ∞, so that N/L2  const,
the condensation temperature remains constant but the
system density grows and, beginning with certain N
values, the gas can no longer be considered as ideal.
This situation is quite analogous to that observed for a
3D condensation in a parabolic trap with (see, e.g., [1]),

where V = R3 is the “oscillator volume,” R = ,
ω is the trap frequency, and m is the particle mass.
Therefore, as was repeatedly pointed out [9–12], the 1D
condensation effect in a homogeneous ideal Bose gas
vanishes in the thermodynamic limit and, hence, can be
realized only in a system with limited total number of
particles. However, it is easy to obtain estimates show-
ing that this number can be very large. For example, a
system with dimensions l = 10–3 cm, L = 1 cm (the vol-
ume can be bounded, for example, by laser fields
repulsing particles by striction forces), and N = 1011, in
which N(l/L)4 = 0.1 and the condensation has a 1D char-
acter, is still characterized by a very small gas parameter
a3N/l2L (e.g., for a scattering length of a ≈ 5 × 10–7 cm typ-
ical of alkali metals), and, hence, the gas state is close
to ideal.

Another important distinction of the 1D condensa-
tion from the 3D processes is a smooth decrease in the
ratio 〈n0〉/N with increasing temperature (〈n0〉  is the
average number of particles in the condensate) in the
former case. It was pointed out [7, 8] that finiteness of
the particle number N in the 3D case also leads to
smearing of the temperature interval in which the ratio
〈n0〉/N turns zero, and it is only for N  ∞ that this
ratio goes to zero at T = T3 at a nonzero derivative. In
the 1D case, a decrease in the ratio 〈n0〉/N is smooth
even in the limit as N  ∞, so that the concept of the
1D condensation temperature (as the point at which the
ratio 〈n0〉/N goes to zero) loses sense and only serves as
a characteristic parameter of the problem.

2. ONE-DIMENSIONAL CONDENSATION 
IN THE BOSE–EINSTEIN STATISTICS
(GRAND CANONICAL ENSEMBLE)

In this case, the distribution function W(n0, n1, …) of
the numbers nk of particles occurring in the states with

T3 ~ "ωN1/3 N /V2( )1/3
,∝

"/mω
JOURNAL OF EXPERIMENTAL
the energies Ek, as determined in 1924 by Einstein [13],
represents a product of independent distributions

(1)

where εk = Ek/T, T is the temperature (expressed in the
energy units), and µ is the chemical potential (in the
units of temperature). The average values correspond-
ing to distribution (1) are determined as

and are equal to

(2)

The chemical potential µ is determined from the
requirement that the sum of average numbers  be
equal to the total number of gas particles,

(3)

In a system of free bosons, the energy spectrum of
particles is determined by the condition of periodicity
of the wave function:

(4)

where m is the particle mass. The parameter α is conve-
niently expressed in terms of the characteristic temper-
ature of the 1D condensation

(5)

where ζ(x) is the Riemann zeta function.

Using formulas (2) and (4), condition (3) can be
written as

(6)

W n0 n1 …, ,( ) wk nk( ),
k

∏=

wk nk( ) 1 µ εk–( )exp–[ ] µ ε k–( )nk[ ] ,exp=

nk〈 〉 nkwk nk( )
nk 0=

∞

∑ ñk= =

ñk εk µ–( )exp 1–[ ] 1– .=

ñk

ñk

k

∑ N .=

εk α xkx
2 α yky

2 α zkz
2,+ +=

α x y, α0
2π"( )2

2mTl2
-----------------, α z α 2π"( )2

2mT L2
-----------------,= = = =

ki 0 1 …, α  ! α0,,±,=

T1
2π"( )2

4ζ 2( )mL2
-------------------------N

6"
2

mL2
----------N ,= =

α 2ζ 2( )
Nt

--------------
π2

3Nt
---------, t

T
T1
-----,= = =

ñk

k

∑

=  α0 kx
2 ky

2+( ) αkz
2 µ–+[ ]exp 1–{ } 1–

k

∑ N .=
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At very low temperatures such that α @ 1 (which is
equivalent to t ! 1/N), the only nonzero term in (6) is

 = (e–µ – 1)–1. This yields

and the distribution function (1) describing the numbers
of particles nk in the states k acquires the form

(7)

According to (7), there is a finite probability of find-
ing an arbitrary number of particles in the ground state
in the complete absence of particles in the excited
states. Being obviously deprived of physical meaning,
this situation emphasized inconsistency of the distribu-
tion (1) at least for T  0. This discrepancy is not
only characteristic of the case with a homogeneous
Bose gas under consideration, but is generally inherent
in the Bose–Einstein statistics as such. The discrepancy
is eliminated in the statistics of a canonical ensemble of
particles [6–8]. It turns out that, despite a radical differ-
ence between the distribution functions of the number
of particles in the condensate obeying these statistics,
the average numbers of particles in the ground state in
the 3D case are the same, while those in the 1D case dif-
fer rather slightly. Taking into account that almost all
conclusions concerning the properties of condensate
were derived so far using the Bose–Einstein statistics,
and aiming at a comparison of the results provided by
the two approaches, the 1D condensation will also be
studied within the framework of the Bose–Einstein sta-
tistics despite the obviously contradictory character of
the distribution (7).

When the temperature increases, the condition α ! 1
(or t @ 1/N) becomes valid, although the transverse (x
and y) degrees of freedom are still “frozen,” so that α0 @
1. In this temperature interval (1/N ! t ! N–1L2/l2), the
system is still essentially one-dimensional. As the tem-
perature grows further, the latter condition changes to
α0! 1 and the transverse degrees of freedom (x and y)
are operative, so that the system becomes three-dimen-
sional. In order to trace this transition and more exactly
indicate the “1D condensation” domain boundaries, let
us retain all the degrees of freedom in sum (6) and
rewrite this expression as

(8)

ñ0

ñ0 N , µ 1 1
ñ0
-----+ 

  1
N
----,–≈ln–= =

w0 n0( )
1
N
----e

n0/N–
,=

wk 0≠ nk( ) δnk 0,
, t ! 

1
N
----.=

N αkz
2 µ–( )exp 1–[ ] 1–

kz ∞–=

∞

∑=

+ αkz
2 α0k⊥

2 µ–+( )exp 1–[ ] 1–
,

k⊥ 0≠
∑

kz ∞–=

∞

∑
k⊥ kx ky,( ).=
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Taking into account that α ! 1 and |µ| ≈ 1/  ! 1, we
may expand the exponential in the first sum and employ
the Poisson formula (see, e.g., [14])

(9)

to calculate this sum exactly as

(10)

Transforming the second sum in Eq. (8), using the for-
mula

and introducing the notation

(11)

we obtain

(12)

Taking into account Eqs. (11) and (12), setting |µ| =
1/ , denoting /N = x, and using expression (8), we
arrive at the equation

(13)

describing the relative population x of the ground state.

As can be seen from expression (11), the function
ψ(z) tends to the following limits for large and small
values of the argument:

(14)

ñ0
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Accordingly, the sum entering into (13) exhibits quali-
tatively different behavior depending on the ratio of two
large parameters N and L2/l2. In the interval

(15)

which includes the values t @ 1 provided that the num-
ber of particles N is relatively small,

(16)

the sum entering into (13) is exponentially small and
can be neglected. As a result, the ground state popula-
tion x = /N is determined by the equation

(17)

In the case of low temperatures, this equation yields (to
within terms on the order of t2)

(18)

For large t, Eq. (17) yields (to within an exponentially
small correction)

(19)

In the temperature interval indicated in (19), the relative
population of the ground state is already very small
and, under condition (16) (which is shown below to be
sufficient and much stronger than the necessary condi-
tion (28)), Eq. (17) describes virtually the entire
domain of existence of the condensate (which is one-
dimensional for all t). A numerical solution of Eq. (17)
is depicted in Fig. 1.

1
N
----  ! t ! 

1
N
---- L2

l2
-----,

1 ! N  ! L2/l2,

ñ0

3tx 3t/x( ).tanh=

ñ0

N
----- 1 t–

1
5
---t2,

1
N
----  ! t ! 1.+=

ñ0

N
----- 1

3t
----- 12te 6t– , 1 ! t ! 

1
N
---- L2

l2
-----.–=

0.2

0 1

〈n0〉/N

t

0.4

0.6

0.8

1.0

2 3

1 2

Fig. 1. The temperature dependence of the average number
of particles in the 1D condensate of (1) a canonical ensem-
ble of bosons (calculated using the distribution function
(51)) and (2) a grand canonical ensemble (numerical solu-
tion of Eq. (17)).
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As the temperature increases, condition (15) fails to
be valid. For large N (N @ L2/l2) this condition is vio-
lated even at small t (t ! 1). For t ~ N–1L2/l2, the sum Σ
in the right-hand part of Eq. (13) cannot be studied ana-
lytically. However, for t @ N–1L2/l2, we may use the
asymptotic expression (14) for the function ψ(z) at z ! 1
and represent the sum Σ as

(20)

where

The second term in parentheses in the right-hand part of
(20) reflects the influence of the exponent present in the
sum Σ of Eq. (13). Vanishing as N  ∞, this term pro-
vides for the ground state population x smoothly (with-
out a discontinuity in the derivative) tending to zero in
a narrow vicinity (|T/T3 – 1| ≤ 1/N1/3) of the 3D conden-
sation temperature T3, which is similar to behavior of
the gas in a parabolic trap [15]. In order to simplify the
analysis, we will no longer consider this effect below
and will neglect the second term in parentheses in the
right-hand part of (20).

Equation (13) now acquires the form

(21)

Note that the left-hand side of this equation represents
the relative population of the ground state in the case of
a 3D condensation. The second term on the left-hand
side of Eq. (21) significantly influences the solution of
this equation for t ~ A–1/3 ~ (N–1L4/l4)1/3. One can readily
check that, for

(22)

these values satisfy the condition t @ N–1L2/l2 for which
the sum in (20) was calculated. This implies that, under
the condition (22), Eq. (21) is applicable for any t. In
this stage of analysis, let us assume the condition (22)
to be valid.

As follows from Eq. (21), the ground state popula-
tion goes to zero for t = t3 = A–1/3. In the dimensional
notation, this corresponds to the temperature T3 of the
usual 3D condensation of the Bose gas [4, 5]):

(23)

However, the x(t) function behaves qualitatively differ-
ently for large and small A values (this is admitted by
condition (22)).

For large A values (A @ 1), up to temperatures close
to t3 what accounts for virtually the entire domain

Σ At3 1
2 π

ζ 3/2( )
--------------- 1

Nx
-----------– 

  ,=

A
3
π
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 
3

ζ2 3
2
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  N
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1 At3– 3tx 3t/x( ).coth=

N  @ L/l

T3 A 1/3– T1 2πζ 2/3– 3
2
--- 
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2

m
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l2L
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.= =
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of existence of the condensate (in this case t3 ! 1),
Eq. (21) yields

(24)

In a narrow vicinity of the 3D condensation tempera-
ture, t3 – t ≤ A–2/3, the ground state population smoothly
decays to zero. However, Eq. (21) cannot claim to be a
correct description of this region, where the second
(omitted) term in the parentheses of (20) becomes sig-
nificant.

The second term in (24) is significant only in the
region of small t,

(25)

and it is this region where the condensate becomes one-
dimensional (it should be recalled that the left part of
this inequality provides for the general applicability of
the whole approach employed in this study). As the N
value increases, the interval (25) narrows to vanish as
N  ∞ (note the small ratio l/L is just what provides
for the existence of this interval). For t > A–1 (A–1 ! t3), the
third term in (24) is greater than the second term in this
equation and the condensation becomes three-dimen-
sional. Rewriting (24) in terms of T3,

we can see that a nonzero slope (characteristic of the
1D behavior) of this dependence in the region of small
temperatures T decreases with increasing N. As
Nl4/L4  ∞, this slope is close to zero and the conden-
sation becomes three-dimensional for all t.

For A ! 1, dependence of the /N ratio on the tem-
perature qualitatively changes. In this case, t3 @ 1 and
the second term on the left-hand side of Eq. (21) is sig-
nificant only in the vicinity of t3. In the limiting cases of
small and large t values, Eq. (21) yields

(26)

Up to very large t values, whereby the condensate
almost completely vanishes, relations (26) coincide
with (18) and (19). This implies that, under the condi-
tion

(27)

the left-hand side of which coincides with (22) and the
right-hand side corresponds to A ! 1, the average num-
ber of particles in the condensate is determined by

ñ0

N
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1
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----  ! t

1
A
---≤ π

3
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 
3

ζ 2– 3
2
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N
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l4
-----,=

ñ0

N
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π
3
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 
1/3 T
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Eq. (17) and the condensation process is one-dimen-
sional.

Let us return to the condition (22) being violated at
N ≤ L/l. Such N values satisfy the condition (16) under
which the condensation is certainly described by Eq. (17).
Therefore, the condition

N ! L4/l4 (28)

is a necessary and sufficient criterion for the condensa-
tion process to be one-dimensional and the average
number of particles in the condensate to be described
by Eq. (17). In this case, the number of particles in the
condensate is large (  @ 1) up to temperatures very
close to the 3D condensation temperature and, hence,
µ = –1/  and the distribution function of the number
of particles in the condensate has the form

(29)

3. ONE-DIMENSIONAL CONDENSATION
IN A CANONICAL ENSEMBLE OF BOSONS

3.1. Summing the Gibbs Distribution

During condensation of a gas within a volume
bounded by walls, the total number of particles is con-
served,

(30)

rather than the sum of average values (3). In this case,
the distribution function of the number of particles in
the condensate is determined by summing the Gibbs
distribution over all the possible populations of excited
states (n1, n2, …) with the condition (30) exactly satis-
fied:

(31)

where S is the normalization factor. It was demon-
strated [6–8] that the validity of condition (30) in the
3D case leads to a distribution function qualitatively
different from expressions (7) and (29) obtained within
the framework of the Bose–Einstein statistics, which
eliminates the aforementioned discrepancy related to
the grand canonical ensemble. As will be demonstrated
below, an analogous qualitative difference is observed
in for the one-dimensional condensation.

Using the exact mathematical procedure developed
in [6–8], the sum in (31) can be rewritten as follows:

ñ0

ñ0

w0 n0( ) 1
ñ0
-----

n0

ñ0
-----– 

  , t t3.<exp=

nk

k

∑ N ,=

w0 n0( )
1
S
--- –ε0n0 ε1n1– …–( ),exp

n1 n2 …+ + N n0–=

∑=
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(32)

The integration loop in (32) represents a circle with the
center at z = 0 and a radius |z | = eµ < 1, which is equiv-
alent to the condition µ < 0. It should be emphasized
that Eqs. (32) automatically contain the condition (30)
characteristic of the canonical ensemble and are free of
any additional limitations.

In the region of very low temperatures, where the
condition α @ 1 (or t ! 1/N) is satisfied, the consider-
ation is fully analogous to that presented in [6–8] for
the 3D case. In this case, only two values are signifi-
cant,

from which it can be seen that, as T  0, the distribu-
tion acquires the form of w0(n0) = . This distribu-
tion, reflecting the obvious fact that all particles at T =
0 occur in the ground state (condensate), radically dif-
fers from the Bose–Einstein distribution (7) or (29).

As the temperature increases above a very narrow
transition region where t ~ 1/N, the system obeys the
condition α ! 1 (equivalent to t @ 1/N) and the distri-
bution function (32) can again be studied analytically.
Substituting z = exp(µ + ix) into (32), we obtain

(33)

In the above considerations, the parameter µ, limited
only by the condition µ < 0, was otherwise arbitrary.
Note that the sum over k ≠ 0 entering into definition of
the function F(x, µ) exponentially decays at large val-
ues of the parameter p. This ensures convergence of the
series with respect to p and, accordingly, continuity of
the function F(x, µ) at µ = 0. This circumstance allows

w0 n0( )
1
S
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2πi
-------- z
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G z( )[ ] dz,exp∫°=

G z( )[ ]exp 1 z εk–( )exp–[ ] 1– ,
k 0≠
∏=

G z( ) 1 z εk–( )exp–[ ]ln
k 0≠
∑–=

=  
1
p
---zp pεk–( ).exp

p 1=

∞

∑
k 0≠
∑
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∞
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∑
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the distribution w0(n0) to be calculated setting µ = 0
in (33).

Denoting F(x) = F(x, µ = 0), we can conveniently
represent this function as a sum of two terms

(34)

Now let us study the behavior of the component func-
tions for small values of the parameters: |x| ! 1, α ! 1,
and α0 ! 1. First, consider the function F1(x). Differen-
tiating with respect to x, we obtain

For small x and α, the summation with respect to p can
be replaced by integration in the region (0, +∞).
According to (14), the integral converges to yield

Integrating this expression with respect to x in the inter-
val (0, x) and taking into account that (for small α)

we eventually obtain

(35)

The function F3(x), which is exponentially small in
the temperature interval (15), cannot be analytically
studied in the region of t ~ N–1L2/l2. However, as dem-
onstrated below, this region is insignificant because
(similarly to the case of the Bose–Einstein statistics)
the function F3(x) influences the condensation process
only at temperatures on the order of t ~ N–1L4/l4. At
these temperatures, the condition α0 ! 1 is valid and
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the function F3(x) can be studied analytically. By dou-
bly differentiating F3(x) with respect to x, we obtain

Replacing the summation with respect to p (for small x,
α, and α0) by integration and accomplishing this proce-
dure, we obtain

Doubly integrating this equality with respect to x and
using the relations

we eventually obtain

(36)

The function g3(u) can be calculated (up to large values
of u < L2/l2) using an expansion into series in powers of
u. The first term of this expansion yields (the sum over
k is replaced by an integral)

where the subsequent terms are proportional to increas-
ing powers of the small parameter l/L. For very large u,
the sum in g3(u) can be replaced by an integral to obtain

These expressions show that, up to very large u values
1 ! u < L2/l2, we have |g(u)| @ |g3(u)| and the influence
of g3(u) can be ignored. From this, it immediately fol-
lows that the shape of the distribution function of the
number of particles in the condensate for a 1D system
(l/L ! 1) is always (for any N) determined by the “one-
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dimensional” function g(u) and, hence, is qualitatively
different from the shape of a distribution function of the
3D system (l/L ~ 1) [8].

Retaining only the significant terms in (35) and (36)
and rejecting g3, we eventually obtain

Upon substituting this function into the integral in (33)
(recall that µ = 0), the value of F(0) can be neglected
because this term only influences the normalization fac-
tor determined by the relation (33) proper. Substituting
x/α = u and taking into account that the condition
π/α @ 1 allows the integral to be taken between infinite
limits, we eventually obtain

(37)

As can be seen from this expression, the distribution
of the number of particles in the condensate is deter-
mined by properties of the function ϕ(y). This function
can be exactly calculated as demonstrated below.

3.2. Calculating the ϕ(y) Function

Let us begin with calculation of the function g(u)
determined by series (35). Differentiating this function
with respect to u,

(38)

and using the Poisson formula (9) leads to

Substituting this sum into (38), taking into account that
g(0) = 0, and integrating (38) in the interval (0, u), we
obtain
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The integral with respect to x can be calculated exactly
using the substitution x = z2, which yields

By definition (37) of the function ϕ(y), we eventually
obtain

(39)

The function K(u) exhibits no singularities in the
upper half-plane. Therefore, the integration path for y >
0 in (39) can be replaced by a semicircle situated in the
upper half-plane, with the radius R tending to infinity.
Since the function K(u) on this semicircle is exponen-
tially small, with a negative exponent proportional to

, we conclude that ϕ(y) = 0 for y > 0.

On approaching the negative imaginary semiaxis
from left and right, the function K(u) acquires equal
values. From this, it follows that the points u = –in2

(with n running through all integers from unity to infin-
ity) are the poles of this function. Thus, the integration
path for y < 0 in (39) has to be closed by a semicircle
occurring in the lower half-plane with R  ∞ but
R ≠ n2. As can be readily checked, the integral over a
semicircle tends to zero for R  ∞ because the inte-
grand is exponentially small. Therefore, the function
ϕ(y) is equal to the sum of residues in the second-order

g u( ) γ u 2
1 e γ u––

γ u
--------------------

 
 
 

.ln––=

ϕ y( )
1
2
--- eiyu K u( )[ ] 2 u,d

∞–

∞

∫=

K u( )
γ u

eγ u/2 e–γ u/2–
---------------------------------.=

R

0.2

0
–8

y

0.4

0.6

0.8

1.0

–10 –6 –4 –2 0

1

2

3

ϕ

Fig. 2. The function ϕ(y) calculated by (1) exact formulas
(39) or (40), (2) asymptotic formula (43), and (3) asymp-
totic formula (41).
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poles (u = –in2, n = 1, 2, …) of the K2(u) function. Upon
calculating these residues, we obtain

(40)

For large y (|y | @ 1), the sum in (40) can be restricted
to the first term:

(41)

In order to study the behavior of ϕ(y) for |y | ! 1, note
that this function is related to ψ(y) defined as the series
(11) by an obvious formula

(42)

Using the Poisson formula (9) leads to the following
expression for ψ(|y |) [14]:

For |y |  0, this expression yields to within exponen-
tially small terms

Differentiating this expression and substituting the
result into (42), we obtain

(43)

The function ϕ(y) calculated using exact formulas
(39) or (40) and the asymptotic expressions (41) and
(43) are depicted in Fig. 2. As can be seen from this fig-
ure, the ϕ(y) values calculated for –4 < y < –3 by for-
mulas (41) and (43) coincide with a high precision.
Therefore, it is possible in practice to employ formula
(41) for y < –3.5 and formula (43) for –3.5 < y ≤ 0. From
this, it follows, in particular, that a maximum of the
ϕ(y) function is determined by the asymptotic behavior
of (43) and is attained for ymax ≈ –2.41.

All moments of the function ϕ(y) exist and are
readily calculated in the analytical form. These
moments, determined by the coefficients of expansion
of the g(u) function,

ϕ y( ) 4π y n2–( ) y n2 3
2
---– 

  n2, y 0,<exp
n 1=

∞
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ϕ y( ) 0, y 0.>=

ϕ y( ) 4π y 3/2–( )e y– , y 0, y  @ 1.<=
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d ψ2

d y 2
----------- 3

2
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d y
---------+ .=
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y

-----ψ π2

y
----- 
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y

----- 1 2 π2

y
-----– 

 exp+ , y  ! 1.=

ϕ y( ) 4π5 π 1
3
2
--- y

π2
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  π2/ y–( )exp

y 7/2
-------------------------------,=

y 0, y  ! 1.<
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∑ 2
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are equal to

(44)

In particular, formulas (44) yield

(45)

3.3. Distribution Function of the Number
of Particles in the Bose Condensate

Since ϕ(y) = 0 for y > 0, expression (37) shows that,

for 1 –  < 0 (i.e., for the temperature exceeding the
critical temperature of the 3D condensation t > A–1/3 =
t3), the probability of finding any number of particles in
the condensate is zero. Below the critical temperature
(t < t3), the number of particles that can be found in the
condensate at a nonzero probability is limited by the
condition

and the distribution function ω0(n0) acquires qualita-
tively different forms, depending on the temperature t
and the parameter A.

At the upper boundary of the distribution (i.e., when
n0  (n0)lim, the distribution function w0(n0) is expo-
nentially small (see Eqs. (37) and 43)). For large A val-
ues (A @ 1) in a broad interval of temperatures such that

(46)

(i.e., for (1 – )/t @ 1), the function w0(n0) is also
exponentially small (see Eq. (41)) at the lower bound-
ary n0 = 0. Therefore, the distribution function w0(n0) of
the number of particles in the condensate in the temper-
ature interval (46) has the form of a resonance with the
maximum at

(47)

and the peak width on the order of

(48)
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N
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From this it follows that, as t  0, the distribution
acquires the shape of a δ function: w0(n0)  δ(n0 – N).
This function qualitatively differs from the analogous
distribution function (29) determined within the frame-
work of the Bose–Einstein statistics.

Despite such a sharp difference between the distri-
bution functions, the average number of particles in the
condensate under conditions (46) in the statistics of a
canonical ensemble coincides with that obtained within
the Bose–Einstein statistics. In calculating the average
number of particles in the ground state of a canonical
ensemble,

summation over the distribution function (37) can be
replaced by integration. Upon substituting

,

we obtain

In the temperature interval (46), the lower limit of inte-
gration in the last expression can be set equal to η = –∞.
Then, taking into account formulas (45), we arrive at
the conclusion that the average 〈n0〉  corresponding to
the distribution (37) in the temperature interval (46)
coincides with the average value 〈n0〉  =  calculated
using (24) within the framework of the Bose–Einstein
statistics.

We can also readily calculate a mean square fluctu-
ation corresponding to the distribution function (37) of
the canonical ensemble. In the temperature interval
(46), this quantity is expressed as

(49)

This value decreases with the temperature (tending to
zero as t  0), thus radically differing from the anal-
ogous value corresponding to the Bose–Einstein distri-
bution function (29), for which the mean square fluctu-
ation [5]

increases with decreasing temperature (tending to N2 +
N as t  0).

When the temperature increases, the first condition
in (46) fails to be valid and the shape of the distribution
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function qualitatively changes. In the temperature inter-
val

(50)

the distribution (37) can be rewritten as

This function acquires a finite value at n0 = 0 and, at
temperatures up to

,

exhibits a maximum reached for

As the temperature grows further, the maximum disap-
pears and the distribution represents a monotonically
decreasing function of the number of particles n0 (Fig. 3).

For small A values (A ! 1), the 3D condensation
temperature is such that t3 @ 1 and we can neglect the

term  in the distribution function (37) up to high
temperatures (t @ 1):

(51)

As can be readily checked, in the limiting cases of small
and large t, this distribution yields

t3 t
2
3
---t3

2≤–
2
3
---A 2/3– , A @ 1,=
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3t3
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Fig. 3. The distribution function of the number of particles
in the condensate of a canonical ensemble calculated for
A = 1 at various temperatures t = T/T1 = 0.1 (1), 0.5 (2), and
0.8 (3).
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(52)

A comparison of expressions (52) to (18) and (19)
shows that, for A ! 1, the average numbers of particles
in the ground state for the Bose–Einstein statistics coin-
cides with that for the canonical ensemble only in the
limits of t  0 and t  ∞. However, for t  0
(t  ∞), the average number of particles in the con-
densate obeying the Bose–Einstein statistics tends to
the limiting value slower (faster) than that in the canon-
ical ensemble. From this, it follows that the average
numbers of particles in the ground state for the two sta-
tistics do not completely coincide. This conclusion is
confirmed by the results of numerical calculations
(Fig. 1), although the difference is rather small even in
the intermediate region.

For small t (t ! 1), the distribution function (51) has
a resonance shape with the peak position determined by
expression (47), the width by (48), and the mean-square
fluctuation by (49). When the temperature grows, the
maximum vanishes. For t @ 1, we may substitute the
asymptotic expression (43) into distribution (51) to
obtain

The corresponding normalization factor and the aver-
age can be calculated by restricting the expansion to the
first-order terms with respect to parameter 1/3t. The
resulting distribution function is

As can be seen from (19), this distribution coincides
with (29).

Thus, under the condition (28) equivalent to A ! 1,
the phenomenon of condensation exhibits, both in a
canonical ensemble of bosons and in the Bose–Einstein
statistics, a one-dimensional character with respect to
the average number of particles in the condensate. The
average numbers of particles in the ground state deter-
mined for these ensembles differ rather slightly and
coincide in the two limiting cases, t  0 and t  ∞.
In contrast, at relatively low temperatures t ≤ 1 (when
the number of particles in the condensate is comparable
with the total number of gas particles), the distribution
functions of the number of particles in the ground state
for the two ensembles are qualitatively different. This is
manifested by a radical difference in the mean square
fluctuations and in all the higher moments.
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The condition (28) implies that T1 ! T3; as a result,
there exists a temperature interval 1 ! t ! t3 in which
the distribution function of the number of particles in
the 1D condensate of a canonical ensemble acquires the
shape of the Bose–Einstein distribution. In contrast to
the 3D case [6–8], this change from a resonance curve
(narrowing as t  0) to distribution (29) for t @ 1 pro-
ceeds smoothly at a rate independent of the number of
gas particles N. Therefore, the 1D condensation does
not exhibit features characteristic of the 3D process, for
which the transformation of the distribution function
with N  ∞ has a jumplike character.

3.4. The Distribution Function of the Number
of Particles in the Excited States

First, let us find the joint distribution w0, i ≠ 0(n0, ni).
Using a procedure analogous to that described in [6–8],
we eventually obtain

The distribution of the number of particles in the
excited states is determined by summing (integrating)
this distribution over the possible n0values:

In the temperature interval (46), we can neglect unity in
comparison with n0 in the second term and the integra-
tion yields an expression

coinciding with the Bose–Einstein distribution (1) for
µ = 0.

An analogous result is obtained for A ! 1 in the
region of small temperatures (t ! 1). For 1 ! t < t3 and
A ! 1, we can use the asymptotic formula (43); as a
result, we again obtain distribution (1) with µ = –3t/N,
which corresponds to (19).

4. CONCLUSIONS

1. The results of summation of the Gibbs distribu-
tion over the discrete energy levels of an ideal Bose gas
confined in a closed volume with the transverse dimen-
sions much smaller than the longitudinal size (l/L ! 1)
show that, under the condition N(l/L)4 ! 1 (where N is
the total number of gas particles), the average number
of particles in the ground state (condensate) determined

w0 i 0≠, n0 ni,( ) S 1– εini–( )exp=

× ϕ π2
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n0 0=

N
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wi 0≠ ni( ) 1 εi–( )exp–[ ] ε ini–( ),exp=
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within the framework of the statistics of a canonical
ensemble of bosons, as well as within the Bose–Ein-
stein statistics, is a function of the ratio t = T/T1, where
T1 is a characteristic temperature of the system (see
Eq. (5)) depending only on the longitudinal size L.
Therefore, the condensation process exhibits a one-
dimensional character. In the opposite limiting case
(N(l/L)4 @ 1, the situation changes and the process
becomes three-dimensional with respect to the average
number of particles in the condensate.

2. Similar to the 3D case [8], the distribution func-
tion of the number of particles in the 1D condensate of
a canonical ensemble qualitatively differs from an anal-
ogous distribution in the Bose–Einstein statistics
(grand canonical ensemble), in which the distribution at
all temperatures has the form (see Eq. (29)) correspond-
ing to a gradual decrease in the probability w0(n0) of
finding n0 particles in the condensate (from a maximum
value at n0 = 0 to zero at n0  ∞). As the temperature
decreases, the width of this distribution increases,
which is accompanied by the buildup of fluctuations
(fluctuational catastrophe). In the statistics of a canoni-
cal ensemble at low temperature (t ! 1), the distribu-
tion has the form of a resonance. The resonance width
(see Eq. (48)) tends to zero with decreasing tempera-
ture, which corresponds to suppression of the fluctua-
tions. As the temperature increases, this distribution
changes and, for t @ 1, acquires the shape of the Bose–
Einstein distribution. Unlike the 3D case, the transfor-
mation proceeds smoothly, and the rate of this variation
with increasing temperature is independent of the num-
ber of gas particles. This is evidence that the 1D con-
densation does not exhibit features characteristic of the
3D process in the canonical ensemble of bosons, where
the transformation of the distribution function with
N  ∞ has a jumplike character.

3. Despite the radical difference between the distri-
bution functions of the numbers of particles in conden-
sates of the grand canonical and canonical ensembles,
the average numbers of particles in the 1D condensates
of these ensembles differ rather slightly (but do not
coincide as in the 3D case [8]) and tend to be the same
in the limiting cases of t  0 and t  ∞.

4. Under the condition l/L ! 1, the distribution func-
tion of the number of particles in the condensate of a
canonical ensemble for any N retains the shape charac-
teristic of the 1D system.

5. The distribution functions of the number of parti-
cles in the excited states of the grand canonical and
canonical ensembles coincide and are described by the
Bose–Einstein distribution.
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Abstract—The possibility of waveguide propagation of Alfvén waves in an inhomogeneous plasma only
through dissipation without dispersion is demonstrated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the first approximation (ideal MHD approxima-
tion), Alfvén waves are treated as incompressible
movements of a plasma, propagating along a magnetic
field B with the Alfvén velocity cA = B/(4πρ)1/2 (ρ is the
density) and accompanied by vibrations of field lines
similar to vibrations of a string [1]. The dispersion rela-
tion ω = cA · k implies that such waves cannot be natural
oscillations in a transverse-inhomogeneous plasma:
initial perturbations of the Alfvén type “scatter” due to
mismatching of oscillations of adjacent field lines [2–
4]. The inclusion of additional (relative to the ideal
MHD) factors such as the inertia of electrons (ions) or
the finiteness of the Larmor radius of ions leads to
transverse dispersion that “returns” Alfvén waves to the
class of natural oscillations of an inhomogeneous
plasma and, in particular, permits their channeling
(waveguide propagation) along the field lines on which
the Alfvén velocity attains it extremum [5–7].

It will be demonstrated below that ordinary (e.g.,
ohmic) dissipation leads to a similar effect, i.e., waveguide
propagation and, hence, the emergence of natural Alfvén
oscillations of transverse-inhomogeneous plasma.

2. BASIC EQUATIONS AND THEIR SOLUTIONS

We consider a plasma with an equilibrium density
ρ0(x) in a magnetic field B0(x) directed along the z axis.
Disregarding the aspects associated with the so-called
Alfvén resonance (see, for example, [4]), we consider
Alfvén-type oscillations of a given frequency ω, which
are independent of y and propagate along the z axis.
These oscillations are free of density perturbation,
while perturbations of velocity and magnetic field have
only the y component in the linear approximation and
are described by the equations [8]

(1)

∂v y

∂t
---------

B0

4πρ0
------------

∂By
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---------,=

∂By
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∂x2
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∂2By

∂z2
-----------+

 
 
 

,+=
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taking into account the magnetic field diffusion η due
to finite conductivity. Eliminating v y and putting

we arrive at the equation

(2)

whose solutions, which are bounded for x  ±∞,
describe the structure of natural Alfvén oscillations.

We choose the Alfvén velocity profile with a mini-
mum at the center and with a monotonic increase
towards the periphery,

and pass to the dimensionless variables

Equation (2) leads to the Weber equation (we omit the
tildes)

(3)

whose general solution is a superposition of the para-
bolic cylinder functions [9] Dp(±λx), where

(4)

It can be seen that the given problem is similar to that
of energy levels of a quantum oscillator [10]: the solu-
tion to Eq. (3) can be bounded only for integral nonne-
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gative values of p = n and can be expressed in this case
in terms of Hermite polynomials [9] Hn(z):

.

Thus, each frequency ω corresponds to a discrete spec-
trum of (waveguide) modes localized in x:

(5)

In addition, solutions (3) obviously contain modes with
k = –kn propagating in the opposite direction.

3. DISCUSSION

Formula (5) defines the longitudinal wavelength
(|kn|–1) of the corresponding mode as well as its damp-
ing length. It can easily be proved that

i.e., modes attenuate, as should be expected for a dissi-
pative medium, but their Q factor Qn = Rekn/Imkn is
always greater than unity. In addition, each mode is
characterized by two transverse scales: the localization
scale Ln and the scale of variation ln. For the main (n =
0) mode, we have
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Eigenvalues kn of Alfvén modes: ω = 1, η = 0.01.
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(see Eqs. (4)). In accordance with the theorem on zeros
of Hermite polynomials [11], we can write

while the scale of variation (the distance between adja-
cent zeros) is

For the most interesting case of weak dissipation
(η ! 1), we will analyze the dispersion equation (5),
singling out the following three frequency ranges:1

(1) low frequencies (or high mode numbers)

(6)

(2) moderate frequencies (and mode numbers)

(7)

(3) high frequencies

(8)

Strong damping (Imkn ≈ Rekn) of high and low fre-
quencies can be explained by the fact that the longitu-
dinal (|kn |–1) scale of mode variation in the former case
and the transverse (ln) scale in the latter case are com-
parable with the dissipative scale ld = (η/ω)1/2. For mod-
erate frequencies, both scales of mode variation are
quite large,

which ensures the high Q factor (Qn @ 1) of these oscil-
lations.

It should be noted that the inequality ω @ η–1 holds
either for very frequent collisions or for frequencies
beyond the spectrum of Alfvén waves; consequently,
the high-frequency range (8) is mentioned only for
completeness of the patterns. On the contrary, formulas
(7) and (6) describe a typical spectrum of Alfvén modes (see
the figure). If the frequency is such that η ! ω ! η–1, the

1 The names of these ranges are arbitrary; in the generally accepted
terminology, the oscillations under investigation are low-fre-
quency oscillations.
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modes with not very large numbers lie in the plane of
complex k almost equidistantly starting from k ≈ ω for
n = 0 in accordance with relations (7), and their local-
ization scale is smaller than the inhomogeneity scale,

As the mode number increases, the quantities |kn |, ln,
and Qn decrease, and the scale of localization Ln

increases. For n > (ω/η)1/2, i.e., in the limit (6), this
scale becomes larger than the inhomogeneity scale,

It is interesting to note that the velocity of mode propa-
gation is equal to the maximum value of the Alfvén
velocity in the domain of mode localization. Indeed, the

Alfvén velocity for x2 =  is given by

and coincides with the velocities determined from rela-
tions (7) and (6), respectively.
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2 2n 1+( ) η

ω
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 
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 ! 1.=

Ln 2n 1+( ) η
ω
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2+ 1 n
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1/2
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
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
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Abstract—The paper deals with the mechanism of interaction of dust particles in plasma, associated with their
polarization in an electric field which may be produced both by an external source and by accumulated charges
of neighboring particles. A theoretical calculation is made of forces acting on a macroparticle in an external
field, as well as a number of estimations of interaction for different ranges of parameters. It is demonstrated
that, under certain conditions, the interaction mechanism being treated may play a significant part in the
description of processes occurring in a dust plasma. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Under experimental conditions, the electron mobil-
ity in a dust plasma is usually much higher than the ion
mobility. As a result, dust particles in the plasma (given
the equality of the electron and ion fluxes to their sur-
face) acquire a significant negative charge, which,
under certain conditions, may reach a value of Z ~ 103–
104 electron charges. Therefore, a strong interparticle
interaction is present in a dust plasma system.

It is obvious that the presence of large charges of
dust particles must bring about a noticeable electro-
static repulsion of dust particles. In many instances,
however, the observed behavior of the system is just the
reverse. A typical example are the processes of agglom-
eration of dust particles and formation of plasma–dust
droplets observed in experiments involving plasma
etching. The main characteristic feature of this phe-
nomenon is the rapid growth of particles, beginning
with the size of the order of 0.01 µm and up to the size
of 103 µm, visible to the naked eye [1]. The mecha-
nisms of this process largely remain unclear; it is only
clear that, in constructing the pattern of this phenome-
non, one must use additional models of dust particle
interaction.

Of considerable interest, along with the processes of
dust particle growth and cluster formation, are the pro-
cesses of self-organization occurring in plasma–dust
systems. The existence of dust crystals, which were first
revealed in 1994 [2–6], is an established fact, although
the possibility of their existence was theoretically dis-
cussed for quite some time [7, 8]. The building material
for such crystals is provided by dust particles whose
size may vary up to tens of microns depending on the
conditions of an actual experiment. The lattice constant
in such crystals usually exceeds considerably the
1063-7761/02/9406- $22.00 © 21106
Debye screening length and may reach hundreds of
microns.

The necessary condition for the existence of the
above-mentioned ordered structures is the presence of
forces compensating for the electrostatic repulsion of
dust particles. Several models describing such pro-
cesses are suggested in the literature. Of these, the basic
model is the model of particles attraction, which is due
to the shielding of plasma flows by a neighboring parti-
cle. Khodataev et al. [9] have demonstrated that, at long
distances between dust particles, the interaction poten-
tial varies proportionally to 1/R, where R is the distance
between particles, and the force of attraction may
exceed the force of electrostatic repulsion. If the dust
particles are close to one another, the charge accumu-
lated by them becomes almost unshielded, and the
overlapping of plasma flows by a neighboring particle
is no longer capable of compensating for Coulomb
repulsion. Khodataev et al. [9] have concluded that the
potential of interaction between dust particles must be
of the molecular type, whose special feature is the
existence of some equilibrium distance between dust
particles, over which the forces of attraction and repul-
sion balance each other.

We treat another mechanism of dust particle interac-
tion. As in the case described above, the main reason for
its emergence is the asymmetry of plasma particle flows
to the dust particle surface; however, the nature of this
asymmetry is somewhat different. After being placed
into an external electric field, a macroparticle is polar-
ized. The excess of negative charge on one side pro-
duces an additional ion flow to this side, while an
excess electron flow of exactly the same magnitude is
produced on the other side of the particle (see Fig. 1).
Because the sum of charges brought by excess flows of
charged particles to the surface of a dust particle is zero,
the dynamic equilibrium by and large is not disturbed,
002 MAIK “Nauka/Interperiodica”
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and the dust particle charge remains constant in time.
The momentum transferred to the dust particle by ions
incident on its surface exceeds considerably the
momentum brought by electrons. For estimation, we
can write

Here, pi and pe are the ion and electron momenta; and
mi , me and Ti, Te denote the particle masses and temper-
atures, respectively. Because the ion mass is three–four
orders of magnitude larger than the electron mass, and
the ion temperature under conditions of experiments
involving low-temperature plasma is usually of the order
of 0.01 of the electron temperature, the foregoing ratio is,
as a rule, always greater than unity.

Therefore, we arrive at a conclusion that a dust par-
ticle in an external electric field is acted upon, in addi-
tion to the electrostatic force, by an additional force
exerted by plasma flows, the direction of which coin-
cides with the electric field vector (see Fig. 1). In the
subsequent section, we will deal with a theoretical cal-
culation of this force.

2. FORCES ACTING ON A MACROPARTICLE 
IN AN EXTERNAL ELECTRIC FIELD

We will treat a dust particle placed in the external
electric field E0. This may be either the field produced
by the charge of the neighboring dust particle, or the
field of an external source. In subsequent reasoning, we
will assume that the electric field is uniform. As regards
the interparticle interaction, this approximation will be
valid only at long distances between macroparticles,
that is, when the mean distance between macroparticles
considerably exceeds their size. The dust particle is
assumed to be a micron-sized sphere charged to a float-
ing potential.

In calculating the force exerted on a particle by the
surrounding plasma, we will ignore the effect of elec-
trons and take into account only the momentum trans-
ferred to the dust particle during collision with ions.
This can be done by virtue of the foregoing estimates
reinforced by the fact that the ions are accelerated by
the dust particle field, while the electrons, on the con-
trary, are decelerated by this field.

We will direct the z axis along the vector of the
external electric field. Because the problem is charac-
terized by axial geometry, it makes sense to search only
for the force component acting in the same direction
with the field vector. Two other components, after sum-
mation of the effects produced on the particle from dif-
ferent directions, will turn out to be zero. Then, the
expression for the force will be written as

(1)

pi

pe

-----
miTi

meTe

------------.∼

F miṽ z f r v,( ) ṽ Sd( ) v.d

v

∫
Σ
∫°=
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In this expression, the integration is performed over
the entire surface of the dust particle, as well as over the
velocities of incident ions. The function f(r, v) is the ion
distribution function in the phase space. This function
may be derived as the solution of the corresponding
kinetic equation. We have also taken into account the
fact that the velocity of incident ions at the macroparti-
cle surface, which we designated as , differs from
their thermal velocity v, because, before colliding with
the surface, they are accelerated in the field of the neg-
ative charge of the dust particle. The relation between
the thermal velocity of ions and their velocity at the sur-
face is defined by the energy conservation law,

(2)

The second term in this expression represents the
velocity which an ion gathers in the field of the dust
particle charge when acted upon by the potential differ-
ence between the surface and a point removed from the
surface to a distance equal to the free path length.

Two limiting cases are usually treated in this con-
text. The first case describes a situation in which the
free path of the ion exceeds the Debye screening length
in plasma, λi @ λd. In this case, the additional energy
acquired by the ion is defined by the potential on the
particle surface, Zie∆U = Zie|ϕ0|, where ϕ0 is the surface
potential. This approximation is referred to as the
orbital motion limit [1]. In the second limiting case,
λi ! λd. Then, the velocity of the ion on the dust parti-
cle surface is close to its thermal velocity,  ≈ v.

In the system being investigated, the ions interact
with plasma, dust particles, and neutral gas. The inter-
action with charged plasma particles is long-range and
nonlocal; therefore, in the equations, we will take it into
account in the self-consistent field approximation. In
the interaction of ions with neutral gas and dust compo-
nent, on the contrary, pair collisions are of prime impor-
tance. We will include this interaction in our model by
evaluating the collision integral in the form of relax-

ṽ

ṽ 2 v 2 2Zie∆U
mi

--------------------.+=

ṽ

ions electrons

E0

+

+

+

+
+

–

–

–

–

–

Fig. 1. The redistribution of plasma flows to the surface of
a macroparticle placed in an external electric field.
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ation term on the right-hand side of the kinetic equa-
tion. The relaxation time τeff may be represented as

(3)

where nd and n0 denote the concentration of dust and
neutral gas, respectively, and σd and σ0 denote the inter-
action cross section of ions with dust particles and with
neutral gas, respectively.

We will assume that the cross section of interaction
with neutral gas is constant, σ0 ~ 10–16 cm2, and esti-
mate σd in the two limiting cases mentioned above. The
orbital motion limit gives

(4)

Here, a is the dust particle size; Zi and mi denote the ion
charge and mass, respectively; v  is the ion velocity; and
ϕ0 is the value of potential on the dust particle surface.
In the second case, which corresponds to the hydrody-
namic approximation, we derive

(5)

We will now write the kinetic equation for the ion dis-
tribution function in the steady-state case,

(6)

In this equation, (r) is the combined potential pro-
duced by the dust particle charge and by the self-con-
sistent field of the plasma, and f0(r, v) is the equilibrium
distribution function. For further estimation, we will
use the Maxwell distribution as the equilibrium func-
tion,

(7)

The kinetic equation (6) describes the states of the
system in the case of small deviation from equilibrium.
We will write its approximate solution,

(8)

The resultant expression for the distribution func-
tion must be substituted into the integral given by
Eq. (1). In so doing, it is sufficient to treat only the last
term in expression (8), because all other terms of the
ion distribution function are spherically symmetric and,
on being integrated over the dust particle surface, will
produce zero as the result.

τeff
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∂r
------- ∂f r v,( )

∂v
-------------------⋅–

=  –
f r v,( ) f 0 r v,( )–

τeff
------------------------------------------.

Ũ
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Because the expression for force includes the value
of electric field directly on the macroparticle surface,
the shielding potential of the plasma can be fully elim-
inated from treatment when determining this field in the
region of interest to us. Then, the potential can be writ-
ten as

(9)

Here, P is the dipole moment acquired by the dust par-
ticle in the external electric field. If the particle is
assumed to be conducting, the boundary condition of
the constancy of the potential on its surface will pro-
duce P = E0a3. Then, for the electric field in the vicinity
of the dust particle, we will have

(10)

We will write the value of the last term in expression (8)
for the distribution function directly on the dust particle
surface,

(11)

Here, n is the normal vector to the dust particle surface.
We will substitute the resultant expression into the
expression for force in view of Eq. (2). Then, Eq. (1)
will take the form

(12)

Here,  is the concentration of ions at the dust particle
surface, and ez is the unit vector in the direction of the
external electric field. We further allowed for the fact
that the term containing ϕ0/a vanished upon integration.

In order to perform integration, we will introduce
two spherical coordinate systems. The integration over
the macroparticle surface will be performed in the xyz
system with the z axis directed along the electric field
vector. For integration over the velocities, we will use
the x'y'z' system with the z' axis directed along the nor-
mal vector at a given point of the surface so that the vec-
tor E0 would lie in the z'y' plane (see Fig. 2). In the
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∂r
-------

∂ f 0 r v,( )
∂v

----------------------
Σ

⋅–

=  –
Zie
Ti

-------n v 3E0 n
ϕ0

a
-----+⋅ 

  f 0 r v,( ).⋅

F 3ñi
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ñi
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primed coordinate system, the vectors have the coordi-
nates

Here, θ and φ represent the polar angles in the x'y'z' sys-
tem, and ϑ , in the xyz system. Then,

We will substitute the resultant relations for scalar
products into expression (12),

(13)

and perform integration over the angles. The intermedi-
ate result for force will be written as

(14)

We substitute the expression for τeff into Eq. (14),
with due regard for (3) and (4), and pass on to the

dimensionless integration variable t = v . We
will further introduce the dimensionless parameter ξ,

(15)

After all transformations, we derive

(16)
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where

(17)

So, we have derived the expression for the force
exerted on a dust particle by plasma flows. Then, in
view of the interaction between the macroparticle
charge and the external field, the resultant force acting
on the dust particle can be represented as

(18)

Here, Zd denotes the dust particle charge.

