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of a nonlinear scalar field interacting with the Yang–Mills SO(3) field is obtained on the basis of the Friedman
spatially homogeneous cosmological models. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The solutions of field equations for self-gravitating
and self-acting fields play a special role in the physics
of the young Universe in general and, in particular, in
inflation problems. The cosmological models of infla-
tion can be constructed on the basis of solving a self-
consistent system of Einstein’s equation and the equa-
tions for nonlinear (in the simplest version, scalar)
fields. The nonlinearity of the scalar inflanton field is
manifested in its self-action through a nonquadratic
potential assuming various modifications in the hierar-
chy of inflation models [1]. It should be noted that the
examples of exact solutions of the self-consistent sys-
tem of Einstein’s equations and the equations of a non-
linear scalar field are scarce in view of the complexity
of the nonlinear system. In this respect, the method of
fine tuning of the potential is quite productive in our
opinion. This method, which was widely used in [2],
makes it possible to reconstruct the field dependence of
the potential and to analyze numerically and graphi-
cally the time dependence of the field and the potential
in some cases.

On the other hand, the application of the nonlinear
scalar field induced through the interaction with other
fields in cosmology appears to us as a quite realistic
approach to describing the generation of nonlinearity in
the classical field theory. Unfortunately, in this case,
one must solve a complex nonlinear system of equa-
tions not only for a scalar field, but also for the field
inducing the nonlinearity. Exact solutions are difficult
to obtain even for the simplest field configurations. The
situation becomes even more complicated when self-
gravitating fields are considered in cosmological or
astrophysical applications of the solutions. Interesting
solutions can be obtained under the assumption of the
background nature of the cosmological gravitational
field as, for example, was done in [3, 4]. However, such
solutions are not directly connected with the problems
of the cosmological scenario if only due to their sto-
chastic nature. Nevertheless, the very concept of
1063-7761/01/9204- $21.00 © 20543
induced nonlinearity is very attractive for realization
precizely in cosmology in general and, probably, in the
cosmology of the young Universe especially. The exact
solutions for self-gravitating Yang–Mills (YM) fields in
cosmology were obtained in a number of earlier publi-
cations (see, for example, [5]). However, the applica-
tion of these solutions for the induction of the scalar
field nonlinearity in cosmology would lead to nonho-
mogeneous configurations of the scalar field and,
accordingly, to nonhomogeneous cosmological mod-
els. At the same time, the nontrivial topology of the YM
SO(3) fields opens new prospects in the search for exact
solutions of the self-consistent system of the Einstein–
Yang–Mills equations and the equations of a nonlinear
scalar field [6]. In the present paper, such a system is
solved in the Friedman model and the generalized Wu–
Yang ansatz for the YM fields.

2. EQUATIONS IN THE MODEL
OF GRAVITATING SCALAR 

AND GAUGE FIELDS

We will proceed from the Lagrangian of a self-grav-
itating scalar field ϕ whose nonlinearity is induced by
the YM SO(3)-symmetry field [3]:

(1)

where  = ∂i  – ∂j  + eεabc  is the tensor of

the YM field  and Ψ(ϕ) is the function describing
the interaction between the scalar field and the YM
field. It should be noted that Rybakov et al. [4] used a
similar Lagrangian for describing the interaction with
an electromagnetic field and for an analysis of static
configurations against the background of the Fried-
man–Robertson–Walker static model. In the same pub-
lication, a similar Lagrangian is substantiated by the
existence of the decay π  2γ, while Piccinelli et al. [7]
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noted that for Ψ(ϕ) = e–2λϕ, Lagrangian (1) contains the

compacted Kaluza–Klein theory for λ =  and the
theory of superstrings for λ = 1. The same type of inter-
action appears in the Brans–Dicke theory.

The equations for YM fields, the scalar field, and
gravitation potentials can be obtained by varying the
Lagrangian in the fields and the space–time metric. As
a result, we obtain the system of self-consistent Ein-
stein equations

(2)

where the energy–momentum tensor of the fields is
given by

(3)

the YM equation

, (4)

and the equation for the scalar field

(5)

Symbol Dν denotes the covariant derivative.

We assume that the space–time interval possesses
spherical symmetry and present it in the form

(6)

At the same time, the generalized Wu–Yang ansatz [8]
for the YM fields can be written as

(7)

Here and below, i , j , k, … = 1, 2, 3 are the spatial indi-
ces; a, b, … = 1, 2, 3 are isotopic indices; and K, S, and
W are the field functions of the above arguments. Intro-
ducing the orthonormal reference frame [8]
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and going over to spherical coordinates, we can write
ansatz (7) in the form

(8)

As a result of simple calculation, we obtain the fol-
lowing components for the YM tensor:

(9)

Here and below, the following notation is introduced:

( ) ≡ ∂/∂t and ( ') ≡ ∂/∂r.

The Einstein equations (2) for the energy–momen-
tum tensor (3) taking into account the ansatz (9) of the
YM fields can be written in the form
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where the expressions for the Einstein tensor components

 in terms of the functions U and V of metric (6) are
known. Using the components of tensor (9), we can
write the equations for the YM fields (4) in the form

(11)

while the equation for the scalar field can be written as

(12)

where Ψϕ = dΨ/dϕ.
It should be noted that in the absence of the scalar

field, the solution of the systems of Eqs. (10), (11) for a
self-gravitating pure YM field was derived in [8] in
the Tolman metric under the following simplifying
assumptions concerning the field functions: K = S = 0,
but W ≠ 0. The latter inequality means that the YM field
possesses an electric charge which is just responsible
for the inhomogeneity of the cosmological model. If we
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proceed from the same assumptions as in [8], the com-
plete self-consistent system of the Einstein–Yang–
Mills equations and the equation of the nonlinear scalar
field (12) cannot be solved. Another approach to the solu-
tion of these equations can be prompted by the results
obtained by Rybakov et al. [4], who obtained the static
solutions of similar field equations against the back-
ground of a static Universe. In the present work, we
propose a new substitution for the YM field functions,
which makes it possible to analyze the complete system
of Eqs. (10)–(12) and to obtain exact solutions for this
system.

3. CLASS OF MODELS
WITH THE FRIEDMAN–ROBERTSON–WALKER 

METRIC

For a homogeneous and isotropic Universe, a linear
Friedman–Robertson–Walker element can be presented
in the form

(13)

where

and k = 0, ±1 is the sign of the curvature of the three-
dimensional hypersurface t = const. In other words, in
metric (6), we must put U = a2(t) and V = a2(t)ξ2(r). For
the Friedman–Robertson–Walker interval (13), the non-
zero components of the Einstein tensor are given by [9]

If we require that W = 0, K = K(r), S = S(r) and that
the scalar field ϕ = ϕ(t) is uniform, the system of
Eqs. (11), (12) assumes the form
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The first two equations have the same structure, which
reflects the symmetry of the Lagrangian relative to
transformations of functions K and S of the form

(15)

where α is an arbitrary constant. Consequently, we
obtain the following equation for function P(r):

(16)

For k = ±1, i.e., for the closed and open models of the
Universe, the solutions of Eq. (16) are the functions

(17)

Using the obtained solutions of the YM equations, we
can reduce the remaining independent Einstein equa-
tions to the following system:

(18)

The equation of the scalar field in this case has the form

(19)

It can easily be verified that the system of Eqs. (18) and
(19) contains only two independent equations; conse-
quently, in order to solve the system of equations, we
must specify one of the functions a(t), ϕ(t), or Ψ(ϕ).
Defining the interaction function Ψ(ϕ ). It appears as
the most natural, but not necessary, condition and
depends on the specific problem to be solved.

It is worthwhile to note an interesting feature of the
Einstein equations (18), which can be used to write the
effective values of the energy density e(t) and pressure
p(t) in the form

It follows hence that e – 3p = –  ≤ 0. The extremely
stringent equation of state e = p is naturally obtained
when Ψ = 0. Thus, the effective pressure is determined
by the inequality e/3 ≤ p ≤ e. By an appropriate selec-
tion of the interaction function Ψ(ϕ ), we can obtain the
required equation of state from the above interval to
solve a specific problem with a cosmological scenario.
In our opinion, it is expedient to apply the model under
investigation in the problems of quintessence in the
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way it was done in [10] on the basis of the possible
magnetization of the Universe.

In order to obtain the exact solutions of system (18),
(19), we can apply the method of fine tuning [11], in
which the evolution of the scale factor a(t) is specified.
Using Eq. (18), we can find

(20)

It follows hence that the solution for the real scalar
field ϕ exists only if

(21)

This inequality indicates, among other things, that an
accelerated expansion of the Universe with  > 0 is
possible only in some cases, and for k = +1 in the given
model, it is absent altogether. If we include an ideal liq-
uid and the cosmological constant into the model, rela-
tion (21) and the conclusions concerning the possibility
of the accelerated mode differ considerably from those
presented above.

Let us consider a simple example of the solution for
the nonlinear scalar field (20) by using the above
method. Let us suppose that the scale factor a(t) = a0t,
and the sign of curvature k = –1. Then the system of
equations (20) leads to

The former equations shows that the solution exists if
a0 < 1 and has the form

Eliminating time from the last two equations, we find
the function of the interaction in the form
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ȧ̇

ϕ̇ 6
κ0
----- 1 a0

2–( ) 1
a0t
-------,±=

Ψ 16πe2

κ0
--------------a0

2 a0
2 1–( )t2.=

ϕ 6
κ0
----- 1

a0
2

----- 1– 
  tln± ϕ0.+=

Ψ Ψ0e 2λϕ± ,=

Ψ0
16πe2

κ0
--------------a0

2 a0
2 1–( )e

2λϕ0+−
,=

λ
κ0

6
-----

a0
2

1 a0
2–( )

------------------.=
 AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001



THE CLASS OF EXACT COSMOLOGICAL MODELS 547
Let us consider another example, presuming the
harmonic law of the evolution of the scale factor in the
open (k = –1) model of the Universe:

The substitution of the scale factor into system (20)
makes it possible to integrate the system, which leads
to the following expressions:

Using these expressions, we can obtain the explicit
form of the interaction function:

(23)

where Ψ0 = –24πe2/κ0 .

It should be noted that irrespective of the specific
form of the interaction functions Ψ(ϕ) and, hence, of
the solutions of Eqs. (18), the nonzero components of
the tensor for the YM fields, in accordance with formu-
las (9), (15), and (17), have the form

(24)

which means that the a YM field has only magnetic
components. It is interesting to note that this circum-
stance has allowed us to obtain homogeneous solutions
for a scalar field. Indeed, formulas (24) readily lead to
the invariant of the YM field,

which is just responsible for the dependence of the sec-
ond term in the Eq. (18) for the scalar field, which is
nonlinear in the field, on the time variable only.

4. CONCLUSION
Thus, it is found that the system of the Einstein–

Yang–Mills equations and the equation of a nonlinear
scalar field, which is obtained from Lagrangian (1), has
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FµνFµν 3e 2– a 4– t( ),=
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solutions with a uniform scalar field interacting with a
YM field of type (24) in the Friedman model of the
Universe, limited only by condition (21). The system is
reduced to two independent Eqs. (18) or (20), which
should be additionally defined either by a specific inter-
action function or by indicating the required rate of the
evolution of the scale factor. It is shown that the latter can
be realized in all cases, and the simple examples (22) and
(23) illustrate the possibility of determining the explicit
dependence of the interaction function on the scalar
field for certain modes of the expansion of the Uni-
verse.
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Abstract—The rare kaon decay K+  π+  is considered in the framework of models based on the
SU(3)C ⊗  SU(3)L ⊗  U(1)N (3–3–1) gauge group. In the 3–3–1 model with right-handed neutrinos, the lower
bound of the Z' mass is derived at 3 TeV, and that in the minimal version, at 1.7 TeV. © 2001 MAIK
“Nauka/Interperiodica”.

n

νν
¶ 1. INTRODUCTION

Kaon is the lightest hadron having a nonzero
strangeness quantum number. Due to the weak interac-
tions, kaon decays into zero-strangeness states contain-
ing pions, photons, and/or leptons. The physics of
kaons has played a major role in the development of
particle physics. The concept of strangeness, with its
implications for the quark model, the discovery of the
P and CP violation, and the GIM mechanism have all
emerged from the study of K mesons. Today, rare kaon
decays remain a field of active investigations (see for
example [1]). Flavor-changing neutral currents (FCNC)
are completely suppressed at the tree level by the GIM
mechanism in the standard model (SM). In the second
or higher order interactions, this suppression is not
complete because of different quark masses [2].

The first experimental evidence for atmospheric
neutrino oscillations (and, consequently, a nonzero
neutrino mass) observed at the SuperKamiokande Col-
laboration calls for an extension of the SM. Among the
possible models, those based on the SU(3)C ⊗  SU(3)L ⊗
U(1)N (3–3–1) gauge group [3–6] contain a number of
intriguing features. First, the models predict three fam-
ilies of quarks and leptons if the anomaly-free condi-
tion on SU(3)L ⊗  U(1)N and the QCD asymptotic free-
dom are imposed. Second, the Peccei–Quinn symmetry
naturally occurs in these models [7]. The third interest-
ing point is that one generation of quarks is treated dif-
ferently from the other two. This could lead to a natural
explanation for the unbalancingly heavy top quark.
This family nonuniversality also leads to the FCNC by
the Z' currents at the tree level [8, 9]. Finally, the 3–3–1
models predict new physics at a scale only slightly
above the SM scale (several TeVs) [8–11].

¶ This article was submitted by the authors in English.
1063-7761/01/9204- $21.00 © 20548
In this work, we consider the implications of the
main two 3–3–1 models for the rare K+  π+

decay; our aim is to obtain a bound on the Z ' mass.

2. THE RARE KAON DECAY K+  π+

IN 3–3–1 MODELS

2.1. The Decay in the 3–3–1 Model 
with Right-Handed Neutrinos

We first recapitulate the basic elements of the model.
The leptons in this model are arranged into triplets, with
the third member being a right-handed neutrino [5, 6],

(1)

where a = 1, 2, 3 is the family index.
The first two families of quarks are in antitriplets

and the third one is in a triplet,

(2)

(3)

νν

νν

f L
a

νL
a

eL
a

νL
c( )a

 
 
 
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QiL
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 
 

3 3 1/3, ,( ),∼=

u3R 3 1 2/3, ,( ), d3R 3 1 1/3–, ,( ), T R 3 1 2/3, ,( ).∼∼∼
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The gauge bosons in this model are the photon (A), Z,
Z', W±, Y±, and complex neutral bosons X0 and X*0,

(4)

where we use the notation sW ≡ sinθW and tW ≡ tanθW .
The physical states are a mixture of Z and Z ',

where φ is the mixing angle.

The interactions between fermions and Z1, Z2 are
given by

(5)

where

(6)

Here, T3(f) and Q(f) are, respectively, the third component
of the weak isospin and the charge of the fermion f. The
mixing angle φ is constrained to be very small [6],
−2.8 × 10–3 ≤ φ ≤ 1.8 × 10–4, and can therefore be
neglected.

Because one family of left-handed quarks is treated
differently from the other two, the N charges for left-
handed quarks are also different (see Eq. (3)). There-
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fore, the FCNC Z ' occurs through a mismatch between
weak and mass eigenstates. We diagonalize the mass
matrices by three biunitary transformations:

(7)

where U ≡ (u, c, t)T and D ≡ (d, s, b)T. The usual
Cabibbo–Kobayashi–Maskawa matrix is given by

(8)

Using unitarity of the VD and VU matrices, we obtain
the flavor-changing neutral interactions [9]

(9)

where i denotes the number of “different” quark fami-
lies, i.e., the SU(3)L quark triplet. It was shown in [9]
that i must be equal to 3; i.e., the third family of quarks
must be different from the first two.

We consider the decay

(10)

where the symbols in parentheses stand for the
momenta of the particles. The one-loop effective SM
Lagrangian for this process was calculated by Inami
et al. [2]. Due to family nonuniversality in the 3–3–1
models, the decay can be mediated by Z ' at the tree
level. The Feynman diagram contributing to the above
decay is depicted in Fig. 1.

The decay amplitude is given by

(11)

where mW and MZ' stand for the W and Z ' boson masses,
respectively.

UL' V L
UUL, UR' V R

UUR,= =

DL' V L
DDL, DR' V R

DDR,= =

VCKM V L
U+V L

D.=

+ds
NC gcW

2 3 4sW
2–

------------------------- VLid
D*V Lis

D[ ]dLγµsLZµ' ,=

K+ p1( ) π+ p2( )ν k1( )ν k2( ),

} K+ π+νν( )
GF

2
-------

mW
2

MZ'
2

--------V Lbd
D* V Lbs

D=

× π+ p2( ) sLγµdL K+ p1( )〈 〉 νL k1( )γµνL k2( ),

K+

u s–

Z '

ν–

d
–

ν

u

π+

Fig. 1. Feynman diagram for K+  π+  in the 3–3–1
models.

νν
SICS      Vol. 92      No. 4      2001



550 LONG et al.
For our initial purpose, we present the well-measured
semileptonic decay K+(p1)  π0(p2)e+(k1)ν(k2). The
tree-level amplitude for this process can be written as

(12)

The isospin symmetry relates hadronic matrix ele-
ments in (11) to (12) to a very good precision [12],

(13)

Neglecting differences in the phase space of two con-
sidered decays occurring because  ≠  and me ≠ 0,

we sum over the three neutrino flavors and obtain

(14)

where the symbol rhn added to the branching ratio indi-
cates the case under consideration. We now apply the
simple Fritzsch [13] scheme as

(15)

Inserting (15) in to (14), we obtain

(16)

} K+ π0e+ν( )
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2
-------Vus*=
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π+ p2( ) sLγµdL K+ p1( )〈 〉

=  2 π0 p2( ) sLγµuL K+ p1( )〈 〉 .

m
π+ m

π0

Brrhn K+ π+νν( )
Br K+ π0e+ν( )

------------------------------------------------- 6
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Fig. 2. Branching ratio (Br) as a function of MZ ' .
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In Fig. 2, we plot Brrhn as a function of MZ ' , using the
data [14]

(17)

The horizontal lines are the upper (4.9 × 10–10) and the
lower (0.3 × 10–10) experimental data [15].

From this figure, we see that the lower bound on the
Z ' mass is in the range from 2.3 to 4.35 TeV. This bound
is approximately twice as large as that derived from the
mass difference of the kaon mixing system ∆mK [9]. We
thus arrive at the previous conclusion again: for the Z '
mass to be relatively low, the third family of quarks
must be different from the other two.

2.2. The Decay in the Minimal 3–3–1 Model

This model treats the leptons as SU(3)L antitriplets
[4, 10], with the third element being the antilepton (the
name of this version comes from the fact that no new
leptons are introduced):

(18)

Of the nine gauge bosons Wa (a = 1, 2, …, 8) and B of
SU(3)L and U(1)N, four are light: the photon (A), Z, and
W±. The remaining five correspond to new heavy gauge
bosons Z ' and Y± and the doubly charged bileptons X±±.
They are expressed in terms of Wa and B as [10]

(19)

As before, the physical states are a mixture of Z and Z ',

and the mixing angle φ is also constrained to be very
small. We can therefore assume φ ≈ 0. Applying Eq.
(4.4) in [10], we obtain the interactions among Z' and
neutrinos,

(20)
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One necessary vertex, namely, the FCNC, is given in [8],

(21)

Combining Eqs. (20) and (21), we obtain the decay
amplitude

(22)

From Eq. (22), it is straightforward to obtain

(23)

As in the previous section, we plot Brmin as a func-
tion of MZ ' in Fig. 2. As a consequence, the lower bound
on the Z ' mass is in the range from 1.25 to 2.45 TeV.
This bound is larger than the one derived from the mass
difference of the kaon mixing system ∆mK (see Dumm
et al. [8]). For the Z ' mass to be relatively low, the third
family of quarks must be different from the other two.
It is worth mentioning that the branching ratio is not
sensitive to the value for sin2θW, while the expression
for ∆mK in the minimal version is very sensitive due to

the factor (1 – 4 )
–1

.

3. CONCLUSIONS

We have considered the rare kaon decay K+ 
π+  in the 3–3–1 models at the tree level. It was
shown that in the model involving right-handed neutri-
nos, the decay width is by about one order larger than
in the minimal version. As a result, we obtained bounds
on the Z ' mass in the range from 2.3 to 4.3 TeV in the
model with right-handed neutrinos and from 1.2 to
2.4 TeV in the minimal version. There is a point worth
noting: these mass limits are in agreement with the
recent analysis [16], showing that there are indications
of Z ' in electroweak precision data. We do hope that the
new experimental data from the collaborations at BNL
and Fermilab will bring new indications of the extra
neutral gauge boson Z '—one of the best motivated
extensions of the SM.
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In this work, we considered only the CP conservat-
ing kaon decay K+  π+ . Implications for the CP
violating K and B decays are subjects of future studies.
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Abstract—An algorithm for solving the Maxwell equations for propagation of light through anisotropic strat-
ified media is considered. The algorithm uses the Berreman matrices of order 4 × 4. In contrast to the numerical
methods suggested by Berreman, the new method is exact. The Sylvester theorem for calculating functions of
a matrix and the Laguerre method for determining eigenvalues provide the basis for an algorithm with an effi-
ciency comparable to that of the algorithms based on analytic solutions, which exist only in the case of uniaxial
media. The method suggested in this paper allows for the analysis of complex optical systems where the effects
of biaxiality, magnetic anisotropy, and optical activity play an important role. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Methods for analyzing the transmission and reflec-
tion in stratified anisotropic media were suggested by
Teitler and Henvis in [1] and by Berreman in [2–4]
almost simultaneously. The methods described in [1]
and [3] are equivalent from the mathematical point of
view, although the approaches are different. Berreman
considers an optical medium with continuously varying
parameters, which makes it possible to write the Max-
well equations in a differential matrix form. In contrast
to the well-known approximate method of the Jones
matrices [5], which are of order 2 × 2, Berreman’s
method uses 4 × 4 matrices. The increased order is the
cost of the accuracy and generality. The Berreman
matrix defines a linear transformation of the four tan-
gential components of the electric and magnetic fields
at the input of an optical system to the corresponding
components at its output. This makes it possible to cal-
culate simultaneously both the transmission and reflec-
tion of a light wave incident on a planar optical system
at an arbitrary angle with account for interference
effects of multiple reflection.

As soon as the Berreman method was published, it
gained recognition and received widespread use, espe-
cially in designing liquid crystal optics, where reflec-
tion effects are crucial. Later, analytic expressions for
the Berreman matrices were found for uniaxial optical
media [6–8]. However, no general analytic solutions in
the biaxial case are available. Thus, the most efficient
methods for determining the Berreman matrices are
approximate ones; such methods are studied in [4].
They are based on the expansion of a matrix in the finite
Taylor series. Thus, even a homogeneous anisotropic
medium must be divided into very thin sublayers for
which Taylor’s series is sufficiently accurate. It seems
1063-7761/01/9204- $21.00 © 20552
that it is the complexity of calculating the Berreman
matrices that causes the development of the alternative
method of Jones’ matrices [9], although the latter
method is basically approximate.

In this paper, we suggest an exact and efficient algo-
rithm for determining the Berreman matrices. It is
based on the Sylvester theorem [10], which represents
a function of a matrix as a finite series, and on the
Laguerre method for finding a complex root of a poly-
nomial of an arbitrary degree [11]. The algorithm was
applied to modeling electrooptics of liquid crystals
used in designing liquid crystal displays. The method is
general in the sense that its field of applicability is not
restricted to modeling uniaxial optical media only. It is
equally effective when the effects of biaxiality, mag-
netic anisotropy, and optical activity of the medium are
taken into account.

2. THEORY AND METHOD

In this section, we reiterate the main results obtained
by Berreman on the basis of transforming the Maxwell
equations for linear media to the matrix form.

Let a plane monochromatic wave be incident in the
plane xz on a plane-parallel plate at an arbitrary angle α
to the normal (see Fig. 1). For brevity, Fig. 1 presents
only the permittivity ellipsoid, although the magnetic
susceptibility and optical activity can be anisotropic as
well. We assume that the optical parameters of the plate
smoothly depend on z, which makes it possible to use
the differential formalism. According to [3], the tan-
gential components of the electric and magnetic fields
of the light wave are written in the matrix form as

(1)
z∂

∂ c iω
c

------Dc,=
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where

Ex , Ey , Hx, and Hy are the tangential components of the
electric and magnetic fields, respectively. In the general
case, the components of the matrix D are expressed in
terms of the permittivity and permeability tensors and
the optical rotation tensor (see Appendix).

In many important cases, the magnetic anisotropy
and optical activity can be neglected; then, the number
of nonzero components of ∆ is reduced to 10 [4]:

(2.1)

(2.2)
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(2.18)

In (2.1)–(2.18), kx is the x component of the wave
vector of the incident wave; ω is the angular frequency;
θ, φ, and ψ are Euler’s angles, which determine the ori-
entation of the permittivity ellipsoid; and εa, εb, and εc

are the principal values of the permittivity tensor com-
ponents (see Fig. 1). We assume that the permittivity
components are complex. Thus, the absorption anisot-
ropy is taken into account.

In the case when the parameters of the optical plate of
thickness h are independent of z, the integration of Eq. (1)
yields

(3)

where P(h) corresponds to the Berreman matrix for the
homogeneous medium.

Thus, in the case of a homogeneous medium, calcu-
lation of the Berreman matrix is reduced to calculating
the exponent of the matrix D. In the general case, when
the parameters of the optical medium depend on z, the
medium is divided into n layers such that the optical
parameters can be assumed constant within each layer;
then, integration of Eq. (1) is reduced to the multiplica-
tion of the corresponding matrices for each layer:

(4)

Equation (4) is also valid for complex optical media
consisting of discrete optical elements (polaroids, phase
plates, etc.). From the physical point of view, Eq. (4) is
complete, since the tangential components of the electric
and magnetic fields are continuous. Hence, even in the
case of a stratified system of heterogeneous optical media,

ε33 εa ψsin
2 εb ψcos

2
+( ) θsin

2 εc θcos
2

.+=

c h( ) iωhD/c( )c 0( ) P h( )c 0( ),≡exp=

c h( ) P hi( )c 0( ).
i 1=

n

∏=

BC

y

z

x

εa

εc

εb

A

φ

α

ψ

θ

Fig. 1. Orientation of the principal axes, A, B, and C, of the
permittivity ellipsoid: xy is the surface plane of the optical
medium; xz is the incidence plane; α is the angle of inci-
dence; θ, φ, and ψ are Euler’s angles; and εa, εb, and εc are
the principal values of the permittivity tensor components.
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no additional boundary conditions are required. Thus,
even in the most general case, the numerical integration is
reduced to calculating the exponent of the matrix D.

The well-known exact algorithm for calculating a
function of a matrix is based on the similarity transfor-
mation

(5)

and on the calculation of the function of the elements of
the diagonal matrix D. However, this method requires
that the eigenvalues of D, the matrix of eigenvectors S,
and the inverse matrix S–1 be calculated. Although the
exponent of Eq. (5) has a clear physical meaning (it
describes the propagation of the four characteristic waves
in the forward and backward directions), this method is
computationally rather costly. The method is more effi-
cient only for uniaxial media, where analytic expres-
sions for the eigenvalues and eigenvectors are available
[8]. It seems likely that the complexity and inefficiency
of the algorithms used to compute the matrices for the
similarity transformation caused the development of
approximate methods [3, 4]. For example, one of the
methods suggested by Berreman is based on the repre-
sentation of the exponent in the form of Taylor’s series

(6)

where I is the identity matrix.

Berreman showed that a converging solution could
be obtained if the second-order term in this expansion
is taken into account. However, since Eq. (6) is an
approximation, its application even for homogeneous
portions of the medium requires that the medium be
divided into layers much thinner than the wavelength.
The procedure becomes inefficient when designing sys-
tems consisting of thick (hundreds of microns) homoge-
neous optical elements such as polaroids or phase plates.
In [4], the numerical integration method was improved
and applied to the analysis of the optics of a liquid-crystal-
line “twist cell.” The improved procedure allowed one to
use large values of h, but the method remained basically
approximate and the step h was to be chosen with great
caution.

In the present paper, we suggest an exact procedure.
The procedure is based on the Sylvester theorem [10],
which gives a formula for the function of a matrix A of
order n × n provided that all its eigenvalues are different:

(7)

where λk are the eigenvalues of A.

D S 1– DS=

P h( ) iωhD/c( )exp=

≈ I
iωh

c
---------D 1

2
--- ωh

c
------- 

 
2

D2,–+

f A( ) f λ k( )

A λ iI–( )
i k≠
∏

λ k λ i–( )
i k≠
∏
-------------------------------,

k 1=

n

∑=
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As applied to the case considered in this paper, for-
mula (7) involves four terms:

(8)

which is almost equivalent to Eq. (6) in terms of the com-
putational cost if the eigenvalues of D are known. Since
Eq. (8) is an exact representation of the function, the oper-
ation of dividing the homogeneous medium into a set of
sublayers is no longer required. In contrast to the exact
method based on the similarity transformation (5), the
matrix of eigenvectors and its inverse are not calcu-
lated, which improves the efficiency of the method.

Thus, formula (8) reduces the problem to finding an
efficient method for determining the eigenvalues of the
matrix D. In the case of a uniaxial optical medium (εb = εa),
analytic expressions for the eigenvalues are available
[6–8]:

(9.1)

(9.2)

where ε = (εc – εa)sinθ, and ε33 is determined by
Eq. (2.18) with regard for the uniaxiality (εa = εb).

In the general case, the eigenvalues are the roots of
the fourth-degree polynomial

(10)

or the equivalent vector equation

(11)

where

(12)

and a0–a4 are the complex coefficients of the polynomial.
If the elements of D are defined by Eqs. (2.1)–(2.11), then

P h( ) iωhD/c( )exp=

≡ iωhλ k/c( )

D λ iI–( )
i k≠
∏

λ k λ i–( )
i k≠
∏
------------------------------exp

 
 
 
 
 
 

,
k 1=

4

∑

λ1 2, εa

ckx

ω
------- 

 
2

– 
 

1/2

,±=

λ3 4,
1

ε33
------ ε θ φ

ckx

ω
-------sincos





–=

± εa εcε33 εc ε θ φcos
2

sin–( )
ckx

ω
------- 

 
2

– 
 

1/2





,

det D λI–( ) 0,=

LA 0,=

L 1λλ2λ3λ4( ), A

a0

a1

a2

a3

a4 
 
 
 
 
 
 
 
 

,= =
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the coefficients of the polynomial are given by the expres-
sions

(13.1)

(13.2)

(13.3)

(13.4)

(13.5)

Another important thing is that our method uses the
Laguerre method [11] for determining the roots of
polynomials. The Laguerre method guarantees rapid
convergence to one of the roots of the polynomial given
an arbitrary initial approximation and provides a highly
accurate result; the accuracy is actually limited only by
the precision of the computer representation of float-
ing-point numbers. It is clear that the Laguerre method
can be used for our purposes if it is supplemented by a
procedure for eliminating previously calculated roots.

For the sake of convenience, we introduce the oper-
ator L, which will be called the Laguerre operator, such
that

(14)

that is, its application to a vector A (the components of
A are the coefficients of the polynomial under consid-
eration, see Eq. (11)) gives the value of a root of the
polynomial, which corresponds to an eigenvalue of the
matrix D . Figure 2 presents a rather detailed flowchart
of the algorithm based on the Laguerre operator.

Having calculated one of the roots, one can easily
eliminate it and obtain a polynomial of a lower degree.
The procedure of calculating all eigenvalues can be rep-
resented as a sequence of transformations

(15)

a0 2∆11∆13∆23∆34 ∆21∆12∆34∆43+=

– ∆11
2 ∆34∆43 ∆13

2 ∆21∆34– ∆23
2 ∆12∆34,–

a1 2 ∆11∆34∆43 ∆13∆23∆34–( ),=

a2 ∆11
2 ∆34∆43 ∆21∆12,––=

a3 2∆11,–=

a4 1.=

λ1 L A( );=

a0

a1

a2

a3

a4 
 
 
 
 
 
 
 
  b0 a1 b1λ1+=

b1 a2 b2λ1+=

b2 a3 b3λ1+=

b3 a4=

λ1 L A( )= 
 
 
 
 
 
 
 
 

c0 b1 c1λ2+=

c1 b2 c2λ2+=

c2 b3=

λ2 L B( )=

λ1 
 
 
 
 
 
 
 
 
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d0 c1 d1λ3+=

d1 c2=

λ3 L C( )=

λ2

λ1 
 
 
 
 
 
 
 
  c2

λ4 d0/d1–=

λ3

λ2

λ1 
 
 
 
 
 
 
 
 

,

P n x,( ) akxk

k 0=

n

∑=

Initialization:
x 0=

Computation:

P' n x,( ) akkxk 1–

k 1=

n

∑=

Yes

No

Computation:

Computation:

Comparison:

Computation of the relative
error E = |(x2 – x)/x2| 

Comparison: E < δ = 10–7?No, E > δ

P'' n x,( ) akk k 1–( )xk 2–

k 2=

n

∑=

P n x,( ) 0?=

G n x,( ) P' n x,( )
P n x,( )
------------------=

H n x,( ) G2 n x,( ) P'' n x,( )
P n x,( )
-------------------–=

L n x,( ) n 1–( ) nH n x,( ) G2 n x,( )–( )=

D1 n x,( ) G n x,( ) L n x,( )+=

D2 n x,( ) G n x,( ) L n x,( )–=

x = x2

Yes, E < δ
Output;
the eigenvalue is λ = x

if D1 > D2, then x2 = x – n/D1
if D1 ≤ D2, then x2 = x – n/D2

Fig. 2. Flowchart of the algorithm for determining an eigen-
value by the Laguerre method. The input parameters are the
degree of the polynomial n and its coefficients {a0, a1, …, an}.
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where

(16)

Thus, applying the Laguerre operator three times in
accordance with procedure (15) from left to right, we
obtain all eigenvalues of D . Then, we substitute them
into Eq. (8) to obtain the Berreman matrix. Besides the
Laguerre operator, procedure (15) involves only the addi-
tion and multiplication operations, which, combined with
the rapid convergence of the Laguerre method, guarantees
high efficiency comparable with that of the method for
determining eigenvalues based on the analytic expres-
sions (9.1) and (9.2) in the case of uniaxial systems. For
comparison, note that even an optimized analytic proce-
dure (where the repeated calculation of the functions sinx
and others is eliminated) is only about 1.5 times quicker
(the computation time of the Berreman matrix is about
100 µs on a Celeron 500–based computer).

It must be stressed that formula (8) assumes that all
eigenvalues are different. In some cases, when the
medium or geometry are symmetric (e.g., the medium is
optically isotropic or the light is incident at exactly right
angles) some eigenvalues can be multiple. In this case, an
indeterminacy of the type 0/0 occurs, which can be evalu-
ated using the L’Hospital rule. However, this can make the
procedure more complicated and deteriorate its efficiency.
An alternative possibility is to introduce a small perturba-
tion that cannot affect the computation results. For exam-
ple, in the case of an isotropic medium, the refraction
indices can be made slightly different, for example, in
the seventh decimal digit. This cannot noticeably affect
the results even when the thickness of elements is hun-
dreds of microns.1 In the case of the normal incidence,
it is sufficient to specify a very small deviation from the
normal direction; for example, the deviation of 10–6 rad
is unlikely to be detected in an experiment.

3. DETERMINING THE TRANSMISSION
AND REFLECTION

In this section, we obtain formulas for determining
the field in the reflected and transmitted waves.
Although this problem was considered by Berreman,
his original work contains an error in the corresponding
expressions (formulas (86)–(90) in [3]).

As in [3], we assume that an anisotropic plate or an
optical system consisting of discrete elements is con-
fined between two nonabsorbing isotropic media with
the refraction indices n1 and n2, respectively. A light
wave is incident from the side of the medium with the
index n1 at the angle α1 to the normal to the plate sur-

1 We assume that the computations are performed with double pre-
cision.

B

b0

b1

b2

b3 
 
 
 
 
 
 

, C
c0

c1

c2 
 
 
 
 

.= =
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face and goes to the second medium at the angle α2.
The field at the input of the system is determined by the
superposition of the incident and the reflected waves,
while only the transmitted wave is present at the output:

(17)

Here, P(h) is the Berreman matrix, which is determined
by product (4) in the case of a heterogeneous medium or
a system of optical elements; cI, cT, and cR are the vectors
of the incident, transmitted, and reflected waves, respec-
tively.

In isotropic media, there is a definite relation between
the components of the electric and magnetic fields. Thus,

(18)

where

(19)

Multiply both sides of Eq. (17) on the left by the
inverse of the Berreman matrix F = P–1 to obtain a system
of linear equations, which is easily solved for the unknown
components of the field Rx , Ry , Tx , and Ty:

(20.1)

(20.2)

(20.3)

(20.4)

where

(20.5)

and Fij (i, j = 1, 2, 3, 4) are the components of F.

cT P h( ) cI cR+( ).=
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 
 
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 
 
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 
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,= =
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T x
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 
 
 
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α1cos
--------------, ry n1 α1, rx*cos
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α2cos
--------------,= = =

ry* n2 α2,
α2sin
α1sin

-------------cos
n1

n2
-----.= =

Ty

2 ryEy acEx–( )
bc d+

------------------------------------,=

T x 2aEx bTy,+=

Rx F11 F12rx*+( )Tx F13 F14ry*+( )Ty Ex,–+=

Ry F31 F32rx*+( )Tx F33 F34ry*+( )Ty Ey,–+=

a
rx

F11 F12rx*+( )rx F22rx* F21+ +
-----------------------------------------------------------------------,=

b
F13 F14ry*+( )rx F24ry* F23+ +

F11 F12rx*+( )rx F22rx* F21++
-----------------------------------------------------------------------,–=

c F31 F32rx*+( )ry F42rx* F41,+ +=

d F33 F34ry*+( )ry F44ry* F43,+ +=
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The transmission and reflection coefficients, T and
R, are determined as the ratio of the energy flux in the
transmitted and the reflected wave, respectively, to the
energy flux in the incident wave. In practice, the sim-
plest case is most commonly encountered when the air
acts as the first and the second medium (n1 = n2 ≈ 1 and
α1 = α2 = α). Then

(21)

We stress that all arithmetic operations are performed
over complex numbers, and the square of the absolute
value is calculated by an appropriate procedure.

4. APPLICATION OF THE METHOD
FOR THE ANALYSIS OF THE “TWIST-EFFECT” 

OPTICS IN A LIQUID CRYSTAL TAKING
INTO ACCOUNT POSSIBLE BIAXIALITY

By way of example, we give an analysis of the
optics of a system depicted in Fig. 3. It includes a light
source and a liquid crystal cell placed between two
crossed polaroids. First, we analyze the static electrooptics
assuming that the liquid crystal is uniaxial (nb = na ≡ n⊥ ).
Then, we artificially introduce two types of biaxiality
(nb < na and nb > na) and consider how they affect the
electrooptics and angular characteristics of the optical
contrast when the electric field is switched.

T
T x/ αcos 2 Ty

2+

Ex/ αcos 2 Ey
2+

-------------------------------------------,=

R
Rx/ αcos 2 Ry

2+

Ex/ αcos 2 Ey
2+

-------------------------------------------.=

U

Light source,
φ1 = 0

Polaroid, φ2 = 0

Substrate

Electrode

φ3 = π/2
Liquid
crystal
φ4 = 0

Electrode

Substrate

Polaroid, φ5 = π/2

Fig. 3. A scheme of the liquid-crystal optical system to be mod-
eled. U is the source of voltage applied to the liquid crystal.
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Determine the parameters required for the analysis
of the optical elements.

Polaroids. Polaroids are modeled by a uniaxial opti-
cal medium (εa = εb) with an anisotropy of the absorp-
tion coefficient (kc @ ka). Thus, the principal values of
the complex permittivity are expressed in terms of the
refraction indices nc, na and the absorption coefficients
kc, ka as

(22)

where λ is the light wavelength and the subscripts a and
c correspond to the principal axes of the ellipsoid A and C,
respectively (see Fig. 1).2

2 Sometimes, a different complex representation of the light wave
is employed and, as a result, the second term in parentheses of
Eq. (22) appears with the minus sign. In that representation, the
signs at all imaginary quantities in this paper should be changed
to opposite.

εc a, nc a,
iλkc a,

4π
--------------+ 

 
2

,=

0
0.01

Applied voltage, V
1 2 3 4 5

0.1

1

(a)

T
ra

ns
m

is
si

on

1

3
2

(b) (c) (d)

εb

εc

εa

εb

εa

εc
εc

εb

εa

x

y
z

Fig. 4. Dependence of the optical transmission on the volt-
age applied. (a) (1) a uniaxial liquid crystal; (2) a positive
biaxiality is introduced (nb = 1.58 > na = 1.54); (3) a nega-
tive biaxiality is introduced (nb = 1.50 < na = 1.54). It is
assumed in the calculations that the principal axis A (Fig. 1)
is oriented at the angle ψ = 0. The initial (U = 0) distribution
of molecules of the liquid crystal: (b) uniaxial liquid crystal;
(c) positive biaxiality; (d) negative biaxiality. Biaxial mole-
cules of the liquid crystal are depicted by parallelepipeds.
The light is polarized in the direction of the axis x and trav-
els along the axis z.
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Fig. 5. Angular characteristics of the contrast ratio (see text) in the case of (a) a uniaxial liquid crystal; (b) negative biaxiality; and
(c) positive biaxiality. The contrast ratio is represented by the intensity in the polar frame of reference. The incident angle of light is
plotted on the radius. The angle plotted on the external circle corresponds to the azimuth angle, which determines the orientation of
the plane of light incidence with respect to the axis x (see Fig. 4b).
Typical 200 µm polaroid films used in liquid-crystal
displays can be modeled by the refractive index na ≈ nc =
1.5 and the absorption coefficients ka = 0.001 µm–1 and
kc = 0.02 µm–1 at the wavelength 550 nm. The transmis-
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sion coefficient of two polaroids arranged such that the
weak absorption axes are parallel to the polarization of
the incident light is ~0.6. If the polaroids are crossed,
then the transmission coefficient is ~0.01. When the
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001
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Berreman matrices are calculated, it must be taken into
account that the principal axis C lies in the plane of the
polaroid film (θ = π/2).

In the scheme shown in Fig. 3, the first polaroid is
oriented such that its weak absorption axis is parallel to
the polarization direction of the light source (φ2 = φ1 = 0)
and is perpendicular to the orientation of the liquid
crystal director on the first surface (φ3 = π/2). The sec-
ond polaroid (the analyzer) is skewed with respect to
the first one (φ5 = π/2).

Isotropic optical glasses. The substrates of a liquid-
crystal cell are modeled by an isotropic medium. All
the principal values of the permittivity ellipsoid are
equal, and the absorption coefficient is assumed to be
zero. For standard glasses, we can set εa = εb = εc ≈
1.532 ≈ 2.34. In our model, we use 200-µm-thick
glasses.

Electrodes. Electrodes are isotropic (εa = εb = εc),
but the real part of the refraction index is greater than
for glass, and the absorption coefficient is nonzero. In
this model, we used 0.01-µm-thick electrodes with the
real part of the refraction index equal to n = 1.7 and the
absorption coefficient k = 0.1 µm–1.

Distribution of liquid crystal molecules in an
electric field. The characteristics of the model liquid
crystal are assumed to be as follows.

The coefficients of elasticity are K11 = 6.4 pN, K22 =
3 pN, and K33 = 10 pN.

Low-frequency permittivity indices are ε⊥ = 6.7 and
ε|| = 19.7.

The optical refraction indices at the wavelength
550 nm are na ≡ n⊥  = 1.54, nc ≡ n|| = 1.72, and the direc-
tion of the director of the liquid crystal molecules cor-
responds to the principal axis C of the permittivity
ellipsoid (see Fig. 1).

The boundary conditions are as follows: the angle of
deviation of the liquid crystal director from the normal
is 89°, the zenithal binding energy is 0.2 mJ/m2 the azi-
muth binding energy is 0.1 mJ/m2, and the relative azi-
muth orientation of the director on the opposite sur-
faces is 90° (twist cell). At the first boundary, the direc-
tor is oriented perpendicular to the polarizer; on the
second boundary, it is perpendicular to the analyzer.

The thickness of the liquid crystal is 3.1 µm.
The distribution of the director in the electric field is

calculated by solving the nonlinear differential equa-
tions of the force moment balance obtained as a result
of the minimization of the Frank free energy [12].

Figure 4 shows the calculated dependence of the
transmission of the entire optical system on the voltage
applied to a liquid-crystal cell under the normally inci-
dent monochromatic light with the wavelength λ = 550 nm.
Curve 1 corresponds to the uniaxial liquid crystal (nb =
na = 1.54). If a positive biaxiality is introduced (nb =
1.58 > na = 1.54, ψ = 0), then the curve becomes less
steep in the range 1–3 V. If a negative biaxiality is intro-
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duced (nb = 1.50 < na = 1.54, ψ = 0), then two additional
extrema occur (curve 3) for voltages greater than 1 V.
Note that such behavior of uniaxial liquid-crystal twist
cells is possible only if the incident light is oblique.
Hence, the shape of the dependence (curve 3) can be
used as a characteristic one for biaxial liquid crystals
under the normal light incidence.

The presence of biaxiality is clearly visible in angu-
lar dependencies of the optical contrast (see Fig. 5).
The contrast ratio was calculated as

(23)

where T0 corresponds to the transmission in the off
(bright) state, and T1 corresponds to the transmission in
the on (dark) state at 4.5 V applied to the cell. In the
case of a uniaxial liquid crystal (Fig. 5a) the well-
known asymmetric contrast characteristic of the twist
effect [12] is observed. Biaxiality drastically changes
the angular characteristics. As is seen from Fig 5b, the
negative biaxiality drastically deteriorates the angular
characteristics, while the positive one (Fig. 5c) makes
the view angle greater. Thus, the use of biaxial liquid
crystals adds a new degree of freedom that can be used
to improve angular characteristics of LCDs.

5. CONCLUSIONS

A new efficient method for analyzing the optics of
heterogeneous anisotropic stratified media is described.
The application of the method to the analysis of an opti-
cal system that includes a liquid-crystal twist cell with
a biaxial liquid crystal is demonstrated.
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APPENDIX

In the most general case, the components of the
matrix D are expressed in terms of the components of
the permittivity tensor

(A.1)

the permeability tensor

(A.2)

and the optical rotation tensor

(A.3)

γ
T0 T1–

T1
-----------------,=

e εij , i j, x y z, ,{ } ,∈=

m µij , i j x y z, ,{ } ,∈,=

r ρij , r∗ ρij* , i j x y z, ,{ } ,∈,= =
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as follows:

Here,

∆11 ρyx* ρyz*
ckx

ω
-------+ 

  a1 µyzb1,+ +=

∆12 µyy ρyz*
ckx

ω
-------+ 

  a2 µyzb2,+ +=

∆13 ρyy* ρyz*
ckx

ω
-------+ 

  a3 µyzb3,+ +=

∆14 –µyx ρyz*
ckx

ω
-------+ 

  a4 µyzb4,––=

∆21 εxx εxza1 ρxzb1,+ +=

∆22 ρxy εxza2 ρxzb2,+ +=

∆23 εxy εxza3 ρxzb3,+ +=

∆24 – ρxx εxza4 ρxzb4+ +( ),=

∆31 ρxx* ρxz* a1 µxzb1+ +( ),–=

∆32 µxy ρxz* a2 µxzb2+ +( ),–=

∆33 ρxy* ρxz* a3 µxzb3+ +( ),–=

∆34 µxx ρxz* a4 µxzb4,+ +=

∆41 εyx εyza1 ρyz

ckx

ω
-------– 

  b1,+ +=

∆42 ρyy εyza2 ρyz

ckx

ω
-------– 

  b2,+ +=

∆43 εyy εyza3 ρyz

ckx

ω
-------– 

  b3,+ +=

∆44 –ρyx εyza4– ρyz

ckx

ω
-------– 

  b4.–=

a1 ρzx* ρzz εzxµzz–( )/ εzzµzz ρzzρzz*–( ),=

a2 µzyρzz ρzy ckx/ω+( )µzz–[ ] / εzzµzz ρzzρzz*–( ),=

a3 ρzy* ckx/ω–( )ρzz εzyµzz–[ ] / εzzµzz ρzzρzz*–( ),=

a4 µzxρzz ρzxµzz–( )/ εzzµzz ρzzρzz*–( ),=

b1 ρzz*εzx εzzρzx*–( )/ εzzµzz ρzzρzz*–( ),=

b2 ρzy ckx/ω+( )ρzz* εzzµzy–[ ] / εzzµzz ρzzρzz*–( ),=

b3 ρzz*εzy ρzy* ckx/ω–( )εzz–[ ] / εzzµzz ρzzρzz*–( ),=

b4 ρzz*ρzx εzzµzx–( )/ εzzµzz ρzzρzz*–( ).=
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Note that all components are, generally, complex num-
bers, and tensors (A.1)–(A.3) are defined such that the
equations of state that relate the induction of the elec-
tric (D) and magnetic (B) fields with their intensities
are as follows:

(A.4)

(A.5)

(A.6)

Note that, for example, in the presence of optical
activity, the electric induction depends not only on the
intensity of the electric field, but on the intensity of the
magnetic field as well. Equations (A.4) and (A.5) are
implied by the linear dependence between the six compo-
nents of the electromagnetic field (Ex, Ey, Ez, Hx, Hy, Hz)T

and (Dx, Dy, Dz, Bx, By, Bz)T determined by a 6 × 6 matrix.
The second and the fourth quadrants of this matrix deter-
mine the permittivity and permeability tensors, and the
first and third determine the optical activity tensors. A
method for determining the optical activity tensors for
certain particular cases can be found in [3].
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Abstract—A consistent derivation of the operator form for the solution of the wave equation for a charged par-
ticle in an arbitrary external electromagnetic field is presented. The expressions obtained can be used for solving
any problems in quantum electrodynamics in external fields in the framework of the semiclassical operator
method. The peculiarities of the application of this method are demonstrated for the small-angle elastic scatter-
ing of a high-energy photon in an arbitrary localized electric field. The problem is solved for the first time with-
out presuming the central symmetry of the external field potential. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is convenient to exactly take into account the
effect of an external field on processes in quantum elec-
trodynamics (QED) in the Furry approximation. In this
approximation, the series of the perturbation theory in
the interaction of quantized fields of charge particles
and photons has precisely the same form as for free par-
ticles if we replace the free wave functions (as well as
Green’s functions) by the solutions of the correspond-
ing equations in an external field. The limitations on the
application of this approach are due to the fact that the
exact solutions of wave equations are known only in
several special cases and are quite intricate functions,
which hampers subsequent calculations.

These limitations can be removed by using the semi-
classical operator method of the solution of QED prob-
lems in an external field, which was formulated for the
first time in [1]. Later, this method was successfully
used for describing the QED processes for many phys-
ically interesting configurations of the external field
(see, for example, [2] and the literature cited therein).
The starting point of the semiclassical operator method
is the representation of the solution of the wave equa-
tion in the operator form suitable for any external field.
Using this form, we obtain the expression for the square
of the matrix element characterizing the process in the
form of the average of the product of some operators.
The next step is the appropriate transformation
(regrouping) of the input operators followed by the
evaluation of the average. The first two stages of the
semiclassical operator method are quite universal when
the external field may determine the conditions of
applicability of the expressions obtained, but not their
form. At the averaging stage, the type of the external
field, e.g., the presence of a singularity in the case of a
Coulomb potential, is essential. However, in this case
1063-7761/01/9204- $21.00 © 20561
also we are dealing with only two possible situations,
one of which can be realized in localized potentials
with a considerable inhomogeneity (e.g., in the Cou-
lomb field for small impact parameters), and the other
takes place in all remaining cases, for example, in a
constant external field and even in the Coulomb field
for large impact parameters.

In Section 2, the operator form of the solution of the
wave equations for a charged particle in an arbitrary
external electromagnetic field is derived consistently
for the first time and the regrouping of the operators in
matrix elements is considered. At each stage, the accu-
racy of the approximations is estimated. The averaging
problem is considered in Section 3 using as an example
the elastic scattering of a high-energy photon in a local-
ized electric field. Until now, the problem has not been
solved using the semiclassical operator method and is
especially interesting from the viewpoint of this
approach since both alternative schemes of averaging
are realized in it. We have derived the expression for the
amplitude of this process, which is valid in the entire
range ∆ of momentum transfers, which are small as
compared to the photon energy ω. The central symme-
try of the external field potential is not presumed in this
case.