We will analyze the obtained relations. One can see
in Eq. (18) that a dust particle placed in an external
electric field behaves as if it possesses some effective
charge that differs from the real electric charge accu-
mulated on that particle. The magnitude and sign of this
charge are of importance, because these parameters
may determine the nature of dust particle interaction in
a plasma.

We will investigate this problem in more detail. The
measure of effective charge will be provided by the
electric charge Zd accumulated by a dust particle. Then,
the relative value of effective charge will be defined in
Eq. (18) by the coefficient in brackets. This coefficient
depends on the ratio Zi /Zdnd, as well as on Zie|ϕ0|/Ti

and n0σ0/ndπa2. The latter two ratios define the dimen-
sionless parameter ξ as well.

If the condition of quasineutrality is valid for the
plasma, the charges and particle concentration in the
plasma are related as

(19)
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Fig. 2.
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We will introduce a dimensionless parameter P =
ndZd/ne. This quantity is usually used to characterize the
collective effect of the macroparticle field on the pro-
cesses occurring in the plasma. Under conditions of
most experiments in a dust plasma, the relation P * 1 is
valid as a rule; then, the parameter Zi /Zdnd can be
transformed to

(20)

Here, the coefficient β > 1 reflects the difference
between the ion concentration  in the vicinity of the
dust particle surface and the concentration ni in the
region of plasma undisturbed by the macroparticle
field. This parameter can be estimated using the Boltz-
mann distribution; however, the resulting estimate will be
highly overstated, because the processes of the ions loss
on the dust particle surface bring about the reduction of
ion concentration in the surface layer. For further estima-
tion, note that Zi /Zdnd always exceeds unity.

We will now investigate the dependence of the
resultant force on the dimensionless parameter ξ. We
will treat the asymptotic behavior according to Eq. (18)
for high and low values of ξ. For this purpose, at ξ @ 1,
we will use the expansion

Then, we retain only the first two nonzero terms in
Eq. (17) to derive

(21)

For low values of ξ, series expansion (17) gives

(22)
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Fig. 3.
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A graph of Φ(ξ) is given in Fig. 3. One can see in this
graph that Φ(ξ) is a monotonic and bounded function,
0 < Φ(ξ) < 3/2.

We will write the expression for force in two asymp-
totic expressions given above, with due regard for
Eq. (20). In the case of validity of Eq. (21), the resultant
force has the form

(23)

Because, under conditions of the majority of experi-
ments, the quantity Zie|ϕ0|/Ti ~ Te/Ti is much greater
than unity, one can see in Eq. (15) that the situation for
which the latter formula is valid is realized if the inter-
action of ions with neutral gas atoms does not prevail
too strongly over their interaction with the dust compo-
nent. We also find that, in this case, a dust particle
behaves in the external field as if it possesses a positive
charge.

If, as previously, we assume that Zie|ϕ0|/Ti ~ Te/Ti @
1, the other limiting case will take place, when the rela-
tion n0σ0/ndπa2 @ 1 is valid, i.e., the basic relaxation
mechanism for ions is their interaction with neutral gas.
Then, we substitute Eq. (22) into (18) and take into
account the previous inequality to derive

(24)

In this limit, a particle will behave in the external field
as negatively charged; however, a reverse situation is
also possible in the case of a certain combination of
parameters. In the general case, the dependence of the
effective charge of a dust particle on the parameters of
the system n0σ0/ndπa2 and on Zie|ϕ0|/Ti is given in Fig. 4.
The charge is expressed in Zd units, and the parameter
P is taken to be 102.

In conclusion, we will dwell on the ratio Zie|ϕ0|/Ti,
which is always encountered in formulas of the orbital
motion limit. As was already mentioned above, this
parameter is the ratio of energy acquired by an ion in
the field of a macroparticle after traveling a distance
equal to the free path to the thermal energy of the ion.
The formulas derived by us are valid when the ion free
path exceeds the Debye radius in plasma, but they are
readily generalized to the opposite case. For this pur-
pose, it is sufficient to replace Zie|ϕ0|/Ti in the formulas
by Zie∆U/Ti (see Eq. (6)) and assume that Zie∆U ! Ti.
Then, after transformations, formula (18) will take the
form

(25)

Fd ZdeE0
3
2
---β 1 1

P
---+ 

  1–
 
 
 

.≈

Fd ZdeE0 β
Zie ϕ0

Ti

----------------
ndπa2

n0σ0
-------------- 1 1

P
---+ 

  1–
 
 
 

.≈

Fd ZdeE0
3/2( )β 1 1/P+( )
1 n0σ0/ndπa2+

---------------------------------------- 1–
 
 
 

.≈
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Fig. 4. The effective charge of a macroparticle as a function of the parameters n0σ0/ndπa2 and Zie|ϕ0|/Ti. The charge is expressed in

Zd units, and the parameter P is taken to be 102.
This formula corresponds to the hydrodynamic approx-
imation. Its characteristic feature is that no dependence
on the ion temperature appears in the final expression
for force. As previously, the sign of force may differ
and is defined by the plasma parameters.

3. DISCUSSION

The basic result obtained by us in the preceding sec-
tion is that the presence of plasma may strongly affect
the behavior of a dust particle in an external electric
field. This brings about the emergence of an additional
mechanism of interaction in a plasma–dust system;
under certain conditions, this mechanism may play a
more important part than even the electrostatic repul-
sion of particles.

The behavior of the system as a whole is determined
by the wide set of parameters, which includes the
degree of ionization, the electron and ion temperature,
and the pressure and composition of neutral gas, as well
as the concentration of dust and the size of its particles.
It is also necessary to take into consideration the prop-
erties of the material from which the dust is formed. In
our model, we assumed that a particle consists of a con-
ducting material; it is for this case that the formulas
derived above are valid. Therefore, the dipole moment
acquired by dust particles in the electric field of the
neighbors and leading, in the final analysis, to the
attraction of the dust particles via redistribution of
plasma flows may actually be much smaller than in our
model. This must be borne in mind when performing
estimations for the conditions of a real experiment.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here, we consider qualitatively the dependence of dust
particle interaction on a set of external parameters.

In simulating the behavior of dust particles, the
shielded Coulomb potential is usually used as the inter-
action potential. Because the dust particles carry signif-
icant like charges, this potential brings about their
strong repulsion from one another. Such an effect is
indeed observed in most of the experiments involving
plasma–dust crystals [2–6, 10–14]. Ordered structures
usually arise in specially constructed traps, whose oper-
ating principle depends on the experimental conditions
and on the special features of the experimental facility.
In the vertical direction, the dust cloud is usually main-
tained owing to the balance of the gravitational and
electrostatic forces; in the horizontal plane, the trap is
provided either by the gas-discharge chamber walls
charged to the floating potential in the plasma or by the
specially created configuration of the electric field. In
all of the cases described, the ordered structure being
formed is not a crystal with a free boundary.

The typical parameters for such experiments [10]
are as follows: the gas pressure in the gas-discharge
chamber is of the order of 0.1–1 Torr; the electron and
ion concentration is approximately 108 to 1010 cm–3; the
electron temperature corresponds to 2–4 eV; and the
gas and ion temperature is usually equal to room tem-
perature, i.e., about 0.025 eV. We assume the cross sec-
tion of ion interaction with neutral gas, which we will
need for estimation, to be 10–15 cm2. We will be inter-
ested primarily in the general dependence of the behav-
ior of crystal structures in plasma on the neutral gas
pressure. Figure 5 gives the dependence of the effective
SICS      Vol. 94      No. 6      2002
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charge of a dust particle on the pressure of neutral com-
ponent. One can see in the figure that some critical pres-
sure exists above which the particles in the external
field behave as negatively charged, and, consequently,
the entire structure is stably confined in the trap. If the
gas pressure drops below the critical value, the particle
behavior is reversed. As a result, the dust structure can
no longer be held by the field in the state of levitation
and must collapse. Such a behavior of crystal was actu-
ally observed in the experiment described by Pieper
et al. [11]. The values of critical pressure given in [11]
vary slightly for different gases but are of the same
order of 0.5–1 Torr. The only exception from the gen-
eral pattern is helium, for which the dependence of
crystal stability on the pressure of neutral component is
inverse. Note that the pressure decrease may also bring
about the melting of a crystal, with the system parame-
ters being in the vicinity of the critical point for which
the effective particle charge is close to zero. The melt-
ing of a crystal with decreasing pressure of neutral gas
was observed in a number of studies [12–14].

We have found that, under conditions of experi-
ments involving plasma–dust crystals, Coulomb attrac-
tion is of prevailing importance in the particle interac-
tion. For such systems, the dust concentration is rela-
tively low. Meanwhile, another wide scope of
phenomena is likewise of great interest. This scope
includes processes of dust particle growth and cluster
formation. The main characteristic feature of such sys-
tems is the high level of dust content in the volume
taken up by the plasma. The process of particle growth
is very intense in spite of the fact that the particles carry
significant like charges. And the fact that the behavior
of particles in an external field may vary depending on
the conditions being realized can play an important part
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Fig. 5. The effective charge of a macroparticle as a function
of the neutral gas pressure. The charge is expressed in Zd

units, Ti = 0.025 eV, Te = 3.0 eV, a = 10 µm, nd = 105 cm–3,

σ0 = 10–15 cm2, P = 102.
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in analyzing the given phenomenon. We will only out-
line some steps. So far, we treated the dust concentra-
tion nd and the particle size a as independent parame-
ters. Meanwhile, in a system in which particle growth
is possible, these quantities are related to each other.
The main characteristic quantity in this case is the
amount of dust matter in the volume. Then, the relation
between the particle concentration and size may be
given by

(26)

Here, m is the mass of dust matter in the volume, V is
the volume filled with dust particles, and ρ is the den-
sity of dust matter. For simplicity, we will assume that
all macroparticles are of the same size. We express the
concentration of particles in terms of their size and the
amount of dust matter in the volume to represent the
parameter n0σ0/ndπa2 in the form

(27)

We see that the quantity n0σ0/ndπa2 increases linearly
with the dust particle size, and the proportionality coef-
ficient is defined by the external factors, namely, by the
pressure of neutral gas and its composition, as well as
by the mass and density of dust matter in the plasma
volume,

(28)

As follows from Fig. 4, the increase in the quantity
n0σ0/ndπa2 brings about a reduction of the effective
charge; this means that, as the dust particle size
increases, the effective charge of dust particles must
decrease. Consider the effect of the particle size on the
rate of particle growth. For a certain combination of the
system parameters, the asymmetry of plasma flows
leads to the positive effective charge of the dust parti-
cles; this charge determines the system behavior in the
external field. This means that particles in such a sys-
tem must be attracted to one another, even though their
like static charges are very high. Therefore, our model
enables one to explain the extremely high rate of dust
particle growth in a plasma, which was observed in
numerous experiments [15–19].

The effect of the particle size on the particle growth
rate is usually manifested in the fact that, beginning
with some particle size, the rate of dust particle growth
decreases abruptly. This becomes clear if we recall that,
as the size of particles increases, their effective charge
decreases and with time must become negative. The
collision cross section of dust particles with one
another must be reduced appreciably, which will have
an immediate effect on the rate of their growth.

The agglomeration of dust particles and growth of
clusters may occur not in any system. Certain condi-

4
3
---πa3nd

m
ρV
-------.=

n0σ0

ndπa2
-------------- Ωa.=

Ω n0σ0
ρV
m

-------.∼
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tions are required for this to take place. In our model,
the main prerequisite for a fast growth of particles is the
presence of a positive effective particle charge; this
means that the quantity Ωa must be less than some crit-
ical value. One can see from expression (28) that this
may be accomplished by increasing the mass of dust
matter in the plasma volume. This inference agrees well
with the observation results, because the high dust con-
tent in the volume is a typical condition for most exper-
iments in studying the processes of dust formation
growth.

The model treated in this paper describes only one
of the possible mechanisms of macroparticle growth in
plasma. Detailed treatment of such processes is the sub-
ject for separate investigation.

Along with the phenomena treated above, processes
associated with phase transitions in plasma–dust sys-
tems have been studied extensively in recent years. In
this paper, we have already touched upon this subject
when discussing the melting of crystal structures. The
existence of no less interesting a phenomenon is
reported in [20, 21]. This phenomenon consists in that
regions almost completely free of particles may form in
dust clouds with a high dust content. A clearly defined
boundary is observed between these regions and the
dust cloud, and a direct correlation is observed between
the system parameters and the very possibility of for-
mation of such regions. This phenomenon may be inter-
preted as the gas–liquid transition in a plasma–dust sys-
tem.

Goree et al. [22] treated one of the possible theoret-
ical interpretations of this phenomenon. They link the
formation of voids in a dust cloud to the formation of
regions in which the process of ionization is more
intense compared with the remaining volume of the
plasma. The increase in the rate of ionization is pro-
vided for by the excess of electrons in the resultant void
compared with the volume of the dust cloud, because
the electrons in the cloud are rapidly absorbed by dust
particles, and the electron concentration decreases. The
increased rate of ionization results in the emergence of
an additional ion flow directed into the external (with
respect to the void) space. It is this flow that maintains
the equilibrium of the interface between the dust cloud
and the void. This approach implies the presence of
some collective effect of ion flows on the already exist-
ing interface between two media. However, the very
stage of phase transition and the conditions under
which it arises remain outside of the scope of the sug-
gested theory. Obviously, the nature of the phenomenon
being treated will be hard to understand without invok-
ing the mechanisms of interaction between individual
particles. From this standpoint, the model of attraction
between negatively charged dust particles suggested by
us may prove quite useful in trying to explain the pres-
ence of surface tension at the boundary of a dust cloud
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
or the conditions for the emergence of instabilities lead-
ing to a phase transition.

In conclusion, note that the model suggested in this
paper is not only one among other existing possibilities
and should be treated as just one of the starting points
for further research.
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Abstract—Oscillations of a magnetic liquid drop suspended in a nonmagnetic viscous medium were studied
analytically and experimentally. Oscillations occurred under the action of a linearly polarized alternating mag-
netic field. The frequency dependence of the amplitude and phase of oscillations was determined in the weak
field and laminar flow approximation. The influence of the viscosity of the liquid on the natural drop oscillation
frequency was studied. The obtained solution was used in experiments on determining interphase surface ten-
sion. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, several works concerned with motion and
deformation of a magnetic liquid drop in various vari-
able and constant fields have been published [1–7]. The
problem of the equilibrium shape of a drop in a constant
magnetic field and the methods for theoretical descrip-
tion are considered in detail in [8], where a bibliogra-
phy on the problem is also given. The shape of a drop is
determined by balance of magnetic and surface tension
forces. In a variable field, inertia and viscosity of the
drop and the surrounding liquid should be taken into
account in addition to surface and magnetic forces. It
seems at first sight that the problem of drop oscillations
turns into a direct analogue of the problem of a har-
monic oscillator with viscous friction. Precisely from
this standpoint, the problem is considered in [9]. In
reality, this analogy is not complete because the equa-
tions of motion of a viscous liquid are equations of a
higher order. In particular, taking into account viscous
friction introduces corrections into the natural fre-
quency of oscillations, which ceases to coincide with
the well-known Rayleigh frequency [10, 11]. The natu-
ral oscillation frequency means the frequency at which
the phase lag between drop and magnetic force oscilla-
tions equals π/2. For a harmonic oscillator, this fre-
quency is independent of friction. For an oscillating
drop, the presence of viscous friction changes the type
of liquid flow and, accordingly, its effective mass,
which is the reason why the eigenfrequency of drop
oscillations depends on the viscosity of the liquid.

2. PROBLEM STATEMENT

Let a magnetic liquid drop (the first medium) be
placed into a nonmagnetic liquid filling the whole space
(the second medium). As an external force that causes
1063-7761/02/9406- $22.00 © 21114
system oscillations, we use a linearly polarized alter-
nating magnetic field. The field defined at infinity,

,

changes in magnitude at frequency γ [we use the right
Cartesian (x, y, z) and spherical (r, θ, ϕ) coordinate sys-
tems with the origin at the center of mass of the drop
and the polar axis along H∞, ez is the unit vector of axis
z]; the liquid is quiescent at infinity, there is no gravity,
and pressure is constant.

We assume that all parameters of the liquids [densi-
ties ρi, kinematic and dynamic viscosity coefficients νi

and ηi (i = 1 and 2 for the first and second media,
respectively), surface tension coefficient at the interliq-
uid boundary σ0, and drop magnetic susceptibility χ]
are constant, and the liquids are insoluble in each other
(mutually saturated), incompressible, and nonconduct-
ing.

Drop oscillations at which its shape slightly deviates
from spherical are considered,

(a is the radius of the unperturbed drop).
The characteristic relaxation time of magnetization

(τ) is of the order of 10–4–10–6 s for magnetic liquids
[13] and is small compared with the period of drop
oscillations (≥0.1 s). This means that the magnetization
of liquids can to high accuracy be considered equilib-
rium. Under these conditions, thermal energy released
in periodic remagnetization of the magnetic liquid does
not cause noticeable drop heating. Indeed, the radial
temperature difference within the drop is

H∞ H∞ iγt–( )ezexp=

r R θ t,( ) a 1 ε θ t,( )+( ), ε θ t,( )  ! 1= =

∆T
χ2γH∞

2 a2

12 1 4πχ1/3+( )2λ
--------------------------------------------,=
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where λ is the heat conductivity of the liquid, and χ1
and χ2 are the real and imaginary dynamic susceptibil-
ity parts. For the concentrated liquid used in experi-
ments (a < 0.5 cm, χ1 ≈ 0.5, χ2 ≈ 0.002, H∞ ≈ 10 Oe, γ ≈
1 Hz, and λ ≈ 2 × 104 erg/(cm s K)), the temperature
drop was of the order of 10–7 K.

We will introduce dimensionless variables. For this
purpose, we select the following values as measure-
ment units: length [L] = a, velocity [v] = ν1/a, pressure
[p] = η1ν1/a2, time [t] = a2/ν1, magnetic field strength

[H] = , magnetic field induction [B] = [H],
and magnetization [M] = [H]. The problem includes the
following dimensionless parameters: density ρ = ρ2/ρ1;
kinematic and dynamic drop viscosity coefficients ν =
ν2/ν1 and η = η2/η1, respectively; surface tension coef-
ficient σ = σ0a/η1ν1; external field amplitude far from
the drop H0 = H∞/[H]; and equilibrium susceptibility χ.
(Note that ρ = η/ν.)

Under these conditions, the distribution of velocities
vi, pressures pi, and magnetic fields Bi and Hi in both
media (i = 1 and 2) and magnetization M in the drop are
determined by the following system of equations of the
hydrodynamics and electrodynamics of continua [10,
12]:

The density of magnetic volume forces f in the drop can
be transformed to the gradient form and included in
pressure taking into account that the magnetic perme-
ability is constant (∇µ  = 0) and susceptibility χ linearly
depends on substance density (f = 0 in a nonmagnetic
liquid) [13].

These equations should be augmented by the obvi-
ous conditions at infinity and in the center of the drop,

r  ∞: p1 and H0 are constant, v1 = 0;

r = 0: p2 and v2 are limited.

At the drop surface r = R(θ, t) = 1 + ε(θ, t), the require-
ments of vanishing of normal velocity components and
continuity of tangent velocity components and normal
and tangent stress components should be satisfied, that
is,

(1)

ν1η1/a2

∂v1

∂t
-------- –∇ p1 ∆v1, ρ

∂v2

∂t
--------+ –∇ p2 η∆v2 f ,+ += =

divv1 divv2 0, curl H1 curl H2 0,= = = =

divB1 divB2 0, B1 H1, B2 H2 M.+= = = =

v r1 v r2
∂ε
∂t
-----, v1 v2 v r1 = v r2 v θ1 = v θ2,( ),= = =

Bn1 Bn2, Hτ1 Hτ2,= =

p1 p2– 2Dσ+( )R σrr
1( ) σrr

2( )–( )R=

– σrθ
1( ) σrθ

2( )–( )∂ε
∂θ
------,
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Here, the components of the symmetrical stress tensor
σik include the hydrodynamic and magnetic compo-
nents. In particular, for the second phase [13],

Equations (1) are written on the assumption of
smallness of ε. Note that the requirements of continuity
of velocity components tangent to the drop surface are
equivalent to the requirement of continuity of velocity
vectors on both sides of the interface.

The mean deformed drop curvature 2D is calculated
by the differential geometry formulas

where ∆ is the angular Laplace operator.
A solution to the problem will be sought in the form

of the series

in which each succeeding term is an order of magnitude
smaller than the preceding one (p0 is pressure at infin-
ity). Field amplitude H0 far from the drop is assumed to
be a small parameter, and liquid flow is assumed to be
laminar. Its intensity is low because of smallness of
amplitude H0.

Functions of the first approximation. In the linear
approximation, the system of hydrodynamic equations
admits the trivial solution

The known solution to the magnetic part of the prob-
lem can conveniently be written in the form

p1 p2– 2Dσ+( )∂ε
∂θ
------–

=  σθr
1( ) σθr

2( )–( )R σθθ
1( ) σθθ

2( )–( )∂ε
∂θ
------.–

σik
2( ) η

∂v i

∂xk

--------
∂v k

∂xi

---------+ 
  HiHk+=

+
1
2
---δikH j

2 1
2
--- MiHk MkHi+( ).+

2D 2 ∆ 2+( )ε– 2ε ∆ 1+( )ε O ε3( ),+ +=

B1 H1 Hr1er Hθ1eθ+ H 1( ) H 2( ) …,+ += = =

H2 Hr2er Hθ2eθ+ h 1( ) h2 …,+ += =

B2 h 1( ) m 1( ) h 2( ) m 2( ) …,+ + + +=

v1 U 1( ) U 2( ) …, v2+ + u 1( ) u 2( ) …,+ += =

p1 p0 Q 1( ) Q 2( ) …,+ + +=

p2 2σ q 1( ) q 2( ) …ε+ + + s 1( ) s 2( ) …,+ += =

U 1( ) u 1( ) Q 1( ) q 1( ) s 1( ) 0.= = = = =

H 1( ) ∇ U iγt–( ), h 1( )exp ∇ u iγt–( ),exp= =

U H0r Cr 2–+( ) θ, ucos *r θcos *z.= = =
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The * and C integration constants are determined
from the boundary conditions

It follows that, in the first approximation with
respect to field amplitude at infinity H0, the drop
remains spherical, and field h(1) is uniform within the
drop.

Functions of the second approximation. Combin-
ing second-order terms yields

All second approximation functions are zero at infinity.
After necessary transformations, we obtain the follow-

ing equations for magnetic pressure jump ∆pM (ω ≡ 2γ):

This ∆pM pressure drop deforms the drop along the field
at twice the field frequency and turns it into an ellipsoid
of revolution with

[P2 = (3cos2θ – 1)/2 is the standard second-order Leg-
endre polynomial]. Note that the magnetic component
of tangential (along the meridian) stresses on the sur-
face of the undeformed drop identically equals zero,

C
χ*

3
---------, *–

3H0

3 χ+
------------.= =

∂U 2( )

∂t
------------ –∇ Q 2( ) ∆U 2( ),+=

ρ∂u 2( )

∂t
----------- –∇ q 2( ) η∆u 2( ),+=

divU 2( ) 0, divu 2( ) 0,= =

curl H 2( ) 0, divH 2( ) 0, curl h 2( ) 0,= = =

divb 2( ) 0,=

b 2( ) h 2( ) m 2( ), m 2( )+ χh 2( ),= =

r 1 s 2( ): Ur
2( )+ ur

2( ) ∂s 2( )

∂t
----------, Uθ

2( ) uθ
2( ),= = = =

Hr
2( ) hr

2( ) mr
2( ), Hθ

2( )+ hθ
2( ),= =

Q 2( ) q 2( )– σ ∆ 2+( )s 2( )– 2
∂
∂r
----- Ur

2( ) ηur
2( )–( ) ∆pM,+=

0 ∂
∂r
----- 1– 

  Uθ
2( ) ηuθ

2( )–( ) ∂
∂θ
------ Ur

2( ) ηur
2( )–( ).+=

∆ pM
1
2
--- Hr1

2 Hθ1
2– 2µHr2

2– Hr2
2 Hθ2

2+ +( )=

=  
1
2
---χ2*2

cos2θ iωt–( ).exp

r 1 sP2 iωt–( )exp+=

Hr1Hθ1 µHr2Hθ2– 0.=
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Also zero are second-order terms for magnetic fields,

The exact solution of the hydrodynamic part of the
second approximation can be written in the form

Here, jn(z) and (z) are the Bessel and Hankel nth-
order spherical functions of the first kind, respectively
[14]. The constant includes the constant contributions
of magnetic pressures.

Five integration constants A, B, a, b, and s are deter-
mined from the boundary conditions

H 2( ) 0, h 2( ) 0.= =

U 2( ) A

r4
----

B
r
---h2

1( ) µ1r( )+ P2er=

+ A

3r4
-------

B
2r
----- h2

1( ) µ1r( )
µ1r
3

--------h3
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Of greatest interest is the amplitude s of drop oscil-
lations. Therefore, here is the formula for determining
it [note that (1 + s) is the semimajor axis of the ellipsoid
of revolution

into which the drop transforms at a maximum deviation
from the spherical shape r = 1]:

(2)

Forced drop oscillations. Let us write the complex
amplitude s of drop oscillations satisfying (2) in the
exponential form

where |s| is the amplitude of oscillations and α is the
phase shift between drop oscillations and the driving
force. [Note that positive α values correspond to “time
lag” of oscillations with respect to external actions.
This time lag is proportional to exp(–iωt).] According
to the general theory of forced oscillations, the ampli-
tude of drop oscillations in the presence of friction is
maximum at resonance frequency ω∗ , and phase shift α
equals π/2 at eigenfrequency ω0.

First consider a nondissipative system on the
assumption that both liquids are ideal. For this purpose,
we will pass to the dimensional form of (2) and let the
viscosities of both liquids tend to zero. This gives reso-
nance frequency ω∗  in the well-known form [11]

(3)
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Equation (3) shows that the Rayleigh frequency of drop

oscillations  = 8σ0/ρa3 in a weightless gas is smaller
than the natural oscillation frequency of a weightless

gas bubble in the same liquid (  = 12σ0/ρa3) by a fac-
tor of one and a half. This can be explained by the
involvement of only a small amount of the liquid in
bubble oscillations (the velocities in the first phase
decrease as the distance increases as 1/r4, whereas the
distance dependence of velocity in the drop is linear).
The effective linear dimension of the system is there-
fore smaller that the radius a of the inclusion.

Consider another particular case of forced oscilla-
tions of a viscous liquid drop in a gas. Let us pass to
dimensional values, and let viscosity η1 tend to zero.
This gives

where J is determined by (2). The dependences of the
resonance frequency ω∗  (curve 2) and natural fre-
quency ω0 (curve 1) on the dimensionless surface ten-
sion σ = σ0a/η2ν2 calculated by this equation for a liq-
uid drop in a nonviscous gas are shown in Fig. 1.
According to this figure, ω∗  = 0 at σ∗  = 3.427. This
means that free drop motion caused by initial perturba-
tion will be aperiodic and nonoscillatory at lower σ val-
ues (that is, at higher drop viscosities and fixed σ0).

ω*
2

ω*
2

s 2χ2*2 a2

a1b2 a2b1–
---------------------------, a1– 6,= =

a2 iω 10– 2J ,+=

b1 3iω 12–
24iσ

ω
-----------, b2– 3iω 60– 12J ,+= =

4

0 10
σ

8

16

18

12

ω

1

2

20 30 40

Fig. 1. Resonance frequency ω∗  (curve 2) and normal oscil-
lation frequency ω0 (curve 1) as functions of dimensionless
surface tension σ for a drop of a liquid in a nonviscous gas.
SICS      Vol. 94      No. 6      2002



1118 BRATUKHIN, LEBEDEV
Using (2) to determine the amplitude and phase of
gas bubble oscillations in a liquid requires setting η
equal to zero. After necessary transformations, we
obtain

Here, σ = σ0a/η1ν1 [K is defined in (2)]. The depen-
dences of the resonance frequency ω∗ (curve 2) and the

s 2χ2*2 a2

a1b2 a2b1–
---------------------------, a1– 16, a2 2 K ,+= = =

b1 2iω 48–
24σ
ω

---------, b2– –12 2K .+= =

4

0 10
σ

8

16

18

12

ω

1

2

20 30 40

Fig. 2. Resonance frequency ω∗  (curve 2) and normal oscil-
lation frequency ω0 (curve 1) as functions of dimensionless
surface tension σ for a nonviscous bubble in a liquid.
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1.5 2.0 2.5

2

1.0

Fig. 3. Resonance frequency ω∗  (curve 2) and normal oscil-
lation frequency ω0 (curve 1) as functions of dimensionless
viscosity of a heterogeneous system “drop in infinite liquid”
for surface tension σ = 10.
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ω0 frequency (curve 1) on the dimensionless surface
tension for a gas bubble in a viscous liquid are shown in
Fig. 2. Bubble free motion will be aperiodic at σ∗  <
1.525. The dependences of the ω∗  resonance frequency
(curve 2) and the ω0 frequency (curve 1) on the dimen-
sionless viscosity η = η2/η1 are shown in Fig. 3 for the
heterogeneous system “drop in infinite liquid” and the
selected dimensionless surface tension value, σ =
σ0a/η1ν1 = 10. The curve separating the regions of ape-
riodic (region II) and oscillatory (region I) free motion
modes on the ση plane is shown in Fig. 4 for the same
heterogeneous system. Solid circles correspond to var-
ious parameters of the liquids used in experiments.

The obtained equations can be applied to solve one
of the most complex problems of interphase hydrody-
namics, that of determining the interphase surface ten-
sion at the boundary between two liquids. The use of
computational methods for this purpose is ineffective.
The well-known Antonov rule [15] is approximate even
for pure liquids. This rule is generally inapplicable to
liquids containing colloidal particles coated with a
layer of a surface-active substance [3]. The coagulation
of particles at the interface endows it with the proper-
ties of a rigid film. This substantially distorts the results
of tensometric σ0 measurements, for instance, from the
shape of a lying drop or by surface stretching with the
use of various bodies.

Applying (2) to determine σ0 allows the accuracy of
measurements to be increased for two reasons. First,
the frequency itself can be measured very accurately
(many measurements are for this reason reduced to
measuring frequencies). Secondly, using (2) eliminates
mechanical contact between the surface and sensors of

100

0.01 0.10
η

10–1

101

102

103

104

105

106
σ

1.00

I

II

Fig. 4. Curve separating the regions of (I) oscillatory and
(II) aperiodic system responses to an external initial pertur-
bation. Solid circles on the ση plane correspond to different
parameters of the liquids studied in this work.
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any kind. In addition, the suggested method can be used
to continuously monitor changes in σ0.

3. EXPERIMENTAL RESULTS

We used a magnetic liquid based on magnetite and
decane stabilized by oleic acid. The external media
were water, ethylene glycol, glycerol chlorohydrin, and
glycerol. These liquids were used because of their low
solubilities in hydrocarbons and because they allow a
wide range of viscosity values to be covered. The den-
sity of the magnetic liquid was varied to equal that of
the carrier liquid by changing the concentration of mag-
netite. The carrier liquid was loaded into a cell with
plane transparent walls. To prevent the drop from drift-
ing, it was fixed in the center of the cell with the use of
a wire ring of a small diameter (smaller than the diam-
eter of the drop).

A linearly polarized alternating magnetic field of a
low frequency (1–10 Hz) was generated with the use of
Helmholtz rings fed from a direct current amplifier. A
low ohmic resistance was connected in series with the
rings, and voltage from this resistance was fed to both
inputs of an analog voltage multiplier. The output mul-
tiplier voltage was therefore proportional to the square
of current intensity in the rings and coincided in phase
with the magnetic force that deformed the drop. The
phase of drop oscillations was determined with the use
of a laser beam. A beam for a helium–neon laser about
0.5 mm in diameter was directed normally to the mag-
netic field and tangentially to the side surface of the
drop in such a way that the intensity of transmitted radi-
ation decreased twofold. The intensity was measured
by a photodiode. When the field was switched on, the
drop modulated the intensity of light, and a harmonic
signal was formed at the output of the photodiode. This
signal coincided in phase with drop oscillations. The
amplitude of the field was selected from the condition
that the illuminated side surface of the drop should be
within the diameter of the beam (the signal then
remained harmonic). The phase difference between the
photodiode current and the signal at the output of the
voltage multiplier (that is, the phase of drop oscilla-
tions) was measured by an F2-34 digital phase differ-
ence meter. The error of phase measurements was
0.02–0.03 deg.

The results obtained in measuring normal drop
oscillation frequencies in the four liquids specified
above are listed in the table. The parameters of external
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
liquids were determined in independent experiments.
Their difference from the reference data is explained by
the presence of certain amounts of water. Along with
liquid parameters, drop diameters d, and normal drop
oscillation frequencies f, the table contains surface ten-
sion values calculated taking into account viscosity (σ0)
and in the nonviscous approximation (σ1). The results
of direct interphase surface tension measurements are
also given (σ2). The interphase surface tension was
directly determined by analytic balance measurements
of the force with which a magnetic liquid film con-
tracted a rectangular wire frame under a layer of a car-
rier liquid. For a drop suspended in glycerol chlorohy-
drin, σ2 was calculated from drop deformation in a con-
stant magnetic field.

The measured σ2 values exceeded σ0. In our view,
this was caused by coagulation of a thin layer of parti-
cles near the drop surface under the action of carrier liq-
uids. This caused the formation of a thin layer of coag-
ulated particles on the drop surface, which hindered
drop deformation. In direct σ2 measurements by
stretching the film, the surface was constantly renewed,
and the coagulation of particles did not influence the
results. For water, which was least soluble in hydrocar-
bons, the influence of coagulation was virtually unno-
ticeable (σ2 was close to σ). For the other liquids, coag-
ulation distorted measurement results. In particular,

LGN-203

F2-34

1

2

3

4

5
6

Fig. 5. Scheme of experimental unit: 1, magnetic liquid
drop; 2, Helmholtz rings; 3, helium–neon laser; 4, photo-
diode; 5, analog voltage multiplier; and 6, phase difference
meter.
Table

Carrier liquid ρ, g/cm3 η1, P η2, P d, cm f, Hz σ0, dyn/cm σ1, dyn/cm σ2, dyn/cm

Water 1 0.01 0.0196 0.86 6.56 31.5 28.1 30.3

Ethylene glycol 1.113 0.18 0.025 0.81 3.33 8.41 6.76 10.8

Glycerol chlorohydrin 1.317 1.59 0.035 0.827 1.61 3.73 1.98 4.2

Glycerol 1.251 2.245 0.032 0.734 3.80 13.35 7.35 18.5
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1120 BRATUKHIN, LEBEDEV
coagulation effects manifested themselves by slow
changes in the normal drop oscillation frequency.

The σ0 values calculated taking viscosity into
account differed from those obtained in the ideal liquid
approximation, σ1. The difference increased as the vis-
cosity grew. It follows that viscosity influences the nor-
mal drop oscillation frequency, and this influence
should be taken into account. From the point of view of
practical applications, the suggested refined solution to
the problem of viscous drop oscillations can serve as a
basis for developing a new approach to determining the
interphase surface tension [15].
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Abstract—A theory of channeling of relativistic electrons and positrons as well as positively and negatively
charged ions in molecular crystals of fullerenes (fullerites) is developed. The crystal potentials are calculated,
and the spatial and angular distributions of beams of particles propagating along principal crystallographic
directions are determined. A method is developed for taking into account the effect of incoherent scattering on
the channeling process. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Channeling of charged particles in ordinary crystals
is studied in detail both theoretically and experimen-
tally (see, for example, [1, 2]). On the other hand,
recently discovered fullerenes [3] can be obtained,
under certain conditions, in the form of stable molecu-
lar crystals with face-centered cubic symmetry [4, 5].
The lattice constant of such crystals (known as fuller-
ites) amounts to d ≈ 1.42 nm, which is an order of mag-
nitude higher than the corresponding value for ordinary
crystals. Channeling in fullerites, as well as channeling
in nanotubes considered earlier [6, 7], may be of inter-
est for high-energy physics in view of the possibility of
deflection of charged particle beams in bent crystals
and the generation of electromagnetic radiation by
electrons and positrons. As regards channeling of ions,
this effect may be used, due to anomalously large ion
mean free paths, for implanting various atoms into ful-
lerites in order to change their electron properties and
other physical parameters. In our previous publication
[8], we developed a quantum theory of channeling in
fullerites on the basis of multiwave diffraction of rela-
tivistic electrons and positrons with moderate energies
(&10 MeV) as well as a theory of diffraction for soft
X rays.

The present work aims at the development of a clas-
sical theory of channeling of electrons, positrons, and
other charged elementary particles and ions possessing
a high energy, so that we can assume that particles
move in trajectories. It is well known that the standard
theory of channeling is based on the possibility of using
crystal potentials averaged along the crystallographic
directions and over the thermal vibrations of lattice
atoms. In the case of fullerites in which polymerization
does not take place and molecules are bound by rela-
tively weak Van der Waals forces, averaging over
molecular rotations is also carried out [8]. Potential
fluctuations associated with the difference between the
real and average potentials are responsible for dechan-
neling, i.e., gradual departure of particles from the
1063-7761/02/9406- $22.00 © 21121
channeling mode during the propagation of the beam
through the crystal. Dechanneling ultimately deter-
mines the efficiency of channeling for turning the parti-
cle beam and for generation of electromagnetic radia-
tion by electrons and positrons. We will develop an
approach for taking into account the effect of incoher-
ent scattering on potential fluctuations and will carry
out appropriate calculations for dechanneling lengths in
the cases of straight and bent fullerites.

2. AVERAGED POTENTIALS OF FULLERITES

According to the channeling theory [1], when a fast
charged particle enters a crystal at a grazing angle θ0
(comparable with the Lindhard angle in order of mag-
nitude) relative to the principal crystallographic direc-
tions, the true potential of the crystal can be replaced
in the first approximation by a potential averaged
along the corresponding directions. Since lattice sites
contain fullerenes in the case under investigation, we
must first calculate the potential of an individual
fullerene. In particular, in fullerene C60, carbon atoms
are at the vertices of the frustrum of an icosahedreon.
According to Doyle and Turner [9], the Fourier com-
ponent of the atomic potential can be presented, to a
sufficiently high degree of accuracy, in the form of the
sum of N Gaussians:

(1)

where Ze is the charge of the nucleus. It is well known
that, in the Born approximation, the quantity defined by
Eq. (1) is the amplitude of scattering of an electron by
the atom, the quantity k coinciding with the momentum
transferred by the atom upon the scattering of the elec-
tron. The fitting parameters ai and bi in the given model
of the atom are chosen, like their total number N, from
the condition of the best approximation of formula (1)
to the corresponding values measured in experiments

f k( ) 4πZe ai
k2

4bi
2

--------–
 
 
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,exp
i 1=

N
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on the angular distribution of scattered electrons in a
wide range of transferred momenta k or to the results of
more accurate calculations (e.g., using the Hartree–
Fock method). Usually, it is sufficient to take N = 4 or 5;
the values of the parameters ai and bi for various atoms
(including carbon) are given in [10]. The inverse Fou-
rier transform of quantity (1) gives the following
expression for the atomic potential:

(2)

where ρa is the distance from the nucleus. The region of
applicability of the model form factor (1) and the corre-
sponding atomic potential (2) is bounded by large
momenta or small distances to the nucleus. In particu-
lar, for the set of fitting parameters that will be used in
subsequent calculations of averaged potentials, the
region of value of k for which a satisfactory (to within
≈0.6%) agreement between formula (1) and tabulated
data [10] is observed is bounded from above by the
value kmax ≈ 126 nm–1, which corresponds to distances
smaller than the amplitude of thermal vibrations of
atoms in fullerite. It should be noted that, using the
screening of the nucleus in form (4) as the starting
point, we can derive another, more accurate, analytic
expression for the potential of carbon atom, which has
a regular (Coulomb) form at small distances and coin-
ciding with the tabulated values to within 1% down to
distances of 0.002 nm. However, this expression cannot
be used for obtaining a sufficiently large number of
simple analytic expressions for averaged potentials of a
molecular chain (see Eq. (8)). On the other hand, our
subsequent calculations will show that the difference
between the depths of the potential well for transverse
motion in our model of the averaged potential (1) and a
more exact model does not exceed 5%.

The potential energy of point particles (elementary
particles or nuclei) in the field of an atom is just the
product of potential (2) and the charge of a particle. In
the case of ions, we must take into account the effect of
screening of the nucleus of an ion by the remaining
electrons. This can be done as follows. According to
Doyle and Turner [9], the Fourier component of the
electron distribution in an atom or an ion with the
nuclear charge Z1e can be presented, to a sufficiently
high degree of accuracy, in the form

(3)

which is similar to expression (1), but parameters am,
bm, and N1 are now determined by fitting Eq. (3) to more
exact values of the scattering amplitude of X-ray pho-
tons [10]. Thus, the Fourier component of the charge

ϕ ρa( )
4Ze

π
--------- a jb j

3 b j
2ρa

2–( ),exp
j 1=

N

∑=

f x( ) k( ) Z1 am
x( ) k2

4bm
x( )2

-------------–
 
 
 

,exp
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distribution in an atom (ion), including, in addition to
expression (3), the nuclear charge Z1e, has the form

(4)

We assume, as is usually done in the theory of ion
channeling [1], that the velocity of the ion is small as
compared to the velocities of electrons on its outer
orbits; in addition, the electron energy levels of an ion
and fullerenes do not intersect for any impact parame-
ters. In this case, we can disregard inelastic processes of
the type of charge exchange between the channeled ion
and fullerene atoms and obtain the potential of interac-
tion of a carbon atom with the ion in a simple form.
Indeed, in the coordinate representation, the potential
energy of interaction between an ion and an atom is the
convolution of the atomic potential (2) and the spatial
charge distribution in the ion. Consequently, in the
momentum representation, the effective atomic form
factor fion(k) for ion scattering is the product of the
right-hand sides of expressions (1) and (4):

(5)

Parameters Aj and Bj are connected with the known
parameters for the scattering form factors of electrons
and X-ray photons through the following relations: Aj =

aj, Bj = bj for j ≤ N, Aj = –ai ,  = /(  +

) for N < j ≤ N(1 + N1), where i and m run through
a sequence of values from one to N and N1, respectively.
It should be noted that, for such an approach, the ion
scattering form factor (5) preserves the functional form
of the sum of a certain number of Gaussians as in the
case of a point particle. This allows us to derive quite
simple expressions for the effective potential of interac-
tion between channeled particles and fullerites (see
below).

The case of a completely ionized atom corresponds

to  = 0 for all indices j. On the other hand, if the ion
is heavy and the degree of ionization is low, we can dis-
regard the difference between the electron distributions
in the ion and in the corresponding neutral atom and use

for ions the values of parameters  and  obtained
for a neutral atom. In a more general case, the electron
distribution in a specific ion should be calculated using
the Hartree–Fock method for determining these param-
eters.

Let us now calculate the molecular potential. In the
case of a point charge, we will not distinguish below
between the terms “potential” and “potential energy.”
In the first approximation, we can disregard the effect
of valence bonds between individual carbon atoms in a
C60 fullerene molecule on the distribution of electrons
in the molecule; i.e., we can assume that the molecular
potential is just the sum of atomic potentials (2) cen-

q k( ) e Z1 f x( ) k( )–( ).=

f ion k( ) 4πZZ1e A j
k2

4B j
2
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 
 
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j 1=
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tered at the vertices of the frustrum of an icosahedron.
We will also take into account the fact that under stan-
dard conditions, fullerites are nonpolymerized; i.e.,
individual fullerenes in fullerites are connected only
through weak Van der Waals forces and may freely
rotate. As a result of the rotations, fullerenes have a ran-
dom angular orientation and, hence, the molecular
potential can be averaged preliminarily over angular
coordinates of atoms to obtain the following expression
for the molecular potential averaged in this way:

(6)

Here, r denotes the distance from the center of
fullerene, and R = 0.353 nm is the radius of fullerene
C60. The charge e of a channeled point particle in for-
mula (6) is assumed to be positive (positron).

Let us suppose that a charged particle is incident at
a small angle to one of the principal crystallographic
axes. We denote by dR the distance between two adja-
cent molecules in a molecular chain of fullerite. We
now average the potential of the chain along its direc-
tion. This gives the following expression for the aver-
aged potential of the chain:

(7)

where J0 is a Bessel function and k⊥  is the projection of
momentum k on the transverse plane. The effective
potential U acting on a positively charged channeled
particle in fullerite is the sum of potentials of the form
(7) of all n chains parallel to the given crystallographic
direction:

(8)

Here, r is the vector coordinate of the plane normal to
the molecular chains (transverse plane), and rn is the
vector coordinate of the nth chain.

Potential (7) corresponds to a static chain of
fullerenes and to the static arrangement of carbon
atoms at the vertices of the frustrum of an icosahedron
in fullerenes, i.e., disregards thermal vibrations of mol-
ecules relative to the lattice sites in the fullerite crystal
as well as thermal vibrations of carbon atoms in the
molecules. Thermal vibrations of atoms tangential to
the surface of a molecule obviously do not affect the
averaged potential (7) since it was derived using the
averaging over molecular rotations. Thermal vibrations
of atoms, which are transverse relative to the surface of

U1 r( ) 60
Ze2

πrR
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a molecule, can be taken into account by introducing
the Debye–Waller factor e–W into expressions (1) and

(7), where W = /2,  is the mean square ampli-
tude of thermal vibrations, whose temperature depen-
dence is determined by the well-known Debye formula.
Molecular vibrations along a chain obviously do not
affect the obtained result either in view of the averaging
of the potential along this direction. Transverse thermal
vibrations can be taken into account through the

Debye–Waller factor , which must be introduced
in the integrand of formula (7). Assuming that trans-
verse thermal vibrations of molecules are isotropic, we

obtain Wf = /2, where  denotes the mean square
amplitude of thermal vibrations of molecules in the ful-
lerite lattice. The value of the Debye temperature TD for
fullerite obtained from the sound velocity measurements
[11] is 55.4 K, which gives the value u1 = 1.39 × 10–2 nm
at room temperature. We are not aware of results on the
amplitude of radial vibrations of atoms in fullerenes; it
can be assumed, however, that it is close to the analo-
gous amplitude u⊥  = 8.5 × 10–3 nm of vibrations (trans-
verse to planes) in graphite. The amplitudes of thermal
(especially, atomic) vibrations are smaller than the dis-
tances over which the electron density and potential in
a carbon atom change significantly; consequently, their
inclusion leads to a noticeable change in the averaged
potential (7) only in a relatively narrow region of |ρ –
R| & u1 + u⊥ .

The results obtained above can be used for calculat-
ing the fullerite potentials in the case of ion channeling
through the obvious substitutions ai  Aj, bi  Bj,
N  N(1 + N1), and e  Z1e. It should be noted that
other representations for the ion–atom potential, which
were based, for example, on the Mollier approximation
to the Thomas–Fermi model, were also used earlier [1]
in the theory of ion channeling in ordinary crystals. It
was demonstrated by us earlier [7], however, that such
an approach in the case of fullerenes gives exaggerated
values for averaged potentials almost in the entire chan-
nel region in view of the obvious inapplicability of the
Thomas–Fermi model to light atoms.

The results of numerical calculations of averaged
fullerite potentials (8) taking into account thermal
vibrations of molecules at room temperature are given
in Figs. 1 and 2 for various particles and crystallo-
graphic directions. Figure 1 corresponds to electrons
and the direction along the [110] axes, while Fig. 2 cor-
responds to positrons and the [100] direction. The form
of these potentials differs considerably from that of
averaged potentials in ordinary crystals (see, for exam-
ple, [1]). This difference is due to the fact that the lattice
sites of fullerite contain not atoms but giant C60 mole-
cules. As a result, a deep potential well appears, say, for
positively charged particles (see Fig. 2) not only
between chains, but also on the axis of the chains. The
existence of a deep axisymmetric well becomes possi-

k ⊥
2 u⊥

2 u⊥
2

e
W f–

k ⊥
2 u1

2 u1
2
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Fig. 1. Contour diagram of the averaged potential corresponding to the [110] axes for negative point particles (electrons). The fig-
ures on equipotential curves correspond to values of potential in electronvolts, and dashes indicate the directions of its decrease.
ble for negatively charged particles also. The relative
sizes of all wells considerably exceed the correspond-
ing sizes in ordinary crystals, facilitating a more effi-
cient channeling of charged particles in fullerites. In the
case of ion channeling, the potentials also have a simi-
lar form.

3. CHANNELING OF ULTRARELATIVISTIC 
PARTICLES IN NORMAL 
AND BENT FULLERITES

It was shown in our previous publication [8] devoted
to the quantum theory of channeling in fullerites that
the classical description of light particles (electrons and
positrons) becomes justified for much lower energies
(E ~ 10 MeV) than in ordinary crystals. This result
could be expected proceeding from the following con-
siderations. In channeling, like in Bragg diffraction in
crystals, the characteristic quantum parameter is the de
Broglie wavelength of a particle Â ≈ "/E divided by the
angle of incidence θ0, which can be estimated as the
Lindhard angle θL = (2U0/E)1/2, where U0 is the poten-
tial well depth for transverse motion. Since the trans-
verse de Broglie wavelength Â⊥  = Â/θL is much larger
JOURNAL OF EXPERIMENTAL 
than Â, quantum effects in channeling occur even for
relatively high energies of electrons and positrons,
amounting to tens of megaelectronvolts (see, for exam-
ple, [2]). For a correct classical description of motion of
channeled particles, it is necessary that the value of Â⊥
be much smaller than the channel size. Although the
channels in fullerites are slightly shallower yet broader
than in ordinary crystals, the classical approach is pos-
sible for them for considerably lower energies of parti-
cles. As regards heavy particles (π mesons and pro-
tons), the classical theory of channeling both in ordi-
nary crystals and in fullerites is applicable to them
virtually for all (even nonrelativistic) velocities [1].

Let us first consider classical channeling of high-
energy electrons and positrons in normal (straight) ful-
lerites. The integrals of motion of a particle in potential
(8) are the total energy E and the longitudinal (relative
to the crystallographic axis) momentum component p||:

(9)
E U r( ) 1 v ||

2– v ⊥
2–( ) 1/2–

,+=

p|| v || 1 v ||
2– v ⊥

2–( )–1/2
.=
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Fig. 2. Contour diagram of the averaged potential corresponding to the [100] axes for positive point particles (positrons).
Here, v || is the longitudinal velocity component, v⊥  =
dr/dt is the transverse velocity component, and the rel-
ativistic system of units with m = c = 1 is used. The
transverse energy ε is defined as the difference ε = E –

(1 + )1/2 and, hence, is also an integral of motion in
the averaged potential U(r). In the case of channeling,
we always have ε ! E; taking into account this condi-
tion, we obtain from Eqs. (9) the following equation for
the transverse velocity component:

(10)

The form of this equation corresponds to a nonrela-
tivistic transverse motion of a particle with mass E in
potential U(r) and expresses the law of conservation of
transverse energy for such a particle. In the small-angle
approximation, when the inequality ε ! E holds, we
obtain the following expression for the longitudinal

p||
2

v⊥
2 2

E
--- ε U r( )–[ ] .=
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component of the particle velocity in the ultrarelativis-
tic limit E @ 1:

(11)

The fluctuations of the longitudinal velocity compo-
nent associated with the presence of the square of the

transverse velocity component  in Eq. (11) may be
significant (see, for example, [2]) only in analyses of
the electromagnetic radiation spectrum of ultrarelativ-
istic particles having a high energy, since the Doppler
shift of radiation frequency is determined by the rela-
tively small difference, 1 – v ||, between the velocity of
light and the longitudinal velocity component of an
ultrarelativistic particle. However, such fluctuations
can be disregarded in the analysis of the scattering of
particles, which will be carried out below.

Let us now assume that the crystallographic axis of
fullerite is bent in a certain plane with a constant radius

v || 1
1
2
--- E 2– v ⊥

2+( ).–=

v ⊥
2
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of curvature Rb. We choose the cylindrical system of
coordinates ρ, ϕ, Z with the Z axis perpendicular to the
plane of the bend and passing through the center of cur-
vature O. The potential of bent fullerite is obviously
independent of the azimuth angle ϕ since the radius of
curvature is assumed to be constant. Thus, in addition
to the total energy E, the component M of the relativis-
tic angular momentum of the particle on the Z axis is
also an integral of motion:

(12)

Here, v τ = ρ(dϕ/dt) is the modulus of the tangential
velocity component, and v⊥  is the velocity component
perpendicular to vτ. The system of equations (12) leads
to the following equation for the transverse component
of the velocity of a particle in the bent crystal:

(13)

Let us now define the transverse energy of a relativistic
particle as the difference

(14)

which is also an integral of motion in a bent crystal. The
Cartesian coordinate x of the particle relative to the
crystallographic axis (one of the components of vector r)
is connected with the cylindrical coordinate ρ intro-
duced above through the relation x = ρ – Rb. Since the
radius of curvature in the cases of practical importance
is larger than the size of the channel (x ! Rb), we obtain
from Eq. (13) taking into account definition (14) and
condition ε ! E (which always holds for channeled par-
ticles) the following approximate equation for the
transverse velocity component:

(15)

Thus, the bending of the crystallographic axis with
a constant radius of curvature Rb is taken into account
in an analysis of transverse motion by replacing the
electrostatic potential U(r) in Eq. (10) by the effective
potential

(16)

We assume that all crystallographic axes in fullerite
are bent with the same radius of curvature; in this case,
the equation of motion (15) is valid in the region of each
unit cell of the crystal. The above analysis is completely
in accord with intuitive considerations presented in pio-
neering works by Tsyganov [12], devoted to the effect
of rotation of a high-energy particle beam by bent crys-
tal planes.
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Like ordinary crystals, fullerites can be bent either
mechanically or by passing a high-intensity ultrasonic
wave through the crystal. The bending strength of ful-
lerite and its resistance to the action of ultrasound are
apparently comparable to the values observed in ordi-
nary crystals of the graphite and even diamond type
(this statement is valid for polymerized fullerites). In
both methods of bending, the radius of curvature is not
constant. It will be shown in the subsequent analysis
that, when the radius of curvature changes quite slowly
(both in magnitude and direction) along a crystallo-
graphic axis, i.e., considerable changes in Rb occur over
lengths exceeding considerably the characteristic
period of radial vibrations of channeled particles in a
potential well, the effective inclusion of bending boils
down to the introduction of a centrifugal force of the
form F = En/Rb into the equations for transverse
motion. Here, n is the unit vector directed along the
radius of curvature. The case when the above condition
is violated is more complicated to analyze and will be
considered in a separate publication. It should only be
noted that, along with centrifugal forces, the forces
determined by derivatives of Rb with respect to the lon-
gitudinal coordinate (or time) may appear in this case.

In contrast to planar potentials observed in ordinary
crystals, the axial potentials in fullerites exhibit a more
complex dependence on transverse coordinates and,
hence, the equations of motion (10) and (15) can be
solved only by using numerical methods. The initial
coordinates of a particle are random quantities. Since
the transverse dimensions of real beams of particles
considerably exceed the size of a unit cell in the trans-
verse plane, we can assume that particles are distributed
uniformly over the area of a unit cell.

Let us consider, by way of an example, a beam of
relativistic particles with a negligibly small angular
divergence θ0 ! θL that penetrates a fullerite crystal
parallel to one of the principal crystallographic axes.
The channeling effect rapidly leads to a considerable
rearrangement of the initial beam distribution in the
phase space of transverse coordinates and momenta.
We introduce the length L0 = R/θL coinciding in order
of magnitude with λ/4, where λ is the characteristic
wavelength of radial vibrations of particles in the axial
channel. Numerical calculations show that almost com-
plete rearrangement occurs only at relatively large (of
the order of 10L0) penetration depths in fullerite. Fig-
ures 3 and 4 show the equilibrium spatial distribution of
a beam of negatively or positively charged particles
within a unit cell for different directions [110] and
[100]. The circle in the figures has the radius of
fullerene. Channeled negative particles are concen-
trated at the periphery and at the center of the channel,
where their potential energy has a local maximum (see
Fig. 1) and, hence, the hanging effect takes place. In the
case of positive particles, two different potential wells
exist (Fig. 2), one of which corresponds to channeling
in the space between the chains, while the other, shal-
 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002
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lower, well, possessing a higher axial symmetry, corre-
sponds to channeling in the chains. Since potential
wells are concave, a positive particle beam is concen-
trated in the vicinity of the centers of these two different
channels. The spatial redistribution of the beam of
channeled particles has important consequences; in
particular, it must noticeably change the cross sections
of all secondary processes for which close collisions of
particles with atoms (nuclei) of the medium are impor-
tant (e.g., for Rutherford scattering). We will consider
once again the effects of spatial redistribution of parti-
cle beams in fullerites in the following analysis of
dechanneling.

It should be noted that, in accordance with the Liou-
ville theorem on conservation of the phase space vol-
ume in the absence of dissipative processes, the spatial
focusing of particle beams must be accompanied by the
corresponding broadening of their initial angular distri-
bution, which is confirmed by appropriate calculations
which will not be presented here.

4. INCOHERENT SCATTERING 
AND DECHANNELING

The averaged potential (8) completely corresponds
to coherent scattering of particles by molecular chains.
In this case, we assume that incoherent scattering
effects at individual atoms and electrons of the medium
are relatively weak and can be disregarded in the first
approximation. We will now analyze the effect of
potential fluctuations due to rotations and thermal
vibrations of fullerenes at a crystal lattice and calculate
the dechanneling length, i.e., the mean free path of par-
ticles in fullerite, over which a considerable fraction of
initially channeled particles escape from the channel as
a result of incoherent scattering.

Let us consider in greater detail the scattering of a
fast particle at a chain of vibrating fullerenes. We
denote by r0 and z the transverse radius vector and the
longitudinal coordinate of the particle, respectively.

Further, we assume that  denotes the vector devia-
tion of the ith molecule from the chain axis as a result
of thermal vibrations, w(ri) is the probability density of
such a deviation, and N = ∆z/dR is the number of mole-
cules on the path ∆z of the particle. The particle experi-
ences the action of the potential U1(ri, φi, ϑ i) of the ith

molecule, where ri =  is the
distance from the particle to the center of fullerene, and
φi, ϑ i are the angles defining the random orientation of
fullerene. The increment of the transverse momentum q
of the particle under the assumption that the acts of
scattering at different fullerenes occur independently
can be presented as the sum of corresponding incre-
ments qi upon scattering at each molecule:

ri
m( )

ri
m( ) r0–

2
z idR–( )2+
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We also assume that the changes in the transverse coor-
dinate |∆r0| of the particle over a path of length ∆z are
smaller than the distance over which the potential of the
scatterer changes significantly. According to [13], for
high energies of particles, this condition may hold even
for initial angles of incidence (relative to the chain axis)
considerably exceeding the Lindhard angle. This leads
to the following expression for the momentum trans-
ferred as a result of scattering at an individual mole-
cule:

where ∇  is the gradient in the transverse plane.
Disregarding further the correlation of thermal

vibrations and rotations of neighboring molecules, we
arrive at the conclusion that the average (over thermal
vibrations and angular orientations of molecules) incre-
ment of the transverse momentum 〈q(r0)〉  in this case is
also the sum of the corresponding mean values for scat-
tering at each molecule; i.e.,

where

Thus, the average increment of the transverse momen-
tum is determined by the fullerene potential averaged
over the longitudinal coordinate, thermal vibrations,
and orientations of fullerenes, which is in line with the
basic concept in the theory of channeling in fullerites
developed above.

In the next approximation, we must take into
account the probability of possible deviations q from its
mean value 〈q〉 . Let the number of molecules N on the
above-indicated path remain quite large; according to
the central limit theorem in probability theory, the devi-
ation probability distribution has a Gaussian form.
Mean square fluctuations of the increment of transverse
momentum can be presented in the form

where  is the mean square momentum transferred
to the particle during scattering by an individual
fullerene. We assume further that the scattering by all

q qi.
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fullerene atoms occurs independently and take into
account the fact that the particle can also be scattered
by electrons of the medium. In this case, the mean
square transferred momentum can be determined in the
same way as in the analysis of multiple scattering in an
amorphous medium. However, since the mean square
momentum 〈q2〉  is a function of r0, we must take into
account the nonuniform distribution of scatterer density
in the transverse plane of the crystal. Thus, the motion
of a fast particle in fullerite can be presented as a rela-
tively smooth motion in the averaged potential of
molecular chains superimposed by stochastic perturba-
tions associated with incoherent scattering from indi-
vidual atoms and electrons of the medium. The self-
consistency of this approach will be discussed below.

It is well known that the mean square angle of mul-
tiple scattering by atoms (screened nuclei) per unit
length in an amorphous medium can be presented in the
form

where na is the number density of nuclei averaged over
the volume and La = ln(191Z–1/3) is the Coulomb loga-
rithm. For scattering by electrons of the medium which
can be regarded as free, a similar expression has the

form  = , where ne is the electron
number density averaged over volume and Le =
ln(1194Z–2/3) (see, for example, [13]). The logarithmic
factors La and Le used here take into account the screen-
ing of the Coulomb field over relatively long as well as
short distances significant for scattering.

Multiple scattering by electrons in an amorphous
medium is found to be 1/Z times the scattering by
nuclei; however, the situation may change in the case of
channeling. It was noted above that, in the case of chan-
neling, we must take into account, first, the nonuniform
distribution of the number density of nuclei, na(r), and
electrons, ne(r), over the coordinates r in the transverse
plane of the channel and, second, the redistribution of
the flux density of channeled particles, which was con-
sidered above. An analytic expression for the radial dis-
tribution of the electron number density in an individual
fullerene chain can be derived by using relation (3) in
the same way as we derived formulas (7) and (8) for
potentials and has the form

(17)

For the distribution of the number density of atoms in
an individual fullerene chain taking into account their
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displacement from their equilibrium positions due to
thermal vibrations of fullerenes, we obtain

(18)

In order to derive the corresponding distributions in
the transverse plane, we must carry out additional sum-
mation in formulas (17) and (18) over all fullerene
chains parallel to the crystallographic direction along
which the channeling takes place. Figure 5 shows the
variation of the nuclear, na(r) (curve 1), and electron,
ne(r) (curve 2), number densities along the straight line
connecting two adjacent fullerene chains in the [100]
channel, which are separated by the largest distance.
The amplitude u1 of thermal vibrations of fullerenes
was calculated in the framework of the Debye model
with temperature TD = 55.4 K measured in experiments
[11], while the temperature of fullerite was assumed to
be equal to room temperature. Thermal vibrations
weakly affect the electron distribution since their
amplitude is smaller than the size of electron shells in
an atom. The distribution of nuclei in the region ρ ≥ R
is determined exclusively by thermal vibrations, but the
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Fig. 5. Number density distribution for nuclei (curve 1) and
electrons (curve 2) as a function of the distance from the
[100] axis along the straight line connecting two adjacent
[100] axes spaced by the maximum distance. The distribu-
tion density is normalized to values averaged over volume;
the distance is measured in units of fullerene radius.
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effect of thermal vibrations in the region ρ < R is insig-
nificant in view of the stronger effect of molecular rota-
tions. The above calculations show that the particles
channeled in the chains must experience much stronger
incoherent scattering from atoms than the particles
channeled between the chains since, in addition to
potential fluctuations due to thermal vibrations of mol-
ecules, there exist much stronger fluctuations associ-
ated with their rotation; for this reason, the number den-
sity of nuclei in this case is of the order of the number
density averaged over the volume.

The algorithm of our calculations of the trajectories
of particles incident on fullerite at a grazing angle θ0
relative to fullerene chains can be described as follows.
First, a random initial transverse coordinate r0 of a par-
ticle, which was distributed uniformly over the area of
a unit cell in the transverse plane of fullerite, was
played by using the Monte Carlo method. Then, the
equation of transverse motion in the averaged potential
(8), i.e.,

(19)

(where p⊥  = Edr/dt is the transverse momentum com-
ponent of the particle), was integrated numerically over
the segment ∆t to find the values of the transverse coor-
dinate r1 and the transverse momentum p⊥ 1 at instant
t1 = ∆t1. The time interval ∆t1 was chosen so that the rel-
ative changes in the number density na(r) and ne(r) of
nuclei and electrons were negligibly small over the
integration path, the number of atoms on this path
remaining much larger than unity. Further, a random
increment ∆θ of transverse momentum associated with
incoherent multiple scattering of the particle from
atoms and electrons of the medium was played; it was
assumed that the probability density of the small-angle
multiple incoherent scattering of ultrarelativistic parti-
cles through the angle ∆θ = {∆θx, ∆θy} on the path of
length ∆z ≈ ∆t has the Gaussian form

(20)

where the mean square of the multiple scattering angle
of a channeled particle on the path ∆z is defined as

This increment was added to p⊥ 1, and the sum was
assumed to be the actual value of transverse momentum
at time t1. After this, the above procedure (except the
playing of coordinates at the beginning of the interval)
was repeated on the next integration interval from t1 to
t2 = t1 + ∆t2.

Since the equations of motion can be solved only
numerically in view of the complex form of the aver-

td
d

p⊥ ∇ U r( )–=

P ∆θ( ) 2
∆θ ∆θ( )2/ θs

2〈 〉–( )exp

θs
2〈 〉

----------------------------------------------------,=

θs
2 r( )〈 〉 16πe4 ∆z/E2( )=

× na r( )Z2Ln ne r( )Le+[ ] .
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aged potential, and the initial transverse coordinates of
particles and their momenta are also random (due to the
actual angular spread of particles in the beam), the
method of taking into account incoherent scattering
developed by us for channeling in fullerites is much
simpler and more natural than the method of kinetic
equations (see, for example, [2]) at least in the case of
axial channeling, when the phase space for transverse
motion is four-dimensional. As regards the calculation
of trajectories by the method of binary collisions of a
particle with crystal atoms [15], this approach proves to
be unproductive in the case of high energies since
dechanneling lengths are relatively large and an
extremely large number of collisions must be taken into
consideration. On the other hand, it will be proved by
subsequent calculations that the integration intervals ∆t
for particles with energy of hundreds of gigaelectron-
volts, the integration intervals ∆t contain more than
102 atoms (in this connection, the method used by us is
sometimes referred to as the method of aggregative col-
lisions [16]), which reduces the time of computation of
dechanneling lengths in the corresponding proportion.

Before analyzing the results of specific numerical
calculations, we estimate various aspects of the effect
of incoherent scattering on the dynamics of propaga-
tion of a particle beam in fullerites. For example, the
equilibrium spatial distribution of the flow of channeled
particles shown in Figs. 3 and 4 may turn out to be inac-
cessible since incoherent scattering on the relatively
long path of its formation (it was mentioned above that
the path length amounts at least to 10L0) may lead to a
considerable redistribution of particles in the phase
space if the path length is comparable with the dechan-
neling length. The dechanneling length ldc can be esti-
mated qualitatively by equating the mean square angle
of multiple scattering over this length to the square of
the Lindhard angle. This leads to the relation

(21)

Here, Es =  ≈ 21.2 MeV, and t0 is the radiative
unit of length defined by the equality

(22)

In our estimates, we use the values of nuclear and elec-
tron number densities na and ne averaged over the vol-
ume of the fullerite. If the inequality ldc @ 10L0 is satis-
fied, the effect of incoherent scattering on the equilib-
rium distribution can obviously be neglected, and the
previous results of calculation of the spatial distribution
for particle beams in channels remain in force. Accord-
ing to numerical estimates, this inequality holds for
electrons and positrons only for high energies of these
particles (E @5 GeV).

ldc

2U0E

Es
2

--------------t0.≈

4π"/e2

1
t0
---

4e6

"
-------- Z2naLn neLe+( ).=
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The self-consistency of this approach requires that
the dechanneling length be considerably larger than the
characteristic length L0 over which radial vibrations of
particles in the axial channel take place; otherwise,
incoherent scattering cannot be regarded as a relatively
small perturbation, and the concept of averaged poten-
tial is inapplicable (at least, in the case of classical
motion). This condition restricts the region of electron
and positron energies to values E * 1 GeV.

The results of more accurate numerical calculations
of dechanneling lengths for particles with different
energies E are given below. The method of aggregative
collisions was used for calculating random trajectories
of N = 103 particles for each value of total energy E. It
was assumed for simplicity that a particle beam is inci-
dent on the fullerite parallel to the crystallographic axes
and has a negligibly small initial angular divergence.
The computation of each energy value from those given
below took less than 25 h on a computer having a
capacity of 2 GFLOPS. Figure 6 shows the dependence
of the relative number Nch/N of ultrarelativistic posi-
tively charged particles (protons, π+ mesons, or
positrons) remaining in the [100] axial channel on the
depth z of beam penetration in the target. It follows
from these calculations that the dechanneling length
increases almost linearly with the particle energy,
which is in accord with the simple estimates obtained in
[21]. Slowing down of dechanneling at relatively large
depths is apparently associated with the fact that the
channels at such depths predominantly contain parti-
cles which channel in the space between the chains,
where the effect of incoherent scattering is weaker (see
above).

The effectiveness of deflection of positively charged
ultrarelativistic particles with an energy of 150 GeV
with the help of fullerites whose [100] axial channels
are bent in the (001) plane is illustrated by the family of
curves in Fig. 7. Following Tsyganov [12], we intro-
duced the critical radius of curvature Rc = RE/U0 ≈ 3.91 m,
where R is the radius of fullerene and U0 ≈ 13.5 eV is
the depth of the (deepest) potential well. In the region
of relatively small deflection angles and, hence, small
penetration depths in fullerite crystal, the number of
channeled particles varies nonmontonically with the
depth. This is due to the fact that the probability of
rechanneling, i.e., recapture of over-the-barrier parti-
cles in the potential well, is quite high at such depths.
According to the results presented here, the turning of
a particle beam is most effective for a radius of curva-
ture close to Rc; in this case, approximately 20% of par-
ticles in the beam may be turned through relatively
small angles of 0.2 mrad (corresponding to several tens
of Lindhard angles). The existence of the optimal
radius of curvature is associated with the effect of two
competing factors: smaller radii facilitate rotation
through a given angle for a smaller crystal length, thus
suppressing the dechanneling effect; this is accompa-
nied by an increase in the centrifugal field, decreasing
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the effective potential well depth that is so important for
channeling.

Figure 8 shows the angular distribution of particles
emerging from fullerite having a thickness T = 1.31mm
and bent with the radius of curvature Rb = 2Rc, which
corresponds to the rotation of the [100] axis through the
angle α = 1.68 × 10–4. The initial angular distribution is
presented by point with the coordinates θ0x = θ0y = 0 in
the momentum space. It can be seen that a considerable
fraction of particles in the beam follow the channel
bends and are turned through angles of the order of α.
These particles have an angular spread close to the

0 1

Nch/N, %

z, mm
2 3

20

40

60

80

100

4

23

1

Fig. 6. Relative number Nch/N of ultrarelativistic positive
particles channeled along the [100] axis at the beam pene-
tration depth z in the target. Curve 1 corresponds to the par-
ticle energy E = 150 GeV, curve 2 to 50 GeV, and curve 3 to
10 GeV.
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Fig. 7. Relative number Nch/N of positive particles with
energy E = 150 GeV channeled along the bent [100] axes of
fullerite as a function of the beam deflection angle α.
Curve 1 corresponds to the radius of curvature Rb = 2Rc,
curve 2 to Rb = Rc, and curve 3 to Rb = 0.5Rc.
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Lindhard angle. The remaining particles are turned
through angles smaller than α and are characterized
by a considerably larger angular spread. These are
particles which followed the channel bend for some
time and dechanneled at various depths z < T as a
result of incoherent scattering. Figure 9 shows for
comparison a similar angular distribution for a direct
crystal (Rb = ∞).
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Fig. 8. Angular distribution of 103 positive particles with
energy E = 150 GeV emerging from a fullerite of thickness
T = 1.31 mm, which is bent with the radius of curvature Rb =
2Rc.
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Fig. 9. Angular distribution of 103 positive particles with
energy E = 150 GeV emerging from a straight fullerite of
thickness T = 1.31 mm.
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According to the results of recent experiments car-
ried out at CERN [17], radiation energy loss for light
particles (electrons and positrons) with energies of hun-
dreds of gigaelectronvolts during channeling in dia-
mond crystals is almost two orders of magnitude higher
than the corresponding loss in an amorphous medium.
Thus, high-energy electrons and positrons may lose a
considerable part of their energy E at depths much
smaller than the radiation length t0 in an amorphous tar-
get (nonoriented crystal), which amounts to 25.5 cm in
the case of fullerite. This is due to the enhancement of
electromagnetic radiation of channeled particles in the
entire energy range ω of emitted photons, including the
region ω ~ E. If the radiation length becomes compara-
ble with the depth of penetration of particles in the crys-
tal, it is necessary to take into account radiation effects
in channeling and dechanneling processes. In the case
of fullerites, the parameter χ = "E|∇ U(r)| determining
the effect of quantum recoil in the positron radiation
(see, for example, [3]) is found to be small (≤ 0.05) if
the positron energy does not exceed ~1 TeV. This
allows us to use the classical formula for radiation loss
per unit time,

(23)

where r = r(t) is the transverse coordinate of the
positron, to estimate the influence of radiation effects in
fullerites. For energies *1 TeV, the emission spectrum
is displaced in the region of ω ~ E. In accordance with
the quantum theory of radiation, the quadratic depen-
dence of radiation loss of the particle energy in formula
(23) is replaced by a weaker dependence (radiation loss
becomes proportional to E2/3). Expression (23) was
averaged further in transverse coordinates with the dis-
tribution functions presented in Figs. 3 and 4. As a
result, it turned out that positrons with an energy of
150 GeV may lose no more than 0.9% of their energy
by emission on the entire path T = 1.31 mm. Energy
losses for electrons are slightly larger and amount
approximately to 4%. Thus, in contrast to diamond, we
can obviously disregard the effect of radiation loss for
axial channeling of positrons in fullerites up to positron
energies of the order of 1 TeV. This is due to the fact
that axial channels in fullerite are relatively shallower
and wider; for this reason, channeled positrons move on
the average in the region of a lower potential gradient
than in diamond. On the contrary, channeled electrons
move precisely at the periphery of fullerenes, where the
potential gradient has the maximum value and, hence,
the effect of radiation loss on electrons may be signifi-
cant at lower energies.

5. CONCLUDING REMARKS

Channeling of fast particles in crystals made of
fullerenes is characterized by a number of features dis-
tinguishing it from channeling in ordinary crystals due

dE
dt
-------

2e4E2

3
-------------- ∇ U r( ) 2,=
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to specific molecular structure of the fullerite crystal
lattice sites. For example, fullerites have deep, wide,
and nearly axisymmetric potential wells for positive as
well as negative particles, facilitating a more effective
trapping of particles in the axial channeling mode.

Axial channeling in bent fullerites makes it possible
to turn ultrarelativistic particle beams through relatively
large angles in contrast to ordinary crystals in which
axial channeling is ineffective for this purpose. The total
momentum of particles is rotated in this case in contrast
to planar channeling in bent crystals, in which only one
of the momenta components is rotated [12].

The dechanneling mechanisms in fullerites also
exhibit peculiarities associated with molecular rotation.
It is important to note, however, that the dechanneling
length for high-energy particles is quite large even if we
take into account the fluctuations of the averaged poten-
tial associated with this rotation.

In addition to fullerites consisting of C60 fullerenes
and considered in detail in this article, there exist simi-
lar molecular crystals consisting of nonspherical C70
molecules [18] as well as crystalline compounds of
fullerenes with different atoms (fullerides) [19]. Obvi-
ously, the features of channeling described above must
be observed in such structures also.

Under the action of high pressure and temperature, ful-
lerites may experience polymerization [20] hampering the
rotation of molecules at lattice sites. In this case, as well as
in fullerides in which neighboring fullerenes are strongly
linked through atoms of other elements, averaging of the
potential over molecular rotations is meaningless, and the
channeling in such a structure requires a further analysis.
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Abstract—The vibrational spectra of NH4Cl at pressures of up to 2.6 GPa and of NH4Br at pressures of up to
7 GPa are investigated by the method of inelastic incoherent scattering of neutrons. It is found that a linear baric
dependence of a librational mode changes its slope above the pressure of transition from a disordered cubic
phase into an ordered cubic phase with a CsCl-type structure. The slope of the baric dependence of the trans-
verse optical translational mode remains invariant. Estimates for the Grüneisen parameters are presented and
the shape of the potential function is calculated in the one-dimensional approximation for librational vibrations
in disordered and ordered cubic phases with a CsCl-type structure. It is shown that the phenomena observed are
attributed to the high anharmonicity in the disordered phase. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the effect of high pressures on
ammonium halides is of interest for finding out a rela-
tionship between the changes in the structure and the
dynamics of the latter and the phase transitions that
occur under a volume decrease [1]. One of the impor-
tant problems in the investigation of the dynamics of
ammonium halides is the study of the effect of high
pressure on the librational and translational modes of
ammonium ions and a change in their behavior under
phase transitions [2]. An answer to these questions can
be obtained by investigating the vibrational spectra of
crystals at high pressures by the methods of optical and
neutron spectroscopy. The methods of optical spectros-
copy are weakly sensitive to a librational mode; infor-
mation on the latter can only be obtained from over-
tones and combination modes. In contrast, the method
of neutron spectroscopy allows one to directly deter-
mine the position of a librational peak. However, exper-
iments on inelastic scattering of neutrons under suffi-
ciently high pressures have become possible quite
recently, due to the development of the anvil technique.

Under normal conditions, NH4Cl and NH4Br have a
cubic CsCl-type structure where ammonium ions are
orientationally disordered between two equivalent
positions (phase II). As pressure increases (at P ≈ 1 GPa
in NH4Cl and P ≈ 3 GPa in NH4Br), a phase transition
to a cubic phase IV occurs with a CsCl-type structure in
which ammonium ions are arranged parallel to each
other [3]. The vibrational spectra of NH4Cl and NH4Br
at high pressures were investigated by the methods of
Raman [4, 5] and neutron [2, 6, 7] spectroscopy. The
1063-7761/02/9406- $22.00 © 21134
vibrational spectra of NH4Cl at pressures of up to 4 GPa
were investigated in [2], where the frequencies of libra-
tional and transverse optical translational modes in the
orientationally ordered cubic phase IV were obtained
as functions of pressure. At the same time, the effect of
pressure on the behavior of the librational mode in the
orientationally disordered phase II in NH4Cl, which
exists at pressures below 1 GPa, has been studied insuf-
ficiently. In [7], the splitting of the librational peak was
observed near the point of the orientational phase tran-
sition II–IV in NH4Br at high pressures. A similar effect
was also observed in NH4Cl near the same transition
point at low temperature and normal pressure [8]. The
Raman spectroscopy data [5] suggested that the pres-
sure dependence of the librational mode frequency
changes its character due to the orientational phase
transition from the disordered phase II to the ordered
phase IV. It was assumed that this effect is associated
with a strong anharmonicity of the interatomic poten-
tial in the disordered phase II [5, 6].

The aim of the present paper is to study the behavior
of vibrational modes in related crystals NH4Cl and
NH4Br in a wide range of pressures above and below
the orientational phase transition II–IV by the method
of inelastic incoherent neutron scattering.

2. SETTING UP EXPERIMENTS

Experiments were carried out at room temperature
on a DN-12 spectrometer [9] on an IBR-2 high-flux
pulse reactor in the Frank Laboratory of Neutron Phys-
ics, Joint Institute for Nuclear Research (Dubna). An
002 MAIK “Nauka/Interperiodica”
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NH4Cl crystal was investigated under pressures of up to
2.6 GPa attained in a high-pressure vessel with sapphire
anvils [10]. The sample volume was V ≈ 5 mm3. The
chamber pressure was measured by the shift of a ruby
luminescence line with an accuracy of 0.05 GPa. An
NH4Br crystal was measured under a pressure of 7 GPa
obtained in a high-pressure vessel designed at the Insti-
tute of High-Pressure Physics by Yu.A. Sadkov and
S.M. Stishov. This chamber had Toroid-type tungsten
carbide anvils that were originally designed by
L.G. Khvostantsev and L.F. Vereshchagin for diffrac-
tion investigations [11]. The sample volume was V ≈
100 mm3. The vessel pressure was determined by the
known equation of state [12] for NH4Br by the variation
of the lattice parameter, whose value was determined
from additional diffraction experiments. The energy
transmission was analyzed with the use of a cooled
beryllium filter [13] in the case of NH4Cl and a conven-
tional beryllium filter in the case of NH4Br, which were
situated at a scattering angle of 2θ = 90°. The final
energy of detected neutrons was E = 4 meV. A typical
time needed for measuring one spectrum was 12 hours
for NH4Cl and 50 hours for NH4Br.

3. MAIN RESULTS

The spectra of the generalized density G(E) of
vibrational states in NH4Cl and NH4Br for various pres-
sures are shown in Figs. 1 and 2. They contain two
peaks corresponding to transverse optical translational
(TO) and librational (LO) modes. As pressure increases,
the frequencies of these modes increase with different
slopes (Fig. 3). The pressure dependence of the LO
mode frequency in NH4Cl slightly differs from the
results of Raman spectroscopy [5], while those of LO
and TO modes in NH4Br are in a good agreement with
the results of our recent neutron diffraction studies at
lower pressures [7].
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Fig. 1. Generalized density of vibrational states in NH4Cl
under different pressures. The shape of the peak is described
by a Gaussian curve, and the background, by a linear poly-
nomial.
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Near the point of the phase transition from the ori-
entationally disordered cubic phase II to the ordered
cubic phase IV in NH4Cl (Ptr ≈ 1 GPa) and NH4Br
(Ptr ≈ 3 GPa), the slope of the pressure dependence of
the LO mode varies, the variation being more conspic-
uous in the ammonium chloride (Fig. 3). In both com-
pounds, the pressure dependence of the TO mode in
phases II and IV is close to linear and does not have any
singularities near the point of phase transition. Within
the energy resolution, we could not observe any notice-
able variations in the shape of the librational mode peak
in NH4Cl and NH4Br in the entire range of pressures
considered. The analysis of the pressure dependence of
the half-width w of the librational peak (Fig. 4) in
NH4Cl showed that w decreases in approaching the
point of transition to the ordered phase, while w
remains approximately constant within this phase.

The table represents the Grüneisen parameters γi =
−(dlnωi /dlnV)T for LO and TO modes in NH4Cl and
NH4Br as well as the derivatives dωi /dP. These param-
eters are calculated for the disordered phase II under
normal pressure and for the ordered phase IV for P =
1.5 GPa and P = 3 GPa, respectively. We used the fol-
lowing values of the compression modulus B in our cal-
culations:

NH4Cl: B(P = 0) = 17.9 GPa,

B(P = 1.5 GPa) = 26.0 GPa;

NH4Br: B(P = 0) = 16.4 GPa,

B(P = 3.0 GPa) = 30.8 GPa [3].

The values of the Grüneisen parameter of the libra-
tional mode γL obtained here slightly differ from those
given in [5], which were obtained by the method of
Raman spectroscopy (see table). Due to the orienta-
tional phase transition that is accompanied by the

ordering of N  ions, γL in NH4Cl appreciably
decreases from 1.55 to 0.50. In NH4Br, the variation of

H4
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0.010
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Fig. 2. Generalized density of vibrational states in NH4Br
under different pressures. The shape of the peak is described
by a Gaussian curve, and the background, by a linear poly-
nomial.
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γL is not so significant; this parameter decreases from
0.59 to 0.38.

4. DISCUSSION OF THE RESULTS

The results obtained can be explained under the
assumption that the interatomic potential in the disor-

20
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P, GPa
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TO

NH4Cl

NH4Br

40

35

LO NH4Cl

NH4Br45

50

II IV

II IV

E, meV

Fig. 3. Frequencies of LO (top) and TO (bottom) modes ver-
sus pressure in phases II and IV in NH4Cl and NH4Br inter-
polated by linear functions: d and j represent the results
obtained in the present paper, s are the Raman data [5], and
h are the neutron diffraction data [7].
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dered phases of NH4Cl and NH4Br exhibits a clear-cut
anharmonic character (the anharmonicity of NH4Cl
being greater) and that, when passing to the ordered
phase, the shape of the potential becomes closer to a
harmonic one due to the deepening of the potential well
(Fig. 5). To verify this assumption, we carried out the
following simple estimations.
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Fig. 4. Half-width of the librational peak in NH4Cl as a
function of pressure.
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Fig. 5. Shape of the interatomic potential in the disordered
phase II and ordered phase IV in NH4Cl and NH4Br.
Grüneisen parameters of LO and TO modes in NH4Cl and NH4Br for phases II and IV

Mode Phase P, GPa dωi/dP, meV/GPa γi

NH4Cl
LO II 0 3.66 1.55(5)

II, data [5] 0 – 1.30(17)
IV 1.5 0.92 0.50(4)
IV, data [5] – – 0.29(6)

TO II, IV 0 2.57 2.30(5)
NH4Br

LO II 0 1.35 0.59(5)
II, data [5] 0 – 0.72(9)
IV 3.0 0.52 0.38(5)

TO II, IV 0 1.93 1.75(5)
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In the case of small oscillations near the minimum
of the potential energy, the simplest one-dimensional
anharmonic potential can be represented as

(1)

where m is the oscillator mass, ω is the oscillator fre-
quency in the harmonic approximation, and α and β are
constants that determine the degree to which potential
(1) is distorted as compared with the harmonic poten-
tial.

The frequency of a harmonic oscillator is deter-
mined by the parameters of the potential well, the
height U0 and the width d:

(2)

Then, the expression for the energy levels of the anhar-
monic oscillator within perturbation theory is given by
[14]

(3)

In a CsCl-type cubic structure, ammonium ions are
situated at the center of the unit cell, and the hydrogen
atoms occupy the positions (xxx) along the cube diago-
nals. There exist two possible equivalent positions for

N  ions in the disordered phase, and ammonium ions
can perform reorientational jumps between these posi-
tions [15, 16]. Hence, the frequency of librational oscil-
lations of an ammonium ion corresponds to the oscilla-
tion frequency of each hydrogen atom in the potential
well. The height of this well is determined by the rota-
tional potential barrier U0 for the reorientations of
ammonium ions, while its width d is of the order of the
distance between neighboring equivalent positions for
hydrogen atoms, d ~ lH-H (Fig. 5). The orientational
phase transition responsible for the ordering of ammo-
nium ions is associated with the deepening of one of the
two adjacent potential wells, so that only one of the two
equivalent (in the disordered state) orientations of ammo-
nium ions becomes energetically favorable (Fig. 5).

The frequency of the librational mode in NH4Cl and
NH4Br corresponds to the transition between the
ground and the first excited energy states of the anhar-
monic oscillator. Considering, for simplicity, one-
dimensional oscillations of a hydrogen atom in the
potential well described above, we obtain the following
expression from (2) and (3):

(4)

U x( ) mω2x2
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Quantity d in phases II and IV in NH4Cl under normal
pressure can be evaluated by formula (2) from the
known values of the librational mode frequency EL [6]
and the values of the activation energy W for the reori-
entations of ammonium ions [17], which correspond to
the rotational potential barrier in the classical approxi-
mation. For phase II at T = 290 K, EL = 42.3 meV [6],
and WII = 18.84 kJ/mol [17], we have dII = 0.952 Å. For
phase IV at T = 80 K, EL = 46.8 meV [6], and WIV =
23.03 kJ/mol [17], we have dIV = 0.953 Å, which is
roughly equal to dII. Since the cooling from 290 to 80 K
corresponds to the variation of the lattice parameter a in
NH4Cl from 3.866 to 3.834 Å (the linear thermal
expansion coefficient αL = 5 × 10–5 K–1 [18]), which is
equivalent to the application of a pressure of P = 0.5 GPa
at room temperature, one can assume to a good accu-
racy that d is invariant in the range of pressures consid-
ered, dCl ≈ 0.95 Å. A similar calculation for NH4Br with
the use of the values of EL, WII, and WIV from [7, 17]
yields a close value of dBr = 0.94 Å. Thus, the variation
of the librational mode frequency under the variation of
pressure (or under a decrease in the interatomic dis-
tance) is mainly determined by the variation of the
potential well depth U0.

In the simplest approximation, the dependence of
the height U0 of the potential barrier on the interatomic
distance (or on pressure) can be described by the power
function [19]

(5)

where a is the lattice parameter and M and C are exper-
imental constants.

Assuming that the shape of the interatomic potential
in the ordered phase IV is close to a harmonic one, we
interpolate by function (5) the dependence of the libra-
tional mode frequency on the lattice parameter EL(a)
(Fig. 6) calculated using the experimental function
EL(P) and the known equations of state for NH4Cl and
NH4Br [12, 20]. Thus, we obtain the following results:

NH4Cl: M = 2.59(5) × 106 kJ/mol, C = 3.56(1),

NH4Br: M = 1.79(5) × 106 kJ/mol, C = 3.40(1).

To calculate the interatomic potential in phase II,
one has to determine the parameters α and β. From the
interpolation of the experimental function EL(a) by
function (4) (Fig. 6), taking into account expression (5)
and the calculated values of M and C, we obtain α =
6.61 × 10–20 J/Å3 and β = 18.58 × 10–20 J/Å4 for NH4Cl
and α = 2.60 × 10–20 J/Å3 and β = 4.05 × 10–20 J/Å4 for
NH4Br. In these calculations, we took into account that
the transition is accompanied by a stepwise variation in
the potential well depth by ∆ ≈ 4 kJ/mol in NH4Cl and
by ∆ ≈ 2 kJ/mol in NH4Br [17].

Formulas (4) and (5) describe the behavior of the
librational mode frequency as a function of the lattice

U0 a( ) M/aC,=
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parameter. Using these formulas, we can calculate the
Grüneisen parameter in phases II and IV, representing
the appropriate formula as

(6)

where a is the lattice parameter. The calculated values
of Grüneisen parameters were γL = 1.78 for NH4Cl and
γL = 0.89 for NH4Br in phase II at P = 0 and γL = 0.59
(P = 1.5 GPa) for NH4Cl and γL = 0.56 (P = 3.0 GPa)
for NH4Br in phase IV. Although these values are some-
what greater than the experimental values (see table),
the agreement between them can be considered as sat-
isfactory for a simple estimation. Anyway, qualita-
tively, the experimental situation is fully described. A
more accurate calculation of γL requires a detailed anal-
ysis of the contributions of various interatomic interac-
tions to the potential energies of NH4Cl and NH4Br in
the three-dimensional case. Note that the phenomenon
observed occurs only with a librational mode responsi-
ble for the transition and does not occur (or is incompa-
rably small) in the case of a translational optical mode
because of the smaller amplitude and frequency of
oscillations. A variation in the width of the librational
peak in the disordered phase of NH4Cl that falls outside
the resolution is likely to be associated with the varia-
tion in the lifetime of excitations in approaching the
transition pressure to the ordered state. The absence of
the splitting of the librational peak in the ordered state
in NH4Cl near the transition point, which was observed
in NH4Br [7, 8] and was associated with excitations in
two potential wells in incomplete ordering, is obviously

γL
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Fig. 6. Frequency of the librational mode as a function of
the lattice parameter in phases II and IV in NH4Cl and
NH4Br. The solid and dashed curves represent the results of
computations with the use of the functions (4) for phase II
and (5) for phase IV.
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attributed to the insufficient energy resolution of the
DN-12 spectrometer.

5. CONCLUSION

The results obtained in this work show that the ori-
entational phase transition II–IV in NH4Cl and NH4Br
results in an appreciable change in the behavior of the
librational mode as a function of pressure; this fact
manifests itself in the strong variation in the Grüneisen
parameter and the narrowing of the librational peak.
Such a behavior is associated with the fact that the
ordering of ammonium ions changes the shape of the
rotational potential from strongly anharmonic in the
disordered phase II to nearly harmonic in the ordered
phase IV. Because the phenomenon observed seems to
be of a sufficiently general nature, one can expect that
it will also manifest itself in other molecular crystals
under orientational phase transitions, as well as in the
variation of the properties associated with the anharmo-
nicity, in particular, in thermal expansion.
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Abstract—The form factor representation of the correlation function of the 2D Ising model on a cylinder is
generalized to the case of arbitrary arrangement of correlating spins. The magnetic susceptibility on a lattice,
one of whose dimensions (N) is finite, is calculated in both the ferromagnetic and the paramagnetic region of
the parameters of the model. The structure of singularities of susceptibility in the complex temperature plane at
finite values of N and the transition to the thermodynamic limit N  ∞ are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The Ising model has long been attracting the atten-
tion of researchers. The computation of free energy [1],
and spontaneous magnetization [2], and the representa-
tion of correlation functions in the form of series [3, 4],
as well as the derivation and solution of nonlinear dif-
ferential equations [5, 6] for the correlation functions,
are the most important advances of present-day mathe-
matical physics. The problem on the computation of the
partition function in the 2D Ising model with interac-
tion between nearest neighbors in the absence of an
external field is exactly solved [7] both in the thermo-
dynamic limit and on a finite-size lattice with due
regard for different boundary conditions. The elegance
and simplicity of the corresponding expressions enable
one to thoroughly study the special features of transi-
tion to the thermodynamic limit and get an idea of the
mechanism of the emergence of critical singularities in
thermodynamic quantities from both the physical and
the mathematical standpoint.

The analytical expressions for thermodynamic
quantities, which include the dependence on the lattice
size, are useful from the standpoint of possible applica-
tions as well. They may be used for reference in solving
problems of computer simulation of thermodynamic
and quantum-field systems for quantitative estimation
of the number of degrees of freedom at which a discrete
numerical model may be taken to be adequate to the ini-
tial continuous and infinite system. Such results may
further be used as the starting point in theoretical anal-
ysis of problems associated with modern experiments
and technologies, where one has to deal with an explic-
itly noninfinite number of particles.

In this paper, exact expressions are given for the pair
correlation function and susceptibility in the Ising
model on a lattice with one finite, N = const, and the
other infinite, M  ∞, dimension in the form analo-
1063-7761/02/9406- $22.00 © 21140
gous to form factor expansion [8, 9]. We will investi-
gate the structure of singularities of susceptibility at
finite values of N and discuss the transition to the ther-
modynamic limit N  ∞.

2. CORRELATION FUNCTION 〈σ(0, 0)σ(x, 0)〉
The Ising model on an M × N square lattice (see Fig. 1)

is defined by the Hamiltonian H[σ],

where the two-dimensional vector r = (x, y) labels the
lattice sites: x = 1, 2, …, M, y = 1, 2, …, N; the Ising
spin σ(r) in each site assumes the values of ±1; the
parameter J > 0 defines the coupling energy of a pair of

H σ[ ] J σ r( ) ∇ x ∇ y+( )σ r( ),
r

∑–=

Fig. 1. The numbering of the lattice sites and the variants of
arrangement of correlating spins: (a) spins are arranged on
a line parallel to the cylinder axis, and (b) arbitrary arrange-
ment of spins on the lattice.
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adjacent spins. The shift operators ∇ x and ∇ y act as

The partition function at the given temperature β–1

(2.1)

and the pair correlation function

(2.2)

are given by sums over all possible spin configurations.
We will use the following dimensionless parameters:

(2.3)
We will treat an Ising lattice with periodic boundary

conditions along both axes. For the shift operators,
these conditions lead to the equalities

With these boundary conditions, the partition func-
tion given by Eq. (2.1) may be represented as the sum
of four terms [7],

(2.4)

each of which is a Pfaffian of the operator  (the lattice
analog of the Dirac operator),

(2.5)
where

(2.6)

The superscripts (f, b) of the quantities Q in Eq. (2.4)
indicate the type of boundary conditions for the opera-
tors (∇ x, ∇ y), respectively, which enter the matrix given
by Eq. (2.6),

(2.7)

If one of the lattice dimensions exceeds considerably
the other one, for example, M @ N, i.e., the torus degen-
erates into a cylinder, then only the “antiperiodic” con-
tribution survives on the right-hand side of Eq. (2.4),1

(2.8)

1 This is taken to mean that Z = Qf, f(1 + e(M, N, s));
here, the function e(M, N, s) has, at s > 0 and N ≥ 1, a well-defined
limit  = 0. It is obvious that e(M, N, 0) = 0,

because all Pfaffians in Eq. (2.4) Qα, β = 1. By way of illustration,
consider the asymptotic expression for e(M, N, 1) at M @ N @ 1
e(M, N, 1) ≈ exp[–(πM)/(4N)].

∇ xσ x y,( ) σ x 1+ y,( ), ∇ yσ x y,( ) σ x y 1+,( ).= =

Z e βH σ[ ]–

σ[ ]
∑=
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The operator  is translationally invariant and diago-
nalized by Fourier transformation, and the Pfaffian
given by Eq. (2.5) is readily calculated. As a result, the
following factorized representation is derived for the
partition function given by Eq. (2.8):

(2.9)

The superscript f on the sign of products (or summa-
tion, in what follows) indicates that the quasimomen-
tum components qx and qy run in the Brillouin zone over
half-integer values in the units 2π/M and 2π/N, respec-
tively; the superscript b indicates integer values. For
example,

The product on the right-hand side of Eq. (2.9) with
respect to one of the components of momentum may be
taken in an explicit form, and the partition function
takes the form

(2.10)

where the function γ(q) is defined by the positive root
of the equation

(2.11)

(2.12)

If q ≠ 0, γ(q) remains positive in the entire permissible
range of variation of the parameter 0 < s < ∞. However,
γ(0) as a function of s changes its sign after crossing the
critical point s = 1. Because the product in Eq. (2.10) is
taken over the fermion spectrum which does not have a
point q = 0, no problems are caused by the fact that γ(0)
is of alternating sign. However, we will run ahead
somewhat and note that the ambiguity in the definition
of γ(0) = ±µ results in two different representations for
the correlation function.