2. OPERATOR FORM OF THE SOLUTION 
OF WAVE EQUATIONS AND MATRIX 

ELEMENTS

The wave equation for particles with zero spin is the
Klein–Gordon equation

(1)i
t∂

∂
eA0 r( )– 

 
2

ψ *2ψ, * P2 m2+ ,= =
001 MAIK “Nauka/Interperiodica”
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where

Aµ being the 4-potential of the external electromagnetic
field and e the particle charge. Here and below, we use
a system of units in which " = c = 1. For the time being,
we assume that the 4-potential Aµ is independent of
time. If the electric field E = –∂A0(r)/∂r is absent, Eq.
(1) has two exact operator solutions

(2)

corresponding to positive- and negative-frequency
states. State |0〉  formally presents the wave function at
instant t = 0. It should be emphasized that this state is
absolutely arbitrary and is chosen in accordance with
the problem to be solved. In the presence of an electric
field, Eq. (1) can be solved by the method of successive
approximations. For this purpose, we present Eq. (1) in
the form Lψ = 0, where

or

Here, V(r) denotes the potential energy of the particle:
V(r) ≡ eA0(r). If we now disregard commutator [*, V(r)]
in the expression for L, we obtain as the zeroth approx-
imation the following two solutions of Eq. (1) in the
presence of an electric field:

(3)

The next approximation will be sought in the form

Equation Lψ = 0 gives C(±) = ±V/(2*) in the first
approximation, where we disregarded terms of the

order of [*–1, V]. If we nevertheless use  in
applications, the characteristic value of the correction
of the order of V/ε (ε is the particle energy) determines
the accuracy of solution (3). The specific estimate of
this accuracy depends on the properties of potential
V(r) as well as on the nature of the process itself, which
is described using the solution obtained. For example,
in the case of elastic scattering of a photon with energy
ω @ m in the field of a nucleus having charge Z|e| (e is
the electron charge), the energy of virtual particles

P p eA r( ), p– i
r∂

∂
, Aµ A0 A,( ),≡–= =

ψ ±( ) i*t+−( ) 0| 〉exp=

L i
t∂

∂
* V r( )–+ 

 =

× i
t∂

∂
* V r( )–– 

  * V r( ),[ ]+

L i
t∂

∂
*– V r( )– 

 =

× i
t∂

∂
* V r( )–+ 

  * V r( ),[ ] .–

ψ0
±( ) i * V r( )±( )t+−[ ] 0| 〉 .exp=

ψ1
±( ) t( ) 1 C ±( )+( )ψ0

±( ) t( ).=

ψ0
±( ) t( )
JOURNAL OF EXPERIMENTAL 
amounts to ε ~ ω, and |V |/ε ~ Zα/(ρω), where α = e2 =
1/137 is the fine-structure constant and ρ is the impact
parameter. Since in this process the impact parameters
satisfying the condition ω/m2 ≥ ρ ≥ 1/(m + ∆) are essen-
tial, we obtain |V |/ε ≤ Zα(m + ∆)/ω; i.e., |V |/ε ! 1 for
small-angle scattering (∆ ! ω).

For particles with a spin of 1/2, we must solve the
Dirac equation, which in the external field has the form

(4)

We will use the standard representation of matrices γµ:
β = γ0 and a = γ0g. The operator solution of Eq. (4) is
obvious,

(5)

but it does not suit us for several reasons. First, it would
be interesting to obtain a solution which evolves in time
with the classical relativistic Hamiltonian to within the
spin terms, as was the case for scalar particles (see
Eq. (3)). Second, it would be desirable to separate the
positive- and negative-frequency states. For a free
motion (Aµ = 0), this can done by using the Foldy–
Wouthuysen transformation (subscript FW, while sub-
script D denotes the initial (Dirac) representation),
which removes the odd matrices a mixing the upper
and lower two-component spaces of the wave function
from Hamiltonian HD.

As for scalar particles, we will first consider the case
of zero electric field; i.e., when HD = a · P + βm. We
carry out the transformation ψD = U–1ψFW, where

(6)

has the same form as under the Foldy–Wouthuysen
transformation for free particles if we substitute P for p
in the latter transformation. It should be noted that [g ·

P, ] = 0 since (a · P)2 = –(g · P)2. It can also be easily
verified that U is a unitary operator: U+ = U–1. As a
result of this transformation, Eq. (4) acquires the form

(7)

The solution of Eq. (7) has the form

(8)

Operator β  is even; i.e., it does not mix the upper and
lower two-component spinors of the wave functions.

i
t∂

∂ ψD HDψD, HD a P βm V r( ).+ +⋅= =

ψD t( ) iHDt–( )ψD 0( ),exp=

U R 1 g P⋅
H̃ m+
---------------+ 

  , H̃ a P⋅( )2 m2+( )1/2
,= =

R
H̃ m+

2H̃
--------------- 

 
1/2

,=

H̃

i
t∂

∂ ψFW HFWψFW ,=

HFW UHDU 1– βH̃ .= =

ψFW t( ) iβH̃t–( )ψFW 0( ).exp=

H̃
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Let us now choose for ψFW(0) the eigenfunctions of
matrix β:

(9)

where state |0〉  has the same meaning as for scalar par-
ticles, and ϕ and χ are two-component spinors describ-
ing the polarization of particles at instant t = 0. The
functions

are obviously positive- (+) and negative- (–) frequency
states; i.e., these are the states of electrons and

positrons, respectively. Finally, for  = U–1  in a
magnetic field, we obtain

(10)

Expressions (10) are the exact operator solution of
Eq. (4) for V(r) = 0. In the Hamiltonian

where H(r) is the magnetic field and S = –γ5a, we can
separate the spin term if |eH | ! ε2. Then

(11)

In the expansion of Hamiltonian , we have disre-
garded terms of the order of [*–1, eH · S], and the
sequence of operators *–1 and eH · S in Eq. (11) is
immaterial for this degree of accuracy. The relative
value of the terms discarded as compared to eH · S*–1

amounts to v(aε)–1, where a is the characteristic size of
the nonuniformity of field H and v  is the particle veloc-
ity. Note that the terms omitted while determining the
correction to solution (3) have exactly the same magni-
tude relative to correction C (±) itself if a is treated as the
size of the inhomogeneity of potential V(r). Thus, if the
conditions |eH| ! ε2 and a @ v/ε are satisfied, we can

replace  in Eq. (10) by the approximate value (11). If

|eH| ! mε, we can additionally substitute  for * in

Eq. (10) everywhere except in the exponent exp(±i t).

Let us now suppose that V(r) ≠ 0. As a result of the
Foldy–Wouthuysen transformation with matrix U from

βψFW
±( ) 0( ) ψFW

±( ) 0( ),±=

ψFW
+( ) 0( ) ϕ

0 
 
 

0| 〉= , ψFW
–( ) 0( ) 0

χ 
 
 

0| 〉 ,=

ψFW
±( ) t( ) iβH̃t–( )ψFW

±( ) 0( )exp iH̃t+−( )ψFW
±( ) 0( )exp= =

ψD
±( ) ψFW

±( )

ψD
+( ) t( )

H̃ m+

2H̃
--------------- 

 
1/2

1 g P⋅
H̃ m+
---------------– 

  iH̃t–( ) ϕ
0 

 
 

0| 〉 ,exp=

ψD
–( ) t( )

H̃ m+

2H̃
--------------- 

 
1/2

1 g P⋅
H̃ m+
---------------– 

  iH̃t( ) 0

χ 
 
 

0| 〉 .exp=

H̃ a P⋅( )2 m2+( )1/2
P2 m2 eH S⋅–+( )1/2

,= =

H̃ *
eH r( ) S⋅

2*
----------------------, *–≈ P2 m2+ .=

H̃

H̃

H̃

H̃
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Eq. (6), we obtain the following expression for the

Hamiltonian  = UHDU–1:

(12)

where Q = (g · P)/(  + m) and operator R is defined in
Eq. (6) so that U = R(1 + Q). The only odd operator in

 is the term R[Q, V(r)]R, which is linear in Q and
generally small as compared to V(r) like the remaining
terms in Eq. (12) containing commutators. The value of
the odd term in the Hamiltonian can be made even

smaller by carrying out one more transformation:  =

 + [B, ]. Choosing

and disregarding the terms quadratic in potential, we
obtain

(13)

The terms quadratic in potential, which have been omit-
ted while deriving this relation, are of the order of
(∂V(r)/∂r)2/ε3 (in a purely electric field). For example,
in the Coulomb potential VC(r) = –Zα/r, their magni-
tude in the units of the potential itself is Zα/(εr)3. For
Zα ~ 1, this approximation is possible if ερ @ 1, where
ρ is the characteristic size (e.g., impact parameter) of the
problem. The order of magnitude of the term [[R, V(r)],
R−1] in Eq. (13) is V(r)(mv/ε2r)2. An estimate of the odd
term in Eq.(13) is v2V(r)/(εr)2. The term (1/2)R[Q, [Q,
V(r)]]R can be written in the form

(14)

In this expression, the double commutator has the same
order of magnitude as the odd term in Eq. (13). A for-
mal estimate of the value of the term proportional to ∆V
is V(r)/(εr)2. This term is small and will henceforth be
omitted. It should be borne in mind, however, that
while calculating the fine structure of the hydrogen

atom with the help of Hamiltonian , we must
retain this term since its smallness in the given problem
is of the order of the sought correction to the energy
levels. Finally, the term proportional to ([P × E] · S) in

HFW
1( )

HFW
1( ) βH̃ V r( )

1
2
--- R V r( ),[ ] R 1–,[ ]+ +=

+ R
1
2
--- Q Q V r( ),[ ],[ ] Q V r( ),[ ]+ 

  R,

H̃

HFW
1( )

HFW
2( )

HFW
1( ) HFW

1( )

B
1
2
---βR Q V r( ),[ ] RH̃

1–
=

HFW
2( ) βH̃ V r( )

1
2
--- R V r( ),[ ] R 1–,[ ]+ +=

+
1
2
---R Q,  Q V r ( ) ,[ ][ ] Q V r ( ) ] H ˜ , ,[ ][ H ˜ 

1–
 + ( ) R .

1
2
---R

1

H̃ m+
--------------- V r( ) H̃,[ ],



+
1

H̃ m+
--------------- ∆V r( ) 2e P E×[ ] S⋅( )+( ) 1

H̃ m+
---------------

 R.

HFW
2( )
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Eq. (14) corresponds to the spin–orbit interaction and is
of the order of vV(r)/(εr). Omitting now all terms in
Eq. (13) which are of the order of V(r)/(εr)2 or smaller

and expanding  as it was done in Eq. (11), we obtain
Hamiltonian HFW in the form which will be used below:

(15)

The condition ερ @ 1 used while deriving Eq. (15) indi-
cates (in the case of relativistic motion) that the wave-
length 1/ε associated with a particle is much smaller
than the characteristic scales of the problem such as the
typical impact parameter or the inhomogeneity scale
(cf. the estimate for the applicability of expansion
(11)). This condition essentially coincides with the gen-
eral condition of the applicability of the semiclassical
approximation.

The equation for function ψFW(t) has the form (7)
with the Hamiltonian HFW defined in Eq. (15), and its
solution coincides with Eq. (8) if we substitute HFW for

β  in it. As before, we choose for ψFW(0) the eigen-
functions of operator β defined in Eq. (9). Then the pos-
itive- and negative-frequency states are given by

(16)

It should be noted that H(+) differs from H(–) in the sign
reversal in potential V(r). The resultant Foldy–
Wouthuysen transformation has the form U(1) = (1 +
B)U. Since B ~ |eE |/ε2 ~ (εr)–2 (the estimate obtained
for a purely electric field) has the same smallness as the
terms which have already been discarded while deriv-
ing Eq. (16), we can substitute U for U(1).

States ψFW(t), as well as ψD(t) = U–1ψFW(t), are sta-
tionary if ψFW(0) is an eigenfunction of the Hamilto-
nian: HFWψFW(0) = εψFW(0). Among other things, we
have verified that in the Coulomb potential, the func-

tion  obtained from this equation (after the applica-
tion of transformation U–1) coincides with the Furry
solution [3] (see [4, Eq. (39.10)]). The required accu-
racy in this case is ensured by retaining in Eq. (16) gen-
erally small spin terms. Naturally, these terms are
important if we consider the time evolution of spin
states. It will be shown below, however, that these terms
can be neglected in the calculation of matrix elements
if the spin varies insignificantly during the formation
time of the process, which is usually observed in the
ultrarelativistic case (ε @ m). Besides, for ε @ m and
|eH | ! εm, we can simplify the transformation matrix

U by expanding R and . Finally, while describing
radiative processes (the emission of a photon or the cre-

H̃

HFW β=

× * βV r( )
e

2*
-------- H β E P+[ ]

* m+
------------------+ 

  S⋅ 
 –+ .

H̃

ψFW
±( ) t( ) iH ±( )t+−( )ψFW

±( ) 0( ),exp=

H ±( ) * V r( )
e

2*
-------- H

E P×[ ]
* m+
------------------± 

  S⋅ 
  .–±=

ψD
+( )

H̃
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ation of a e+e– pair) involving ultrarelativistic particles
with a spin 1/2, we will use the following operator rep-
resentation for semiclassical wave functions:

(17)

Here, |ψ±〉  indicates  in the notation used above. In
expressions (17), the representation of the wave func-
tion (coordinate, momentum, or other) has not been
specified as yet. In order to go over to a specific repre-
sentation, we must project |ψ〉 onto the corresponding
eigenfunction. For example, in the coordinate represen-
tation, ψ(r, t) = 〈r |ψ〉, where |r〉  is the eigenfunction of
the coordinate operator.

Until now, we assumed that the 4-potential Aµ of the
external field is independent of time. Otherwise,
Hamiltonian HD in the initial equation (4) is also a func-
tion of time, HD ≡ HD(t), and instead of Eq. (5), we
obtain the operator solution for Eq. (4) in the form

(18)

where ϑ(t) = 1 for t > 0 and ϑ(t) = 0 for t < 0. Symbol
T± in Eq. (18) indicates that operators must be ordered
in time. Namely, for T+, the operators corresponding to
earlier instants must be on the right of the operators cor-
responding to later instants (for T–, the converse is
true). Carrying out the Foldy–Wouthuysen transforma-
tion ψD = U–1ψFW, where operator U is defined in
Eq. (6) and may also be a function of time if the vector
potential A depends on it, we arrive at Eq. (7) with

Hamiltonian  in the form

(19)

Term UHD(t)U–1 coincides with Eq. (12), where V(r)
can now be a function of time also: V(r)  V(r, t).

ψ +( )| 〉 1

2
------- 1 g P⋅

* m+
----------------– 

 =

× i * V r( )+( )t–{ } ϕ
0 

 
 

0| 〉 ,exp

ψ –( )| 〉 1

2
------- 1 g P⋅

* m+
----------------– 

 =

× i * V r( )–( )t{ } 0

χ 
 
 

0| 〉 .exp

ψD
±

ψD t( ) ϑ t( )T+ ϑ t–( )T–+[ ]=

× i sHD s( )d

0

t

∫–
 
 
 

ψD 0( ),exp

HFW
1( ) t( )

HFW
1( ) t( ) UHD t( )U 1– i

2
--- ∂U

∂t
-------U+ U

∂U+

∂t
----------– 

  .+=
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Correct to the terms of the order of ε–2, which will be
omitted as before, the second term in Eq. (19) is given by

(20)

The term in Eq. (20) proportional to g · A is an odd
operator having the same order of magnitude as the odd
operator in Eq. (12). Modifying operator B in the addi-

tional transformation  = (1 + B) (1 + B)–1, we
can simultaneously decrease the magnitude of all odd
terms in Eq. (19) down to values of the order of ε–2,
which are omitted in the final result. It should be
emphasized that with the adopted accuracy, the role of

the second transformation (transition from  to

) is effectively reduced to the removal of odd oper-

ators from , while operator B itself can be omitted

in the expression  = U–1(1 + B)–1ψFW(t) in view of
its smallness. Finally, we obtain the operator solution
of the Dirac equation in a time-dependent electromag-
netic field in the semiclassical approximation:

(21)

Here, operator U is defined in Eq. (6), functions

 in Eq. (9), and Hamiltonian H(±)(t) in Eq. (16),
where the potential energy V(r, t), the vector potential
A(r, t), and hence fields E and H are functions of time.
It should be noted that taking into account the contribu-
tion from the first term in formula (20), H(±) now con-
tains vector −∂A0/∂r – ∂A/∂t instead of E, i.e., the cor-
rect expression for the electric field in the case of a
time-dependent potential.

Using as examples the simplest processes, we will
now write the corresponding matrix elements in the
semiclassical operator method using the operator solu-
tions of wave equations obtained above. We consider
only particles with a spin of 1/2 since the crucial
aspects in the application of this method for spinor and
scalar particles are the same. In the Furry representa-
tion, a matrix element corresponding to the emission of
a photon by an electron to within the normalization fac-
tor has the form

(22)

where e is the electron charge, kµ and eµ are the 4-vec-
tors of the photon momentum and polarization, and

i
2
--- ∂U

∂t
-------U+ U

∂U+

∂t
----------– 

 

≈
e P

∂A
∂t
-------× S⋅ 

 

2* * m+( )
---------------------------------------–

ie
2*
-------- g A⋅( ).–

HFW
2( ) HFW

1( )

HFW
1( )

HFW
2( )

HFW
1( )

ψD
+( )

ψ ±( ) t( ) U 1– ϑ t( )T+ ϑ t( )T–+[ ]=

× i sH ±( ) s( )d

0

t

∫+−
 
 
 

ψFW
±( ) 0( ).exp

ψFW
±( ) 0( )

Vif
rad ie x4d ψ f

+( ) x( )ê∗ ikx( )ψi
+( ) x( ),exp∫=
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 ≡ γµ . We substitute into Eq. (22) the solution
ψ(+)(x) = ψ(+)(r, t) = 〈r |ψ(+)〉 , where |ψ(+)〉  is defined by
formula (17), and introduce exp(ikx) into 〈r | in

Then the integral over r is reduced to  and is

equal to the unit operator, which expresses the condi-
tion of the completeness of the system of states |r〉 . As

a result, we obtain the following expression for  at
the gauge e0 = 0:

(23)

where He = * + V(r), and the notation |i〉  is introduced

in  and |f 〉  in  for the state |0〉 . Owing to the
fact that the wave functions actually have two compo-
nents, the nonzero contribution to Eq. (23) comes only
from the even component of operator C(t). Moving
additionally operator exp(ikx) in C(t) to the left, we find
to the relativistic accuracy (m/ε ! 1) that

(24)

Here, s are the Pauli matrices, *' ≡ *(P  P – k),
 = *' + V(r), and v = P/*. We have neglected the

noncommutativity of the operators appearing in ar and
br since its inclusion would lead to corrections of the
order of |eH |/ε2, and the terms of such an order of mag-
nitude were omitted even in the solution of the wave
equation. If we now move the operator exp(–iHet) to
the left to exp(i t), the integrand assumes the form

(25)

ê∗ eµ*

ikx( )ψ +( ) r t,( )exp exp ikx( ) r ψ +( )〈 〉=

r exp ikx( )ψ +( )〈 〉 .=

r3 r| 〉 r〈 |d∫

Vif
rad

Vif
rad i

e
2
--- t f〈 | ϕ f

+ 0,( )C t( ) ϕ i

0 
 
 

i| 〉 ,d

∞–

∞

∫–=

C t( ) iHet( ) 1 g P⋅
* m+
----------------+ 

  a e⋅( )exp=

× ikx( ) 1 g P⋅
* m+
----------------– 

  iHet–( ),expexp

ψi
+( )| 〉 ψ f

+( )| 〉

Vif
rad i

e
2
--- t f〈 | ikx( ) iHe' t( )expexpd

∞–

∞

∫–=

× ϕ f
+ ar ibr s⋅+( )ϕ i iHet–( ) i| 〉 ,exp

ar 2 ω
*'
------+ 

  e∗ v,⋅=

br
ω
*'
------ v 1 m

*
-----– 

  n– e∗, .=

He'

He'

f〈 | ik r⋅–( )Lr t( )ϕ f
+ ar t( ) ibr t( ) s⋅+( )ϕ i i| 〉 ,exp
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where

and ar(t) and br(t) are Heisenberg operators: a(t) =
exp(iHet)aexp(–iHet). It should be noted that if we
retain the spin terms in He (16), operators s in Eq. (25)
would also be transformed into Heisenberg operators.
The expression for the square of the matrix element
would contain the operators s(t1) and s(t2), which are
functions of different times:

(26)

The correction emerging in the matrix element when
the time dependence of the spin operators is taken into
account has the relative value

where we can roughly assume that the time dependence
of the fields is taken on the classical trajectory; i.e., we
have, for example H(t) = H(rcl(t)). The quantity δ has
the meaning of the angle of rotation of the spin vector
over the characteristic time of process formation. In
accordance with the equations of motion, it coincides
with the angle of rotation of the velocity vector during
the same time. For instance (see, for example, [2]), for
photons emitted with frequencies corresponding to the
maximum intensity of magnetic bremsstrahlung in a
uniform magnetic field, this angle is small and δ ~
m/ε ! 1. For a photon passing by a nucleus with an impact
parameter ρ, we have δ ~ Zα/(ρε) ! 1 for ρ @ 1/ε.

The next step in the application of the semiclassical
operator method is the combining of the two compo-
nents constituting operator Lr(t) (25) into one compo-
nent. Differentiating Lr(t) with respect to time, we
obtain

(27)

It should be noted that the potential energy V(r) appears
in Eq. (27) only implicitly through the time dependence
of the Heisenberg operator P(t). Relations (27) lead to

(28)

The meaning of the combination (“disentanglement”)
of the exponents in operator Lr(t) is that “large” (high-

Lr t( ) i He' ω+( )t{ } iHet–{ } ,expexp=

Vif
rad 2

f

∑ α
4
--- t1 t2dd

∞–

∞

∫=

× i〈 |ϕ i
+ ar

+ t2( ) ibr
+ t2( ) s t2( )⋅–[ ] Lr

+ t2( )

× Lr t1( ) ar t1( ) ibr t1( ) s t1( )⋅+[ ]ϕ i i| 〉 .

δ e
ε
-- t H t( ) E t( ) v t( )×[ ]+[ ] ,d

t1

t2

∫∼

dLr t( )
dt

-------------- iLr t( )B t( ),=

B t( ) * P t( ) k–( ) ω * P t( )( ).–+=

Lr t( ) ϑ t( )T– ϑ t–( )T++[ ] i sB s( )d

0

t

∫ 
 
 

.exp=
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frequency) operators appearing in each exponent can-
cel out in combination B. Indeed,

(29)

where

Expansion (29) is valid if operator (kP)/(*(t) – ω)2 is
small. In the ultrarelativistic case, its order of magni-
tude is m2/(ε – ω)2; in this case, relation (29) is valid for
ε – ω @ m. In such estimates, we replace operators by
their characteristic values defined by the state |i〉  over
which the averaging in Eq. (26) is carried out. For ω > ε,
there is no compensation in Eq. (29), and in relation (26)
we are dealing with rapidly oscillating functions of
time, whose integration leads to a negligibly small

result. Product  in expression (26) can be

transformed using the definition Lr(t) = exp{i(  +
ω)t}exp(–iHet) and solution (28):

(30)

where τ = t2 – t1 and t = (t1 + t2)/2.

The method for calculating the average 〈i |…|i 〉  in
expressions of type (26) depends on the value of com-
mutators of the input operators. If all these commuta-
tors can be neglected, we choose for |i 〉  the correspond-
ing wave packets and simply replace the operators by
their mean values in state |i 〉 . The packet width in this
case must be much smaller than the mean value of an
operator (e.g., of momentum) and much larger than the
uncertainty associated with the discarded commutators.
In other words, averaging in this case is reduced to the
replacement of Heisenberg operators by the corre-
sponding classical quantities, i.e., to the transition to
classical trajectories. Since the argument of the expo-
nent in Eq. (26) (the quantity B(s + t) in Eq. (30)) is pro-

portional to m2 + , the contribution comes from
|P⊥ | ≤ m; this will be used in subsequent estimates. For
this reason in particular, we can disregard to the relativ-
istic accuracy in the transverse momentum in the

expression for * = . With this accuracy, we
can single out three types of commutators in Eq. (26):

B t( ) P t( ) k–( )2 m2+ ω * t( )–+=

=  * t( ) ω–( )2
2kP t( )+ * t( ) ω–( )–

≈ kP t( )
* t( ) ω–
---------------------

ω m2 P⊥
2 t( )+[ ]

2* t( ) * t( ) ω–( )
----------------------------------------,≈

P⊥ P n n P⋅( ), n– k/ω.= =

Lr
+ t2( )Lr t1( )

He'

Lr
+ t2( )Lr t1( ) iHet( ) iHeτ /2( )expexp=

× i He' ω+( )τ–{ } iHeτ /2( ) iHet–( )expexpexp

=  iHet( )Lr
+ τ /2( )Lr τ /2–( ) iHet–( )expexp

=  ϑ τ( )T+ ϑ τ–( )T–+[ ] i sB s t+( )d

τ /2–

τ /2

∫ 
 
 

,exp

P⊥
2

P2 m2+
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(1) the commutators of the components of P⊥  in the pre-
exponential factor; (2) the commutators of these com-
ponents with the exponential (with operator (30)); and
(3) the commutators characterizing the accuracy of the
transition in Eq. (30) from the chronological product to
an ordinary exponential. It is remarkable that the order
of magnitude of the ratio of each of these commutators
to the product of operators themselves (which in fact
characterizes the possibility of discarding the noncom-
mutativity) is the same. In specific estimates, it is con-
venient to use the following expression for P⊥ (t), which
is valid to the relativistic accuracy:

(31)

where P⊥ (0) is the Schrödinger operator of the momen-
tum transverse to n = k/ω. The conditions ensuring the
transition to classical trajectories naturally depend on
the form of the external field. For example, in a uniform
magnetic field, the condition |en × H|/m2 ≡ |n × H|/Hcr !
1 must be satisfied, while in the Coulomb field, we must
have Zα ! (mρ)2 or ρ @ 1/m (under the assumption that
Zα ~ 1). It should be noted at the very outset that for
higher order processes, the argument of the exponential
may contain, apart from mass, the total momentum
transfer; the estimate of the characteristic value of |P⊥ |
may change accordingly. We will return to this problem
in the next section, where the method for calculating
the average 〈i |…|i 〉  will be formulated for the case
when a transition to classical trajectories is ruled out.

Proceeding in the same way as in the derivation of
relations (24), we obtain the following expression for
the matrix element corresponding to the creation of an
e+e– pair by a photon having momentum kµ and polar-
ization eµ (in the same normalization as in Eq. (22)):

(32)

Here, ϕf  and χi are the two-component spinors from
Eq. (17), states |0〉  in Eq. (17) are replaced by |f 〉  for
electrons and by |i〉 for positrons, and operator R(k, e, t)
with the relativistic accuracy has the form

(33)

P⊥ t( ) P⊥ 0( )=

+ e s E⊥ r s( )( ) n H r s( )( )×[ ]+[ ] ,d

0

t

∫

Vif
pair k e,( ) e tVif k e t, ,( ),d

∞–

∞

∫–=

Vif k e t, ,( )

=  f〈 |ϕ f
+R k e t, ,( )χ iLp k t,( ) ik r⋅( ) i| 〉 .exp

R k e t, ,( ) iHet( )R k e,( ) iHet–( ),expexp=

R k e,( )
ω

2**'
---------------=

× e P×[ ] n⋅( ) i s em n e P⋅( )+( )⋅( )2*' ω–
ω

-------------------+ ,
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where, as in Eq. (24), He = * + V(r) and *' =
*(P  P – k). Operator Lp(k, t) in Eq. (32) is the
product of two exponential functions,

which (cf. Eq. (28)) can be combined into one:

(34)

The compensation of “large” terms in Bp(t) now takes
place for positive values of operator ω – *(t) (ω > ε).
Accordingly, an approximate expression for Bp(t) in the
compensation region, which is the only region contrib-
uting to Eq. (32), appears as Eq. (29) if we make the
substitution *(t) – ω  ω – *(t) in it:

(35)

While deriving this expression, we assumed that ε @ m
and ω – ε @ m.

Until now, we assumed that a photon is real (k2 = 0).
Higher order diagrams may contain vertices corre-
sponding to the interaction with virtual (k2 ≠ 0) pho-
tons. Expressions (24) and (32) remain valid in this
case also since we used the condition k2 = 0 at a later
stage (in the expansion of operators B(t) and Bp(t) in
the compensation region). Let us refine this expansion
for k2 ≠ 0. Considering that

we obtain

(36)

where ω = k0 and k2 = ω2 – k2. Besides, higher order
diagrams acquire new objects, viz., Green’s functions
for particles and photons. In the Furry representation,
the photon propagator remains free, while Green’s
function for particles can be expressed in terms of the
solutions of wave equations. For example, the electron
Green’s function G(x2, x1) can be expressed in terms of

the positive- and negative-frequency solutions 

Lp k t,( ) iHet( ) i *' V r( ) ω––( )t{ } ,expexp=

Lp k t,( ) ϑ t( )T+ ϑ t–( )T–+[ ] i sBp s( )d

0

t

∫ 
 
 

,exp=

Bp s( ) iHes( ) * *' ω–+[ ] iHes–( )expexp=

=  * s( ) *' s( ) ω.–+

Bp t( )
kP t( )

ω * t( )–
---------------------

ω m2 P⊥
2 t( )+[ ]

2* t( ) ω * t( )–( )
----------------------------------------.≈ ≈

*' P k–( )2 m2+≡ * ω–( )2
2kP k2+ + ,=

B t( )
kP t( ) k2/2–

* t( ) ω–
----------------------------

ω m2 P⊥
2 t( )+[ ]

2* t( ) * t( ) ω–( )
----------------------------------------

k2

2ω
-------,+≈ ≈

Bp t( )
kP t( ) k2/2–

ω * t( )–
----------------------------

ω m2 P⊥
2 t( )+[ ]

2* t( ) ω * t( )–( )
----------------------------------------

k2

2ω
-------,–≈ ≈

ψi
±( ) x( )
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of the Dirac equation in the corresponding external
field:

(37)

In this expression, we can use the operator form of the
solutions of the Dirac equation (17) and then proceed in
the same way as when calculating the matrix elements
for lower order processes.

3. SCATTERING OF A HIGH-ENERGY PHOTON 
IN A LOCALIZED ELECTRIC FIELD

We will apply the term localized to an electric field
having a maximum (probably a singularity) at a single
point and decreasing with increasing distance from this
point. Such fields are, for example, the field of a Cou-
lomb center or the field of an solitary atom. We assume
that the field is independent of time and is arbitrary in
all other respects; in particular, potential V(r) is not
necessarily centrosymmetric. For high energies (ω @
m), the transition from the initial (momentum k1 and
polarization e1) to the final photon (k2, e2) occurs
through a virtual electron–positron pair which interacts
with the external field. We consider here just this scat-
tering mechanism. It was studied experimentally by
some authors (see [5] and review [6]). This scattering
(which is often referred to as Delbrück scattering) was
studied comprehensively by Cheng and Wu [7–9] for a
Coulomb center. Another representation for the ampli-
tude of this process was obtained in [10] with the help
of the semiclassical electron Green’s function in the
Coulomb field. A generalization of this function to the
case of an arbitrary centrosymmetric field was made by
Lee and Milstein [11] who also considered the Del-
brück scattering by the screened Coulomb potential for
a momentum transfers D = k2 – k1 much smaller than
the electron mass, virtually under complete screening.

In all the theoretical publications mentioned above,
small-angle scattering was considered, for which ∆ !
ω. This condition is required for the applicability of the
semiclassical approximation since it ensures a large
angular momentum: l ~ ωρ ~ ω/∆ @ 1. The character-
istic sizes of the problem under investigation (for a
Coulomb field) are the Compton wavelength for an
electron, 1/m, and the distance (time) over which the
process is formed, ~ω/m2. The impact parameters of such
an order of magnitude (ρ ~ 1/∆) correspond to ∆ ~ m and
∆ ~ m2/ω. If the potential decreases at a higher rate than
the Coulomb potential, the problem acquires one more
parameter, viz., the range of the potential rsc. For the
potential of an atom, the condition rsc @ 1/m holds in all
cases, while the relation between rsc and ω/m2 may be

iG x2 x1,( ) ϑ t2 t1–( ) ψi
+( ) x2( )ψi

+( ) x1( )
i

∑=

– ϑ t1 t2–( ) ψi
–( ) x2( )ψi

–( ) x1( ).
i

∑
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arbitrary depending on ω. Clearly, the screening may
affect the process starting from ω ~ m2rsc.

The amplitude of the process under investigation
has the form

(38)

where the function G(x2, x1) is defined in Eq. (37). Sub-
stituting Eq. (37) into Eq. (38), taking into consider-
ation that (see the discussion in [10]) for ω @ m, the
contribution to Eq. (38) to within terms of the order of
(ω/m)2 comes from the diagram in which the produc-
tion of an e+e– pair by the initial photon precedes its
annihilation to the final photon, we obtain, retaining
only the terms proportional to 9(t2 – t1), and the following
expression for T(k1, k2):

(39)

The factor Vif (k, e, t) is defined in Eq. (32) and is the
integrand (in t) in the matrix element corresponding to
the production of an e+e– pair by a photon. In zero exter-
nal field, photon scattering does not take place and,
hence, we presume the subtraction of the quantity T for
Aµ = 0 in Eqs. (38), (39), and subsequent expressions
for the amplitude. This subtraction will be carried out
explicitly below. Carrying out the summation over |i 〉
and over all spin states in Eq. (39) and taking advantage
of the possibility of cyclic permutation for the operators
in expression

we transform the integrand in Eq. (39) to

(40)

T k1 k2,( ) 2iα x4d 1 x4
2Tr G x2 x1,( )ê1[d∫=

× ik1x1–( )G x1 x2,( )ê2
* ik2x2( )expexp ] ,

T k1 k2,( ) 2iα x4
1d x4

2ϑ t2 t1–( )d∫
i f,
∑=

× ψ f
+( ) x1( )ê1 ik1x1–( )ψi

–( ) x1( )exp

× ψi
–( ) x2( )ê2

* ik2x2( )ψ f
+( ) x2( )exp

=  2iα t1d

∞–

∞

∫
i f,
∑ t2ϑ t2 t1–( )d

∞–

∞

∫
× Vif k1 e1 t1, ,( )Vif

+ k2 e2 t2, ,( ).

f … f〈 〉 ,
f

∑

Vif k1 e1 t1, ,( )Vif
+ k2 e2 t2, ,( )

i f,
∑ i ω2 ω1–( )t[ ]exp=

× Tr f〈 |R k1 e1
τ
2
---–, , 

  D k1 k2 τ, ,( )R+ k2 e2
τ
2
---, , 

  f| 〉 ,
f

∑

D k1 k2 τ, ,( ) i– He ω1–( )τ
2
---

 
 
 

ik1 r⋅( )expexp=
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where operator R(k1, e1, –τ/2) is defined in Eq. (33),
and we have made a transition from t1, t2 to t = (t1 + t2)/2
and τ = t2 – t1. The integration with respect to t in
Eq. (39) gives 2πδ(ω2 – ω1). We can now put ω1 = ω2 ≡ ω.
Then operator D(k1, k2, τ) in Eq. (40) can be written in
the form

(41)

where we have used the definition of operator Lp(k, t)
and its explicit expression (34) in terms of Bp(s, k) =
*(s) + *'(s, k) – ω. It should be recalled that the vector
potential is now equal to zero (A = 0) and

Defining amplitude M through the relation T(k1, k2) =
Mδ(ω2 – ω1) and inserting

in front of operator exp(iD · r), which allows us to carry
out the summation over f, we obtain

(42)

Amplitude M is normalized in the same way as in [5–
11] so that the differential scattering cross section for a
photon is dσ/dΩ = |M/(4π)|2. It should be noted that
expression (42) has the form

× i * V r( )–( )τ–{ } ik2 r⋅–( )expexp

× i– He ω2–( )τ
2
---

 
 
 

,exp

D k1 k2 τ, ,( ) Lp k1
τ
2
---–, 

  iD r⋅–( )Lp
+( ) k2

τ
2
---, 

 exp=

=  T– i Bp s k1,( )

0

τ /2–

∫ 
 
 

iD r⋅–( )expexp

× i Bp s k2,( )

0

τ /2

∫–
 
 
 

exp ,

* p2 m2+ , * s( ) p2 s( ) m2+ ,= =

*' s k,( ) p s( ) k–( )2 m2+ .=

I r3 r| 〉 r〈 |d∫=

M 4πiα r3d iD r⋅–( )exp∫=

× Tr τ r〈 |T– i sBp s k2,( )d

0

τ /2

∫–
 
 
 

expd

0

∞

∫

× R+ k2 e2
τ
2
---, , 

  R k1 e1
τ
2
---–, , 

 

× T– i sBp s k1,( )d

0

τ /2–

∫ 
 
 

r| 〉 .exp

M r3 iD r⋅–( )Q r D,( ).expd∫=
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It will be verified below that for ∆ ! m, we can disre-
gard the dependence of Q(r, D) on the momentum
transfer D. In this case, expression (42) assumes a form
typical of the potential scattering amplitude obtained in
the first Born approximation. The role of the potential
of interaction of a photon with the external field is
played here by the complex quantity

In fact, this interaction is of the tensor type since Q(r, 0) is
a contraction: Q(r, 0) = e1iQij(r, 0) .

Passing to the computation of amplitude M, we
choose the axis of the cylindrical system of coordinates
(z axis) along n = (n1 + n2)/|n1 + n2|; then r = (r, z), and
r · n = 0 and D · r = D · r since D · n = 0. The coordinate
and momentum operators in the interior of 〈r |…|r 〉  in
expression (42) appear only in the Heisenberg momen-
tum operators p(t):

(43)

where (cf. Eq. (31)) p ≡ p(0) is the Schrödinger
momentum operator p = –i∂/∂r. For the z component of
p(t), we obtain from relation (43) pz(t) = pz + δpz(t),
where

Since the contribution to expression (42) comes from
large values of pz ~ ε, we can substitute pz for pz(t) to
within corrections of the order of δV(t)/ε, which we
systematically disregard. The relative value of commu-

tator [pz , ] is of the same order of smallness
(~δV(t)/ε). Thus, operator pz(t) coincides within the
accepted accuracy with the free operator and commutes
with all operators in expression (42). This allows us to
rewrite this expression filling the interior of 〈z |…|z 〉
with the complete set of the eigenfunctions of operator
pz, i.e., with plane waves. Schematically, in expression
(42) we have

where the integration with respect to q must be carried
out from 0 to ω since the compensation in the expo-
nents (cancelling out in Βp(s, k), see Eq. (35)) occurs
precisely for this values of q. Introducing the notation

ε =  and going over to x = ε/ω, we obtain

U ph r( ) Q r 0,( )/ 2ω( ).–=

e2 j
*

p t( ) p s
∂V r s( )( )

∂r
--------------------d

0

t

∫– p δp t( ),+≡=

δpz t( ) δV t( )≈ V r( ) V r nt+( ).–=

p⊥
i t( )

z z〈 | f pz z,( ) z| 〉d
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∞

∫ qd
2π
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∞

∫ z f q z,( ),d
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∞
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q2 m2+

M
iα
2ω
-------Tr

xd

x 1 x–( )[ ]2
-------------------------- ρ iD r⋅–( )exp2d∫

0
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(44)

where

As in [10, 11], we will consider the transitions from one
state to another for photons with a definite helicity. In
this case, all amplitudes can be expressed (see, for
example, [10]) in terms of two independent quantities
M++ (without a change in helicity) and M+– (with a
reversal in helicity). For spiral states, operators R2 and
R1 in expression (44) have the form

(45)

where λ1, 2 is the helicity of the initial and final photons,
respectively. Since we are dealing with a small-angle
problem (∆ ! ω), we can put e1 · n = e2 · n = 0 in
Eqs. (45). To the same degree of accuracy, the substitu-
tions s · n1  s · n and s · n2  s · n have been
carried out in R1 and R2, respectively.

In the integration over τ and z in Eq. (44), the con-
tribution comes from τ ~ |z | ~ ω/m2. The integral over ρ
converges (for the difference M(Aµ) – M(0)) on min(∆–1,
ω/m2, rsc), and for ∆ ≥ m, the contribution comes from
ρ ≤ 1/m. For such values of momentum transfer, a tran-
sition to classical trajectories in the calculation of the
average 〈r |…|r 〉  is ruled out since in this case fulfill-
ment of the condition ρ @ 1/m is required (see Section 2).
In accordance with the above analysis, we divide the
domain of integration with respect to ρ in Eq. (44) into

two parts: M ≡  + , such that the integration over

ρ in  is carried out from zero to ρ0; in , from ρ0

to infinity. The value of the parameter ρ0 is determined
by the inequalities 1/m ! ρ0 ! min(ω/m2, rsc). The
Heisenberg operator r(s) in expression (43) is given by

where v(x) is the velocity operator. The motion in z is
assumed to be free starting with Eq. (44): z(s) ≈ z + s.

× τ z r〈 |T– i s f 2 s( )d

0

τ /2
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0
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τ
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R2 e2 p⊥
τ
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r s( ) r xv x( ),d

0

s

∫+=
JOURNAL OF EXPERIMENTAL A
For the coordinate transverse to n, we have (in the first
approximation)

The relative value of the integral term in this expression
is V/ε and should be neglected. Thus, we can put r(s) =
r + sv⊥  + (z + s)n everywhere, which means that a rec-
tilinear trajectory approximation is applicable in our
problem. Then the expression for the transverse
momentum operator reads

(46)

where the contribution to the integral over s for any ρ
comes from an interval of the order of the impact
parameter ρ itself. The term (s – z)v⊥  in Eq. (46) has the
absolute value |(s – z)v⊥ | ~ |zv⊥ | ~ 1/m and can be
neglected in region II, where ρ > ρ0 @ 1/m. For ρ < ρ0,
we can replace the argument of the potential in Eq. (46)
by r – zv⊥  + sn since s ~ ρ ! |z | in this region. We can
now eliminate v⊥  in the argument of the potential by
applying the following operation:

After this, operator p⊥ (t) in amplitude (44) for any ρ has
the form

(47)

It should be noted that |d(t)| ~ |V(r)| and the character-
istic values of |p⊥ | are max(m, ∆), which follows
ardeady from an analysis of the form of functions f1, 2(s)
in Eq. (44). According to this estimate, the value of d(t)
in region II (ρ > ρ0) is small (|d(t)| ! m) and the corre-
sponding expansion should be carried out. As a result,

the contribution of  to the total amplitude does not
contain higher order corrections in the external field.
Moreover, owing to the factor exp(–iD · r) and condi-
tion ρ0 @ 1/m, this contribution is not negligibly small
only for transferred momenta ∆ ! m; this circumstance
will be used in the subsequent analysis.

In region I, where s ~ ρ ! |z |, the following approx-
imate expression is valid for d(t) from relation (47):

(48)

r s( ) r sv⊥+=

–
1
ε
--- x s x–( ) r∂

∂
V r xv⊥ n z x+( )+ +( ).d

0

s

∫

p⊥ t( ) p⊥ s r∂
∂

V r s z–( )v⊥ sn+ +( ),d

z
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2 z
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----------– 
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2 z
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OPERATOR REPRESENTATION OF THE WAVE FUNCTION FOR A CHARGED PARTICLE 571
In amplitude , as in Eq. (44), the argument of the
function d(t) appearing in f1, 2(s) as well as in R1, 2
belongs to the interval |t | ≤ τ/2. For such values of t, the
quantity d(t) vanishes for |z | ≥ τ/2 in accordance with
relations (48), and the entire expression is independent
of the external field. Such contributions vanish when
the amplitude is subtracted in zero field and can be dis-
carded at the very outset. In other words, integration

with respect to z in  should be carried out between

−τ/2 and τ/2. Thus, the integrand in  (the integration
is carried out over x, ρ, and τ as in Eq. (44)) assumes the
form

(49)

where R1, 2(P) denotes the functions defined by formu-
las (45), in which p⊥ ( /2) are replaced by P. The fac-
torization in relations (49) of the factors which are
functions only of p⊥  and those depending on the opera-
tors p⊥  ± Q containing the external field is essential for
the subsequent considerations. It should be emphasized
that the existence of T ordering in Eq. (44) plays a key
role for the factorization of the exponential operators
appearing in this expression. For example, taking into
account relations (48), for –τ/2 ≤ z ≤ 0, we have

(50)

M̃I
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The eigenfunctions of operators p⊥  ± Q corresponding
to eigenvalue q are exp{i(q · r  χ(r))}, where χ(r) is
the eikonal phase defined in Eqs. (48). Using these
functions, we can now calculate the average 〈r |…|r〉  in
Eqs. (49). Inserting

between the free operators and the operators depending
on the field, we reduce the calculation of the average to
determining the matrix elements of the following two
types:

(51)

The c-number expression obtained as a result of aver-
aging can easily be integrated over z and τ. This gives

(52)

In this expression, the required subtraction has already

been made so that  (52) vanishes after “switching
off” the external field. It should be noted that if we take
the half-sum of expression (52) and of the expression
obtained from it as a result of substitutions x  1 – x,
q1, 2  –q1, 2, r1  –r1, the term exp[i(χ(r + r1) –
χ(r – r1))] – 1 in Eq. (52) is transformed into cos[χ(r +
r1) – χ(r – r1)] – 1. It hence becomes obvious that the
Furry theorem holds: the expansion of expression (52)
into a series in perturbation theory contains only the
even power of the potential. The integral with respect

× i z τ /2+( )–
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572 KATKOV, STRAKHOVENKO
to q1, 2 in Eq. (52) can be expressed in terms of the Mac-
donald functions K0 and K1 using the relations

(53)

We can also evaluate the elementary integral with

respect to x, thus expressing  for an arbitrary poten-
tial in terms of the 4-fold integral:

(54)

where t = D · r1. Sometimes, a different integration
sequence in Eq. (52) is more convenient for a compari-
son of our results with those obtained by other authors.
For instance, the form of the scattering amplitude
obtained in [12] for the Coulomb potential for ∆ @
m2/ω can be reproduced by presenting factors (m2 +

)–1 in Eq. (52) in the form

and then integrating with respect to q1, 2.

Let us now present  as  ≡ MI – δMI, where we
choose for MI expression (52) or (54), in which the inte-
gration over ρ is extended to infinity, while in δMI this
integration is carried out from ρ0 to infinity. It follows
from relations (53) that the integral with respect to ρ1 in
Eq. (52) converges for ρ1 ~ 1/m. Then and the following
expansion can be used for evaluating δMI as ρ ≥ ρ0 @
ρ1 in the entire domain:

1 – cos[χ(r + r1) – χ(r – r1)] ≈ 2 .

Besides, the quantity δMI (as well as , see the dis-
cussion following formula (47)) should be taken into
account only for the transferred momenta ∆ ! m. In
this case, |D · r1| ! 1, and the quantity exp[i(2x – 1)D ·
r1] can be replaced by unity. After this, we first inte-
grate over r1 with the result proportional to δ(q2 – q1)

q2d
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q2d

m2 q2+
-----------------q 2iq r⋅–( )exp∫ 2πiK1 2mρ( )m

r
ρ
---.–=

M̃I

M̃I 4iαωm2

π2
---------- ρ2 iD r⋅–( )expd

0

ρ0

∫=

× ρ2
1 1 χ r r1+( ) χ r r1–( )–[ ]cos–{ }d∫

× K0
2 2mρ1( ) e1 e2

*⋅( )
e1 r1⋅( ) e2

* r1⋅( )
ρ1

2
----------------------------------------+





× K1
2 2mρ1( ) λ1λ2

d2

dt2
-------–



 tsin

t
---------,

q1 2,
2

1

m2 q1 2,
2+

--------------------- i s1 2, is1 2, m2 q1 2,
2+( )–{ }expd

0

∞

∫=

M̃I M̃I

r1
∂χ r( )

∂r
--------------⋅ 

 
2
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JOURNAL OF EXPERIMENTAL 
and then over the remaining variables except for r.
Finally, for δMI, we obtain

(55)

where  = 7δij and  = –2eiej (the symbol (++)
corresponds to amplitudes without a change in helicity
and (+–) to those with helicity reversal). It should be
emphasized that the quantity MI no longer depends on
the parameter ρ0. For high values of transferred
momentum (for ∆ @ m2/ω in the Coulomb potential),
the entire amplitude is reduced to MI.

Going over to the calculation of , we recall that
the transferred momentum ∆ in this quantity should be
neglected as compared to mass m, and in the averaging
〈r |…|r〉 , all the interior operators can be regarded as

commuting. Consequently, in  we have

and Eq. (44) leads to

(56)

where d(t) is defined by Eq. (47) and

(57)

We now evaluate the Gaussian integral over q in
Eq. (56), expand the exponential in d (|d| ! m), and sub-

tract the value of  for zero external field. This gives
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where µ = m2/[2ωx(1 – x)] and F has the form

(59)

While deriving the expression for F(++), we integrated
by parts with respect to variable τ in the term propor-
tional to m2(e1 · ) in Eq. (56). Substituting the Fou-
rier representation of potential

(60)

into expression (47) for d(t), we obtain from Eq. (58)

(61)

We present product (Q1⊥ , Q||) (Q2⊥ , –Q||) in Eqs. (61)
in the form

and, accordingly,  ≡ MII + δMII, where MII is the
integral of the difference in the brackets in the later
expression and δMII is the integral of V(Q1⊥ , 0)V(Q2⊥ ,
0). Since small values of ρ make zero contribution to
MII, the integration can be extended to the entire range
of variation of ρ; i.e., ρ0 can be replaced by zero. Then
we integrate with respect to r:
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(62)

where we have made a transition to variable y = Q||/µ.
The integrals with respect to s in expressions (62) can
be evaluated easily:

(63)

Using definition (48) of the eikonal phase χ(r) and
Eqs. (60) and (61), we write δMII in the form

(64)

where quantities Fij are defined in Eqs. (61). The inte-
gration in Eq. (64) can be easily performed with respect
to Q|| and then with respect to x and s, and we verify that
δMII = δMI, where δMI is the quantity defined by
Eq. (55). Thus, the total amplitude is given by

and does not depend on ρ0.
Thus, for any ∆ ! ω, the photon scattering ampli-

tude with ω @ m for an arbitrary localized potential is
given by the sum of expressions (62) and (52) (or (54));
in the latter equation, the integration with respect to r
is carried out over the entire domain. It should be
emphasized that until now, the expression for this
amplitude, which is valid for any ∆ ! ω without any
additional limitations on the parameters of the problem,
was known only for the Coulomb potential.
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574 KATKOV, STRAKHOVENKO
By way of example, we will now determine the con-
tribution to amplitude MII in the Moliére potential [13],
for which

(65)

It should be noted that the Fourier transform of the
Coulomb potential can be obtained from relations (65)
by putting bn = 0 and an = 1/3 in them. We will hence-
forth assume that the unit vector e1 in the circular polar-

ization vector e = (e1 + ie2)/  lies in the scattering
plane (e1 || D). In this case, the amplitudes M|| and M⊥
with the linear polarization vector lying in the scatter-
ing plane and perpendicular to this plane, which were
used in [8], turn out to be connected with the helicity
amplitudes through the following simple relations:

Substituting relations (65) into (62) and using the
parametrization

we evaluate the integrals with respect to q and y in rela-
tions (62). Then the contribution of MII to the total
amplitude takes the form

(66)

where µ = m2/[2ωx(1 – x)] as before and the following
notation is introduced:
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is replaced by the quantity BC, for which we have

(68)

where λ = 2µ/∆ = m2/[ω∆x(1 – x)]. Note that for ∆ ~ m,

the quantity  coincides with  to within small

terms of the order of /∆2. In turn, for ∆ ~ m, quantity
BC is small (of the order of m/ω), which explicitly con-
firms the above conclusion that MII must be taken into
account only for ∆ ! m. Carrying out the substitution

t  (1 + )/2, integrating by parts the term pro-

portional to the logarithm in  with respect to t, and
integrating the terms which do not contain g(s, t) with
respect to x and s, we obtain

(69)

In order to obtain the total amplitude of the photon scat-
tering in the field of a Coulomb center for ∆ ! m, we
must sum up (69) with the corresponding asymptotic
form of the contribution of MI (52). Since the expres-

sion obtained by us for  coincides with the result
reported in [12], we can directly use formula (17) from
[12]. Finally, we obtain
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2s t 1 t–( )
--------------------------+

1–
,=

MII
Mol MII

C

bn
2

1 t2–
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1 t2– iλ st+( )
--------------------------------------,
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s3t2x 1 x–( )
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2ω∆
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(70)

where functions F(s, t, x) are defined in Eq. (69), C =
0.577… is the Euler constant, and Ψ(y) = dlnΓ(y)/dy is
the logarithmic derivative of the gamma function.
Expression (70) coincides with formula (8.1) from [8]
if we correct the obvious misprints in this formula
(eliminate the erroneous factor 4 in front of the integral
in (8.1) and change the sign of the Coulomb correction
C + ReΨ(1 + iZα) in the nonintegral term).