The sum over spin configurations on the right-hand
side of expression (2.2) for the correlation function may
also be represented in the form of a combination of
Pfaffians of some operators [10]. However, the respec-
tive matrices are not translationally invariant, which
complicates the calculations drastically compared with
the computation of the partition function. Nevertheless,
the ratio of the Pfaffians, in terms of which the correla-
tion function is expressed in the final analysis, may be

D̂
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reduced to the determinant of a matrix of much smaller
dimension,

(2.13)

where the dimension dim = dim(r) is defined by the dis-
tance between the correlating spins. Subsequent opera-
tions (which are far from simple) consist in calculating
the determinant, or, to be more precise, in transforming
representation (2.13) to a representation in which the
dependence on distance would be in an analytical form.
Papers on this subject are still being published, although
forty years have passed since the pioneer paper [3], which
points to the complexity of the problem.

Most acceptable from the physical standpoint
appears to be the so-called form factor representation of
the Ising model, which was first obtained by Palmer
and Tracy [8] for an infinite lattice in the ferromagnetic
region (K > Kc, s > 1) and later generalized by Yamada
[9] to the paramagnetic case (K < Kc, s < 1). Note that a
similar representation for the two-point Green’s func-
tion was derived somewhat earlier [11] within the
S-matrix approach [12] for a quantum-field model with
a factorable S matrix (S2 = –1), which is usually associ-
ated with the scaling limit of the Ising model. The dis-
covery of the form factor representation gave rise to the
development of a separate trend [13] in exactly integra-
ble models of the quantum field theory.

Naturally, the problem is much more complicated
for a finite lattice; however, the result of [14] proves, in
a way, to be even simpler. In a particular case, when the
spins are arranged along one of the principal axes of the
lattice, the matrix in the right-hand part of Eq. (2.13)
takes the Toeplitz form, and the problem is simplified.
Let the sites at which the correlating spins are located
be arranged on a line parallel to the horizontal axis, as
is shown in Fig. 1 (line a). Then,

(2.14)

where the matrix  of size |x| × |x| has the form [14]

(2.15)

and its elements on diagonals parallel to the principal
diagonal (k – k' = const) are identical.

As is demonstrated in [14], the Wiener–Hopf tech-
nique of integral equations [7] properly adapted to the
case of a finite-size lattice may be used to analytically

σ 0( )σ r( )〈 〉 detA dim( ),=

σ r1( )σ r2( )〈 〉 detA x( ), r2 r1– x 0,( ),= =

Ak k',
x( )

Ak k',
x( ) 1

MN
---------=

× e
i px k k'–( )

2t 1 t2+( ) 1 t2–( ) e
i px t2e

i px–
+( )–[ ]

1 t2+( )2
2t 1 t2–( ) pxcos pycos+( )–

--------------------------------------------------------------------------------------------------------,
p

f f,

∑
k k', 0 1 … x 1,–, , ,=
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calculate the Toeplitz determinant given by Eqs. (2.14),
and the correlation functions are represented as

(2.16)

at γ(0) = µ,

(2.17)

at γ(0) = –µ,

   g0 = 1, (2.18)

(2.19)

where γi = γ(qi) and ηi = η(qi). Expressions (2.16) and
(2.17) are the sums of a finite number of contributions
gn; however, the upper limits of summation may be for-
mally extended to infinity, because one can see in
Eqs. (2.19) that the form factors Fn[q] vanish at n > N.
Note an important detail, namely, that the summation
over the phase volume in (2.18) is taken over the boson
spectrum of quasimomenta, in contrast with the initial
fermion spectrum which defines, in particular, the
matrix given by Eq. (2.15) as well. The remaining
quantities appearing in Eqs. (2.16)–(2.19) are given by

(2.20)

(2.21)

(2.22)

(2.23)

One can see in Eqs. (2.21)–(2.23) that the quantities
ξT, Λ–1, and η(q), which will be referred to as cylindri-
cal parameters, explicitly depend on the number of sites
N on the cylinder circumference. Their asymptotic
behavior for high values of N, or, to be more precise, for
N|µ| @ 1, is as follows:

(2.24)

(2.25)
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0

π

∫=

ξT
1
π
---e 2N µ– ,≈ln

Λ 1– e–N µ 2 µsinh
πN

--------------------,≈
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(2.26)

Outside of the critical point, as N increases, the cylin-
drical parameters Λ–1, lnξT, and η(q) decrease exponen-
tially and go to zero on an infinite lattice. The finite
sums given by Eqs. (2.16) and (2.17) transform into
series, the summation over the phase volume in (2.18)
is replaced by integration, and, as a result, form factor
representations on a cylinder transform into form factor
representations on an infinite lattice [8, 9]. For any
finite values of N, both expansions (i.e., in terms of even
values of n (2.16) and in terms of odd values of n (2.17))
are valid in both the ferromagnetic (s > 1) and the para-
magnetic (s < 1) region. However, for N  ∞, the series
in terms of even values of n is well-defined and conver-
gent in the ferromagnetic region, and the series in terms
of odd values of n, in the paramagnetic region. It will be
recalled that the starting quantity was the determinant
given by Eq. (2.14) of a matrix of size |x| × |x|; the num-
ber of terms in the formal definition of this determinant
increases very rapidly with |x|. However, form factor
representations (2.16)–(2.19) are the finite sum of
terms for a fixed value of N, with the number of those
terms being independent of |x|. This offers a unique pos-
sibility of verifying expressions (2.16)–(2.19) by com-
paring them with the results of, for example, transfer-
matrix calculations for N-row Ising chains, and we took
the advantage of this possibility. For a given value of N,
the transfer matrix for an N-row chain of Ising spins is
2N × 2N. Therefore, for small values of N, one can ana-
lytically solve the respective set of equations and derive
all of the eigenvalues and eigenvectors. We managed to
perform such verification analytically for N = 2, 3, 4
and numerically for N = 5, 6. Naturally, the result was
positive.

3. CORRELATION FUNCTION 
〈σ(0, 0)σ(x, y)〉

It will be recalled that a rigorous derivation of form
factor representation on a cylinder was given in [14]
only for the particular case of the correlating spins
arranged along the cylinder axis. We have not yet suc-
ceeded in generalizing the method to the case of the
correlating spins arranged on the cylinder circumfer-
ence, much less for their arbitrary configuration (Fig. 1,
line b). Meanwhile, in order to obtain a momentum rep-
resentation for the correlation function

(3.1)

or the magnetic susceptibility related to the value of

(p = 0), one must have the explicit dependence of the
correlation function on both components of the radius
vector r. From the physical standpoint, the form factor
representation (2.16)–(2.19) being treated has a very

η q( )
4e N µ–

eγ q( ) 1–( )
---------------------- µsinh

2πN
-----------------.≈

G̃ p( ) eip r⋅ σ 0( )σ r( )〈 〉
r

∑=

G̃
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transparent structure. This enables one to make reason-
able assumptions for respective generalizations; the
above-mentioned possibility of independent verifica-
tion enables one to eliminate false hypotheses and
make a correct choice. In principle, with a nonzero
value of the y component of the vector r, all quantities
appearing in Eqs. (2.16)–(2.19) may be modified. How-
ever, the variation that clearly suggests itself, for exam-
ple, in the case of respective expressions for the corre-
lation function in a system of free bosons or fermions
on a lattice, is primarily the substitution

Surprisingly enough, this proves to be sufficient. If one
uses the expression

(3.2)

instead of gn(x) in Eq. (2.18), the correlation functions
given by Eqs. (2.16) and (2.17) will exactly (in an ana-
lytical form) agree with the results of transfer-matrix
calculations for N = 2, 3, 4 in the entire range of the
parameters x, y, and K. The results of numerical calcu-
lations confirm this for higher values of N = 5, 6. In the
case of N > 6, the size of the transfer matrix is too large
for numerical computer calculations as well. We have
no doubt that generalization (3.2) is true. Hopefully, the
knowledge of the correct answer will facilitate its rigor-
ous derivation.

For illustration, consider the example with N = 3. By
their structure, expansions (2.16) and (2.17) in view of
(3.2) are very similar to the representation of the corre-
lation function in the form of an expansion in a power
series in the eigenvalues of the transfer matrix,

(3.3)

where λ0 is the highest eigenvalue, and the coefficients
aj(y) are expressed in terms of bilinear combinations of
components of eigenvectors. In order to reduce, for
example, Eq. (2.17) to the form of (3.3), we will use the
following expressions for the cylindrical parameters ξT

and Λ–1, as well as η(q):

(3.4)

(3.5)

e x γ q( )– e x γ q( )– iyq– .

gn r( )
e n/Λ–

n!Nn
----------- e

x γ j iyq j η j–––

γ jsinh
----------------------------- 

  Fn
2 q[ ] ,

j 1=

n

∏
q[ ]

b

∑=

g0 1,=

σ 0( )σ r( )〈 〉 a1 y( ) λ1/λ0( ) x=

+ a2 y( ) λ2/λ0( ) x( ) …,+

Λ 1– 1
2
--- γ q( )

q

f

∑ γ q( )
q

b

∑–
 
 
 

,=

–Λ 1– η qi( )–( )exp

γ q( ) γ qi( )+
2

--------------------------- 
 sinh

q

b

∏
γ q( ) γ qi( )+

2
--------------------------- 

 sinh
q

f

∏
----------------------------------------------------,=
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(3.6)

ξT
4 γ q( ) γ p( )+

2
-------------------------- 

 sinh
2

p

f

∏
q

b

∏ 
 
 

=

× γ q( ) γ p( )+
2

-------------------------- 
 sinh

p

b

∏
q

b

∏

+
γ q( ) γ p( )+

2
-------------------------- 

 sinh
p

f

∏
q

f

∏
1–

.
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These expressions are derived from Eqs. (2.21)–
(2.23) if we change to contour integrals in z = eiq.
After contracting the integration contours, the
respective integrals are expressed in terms of sums of
residues at the poles, which produces the representa-
tions given by Eqs. (3.4)–(3.6).

For N = 3, Eqs. (3.4)–(3.6) and (2.20) give

(3.7)Λ 1– 1
2
--- γ π( ) 2γ π

3
--- 

  γ 0( )– 2γ 2π
3

------ 
 –+ ,=
(3.8)

(3.9)

As a result, we derive

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

ξξ T

γ 0( ) γ π/3( )+
2

------------------------------- γ π( ) γ 2π/3( )+
2

----------------------------------- γ 2π/3( ) γ π/3( )+
2

----------------------------------------sinh
2

sinhsinh

γ 0( ) γ 2π/3( )+
2

---------------------------------- γ π( ) γ π/3( )+
2

------------------------------- γ π/3( ) γ 2π/3( )sinhsinhsinhsinh
-------------------------------------------------------------------------------------------------------------------------------------------------,=

–Λ 1– η q( )–( )exp

γ 0( ) γ q( )+
2

-------------------------- γ 2π/3( ) γ q( )+
2

----------------------------------sinh
2

sinh

γ π( ) γ q( )+
2

-------------------------- γ π/3( ) γ q( )+
2

-------------------------------sinh
2

sinh
-------------------------------------------------------------------------------------.=

λ0

λ1
-----ln Λ 1– γ 0( ),+=

λ0

λ2
-----ln Λ 1– γ 2π

3
------ 

  ,+=

λ0

λ3
-----ln Λ 1– γ 0( ) 2γ 2π

3
------ 

  ,+ +=

a1 y( )
1
3
---

γ 0( ) γ 2π/3( )+
2

---------------------------------- γ π( ) γ 2π/3( )+
2

----------------------------------- γ 2π/3( ) γ π/3( )+
2

----------------------------------------sinh
2

sinhsinh

γ 0( ) γ π/3( )+
2

------------------------------- γ π( ) γ π/3( )+
2

------------------------------- γ π/3( ) γ 2π/3( )sinhsinhsinhsinh
--------------------------------------------------------------------------------------------------------------------------------------------------,=

a2 y( )
2
3
---

γ 0( ) γ π/3( )+
2

------------------------------- γ 0( ) γ π( )+
2

--------------------------sinhsinh

γ π/3( ) γ π/3( ) γ π( )+
2

-------------------------------sinhsinh
-------------------------------------------------------------------------------- 2πy

3
--------- 

  ,cos=

a3 y( )
1
64
------ γ 0( ) γ π/3( )+

2
------------------------------- γ π( ) γ π/3( )+

2
-------------------------------sinhsinh=

× γ 0( ) γ 2π/3( )+
2

---------------------------------- γ π( ) γ 2π/3( )+
2

-----------------------------------sinhsinh

× γ π
3
--- 

  γ 2π
3

------ 
  γ π/3( ) γ 2π/3( )+

2
----------------------------------------sinh

2
sinhsinh

1–

.

The 23 × 23 transfer matrix has eight eigenvalues, but
some of them are identical. In addition, some components
of the respective eigenvectors go to zero. Therefore, only
three (rather than seven) eigenvectors remain in the
 

expression (3.3) for the correlation function. In view of the
definition (2.11), (2.12) of the function γ(q) for particular
values of the momentum q = 0, π/3, 2π/3, π, these contri-
butions exactly correspond to Eqs. (3.10)–(3.15).
AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002



THE MAGNETIC SUSCEPTIBILITY OF TWO-DIMENSIONAL ISING MODEL 1145
4. MOMENTUM REPRESENTATION 
OF THE CORRELATION FUNCTION

Given expression (3.2) for gn(r), which contains an
explicit dependence on the projections of r, we will
take the Fourier transform. We will write momentum
representation (3.1) in the form of the sum of partial
contributions similarly to Eqs. (2.16) and (2.17),

(4.1)

(4.2)

where

(4.3)

We perform summation in Eq. (4.2) to derive

(4.4)

The quasimomentum component px has a continuous
spectrum in the [–π, π] range, and py is discrete,

Accordingly, the δ function on the right-hand side of
Eq. (4.4) has the meaning of the Kronecker symbol,

The function  is periodic in px, py, with the period
2π. We introduce unity under the summation sign in
Eq. (4.4),

(here, the Dirac δ function is under the integral), and
change the order of summation and integration to
derive

(4.5)

G̃ p( ) ξξ T g̃n p( ),
n

∑=

g̃n p( ) e x /Λ– gn r( )eipr,
r

∑=

r

∑ .
y 1=

N

∑
x ∞–=

∞

∑=

g̃n p( )
e–n/Λ

n!Nn 1–
----------------- e

η j–

jsinh
-------------

j 1=

n

∏ 
 
 

q[ ]

b

∑=

×

Λ 1– γ j

j 1=

n

∑+
 
 
 

Fn
2 q[ ]sinh

Λ 1– γ j

j 1=

n

∑+
 
 
 

pxcos–cosh

-----------------------------------------------------------------δ py q j

j 1=

n

∑–
 
 
 

.

py
2πl
N

--------, l 1 2 … N ., , ,= =

δ py q j

j 1=

n

∑–
 
 
 

δ l l j

j 1=

n

∑–
 
 
 

modN

.=

g̃n p( )

1 ωδ Λ 1– γ j ω–
j 1=

n

∑+
 
 
 

d

Λ 1–
nγ 0( )+

Λ 1–
nγ π( )+

∫=

g̃n p( ) ω ωsinh
ωcosh pxcos–

------------------------------------ρn ω py,( ),d

Λ 1–
nγ 0( )+

Λ 1–
nγ π( )+

∫=
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(4.6)

On an infinite lattice in the scaling limit, the rotation
symmetry is restored and, as a result, the set of equa-
tions (4.5) and (4.6) changes to the classical Lehmann
representation in quantum field theory.

5. MAGNETIC SUSCEPTIBILITY

If a rectangular lattice has a size M × N and the same
interaction energies for the vertical and horizontal cou-
plings, the partition function Z depends on four vari-
ables,

(5.1)

where the dimensionless parameter h = β*, and * is
the magnetic field. The specific magnetization M and
magnetic susceptibility χ are expressed in terms of field
derivatives of the partition function,

(5.2)

(5.3)

Due to Z2 symmetry of the Ising model, the magnetiza-
tion goes to zero at h = 0 for any finite dimensions M
and N, and even if one of these dimensions is held
finite. In the latter case, when, for example, M  ∞
and N = const, a two-dimensional Ising model degener-
ates into an N-row chain of Ising spins; from the ther-
modynamic standpoint, this chain is a one-dimensional
system in which a spontaneous violation of symmetry
is impossible. We represent the susceptibility in the
form of the sum of partial contributions to derive from
Eqs. (4.1)–(4.4)

(5.4)

(5.5)

(5.6)

ρn ω py,( )
e n/Λ–

n!Nn 1–
----------------- e

η j–

γ jsinh
---------------

j 1=

n

∏ 
 
 

q[ ]

b∑=

× Fn
2 q[ ]δ Λ 1– γ j ω–

j 1=

n

∑+
 
 
 

δ py q j

j 1=

n

∑–
 
 
 

.

Z Z K h N M, , ,( ) e
βH σ[ ] h+–

σ[ ]
∑= =

σ r( )
r
∑

,

M K h N M, , ,( )
1

MN
---------∂ Zln

∂h
------------ σ〈 〉 ,= =

β 1– χ K h N M, , ,( )
∂M
∂h

---------=

=  σ 0( )σ r( )〈 〉 σ〈 〉 2–( ).
r

∑

χ χ0 χ2l at γ 0( )
l 1=

N /2[ ]

∑+ µ,= =

β 1– χ0 ξξ T N 1/2Λ( ),coth=

χ χ2l 1+ at γ 0( )
l 0=

N 1–( )/2[ ]

∑ µ,–= =
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(5.7)

In the paramagnetic region (s < 1), expression (5.6)
admits the limit N  ∞ and transforms to susceptibil-
ity on an infinite lattice owing to the absence of sponta-
neous magnetization in the paramagnetic phase. In the
ferromagnetic region (s > 1), the transition to the limit
N  ∞ is possible only for the quantity χF,

(5.8)

which reproduces what is usually regarded as the mag-
netic susceptibility of the Ising model at h = 0 in the
thermodynamic limit. For high but finite values of N,
the main contribution to susceptibility is made by the
term χ0, as is seen from Eq. (5.5),

(5.9)

which exponentially increases with the cylinder cir-
cumference. It follows from Eq. (5.9) that, the higher
the value of N, the lower the perturbing field δh ~ e–N|µ|

required for ordering all spins on the lattice.
Although the two-dimensional Ising model is usu-

ally referred to as exactly solvable, no exact solution for
the partition function in the presence of an external field
has yet been found either in the thermodynamic limit or
for a finite-size lattice. However, the very fact of the
emergence of spontaneous magnetization for an infi-
nite-size lattice may be ascertained from analysis of
high- and low-temperature expansions for free energy
in the Ising model without appealing to the exact solu-
tion. A rigorous definition of spontaneous magnetiza-
tion is given by the following order of limiting pro-
cesses in accordance with Bogolyubov’s concept of
quasiaverages,

(5.10)

However, assuming the permutability of the respective
limits and the weakening of correlations over long dis-
tances, one can derive an exact expression for the
square of spontaneous magnetization and relate it to the
value given by Eq. (2.20) of pair correlation function
for the Ising model on an infinite lattice with zero mag-
netic field,

(5.11)

β 1– χn
e n/Λ–

n!Nn 1–
----------------- e

η i–

γisinh
---------------

i 1=

n

∏ 
 
 

q[ ]

b

∑=

× Fn
2 q[ ] 1

2
--- Λ 1– γi

i 1=

n

∑+
 
 
 

δ qi

i 1=

n

∑ 
 
 

.coth

χF χ χ0– χ2l,
l 1=

∞

∑= =

β 1– χ0 2ξNΛ πξN3/2

µsinh
---------------------eN µ ,≈≈

M0 K( ) M K h N M, , ,( )
M N ∞→,

lim[ ]
h 0→
lim .=

M0
2

K( ) σ 0( )σ r( )〈 〉
r ∞→
lim=

=  σ 0( )〈 〉 σ ∞( )〈 〉 σ〈 〉 2 ξ .= =
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Meanwhile, in the thermodynamic limit, the sum over
the lattice of each one of the terms on the right-hand
side of Eq. (5.3) taken separately is divergent. There-
fore, the replacement of M2(K, 0, ∞, ∞) in the last stage
of the limiting processes h  0 and M, N  ∞ by
the limiting values of the correlation function (equal to
ξ) under the (infinite) summation sign implies both
equality (5.11) and the existence of the limit

(5.12)

and, in addition,

(5.13)

The explicit form of dependence of the correlation
function on the dimension N, namely, the exponentially
fast tendency of the cylindrical parameters to their lim-
iting values given by Eqs. (2.24)–(2.26) may serve as
indirect proof of the validity of equalities (5.12) and
(5.13).

One can see in Eqs. (2.18) and (3.2) that the behav-
ior of the correlation function over long distances in the
ferromagnetic region is largely defined by the first term
in expansion (2.16); note that this term does not depend
on the y projection,

(5.14)

One can see that the distance of the order of Λ, within
which the spins are rigidly correlated, increases very
rapidly (see Eq. (2.25)) with N. Physically, this means
that, in the ferromagnetic temperature region, the cylin-
der is divided into highly extended regions (domains)
with nonzero magnetization, while the average magne-
tization of the entire infinitely long cylinder remains
zero. It would be reasonable if the (square of) spontane-
ous magnetization in such a pattern was provided by the
value of the correlation function at distances |r | = R(N),
which are fairly long but do not exceed the domain size,
rather than in the limit |r |  ∞,

N ! R(N) ! Λ.

One can see in Eq. (2.25) that, at fairly high values of
N, such inequalities may be valid. In accordance with
this, the summation in infinite limits over the coordi-
nate x in the definition of the thermodynamic limit of
susceptibility given by Eq. (5.3) must be replaced by
the summation within limits that do not exceed the
characteristic domain size. In this case, definition (5.8)
for susceptibility in the ferromagnetic phase is formally
substantiated by the condition of vanishing of the quan-
tity

MN M2
K h M N, , ,( ) ξ–[ ]

M N ∞→,
lim

 
 
 

h ∞→
lim  = f K( ),

f K( ) 0.=

G0 r( ) ξξ Te x /Λ– .=

G0 r( ) G0 R( )–[ ]
y 1=

N

∑
x R–=

R

∑ ξNR2/Λ 0≈ N → ∞
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at N  ∞, which leads to the estimation of the ther-
modynamic cutoff parameter R(N),

We believe that these estimations clarify to a certain
extent the physical meaning of the formal procedure of
thermodynamic limit.

6. STRUCTURE OF SINGULARITIES
The initial expression (2.1) for the partition function

in the Ising model is a polynomial in s, and the solution
given by Eq. (2.9) is a factorized notation of this poly-
nomial. It provides a good example of the mechanism
of Lee–Yang “zeros” [15], which causes the emergence
of critical singularities in the thermodynamic limit. The
roots of the polynomial given by Eq. (2.9) are arranged
on the circle |s| = 1 in the complex s plane. For any finite
values of M and N, no zero appears on the real axis s =
1 because of the absence of the value of quasimomen-
tum qx = qy = 0 from the fermion spectrum. If at least
one of the dimensions increases indefinitely, zeros
crowd on the circle |s| = 1 to form a dense set. In the
M  ∞, N = const limit, they transform into a finite
number (equal to N) of branch points of the root type on
the circle |s| = 1, as is demonstrated by representation
(2.10) and Eqs. (2.11) and (2.12) defining γ(q) as a
function of s. In their turn, these branch points crowd,
as N increases, to form a dense set; however, in the limit
N  ∞, they transform into four isolated branch
points of the logarithmic type at s = ±1, ±i. As a result
of such transformations, the specific heat in the thermo-

R N( ) ! Λ/Nξ eN µ /2 π/ 2N µsinh( )[ ] 1/4.≈
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dynamic limit becomes divergent (~ln|1 – s|) at the critical
point; however, in so doing, the specific heat is expressed
in the form of one and the same function both above and
below the phase transition temperature.

One would expect the pattern to be the same in the
case of magnetic susceptibility as a function of the
complex variable s. Indeed, the initial expression (2.2)
for the correlation function with finite values of M and
N is a ratio of polynomials in s. The denominator con-
tains the partition function; we have briefly described
above the formation of the structure of its singularities.
Unfortunately, the polynomial in the numerator cannot
be represented in an equally simple factorized form.
Nevertheless, the form factor representation with
M  ∞ and finite value of N obtained by us indicates
that the correlation function has a finite number of root
branch points on the circle |s| = 1. Their number is dou-
bled compared with the case of the partition function,
because expressions (2.16)–(2.19) and (3.2) contain func-
tions γ(q) (2.11) which correspond to the quasimomentum
values from both the fermion and the boson spectrum. The
susceptibility on a cylinder is given by the infinite sum of
correlation functions, which, in principle, may bring about
the emergence of additional singularities. One can make
sure, however, that such singularities do not arise on the
first sheet of the Riemann surface.

By way of example, we will explicitly write expres-
sion (5.4) for χ for N = 3, using representations (3.7)–
(3.9) for cylindrical parameters, as well as expressions
(3.13)–(3.15),
(6.1)

β 1– χ

γ 0( ) γ 2π/3( )+
2

----------------------------------sinh γ π( ) γ 2π/3( )+
2

-----------------------------------sinh γ 2π/3( ) γ π/3( )+
2

----------------------------------------sinh
2

γ 0( ) γ π/3( )+
2

-------------------------------sinh γ π( ) γ π/3( )+
2

-------------------------------sinh γ π/3( ) γ 2π/3( )sinhsinh
-------------------------------------------------------------------------------------------------------------------------------------------------- Λ 1– γ 0( )+

2
------------------------ 

 coth=

+ 
1
64
------ 1

γ 0( ) γ π/3( )+
2

-------------------------------sinh γ π( ) γ π/3( )+
2

-------------------------------sinh γ 0( ) γ 2π/3( )+
2

----------------------------------sinh γ π( ) γ 2π/3( )+
2

-----------------------------------sinh
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

× 1

γ π/3( ) γ 2π/3( ) γ π/3( ) γ 2π/3( )+
2

----------------------------------------sinh
2

sinhsinh
------------------------------------------------------------------------------------------------------------- Λ 1– γ 0( ) 2γ 2π/3( )+ +

2
---------------------------------------------------- 

  .coth
Singularities in s could have arisen due to the vanishing
of the denominator in expression (6.1). One can readily
see, however, that the respective factors

are always other than zero if q ≠ q'. One can further
demonstrate that, on the first sheet of the Riemann sur-
face (which is defined by the condition of positivity of
γ(q) as a function of s for real values of s > 0), the argu-
ments of cotangents appearing in Eq. (6.1) do not van-

γ q( ) γ q'( )+
2

---------------------------sinh q' qcos–cos( )/ γ q( ) γ q'( )–
2

--------------------------sinh=
ish either: these factors result from infinite summation
over the coordinate x. Therefore, the complete set of
singularities of susceptibility is reduced to the branch
points which are contained in the functions

(6.2)

eγ q( ) 1
2
--- s s 1–+( ) q

2
---sin

2
+=

+
1
2
--- s s 1–+( ) q

2
---cos

2
–

2

.
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For each value of quasimomentum q ≠ 0, π, the function
given by Eq. (6.2) has four branch points. If we denote

them by sc = |sc| , then

(6.3)

One can see in Eq. (6.2) that only two branch points
sc = ±i are present at q = 0, π. It is easy to calculate that,
for a given value of N, the complete number of singu-
larities is 4N – 2 and that all singularities lie on the cir-
cle |s | = 1. For N = 3, the respective pattern is given in
Fig. 2. Note that singularities corresponding to the van-
ishing of the arguments of hyperbolic cotangents in
Eq.  (6.1) emerge on other sheets of the Riemann sur-
face; these points do not lie on the circle |s | = 1. For the
moment, we cannot say anything definite about the sit-
uation in the limit N  ∞ when the singularities on
|s | = 1 crowd to form a dense set. This problem was sub-
jected to a very thorough analysis by Nickel [16, 17],
who is inclined to conclude that the crowding of singu-
lar points results in the emergence in the complex s plane
of a singularity of the type of natural boundary.

e
iϕc±

sc 1, ϕccos
q/2,cos

2

q/2.sin
2

–



= =

Fig. 2. The position of singularities in the complex plane for
the magnetic susceptibility χ as a function of s = 
for a particular value of N = 3.
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Abstract—The dispersion of permittivity of 2D inhomogeneous matrix materials with various structures is
studied. Effective parameters of the systems under investigation permit an exact analytic calculation, which
makes it possible to analyze the effect of concentration of inclusions and their shape on the frequency depen-
dences of the complex permittivity of inhomogeneous materials. The conditions under which the permittivity
dispersion is not manifested are specified. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electric spectroscopy of heterogeneous dielec-
trics attracts attention in numerous fields of physics [1–
9]. It may be used to obtain important information
about the structure of composite materials, their com-
position, and the physical properties of the compo-
nents. The methods of investigation of the dispersion of
dielectric materials find application in studying con-
densed media whose material characteristics are
described by complex permittivity. They are used, for
example, in the physics of high-resistance semiconduc-
tors, in biophysics, in colloid chemistry, and in the
physics of artificial dielectrics and magnets [1–3].
However, the interpretation of experimental data in
determining the structure of inhomogeneous systems
remains a complicated problem. The ambiguity in
interpreting the results of experimental investigations
arises even in the case of materials of a relatively simple
structure. A certain contribution to the investigation of
this problem can be made by analyzing exactly solvable
models which were recently subjected to intensive
studies.

The most consistent theory of dielectric dispersion
has been developed for condensed media with the ori-
entation mechanism of polarization of matter. This the-
ory was constructed by Debye on the basis of concepts
of relaxation processes of dipoles with one and the
same relaxation time [4]. In reality, it is only in a rela-
tively few cases that the spectral characteristics of real
materials strictly fit the Debye spectral dependences
and the Cole–Cole classical circle diagram [2, 5].
Therefore, generalized diagrams such as the diagrams
and equations of Cole–Davidson, Havriliak–Negami,
Fuoss–Kirkwood, Williams–Watts, and other authors
[6–9] were proposed to describe experimental results
not corresponding to an ideal diagram of complex per-
mittivity. However, all of these modified diagrams and
equations, used for systematization of numerous exper-
imental data, contain empirical parameters which lack
1063-7761/02/9406- $22.00 © 21149
physical justification from the standpoint of molecular
physics and geometric structure of materials.

The Debye theory applies to all orientationally
polarized media (liquid and solid), irrespective of the
reasons which cause their polarizations. In view of this,
the Debye theory was extended to heterogeneous
media, in particular, to layered systems [5]. In reality,
individual phases of dielectric composite materials may
contain mobile charge carriers which enter traps in the
bulk or on the surface of different media and remain
free. If the displacement of free charges is possible only
in bounded regions, these regions by and large behave
as macroscopic dipoles. This form of bulk or surface
polarization of heterogeneous media is associated with
the names of Maxwell and Wagner, who were the first
to investigate the scope of problems with such phenom-
ena in samples of composite dielectrics. Materials with
a one-dimensional (layered) structure [10, 11] were
investigated.

In recent years, several exact results of the calcula-
tion of effective parameters of two-dimensional struc-
tures were obtained in the theory of heterogeneous sys-
tems. Such structures are mostly doubly periodic two-
component matrix systems characterized by a high
degree of geometric symmetry. In the case of such sys-
tems, it proved possible to exactly calculate the local
electric field in different phases and to analytically
determine the averaged characteristics. Owing to this,
one can study the dispersion of permittivity of two-
component media as a function of the physical proper-
ties of the components, their concentration, and the
form of inclusions. Our paper deals with the investiga-
tion of these problems. It is demonstrated that a certain
correlation indeed exists between the frequency spec-
trum and the structure of composite dielectrics. For
some of the treated periodic systems, it is possible to
obtain, in a closed form, expressions which define dia-
grams of the Cole–Cole type. They play an important
part in revealing the mechanisms of relaxation of
charges in dielectrics and enable one to extrapolate
002 MAIK “Nauka/Interperiodica”
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experimental data to hard-to-measure frequency
ranges.

Polarization processes in an inhomogeneous
medium are described in a quasi-stationary approxima-
tion [12]. This suggests that the wavelength of an exter-
nal variable electric field is large as compared with the
characteristic dimensions of the sample being investi-
gated. Consequently, the spatial dispersion in matter is
insignificant, and an equilibrium Maxwell–Wagner
polarization is established in the inhomogeneous
medium, which manages to follow the variation of the
electric field in time. It is further assumed that other
forms of polarization in individual phases of a compos-
ite material produce no significant contribution to the
polarization of matter. Dielectric materials are investi-
gated under conditions in which the magnetic field may
be disregarded. With these assumptions, the investiga-
tion of dielectric dispersion reduces first to finding the
electric field in the composite material and then to cal-
culating its effective parameters with a preassigned fre-
quency of the external field which varies according to a
harmonic law. Each phase of the structure is character-
ized by its own complex permittivity. In the first stage
of solution of the problem, one can use the mathemati-
cal apparatus for stationary fields and then introduce
the complex permittivities of components, which
depend on the frequency of the external electric field.

2. DOUBLY PERIODIC MATRIX SYSTEMS

Investigated below is a dielectric medium of permit-
tivity ε1, in which similar, doubly periodically alternat-
ing, cylindrical inclusions of permittivity ε2 are regu-
larly located. The matrix and the dispersed phase have
the conductivities σ1 and σ2, respectively. Two systems
are analyzed, namely, one with circular cylinders and
the other with square cylinders. Such systems allow the
analytical calculation of effective parameters, which
simplifies the analysis of the solution and enables one
to study the effect of structural elements on the dielec-
tric spectrum.

ε1

ε2

Fig. 1. A fragment of a composite dielectric material with
circular cylindrical inclusions.
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2.1. Dielectric Spectrum as a Function 
of the Concentration of Inclusions

We will first consider a fibrous material with a reg-
ular structure, in which round fibers of radius r form a
perfect square lattice of spacing h (Fig. 1). In the trans-
verse direction towards the axes of cylinders, the
medium by and large is isotropic. By virtue of the peri-
odic structure of the inhomogeneous system, its effec-
tive parameters may be determined from the solution of
the field problem for a single cell of the spacing. Such
a problem was first investigated by Rayleigh [13] in
application to electrically conducting media (the solu-
tion was obtained in the general case for a rectangular
cell, this corresponding to a system which is, on the
average, anisotropic). Later on, the method for the cal-
culation of effective parameters developed by Rayleigh
was extended to studying other structures [14, 15]. New
techniques were suggested for solving the Rayleigh
problem [16–18].

If the concentration of inclusions is not high, s ≤ 0.5,
then, as is demonstrated in [17], the effective permittiv-
ity of the medium being treated is defined by the fol-
lowing expression:

(1)

where s is the concentration of inclusions (s = πr2/h2),
and ∆ε12 is the relative permittivity of the medium,

(2)

In the above range of variation of the concentration of
inclusions, formula (1) is valid with a high degree of
approximation even in the case of a large difference
between the phase permittivities ε1 and ε2 or, what is
equivalent, at high magnitudes of the parameter ∆ε12.

In studying the Maxwell–Wagner polarization in
inhomogeneous materials, the displacement and con-
duction currents are taken into account in the basic
equations of electromagnetic field [2]. This means that

the generalized complex permittivity (ω) (in relative
units) is introduced for the periodically varying electric
field E = E0exp(–iωt),

(3)

where ε0 is the electric constant, ω is the angular fre-
quency, and (ω) = ε'(ω) – iε''(ω) and (ω) = σ'(ω) –
iσ''(ω) are the complex values of the permittivity and
conductivity of the material.

The main contribution to the polarization of inho-
mogeneous material is made by the Maxwell–Wagner
polarization. Here, other forms of polarization may be
regarded as unimportant. In this case, a locally inhomo-
geneous medium is usually characterized by constant

εeff ε1

1 s∆ε12–
1 s∆ε12+
---------------------,=

∆ε12

ε1 ε2–
ε1 ε2+
---------------, 1 ∆ε12 1.≤ ≤–=

ε̂
~

ε̂ ω( ) ε'˜ ω( ) iε''˜ ω( )– ε̂ ω( ) i
σ̂ ω( )
ε0ω

------------,–= =
~

ε̂ σ̂
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values of permittivity (ω) = ε1, 2 and conductivity

(ω) = σ1, 2; consequently, the generalized permit-
tivity is characterized by the explicit dependence on the

frequency,  = ε1, 2 – iσ1, 2/ε0ω. With ω  ∞, the
permittivity of the components with finite conductivity
increases infinitely. However, the dielectric spectrum of
a heterogeneous medium by and large possesses such a
property only in the case of a certain combination of the
physical properties of the components of the entire sys-
tem.

In a complex form, the effective permittivity given
by Eq. (1) is written as

(4)

Here, the complex parameter (ω) = (ω) –

i (ω) is introduced, whose components are defined
by the formulas

(5)

where ∆σ12 is the relative conductivity of inhomoge-
neous medium,

(6)

In formulas (5), Γ2(ω) is the frequency parameter
which, for convenience of subsequent analysis, is
referred to the dispersed phase (it will be recalled that
the characteristics of this phase are marked by the sub-
script 2): Γ2(ω) = ω02/ω (ω02 = σ2/ε0ε2 is the Maxwell
frequency). It should be noted that the two-component
system under investigation can be characterized by
introducing another frequency parameter, Γ1(ω), corre-
sponding to phase 1 (matrix): Γ1(ω) = ω01/ω (ω01 =
σ1/ε0ε1). The parameters Γ1(ω) and Γ2(ω) are not inde-
pendent: they are related by

(7)

or, what is the same,

(8)

It follows from formulas (7) and (8) that, provided
the condition

(9)

ε̂1 2,

σ̂1 2,

ε̂1 2,
~

ε̂eff ω( ) εeff' ω( ) iεeff'' ω( )– ε̂1
1 s∆̂12 ω( )–

1 s∆̂12 ω( )+
-----------------------------.= =

~

∆̂12 ∆12'

∆12''

∆12' ω( )
∆ε12 1 ∆σ12–( )2 Γ2

2 ω( )∆σ12 1 ∆ε12–( )2+

1 ∆σ12–( )2 Γ2
2 ω( ) 1 ∆ε12–( )2+

----------------------------------------------------------------------------------------------,=

∆12'' ω( )
Γ2 ω( ) ∆σ12 ∆ε12–( ) 1 ∆σ12–( ) 1 ∆ε12–( )

1 ∆σ12–( )2 Γ2
2 ω( ) 1 ∆ε12–( )2+

----------------------------------------------------------------------------------------------,=

∆σ12

σ1 σ2–
σ1 σ2+
-----------------, 1 ∆σ12 1.≤ ≤–=

Γ1 ω( )
ε2σ1

ε1σ2
----------Γ2 ω( ),=

Γ1 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

------------------------------------------------Γ2 ω( ).=

ε1σ2 ε2σ1 ∆ε12 = ∆σ12( )=
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is valid, the parameters Γ1(ω) and Γ2(ω) are equal to
each other and, therefore, the system is characterized
by a single frequency parameter

In this singular case, the real component of the complex

parameter (ω) is independent of the frequency, and
its imaginary component is zero,

(10)

In what follows, the parameter Γ2(ω) may be conve-
niently represented as

(11)

where ∆ω2 is the relative frequency,

(12)

Expressions (4) and (5) are used to determine the
real and imaginary part of the effective complex per-
mittivity of the system,

(13)

Here, the following notation is used:

(14)

If condition (9) is valid, then, in view of formulas
(10), we find that

and expressions (13) take the form

(15)

Γ ω( ) Γ1 ω( ) Γ2 ω( ).= =

∆̂12

∆12' ω( ) ∆ε12, ∆12'' ω( ) 0.= =

Γ2 ω( )
1 ∆ω2 ω( )–

∆ω2 ω( )
--------------------------,=

∆ωj ω( ) ω
ω0 j ω+
------------------,=

0 ∆ωj ω( ) 1 j = 1 2,( ).≤ ≤

εeff' ω( )

=  ε1 m ω( ) n ω( )Γ2 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

-----------------------------------------------+ ,

εeff'' ω( )

=  ε1 m ω( )Γ2 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

----------------------------------------------- n ω( )– .

m ω( )
1 s2 ∆12

'2 ω( ) ∆12
''2 ω( )+[ ]–

1 s∆12
' ω( )+[ ]

2
s∆12

'' ω( )[ ]
2

+
---------------------------------------------------------------------= ,

n ω( )
2s∆12

'' ω( )

1 s∆12
' ω( )+[ ]

2
s∆12

'' ω( )[ ]
2

+
---------------------------------------------------------------------.=

m ω( )
1 s∆ε12–
1 s∆ε12+
---------------------, n ω( ) 0,= =

εeff' ω( ) ε1

1 s∆ε12–
1 s∆ε12+
---------------------,=

εeff'' ω( ) εeff' Γ2 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

------------------------------------------------.=
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In this singular case, one can see that the effective per-
mittivity (ω) is independent of the frequency, and

the effective dielectric loss factor (ω) varies
inversely with the frequency (because Γ2(ω) ∝  1/ω).

Therefore, relation (9) defines the condition subject
to which the dispersion of permittivity of an inhomoge-
neous medium does not show up. As is revealed by

εeff'

εeff''

1.5

1.0

0.5

0 0.25 0.50 0.75 1.00
∆ω2

1
2

3

4

5

Fig. 2. (1) Effective permittivity , (2) effective loss fac-

tor , (3) effective dielectric loss tangent , and

functions (4) χeff and (5)  versus relative frequency

∆ω2 with the concentration of inclusions s = 0.25 and with
the ratios of parameters ε2/ε1 = 0.1 and σ2/σ1 = 10.

εeff'

εeff'' δefftan

λefftan

0.5

0 0.5

1.0

1.0 1.5ε'eff (∞) ε'eff (0)

ε''eff

χeff

1.5

ε'eff

Fig. 3. The diagram of effective complex permittivity of an
inhomogeneous dielectric with the same parameters as in
Fig. 2.
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analysis, this relation is valid for all known two-dimen-
sional two-component matrix systems and, apparently,
is general. From the physical standpoint, the relation
defines the conditions under which no surface charge is
formed at the interface between different media.

In the general case, when ε1σ2 ≠ ε2σ1 (∆ε12 ≠ ∆σ12),
as the frequency varies, the effective permittivity of a
composite material in the limit varies from the electro-
static value at ω  0,

(16)

to the optical value at ω  ∞,

(17)

The latter formula coincides with (1) and with the
respective expression in (15).

For a material with bulk conductivity, the effective
loss factor is characterized by singularity at ω  0
and assumes zero value at ω  ∞,

(18)

In accordance with expressions (16)–(18), the effective
values of permittivity and loss factor in a composite
dielectric essentially depend on the concentration of
inclusions and on the correlation between the dielectric
and conducting properties of the components of the
material.

Given for illustration in Fig. 2 are the effective val-
ues of permittivity (ω), dielectric loss factor (ω),

and dielectric loss tangent (ω) = (ω)/ (ω)
as functions of the relative frequency ∆ω2 (see formula
(12)). The curves are constructed for the relative values
of  = /ε1 and  = /ε1 (in what follows,
the asterisks are omitted for brevity). The diagram of
effective complex permittivity for this case is given in
Fig. 3. The dashed curves in these drawings indicate the
functions χeff(ω) and (ω) corresponding to the

dependences (ω) and (ω), from which the
singular term is omitted,

(19)

One can see that the latter correspond to the Debye
relaxation spectrum and Cole–Cole circle diagram
[19]. The graphs are plotted for the concentration of
inclusions s = 0.25 and for the following values of per-
mittivity and conductivity of components of the mate-

εeff' 0( )

=  ε1
1 s∆σ12–
1 s∆σ12+
---------------------- 2s

∆σ12 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 s∆σ12+( )2

-------------------------------------------------------+ ,

εeff' ∞( ) ε1

1 s∆ε12–
1 s∆ε12+
---------------------.=

εeff'' 0( ) ∞, εeff'' ∞( ) 0.=

εeff' εeff''

δefftan εeff'' εeff'

εeff*
' εeff' εeff*

'' εeff''

λ efftan

εeff'' δefftan

χeff ω( ) εeff'' ω( ) εeff'' 0( ),–=

λ eff ω( )tan
χeff ω( )
εeff' ω( )
-----------------.=
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rial: ε1 = 10, ε2 = 1 (∆ε12 = 0.818), σ1 = 1, σ2 = 10 (∆σ12 =
–0.818).

From the practical standpoint, the greatest interest is
attracted by systems in which the ideal dielectric

medium,  = ε1, σ1 = 0 (∆σ12 = –1), contains inclusions
whose properties are described by the complex permit-

tivity,  = ε2 – iσ2/ε0ω. In this case, the effective com-
plex permittivity of the material is defined by

(20)

where the parameters (ω) and (ω) now have the
following expressions:

(21)

With ω  0, the effective dielectric loss factor in
such a material assumes zero value, and the effective
electrostatic permittivity is defined only by the permit-
tivity of the matrix and volume of inclusions irrespec-
tive of their properties,

(22)

In the limiting case, ω  ∞, we obtain

(23)

Expressions (22) and (23) may also be derived directly
from formulas (16)–(18) assuming that σ1 = 0 (∆σ12 = –1).

It is interesting to note that the matrix conductivity
does not affect the value of the effective optical permit-
tivity: in the two cases treated above, the expressions
for (∞) coincide (compare formulas (17) and (23)).

Curves illustrating the behavior of effective permit-
tivity in the entire frequency range with the concentra-
tion s = 0.25 are given in Fig. 4, where ε1 = 10, ε2 = 1
(∆ε12 = 0.818) and σ1 = 0, σ2 = 10 (∆σ12 = –1). In appear-
ance, they are close to curves for dependences follow-
ing from the Debye theory. Also indicative of this is the
fact that the diagram of effective complex permittivity
almost coincides with a semicircle (see the respective
curve in Fig. 6).

Therefore, in the case being treated, the Debye
relaxation equations may be extended to the Maxwell–
Wagner polarization processes. The special feature of
the latter consists in that they bring about field pertur-
bations in large volumes and are caused by the shift of
free charges in the region of inclusions and their accu-
mulation at the interface between different media. Also
indicative of this are the results of calculation of the

ε̂1

~

ε̂2

~

ε̂eff ω( ) ε1 m ω( ) in ω( )+[ ] ,=

∆12' ∆12''

∆12' ω( )
4∆ε12 Γ2

2 ω( ) 1 ∆ε12–( )2–

4 Γ2
2 ω( ) 1 ∆ε12–( )2+

-----------------------------------------------------------,=

∆12'' ω( )
2Γ2 ω( ) ∆ε12

2 1–( )
4 Γ2

2 ω( ) 1 ∆ε12–( )2+
--------------------------------------------------.=

εeff' 0( ) ε1
1 s+
1 s–
-----------, εeff'' 0( ) 0.= =

εeff' ∞( ) ε1

1 s∆ε12–
1 s∆ε12+
---------------------, εeff'' ∞( ) 0.= =

εeff'
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electric field in the system. The field formed by inclu-
sions has a dipole representation. The inclusions
behave as induced macroscopic line dipoles.

If the concentration of inclusions increases, the
dielectric spectrum retains its form, and only the quali-
tative correlations vary as compared with a material of
lower concentration. One can see this when comparing
the respective dependences in Figs. 4, 5, and 6, which
give the results of calculations of one and the same sys-
tem with the concentrations of inclusions s = 0.25 and
0.5, when ε1 = 10, ε2 = 1 (∆σ12 = 0.818) and σ1 = 0,
σ2 = 10 (∆σ12 = –1). One can see that the difference
between the optical and electrostatic permittivities of
the material increases appreciably with the concentra-

2.0

1.5

1.0

0.5

0 0.25 0.50 0.75 1.00

ε'eff

ε''eff

tanδeff

∆ω2

s = 0.25

Fig. 4. Curves of dispersion of a two-component dielectric
with the parameters ε1 = 10, ε2 = 1 and σ1 = 0, σ2 = 10 for
the concentration of inclusions s = 0.25.

3

2

1

0 0.25 0.50 0.75 1.00

ε'eff

ε''eff

tanδeff

∆ω2

s = 0.5

Fig. 5. Curves of dispersion of a two-component dielectric
with the parameters ε1 = 10, ε2 = 1 and σ1 = 0, σ2 = 10 for
the concentration of inclusions s = 0.5.
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tion of inclusions. In the case of a twofold increase in
the concentration of inclusions, the effective dielectric
loss factor increases by a factor of more than two.

The pattern of variation of the loss during the Max-
well–Wagner polarization is associated with the loss
due to the displacement and conduction currents in the
bulk of inclusions. At low frequencies, the conduction
currents prevail, and the magnitude of these currents is
the greater, the higher the concentration of inclusions.
The measure of the loss ratio between the conduction
and displacement currents is provided by the frequency
dependence of the effective dielectric loss tangent

.