Thus, the expression for the amplitude of the small-
angle (∆ ! ω) elastic scattering of a high-energy (ω @
m) photon that we obtained with the help of the semi-
classical operator method for an arbitrary localized
potential reproduces, among other things, all the avail-
able results in this field. The developed method of aver-
aging the product of noncommuting operators makes it
possible to apply the semiclassical operator method for
studying various processes in QED in a localized exter-
nal field.
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Abstract—The linear theory of propagation of a spherical wave layer is used to treat the principles of simulat-
ing turbulent process and the criteria of its similarity. The mechanism of turbulence is given for a flat channel
defined by two walls and for a square tube. We use this channel as an example to demonstrate the effect of the wave
layer properties on velocity pulsations, as well as the effect of the characteristics of a sequence of disturbances on the
structure of pulsations. The model is used to describe the structure of a plasma channel developed by a Bessel beam
of laser radiation. The Mathematica-4 language is used for simulation. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A turbulent flow is observed when the Reynolds cri-
terion Re exceeds a certain critical value. Formally, this
similarity criterion is derived from the equations of
motion for liquid. Its physical meaning may be readily
clarified using a simple example of laminar flow of vis-
cous liquid along the x axis in a flat channel of height
z = d formed by two parallel walls of which one coin-
cides with the xy plane.

A flux of momentum of liquid in the middle of the

channel has the density Q = ρ , where U0 is the velocity
and ρ is the density of liquid. The friction force develops
a momentum flux in the direction of the z axis and forms
the distribution of velocity U = U0[1 – (2z/d – 1)2]. The
density q of this flux is defined by the xz component of
the viscous stress tensor and is equal at the wall to

where η is the coefficient of viscosity. Hence, q =
4ηU0/d. We will now take the ratio Q/q to derive, accu-
rate within the numerical factor, the customary expres-
sion for the Reynolds criterion,

The momentum transfer is always associated with the
energy transfer; therefore, the quantities Q and q may
be taken to mean the respective energy fluxes, and the
velocity U0 may be replaced by its effective value.
These replacements change nothing but the numerical
factor in the final result.

Therefore, the Reynolds criterion characterizes the
fraction of momentum (or energy) flux that is lost by
liquid due to friction or, to be more precise, its recipro-
cal. However, it appears impossible to recover a con-
crete mechanism from this characteristic. Indeed, under

U0
2

q σxz' η ∂U
∂z
------- ,= =

Q
q
----

ρU0d
η

------------- Re.= =
1063-7761/01/9204- $21.00 © 20576
conditions of steady-state flow, the hydrodynamic
parameters both in the foregoing estimates and in the
solution of hydrodynamic equations are time-indepen-
dent integrated quantities. On the contrary, pulsations
prove to be explicit functions of time irrespective of the
mode of flow, and, as regards pulsations, the steady
state implies only dynamic equilibrium. At the same
time, there is no doubt that it is the momentum flux q
that sustains pulsations of parameters under conditions
of turbulent flow. Approximately based on this reason-
ing, Lorentz [1] came up with an idea of the need for an
energy-related estimation of the dynamics of pulsations
whose behavior did not necessarily have to be
described by equations pertaining to the flow proper. It
has been demonstrated in [2] that the turbulence may be
interpreted on the basis of linear propagation of distur-
bances, and a mechanism of the dynamics of pulsations
of parameters under conditions of turbulent flow was
suggested. In short, this mechanism reduces to the fol-
lowing.

(1) The stagnation of liquid causes a local increase
in density (or pressure) at the flow boundary, which
may be represented in the form of a sequence of weak
disturbances of characteristic scale a that arise sporad-
ically at the wall and propagate in the flow in all direc-
tions at the velocity of sound c. At a distance r @ a, a
disturbance, irrespective of its previous form, takes the
form of a spherical layer of thickness 2a.

(2) At a ! d (d is the transverse dimension of the
channel) within this layer, (r – a)/c < t < (r + a)/c, and
the hydrodynamic parameters pulsate in accordance
with the distribution P(r) of density ρ in the primary
disturbance. For example, pulsations of velocity may
be represented by the expression of the type

Pulsations in the layer decay with the distance r = ct,
but they retain the form and properties of the function

u
cP
2ρ
------r ct–

ct
-------------.=
001 MAIK “Nauka/Interperiodica”
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P of the primary disturbance, which, generally speaking,
may depend on the time t. Then, the linear dimension of
disturbance is defined by the larger of the quantities a
or ct.

(3) A collection of direct and reflected (from the
channel walls) wave layers forms a space-time struc-
ture of pulsations of hydrodynamic parameters, which
is formed on the basis of the linear superposition of
waves.

This approach to the problem of turbulence is valid
both for compressible liquid and for media such as a
low-temperature plasma, in which acoustic waves exist.
This approach may also be generalized to the case of
waves of finite amplitude. To start with, however, it is
natural to investigate the model of turbulence and iden-
tify its main regularities in a linear approximation; the
more so that, under these conditions as well, pulsations
of parameters of the medium arise, which are character-
ized by a wide spectrum of spatial and time frequen-
cies, and their amplitude, phase, and direction prove to
be irregular. This irregularity is usually interpreted as
the stochasticity of pulsations. In reality, the turbulence
is quite a determinate phenomenon. In turbulence, pul-
sations may be expressed in terms of functions that are
relatively simple but depend on a number of parame-
ters, for example, on the relative position of initial dis-
turbances. Therefore, a collection of pulsations is simi-
lar to abstract automations, and its description falls in
the category of cybernetic problems which are usually
solved by imitation simulation methods. These meth-
ods assume the possibility of calculating the actual val-
ues of functions of the process, although, as in any
cybernetic problem, it is permitted to add individual
stochastic elements as an argument to the description of
the process, along with determinate functions.

Our formulation of the problem calls for appropriate
means for its solution. The desired capabilities are pos-
sessed by the Mathematica-4 interactive language of
system simulation adapted for the actual description of
parameters, functions, and correlations of arbitrary sys-
tems. In this language, the sequence of operations
involved in solving the problem is written in the form of
customary formulas, no abbreviations and acronyms are
used, and, as a rule, no special comments are required. In
addition, the language offers additional procedures for ser-
vicing computer experiments with easy control of the
graphic representation of data including animation. The
most important fragments of the model will be dis-
cussed further in this paper.

The paper deals with the mechanism of initiation of
velocity pulsations and vortices and the similarity condi-
tions for turbulence, as well as the principles of construct-
ing the model of this phenomenon using the examples of
a flat channel defined by two walls and of a square tube.
A study is made into the effect of the characteristics of
individual disturbances and their sequence on the proper-
ties and structure of pulsations of hydrodynamic
parameters. A description is given of a model of exper-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
imentally observed structure of a plasma channel devel-
oped by a Bessel beam of laser radiation.

2. THE FACTORS AFFECTING 
THE PROPERTIES OF TURBULENCE, 
AND THE SIMILARITY CONDITIONS

The momentum (and energy) transfer due to viscos-
ity is realized by way of propagation of spherical distur-
bance waves. Their superposition defines the properties of
pulsations of hydrodynamic parameters in the channel.
The wave amplitude during propagation decreases pro-
portionally with a/r. The decay is largely due to the
increase in the volume of the spherical layer, and the dis-
sipation of energy plays no significant part at this stage. As
it propagates and is reflected from the walls, the layer fills
an increasingly larger volume of the channel, this leading
to a reduction of the scale of the spatial structure of pulsa-
tions. And when the structure size becomes comparable
with the molecular free path, the energy of disturbance of
parameters simply passes over to the region of small-scale
pulsations and causes a multiple increase in the impor-
tance of energy dissipation. This is how the known postu-
late of Kolmogoroff concerning energy transfer to small-
scale turbulence finds a natural explanation.

On the flow boundary, the processes of interaction
and the superposition of waves exhibit a more complex
behavior, and we will discuss their singularities in more
detail. It is known that the z component of velocity pul-
sations disappears on the wall, uz = 0, and the pulsations
of density and pressure decrease accordingly. In addi-
tion, one can readily see that, at the wall, the interaction
between the incident and reflected waves results in a
double increase in the amplitude of pulsations with a
simultaneous double decrease in their frequency. In the
direction of the z axis, these effects show up in a zone
of thickness a. Along the wall, this zone has the form of
a ring moving at a velocity of c/sinθ (θ is the polar
angle). The intensity of the processes occurring in this
ring may be estimated proceeding from the constancy
of the area of its wave front, 2πda, and the z component
of density pulsations is proportional to cos2 θ.

A third, side wave with a conical wave front takes
part in the interaction at the wall, in addition to the inci-
dent and reflected spherical waves. The front has the
form of the surface of a truncated right cone. The base
of the cone is provided by the circle at the intersection
of the refracted wave with the wall plane, and the small
circle is formed by a line along which the conical sur-
face is in contact with the reflected wave. The angle χw at
the cone base is preassigned by the relation sinχw = c/cw,
where cw is the velocity of sound in the wall, and the
front moves at an angle of several degrees to the wall.
The wave amplitude is low, of the order of ρ/ρw (ρw is
the density of the wall), and decays very rapidly (as r–2).
However, as is clear from the configuration of reflec-
tion, this amplitude is formed by the peripheral part of
the incident wave whose central part within the angles
SICS      Vol. 92      No. 4      2001
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θ < θs = π/2 – χw does not participate in the formation
of the amplitude. In the immediate vicinity of the wall,
this gives rise to a local nonuniformity of scale χwd.

Another factor affecting the development and prop-
erties of turbulence is associated with the motion of liq-
uid and formation of vortices. In treating this effect, we
will use the notation and conditions of the example
given in the Introduction and the expression for wave
velocity V = ∂ω/∂k, where k is the wave vector, and
ω(k) is the dispersion law. For waves in a liquid at rest,
a simple dispersion relation ω = ck is valid. The motion
of liquid may be included by adding to it an appropriate
term, after which it takes the form

(1)

We will use the concept of an “acoustic ray” of geomet-
rical acoustics to assess the wave configuration. This
ray is a line, the unit vector s of the tangent to which at
point r coincides with the direction of propagation of
the wave (and pulsations of parameters) at this point.
The change of this direction depends on the ray curva-
ture defined by the equation [3]

(2)

where dl is an element of the path traveled by the ray.
When the liquid is stationary, U = 0, the wave velocity
in accordance with Eq. (1) is V = ck/k, i.e., the rays
from the center of disturbance propagate at the velocity
of sound along straight lines s = r/r, and the pattern
retains complete spherical symmetry. If the liquid
moves, but U is independent of the coordinates, the
vector s is a constant quantity, and we derive for the
wave velocity V = ck/k + U. Then, in a moving coordi-
nate system, the pattern of ray propagation is fully iden-
tical to the previous case, and for a fixed observer the
wave proper is completely carried away by the flow
without changing shape, and it is only the density of the
energy of pulsations in the wave that depends on the ray
direction (Doppler effect).

We will now turn to the case when the velocity of
liquid in the channel cross section is profiled. We will
assume that the flow is directed along the x axis and the
velocity depends on only one variable, U(z), and
increases with the distance from the wall, so that, at z = 0,
we have U = 0 and dU/dz > 0. One can see in Eq. (2)
that in the U(z) field the ray bends and the curvature
increases with the velocity gradient. One must expect
the maximum curvature at the wall, in the region of the
highest gradient values. However, it is not so much the
curvature that is of interest, but the total angle of turn of
the ray, which may be estimated using Eq. (2). We
express the components of the vector s in terms of the
direction angles θ and ϕ, introduce the angle χ = π/2 – θ,
and use the subscript 0 to indicate the initial orienta-
tions of the rays to derive for the component sz, after

ω ck U k.⋅+=

ds
dl
-----

1
c
--- rot U s×[ ] ,=
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integration of Eq. (2), (U ! c),

(3)

In accordance with this formula, the slope χ of the
ray increases for the azimuth angles |ϕ0| > π/2, while
for |ϕ0 | < π/2 this slope decreases. In other words, in the
gradient field the ray turns in a clockwise direction: it
moves away from the wall when moving against the
flow and approaches the wall when moving with the
flow. Then, a fairly small slope χ0 will be found, for
which the ray that emerged from the point z = 0 will
move away from the wall to a distance z* or less to form
a vortex. Therefore, in the U(z) field, the direction of
pulsations varies, and vortices arise, the condition of
existence of which is given by the equality χ = 0. In
view of Eq. (3), this equality gives

(4)

This relation defines the value of z* for the angle χ0
with the preassigned profile of velocity U(z). Note that
the main parameter governing the vortex formation is
the Mach number U/c. As is clear from Eqs. (2) and (4),
the gradient and, accordingly, the velocity in the region
of vortex formation must be fairly high. In the case of
the slowly increasing function U(z) over a distance z ~ d,
no vortex may form at all, as in the case of U = const.

By way of example, we will treat the power depen-
dence of velocity in a channel on the ratio z/h, where h
is the half-height, so that z/h < 1. We will represent this
dependence and condition (4) in the form

(5)

The region of most curvature of the velocity profile
adjoins the wall. Because m is usually within the range
of two to 10, the velocity reaches half its maximum
value even at z/h ~ 0.2 to 0.02. As follows from formu-
las (5), in this region, for m < 10 and U0/c < 0.2 and for
angles χ0 < 20° to 30°, the value of z*/h is in the range
from 0.01 to 0.2; i.e., formulas (5) further enable one to
estimate the depth a of the zone of initiation of vortices.
The configuration of this zone along the wall has the
shape of a ring analogous to that described above, with
the difference that the intensity of the processes in this
case depends also on the azimuthal direction ϕ0.

Substantial velocity gradients imply that gradients
and other hydrodynamic parameters are present in this
zone. Their level is defined by the dynamic equilibrium
between the processes of stagnation and emission of
waves from the stagnation region. The former pro-
cesses lead to an increase in the gradients, and the latter
processes lead to equalization of the parameters.
Against this background, the interaction between sound
waves in the vicinity of the wall and the dependence of
the effects of this interaction on the gradient profile, on

χsin
2 χ0sin

2≈ 2U z*( )
c
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c
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the angle of incidence, and on other factors identified
above are responsible for the emergence of local non-
stationary nonuniformities of parameters along the wall
surface. These nonuniformities derive energy from the
liquid upon its stagnation and serve as the sources of
new disturbances. Their reproduction closes the cycle
of the process of maintaining the dynamic equilibrium of
pulsations. This process is determinate and defined by the
Mach number, channel geometry, and properties of the
liquid. At the same time, similar to the superposition of
waves in the main flow, it is a multiparameter one and
develops in a wide frequency band. Therefore, the pattern
of initiation of disturbances appears to be irregular and
resembling a chaotic pattern both in space and in time
(when performing observation at a fixed point). Note
that the formation of wall disturbances begins even dur-
ing the period of build-up of flow, when close-to-spher-
ical waves of starting momentum, which set the liquid
in motion, propagate in the liquid and are reflected from
the walls; i.e., disturbances and nonuniformity of
parameters at the walls arise from the very start.

Therefore, the profile of parameters in the channel
cross section and the structure of pulsations are related to
one another by momentum transfer, whose mechanism is
realized via sound wave emission. It is natural to expect
that the real value of momentum flux q is of importance,
in which the losses due to propagation of disturbances are
included. Of these losses, the absorption of the wave
energy by the liquid has no serious effect on the formation
of pulsations, as was noted above. However, upon reflec-
tion from the wall, the losses may be significant, because
a part of the energy goes away with the refracted and side
waves and is transmitted to the wall in the form of heat.
The other part, possibly a more substantial one, is lost
upon emergence of vortices.

Generally speaking, the reflection coefficient is a func-
tion of the angle of incidence. However, the momentum
flux q is among the averaged parameters of flow, and inte-
grally the losses upon each reflection may be estimated by
the constant coefficient α. Then, with n reflections, the real
momentum flux q will decrease by a factor of (1 – α)n, and
the flow crisis will occur at higher values of the Reynolds
number Recr . On the contrary, the wall roughness inten-
sifies the flux q, and the turbulence arises at lower val-
ues of Recr , i.e., at a lower velocity. Because the param-
eters α and n vary in a wide range, depending on the
concrete conditions [2], the losses upon reflection do
not remain constant, and this factor must be included
when estimating the flow mode.

The explicit time dependence of pulsations calls for
the introduction of an additional criterion for describ-
ing the turbulence. The process of wave propagation is
of importance in the formation of the structure of dis-
turbances and emergence of vortices. In this case, as for
any motion, the scale of displacement ∆ and the corre-
sponding time interval τ are important. Such processes
are usually characterized [3] by the dimensionless
Strouhal criterion S = Ut/∆. In this case, however, we
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
deal with the propagation of sound, and the equality
∆/t = c is valid. Therefore, S = U/c = M, and the Strou-
hal number may be replaced by the Mach number; as
was shown above, it is this latter number on which the
processes of structurization and vortex formation in the
channel depend. Consequently, in analyzing the turbu-
lence, the similarity must be set with the aid of two
dimensionless criteria, those of Reynolds and Mach,

(6)

where ν is the kinematic viscosity.
The foregoing treatment is based on the linear the-

ory of propagation of wave packets of spherical shape.
A comparison of the processes accompanying their
propagation in a narrow zone on the flow boundary and
in the main part of flow, in the flow core, reveals impor-
tant differences in the behavior of interaction and in the
results of superposition. This gives grounds to isolate a
narrow zone of width a at the wall into a special region,
i.e., the boundary layer. Outside of this layer, the velocity
gradient is low, and the function U(z) increases slowly.
Then, in a first approximation, this variation may be
ignored, and, in estimating the superposition of waves in
the flow core, one can use the condition U = const simpli-
fying the problem, where the constant may be zero.

3. PROPAGATION AND STRUCTURE
OF DISTURBANCES IN THE CHANNEL

The structure of disturbances in the channel depends
on the shape of the bounding surface. In typical simple
options, one can regard as a channel a space above a
plane (the case of a flat plate), a plane gap formed by
two parallel walls, and the internal space of a tube. The
structure of disturbances developed by spherical waves
emanating from the wall surface is obvious, and its deter-
mination is trivial. The situation is somewhat more com-
plicated in the case of channels in which reflected waves
affect the structure. We will first dwell on a channel
shaped as a gap of height d between two parallel walls.

We will bring the xy plane into coincidence with the
lower wall and direct the z axis toward the upper wall.
It is natural to take the channel height d as the scale
defining the processes in the channel. Then, the posi-
tion of a point in the channel will be expressed in con-
ventional units of length corresponding to dimension-
less coordinates for which the previous designations x,
y, and z are used. For timing the process, we use the
dimensionless unit of time τ during which a wave
passes a distance d at a velocity c so that τ = ct/d. A dis-
turbance of dimensionless radius a, which emerged at
some moment of time at an arbitrary point on the chan-
nel walls, will be characterized by the parameters pτ
and pr = {px , py , pz} which, for a series of disturbances,
will represent sequences. The parameter pτ may be both
positive and negative, and the parameter pz takes the
values of 0 (on the lower wall) or 1 (on the upper wall).

Re* Re

1 α–( )n
-------------------

ρU0d

ν 1 α–( )n
-----------------------, M

U0

c
------,= = =
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Fig. 1. The structure of disturbances in a bounded space: (a) configuration of a wave in a flat layer, (b) configuration of eight waves
in a layer, (c) configuration of a wave in a tube, (d) configuration of eight waves in a tube.

6

z

When a wave propagates from the point pr in the
half-space that is not bounded by the upper wall, z > 0,
the position of the wave front in the coordinate system
related to the point pr will be defined by the radius vec-
tor r(ξ, η, ζ) and |r | = τ. Every event of reflection of the
wave front will deform the latter. As a result, the front
will acquire a more complex configuration. For τ + pτ >
0, its coordinates x, y, and z will be defined by the rela-
tions

(7a)

For τ + pτ ≤ 0, we have

(7b)

Here, IP (Integer Part) denotes the operation of separat-
ing out the integer part of the number in square brack-
ets, and n denotes the number of wave reflections from
the wall (positive integer),

(8)

x τ pτ+( ) θ ϕ px,+cossin=

y τ pτ+( ) θ ϕ py,+sinsin=

z τ pτ+( ) θcos 2IP
n 1+

2
------------– 

  1–( )
n pz+

pz.+=

x px, y py, z pz.= = =

n IP τ pτ+( ) θcos[ ] .=
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We will now find the surface of the wave front—
a snapshot of sorts of the configuration of the front
assumed by the front in time τ after initiation. Note that the
procedure of solving the problem in the Mathematica-4
language simply reproduces the mathematical solution
of the problem both in substance and in regards to the
notation. First, the input data are described (pτ, px, py, pz),
and the moment of time τ is preassigned, for which the
shape of the wave front and the dimensions of the
region being investigated (dx, dy, dz) are calculated.
Further, formulas (7) and (8) are used to find three coordi-
nates of the front at the preassigned moment of time τ, and
then the conditions of graphic construction of the front
surface are determined. (Usually indicated here are the
ranges of variation of the variables, the angle of observa-
tion, the shadowing of surface areas, the labeling of coor-
dinate axes, and other parameters.)

For definiteness, we will assume that the initial
point is on the lower wall, and its coordinates and the
investigation range have the following values:

The surface is calculated with respect to the angle ϕ in
the range from 0 to 2π and with respect to θ in the range

τ 6, pτ 0, px 1.2, py 6.3,= = = =

pz 0, dx 8, dy 8, dz 1.= = = =
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from 0 to π/2. The limits for variables x, y, and z corre-
spond to the selected volume; however, in constructing
a graph, the scale of z is enlarged by a factor of one-
and-a-half for convenience of visual perception.

The configuration of this wave front is given in Fig. 1a.
It has the form of a corrugated surface with a variable
distance between the lines of bend and with a varying
orientation of the normal to the surface of folds. There-
fore, the propagation of only one wave develops a
structure in the channel, the simple regularity of whose
origin is hard to recognize immediately. Figure 1b
shows what the space of a flat layer looks like under
conditions of simultaneous propagation of eight waves
whose initial parameters are varied in the following
ranges:

For the inner details of the structure to be observed, it
is not the entire channel region being investigated that
is shown in the graph but rather a strip cut out from this
region (rectangular parallelepiped) and having a width
x ∈  (4.8, 5.0) with the above-identified values of the
limits of the remaining parameters (y = 8 and z = 1).
The combination of waves gives a clear idea of the
mechanism of formation of the structure of distur-
bances as a result of propagation of sound waves in a
bounded space. Even the pattern of their interaction
enables one to judge the behavior of the structure of
disturbances.

A layer defined by two parallel walls is most conve-
nient for applying this model. Indeed, in a channel like
this, the disturbance of parameters at the observation point
may be represented as a successive passage of spherical
waves through this point and its virtual images which are
its mirror reflections from the walls. Moreover, the posi-
tion of an imaginary point is defined by only one coordi-
nate which, on every reflection, changes to the double
height of the layer 2d (in dimensionless coordinates, it
changes to 2).

This simple useful rule may be readily extended to
the case of a channel whose boundaries have the form
of a tube with flat faces. For such a channel, the calcu-
lation scheme remains the same; however, because of
the wave reflection from several walls, the number of
imaginary points to be included increases. For exam-
ple, in a square tube, the number of such points triples
in every cycle of reflections, with the position of the
imaginary point being defined by two, instead of one,
coordinates which vary with the period 2d (here, d is
the side of a square). We will treat this mechanism in
more detail and find the wave configuration at the
moment of time τ.

The wave configuration is not related to the place of
its initiation in the direction of the x-axis of the tube and
depends only on the coordinates along the y and z axes. On
the faces parallel to the y-axis (horizontal walls, z = 0 or

pτ 0 3.1,[ ] , px 0.2 15.9,[ ] ,∈∈
py 0.1 9.9,[ ] , pz∈ 0 1,{ } .=
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1), we will denote these coordinates as pyy and pyz , and
on the faces parallel to the z-axis (vertical walls, y =
0 or 1), as pzz and pzy . The values of pyy and pzz vary in
the range from 0 to 1, while the values of pyz and pzy

may only be discrete, 0 or 1.

We will now determine the number of reflections of
a wave moving from one of the faces. We will distin-
guish between the cases of wave propagation in the
direction from horizontal (z = 0 or z = 1) and from ver-
tical (y = 0 or y = 1) faces. Each direction presumes
reflections from the other three faces. In the case of
propagation from the vertical face z = 0 (or z = 1), we
will denote the number of reflections from the walls y = 0,
y = 1, z = 1 (or z = 0) as ny0, ny1, and nyz , respectively.
For the direction of the wave motion from vertical
faces, these designations may be written as nz0, nz1, and
nzy . By analogy with formula (8) for a flat layer, the
number of wave reflections from different faces of the
tube may be given by relations (9) in which, as previ-
ously, τ is the running time (in dimensionless units); the
parameters pτy and pτz allow for the delay or, the other way
around, for the advance of the wave initiation relative to
the moment of time τ = 0 for horizontal and vertical faces,
respectively; and θ is the polar angle, θ ∈  [0, π].

For a horizontal face, z = 0 or z = 1,

(9a)

for a vertical face, y = 0 or y = 1,

(9b)

As a result, three coordinates corresponding to three
waves reflected from three different faces of the tube
space will emerge instead of each one of the coordi-
nates y and z used in formulas (7) to describe the posi-
tion of a wave reflected from the opposite end of a flat
channel. In accordance with the notation adapted for
reflected waves, we will introduce coordinates y0, y1, and
zy instead of y and coordinates z0, z1, and yz instead of z.
The relations defining their values are in many ways sim-
ilar to formulas (7); therefore, in order to reduce the com-
putations, we will treat waves in a single cross section
of the tube, assuming that ϕ = π/2,

(10)

ny0 IP τ pτy+( ) θ π/2–( ) pyy 1–+sin[ ] ,=

ny1 IP τ pτy+( ) θ π/2–( ) pyy+sin[ ] ,=

nyz IP τ pτy+( ) θ π/2–( ) pyz+cos[ ] ;=

nz0 IP τ pτ z+( ) θ pzz 1–+cos[ ] ,=

nz1 IP τ pτ z+( ) θ pzz+cos[ ] ,=

nzy IP τ pτ z+( ) θ pzy+sin[ ] .=

y0 τ pτy+( ) θ π/2–( ) pyy+sin(=

– 2IP ny0/2[ ] ) 1–( )
ny0,

y1 τ pτy+( ) θ π/2–( ) pyy+sin(=

– 2IP ny1 1+( )/2[ ] ) 1–( )
ny1,
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(11)

In constructing the configuration of a wave, the position
of a point on its front is defined by the coordinates
y0 – yz, zy – z1 at θ < π/2 and by the coordinates y1 – yz,
zy – z0 at θ ≥ π/2.

Figure 1c shows the configuration of a wave during
its propagation in a 1 × 1 square tube. The wave position
is registered at the moment of time τ = 2 after its initiation
on the lower wall at the point {px, py, pz} = {2, 0.6, 0}.
One cannot but note that the structure of disturbances
became irregular as a result of only two incomplete
cycles of reflections of only one wave. It is obvious that
the development of turbulence in a tube is markedly
more intensive, as is seen in Fig. 1d, where this process
is demonstrated using the example of propagation of
eight waves (as for a flat layer in Fig. 1b). Because, in
this case, it appears impossible to distinguish the details
of configuration by its image in three-dimensional
space, Fig. 1d shows its trace in the tube cross section
(x = 4) at the moment of time τ = 3. The distribution of
initial disturbances on the wall surface and in time is
preassigned by the law of chance.

Both in a flat channel and in a tube, the state of the
structure of disturbances at late stages appears fully cha-
otic at first glance, and the structure cells that are formed
are characterized by a complex distribution with respect to
size and shape, so that the entire pattern makes an impres-
sion of turbulence in the channel. Proceeding from these
examples and in view of the fluctuations of parameters in
every single wave layer, one can understand how the
pulsations are formed and what their structure is. The
effect of intermittency, which is usually explained by
the instability of the boundary layer, also finds a natural
interpretation.

As was already noted, it is more convenient to analyze
the processes for a flat layer, because this enables one to
demonstrate all of the important singularities of the phe-
nomenon and possibilities offered by the concept without
resorting to cumbersome mathematical expressions in
describing the geometry of a wave reflected from a com-
plex surface, which would cause the paper to expand con-
siderably. However, in this case as well, before turning to
the analysis of pulsations, one must treat the problem of
the site and sequence of initiation of a series of k distur-

zy τ pτ z+( ) θsin pzy+(=

– 2IP nzy 1+( )/2[ ] ) 1–( )
nzy,

z0 τ pτ z+( ) θ pzz+cos(=

– 2IP nz0/2[ ] ) 1–( )
nz0,

z1 τ pτ z+( ) θcos pzz+(=

– 2IP nz1 1+( )/2[ ] ) 1–( )
nz1,

yz τ pτy+( ) θ π/2–( ) pyz+cos(=

– 2IP nyz 1+( )/2[ ] ) 1–( )
nyz.
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bances. In fact, we have already come up against this
problem. At k = 1, the initial parameters of disturbances
were selected simply from considerations of obvious-
ness, while at k = 8 they were preassigned by the law of
random numbers.

The use of this law in the problem at hand involves
certain special features. The sampling of random values
of a parameter presumes a uniform distribution of prob-
ability in the preassigned range. A property that is com-
mon to any random number generator is the variation of
the internal state on every reference to it. Therefore,
repeated references will cause the generator to produce
different numbers. The eventual outcome is clear from
expressions (7) and (8). Assume that, as a result of the
first reference, the generator gave a random value of
some parameter, say, pτ. If this value varies on subse-
quent requests, the wave coordinates will turn out to be
random, and it will be impossible to describe any suc-
cessive propagation of the wave. However, for other
waves, one must find other random values which must
also be reproduced during their lifetime. These require-
ments hold for the random values of the parameters px, py,
and pz as well.

We will treat this problem using the example of the
Mathematica-4 system. Let the parameter pτ vary in
the range of dτ = τ2 – τ1. We will set the generator to the
SeedRandom [s] state, where s is an integer equal to
the running time of the day (in fractions of a second).
Then, the operation 

will develop in the τ2–τ1 range a sequence  of k con-
stant numbers selected at random, which will be repro-
duced on every request of the value of . The random
values of the initial coordinates of all k waves arising in
the ranges dx = x2 – x1, dy = y2 – y1, and dz = {0, 1} will
be defined in the same manner.

The randomness of place and time of initiation of
disturbances is but one of the options of distributions of
pτ and pr . Disturbances may arise at some set of fixed
points associated, for example, with microprojections
on the wall surface. Given this nature of disturbances,
both a periodic (to be more precise, quasi-periodic) and
a random behavior of the process in time is permissible.
Finally, note that the preassigned channel size and wave
velocity set up conditions under which the reflection of
waves in a certain spectral range becomes preferable.
However, as was demonstrated above, the reflections
bring into action the mechanism of formation of distur-
bances whose position is independent of the singulari-
ties of the wall. In this case, disturbances will arise
almost periodically. Different scenarios are apparently
realized in experiments. And each one of those scenar-
ios must affect, in its own manner, the structure of pul-
sation of parameters and, first of all, their spectra. At
the same time, any regularity of the emergence of dis-
turbances may be represented by appropriate expres-

pτ Table τ2 τ1–( )Random[] k{ },[ ]=

pτk

pτk
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sions for the parameters pτ and pr , as in the case of ran-
dom sequences. Then, the results of comparison of
experimentally obtained and model spectra will help
find this sequence and, along with it, the mechanism of
the process effective in a concrete experiment. We will
return to this problem in what follows; at this stage, we
will investigate pulsations of velocity upon propagation
of a single wave in the channel, and then the structure
of pulsations for a series of waves.

4. PULSATIONS OF VELOCITY
DURING PROPAGATION OF DISTURBANCE

We will determine the time dependence of velocity
at an arbitrary point {x, y, z} of a channel. It will be
recalled that it is other than zero only inside a layer of
thickness 2a; therefore, pulsations at the point {x, y, z}
will arise only at the moment of arrival to this point of
the leading wave front and will cease when the trailing
wave front leaves this point. However, both the forward
wave and all reflected waves pass through the above-
identified point in the channel. Therefore, the velocity
at that point will pulsate during the entire time of obser-
vation, and all waves must be included in calculating this
velocity. We will judge the properties of these pulsations
by the spectra which may be constructed using the Fourier
transform of the time dependence of velocity.

Let the radius vector rn(ξ, η, ζ) of the wave front in
free space, |z | ≥ 0, connect the wave center px , py , pz to
the imaginary point corresponding to n reflections. At
this point, pulsations of velocity would be observed on
condition that |rn – τ| < a, where rn is the distance to this
point and τ is the actual radius of spherical wave in the
free half-space. The velocity profile in the layer, u(rn – τ),
is formed by the distribution P(r) of density in the ini-
tial disturbance of radius a, with its shape maintained dur-
ing propagation, while the amplitude decreases both with
time and on every reflection of the wave from the wall.

We will represent the distribution P(r) in the form of
the product of the constant P by some function, for
example, cosine, with the argument (rn – τ)/a. For the
velocity u at the point of space rn, we have

(12)

Without loss of generality, the coefficient B = cP/2ρ
may be taken to be equal to unity. We will express the
components ξ, η, and ζ of the radius vector rn in terms
of the observation point coordinates x, y, and z in the
related frame of reference. We will take into account
the fact that two of these components, ξ and η, are not
affected by the number of reflection, and they remain
constant for any values of n, while the third component,
ζ, depends both on n and on the wall on which the wave
arises. In determining this correlation, we will use the

u

0, rn τ– a>

B 1 α–( )n τ( ) π
2
---

rn τ–
a

------------- 
  rn τ–

τ
-------------,cos rn τ– a.<







=
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fact that conjugate or imaginary points correspond to
the observation point at the moments of passage of
reflected waves through this point. We use the above-
identified regularity of their position to find the correla-
tion between the coordinates in two frames of refer-
ence. The observation point {x, y, z} is known. Because
this is a real point, one can immediately write the equal-
ities ξ = x, η = y, and ζ = z . The first imaginary point is
a mirror reflection of the observation site in the wall
plane and, for this point, ξ = x, η = y, and ζ = 2 – z . Each
subsequent imaginary point shifts to the distance δζ = 2
(dimensionless units). Then, Eqs. (7) yield

(13)

where n is given by expression (8).
Formulas (12) and (13) enable one to simulate the

distribution and properties of disturbances in a flat
channel. We will treat this simulation in more detail,
including the sequence of operations for determining
pulsations of the velocity u and the spectrum of these
pulsations during propagation of a single wave in the
channel. In accordance with the adapted procedure, one
must first indicate the values of parameters that preas-
sign the process conditions, i.e., the input data. For
example, for the size of initial disturbance we use the
value a = 0.1 (a fraction of the separation between the
walls), estimate the reflection losses as α = 0.1, and for
the observation site we select the coordinates {x, y, z} =
{0.3, 0.5, 0.7}.

Because the scatter of the beginning and site of ini-
tiation for a single wave is of no importance, the distri-
butions of the initial parameters pτ and pr and the ranges
of their variation dτ = τ2 – τ1 and dr = r2 – r1 may be
eliminated from treatment. Instead, we will place the
initial disturbance on the upper wall at the point with
zero values of the remaining parameters. In describing
pulsation, it is further important to preassign the maxi-
mum number nmax of wave reflections from the walls
and the time T during which the process is analyzed.
We will include 10 reflections. Accordingly, the dura-
tion of observation of the process will be restricted to
T = 10. Then, the initial conditions will have the form

First of all, formulas (13) are used to find the coordi-
nates {ξn, ηn, ζn} of imaginary points in the half-space,
as well as the distances rn to these points from the
selected observation site {x, y, z} and the numbers n of
wave reflection.

Then, in accordance with formulas (12), velocity pul-
sations u(τ, n) are calculated at each passage of the wave

ξ x px, η– y py,–= =

ξn 2IP
n 1+

2
------------ 1–( )

pz z pz–( ) 1–( )n,+=

rn ξ2 η2 ζn
2+ + ,=

a 0.1, α 0.1, x y z, ,{ } 0.3 0.5 0.7, ,{ } ,= = =

pτ px py pz, , ,{ }  = 0 0 0 1, , ,{ } , nmax = 10, T  = 10.
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Fig. 2. (a) Velocity pulsations and (b) their spectra in a layer during propagation of a single wave: a = 0.1, α = 0.1, n = 10,
{x, y, z} = {0.3, 0.5, 0.7}, {pτ, px , py , pz} = {0, 0, 0, 1}.
layer past the observation point {x, y, z} located inside the
channel. At the same time, these pulsations are added up
to form a unified time dependence of velocity at the obser-
vation point in the form of the piecewise smooth func-
tion u(τ).

In conclusion, technical (but important) procedures
are performed. Here, the function u(τ) is represented in
the form of a table and is then used to construct graphs
for velocity pulsations and for the spectrum of these
pulsations. The spectrum (Fourier transform) calcula-
tion procedure involves breaking the observation time
T into segments (resolvable elements) whose number N
defines the spectral resolution and the range of frequen-
cies ν of the spectrum. It is in the table that the values
of T and N are found. In the case of single wave propa-
gation being treated, at T = 10 it is quite sufficient to
assume that N = 500. Then, the number of intervals N,
the time τ (in dimensionless units), and the dimension-
less frequency ν (in pulsations per unit time) will be
related as N = 50τ and N = 10ν + 1. The dependences
of u(τ) (to be more precise, of u(N)) and of the ampli-
tudes of the pulsation spectrum A(ν) (or A(N)) are given
in Fig. 2. We use the example of a single disturbance to
find out which parameters and how affect the spectrum
of pulsations in the channel. Obviously, as regards the
initial parameters {pτ, pr}, the wave start delay, pτ, has
no effect on the form of spectrum, while the removal of the
source away from the observation site, pr, must deform
the velocity pulsations and their spectrum, which is asso-
ciated with the properties of the function r–1 and with the
variation of the angle of reflection. The velocity u in the
wave layer is proportional to τ–1; therefore, the observa-
tion time T (or the number of reflections nmax) governs
the minimum amplitude of pulsations and, conse-
quently, the high-frequency part of the spectrum that
requires a respective number of resolvable elements N.
Generally speaking, the wider the spectral band, the
more accurately the model describes the real process;
however, at some level, the accuracy becomes redun-
dant. In the example being treated, at a = α = 0.1 and
T = 10, the amplitude of pulsations decreases by a fac-
tor of almost 300 during the time of observation. For
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our purposes, pulsations of a lower amplitude may be
ignored.

Less obvious is the importance of the size a of initial
disturbance, of the distribution P of parameters in the
source, and of the loss factor α during wave reflection
from the wall. Some preliminary information about the
effect of these factors may be provided by the represen-
tation of function (12) in the integral form of the Fou-
rier transform. Without going into details of the proce-
dure of including function (12) into known expressions,
note that, upon integration, two cofactors of this func-
tion would produce a relation in the form of sine inte-
gral si. In the low-frequency spectral range, it is equal
to π/2; however, as the frequency increases, si is
approximated by an expression of the type of cosψ/ψ,
and the frequency ν is replaced in our case by the prod-
uct aν. That is, the spectrum in some or other degree
will be modulated, and the frequency band must
increase with decreasing a. According to formulas (12),
corrections into the shape of spectrum are introduced
by the form of the function of velocity distribution P in
the wave layer, as well as by the loss factor α which
governs the jump of velocity pulsations upon wave
reflection from the wall. In order to estimate this effect,
we will use formulas (12) and (13) and the foregoing
list of initial parameters and will successively, one by
one, vary the values of the parameters a, P, and α, with
the other parameters remaining as given in the list. The
calculation results are given in Fig. 3, where the varia-
tions of the parameter a  {0.2, 0.1} are represented
by spectra 1 and 2, respectively. The distribution P (see
Eq. (12)) was given by the functions P3 = 1 – |rn – τ|/a
and P4 = 1 – (|rn – τ|/a)4, as represented by spectra 3
and 4. Spectra 5 and 6 correspond to the loss factors
α  {0.1; 0.5}. The vertical lines at 10ν + 1 = 200
indicate the sine curves added to the velocity u, with the
amplitude g and frequency ν of each one of those sine
curves giving an idea of the characteristics of pulsa-
tions in absolute magnitude.

It follows from graphs 1 and 2 in Fig. 3 that the fre-
quency of the maximum of the first harmonic is defined
by the width of spherical wave layer and equal to 1/2a.
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Fig. 3. Spectra of pulsations at the point {x, y, z} = {0.3, 0.5, 0.7} with varying disturbance parameters: (1, 2) a = {0.2, 0.1}; (3, 4) P =
{1 – |rn – τ|/a, 1 – (|rn – τ|/a)4}; (5, 6) α = {0.1, 0.5}.
Note the uniformity of modulation of all spectra. The
estimates reveal that, starting with the second har-
monic, the modulation frequency remains a constant
quantity for the given value of a; with a varying from
0.01 to 0.2, its ratio to the basic frequency and the prod-
uct aνm, where νm is the frequency of harmonic m, are
virtually invariable. Hence it follows that the entire
spectral band is inversely proportional to the size of
primary disturbance, as is in fact demonstrated by
curves 1 and 2 in Fig. 3. In so doing, the spectral den-
sity decreases, and a comparison of the amplitudes
reveals the extent of this decrease.

The function P likewise affects the spectrum of pul-
sations. It follows from a comparison of curves 2, 3,
and 4 (Fig. 3), where, respectively,

,

and

that this effect is analogous to the spectrum of the func-
tion P proper and, the closer the distribution P to rect-
angular pulse, the stronger the development of higher-
order harmonics. Therefore, in estimating the effect of
the form of function P on the pulsation spectrum, one
can be guided simply by the properties of the Fourier
transform of this function.

The importance of the loss factor is clear from a
comparison of curves 5 and 6 (Fig. 3), where the values
of α are 0.1 and 0.5. For a relatively low level of losses,
a rapid oscillations are observed in spectrum 5 along
the entire spectral curve. As the losses increase, this
oscillation levels off, and spectrum 6 becomes
smoother and follows the averaged amplitudes of spec-
trum 5.

We treated the effect of various factors on the spec-
tral properties of velocity pulsations, when a single dis-
turbance in the form of a spherical wave layer propa-
gated in a channel formed by two parallel walls. The
width of the wave layer was equal to the diameter of
initial disturbance. The amplitude-frequency character-
istic, or pulsation spectrum, depended on the position

P
π
2
---

rn τ–
a

---------------, P 1
rn τ–

a
---------------–∝cos∝

P 1
rn τ–

a
--------------- 

 
4

,–∝
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of the wave initiation point relative to the observation
point rather than on the moment of its initiation.

Proceeding from these results, one can expect that a
sequence of waves initiated at one and the same site
will produce the same spectrum irrespective of the
behavior of this sequence. The frequency band of the
spectrum will depend on the number of reflections
taken into account; however, if the number of reflec-
tions is preassigned, the frequency band will be defined
by the wave layer thickness. The spectrum must contain
harmonics whose half-space and period of arrangement
will be defined by the same wave layer thickness, and
the damping decrement and the number of harmonics
will be defined by the form of the distribution of param-
eters in the initial disturbance. An increase in the loss
factor upon wave reflection from the wall must cause a
decrease in the amplitude of high-frequency modula-
tion of each harmonic of the spectrum and smooth out
the spectral characteristic.

5. STRUCTURE OF PULSATIONS
FOR A SEQUENCE OF DISTURBANCES

Given the properties of pulsations during propaga-
tion of a single wave (or waves issuing from a single
point) in a channel, one can proceed to simulation of
turbulence for an arbitrary sequence of disturbances;
that is, in determining the behavior of velocity pulsa-
tions at the observation point, one must include the con-
tribution made by disturbances originating from different
sites (on the walls) and at different moments of time. Of
real importance are the versions of initial conditions when
a series of disturbances arises at random or fixed points pr,
and the moments of time pτ may be both random and peri-
odic, as well as quasi-periodic. Turbulence experiments
usually involve recording velocity pulsations at a fixed
point of the channel or taking a snapshot of distribution of
disturbances in the channel cross section. Therefore, in the
case of propagation of a series of disturbances in a chan-
nel, one needs, in addition to a spectrum at a point, which
depends on the frequency of pulsations per unit time, ν, to
simulate the structure of pulsations, i.e., their spectrum
over the height z and along the channel, for example, on
the x axis, with a spatial frequency ν expressed in pul-
SICS      Vol. 92      No. 4      2001
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Fig. 4. Velocity pulsations and their spectra at the point x = y = 10, z = 0.7, in the interval of τ ∈  [30, 60]: (a) pr and pτ, random
functions; (b) pr—five fixed points, pτ—function with the period of T/20.
sations per unit length. In so doing, the question arises
as to the extent to which the process is steady-state.

We will first treat velocity pulsations in time and, for
definiteness, select the minimum channel volume and
time, which correspond to the dynamic equilibrium of
the state of the structure at the observation point. Previ-
ously, it was assumed that the lifetime of disturbance
τ = 10. It is expedient that the region around the obser-
vation point, or the volume being investigated, should
be limited to the size equivalent to this time interval.
For τ = 10, the size of this volume will be {x1 – x2, y1 – y2,
z1 – z2} = {0–20, 0–20, 0–1} with the center at the point
x = y = 10. From the standpoint of the model being
treated, the determination of the time t of relaxation of
the structure to the steady state is analogous to the prob-
lem of finding the level of water in a vessel under con-
ditions of the constant (on the average) delivery of
water and the efflux velocity defined by the height of
this level. Accordingly, the balance between the initia-
tion and decay of waves will be defined by an expres-
sion containing exp(–t/τ), and one can put t = 3τ, for
which the number of waves that are simultaneously
present in the channel will differ from the equilibrium
case by not more than 5%. Then, the observation of the
process must not be started before the moment of time 3τ.
The duration of observation τ2 – τ1 depends on the
objective of the problem and technical capabilities. If k
disturbances arise during the entire period T (T > τ) of
development of the process, knτ/T reflected waves on
the average will be constantly present in the channel.
JOURNAL OF EXPERIMENTAL
The reciprocal of this quantity points to the resolution
β of the process in time or space.

The time dependence of velocity pulsations in the
field of action of several waves is found in the same
manner as in the case of several reflections of a single
wave. The piecewise smooth function u(x1, x2, y1, y2, z1,
z2, τ1, τ2, px , py , pz, pτ, x, y, z, n) is summed at the obser-
vation point {x, y, z} over all k disturbances for the
sequence of moments of time τ during the period of
their emergence T, starting with the moment of time t.
In the examples treated here, the value of k = 100 is taken
for disturbances. The observation point is preassigned by
the coordinates {x, y, z} = {10, 10, 0.7}, and the period
being investigated is given by the interval {t, T} =
(30, 50); i.e., the spectrum is constructed only for the
last 20 units of time.

The methods of preassigning the coordinates for a
series of k disturbances were discussed in part above. In
the Mathematica-4 system, their distribution by the law
of chance is described by the function TRandom[], {k}
with the random number generator set to the s state. For
an ordered arrangement of disturbances, use can be
made of a function of the form of (T/k)(Range[k] – 1/2),
where T/k is the period, and the operator Range[k] gen-
erates a natural numerical series. An addition to this
function of a random element varying within a single
period gives a quasi-periodic function which is made up of
two previous ones: (T/k)(Range[k] – Random[], k). In
the same manner, one can preassign any other law of
distribution of coordinates and time of emergence of
 AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001
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disturbances. In determining velocity pulsations, the
total time of observation of the process was broken into
N = 2000 intervals, which corresponded to spectral res-
olution β = 0.01. Figure 4 gives the pulsations and spec-
tra for random and fully ordered sequences of pτ and pr .
The top graphs gave the dependences of velocity u on
time τ, and the bottom graphs show the spectra A of
velocity pulsations as a function of frequency ν
expressed by the number N of intervals β. The graphs in
Fig. 4a correspond to a random distribution of all initial
parameters of disturbances. Figure 4b is an opposite
version, in which the wave sequence is fully ordered,
and disturbances at five uniformly arranged points arise
periodically, with a period of 0.05T. Note that the pulsa-
tions of velocity u(τ), as well as the spectrum A(ν), depend
on the position {x, y, z} of the observation point. In the first
version, they are further affected by the realization of ran-
dom distributions {pτ, px , py , pz}. However, with a ran-
dom distribution of disturbances, the general form and
singularities of pulsations are preserved and resemble
the case of single wave. This leads one to extend the
inferences made in analyzing a single realization to the
entire class of random distributions. The situation is differ-
ent in the case of ordering, as is well seen in the top graphs
of Fig. 4b, where the ordering of initiation of disturbances
results in a clearly periodic behavior of pulsations. We will
take a look at how this tendency shows up in spectra.

The spectra were investigated in the frequency band
ν = 50 (pulsations per unit time equal to the time during
which the wave crosses the channel), which is governed
by the selected resolution β in view of the rules of Fou-
rier transformation. The spectrum is a set of harmonics
whose amplitude decreases very rapidly; therefore, Fig.
4 gives only parts of spectra, defined by the frequency
ν ≈ 20. The general form of the spectra in Fig. 4 reminds
one of the spectral distribution of pulsations developed by
a single wave, k = 1. As in the case of a single wave, a max-
imum of the envelope of first harmonic is located at the
frequency 1/2a, and the shape and decay of other harmon-
ics are defined by the properties of initial disturbance,
the distribution of parameters in which is given in this
case by the harmonic function P ∝  cos((r – τ)/a). Pro-
ceeding from the similarity of spectra at k = 1 and k @
1, one could expect the number k to affect the function
u(τ) and the spectral density A(ν) more than the form of
spectral distribution of pulsations. However, the partic-
ipation of a series of waves in the process leads to a
redistribution of the spectral density. In particular, the
half-width of the harmonic and its modulation vary.
The only source of all of these changes may only be
provided by the space-time characteristics of distribu-
tion of disturbances in the initial sequence, including
the number of disturbances k.

We will estimate the main parameters of this sequence
for the conditions corresponding to the above-identified
parameters. On the average, two disturbances arise per
unit time, with eight units of surface area of both walls per
each one of those disturbances; i.e., the average fre-
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quency of initiation of disturbances is two disturbances
per unit time, and the spatial frequency is 0.125 distur-
bance per unit area, or, in terms of the length r (the dis-
tance to the observation point), 3.5 disturbances per
unit length. The fundamental harmonic has a half-width
of δν = 5.5. With a random distribution of disturbances
in a sequence (Fig. 4a), several bands incorporating
sharp maxima may be identified in the spectrum. The
first such maximum is located at a frequency ν = 2,
which coincides with the average frequency of initia-
tion of disturbances. However, the highest amplitude is
exhibited by the maximum at a frequency ν = 3.5,
which coincides with the average spatial frequency of
distribution of disturbances (3.5). Note that quantitative
agreement between the time and spatial frequencies is
possible by virtue of the scales adapted for the dimen-
sionless time τ and length r.

When a partial (spatial) order is introduced into the
sequence of wave initiation, the harmonic half-width nar-
rows down and the contrast between individual maxima
corresponding to different frequencies and their combina-
tions increases appreciably. This effect increases in the
case of fully ordered series of disturbances with respect to
both space and time. The effect of periodicity, at which the
process is characterized, in addition to frequencies in
space and, on the average, with respect to time, is further
characterized by the fixed frequency of emergence of a
group of five disturbances (ν = 0.4), is demonstrated by
the spectrum in Fig. 4b. This spectrum consists of only
isolated maxima. Altogether, the fundamental har-
monic includes 23 maxima, and the average (over all
maxima) frequency shift is 0.4, which is equal to the
frequency of emergence of a group of disturbances.
These results may be treated as a corroboration of the
assumptions of the direct dependence of the behavior of
time spectrum modulation on the regularities of the ini-
tiation of disturbances. They may prove useful from the
standpoint of preliminary estimation of the expected
results in the simulation of turbulence, as well as in
approximate analysis of the process.

Spatial spectra of pulsations must correspond to simi-
lar regularities. In turning to these spectra, we will use the
same conditions as those adapted for analyzing pulsations
in time. The wave contribution to the structure of pulsa-
tions will be included during the assumed lifetime τ = 10.
During this time, the wave passes the distance r = 10 and
is reflected from the walls no more than 10 times. In order
to investigate the spatial structure in the steady-state
mode and, at the same time, reduce the number of ver-
sions of the problem, we will set the dimensions of the
working volume in accordance with the relations

We will take the number of disturbances k for this vol-
ume to be k = 100. For the above-identified conditions,
the steady-state mode sets in starting with the moment
of time τ = T = 50. The dependence of the velocity pul-
sations on the coordinates in some direction will be

x1 x2– y1 y2– z1 z2–, ,{ } 0–20 0–20 0–1,,{ } .=
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Fig. 5. The parameters of pulsations in the interval of x ∈  [10, 30] (y = 10, z = 0.7) at the moment of time T = 50: (a) pr and pτ,
random functions; (b) pr—five fixed points, pτ—function with the period of T/20.
determined using the procedure of obtaining time spec-
tra of pulsations at the observation point.

According to this procedure, in order to obtain the
spectrum of pulsations in time, the observation point
{x, y, z} is fixed, and, at the moments of time τ ∈ [t, T],
the piecewise smooth function

is calculated and then summed for all k disturbances.
On the other hand, in order to obtain the spatial spec-

trum in a preassigned direction, the moment of time T is
fixed, and the piecewise smooth function

is calculated and then summed over all k waves at
points r ∈  [r1, r2] of the segment being investigated in
the preassigned direction. However, some difference
exists between different directions. We will treat the
procedure of obtaining the spectrum in the transverse
and longitudinal directions of the selected channel vol-
ume parallel to the z axis and x axis. The first of these
directions may be defined by the coordinates x and y,
for example, x = y = 10, which corresponds to the vol-
ume center, with the value of the parameter z varied in
the range z ∈ [0, 1] with a step of 0.01. Similarly, a line
parallel to the x axis may be preassigned by the coordi-
nates y and z. However, unlike a line parallel to z whose
variation limits are automatically preassigned by the
channel walls, no such natural limitation exists for the
x axis.

u x1 x2 y1 y2 z1 z2 τ1 τ2 px py pz pτ x y z n, , , , , , , , , , , , , , ,( )

u x1 x2 y1 y2 z1 z2 T px py pz pτ r n, , , , , , , , , , , ,( )
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In this case, the choice of boundary conditions must
provide, first, the formation of a steady-state structure and,
second, the previous specific density of perturbations in
the entire region being investigated. This requirement may
be satisfied in a natural manner by increasing the extent of
the region of initiation of disturbances on each side along
x to a distance corresponding to the wave lifetime. While
increasing the length of the volume being investigated,
one must change the number of initial disturbances
accordingly. In the case of τ = r = 10, this matching pro-
duces k = 200 and {x1 – x2, y1 – y2, z1 – z2} = {0–40, 0–20,
0–1}. The structures of velocity pulsations in the direc-
tion of the x axis with y = 10 and z = 0.7 are given in
Fig. 5 for the moment of time T = 50. Here, the variable
parameter passes the interval x ∈  [10, 30] with a step of
0.01. The top graphs of Fig. 5 represent the velocity
pulsations for the above-identified (Fig. 4) two types of
sequences of initial disturbances, and the bottom
graphs give their spectra as functions of N = 20ν + 1,
where ν is the spatial frequency along x. The spectra are
limited by the frequency ν ≈ 20.

As is demonstrated by the results of comparing
Figs. 4 and 5, the spatial characteristics of pulsations in
the direction of the x axis are largely similar to the prop-
erties of spectra in time. Comments on the spectra of
pulsations in time (Fig. 4) are largely true of the spatial
spectra in Fig. 5 as well. In particular, the ordering of the
sequence of primary disturbances causes an increase in the
contrast of spectral lines. The difference is observed only
for the low-frequency (long-wave) region in which the
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001



SIMULATION OF TURBULENCE 589
density of spatial spectra exceeds that of spectra in time.
This difference is quite explicable.

Indeed, the characteristic time of variation of veloc-
ity at the observation point is associated, first of all,
with the thickness 2a of the spherical wave layer, so
that, at a = 0.1, the frequency ν = 5. In this case, the
spectral density in other frequency ranges depends on
the length of coherence of a pulsation train formed as a
result of the superposition of primary waves. Obviously,
the possibility of the formation of a train whose length
appreciably exceeds 2a is less, the greater this length. This
is what is observed in Fig. 4, where the spectral density in
the low-frequency region decreases almost to zero. On the
other hand, when a wave crosses a segment in which a
spatial spectrum is investigated, the length of coherence
increases automatically with the radius of the spherical
wave layer in the process of its propagation. In this
case, the density of the low-frequency part of the spec-
trum depends on the number of waves which have the
appropriate parameters and site of initiation. As is seen
in Fig. 5, the spectrum in this region is by no means
zero.

In this respect, the spatial spectrum in the direction of
the z axis is representative. Similarly to the time spec-
trum, this spectrum lacks the low-frequency component;
however, this is due to the fact that the length of the seg-
ment being investigated is limited. At the same time, in
the region of other frequencies, the spectral distribution
on the z axis almost coincides with the envelope of the
spatial spectrum in the direction of the x axis. The calcu-
lation results demonstrate that the described properties
of spectra show up for all forms of sequences of initial
disturbances. Note further that the density of the low-fre-
quency part of the spectrum depends also on the width
2a of the spherical wave layer. As the layer expands, the
spectral density in the low-frequency region increases,
because the length of coherence increases both in the
layer proper and in the train of pulsations during the
superposition of waves. In spatial spectra, this process
accelerates further as a result of increase in the volume
of coherence.

The foregoing results indicate that the concept of tur-
bulence based on the superposition of acoustic waves
enables one to calculate the time and space characteris-
tics of the turbulent process if the boundary and initial
conditions are preassigned. Because no additional
restrictions are introduced into the suggested model, it
may find fairly wide application. For example, it may be
used to describe the structure of disturbances of low-
temperature plasma, where acoustic (ion-sound) waves
exist.

6. COMPARISON OF MODEL CALCULATION 
RESULTS WITH EXPERIMENTAL DATA

In order to compare the developed model of turbu-
lence with experimental data and to provide an example of
its application, we will turn to the results of studies of
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plasma channels developed by a Bessel beam of laser radi-
ation. Because the experimental procedure and results
belong to a new line of investigations, we will provide
some explanations essential from the standpoint of
understanding subsequent description.

Bessel beams [4] are formed by conical focusing
lenses, i.e., axicons, which transform a plane wave
front to a conical one with the angle γ at the cone base.
Over the axicon focal length, L ≈ R/γ (2R is the incident
wave diameter), the wave beam is diffraction-compen-
sated, and the transverse distribution of the field in the
beam is constant and described by the zero-order Bessel
function J0(kr sin γ), where k = 2π/λ and λ is the radiation
wavelength. Zeros of the Bessel function divide the entire
beam into cylindrical parts. Their radii are defined by
the equalities kri sin γ = 2.40, 5.52, 8.65, 11.79. With
the beam intensity exceeding the breakdown threshold,
a plasma channel is formed over the focal segment
length. In the channel, the plasma temperature reaches
50 eV; the electron density, 5 × 1019 cm–3; the ion sound
velocity (ZkTe/mi)1/2, 3.5 × 106 cm/s.

Two interference patterns of a channel are given in
Fig. 6a. They were obtained as a result of joint research by
the Institute of High Temperatures of the Russian Acad-
emy of Sciences (IVTAN) and University of Maryland,
USA, in the facility described in [5] in the laboratory
headed by H.M. Milchberg with the participation of
L.Ya. Margolin and the present author. The experiments
were made under the following conditions. An axicon
with a base angle of 30° (γ = 18°) transformed heating
radiation (λ = 1.06 µm, E = 0.6 J, τ = 100 ps, D = 1 cm)
to a Bessel beam with the diameter of the central part
2rb ≈ 2.6 µm and approximately 1.5 cm long. The state
of the plasma channel over a length of 512 µm was
assessed by the interference patterns, whose enlarged
image was recorded by a CCD camera in the light of
probing laser radiation (0.53 µm, 70 ps). The numerals
at the images of interference patterns indicate the num-
bers of pixels of the CCD camera, each sized 1.6 µm.
The interference patterns in Fig. 6a were obtained for
nitrous oxide at pressures of 200 torr (top frame) and
500 torr (bottom frame) 250 ps after the triggering of
the heating pulse. This medium was selected in view of
the low ionization potential and the low threshold of
optical breakdown, owing to which a stable plasma
channel could be formed. Against the background of
equally inclined interference bands, one can see the
contours of plasma channels with diameters of 57.3 and
41.0 µm, respectively.

The deviation of interference band from its initial
direction, or the band shift, points to the difference of
optical lengths during the beam propagation in undis-
turbed gas and in the plasma channel, which enables one
to use the band shift to assess the structure of disturbances
in the channel. As is demonstrated by the interference pat-
terns, the general form of the band shift in the channel
depends on pressure. At 200 torr, the interference bands
assume the form of meniscus, with their sequence remain-
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ing regular. As the pressure increases, this regularity is
gradually disturbed and, at 500 torr, it almost disap-
pears. With a subsequent minor increase in pressure or
delay, the band trace is lost, and it is impossible to mea-
sure its shift. Therefore, the interference pattern,
recorded at 500 torr with a delay of 250 ps, was used to
compare disturbances in the channel with the predic-
tion data about pulsations.

The selected experimental procedure, defined by the
high requirements of space-time resolution, makes it pos-
sible to determine the spatial characteristics of pulsations
only in the axial direction, along the x axis. Indeed, the
time characteristics would call for a large number of inter-
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ference patterns, and a much higher density of interfer-
ence bands is required for a radial distribution that is anal-
ogous to the function u(z). At the same time, 56 bands
come into the view of the interferometer in the longitudi-
nal direction, along the x axis. All in all, the shift δ of inter-
ference bands does not exceed the order of interference h
(distance between the bands). We assume them to be
resolvable elements and obtain the above-mentioned pos-
sibility of constructing the curve of dependence of the
band shift on longitudinal coordinate δ(x), analogous to
the distribution of velocity pulsations u(x). The interfer-
ence pattern enables one to find the distribution of
shifts δ(x) along lines parallel to the axis but arranged
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at different distances from the latter (an analog of the
channel height).

Given in Fig. 6b by way of example are the results
of measurements of the band shift on the half-radius
level, r/R = 1/2. The top graph represents the δ(N) cor-
relation, where N is the interference band number equal
to x/h, and the bottom graph represents the respective
spatial spectrum. Here, the spectral density is expressed
in relative units (as a ratio to its maximum), and the fre-
quency ν is expressed in pulsations per single interfer-
ence band, i.e., per distance h between poles. In com-
paring these results with the graphs in Fig. 5, note that
the structure of disturbances in a plasma channel (with
allowance for limited resolution) has features in com-
mon with structures of pulsations in a flat channel for
ordered or partially ordered sequences of initial distur-
bances. However, a more detailed comparison calls for
refinement of the model. Therefore, we will treat the
process of channel formation in more detail.

The source of energy during channel formation is
obviously provided by the field of Bessel beam. As is
known [4], this field has a structure. Its properties in the
radial direction are associated with the form of the Bessel
function, and in the longitudinal direction it is shaped up
under the effect of nonlinear processes and forms a chain
of maxima divided by distance l = 2λ/sin2 γ [4] (in our
case, l ≈ 21 µm). We will assume for the time being that
the breakdown of gas occurs in the volume of such a
maximum, and that this breakdown may be treated as a
microexplosion, with the channel formation being
described proceeding from the problem of a series of
point explosions. At the initial stage, the wave propaga-
tion may be regarded as self-similar. However, we are
interested in late stages, at which the conditions of self-
similarity are disturbed, and the wave approximates an
acoustic wave. A direct calculation of wave propaga-
tion is associated with errors due to inaccurate data
about the process of energy contribution during the
breakdown of gas [6]. In order to verify this assump-
tion, we will use the solution of the problem of point
explosion with counter-pressure [7], in which charac-
teristic scales of length and time appear. In particular,
the length scale is usually provided by the sphere
radius R = (ε/p)1/3, where ε is the energy of microexplo-
sion and p is the initial gas pressure. We compare two
processes (Fig. 6a), which are registered under identi-
cal conditions at the same time (one extra parameter is
eliminated) and differ by the initial pressure alone, to
find the ratio of their diameters. This ratio is 1.40,
which almost coincides with the value of 1.38 calcu-
lated for the length scale R. Therefore, this assumption
is confirmed. However, the question remains as to the
site and volume of the microexplosion. The problem is
that it is almost impossible to obtain these data experi-
mentally. It turns out, however, that the problem may be
solved using the suggested model.

Let us formulate the problem. Microsites of break-
down serve the function of primary disturbances. In the
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radial direction, they may arise inside of the main part
of the Bessel beam or within several of its rings, whose
size on the scale of the channel radius (41.0 µm at
500 torr) is a = 0.063, 0.145, 0.227, and so on. In the
direction along the channel, the number of the rings
must not exceed the number of diffraction maxima,
which is 24 or 25 over a length of 512 µm but may be
less. The problem reduces to determining these param-
eters. In order to solve the problem, we will, first of all,
set the parameters of the model in correspondence with
the experimental conditions. Note that the parameters
of the model, adapted in constructing the graphs in Fig. 5,
corresponded to the steady-state mode of the process
and described local pulsations of velocity in a flat chan-
nel with disturbances located on its walls. In the exper-
iment, the process is characterized by a number of dis-
tinctions.

At the initial stage of the channel expansion, when
the first disturbances only form the radial dimensions
of the cylinder, reflected waves may be ignored, and the
state of the structure may be characterized by the
parameter T = 1. Then, by virtue of the symmetry of the
propagation of pulsations, their geometry may be
described by two coordinates, namely, longitudinal
coordinate x and radial coordinate r. Further, the struc-
ture of pulsations in the model should be analyzed in
the same segment as in the experiment: x ∈  [0, 25R],
where R is the channel radius. We express the coordi-
nate x (for convenience of comparison with the mea-
surement results) in terms of the distance h between
interference bands to derive {x1, x2} = {0, 55} for the
extent of this segment. As is known, the shift of inter-
ference bands produces a pattern of distribution of dis-
turbances, which is averaged along the chord of cylin-
drical channel, and the disturbances arise on its axis.
Let the averaging take place on a distance equal to half
the channel radius, i.e., impact parameter r0 = R/2.
Then, the path y along the half of the chord with the
coordinates x = (x2 – x1)/2 and z = R/2 varies within zero
to r0 , where ϕ is the azimuth angle. The summa-
tion over the length y of the chord must include all dis-
turbances that arise at the points px in the region {x1, x2}
at the moments pτ of the time of the effect of a heating
pulse of duration τ0.

The treated properties of Bessel beam and plasma
channel enable one to find the parameters of the model.
A version of these parameters for describing pulsations
in the plasma channel has the form

In addition to the conditions specified previously, this
list includes the length of the part of the channel being
investigated {x1, x2} and the number of disturbances k

ϕtan

a 0.063, T 1, k 25, τ0 0.4,= = = =

x1 1, x2– 56, y1 0, y2 r0 π/3( ),tan= = = =

r0 0.5, m 11, β 1,= = =

Q 1, q 0, θ 0.= = =
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with due regard for edge effects (T = 1), the resolvable
element β, the form of function P(r/a), the number m of
elements of summation along the chord, the longitudinal
distribution of disturbances px, the shift Q of the entire
sequence of disturbances (within the band), the range q
of random deviations of coordinates in the case of partial
violation of periodicity of sequence px, the time distribu-
tion of disturbances pτ, and a possible delay of break-
down θ. In the experiment, the pulsations expressed in
terms of the order of interference h are constructed as
functions of the number of the interference band (with
resolution of β = 1, single band). Dimensionless quan-
tities on the scale of the channel radius R are used in the
calculations. The coefficient µ was introduced for com-
parison of the model and measured data, and all graphs are
given as the ratio of quantities to their maximum values. 

The results of applying the model to initial perturba-
tions of sizes a = 0.063, 0.145, and 0.227 (correspond-
ing to the central part of the Bessel function, to its first
and second rings) are given in Figs. 6c–6e. The graphs
in Fig. 6c represent the structure of pulsations for
parameters corresponding to the foregoing version.
Here, the size of disturbances is limited to the central
part of the Bessel beam, a = 0.063, the periodic (along
the x axis) arrangement of disturbances and the random
law of their initiation within the duration of the heating
pulse are assumed, τ0 = 0.4, and the function P(r/a) = 1
is selected.

The wave front of the Bessel beam travels through
the channel region being investigated in a time of
approximately τ = 0.01 (less than 2 ps); therefore, the
delay θ in this stage was not included. The model
dependences in Fig. 6d are constructed for the case of
a = 0.145, when the diameter of initial pulsations is
limited by the second zero of the Bessel function. Here,
it was still assumed that the disturbances are arranged
periodically along the x axis and, in time, by the law of
chance in accordance with the previously described
procedure. For the subsequent ring of the Bessel func-
tion, where a = 0.227, the model graphs (with the same
assumptions) are given in Fig. 6e.

The results of comparison of Figs. 6c and 6e (the
central part, a = 0.063, and the second ring, a = 0.227,
of the Bessel function) with the experimental data
(Fig. 6b) point to an inconsistency between the selected
parameters of the model and the conditions of plasma
channel development. A much better agreement is exhib-
ited by the graphs in Fig. 6d for the first ring, a = 0.145.
The characteristics of the process, which provided for
the best agreement between the predicted and experimen-
tally obtained dependences, were determined by exhaus-
tion of parameters of the model. The number of distur-
bances k, the distribution px (including the shift Q of the
entire sequence and the range of scatter q), the duration
τ0 of the period of initiation, and the form of the func-
tion P(r/a) were varied for a = 0.145 .

The calculation results have demonstrated that the
structure of disturbances in the channels is described
JOURNAL OF EXPERIMENTAL 
most accurately for the following values of the param-
eters being varied: k = 25, τ0 = 0.2, Q = 0.17, q = 0, and
P(r/a) = 1. According to these data, disturbances arise
within the second ring of the Bessel function with a
radius of 3 µm during a period of time limited by the
range τ = 0.2, or approximately 50 ps. The disturbances
are arranged regularly with a period of 21 µm, and the
scatter does not exceed several percent.

Therefore, the comparison of the results of model
calculations with the measurement data reveals that the
model correctly reflects the processes observed in the
experiment and proves the validity of the model. At the
same time, the use of the model made it possible to
determine the singularities of formation of a plasma
channel in the field of Bessel beam, which cannot be
measured experimentally.

7. CONCLUSION

The developed concepts of the nature of turbulence
made it possible to formulate the principles of simulat-
ing turbulent process, which are valid at any stage of
development of this process and for different initial and
boundary conditions. Models have been developed for
a flat channel defined by two walls and for a square
tube; these models describe the distribution of pulsa-
tions of hydrodynamic parameters, as well as space-
time Fourier spectra of these pulsations.

A flat channel has simple boundary conditions.
Indeed, in a channel like this, the disturbance of param-
eters at the observation point may be represented as a
passage of spherical surface through this point and its
mirror images in the channel walls. The shift of such an
imaginary point is defined by only one of its coordi-
nates; on every reflection, this coordinate varies by the
double height of the channel, 2d. This simple rule may
be readily extended to the case of a tube with flat faces.
In this case, however, the number of imaginary points
to be included increases. For example, in a square tube,
the number of such points triples in every cycle of
reflections and the position of these points will be
defined by two coordinates with the period 2d (here, d
is a side of square) in each direction. The example of
the steady-state mode of turbulence in a flat channel is
used to demonstrate all important singularities of the
phenomenon and, at the same time, the potentialities of
the suggested concept. The parameters affecting the
structure of pulsations have been determined, as well as
the associated effects.

The results of model calculations are compared with
the data of measurements of the structure of pulsations
of parameters in a plasma channel formed by a Bessel
beam of laser radiation. The results of comparison
reveal that the model reflects correctly the processes
observed in the experiment and prove the efficiency of
the model. The model made it possible both to describe
the mechanism of formation and the structure of distur-
bances in a channel and to make a number of inferences
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about the singularities of interaction between a Bessel
beam and matter, which cannot be measured experi-
mentally. For example, the size of the sites of break-
down of gas in the field of Bessel beam and their
arrangement along the channel axis were found, as well
as a period of time of initiation that proved to be shorter
than the heating pulse duration. Note that we are deal-
ing with physical phenomena developing over micron
distances and picosecond times, the measurements of
which present certain difficulties.

The results obtained in this study indicate that the
concept of turbulence based on the superposition of
acoustic waves enables one to calculate the time and space
characteristics of the turbulent process if the boundary and
initial conditions are preassigned. Because no additional
restrictions are introduced into the suggested model, it
may find fairly wide application.
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Abstract—A new class of strongly nonlinear steadily rotating vortices is found. The Hamiltonian contour
dynamics is proposed as a new approach for their study in some models of geophysical fluid dynamics and
plasma. Using the Euler description as a starting point, we present a systematic procedure to reduce the two-
dimensional dynamics of constant-vorticity and constant-density patches to the Hamiltonian dynamics of their
contours for various parametrizations of the contour. The special Dirac procedure is used to eliminate the con-
straints arising in the Hamiltonian formulations with the Lagrangian parametrization of the contour. Numerical
estimations illustrating the physical significance of the results and the range of model parameters where these
results can be applicable are presented. Possible generalizations of the approach based on the application of the
Hamiltonian contour dynamics to nonplanar and 3D flows are discussed. © 2001 MAIK “Nauka/Interperiodica”.
¶ 1. INTRODUCTION

The purpose of this paper is the analytical and
numerical study of a new class of strongly nonlinear
steadily rotating vortices that can exist in two-dimen-
sional flows with an internal scale similar to the Rossby
deformation radius in quasigeostrophic models of geo-
physical fluid dynamics [1]. We show that these vorti-
ces can have a nontrivial multipetal structure and must
rotate with comparatively small velocities under the
assumption that their characteristic scales are suffi-
ciently large compared to the internal one.

We also present a new approach based on a Hamil-
tonian version of the contour dynamics. The fact that
equations of the contour dynamics are strongly nonlin-
ear and genuinely nonlocal gave impetus to the
progress and application mainly of numerical methods
for their solution [2]. The analytical versions involving
small parameters used for deriving and solving the
approximate (local) equations of contour dynamics are
only applicable in fluid models with an exterior character-
istic scale (e.g., the depth of the unperturbed layer [3]) or
with an internal one (e.g., the Rossby radius [4]).
Because the solution of problems of this type essen-
tially depends on choosing dynamic variables parame-
trizing the boundary, it is desirable to have a sufficiently
flexible formulation of the equations of contour dynam-
ics such that these equations could be easily reformu-
lated from one phase space into another. In using
approximate methods, it is important to keep in mind
that all the information on the internal symmetry prop-

¶ This paper was submitted by the authors in English.
1063-7761/01/9204- $21.00 © 20594
erties responsible for the dynamical individuality of the
Hamiltonian system is contained in the Poisson brack-
ets. Thus, in order to prevent the loss of internal sym-
metry properties of the system, we must use the
approximations where one quantity—the Hamiltonian
of the system—is subjected to these approximations
but the original Poisson brackets remain intact. The
need to use asymptotic methods is the principal reason
for refusing traditional formulations, which are not
only incompatible with these requirements but also not
infrequently lead to cumbersome and recurrent calcula-
tions.

This paper is organized as follows. In Section 2, we
construct local Poisson brackets for an incompressible
nonuniform fluid. Relying heavily on this result as a
fundamental principle, in Section 3 we derive a hierar-
chy of the reduced Poisson brackets specially adapted
to the Hamiltonian description of models of the contour
dynamics. The contour parametrization plays a decisive
role. The occurrence of constraints is the indispensable
feature of those Hamiltonian formulations that use the
Lagrangian coordinates for this purpose. To eliminate
the constraints, Dirac’s procedure is used. In Section 4,
we consider multipetal vortex structures in the Haseg-
awa–Mima model and the axial model of electronic
fluid as examples of models admitting a direct applica-
tion of the obtained results. We focus our attention on
the study of steadily rotating multipetal vortex struc-
tures without contour self-intersections. Some numeri-
cal estimates and concluding remarks are presented in
Section 5.
001 MAIK “Nauka/Interperiodica”
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2. POISSON BRACKETS
FOR AN INCOMPRESSIBLE NONUNIFORM 

EULERIAN FLUID

The equations of motion for a nonuniform incom-
pressible fluid are formulated in terms of the Eulerian
variables: the mass density ρ, the velocity v, and the
pressure p, as

(2.1)

(2.2)

(2.3)

where f is the result of exterior forces that do not violate
the conservativeness of the fluid. This means that equa-
tions of motion (2.1)–(2.3) preserve the total energy H
given by the sum of the kinetic energy T and the poten-
tial U of the fluid, 

(2.4)

where U is in general an arbitrary functional of the den-
sity ρ. For simplicity, we assume that the fluid is
unbounded.

We now find the evolution equation for the momen-
tum density p = ρv. Equations (2.1) and (2.2) imply

(2.5)

Taking the curl of Eq. (2.5) and thereby eliminating the
gradient term involving the pressure, we obtain the
equation

(2.6)

which describes the evolution law for the vorticity of
the momentum density g =  × p under the action of
exterior conservative forces.

We now show that the equations of motion for the
incompressible inhomogeneous fluid reformulated in
terms of the momentum density vorticity are Hamiltonian
with the local Poisson brackets {γi, } and {ρ, }. First,

we compute the Poisson bracket {ρ, }. Because the
model is expected to be Hamiltonian, we have every
reason to write

(2.7)

∂tv i v k∂kv i+
1
ρ
---∂i p

1
ρ
--- f i,+–=

∂tρ v k∂kρ+ 0,=

∂kv k 0,=

H T U ,+=

T
v2

2ρ
------ x, Ud∫ U ρ[ ] ,= =

∂tπi v k ∂kπi ∂iπk–( )+

=  ∂i p ρv2

2
-----+ 

 –
v2

2
-----∂iρ f i.+ +

∂tγi eimn∂m enklv kγl
v2

2
-----∂nρ– f n+ ,=

∇

γk' γk'

γk'

∂tρ = ρ H,{ }  = ρ γk',{ } δT
δγk'
-------- ρ ρ',{ } δU

δρ'
-------+ x'.d∫
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Comparing Eq. (2.7) with continuity condition (2.2)
leads us to

(2.8)

We next introduce a local term in the integrand using
the δ-function and express the velocity components vl

in terms of the functional derivatives δT/δγk as

(2.9)

which can be directly obtained from Eq. (2.4). Upon
integrating by parts and after some algebra in Eq. (2.8).
We obtain

This implies that

(2.10)

It remains to compute the Poisson bracket {γi , }.
Using the same reasoning as for the density, we can
write the equation of motion for the vorticity of the
momentum density g as

(2.11)

With the bracket {ρ, } already computed and

Eq. (2.11) can be rewritten as

(2.12)

Comparing Eqs. (2.12) and (2.6), we obtain

If we introduce the local term eimn∂m(enklvkγl) into the
integral using the δ-function and replace the velocity

ρ γk',{ } δT
δγk'
-------- ρ ρ',{ } δU

δρ'
-------+ x'd∫ v k∂kρ+ 0.=

v l
δT
δπl

-------
δT
δγk'
--------

δγk'

δπl

-------- x'd∫ elki∂k
δT
δγi

-------,= = =

δT
δγk'
-------- ρ γk',{ } ekml∂lρ∂mδ x x'–( )–[ ] xd∫

+ ρ ρ',{ } δU
δρ'
------- x'd∫ 0.=

ρ γk',{ } ekml∂lρ∂mδ x x'–( ), ρ ρ',{ } 0.= =

γk'

∂tγi γi H,{ }=

=  γi γk',{ } δT
δγk'
-------- γi ρ',{ } δT

δρ'
-------+ x'd∫ γi U,{ } .+

γk'

δT
δρ
------

1
2
---v k

2,=

∂tγi γi γk',{ } δT
δγk'
-------- x'd∫=

– eiml∂m
1
2
---v k

2∂lρ 
  γi U,{ } .+

γi γk',{ } δT
δγk'
-------- x'd∫ eimn∂m enklv kγl( )–

+ γi U,{ } eimn∂m f n– 0.=
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components vl in accordance with Eq. (2.9), after the
integration by parts we obtain

This immediately implies that the Poisson bracket for
the vector field g and the relation between the exterior
force and the potential energy are given by

(2.13)

(2.14)

We note that the resulting force f can be found from Eq.
(2.14) up to a gradient term. This fact is a consequence
of the invariance of the equations of motion (2.1)–(2.3)
under the transformation

where φ is an arbitrary function whose choice has no
influence on the physical implications of the theory.
Thus, it follows from Eq. (2.14) that no structure other
than

is admissible for the external forces in the case where
U = U[ρ].

Collecting Eqs. (2.10) and (2.13), we find the complete
system of Poisson brackets in the phase space (g, ρ),

(2.15)

(2.16)

(2.17)

Therefore, the equations of motion for an incompress-
ible nonuniform fluid corresponding to these Poisson
brackets take the form

(2.18)

(2.19)

The results obtained in Eqs. (2.15)–(2.19) can be
considered as a generalization of the well-known Hamil-
tonian description of an incompressible homogeneous
fluid (see, for example, [5–10]) and are used in what fol-
lows as a fundamental principle in constructing a hier-
archy of reduced Poisson brackets for various models
of contour dynamics.

δT
δγk'
-------- γi γk',{ } eipje jlneknm∂pγl∂mδ x x'–( )–[ ] x'd∫

+ γi U,{ } eimn∂m f n– 0.=

γi γk',{ } eipje jlneknm∂pγl∂mδ,=

γi U,{ } eimn∂m f n.=

p p φ, f i f i ∂iφ,–+

f i
∂ρ
∂xi

-------δU
δρ
-------=

ρ ρ',{ } 0,=

ρ γk',{ } ekml∂lρ∂mδ,=

γi γk',{ } eipje jlneknm∂hγl∂mδ.=

∂tg g H,{ } ∇ g ∇ δH
δg
-------×, δH

δρ
------- ∇ ρ+ 

  ,×= =

∂tρ ρ H,{ } ∇ δH
δg
-------× 

  ∇ ρ.⋅–= =
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3. HAMILTONIAN VERSION
OF THE CONTOUR DYNAMICS

We begin with a two-dimensional plane flow where
the curl of the momentum is normal to the flow plane
and hence has only the component

(3.1)

where εik is the unit antisymmetric tensor (with ε12 = 1).
In this case, Poisson brackets (2.15)–(2.17) for an
incompressible inhomogeneous fluid can be reformu-
lated for the dynamical variables γ and ρ as

(3.2)

(3.3)

(3.4)

It is well known that two-dimensional dynamics of
patches of a constant vorticity and density can be reduced
to the dynamics of their contours, ignoring the description
of the rest of the fluid. However, it is a nontrivial fact that
the description of the contour evolution can take various
forms depending on the variables used; this deserves
attention from both practical and theoretical standpoints.

For simplicity, we consider a single domain G+

bounded by a closed fluid contour that separates it from
the rest of the fluid in an exterior region G–. Denoting
the vorticity and the density inside and outside accord-
ingly as ω+, ρ+, and ω–, ρ–, we use the respective +
and – superscripts for labeling variables in the internal
domain G+ and in the exterior region G–. Using this
notation, we can write the momentum and the mass
density as

(3.5)

where θ+ and θ– are the mutually complementary sub-
stantive functions

such that

(3.6)

We note that, by definition, a substantive θ-function
characterizing a fluid domain has the dynamical prop-
erty

,

implying that the corresponding domain moves
together with the fluid.

Inserting p-representation (3.5) in Eq. (3.1) yields

(3.7)

g 0 0 γ, ,{ } , γ εik∂iπk,= =

ρ ρ',{ } 0,=

ρ γ',{ } εki∂iρ∂kδ x x'–( ),=

γ γ',{ } εki∂iγ∂kδ x x'–( ).=

p ρ+v+θ+ ρ–v–θ–,+=

ρ ρ+θ+ ρ–θ–,+=

θ+ 1 if x G+∈

0 if x G–,∈



= θ– 1 if x G–∈

0 if x G+,∈



=

θ+ θ–+ 1, θ+θ– 0.= =

∂tθ v k∂kθ+ 0=

γ ρ+ω+θ+ ρ–ω–θ– β,+ +=
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where the variable β can be expressed as

(3.8)

It is easily seen that β has a δ-functional character and
thus describes a vortex sheet whose density is specified
by the jump of the tangential momentum across the
contour.

As the first step, we transform Poisson brackets
(3.2)–(3.4) from the phase space (γ, ρ) into the space of
dynamical variables (β, θ+). In accordance with Eqs.
(3.5)–(3.7), we have

(3.9)

(3.10)

Depending on the existence of a mass density jump
across the contour, insertion of Eqs. (3.9) and (3.10)
into Eqs. (3.2)–(3.4) leads to two types of Poisson
brackets.

3.1. Piecewise-Constant Vortex Models
without Mass Density Jumps

We first consider the degenerate case where the
mass density jump is absent, and therefore ρ+ = ρ– = ρ0.
In this case, the vortex sheet density is a constant of
motion and its presence modifies the Hamiltonian of
the model but has no influence on the Poisson bracket
{θ+, θ+'} that completely determines the contour evolu-
tion. Taking this into account, we can set β = 0 for sim-
plicity of computing. Inserting Eq. (3.10) in Eq. (3.4),
we then obtain

(3.11)

where ν = ρ0(ω+ – ω–).

Which of the Hamiltonian versions of contour
dynamics follows from Eq. (3.11) depends on how we
parameterize the substantive θ+-function. The simplest
parameterization can be achieved with the Heaviside
function

where the variable η = η(x1, t) specifies the contour
shape. The corresponding version of the Hamiltonian
description defined by the Poisson bracket {η, η'} can
be derived directly from Eq. (3.11) if we use the trivial
relation

β ρ+v k
+ ρ–v k

––( )εik∂iθ
+.=

ρ ρ– ρ+ ρ––( )θ+,+=

γ ρ–ω– ρ+ω+ ρ–ω––( )θ+ β.+ +=

θ+ θ+',{ } ν 1– εik∂kθ
+∂iδ x x'–( ),=

θ+ η x2–( )
1 if η x2≥
0 if η x2,<




=

η x2 x2d
d θ+ η x2–( ) x2d∫=
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that maps the dynamics in the phase space of g into the
phase space of η. After some algebra, we then find

It is noteworthy that the same Poisson bracket charac-
terizes the KdV-type equations. Hamiltonian formula-
tions based on this version of Poisson brackets are pref-
erable for the study of multilayer models [3].

A more general parametrization can be realized
when the contour C bounding the domain G+ is given
in the parametric form

where s is the contour arc length. The vector t = ∂ /∂s
tangential to the contour satisfies the normalization
condition

(3.12)

We note that the θ+-functions admit an analytical repre-
sentation through the contour integral,

(3.13)

where z = x1 + ix2 and  =  + i  are complex-valued

notations for the vectors x = (x1, x2) and  = ( , ),
and i is the imaginary unit. Representation (3.13) can
be obtained as a consequence of the Cauchy formula,
which is well known in the theory of functions of a
complex variable. Using another formula [11],

the z derivative of the θ+-function can be easily calcu-
lated from Eq. (3.13) as

With this result, we can find the usual and variational
derivatives of the θ+-function,

(3.14)

(3.15)

where n is the unit normal vector related to the unit tan-
gent vector t as ni = εkitk .

We now find the expression for Poisson bracket (3.11)
in the phase space of the dynamic variables . We

η η',{ } x2x2'
d2

dx2dx2'
----------------- θ+ θ+',{ } x2d x2'd∫=

=  ν 1–

x1∂
∂ δ x1 x1'–( ).–

x x̂ s t,( ),=

x̂

t2 1.=

θ+ i
2π
------

ẑsds
z ẑ–
----------,

C

∫=

ẑ x̂1 x̂2

x̂ x̂1 x̂2

z∂
∂ 1

z
--- πδ x( ),=

∂θ+

∂z
--------

i
2
--- ẑsδ x x̂–( ) s.d

C

∫=

∂iθ
+ niδ x x̂–( ) s,d

C

∫=

δθ+

δx̂i

-------- niδ x x̂–( ),–=

x̂ s t,( )
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first express the left-hand side of Eq. (3.11) in terms of the
bracket ,

Using Eq. (3.15), we obtain

(3.16)

On the other hand, using Eq. (3.14), the right-hand
side of Eq. (3.11) can be presented as

(3.17)

Comparing Eqs. (3.16) and (3.17) yields the integral
equality

whence it follows that

(3.18)

Because the bracket is skew-symmetric, the general
solution of Eq. (3.18) for  can be written as

(3.19)

where a(s', s) and b(s, s') are some structure functions
and, in addition, b(s, s') must be antisymmetric,

The choice of the structure functions a(s', s) and b(s, s')
cannot be arbitrary but must be matched with con-
straint (3.12), which means that t2 is the integral of
motion for contour dynamics models with any Hamil-
tonian. Geometrically, Eq. (3.12) specifies a surface in
the phase space  such that all the trajectories of
real motions lie on this surface. Similar integrals of
motion are known as Casimir invariants, or annihila-
tors, of Poisson brackets, i.e., {t2, ) = 0. This imme-
diately implies

(3.20)

x̂i x̂k',{ }

θ+ θ+',{ } δθ+ x( )
δx̂i s( )
---------------δθ+ x'( )

δx̂k s'( )
---------------- x̂i xk',{ } sd s'.d

C

∫∫=

θ+ θ+',{ }

=  δ x x̂–( )δ x' x'ˆ–( )nink' x̂i x̂k',{ } sd s'.d

C

∫∫

ν 1– εik∂kθ
+∂iδ x x'–( )

=  ν 1– δ x x̂–( )δ x' x'ˆ–( )
∂δ s s'–( )

∂s
----------------------- sd s'.d

C

∫∫

δ x x̂–( )δ x' x'ˆ–( )

C

∫∫
× νnink' x̂i x̂k',{ } ∂sδ s s'–( )–[ ]dsds' 0,=

νnink' x̂i x̂k',{ } ∂sδ s s'–( ).=

x̂i x̂k',{ }

ν x̂i x̂k',{ } nink' ∂sδ s s'–( )=

+ tink' a s s',( ) tk' nia s' s,( )– titk' b s s',( ),+

b s s',( ) b s' s,( )– .=

x̂ s t,( )

x̂k'

ti∂s x̂i x̂k',{ } 0.=
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Inserting Eq. of (3.19) into this condition, we obtain

(3.21)

(3.22)

Solving Eqs. (3.21) and (3.22) for the structure func-
tions a(s', s) and b(s, s'), we find

where

is the contour curvature and

Thus, the Poisson bracket in the phase space 
is expressible as

(3.23)

Now, the equations of contour dynamics can be written
in the Hamiltonian form as

(3.24)

We emphasize that constraint (3.12) must be used only
after all the variational derivatives are taken in Eqs. (3.24).

In most fluid dynamics models commonly arising in
applications, the Hamiltonians are constructed such
that

∂sa s s',( ) ti

∂ni

∂s
-------∂sδ s s'–( ),–=

∂sb s s',( ) ti

∂ni

∂s
-------a s' s,( ).=

a s s',( )
s'∂
∂ κ 'σ s' s–( )[ ] ,=

b s s',( )
1
2
--- κ '2 κ2+( )σ s' s–( ),=

κ ni∂sti ti∂sni–= =

σ s s'–( ) 1
2
--- s s'–( ).sgn=

x̂ s t,( )

x̂i x̂k',{ } ν 1– nink' ∂sδ s s'–( ) tink' s'∂
∂ κ 'σ s s'–( )[ ]–=

+ tk' ni s∂
∂ κσ s' s–( )[ ] 1

2
---titk' κ '2 κ2+( )σ s s'–( )+ .

∂t x̂i x̂i H,{ } ν 1– ni s∂
∂

nk
δH
δx̂k

-------- 
  ∫= =

+ ti κ 'σ s s'–( )
s'∂
∂

nk'
δH
δx̂k'
-------- 

  s'd

C

∫

+ ni s∂
∂ κ σ s' s–( )tk'

δH
δx̂k'
-------- s'd

C

∫

+
1
2
---ti κ '2 κ2+( )σ s' s–( )tk'

δH
δx̂k'
-------- s'd

C

∫ .

ti
δH
δx̂k

-------- 0.=
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In this case, Eqs. (3.24) can be presented as

(3.25)

Recalling that in these models

where  is the streamfunction given on the contour, we
obtain from Eq. (3.25) the equations of contour dynam-
ics in the traditional form

The equations of motion of this type were used in
[4] to derive the equations of contour dynamics in the
weak-curvature approximation for the Hasegawa–
Mima model of plasma.

To eliminate the constraint from the Hamiltonian
formulation of the contour dynamics, we introduce two
new variables ϕ and ρ as

(3.26)

where ϕ(t, s) is the inclination angle of the unit tangent
vector t to the axis x1. In terms of the new variables,
constraint (3.12) becomes

ρ = 1.

Following [12], we define the total Hamiltonian as
the superposition

involving the original Hamiltonian H and a linear com-
bination of the constraints

with λi being some multipliers that must be determined.
The constraints of this type are not a prerogative of
closed contours for which the identities

are quite evident. The same constraints are also valid
for open contours if we assume that the contours are
closed at infinity. In what follows, for simplicity, we
consider an open contour C running in the x1-direction
from –∞ to +∞. We note that in the weak-curvature
approximation, the descriptions of models with closed
and open contours are locally equivalent. In this situa-
tion, the results obtained for open contours can be
extended to closed ones.

The multipliers λi can be determined from the
requirement that the equation of motion for the variable

ni ∂t x̂i ν 1–

s∂
∂ δH

δx̂i

-------– 
  0.=

δH
δx̂k

-------- nkνψ̂,=

ψ̂

ni∂t x̂i
∂ψ̂
∂s
-------.=

t1 ρ ϕ , t2cos ρ ϕ ,sin= =

HD H λ i Ii+=

Ii ti sd

C

∫ 0,= =

ti sd

C

∫
∂ x̂i

∂s
------- sd

C

∫ 0≡ ≡
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ϕ on the surface of the constraint ρ = 1 must be defined
by the Poisson bracket {ϕ, ϕ'} as

(3.27)

Using the formulas for the variational derivatives

(3.28)

we find that

(3.29)

Integration by parts brings Eq. (3.29) to the form

(3.30)

Under the assumption that the perturbation on the con-
tour vanishes at infinity, and therefore, ϕ and its deriv-
atives tend to zero as s  ±∞, the last term in Eq.
(3.30) can be written as

In accordance with Eqs. (3.28), we have

(3.31)

and it is therefore easy to conclude that Eq. (3.30) can be
rewritten in form (3.27) only if the last term in Eq. (3.30)
can be eliminated. There is no way of doing this except by
setting

∂tϕ ϕ HD,{ } ϕ ϕ',{ }
δHD

δϕ'
----------- s'.d

∞–

∞

∫= =

δϕ
δx̂i'
-------

ni

ρ2
-----∂sδ s s'–( ),=

δρ
δx̂i'
-------

ti

ρ
---∂sδ s s'–( ),=

∂tϕ ϕ HD,{ } ∂ϕ
∂ x̂i''
-------- x̂i'' x̂i',{ }

δHD

δx̂k'
----------- s''d s'd

∞–

∞

∫= =

=  ni

∂ x̂i x̂k',{ }
∂s

---------------------
s'∂
∂

nk'
δHD

δϕ'
----------- tk'

δHD

δρ'
-----------+ 

  s'.d

∞–

∞

∫–

∂tϕ nink'
∂2 x̂i x̂k',{ }

∂s∂s'
------------------------

δHD

δϕ'
----------- s'd

∞–

∞

∫=

– ni

∂ x̂i x̂k',{ }
∂s

--------------------- nk'
δHD

δϕ'
----------- tk'

δHD

δρ'
-----------+ 

 
∞–

+∞

.

ni

∂ x̂i x̂k',{ }
∂s

--------------------- nk'
δHD

δϕ'
----------- tk'

δHD

δρ'
-----------+ 

 
∞±

=  ν 1– ϕ sss
1
2
---ϕ s

3+ 
  δH

δρ
-------

∞±

λ1+ 
  .

ϕ ϕ',{ } δϕ
δx̂i''
-------- δϕ'

δx̂k'''
--------- x̂i'' x̂k''',{ } s''d s'''d

∞–

∞

∫=

=  nink'
∂2 x̂i x̂k',{ }

∂s∂s'
------------------------,

λ1
δH
δρ
-------–

∞±
= .
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Because the theory is independent of λ2, this multiplier
can be chosen arbitrarily without affecting the equation
of motion. For simplicity, we put λ2 = 0.

The explicit form of the Poisson bracket {ϕ, ϕ'} can
be found by inserting Poisson bracket (3.23) into Eq.
(3.31) and by using the Frenet formulas

(3.32)

By a direct calculation, we obtain

Thus, we have obtained the Poisson bracket for one more
Hamiltonian version of contour dynamics. The corre-
sponding equation of motion (3.29) can now be written as

(3.33)

Because the constraint ρ = 1 can now be imposed
directly on the total Hamiltonian HD before evaluating the
Poisson bracket, Dirac’s total Hamiltonian is given by

(3.34)

3.2. Piecewise-Uniform Models with Vorticity
and Density Jumps

When a piecewise-uniform model admits density
jumps, i.e., ρ+ ≠ ρ–, the vortex sheet density

is no longer a constant of motion. In this case, the evo-
lution of the contour is therefore defined in the phase
space of two variables θ+ and β, where in accordance
with Eqs. (3.8) and (3.14), β is related to µ as

Inserting Eqs. (3.9) and (3.10) into Eqs. (3.2)–(3.4)
gives the Poisson brackets

(3.35)

(3.36)

∂sti κni, ∂sni κ ti, κ– ϕ s.= = =

ϕ ϕ',{ } ν 1–– ∂s
3δ s s'–( ) 2ϕ s∂s ϕ sδ s s'–( )( )+=

+ σ s s'–( ) ϕ s' ϕ sss
1
2
---ϕ s

3+ 
  ϕ s ϕ sss' 1

2
---ϕ s'

3
+ 

 + 
  .

∂tϕ ϕ HD,{ } ν 1– ∂s
3δHD

δϕ
----------- 2ϕ s∂sϕ s

δHD

δϕ
-----------+–= =

+ ϕ sss
1
2
---ϕ s

3+ 
  σ s s'–( )ϕ s'

δHD

δϕ'
----------- s'd

∞–

∞

∫

+ ϕ s σ s s'–( ) ϕ sss' 1
2
---ϕ s'

3
+ 

  δHD

δϕ'
----------- s'd

∞–

∞

∫ .

HD H
δH
δρ
-------–

s ∞=
ϕcos sd

∞–

∞

∫
ρ 1=

.=

µ s t,( ) ρ–v̂ i
– ρ+v̂ i

+–( )ti, v̂ i
± v i

±
x x̂== =

β ρ+v k
+ ρ–v k

––( )εik∂iθ
+ µ s t,( )δ x x̂–( ) s.d

C

∫= =

θ+ θ+',{ } 0,=

θ+ β',{ } εik∂kθ
+∂iδ x x'–( ),=
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(3.37)

where ν = ρ+ω+ – ρ–ω–.
The reformulation of contour dynamics from the

(θ+, β) phase space into the ( , µ) phase space is car-
ried out in much the same way as in the previous sub-
section. Following this procedure, we obtain from Eqs.
(3.35)–(3.37) that the Poisson brackets  and

 satisfy

(3.38)

(3.39)

(3.40)

Finding the Poisson brackets must be matched with
constraint (3.12). As noted above, this constraint means
that the quantity t2 is a Casimir invariant and hence
commutes with the variables making up the basis of the
phase space. Therefore, condition (3.20) must be com-
plemented by one more condition

(3.41)

Solving (3.38)–(3.40) with conditions (3.20) and
(3.41), we obtain

(3.42)

(3.43)

(3.44)

To eliminate the constraints, by analogy with the previ-
ous subsection, we introduce two new variables ϕ and
ρ in accordance with Eq. (3.26) under the constraint ρ =
1. The Poisson brackets on the  phase space can
be easily transformed into the (ϕ, µ) space. In fact, only
the first two brackets (3.42) and (3.43), where the dynam-
ical variables  appear, must be reformulated. The
required formulas can be obtained using Eq. (3.28) and
take the form

(3.45)

(3.46)

Inserting the Poisson bracket (3.42) and (3.43) in Eqs.
(3.45) and (3.46) and using Frenet formulas (3.32), we
obtain

β β',{ }  = νεik∂kθ
+∂iδ x x'–( )

+ εik∂kβ∂iδ x x'–( ),

x̂

x̂i x̂k',{ }
x̂i µ',{ }

nink' x̂i x̂k',{ } 0,=

ni∂s µ'tk' x̂i x̂k',{ }[ ] ni x̂i µ',{ }– ∂sδ s s'–( ),=

∂s∂s' µ'µtitk' x̂i x̂k',{ }[ ] ∂s µti x̂i µ',{ }[ ]–

– ∂s' µ'ti' µ x̂i',{ }[ ] µ µ',{ }+ ν∂sδ s s'–( ).=

ti∂s x̂i µ',{ } 0.=

x̂i x̂k',{ } 0,=

x̂i µ',{ } –ni∂sδ s s'–( ) ti∂s' κ 'σ s s'–( )[ ] ,+=

µ µ',{ } ν∂sδ s s'–( )=

+ ∂s∂s' κ 'µ κµ'+( )σ s s'–( )[ ] .

x̂i µ,( )

x̂i

ϕ ϕ',{ } nink' s∂
∂

s'∂
∂

x̂i x̂k',{ } ,=

ϕ µ',{ } ni s∂
∂

x̂i µ',{ } .=

ϕ ϕ',{ } 0,=
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If we restrict our consideration to open contours
running from –∞ to +∞ in the x1-direction, the corre-
sponding Dirac’s total Hamiltonian HD can be deter-
mined in the same way as in the previous subsection,
with the same results as in Eq. (3.34). Thus, contour
dynamics corresponding to a given system of the Pois-
son brackets is described by the equations

4. N-PETAL STRUCTURES
IN TWO-DIMENSIONAL FLUID MODELS

4.1. Hamiltonian Formulation of the Problem

The simplest models that admit a direct application
of the obtained results are a quasigeostrophic barotro-
pic model, a model of plasma based on the Hasegawa–
Mima equation, and an axial model of electronic vorti-
ces. These models are known [1, 13] to belong to vor-
ticity-like systems governed by the equation

(4.1)

where the potential vorticity ω and the streamfunction
ψ are functions of the x1 and x2 coordinates in the hori-
zontal plane and are related by

where r is an internal scale treated as the Rossby defor-

mation radius and ∆ =  +  is the two-dimensional
Laplace operator. For the Hasegawa–Mima model, the

ϕ µ',{ } –∂s
2δ s s'–( ) ϕ s∂s' ϕ s'σ s s'–( )[ ] ,+=

µ µ',{ } ν∂sδ s s'–( )=

+ ∂s∂s' ϕ s'µ ϕ sµ'+( )σ s s'–( )[ ] .

∂tϕ ϕ HD,{ } –
s2

2

∂
∂ δHD

δµ
-----------= =

–  ϕ s ϕ s ' σ s s '–( ) 
s

 
'

 
∂
∂ δ

 
H

 
D 

δµ
 

'
----------- s ', d 

∞

 

–

 

∞

 ∫

∂tµ µ HD,{ }
s2

2

∂
∂ δHD

δϕ
-----------= =

+  
s

 
∂
∂ ϕ s ϕ s ' σ s s '–( ) 

δ
 

H
 

D 
δµ

 
'

----------- s ' d 

∞

 

–

 

∞

 ∫  ν 
s

 
∂
∂ δ

 
H

 
D 

δµ
 -----------+

–
s∂

∂ ϕ s'µ ϕ sµ'+( )σ s s'–( )
s'∂
∂ δHD

δµ'
----------- s'd

∞–

∞

∫ .