Because the diagram of effective complex permit-
tivity is close to a semicircle, one can use this diagram
and follow the Debye theory to determine the maxi-
mum value of the effective dielectric loss factor by the
increment of permittivity

with the critical frequency ωc and critical wavelength λc

at which the Maxwell–Wagner polarization is halved.

δefftan

εeff, max'' ωc( ) εeff' 0( ) εeff' ∞( )–( )/2=

1

0 1

2

2ε'eff (∞) ε'eff (0)

ε''eff

ε'eff

s = 0.25

s = 0.5

Fig. 6. The diagram of effective complex permittivity of an
inhomogeneous dielectric for the concentration of inclu-
sions s = 0.25 and 0.5. The characteristics of the material are
the same as in Figs. 4 and 5.

ε1

ε2

Fig. 7. A fragment of a composite dielectric material with
square cylindrical inclusions.
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For the adopted parameters, we have  = 0.5035
and 1.2905 at s = 0.25 and 0.5, respectively.

2.2. The Effect of the Shape of Inclusions 
on the Dielectric Spectrum

The polarization processes in a composite material
depend obviously on its structure. In view of this, it is
interesting to find out how sensitive the dispersion of
permittivity is to the variation of the shape of inclu-
sions, all other parameters of the inhomogeneous sys-
tem remaining invariable. The presence of recently
obtained exactly solvable models enables one to per-
form such analysis.

Let a matrix inhomogeneous medium retain its reg-
ular structure but, instead of round filaments, contain
square filaments. A cross-sectional view of a fragment
of such a system is given in Fig. 7. By and large, the
system remains isotropic and differs from the previous
system mainly in that the boundary contours of inclu-
sions have sharp edges in the neighborhood of which
the electric field intensity is high, this increasing the
inhomogeneity of the field in the material.

With the concentration of inclusions s = 0.25, the
system allows an exact calculation of a stationary elec-
tric field and effective parameters [20]. This enables
one to calculate the dielectric spectrum of the system
and compare it with the frequency spectrum of a
medium containing round inclusions with similar con-
centrations and properties of components.

The effective permittivity of the material shown in
Fig. 7 in a stationary electric field is given by the fol-
lowing expression [20]:

(24)

In a variable electric field, when the matrix and
inclusions are described by the complex permittivity
under the same conditions as in the previous case, the
effective complex permittivity in view of Eq. (24) is
written as

(25)

where

εeff, max''

εeff ε1
2 ∆ε12–
2 ∆ε12+
------------------.=

ε̂eff ω( )

=  
ε1

2
------- u ω( ) v ω( )Γ2 ω( )

1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

------------------------------------------------±




– i u ω( )Γ2 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

------------------------------------------------ v ω( )±




,

u ω( ) β2 ω( ) γ2 ω( )+ β ω( )+ ,=
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(26)

Here, the parameters  and  are defined by for-
mulas (5); the upper sign in expression (25) is taken at
∆ε12 > ∆σ12, and the lower sign, at ∆ε12 < ∆σ12.

It follows from formulas (25) and (26) that, in the
case of validity of condition (9), the dispersion of per-
mittivity does not show up. In this case, the effective
permittivity retains the constant value which it has in
the stationary field,

(27)

The effective dielectric loss factor varies with the
parameter Γ2(ω),

(28)

In the general case, when ε1σ2 ≠ ε2σ1 (∆ε12 ≠ ∆σ12),
the dispersion of permittivity is defined by the correla-
tion between the parameters of the inhomogeneous
material.

With ω  0, the effective permittivity of a mate-
rial tends to a value defined by the conducting proper-
ties of the matrix and inclusions, i.e., depends on the
parameter ∆σ12,

(29)

In this case, the effective dielectric loss factor increases
indefinitely, (0)  ∞. If ω  ∞, the effective
permittivity of a composite material depends only on
the dielectric properties of the components, i.e., on the
parameter ∆ε12,

(30)

The first one of formulas (30) coincides with Eq. (24),
as it must in the Debye theory.

Expressions (25)–(30) characterize the frequency
spectrum of composite materials characterized by the
bulk conductivity (σ1, σ2 ≠ 0). In such materials at
ω  0, the loss increases indefinitely. Accordingly,
on the complex plane of  =  – i , the depen-

dence ( ) tends to infinity at (ω)  (0).

v ω( ) β2 ω( ) γ2 ω( )+ β ω( )– ,=

β ω( )
1 ∆12

'2 ∆12
''2+( )/4–

1 ∆12
'2 /2+( ) ∆12

''2/4+
-----------------------------------------------,=

γ ω( )
∆12

''

1 ∆12
'2 /2+( ) ∆12

''2/4+
-----------------------------------------------.=

∆12
' ∆12

''

εeff' ω( ) ε1
2 ∆ε12–
2 ∆ε12+
------------------.=

εeff'' ω( ) εeff' Γ2 ω( ).=

εeff' 0( ) ε1
2 ∆σ12–
2 ∆σ12+
-------------------.=

εeff''

εeff' ∞( ) ε1
2 ∆ε12–
2 ∆ε12+
------------------, εeff'' ∞( ) 0.= =

ε̂eff εeff' εeff''

εeff'' εeff' εeff' εeff'
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We eliminate the singular term (0) from the fre-

quency dependences (ω) and (ω) to obtain a
spectrum typical of the Debye theory.

Although the expressions defining the dependence
of the dielectric properties on the frequency for a mate-
rial with square cylinders outwardly differ from similar
expressions for a material with round inclusions, in
reality they produce almost identical results. One can
readily see this on comparing the dependence curves
constructed by the formulas for the first and second mod-
els. Computer calculations showed the respective curves
to differ from one another by not more than one percent.
So, the frequency spectra of isotropic dielectric materials
with round and square cylindrical inclusions in a relatively
low concentration (s = 0.25) actually coincide.

This conclusion is also valid for materials in which
only the inclusions possess electrically conducting
properties (σ1 = 0, σ2 ≠ 0 (∆σ12 = –1)). In this case, it fol-
lows from formulas (25)–(30) that, with ω  0,

(31)

and, at ω  ∞, the parameters (∞) and (∞) are
defined by formulas (30). The numerically obtained
formulas produce results which are close to the respec-
tive values for a system with round inclusions for the
same concentration of inclusions s = 0.25.

Note the following important fact. For a dielectric
composite with square cylindrical inclusions, when the
matrix is an ideal dielectric and the inclusions are elec-
trically conductive (σ1 = 0, σ2 ≠ 0 (∆σ12 = –1)), it is pos-
sible to reveal the presence of explicit correlation
between the functions (ω) and (ω), an analog of
the Cole–Cole diagram. Indeed, after simple transfor-
mations of expressions (25) and (26) at ∆σ12 = –1, one
can derive the relation

(32)

where the effective values of static and optical permit-
tivities, (0) and (∞), correspond to expressions
(30) and (31).

In the coordinates (ω) and (ω), relation (32)
defines a fourth-order plane curve which is symmetric
relative to the coordinate axes. These are Cassinian
ovals (a particular case of Perseus curves) with centers
at the points

(33)

on the abscissa. Because the effective permittivity and
the effective loss factor assume only positive values,

(ω), (ω) > 0, it is only a part of the curve,

εeff''

εeff'' δefftan

εeff' 0( ) 3ε1, εeff'' 0( ) 0,= =

εeff' εeff''

εeff' εeff''

εeff
'2 ω( ) εeff

''2 ω( )+[ ]
2

εeff
'2 0( ) εeff

'2 ∞( )+[ ]–

× εeff
'2 ω( ) εeff

''2 ω( )–[ ] ε eff
'2 0( )εeff

'2 ∞( ),–=

εeff' εeff'

εeff' εeff''

c
1

2
------- εeff

'2 0( ) εeff
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1/2
±=
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namely, a semioval in the first quadrant, that has a phys-
ical meaning rather than the entire curve. It will be
recalled that, in the classical Debye theory, the depen-
dence ( ) is represented by a semicircle. The
curve described by expression (32) is given in Fig. 8 for
a system with the parameters ε1 = 10, ε2 = 1 and σ1 = 0,
σ2 = 10.

Equality (33) is apparently one of a few relations
that gives an explicit expression of the diagram of
effective permittivity for an exactly solvable model
of inhomogeneous dielectric with Maxwell–Wagner
polarization. Complex diagrams are usually con-
structed on the basis of experimental data; for the
majority of composite materials, they are approximated
by arcs of circles whose centers are located below the
abscissa [2, 5, 6].

Note that Cassinian ovals are encountered in
describing a number of other physical effects. For
example, they give the structure of magnetic lines of
force developed by two parallel currents flowing in thin
conductors of infinite length. A family of Cassinian
ovals may also be observed when examining a saltpeter
plate in polarized light.

εeff'' εeff'

0.5

0 0.5

ε''eff

1.0

1.0 1.5 2.0ε'eff (∞) ε'eff (0)
ε'eff

Fig. 8. The diagram of effective complex permittivity of an
inhomogeneous dielectric with square cylinders (ε2/ε1 = 0.1
and σ1 = 0).

ε1ε2

Fig. 9. A fragment of a doubly periodic material with equal
concentrations of two components.
JOURNAL OF EXPERIMENTAL 
3. A SYSTEM WITH CRITICAL
COMPOSITION OF COMPONENTS

If the volume of inclusions in a composite dielectric
is increased continuously, their certain concentration
referred to as critical may cause in the material a tran-
sition from the dielectric to metallic state. A convenient
theoretical model for studying the dielectric dispersion
of such composites may be provided by a doubly peri-
odic two-component system with a checkerboard struc-
ture (Fig. 9). The effective permittivity of such a system
has the exact expression [21–23]

(34)

If the components of the material exhibit conducting
properties with the electrical conductivities σ1 and σ2,
in a variable harmonic field the material is by and large
characterized by the effective complex permittivity

(35)

where (ω) = ε1 – iσ1/ε0ω and (ω) = ε2 – iσ2/ε0ω
denote the generalized permittivity of the phases.

The real and imaginary parts of (ω) are defined
by the following formulas:

(36)

It will be recalled that here the dimensionless frequency
parameters

are related as in Eq. (7). In formulas (36), the parame-
ters εj and the functions Γj(ω) (j = 1, 2) are of equivalent
importance, which is reflective of the full geometric
symmetry of the system relative to the phases which are
equally represented in the inhomogeneous material.

If the permittivities and conductivities of the com-
ponents are such that relation (9) is valid, dielectric dis-
persion does not show up. Under these conditions, we
have

(37)

where Γ(ω) = Γ1(ω) = Γ2(ω).

In the general case, ε1σ2 ≠ ε2σ1 (∆ε12 ≠ ∆σ12), the dis-
persion of permittivity of the system in the limiting

εeff ε1ε2.=

ε̂eff ω( ) εeff' ω( ) iεeff'' ω( )– ε̂1 ω( )ε̂2 ω( ),= =
~ ~

ε̂1

~
ε̂2

~

ε̂eff
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1/2

,
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cases leads to the following values of effective permit-
tivity and effective loss factor:

at ω  0,

(38)

at ω  ∞,

(39)

The first of expressions (38) gives the following. In
the absence of electrical conduction in one of the
phases of a composite material, the effective static permit-
tivity assumes an infinite value; i.e., the material acquires
metallic properties. This is due to the fact that the cells of
each phase are not electrically insulated from one another:
they have contacts at corners of squares.

The sum and difference of the effective values of
static and optical permittivities are related as follows:

(40)

The latter relation, which defines the permittivity incre-
ment, demonstrates that, in the system being treated,
the effective static permittivity always exceeds the
effective optical permittivity. The equality (0) =

(∞) is possible only in the exceptional case of valid-
ity of condition (9).

By way of example, Fig. 10 gives plotted depen-
dences (ω), (ω), and (ω) for the case of
ε1 = 10, ε2 = 1 (∆ε12 = 0.818) and σ1 = 1, σ2 = 10 (∆σ12 =
–0.818). As previously, the curves are constructed for rel-
ative quantities as functions of the relative frequency ∆ω2.

One can readily find that the real and imaginary
components of effective complex permittivity are
related by the relation

(41)

which defines a second-order curve on the (ω),

(ω) plane. This curve for the parameters identified
above is given in Fig. 11.

Therefore, a two-component system with a checker-
board structure serves as yet another exactly solvable
model, for which an explicit dependence exists
between the real and imaginary components of effec-
tive complex permittivity.

If only one of two phases exhibits electrical conduc-

tion, for example, the second phase (  = ε2 – iσ2/ε0ω),

εeff' 0( )
ε1σ2 ε2σ1+

2 σ1σ2

----------------------------, εeff'' 0( ) ∞;=

εeff' ∞( ) ε1ε2, εeff'' ∞( ) 0.=

εeff' 0( ) εeff' ∞( )+
ε1σ2 ε2σ1+( )2

2 σ1σ2

-------------------------------------------,=

εeff' 0( )  εeff'– ∞( )
ε1σ2 ε2σ1–( )2

2 σ1σ2

------------------------------------------.=
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εeff' εeff'' δefftan

εeff
'2 0( ) εeff

'2 ω( ) εeff
''2 ω( )–[ ] ε eff

'2 ω( )εeff
''2 ω( )+

=  εeff
'2 ω( )εeff

'2 ∞( ),

εeff'

εeff''

ε̂2

~
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while the first phase is an ideal dielectric (  = ε1),
the system is characterized by one frequency param-
eter Γ2(ω) (Γ1(ω) = 0). For this case, expressions (36)
yield the effective values of permittivity and loss
factor,

(42)

ε̂1

~

εeff' ω( )
ε1ε2

2
--------- 1 Γ2

2 ω( )+ 1+ ,=

εeff'' ω( )
ε1ε2

2
--------- 1 Γ2

2 ω( )+ 1– .=

2.0

1.5

1.0

0.5

0 0.25 0.50 0.75 1.00

ε'effε''eff

tanδeff

∆ω2

Fig. 10. Curves of dispersion of a two-component doubly
periodic material with equal concentrations of the compo-
nents for the ratios of the parameters ε2/ε1 = 0.1 and
σ2/σ1 = 10.

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0

ε''eff

ε'eff

ε'eff (∞)

ε'eff (0)

Fig. 11. The diagram of effective complex permittivity of
the system represented in Fig. 9, with the ratios of the
parameters ε2/ε1 = 0.1 and σ2/σ1 = 10.
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Hence it follows that, in the low-frequency region, the
effective values of permittivity and loss factor increase
indefinitely to the same extent, as 1/ω at ω  0:

(0) = (0)  ∞. Such a behavior of the effective
parameters was observed above when analyzing
expression (38).

In the other limiting case of ω  ∞, the effective
parameters (∞) and (∞) are defined by formulas
(39).

Formulas (42) were used to construct in Fig. 12 the
dependences (ω), (ω), and (ω) for the
case of ε1 = 10, ε2 = 1 (∆ε12 = 0.818) and σ1 = 0, σ2 = 10
(∆σ12 = –1). The dependences are given for the relative
quantities as functions of the relative frequency ∆ω2.

Comparison of the frequency dependences in Figs. 10
and 12 reveals that, at high frequencies, the system
behaves similarly, although in the former case both
phases are conducting, and in the latter case, only one
phase. At low frequencies, the system behavior in these
cases is essentially different. If only one phase is con-
ducting, the effective dielectric loss tangent at ω  0
tends to unity (Fig. 12). This means that, in the above-
identified limit, the ohmic loss in the material and the
loss due to the displacement currents are similar.

The effective parameters (ω) and (ω) satisfy
the relation

(43)

which, on the complex plane, defines an equilateral
hyperbola.

The results of our analysis demonstrate that the
effective static permittivity of an inhomogeneous mate-
rial with a checkerboard structure assumes finite values

εeff' εeff''

εeff' εeff''

εeff' εeff'' δefftan

εeff' εeff''

εeff
'2 ω( ) εeff

''2 ω( )– εeff
'2 ∞( ),=

2.0

1.5

1.0

0.5

0 0.25 0.50 0.75 1.00

ε'effε''eff

tanδeff

∆ω2

Fig. 12. Curves of dispersion of a two-component doubly
periodic material with equal concentrations of the compo-
nents for ε2/ε1 = 0.1 and σ1 = 0.
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only in the case of both components being electrically
conducting.

4. CONCLUSION

Experimental methods of investigation are used
mainly in studying the dispersion of permittivity.
Recently, the numerical simulation of composite sys-
tems has found extensive application. In this respect,
great importance is attached to exactly solvable models
which allow an analytical description of results in a
closed form. Such solutions provide for definiteness in
interpreting the experimental data and, in addition, may
serve as reference samples for estimating the accuracy
of numerically calculated systems. Unfortunately, the
number of exactly solvable models is not large; most of
these models belong to the class of two-component
matrix systems with a periodic structure of inhomoge-
neities. We have analyzed some basic models of this
class.

Note the following of the results obtained in study-
ing the dielectric dispersion of investigated systems.
The condition is confirmed under which the dielectric
dispersion of two-component systems does not show up
(relation (9)). It has been found that this relation is valid
for all of the treated models. It was previously known
for one-dimensional laminated systems [10, 11].

The dispersion of permittivity of inhomogeneous
systems essentially depends on the physical properties
of the components, on the concentration of inclusions,
and on their form. By the pattern of these dependences,
matrix systems may be conventionally divided into two
forms, namely, inhomogeneous dielectric materials, in
which both phases exhibit conducting properties, and
dielectric components, in which only inclusions iso-
lated in the material exhibit conducting properties. In
the former case, the effective dielectric loss factor
increases indefinitely as the frequency tends to zero.
For the latter group of materials, this factor, on the con-
trary, assumes zero value in the above-identified limit.
The pattern of dispersion of permittivity of such matrix
systems is somewhat similar to the frequency depen-
dences of the complex impedance of RC circuits with
parallel and series connections of capacitances and
ohmic resistances.

The calculations have revealed that the diagram of
effective complex permittivity with round cylindrical
inclusions actually coincides with the Cole–Cole dia-
gram and, therefore, the classical Debye dispersion the-
ory with a single relaxation time may apply to these
diagrams. This statement is true of systems with low
and medium concentrations of inclusions. For systems
with a high concentration of inclusions, when, rather
than using a single-dipole approximation (on which the
derivation of formula (1) is based), one must take mul-
tidipole interactions into account, special investigations
are necessary. As is demonstrated by the example
treated above, the shape of inclusions modifies the dia-
AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002
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gram of effective complex permittivity even in the case
of a low concentration of inclusions. For square cylin-
drical inclusions, the diagram is represented by Cassin-
ian semiovals.

The dispersion of permittivity of an inhomogeneous
material with a checkerboard structure is characterized
by interesting features. In such a system, the transition
from the dielectric to metallic state is realized. Two
moments are important in this case. First, as opposed to
other treated systems, the dielectric loss factor
increases indefinitely with the frequency tending to
zero, irrespective of whether the conducting properties
are exhibited by two phases or only one phase. Second,
the effective static permittivity at zero frequency
assumes finite values only in the case when two phases
possess electrical conductivity; it increases indefinitely
if only one phase exhibits conduction, irrespective of
the magnitude of the phase. This fact is not obvious and
was revealed as a result of calculations.

The dispersion of permittivity in a composite mate-
rial is affected by various factors. In this paper, we have
analyzed two of those factors, namely, the concentra-
tion of inclusions and their shape. In order to maintain
similar conditions, the properties of the components are
fixed. The problem of the effect of the characteristics of
the material on the dispersion of permittivity calls for
separate treatment.

Analysis of the dispersion of permittivity of inho-
mogeneous systems is rendered much simpler by the
use of dimensionless parameters and characteristic
numbers which naturally appear in analytical calcula-
tions.
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Abstract—The electric current induced by an ultrasonic phonon flux in a ballistic quasi-two-dimensional quan-
tum channel is investigated theoretically. Two types of confining potential are considered. An analytic expres-
sion for the acoustoelectric current is derived, and its dependence on the chemical potential and on the magni-
tude of the longitudinal magnetic field is investigated. It is shown that the dependence of the acoustoelectric
current on the chemical potential may be of the experimentally observed step type. The oscillatory dependence
of the acoustoelectric current on the magnetic field is considered for the cases of weak and strong magnetic
quantization. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The advances in experimental techniques have made
it possible in recent years to operate with high acoustic
frequencies and to measure currents of the order of a
picoampere. Among other things, the acoustoelectric
(AE) effect in a quantum channel could be investigated.
A number of publications are devoted to experimental
investigation of the AE effect in 2D layers of electron
gas [1–3]. However, the measurements of AE current in
quantum channels are rather scarce. The experimental
investigation of the AE effect in such a system was
reported for the first time in [4], where it was found that
the AE current exhibits an oscillatory dependence on
the gate voltage, the oscillation peaks corresponding to
the conductance quantization thresholds in this struc-
ture.

Quantized AE current was studied in subsequent
experimental works [5, 6]. In contrast to [4], acoustic
waves of higher intensity corresponding to a stronger
AE current were used in [6]. It was found that, as the
ultrasound intensity increases (together with the AE
current), the step dependence of the AE current on the
gate voltage becomes more pronounced.

The AE effect in quantum channels can be described
by using either of the following two approaches. In the
first approach, the motion of electrons is described by
the Boltzmann equation [4, 7–10], while second
approach is of the quantum-mechanical type, i.e., is
based on direct calculation of the coefficients of elec-
tron transmission through the structure [11, 12]. It
should be noted that, in the analysis of the AE current
using the second approach, numerical methods were
mainly used and estimates were obtained only for cer-
tain limiting cases.

Giant quantum oscillations in the relaxation time
approximation were explained in [4]. This approach
was developed further in [7]. It was shown that elec-
trons could effectively interact with an acoustic wave
1063-7761/02/9406- $22.00 © 21160
only if the Fermi level is near the bottom of a certain
energy band (i.e., near the conductance quantization
threshold). For other values of chemical potential, elec-
trons at the Fermi level have too high a velocity as com-
pared to the velocity of sound, and the AE current is
minimal in this case. Precisely this effect was observed
in [4].

The AE effect in the ballistic transport regime was
described in [8, 9], where ultrasound is presented as a
phonon flux. In these publications, oscillations [4] were
explained and it was shown that the AE current in a bal-
listic quasi-one-dimensional channel attenuates at
ultrasound frequencies ωq lower than the threshold fre-
quency

(1)

Here, m* and s are the electron effective mass and
velocity of sound in the channel, respectively. In addi-
tion, the formula for the AE current conventional for
subsequent applications was derived; we will use this
method here for analyzing the AE effect in a quasi-two-
dimensional channel.

In the recent publication by Entin-Wohlman et al.
[10], the AE current in a ballistic channel was also
investigated, but the ultrasonic wave was assumed to be
a classical force in the Boltzmann equation. It should be
noted that a detailed comparison of the results obtained
in [10] with previous data [7, 9] was carried out.

In all theoretical publications mentioned in the
review, only the oscillations of the AE current were
studied. In the present work, we consider a quantized
AE current in a ballistic channel. It will be shown,
among other things, that the AE current may display
either an oscillatory or a step variation upon a change in
the chemical potential. The necessary conditions for the
existence of quantization steps will be determined.

ωth 2m∗ s2/".=
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It should be noted that a magnetic field creates addi-
tional opportunities for studying the AE current in
nanostructures. This is due to the fact that the magnetic
field may enhance the existing lateral confinement or
create an additional one in a nanostructure, thus chang-
ing the period of AE current oscillations. However, an
arbitrarily directed magnetic field may considerably
complicate the description of the AE effect, given in
[8]. This is due to the emergence of an additional term
in the kinetic equation, which is associated with the
Lorentz force. In the present work, we consider only the
longitudinal magnetic field. In this case, the magnetic
induction is parallel to the direction of the AE current,
and the kinetic equation has a form similar to that in [8].

Using the approach proposed in [8] in a realistic
case when the temperature satisfies the condition
"ωq ! T, we can derive a more general expression for
the AE current through a quasi-two-dimensional ballis-
tic channel in the form

(2)

where S is the intensity of ultrasound, Λ is the deforma-
tion potential constant, εnm is the discrete component of
the electron energy spectrum, µ is the chemical poten-
tial of the system, L is the channel length, e is the elec-
tron charge, ρ is the mass density, and f F is the Fermi
distribution function.

In the case of the piezoelectric interaction, which is
more typical of heterostructures of the AlAs/AlGaAs
type, the AE current in the isotropic case can be derived
from Eq. (2) by using the substitution [8]

(3)

where Λa denotes the deformation potential constant
for an acoustic wave belonging to the branch a, β is the
piezoelectric modulus, ε is the dielectric constant,
ν(q, a) is the unit polarization vector, and q is the wave
vector of a phonon.

It will be proved below that the necessary quantiza-
tion conditions for the AE current weakly depend on the
form of the confinement potential. We will consider two
models of quantum channel with different confining
potentials. The channel width in both cases can be sim-
ulated by a parabolic confinement. In order to simulate
the layer thickness, a parabolic confinement potential is
used the first case and a hard-wall potential is employed
in the second case.

J
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2. QUANTUM CHANNEL
WITH A SOFT-WALL POTENTIAL

In order to simulate a quantum channel, we will use
in this section the potential of a soft wall. The electron
energy spectrum in this model is similar to the electron
spectrum for a parabolic quantum wire with an elliptic
cross section [13]. In the case when the system is in a
longitudinal magnetic field of induction B, the electron
energy is the sum of the spectra of two harmonic oscil-
lators and the energy of free motion along the longitu-
dinal axis z:

(4)

where

Here, ωx and ωy are the characteristic frequencies of
size quantization, ωc is the cyclotron frequency, and n,
m = 0, 1, 2, … .

In order to calculate the AE current through such a
channel, we use formula (2). We can separate the oscil-
latory terms from Eq. (2) by transforming it with the
help of the formula [14]

(5)

After the summation of series over n and m, the inte-
gral with respect to y can be evaluated easily with the
help of residue theory (by closing the integration contour
in the left half-plane). Considering that "ω1, 2 @ "ωq, we
obtain the following expression for the AE current in
the channel:

(6)

It should be noted that an analysis of convergence of
series of the type (6) is carried out in [15].

Let us first consider expression (6) in the limit of
zero magnetic field (in this case, ω1 = ωx, ω2 = ωy) and
the case when the size quantization along the x axis is
considerably stronger than along the y axis so that ωx @
ωy. We take into account the fact that the contribution
from harmonics with k @1 to current (6) is small since

the expression  rapidly tends to
zero upon an increase in k at high temperatures. For the
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first few harmonics, we have  ~ πkωy/ωx

in view of the smallness of ωy/ωx. Taking into account
the above arguments, we can write Eq. (6) in the form

Here,

(7)

where the Fourier coefficients have the form

and

(8)

πkω2/ω1( )sin

J Jstep Josc.+=

Jstep 2em∗ 2
SLΛ2

ρ"
4ωthωy

-----------------------------=

× µ
"ωx

--------- 1–( )kCk T( ) 2πkµ
"ωx

-------------sin
k 1=

∞

∑+ ,

Ck T( )
2π2T
"ωx

------------1
π
--- 2π2kT

"ωx

---------------,sinh
1–

=

Josc 4π2em∗ 2
TSΛ2L

ρ"
5ωthωy

2
---------------------------------------=

×
1–( )kk 2πkµ/"ωy( )sin

2π2kT /"ωy( ) πkωx/ωy( )sinsinh
------------------------------------------------------------------------------.

k 1=

∞

∑

9

J

µ/"ωx

1

2

3

4

5

10 11 12 13 14

Fig. 1. Effect of the magnetic field, channel width, and tem-
perature on the dependence of the AE current on the chem-
ical potential in a quantum channel with a soft-wall poten-
tial: the AE current quantization in a strongly asymmetric
channel (ωx = 1013 s–1, ωy = 0.5136 × 1012 s–1, B = 0, T =
1.3 K) (curve 1); fine structure of the AE current quantiza-
tion steps (ωx = 1013 s–1, ωy = 0.6365 × 1012 s–1, B = 0, T =
1.3 K) (curve 2); destruction of the plateau of the AE current
quantization steps (ωx = 1013 s–1, ωy = 0.98765 × 1012 s–1,
B = 0, T = 0.5 K) (curve 3); effect of the magnetic field on
the length of AE current quantization steps (ωx = 1013 s–1,

ωy = 2 × 1012 s–1, B = 10 T, T = 1.3 K) (curve 4); and AE
current oscillations in the quantum channel for close fre-
quencies of parabolic confinement (ωx = 1013 s–1, ωy =

9.1234 × 1012 s–1, B = 0, T = 1.3 K) (curve 5).
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Thus, the expression for the AE current in a strongly
asymmetric channel splits into two terms. It can be seen
from expression (7) that the term J step is the sum of two
functions. One of them has a linear and the other a saw-
tooth dependence on the chemical potential. Their sum
gives a step dependence J step(µ). It should be noted that
the step height does not depend on temperature. The
term Josc exhibits an oscillatory dependence on the
chemical potential with a period "ωy, the amplitude of
oscillations strongly depending on temperature.

It should be noted that the J(µ) dependence in a
strongly asymmetric channel is determined to a consid-
erable extent by the relation between the parameters of
size quantization and temperature. For "ωy ! 2π2T !
"ωx, the amplitude of oscillations of Josc is much
smaller than the height of the quantization steps of J step.
For such parameters, the dependence of the AE current
on chemical potential has clearly manifested quantiza-
tion steps, the length of the plateau of the quantization
current J(µ) being equal to "ωx (Fig. 1, curve 1). If
"ωy & 2π2T ! "ωx, the oscillatory term Josc leads to a
fine structure of steps (Fig. 1, curve 2). Figure 1 (curves
1 and 2) and expression (7) show that the step thresh-
olds on the J(µ) dependence correspond to half-integral
values of µ/"ωx. As the temperature decreases, the term
Josc increases; consequently, oscillations destroy the
plateau of the quantization steps of the AE current for
T ! "ωy , "ωx (curve 3 in Fig. 1).

In the opposite case, when "ωy ! 2π2T & "ωx, the
temperature smearing of step thresholds considerably
affects the pattern of quantization of the AE current. It
can be seen from Eqs. (7) and (8) that, as the tempera-
ture increases, all terms in the expression for J(µ)
(excepts the monotonic term) decrease, and the J(µ)
dependence becomes linear for T @ "ωy , "ωx:

(9)

If the condition ωx @ ωy does not hold, the term J step

displays an oscillatory dependence with period "ωx on
the chemical potential instead of the step dependence.
Consequently, for ωx ~ ωy, the AE current is the sum of
two oscillatory terms with close periods. Consequently,
the oscillations of the AE current in this case have the
form of beats (curve 5 in Fig. 1).

In numerical computation of the AE current on the
basis of formula (2), we used the values of the effective
electron mass m* = 0.06m0, velocity of sound s = 5 ×
105 cm/s, and the ultrasonic wave frequency ωq = 5 ×
109 s–1 typical of structures GaAs–AlxGa1 – xAs.

Let us now consider the magnetic-field dependence
of the AE current (6). The J(B) dependence is obviously
oscillatory by nature (giant quantum oscillations [8, 9,
16]), the period of the function J(B) being determined
by the relation between the size-quantization (ωx, ωy)
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Fig. 2. Effect of temperature on giant quantum oscillations of the AE current in a quasi-two-dimensional quantum channel with
parameters ωx = 1013 s–1, ωy = 0.7778 × 1012 s–1, µ = 10–13 erg (thin curves correspond to T = 1 K and bold curves to T = 4 K):

(a) J(B–1) in the case of strong magnetic quantization; (b) oscillations of J(B2) in the case of weak magnetic quantization.
and magnetic quantization (ωc) parameters. In the case
of a strong magnetic quantization (ωc @ ωy, ωx), the fre-
quencies ω1 and ω2 can be presented in the form

(10)

In this case, the first oscillatory term in relation (6)
gives oscillations in 1/B with a period ∆1(1/B) =
e"/m*cµ, which are similar to oscillations of the coef-
ficient of sound absorption by an electron gas in a quan-
tizing magnetic field [16]. It can be seen from relations
(10) that, in the case of strong magnetic quantization,
the relation ω1 @ ω2 always holds. Consequently, at a
nonzero temperature and in a strong magnetic field, the
second oscillatory term in Eq. (6) is considerably
smaller than the first term. It can be seen from Fig. 2a
that it creates a fine structure of oscillations of the AE
current in strong fields. It follows from relations (10)
that the second oscillatory term in Eq. (6) is periodic in
the magnetic field with period

(11)

In the opposite case, when ωc ! ωy, ωx, the situation
becomes more complicated. If we impose additional
constraint ωx @ ωy, the approximate formulas for esti-
mating ω1 and ω2 assume the form
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(12)

In this case, the expression for the AE current is the sum
of two terms periodic in B2 with periods

(13)

It should be noted that, in the region of high temper-
atures such that 2π2T @ "ω2, the first oscillating term in
Eq. (6) is considerably larger than the second term in
this case also (Fig. 2b), and ∆1(B2) @ ∆2(B2). If the
hybrid frequencies ω1 and ω2 are close, the magnetic-
field-induced oscillations of the AE current have the
form of beats.

It is important to note that, in accordance with rela-
tions (10) and (12), a longitudinal magnetic field
always enhances the asymmetry of a parabolic channel.
Thus, the magnetic field improves the quantization pat-
tern for the AE current (Fig. 3). In the case of strong
magnetic quantization, the plateau length of the steps
on the J(µ) dependence is proportional to induction B
and is equal to "ω1 (see curve 4 in Fig. 1).
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Fig. 3. Effect of magnetic field on the AE current quantiza-
tion steps for a channel with a soft-wall potential (ωx =

1013 s–1, ωy = 1.012 × 1012 s–1, T = 1.7 K).
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Fig. 4. Effect of magnetic field, channel width, and temper-
ature on the dependence of the AE current on the chemical
potential in a channel with a hard-wall confining potential:
AE current quantization in a strongly asymmetric channel
(T = 1.3 K, d = 3 × 10–6 cm, ω0 = 0.5 × 1012 s–1, B = 0)
(curve 1); destruction of the quantization step plateau of AE
current by a low temperature (T = 1.3 K, d = 3 × 10–6 cm,
ω0 = 1 × 1012 s–1, B = 0) (curve 2); destruction of the quan-
tization step plateau of AE current by a magnetic field (T =
1.3 K, d = 3 × 10–6 cm, ω0 = 1012 s–1, B = 1 T) (curve 3);
and quantization of AE current at a comparatively high tem-
perature (T = 3 K, d = 3 × 10–6 cm, ω0 = 1012 s–1, B = 0)
(curve 4).
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3. QUANUM CHANNEL
WITH A HARD-WALL POTENTIAL

Let us consider the AE effect in a quasi-two-dimen-
sional quantum channel with a hard-wall potential. In
this case, the situation slightly changes as compared to
the previous case. In particular, the longitudinal mag-
netic field may destroy the quantization steps.

Let us consider the case when the motion along the
y axis is confined, as before, by the soft-wall potential
U = m*ω0y2/2 and simulate the finite thickness d of the
quantum channel by imposing on the wave function the
zero boundary conditions along the x axis, such that
ψ(0, y, z) = ψ(d, y, z) = 0. Choosing the vector potential
in the form A = (–By, 0, 0), we find that the electron
energy spectrum of the quasi-two-dimensional channel
is the sum of the spectrum of a harmonic oscillator with

frequency ω = , the spectrum of a 1D poten-
tial well with a hard wall and the reduction factor

, and the energy spectrum of free motion in the
direction of the field:

(14)

Here, the size confinement energy is ε0 = π2"2/2m*d2,
n = 0, 1, …, m = 1, 2, … .

Using the spectrum (14), we can find the AE current
in the quasi-two-dimensional channel if the electron
concentration is high enough so that µ @ "ω. Using the
results obtained in [17] as applied to the case of low
temperatures (T ! "ω), we obtain

(15)

where N is the integral part of the quantity

(ω )/ω0.

Let us transform the finite sums in (15) into Fourier
series [17]. The expression for the AE current J can be
presented as the sum of two terms:
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where

(16)

(17)

The Fourier coefficients appearing in these expressions
have the form

(18)

Let us consider the AE current through a channel in
zero magnetic field. In this case, ω = ω0, and the sum of
the series in expression (16) can be evaluated easily
[18]. This gives the following simple expression for J1:

(19)

where N0 is the integral part of the quantity .

It is interesting to note that, in contrast to J2, J1 in
this case is a step function of the chemical potential. It
should also be noted that J1 depends on temperature
only slightly, while J2 decreases rapidly upon heating.
Therefore, for comparatively high temperatures (curve 4
in Fig. 4) or for a comparatively weak parabolic con-
finement ω0 ~ 2π2T/" (curve 1 in Fig. 4), the term J1
gives the most significant contribution to the total AE
current J. In this case, the total AE current J(µ) exhibits
a step dependence on the chemical potential, the term
J2(µ) being responsible for the fine structure of the
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steps (curve 1 in Fig. 4). As the temperature decreases,
the amplitude of current oscillations J2(µ) increases,
and the dependence of the AE current on the chemical
potential for "ω0 @ 2π2T has the form of giant quantum
oscillations (curve 2 in Fig. 4). It should be emphasized
that the physical meaning can be attached only to the
sum J = J1 + J2, and the splitting of the AE current into
two terms is convenient only for an analysis.

It should be noted that the height of the quantization
steps of the AE current (19) depends on the frequency
of the parabolic confinement, while the width of pla-
teaus of the steps is determined by the channel thick-
ness d. It follows from formula (19) that, as the fre-
quency ω0 decreases (i.e., as the channel width
increases) together with decreasing thickness d of the
electron gas layer, the height and the lengths of the pla-
teau on the steps increase. Thus, the channel asymme-
try is responsible for the existence of clearly manifested
quantization steps in the AE current. Note that the step
dependence of the AE current on the voltage across the
shutter was observed experimentally in [6].

In the case when the system is in a longitudinal mag-
netic field, the AE current is defined by formulas (16)
and (17). The form of the J(µ) dependence changes
strongly in this case. It can be seen from formula (16)
and Fig. 4 (curve 3) that the magnetic field destroys the
quantization steps and that the dependence J1(µ)
(together with J(µ) is oscillatory by nature.

In strong fields, the term J2 makes a decisive contri-
bution to the total AE current J. The dependence of J2
on the chemical potential is determined to a consider-
able extent by the channel thickness d. If ε0 ! "ω,
which corresponds to a large thickness of the quantum
layer and a strong magnetic field, the Fourier coeffi-
cients (18) do not make a significant contribution to the
J(µ) dependence. In this case, the interval between the
peaks of giant oscillations of the AE current upon a
change in the chemical potential is "ω. If the magnetic
field is strong enough (ωc @ ω0), the separations
between peaks on the J(µ) curve depend linearly on the
magnetic field and are equal to "ωc to within terms of

the order o( ) (curve 1 in Fig. 5), the AE current
having the maximum value for half-integral values of
µ/"ωc. However, as the channel thickness decreases,
additional oscillations associated with size quantization
along the x axis are imposed on the giant oscillations of
the AE current (curves 2 and 3 in Fig. 5).

The magnetic-field dependence of the AE current in
a quantum channel is also determined to a considerable
extent by the relation between the parameters ωc, ω0,
and ε0. If ωc @ ω0, ε0/", we have J2 @ J1, and the AE
current experiences giant quantum oscillations in recip-
rocal field with period

ω0
2/ωc
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(Fig. 6a). The origin of such oscillations is similar to
the origin of giant quantum oscillations of the sound
absorption coefficient in metals [16]. If the condition
"ω @ ε0 is violated, the Fourier coefficients (18) make
a noticeable oscillatory contribution to the total AE cur-
rent, and the dependence J(B) has a more complicated
form. It should be noted that the form of the AE current
oscillations upon a change in the magnetic field in the
quantum channel is completely analogous to the form
of the magnetic response in a quantum ring of a non-
zero width [19]. For example, in the case of weak mag-
netic quantization, ωc ! ω0, ε0/", the AE current J is the
sum of two terms, J1 and J2, oscillating in B2 and such

10
µ/"ωc

1

2

3

11 12 13 14

J

Fig. 5. Giant oscillations of AE current in a magnetic field
B = 3 T at T = 1 K, ω0 = 1012 s–1 as a function of the chem-
ical potential in channels of various thickness determined
by the hard-wall potential: d = 3.1 × 10–5 cm (curve 1), d =
1.6 × 10–5 cm (curve 2), and d = 3.14 × 10–6 cm (curve 3).
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that J1 @ J2 if "ω & 2π2T. The periods of these oscilla-
tions were determined in [19]. For oscillations of the
first type, J1, we have

(20)

For the term J2, the period of oscillations has the form

(21)

Figure 6b shows the superpositions of the small-ampli-
tude J2(B2) oscillations with period (21) on the J1(B2)
oscillations with period (20).

4. CONCLUSIONS

We have analyzed the AE current in a ballistic quan-
tum channel in a longitudinal magnetic field. Two mod-
els of confining potential are considered: the soft-wall
and the hard-wall potential models. It is found that, in
both cases under investigation, steps on the depen-
dences of the AE current on the chemical potential, as
well as giant oscillations on the magnetic-field depen-
dence of the AE current, may appear for certain values
of the parameters of the system.

The behavior of the AE current in the cases of the
soft-wall potential as well as hard-wall potential
strongly depends on the relation between the character-
istic frequencies of the parabolic confinement potential
and on the temperature (in zero magnetic field). For
example, for the soft-wall potential, for "ωy ! 2π2T !
"ωx, the dependence of the AE current on the chemical
potential is of the step form. Such a behavior of the J(µ)
curve is associated with the filling of energy levels with
the second quantum number m. As the temperature
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Fig. 6. Giant quantum oscillations of AE current in a quasi-two-dimensional quantum channel of thickness d = 3 × 10–6 cm and
chemical potential µ = 10–13 erg at T = 2 K as a function of (a) B–1 for ω0 = 1012 s–1 and (b) B2 for ω0 = 0.5 × 1012 s–1.
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increases so that "ωy ! 2π2T & "ωx, the dependence is
gradually transformed into a linear dependence. Upon
a decrease in temperature, for "ωy & 2π2T ! "ωx, the
quantization steps acquire a fine structure, and quanti-
zation is completely violated at a temperature T ! "ωx ,
"ωy. Such a behavior of quantization of the AE current
is due to the competition of two factors. First, the tem-
perature must be high enough for the AE current oscil-
lations, which may destroy the quantization step, to be
suppressed by temperature. Second, the temperature
should not be high enough for smearing the step thresh-
olds. It should be noted that the existence of the AE cur-
rent quantization is determined to a considerable extent
by the asymmetry of the system. In particular, the con-
dition ωy ! ωx may correspond to a quasi-two-dimen-
sional type of the channel. In the case when ωx is of the
same order of magnitude as ωy, oscillations have the
form of beats. It is important to note that, in the case of
a soft-wall potential, the magnetic field improves the
AE current quantization pattern, while even a relatively
weak magnetic field (ωc ~ ω0) suppresses quantization
in the case of a hard-wall potential. This circumstance
makes it possible to determine the profile of the con-
finement potential from the experimental data on the
behavior of the AE current in a magnetic field.

The magnetic-field dependence of the AE current in
the case of a soft-wall potential has the form of giant
quantum oscillations, the periodic properties of the
function J(B) being determined by the relation between
the magnetic and size quantizations. In particular, in the
case of a strong magnetic quantization for a strongly
asymmetric channel, the magnetic-field dependence of
the AE current has the form of Shubnikov–de Haas
oscillations with a fine structure determined by the
Aharonov–Bohm oscillations. In the opposite case of a
strong size quantization, the magnetic-field dependence
of the AE current is a superposition of two oscillatory
terms periodic in the squared magnetic field.

It was mentioned above that the behavior of the AE
current in the case of a hard-wall potential is also deter-
mined by the relation between the geometrical parame-
ters of the system and the temperature. For example, the
AE current steps appear at a high temperature or for a
weak parabolic confinement potential. As the tempera-
ture decreases (or the frequency of the confinement
potential increases), the dependence of the AE current
on the chemical potential has the form of giant quantum
oscillations. It is interesting that the height of the quan-
tization steps of the AE current strongly depends on the
frequency of the parabolic potential (geometry along
the y axis), while the width of the quantization plateau
of the AE current strongly depends on the channel
thickness (geometry along the x axis). This is also valid
for a channel with a soft-wall potential, which was
described in Section 2.

The dependence of the AE current on the chemical
potential in a magnetic field strongly depends on the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
channel asymmetry and the magnitude of the magnetic
field. For example, in the case of a large channel thick-
ness and a strong field, the interval between the peaks
of giant oscillations is equal to "ωc. As the channel
thickness decreases, additional oscillations associated
with size effects along the x axis are superimposed on
the giant oscillations.

It should be noted that the behavior of the AE cur-
rent as a function of the magnetic field in the case of a
hard-wall potential is similar to the behavior of the
magnetic moment of a 2D quantum ring considered by
us earlier [19]. In particular, the periods of magnetic
response oscillations determined in that work coincide
with the periods of the AE current oscillations.

An interesting feature of the AE effect in a quasi-
two-dimensional channel with a hard-wall potential is a
weak temperature smearing of the AE quantization
thresholds in zero magnetic field. This feature is due to
the quadratic dependence of the electron energy spec-
trum on the quantum number m.

It follows from the above analysis that the following
two conditions must be satisfied for the existence of AE
current steps. The first is the strong asymmetry of the
system; i.e., the thickness of the quantum layer must be
much smaller than the quantum channel width. It is
important to note that this condition can be satisfied
only for a quasi-two-dimensional channel. We will
prove that the step dependence of the AE current in the
channel is a consequence of its quasi-two-dimensional
nature. For this purpose, we consider the limiting tran-
sition from a quasi-two-dimensional to a quasi-one-
dimensional channel. We assume that B = 0; then,
expression (15) for the AE current in a quasi-two-
dimensional channel of thickness d has the form

(22)

It should be noted that the oscillatory component in this
expression is the sum of N0 terms corresponding to the
AE current in a quasi-one-dimensional channel. Thus,
expression (22) for the AE current in a quasi-two-
dimensional channel consists of two parts. One of them
gives quantization steps of the AE current, which are
slightly blurred by temperature, while the second is the
sum of oscillatory terms.

We assume that the thickness d of the electron gas
layer is so small that 1 ≤ µ/ε0 < 2. It should be noted that
the electron layer can be regarded as two-dimensional
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if its thickness d ~ π"/ . In this case, N0 = 1 and
expression (22) assumes the form

(23)

Thus, the AE current in a quasi-one-dimensional chan-
nel exhibits an oscillatory dependence on the chemical
potential.

The second condition depends on the parameters of
the system and must be imposed on temperature so that
each step on the J(µ) curve corresponds to the inclusion
of new electron modes in an energy region of width T
in the vicinity of the Fermi level.

It is important to note that the step dependence of
the AE current and giant quantum oscillations in a
quantum channel were observed experimentally (see,
for example, [6]). Let us estimate the height of the AE
current quantization steps. For this purpose, we use for-
mula (7) or (19) and the parameters from [20]. For the
ultrasound intensity S ~ 0.001 CGS units, we find that,
in the case of deformation-controlled interaction, the
height of the current step threshold is of the order of a
nanoampere, which is in accord with the experimental
data [6]. Using relation (3) and the value of the piezo-
electric coefficient from [8], we find that, in the case of
a piezoelectric interaction, the current is one or two
orders of magnitude stronger (depending on the phonon
frequency) than in the case of a pure deformation-con-
trolled interaction.
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Abstract—Features of the photoluminescence spectra observed for various polarizations and intensities of the
pumping radiation and the kinetics of photoluminescence of the CdS and CdSe nanocrystals grown in hollow
nanochannels of an Al2O3 matrix are explained in terms of exciton transitions in semiconducting quantum wires
with dielectric barriers. The observed exciton transition energies coincide with the values calculated with an
allowance for the effects of quantum confinement and the “dielectric enhancement” of excitons. The latter effect
is manifested by a significant increase in the Coulomb attraction between electrons and holes (the exciton bind-
ing energy exceeds 100 meV) due to a difference between the permittivities of semiconductor and insulator. It
is shown that the exciton transition energy remains constant when the quantum wire diameter varies within
broad limits. This is related to the fact that a growth in the one-dimensional bandgap width of the quantum wire
caused by a decrease in the diameter is compensated by an increase in the exciton binding energy. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Researchers devote considerable effort to the study
of excitons in semiconducting quantum wires (QWRs)
with dielectric barriers, which represent structures
where both charge carriers and excitons can freely
move only in one direction. This interest is related to
the fact that, besides the quantum confinement effects

leading to a growth in the exciton binding energy (  ∝

Ry[ln(R/ )]2 for the wire radius R < , where Ry

is the exciton Rydberg and  is the Bohr radius of the
exciton in the bulk semiconductor [1]) and in the oscil-
lator strength of a one-dimensional exciton with
decreasing QWR diameter, the system features the so-
called “dielectric enhancement” effect producing a sig-
nificant additional increase in both the binding energy
and the oscillator strength.