∂tω ∂1ψ( )∂2ω ∂2ψ( )∂1ω–+ 0,=

ω ∆ 1

r2
----– 

  ψ,=

∂1
2 ∂2

2
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parameter r is treated as the Larmor ion radius rL

 

 given
by

(4.2)

where 

 

m

 

i

 

 is the ion mass, 

 

T

 

e

 

 is the electron temperature,

 

e

 

 is the electron charge, 

 

c

 

 is the velocity of light, and 

 

B

 

0

 

is the induction of an ambient uniform magnetic field.
The electric potential 

 

Φ

 

 and the electron number den-
sity 

 

n

 

e

 

 can be expressed in terms of the streamfunction
as

(4.3)

where 

 

n

 

0

 

 is the unperturbed plasma density.
In the axial model of electronic fluid with constant

density, the parameter 

 

r 

 

must be chosen as the skin
layer width 

 

r

 

S

 

 given by

where 

 

m

 

e

 

 is the electron mass and 

 

n 

 

is the constant
plasma density. In this model, the magnetic field 

 
B

 
 is

related to the streamfunction  ψ  by

It is easy to verify that the vorticity-like models gov-
erned by equation of motion (4.1) are Hamiltonian,
namely, characterized by the Poisson bracket of the
same type as Eq. (3.4),

and have the Hamiltonian

which can be rewritten solely in terms of the potential
vorticity as

Green’s function 

 

G

 

 is found as the solution of the prob-
lem

and has the explicit form

where 

 

K

 

0

 

 denotes the modified Bessel function of zero-
order.

rL

miTec
2

B0
2e2

----------------
 
 
 

1/2

,=

Φ
B0

c
-----ψ, ne n0

B0e
Tec
--------ψ 

  ,exp= =

rS c
me

4πne2
--------------- 

  1/2

,=

B
4πne

c
-------------ψ.–=

ω ω',{ } εki∂iω∂kδ x x'–( ),=

H
1
2
--- ψω x,d∫–=

H
1
2
--- ωω'G x x',( ) xd x'.d∫–=

∆ 1

r2
----– 

  G δ x x'–( )=

G x x',( )
1

2π
------K0

x x'–
r

--------------- 
  ,–=
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As already proved, the reduction of the description of
vorticity-like systems in Eq. (4.1) to contour dynamics
becomes possible if the entire fluid can be decomposed
into domains such that each of them moves with the
fluid and has a constant potential vorticity. For the
unbounded fluid with a single vortex patch is embedded
in a background shear flow, the distribution of the
potential vorticity ω can be presented as

where ω+, θ+ and ω–, θ– have the same meaning as before.
The corresponding Hamiltonian is then given by

After some manipulations, this can be expressed in
terms of contour-dynamical variables as

(4.4)

We note that the first integral

has a simple geometric meaning of the vortex patch
area and is a Casimir invariant (belongs to the annihila-
tor of Poisson bracket (3.23)). Therefore, it does not
affect the equation of motion and can be omitted in defin-
ing the Hamiltonian. Thus, we obtain from Eq. (4.4)

(4.5)

The following analysis is carried out in the weak
curvature approximation where the characteristic cur-
vature radius R of the contour is much larger than the
internal scale (deformation radius) r, which allows the
introduction of a small parameter ε = r/R. In this case, it is
possible to develop the local representation for the Hamil-
tonian in Eq. (4.5),

(4.6)

ω ω+θ+ ω–θ–, θ+ θ–+ + 1,= =

H
ν2

2
----- θ+θ+'G x x',( ) xd x', νd∫– ω+ ω–.–= =

H
rν( )2

2
------------ θ+θ+' δ x x'–( ) ∆G–[ ] xd x'd∫=

=  
rν( )2

2
------------ θ+ xd∫ G

∂θ+

∂xi

--------∂θ+'
∂xi'
--------- xd x'd∫+ 

 

=  
rν( )2

2
------------ θ+ xd∫ G x̂ x'ˆ,( )titi' sd s'd

C

∫+
 
 
 

.

I θ+ xd∫ 1
2
--- x̂ini sd

C

∫–= =

H
rν( )2

4π
------------ K0

x x'–
r

--------------- 
  titi' sd s'.d

C

∫∫–=

H h s; ρ ϕ,[ ] s,d

C

∫=
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where the Hamiltonian density h is expressible as a
power series in the small parameter ε,

Inserting Eq. (4.6) in Eq. (3.34) and neglecting the
fourth-order terms in ε, we find Dirac’s Hamiltonian for
contour dynamics in vorticity-like systems under con-
sideration,

(4.7)

It is interesting to note that because H ~ O(ε2), the main
contribution to Dirac’s Hamiltonian is given solely by
the constraint functional. In the leading-order approxi-
mation, therefore, Eq. (4.7) becomes

(4.8)

In accordance with Eq. (3.33), we now obtain the con-
tour dynamics equation

(4.9)

4.2. Steadily Rotating Localized Vortex Structures

We consider solutions of Eq. (4.9) that manifest
themselves as stationary vortex structures rotating with
a constant angular velocity ω0. These solutions have the
form

(4.10)

where ω0 > 0 for the clockwise rotation and ω0 < 0 for
the counterclockwise rotation. Inserting Eq. (4.10) in
Eq. (4.9) and choosing the spatial scale R as

(4.11)

we introduce the dimensionless variables

and obtain the equation

(4.12)

where c2 is an integration constant and c1 = c(2ω0R)–1.

h
rν( )2

4π
------------=

× –πrρ 3
8
---πr3

ρ
----ϕ s

2 8
3
--- r4

ρ3
-----ϕ s ρsϕ s ρϕ ss–( )– O ε4( )+ + 

  .

HD
r3ν2

4
---------- cos ϕ 3

8
---r2ϕ s

2+ 
  s.d

C

∫=

HD
r3ν2

4
---------- ϕcos s.d

C

∫=

∂tϕ ϕ HD,{ } r3ν
4

-------- ϕ sss
1
2
---ϕ s

3+ 
  .–= =

ϕ t s,( ) ϕ̃ s ct–( ) ω0t,–=

R
r
2
--- ν

ω0
------ 

  1/3

,=

s̃
s ct–

R
------------, κ̃ ∂ϕ̃

∂s̃
------= =

∂κ̃
∂s̃
------ 

 
2

–
1
4
--- κ̃4 c1κ̃

2 κ̃ c2,+ + +=
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According to the theory of elliptic functions [14],
Eq. (4.12) has two sets of periodic solutions expressed
in terms of elliptic functions,

(4.13)

where F is one of the Jacobi elliptic functions (either sn
or dn) and m is the parameter of these functions, with
the vertical line symbolizing the m-dependence. We
note that depending on the type of the Jacobi elliptic
functions, the independent basic parameters α and m
parametrize all the others parameters a, b, λ, and con-
sequently, c1 and c2.

To derive the equations describing the boundary shape
of vortex structures rotating in the horizontal z plane, we
must integrate the equation

(4.14)

where  = (  + i )/R is the dimensionless complex
coordinate of the contour. It can be directly verified that
if  satisfies Eq. (4.12), the solution of Eq. (4.14) is
given by

(4.15)

4.3. Classification of Solutions

In this subsection, we focus our attention on the
classification of those solutions of Eq. (4.12) that cor-
respond to multipetal vortex structures without self-
intersection of the contour. For this purpose, we per-
form both analytical and numerical investigation of the
problem in Eqs. (4.13) and (4.15), restricting our study
to the case where F = sn. As becomes apparent after a
close examination, the solutions of the second type
with F = dn do not contain vortices without contour
self-intersections.

With F = sn, the periodic solution for the contour
curvature (4.13) takes the form

(4.16)

If the independent parameters α and m are considered
as basic, all the other parameters a, b, and λ can be
expressed as

κ̃ b
a b–

1 αF λ s̃ m( )–
----------------------------------,+=

∂ẑ
∂s̃
----- iϕ̃( ),exp=

ẑ x̂1 x̂2

κ̃

ẑ s̃( ) 2 ∂κ̃
∂s̃
------ i c1

κ̃2

2
-----– 

 + iϕ̃( ).exp=

k̃ b
a b–

1 αsn λ s̃ m( )–
------------------------------------.+=

a 2 1/3– α 1 m 2α2–+( )
1 m–( )2α m α4–( )[ ]1/3

-------------------------------------------------------,–=

b 2 1/3– α2 m α2 2–( )+

α 1 m–( )2α m α4–( )[ ]1/3
-----------------------------------------------------------,=

λ 2 1/3– α2 m–( ) 1 α2–( )
1 m–( )2α m α4–( )[ ]1/3

-------------------------------------------------------.=
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The parameters c1 and c2 are expressed in terms of a
and b as

We emphasize that the conditions of the contour conti-
nuity (smoothness) and reality of solutions to Eq.
(4.12) impose the following restrictions on the parame-
ters α and m:

0 ≤ α ≤ 1, m < α2. (4.17)

It follows from Eq. (4.15) that in order to find the
boundary shape we must know the slope angle  in
addition to the variable . This can be computed by
integrating (4.16) along the contour line,

(4.18)

where Π(u; ϑ|m) is the incomplete elliptic integral of
the third kind and the Jacobi amplitude am(u|m) is
defined by

am(u|m)= 

As mentioned above, our study is restricted to vor-
tex structures with a finite area bounded by a closed
contour without self-intersections. It is worth noting
that the elimination of self-intersecting contours corre-
sponding to rather exotic vortex formations from the
consideration is motivated by the weak-curvature
approximation used in deriving Eq. (4.9), but is not at
all dictated by intrinsic reasons of fluid dynamics. In
other words, the exact equations of motion for the two-
dimensional ideal fluid admit the existence of solutions
with such a contour topology.

Obviously, considering such contours requires a
generalization of model assumptions in the initial state-
ment of the problem. Because the vortex region
becomes multiply connected when the contour admits
self-intersections, the corresponding piecewise-con-
stant vorticity distribution can be rather specific. If the
topology of the contour self-intersection is known, the
vorticity distribution can be easily reproduced because
the vorticity jump must remain invariant when going
around the contour in one of the directions (see Fig. 1).
In essence, the question of whether to include solutions
of this type into the framework of our scheme is the
question of whether a global behavior of solutions is sen-
sitive to a local violation of the weak-curvature approxi-
mation. The answer can be found by comparing numeri-
cal and analytical solutions. If these solutions are insen-
sitive, they have every ground for being included and can
be improved using various numerical procedures similar
to the “contour surgery” proposed in [2].

c1
ba
2

------
1

a b+
------------, c2–

1
4
--- b a b2a2+ +( ).–= =

ϕ̃ s̃( )
κ̃

ϕ̃ s̃0( ) κ̃ s( ) sd

0

s̃

∫ bs̃
a b–

λ
-----------Π α2; am λ s̃ m( ) m( )+= =

– 2Im cn λ s̃ m( ) α2 m– idn λ s̃ m( ) 1 α2–+[ ]ln{ } ,

sn u m( )( ).arcsin
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Because the contour is closed and its curvature is a
periodic function of , the boundary shape of the vorti-
ces must have an n-petal structure. An example of this
structure is given in Fig. 2. From this figure and the
analysis of Eq. (4.16), it is clear that the contour curva-
ture of the n-petal vortex structure, being an oscillatory
function with the period 4K(m)/λ, has extrema at the
points

where K(m) is the complete elliptic integral of the first
kind. At these points, the contour curvature takes the

s̃

s̃– 4 j 1–( )K m( )
λ

------------, s̃+ 4 j 3–( )K m( )
λ

------------,= =

j 1 2 … n,, , ,=

–2
x1

x2

ω+

ω+

ω+

2ω+

–1 0 1 2

–2

–1

0

1

∆θ = π/n

s 3
K m( )

λ
-------------=–

~

s
K m( )

λ
-------------=+

~

~s*

–3
x1

x2

–2 –1 0 1 2 3 4
–3

–2

–1

0

2

3

4

Fig. 1. The geometry of a three-petal vortex region of piece-
wise-constant vorticity with a self-intersecting contour. The
vorticity distribution is ω+ in petals and 2ω+ in the core, so
the jump in vorticity is the invariant ω+ in tracing the con-
tour.

Fig. 2. Three-petal vortex structure. The point  = K(m)/λ
lies in the petal tip and  = 3K(m)/λ lies between the pet-

als.  is the self-contacting point of the contour.

s̃+

s̃–

s̃∗
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extreme values

(4.19)

The subscript notation  means that  = f( ). The

relative position of the turning points  and 
depends on the parameters α and m. To establish which
of them is at the tip of the petal and which is in the
trough between the petals, it is necessary to compute
the distances between these points and the symmetry
center (the coordinate origin). For this purpose, we
introduce ρ and θ as the polar coordinates,

In accordance with Eqs. (4.15) and (4.12), the variables
ρ and θ are then given by

(4.20)

(4.21)

Expressing c1 and c2 in terms of α and m and using Eq.
(4.19), we find from Eq. (4.20) that

The relative position of the turning points depends on
whether 1 is greater or less than the ratio

It is easy to see that the inequality α4 ≤ m ≤ α2 entails
the inequality ρ– ≥ ρ+; therefore, in this interval of the
parameters, the tops of the petals lie at the points . In
the event that m ≤ α4 (and consequently, the reverse ine-
quality ρ– ≤ ρ+ holds), the tips of the petals lie at the
points .

It is amply clear that in the region of the permissible
parameters (4.17), not all solutions (4.16) correspond
to vortex structures with closed contours. The condition
under which periodic solution (4.16) corresponds to a
closed contour can be formulated as

(4.22)

This condition has a simple geometrical interpretation
shown in Fig. 2. From this figure, it is easy to see that

κ̃+ b
a b–
1 α–
------------+ 2 1/3– m α 2+( ) α 1 2α+( )–

1 m–( )2α m α4–( )[ ]1/3
------------------------------------------------------,= =

κ̃– b
a b–
1 α+
-------------+ 2 1/3– m α 2–( ) α 1 2α–( )–

1 m–( )2α m α4–( )[ ]1/3
------------------------------------------------------.= =

+− f +− s̃+−

s̃– s̃+

ẑ s̃( ) ρeiθ.=

ρ2 4 c1
2 c2 κ̃+ +( ),=

θ ∂κ̃ /∂s̃

c1 κ̃2/2–
--------------------- 

  ϕ̃ .+arctan=

ρ+
2 22/3 m 1 2α+( ) α3 α 2+( )–[ ]2

α m α4–( ) 1 m–( )2α m α4–( )[ ]1/3
-------------------------------------------------------------------------------,=
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2 2 1/3– m 1 2α–( ) α3 α 2–( )–[ ]2

α m α4–( ) 1 m–( )2α m α4–( )[ ]1/3
------------------------------------------------------------------------------.=
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-------------------------------------------------------------.+=

s̃–

s̃+

∆θ θ– θ+–
π
n
---.= =
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2∆θ is merely the angular distance between neighboring
petals. To evaluate its value, it suffices to note that the posi-
tion vector and the tangent one are mutually orthogonal at
the turning points. It thus follows from Eq. (4.21) that

where the sign function ∆± is defined as

(4.23)

The expression for  can be easily found from
Eq. (4.18) as

(4.24)

θ± ϕ̃±
π
2
---∆± ,+=

∆± m 1 2α±( ) α3 α 2±( )–[ ] .sgn=

ϕ̃±

ϕ̃±
4 j 2– 1+−

λ
-----------------------=

× bK m( ) a b–( )Π α2 m( )+[ ] π,–

Fig. 3. The family of n-petal vortex regimes in the plane αm.
The characteristic curves assign the dependence mn(α) for
n = –1, –2, …, –9. The limit points where the corresponding
vortex structure has the contour with a self-contact are
marked as •.
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Fig. 4. Shapes of boundaries for double-petal vortex struc-
tures: α = 0.050 (a), 0.200 (b), 0.300 (c), 0.353 (d).
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where

is the complete elliptic integral of the third kind.
Equations (4.23) and (4.24) allow us to rewrite

Eq. (4.22) as

(4.25)

where

The analysis shows that Eq. (4.25) has solutions in the
form of n-petal structures in the region

where ∆ = 0 for n ≤ –2. In Fig. 3, this region is marked
by a shaded background. The solutions are presented
by the characteristic curves that determine the depen-
dence mn(α) for every n. For a fixed n, the multipetal
structure can therefore be described by a single param-
eter α. The vortex shapes for n = 2, 3 depending on α
are shown in Figs. 4 and 5. For every n-petal regime,
the characteristic curve has a limit point where the cor-
responding vortex structure has a self-contacting con-
tour. Solutions without intersections of contours are on
the left of the point and those with self-intersections are
on the right.

A prerequisite to the formation of a self-contact in a
contour can be formulated on the basis of geometrical

Π u m( ) Π u; π
2
--- m 

 =

bK m( ) a b–( )Π α2 m( )+
π
2
---λ 1

n
--- ∆– 

  ,=

∆ 1
2
--- ∆– ∆+–( ) 1

2
--- m 1 2α–( ) α3 α 2–( )–[ ]sgn{= =

– m 1 2α+( ) α3 α 2+( )–[ ]sgn } .

m α3 α 2–
1 2α–
----------------,≤
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Fig. 5. Shapes of boundaries for three-petal vortex struc-
tures: α = 0.050 (a), 0.200 (b), 0.300 (c), 0.371 (d).
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Values of parameters characterizing the limiting regimes

n α m ρ– ρ+

–2 0.352823 –0.245778 –0.456761 1.79081 0 2.12018

–3 0.371469 –0.580662 –0.820287 1.95339 0.193635 3.3365

–4 0.348897 –0.844407 –1.01623 2.03108 0.42446 3.51701

–5 0.323504 –1.0545 –1.15832 2.08942 0.635998 3.65998

–6 0.300157 –1.22456 –1.27263 2.13903 0.83048 3.78634

–10 0.231285 –1.66566 –1.60011 2.29932 1.49709 4.22362

κ̃– κ̃+
considerations following from Fig. 2. At the tangency
point  the angles θ and  are related by

Equation (4.21) now implies the condition

One more condition is obtained by taking into account
that in tracing the contour from the point  to the tan-

gency point , the tangent vector is rotated through
π/2, and therefore

s̃∗ ϕ̃

θ s̃∗( ) ϕ̃ s̃∗( )= .

κ̃2 s̃∗( ) 2c1.=

s̃+

s̃∗

ϕ̃ s̃∗( ) ϕ̃+– π/2.=

0

0.4

r

ψ(r)/ψ(0)

1 2 3 4

0.8

1.2

1.6

36°

48°

θ = 60°

Fig. 6. Surface plot of the streamfunction field for the limit-
ing three-petal vortex structure.

Fig. 7. The radial profile of the streamfunction for the limit-
ing three-petal vortex structure given in Fig. 6. The profiles
correspond to the directions θ = 60°, 48°, 36°.
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Using the relation

which follows from Eqs. (4.24) and (4.25) with j = 1,
we obtain the conditions

Together with Eq. (4.25), these conditions fix all the
parameters of the limiting regimes presented in the table.
In the quasigeostrophic barotropic model, the physical
interpretation of ψ is the pressure deviation, and in the
plasma model based on the Hasegawa–Mima equation,
this quantity characterizes the electric potential. To
illustrate the spatial and temporal character of distribu-
tions of ψ, we assume for simplicity that the back-
ground vorticity is absent, i.e., ω– = 0. Using the results
obtained in Section 4.1, we can then establish the for-
mula

(4.26)

where

The distribution ψ(x)/ψ(0) associated with the presence
of the three-petal vortex of limiting type is calculated in
accordance with Eq. (4.26) and is shown in Fig. 6. The
radial profiles corresponding to this vortex are pre-
sented in Fig. 7.
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ẑ z–
ε

------------- 
 –
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5. CONCLUDING REMARKS

To gain greater insight into the physical significance
of the results and decide in which range of parameters
these results can be applicable, we make some esti-
mates for the Hasegawa–Mima model and for the axial
model of electronic vortices, in parallel. We note that
for these models, the values of the rL and rS parameters
cover a broad range. According to factual evidence
[15], the Larmor ion radius rL measures 103 cm for the
interplanetary gas and 10–2 cm for the solar corona.
Depending on the type of plasma, the skin layer width
rS varies between 5 × 105 and 5 × 10–3 cm.

To illustrate the results obtained in more detail, we
consider the Hasegawa–Mima model of plasma with
the parameters Te = 104 K, n0 = 1014 cm–3, B0 = 104 G,
and mi = 1.67 × 10–24 g, which are typical for a low-
pressure gas discharge. In accordance with Eq. (4.2),
we find rL ≈ 10–2 cm. Because the theory of limiting
vortex structures has only two control parameters (the
angular rotation velocity ω0 and the vorticity jump ν =
ω+ – ω–), we put ω0 = 10 s–1, ω– = 0, and ω+ = 106 s–1 in
order to calculate some characteristics of a three-petal drift
vortex. In this case, Eq. (4.11) gives R ≈ 10rL = 10–1 cm,
and therefore, each petal of the vortex structure has the
radial length ρ+R ≈ 3.3 × 10–1 cm. Next, upon numerical
integration with ε = rL/R ≈ 10–1, we obtain from Eq.
(4.26) that ψ(0) ≈ 5.07R2ω+. Thus, we can estimate the
magnitudes of the electric potential Φ and the electron
number density ne at the center of the three-petal drift
vortex. It follows from Eq. (4.3) that Φ(0) ≈ 4.4 × 102 V
and ne(0) ≈ 1.5 × 1016 cm–3.

We note, in closing, some possible generalizations
of the Hamiltonian versions of 2D contour dynamics.
The technique that we have described can also be used
for 3D vortex objects, for example, in quasigeostrophic
baroclinic models of geophysical fluid dynamics. The
Hamiltonian versions of 2D contour dynamics can be
successfully applied to the study of nonplanar models
in all the cases where the velocity field is invariant
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
along the vorticity field direction. Typical examples are
flows on the sphere and also flows with the rotational
and helical spatial symmetry of the vortex field.

This work was partly supported by the Russian Foun-
dation for Basic Research (grant no. 00-05-64019-a).
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Abstract—The distribution function W0(n0) of the number n0 of particles in the condensate of an ideal Bose
gas confined by a trap is found. It is shown that at the temperature below the critical temperature Tc this function
has a Gaussian shape and depends on the trap potential via two parameters only. The center of this function
shifts to larger values of n0 with decreasing temperature and its width tends to zero, which corresponds to the

suppression of fluctuations. In the narrow vicinity of the critical temperature |T – Tc | ≤ Tc/ , where N is the
number of particles in the trap, the distribution function changes and at the temperature above the critical one
it takes the usual form W0(n0) = [1 – exp(µ)]exp(µn0), where µ is the chemical potential in temperature units.
In the limit N  ∞, this change occurs at a jump. © 2001 MAIK “Nauka/Interperiodica”.

N

1. INTRODUCTION

After the first experimental observations of Bose
condensation of atoms in a magnetic parabolic trap [1],
many theoretical papers devoted to the study of this
new state of matter have appeared. However, the funda-
mental question of the distribution function W0(n0) of
the number of particles in the condensate, i.e., the num-
ber n0 of particles in the ground state with the energy
E0, has not been discussed in fact so far.

In this paper, the distribution function W0(n0) of the
number of particles in the ground state of an ideal Bose
gas confined by a trap is found and its temperature
dependence is investigated. It is shown that below the
critical temperature, the distribution W0(n0) exhibits
qualitative changes, which are accompanied by the sup-
pression of fluctuations and the change in the gas heat
capacity. When the number N of particles confined by
the trap is large (formally, at N  ∞), these changes
occur at a jump, i.e., acquire the character predicted by
Landau for phase transitions in crystals [2].

The distribution W0(n0) is obtained by summing

(1)

and the Gibbs distribution

(2)

where εk = Ek/T, Ek is the energy of the kth state of a par-
ticle in the trap, T is the temperature in the energy units,
and the total energy of the gas E = E0n0 + E1n1 + … is
specified by the number nk of particles in the states with

W0 n0( ) W n0 n1 …, ,( )
n1 n2 …+ + N n0–=

∑=

W n0 n1 …, ,( )
1
S
--- –ε0n0 ε1n1– …–( ),exp=
1063-7761/01/9204- $21.00 © 20608
the energy Ek . The summation in Eq. (1) is performed
over all positive values of n1, n2, … (except n0), which
satisfy the condition

(1a)

The statistical sum S (normalization) can be found by
summation of

(3)

over all positive values of nk (including n0), which sat-
isfy the condition

(4)

Usually, instead of fulfillment the exact condition
(4), an additional parameter µ (the chemical potential in
the temperature units) is introduced into the Gibbs dis-
tribution, 

(5)

and the statistical sum is found by summation over all
nk ≥ 0. As a result, we obtain

(6a)

n1 n2 …+ + N n0.–=

S W n0 n1 …, ,( )
n0 n1 …+ + N=

∑=

n0 n1 …+ + N .=

W n0 n1 …, ,( ) S 1–=

× µ n0 n1 …+ +( ) ε0n0– ε1n1– …–( ),exp

S 1 µ εk–( )exp–( ) 1– ,
k

∏=

W n0 n1 …, ,( ) Wk nk( ),
k

∏=

Wk nk( ) 1 µ εk–( )exp–( ) µ εk–( )nk( ).exp=
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In particular, when the energy is measured relative to
the ground-state energy, the distribution of the number
of particles in the ground state has the form

(6b)

Expressions (6a) and (6b) directly yield the average
value of the number  of particles in the state with the
energy Ek (hereafter denoted by a tilde)

(7)

After that, the chemical potential µ is defined by the
condition

(8)

Therefore, the distribution (6a) satisfies not the exact
condition (4) but condition (8), which is fulfilled only
for average values.

Meanwhile, the distribution (6a) leads to a contra-
diction. Namely, (6a) yields the well-known relations

(9)

In the limit T  0, all the particles should be in the
ground state, so that  = N, and we have from (9)

which is meaningless. The authors of paper [3] (see
also references therein) have suggested solving this
problem still using distribution (6) but calculating the
root-mean-square fluctuation of the total number of
excited particles

Then, the exact condition (4) yields

(10)

Because for T  0, we certainly have   0

and   0, and the contradiction related to (9)

is removed. However, the result (10) does not corre-

spond to the value of  obtained directly from (6).
This again emphasizes the fact that the correct distribu-
tion differs from the distribution (6a), which does not
satisfy condition (4).

In this paper, it is shown that the distribution (6a) is
valid at temperatures above the condensation tempera-
ture (critical temperature). The correct treatment of
condition (4) results in the fact that below the conden-
sation temperature (T < Tc) the distribution function of
excited particles approximately retains the form (6a),
whereas the distribution function (6b) of the number of
particles in the condensate drastically changes and

W0 n0( ) 1 eµ–( )e
µn0.=

ñk

ñk e
εk µ–

1–( )
1–
.=

ñk

k

∑ N .=

nk
2〈 〉 2ñk

2 ñk, ∆nk
2〈 〉+ ñk

2 ñk.+= =

ñ0

∆n0
2〈 〉 N2 N ,+=

N* nk.
k 0≠
∑=

∆n0
2〈 〉 ∆N*

2〈 〉 N*
2〈 〉 N*〈 〉 2.–= =

N*
2〈 〉

N*〈 〉 2

∆n0
2〈 〉
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takes a Gaussian shape. In this case, in particular, the
contradictions related to (9) are removed. The statisti-
cal dependence of quantities nk determined by the con-
dition (4) becomes essential at temperatures below the
critical temperature, resulting in a change in the func-
tion W0(n0) and suppression of fluctuations.

Note that, as it follows from the general consider-
ations and is demonstrated in section 4 using the exact
solution for a gas trapped in a parabolic potential, at a
large number of particles N the distribution function
W0(n0) changes and the mean value  vanishes very
rapidly (i.e., in a rather narrow region near certain tem-
perature Tc) but continuously (in the case of , without
a jump in the derivative as well). Only in the limiting
case of N  ∞, this change at T = Tc has the character
of a jump and  vanishes at this point with a nonzero
derivative. Only in this case, the value Tc has an exact
sense and can be defined as the temperature above
which the population of the ground state is equal to
zero. For finite N values, there is no possibility of such
definition and Tc is a characteristic temperature in a nar-
row vicinity of which  is changing from very large to
very small values. 

In this paper, the Bose gas confined by a trap, i.e., a
system with a discrete spectrum, was considered. The
condensation of such a gas is of the most interest from
the practical point of view because this phenomenon
has been experimentally observed. Generally speaking,
the case of a free Bose gas is also very interesting. For
some reasons, which will be discussed below, this case
requires a special approach.

2. DEGENERATE BOSE GAS

Condition (1a) can be satisfied automatically by rep-
resenting (1) in the form1 

(11)

where the sign (n0) at the sum means that the summa-
tion over n0 is excluded. The integration contour in (11)
is a circle with a center at the point z = 0. Only when
condition (1a) is satisfied, the integrand in (11) has a
simple pole and the integral is equal to 2πi. In other
cases, the integral is zero, which allows one to perform
summation independently (before integrating) over all
values 0 ≤ nk ≤ ∞ in the right-hand side of (11), exclud-
ing, of course, the summation over n0. However, the
convergence of all the sums appearing, including the
statistical sum S, should be provided. One can easily

1 A similar method of the sum representation has been used in [4, 5].

ñ0

ñ0

ñ0

ñ0

W0 n0( )
1
S
--- ε0n0–( ) –ε1n1 ε2n2– …–( )exp

n1 n2 …, ,

n0( )

∑exp=

× 1
2πi
-------- z

N n0 1–+–( ) n1 n2 …+ + +
dz,∫°
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see that this will be satisfied if the radius of the circle
|z |, which can be conveniently written in the form

will be limited by the condition

It is convenient to arrange the values of εk in the order
ε0 < ε1 ≤ ε2… (the ground state is always nondegenerate).
Then, we can set ε0 = 0 (that means εk ≠ 0 > 0) and
require the fulfillment of the condition µ < 0.

The summation in (11) gives

(12)

The function G(z) has no singularities inside the cir-
cle with the radius |z | = eµ < 1 (µ < 0), so that the equal-
ity W0(n0) = 0 is automatically satisfied for n0 > N. For
n0 = N, we obtain from Eq. (12)

and for n0 = N – 1, we have

At a very low temperature (in fact, it is necessary that

the value of  should be exponentially small, i.e.,
ε1 @ 1, which is certainly satisfied for T  0 for a sys-
tem with the discrete spectrum), the probability W0(n0 =
N – 1) is small compared to the probability W0(n0 = N)
and rapidly decreases with further decreasing n0, as one
can easily see from Eq. (12). Therefore, we may restrict
ourselves to two quantities

(13)

which yield

so that   0 at T  0.

z eµ,=

e
µ ε0–

1.<
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1
S
--- 1

2πi
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pεk–
.

p 1=
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∑
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.
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e
ε1–

W0 n0 N=( ) 1 e
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W0 n0 N 1–=( ) e
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,
k 0≠
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εk–
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It is interesting to compare the distribution (13),
which takes the form

at T  0, with the distribution (6b). For T  0, it
follows from (8) that

or

and the distribution (6b) takes the form

i.e., it has a maximum at n0 = 0, monotonically
decreases with increasing n0, and is nonzero in a broad
range of values of n0, decreasing only by a factor of e at
the limiting value n0 = N.

Similarly to (12), the joint distribution can be easily
found:

(14)

At T  0, only three quantities are substantial:

Finally, we obtain that the distribution

of the number of particles in excited states described by
the expressions

(15)

This result virtually coincides with Eq. (6a).
At higher temperatures, when ε1 ≤ 1 and the total

number of particles in excited states is comparable with
the number of particles in the ground state, it is impos-
sible to obtain the result by such a simple method. In
this case, however, one can use the circumstance that
when the number of particles confined by a trap is large
(this number in real experiments is between 103 and
108), the condition ε1 ! 1 is satisfied at temperatures
that are much lower than the condensation temperature,

W0 n0( ) δn0 N,=

e µ– 1– 1/N=

µ 1/N ,–≈

W0 n0( )
1
N
----e

n0/N–
;=

W0 i 0≠, n0 ni,( )
1
S
---e

εini– 1
2πi
--------=

× z
N 1– n0 ni+ +–

eG z( ) 1 ze
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–( )dz.∫°

W0 i 0≠, n0 N= ni 0=,( ) S 1– ,=

W0 i 0≠, n0 N 1–= ni 1=,( ) S 1– e
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W0 i 0≠, n0 N 1–= ni 0=,( ) S 1– e
εi–

k 0 i,≠
∑ .=

Wi 0≠ ni( ) W0 i 0≠, n0 ni,( )
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.=
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001



DISTRIBUTION FUNCTION OF THE NUMBER OF PARTICLES 611
which allows one to study virtually completely the inte-
grals in expressions (12) and (14).

3. CONDENSATION OF BOSE GAS IN A TRAP

Having made in Eq. (12) the change of variables

we obtain

(16)

We omitted in Eq. (16) the factor

that is independent of n0, which affects only the nor-
malization defined by the relation (16) itself. Below, we
will follow this rule.

Then, by expanding the function F(x) in a series at
the point x = 0 retaining the three first terms, we find

(17)

where the quantities  are defined by expression (7)
(recall that ε0 = 0). The first term in the expansion enters
into the normalization after the substitution into Eq. (16)
and can be omitted. The values of A and D depend on
the parameter µ, which satisfies the condition µ < 0,
being arbitrary in other respects. Let us choose this
parameter by requiring the fulfillment of the condition

(18)

Condition (18) coincides with (8), and the parameter µ
acquires the meaning of the chemical potential, the
quantities  not being now, however, the average num-

bers of particles. Note that µ and  are related by the
expression

which allows us to treat Eq. (18) as the equation for µ
or , depending on our choice.

Consider the temperature dependences of quantities
A and D. At T  0, we obtain εk ≠ 0  ∞, so that A = 0,

z eµ ix+=
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1
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F x( ) 1 µ ix εk–+[ ]exp–( ).ln
k 0≠
∑–=

2π( ) 1– e µN–
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ñk

ñ0

µ 1 1/ñ0+( ),ln–=

ñ0
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D = 0,  = N, and µ = –1/N with a high accuracy. As
temperature increases, the values of εk ≠ 0 decrease,
while the values of A and D increase, and when T > T*,
where T* is a characteristic temperature that depends
on the type of the trap potential and the number N of
confined particles, the situation certainly occurs when
A becomes of the order of N and the value of  = N – A
still remains large (which means that the temperature T* is
much lower than the critical temperature, T* ! Tc), while

the chemical potential equals µ = −1/ ; i.e., it is very
small. It is important that in this case the value of D also
becomes of the order of N, i.e., very large. As the tem-
perature further increases, the values of εk ≠ 0 decrease
and condition (18) can be satisfied only at large values
of |µ|; i.e., the value of  becomes small (the conden-
sate fraction is absent). In this case, A = N with a high
accuracy and D ≥ N/2.

This means that, beginning from temperatures T > T*,
which are much lower than the condensation tempera-
ture, the real part of the function F(x) has a maximum
at x = 0 and rapidly decreases in the vicinity of this
point. Therefore, we may substitute the expansion (17)
into Eq. (16) and perform integration using infinite limits.
As a result, we find that the distribution of particles in the
condensate is described by the expression

(19)

which has a universal shape because it depends on the
trap potential only via parameters  and D. All the
average values are obtained from this distribution by
differentiating the statistical sum

with respect to the explicit parameter µ.
The distribution (19) has qualitatively different forms

for large and small values of . In a broad temperature
range below the condensation temperature, when the con-
ditions

(20)

are satisfied, the distribution function (19) is exponen-
tially small at two its ends at n0 = 0 and n0 = N [the sec-
ond inequality is equivalent to the condition D @ 1 and
simultaneously provides the validity of Eq. (19)].
Therefore, we may calculate the statistical sum by pass-
ing from summation to integration with infinite limits,
which gives

(21)

ñ0

ñ0

ñ0

ñ0
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In this case, the distribution is described by a Gaussian

with the width ∆n0 =  slightly shifted by –D/2

with respect to  due to the factor

The value of  increases with decreasing temperature,
while D decreases, and the distribution (19) narrows
down,

and its center shifts to larger values of n0. All the aver-
age values can be easily calculated:

The first and second moments are close to  and ,
respectively:

(22)

The relative root-mean-square fluctuation

is small in accordance with Eq. (20) and decreases
with decreasing temperature, i.e., with the increasing
number of particles in the condensate. Eventually, at
very large temperatures, the condition of validity of dis-
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ñ0 ñ0
2

n0〈 〉 ñ0 1 2D
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Distribution function (19) of the number of particles in the
condensate of a Bose gas confined by a trap for different
temperatures T/Tc = 1.01 (1) and 0.99 (2). The values of 

are calculated from expression (29), D = (1/2)γN(T/Tc)
3 ≈

6850(T/Tc)
3. The number of particles in the trap N = 10000.

ñ0
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tribution (19) (the second condition in Eq. (20)) is no
longer fulfilled and the distribution takes the form of
Eq. (13). As the temperature increases, the  value is
decreasing, the first condition in (20) fails to be valid,
and the lower boundary n0 = 0 of the distribution becomes

more significant. Finally, at  !  (although the con-

dition  @ 1 can still be fulfilled, however, one can
assume that the condensate fraction is already absent),

the factor  becomes dominant in expression (19).
By performing summation, we obtain Eq. (6b). The pas-
sage from the Gaussian shape of the distribution (19) to
the shape (6b) occurs at the values

which, for large N, corresponds to a narrow vicinity of
the critical point. The qualitative change in the shape of
distribution function (19) in the vicinity of the critical
point is shown in the figure.

The joint distribution W0, i ≠ 0(n0, ni) can be obtained
similarly. By using Eq. (14), making again the change
of variables

and performing integration, we find

(23)

The distribution of the number of particles in excited
states can be readily obtained from (23):

When the number of particles in the condensate is large
and the condition (20) is satisfied, one may replace
summation by integration with infinite limits to obtain
the distribution

(24)

which coincides with (6a) for µ = 0. Note that, with
accuracy to the first-order terms in µ = –1/ , the sum
of averages corresponding to (24) is

ñ0

ñ0 D

ñ0
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i 0≠
∑=
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DISTRIBUTION FUNCTION OF THE NUMBER OF PARTICLES 613
Finally, we obtain from (22)

When  !  (however, the condition  @ 1 can

be still valid), the factor  plays the dominant role in
summation over  in (23), as in (19), and we obtain
the distribution (6a).

The average of products can be also obtained from the
distribution (23). In particular, when the conditions (20)
are satisfied, we obtain

In the conclusion of this section, we emphasize the
following important circumstance. Upon condensation
of the gas, the number  of particles becomes of the
order of N and the chemical potential of the order of
1/N, i.e., very small. For this reason, it is important that
the value of D would remain finite for µ  0. In the
case of a system with the discrete spectrum, this
requirement is certainly fulfilled because the largest of

the terms  in D remains finite for µ  0 (quan-

tities  cannot produce a singularity because they are
related by expression (18)]. In the case of a free gas (a
system with a continuous spectrum), the situation is
different. In this case, D  ∞ at µ  0; i.e., the sec-
ond derivative of the function F(x) has a singularity at
the point x = 0, and one can show that the term next to
a linear one in the expansion of F(x) is proportional to
|x |3/2. This, of course, drastically changes the situation
and requires a special treatment.

4. PARABOLIC POTENTIAL

In this case, which is of most practical importance,
we can calculate exactly the quantities  and D, which
determine the distribution (19). We will denote the
energy levels of particles by introducing the vector
index k = (kx, ky, kz), ki = 0, 1, … and represent the
energy of a three-dimensional oscillator (in tempera-
ture units) in the form

where w = (ωx, ωy, ωz) and ωx, y, z are the frequencies of
a parabolic trap. Then, the sum over all k ≠ 0 in Eq. (12)
can be calculated exactly and we have

(25)
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ñk 1=
2

ñk
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By making the change of variables

in Eq. (12), we obtain again Eq. (16). The function F(x)
now has the form

and the coefficients A and D in Eq. (17) take the form

(26)

The relation (18) also retains its meaning because, as
one can see from Eqs. (25) and (26), the relation

is naturally fulfilled.
For small β (we will see below that this condition

becomes valid at temperatures that are much lower than
the critical temperature), the main contribution to sums
A and D comes from small values of p, and we can write2 

It is convenient to rewrite these relations by introducing
the critical temperature Tc:

(27)

where ζ(s) is the Riemann zeta function. It is conve-
nient to represent the relation (18), which determines µ
or , in the form

(28)

2 To simplify the representation, we neglect here the next-order
term β–2, which gives a correction to the critical temperature
related to a finite number of particles in the trap and can be easily
taken into account if necessary [6, 7].
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614 ALEKSEEV
For small µ, we can use in equation (28) the expansion
of the function f(µ) with accuracy to the first-order
terms in µ:

and the value  = –1/µ. As a result, the quadratic equa-
tion

is obtained [7], which yields the temperature depen-
dences of the chemical potential and :

(29)

For N  ∞, it follows from these relations that at tem-
peratures below the critical temperature (T < Tc), when
t < 1, we have

(30)

while at temperatures above the critical temperature,
but with the condition t – 1 ! 1 still being valid, we find
from (29)

(31)

One can see from (29) that for finite values of N, the
dependence (30) is realized provided two equivalent
conditions

(32)

are fulfilled, which coincide in fact with the first of the
conditions (20). Condition (32) becomes invalid in a
narrow vicinity of the critical temperature, and one
should use a more exact relation (29), which allows one
to describe correctly a smooth decrease in  and an
increase in µ with increasing temperature up to the val-
ues T ≤ Tc + ∆T (where ∆T ! Tc), when  is still large

and µ is small [7]. The values of  and µ obtained in
this way should be used in the distribution (19).

Note now that the parameter β = "ω/T can be rewrit-
ten by expressing T in terms of the critical temperature

which shows that the condition β ! 1 proves to be ful-
filled at large N beginning from temperatures that are
much lower than the critical temperature but satisfy, how-
ever, the condition T @ T*, where T* = TcN–1/3 ! Tc.
Therefore, expansion (27) can be used only for rather
high temperatures T @ T* (it should be recalled that this
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expansion is valid for β ! 1). Because, however, T* ! Tc,
this expansion is valid beginning from temperatures that
are much lower than the critical temperature, when , as
one can see from (30), is already very close to N; i.e.,
almost all the gas is already in the condensate. In this case,
we can calculate  and µ in the temperature region

(33)

using (29). In the region (33), the condition µ ! 1 is ful-
filled, so that we can set µ = 0 in the calculation of D.
As a result, we find

and, as one can see from Eq. (33), the condition D @ 1
is satisfied. As temperature further increases, D
increases and approaches its limiting value D = N/2 at
high temperatures. Because of this, beginning from
temperatures that satisfy the condition T @ T* but are
still much lower than the critical temperature, we can
use the asymptotic estimate of the integral (16), which
leads to the distribution (19).

It should be emphasized that the region (33) where
quantities (29) can be calculated contains not only tem-
peratures below the critical temperature but also the
vicinity of the critical temperature where the distribu-
tion (19) changes from Gaussian to the form (6b). As
temperature approaches the critical temperature, the
conditions (32) and, correspondingly, (20) are no
longer fulfilled in the region,

,

and distribution (19) is not already Gaussian but still
differs from (6b). However, in the region

when expressions (29) are still valid, the condition

!  is already fulfilled, and the distribution (19)
takes the form (6b). Thus, as temperature increases in
the narrow vicinity of the critical point

,

the distribution (19) qualitatively changes from Gauss-
ian to the form (6b) (see figure). For large values of N,
this change in the shape of the distribution function of
the number of particles in the condensate occurs in a
very narrow vicinity of the critical temperature, i.e.,
almost at a jump.

5. JUMP OF THE HEAT CAPACITY

The change in distribution (19) from a Gaussian
shape, which it has in the region (20), (32), where the
pronounced condensate fraction exists, to the form (6b),
when the condensate fraction is virtually absent, is
accompanied by an abrupt change in the heat capacity,
which occurs at a jump at N  ∞. In the case of the

ñ0
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parabolic potential, the jump magnitude can be calcu-
lated exactly.

When N  ∞, the average values  coincide

with . Let us represent εk in the form

Then, we obtain for the energy E of the gas

At a very low temperature T ! "ωi , this gives

i.e., the gas energy is exponentially small. At higher
temperatures T @ T*, using the smallness of the param-
eter β, we find

As a result, at T @ T*, the heat capacity has the form

(34)

When N  ∞, the chemical potential µ in this
expression is zero at T ≤ Tc. For T ≥ Tc, it is determined
by the equality

(35)

which follows from Eq. (28). Therefore, for T ≤ Tc, we
obtain for the heat capacity the expression

For T = Tc, we find from Eq. (35)
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At large negative values of µ (large t), the first term
dominates in sum (35), and we obtain

As a result, we obtain at high temperature from Eq. (34)
the value of heat capacity C = 3N, which coincides with
the heat capacity of an ideal gas confined by a trap,
which is described by the classical distribution function

where m, r, and v are the particle mass, coordinate, and
velocity, respectively. One can see from the exact
expansion of the function f(µ) [see formula (A.1)] that
the function (∂µ/∂t) has an infinite negative slope at the
point t = 1. Therefore, the heat capacity has the same
slope after the jump and, as a result, it rapidly acquires
the asymptotic value C = 3N.

6. CONCLUSIONS

(1) The general integral representation (12) of the
distribution function W0(n0) of the number of particles
in the condensate of an ideal Bose gas confined by a
trap (a system with the discrete spectrum) allows one to
study the variation of this function over the entire tem-
perature range. At a very low temperature (E1/T ! 1),
the distribution function has the form (13); i.e., it is
close to unity at n0 = N and rapidly (exponentially)
decreases at n0 < N, taking the form

at T = 0. Beginning from sufficiently high temperatures
T > T* [the temperature T* depends on the form of the
trap potential and the number N of particles, however,
for large N it is certainly much lower than the critical
temperature (T* ! Tc)], the distribution function W0(n0)
takes the universal form (19): only the parameter n0 and
D appearing in this function depend on the trap poten-
tial. In a broad temperature range below the critical tem-

perature, T > T*, Tc – T @ Tc/ , distribution (19) is
described by a Gaussian whose width and, hence, root-
mean-square fluctuations tend to zero with decreasing
temperature. As the temperature approaches the critical
temperature, the width of distribution (19) increases;
i.e., fluctuations are enhanced. In a narrow vicinity |T –

Tc | ≤ Tc/  of the critical temperature, the distribution
function (19) changes completely and takes the form

(6b) at T – Tc @ Tc/ . In the limit N  ∞, this
change occurs at a jump.

(2) In the case of a trap with a parabolic potential,
the parameters  and D, which determine the univer-

eµ ζ 3( )t 3– , t ∂µ/∂t( ) 3.–= =

W r v t, ,( )
mω
2πT
---------- 

 
3

N
mω2r2 mv 2+

2T
--------------------------------– 

  ,exp=

W0 n0( ) δn0 N,=

N

N

N

ñ0
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sal distribution (19), can be calculated exactly. In the
entire temperature region of the condensate existence,

and  is calculated from expression (29).

(3) As follows from calculations [7], for typical
experimental parameters of the trap, gas can be treated
as ideal up to the values N ≤ 104. This value of N is suf-
ficiently high, so that the features of the condensation
process considered above can be manifested. However,
unlike the case of a free gas (confined by the vessel
walls only), the gas confined by the trap is certainly no
longer ideal when the number of particles is sufficiently
large. The study of the influence of the interaction
between gas particles on the features of the change in the
distribution function W0(n0) during gas condensation is
one of the most important problems of the theory.

APPENDIX

Consider the equality

from which it follows that

The last integral can be rewritten in the form

D
ζ 2( )

2ζ 3( )
-------------t3N ,=

ñ0

exz 1–( ) 1–
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∫ e pxz– zd
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∑ 1
x
--- p 1– e px– ,

p 1=

∞

∑= =

p 1– e xp–
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1
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z.d

x
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ez 1–( ) 1–
zd

x
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∫ ez 1–( ) 1–
z 1–– z 1–+[ ] zd

x

1
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+ ez 1–( ) 1–
zd

1
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∫ – x ez 1–( ) 1–
z 1––[ ] zd

0

x

∫–ln=
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A sum of two last integrals is zero, and we find

(A.1)
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Abstract—It is shown that, under the conditions when the mean free path of electrons in a fully ionized plasma
is small compared with the London plasma length, the thermal mechanism of inverse bremsstrahlung absorp-
tion and electronic conductivity has a stabilizing action on filamentation instability of high-power electromag-
netic radiation, in contrast to the known case of comparatively low-intensity radiation. This new nonlinear prop-
erty of a plasma is shown to be determined by a decrease in the effectiveness of plasma heating in a heating
pumping field with increasing the intensity of radiation if electron oscillations have above-thermal rates.
© 2001 MAIK “Nauka/Interperiodica”.
1. The filamentation of electromagnetic radiation [1, 2]
in a fully ionized plasma corresponds to the model of a
strongly collisional plasma when the characteristic fil-
ament size is much larger than the mean free path of
electrons. The physical nature of filamentation instabil-
ity under these conditions corresponds to the thermal
mechanism and is caused by two competing thermal
processes. One of these is heating of plasma electrons
as a result of inverse bremsstrahlung absorption. The
second mechanism is related to the removal of heat,
which was acquired by the plasma through absorption
of radiation, from a filament. In view of this, tempera-
ture perturbation in a filament is directly proportional
to the increase in heat caused by filamentation distur-
bance of the electromagnetic field and inversely pro-
portional to the square of the wave vector of the fila-
ment and electronic heat conductivity characterizing
heat transfer from the filament. Under stationary fila-
mentation conditions, when the pressure of a plasma is
almost constant, temperature increase caused by an
increase of the electromagnetic field of filamentation
perturbation decreases the electron density, which is
similar to the ponderomotive force influence. This
force virtually fully determines the development of short-
wave perturbations characteristic of collisionless plasma
conditions. Note that both ponderomotive and thermal
mechanisms usually favor the appearance of filamenta-
tion. The thermal filamentation mechanism plays the
determining role in long-wave perturbations when the size
of a filament is larger than the mean free path of electrons.
In contrast, the ponderomotive mechanism prevails in
short-wave filamentation perturbations.

We show in this communication that such a gener-
ally accepted picture of radiation filamentation in a
1063-7761/01/9204- $21.00 © 20617
fully ionized plasma is not observed in a comparatively
strong pumping field. Under strongly collisional condi-
tions, the thermal mechanism based on inverse
bremsstrahlung absorption and electronic heat conductiv-
ity not only does not favor radiation filamentation but
plays the role of the stabilizing factor, the possibility of
overcoming which under the action of ponderomotive
radiation determines the filamentation threshold for a
strongly collisional plasma in a high-power electromag-
netic radiation field. This is a new nonlinear effect cor-
responding to the conditions of the action of high-
power radiation on a plasma [3].

2. Consider a plasma in a strong high-frequency
field

(2.1)

The transfer in such a plasma will be described by the
equations for momenta from [4]. As the E(r, t) ampli-
tude in Eq. (2.1) slowly varies during high-frequency
pumping field period 2π/ω0, we can, according to [4],
write for the electronic component

(2.2)

(2.3)
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(2.4)

Here, e is the charge of the electron, me is the mass of
the electron, and kB is the Boltzmann constant.

Note that the last term in the left-hand side of
Eq. (2.3), which is the Miller force now often called the
ponderomotive force, is to a substantial extent deter-
mined by the magnetic part of the Lorentz force. Con-
sider the action of a strong pumping field on the plasma
when the rate of nonrelativistic electron oscillations in
the electric field,

(2.5)

far exceeds the speed of electron thermal motions.
According to [4], the electron-ion friction force in this
limit is given by

(2.6)

(2.7)

Accordingly, the heat released in collisions between
electrons and ions is

(2.8)

Here, the heat absorbed by electrons as a result of the
inverse bremsstrahlung effect is given by

(2.9)

Angle brackets denote averaging over the period of the
high-frequency pumping field.

Lastly, the density of the electron heat flow is given
by the equation [4]

(2.10)

Here, for the electron heat conductivity, we have

(2.11)

where VT =  is the thermal speed of electrons.
The C constant equals (75/32) in the Sonin–Laguerre
one-polynomial approximation of the Hilbert–Chap-
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man–Enskog method and (375/128) in the approxima-
tion of two polynomials, and

(2.12)

is the mean free path of a thermal electron between col-
lisions with the other electrons. Note that, in a strong
pumping field, the electron-ion collision frequency
substantially decreases compared with the frequency
given by the usual formula

whereas a high-frequency field has no effect on the
electron–electron collision frequency (2.12), because
the difference of the speeds of colliding electrons only
depends on their thermal motion in the dipole approxi-
mation.