The phenomenon of dielectric enhancement (mani-
fested by an increase in the Coulomb attraction
between electrons and holes) is caused by redistribution
of the electric field (generated by these electrons and
holes) in the QWR related to the permittivity of a
dielectric (insulator) being much smaller as compared
to that of a semiconductor. The contribution of the insu-
lator as a barrier to the electron–hole interaction (most
of the field lines between electrons and holes pass
through the insulator) accounts for a significant

Eex
1D

aex
3D aex

3D

aex
3D
1063-7761/02/9406- $22.00 © 21169
increase in the exciton binding energy and the oscillator
strength of the exciton transition. The dielectric
enhancement of excitons was theoretically predicted in
[2–4] and then theoretically studied for quantum wells
[5-10], superlattices [11, 12], quantum wires [13–15],
and quantum dots [16]. In particular, it was demon-
strated [1] that the exciton binding energy in semicon-
ducting QWRs with dielectric barriers may exceed
100 meV. Experiments [17, 18] showed that the exciton
binding energy in semiconducting (GaAs, CdSe, InP)
QWRs crystallized in transparent dielectric nanotubes
of chrysotile asbestos is significantly increased as com-
pared to the values in bulk semiconductors and quasi-
two-dimensional semiconducting structures. By select-
ing semiconductor and insulator materials with various
permittivities for the nanostructures, it is possible to
modify the exciton binding energy and oscillator
strength within broad limits, thus implementing the
concept of “Coulomb interaction engineering” [1].

Below, we report the results of investigation of the
features of the photoluminescence (PL) spectra and
kinetics observed for CdS and CdSe nanocrystals
grown in the hollow nanochannels of a transparent
dielectric Al2O3 matrix. An analysis of variations in the
intensity of emission observed in the samples excited
by laser radiation with various polarizations and a com-
parison of the experimental energies of radiative transi-
tions to the results of theoretical calculations allowed
002 MAIK “Nauka/Interperiodica”
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us to evaluate the exciton binding energies and con-
clude that the PL is related mostly to the excitons in
nanostructures crystallized predominantly in the form
of QWRs.

The observed time variation (a shift toward lower
energies) of the PL spectra of QWRs, which exhibit
inhomogeneous broadening due to dispersion of the
transverse dimensions of nanocrystals, is explained by
a decrease in the exciton recombination time in QWRs
of smaller diameter as compared to that in the wires of
greater diameter.

We have also observed a nonlinear dependence of
the PL intensity on the excitation level and a shift of the
emission maximum toward higher energies in the PL
spectra of QWRs excited with high-power second har-
monic radiation of a Nd:YAG laser, which is probably
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Fig. 1. (a) The low-temperature (2 K) PL spectra of (1) CdS
nanocrystals grown in hollow channels with a diameter of
4–6 nm in the Al2O3 matrix and (2) the pure Al2O3 matrix;
(b) the room-temperature PL spectra of (1, 2) CdS nano-
crystals grown in hollow channels with a diameter of 8–10 nm
in the Al2O3 matrix excited with a laser radiation polarized
at (1) 45° and (2) 90° relative to the axis of nanochannels,
(3) a CdS single crystal grown from the gas phase, and
(4) the pure Al2O3 matrix.
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explained by a nonlinear absorption related to the dom-
inating effect of filling of the exciton phase space.

2. EXPERIMENTAL RESULTS AND DISCUSSION

In recent years, various methods were developed for
the fabrication of semiconducting QWRs with dielec-
tric barriers. These techniques are based on the crystal-
lization of a semiconductor incorporated into hollow
channels of a nanometer transverse size in a dielectric
matrix. The matrices represent either natural materials
(e.g., chrysotile asbestos [19] with a structure compris-
ing closely packed transparent dielectric nanotubes) or
specially synthesized media (e.g., mica in which
nanochannels are created by high-energy ion bombard-
ment in a particle accelerator [20]).

Our samples were prepared by creating hollow
nanochannels in a transparent dielectric matrix (an
Al2O3 film with a thickness of several microns on a
10-µm-thick aluminum foil) by means of electrochem-
ical etching. The etching was performed at room tem-
perature in a 10% aqueous solution of sulfuric acid at
an anodic current density of 1 mA/cm2. The etching
time was either 0.5 h, which ensured the formation of
pores (nanochannels) with a diameter of 4–6 nm, or 1 h,
which provided for thicker pores 8–10 nm in diameter.
Diameters of the hollow channels were determined
with the aid of an atomic force microscope [21]. The
nanocrystals of CdS were prepared by cathode deposi-
tion in an aqueous solution of 0.1 M Na2S2O3 and
0.1 M CdSO4. The process was conducted at a constant
current density of 1 mA/cm2 for 300 s at room temper-
ature. Then the samples were annealed for 1 h at 300°C.
The nanocrystals of CdSe were obtained by room-tem-
perature cathode deposition in an aqueous solution of
0.01 M CdSO4 and 0.02 M H2SeO3 at a current density
of 1.5 mA/cm2. These samples were annealed for
10 min in air at 430°C.

The photoluminescence spectra of CdS and CdSe
nanostructures crystallized in the pores of various cross
sections in Al2O3 matrices are presented in Figs. 1 and 2
in comparison with the spectrum of a pure dielectric
matrix free of nanocrystals. Figures 1b and 2 also
shows the PL spectra measured for various polariza-
tions of the exciting radiation. For the comparison,
these figures also present the PL spectra of a CdS single
crystal grown from the gas phase and of a crystalline
CdSe film. The PL band maxima exhibited a shift
toward shorter wavelengths for the samples with semi-
conductors in nanopores in comparison to the peak
position for single crystals: 2.65 eV for CdS crystal-
lized in a matrix with the average pore diameter D = 4–
6 nm (Fig. 1a); 2.54 eV for CdS in the pores with D =
8–10 nm (Fig. 1b); 1.86 eV for CdSe in the pores with
D = 4–6 nm, and 1.75 eV for CdSe in the pores with
D ≈ 30 nm (Fig. 2). A analysis of these data suggested
that the pores contained nanocrystals. The presence of
CdS and CdSe nanocrystals in the pores of the Al2O3
 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002
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matrix was confirmed by the phonon spectra of the
sample structures measured using IR Fourier transform
spectroscopy [22].

The PL bands at 2.65 and 2.54 eV (Fig. 1) and 1.86 eV
(Fig. 2) can be attributed either to an electron–hole
transition (in some papers, this transition is referred to
as an exciton transition) in quantum dots, or to an exci-
ton transition in quantum wires, or to transitions of both
types.1

Assuming that the nanostructures represent quan-
tum dots (QDs), we may estimate the average QD
radius (R) using calculated [23] dependences of the
lowest electron–hole transition energy on the R value
(the QD dimensions are comparable with the Bohr
radius of excitons in a bulk semiconductor). For exam-
ple, the energy of the PL band maximum for the CdS
nanocrystals in the pores with D = 8–10 nm (Fig. 1b)
corresponds to the lowest electron–hole transition
energy in QDs with R ≈ 6 nm. With an allowance for the
electron–hole attraction being enhanced by the dielec-
tric environment of the QD [16], the transition energy
significantly decreases and the estimated radius reduces
to 3–4 nm. The estimated dimensions of CdS and CdSe
QDs agree with the measured transverse size of
nanochannels in the matrix, in which these nanocrystals
can occur. However, it should be noted that effective PL
bands were observed only in cases (Figs. 1 and 2) when
the exciting laser radiation contained a field component
oriented along the axis of nanochannels. This fact sug-
gests that the nanostructures studied have predomi-
nantly the form of QWRs, rather than QDs.

Inside the thin (QWR radius is significantly smaller
than the exciting radiation wavelength) parallel semi-
conducting QWRs surrounded by a dielectric medium,
the field component perpendicular to the wire axis is
significantly decreased due to the boundary conditions
[24]. The parallel and perpendicular field components
inside the wire are as follows:

where δ = 2εd/(εd + εs), E∞ is the field strength far from
the wire, and εd and εs are the permittivities of dielectric
and semiconductor, respectively. In the dipole approxi-
mation, the PL intensity is proportional to the square
product of the field amplitude and the dipole matrix ele-
ment of the transition. Assuming that the dipole matrix
element dcv of the transition between one-dimensional
valence band and conduction band is isotropic, the
degree of linear polarization of the emission (related to

1 Strictly speaking, the electron–hole excitation in a quasi-zero-
dimensional system (quantum dot) is not the exciton, by which
we imply a mobile quasi-particle. The electron and hole wave
functions are fixed due to the quantum confinement effect, while
the energy of the Coulomb interaction between electron and hole
is small as compared to the separation of quantum confinement
energy levels of free electrons and holes.

E|| E∞
|| , E⊥ δE∞

⊥
,= =
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a difference in the efficiency of absorption of the differ-
ently polarized pumping radiation) can be expressed as

where I||, ⊥  is the PL intensity for the semiconducting
QWRs excited with the radiation polarized along and
across the wire, respectively. For CdS QWRs in the
pores with D = 8–10 nm (Fig. 2), σ = 0.5 ± 0.08, while,
for CdSe QWRs in the pores with D = 4–6 nm (Fig. 3),
σ = 0.56 ± 0.05. These estimates agree with the calcu-
lated σ values of 0.47 (0.57) obtained for εs = 5.24 (6.4)
in CdS (CdSe). Thus, we believe that the PL of nano-
structures grown in the hollow channels of the Al2O3
matrix is primarily related to the emission from semi-
conducting QWRs with dielectric barriers, rather than
from QDs.

Figure 3 presents the results of calculations of the
exciton transition energy, one-dimensional bandgap
width, and exciton binding energy as functions of the
radius of CdS and CdSe quantum wires with Al2O3
dielectric barriers. The width of the one-dimensional
bandgap in QWRs is increased as compared to analo-
gous values for the bulk semiconductors, which is
related both to the quantum confinement effects and to
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Fig. 2. The room-temperature PL spectra of (1, 2) CdSe
nanocrystals grown in hollow channels with a diameter of
4–6 nm in the Al2O3 matrix excited with a laser radiation
polarized at (1) 45° and (2) 90° relative to the axis of
nanochannels, (3) CdSe nanocrystals grown in hollow chan-
nels with a diameter of about 30 nm in the Al2O3 matrix
(excited with a laser radiation polarized at 45° relative to the
axis of nanochannels), and (4) a crystalline CdSe film.
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a considerable influence of the self-action potentials
[18] leading to an additional repulsion of charge carri-
ers from the semiconductor–insulator interface. Large
values of the exciton binding energy and the oscillator
strength are due to the Coulomb interaction between
electrons and holes being significantly enhanced by the
image potentials. Comparing the experimental data on
the exciton transition energies to the theoretically cal-
culated values, we can see that the peaks of the PL
bands correspond to the exciton transitions in the CdS
QWRs with a diameter of 4–6 nm and an exciton bind-
ing energy of Eex ≈ 300 meV (Fig. 1), in the CdS QWRs
with a diameter of 8–10 nm and Eex ≈ 130 meV (Fig. 2),
and in the CdSe QWRs with a diameter of 4–6 nm and
Eex ≈ 240 meV (Fig. 3). Unfortunately, a large spectral
broadening of the PL bands did not allow us to separate
the exciton transitions A and B (i.e., the transitions
related to the valence bands A and B, respectively).

The estimates obtained for the QWR diameters do
not contradict the measured dimensions of pores
(nanochannels) in the Al2O3 matrix, where the crystal-
lization of semiconductors took place. As can be seen
in Fig. 3, variations in the energy of the free electron–
hole transition in the region of QWR diameters exceed-
ing 5 nm are virtually completely compensated by
changes in the exciton binding energies. As a result, the
exciton transition energy is independent of the QWR
radius in a broad range of values, which can partly sup-
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Fig. 3. Theoretically calculated dependences of the (a) exci-
ton transition energy, (b) one-dimensional bandgap width,
and (c) exciton binding energies versus quantum wire radius
for CdS (solid curves) and CdSe (dashed curves) QWRs
with dielectric (Al2O3) barriers.
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press the inhomogeneous broadening of the exciton
absorption and emission bands in the samples with con-
siderable dispersion of the transverse dimensions of
QWRs.

The absence of dependence of the exciton transition
energy on the QWR radius for the wire radius above
5 nm (Fig. 3) and a smaller influence of the nonradia-
tive recombination (related to a decrease in the role of
surface states in the QWRs of a greater diameter) prob-
ably account for a smaller broadening of the exciton PL
band observed for the QWRs of greater diameter:
120 meV in CdS QWRs with D = 8–10 nm (Fig. 1b)
versus 250 meV in the QWRs with D = 4–6 nm
(Fig. 1a); 450 meV in CdSe QWRs with D = 4–6 nm
versus 340 meV in the QWRs with D ≈ 30 nm (Fig. 2).
We believe that the observed considerable broadening
of the PL spectra (Figs. 1 and 2) is related to structural
inhomogeneities appearing during the growth of the
CdS and CdSe nanocrystals, which influence the semi-
conductor parameters (bandgap width, effective masses
of charge carriers) determining the exciton transition
energy.

In order to study the kinetics of PL from semicon-
ducting QWRs with dielectric barriers, we measured a
time sequence of the PL spectra. The spectra were
excited using a focused second harmonic radiation
("ω = 3.1 eV) of a Ti–sapphire laser pumped with an
argon laser. The second harmonic radiation pulses had
a duration of 1.5 ps. a repetition frequency of 82 MHz,
and a pulse energy of about 0.2 µJ/cm2. The spectra
were recorded using a high-speed synchroscan streak
camera of the Hamamatsu C1587 type with a polychro-
mator. The time resolution of the system was not worse
than 50 ps, and the spectral resolution was about 1 meV.

Figures 4 and 5 show the PL spectra of CdS and
CdSe QWRs grown in the pores of an Al2O3 matrix
with D = 4–6 nm. These spectra were recorded with
various time delays after an excitation pulse. Note that
the maximum intensity shifts toward smaller energies
at the expense of a rapid decrease in intensity of the
high-frequency spectral components. This is confirmed
by the PL kinetics observed in various parts of the spec-
trum. As can be seen in Figs. 4 and 5, the PL intensity
in the low-frequency part of the spectrum decays at a
slower rate. The decrease in the PL intensity with time
in various parts of the spectrum exhibits slow and fast
components, which can be approximately described by
a sum of two exponentials:

For example, the fast decay component of curve 4 in
Fig. 4b has a characteristic time of τ1 ≈ 70 ps, while the
slow component decays with a time constant of τ2 ≈
3 ns. For curve 1, the corresponding times are greater
by a factor of 4 and more than 2.5, respectively.

The kinetic properties of semiconducting nanostruc-
tures with dielectric barriers significantly differ from
the analogous properties of analogous nanostructures

l t( ) C1 t/τ1–( ) C2 t/τ2–( ).exp+exp=
AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002



EXCITONS IN CdS AND CdSe SEMICONDUCTING QUANTUM WIRES 1173
with semiconductor barriers because the barrier mate-
rial and interfaces determine the properties of electron
and exciton systems. In the former structures, relax-
ation of the energy of excited electron–hole pairs and
excitons proceeds via both radiative and nonradiative
mechanisms [25, 26]. We relate the fast component of
the PL decay kinetics with radiative and nonradiative
recombination of excitons in quantum wires and the
slow component with the trapping of excited charge
carriers and excitons by traps at the semiconductor–
insulator interface, followed by release.

The shorter time of the PL intensity relaxation in the
high-frequency part of the spectrum, as well as the
longwave shift of the PL peak position, is probably
related to a difference in the times of nonradiative
recombination in the QWRs of various transverse
dimensions. In the QWRs of smaller diameter, the non-
radiative recombination time is shorter because of a
more significant role of the surface. A shift of the PL

Fig. 4. (a) The low-temperature (2 K) PL spectra of CdS
QWRs with dielectric barriers measured sequentially with
various time delay relative to a 1.5-ps exciting second har-
monic radiation pulse of a Ti–sapphire laser: (I) 0–100 ps,
(II) 100–200 ps, and (III) 200–300 ps; (b) time variation of
the PL intensity of (1–4) the CdS QWRs with dielectric bar-
riers (in the regions 1–4 indicated in the spectra (a)) and
(5) Al2O3 matrix.
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peak can also be explained by a fast trapping of exci-
tons on the local states [26]. The magnitude of the shift
indicates that the traps are about 50 meV deep. Unfor-
tunately, this type of traps cannot be identified at
present. It should be noted that the observed kinetic fea-
tures of the PL spectra are not related to nonlinear pro-
cesses, since the energy density of the laser radiation
exciting emission from the samples was insufficient for
the observation of nonlinear effects.

A nonlinear dependence of the PL intensity from
CdSe QWRs in Al2O3 on the excitation level was
observed for the absorption of the second harmonic
radiation ("ω = 2.34 eV) of a Nd:YAG laser operating
in the Q-switching mode at a pulse duration of 14 ns,
the excitation pulse energy of up to 2 mJ, and a laser
spot area of S = 10–2 cm2. As can be seen in Fig. 6, the
high excitation levels leads to “saturation” of the PL
intensity and a short-wave shift of the PL intensity
maximum. We relate the nonlinear dependence of the

Fig. 5. (a) The low-temperature (2 K) PL spectra of CdSe
QWRs with dielectric barriers measured sequentially with
various time delay relative to a 1.5-ps exciting second har-
monic radiation pulse of a Ti–sapphire laser: (I) 0–80 ps,
(II) 150–270 ps, (III) 460–540 ps, and (IV) 720–820 ps;
(b) time variation of the PL intensity of (1–4) the CdSe
QWRs with dielectric barriers in the regions 1–4 indicated
in the spectra (a).

0.2

0 500
Time, ps

0.4

0.6

0.8

1.0

0

1000 1500

(b)

3 2

1

4

1.70
Energy, eV

15000

1.80

(a)
1 2 3 4

I

II

III

IV

20000

10000

5000

0

1.75 1.85

PL
 in

te
ns

ity
, r

el
. u

ni
ts
SICS      Vol. 94      No. 6      2002



1174 DNEPROVSKIŒ et al.
PL intensity on the excitation level to a nonlinear
absorption in the samples with QWRs exhibiting a sig-
nificant dispersion in the transverse size.

At a high excitation level, various nonlinear pro-
cesses may coexist and compete with each other in the
QWRs [17, 27, 28], including the screening of excitons,
filling of the phase space of excitons, occupation of the
one-dimensional electron and hole energy bands, and
renormalization of the width of a one-dimensional for-
bidden band (the bandgap width decreases with an
increase in the excitation level). Apparently, a dominat-
ing effect in the QWRs with dielectric barriers (e.g.,
those with higher exciton binding energies) is the exci-
ton phase space filling which leads to a decrease (satu-
ration) in the absorption and, hence, a decrease in the
PL intensity with increasing excitation level. The phase
space filling takes place first in the QWRs of a large
diameter (i.e., in the QWRs with a greater effective
exciton length). This circumstance can explain a short-
wave shift of the PL maximum observed for the sam-
ples with QWRs.

The results of theoretical calculations of the effec-
tive exciton length (5–10 nm) in semiconducting
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Fig. 6. The room-temperature (300 K) PL spectra:
(1, 2) CdSe QWRs with dielectric barriers measured at
various levels of excitation with second harmonic radia-
tion of a Nd:YAG laser (1) 0.012 and (2) 0.2 J/m2;
(3) Al2O3 matrix. The inset shows a plot of the room-tem-
perature (300 K) PL intensity versus excitation energy den-
sity W/S for a sample containing CdSe QWRs with dielec-
tric barriers (second harmonic radiation of a Nd:YAG laser;
pulse duration, 14 ns; pulse energy W, up to 2 mJ; laser spot
size S, 10–2 cm2).
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(CdSe) 6- to 10-nm-thick QWRs with dielectric barri-
ers allowed us to evaluate the linear density of excitons
(i.e., the number of excitons per unit length) necessary
for pronounced manifestations of the phase space fil-
ling effect: nph ≈ 106 cm–1. Estimates show that this
exciton density was probably reached in the experi-
ment. Indeed, the linear concentration of excitons (for
the measured exciton lifetime τ ≈ 10–10 s being much
shorter than the exciting laser pulse duration ∆t) can be
evaluated as

This estimate was obtained for an energy of W = 0.2 mJ
(maximum pumping level) absorbed in the sample with
a thickness of L ≈ 5 µm (the second harmonic radiation
absorption was measured using the samples with win-
dows etched through the nontransparent substrate). The
density of hollow channels (pores determined with the
aid of an atomic force microscope) filled with a semi-
conductor was N ≈ 1011 cm–2 [21], and the quantum
yield of the conversion of absorbed photons into exci-
tons was β ≈ 0.5.

3. CONCLUSION

We have analyzed the experimental PL spectra of
semiconducting (CdS, CdSe) nanostructures crystal-
lized in the hollow channels of nanometer transverse
size formed in a transparent dielectric Al2O3 matrix,
including data about (i) high-energy shifts of the PL
maxima as compared to the case of bulk semiconduc-
tors (in agreement with the theoretical predictions),
(ii) dependence of the PL intensity on the polarization
of exciting radiation, (iii) kinetics of the PL intensity,
(iv) nonlinear dependence of the PL intensity on the
laser excitation level, and (v) changes in the PL spectra
measured at high pumping levels. The whole body of
data indicates that the nanostructures represent pre-
dominantly crystalline semiconducting quantum wires
with an approximately 20% dispersion of the transverse
size (diameter), in which the dominating process is
related to exciton transitions.

A comparison of the experimentally measured exci-
ton transition energies to the results of theoretical
calculations with an allowance for the quantum con-
finement and dielectric enhancement effects allowed
the exciton binding energy in semiconducting QWRs
with dielectric barriers to be evaluated as approxi-
mately 250 meV for CdS and CdSe QWRs with a
diameter of 4–6 nm.

It was demonstrated that the exciton luminescence
spectrum in semiconducting QWRs with dielectric bar-
riers exhibits inhomogeneous broadening related to the
transverse size dispersion, which can be partly sup-
pressed because an increase in the one-dimensional
bandgap width in the QWRs with decreasing diameters
is compensated within broad limits by an increase in the

n β τW
∆tSL"ωN
------------------------- 106–107 cm 1– .≈≈
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exciton binding energy, so that the resulting exciton
transition energy remains virtually unchanged.
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Abstract—Observations are made of metastable supercooled normal bulk states in lead samples. It is demon-
strated that such states are realized when the critical field of surface superconductivity Hc3 is lower than the
critical field Hc and in the opposite case. Therefore, the surface superconductivity is not a nucleus with super-
critical parameters for the bulk superconductivity. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigations of the superconductivity of the
twinning plane reported in [1] revealed that the sample
volume surrounding the twinning plane may remain in
a metastable supercooled normal state even though the
twinning plane is already in the superconducting state.
The same qualitative result was obtained in [2], where
the plane N–S interface (the interface between the nor-
mal and superconducting phases) was formed due to
the “neighborhood effect” upon contact between two
different superconductors. Therefore, it is demon-
strated in these papers for type I superconductors that
the nucleus of the superconducting phase in neither
case has the parameters leading to the absolute instabil-
ity of the thermodynamically disadvantageous normal
state.

The third system (historically, it appears to be the
first one to have been treated) in which the plane N–S
interface appears is the interface produced by surface
superconductivity. This problem was treated, for exam-
ple, in the well-known paper by Saint-James and
de Gennes [3]. According to them, in type I supercon-
ductors with a relatively low value of the Ginzburg–
Landau parameter, κ < 0.42, the critical magnetic field
of surface superconductivity Hc3 < Hc is observed as the
boundary between possible metastable normal states in
the bulk of samples. As to type I superconductors with

a high value of this parameter, 0.42 < κ < 1/ , in
which Hc3 > Hc, the existence of surface superconduc-
tivity results in that metastable supercooled states turn
out to be forbidden in general. In other words, it is
inferred that the surface superconductivity always rep-
resents a nucleus with supercritical parameters. Car-
dona and Rosenblum [4] fully agreed with the infer-
ences made by Saint-James and de Gennes [3].

Somewhat later, for example, in [5, 6], an attempt
was made at performing more thorough investigations

2
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of the effect of the surface superconductivity on the
bulk one. In these studies, data were obtained which
indicated that the results obtained by Saint-James and
de Gennes [3] should be revised and refined to a consid-
erable extent. However, the studies reported in [5, 6]
were not brought to their logical conclusion, and the
viewpoint of Saint-James and de Gennes [3], repro-
duced by de Gennes in his monograph [7], remained the
most popular one.

It was the objective of this study to find out whether
the surface superconductivity is indeed a nucleus with
supercritical characteristics in the bulk of samples.

2. DETAILS OF EXPERIMENTS AND SAMPLES

The characteristic features indicative of the exist-
ence of metastable states during first-order phase tran-
sitions include the hysteresis and the abrupt variation of
the properties of samples being investigated. The pres-
ence of hysteresis is determined by the energy barrier
between the possible states of the system, and the jump
occurs because, at the time the stability of metastable
states is disturbed, the system is already far from the
conditions of phase equilibrium, and a new phase arises
immediately in quantity or with a high amplitude. It is
to these characteristic features of the existence of meta-
stable states, i.e., the hysteresis and the abrupt variation
of the properties of samples, that major attention is
given in our study.

We selected lead as the sample material. Because
lead has a cubic close-packed crystal structure, no twins
are produced in the case of plastic strain, which may
affect the width of the region of metastable states (see
[1]). In addition, Hc3 < Hc for lead at a relatively high
temperature in the vicinity of the superconducting tran-
sition temperature, and, at lower temperatures, Hc3 > Hc

(see, for example, [4]). This enables one to use the same
sample during the same helium experiment to perform
002 MAIK “Nauka/Interperiodica”
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measurements of critical fields both with κ < 0.42 and
with κ > 0.42.

The sample previously investigated by Mina and
Khaœkin [8] was used for measurements. This sample
was a single-crystal plane-parallel plate 13 × 6 × 1 mm
in size.

We recorded the HF loss (high-frequency signal
loss) in a sample located inside a helical resonator. The
shape of the helical resonator replicated the sample
shape. The resonator length was approximately one-
third of the sample length, so that the end parts of the
sample would not affect the HF response where possi-
ble. The resonance frequency was defined by the reso-
nator geometry and, in our experiments, amounted to
approximately 450 MHz. The helical resonator axis lay
in the horizontal plane in parallel with the vertically
arranged plane of the sample. An electromagnet was
used to generate a magnetic field. The electromagnet
was capable of rotating in the horizontal plane; as a
result, the magnetic field could be directed in parallel
with the sample plane. A more detailed description of
the experimental facility and of the measurement pro-
cedure is found in [9].

3. MEASUREMENT RESULTS

Figure 1 gives an example of experimental record-
ing of the dependence of the Q factor of the measuring
circuit (in relative units) on the magnetic field at T =
4.15 K. The field was scanned in the range from about
−1 kOe to approximately +1 kOe. The “horizontal”
regions of the recording with a relatively low Q factor
of the circuit in the case when the external magnetic
field applied to the sample is high correspond to the
normal state of the sample. If the sample is in the super-
conducting state, the Q factor of the measuring circuit
increases. The value of the magnetic field Hc deter-
mined on the basis of this recording is 535 Oe.

Figure 2 shows a segment of the same recording in
the vicinity of Hc. This region exhibits all of the charac-
teristic features which prove the fact of existence of
metastable states in the sample. The magnetic fields
confining the hysteresis region are marked in the figure
by arrows and denoted by Hc and Hsc. One can clearly
see that, in the field Hsc, the sample properties vary
abruptly. The direction of the jump in the figure is like-
wise indicated by an arrow. The lower branch of the
hysteresis loop, in which the Q factor of the measuring
circuit corresponds to the normal state of the sample, is
formed when the external magnetic field decreases
from values exceeding Hc. On the contrary, the upper
branch is formed when the external magnetic field
increases. A jump in the field Hsc is observed only when
the field decreases. Note that it is just because of the
need to exceed the applied external magnetic field of
magnitude Hc that this point may be identified as the
critical magnetic field of bulk superconductivity.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
No manifestation of the existing metastable states
associated with heating exists on the recording shown
in Fig. 2, because, due to the finite length of the sample,
they are shifted away from Hc towards lower fields and
are located (in Fig. 1) in the region of deviation of the
Q factor of the measuring circuit from the maximal
value. The left-hand side of the curves in Fig. 2 corre-
sponds to the intermediate state of the sample, in which
both the normal and the superconducting phases are
present simultaneously. Note that, when samples of
other-than-ellipsoidal shape are used, investigations of
the effect of superheating in superconductors make no
sense because of the indeterminacy of the magnitude of
the demagnetization factor.

At lower temperatures down to 1.5 K, the presence
of metastable supercooled states is recorded against the
background of a signal due to the surface superconduc-
tivity. An example of such experimental recording is
given in Fig. 3. For better illustration, a recording made
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at a temperature of 3.1 K is selected, in which the con-
tributions to the variation of the Q factor of the measur-
ing circuit due to surface superconductivity and to
metastable states are close to each other; the misalign-
ment between the curves at point Hc is associated with
the signal drifts during measurements. Because of sur-
face superconductivity, the Q factor of the measuring
circuit exceeds the level corresponding to the normal
state of the sample. This level is indicated in Fig. 3 by
a horizontal dashed line. The characteristic point deter-
mined by the deviation of the Q(H) dependence from
the horizontal is indicated by an arrow in Fig. 3 and
denoted by Hc3. Naturally, this determination of Hc3
gives only the lower estimate of the critical magnetic
field of surface superconductivity; however, at a given
moment, only the fact that Hc3 exceeds both Hc and Hsc

is of importance to us. These critical fields are also indi-
cated in Fig. 3.

4. CONCLUSIONS

In all three investigated (in [1, 2] and in this study)
cases of plane N–S interface, it has been found that
there is always a possibility of existence of metastable
supercooled normal states in the bulk of samples. These
results lead one to conclude that neither the supercon-
ductivity of the twinning plane, nor the superconductiv-
ity induced due to the neighborhood effect, nor the sur-
face superconductivity serves as a nucleus with above-
critical parameters for the bulk superconductivity. Pro-
ceeding from the reasoning about the balance between
the surface and bulk energies during first-order phase
transitions, one must conclude that the surface energy
of the N–S interface increases with the distance from
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the source of nucleation of superconductivity. This
experimentally established fact may in no way be fitted
to the principles of the theoretical model [3, 7], which
postulate the independence of the surface energy of the
coordinate of the location of the plane interface
between the normal and superconducting phases.

The region of observation of metastable states turns
out to be narrower than that in the absence of “extrane-
ous” (for the sample volume) sources of superconduct-
ing phase, with the observed critical field being Hsc >
Hc3/1.7 = Hc2. Hence, it follows that the extraneous
superconductivity indeed affects the stability of meta-
stable supercooled states. Nevertheless, the results of
our study demonstrate that even the intrinsic surface
superconductivity does not fully prohibit the possibility
of observing the effect of supercooling in type I super-
conductors. Moreover, one must conclude that an entire
line of critical magnetic fields Hsc must exist on the
phase diagram for superconductors, which lies below
the line of critical fields Hc on which the stability of
normal supercooled states in the bulk of type I super-
conductors is disturbed in the presence of surface
superconductivity.
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Abstract—A complex of studies of the physical properties of thin lanthanum manganite La0.67Ca0.33MnO3
films were performed for a monolithic layered structure consisting of a LiNbO3 substrate and a
La0.67Ca0.33MnO3 thin epitaxial film. For the first time, not only ordinary acoustoelectric (AE) current of charge
carriers dragged by a surface acoustic wave, but also longitudinal anomalous AE current, which flowed in a dis-
tinguished direction independent of the direction of the surface acoustic wave propagation, was observed. The
anomalous AE effect predominated close to the metal–insulator transition, whereas the odd AE effect predom-
inated at high and low temperatures. The sign of the ordinary odd AE effect corresponded to hole conduction
of the film. A theoretical analysis showed that the anomalous AE effect is due to a strong film conduction mod-
ulation caused by deformation created by the surface acoustic wave. The theoretical results were in close agree-
ment with experiment. The temperature dependences of resistivity ρ (both in the absence of a magnetic field and in
fields of up to 3 T), high-frequency magnetic susceptibility, and thermoelectric power were studied. © 2002
MAIK “Nauka/Interperiodica”.
 1. INTRODUCTION

In recent years, perovskite manganites R1 – xAxMnO3,
where R = La, Nd, and Pr and A = Ca, Sr, and Ba, have
been extensively studied. These compounds attract
attention not only by the diversity of their magnetic,
structural, and electronic properties but also because
they offer much promise for technical applications.

It has been shown that the properties of manganites
are determined not only by the double exchange mech-
anism [1] but also by strong electron–phonon coupling
[2] of the Jahn–Teller type. Strong electron–phonon
coupling forms polaronic states. The transport properties
in the paramagnetic state are therefore determined by
thermally activated jumps of polarons. Double exchange
responsible for the ferromagnetic transition with critical
temperature Tc changes semiconducting behavior of
resistivity ρ(T) above Tc into metallic behavior below
Tc. There are direct experimental data substantiating
this physical picture, namely, a giant isotope shift of Tc,
thermally activated transport in the paramagnetic state,
Arrhenius behavior of the drift and Hall mobilities, a
comparatively low activation energy of the thermoelec-
tric effect, etc. (e.g., see reviews [3–6]).

It has been discovered recently [7] that pressure has
a strong influence on the transport and magnetic prop-

 †Deceased.
1063-7761/02/9406- $22.00 © 21179
erties. This is one more piece of evidence of strong
electron–phonon coupling in these materials. Neverthe-
less, there exist quite a number of open, still unan-
swered questions concerning the physical properties of
manganites. In particular, recent conduction mea-
surements [8] have shown that the polaron effect
plays an important role in the low-temperature
metallic phase. Not only the mechanism of conduction
in various temperature intervals but also the problem of
determining the type of charge carriers attracts atten-
tion. Hall effect and thermoelectric effect measure-
ments give contradictory information on the sign of
charge carriers. For instance, thermoelectric power
(TEP) in La0.67Ca0.33MnO3 is negative in the whole tem-
perature range of measurements, which is evidence in
favor of electron conduction [9, 10], whereas Hall
effect measurements show that the Hall coefficient
changes sign [11]. These discrepancies are difficult to
explain in terms of the simple one-band model with
holes as charge carriers.

In our view, gaining a deeper insight into the physi-
cal properties of metal manganites requires further
thorough studies with the use of new experimental tech-
niques. Of special interest in this respect are, in our
view, measurements of the acoustoelectric (AE) effect,
which give independent and important information
about the properties of a system of charge carriers.
002 MAIK “Nauka/Interperiodica”
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In this work, we report the first studies of the
AE effect in a monolithic layered structure consist-
ing of a LiNbO3 piezodielectric substrate and a
La0.67Ca0.33MnO3 thin epitaxial film in a wide tempera-
ture range including the region of the metal–insulator
transition. In such a structure, both deformation created
by a surface acoustic wave (SAW) and a piezoelectric
field, which accompanies the propagation of acoustic
waves over the piezodielectric substrate, act on charge
carriers. The SAW drags free charges in the film and
generate either AE voltage if the electric circuit includ-
ing the film is disconnected or AE current if the circuit
is closed. As the energy of a SAW propagating over the
substrate is largely concentrated in the surface layer of
thickness of the order of its length, SAW-induced
deformation can attain very large values of about 10–3,
which is, in the system under consideration, equivalent
to pressure of about 1 kbar. As mentioned, high pres-
sure can, in turn, substantially change manganite film
conductivity. In this respect, our approach essentially
differs from the early experiments, in which the film
was only subjected to the action of an electric field [12].

We found that longitudinal AE current had a strong
temperature dependence with a maximum close to the
metal–insulator transition. Our most interesting result
was, however, the observation of two contributions to
AE current. In addition to the ordinary AE current,
which is odd with respect to the wave vector of a SAW
(that is, changes sign when the wave vector takes on the
opposite value), we observed an anomalous current
component, which was even with respect to the wave
vector. The sign of the ordinary AE current corre-
sponded to hole conduction in the whole temperature
range of measurements, 77–300 K. The anomalous AE
current was strongly different from the ordinary AE
current in magnitude and in temperature behavior and
had a different nature determined by the strong pressure
dependence of manganite film conductivity (see
below). The even longitudinal AE effect was earlier
observed in other objects, for instance, in piezosemi-
conductors with traps [13] and asymmetric ballistic
contacts [14]. In contrast to these objects, our lantha-
num manganite films did not contain traps and were

x

y

z

yz-LiNbO3

3

21

3

1

Fig. 1. Scheme of a monolithic layered structure consisting
of a LiNbO3 substrate and a La0.67Ca0.33MnO3 thin film: (1)
interdigital transducers; (2) film with contacts; (3) surface
acoustic wave absorbers. Axes show film orientation.
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spatially homogeneous. Some analogy can only be
found with the first theoretical works on the even AE
effect in crystals without an inversion center; this effect
was for the first time considered in [15]. Our lanthanum
manganite films have an inversion center but are in
mechanical contact with a piezodielectric substrate,
which has no inversion center. The role of the mechan-
ical contact and the properties of layers in the arising of
the anomalous AE effect is discussed in Sections 5 and
6. A short communication on the observations of the
anomalous AE current was published in [16].

2. EXPERIMENTAL PROCEDURE

Lanthanum manganite films were grown on the
yz-cut optically polished LiNbO3 substrate by pulsed
laser-deposition technique with the use of
La0.67Ca0.33MnO3 stoichiometric ceramics as a target.
During the deposition, the substrate temperature equaled
730°C, and the oxygen pressure was 300 mTorr. The
deposited film was cooled to room temperature at the
same oxygen pressure. The film was then used to pre-
pare a four-probe sample for measurements with the
use of optical photolithography and chemical etch-
ing; the film was 10 mm long, 2 mm wide, and 100–
200 nm thick. Sample resistance R was measured by
the four-point-probe method under the conditions of a
10 µA stabilized transport current, which did not cause
noticeable film heating.

The AE effect was studied by exciting a Rayleigh
SAW, which propagated over the surface of the LiNbO3
piezodielectric substrate. The SAW pulses were gener-
ated and received by interdigital transducers situated at
the opposite ends of the lithium niobate substrate. The
aperture of the acoustic beam was 3 mm; that is, it was
larger than the film width in all experiments. Measure-
ments were taken at a resonance transducer frequency
of 87 MHz (the acoustic wave length was λ = 40 µm).
The sample geometry is shown in Fig. 1.

During measurements, the samples were placed into
a cryostat filled with helium or nitrogen vapor. Temper-
ature was controlled by a heater, whose magnetic field
could be ignored (H < 0.1 Oe), and measured by a ther-
mocouple with accuracy of 0.05 K or higher. SAWs
were excited in a pulsed mode with a 50 Hz pulse rep-
etition rate. Acoustic pulse width τ depended on the
kind of the experiment and could be varied from 1 to
4 µs. In AE effect measurements, the SAW pulse width
equaled the time of sound traversal through the whole
film if the whole film participated in measurements or
through the film region that was studied in the experi-
ment. The SAW intensity at the entrance to the sample,
Φ, was controlled by an attenuator in 1-dB steps and
was independent of the acoustic pulse width. In all AE
effect measurements, transport current through samples
was zero.

A trivial source of the even AE effect might be spa-
tial nonuniformity of the electric properties of the film.
 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002
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For this reason, film uniformity was thoroughly
checked by various techniques. X-ray studies showed
that the film was epitaxial and single-phase, had a
pseudocubic lattice with constant a = 0.3853 nm, and
was oriented parallel to the (211) plane. The chemical
composition of the film and its uniformity were proved
by electron-probe microanalyses in various film
regions. According to the chemical analysis data, the
chemical composition of the film differed from that of
the ceramic target within 2%. Electric uniformity of the
film was checked by measuring the resistance of vari-
ous film regions. In addition, the results obtained in
TEP measurements were also not only in qualitative but
also in close quantitative agreement with the available
data. The aforesaid leads us to conclude that the struc-
tural, magnetic, and electric properties of the lantha-
num manganite films studied in this work were spa-
tially uniform.

3. TRANSPORT AND MAGNETIC 
MEASUREMENTS

The R(T) dependences in zero magnetic field and in
field H⊥  = 25.5 kOe perpendicular to the film surface
are shown in Fig. 2. The R(T) curve has a maximum at
T ≈ 224 K. Applying magnetic field H shifted the R(T)
curve peak to a higher temperature, T ≈ 231 K; substan-
tially increased sample conductivity; and, through this,
produced the colossal magnetoresistance effect, which
amounted to about 80% at 25.5 kOe in our experiments,
in complete agreement with the published data [3–5]. A
fairly sharp shape of the peak was evidence of a high
film quality and the absence of a noticeable contribu-
tion of granules to conductivity. The dependence of
ln(R/T) on 1/T is plotted in the inset in Fig. 2.

In the theory of adiabatic jumps of small polarons
[17], the temperature dependence of resistivity is
described by the equation

(1)

where EA is the activation energy of jumps and kB is the
Boltzmann constant. On the assumption that α = 1, we
obtained EA = 142 mV for H = 0 and EA = 52 mV in field
H⊥  = 25.5 kOe from our data on the paramagnetic state
region (see inset in Fig. 2, curves 1 and 2, respectively).
It follows that a magnetic field sharply decreases the
activation energy. As a consequence, R(T) decreases in
a magnetic field in the region of the metal–insulator
transition. This result coincides fairly well with the lit-
erature data [18].

In high-frequency magnetic susceptibility measure-
ments shown in Fig. 3, an alternating magnetic field
with a 5-Oe amplitude and an f = 625 Hz frequency was
applied parallel to the film plane. Both real (χ') and
imaginary (χ'') susceptibility parts were measured. The
Curie temperature was determined as the temperature
corresponding to the inflection of the χ'(T) curve and
approximately equaled T = 215 K. According to our

ρ T( ) ρ0Tα EA/kBT( )exp ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
data, the resistance peak was situated close to the ferro-
magnetic phase transition.

The temperature dependence of the Seebeck coeffi-
cient (S) at H = 0 measured by the standard technique is
shown in Fig. 4. One end of the lithium niobate sub-
strate with a deposited film was fixed between two mas-
sive sapphire blocks for heat removal. A thermal gradi-
ent along the film was created by a miniature heater
mounted on the opposite substrate end and controlled
by two thermocouples. The figure shows that the TEP
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Fig. 2. Temperature dependences of film resistance in vari-
ous magnetic fields normal to the film surface: (1) H = 0 and
(2) H = 25.5 kOe. Shown in the inset are the plots of ln(R/T)
versus 1/T: (1) H = 0, activation energy Ea = 142 meV;
(2) H = 25.5 kOe, Ea = 53 meV.
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χ'' La0.67Ca0.33MnO3 magnetic susceptibility components.
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was largest in magnitude in the region of the activation
character of conductivity with the participation of
small-radius polarons and decreased almost to zero as
the system approached the metallic phase region. Char-
acteristically, in the whole temperature range of mea-
surements including T = 300 K, the Seebeck coefficient
S was negative, although, according to Hall effect mea-
surements and the existing theoretical concepts, holes
should be charge carriers in lanthanum manganite in
the high-temperature region. Figure 4 also contains the
literature data [10, 19–21] on the temperature depen-
dence of the Seebeck coefficient in lanthanum mangan-
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V
/K
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100 200 300 400
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Fig. 4. Temperature dependences of Seebeck coefficient S
for La0.67Ca0.33MnO3 compounds: (1) our experimental
data on manganite films and data from (2) [10], (3) [19],
(4) [20], and (5) [21].
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ite. These data insignificantly differ from those
obtained in this work, and the Seebeck coefficient is
negative according to all of them. Note that, in many
instances, unambiguous conclusions on the type of con-
ductivity cannot be made based on TEP measurements
because the sign of TEP is determined not only by the
sign of charge carriers but also by the special features
of scattering and the energy spectrum of these quasi-
particles.

4. ACOUSTOELECTRIC MEASUREMENTS

The results of longitudinal AE effect measurements
for La0.67Ca0.33MnO3 films in zero magnetic field are
shown in Fig. 5a. These results were obtained for the
acoustic wave vector q in both positive (curve 1) and
negative (curve 2) directions along the z axis of the lith-
ium niobate substrate (this axis is distinguished
because the substrate has no inversion center). First,
note the large value of the observed AE current in com-
parison not only with normal metals, in which the AE
effect is exceedingly weak, but also with semiconduc-
tors. Estimates of the contribution of TEP, which might
arise as a result of sound attenuation in the sample, to
the observed AE voltage show that this contribution is
negligibly small, because the TEP value is fairly small
in the samples under consideration. In addition, the
substrate with the film was in contact with a massive
optically polished copper base through an In–Ga eutec-
tic layer to remove heat and thereby decrease stray TEP.
This decreased the stray temperature gradient in the
film to 0.05 K or less.
0
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Fig. 5. Temperature dependences of AE current: (a) experimental data for (1) q || +z and (2) q || –z and (b) AE current components:
(1) even (anomalous), (2) odd (ordinary) at q || +z, (3) odd at q || –z, and (4) even component theoretically calculated by (6).
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When a SAW with q in the positive direction along
the z axis was excited, AE current IAE at T = 300 K was
positive and equaled approximately 2 µA at a surface
acoustic wave intensity of Φ ≈ 3 W/cm (Fig. 5a,
curve 1). AE current increased as temperature lowered
and reached a maximum (approximately 25 µA) near
the metal–insulator transition. A further decrease in
temperature decreased the AE current to about 1 µA at
T = 77 K.

As mentioned in the Introduction, the ordinary lon-
gitudinal AE effect is odd with respect to the q SAW
vector. We therefore expected to observe only sign
reversal when the surface acoustic wave with q in the
negative z axis direction was excited. Contrary to this
expectation, the behavior of AE current was surprising.
It twice changed sign close to the metal–insulator tran-
sition. Namely, when temperature decreased from
300 K, AE current was first negative, increased in mag-
nitude, then sharply changed sign, reached a maximum,
further decreased in magnitude, and, lastly, changed
sign once more. These results are shown in Fig. 5a
(curve 2).

Such an unexpected dependence of AE current on
the direction of the wave vector of the SAW can be
explained on the assumption that there are two contri-
butions to AE current,

The first contribution (Ieven) is anomalous and even with
respect to the SAW vector q. The second contribution
(Iodd) is the ordinary (odd) AE current. We separated
these two contributions based on the experimental data
and the following relations:

The results are shown in Fig. 5b. According to this fig-
ure, the anomalous longitudinal AE effect predomi-
nates near the metal–insulator phase transition and
approximately twofold exceeds the ordinary AE effect
(see Fig. 5b, curve 1). We stress once more that the
observed anomalous even AE current (Ieven) always
flows in the positive direction along the z axis of the
substrate. The ordinary odd AE effect (Iodd) (Fig. 5b,
curves 2, 3) predominates at both high and low temper-
atures, and its sign corresponds to hole conduction in
the whole temperature range of our measurements, as
expected for the La0.67Ca0.33MnO3 composition.

Note that we subjected the AE origin of the observed
effect to meticulous verification. For this purpose, we
thoroughly examined the dependence of AE current on
the SAW power W and pulse width τ in the whole temper-
ature range. The typical results for T = 300 K are shown
in Fig. 6. According to these measurements, IAE linearly
depended on W. The IAE(τ) dependence was also linear
until the SAW pulse width reached τ ≈ 2.5 µs, and the
spatial acoustic pulse dimensions became approxi-

IAE Ieven Iodd.+=

Iodd q–( ) Iodd q( ), Ieven q–( )– Ieven q( ).= =
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mately equal to the length of the film. Naturally, a fur-
ther increase in τ should have caused saturation of the
IAE(τ) dependence, as was observed experimentally.
Such dependences of IAE on W and τ fully correspond to
what should be expected for the classical pulsed AE
effect [22].

5. THEORETICAL ANALYSIS

A theoretical study of the interaction of a SAW with
a thin metallic film deposited on a lithium niobate sub-
strate and having a mechanical contact with the latter
was performed using the frame of reference whose pos-
itive y axis direction was normal to the surface of the
substrate (see Fig. 1). The substrate–film boundary was
the xz plane. The film had thickness a; the free surface
was therefore the y = a plane. A SAW of frequency ω
propagated along the z axis and was accompanied by
both electric field E(y, z, t) and deformation Sij(y, z, t).
In our geometry, only the y and z components of the
electric field and lattice displacement were nonzero.
Electric field E in turn created the local current density

in the film. Here, σij is the film conductivity tensor (the
diffusive contribution to the current can be ignored in
the long-wave limit). Note that, for the acoustic fre-
quencies used in our experiments (ω ~ 108 s–1), the
dependence of σ on ω can be ignored because the
strong frequency dependence of polaronic conductivity
only arises in the frequency region ω ~ (4/")Ea ~1013 s–1

for activation energy Ea ≈ 142 meV (e.g., see [23]).