The system of equations for the ionic component is
simpler:

(2.13)

(2.14)

(2.15)

In both (2.4) and (2.15), a weak (on the order of the
mass ratio between the electron and the ion) effect of
energy transfer from electrons to ions in their collisions
is ignored. In a strong pumping field, this effect is addi-
tionally suppressed [5]. A comparatively weak effect of
ionic heat transfer is also ignored in (2.15).

3. Radiation filamentation will be described in terms of
the stationary statement of the problem, which considers
strengthening of filamentation perturbations in space in
the direction of pumping field propagation in a spatially
uniform plasma. Accordingly, consider ground state per-
turbation

(3.1)

In addition to Eqs. (2.2)–(2.4) and (2.13)–(2.15), we
will take into account the condition of electrical neu-
trality

(3.2)

We restrict our consideration to the simplest case, when
the electron temperature far exceeds the temperature of
ions. More exactly, we assume that

(3.3)
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This is a natural assumption for a plasma heated by
high-frequency radiation. Equations (2.2)–(2.4) and
(2.13)–(2.15) combined with the electrical neutrality
conditions then yield

(3.4)

(3.5)

where

(3.6)

Taking into account electromagnetic field filamentation
perturbation, we can write

(3.7)

The wave vector is normal to the direction of pumping
field propagation, (k0k) = 0. Equation (3.7) allows us to
write

(3.8)

(3.9)

In conformity with Eqs. (3.5)–(3.9), we have

(3.10)

(3.11)

In writing the equations describing spatial amplifica-
tion of electromagnetic field perturbations, we will take
into account that, according to Eqs. (3.8)–(3.11),
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Here, δn– = δ . According to Eq. (3.12), reduced per-
turbation field equations have the form

(3.13)

where ωLe =  is the electronic Langmuir
frequency.

4. To most clearly describe the special features of a
strongly collisional plasma, which is responsible for
parametric instability of thermal nonlinearity, in a high-
power radiation field, consider the simplest case of cir-
cular pumping polarization. A general treatment of
elliptical polarization is given in Appendix 1, and the
particular case of linear polarization important for prac-
tical applications requires a special consideration, see
Appendix 2.

We assume that

In addition,

(4.1)

Accordingly, E0x = iE0/ , E0y = E0/ , and

(4.2)

(4.3)

These equations allow Eq. (3.6) to be rewritten as

(4.4)
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Here,

(4.6)

VE is the amplitude of the rate of electron oscillations in
the pumping field. In the strong field limit, the condi-
tion
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is satisfied. According to (2.9), the absorbed heat in a
circularly polarized field is given by

(4.8)

which allows (4.4) to be written in the form

(4.9)

Using these equations makes it possible to rewrite (3.11)
as

(4.10)

where

(4.11)

Next, Eqs. (3.13), which describe spatial changes in
the filamentation perturbation field, will be used to
obtain

(4.12)

It follows from (4.12) that field perturbations change by
the exp(Gz) exponential law, where the spatial amplifi-
cation coefficient G (filamentation instability incre-
ment) is given by

(4.13)

Perturbation field amplification characteristic of fila-
mentation instability occurs when the right-hand side
of (4.13) is positive and when a G(k) > 0 solution is pos-
sible. Assuming this condition to be met, we easily find
that the spatial amplification coefficient G(k) reaches a
maximum at
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Accordingly, the equation

(4.15)

determines the maximum amplification coefficient
value.

Whereas the wave vector (4.12) corresponding to a
maximum spatial increment does not depend on dissi-
pation, the increment of spatial filament amplification
itself is determined by dissipation. Consider the contri-
bution of thermal dissipation described by (4.13) and
(4.15). In a weak pumping field, when the condition
inverse to (4.7) is satisfied, heat effects favor filamenta-
tion instability. If, however, condition (4.7) is met, we
have the opposite situation. To make this clear, consider
the expression in braces in the right-hand side of (3.11).
The second term there describes the contribution of the
ponderomotive force. According to (4.4), this force as
usual decreases the electron density as the intensity of
radiation δ|E|2 increases. In a weak field, the thermal
action of radiation on a plasma also decreases the elec-
tron density. Indeed, at an almost constant pressure, an
increase in the intensity of radiation increases the elec-
tron temperature, and this results in a decrease in the
electron density. It follows from (2.9) that, under high-
power heating radiation conditions, an increase in the
intensity of radiation decreases the amount of heat
absorbed by electrons. For this reason, radiation inten-
sity growth causes cooling of electrons. At a constant
pressure, this results in an increase in the electron den-
sity, which is responsible for the negative sign of the
second term in braces in (4.11) and, accordingly, the
negative sign of a similar term in (4.13). To summarize,
we revealed the reason hindering filamentation in the
thermal mechanism of inverse bremsstrahlung heating.
In the high-power radiation limit, this mechanism can
prevent radiation self-focusing in a plasma. It, however,
unambiguously follows from (4.13) and (4.15) that the
influence of such a mechanism hindering filamentation
decreases as the intensity of pumping increases. This
follows from the equation

(4.16)

which determines the intensity threshold of high-power
heating radiation above which filamentation is possi-
ble. Equation (4.16) corresponds to vanishing of the
right-hand side of (4.15). Under these conditions,

(4.17)

is the mean free path of a thermal electron between its
collisions with ions.
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Clearly, threshold condition (4.16) corresponds to
the strong pumping field condition when

(4.18)

that is, when the London depth λL of the high-fre-
quency skin layer of the plasma substantially exceeds
the mean free path of electrons with respect to electron-
electron and electron-ion collisions.

The wave vector (4.14) value at the threshold pump-
ing field intensity given by Eq. (4.16) corresponds to
the size of a filament which appears slightly above the
threshold. The mean free path is then given by

(4.19)

The smallness of this value compared with unity, which
corresponds to the feasibility of applying our strongly
collisional description, is again determined by inequal-
ity (4.18).

5. In the preceding section, we characterized the
peculiar influence of heat effects on the nonlinear elec-
tromagnetic field dependence of the electron density,
which determines parametric instabilities, for circular
polarization. The same will be done for the general case
of elliptical polarization in Appendix 1 and for the par-
ticular case of linear polarization (an important case
which requires a special consideration) in Appendix 2.

Let us analyze the conditions under which our anal-
ysis is applicable. First, consider inequality (4.18). For
the mean free path of electrons to be small compared
with the London length, the inequality

(5.1)

should be satisfied. Here, Te [eV] is the electron temper-
ature, and ne [cm–3] is the number of electrons in one
cubic centimeter. The condition of a comparatively
high plasma density and a comparatively low tempera-
ture implied by Eq. (5.1) should not conflict with the
condition of plasma quasi-ideality. The corresponding
condition of weakness of interelectronic interactions is
fulfilled when the Coulomb logarithm is large,

(5.2)

where rD and rmin are the maximum and minimum elec-
tron target parameters for weak momentum transfer [6].
The inequality

(5.3)

can be rewritten as

(5.4)
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Two inequalities (5.1) and (5.4) for the number density of
electrons are satisfied simultaneously if Λ2 × 104 @ Te.

To summarize the preceding, note that our treatment
of the filamentation phenomenon based on an anoma-
lous plasma kinetics from [4] has led us to theoretically
establish a new thermally controlled effect of suppres-
sion of electromagnetic radiation filamentation. In con-
trast to the weak field limit, in which an increase in
radiation intensity increases heating, in a high-power
radiation field, when the rate of electron oscillations in the
pumping field exceeds its thermal speed, an increase in the
intensity of radiation causes a decrease in the electron
temperature. This effect can most simply be demonstrated
by writing the spatial amplification coefficient (incre-
ment) of the filament perturbation field in the form

(5.5)

This equation unambiguously follows from Eqs. (4.4)
and (4.8)–(4.11) for circularly polarized radiation fila-
mentation, from Eqs.(A.1.14), (A.1.18), (A.1.21), and
(A.1.22) for the general case of elliptical polarization if
thermal motion is ignored, and, lastly, from Eq. (A.2.13)
for linearly polarized radiation filamentation. In the usual

weak field limit, when  ≈ , we have

(5.6)

In contrast, in a strong field, when the relation  ≈

 can be used, we obtain

(5.7)

Equations (5.5)–(5.7) serve to qualitatively distinguish
between strong and weak pumping field conditions.
The corresponding difference arises because of the
dependence of radiation absorbed by a plasma on radi-
ation intensity, which is essential to our consideration.

At the same time, the total decrease in the heating
effect caused by an increase in the intensity of high-
power radiation decreases competition between the
thermal and ponderomotive nonlinearity mechanisms.
This makes filamentation possible after surpassing
threshold (4.16). It follows that the anomaly of the ther-
mal mechanism suppressing radiation filamentation
can be observed in a fairly wide high-power pumping
field intensity range (VT < VE < VE, th) if condition (5.1)
is satisfied; that is, if the mean free path of electrons is
substantially smaller than the London length. The

G
1

2k0
--------=

× –k4 ωLe
2

2c2
--------

k2VE
2

VT
2

-----------
4

χTe

---------
∂ QIB

0( )〈 〉
∂ VE

2ln( )
--------------------++

 
 
 

1/2

.

QIB
0( )〈 〉 E0

2

∂ QIB
0( )〈 〉

∂ VE
2ln( )

-------------------- QIB
0( )〈 〉 0.>=

QIB
0( )

E0
1–

∂QIB
0( )

∂ VE
2ln( )

-------------------- 1
2
---QIB

0( ).–≈
SICS      Vol. 92      No. 4      2001



622 SILIN
region of such intensities in practical applications is
determined by the condition

(5.8)

where qr [W/cm2] is the density of the pumping radia-
tion energy flux, λµ is the pumping radiation wave
length in micron units, and

(5.9)

For instance, if ne = 1021 cm–3 and Te = 30 eV, then ξ ≈
16.5. Even if Z ~ 1, this ensures meeting condition (5.8).
Simultaneously, conditions (5.1) and (5.4) are also satis-
fied.

To summarize, we established the possibility of
anomalous parametric plasma nonlinearity manifesta-
tions resulting from suppression of filamentation insta-
bility. The phenomenon is explained by a decrease in
the heat absorbed by a plasma as a result of the inverse
bremsstrahlung effect as the intensity of high-power
pumping field radiation grows.
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APPENDIX 1

Let the pumping field be elliptically polarized, when
k0 = (0, 0, k0), %%%%0 = (%%%%0x, %%%%0y, 0), and

(A.1.1)

where εx and εy are the components of the vector of
pumping field transverse polarization satisfying the

conditions  +  = 1 and εx > εy ≥ 0. Taking into
account Eqs. (2.1) and (2.4), we obtain E0x = εxE0 and
E0y = –iεyE0. We can therefore write (cf. [8])

(A.1.2)

where

(A.1.3)
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Further, we will need two coefficients of the Fourier
transform of (A.1.2),

(A.1.4)

(A.1.5)

Here, E(z) and K(z) are the complete elliptical integrals.

Equations (A.1.1)–(A.1.5) allow Eq. (3.9) to be
rewritten in the form

(A.1.6)

Using these results and Eqs. (3.8) and (3.11), we can,
according to (3.12), write

(A.1.7)

Here,

(A.1.8)

where

Equations (3.13) and (A.1.7) give

(A.1.9)
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(A.1.10)

Hence, the dependence of field perturbations is ~exp(Gz),
where the spatial amplification coefficient is given by the
equation

(A.1.11)

Because

(A.1.12)

and

(A.1.13)

the solution to Eq. (A.1.11) can be written in the form

(A.1.14)

Clearly, the filament spatial amplification coefficient is
maximum when the wave vector is given by Eq. (4.14).
Then

(A.1.15)

In the ρ2 = 0 limit, which corresponds to circular pump-
ing polarization, Eq. (4.11) follows from Eq. (A.1.14).
In the opposite limit of a low circular polarization degree
A, when
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and

(A.1.17)

the role played by a decrease in the electron tempera-
ture as the intensity of radiation grows increases loga-
rithmically, which prevents filamentation. As a result, an
additional factor equal to Eq. (A.1.17) appears in
Eq. (4.14), which determines the filamentation threshold.

This increase in the filamentation threshold deter-
mined by polarization corresponds with the polarization
dependence of plasma heating by a high-power pumping
radiation established in [4], when the effective frequency
of collisions (4.6), which characterizes absorption of ellip-
tically polarized pumping field, is given by

(A.1.18)

In the (A.1.16) limit, this equation takes the form

(A.1.19)

The last formula is inapplicable if

(A.1.20)

when the influence of thermal motion on radiation
absorption in a plasma should be taken into account in
describing the effects under consideration [8].

Lastly, let us write the generalization of Eqs. (4.4)
and (4.8) that follows from our analysis,

(A.1.21)

(A.1.22)

In particular, it follows from these equations that the fil-
ament spatial amplification coefficient can be written in
form (5.5).

APPENDIX 2

We cannot completely ignore the influence of ther-
mal motion of electrons on the inverse bremsstrahlung
absorption of a strong pumping field in the particular
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case of a linearly polarized pumping field %%%%0 = (%%%%0, 0, 0),
where

Indeed, the rate of electron oscillations then equals
uE = (uE, 0, 0), where

can vanish at a certain time moment. Equation (A.1.2)
then becomes meaningless at ρ2 = 1.

In view of this, the heat absorbed by a plasma in a
strong pumping field will be written as (cf. [4])

. (A.2.1)

We then have the absorbed heat perturbation

(A.2.2)

This equation takes into account that F0(u) is a Max-
well distribution. In (A.2.1),
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Using the equation

and the asymptotic relation for the Bessel function of
an imaginary argument

we obtain

(A.2.7)

in the strong field limit. It follows that the absorbed
field perturbation averaged over fast oscillations can be
written as

(A.2.8)

Here,

(A.2.9)

is the nonlinear effective frequency of collisions, which
characterizes pumping field absorption:

(A.2.10)

Equation (A.2.8) can, with logarithmic accuracy, be
written in a form similar to Eq. (4.9) obtained for circu-
larly polarized pumping,

(A.2.11)

Lastly, applying (3.11) yields

(A.2.12)

which describes density perturbations. We again see that
heat effects suppress the ponderomotive effect, which
generally causes radiation filamentation. If (A.2.12) is
written as

(A.2.13)

we can write Eq. (5.5), because Eq. (A.2.13) is similar
to the equation that follows from (4.10) and (4.11).
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Abstract—The mechanisms of heating of the electronic component of large deuterium clusters by a super-
atomic ultra-short laser pulse field are considered. During pulse rise, the so-called “vacuum heating” plays the
determining role. Electrons escaping from a cluster into the vacuum with a low energy return back in a time
equal to the period of the laser under laser field action. The returning electrons have a higher energy (on the
order of the vibrational energy in the laser radiation field), which causes cluster heating. As the laser field
increases, the electronic temperature largely grows at the expense of decreasing the Coulomb potential energy
of electron repulsion because of a decrease in the number of electrons. The dynamics of above-barrier cluster
ionization at the leading edge of a superatomic laser pulse is calculated. The results are discussed in the light
of recent experiments aimed at creating desktop sources of monoenergetic neutrons formed as a result of the
fusion of deuterium nuclei in a cluster plasma. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent experimental studies of photoionization of
atomic and molecular clusters by femtosecond laser
pulses showed that exciting large clusters comprising
thousands atoms makes it possible to obtain super-
heated microplasma with an electron temperature up to
several keV. Of great interest are deuterium clusters
because of a possibility of creating a plasma with a kinetic
energy of deuterium atoms sufficient for tunnel nuclear
fusion to occur when two such nuclei collide [1, 2]. Deu-
terium nuclei acquire a kinetic energy of several keV as a
result of a Coulomb explosion of clusters after remov-
ing all electrons from them by a laser field.

This work is concerned with the mechanism of heat-
ing of the electronic component of deuterium clusters
at the leading edge of a superatomic laser pulse, when
the radius of the cluster slightly grows during very fast
detachment of electrons from parent deuterium mole-
cules in the cluster (so called inner ionization) and fur-
ther escape of these electrons from the cluster itself (so-
called outer ionization). We suggest two mechanisms
of this heating. According to the first mechanism, an
electron with a low kinetic energy that escapes from the
cluster under laser field action can return back in a frac-
tion of the period of the laser, this time with an energy
on the order of the vibrational energy in the laser radi-
ation field. After the return, this electron collides with
other electrons, and the thermalization of the electronic
component occurs. The temperature of this component
1063-7761/01/9204- $21.00 © 20626
gradually grows as radiation at the leading edge of the
laser pulse becomes increasingly intense.

The other mechanism of heating of the electronic
component is related to the conversion of the Coulomb
potential energy of electrons that remain within a clus-
ter ion at a given time moment of outer ionization into
their kinetic energy. This mechanism is based on the
model of multiple ionization of a large Thomas–Fermi
cluster by a strong electromagnetic field; the model was
developed by us in [3]. In this model, electrons of a
large cluster ion occur within a sphere of radius R' < R,
where R is the radius of the ionic component. Within
this sphere, a plasma of electrons and positively
charged ions is neutral, and an electric field is absent.
The concentration of electrons in the cluster ion does
not change during outer ionization, and only radius R'
of the electronic component decreases. Such a plasma
approach to the problem requires that the Debye radius
of screening of the Coulomb field of electrons

be smaller than radius R'. Here, T is the electron tem-
perature and N is the concentration of electrons. We
will, as a rule, use the atomic system of units, in which
the charge and the mass of the electron and the Planck
constant equal one.

We will not discuss the mechanism of heating of clus-
ter electrons related to the induced inverse bremsstrahlung

rD
T

4πN
-----------=
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effect. In the presence of a laser field, electrons scattered
on atomic ions largely absorb field energy rather than emit
[4]. This mechanism is known for clusters of heavy ele-
ments (for instance, xenon atoms) [5], where multiply
charged atomic ions are formed, and the inverse
bremsstrahlung effect is substantial. In this work, we only
discuss singly charged deuterium ions, for which the
probability of this effect is low.

We also do not consider heating of electrons as a result
of excitation of the Mie collective dipole resonance (sur-
face plasmon) [5]. The resonance arises when the laser
field frequency coincides with the Mie frequency. In the
system under discussion, the laser field frequency is
much lower than the Mie frequency.

Let us turn to the problem of the penetration of a
laser field into a cluster plasma. At a low ionization
degree, a laser field freely penetrates through the whole
cluster ion. This follows from numerical calculations of
xenon atom clusters [6], in which the 5p6 and 5s2 outer
shells were largely ionized. At a high ionization degree
of heavy element clusters, a laser field penetrates a very
short distance into the cluster because of absorption
caused by the induced inverse bremsstrahlung effect in
elastic scattering of free cluster electrons on multiply
charged atomic cluster ions [7]. For clusters of deute-
rium molecules considered in this work, this effect is
insubstantial, see above. The penetration depth related
to the excitation of plasma oscillations [8] has the form

(1)

Here, ω is the laser radiation frequency, and the permit-
tivity caused by conduction electrons is

where ωp is the plasma frequency,

A typical laser radiation frequency is much lower, and
this is the reason why screening occurs. We will use the
ω = 1.55 eV frequency in our calculations, which cor-
responds to a 800 nm light wave length [1, 2]. The
depth of field penetration then exceeds 300 Å; that is, it
is substantially larger than the diameter of deuterium
clusters.

In a cluster, deuterium molecules attract each other by
van der Waals forces and form a dielectric liquid. The con-
centration of deuterium nuclei in this liquid (equal to the
concentration of electrons) is N = 5.15 × 1022 cm–3 [9], as
in a macroscopic deuterium liquid at a temperature
below its boiling point; that is, N is of the order of the
concentration of atoms in metals. In agreement with
this concentration value, the mean distance between deu-
terium molecules equals 3.4 Å, whereas the distance
between two atoms in the deuterium molecule is much
smaller and only amounts to 0.7 Å. We assume that a

δ c

ω ε
--------------.=

ε 1
ωp

2

ω2
------ 0,<–=

ωp 4πN 8.4 eV.= =
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large cluster comprising thousands deuterium molecules
has a spherical shape (although experimentally, this was
only proved for large metal atom clusters).

2. INNER IONIZATION
At a certain point during superatomic laser pulse

increase, inner ionization of deuterium molecules in the
cluster begins. All electrons are detached from parent
nuclei and become collectivized (but still do not escape
from the cluster), intramolecular bonds dissociate, and
naked deuterium nuclei are formed.

Such an ionization is an above-barrier process. It
continues for a short time of one-two femtoseconds
(a similar picture is observed in the ionization of xenon
clusters by a superatomic laser pulse, see [6]). Indeed,
suppose that the intensity of the laser at a pulse maxi-
mum is I = 5 × 1016 W/cm2. The corresponding maxi-
mum field is F = 1.17 au (we assume linear field polar-
ization). According to the numerical calculations [10],
above-barrier ionization of atomic hydrogen (deute-
rium) in 3 fs (that is, approximately during the period
of the laser that generates in the visible region at 800 nm)
requires a much weaker field F = 0.08 au. A similar
value, F = 1/16 au, follows from the Bethe rule [11].
The same estimate is valid with hydrogen or deuterium
molecules.

On the other hand, the calculations performed in [12]
show that tunnel ionization can play the determining role
in complete inner ionization at still lower fields because of
a spatial distribution of laser intensity. This is not very
important for describing subsequent outer ionization.

For a typical Gaussian pulse 35 fs wide [1, 2], the
field strength envelope (in atomic units) depends on
time t (in femtoseconds) as

(2)

and field F = 0.08 au corresponds to the t = –45 fs time
point. Here and in outer ionization calculations, time
t = 0 corresponds to a maximum field value.

Intramolecular bonds, naturally, disappear during
1–2 fs at the very beginning of laser pulse rise, and the
spherical deuterium cluster becomes a completely ionized
dense neutral plasma comprising free electrons and deute-
rium nuclei. For instance, a cluster with R = 25 Å (this is a
typical experimental value [1, 2]) contains

electrons. The dielectric cluster therefore becomes
metallic!

3. OUTER IONIZATION
Consider outer ionization, when electrons escape

from the surface of the cluster outward. We assume this
ionization to be also field (cold) and above-barrier; that
is, the laser field is superatomic not only for the inner
but also for the outer ionization. Thermal ionization
(the vaporization of heated electrons from the surface

F t( ) 1.17 t2/780–( )exp=

n N 4π/3( )R3 3370= =
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of the cluster) described by the Richardson–Dushman
equation is insignificant under these conditions because
of the fast occurrence of the ionization. Competing
with outer above-barrier ionization is tunnel ionization
at a weaker field, which we neglect. Of course, this
neglect can also prove incorrect in the light of the
results obtained in [12] for atomic ionization, and this
problem requires further inquiries.

The Bethe condition [11], which we apply to the
classical above-barrier ionization of electrons from the
cluster, has the simple form

(3)

Here, Z = Z(t) is the charge of the cluster ion at point t
and EZ is the potential of its further ionization equal to
the Coulomb potential of the corresponding cluster ion,

(4)

where R is the radius of the cluster determined by deu-
terium nuclei (we assume that Coulomb repulsion
between deuterium nuclei does not cause a significant
increase in this radius at the leading edge of the laser
pulse, see the corresponding estimates given below).

According to Eq. (3), at time t determined from this
relation, Z(t) electrons escape from the cluster.

The remaining n – Z electrons of the cluster ion occur
within a sphere of a smaller radius R' determined by the
condition of electrical neutrality of this sphere (see Intro-
duction); that is, by the condition

(5)

The region between R and R' only contains deuterium
nuclei. It follows from Eqs. (3) and (4) that the number
of escaped electrons, Z, is related to the laser field
amplitude at a given time moment by the simple equa-
tion

(6)

According to this equation, all 3370 electrons of a deu-
terium cluster with R = 25 Å escape outward in field
F = 0.38 au at t = –29.5 fs [see Eq. (1)]. From a cluster
of radius 50 Å, 26 960 electrons that this cluster con-
tains escape in field F = 0.75 au at t = –18.5 fs. Similar
estimates can easily be obtained for other maximum
laser pulse intensities.

Of course, this approach is valid at a fairly high peak
strength F, when the ionization is above-barrier; that is,
when the condition

(7)

is satisfied. At a fixed peak laser field value, this condi-
tion bounds the deuterium cluster radius R from above.

F t( )
EZ

2

4Z
------.=

EZ
Z t( )
R

---------,=

n Z–
n

------------
R'
R
---- 

 
3

.=

Z t( ) 4R2F t( ), t 0.<=

F
n

4R2
---------> πNR

3
-----------=
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4. VACUUM HEATING
OF CLUSTER ELECTRONS

An electron escaping from the r = R' surface of the
cluster ion with a certain energy comes under the influ-
ence of the laser radiation field and can be returned by
this field in a fraction of the period of the laser depend-
ing on the laser field phase ϕ. The electron then
acquires energy on the order of electron vibrational
energy. This is the so-called “vacuum heating” mecha-
nism suggested by Brunel [13] to describe interaction
of laser radiation with metallic surfaces. The electron
vibrational energy at a given time averaged over the
laser radiation period is

(8)

The one-dimensional Newton equation for electron
motion in a linearly polarized field along the field
polarization axis has the form

(9)

Integrating Eq. (9) yields the current electron velocity
(time in the laser pulse envelope is treated as a param-
eter)

(10)

Here, v is the initial electron velocity at the moment of
its escape from the cluster ion. The coordinate of the
electron again becomes zero at time t when

(11)

It follows that determining the return time requires
solving the transcendental equation

(12)

Here, the return phase ϕ0 = ωt and the field velocity

are introduced.
A solution to Eq. (12) is shown in Fig. 1 as the

dependence of ϕ0 on the initial phase ϕ at various initial
velocity values, v/vF = 0, 0.1, 0.2, …, 1.2, and 1.25. At
v = 0, this solution is known for the corresponding
problem of the theory of tunnel ionization of atoms by
a strong low-frequency field [14]. The figure shows
that, at each velocity value, the return only occurs in a
limited interval of initial laser radiation phases ϕ. At a
fairly high velocity v ≥ 1.25vF (the central closed curve
with the smallest area in Fig. 1), electrons do not at all

U p
F2 t( )

4ω2
-----------.=

d2x

dt2
-------- F t( ) ωt ϕ+( ).cos=

dx
dt
------ v

F t( )
ω

--------- ωt ϕ+( )sin ϕsin–[ ] .+=

x t( )
F t( )

ω2
--------- ϕcos ωt ϕ+( )cos–[ ]=

+ v
F t( )
ω

--------- ϕsin– t 0.=

v
v F

------ ϕsin– ϕ0 ϕ ϕ0+( ) ϕ .cos–cos=

v F F t( )/ω=
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return into the cluster but fly away to infinity at velocity v.
It should, of course, be borne in mind in the calcula-
tions that an electron can escape in both positive and
negative axis x directions.

In this approach, an electron is considered a classical
particle, and electron wave packet spreading after the ion-
ization is ignored. From the quantum-mechanical point of
view, this corresponds to the neglect of the transverse elec-
tron velocity with respect to the laser field polarization
vector compared with its longitudinal velocity. The pres-
ence of a transverse velocity decreases the probability of
the return of the electron back to the cluster. Compared
with the corresponding problem of electron return in
tunnel ionization of an atom, the favorable factor is the
large size of the cluster. In addition, as in the atomic prob-
lem, of the greatest importance are electrons that escape
with low energies, see below. Transverse velocities are
then fairly small compared with longitudinal velocities.
We will estimate them later on.

The curves shown in Fig. 1 allow us to calculate the
kinetic energy of the electron at the moment of its return
back to the cluster as a function of initial phase ϕ,

(13)

Ek
1
2
--- dx t( )

dt
------------ 

 
2

=

=  2U p
v
v F

------ ϕ ϕ0+( ) ϕsin–sin+
2

.

0 1
ϕ

ϕ0

2 3 4

1

2

3

4

5

6

Fig. 1. Dependence of electron return time t (via phase ϕ0 = ωt)
on initial laser field ϕ according to transcendental equa-
tion (12) at various escaping electron velocities v expressed
in field velocity vF = F(t)/ω units. The left-most curve cor-
responds to v = 0. Next follow curves with v/vF = 0.1, 0.2,
0.3, …, 1.1, 1.2, and 1.25. The lowest return time at a given
initial laser field phase ϕ corresponds to the first return, the
next value, to the second return, etc.
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The calculation results are plotted in Fig. 2 for the same
electron velocities as in Fig. 1. Note that, according to
Corkum [14], a maximum kinetic energy value for the ion-
ization of atoms is Ek = 3.17Up. This value is attained at a
zero initial velocity and phase ϕ = 17°.

Assuming this phase to take on random values
allows Eq. (13) to be averaged uniformly with respect
to the phase. The result is shown in Fig. 3, where the
mean energy of returning electrons is plotted as a func-
tion of the initial electron velocity at which it escapes

0

0.5

1
ϕ

Ek/Up

1.0

1.5

2.0

2.5

3.0

2 3 4

Fig. 2. Dependence of the kinetic energy of an electron
returning to the cluster (in vibrational energy Up units) on
the initial laser field phase ϕ according to Eq. (13) at the
same escaping electron velocities as in Fig. 1. Velocities
increase from the left-most curve to the right.

0 0.5

0.4

v/vF

〈Ek〉/Up

1.0

0.8

1.2

Fig. 3. Dependence of the mean kinetic energy of electrons
returning to the cluster (in vibrational energy Up units) on
their velocity v at the moment of escape from the cluster
expressed in field velocity vF = F(t)/ω units.
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from the r = R ' cluster surface. This energy accounts for
a considerable fraction of the vibrational energy, and,
therefore, the Brunel mechanism [13] of so-called vac-
uum heating can in principle cause heating of electrons
remaining inner the cluster ion at the leading edge of a
laser pulse and should be taken into account in the
energy balance for the outer ionization of the cluster.

Clearly, if the escaping electron energy v2/2 is sub-
tracted from the returning electron energy, the result
may be both positive (electron component heating) and
negative (electron component cooling). For this reason,
predominant initial velocities v of electrons escaping
during the outer ionization play a very important role.
We can use the results obtained for the tunnel and above-
barrier ionizations of atoms [15]. The distribution of
escaping electrons with respect to their longitudinal
velocities (along the laser field polarization vector) has
the form of a Gaussian curve with a maximum at a zero
velocity,

(14)

Here, we introduced the Keldysh parameter [16]

(15)

We used Eqs. (4) and (6) to derive the equation for this
parameter. Strictly, Eq. (14) is valid for the tunnel ion-
ization. For the above-barrier ionization, the tunnel expo-
nent is replaced by the Airy function (see the correspond-
ing distributions in [17]). We, however, wish to determine
the characteristic longitudinal velocities rather than the
energy distribution of escaping electrons per se, and lon-
gitudinal velocities have similar symbolic estimates for
the tunnel and above-barrier ionizations [17]. Accord-
ing to Eq. (14), the typical longitudinal velocity impor-
tant for escaping electrons can be estimated as

(16)

At a laser pulse maximum (t = 0), Eq. (16) yields v/vF =
0.02, whereas at t = –45 fs (F = 0.08 au), we find v/vF =
0.04.

Equation (14) is valid if the Keldysh parameter γ is
smaller than or close to unity. For the cluster and laser
field parameters used above as typical examples, this
parameter value is on the order of one.

As far as the characteristic transverse velocity v⊥ ,
which determines wave packet spreading, is concerned,
its estimates for the above-barrier and tunnel ioniza-
tions also coincide, namely [17],

(17)
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------------------------------------.= =
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The conclusion can therefore be drawn that a large
majority of electrons escape from clusters at low veloc-
ities compared with the field velocity (as in atoms in the
tunnel ionization). According to Fig. 3, the mean
kinetic energy of an electron flying back into the cluster
therefore equals

It follows that the laser radiation energy absorbed by
cluster ion electrons per unit time is given by the simple
equation

(18)

Here, dZ/dt is the number of electrons escaping from
the cluster per unit time. A part of these electrons return
in a fraction of the laser period back into the cluster and
heat electrons that remain there, whereas another part
irreparably fly away to infinity. This process continues
until electrons still remain in the cluster. As mentioned
above, the process terminates before t = 0, when the
laser pulse field is maximum. The electron wave packet
spreading mentioned above can only slightly decrease
the factor in Eq. (18).

5. ENERGY BALANCE

Energy (18) is spent to heat the electronic compo-
nent and change the potential energy of electrons (no
energy exchange between the electronic and ionic com-
ponents occurs during the ultra-short laser pulse).
A part of the energy is lost with electrons emitted in the
outer ionization. The energy balance has the form [7]

(19)

This equation takes into account that cluster ion elec-
trons are uniformly distributed within a sphere of radius
R' < R determined by Eq. (5) (see Introduction). The
first term in the right-hand side of Eq. (19) is the change
in the kinetic energy of electrons that remain in the
cluster ion at a given time moment per unit time. The
second term is the rate of changes in the Coulomb
potential energy of electrons.

The second term in the left-hand side of Eq. (19) is
the energy of electrons that escape from the cluster ion
per unit time. The 3T/2 value is the mean energy of an
escaping electron inner the cluster ion, and Z/R is the
energy lost by the electron when it flies from the cluster
outward.

The T(t) value is the electron temperature. Of
course, establishing this temperature requires effective
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electron-electron collisions inner the cluster. Such col-
lisions do occur if the free path of electrons is smaller
than R'. Let us estimate the free path by the formulas of
the theory of collisions in a plasma [18]. The electron
temperature present in these formulas will be replaced
by the mean kinetic energy of electrons returning to the
cluster, Ek = 3T/2,

(20)

According to the calculations discussed above, the
kinetic energy of an electron is estimated here as Ek =

Up/2, ve =  is the velocity of an electron inner the
cluster, the typical value of the Coulomb logarithm lnΛ
can be set equal to 10, and N is the concentration of
electrons inner the cluster (this concentration does not
change in the outer ionization because electrons are
contracted into a sphere of a smaller radius). At a typi-
cal laser pulse field F = 0.25 au, Eq. (18) yields l = 4 Å.
It follows that electrons frequently collide with each
other inner the cluster, which ensures a Maxwell tem-
perature distribution. An exception is the final stage of
outer ionization, when l strongly increases, whereas R'
decreases. These considerations justify not only the use
of Eq. (19) as the energy balance equation but also the
electron rescattering mechanism itself.

Substituting Eqs. (5) and (18) into Eq. (19) eventu-
ally yields the following equation for determining the
electron temperature:

(21)

Here, the number of escaped electrons Z (t ) is given
by Eq. (6).

The second term in the right-hand side of Eq. (21)
responsible for the energy that returns to the cluster
during vacuum heating is small compared with the first
term. Indeed, the ratio between these terms is

This ratio reaches a maximum when Z = n. For a cluster
of radius 25 Å, it equals 0.08 ! 1.

In view of these considerations, vacuum heating can
be ignored, and heating of electrons that remain inner
the cluster ion can be assumed to be fully determined
by the Coulomb potential energy of electrons.

Ignoring the vacuum heating term, let us rewrite Eq.
(21) in the form

(22)
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The integration of Eq. (22) yields the universal relation
between the electron temperature and the charge of the
cluster ion. Let us introduce the notation

On the assumption that the temperature is zero in the
absence of outer ionization, we obtain

(23)

This dependence is plotted in Fig. 4, where x varies
from 0 to 1. The time dependence of the electron tem-
perature is determined by Eqs. (23) and (6), which
gives the charge of the cluster ion as a function of time.

For instance, at x = Z/n = 1/2, Eq. (23) yields the
electron temperature

 

In particular, for a cluster of radius 25 Å, T1/2 = 0.97 keV.
According to Eq. (22), the complete electromag-

netic energy absorbed by one cluster equals its initial
Coulomb energy (if the contribution of vacuum heating
to the total energy is ignored in agreement with the
above estimates):

(24)

The mean temperature of escaped electrons under
the conditions when all of them escape from the cluster
does not depend on the intensity of laser radiation (of
course, if this radiation is superatomic) and equals

(25)
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Fig. 4. Universal dependence of the electron temperature
of a cluster ion (in y = 3RT/2n units) on the ion charge (in
x = Z/n units).
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Note that this mean temperature is close to the T1/2 tem-
perature, at which a half of all electrons escape from the
cluster. In particular, for a 25 Å cluster, the mean elec-
tron temperature is 0.78 keV, and for a 50 Å cluster, this
temperature equals 3.1 keV. This value is independent
of the peak laser radiation intensity because, in a stron-
ger laser field, the middle part of the laser pulse “does
not work.”

Consider a cluster of large size, suppose, of radius
80 Å (such a cluster contains 110000 electrons). Accord-
ing to Eq. (6), laser field (1) is only capable of causing
above-barrier ionization of 107000 electrons. It follows
that the effectiveness of outer cluster ionization
decreases as the size of the cluster increases (at a given
laser radiation intensity).

6. CONCLUSION

After the escape of all electrons from a deuterium
cluster of radius 25 Å in a field with a 5 × 1016 W/cm2

peak intensity at time t = –29 fs, a sphere comprising
positively charged deuterium nuclei is formed. The
concentration of nuclei in this sphere is N = 5.15 ×
1022 cm–3. At this moment, a Coulomb explosion
begins, and the whole potential Coulomb energy of this
sphere, n2/2R, converts into the kinetic energy of deute-
rium nuclei. The mean kinetic energy of one nucleus
equals

and the maximum energy is

The cluster begins to expand fairly rapidly, and its
radius increases to three times the initial radius is sub-
sequent 30 fs; that is, by the time the laser pulse attains
a maximum. Note that the expansion of a cluster of
xenon atoms proceeds simultaneously with outer ion-
ization because of the multiple character of the ioniza-
tion [6].

As a result, a deuterium plasma is formed with an
N ' = 1019 cm–3 mean concentration of electrons and
nuclei [2]. The time of collisions of deuterium nuclei
with each other can be estimated by the formula for
plasma collisions [18]

(26)

Here, M is the reduced mass of the deuterium nucleus
in a collision of two nuclei with each other and Ed is its
kinetic energy. Substituting the values cited above
gives an estimate of 1–3 ns for the collision time. This
leads us to conclude that there is certainly no time for a
Maxwell distribution to be established in this plasma.
Most likely, the kinetic energy distribution of deute-

Ed n/2R 0.95 keV,= =

n/R 1.9 keV.=

τ ii

3 M 2Ed/3( )3/2

4 2πN' Λln
-------------------------------------.=
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rium nuclei should be considered uniform from zero to
the 2Ed maximum value.

Clearly, in the absence of high-energy deuterons,
the nuclear fusion reaction

d + d = 3He + n

virtually does not occur, because the cross section of the
tunnel reaction is exceedingly small; it equals 10–37 cm2 at
an Ed = 2 keV deutron energy [19]. For the yield of neu-
trons to be appreciable, deutrons should have energies
exceeding 10 keV.

It is likely that, in the experiments described in [1, 2],
where neutron yields up to 104 per laser pulse were
observed, there were collective mechanisms of energy
transfer from electrons to deuterium nuclei with the for-
mation of high-energy nuclei. One of such mechanisms
can be related to a process similar to ambipolar diffusion,
when electrons escaping from the cluster drag a part of
deuterium nuclei along with them by Coulomb attraction
forces. Diverse instabilities in a deuterium plasma can also
be responsible for the appearance of high-energy deuter-
ons. For instance, in [2], the mean kinetic energy of
deuterons equaled 12 keV! Lastly, the mechanism sug-
gested by A.D. Sakharov can operate. According to
Sakharov, outer ionization proceeds very rapidly, and
there occurs recoil-induced initial partial contraction of
the ionic sphere resulting from the escape of all elec-
trons. An analysis of these mechanisms requires special
consideration.
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Abstract—The behavior of the spectrum of the soft magnetoresonance mode in samarium orthoferrite was
experimentally and theoretically studied in the region of the Γ4  Γ24 orientation phase transition induced
by an external magnetic field. The special features of this behavior can be explained by the relative contributions
of interaction between ferrite subsystems and longitudinal susceptibility. It is also shown that the contribution
of longitudinal susceptibility to the gap of the soft magnetoresonance mode in samarium orthoferrite can also
be substantial in low fields; that is, in the vicinity of spontaneous orientation phase transitions. This is explained
by the occurrence of spontaneous orientation phase transitions in samarium orthoferrite at high temperatures,
at which longitudinal susceptibility is comparable in magnitude with transverse susceptibility. © 2001 MAIK
“Nauka/Interperiodica”.

     
1. INTRODUCTION

The first convincing evidence of a contribution of lon-
gitudinal susceptibility to resonance frequencies of
ordered magnets was obtained in [1] for the example of
weak ferromagnets YFeO3 and DyFeO3, which are rare-
earth metal orthoferrites. The selection of these com-
pounds and the method used to detect the corresponding
effect were not fortuitous. By then, the static properties of
rare-earth metal orthoferrites had been studied fairly com-
pletely and reliably established in a large number of
theoretical and experimental works. In particular, mag-
netic phase transitions suitable for purposes of such a
study had been found. The corresponding data consti-
tute a necessary prerequisite for constructing a theory
of the dynamic properties of these magnets and for cor-
rectly interpreting the corresponding dynamic experi-
ments. The detailed data on the crystal and magnetic
structure of rare-earth metal orthoferrites, which are
also used in this work, can be found in monograph [2],
which allows us only briefly to characterize the object
of study. Most rare-earth metal orthoferrites contain
two magnetic subsystems, iron d and rare-earth metal f

subsystems, and crystallize in space group . At
temperature TN (600–700 K for various rare-earth metal
orthoferrites), iron spins are ordered to form a weakly
canted antiferromagnetic (weakly ferromagnetic)
structure Fz, Gx corresponding to the Γ4 irreducible rep-

D2h
16
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resentation of the space group specified above. Here, Fz

and Gx are the components of the ferromagnetic and
antiferromagnetic vectors F = M1 + M2 and G = M1 – M2

(M1 and M2 are the magnetizations of iron sublattices).
The rare-earth metal subsystem is in the paramagnetic
state at TN. Only in some of the rare-earth metal ortho-
ferrites, this subsystem undergoes magnetic ordering as
a result of f–f exchange interactions as temperature
decreases to T < 10 K. On the other hand, because of f–d
interactions, there occurs ordering of rare-earth metal
ions induced by the iron subsystem, and ferro- and anti-
ferromagnetic vectors of their own can also be put in
correspondence to these ions. Strictly, the static mag-
netic structure of rare-earth metal orthoferrites is
described by four d and four f sublattices. These eight
sublattices can, however, be reduced to four sublattices
(two d and two f) for describing the dynamics of acous-
tic modes studied in this work. The presence of two
interacting magnetic subsystems in rare-earth metal
orthoferrites is responsible for the occurrence of vari-
ous orientation phase transitions. The general reason
for their appearance is anisotropic and temperature-
dependent f–d interaction. The contribution of rare-
earth metal ions to the thermodynamic potential of the
magnetic subsystem increases as temperature lowers.
Because the magnetic properties of rare-earth metal
ions are exceedingly anisotropic, this results in a spon-
taneous change in the orientation of magnetization of
001 MAIK “Nauka/Interperiodica”
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iron sublattices with respect to the crystallographic
axes; that is, in an orientation phase transitions. In most
rare-earth metal orthoferrites, such transitions largely
occur as smooth rotations of the F and G vectors in the
ac plane of the crystal. As a result of temperature low-
ering, a magnet spontaneously transforms from one
symmetrical phase, Γ4(Fz , Gx), to another, Γ2(Fx , Gz),
through the Γ24(Fx, z , Gx, z ) canted phase; that is, the
Γ4  Γ24  Γ2 “cascade” of phase transitions
occurs. The T1 and T2 temperatures of the onset and
completion of vector rotations correspond to second-
order orientation phase transition points and are specific to
each rare-earth metal orthoferrite. When temperature
increases, phase transitions occur in the reverse order. The
Γ4  Γ24 and Γ24  Γ2 transitions can separately
be induced by applied magnetic fields, H || c and H || a,
respectively.

It is shown in the theoretical model developed in [1]
that the occurrence of an “order–order” transition in
external magnetic field H is a necessary condition for
observing the contribution of longitudinal susceptibil-
ity to the dynamics of magnets. According to [1], this
contribution results in the appearance of a gap in the
spectrum of spin waves precisely at induced orientation
phase transition points. A visual test suggested in [1] can
conveniently be used in experiments and allows conclu-
sions to be drawn both on the presence and magnitude of
the corresponding effect. In a first approximation, the
gap in the spectrum of an experimentally observed soft-
ening magnetoresonance mode is given by

where γ is the gyromagnetic ratio; χ|| and χ⊥  are the lon-
gitudinal and transverse susceptibilities, respectively;
and Htr is the field of the phase transition. It follows
from this equation that soft mode activation increases
when either temperature T (because χ||/χ⊥  ∝  T) or
applied magnetic field grows. Simultaneously increas-
ing transition temperature Ttr and field Htr induces the
Γ2  Γ24 orientation phase transition. We selected
this transition to test the validity of the theory sug-
gested in [1]. For this transition, external parameters act
in the same direction on the width of the gap. In the
experiments described in [1], the gap was observed at
fairly high values of both temperature, T > 100 K, and
field, H > 60 kOe.

The theory [1] did not take into account the mecha-
nisms that inevitably lead to the appearance of an
energy gap as a result of dynamic interactions between
various vibrational subsystems of a magnet (ordered
spin, paramagnetic, magnetoelastic, and dipole sub-
systems) and between vibrations of these subsystems
and longitudinal magnetization oscillations of rare-
earth metal orthoferrite sublattices [3, 4]. If interactions
of various subsystems of a magnet are ignored, gap ν0
in the model [1] should vanish as H, T  0. Gap ν0,

          

ν0
γ

2π
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χ⊥
------ 

 
1/2

H tr ,=

                                                                                          
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                                                                     

however, never disappears in experiments. This raises
the question of what role is played by longitudinal sus-
ceptibility in the formation of a resonance frequency at
ultimately small values of external parameters or, at
least, one of them. Of interest for practical applications
is the case of H  0, because, along with field-
induced orientation phase transitions, spontaneous ori-
entation phase transitions occur in ordered magnets no
less frequently. For instance, orientation phase transi-
tions of similar structures can be induced in rare-earth
metal orthoferrites by both field and temperature at H = 0.
At present, various orientation phase transitions were
observed in the absence of a field in eight (of 15 known)
rare-earth metal orthoferrites. In essence, our task was
to elucidate the role played by longitudinal susceptibil-
ity in the formation of the dynamics of an ordered mag-
net in the vicinity of spontaneous orientation phase
transitions. In this respect, the present work differed
from work [1] aimed at studying field-induced orienta-
tion phase transitions. It is made clear in the discussion
that follows that precisely samarium orthoferrite
SmFeO3 of all rare-earth metal orthoferrites plays the
key role in fulfilling the task specified above.

2. STATEMENT OF THE PROBLEM. 
EXPERIMENTAL METHOD

AND MEASURING TECHNIQUE

Whereas reorientation onset and completion tem-
peratures T1 and T2 are specific to each compound and
substantially different for different rare-earth metal
orthoferrites, their TN iron ion ordering temperatures
are virtually equal (TN ≈ 600 K for SmFeO3). This pro-
vides a unique possibility, inherent only in rare-earth
metal orthoferrites, of selecting a sequence of com-
pounds of the same class with orientation phase transi-
tions of the same structure but with spontaneous reori-
entation temperatures that differ by more than an order
of magnitude. For good reason, the effects under dis-
cussion are more correct to analyze for a series of pre-
cisely one-type magnets rather than for substituted or
isomorphous substances. Such a series is convenient to
characterize by the dimensionless relative temperature
of spontaneous reorientation τSR = TSR/TN, where TSR =
(T1 + T2)/2 [4, 5]. All rare-earth metal orthoferrites can
then be arranged in a series between two limiting values
of this parameter, τSR = 0 and τSR = 1. These τSR values
correspond to the (also limiting) χ||/χ⊥  ≈ 0 and χ||/χ⊥  = 1
ratio values, respectively, at T = 0 and T = TN .

If the whole series of rare-earth metal orthoferrites
is considered, at least two questions arise. First,
whether or not in all (if not in all, then in what) rare-
earth metal orthoferrites, the longitudinal susceptibility
in the H  0 limit plays a noticeable role in the for-
mation of the soft mode frequency. Secondly, what role
is played by longitudinal susceptibility in the vicinity
of the Γ4(Fz, Gx)  Γ24(Fx, z, 

 

G

 

x

 

, 

 

z

 

) orientation phase
transition, where the field and the temperature of the
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transition change along the line of this second-order
orientation phase transition in opposite directions and,
therefore, give opposite contributions to the effects
caused by longitudinal susceptibility.

The contribution of longitudinal susceptibility to the
dynamics will be estimated by the values of the ∂ν0/∂H
(H  0) derivatives and ∂ν0/∂T (T  TSR) deriva-
tives related to the former by the phase diagram. The
measurements performed earlier for several rare-earth
metal orthoferrites RFeO3 (R = Yb, Tm, and Er) [6, 7]
covered the range τSR = 0.01–0.15 but gave no indica-
tions that these derivatives differed from zero up to
10 kOe fields. Clearly, this excludes the possibility of
detecting the effects under discussion also in NdFeO3,
whose τSR equals 0.17 [8]. All the other rare-earth metal
orthoferrites except SmFeO3 (R = Tb, Dy, Ho, etc.) in
which spontaneous reorientation occurs have still lower
τSR parameter values. Samarium orthoferrite is the only
rare-earth metal orthoferrite in which the Γ2 phase
exists at temperatures above room temperature, and τSR

amounts to approximately 0.8. The estimate obtained in
[1] from the temperature dependence of the χ||/χ⊥ ratio
shows that this ratio is about 0.7 in SmFeO3; that is, it
is close to its maximum limiting value χ||/χ⊥  = 1. Pre-
vious attempts at reproducing the spectrum of the soft
magnetoresonance mode of SmFeO3 by traditional
methods were, however, unsuccessful because of a
number of technical and physical difficulties, the over-
coming of which required additional efforts.

Traditional measuring cells for low-temperature
measurements could not be used in experiments with
SmFeO3, whose spontaneous phase transition tempera-
tures T1 and T2 exceeded 400 K. This required the
development of wide-band waveguide cells with con-
trolled heating that would allow temperature to be sta-
bilized and scanned in a fairly narrow range.

It is known that the paramagnetic subsystem of rare-
earth metal ferrites (the f subsystem) can cause substan-
tial damping of oscillations of ordered d subsystem
spins. Damping increases as temperature grows. For
this reason, it can result in a substantial broadening of
magnetoresonance lines in SmFeO3 and, eventually,
weakening of the effects under consideration. This
proved to be the principal difficulty of experiments with
this magnet. To overcome it, special attention was given
to the quality of the sample. We selected a high-quality
crystal about 1 mm3 in volume whose shape was diffi-
cult to identify with any geometric figure.

The sample was glued at its ac plane in the center of
a piston that short-circuited a rectangular waveguide
with oscillations of the H10 type. We selected the “less
favorable” Γ4(Fz, Gx)  Γ24(Fx, z, Gx, z) transition for
measurements, which allowed us to answer both ques-
tions raised above in an experiment with a single sam-
ple mounting. The mutual orientation of the F vectors
and the magnetic component of a microwave field h
optimal for the observation of absorption lines is F ⊥  h.
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The F vector and c axis were therefore directed along
the narrow waveguide cross section. In addition, the
accuracy of the orientation of the field along the corre-
sponding crystal axes is of fundamental importance in
measurements of this kind. The orientation phase tran-
sition under consideration is induced by field H || c. In
our experiments, the required accuracy of orienting H
along c (within approximately 20 minutes of arc) was
attained by the traditional method based on a high sen-
sitivity of the spectrum of a soft magnetoresonance
mode to deviations of the field from crystal axes in the
ac plane [1].

Measurements were performed on the direct ampli-
fication spectrometer that was used in all our previous
experiments and operated in the reflected power mode.
Special measures were, however, taken to increase its
sensitivity and resolution by more than an order of mag-
nitude. The most important step of modernization was the
use of a modulation mode in which magnetic field was
modulated but temperature scanned. The external mag-
netic field remained constant, and its value was set as a
parameter in each particular case. As a result, we recorded
the derivative of the absorption line with respect to tem-
perature. Outside the immediate vicinity of orientation
phase transitions (approximately ±3% from Ttr), the half-
width of resonance lines along the temperature axis was
on average not larger than 10 K.

The use of the improved procedure allowed us to
attain virtually the same accuracy of measurements as
in similar experiments on the other rare-earth metal
orthoferrites [1, 6, 7]. This in the first place refers to the
accuracy of determining energy gap values at transition
points (the error did not exceed ±2.5 GHz for gaps
27–50 GHz wide). Our ultimate goal was not only to
determine the width of gaps but to measure its depen-
dence on external field and temperature, and the range
of gap measurements had to ensure that gap variations
be substantially larger than the error of measurements.
It will be shown that this requirement was satisfied
by temperature variations in the range 400–490 K and
by using fields up to 12 kOe.

3. EXPERIMENTAL RESULTS

An analysis of the totality of resonance experiments
in the vicinity of field-induced orientation phase transi-
tions in rare-earth metal orthoferrites and isomorphous
weak ferromagnet Fe3BO6 [9, 10] revealed one remark-
able feature of the spectrum of the soft mode important
for the purposes of this work. The experimental points
in the temperature and field dependences of soft mode
resonance frequencies lay very close to straight lines on
both sides of the orientation phase transition line. This
allows reliable results to be obtained by linearly extrap-
olating experimental dependences, if necessary. The
H–T phase diagrams of rare-earth metal orthoferrites
exhibited similar behavior; they also had the form of
straight lines, at least, for H  0.
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001
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Examples of the recorded derivatives of absorption
lines with respect to temperature obtained in a 6 kOe
field at various frequencies are shown in Fig. 1. The left
and right lines in each record refer to absorption in the

 

Γ

 

24

 

 and 

 

Γ

 

4

 

 phases, respectively. Circles correspond to
the centers (maxima) of absorption lines. The totality of
such records obtained at many radiation frequencies
were used to reproduce the temperature-field depen-
dences of soft magnetoresonance modes. As follows
from Fig. 1, the temperatures of the maxima of the right
and left absorption lines approach each other as the fre-
quency decreases. Theoretically, they should coincide
at the frequency which is the energy gap in the spec-
trum of homogeneous spin waves. The temperature of
the maximum of the absorption line for this frequency is
the temperature of the orientation phase transition. How-
ever practically, the gap in SmFeO

 

3

 

 can only be deter-
mined by extrapolation (see above), because compara-
tively broad resonance lines overlap each other when the
system approaches the orientation phase transition point
(see record 

 

3 

 

in Fig. 1), and determining the positions of
the centers of the resonance lines becomes problematic.
This prevents a direct reproduction the magnetoresonance
spectrum in the immediate vicinity of the orientation
phase transition, although in reality, the width of this
“inaccessible” region is comparatively small and does
not exceed 

 

±

 

2% of Ttr .

The temperature-field dependences of soft mode fre-
quencies in the vicinity of the induced Γ4(Fz, Gx) 
Γ24(Fx, z, Gx, z) orientation phase transition at two exter-
nal field values, 4 and 6 kOe, are shown in Fig. 2. Sim-
ilar dependences were obtained at the other external
field H values (0.1, 2, 8, 10, and 12 kOe). In these
experiments, experimental values lie close to straight
lines. This allows us to reliably perform linear extrapola-
tions of the temperature dependences of resonance fre-
quencies on the sides of the Γ4(Fz, Gx) and Γ24(Fx, z, Gx, z)
phases up to their intersection at the transition point. As
a whole, the spectrum of the soft mode assumes the
shape of a “frequency wedge” whose cusp indicates the
Ttr induced transition temperature (such a wedge was
observed in all earlier measurements of this kind). In
addition to Ttr , the position of the intersection point
unambiguously determines the absolute energy gap ν0
value in the spectrum of spin waves in a given external
field. Processing energy gap values obtained in this way
by the method of least squares shows that the correspond-
ing values are best described by a linear temperature
dependence with the slope ∂ν0/∂T = –0.47 GHz/K.
Figure 2 shows that gap ν0 increases almost twofold
(approximately by 25 GHz) as temperature lowers from
460 to 410 K. This increase is an order of magnitude larger
than the error of energy gap measurements. Note that the
∂ν0/∂T derivative is negative (Fig. 2).

The H–T phase diagram of SmFeO3 in field H || c
constructed based on the data given in Fig. 2 is shown
in Fig. 3. This diagram corresponds to the field-induced

           
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                                                                      

Γ4(Fz, 

 

G

 

x

 

)  

 

Γ

 

24

 

(

 

F

 

x

 

, 

 

z

 

, 

 

G

 

x

 

, 

 

z

 

) orientation phase transi-
tion, and the extrapolation of the line of this transition
to 
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= 0 gives the temperature of the spontaneous ori-
entation phase transition of the same structure, 
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values and, to a
lesser extent, 
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 in rare-earth metal orthoferrites
depend on the procedure for the preparation of their
single crystals, purity of the starting material, and, ulti-
mately, the quality of samples used in actual measure-
ments. For this reason, if all temperature parameters are
taken from various sources rather than measured for the
same sample, calculations inevitably include the corre-
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 is the amplitude of
absorption signal derivative in arbitrary units; open circles
are resonance absorption maxima on the temperature axis;
portions of resonance lines that cannot be observed experimen-
tally because of their interference near the orientation phase
transition point are shown by dashed lines for record 
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sponding errors and give parameter estimates rather
than parameter values. We also do not claim that our
results are anything more than mere estimates. For this
reason, taking into account that ∆T = T1 – T2 is always
much smaller than TN, we assumed that T1 = T2 to
obtain the τSR ≈ 0.8 estimate for SmFeO3 (see above).

The field dependence of the energy gap, also con-
structed based on the data given in Fig. 2, is shown in
Fig. 4. When H  0, this dependence is characterized
by the ∂ν0/∂H ≈ 1.52 GHz/kOe derivative. The data
corresponding to T  T1 (Fig. 2) or H  0 (Fig. 4)
can be used to determine the “starting” energy gap for
the Γ4(Fz, Gx)  Γ24(Fx, z, Gx, z) spontaneous orientation
phase transition. This energy gap equals (27.7 ± 2.5) GHz,
which is substantially smaller than the value obtained
in our earlier work [3] (about 40 GHz) with the use of
the traditional procedure (by temperature variations in
zero field) characterized by lower sensitivity and reso-
lution. On the other hand, the gap value may, as men-
tioned above, be noticeably influenced by the quality of
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Fig. 4. Field dependence of soft mode gaps at points of Γ24–Γ4
spin reorientation completion in SmFeO3 in field H || c.
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the initial single crystal used to prepare the sample. In
[11], even a method for indirectly estimating unifor-
mity of rare-earth metal ferrite crystals by gap sensitiv-
ity to external field orientation was suggested; accord-
ing to [11], more magnetically perfect crystals have
narrower gaps.

Attention should be given to at least three features of
the results obtained in this work. First, as expected, the
energy gap in the spectrum of SmFeO3 spin waves sub-
stantially depends on temperature and magnetic field
even in the H  0 limit; that is, in the vicinity of the
spontaneous orientation phase transition. Samarium
orthoferrite is the only rare-earth metal orthoferrite that
exhibits this effect. The results of this work in combi-
nation with those reported earlier for the other rare-
earth metal orthoferrites and isomorphous Fe3BO6
actually put a stop to discussing possibilities of observ-
ing longitudinal susceptibility contributions to gaps in
the vicinity of spontaneous orientation phase transi-
tions in the other rare-earth metal ferrites. Indeed, on
the spontaneous reorientation temperature scale, there
is no rare-earth metal orthoferrites between NdFeO3
and SmFeO3 with suitable τSR values. In a further study
of the problem for rare-earth metal orthoferrites, the
gap can only be filled by mutual substitution of rare-
earth metal ions with competing anisotropy, for instance,
by substituting Tm3+ for Sm3+.

According to one more important observation made
in this work, the energy gap increases as temperature
lowers (we have already mentioned that the ∂ν0/∂T deriv-
ative is negative). At first sight, this contradicts the theory
suggested in [1], according to which temperature (longitu-
dinal susceptibility) and field act in one direction and
increase the energy gap. In reality, the observed gap wid-
ening under the conditions of differently directed external
parameter actions is the result of competing contributions
of T and H into the gap value. The field contribution to ν0
is positive and larger in magnitude, which is responsible
for the resultant gap increase observed experimentally.
Note that the incommensurateness of the temperature
and field contributions to such a dynamic characteristic
as the gap is predetermined by the static parameters of
the magnet reflected by its H–T phase diagram. If the
H–T phase diagram is qualitatively and quantitatively
similar to that shown in Fig. 3, the temperature and field
contributions will always be incommensurate, and the
effect will apparently be a field effect even when H  0.
Note that the point in question is longitudinal suscepti-
bility-induced gap changes rather than the gap value
itself. Observing gap changes, however, requires fulfill-
ing the conditions at which this effect can in principle
be observed. In our view, this is only possible if τSR ≥
0.4–0.5, considering the present-day level of experi-
mental studies.

Lastly, the third point to be mentioned is that gap ν0
begins to increase in a field starting with its fairly large
value at H = 0. This means that the results of this work
cannot be correctly described by either the theory sug-
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gested in [1] or the theory suggested in [3]. A more gen-
eral theoretical model is required to simultaneously and
most completely take into account interactions between
various magnet vibrational subsystems and the contri-
butions of both precession and longitudinal magnetiza-
tion oscillations to the dynamics of a magnet. Funda-
mentals of such a theory were developed and summa-
rized in [4]. We will use this theory to interpret the
experimental results obtained in this work.

4. THEORY

Samarium orthoferrite is an orthoferrite with a non-
Kramers rare-earth metal ion (with an odd number of 4f
electrons). The phenomenological free energy density
of such ferrites is given by Eqs. (3.1)–(3.7) from [3].
Because it follows from experiment that the influence
of longitudinal susceptibility on the spectrum of cou-
pled vibrations is strong in samarium orthoferrite, we
should abandon the approximation of equal and con-
stant magnetizations of the d and f subsystem sublat-
tices in describing its dynamics (condition (3.5) in [3]).
For this purpose, the equation for free energy F density
should be augmented by the term

(1)

(see the equation for free energy density of a two-sub-
lattice antiferromagnet [4]).

Consider the equilibrium state corresponding to the
Γ4 phase. The corresponding samarium orthoferrite equi-
librium parameter values are found by minimizing the free
energy. The minimization results are as follows:

(2)

The modulus of the antiferromagnetic vector of the f
subsystem is found from the equation

and the equilibrium components of the deformation

tensor  are given by Eqs. (3.8a) from [3]. In Eq. (2),

χ⊥  = (A + D' )–1 is the transverse susceptibility of
samarium orthoferrite. The other denotations coincide
with those used in [3]. As distinguished from [3], ground
state (2) is written here using the condition of smallness of
the isotropic exchange coupling constant (a) between the
d and f subsystems from the outset.

1
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An analysis of the matrix of the second derivatives of
free energy density, which should be positive semidefinite,
yields the following stability condition for phase Γ4:

(3)

where η = 1 – χ||/χ⊥  and χ|| = [A + (D + D' ) ]–1 is the
longitudinal magnetic susceptibility of samarium orthof-
errite. The other denotations coincide with those used in
[3]. The equality sign in Eq. (3) determines the orienta-
tion phase transition point from the collinear Γ4 phase
to the canted Γ24 phase.

The dynamic properties of the Γ4 samarium orthofer-
rite phase will be described with the use of the Landau–
Lifshitz, elasticity, and Maxwell equations, see
Eqs. (3.13)–(3.18) in [3]. In the Landau–Lifshitz equation,
relaxation terms (3.14) [3] will be replaced by relaxation
terms of a more general form, which describe both trans-
verse and longitudinal relaxations in the f and d sub-
systems [12]:

(4)

where Λ0, ⊥, || are the relaxation parameters (Λ0, ⊥, || =
Λf 0, ⊥, || for the f subsystem andΛ0, ⊥, || = Λd 0, ⊥, || for the d
subsystem). For the f subsystem, x, y in Eq. (4) equals
f, c in the Landau–Lifshitz equation for ferromagnetic
vector f, and x, y = c, f in the Landau–Lifshitz equation
for antiferromagnetic vector c, and Fx = ∂F/∂x. For the
d subsystem, f; c in Eq. (4) should be replaced by F and
G, respectively.

It has been proved in [4] that, if longitudinal relax-
ation is taken into account and the assumption of equal
and constant magnetization moduli of the d and f sublat-
tices is abandoned, the classical Landau–Lifshitz equa-
tions remain applicable to the problem of describing the
dynamic properties of magnets (also see [13, 14]).

After the linearization of the system of coupled
equations near equilibrium (2), we obtain the following
dispersion equation for coupled harmonic waves in the
Γ4 phase that propagate along the z axis:
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(5)
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The other denotations coincide with those used in [3].
For simplicity of deriving the dispersion equation, the
assumption λ7 = λ8 =  = 0 made in [3] was aug-
mented by the assumption µxy = µyx = µy = µx = 0.

For a comparison with experiment, we will only
give solutions to dispersion equation (5) corresponding
to elementary excitations of magnetic subsystems
when k  0. These solutions are

(6)

(7)

The first two branches correspond to precession and the
third one, to relaxation oscillations of magnetic sub-
systems. For simplicity, damping of precession oscilla-
tions was not taken into account in Eq. (6).

5. A COMPARISON OF THEORY
AND EXPERIMENT. DISCUSSION

According to the experimental results, spontaneous
orientation phase transitions occur in samarium orthof-
errite at high temperatures, T > 400 K. As is known [3],
the f subsystem parameters and interactions of the d and
f subsystems do not exceed several kelvins in tempera-
ture units. It follows that, for samarium orthoferrite in
the region of orientation phase transitions, the approxi-
mations

(8)

are fairly accurate. Inequality (3) can then be used to
obtain the following equation for field Htr at which
induced orientation phase transitions occur [the equal-
ity sign in Eq. (3)]:

(9)

The anisotropy constant Kac tends to zero in the region
of a spontaneous orientation phase transition [2], and,
at low external fields, Eq. (9) can therefore be consider-
ably simplified,

(10)

Assuming that the second term in the denominator of
Eq. (10) is small compared with the first one at high
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temperatures (T > 400 K) allows the equation for the
transition field to be further simplified to

(11)

According to [3], the Kac anisotropy constant linearly
depends on temperature in rare-earth metal orthoferrites in
the region of spontaneous transitions. The induced orien-
tation phase transition field (11) should then also linearly
depend on temperature. Such a dependence is indeed
observed in experiments (Fig. 3). Unfortunately, because
of the absence of exact experimental values for the quan-
tities present in Eqs. (9)–(11), we cannot perform a
more rigorous comparison of theory and experiment.
To further simplify Eqs. (6) for precession spin oscilla-
tion frequencies, consider two limiting cases.

At ωd ! ωf , solutions to Eqs. (6) have the form

(12)

whereas at ωd @ ωf , they become

(13)

It follows from Eqs. (12) and (13) that the soft mode in
samarium orthoferrite can be either a d subsystem (12)
or an f subsystem (13) mode depending on the ratio
between the vibrational frequencies of the f and d sub-
systems. According to [3], rare-earth metal modes are
not resolved experimentally in rare-earth metal orthof-
errites because they are strongly damped (f mode
damping is on the order of magnitude of its frequency).
It is therefore natural to suggest that the mode mea-
sured experimentally for samarium orthoferrite is a d
subsystem mode, that is, the condition ωd ! ωf is ful-
filled, and the soft mode in the region of the Γ4  Γ42
orientation phase transition is a d subsystem mode. At
the induced Γ4  Γ42 phase transition point [the
equality sign in Eq. (3)], the soft mode (12) frequency
is then given by

(14)

As not all samarium orthoferrite parameters were
measured experimentally, let us approximately esti-
mate the ωE and ωdip frequencies from [3, 15]: ωE ≈ 2 ×
1014 s–1 and ωdip ≈ 8 × 107 s–1. The magnetoelastic fre-
quency in rare-earth metal orthoferrites is usually sev-
eral times or even an order of magnitude lower than the
dipole frequency [3]. It follows that, at the spontaneous
orientation phase transition point (H = 0), the soft mode

H tr
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frequency (14) of the d subsystem approximately

equals νd = /2π ≈ 20 GHz. This value is close
to the νd ≈ 27.7 GHz experimental value (Fig. 4).

According to Eq. (14), the characteristic tempera-
ture dependence of the soft mode frequency shown in
Fig. 2 can be explained by the temperature depen-
dences of the Htr induced orientation phase transition
field and longitudinal susceptibility. We assume that lon-
gitudinal susceptibility weakly depends on temperature in
the temperature range 400–450 K. The linear temperature
dependence of frequency (14) should then be explained by
a similar temperature dependence of transition field (11).
It also follows from Eq. (14) that the soft mode frequency
increases with increasing the phase transition field. This
conclusion is also in agreement with the experimental
dependence (Fig. 4).

Consider the behavior of the relaxation branch of
quasi-spin oscillations in the region of an orientation
phase transition. At the orientation phase transition point
(ωS0 = 0), the equation for the relaxation branch (7) fre-
quency has the form

(15)

It follows from Eq. (15) that the relaxation branch has
activation determined by magnetoelastic and dipole
contributions at the orientation phase transition point.
Unlike the corresponding frequency in [1], frequency
(15) does not vanish at the orientation phase transition
point even in the absence of magnetoelastic coupling.
Relaxation branch activation is then determined by
coupling between magnetic subsystem oscillations and
electromagnetic waves. At the spontaneous orientation
phase transition point at H = 0, relaxation branch acti-
vation in the absence of magnetoelastic coupling is
determined by the Dzyalochinski interaction.

As the ω1, ω2, and ω3 branches (6), (7) are activation
at the orientation phase transition point, quasi-elastic
modes with k  0 play the role of soft modes. This
situation was described in detail in [4] for a two-sublat-
tice antiferromagnet.

6. CONCLUSION
To summarize, we experimentally and theoretically

proved that all characteristics of the spectrum of spin
oscillations observed for samarium orthoferrite in the
region of the Γ4(Fz, G
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phase transition induced by an external magnetic field
can be explained by the ratio between the contributions
of orthoferrite subsystem interactions and longitudinal
susceptibility. We for the first time showed that the con-
tribution of longitudinal susceptibility to the soft magne-
toresonance mode gap in samarium orthoferrite can be
substantial in low fields; that is, in the vicinity of sponta-
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neous orientation phase transitions. This is explained by
the occurrence of spontaneous orientation phase transi-
tions in samarium orthoferrite at high temperatures, at
which longitudinal susceptibility is commensurate with
transverse susceptibility.

ACKNOWLEDGMENTS

The authors are deeply indebted to the referee for
valuable comments.

This work was financially supported by the Ukrainian
Foundation for Basic Research and the Ministry of Educa-
tion of the Russian Federation (project no. 97-0-7.0-11).

REFERENCES

1. A. M. Balbashev, Yu. M. Gufan, N. Yu. Marchukov, and
E. G. Rudashevskiœ, Zh. Éksp. Teor. Fiz. 94 (4), 305
(1988) [Sov. Phys. JETP 67, 821 (1988)].

2. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and
R. Z. Levitin, Orientational Transition in Rare-Earth
Magnets (Nauka, Moscow, 1977).

3. V. D. Buchel’nikov, N. K. Dan’shin, L. T. Tsymbal, and
V. G. Shavrov, Usp. Fiz. Nauk 166, 585 (1996) [Phys.
Usp. 39, 547 (1996)].

4. V. D. Buchel’nikov, N. K. Dan’shin, L. T. Tsymbal, and
V. G. Shavrov, Usp. Fiz. Nauk 169, 1049 (1999).
JOURNAL OF EXPERIMENTAL 
5. N. K. Dan’shin and Yu. I. Nepochatykh, Fiz. Nizk. Temp.
24, 353 (1998) [Low Temp. Phys. 24, 267 (1998)].

6. N. K. Dan’shin and G. G. Kramarchuk, Fiz. Nizk. Temp.
19, 888 (1993) [Low Temp. Phys. 19, 632 (1993)].

7. N. K. Dan’shin, Fiz. Nizk. Temp. 20, 353 (1994) [Low
Temp. Phys. 20, 281 (1994)].

8. S. N. Barilo, A. P. Ges’, A. M. Guretskiœ, et al., Fiz.
Tverd. Tela (Leningrad) 33, 621 (1991) [Sov. Phys. Solid
State 33, 354 (1991)].

9. É. Arutyunyan, K. N. Kocharyan, R. M. Martirosyan,
et al., Zh. Éksp. Teor. Fiz. 98, 712 (1990) [Sov. Phys.
JETP 71, 398 (1990)].

10. N. K. Dan’shin, Yu. I. Nepochatykh, and V. F. Shkar’, Zh.
Éksp. Teor. Fiz. 109, 639 (1996) [JETP 82, 341 (1996)].

11. F. B. Hagedorn and E. M. Gyorgy, Phys. Rev. 174, 540
(1968).

12. A. A. Mukhin and A. S. Prokhorov, Tr. Inst. Obshch. Fiz.
Akad. Nauk SSSR 25, 162 (1990).

13. V. D. Buchel’nikov and V. G. Shavrov, Pis’ma Zh. Éksp.
Teor. Fiz. 60, 534 (1994) [JETP Lett. 60, 548 (1994)].

14. V. D. Buchel’nikov and V. G. Shavrov, Zh. Éksp. Teor.
Fiz. 106, 1756 (1994) [JETP 79, 951 (1994)].

15. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and
A. I. Popov, Rare-Earth Ions in Magnetially-Ordered
Crystals (Nauka, Moscow, 1985).

Translated by V. Sipachev
  

AND THEORETICAL PHYSICS

 

      

 

Vol. 92

 

      

 

No. 4

 

      

 

2001

                                                              



  

Journal of Experimental and Theoretical Physics, Vol. 92, No. 4, 2001, pp. 643–651.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 119, No. 4, 2001, pp. 738–748.
Original Russian Text Copyright © 2001 by Vainer, Kol’chenko, Personov.

                 

SOLIDS
Structure
Soft-Potential Model and Homogeneous Width of Spectral Lines 
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Abstract—A study is made to analyze the possibility of using the soft-potential model in optical investigations
of disordered molecular systems with impurities. A procedure is suggested for calculating the temperature
dependence of the homogeneous width of a phononless line in amorphous media with impurities within the
soft-potential model. A calculation is performed of the temperature dependence of the width of a phononless
line (optical dephasing) in an amorphous system of polymethyl methacrylate (PMMA) with an addition of tetra-
tert-butylterrylene (TBT) using the parameters of this system known from the literature. Calculations are per-
formed of the contributions to the width of a phononless line due to the interaction of an impurity with tunneling
two-level systems, with thermally activated barrier crossings in double-well potentials, and with quasilocal
modes of the matrix. The model calculation results are compared with the experimental data on the photon echo
for TBT/PMMA, measured by us in the temperature range from 0.3 to 20 K. It is found that the soft-potential
model describes qualitatively correctly the temperature behavior of the homogeneous width of a phononless
line. In the temperature range of T < 2 K, where the main contribution to optical dephasing is associated with
tunneling two-level systems, the predicted values of phononless line width agree well with the experimental
data. At higher temperatures, some difference is observed between the prediction and experimental data, which
may be due to the effect of impurity on the formation of quasilocal oscillation of the matrix. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The results of numerous investigations of amor-
phous materials for the last three decades have demon-
strated that, at low temperatures, these materials exhibit
a number of properties that differ considerably from the
characteristics of analogous materials of ordered struc-
ture. As early as in 1971, Zeller and Pohl [1] have found
that, at temperatures below 1 K, amorphous materials
exhibit a linear temperature dependence of heat capac-
ity and a quadratic temperature dependence of thermal
conductivity, as distinct from a cubic dependence for
both characteristics of the same materials in the crystal-
line state. Later, other low-temperature singularities of
amorphous materials were found, distinguishing these
materials from crystals. A number of theoretical mod-
els were suggested for describing the anomalous
behavior of disordered condensed media at low temper-
atures. The widest acceptance was gained by a model
based on the concept of “tunneling” two-level systems,
suggested by Anderson et al. [2] and, independently, by
Phillips [3]. Within this model, the properties of amor-
phous media at temperatures below several kelvins are
due to the presence in such media (in addition to
phonons) of characteristic low-energy excitations asso-
ciated with transitions (tunneling) of groups of atoms
or molecules between two local minima formed on the
surface of the potential energy of disordered media. As
distinct from phonons, which are collective excitations,
1063-7761/01/9204- $21.00 © 20643
the excitations in two-level systems are localized. The
density of states of two-level systems as a function of
their energy is almost constant and, at T ≤ 1 K, consid-
erably exceeds the density of phonon states. In spite of
its simplicity, the model of tunneling two-level systems
describes well most of the effects observed in experi-
ments with amorphous materials at temperatures below
several kelvins (see, for example, the monographs [4–6]
and the references cited there).

Amorphous materials exhibit a number of universal
anomalous properties which distinguish these materials
from ordered substances at higher temperatures as well.
Such properties include, for example, the additional (to
acoustic phonons and two-level systems) contribution
to the heat capacity at temperatures from several
kelvins to several tens of kelvins [7], the presence of a
plateau in the curve of temperature dependence of ther-
mal conductivity in the region of 10 K [8], a linear
decrease in the sound velocity with increasing temper-
ature in the region above several kelvins [9], the pres-
ence of the so-called boson peak in the low-frequency
Raman scattering [7], and a number of other effects. In
so doing, the model of two-level systems proves inade-
quate for describing the properties listed above. This
fact, as well as the results of investigations of inelastic
scattering of neutrons in amorphous materials [10, 11],
point to the existence of other low-energy excitations in
001 MAIK “Nauka/Interperiodica”
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these materials, in addition to phonons and two-level
systems.

In order to describe the anomalous properties of
amorphous materials in a wider temperature range, the
soft-potential model has been suggested and is used
extensively at present (see the paper by Karpov et al.
[12]). According to this model, quasilocal low-energy
excitations of two more types exist in amorphous
media, in addition to phonons and tunneling two-level
systems. By analogy with two-level systems, these
additional excitations are interpreted as motions of
groups of atoms or molecules in local minima of poten-
tial surface. These are, firstly, relaxation systems in
which (as distinct from two-level systems) thermally
activated barrier crossings between two wells occur
rather than simply tunnel transitions. Secondly, these
are quasilocal low-frequency harmonic oscillators
which, within the soft-potential model, are realized in
single-well potentials. The density of states of har-
monic oscillators is close to zero at low temperatures
and increases with energy. According to the soft-poten-
tial model, it is the relaxation systems and harmonic
oscillators that are responsible for the anomalous prop-
erties of amorphous materials at temperatures above
several kelvins. The potentials, in which two-level and
relaxation systems and harmonic oscillators are real-
ized, are “soft” in the sense that external stresses trans-
form them readily to one another. The soft-potential
model reproduces the results of the standard model of
tunneling two-level systems at low temperatures and, at
the same time, describes well numerous phenomena in
glasses at higher temperatures (up to tens of degrees
and more) [13–16].

It is known that valuable information about the
dynamics of condensed media may be obtained from
the optical spectra of impurity atoms or molecules
(impurity centers), minor amounts of which are intro-
duced for this purpose into the material being studied.
The dynamic processes in the matrix show up espe-
cially clearly in homogeneous broadening of phonon-
less lines in the spectra of impurity centers. The inves-
tigation of the temperature dependence of the phonon-
less line width may enable one, for example, to obtain
important information about the mechanisms of optical
dephasing in the system being studied. Such investiga-
tions of amorphous media became possible only as a
result of development of selective spectroscopy tech-
niques; these techniques help eliminate substantial
inhomogeneous broadening of spectra and reveal nar-
row phononless lines. Numerous researchers used the
method of burning stable spectral holes [17, 18] and
photon echo [19, 20] to find that, at low temperatures
(below 4–5 K), the measured width of phononless line
in amorphous media was one–two orders of magnitude
greater than that in crystals and exhibited a temperature
dependence differing considerably from that in the case
of crystals [21]. In amorphous media at low tempera-
JOURNAL OF EXPERIMENTAL 
tures, this phononless line width usually varies by the
law

while in the case of crystals at the same temperatures
one must expect a power dependence with α = 7. In
order to interpret these facts in analyzing the spectra of
impurity glasses and polymers, extensive use is made at
present of a theory based on the model of tunneling
two-level systems, which describes well the behavior of
the line width at temperatures below several kelvins
(see, for example, the review [22] and the references
cited there). However, this model proves inadequate for
describing the line broadening at higher temperatures
(above 4–5 K). Therefore, in order to describe experi-
mental data on line broadening at the above-identified
temperatures, the interaction of an impurity center with
some quasilocal oscillation at a frequency of 10–30 cm–1

is usually included in treatment [23, 24]. In so doing,
the very existence and nature of this oscillation are not
clear, as a rule, because this oscillation is not usually
observed in spectra in the explicit form. At the same
time, the soft-potential model naturally includes such
excitations and yields concrete predictions of the den-
sity of their states. However, as far as we know, the soft-
potential model was not used until very recently in opti-
cal investigations for describing the temperature broad-
ening of a phononless line (the sole exception is the
study [25]: see below). Therefore, it is of doubtless
interest to check the validity of this model for describ-
ing the processes of optical dephasing in impurity
amorphous materials.

Recently, we have used the photon echo method to
obtain data on temperature broadening of a phononless
line (optical dephasing) in the spectra of impurity
molecular systems in a fairly wide (0.4 to 50 K) tem-
perature range [26, 27]. In this paper, we will treat in
more detail the experimental data on the temperature
behavior of the width of a phononless line in one of
impurity amorphous systems such as polymethyl meth-
acrylate (PMMA) with an addition of tetra-tert-butyl-
terrylene (TBT) and analyze these data using the soft-
potential model. Our main objective will be to ascertain
the possibility of using the soft-potential model to
interpret the experimental data. The above-identified
system has been selected because all of the parameters
required for model calculations are known for this sys-
tem. Because in this study we have analyzed the data
obtained in a relatively wide temperature range, we
have included in the treatment all mechanisms of
dephasing, which, in our opinion, may show up in the
temperature range being investigated. We have treated
the contributions made by tunnel transitions and barrier
crossings in double-well potentials, as well as the con-
tribution made by quasilocal low-frequency harmonic
oscillators in single-well potentials. For comparison
with the experiment, we have calculated the tempera-
ture dependence of the phononless line width, proceed-

Γ Tα , where 1 α 2,≤ ≤∝
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ing only from the parameters of the system being ana-
lyzed known from the literature (instead of approximat-
ing the experimental data by way of fitting of the
respective parameters, as this was done, for example, in
[25]). All of the quantities required for calculations
were borrowed from the literature, where they were
obtained from experimental data using other physical
methods.

Before turning to treatment of the calculation results
and their comparison with experimental data, we will
treat briefly the salient points of the soft-potential
model and derive some relations for the homogeneous
width of phononless line within this model.

2. SALIENT POINTS 
OF THE SOFT-POTENTIAL MODEL

According to the soft-potential model [12] (see also
[28] and the review [29]), additional (to ordinary phonons)
quasilocal low-frequency excitations in amorphous media
are described by the Hamiltonian of anharmonic oscilla-
tors

(1)

with the effective mass M and potential energy in the
form of the fourth-degree polynomial

(2)

Here, E0 is an energy of the order of the binding energy
of glass-forming atoms (molecules), x is the general-
ized coordinate, and a is the characteristic length of the
order of the interatomic distance. The values of the
dimensionless parameters η and ξ are random, which is
due to the structure inhomogeneity of the medium. It is
assumed in the model that the distribution of the above-
identified parameters has the form [30]

(3)

thus, |η|, |ξ| ! 1. The function P0(η, ξ) is usually
assumed to be a constant. The characteristic scale of the
dimensionless quantity η defining the height of the bar-
rier between wells in potential (2) is described by the
small parameter of the model,

where m is the average mass of glass-forming atoms.
The scale of energies is defined by the quantity W,
which characterizes the spectrum of levels in potential
(2) at η = ξ = 0,

where kB is the Boltzmann constant and Tc is the char-
acteristic temperature which, for different materials, is
in the range from 2 to 10 K.
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The form of potential (2) is defined by the relative
magnitude of the parameters η and ξ. It may be both
double-well and single-well. If the asymmetry of a dou-
ble-well potential is much less than the distance
between levels in a single well, two lower levels in
potential (2) form a two-level system (Fig. 1a) with the
distance between the levels [31] of

(4)

where 

is the tunnel splitting and

is the asymmetry (difference between the energies of
two minima). The height V of the barrier between the
wells is defined by the expression

(5)

According to the soft-potential model, the distribution
function of the above-identified two-level systems with
respect to the parameters E and p has the form [13]

(6)

where p = (J/E)2.

It follows from the foregoing data that the concept
of two-level systems in the soft-potential model is close
to that in the standard model of tunneling two-level sys-
tems. For example, the distribution given by Eq. (6) dif-
fers from the respective distribution function adopted in
the standard model (see, for example, [5]) by the loga-
rithmic factor alone.
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Fig. 1. A sketch of energy levels in a soft double-well poten-
tial given by Eq. (1) for different values of the parameters η
and ξ, and the types of possible transitions: (a) region of

two-level systems, with η = –4ηL and ξ = 0.2 ;

(b) region of relaxation systems, with η = –4ηL and ξ =

3 ; (c) region of harmonic oscillators, with η = 4ηL and

ξ = .

ηL

ηL

ηL
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In the cases when the asymmetry of a double-well
potential proves to exceed considerably the distance
between levels in a single well (Fig. 1b), the main con-
tribution to kinetic phenomena will be made by ther-
mally activated barrier crossings between wells, i.e.,
relaxation systems. The distribution of relaxation sys-
tems with respect to asymmetry (which, in this case,
coincides with energy, as follows from Eq. (4)) and bar-
rier heights has the form [32]

(7)

The relaxation rate of relaxation systems is defined by
the expression

(8)

where R0 is a parameter of the order of 1012 to 1013 s–1

[33].
One can readily see that, with positive values of

,

potential (2) is a single-well one, and only harmonic
oscillators may be excited in this potential. In so doing,
if η @ ηL, the anharmonicity is fairly low, and the oscil-
lation is almost harmonic, with the distance between
levels of

and the density of states n(E) ∝  E4 [30]. With energies
above

where A = 0.169(W/kBTg) and Tg is the vitrification tem-
perature, the interaction between harmonic oscillators
acquires considerable importance. In this case, quasilo-
cal excitation can no longer be regarded as indepen-
dent. New delocalized harmonic modes are character-
ized by the density of states n(E) ∝  E [16]. According
to the soft-potential model, the rearrangement of the
density of states of harmonic oscillators as a result of
their interaction is responsible for the emergence of a
boson peak in spectra of Raman scattering at frequen-
cies ω ≈ ωb = Eb/". In accordance with [34], we will
treat Eb as the upper limit of the energy of soft modes.

3. BASIC RELATIONS DESCRIBING OPTICAL 
DEPHASING IN THE SOFT-POTENTIAL MODEL

In order to perform a quantitative analysis of the
temperature dependence of the times of optical dephas-
ing using the soft-potential model, one must have
appropriate expressions for the phononless line width,
derived within this model. Until recently, however, no
theoretical treatment of optical dephasing of electronic
transitions of impurity centers in an amorphous matrix

PRS E V,( )
P0ηL

5/2

W5/4V3/4
-------------------.=

R V( ) R0 V /kBT–( ),exp=

η 9
32
------ξ2>

E 2W η /ηL=

Eb 2.2W /A1/6,=
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were performed within the soft-potential model. As far
as we know, such treatment has been performed
recently only by Garcia and Fernandez [25] (see also
[35]). They introduced a model Hamiltonian for an
impurity interacting with two-level systems and with
harmonic oscillators, within the soft-potential model.
Garcia and Fernandez derived expressions for the
phononless line width of impurity in an amorphous
matrix in two limiting cases, namely, for the interaction
of impurity with two-level systems and with harmonic
oscillators. In so doing, the expression which described
broadening caused by two-level systems was derived in
the so-called slow modulation limit. This approxima-
tion is valid when the time of experiment considerably
exceeds the characteristic times of the processes being
studied in an amorphous medium (for example, in
experiments in the burning of stable spectral holes). In
the case of photon echo used to obtain the experimental
data analyzed below, the characteristic time of experi-
ment is defined by the lifetime T1 of excited state and

by the time  of pure optical dephasing of impurity
molecules; this latter time is, as a rule, in a wide range
of times of dynamic processes occurring in an amor-
phous medium. Therefore, in our case, it would be
incorrect to employ the formula derived by Garcia and
Fernandez [25] for the calculation of optical dephasing
caused by two-level systems. In addition, it must be
emphasized that Garcia and Fernandez [25] did not
treat the contributions to broadening due to relaxation
systems. For a qualitative analysis of experimental data
within the soft-potential model, we performed a more
general treatment and derived expressions for the tem-
perature dependence of the times of dephasing caused
both by tunnel transitions in two-level systems and by
barrier crossings in relaxation systems. Our inference is
based on using the formula describing the decay curve
of photon echo in amorphous media within the standard
model of two-level systems and stochastic model of
spectral line width [36]. We assume that the analytical
expression derived in the latter study, which allows
only for the interaction with tunneling two-level sys-
tems, may be further used to describe the broadening
caused by transitions in relaxation systems (with due
regard for the difference in the form of distribution and
in the relaxation rate between the two-level and relax-
ation systems), as was done by us.

According to the above-identified model [36], the
signal intensity of a two-pulse photon echo as a func-
tion of delay τ is described by the expression [36]

(9)

where T1 is the lifetime of excited state and

(10)

T2'
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In the latter expression, B is the constant of two-level
system–chromophore interaction, ρ is the density of
states of two-level systems, R is the rate of transitions
in a double-well potential, and

(11)

where I0(z) and I1(z) are modified Bessel functions of
the first and second kind. The averaging in expression
(10) indicated by angle brackets is performed by the
parameters of double-well potentials.

Note that the decay curves of signals of photon
echo, calculated by expression (9), generally speaking,
are not exponential; therefore, the resultant decay
curves give an ambiguous value of the time T2 of opti-
cal dephasing. We determined the time of optical
dephasing by way of approximating the calculated
decay curves of photon echo signal by the closest expo-
nential dependence with the effective time T2, in the
same manner as this was done by Naumov et al. [37,
because this method is as close as possible to the pro-
cedure usually employed in calculating the time of opti-
cal dephasing by the experimentally obtained curves of
photon-echo decay.

In the case of a single-phonon mechanism of relax-
ation of a two-level system, the relaxation rate is
defined by the expression [38]

where

has the meaning of the constant of two-level system–
phonon interaction, ρ' is the density of the medium, and
Λσ and vσ denote the elastic constant and the rate of
propagation of elastic vibrations in the medium for
waves of different polarizations, respectively. We cal-
culated the contribution to optical dephasing due to
interaction between the impurity and two-level systems
as was done by Geva and Skinner [36]; in our case,
however, the averaging over the parameters of two-
level systems was performed using distribution (6) pre-
dicted by the soft-potential model rather than within the
standard model. One can use the foregoing distribution
and relation (4) to reduce expression (10) to
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(12)

Here,

is the maximum relaxation rate of two-level systems,
and

As in [36], we assumed

We used for analysis experimental data obtained in
a fairly wide temperature range; therefore, we investi-
gated also the possible importance of the contribution
made to dephasing by two-phonon transitions in two-
level systems. The relaxation rate of two-level systems
for two-phonon processes is given by [39]

where

is the constant of two-level system–phonon interaction
for two-phonon transitions and

In this case, expression (10) takes the form

(13)
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where

We used the resultant expression to calculate the contri-
bution made to dephasing by two-phonon processes.

We will dwell in more detail on the derivation of the
expression for line broadening caused by interaction
with relaxation systems, because, to the best of our
knowledge, no calculations were previously performed
of the contribution made to optical dephasing by barrier
crossings in double-well potentials. In view of expres-
sion (8) for the relaxation rate of relaxation systems, as
well as of the fact that, for relaxation systems, the
asymmetry A ≈ E, one can readily see that all parame-
ters, with respect to which the averaging is performed
in (10), are functions of V and E; therefore, the averag-
ing in (10) may be represented as

(14)

where

In this expression, according to [36], one can assume
that

and Vmax is the maximum barrier height which corre-
sponds to the minimum observed relaxation rate of
double-well potentials and is defined by the time of
experiment (see Eq. (8)). In our case, Vmax ≈ 10kBT. The
distribution PRS(E, V ) is normalized to the density of
states of relaxation systems.

As a result of averaging, expression (10) is reduced
to

(15)

We used this expression to calculate the contribution
made to the phononless line width by interaction with
relaxation systems.

In order to calculate the contribution to the phonon-
less line broadening caused by the interaction with har-
monic oscillators which, unlike two-level and relax-
ation systems, are phonon-type excitations, we have
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used the analytical expression derived by Garcia and
Fernandez [25],

(16)

where ρ' is the density of the medium and Vc is the aver-
age volume of localization of harmonic oscillator. It is
interesting to note that this expression is similar to the
formula derived by McCumber and Sturge [40] and
describing, within the Debye model, the temperature
broadening of phononless line in crystals, which is
caused by acoustic phonons. However, within the latter
model, the energy distribution of phonons has the form

which is different from our case. In addition, it is not Eb

that appears in the upper limit of the integral in the
above-mentioned formula, as in our case, but the Debye
temperature TD, which is usually much (approximately
by an order of magnitude) higher.

4. RESULTS OF MODEL CALCULATIONS
AND COMPARISON WITH EXPERIMENT

The calculations were performed using expressions
(9), (12), (13), (15), and (16). The required values of
parameters were borrowed from the literature and are
listed in the table. Note that all of these values were
found from experimental data obtained by other physi-
cal methods. In our calculations, we assumed the value
of R0 in expression (8) to be equal to the value of Debye
frequency

for PMMA, borrowed from [41].
Figure 2 gives the results of calculations (performed

within the soft-potential model) of the temperature
dependence of the inverse time of dephasing 1/π
(equal to the homogeneous width of phononless line
less the radiation width 1/2πT1) for a TBT/PMMA sys-
tem. Given in the same figure are the experimental data
on photon echo obtained by us for this system. These
data were obtained in a wide temperature range, which
could be done thanks to the use of two varieties of the
photon echo method, namely, picosecond two-pulse
echo at low temperatures (T < 4.2 K) and incoherent
photon echo at temperatures T > 4.2 K. A detailed
description of the experimental facility, sample prepa-
ration techniques, and measurement procedure is given
in [26, 27]. The experimental curve has a characteristic
form with a slow increase in the line width at tempera-
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tures below 2–3 K and its rapid rise at higher tempera-
tures. This behavior of the temperature dependence
points to the presence of at least two different mecha-
nisms of dephasing. Usually, the low-temperature part
of the curve is explained by the contribution made to
dephasing by tunnel transitions in two-level systems,
and the high-temperature part is attributed to dephasing
caused by quasilocal low-frequency modes. One can
see in the figure that a fairly good agreement between
the prediction curve (curve 5) and experimental data is
observed at low temperatures (T < 2 K), while a marked
disagreement is observed at high temperatures.

According to our calculation results, the main con-
tribution to optical dephasing at temperatures T < 1 K
is made by single-phonon transitions in two-level sys-
tems. At higher temperatures, the contribution by relax-
ation systems becomes appreciable. The behavior of
the temperature dependence of this latter contribution
to optical dephasing at temperatures T > 1 K is analo-
gous to that of the contribution by two-level systems,
but its value proves to be approximately three times less
than the value of the latter. Thus, in the temperature
range investigated by us, it is hard to distinguish
between the contributions made to dephasing by two-
level and relaxation systems because of the almost
identical behavior of their temperature dependence
curves. The calculation results indicate that, at temper-
atures T > 2–3 K, the temperature dependence of the
phononless line width is largely defined by the contri-
bution made by harmonic oscillators. One can further
see in the figure that the contribution to optical dephas-
ing by two-phonon transitions in two-level systems is
insignificant in the entire temperature range being ana-
lyzed and may be ignored. Indeed, at temperatures T <
1 K, this contribution is more than three orders of mag-
nitude less than the contribution by single-phonon tran-
sitions in two-level systems and, at higher temperatures
(T > 20 K), though exceeding the respective contribu-
tion by single-phonon transitions, the contribution by
two-phonon transitions is much less significant than the
contribution of harmonic oscillators.

One can see in the figure that, at temperatures above
W/kB (which, in our case, is 2.5 K), when the contribu-
tion by quasilocal phonons starts to prevail, a marked
disagreement is observed between the model calcula-
tion results (curve 5 in Fig. 2) and experimental data.
We assume that a possible reason for such disagree-
ment is the inaccurate value of the average volume of
localization Vc of harmonic oscillator used in these cal-
culations. According to Duval et al. [45], the average
size of the localization region of harmonic oscillator
depends on its frequency ω0,

(17)

where S is the geometric factor and v is the sound
velocity inside the soft mode localization region. The
size of the localization region of the mode correspond-

d S
v

ω0c
---------,=
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ing to the maximum of frequency distribution of har-
monic oscillators in pure PMMA, obtained from the
data on neutron scattering and low-frequency Raman
scattering, is 39.5 Å [43]. It was this value that we used
in estimating Vc in our calculations. In view of this, note
that, as was demonstrated experimentally in [27], at T >
2–3 K, the properties of impurity may have a consider-
able effect on the temperature behavior of the homoge-
neous line width. For example, two systems including
one and the same matrix (frozen ethanol) but different
chromophores (resorufin and zinc tetraphenyl porphin)
exhibited a considerable difference in the values of
effective frequency of quasilocal oscillation (29 and
12 cm–1, respectively) [27]. Therefore, one can assume
that the introduction of an impurity into the matrix may
cause the parameters of quasilocal oscillation in the
neighborhood of the impurity molecule to vary depend-
ing on the properties of this impurity. As a result, the
effective value of the average volume of the localiza-
tion region of harmonic oscillator in a doped system
may be less than that of the respective volume for an
analogous system without impurity. For example, as is
shown in Fig. 2, an adequate agreement between the
model curve and the respective experimental curve may
be attained if the average size of the localization region
of harmonic oscillator is taken to be 19 Å (curve 6).

Note that in our analysis we ignored the contribution
to dephasing made by acoustic phonons, because the
density of states of such phonons in the temperature
range being analyzed (which lies below the Debye tem-
perature) must be less than the density of states of

Parameters of PMMA matrix and TBT/PMMA system

Parameters Method of measurement

T1 3.5 ns [26] Method of induced 
lattices

ρ 1180 kg/m3 [42]

Λt 0.11 eV

[42]

Investigation of 
ultrasound propagationΛ1 0.15 eV

vt 1570 m/s

v1 3150 m/s

Td 256 K [41] Measurement of
specific heat

Eb 13.4 cm–1

[43]
Raman scattering and 
inelastic neutron
scattering

Vc 6.2 × 104 Å3

W/kB 2.5 K
[34]

Measurement of 
specific heat and ultra-
sound propagation1.27 × 1023 m–3

B* 1.3 × 10–16 K–1 s–1 [44] Single-molecule 
spectroscopy

*This quantity is the constant of two-level system–chromophore
interaction. For the lack of data, we used its value as the constant
of relaxation system–chromophore interaction.

P0ηL
5/2
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Fig. 2. The results of calculations of the temperature dependence of the inverse time of optical dephasing 1/π  and the experimen-

tal data on photon echo (circles) for a TBT/PMMA system: (1) contribution by relaxation systems, (2) contribution by single-phonon
transitions in two-level systems, (3) contribution by two-phonon transitions in two-level systems, (4) contribution by harmonic oscil-
lators at Vc = 6.2 × 104 Å3, (5) total calculated temperature dependence at Vc = 6.2 × 104 Å3, (6) total dependence at Vc = 6.9 × 103 Å3.
The inset gives the structure formula of TBT molecule.

T2'
quasilocal oscillation. The results of Gladenkova and
Osadko [46] may be regarded as an indirect proof of the
validity of this assumption. They used the results of
theoretical analysis of spectral line broadening for Eu3+

ion in silicate glass to demonstrate that the phonon line
broadening due to interaction with acoustic phonons
showed up only upon approaching the Debye tempera-
ture.

5. CONCLUSION

Calculations performed within the soft-potential
model and a comparison of their results with experi-
mental data obtained for a TBT/PMMA system lead
one to the following conclusions.

1. The soft-potential model describes qualitatively
correctly the temperature behavior of the homogeneous
width of a phononless line in a relatively wide temper-
ature range and may be used to advantage in spectral
investigations.

2. The results of calculations of the contribution
made by relaxation systems to the phononless line
width, performed for the first time ever, have demon-
strated that the temperature dependence of this contri-
bution is analogous to the dependence on the contribution
of tunneling two-level systems (except for the range of
T < 0.3–0.4 K). The absolute magnitude of the contribu-
tion made by relaxation systems is approximately 30%
of the contribution made by two-level systems.

3. In the low-temperature region, where the main
contribution to optical dephasing is defined by the
interaction between an impurity and tunneling two-
level systems, the results of calculating the temperature
dependence of the phononless line width (in perform-
ing this calculation, we employed the soft-potential
JOURNAL OF EXPERIMENTAL 
model and the stochastic model of line width, without
using any fitting parameters) are in good agreement
with the experimental data.

4. In the high-temperature region, where the main
contribution to the phononless line width is made by
interaction with harmonic oscillators, the prediction
data proved to be appreciably overstated compared
with the experimental data. The part played by impurity
in the formation of harmonic oscillators is cited as a
possible reason for this overstatement.
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Abstract—A sequential theoretical analysis is performed of tunneling in normal metal/d-type superconductor
structures which contain scattering centers in the interlayer between a normal metal and a superconductor. As
a result, it is demonstrated that the presence of a scattering center inside an insulator interlayer leads to partial
suppression of previously predicted anomalously high values of conductance in the low-voltage region (zero
bias anomaly (ZBA)). In so doing, the inclusion of the “interference” term in the current operator (interference
of tunneling through a scattering center with direct potential tunneling) results in the suppression of ZBA. The
predicted effect is virtually independent both of the position of the scattering center in the interlayer and of the
shape of the resonance curve of scattering (which is Lorentzian in the case of resonance tunneling through the
scattering center). © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The body of currently available experimental data
present convincing proof of the existence of the d-symme-
try of the order parameter in high-temperature supercon-
ductors (HTSC) [1–4]. With this symmetry, it is
assumed that the sign of the order parameter ∆ and,
consequently, of the quasiclassical Green’s functions
describing the behavior of quasiparticles depends on
the direction of motion of these quasiparticles in the
ab plane. In particular, when quasiparticles moving along
the a axis scatter in the direction parallel to the crystallo-
graphic axis b, the sign reversal must occur. With the
angle α between the normal to the HTSC boundary and
the crystallographic direction a being other than zero,
the scattering of quasiparticles by the structure bound-
aries may be accompanied by just this sign reversal.
This leads automatically to several effects, namely, the
suppression of the order parameter in the neighborhood
of the boundary [5], the formation of a bound electron-
hole state with the energy ε = 0 caused by the change of
sign of the order parameter [6, 9] and of Andreev states
with ε < |∆| [10], and the generation of an isotropic gapless
superconducting state of the s-type in the presence of dif-
fuse scattering of quasiparticles by the boundary [11].

Such unusual behavior of HTSC must result in a num-
ber of singularities on the current-voltage characteristics
of both Josephson junctions and a normal metal/insula-
tor/d-type superconductor (N–I–D) structures. In particu-
lar, in the latter case in a model with a δ-functional barrier,
there was theoretically proven the existence of anomalies
of conductance in the low-voltage region caused by the
presence of bound state with ε = 0 (zero bias anomaly
(ZBA)) [6–9], as well as of a number of less pro-
nounced singularities caused by Andreev bound states
with energies ε < |∆| [10, 11].
1063-7761/01/9204- $21.00 © 20652
The ZBA was observed experimentally in bicrystal
substrate junctions [12]. However, all attempts at
detecting these singularities in N–I–D and D–I–D struc-
tures of practical importance with an interlayer of metal-
oxide materials of semiconductor-type conductance
(Pr1Ba2Cu3O7 praseodymium-barium-copper ceramic,
SrTiO3 strontium-titanium ceramic, and La1Sr2Ti3O7 lan-
thanum-strontium-titanium ceramic) have failed. Based
on the experimental data of [13–18] obtained for these
junctions, one can only state with confidence that the
main channel of transport of the normal component of
current in these junctions is the resonance tunneling
through localized states in the interlayer (see also the
review [19]).