Ji y z t, ,( ) σij y z t, ,( )E j y z t, ,( )=

0

τ, µs

W, rel. units
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Fig. 6. AE current as a function of surface acoustic wave
power W and pulse width τ.
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Electric field E and deformation Sij induce local modu-
lation of conductivity tensor σij components,

where σ0 is the unperturbed conductivity; the term

describes the influence of electric field E and is a con-
sequence of modulation of the concentration of charge
carriers n = n0 + ns, where n0 is the unperturbed density
of charge carriers and ns is a change in this density
(ns ! n0) caused, by electric field E (the influence of
field E on drift mobility can be ignored); and the last
term,

describes deformation-induced modulation of the σzz

component. The Πijkl ≡ ∂lnσij/∂Skl tensor calculated at
Skl = 0 and fixed temperature describes deformation
effects on σij. Changes in electron drift mobility and
concentration also make a contribution and are taken
into account in Πijkl. Pseudocubic symmetry of lantha-
num manganite allows us to set Π3323 = 0. We simplify
the notation for the other tensor components as Π3333 ≡
Π33 and Π3322 ≡ Π32.

The longitudinal AE current excited by a SAW in
the film per unit length in the x direction is given by

(2)

where θ = 2π/ω. To determine jAE, we must use the
equations relating Ez, Sij, and ns, which follow from the
Maxwell and piezoelectric equations and the boundary
conditions at the y = 0 and y = a surfaces. We do not
give either these equations or the method for solving
them; they are well known and can be found, e.g., in
[24]. In the problem under consideration, film thickness
a is small compared with acoustic wave length λ but
much larger than the λD Debye length; that is, λD ! a !
λ. In addition, in a wide temperature interval near the
resistance peak, the conductivity of the manganite film
is low and is close to that of a semiconductor. This
allows us to use the Ingebrigtsen approach [24] to study
the interaction between SAWs and charge carriers in
the film. Within the framework of this approach, we
must first describe the penetration of the electric field of
a SAW into the film and the formation of surface
charges on the y = 0 and y = a surfaces as a result of
screening. Motion of surface charges in turn creates
surface electric currents. The constant component of

σzz y z t, ,( ) σ0 σ1 y z t, ,( ) σ2 y z t, ,( ),+ +=

σ1 y z t, ,( ) ns y z t, ,( )
∂σ0

∂n
---------=

σ2 y z t, ,( ) σ0 Π3333Szz Π3322Syz Π3323Syz+ +[ ] ,=

jAE
1
θ
--- t yJz y z t, ,( )d

0

a

∫d

0

θ

∫=

=  
1
θ
--- t y σ1Ez σ2Ez+( ) jAE

1( ) jAE
2( ) ,+≡d

0

a

∫d

0

θ

∫
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the total surface electric current per unit length in the x

direction is the  current,

(3)

Here, e is the charge of charge carriers; Φ is the inten-
sity of the SAW; and Γ is the coefficient of attenuation of
SAWs (Φ = Φ0e–Γz):

(4)

where K2 is the square of the electromechanical cou-
pling coefficient, σh = aσ0 is the conductivity “per
square,” and σm is the substrate material constant [24].

The  current is the ordinary longitudinal AE cur-
rent, which is odd with respect to q [22, 24, 25]. The
substitution of the experimental temperature depen-
dence of film conductivity, σh(T), into (4) gives good
qualitative and quantitative agreement between the the-
oretical attenuation coefficient and experimental atten-
uation of SAWs.

Calculating the  anomalous AE current compo-
nent arising as a result of film deformation requires the
determination of the Szz, Syy, and Ez values. As the film
is thin (aq ! 1), we assume that Szz and Syy insignifi-
cantly vary over film thickness; that is, Szz(y, z, t) ≈
Szz(0, z, t) at 0 < y < a. Deformation Syy can be estimated
from the relation Syy(y, z, t) ≈ –νSzz(0, z, t), which is
exact at the y = a free surface, where ν = c12/c11 ≈ 0.4
according to the measurements performed in [26];
c11 and c12 are the manganite film elasticity tensor com-
ponents.

Deformation Szz in lithium niobate is related to elec-
tric displacement Dz and electric field Ez as

where ε33 and p33 are the dielectric and piezodielectric
tensor components, respectively (for simplicity, we set
p32 = 0 because, for lithium niobate, this parameter is
small and taking it into account gives corrections not
exceeding 1%). Equation (2) therefore yields

(5)

where (z, t) is the electric field averaged over film

thickness. If aq ! 1, we have (z, t) ≈ Ez(0, z, t). Esti-

mating the contribution of induction Dz to  in (5)
shows that Dz can be ignored if 1 ! σ0/εω ! 1/qλD,
where ε is the static film permittivity. This condition is

jAE
1( )

jAE
1( ) qΓΦσ0/eωn0.=

Γ 2πK2

λ
-------------

σh/σm

1 σh/σm+
------------------------,=

jAE
1( )

jAE
2( )

Dz ε33Ez p33Szz,+=

jAE
2( ) aσ0

p33
--------- Π33 νΠ 32–( )1

θ
---=

× t Dz +0 z t, ,( ) ε33Ez 0 z t, ,( )–[ ] Ez z t,( ),d

0

θ

∫

Ez

Ez

jAE
2( )
 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002



ANOMALOUS ACOUSTOELECTRIC EFFECT AND THE TRANSPORT PROPERTIES 1185
well satisfied in our experiments. Using the relation
Ez(0) = iqϕ(0) and expressing surface potential ϕ(0)
through Φ and Γ in (5), we obtain

(6)

This result shows that the  current is even with
respect to q, and its direction is determined by the signs

of p33 and Π3i. Note that  is the bulk current (in con-

trast to the  surface current), because the deforma-
tion and the longitudinal electric field component Ez

penetrate through the whole film thickness. The Π3i

coefficients determine the pressure dependence of con-
ductivity,

where k is the compressibility coefficient of the film.
According to the pressure experiments on manganites
[7], the ∂lnσ0/∂P value is positive and strongly depends
on temperature. Namely, this parameter is small at high
and low temperatures and attains a maximum value of
about 3.5 GPa–1 at a temperature slightly below that
corresponding to the resistance maximum. Since
∂lnσ0/∂P is positive, the coefficients Π3i are negative.
Numerical estimates were obtained on the assumption
that Π33 ≈ Π32. Substituting k–1 = 85 GPa [27] yields
maxΠij ≈ –300.

It follows from (6) that the anomalous even AE
effect can be observed if the following conditions are
satisfied: film conductivity depends on pressure (Π3i ≠
0), the substrate has piezoelectric properties (p33 ≠ 0),
and there is a distinguished direction in the substrate.
These conditions will be discussed in more detail in the
next section.

The theory developed above gives close agreement
with experiment. In the selected frame of reference, the p33
constant is positive [28]. Therefore, according to (6), the

 AE current flows in the +z direction. Substituting
the well-known lithium niobate parameters and our
experimental data on maximum attenuation (Γ ~ 2 cm–1)

into (6) yields  ≈ 30 µA/cm as a maximum if the
intensity of SAWs equals Φ ≈ 3 W/cm. Our experimen-
tal data (Fig. 5b, curve 1) give a maximum value of

 ≈ 100 µA/cm. Considering the approximate char-
acter of our Γ, Φ, and Π3i values, we estimate agree-
ment between theory and experiment as satisfactory. In

addition, (6) describes the temperature behavior of 
very well (see Fig. 5b, curve 4). The theoretical curve
normalized with respect to the experimental value at a
maximum (Fig. 5b) was calculated by (6) using the
experimental Γ(T) dependence and the temperature

jAE
2( ) ΓΦε33 Π33 νΠ 32–( )/ p33.–=

jAE
2( )

jAE
2( )

jAE
1( )

2Π32 Π33+
3
k
---

∂ σ0ln
∂P

--------------,–=

jAE
2( )

jAE
2( )

jAE
2( )

jAE
2( )
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dependence of ∂lnσ0/∂P obtained from the experimen-

tal pressure data [7]. The experimentally observed 
current maximum is shifted by approximately 15 K to
lower temperatures compared with theoretical predic-
tions. This shift can be caused by a possible difference
of the temperatures corresponding to a maximum
∂lnσ0/∂P parameter value in our films and in a massive
lanthanum manganite sample [7]. Note also that the

maximum odd AE current value, max  ≈ 10 µA/cm,
estimated by (3) fairly closely agrees in order of mag-

nitude with the max  ≈ 50 µA/cm experimental
value (Fig. 5b, curves 2 and 3). Agreement between the-
ory and experiment can be improved on the assumption
that thin manganite films have a somewhat higher sen-
sitivity to pressure than massive samples. This assump-
tion, however, requires additional inquiries.

6. DISCUSSION AND CONCLUSION

In this work, we studied the AE effect that arose in the
monolithic layered structure consisting of a LiNbO3
piezodielectric substrate and a La0.67Ca0.33MnO3 mangan-
ite thin film under the action of a SAW. In experiments
on exciting SAWs in the +z direction (the z crystallo-
graphic axis is distinguished in LiNbO3 piezodielectric
crystals), we expected that exciting the wave in the
opposite (–z) direction would only change the sign of
the AE current in the film, as followed from the gener-
ally accepted views on the nature of the ordinary AE
effect. Instead, we observed an unordinary effect;
namely, AE currents flowing in the +z and −z directions
in the layered structure under study were substantially
different not only in magnitude but also in their temper-
ature behavior. It was found that the absence of symme-
try in the AE effect between the +z and –z directions
was caused by the appearance of an anomalous AE cur-
rent, which only flowed in the +z direction irrespective
of the direction of SAW propagation along the z axis.
A detailed theory of the an anomalous AE effect was
developed in Section 5. Here, we sum up the theoreti-
cal results and give a simple physical picture of this
phenomenon in comparison with the ordinary AE
effect.

First, consider the nature of the AE effect in a mono-
lithic layered structure. Recall that SAWs propagating
over the surface of a lithium niobate piezodielectric
substrate create high- and low-pressure regions, which
correspond to negative (compression) and positive
(expansion) deformation regions. Because of the piezo-
electric effect, deformations, in turn, create an electric
field varying in space (and time). The relation between
the sign of the deformation and the sign of the electric
field component along the z axis is only determined by
the sign of the corresponding piezodielectric tensor
component and is therefore independent of whether the

jAE
2( )

jAE
1( )

jAE
1( )
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SAW propagates in the +z or –z direction. For lithium
niobate, the z electric field component is positive in
compression and negative in expansion regions.

Next, consider the interaction of a SAW with a con-
ducting film placed on the surface of a piezodielectric
substrate. If the film and the substrate are in mechanical
contact with each other, the film experiences both elec-
tric field and mechanical deformation actions. The elec-
tric field that accompanies SAWs penetrates into the
film and creates screening surface charges on the film
because of the screening effect. The SAW drag these
charges to produce surface currents. The constant total
surface current component is the ordinary AE current
[see (3)] [24]. This is a quasi-classical picture of the
ordinary AE effect. In terms of quantum theory, the
SAW can be treated as a flow of phonons. The two
mechanisms described above are responsible for inter-
action between these phonons and charge carriers in the
film and make two additive contributions to AE current.
Phonons transfer momentum directly to charge carriers
and thereby generate the ordinary AE current. This
effect exists if there is at least one interaction mecha-
nism (for instance, in the absence of a mechanical con-
tact between a film and a substrate, charge carriers are
only dragged by the electric field).

Consider the nature of the anomalous AE effect in a
manganite film. The theoretical analysis in Section 5
showed that the anomalous AE effect is caused by the
existence of a strict correlation between the deforma-
tion sign and the sign of the z electric field component
when SAWs propagate in the LiNbO3 piezodielectric
substrate in either +z or –z direction; namely, the sub-
strate (and the film on it) becomes compressed in wave
regions where the varying electric field of the SAW is
directed along +z and expanded, where the field is
directed along –z. In film compression regions, the
mobility of charge carriers increases and, therefore,
film conductivity grows. In expansion regions, the con-
ductivity and mobility of charge carriers decrease. For
this reason, the time and film volume mean current pro-
duced by the varying electric field of a SAW is larger in
the +z direction than the current in the –z direction
because of a higher mobility of electrons. As a result, a
constant (anomalous) component of the total current in
the +z direction appears in the film. It follows that the
appearance of the anomalous AE effect requires simul-
taneous and in-phase mechanical deformation and elec-
tric field actions and metallic film sensitivity to defor-
mations. Such an effect can also be expected for other
conducting materials whose conductivity depends on
pressure. The observation of the anomalous AE effect
in La0.67Ca0.33MnO3 manganite is independent proof of
a very high sensitivity of such substances to external
pressure.

Based on the mechanism of the anomalous AE
effect described above, we may predict such an unusual
JOURNAL OF EXPERIMENTAL
phenomenon as AE current generation by a standing
SAW, when the ordinary AE effect is absent.
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Abstract—The dependence of the frequency and width of a surface plasmon ωs on the cluster size is analyzed.
In the process of the investigation, a large numerical parameter appears that determines the shape of the poten-
tial of the electromagnetic field inside the cluster and leads to a wide plateau on the dependence of ωs on the
cluster radius. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, there has been a surge of activity in the
study of small particles (clusters). Clusters consisting
of several through several thousand atoms can be cre-
ated and studied experimentally [1, 2]. The classical
theory [3] predicts the existence of a surface plasmon
with the frequency depending mainly on the shape of
the surface and the type of excitation. For a spherical
particle in vacuum, the dependence of the surface plas-
mon frequency ωL on the orbital moment L is deter-
mined by the simple equation ωL ∝  (L/(2L + 1))1/2 [4,
5]. The cluster size is assumed to be much less than the
photon wavelength in vacuum. The experimental width
of the surface plasmon is always much greater than the
radiation width and weakly depends on the cluster size [2].
It follows from the experimental data reported in [2] that
there is a rather wide plateau in the range 5 < R < 20 Å on
the dependence of the frequency of the surface plasmon
on the cluster radius. In the range R > 20 Å, the correc-
tion to the “volume” magnitude of the surface plasmon
frequency is proportional to –(κR)–1, where κ is the
dynamic depth of the electric field screening. The pro-
portionality coefficient is a large quantity, which leads
to the appearance of a plateau.

Below, we show that the spatial and frequency dis-
persion of nuclei, which relate the density of current
and charge to the electromagnetic field, significantly
affect the dependence of the surface plasmon frequency
on cluster radius.

2. EQUATIONS FOR THE DENSITY
OF CHARGE AND CURRENT

Equations for the density of charge and current are
obtained using the temperature Green’s function tech-
nique with the subsequent analytical continuation with
respect to frequency. This technique was designed for
superconductors [6]; as applied to a normal metal, it is
rather simple:
1063-7761/02/9406- $22.00 © 21188
(1)

Here, n is the concentration of impurities;  is the

scattering cross section; τ–1 = nv  is the scat-

tering time of an electron; A1 and ϕ are the vector and
scalar potentials, respectively; p and v  are the momen-
tum and speed on the Fermi surface, respectively. The

temperature Green’s function  is nonzero only in the
region

where

T is the temperature, and ω0 = 2πTN is the frequency of
the external field. The analytical continuation is carried
out from the domain ω0 > 0.

Equation (1) is true only within the domain specified
above. The densities of the charge and current, ρ and j1,

are related to Green’s function  by the equations

(2)

where ν = mp/2π2 is the density of states on the Fermi
surface. The solution to Eq. (1) can be represented in
the form

(3)
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1
+ +

– τZnv Ωp1
σp p1
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1( )11,∫

ωn

∑–=

ρ eν 2eϕ iπT
Ωpd
4π

----------SpĜp
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where Bp and Dp are functions of the momentum p on
the Fermi surface and of the coordinate r. The functions
Bp and Dp satisfy the system of equations

(4)

Formally, the solution to the second equation in (4) can
be written as

(5)

Substitute (5) into the first equation in (4) to obtain
an equation for Dp:

(6)

where the operator  has the form

(7)

The sum over the frequency ωn in Eqs. (2) is easily
calculated; as a result, we have

(8)

The analytical continuation in Eqs. (5), (6), and (8)
is reduced to the substitution ω0  –iω.

Equations (8) of the density of the charge and cur-
rent should be supplemented with Maxwell’s equations

(9)

Now, we can formulate the eigenvalue problem for
surface (and volume) plasmons in the general case.
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The plasmon frequency ω is a solution to the system
of equations (8), (9) with an outgoing electromagnetic
wave at infinity. This problem is not self-adjoint, and ω
is complex. However, we show below that, for cluster
sizes of experimental interest, the radiation width is
small and proportional to (Rωp/c)3, where ωp is the plas-
mon frequency and c is the speed of light. The greater
part of the plasmon width is explained by the scattering
of electrons from crystal defects or from impurities. In
order to derive inverse operators in Eqs. (5) and (7),
boundary conditions should be used. These can be mir-
ror or diffusion boundary conditions, or their combina-
tion.

3. A SURFACE PLASMON IN A CLUSTER

There are two types of solutions to the eigenvalue
problem for a particle of a small size. For the first type,
the dominant term is the scalar potential ϕ, and for the
second type, the vector potential A1.

Consider the first family of solutions. In the princi-
pal approximation with respect to the parameter
(Rωp/c)2, we can neglect the vector potential A1 within
the particle and away from it at a distance much less
than c/ωp. Within the particle, the scalar potential ϕ is
the solution to the equation

(10)

,

where τtr is the transport scattering time; away from the
particle, ϕ is the solution to the equation

(11)

The second (current) branch of the plasmon can be
analyzed in a similar fashion.

Consider a spherically symmetric cluster of radius
R. Outside the cluster, the solution to Eq. (11) is

(12)

where C is a constant and  are the spherical func-
tions.

Inside the cluster, ϕ is a sum of two terms:

(13)

∂2ϕ
∂r2
---------

8πνe2

ω i/τ tr+
------------------- ω i

τ
-- inv Ωp1

σp p1
d∫–+=

+ v
r∂

∂
 
  ω i

τ
-- inv Ωp1

σp p1
d∫–+ 

  1–

v1 r∂
∂

 
 

1–

× v1 r∂
∂

 
  v1 r∂

∂
 
  ϕ

∂2ϕ
∂r2
--------- 0.=

ϕext
C

rl 1+
---------Yl

me iωt– , r R, r> r ,= =

Yl
m

ϕ r t,( ) Yl
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The function φ in Eq. (13) is exponentially damping
inside the cluster; in the vicinity of its surface, it can be
written in the form

(14)

The parameter κ in Eq. (14) is the inverse dynamic
screening depth. Both parameters κ and γ can be found
from Eq. (10) and the corresponding boundary condi-
tions: the scalar potential is a continuous function on
the cluster surface, the derivative along the surface nor-
mal is continuous, and n · j1 = 0 on the cluster surface
(n is a normal vector to the surface).

In what follows, we assume that the cluster is rather
large, such that κR @ 1. In the principal approximation,
the frequency of a surface plasmon is independent of
the cluster size [2, 3]. Our first goal is to find a correc-
tion term proportional to (κR)–1. To this end, we define

the zero-order approximation operator 

(15)

where ep = r/r is the unit vector oriented along r. From
Eqs. (10) and (14), we derive an equation for the func-
tion φ with allowance made for the principal and first
correction terms with respect to the parameter (κR)–1:

(16)

Here, the angle brackets denote averaging over the
angles of the vector p.

The principal term in Eq. (16) yields the value of κ:

(17)

where  = 8πνe2v 2/3 is the frequency of plasma
vibrations.
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The correction term yields an equation for γ:

(18)

Below, we show that γ is a large quantity; this leads
to the appearance of a wide plateau on the dependence
of the frequency of a surface plasmon on cluster radius.
In order to describe this phenomenon, we apply an
interpolation procedure. Assume that the function φ sat-
isfies the following equation when L is of the order of
unity (L = 1.2) (see Eq. 13):

(19)

Here, the parameters κ and γ are determined from
Eqs. (17) and (18), and the prime denotes the differen-
tiation with respect to r. The solution to Eq. (19) can be
represented in terms of a Bessel function:

(20)

From formulas (12), (13), and (20), we find two bound-
ary conditions (the continuity condition for ϕ and for its
normal derivative at r = R):

(21)

Now, eliminate the constant C in the system of equa-

tions (21) to find an equation for the coefficients  and :

(22)

Using formulas (5) and (6), we reduce Eq. (8) for the
density of the current j1 to the form
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+ ẼlRl.

C̃ Ẽ

Ẽ 2l 1+( )Rl C̃ κR( )
1/2 γ–

+

× l 1+( )Iγ 1/2– κR( ) κR( )Iγ 1/2+ κR( )+{ } 0.=

j1
e2 pω

π2 ω i/τ tr+( )
------------------------------–=

× pv
3

-------A1 p v
r∂

∂
 
  L̂p1

1– ϕ
i v1 r∂

∂
 
  v1 A1⋅( )

ω i/τ tr+
----------------------------------------+

 
 
 
 
 

+

 
 
 
 
 

.

 AND THEORETICAL PHYSICS      Vol. 94      No. 6      2002



THE FREQUENCY AND WIDTH OF A SURFACE PLASMON IN A SMALL CLUSTER 1191
In the case under consideration, the vector potential
A1 is small and can be neglected. As a result, the condi-
tion that the normal component of the current goes to
zero on the cluster surface is written as

(24)

In the principal approximation, the action of the opera-
tor ∂/∂r on the function φ is reduced to multiplying it by
the parameter κ. In this approximation, we derive the
well-known formula for the frequency of a surface plas-
mon from Eqs. (17), (22), and (24):

(25)

Let us return to the analysis of the dependence of the
plasmon frequency on cluster size. In the approxima-
tion under consideration, Eq. (24) can be written as

(26)

Solving Eq. (26), we obtain

(27)

The coefficients Cm in (27) are the coefficients of the
expansion of the Bessel function into the Taylor series

(28)

The solvability condition for the system of Eqs. (22),
(27) determines the spectrum of surface plasmons:

n p⋅ v
r∂

∂
 
  L̂p1

1–
Ẽrl C̃ κr( )

1/2 γ–
Iγ 1/2– κr( )+( )

--- × Yl
m r/r( )

S

0.=

ω ω i
τ tr
-----+ 

  ωp
2 l
2l 1+
--------------.=

Rl 1– Ẽl
3ω
------- C̃ θpcos

2

r∂
∂ ω i

τ
-- inv Ωp1

σp p1
d∫–++

+
v 2

ω i/τ tr+
------------------- θp

r2

2

∂
∂ 1

r
---

r∂
∂

– 
  1

r
---

r∂
∂

+cos
2

 
 

1–

--- × κr( )1/2 γ– Iγ 1/2– κr( )
r R=

0.=

RlẼl
3
----- C̃ ZZ2 2MR2M Cm –1( )M m–

m 0=

M 1–

∑
M 1=

∞

∑d

0

1

∫=

×
ω ω i/τ tr+( )

4v 2Z2
---------------------------- 

  M m– Γ m 1+( )Γ m 1/2( )Z2+( )
Γ M 1+( )Γ M 1/2( )Z2+( )
------------------------------------------------------------.

κr( )1/2 γ– Iγ 1/2– κr( ) Cmr2m,
m 0=

∞

∑=

Cm
1

m!Γ m γ 1/2+ +( )
----------------------------------------- κ

2
--- 

 
2m

2–γ 1/2+ .×=

l
3 2l 1+( )
---------------------- κR( )1/2 γ––
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(29)

The quantity κ in (29) is found from Eq. (17). As a
rule, the width of plasmons is small compared to their
frequency, and it can be neglected when calculating κ.
Within this accuracy, we find from Eq. (17) that

(30)

In order to determine γ at R  ∞, we need the
mean value of the operators in formula (18):

(31)

As R  ∞, we use Eqs. (18), (25), and (31) to find
the following value of γ at l = 1:

(32)

In the framework of perturbation theory, we find the
following expression replacing Eq. (25) for the fre-
quency of a surface plasmon when the shift of its fre-
quency is small:

(33)

Owing to the large value of γ, the domain of appli-
cability of Eq. (33) is severely restricted from below.
Interpolation formulas (29), (30), and (32) make it pos-

× l 1+( )Iγ 1/2– κr( ) κR( )Iγ 1/2+ κR( )+{ }

=  ZZ2 2MR2M Cm –1( )M m–

m 0=

M 1–

∑
M 1=

∞

∑d

0

1

∫

×
ω ω i/τ tr+( )

4v 2Z2
---------------------------- 

  M m– Γ m 1+( )Γ m 1/2( )Z2+( )

Γ M 1+( )Γ M 1/2( )Z2+( )
------------------------------------------------------------.
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1

∫ 1
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  ,arctan= =
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ω2 κ2v 2Z2+
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0

1

∫=

=  
ω

κ2v 2
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ω
κv
------- κv

ω
------- 

 arctan– ,

L̂0
1– θpcos

2
L̂0

1– θp1
cos

2〈 〉 Zω2Z4d

ω2 κ2v 2Z2+( )2
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0

1
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ω2
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3
2
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κv
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ω
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sible to extend this domain up to values of R of about
10 Å.

The figure shows the dependence of the frequency
of plasmon vibrations for Na on the cluster radius,
which follows from formulas (29), (30), and (32), and
experimental data reported in [2]. Formulas (29), (30),
and (32) do not involve adjustable parameters. For the
speed on the Fermi surface and for the density Na, we
used the tabular magnitudes

(34)

In the domain R < 12 Å, the dependence of γ on the
cluster size cannot be neglected. In this domain, the
problem is reduced to solving Eq. (10) for the potential
φ with a required accuracy.

4. CONCLUSIONS

A method for analyzing the dependence of the fre-
quency of a surface plasmon on the cluster shape and

v 1.07 108 cm/s,×=

density 2.65 1022 particles/cm3.×=

2.5

0 0.05

ωs, eV

R–1, Å–1
0.10 0.15 0.20

2.0

1.5

3.0

The dependence of the frequency of a surface plasmon Na
on the cluster radius R. Crosses mark the experimental
results reported in [2]. The solid curve is the plot of the the-
oretical dependence (29).
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size is suggested. It is shown that a large numerical
parameter γ appears that is involved in the dependence
of the potential on coordinates. As a result, a wide pla-
teau appears on the plot of the plasmon frequency
dependence on the cluster radius ω = ω(R). It seems
probable that the profile of the potential barrier outside
the cluster becomes significant when the cluster size is
on the order of several angströms. Note that the exper-
imental width of a surface plasmon weakly depends on
the cluster size [2]. Under our approach, the plasmon
width is related to the scattering of electrons from
impurities or defects of the crystalline lattice. The
dependence of damping on the cluster size is mainly
related to the fact that the plasmon frequency appears in
all the relations only in the form ω(ω + i/τtr).
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Abstract—For the field u(x, t) governed by the Burgers equation with a thermal noise, short-time asymptotics
of multipoint correlators are obtained. Their exponential parts are independent of the correlator number. This
means that they are determined by a single rare fluctuation and exhibit an intermittency phenomenon. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Values of various observables in a field system in a
chaotic state undergo fluctuations in space and time. To
describe them, correlation functions of various orders
are usually used; moreover, nonsimultaneous correla-
tors carry more detailed information about the system
than simultaneous ones. The main contribution to the
measured average quantities is made by events of
superposition of weakly correlated signals arriving
from different points in space. Statistical properties of
this kind are exhibited by free fields. For such fields, the
statistics of fluctuations in a thermodynamic equilib-
rium is a Gaussian one; i.e., both the simultaneous and
nonsimultaneous correlation functions reduce to a sum
of products of second-order correlators. However, it is
possible that a set of average quantities of interest is
determined by a rare but large (in natural units) fluctu-
ation that is coherent with respect to space. Such a sit-
uation is referred to as intermittency. Formally, it man-
ifests itself in that the irreducible correlation functions,
which are distinct from zero in any nonlinear system,
become much greater then the reducible parts of total
correlators. A classical example is hydrodynamic tur-
bulence [1, 2]. Here, the magnitude of total correlators
as compared to their reducible parts is characterized by
the Reynolds number Re = l/rd, where l is the scale of
either initial perturbations or external sources of
energy, and rd is the scale at which the energy dissi-
pates.

Intermittency also occurs in fields of another type—
wave functions Ψ of electrons in a random one-dimen-
sional and two-dimensional potential. Indeed, due to
localization effects, all moments of the density |Ψ|2 are
inversely proportional to the volume V; therefore,

Ψ 2n〈 〉  @ Ψ 2〈 〉 n
 at  V ∞
1063-7761/02/9406- $22.00 © 21193
(see [3, 4]). Here, we face the case when an infinite set
of correlation functions is determined by a single rare
event.

By itself, a large value of fluctuations does not nec-
essarily lead to intermittency. For example, even at the
point of a second-order phase transition, irreducible
and total correlators have the same scale dimension and
are, therefore, of the same order of magnitude [5]. For
this reason, intermittency effects under thermal equilib-
rium had not been discussed in the literature until [6, 7].
In these studies, the statistics of a vortex field in two-
dimensional films was investigated, and it was discov-
ered that nonsimultaneous correlators of various orders
are determined by a single fluctuation evolving in time.
Hence, the correlators are proportional to the small
probability of this fluctuation. However, the reducible
parts of higher order correlators include this probability
to powers greater than unity; as a result, the values of
reducible parts are much less than the values of the total
correlation functions.

In [8], it was shown that similar properties are char-
acteristic of nonsimultaneous correlation functions in
systems whose evolution obeys the one-dimensional
Burgers equation with a thermal noise

(1)

Here, u(x, t) is a function of the spatial coordinate x and
time t, the parameter ν plays the role of viscosity, and
ξ(x, t) is a random short-correlated (in space and time)
force with a zero average satisfying Gaussian statistics.

Equation (1) describes a system of one-dimensional
weak shock waves. In this case, the field u(x, t) is pro-
portional to the speed of the medium with respect to a
reference frame moving at the speed of sound [1, 9].
This equation also appears in the problem on fluctua-
tions of solution–precipitate type interfaces that grow
due to a random inflow of atoms from the solution. In

ut uux νuxx–+ ξ .=
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this case, u = ∂xh, where h is the height of the surface,
and the equation of evolution of the field h(x, t), which
is derived from Eq. (1), is called the (1 + 1)-dimen-
sional Kardar–Parisi–Zhang equation [10]. A problem
of the same type arises in the study of statistics of vor-
tex lines in superconductors with impurities [11]. In
what follows, we will use hydrodynamic terms and call
u(x, t) the velocity field.

We consider the second-order correlator of the ran-
dom force ξ(x, t) in the form

(2)

Then, there exists a time-independent distribution 3[u]
of the field u that has the form of the Gibbs distribution

(3)

Here, 1 is a normalization constant. It is seen from (3)
that the parameter β plays the role of the inverse tem-
perature, so that the statistics of the velocity field at a
given instant of time is also Gaussian with the two-
point average

(4)

corresponding to the zero correlation length.
In this paper, we study the asymptotic behavior of

the correlation functions

(5)

at a small time t and a large distance X. It is assumed
that the viscosity is very small (ν  0). However, it is
crucial for the theory that it be distinct from zero (see
below). It is natural to assume that the influence of the
noise ξ can be neglected at small time intervals t
(below, we consider this assumption in more detail).
Then, averaging is performed over distribution (3) of
the field values u0(x) = u(x, 0). In [8], principal expo-
nential asymptotics terms of correlators (5) were found.
The derivation used the fact that, for ν  0, the
dynamics of the correlation of velocities at spatially
distant points is a Lagrangian transition. Therefore, the
correlator _(X, t) is determined by the probability of an
initial fluctuation u0(x) such that a Lagrangian particle
travels from 0 to the point X in time t. It was shown in
[8] that the optimal profile is linear:

(6)

The exponential asymptotics part of the function _(X,
t) is written as

(7)

ξ x t,( )ξ x1 t1,( )〈 〉 νβ 1– δ'' x x1–( )δ t t1–( ).–=

3 u[ ] 1 ^ u[ ]–{ } ,exp=

^ u[ ] β xu2 x( ).d∫=

u x t,( )u x' t,( )〈 〉 2β( ) 1– δ x x'–( ),=

_ X t,( ) u 0 0,( )u X t,( )〈 〉 ,=

T X Y t, ,( ) u 0 0,( )u Y 0,( )u X t,( )〈 〉 ,=

S X Y ∆ t, , ,( ) u 0 0,( )u Y 0,( )u X t,( )u X ∆ t,+( )〈 〉=

u0* x( ) X x–( )/T , 0 x X ,< <=

u0 x( ) 0, x 0, x X .><=

3 u0*[ ] β X3/3t2–( ).exp=
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Notice that the same fluctuation “brings” all particles
from the interior of the interval (0, X) to the point x = X
in time t. Then, we conclude that, for ∆ ! X and 0 <
Y < X, we have

(8)

The condition ∆ ! x ensures a small difference of the
optimal profile from the linear profile (6). The asymp-
totics under consideration corresponds to the inequality

and relations (8) are interpreted as intermittency.
In the reasoning above, we assumed that correlation

functions of form (5) tend to a finite limit as ν  0.
This assumption was made in [12]. It was also men-
tioned in that study that there exists only a single
dimensionless combination of the parameters βX3/t2 in
this limit, which is usually formulated in terms of dis-
persion as

The smallness of ν implies the inequality

The absence of divergences as ν  0 can be verified
as follows. If there is a divergence, then the main con-
tribution to the averages is made by short-wave fluctu-
ations. For these fluctuations, the term proportional νuxx

dominates in the equation of motion (1). Then, pertur-
bation theory could be applied to the nonlinear terms.
An analysis confirming the existence of a limit as ν  0
based on Wild’s diagram technique was carried out in
[13]. Note that, in the case under consideration, the
convergence of the renormalized diagrams of perturba-
tion theory at ν  0 implies that this theory is inap-
plicable. However, it must be stressed that ν cannot be
immediately set to zero. Indeed, shock waves, which
can be correctly described only with regard for the dis-
sipative term in Eq. (1), play a key role in the dynamics
of finite fluctuations. The approach used in [8] was
based on Lagrangian trajectories. For this reason, an
independent confirmation of the basic result of [8] is of
interest. Moreover, the approach used in [8] does not
yield preexponential coefficients in the expressions for
correlators. In the same paper, it was noted that the inte-
gral over fluctuations at the background of the optimal
profile (6) is not Gaussian; thus, the problem is not
reduced to the applications of the standard saddle point
method to functional integrals.

In this paper, we calculate complete asymptotic
expressions for the correlation functions (5) at
βX3/ 3t2 @ 1 in the framework of the approximation
whereby the effect of noise on the interval t is
neglected. We immediately note that the asymptotic
expressions obtained are in agreement with estimate
(8); they are also in complete agreement with the opti-

_ X t,( ) T X Y t, ,( ) S X Y ∆ t, , ,( ) βX3

3t2
---------– 

  .exp∼∼∼

βX
3
/t2

 @1,

ωk k3/2.∝

x2 νt( ) 1–
 @ βX3t 2– .
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mal fluctuation if it is assigned the following measure
in the functional space:

(9)

Here, –a0 is the first zero of the Airy function:

The measure is defined in the same way as in the calcu-
lus of instantons in quantum field theory [14]: the aver-
age of the product of the velocity field values is calcu-
lated by substituting the optimal profile (6) into it and
by multiplying the result by the Gibbs weight (7) and
by the measure Ω . It is seen from the expression for Ω
that fluctuations are small relative to (6); indeed, Ω
decreases with growing X3/t2. However, the depen-
dence of Ω on the saddle point parameter (βX3/t2)1/2 is
substantially nonanalytic. Such a behavior of the mea-
sure implies that it cannot be calculated using the qua-
dratic (in fluctuations) expansion of the effective
action.

The turbulence phenomenon for the Burgers equa-
tion with the initial distribution (3) for the case of corr-
elator decomposition was studied in [15, 16]. However,
only the simultaneous statistics, which does not exhibit
intermittency for the velocity field, was considered in
[15]. In the paper [16], the case t  ∞, which is oppo-
site to the case considered here, was studied. Moreover,
nosimultaneous and multipoint averages were not con-
sidered in [16]. We note that the intermittency of simul-
taneous structure functions of the velocity field caused
by discontinuous fluctuations was correctly described
in [15, 16]. It is also characteristic of the general state-
ment of the problem on the Burgers turbulence [2, 17–
19], which assumes that the length L of the external
noise correlation or the initial distribution of velocities
is considerably greater than the dissipation scale rd.
Moreover, the distances r for which the correlations are
analyzed are assumed to belong to the inertia interval;
i.e., rd ! r ! L.

2. CORRELATORS AT A SMALL
DIFFERENCE OF TIMES

We begin with the calculation of asymptotic expres-
sions for the function _(X, t) at βX3/t2 @ 1. Since the
averaging over the initial condition u0(x) is carried out
with the Gaussian weight (3), the correlator _ can be
written as

(10)

When calculating the variational derivative in (10), we
consider u(X, t) as a functional of the field u0(x). The
solution to the Cauchy problem for Eq. (1) is obtained

Ω βX3

t2
--------- 

 
1/3–

2Ai' a0–( )( ) 1– a0
βX3

t2
--------- 

 
1/3

– 
  .exp=

Ai a0–( ) 0.=

_ X t,( ) 1
2β
------ δu X t,( )

δu0 0( )
-------------------- .=
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with the help of the well-known Cole–Hopf substitu-
tion such that

(11)

Here, –l and l1 are the coordinates of the remote end-
points of the interval occupied by the medium. Formula
(11) is valid for l, l1  ∞. In this limit, l and l1 do not
appear in the final expressions for the correlators,
although it is convenient to retain them in the process of
intermediate manipulations. The independence of _(X,
t) of l and l1 makes it possible to shift the interval end-
points as follows:

Using the translational invariance of the energy ^, we
replace u0(x) by u0(x – X). After these transformations,
taking the variational derivative, and differentiation
with respect to X in (10) and (11), the correlator takes
the simple form

(12)

Here,

(13)

The averaging 〈…〉  is performed as the functional inte-
gration with respect to $u0. Now, using formula (13),
we change the integration variable u0(z) for Φ(z). By
construction, Φ(z) satisfies the condition

(14)

Expressing ^ in terms of Φ as

(15)

and taking into account Eq. (12), we reduce the calcu-
lation of _(X, t) to the Feynman–Kac path integral

u X t,( ) 2ν∂X zF z X,( )d

l–

l1

∫ 
 
 

,ln–=

F z X,( ) z X–( )2

4tν
-------------------

1
2ν
------ u0 y( ) yd

l–

z

∫––
 
 
 

.exp=

l l1,–( ) l– X l1 X+,+( ).

_ X t,( ) 1
2β
------ F X 0,–( ) zF z 0,( )d

l–

l1

∫ 
 
 

1–

=

=  
1

2β
------ λ z

Φ z( )
2ν

------------– 
 expd

l–

l1

∫–
 
 
 

exp .d

0

∞

∫

Φ z( ) 2ν λ z2 X2–
2t

---------------- τu0 τ( ).d

X–

z

∫+ +ln–=

Φ X–( ) 2ν λ .ln–=

^ Φ[ ]

=  6 Φ[ ] 2β
t

------ l1Φ l1( ) lΦ l–( )+( )–
β

3t
2

------- l1
3

l3+( ),+

6 Φ[ ] x
Φd
xd

------- 
 

2 2
t
---Φ+

 
 
 

,d

l–

l1

∫=
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[20]. It follows from (14) that the integration with
respect to dλ removes the boundary condition imposed
on Φ(x) at the point x = –X, and the correlator _(X, t)
is expressed in terms of the matrix element of the
Euclidean quantum mechanics as

(16)

with the Hamiltonian

(17)

Unfortunately, we failed to find the basis diagonalizing

the operator  in a closed form. However, problem
(16), (17) admits an analytical solution for ν  0 and
βX3/t2 @ 1.

Indeed, for small ν, the axis Φ can be decomposed
into two domains such that one of the terms in U(Φ) is
dominant in each domain. In the leading approximation

with respect to ν, the eigenfunctions of  are easily
found:

(18)

(19)

Here, K0 is the elliptic Macdonald function. In (19), –an

such that an > 0 and an + 1 > an (n = 0, 1, …) form the
sequence of zeros of the Airy function: Ai(–an) = 0.
When calculating the average in Eq. (16), we have to
find the result of the action of the “evolution” operator

exp(–T ) on the initial state exp(αΦ). This state can-
not be normalized. Hence, an expansion in basis (19) is

_ X t,( )

β
3t2
-------– l1

3 l3+( )
 
 
 

exp

4νβ
----------------------------------------------

2βl1

t
----------Φ 

 exp=

× l1 X–( )Ĥ–( ) Φ
2ν
------– 

  l X+( )Ĥ–( )expexpexp

× 2βl
t

--------Φ 
 exp

Ĥ
1

4β
------ d2

dΦ2
----------– U Φ( ),+=

U Φ( ) 2β
t

------Φ Φ
2ν
------– 

  .exp+=

Ĥ

Ĥ

Ĥψn Φ( ) β
t2
--- 

  1/3

anψn Φ( ),=

ψn Φ( )

4ν 8β2

t
-------- 

 
1/2

K0 8ν β Φ
4ν
------– 

 exp 
  ,

Φ ν 1
ν
---,ln<

1
Ai' an–( )
-------------------- 8β2

t
-------- 

 
1/6

Ai
8β2

t
-------- 

 
1/3

Φ an– 
  ,

Φ ν 1
ν
---.ln>















=

Ĥ
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either possible or not, depending on the relationship
between T and α. The values of α corresponding to the
boundary wave functions in Eq. (16) are large:

Then, the scalar product 〈ψn|exp(αΦ)〉  has the follow-
ing form up to terms that vanish as ν  0:

(20)

The following series for the function

(21)

is convergent:

(22)

At βX3/t2 @ 1, the sum in (22) is determined by the
contribution of the ground state. For the further consid-
erations, only the domain Φ < νln(1/ν), in which

(23)

is of importance.

A series for the state

(24)

which is similar to (22), is divergent. However, for
βX3/t2 @ 1, we can use the fact that the main part of the
function g(Φ, τ) for τ > X belongs to the domain where

α3t/β2
 @ 1.

cn α( ) ψn αΦ( )exp〈 〉 1
Ai' an–( )
-------------------- t

8β2
-------- 

  1/6

= =

× αan
t

8β2
-------- 

  1/3

α3 t

8β2
--------+ 

  .exp

f Φ X,( ) βl3

3t2
-------– 

  l X+( )Ĥ–( )expexp=

× 2βl
t

--------Φ 
 exp

f Φ X,( ) cn
2βl

t
-------- 

 
n

∑=

× βl3

3t2
-------– an

β
t2
--- 

  1/3

l X+( )– 
  ψn Φ( )exp

=  
1

Ai' an–( )
-------------------- an

β
t2
--- 

  1/3

X– 
  ψn Φ( ).exp

n

∑

f Φ X,( ) 4ν
Ai' a0–( )
-------------------- 8β2

t
-------- 

 
1/3

≈

× K0 8ν β Φ
4ν
------– 

 exp 
  a0

β
t2
--- 

  1/3

X– 
  ,exp

g Φ X,( )
βl1

3

3t2
-------–

 
 
 

l1 X–( )Ĥ–( )expexp=

×
2βl1

t
----------Φ 

  ,exp
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the linear term in U(Φ) is dominating. The correspond-
ing evolution problem is easily solved:

(25)

The behavior of g(Φ, X) for small and negative Φ can
be found using the substitution

(26)

The solution to the equation

(27)

for G with the boundary conditions (26) can be found,
for large τ, using the adiabatic expansion. In the leading
approximation, the right-hand side of equality (27) van-
ishes, and an explicit expression for G is easily found.
Then, the total function g(Φ, X) has the following form
in the principal order with respect to βX3/t2:

(28)

In the domain Φ < νln(1/ν), we may neglect the fact
that the index of the Macdonald function is different
from zero. The substitution of (28) and (23) into (16)
yields the final expression for the short-time asymptot-
ics of the second-order correlator for the velocity field:

(29)

We see that the correlator _(X, t) is indeed finite at
ν  0. Furthermore, it follows from (29) that the
integral over fluctuations in the vicinity of the opti-
mal profile (6) depends on the parameter of the the-
ory βX3/ t2; more precisely, it is proportional to
((βX3/t2)–1/3exp(–a0(βX3/t2)1/3) and cannot be obtained by
a Gaussian integration.

In the approximation that takes into account the
decomposition of correlators, the third-order correla-
tion function T(X, Y, t) (see (5)) is also expressed in
terms of the variational derivatives of the solution (11)
with respect to the initial field:

(30)

g0 Φ X,( ) 2βX
t

----------Φ βX3

3t2
---------– 

  .exp=

g Φ τ,( ) g0 Φ τ,( )G Φ τ,( ),=

G Φ +∞ τ,( ) 1, G Φ –∞ τ,( ) 0.

∂τG
1

4β
------∂Φ

2 τ
t
--∂Φ

Φ
2ν
------– 

 exp–+ 
  G=

g Φ X,( ) 8βνX
t
----=

× K8βνX /t 8 βν Φ
4ν
------– 

 exp 
  βX3

3t2
---------– 

  .exp

_ X t,( ) X/t( )2

2Ai' a0–( )
----------------------- βX3

t2
--------- 

 
1/3–

≈

× βX3

3t2
---------– a0

β
t2
--- 

  1/3

X– 
  .exp

T X Y t, ,( ) 1

4β2
-------- δ2u X t,( )

δu0 0( )δu0 Y( )
---------------------------------- .=
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Manipulations similar to (12)–(15) yield the following
operator representation for T(X, Y, t):

(31)

For the functions f and g defined in (21) and (24), rep-
resentation (31) takes the form

(32)

It follows from (28) that, for βX3/t2 @ 1, the main con-
tribution to the integral with respect to dz1 is made by a
small neighborhood near the upper limit z1 = –X. Note
that the intermittency effect (8) manifests itself (at this
stage of the calculations) in that the function g(Φ, X)
cannot be resolved in the complete set of eigenfunc-
tions (19); for this reason, g(Φ, X) has the form (28). If
X – Y ~ X ~ Y, the matrix element in (32) is determined
by the contribution of the intermediate ground state ψ0
(the product of g(Φ, X) by exp(–Φ/2ν) can be resolved
in the basis (19)). In the integral with respect to dz2, the
domain –X + Y < z2 < 0 makes the major contribution.
Inside this domain, the dependence of the average in
(32) on z2 can be neglected. As a result, we obtain the
expression

(33)

which is in agreement with the fact that the initial pro-
file (6) is dominating.

T X Y t, ,( ) 1

16ν2β2
-----------------–=

× β
3t2
-------– l1

3 l3+( )
 
 
 

exp ∂X z1 z2d

Y X–

l1

∫d

l–

X–

∫

×
2βl1

t
----------Φ 

  l1 z1+( )Ĥ–( )-expexp

× Φ
2ν
------– 

  z2 z1–( )Ĥ–( )expexp

× Φ
2ν
------– 

  l z2–( )Ĥ–( )expexp
2βl

t
--------Φ 

 exp .

T X Y t, ,( ) –
∂X

16ν2β2
----------------- z1 z2d

l1–

Y– X+

∫d

X

l

∫=

× g Φ z1,( ) Φ
2ν
------– 

 exp

× z1 z2–( )Ĥ–( ) Φ
2ν
------– 

 expexp f Φ z2,( ) .

T X Y t, ,( ) X/t( )2

2Ai' a0–( )
----------------------- βX3

t2
--------- 

 
1/3– X Y–

t
-------------≈

× βX3

3t2
--------- a0

β
t2
--- 

  1/3

X–– 
  X Y–

t
-------------_ X t,( ),≈exp
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The scheme for the calculation of the fourth-order
correlation function

(34)

(35)

where X1 = X + ∆, is somewhat different from the cases
of the second- and third-order correlators. This is
explained by the fact that the expression to be averaged
includes both the combinations F(z, X1) and F(z, X).
The averages are reduced to path integrals by the
change

where nF(z) is the Fermi distribution

(36)

Unfortunately, closed expressions can be obtained only
for small ∆ ! X. However, ∆ remains much greater than
the dissipative scale: ∆2(νt)–1 @ 1. Formally, the small-
ness of ∆ allows us to replace the vertex exp(2β∆/t) by
1 in the operator representation of S(1) and S(2). As a
result, for the average S(1)(X, X1), we obtain

(37)

where

(38)

S X Y ∆ t, , ,( ) S 1( ) X X1,( ) S 2( ) X X1,( )+=

+ S 1( ) X1 X,( ) S 2( ) X1 X,( ),+

S 1( ) X X1,( ) 1

4β2
-------- δ2u X t,( )

δu0 0( )δu0 y( )
---------------------------------u X1 t,( ) ,=

S 2( ) X X1,( ) 1

4β2
-------- δu X t,( )

δu0 0( )
--------------------

δu X1t( )
δu0 y( )

------------------- ,=

Φ z( ) 2ν λ 2ν nF z µ–( )ln–ln–=

+ z2 X2–
2t

---------------- τu0 τ( ),d

X–

z

∫+

nF z( ) 1
∆

2νt
--------z 

 exp+
1–

.=

S 1( ) ∂X
∆

32β2ν3t2
---------------------+̂=

× f Φ ζ1,( ) Φ
2ν
------– 

  ζ1 ζ2–( )Ĥ–( )expexp

× Φ
2ν
------– 

  ζ2 ζ3–( )Ĥ–( )expexp

× Φ
2ν
------– 

 exp g Φ ζ3,( ) ,

+̂ z1 z2 z3 z3 ∆–( )d

l–

l1

∫d

l–

X–

∫d

Y X–

l1

∫=

× µnF µ z1–( )nF µ z2–( )nF z3 µ–( ),d

l–

l1

∫
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and {ζn} is a permutation of the integration variables
{zn} such that ζk < ζk + 1. (In effect, (37) is the matrix
element of the chronologically arranged product of
operators.)

Note that the integrand in (37) has a singularity as a
function of ζ3 – ζ2 as ν  0. Indeed, the matrix ele-
ments of the operator

at ζ3 – ζ2 ~ βν2/t are about ν–3 times greater than the val-
ues at the separation ζ3 – ζ2 ~ X. This singularity can be
singled out using the rule

(39)

The factor of order 1/ν is compensated in (37) by the
result of the integration over the domain µ > z3, which
has the order νt/∆. The contribution of the domain
z1, 2 < µ < z3, which has no singularities determined by
formula (39), is of order ∆ and is, therefore, insignifi-
cant. Finally, we have, for ∆ ! X,

(40)

The average S(2)(X, X1) is calculated similarly to the
third-order correlator T(X, Y, t); indeed, the identity

allows us to eliminate singularities of type (39):

(41)

S(1)(X1, X) and S(2)(X1, X) are calculated according to the
same scheme with the replacement ∆  –∆. The
result is such that these terms in (34) can be neglected
at ν  0. The total expression for the four-point cor-
relator is

(42)

which confirms, along with (29) and (33), that the ini-
tial fluctuation in (6) is a determining factor. It is also in
agreement with formula (9) for the measure of the fluc-
tuation.

Φ
2ν
------– 

  ζ3 ζ2–( )Ĥ–( ) Φ
2ν
------– 

 expexpexp

1
ν
--- Φ

2ν
------– 

  ζ3 ζ2–( )Ĥ–( ) Φ
2ν
------– 

 expexpexp

2β
t

------δ ζ3 ζ2–( ), ν 0.

S 1( ) X X1,( ) X Y–( )2

2t2
--------------------_ X t,( ).=

∂X

F z X,( ) zd

0

l1

∫

F z X,( ) zd

l–

l1

∫
--------------------------- ∂X

F z X,( ) zd

l–

0

∫

F z X,( ) zd

l–

l1

∫
---------------------------–=

S 2( ) X X1,( ) X2 Y2–

2t2
-----------------_ X t,( ).=

S X Y ∆ t, , ,( ) X X Y–( )
t2

----------------------_ X t,( ),≈
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3. CONCLUSIONS

The main results obtained in this paper are expres-
sions (29), (33), and (42). The exponential smallness of
the values of these correlation functions means that the
fluctuation that determines these functions occurs
rarely. The fact that the exponential parts of those
expressions coincide implies the uniqueness of this
fluctuation for various averages, i.e., the intermittency
phenomenon.

Strictly speaking, formulas (29), (33), and (42) per-
tain to the initial distribution (3), which corresponds to
the case when the correlators decompose. Returning to
problem (1), (2), we should estimate the role of the
noise ξ. For example, for the second-order correlator,
the base expression is

(43)

where the outer averaging is carried out over the initial
ensemble (3) and 〈…〉ξ denotes the average over the
noise ξ that acted on the time interval (0, t). If the noise
is taken into account in the framework of perturbation
theory against the background of the evolving profile
(6), then the correction in 〈u(X, t)〉ξ appears in the sec-
ond order and can be easily estimated from dimensional
considerations—the correlator 〈ξξ〉  is proportional to
the temperature β–1, which is reduced (without ν) to the
dimensionless form in a unique fashion. The additional
factor (βX3/t2)–1 thus obtained confirms the applicabil-
ity of expressions (29), (33), and (42) to solving the
Burgers equation with the Langevin-type pumping (2).
The viscosity that appears as a result of averaging over
the noise ξ is compensated by large values of the gradi-
ents of the field u(x, t) at the instant of shock formation
of the optimal fluctuation.

In conclusion, we make some remarks concerning
the conventional turbulent problem statement for the
Burgers equation. The main results obtained up to the
present time pertain to various asymptotic expressions
for simultaneous distribution functions of the gradient
of the velocity field ux and to the difference of velocities
u(r, t) – u(0, t) [21–25]. In this case, the problem is
reduced to finding an optimal fluctuation that deter-
mines the desired far [19, 21–23, 26] or intermediate
[18, 24, 25] asymptotics. The decisive role is played by
a large value of the argument of the distribution func-
tion or, which is the same, the number of the moment to
be calculated (see [27–29] for the discussion in a more
general context). The asymptotics of correlators (5)
studied in this paper are determined by a large (with
respect to the parameter βX3/t2) initial fluctuation of the
velocity field. For this reason, it would be interesting to
analyze this problem in the framework of the direct
instanton approach [19, 27–29].

It has already been mentioned that the intermittency
phenomenon is, in a certain sense, an inverse limiting
case with respect to the problems that are correctly
described by perturbation theory; hence, this phenome-

_ X t,( ) u 0 0,( ) u X t,( )〈 〉 ξ〈 〉 ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
non is important for statistical physics as a whole. How-
ever, there are only few systems for which a consistent
analytical description of this phenomenon can be given.
In addition to the studies mentioned above, we also cite
the papers [30, 31] in which the problem of transport of
a passive scalar by a turbulent flow is solved for certain
limiting cases. From this point of view, explicit formu-
las for the asymptotics of correlation functions (5) and
measure (9) seem to be very illustrative.
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Abstract—We consider a class of simple quasi-one-dimensional classically nonintegrable systems that capture
the essence of the periodic orbit structure of general hyperbolic nonintegrable dynamical systems. Their behav-
ior is sufficiently simple to allow a detailed investigation of both classical and quantum regimes. Despite their
classical chaoticity, these systems exhibit a “nonintegrable analogue” of the Einstein–Brillouin–Keller quanti-
zation formula that provides their spectra explicitly, state by state, by means of convergent periodic orbit expan-
sions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Very few quantum systems can be solved explicitly.
Among them are the standard textbook examples, such
as the harmonic oscillator or the hydrogen atom [1]. In
all of these cases, the spectrum of the quantum system
is obtained as an explicit analytical formula of the form
En = …, where n is the quantum number of the system.
This procedure already fails for some of the simplest
quantum systems, which are still considered elemen-
tary textbook problems. An example is a quantum par-
ticle in a box with a step potential inside, as shown in
Fig. 1. Even for the simple problem in Fig. 1, explicit
analytical solutions of the form “En = …” are no longer
available because the problem leads to a transcendental
spectral equation. The recommended method of solu-
tion is either numerical or graphical [1–3]. We recently
found a way [4–6] of obtaining explicit analytical solu-
tions of a wide class of problems such as the one shown
in Fig. 1, thus obtaining an explicit analytical solution
of textbook problems that until now were relegated to
numerical or graphical solution techniques. Our meth-
ods are also a step forward in the mathematical theory
of almost periodic functions [7], because we obtain
explicit formulas for the zeros of a wide class of almost
periodic functions. Furthermore, the classical dynamics
of the quantum systems discussed in this paper is cha-
otic. Because it may well be true in general that the
quantized versions of classically chaotic systems do not
admit the existence of quantum numbers (see, e.g., [8,
9] for a detailed discussion of this important point), our
“En = …” spectral formulas, containing an explicit
quantum number n, may come as a surprise. At this
point, we feel that it is important to stress that our
results are not conjectures, approximations, or merely
formal identities. Our results are exact, explicit, conver-
gent periodic orbit expansions that can be cast into the
form of mathematical theorems. We will publish the

¶This article was submitted by the authors in English.
1063-7761/02/9406- $22.00 © 21201
rigorous mathematical underpinnings of our results
elsewhere [10].

It is well known [11] that the periodic orbit theory
leads to completely different approaches for quantizing
integrable and nonintegrable dynamical systems. For
integrable systems, there is a simple procedure [11, 12]
that allows quantizing the action variables individually
for each degree of freedom. The situation is completely
different for the chaotic case, where the periodic orbit
theory (11] allows evaluating only certain global char-
acteristics of the spectrum, e.g., the density of states

(1.1)

typically with only semiclassical accuracy [13]. Here,
 is the average density of states; Sp(E), Tp(E), and

Ap(E) are, respectively, the action, the period, and the
weight factor of the prime periodic orbit labeled by p;
and ν is the repetition index. In this approach, individ-

ρ E( ) δ E E j–( )
j 1=

∞

∑ ρ E( )≈=

+
1
π
---Im T p E( ) Ap

ν E( ) iνSp E( )( ),exp
ν 1=

∞

∑
p

∑

ρ E( )

U = ∞ U = ∞

U

ψ(x)

0 b 1

Fig. 1. Sketch of a step potential in a box, a well-known
textbook quantum problem.
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ual energy levels are obtained indirectly as the singular-
ities of the sum in Eq. (1.1), As for the idea of express-
ing them directly in terms of the periodic orbits,
M.V. Berry wrote in 1991 [14]: “We do not know how,
or even whether, the closed orbit sum generates the
individual δs in the level density for chaotic systems.
This is a serious—perhaps shocking—situation,
because it means that we are ignorant of the mechanism
of quantization.”

In the case of quantum graphs, Berry’s question can
be answered definitely. The periodic orbit sums repre-
senting the spectral density of quantum graphs do pro-
vide the individual levels in the form of δ spikes in (1.1)
and only those [15–18]. In addition, we recently
showed [4–6] that the answer to Berry’s question can be
taken one step forward: not only do periodic orbit
expansions for quantum graphs produce δ functions for
the quantum states in the level density, but for certain
classes of quantum graphs there also exist explicit con-
vergent periodic orbit expansions for individual energy
levels. Because they provide explicit formulas for the
energy levels of classically chaotic systems, these peri-
odic orbit expansions may be considered as “noninte-
grable analogues” of the Einstein–Brillouin–Keller
(EBK) quantization formula [11, 12] that applies to
integrable systems.

This paper is organized as follows. In Section 2, we
briefly review the theory of quantum graphs and extend
the theory by defining “dressed graphs,” i.e., quantum
graphs with arbitrary potentials on their bonds. In Sec-
tion 3, we define an important class of dressed quantum
graphs: regular quantum graphs. Based on a detailed
study of their spectral properties in Section 3, we derive
explicit analytical spectral formulas for regular quan-
tum graphs in Section 4. In Section 5, we present a vari-
ety of regular quantum graphs illustrating the use and
convergence of the spectral formulas. In Section 6, we
summarize our results and conclude the paper.

V4

V5 V3

V2V1

Fig. 2. Sample graph with five vertices and seven bonds.
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2. DYNAMICAL NETWORKS

We consider a particle moving on a quasi-one-
dimensional network of bonds and vertices. These net-
works are known as graphs in the mathematical litera-
ture. They were and still are the subject of intensive
investigations in all areas of science ranging from
mathematics over computer science to chemistry and
physics. An example of a simple graph with five verti-
ces and seven bonds is shown in Fig. 2. The particle
scatters randomly at every vertex Vi along different
bonds Bij that meet at that vertex. We assume that the
graph contains a finite number of bonds and vertices
(NB and NV , respectively). The key assumption about
the dynamics of the particle is that the turning points of
any particle trajectory on the graph coincide with the
vertices of the graph, and the shape of the trajectories is
therefore uniquely determined by the geometry of the
graph. The trajectories of the particle are simply the
joint sequences of graph bonds, which are easily
described and enumerated. For instance, every trajec-
tory can be represented by a sequence of NB symbols,
each of which corresponds to a certain bond [19].
Because the trajectories correspond to various bond
sequences, every trajectory is described by a code word
consisting of NB symbols.

We “dress” the bonds Bij of the graph with potentials
Ui j(x), which may affect the way a particle moves along
the bonds. However, it is required that these dressings
do not violate the geometry of the particle trajectories,
i.e., do not add turning points other than the original
vertices of the graph. This condition is required to hold
at all energies. To comply with this requirement, the
bond potentials are allowed to depend on the energy E
of the particle, i.e., Uij = Uij(x, E), such that E > Uij(x,
E) is fulfilled for all E and all i, j. This in fact leads to
many additional simplifications that have a deep physi-
cal meaning in the context of the semiclassical periodic
orbit theory [4–6, 19–21].

The shapes of the trajectories (and, in particular, of
the periodic orbits) become increasingly complicated
as their lengths grow. This makes them similar to the
generic (dynamical) chaotic systems. In fact, the num-
ber of possible periodic orbits increases exponentially
with their lengths (or, equivalently, the number of ver-
tex scatterings), with a rate which depends only on the
topology of the graph. Every graph Γ can be character-
ized by its topological entropy (the global average rate
of the exponential proliferation of periodic orbits)

(2.1)

where l characterizes the lengths of the periodic orbits
in terms of the lengths of their code words and #(l) is
the total number of periodic orbits of the length ≤ l [9].
Because the phase space of the system is bounded, the
dynamics of the particle is mixing [16], and hence, the
structure of the periodic orbit set on dynamical net-

ΛΓ
# l( )[ ]ln
l

-------------------
l ∞→
lim ,=
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works closely imitates the behavior of the closed trajec-
tories of generic chaotic systems [22, 23]. On the other
hand, dynamical networks can be easily quantized [4–
6, 17–19, 24], which makes them very convenient mod-
els for studying various aspects of quantum chaology.

The details of the classical dynamics on graphs are
discussed in numerous publications [16, 25]. Below, we
investigate the quantum-mechanical description of
these systems. In particular, we discuss their spectra in
the context of the periodic orbit theory. We now briefly
outline some details of the graph quantization proce-
dure that are used in the subsequent discussion.

A quantum graph system is a quantum particle that
moves on a one-dimensional network Γ dressed with
the potentials Uij(x, E). Below, we consider the case of
scaling potentials discussed in [6, 26-28],

(2.2)

where λij are constants. This choice of the dressing
potentials allows us to avoid certain mathematical com-
plications, which are irrelevant for the physical context
of our discussion. For more details on scaling potentials
and their relevance to the semiclassical periodic orbit
analysis, see [4, 6, 19].

The Schrödinger equation for graphs with potentials
(2.2) can be written as

(2.3)

where

(2.4)

is the generalized momentum operator and

The coordinate 0 ≤ x ≤ Lij is measured along Bij from
i to j, and Lij = Lji is the length of the bond. The mag-
netic field vector potential Aij = –Aji is assumed to be a
constant real matrix; it can be used as a tool for break-
ing the time-reversal symmetry.

Classically, the particle can travel along the bond Bij

if its energy is above the scaled potential height, E >
Uij(E) (λij < 1). In this case, the solution to Eq. (2.3) on
the bond Bij is a combination of free waves,

(2.5)

where k =  and the factors (βijk)–1/2 are introduced
to separate the physically meaningful flux amplitudes
from the coefficients aij and bij. In the opposite case

Uij E( ) λ ijE, λ ij λ ji,= =

π̂ij
2 ψij x( ) βij

2 Eψij x( ),=

π̂ij i
xd

d
Aij––=

βij
2 1 λ ij.–=

ψij x( ) aij

i –βijk Aij+( )x( )exp

βijk
-------------------------------------------------=

+ bij

i βijk Aij+( )x( )exp

βijk
----------------------------------------------,

E
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where λij > 1, the bond Bij carries a linear combination
of tunneling solutions. Due to the scaling assumption,
there is no transition between these two cases as a func-
tion of E. From now on, we assume that the energy E is
kept above the maximum scaled potential height,

(2.6)

At every vertex Vi, the bond wave functions satisfy
the boundary conditions

(2.7)

for all i, j = 1, …, NV. Here, Cij is the connectivity
matrix of the graph; ϕi is the value of the wave function
at the vertex Vi; and λi are free parameters of the prob-

lem, scaled as λi = k (see the Appendix). We note that
the double-indexed scaling constants λij refer to the
bonds, whereas the single-indexed constants λi refer to
the scattering strengths at the vertices. We believe that
this notation is natural and does not lead to confusion.

Conditions (2.7) are consistent only for a discrete

set of energy levels En =  that define the spectrum of
the dressed quantum graph problem (2.3) and (2.7). As
shown in [6, 16–18, 24] (see the Appendix), using the
scattering quantization approach [29] allows one to
obtain the spectral equation for any quantum graph
problem in the form

(2.8)

where S(k) is the finite unitary graph scattering matrix
[16]. The indices that define the matrix elements SIJ of
the matrix S correspond to the graph bonds. It is impor-
tant that the bond BI ≡ Bij is considered to be different
from the (geometrically identical) reversed bond BI ' ≡
Bji; the bonds of the graph are therefore directed [4–6,
16, 18]. Hence, the dimensionality of the scattering
matrix is 2NB × 2NB. It is shown in the Appendix that
S = TD(k), where T is a constant 2NB × 2NB unitary
matrix and D is the diagonal unitary matrix with the
matrix elements

(2.9)

Because ∆(k) is a complex function, it is convenient
to define the spectrum via the zeros of its absolute
value,

(2.10)

λ ij 1, i j,< 1 … NV ., ,=

ψij x 0=( ) ϕ iCij,=

Cijπ̂ijψij x( ) x 0=

j 1=

NV

∑ iλ iϕ i–=

λ i
0

kn
2

∆ k( ) det 1 S k( )–[ ] 0,= =

DIJ δIJ i βIk AI+( )LI( ),exp=

I 1 … 2NB, , .=

∆ k( ) iΘ0 k( )–( )∆ k( ),exp=
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where Θ0(k) is the complex phase of ∆(k). The logarith-
mic derivative of |∆(k)| produces a delta peak for each
of its roots,

(2.11)

which, by definition, is the density of the momentum
states ρ(k) [6]. On the other hand, using (2.10) and
expanding the logarithm of determinant (2.8), the den-
sity of states can be written as

(2.12)

It can then be easily seen from the structure of the
scattering matrix S [16, 24] that the matrix elements of
its nth power are defined on connected sequences of n
bonds and the trace of Sn generates terms defined on
closed connected sequences of n bonds [6, 17, 24, 25].

These periodic connected sequences of n bonds Bij

can be viewed as the periodic orbits traced by a classi-
cal point particle moving on the graph. We note that the
phase of the exponential in (2.9) is exactly the action of
a classical point particle trajectory traversing the bond
BI,

(2.13)

Therefore, the semiclassical transition amplitudes
exp(i6I) between the vertices connected by the bond BI

determine the scattering matrix S(k). As a consequence
[4–6, 16, 19], the “closed bond sequence expansion”
(2.12) can be explicitly written as a periodic orbit
expansion in terms of phases (2.13),

(2.14)

where  is the k-independent “action length” of the
orbit p,

(2.15)

and Ap is its weight containing the constant factor

exp(i ). Because of the scaling assumption
(see the Appendix), the weight factor Ap is k-indepen-
dent. The first term in this expression corresponds to the
average density of states of the momentum ,

(2.16)

1
π
---Im

kd
d

det 1 S k ie+( )–[ ]ln
e 0→
lim–

=  δ k kn–( ),
n 1=

∞

∑

ρ k( )
1
π
---

dΘ0 k( )
dk

---------------- 1
π
---Im

kd
d 1

n
---Tr S k( )[ ] n.

n 1=

∞

∑+=

6I βIk AI+( ) xd

BI

∫ βIk AI+( )LI.= =

ρ k( ) ρ k( )
1
π
---Re Sp

0

p

∑ Ap
ν iνSp

0 k( ),exp
ν 1=

∞

∑+=

Sp
0

Sp βijLijk
p

∑ Sp
0 k,≡=

AijLijp∑

ρ k( )

ρ k( )
1
π
---

Θ0 k( )d
kd

----------------,=
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while the periodic orbit sum in (2.14) describes the
fluctuations around the average.

The periodic orbit expansion for the staircase func-
tion

(2.17)

can be obtained by direct integration of (2.11) and
(2.14). We obtain

(2.18)

where the first term

(2.19)

represents the average behavior of the staircase func-
tion and

(2.20)

describes zero-mean oscillations around the average.
As discussed in the Introduction (see also [4–6, 16,

25]), quantum graphs are chaotic in the classical limit.
The classical scattering probabilities are obtained in the
limit as "  0 from the quantum mechanical transi-
tion amplitudes [4–6] (see the Appendix). In the scaling
case, they are k-independent, and therefore, the quan-
tum scattering amplitudes do not depend on " at all.
They determine the quantum and the classical scatter-
ing probabilities simultaneously.

3. REGULAR GRAPHS AND THEIR SPECTRA

The spectral determinant is a polynomial of degree
2NB of the matrix elements of S. It was shown in [6] that
the total phase of this polynomial is

(3.1)

where

is the total action length of the graph Γ and

(3.2)

where

(3.3)

N k( ) Θ k kn–( )
n 1=

∞

∑=

N k( ) N k( ) Ñ k( ),+=

N k( ) ρ k'( ) k'd

0

k

∫ N 0( )+=

Ñ k( ) Im
1
π
---

Ap
ν

ν
------ iνSp

0 k( )exp
ν 1=

∞

∑
p

∑=

Θ0 k( )
1
2
---Im detS k( )ln kS0 πγ0,–= =

S0 Lijβij

ij( )
∑=

γ0
NB NV+

2
--------------------

1
π
---

λ i
0

v i

----- 
  ,arctan

i 1=

NV

∑+=

v i Cijβij.
j

∑=
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The average density of states is therefore a constant,

(3.4)

and the average staircase function in Eq. (2.19) is

(3.5)

The spectral equation |∆(k)| = 0 can be written as

(3.6)

where the frequencies Si < S0 are combinations of the

reduced classical actions  = βijLij, and γ0, γi are con-
stants. The number NΓ of terms in (3.6) is bounded by

NΓ ≤  [6].

The frequency S0 in Θ0(k) is the largest frequency in
expansion (3.6). While it is the only characteristic of
the graph contained on the left-hand side of (3.6), the
right-hand side,

(3.7)

contains the complete information about the graph sys-
tem. We call Φ(k) the characteristic function of the
graph.

A graph Γ is called regular [4–6] if its characteristic
function Φ(k) satisfies

(3.8)

For regular graphs, spectral equation (3.6) can be
solved formally [4–6] to yield the implicit equation of
its eigenvalues,

(3.9)

where µ is a fixed integer chosen such that k1 is the first
positive solution of (3.6). The index n ∈  N labels the
roots of (3.6) in their natural order.

The implicit form of Eq. (3.9) immediately implies
that, because the second term in (3.9) is bounded by
π/S0, the deviations of solutions to this equation from
the points

(3.10)

ρ 1
π
---

kd
d Θ0 k( )

S0

π
-----,= =

N k( )
S0

π
-----k N 0( ).+=

S0k πγ0–( )cos ai Sik πγi–( ),cos
i 1=

NΓ

∑=

Sij
0

3
NB

Φ k( ) ai Sik πγi–( ),cos
i 1=

NΓ

∑≡

ai α 1.<≡
i 1=

NΓ

∑

kn
π
S0
----- n µ γ0+ +[ ] 1

S0
-----+=

×
Φ kn( )[ ] for n µ even,+arccos

π Φ kn( )[ ] for n µ odd,+arccos–



k̂n
π
S0
----- n µ γ0 1+ + +( )=
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never exceed π/S0 in absolute value for any n. The quan-

tities  are very important in what follows because
they determine the root structure of (3.6).

The roots kn can be decomposed into an average part

 and a fluctuating part . From (3.9), we obtain

(3.11)

where

(3.12)

and

(3.13)

We note that the constant µ + γ0 can be related to the

initial value  of the average staircase function
(3.5). We now consider the integral

(3.14)

The integration in (3.14) can be easily performed
because the function N(k) has simple form (2.17),

(3.15)

since there are n roots to the left of . The fluctuations
of both N(k) and kn around their average values have
zero mean, and in the limit of n @ 1 we can therefore
use  and  instead of N(k) and kn in (3.15) and
write

(3.16)

Using the explicit forms of , , and , we
obtain

(3.17)

k̂n

kn k̃n

kn kn k̃n,+=

kn
π
S0
----- n µ γ0

1
2
---+ + + ,=

k̃n
1–( )n µ+

S0
------------------- Φ kn( )[ ]arccos π

2
---–

 
 
 

.=

N 0( )

1

k̂n

---- N k'( ) k'.d

0

k̂n

∫n ∞→
lim

1

k̂n

---- N k'( ) k'd

0

k̂n

∫ n
1

k̂n

---- ki,
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n

∑–=

k̂n

N k( ) kn

1

k̂n

---- N k'( ) k'd

0

k̂n

∫ n
1

k̂n

---- ki, n @ 1.
i 1=

n

∑–=

k̂n kn N k( )
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1
2
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=  
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--------------------------------- n
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Expanding the right-hand side and keeping terms up
to the order 1/n yields

(3.18)

The terms proportional to n cancel. Comparing the
constants in (3.18) yields

(3.19)

It can be verified by direct substitution that

(3.20)

which implies that function (3.10) is the inverse of aver-

age staircase function (3.5). The points  can also be
viewed as the intersection points of staircase function
(2.17) and its average (3.5),

(3.21)

and hence, the fluctuations  of the spectral stair-

case vanish at the points ,

(3.22)

Geometrically, Eq. (3.22) means that the average
staircase function  intersects every step of the

staircase function N(k). We therefore call  the
piercing average. This is illustrated in Fig. 3, which
shows the spectral staircase function N(k) for the scal-
ing step potential shown in Fig. 1 and discussed in more
detail in Section 5, example 1, below. We used the
parameters λ = 1/2 and b = 0.3. Also shown is the aver-
age staircase  for this case. It clearly pierces all the

N 0( )
1
2
--- n µ γ0 1+ + +( )+

=  n 1
µ γ0 1+ +

n
------------------------– 

  n
2
--- µ γ0 1+ + + 

  .–

N 0( ) µ γ0 1+ +( ).–=

N k̂n( ) n,=

k̂n

N k̂n( ) N k̂n( ) n,= =

Ñ k( )

k̂n

Ñ k̂n( ) Im
1
π
---

Ap
ν

ν
------ iνSp

0 k̂n( )exp
ν 1=

∞

∑
p

∑ 0.= =

N k( )

N k( )

N k( )
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N

Fig. 3. The exact spectral staircase function N(k) and its
average  for the scaling step potential shown in Fig. 1

with b = 0.3 and λ = 1/2. The average  crosses every
“stair” of N(k) (piercing average) at the equally spaced sep-

arating points .

N k( )

N k( )

k̂n
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steps of N(k), providing an example of a system with a
piercing average.

Because Φ(k) contains only frequencies smaller

than S0, every open interval In = ( , ) contains

only one root of (3.6), namely kn, and therefore,  play
the role of separating points between adjacent roots [4–
6, 10]. Moreover, because of (3.8), the “allowed zones”
Rn ⊂  In where the roots kn can be found narrow to

(3.23)

where u = arccosα/S0. Correspondingly, there are for-
bidden regions Fn,

(3.24)

where roots of (3.6) never appear. In the limit as α  1
(u  0), the allowed zones Rn tend to occupy the
entire root interval, Rn  In.

4. SPECTRAL FORMULAS

Once the existence of separating points  has been
established, it is possible to obtain an exact periodic
orbit expansion separately for every root of (2.8). The
derivation is based on the identity

(4.1)

Substituting exact periodic orbit expansion (2.14)
for ρ(k) in (4.1) yields

(4.2)

k̂n 1– k̂n

k̂n

kn Rn∈
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+
1
π
--- kRe Sp

0
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0 k( )exp
ν 1=

∞

∑ kd
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1
π
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∑+exp
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∑
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Using (3.22), we simplify (4.2) to

(4.3)

where ωp = π /S0. The series expansion for kn in
Eq. (4.3) is more than a formal identity. It is rigorously
convergent; however, it converges only conditionally,
which means that the result of the summation depends
on how the summation is performed. Indeed, according
to the well-known Riemann reordering theorem, one
can obtain any result by rearranging the terms of a con-
ditionally convergent series [30]. For the proper con-
vergence of (4.3) to the exact roots of spectral equation
(3.6), we must therefore specify how the terms in (4.3)
are to be summed.

The mathematical details of the convergence prop-
erties of (4.3) are presented in [10]. We mention here
the main result, which states that the terms in (4.3) must
be summed according to the length of the symbolic
codes [6, 19] of the periodic orbits, and not according
to their action lengths. If (4.3) is summed in this way, it
not only converges, but also converges to the exact
roots kn of spectral equation (3.6).

Equation (4.3) therefore provides an explicit repre-
sentation of the roots of spectral equation (2.8) in terms
of the geometric characteristics of the graph. In accor-
dance with (3.12), the first term in (4.3) is the average
value  and the following periodic orbit sum is an

explicit expression for the fluctuation of the root . This
method is not limited to obtaining explicit analytical peri-
odic orbit expansions for kn. In fact, using the identity

(4.4)

we can obtain periodic orbit expansions for any func-
tion of the eigenvalues f(kn), for instance, for the energy
E = k2.

In the simplest case where  = 0, , and
ImAp = 0, we have

(4.5)

×
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We note that k–n = –kn in this case.

Both the EBK theory and formula (4.3) allow us to
compute energy eigenvalues explicitly. In this sense,
formula (4.3) may be regarded as an analogue of the
EBK quantization formula [11, 12] for a chaotic sys-
tem. The complexity of this expansion, structurally
similar to (1.1), reflects the geometrical complexity of
the periodic orbit set for graph systems.

Finally, for explicit calculations (see Section 5), it
remains to determine the explicit form of the expansion
coefficients Ap. For some simple graphs, this was done
in [16, 19]. In the Appendix, we solve the problem for
general dressed graphs. We show that every passage of
an orbit p from a bond Bij to Bij ' through a vertex Vi con-
tributes a factor σji, ij' (a matrix element of the matrix
T—see the Appendix) to the weight Ap of the orbit,

(4.6)

where the product is taken over the sequence of the
bonds traced by the orbit p.

5. EXAMPLES

In (3.8), we provided the definition of regular quan-
tum graphs; in (3.9)–(3.24), we then discussed analyti-
cal properties of their spectra. The discussion of regular
quantum graphs culminated in Section 4 with the deri-
vation of explicit spectral formulas for individual quan-
tum states of regular quantum graphs. However, the
above definition of regular quantum graphs does not
imply that regular quantum graphs actually exist.
Examples 1–3, discussed below, provide specific
instances of quantum graphs that are regular for all
choices of their parameters. Examples 4 and 5 present
quantum graphs that exhibit both regular and irregular
regimes. Finally, Examples 6 and 7 provide illustrations
of a new class of quantum graphs, marginal quantum
graphs, for which

Except for special choices of their dressing poten-
tials, these graphs can still be accommodated within the
mathematical framework set up in Sections 3 and 4 and
also admit an explicit representation of their spectra in
accordance with the spectral formulas derived in Sec-
tion 4.

Example 1: Scaling step potential in a box. We
consider a particle confined to a box 0 < x < 1 contain-
ing the scaling step potential (see Figs. 1 and 4a)

(5.1)

Ap σ j j'
i( ),∏=

ai

i 1=

NΓ

∑ 1.=

U x( )
0 for 0 x b,≤<
λ23E for b x 1.< <




=
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U23 = λ23E U23 = λ23E
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u2 = λ2k u2 = λ2k

Fig. 4. Collection of potentials and their associated linear quantum graphs that serve as examples to illustrate the concept of regular
quantum graphs. (a) Scaling step potential in a box and its associated three-vertex linear graph (a'). (b) Scaling δ function in a box
and its corresponding three-vertex linear graph (b'). Combined scaling δ function and step potential in a box (c) with its linear three-
vertex quantum graph (c'). Two scaling steps (d) and two scaling δ functions (e) in a box together with their associated four-vertex
dressed linear quantum graphs (d') and (e'), respectively.
This is equivalent to a three-vertex linear chain
graph (Fig. 4a') with λ2 = 0, Aij = 0, and the Dirichlet
boundary conditions at V1 and V3. This example is also

10–10

1 10

δk1

100 1000
l

10–8
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10–4

10–2

δk10

δk100

ε

Fig. 5. Comparison between the exact eigenvalues kn and
the kn values computed via (4.3) for the scaling step poten-

tial in Fig. 1. Shown is the relative error  = /kn,

n = 1, 10, 100, of the result  predicted by (4.3) compared

to the numerically obtained exact result kn as a function of
the binary code length l of the orbits used in expansion
(4.3). We used b = 0.3 and λ = 1/2.

en
l( )

kn
l( )

kn–

kn
l( )
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discussed in [4, 5, 6, 19, 31]. In this case, spectral equa-
tion (3.6) can be written as [4, 5]

(5.2)

where

(5.3)

is the reflection coefficient at the vertex V2. Regularity
condition (3.8) is therefore automatically satisfied and
this graph is always regular. In Section 4, we already
discussed the convergence properties of (4.3), includ-
ing the fact that a rigorous mathematical proof for the
convergence of (4.3) exists [10]. Here, we present solid
numerical evidence for the convergence of (4.3) in the
context of scaling step potential (5.1). As discussed in
[4, 5, 6, 19], every periodic orbit in potential (5.1) can
be described by a binary code word. Figure 5 shows the
relative error

of the result  predicted by (4.3) compared to the
numerically obtained exact result kn as a function of the
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0 S23

0+( )[ ]sin r k S21
0 S23

0–( )[ ] ,sin=

r
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1 β23+
---------------- 1<=

en
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--------------------, n 1 10 100,, ,= =
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binary code length l of the orbits used in expansion
(4.3). We used b = 0.3 and λ = 1/2. Figure 5 also dem-
onstrates that, using all periodic orbits up to the binary
code length l ~ 150, we obtain an accuracy on the order
10–4–10–7 for the roots kn of (5.2). Although the conver-
gence of the series is slow (according to Fig. 5, it is
approximately of the order 1/l2 on average), one can
obtain a sufficiently good estimate for the roots using
all orbits of the code length 20 and smaller.

Example 2: Scaling δ function in a box. This poten-
tial, shown in Fig. 4b, is again equivalent to a three-ver-
tex quantum graph. This time, however, the potentials
on the bonds are identically zero, whereas the vertex V2
is dressed with a scaling δ function of strength

We apply the Dirichlet boundary conditions at the
open ends. In this case, spectral equation (3.6) becomes

(5.4)

where

(5.5)

and the reflection coefficient r is given by

(5.6)

Because |r | < 1, the characteristic function of (5.4)
also satisfies regularity condition (3.8). Therefore, the
scaling δ function in a box is another example of a reg-
ular quantum graph.

Example 3: Combined scaling step and scaling
δ-potential in a box (Fig. 4c). This is equivalent to a
three-vertex dressed linear graph (Fig. 4c') with λ2 =

 > 0. Spectral equation (3.6) then becomes

(5.7)

where

(5.8)

and the coefficient a1 is

(5.9)

λ2 λ2
0k 0.>=
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Therefore, the characteristic function of (5.7) once
again satisfies the regularity condition for any linear
three-vertex graph with nontrivial bond potentials

 +  ≠ 0 [6].

Quantum graphs that are regular for all of their
parameter values are quite exceptional. In general,
quantum graphs may have a regular regime for a certain
range of the parameter values or the regular regime may
not exist at all. The following example illustrates this
point.

Example 4: Two scaling steps in a box (Fig. 4d). As
an example of a graph that has both a regular and an
irregular regime, we consider a quantum particle in a
box with two scaling steps (Fig. 4), which is equivalent
to the four-vertex linear graph shown in Fig. 4d'.
Because there are no δ functions present, we have λ2 =
λ3 = 0. We assume the Dirichlet boundary conditions at
the dead ends of this graph. In this case, spectral equa-
tion (3.6) is given by

(5.10)

where

(5.11)

and

(5.12)

are the reflection coefficients at the corresponding ver-
tices Vi. For

(5.13)

the four-vertex linear graph (Figs. 4d' and 6a) is regular.
Regularity condition (5.13) is fulfilled in a diamond-
shaped region of the (r2, r3) parameter space shown as
the shaded area in Fig. 6b. The difference between the
regular and the irregular regimes is clearly reflected in
the staircase functions. Figure 7a shows the staircase
function N(k) together with the average staircase 
in the regular regime for the parameter combination
r2 = 0.2 and r3 = 0.3. The piercing-average condition is
clearly satisfied. Figure 7b shows the staircase function
N(k) together with the average staircase  in the
irregular regime for the parameter combination r2 =
0.98 and r3 = 0.99. In this case, the piercing-average
condition is clearly violated, consistently with the
irregular nature of this regime.

Example 5: Two scaling δ functions in a box
(Fig. 4e). This potential is equivalent to the four-vertex
graph shown in Fig. 4e' with

β21
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Fig. 6. Four-vertex linear chain graph (a) and the corre-
sponding space (r2, r3) of reflection coefficients (b). The
shaded region in the (r2, r3) space corresponds to the regular
regime of the quantum graph shown in (a). This demon-
strates that the subset of regular quantum graphs within the
set of all four-vertex linear quantum graphs is nonempty
and has a finite measure.
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Fig. 7. The exact spectral staircase function N(k) and its
average  for the regular r2 = 0.2, r3 = 0.3 (a) and the
irregular r2 = 0.98, r3 = 0.99 (b) regimes of the four-vertex lin-
ear graph shown in Fig. 6a. In the regular regime (a), the aver-
age staircase function  pierces every step of N(k). This is
not the case in (b), characteristic of the irregular regime.
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N k( )
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and the Dirichlet boundary conditions at the dead ends
V1 and V4. In this case, spectral equation (3.6) is given
by

(5.14)

where

(5.15)

and

(5.16)

The sum of the amplitudes in (5.15) ranges between
0 and 3, and therefore, this system has regular and irreg-
ular regimes. The regular regime corresponds to a finite

area in the ( , ) parameter space. All linear chain
graphs with a finite number of vertices and the Dirichlet
boundary conditions at the two dead-end vertices at the
beginning and at the end of the graph have a finite-mea-
sure regular regime and an irregular regime. This fact is
proved in [10].

Graphs of a new type are marginal quantum graphs.
A marginal quantum graph is defined by

(5.17)

For marginal quantum graphs, apart from a small set
of “special” graphs, explicit spectral formulas still
exist. Explicit examples are provided by circular graphs
(see Example 6) and star graphs (see Example 7).

Example 6: Scaling step potential in a box with
periodic boundary conditions. This system is identical
with the two-vertex circular graph shown in Fig. 8. In
the case of a circular graph, a minor notational problem
arises because starting from a vertex V1; e.g., the vertex
V2 can be directly reached via two different bonds. For
the purposes of this example, we solve the problem as
follows. We first introduce a positive sense of rotation,
i.e., mathematically positive, or counterclockwise, for
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the circular graph in Fig. 8. We then introduce the scal-
ing coefficient β12 referring to the bond that connects
the vertex V1 with the vertex V2 traversing the graph in
the mathematically positive sense. We introduce the
scaling coefficient β21 that refers to the bond connecting
V2 with V1, again in the mathematically positive sense.
We use the same notation for the two reduced actions

 and  referring to the two different bonds (in the
mathematically positive sense), respectively. This nota-
tion is not confusing here, because no magnetic field is
switched on (Aij = 0). With this notation, the spectral
equation is given by

(5.18)

where

(5.19)

and

(5.20)

We note that a1 + a2 = 1. Condition (5.17) is satisfied
and the circular quantum graph with a scaling step
potential is marginal.

Although the strict inequality in Eq. (3.8) is vio-
lated, it is important to note that, even in the marginal

case, the separating points  are still not solutions to
(5.18) in general. This occurs only for special parame-
ter combinations and, therefore, for special quantum
graphs for which the equation

(5.21)

is exactly satisfied for some n. Because the sequence 
is countable and Eq. (5.21) involves irrational fre-
quency ratios and irrational coefficients in general, this
equation is only accidentally satisfied for some n for a
measure zero set of graph parameters. Hence, in gen-

eral, even for marginal quantum graphs, the points 
still serve as separating points and the roots of the spec-
tral equation can still be obtained via expansion (4.3).

Example 7: Star graph. Another example of a mar-
ginal quantum graph is provided by the star graph
shown in Fig. 9. We consider the case with three differ-
ent scaling potentials on its three bonds and the
Dirichlet boundary conditions at the three dead ends.
The spectral equation is given by

(5.22)
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where

(5.23)

and

(5.24)
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0– S34
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Fig. 8. Two-vertex circular graph. In the mathematically
positive sense, β12 is the scaling coefficient of the bond con-
necting the vertex V1 with the vertex V2, β21 is the scaling
coefficient of the bond connecting V2 with V1. This labeling
is possible only in the absence of a magnetic field (Aij = 0),
where the sense of traversal of a bond is irrelevant.
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Fig. 9. Scaling star graph with three bonds and four vertices.
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It is straightforward to verify that

independently of the sign of each ai in (5.24). Condition
(5.17) is therefore satisfied, and the star graph shown in
Fig. 9 is another example of a marginal quantum graph.
As discussed in the context of Example 6, with the
exception of a set of measure zero of the star-graph
parameter space, spectral expansion (4.3) is still valid
and can be used to obtain each of the star-graph eigen-
values individually and independently of all the other
eigenvalues.

6. SUMMARY, DISCUSSION, 
AND CONCLUSIONS

Exact periodic orbit expansions for the global den-
sity of states are known for many chaotic systems [15,
32, 33], However, Eq. (4.3) is the first example of an
explicit expression for the individual quantum-mechan-
ical levels obtained as a function of the level index n for
a classically chaotic system. Additional explicit
quantization formulas may be found for other quan-
tum graph systems or even for quantum systems
unrelated to quantum graphs as long as two essential
requirements are fulfilled. First, an exact periodic
orbit expansion for the density of states must exist.
Second, it must be determined that one of the system

levels, k*, is the only one in an interval  < k* < .

Then one can always obtain the corresponding periodic
orbit expansion for k*,

ai

i 1=

3

∑ 1=

k̂*' k̂*''

V4V3V2V1

U1

U2

U0

U3

Un – 1

Un

a0 a1 a2 a3a4 a5 an – 1 an

(a)

(b)
V5 Vn – 1. . .

Fig. 10. Sketch of a piecewise constant potential (“Manhat-
tan potential”) (a) and its associated linear graph (b). 

. . .
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(6.1)

based on the periodic orbit expansion for ρ(k).

It is reasonable to expect that generically there exist

separating points  and  that separate every k*
from its neighbors, such that k* is the only root of the

spectral equation in the interval [ , ]. Hence,
expansions similar to (4.3) do exist in general. How-

ever, knowing the positions of the separators  and

 around a particular level k* does not help finding
the separators for the other levels. The most important
task in obtaining a general expression for all the levels
of a quantum chaotic system is therefore to find a global
function for the separating points similar to (3.10),
which naturally enumerates the separators. Therefore,
even though it might be possible to find the separators
for a particular quantum level k* for some systems and
then to obtain a periodic orbit expansion for this level
in accordance with (6.1), the expansion would work
only for the level k* and would not represent a formula
that can be used to obtain other levels.

The problem of finding a global expression for the
separating points as a function of their ordering index n
is directly related to another well-known problem of
spectral theory of differential operators, namely, the
problem of approximating staircase function (2.17) by
a smooth average . Indeed, suppose that there

exists a separating point , i.e., a solution of the equa-
tion

(6.2)

between every two roots of the spectral equation (simi-
lar to (3.20) and (3.21)). Because  is a monotonic
function, the separating points can then be found by
inverting Eq. (6.2),

(6.3)

where the value of the staircase function plays the role

of the separator index . Equation (6.3) generalizes
Eq. (3.10), which can be used in (6.1) to obtain the peri-
odic orbit expansions for all the roots.

The smooth curve defined by (6.3) with N consid-
ered a continuous variable intersects every stair of spec-
tral staircase function (2.17). Unfortunately, finding a
smooth function that approximates the spectral stair-
case function for a general differential operator with
generic boundary conditions is a rather complicated
task. It was proven by Weyl in 1912 that one can

k* kρ k( ) k,d

k̂
*
'

k̂
*
''

∫=

k̂*' k̂*''

k̂*' k̂*''

k*'

k*''

N k( )

k̂n'

N k'ˆ( ) N k( ),=

N k( )

k̂N k N( ),=

k̂N
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approximate  by the phase-space volume of the
system in question,

(6.4)

where D is the dimensionality of the phase space; how-
ever, this average is certainly not guaranteed to satisfy
the “piercing average” condition (6.2). Since Weyl, this
problem has been addressed by numerous researchers
(see, e.g., [34]), who succeeded in giving many
improved estimates for  but none of them a priori
satisfy (6.2).

The important feature of the regular quantum graph
systems is that there exists a global piercing average
(3.10), which uniformly enumerates all the points sep-
arating one root from another, and it is therefore possi-
ble to obtain formula (4.3) as a function of the index n.
In other words, the index n in (4.3) is a quantum num-
ber, and expression (4.3) for the energy levels of a cha-
otic system in terms of classical periodic orbits can
therefore be considered as a nonintegrable analogue of
the EBK quantization scheme [11, 12].

It should be mentioned that, despite the existence of
a quantum number n in (4.3), the actual dependence of
the energy levels on the value of its quantum number is
quite different from the simple EBK scheme for inte-
grable systems. The expansion of the fluctuating part of
roots (3.11) involves an intricate, conditionally conver-
gent series and is rather “chaotic.” The difference in
complexity of formulas (4.3) and the EBK formula
apparently reflects the complexity of the geometry of
the periodic orbits of the classically chaotic quantum
graphs.
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APPENDIX

For completeness, we here present a simple deriva-
tion of the spectral determinant in Eq. (2.8), starting
from the boundary conditions at the vertex Vi,

(A.1)

and

(A.2)

N k( )

N E( ) Θ E H x p,( )–( )
xD pDdd

2π"( )D
------------------,∫≈
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x 0=j 1=

NV

∑ λ iϕ i.=
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We represent the wave function

(A.3)

that satisfies these boundary conditions as a superposi-
tion of the partial waves

(A.4)

scattering on the vertices of the graph. We thus have

(A.5)

with the appropriate weights aij ' corresponding to the
incoming flux on the bond Bj 'i towards the vertex Vi.
Comparing this expression with (A.3) yields

(A.6)

Substituting (A.5) into boundary conditions (A.1)
and (A.2) at the vertex Vi, we obtain the respective rela-
tions

(A.7)

and

(A.8)

Inserting (A.7) in (A.8), we obtain

(A.9)
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In the case of the linear scaling λi = k , this yields

(A.10)

Comparing the coefficients in front of aij ', we obtain

(A.11)

or, after performing the summation over l,

(A.12)

where

Multiplying both sides by Cijβij and summing over j
yields

(A.13)

where

Hence,

(A.14)

which can be used in (A.12) to obtain

(A.15)

or

(A.16)
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We see that, in the scaling case, the matrix elements
σji, ij ' of the vertex scattering matrix σ are k-indepen-
dent constants.

The matrix element σji, ij has the meaning of the
reflection coefficient from the vertex Vi along the bond
Bij and the elements σji, ij ' , j ≠ j ' are the transmission
coefficients for transitions between different bonds.
Equation (A.6) can be written as

(A.17)

where

(A.18)

In the symmetric basis ψji(Lij – x) = ψij(x), we have

(A.19)

and the coefficient aij and bij are therefore related as

(A.20)

The coefficients aij and aji (bij and bji) are considered
to be different, and the bonds of the graph are therefore
“directed.”

Equations (A.20) can be written in the matrix form

(A.21)

where a and b are 2NB-dimensional vectors of coeffi-

cients and  is a diagonal matrix in the 2NB × 2NB

space of directed bonds,

(A.22)

and

(A.23)

where  is the NB-dimensional unit matrix. The pairs
of indices (ij), (pq) identifying the bonds of the graph Γ
play the role of the indices of the matrix .

Equations (A.21) and (A.17) together result in

(A.24)

with the matrix S(k) (the total graph scattering matrix)
given by

(A.25)

where D = P P and T = P .

b T̃a,=

T̃ T̃ ij nm,≡ δinC jiCnmσ ji im, .=

ψ ji Lij x–( ) a ji

i βijk– A ji+( ) Lij x–( )[ ]exp

βijk
--------------------------------------------------------------------=

+ b ji

i βijk A ji+( ) Lij x–( )[ ]exp

βijk
--------------------------------------------------------------- ψij x( ),=

a ji bij i βijk Aij+( )Lij[ ] ,exp=

b ji aij i –βijk Aij+( )Lij[ ] .exp=

a PD̃ k( )b,=

D̃

D̃ij pq, k( ) δipδjq i βijk Aij+( )Lij[ ] ,exp=

P
0 1NB

1NB
0 

 
 
 

,=

1NB

D̃ k( )

a S k( )a,=

S k( ) D k( )T ,=

D̃ T̃
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