Previous theoretical investigations of the processes
of resonance tunneling in structures with normal elec-
trodes involved studies within a one-dimensional
approximation [20] and studies in view of the three-
dimensional behavior of scattering [21, 22]. In so
doing, it was demonstrated that the process of reso-
nance tunneling proper effectively involved only a part
of the localized states arranged in the middle of a bar-
rier in a layer with a thickness of the order of the effec-
tive radius of the localized state. The position of the
energy level of such an “effective” localized state might
differ from the Fermi energy by a value of the order of
this level’s half-width [20]. The inclusion of the three-
dimensional behavior of tunneling [21, 22] only modi-
fied the pre-exponential factors in the correlations
between the structure conductance and the barrier
thickness. This was due to the fact that the tunneling of
quasiparticles occurred predominantly in a narrow cone
of angles in the neighborhood of the normal to the
boundaries and did not lead to any qualitative changes.
The inclusion of the s-type superconductivity in one of
001 MAIK “Nauka/Interperiodica”
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the electrodes of the structure [23] did not cause quali-
tative changes in the pattern of the process, although it
resulted in the emergence of a singularity in the aver-
aged differential conductance at eU  0 (U is the
voltage across the junction). An attempt at treating the
resonant transport in an S–I–S structure within the phe-
nomenological 1D-model of resonant coupling
between the electrodes was made in [24, 25].

In this paper, we will demonstrate that one cannot
restrict oneself to a one-dimensional approximation in
the presence of d-pairing in the electrodes. Qualita-
tively, this is associated with the fact that direct tunnel-
ing in N–I–D structures is likewise a resonant process
which leads to the formation of ZBA, but with a singu-
larity half-width much smaller than that obtained in the
model with δ-functional barrier. In so doing, the inter-
ference of two processes occurring in the low-volt-
age region brings a partial suppression of ZBA and a
sharp enhancement of the process of tunneling via
localized states, which proves to involve almost all
localized states, irrespective of their location in the
interlayer.

2. MODEL OF JUNCTION

We will assume that the tunneling barrier V(r) in the
N–I–D structure being investigated is the sum of poten-
tials

(1)

in which the first term simulates a two-dimensional
square barrier of height V0 and thickness 2d,

(2)

(the coordinates are reckoned from the middle of the
barrier), and the second term describes the defect

(3)

present at the point r0 = (x0, y0). Here, ρ !  is the
radius defect, and "k0 is the Fermi momentum.

Potential (3) violates the spatial inhomogeneity of
the structure; i.e., it brings about the nonconservation
of the quasiparticle momentum component (which is
parallel to the barrier) in the process of the tunneling of
quasiparticles. At β > 0, potential (3) describes the res-
onance tunneling (see Appendix A). The negative val-
ues of β correspond to the direct, nonresonance, scatter-
ing. We will further assume that the density of localized
states is low, so that their interference is insignificant,
and the barrier thickness 2d is relatively great,

(4)

Here, "κ0 =  is the momentum, m is the
electron mass, and Ef  is the Fermi energy. The validity

V r( ) Vrect Vimp,+=

Vrect x( ) V0θ x d–( )=

Vimp r( )
β, r r0– ρ,≤–

0, r r0– ρ>



=

k0
1–

κ0d  @ 1.

2m V0 E f–( )
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of condition (4) is essential for effective localization of
the quasiparticle wave function on a localized state and
agrees with the available experimental data [13–19].

In calculating the transport properties of the N–I–D
structure, we will assume that the current passing
through this structure does not bring about the removal
of the HTSC electrode from the state of thermody-
namic equilibrium. This condition is automatically
valid in N–I–D junctions with a wide potential barrier
of low penetrability, D ! 1, even in the presence in the
barrier of localized states spaced from one another at dis-
tances that considerably exceed their effective “trans-

verse” radius l⊥  = d/ . In the absence of localized
states, the corrections to conductance associated with dis-
equilibrium arise only in the second order with respect to
penetrability. The presence of localized states leads to
the formation in the barrier of spatially narrow tunnel-
ing channels with a conductance on the order of quan-
tum conductance and with transverse dimensions of the
order of l⊥ . With the average distance between local-
ized states exceeding l⊥ , the interference of the currents
injected via these channels into the HTSC electrode is
insignificant, and the nonequilibrium effects are low by
virtue of the geometric factor. The foregoing leads one
to assume that the voltage U applied to the junction is
fixed and decreases only on the potential barrier of the
structure.

3. CURRENT TRANSPORT

3.1. General Expression for Current

Within the foregoing assumptions, it is natural to
describe the current transport in an N–I–D structure in
terms of electron-like and holelike excitations [26]. The
general expression for current has the form

(5)

The first and second terms in Eq. (5) represent electron
currents generated by electrons and holes of normal
metal, respectively. Their Fermi distribution is shifted
by eU relative to the Fermi distribution f (ε) of the super-
conductor. The third term in braces in Eq. (5) is the elec-
tron current generated by electron-like and holelike exci-
tations of the superconductor. The structure of the for-
mula for current (5) coincides with the analogous
expression of the BTK theory [26]. The only distinction is
that, in our case, it is more convenient to calculate the cur-
rent after the scatterer, on the interface with the supercon-
ductor, while in the BTK theory the current was calcu-
lated before the scatterer, on the interface with a normal
metal.

The current components appearing in expression (5),

(6)

κ0d

I
e

π"
------ ε εIe f ε eU–( ){d∫=

+ Ih 1 f ε– eU–( )–( ) Iel Ihl+( ) f ε( )+ } .

Ii Ii
pot Ii

int Ii
res, i+ + e h el hl,,, ,= =
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(7)

(8)

(9)

are related by the ordinary quantum-mechanical expres-
sion

(10)

to the Fourier components of scattered electron wave,

(11)

which describe its propagation in a “forward” direction
to the superconductor (Ci→(k, k0)) and in the opposite

direction (Ci←(k, k0)). In formulas (6)–(10),  =

 and kx =  are the wave vector com-
ponents of the initial and scattered (see the next sec-
tion) electron waves, respectively, which are perpendic-
ular to the I–D interface; and Ly in Eq. (7) is the barrier
width in the direction perpendicular to the normal to the
interfaces. Expressions (8) and (9) preassign the value
of current in terms of a single defect. The coefficient of
the delta function in Eq. (11) describes a potentially
scattered wave, i.e., characterizes the process of tunnel-
ing of quasiparticles through a potential barrier con-
taining no localized states. The second term in Eq. (11)
describes a resonantly scattered wave and corresponds
to resonance tunneling. Note that the term “resonance”

for electron wave (k, k0) in Eq. (11) and, espe-
cially, the terms “interference” and “resonance” for the
current components (8) and (9) are fairly arbitrary in
our case of a complex structure with a scatterer in the
barrier and Andreev reflection on the S–N interface (see
the discussions in Section 4).

It follows from formulas (5)–(11) that the problem
of calculating the current through an N–I–D structure in
fact reduces to finding the Fourier components of scat-
tered electron waves Ci↔(k, k0).

Ii
pot

Ly

-------
1

2π
------ ky

0 Ci→
pot k k0,( )

2
Ci←

pot k k0,( )
2

–{ } ,d∫=

Ii
int 1

π
--- ky

0Re Ci→
pot k k0,( ) Ci→

res k k0,( )( )∗{d∫=

– Ci←
pot k k0,( ) Ci←

res k k0,( )( )∗ } ,

Ii
res 1

2π( )2
------------- ky ky

0kx

kx
0

----dd∫∫=

× Ci→
res k k0,( )

2
Ci←

res k k0,( )
2

–{ }

ψi r( )
1

2π
------ ky ikyy( )expd∫=

× ikxx( )Ci→ k k0,( )exp i– kxx( )Ci← k k0,( )exp+{ }

Ci↔ k k0,( ) = 2πCi↔
pot k k0,( )δ ky ky

0–( )

+ Ci↔
res k k0,( ),

kx
0

k0
2 ky

02– k0
2 ky

2–

Ci↔
res
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3.2. Recurrent Relations for Fourier Components
of Electron Waves

In order to calculate the Fourier components of a
scattered electron wave Ci↔(k, k0), it is convenient to
use the dynamic model of successive normal and
Andreev reflections on the I–D interface. This approach
was previously used by Belogolovskiœ et al. [27] in
studying the processes occurring in N–I–N–I–S junc-
tions with conservation of the quasiparticle momentum
component parallel to the interface plane. Below, we
will generalize this method to the case when such a
conservation law is no longer valid because of scatter-
ing from localized states in the barrier. 

We will treat the incidence of a plane electron wave

with the wave vector k0 = ( , ) and the energy ε
from normal metal onto the scatterer. The wave trans-
mitted to the superconductor may be represented as
(see Appendix A)

(12)

(13)

(14)

The first term in Eq. (13) describes the process of potential
scattering by a homogeneous square barrier (2) contain-
ing no localized states. The transmission coefficient D0(ky)
in Eq. (13) is described by the well-known expression

(15)

The second term in Eq. (13) describes the scattering by
a defect. The scattering potential violates the spatial
homogeneity of the structure. Therefore, in the general
case, the scattering process is accompanied by a varia-
tion of the transverse electron component. In so doing,
the resonance scattering amplitude Le at β > 0 in Eq. (3)
has the form (see Appendix A)

(16)

where

(17)

is the width of electronic level on a localized state in the

2D case (see Appendix A). The quantity  in

kx
0 ky

0

ψe→
0 r( )

1
2π
------ ky ikyy ikxx+( )Ce→

0 k k0,( ),expd∫=

Ce→
0 2πD0 ky( )δ ky ky

0–( ) Ce res
0 k k0,( ),+=

Ce res
0 Led→

e ky
0 x0,( ) iky

0y0( )G̃e ky x0,( ).exp=

D0 ky( )

=  –
4ikxκ x 2idkx–( )exp

κ x ikx–( )2 2dκ x( ) κ x ikx+( )2 2dκ x–( )exp–exp
-----------------------------------------------------------------------------------------------------------------,

κx κ0
2 ky

2+ .=

Le
2π"
m

----------
V0 E f–

ε εR– iΓ2D+
-------------------------------,=

Γ2D Γ l
2D Γ r

2D+
2

------------------------,=

Γ l r,
2D 4 π V0 E f–( )

k0κ0

k0
2 κ0

2+
----------------

2κ0 d x0+−( )–[ ]exp

κ 0 d x0+−( )
----------------------------------------------=

d→
0 ky

0 x0,( )
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Eq. (14) is the amplitude of a single electron wave with
the wave vector k0 that propagates from a normal metal
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
under square barrier (2) to a point with the coordinate
r0, at which the localized state is located,
(18)

and  is the Fourier transform of Green’s electron function Ge(r, r0) of barrier (2) with the source at
point r0,

(19)

(20)

(21)

d→
e ky

0 x0,( )
2ikx

0 κ x
0 ikx

0+( ) κ x
0 d x0–( )–[ ] κ x

0 ikx
0–( ) κ x

0 d x0–( )[ ]exp+exp{ }–

κ x
0 ikx

0–( )2
2dκ x

0( ) κ x
0 ikx

0+( )2
2dκ x

0–( )exp–( )exp
----------------------------------------------------------------------------------------------------------------------------------------------------------- ikx

0d–( ),exp=

G̃e ky x0,( )

Ge r r0,( )
1

2π
------ ky iky y y0–( )[ ]Ge ky x x0, ,( )expd∫ 1

2π
------dky ikyy ikxx+( )G̃e ky x0,( ),exp= =

Ge ky x x0, ,( )
2m

"
2

-------
ikx x d–( )[ ] κ x ikx+( ) κ x d x0+( )–[ ] κ x ikx–( ) κ x d x0+( )[ ]exp+exp{ }exp

κ x ikx+( )2 2dκ x–( ) κ x ikx–( )2 2dκ x( )exp–exp
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

G̃e ky x0,( ) Ge ky x x0, ,( ) ikxx–( ) ikyy0–( ).expexp=
The electron wave described by Fourier expansion (12)
and transmitted through the scatterer will produce,
component by component, Andreev reflections in the
superconductor [28, 29] and generate a hole wave with
the group velocity directed toward the normal metal,

(22)

(23)

where ae(k) denotes the coefficients of Andreev reflec-
tion.

The hole wave described by Fourier expansion (22)
is reflected potentially and resonantly from the scatterer
to generate a hole wave propagating in the direction of
superconductor,

(24)

(25)

The first term in Eq. (25) describes the potential reflec-
tion of the hole wave (propagating on the superconduc-

ψh←
0 r( )

1
2π
------ ky i kyy kxx+( )[ ]Ch←

0 k( ),expd∫=

Ch←
0 kx ky,( ) ae kx ky,( )Ce←

0 kx ky,( ),=

ψh→
1 r( )

1
2π
------ ky i kyy kxx–( )[ ]Ch→

1 k( ),expd∫=

Ch→
1 rh← ky( )Ch→

0 Lhdh←
0 r0( )G̃h ky( ).+=
tor side) from square potential (2) with the reflection
coefficient

(26)

The second term in Eq. (25) describes the resonance
reflection from the total potential (1), with the ampli-
tude Lh of resonance hole scattering given by

(27)

The quantity dh←(r0) in formula (25) is the amplitude of
the hole wave (22) that reached the localized state
under potential (2),

(28)

rh← ky( )

=  
2idkx( ) kx

2 κ x
2+( ) 2dκ x( ) 2dκ x–( )exp–exp[ ]exp

κ x ikx+( )2 2dκ x( ) κ x ikx–( )2 2dκ x–( )exp–exp
---------------------------------------------------------------------------------------------------------------------.

Lh
2π
m
------

V0 E f–

ε εR iΓ2D+ +
-------------------------------– Le* ε–( ).= =

dh←
0 r0( )

1
2π
------=

× kyd dh← ky x0,( ) ikyy0( )Ch←
0 k( ),exp∫
(29)dh← ky x0,( )
2ikx idkx( ) κ x ikx+( ) κ x d x0+( )[ ] κ x ikx–( ) κ x d x0+( )–[ ]exp+exp{ }exp

κ x ikx+( )2 2dκ x( ) κ x ikx–( )2 2dκ x–( )exp–exp
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,–=
and  is the Fourier transform of Green’s hole
function of homogeneous square barrier (2) with the
source at the point r0,

(30)

The hole wave  described by Fourier expansion
(24) will be reflected in the Andreev manner [27, 28]

G̃h ky x0,( )

G̃h ky x0,( ) Ge* ky x x0, ,( ) ikxx ikyy0–( ).exp=

ψh→
1 r( )
from the superconductor and generate an electron wave
directed toward the scatterer,

(31)

(32)

(33)

ψe←
1 r( )

1
2π
------ ky ikyy ikxx–( )Ce←

1 k( ),expd∫=

Ce←
1 k( ) ah kx ky,( )Ch→

1 k( ),=

ah kx ky,( ) ae kx– ky,( ).=
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In its turn, the electron wave corresponding to Fou-
rier transform (31) will be reflected normally from the
total potential of localized states (1) to generate an elec-
tron wave directed deep into the superconductor,

(34)

(35)

In formula (35), re←(ky) =  is the reflection coef-
ficient of the Fourier component of the electron wave
described by formula (31) from the square barrier (2),

and the quantity  is the amplitude of the elec-
tron wave (31) that passed from the superconductor
under potential (2) to the localized state,

(36)

(37)

Therefore, we started the treatment with electron
wave (12) directed toward the S–N interface and, after
a series of Andreev and normal reflections, we obtained
once again an electron wave propagating in the same
direction. The process is then repeated for an infinite
number of times. In so doing, for the Fourier components
of electron and hole waves, formulas (23), (25), (32), and
(35) may yield the integral recurrent relations

(38)

in which the superscript N indicates the number of
Andreev reflections. Formulas (13) and (14) preassign
the initial conditions for recurrent relations (38).

3.3. Solutions for Fourier Components
of Electron Waves

The Fourier components of scattered electron wave
(10) Ci↔(k, k0) are expressed in terms of the sums of

partial Fourier components  described by recurrent
relations (38)

(39)

The expressions for these sums (39) follow from recur-
rent relations (38) (see Appendix B),

ψe→
2 r( )

1
2π
------ ky ikyy ikxx+( )Ce→

2 k( ),expd∫=

Ce→
2 k( ) re← ky( )Ce←

1 k( ) LeG̃e ky x0,( )de←
1 r0( ).+=

rh←* ky( )

de←
1 r0( )

de←
1 r0( )

1
2π
------ ky ikyy0( )expd de← ky x0,( )Ce←

1 k( ),∫=

de← ky x0,( ) dh←* ky x0,( ).=

Ch←
2N k( ) ae k( )Ce→

2N k( ),=

Ch→
2N 1+ k( ) rh← ky( )Ch←

2N k( ) LhG̃h ky x0,( )dh←
2N r0( ),+=

Ce←
2N 1+ k( ) ah k( )Ch→

2N 1+ k( ),=

Ce→
2N 2+ k( ) re← ky( )Ce←

2N 1+ k( ) LeG̃e ky x0,( )de←
2N 1+ r0( ),+=

Ce↔
N

Ci↔ Ci↔
N .

N

∑=

Ce→
pot D0 ky( )

Q
---------------,=
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(40)

where

(41)

(42)

The structure of expressions (40) has a clear physi-
cal meaning. The numerators in formulas (40) define
the power of the sources of electrons moving in the
directions towards and away from the superconductor.
In the potential term, these sources are the amplitude of
the electron passage at potential (2) D0(ky) and the
quantity aeahrh←D0(ky), respectively. The coefficient
aeahrh← indicates that the first electron wave propagat-
ing toward the normal metal arises as a result of three
successive reflections, namely, the Andreev reflection
from the superconductor that converts the electron, which
passed with the amplitude D0(ky), to a hole with the prob-
ability ae; the reflection of the latter hole from potential (2)
with the probability rh←; and the subsequent transforma-
tion of this hole to an electron moving toward normal
metal, as a result of Andreev reflection of the hole from
the superconductor with the probability ah .

Two sources of electrons are available in a reso-
nance channel in each direction. This is due to the fact
that, as a result of multiple Andreev and normal reflec-
tions, electron and hole states with self-consistent

amplitudes  and  are formed on a defect. There-
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a2
1

2π
------ ky

dh←aeCe→
0

Q
------------------------,d∫=

b1
1

2π
------ ky

de←rh←aeahLeC̃e

Q
----------------------------------------,d∫=

b2
1

2π
------ ky

dh←aeLeC̃e

Q
--------------------------,d∫=

c1
1

2π
------ ky

de←LhahG̃h

Q
---------------------------,d∫=

c2
1

2π
------ ky

dh←re←aeahLhG̃h

Q
-----------------------------------------.d∫=

Σ̂e Σ̂h
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001



THE THEORY OF TUNNELING 657
fore, in a resonance channel, the sources of electrons
moving towards the superconductor are equal to the
sum of products of the amplitudes of existence on a

defect of the electron ( ) and hole ( ) states
into the probabilities of tunneling from a defect, which

are Le  and re←anLh , respectively. In so doing, the
coefficient re←an allows for the fact that a forward-mov-

ing electron generated by the amplitude  of the hole
state is obtained as a result of Andreev reflection of the
hole from the superconductor and subsequent potential
reflection of the electron from potential (2). The back-
ward-moving electrons appear as a result of Andreev

reflection of holes (ahLh ) and three successive
reflections rh←aeah which transform the electron wave

Le ( ) (propagating toward the superconduc-
tor) into an electron wave propagating in the opposite
direction.

The denominator Q = 1 – re←rh←aeah in all expres-
sions (40) is a result of summation of repeated Andreev
and potential reflections of waves initiated by the
sources described above.

The contributions made to the electron current by
holes from normal metal (Ch↔(k, k0)) are calculated
analogously,

(43)

as well as the contributions made by electron-like
(Cel↔(k, k0)) and holelike (Chl↔(k, k0)) excitations of
superconductor,

(44)

d→
e Σ̂e+ Σ̂h

G̃e G̃h

Σ̂h

G̃h Σ̂h

G̃e d→
e Σ̂e+

Ch→
pot D0

* ky( )re←an

Q
------------------------------,=

Ch→
res 1

Q
---- Lhre←ahG̃h Σ̂e

h
de→*+( ) LeG̃eΣ̂h

h
+{ } ,=

Ch←
pot D0

* kyan( )
Q

---------------------,=

Ch←
res ah

Q
----- LhG̃h Σ̂e

h
de→*+( ) LeG̃erh←aeΣ̂h

h
+{ } ,=

Cel→
pot re← 1 ah

2–
Q

-------------------------------,=

Cel→
res 1

Q
---- LeG̃eΣ̂e

el
re←anLhG̃hΣ̂h

el
+{ } ,=

Cel←
pot 1 ah

2–
Q

-----------------------,=

Cel←
res ah

Q
----- rh←aeLeG̃eΣ̂e

el
LhG̃hΣ̂h

el
+{ } ,=

Chl→
pot re←rh←ah 1 ae

2–
Q

----------------------------------------------,=
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(45)

The quantities  in formulas (43)–(45) are defined
by relations (41). The difference consists in the expres-
sions for the coefficients of (42). In formulas (43), the
coefficients ai , bi , and ci are described by formulas (42)
with the e  h replacement. In formulas (44) and (45),
for the same coefficients bi and ci , one must use differ-
ent coefficients ai ,

(46)

(47)

As in formula (40), the numerators in expressions (43)–
(45) define the sources of electron waves propagating
towards and away from the superconductor, while the
denominators allow for repeated Andreev and potential
reflections of these waves.

In numerical calculations, the Andreev coefficients
ae, h(kx, ky) in the foregoing expressions were calculated
self-consistently in accordance with the procedure
described in [10, 11]. The calculations were performed
for arbitrary angles α between the normal to the inter-
face and the crystallographic direction a of the d-type
superconductor. Note that it is only for the orientation
angle α = 0 that the results coincide with the values
obtained in a non-self-consistent manner,

(48)

and used previously [7, 8] in analyzing resonant trans-
port in weak couplings on the basis of d-type supercon-
ductors.

Chl→
res 1

Q
---- LeG̃eΣ̂e

hl
re←anLhG̃hΣ̂h

hl
+{ } ,=

Chl←
pot rh←ah 1 ae

2–
Q

-------------------------------------,=

Chl→
res ah

Q
----- rh←aeLeG̃eΣ̂e

hl
LhG̃hΣ̂h

hl
+{ } .=

Σ̂e h,
i

     

a1
el 1 ah

2– de←

Q
--------------------------------,=

a2
el 1 ah

2– dh←aere←

Q
----------------------------------------------,=

a1
hl 1 ae

2– de←ahrh←

Q
----------------------------------------------,=

a2
hl 1 ae

2– dh←

Q
--------------------------------.=

ae kx ky,( )

ε ε( ) ε2 ∆ k( ) 2–sgn–
∆ k( )

--------------------------------------------------------, ε ∆ ,≥

ε i ∆ k( ) 2 ε2––
∆ k( )

-----------------------------------------, ε ∆ ,<

=

∆ k( ) ∆0 2 θ α–( )[ ] ,cos=
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4. ZBA UNDER CONDITIONS
OF RESONANCE TUNNELING

In the low-voltage region, the amplitudes of the
Andreev reflection coefficients ah, e tend to ±i (see
Eq. (48)) irrespective of the behavior of spatial varia-
tion of the order parameter in the neighborhood of the
boundary. If, in so doing, as a result of an event of being
scattered by this boundary, a quasiparticle enters the
region with the same sign of the order parameter, then
(aeah)e = 0 = –1. This is observed, for example, in the
case of superconductor with pairing of the s-type (N–I–S
junction) or in the particular case of α = 0 in N–I–D
structures. However, if α ≠ 0, this change of sign may
occur and lead to the relation

(49)

In this case, Eqs. (40) and (43)–(45) immediately produce
anomalously high values of the coefficients Ci↔ and, con-
sequently, anomalies in the conductance as well.

On substituting the expressions for Fourier compo-
nents Ci↔(k, k0) (40)–(43) into those for current (5)
and (7) and using Eq. (41), one can derive the following

aeah( )ε 0= 1.=

nα

D

e

e e

h

h

α α α n

I

N

+_+_
_

∆(θ)

Fig. 1. A diagram illustrating the process of tunneling in a
two-dimensional N–I–D junction without defects. The bro-
ken line in region I indicates the angular dependence of pen-
etrability of a δ-functional barrier, and the solid line indi-
cates the angular dependence of penetrability of a thick
square barrier.
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expression for the potential component of conductance
at eU  0:

(50)

By integration over ZBA is meant the integration with
respect to the region of angles in the direction of which
the condition of electron-hole resonance (49) is valid,
which leads to the formation of a bound state with the
energy EM = 0 in the superconductor.

Relation (50) is a well-known expression for ZBA
obtained previously [7] (though with some inaccura-
cies: the cosine under the integral was not included) for
potential scattering in the model of the δ-potential bar-
rier. It is interesting to note that in the model being
treated of a “thick” barrier with penetrability, described
by formula (15), the value of ZBA is the same as in the
case of the model of the δ-potential barrier, in spite of
the fact that the penetrability modulus of a thick square
barrier has a much sharper maximum in the region of
small angles of incidence θ = 0 (see Fig. 1) than the δ-
potential barrier. This result comes naturally: ZBAs
arise as a result of resonance between the Fermi ener-
gies of a normal metal and of a bound electron–hole state
with EM = 0 on the I–D interface. The width of the elec-
tron–hole state with EM = 0 is defined by the probability
of electron (hole) escape from the I–S region as a result
of tunneling back to the normal metal. Therefore, even
though the first transmission of the electron wave func-
tion in the direction satisfying condition (49) may be
very unlikely for a thick square barrier, this low proba-
bility is compensated by the formation of a narrower
electron–hole resonance. The width of the ZBA peak

with respect to voltage is of the order of 
(see Figs. 2 and 3).

Figures 2a and 3a give the conductance of the poten-
tial channel of an N–I–D junction as a function of volt-
age for orientation angles α = π/4 and α = π/8, respec-
tively, with the parameters κ0d = 2 and κ0/k0 = 0.1, calcu-

Gd
pot 0( )

2e2

π"
--------

k0

2π
------Ly θ θ.cosd

ZBA

∫=

D θZBA( ) 2∆0
0

1

0.5

G/GN

eU/∆0

2

3

4

1.0 1.5 2.0

(a)

10–35
103

G/GN

eU/∆0

10–25 10–15 10–5

104

105

(b)

Fig. 2. (a) The conductance of an N–I–D junction with a thick square barrier without defects with the orientation angle α = π/4 and
parameters κ0d = 2 and κ0/k0 = 0.1, calculated using non-self-consistent Andreev coefficients (48). The conductance is normalized
to that of an analogous N–I–N junction. (b) The low-voltage conductance on a logarithmic scale.
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Fig. 3. (a) The conductance of an N–I–D junction with a thick square barrier without defects with the orientation angle α = π/8 and
parameters κ0d = 2 and κ0/k0 = 0.1, calculated using non-self-consistent Andreev coefficients (48). The conductance is normalized
to that of an analogous N–I–N junction. (b) The low-voltage conductance on a logarithmic scale.

Fig. 4. (a) The conductance of an N–I–D junction with a δ-functional barrier with normal conductance equal to that of a thick square
barrier with the parameters κ0d = 2 and κ0/k0 = 0.1. The orientation angle α = π/4. The calculations were performed using non-self-
consistent Andreev coefficients (48). The conductance is normalized to that of an analogous N–I–N junction. (b) The low-voltage
conductance.
lated using non-self-consistent Andreev coefficients (48).
These dependences are normalized to the conductance of
an analogous N–I–N junction. Shown separately in
Figs. 2b and 3b are low-voltage regions. One can see
that, in both cases, the normalized conductance exhibits a
singularity at eU  0. In so doing, the width of this sin-
gularity at α = π/8 is approximately 10 orders of magni-
tude less than at α = π/4. This is attributed to the extremely
low penetrability of a thick square barrier for directions of
θZBA ≠ 0. For the orientation angle α = π/8, this region is
such that θZBA ∈  [–5π/32, –π/8] ∪  [π/8, 5π/32], while for
the orientation angle α = π/8 condition (49) is valid for
any values of θ, including θ = 0.

For comparison, Figs. 4a and 5a give the normalized
conductance of an N–I–D junction as a function of volt-
age, calculated in the model of a δ-functional scatterer
using non-self-consistent Andreev coefficients (48) (see
[7]). The coefficient at the δ function corresponds to the
conductance of the junction as in the case of the square
barrier in Figs. 2 and 3. Figures 4b and 5b give the same
dependences in the low-voltage region. One can see
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
that the width of the peak of conductance for the orienta-
tion angle α = π/8 is less than for the orientation angle α =
π/4; however, both quantities are of the same order of
magnitude. This is attributed to the fact that the angular
dependence of penetrability in the model of δ-functional
scatterer is less sharp than in the case of a long square bar-
rier (see Fig. 1).

Figure 6 gives the normalized conductance of an
N−I–D junction with a square barrier as a function of
voltage, calculated using self-consistent Andreev coef-
ficients [10, 11] for the case of mirror interface. A com-
parison of Fig. 6 with Figs. 2 and 3 reveals a qualitative
agreement in the behavior of the dependences.

In the case of isotropic scattering of quasiparticles by
localized states, directions will always be available, the
tunneling along which will cause a quasiparticle to get to
the region of existence of electron-hole resonance (49)
(Fig. 7). The interaction with a defect in the process of tun-
neling causes an effective “scanning” of the interface by a
scattered wave, which inevitably leads to the formation of
resonance trajectories. It is qualitatively clear that the fact
SICS      Vol. 92      No. 4      2001
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Fig. 5. (a) The conductance of an N–I–D junction with a δ-functional barrier with normal conductance equal to that of a thick square
barrier with the parameters κ0d = 2 and κ0/k0 = 0.1. The orientation angle α = π/8. The calculations were performed using non-self-
consistent Andreev coefficients (48). The conductance is normalized to that of an analogous N–I–N junction. (b) The low-voltage
conductance.
of formation of such a channel is associated neither with
the position of the energy level of localized state nor with
its spatial arrangement. The fact of isotropic rescattering
by any defect in the process of scattering will suffice.

0

10

0.5

G/GN

eU/∆0

0

20

30

40

1.0 1.5 2.0

1

2

Fig. 6. The conductance of an N–I–D junction with a thick
square barrier without defects with the parameters κ0d = 2
and κ0/k0 = 0.1, calculated using self-consistent Andreev
coefficients. The conductance is normalized to that of an
analogous N–I–N junction. Curve 1 corresponds to the ori-
entation angle α = π/4, and curve 2 corresponds to the ori-
entation angle α = π/8.
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Fig. 7. A diagram illustrating the process of tunneling in a
two-dimensional N–I–D junction with a defect in the
I-layer.
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Given the validity of the easy-to-satisfy condition
for the coordinate of localized state x0 and ZBA angles,

(51)

the amplitudes of the electron  and hole ( )
states on a localized state are defined mainly by waves
rescattered backward, away from the superconductor.
When condition (51) is valid and after the substitution of
expressions for Fourier components Ci↔(k, k0) (40)–(43)
into formulas for current (5), (8), and (9), one can derive
the following relations for the interference and resonance
components of conductance at eU  0, which describe
the electron wave scattering from a defect:

(52)

(53)

In analyzing the processes of resonance tunneling,
the interference component (52) of current (8) was not
included, as a rule, because of the sharper (compared with
the resonance channel) dependence on the barrier thick-
ness. In N–I–D contacts, this contribution to current
proves to be significant and the most nontrivial. It reflects
the process of destruction of resonance in a potential chan-
nel due to the interaction with the defect. Indeed, in
addition to the validity of condition (49), the conserva-
tion of the transverse component of quasiparticle
momentum in the process of reflection of the quasipar-
ticle from a spatially homogeneous barrier is required
for the formation of a bound electron-hole state with
EM = 0 on the I–D interface. However, the presence of
a scattering center on the trajectory inevitably leads to
the quasiparticle rescattering in other directions, which
results in the breaking of electron-hole resonance. This
effect must not depend considerably either on the posi-

θ
κ x

2 kx
2+

4κ x
2

---------------- 2κ x d x0+( )[ ]  @ 1,expd

ZBA

∫
κ0 d x0+( ) @ 1,

d→
e Σ̂e+( ) Σ̂h

Gd
int 0( ) 4

e2

π"
------–≈ 8RK

1– , RK–
2π"

e2
----------,= =

Gd
res 0( ) 0.≈
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tion of the energy level of localized state or on its spa-
tial arrangement on a preferred trajectory. What this
effect leads to is the reduction of the conductance by

eight quanta  per each defect. Note, however, that
within the given model this cannot bring about the change
of sign of the overall differential conductance with
increasing concentration of localized states, because it will
be preceded by the condition of independence of tunnel-
ing via separate scattering centers being violated.

Note that, in the absence of Andreev reflection (in an
N–LS–N structure), the interference contribution to cur-
rent depends considerably on the shape of the reso-
nance curve and goes to zero both at eU = εR and upon
averaging with respect to εR .

The paradoxical, at first glance, result for resonance
channel (53) is associated with the fact that, in accor-
dance with Eqs. (40), the power of the sources of elec-
trons moving toward one another is defined by the
amplitudes of probabilities of the existence on a defect

of both electron  and hole ( ) states. In so
doing, it turns out that the “number” of “forward”-prop-
agating (i.e., towards the superconductor) electrons
generated by the electron states exceeds, by a factor of
(rh←aeah)–1, the number of “backward”-moving elec-
trons. For electrons generated by the hole state, the sit-
uation on the localized state is quite the contrary: the
number of electrons moving forward proves to be re
times less than the number of electrons moving back-
ward. In view of Eq. (49), as well as of the fact that the
resonance contribution to current is defined, according
to formula (9), by the difference of squares of modules

 and , one can readily find
that the contributions to resonance current (9) by the
electron and hole states on a localized state at eU  0
fully compensate each other and lead to the results
given by Eq. (53).

Therefore, the result given by Eqs. (52) and (53)
proves to be fairly general and independent of the shape of
the resonance curve. Moreover, it is conserved also during
the change of sign in defect potential (3) from negative
(resonance) to positive (nonresonance scattering). Conse-
quently, the effect of ZBA suppression occurs in the case
of both resonance and direct scattering by a defect; what is
important is only the nonconservation of the transverse
component of scattered wave momentum upon interac-
tion with defect. In addition, it is not only a part of the
localized states with the energy in the vicinity of the
Fermi energy (differing from the latter by a value of
several half-widths of the resonance line Γ or less) and
with the coordinate in the vicinity of the middle of the
barrier (spaced from the middle at a distance of several

radii of localized state  or less), which defined the
resonance current in the case of structures with normal
or superconducting electrodes with pairing of the s-
type [20–23], that make the contribution to the suppres-
sion of the conductance anomaly (50) in the potential

RK
1–

d→
e Σ̂e+( ) Σ̂h

Ci→
res k k0,( )

2
Ci←

res k k0,( )
2

κ0
1–
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channel; this contribution is also due to almost all of the
defects inside the barrier with coordinates satisfying
condition (51).

5. RESONANCE TUNNELING
WITH THE ORIENTATION ANGLE α = 0

Because, in the case of orientation angle α = 0, the
effects associated with the emergence of ZBA are
absent, a d-type superconductor may be treated as an
ordinary anisotropic s-type superconductor. Therefore,
it is sufficient to treat the scattering of electron and hole
wave functions, defined by relations (40)–(47), only in
the narrow cone of angles,

(54)

Therefore, for thick and relatively low barriers which
satisfy condition (54), resonance scattering becomes
one-dimensional. Integrals (42) are taken in an explicit
form and, after the substitution of the obtained Fourier
components Ci↔(k, k0) into the expressions for current
(5)–(9), we arrive at formula (3) in [23] for the conduc-
tance of a structure at low voltages eU ! ∆0 with the
reflection and transmission coefficients

(55)

which allow for the 2D behavior of scattering in the

interlayer in expressions for  (17).

6. CONCLUSION

The results of sequential theoretical analysis of res-
onance tunneling in two-dimensional N–I–D structures
with defects in the interlayer have demonstrated that, in
the presence of d-pairing in electrodes, one cannot
restrict oneself to a one-dimensional approximation.
Qualitatively, this is associated with the fact that, in the
case of N–I–D structures, direct tunneling in the ZBA
region is also resonance tunneling to the bound elec-
tron-hole state, which leads to the formation of ZBA. In
so doing, the interference of two processes occurring in
the low-voltage region brings about both a partial sup-
pression of ZBA and a sharp enhancement of the pro-
cess of tunneling via localized states, which proves to
involve almost all localized states, irrespective of their
position in the interlayer. This result is fairly general and
independent of the shape of the resonance curve and
describes both resonance (at β > 0) and direct scattering by
the potential of defect (3). It is only with the orientation
angle α = 0 that the problem reduces to a one-dimensional
one, and we derive the relation for conductance, which is
in formal agreement with the analogous expression
derived for the 1D case.

θ
κ0
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ε εR–( ) i

Γ l
2D Γ r

2D–
2

----------------------- 
 +

ε εR–( ) iΓ 2D+
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t ε( ) 2 1 r ε( ) 2,–=
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APPENDIX A

Two-Dimensional 
One-Electron Resonance Scattering

We will treat the electron wave scattering by 2D-poten-
tial (1). For this purpose, we will write the solution of
Schrödinger’s equation for potential (1) in the form

(A.1)

where ψ0(r) and G0(ε, r, r ') denote the electron wave
function and Green’s function of two-dimensional square
potential (2), respectively, which satisfy the equations

(A.2)

The defect radius ρ has atomic dimensions, i.e., ρ ! ,
while the wave function ψ(r) is, on an atomic scale, a
slow-varying function of the variable r. This enables
one to remove the wave function in Eq. (A.1) from the
integrand and represent this expression as

(A.3)

We assume in Eq. (A.3) that r = r0 to readily derive, for
the local value of ψ(r0),

(A.4)

We will further substitute expression (A.4) into (A.3) in
view of the fact that Green’s function G0(ε, r, r0)
appearing in Eq. (A.3) on a scale ρ, on which variations
of the defect potential Vimp(r – r0) occur, is also a slow-
varying function of the variable r and derive the final
expression for an electron wave scattered by a localized
state (see our formulas (13)–(17)),

(A.5)

(A.6)

ψ r( ) ψ0 r( )=

+ r2 'd( )G0 ε r r', ,( )Vimp r' r0–( )ψ r'( ),∫

ε H0 r( )–[ ]ψ0 r( ) 0,=

ε H0 r( )–[ ]G0 ε r r', ,( ) δ r r'–( ),=

H0
"

2∇ 2

2m
------------ Vrect x( ).+–=

k0
1–

ψ r( ) ψ0 r( )=

+ ψ r0( ) r'2 G0 ε r r', ,( )Vimp r' r0–( ).d∫

ψ r0( )
ψ0 r0( )

1 r'2 G0 ε r0 r', ,( )Vimp r' r0–( )d∫–
-----------------------------------------------------------------------------.=

ψ r( ) ψ0 r( ) Leψ0 r0( )G0 ε r r0, ,( ),+=

Le

r'2 Vimp r' r0–( )d∫
1 r'2 G0 ε r r', ,( )Vimp r' r0–( )d∫–
---------------------------------------------------------------------------.=
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The first term in formula (A.5) describes potential scat-
tering by potential (1), and the second term describes
resonance scattering by a localized state.

In order to calculate the electron amplitude of reso-
nance scattering Le, one must know the expression for
Green’s electron function in the barrier,

(A.7)

where GV is Green’s electron function of rectangular
barrier (2) of infinite thickness d  ∞, and G1 denotes
the corrections to this function due to finiteness of the
barrier,

We substitute Green’s functions (A.7) into (A.6) in view
of the form of local potential Vimp(r – r0) (3) to derive the
following expression for the electron amplitude of reso-
nance scattering Le:

(A.8)

where "  is the resonance value of momentum defin-
ing the value of resonance energy ε0, η = 2exp(0.5)/γ,
γ ≈ 1.78 is Euler’s constant, and J ' and J" have the form

(A.9)

We expand the logarithm in formula (A.8) in the vicin-

ity of the resonance value of its argument (  = ) to
derive formulas (16) and (17) in which

(A.10)
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2κ0

e d x0+( )–[ ]exp

κ 0
e d x0+( )

----------------------------------------------+
 
 
 

.=

κ res
e κ0

e

εR ε0 δε, δε+ 2 V0 E f–( )J ',–= =
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where δε is the shift of the resonance energy, which is
caused by the finite width of the barrier.

The amplitude of resonance scattering for holes Lh

is calculated analogously. In so doing, one must change
the sign of energy (ε  –ε) and take into account that
Green’s hole functions are related to electron functions
by the relation Gh(ky , x, x') = (ky , x, x')ε → –ε.

APPENDIX B

Solution of Recurrent Equations

In order to calculate the electric current through a
structure, one must know the Fourier components of scat-
tered electron wave Ci↔(k, k0), which are sums of the

respective partial Fourier components  satisfying
integral recurrent relations (38) with initial conditions (13)
and (14). In order to find them in an explicit form, we will
use the formulas

(B.1)

(B.2)

which follow from recurrent relations (38). We sum
recurrent formula (B.2) with respect to the parameter
q = re←(ky)rh←(ky)ae(k)ah(k), |q | < 1 to derive the fol-
lowing expression for Ce→:

(B.3)

in which

(B.4)

Analogously, formulas (B.1) and (38) yield the expres-
sions for Ce←, Ch← = ,

(B.5)

(B.6)

Ge
*

Ce↔
N

Ce←
2N 1+ ae k( )ah k( )rh← ky( )Ce→

2N=

+ ah k( )LhG̃h ky x0,( )dh←
2N r0( ),

Ce→
2N 2+ re← ky( )rh← ky( )ae k( )ah k( )Ce←

2N=

+ LeG̃e ky x0,( )de←
2N 1+ r0( )

+ re← ky( )ah k( )LhG̃h ky x0,( )dh←
2N r0( ),

Ce→
1
Q
---- Ce→

0 LeG̃e ky x0,( )Σ̂e+{=

+ re← ky( )ah k( )LhG̃h ky x0,( )Σ̂h } ,

Σ̂e de←
2N 1+ r0( ), Σ̂h∑ dh←

2N r0( ).∑= =

Ch←
2N 1+∑

Ce←
1
Q
---- ae k( )ah k( )rh← ky( )Ce→

0{=

+ ae k( )ah k( )rh← ky( )LeG̃e ky x0,( )Σ̂e

+ ah k( )LhG̃h ky x0,( )Σ̂h } ,

Ch← k( ) ae k( )Ce← k( ).=
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It follows from formulas (28), (36), and (B.4) that 

and  are the sums of respective electron and hole
partial Fourier components, integrated with respect to
ky with the weight factors de, h←(ky); therefore, in order to
find these sums, it is sufficient to multiply formula (B.5)
by de←(ky) and (B.6) by dh←(ky), integrate the resultant
expressions with respect to ky, and solve the resultant set

of two linear equations relative to  and . As a result,
we derive formula (40) for the Fourier components of
scattered electron wave with coefficients defined by
relations (41) and (42).
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Abstract—It is shown that an essential aspect in the study of polarons, which belong to multiparticle systems,
is a correct selection of the Fock space from a manifold of unitarily inequivalent representations. Using the
quantum field theory, we have studied a single-site polaron model with an allowance for the electron correla-
tions at a lattice site. This model takes into account the formation of a charged site boson state in addition to the
single-particle fermion states. It is demonstrated that, provided the initial site sates are half-occupied, the
formation of boson–polaron mixed site states takes place. The thermodynamics of these states is considered.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A fundamental problem of solid state physics is to
determine conditions under which the electron–phonon
interaction may qualitatively change the eigenstates of
charge carriers in a dielectric [1–4]. At present, a con-
siderable attention of researchers is drawn to the study
of small polarons, which is partly related to the rapid
development of computational methods for the study of
polarons at large values of the electron–phonon interac-
tion parameters [5–8]. On the other hand, the interest in
these investigations is due to the possibility of construct-
ing a high-temperature superconductivity (HTSC) theory
and providing a description for the unusual properties
of manganites [9–14].

Since polarons belong to multiparticle systems,
there exist a large number of representations that can be
unitarily inequivalent to each other. This situation
poses a problem of correctly selecting a representation
for the Fock space [15]. In the quantum field theory
(QFT), the Fock space is constructed by means of a
cyclic action of the production operators of physical
particles (i.e., of the particles observed in a physical
experiment) upon their vacuum states. Here, an impor-
tant observable quantity is the quantum system energy
equal to the sum of the energies of all physical particles
in a given state. The operator commutation relation-
ships by themselves cannot unambiguously determine
the correct representation because it is necessary to
specify the vacuum state as well.

The key role in the study of polaron and bipolaron
bands in multisite polaron models [10, 11, 16–21]
1063-7761/01/9204- $21.00 © 20665
belongs to the single-site Hamiltonian. For the Fröhlich
polaron, this Hamiltonian has the following form:

(1)

where ε0 is the seeding electron ground state energy in
the site; nσ is the occupancy operator of the state with a
spin projection σ = ±(1/2)(↑ , ↓ ); bq is the destruction
operator for the phonon with the wavevector q and the
energy Ω (for simplicity, we consider dispersionless
phonons); and ξq is the matrix element of the electron–
phonon coupling. In solving Eq. (1), we must take into
account the initial site state occupancy:

where nσ = aσ and |Ψi 〉  is the initial state for an
unperturbed electron Hamiltonian determined by the
first term in the right-hand part of Eq. (1).

Note that, neglecting the hopping between sites in a
multipolaron system, an electron–phonon Hamiltonian
used in constructing the HTSC theory [10, 11] also
reduces to Eq. (1). Using, in addition, the approxima-
tion of the spin-nondegenerate single electron state in the
site, the polaron model [16] reduces to Eq. (1) as well.

An approach that is widely used in studying multi-
site polaron models is based on the canonical Lang–
Firsov transformation for the electron–phonon Fröhlich

Hsite ε0nσ nσ "Ωξq bq b q–
++( )

q

∑
σ
∑+

σ
∑=

+ "Ω bq
+bq

1
2
---+ 

  ,
q

∑

Ψi nσ

σ
∑ Ψi 2A,=

aσ
+
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Hamiltonian [16]. This transformation ensures diago-
nalization of the single-site Hamiltonian (1). Then, the
transformed Hamiltonian for a multipolaron model is
studied within the framework of the perturbation theory
with a parameter (assumed to be small) λ–1 = zt /Ep,
where t is the modulus of the hopping integral between
nearest sites, z is the number of these sites, and Ep is the
polaron shift of the occupied ground electron state in
the site according to the Lang–Firsov theory. This is a
basic approach used in the superconductivity theory
using the concept of interstitial bipolarons.

In this section, we will demonstrate that there exist
unitarily inequivalent representations for the Fröhlich
site polaron. Using these representations leads to far-
reaching consequences that provide for the possibility
of making a correct choice of the Fock space in the
problem under consideration.

A canonical Lang–Firsov transformation for Hamil-
tonian (1) is [16]

(2)

where

(3)

Using Eqs. (2)`(3) and the well-known commuta-
tion relationships for the operators in (1), we readily
arrive at the electron operator transformed to

(4)

and at the phonon operator transformed to

(5)

The transformed Hamiltonian acquires the form

(6)

where nσ = 0 or 1 and the polaron shift is

(7)

The polaron shift Ep is a very important parameter in
the theory of bipolaron superconductivity [11], where
this value is considered as a measure of the electron–
phonon coupling in high-Tc materials and as a reference
quantity in the analysis of all other interaction parameters
(for example, the on-site electron correlation energy).

H̃site S( )Hsite S–( ),expexp=

S aσ
+
aσ ξq bq b q–

+–( ).
q

∑
σ
∑=

ãσ aσ ξq bq b q–
+–( )

q

∑–
 
 
 

exp=

b̃q bq aσ
+aσξq.

σ
∑+=

H̃site ε0 Ep–( )aσ
+aσ 2Epn↑ n↓–

σ
∑=

+ "Ω bq
+bq

1
2
---+ 

  ,
q

∑

Ep ξq
2
"Ω.

q

∑=
JOURNAL OF EXPERIMENTAL 
The eigenstates of  (6) are

Accordingly, using this expression and Eq. (3), we
obtain for the eigenstates of Hsite (1)

which implies that the electron vacuum state in the
Lang–Firsov theory,

(8)

contains only two single-particle electron states corre-
sponding to the electron vacuum state of the unper-

turbed electron Hamiltonian  = aσ. In
fact, this choice of the vacuum state with two single-
particle electron states for the electron subsystem is
inherent in the transformation (2)`(3), where the oper-
ators aσ are considered as the operators of the destruc-
tion of the physical particles. In other words, the vac-
uum state (8) of the Fock state for Hamiltonian (1) in
the Lang–Firsov theory is determined only by the elec-
tron vacuum state of the unperturbed electron Hamilto-

nian , while the eigenvectors of this space are con-

structed by applying operators  upon the vacuum
state (8).

A completely rigorous approach to the single-site
polaron problem under consideration is to apply meth-
ods of the quantum field theory (QFT). In this case, the
Fröhlich polaron corresponds to a solution of the many-
particle problem in the space of single-particle fermion
states. If the Fock space is expanded to two-particle site
states, then a solution can emerge that corresponds to
the formation of a boson–fermion mixed state on the
site.

It should be noted that using the two aforemen-
tioned approaches in the model (1) leads to signifi-
cantly different results. An analysis of these results pro-
vides for the possibility of making a correct choice of
the Fock space in the polaron problem under consider-
ation. We will carry out such an analysis for model (1)
in two cases of a fully occupied site state. Lang and Fir-
sov [16] considered the sites with a single spin-nonde-
generate electron level. In this case, transformation
(2)`(3) leads to the following value of the electron
energy for the fully occupied site state (i.e., for the ini-
tial condition 〈Ψi |a+a |Ψi 〉  = 1):

(9)

For the spin-degenerate ground state, the electron
energy is [11]

(10)

For the initial condition A = 1 (fully occupied level), the
polaron energy shift (decrease) is 2Ep per spin.

H̃site

Ψ̃| 〉 n↑ n↓,| 〉 Nq{ }| 〉 .=

Ψ| 〉 n↑ n↓,| 〉 n↑ n↓+( )–( ) ξq bq b q–
+–( ) Nq{ }| 〉 ,

q

∑exp=

0| 〉 0↑ 0↓,| 〉 ,=

Hsite
0 ε0aσ

+

σ∑

Hsite
0

aσ
+

Eel ε0 Ep.–=

Eel ε0 Ep–( ) n↑ n↓+( ) 2Epn↑ n↓ .–=
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Now we will analyze the polaronic level shift in the
same cases using the perturbation theory. The system
occurs initially in the fully occupied ground state and
features no excited electron states. According to Eq. (1),
the first diagonal correction to the electron energy is
evidently zero. In the second order of the perturbation
theory, the energy variation is also zero because no
vacant excited states are available. As can be readily
seen, the energy corrections in all orders of the pertur-
bation theory for the fully occupied ground level are
zero. As will be shown below using the QFT approach,
the average electron energy in the fully occupied site
state corresponds to ε0 per spin without any polaron
shift.

Polarons belong to the class of Fermi particles (fer-
mions). A polaron state can be presented as a superpo-
sition of single-particle fermion states. These spin-
degenerate states form a kind of the energy ladder
related to multiphonon processes. It is intuitively clear
that we may select from the two spin subspaces a mani-
fold of pairs of the single-particle states, such that a
change in the electron energy upon scattering (during
which the pairs exchange with a single phonon) in each
of the two spin pairs will be small as compared to the
phonon energy. Then the effective electron interaction
will be attractive and a boson state can appear in the
site. In this case, the site state can be represented in the
following form:

(11)

where β is the spectral weight of the boson state. For
β ≠ 0, vacuum state (9) should be extended to take into
account the vacuum state of bosons.

When β = 0, the wavefunction (11) is invariant rela-

tive to the gauge transformation  = exp(i φ' ) (N is
the particle number operator and φ' is an arbitrary
phase) and the site state represents a normal polaron
state. For β ≠ 0, wavefunction (11) is not invariant rel-
ative to the above gauge transformation and the site
state represents a superposition of the states with differ-
ent N = 1, 2. However, the state (11) corresponding to
this spontaneously violated symmetry is a solution to
Eq. (1), which is invariant with respect to the gauge
transformation. Therefore, the initial invariance must
be retained in a certain manner in solution (11). This
conservation is reflected by taking into account the ini-
tial site state occupancy, which allows the chemical
potential in the state (11) to be determined.

Note that the formation of a boson–fermion mixed
state (11) can only take place provided that the initial
site occupancy is incomplete (A < 1). This is evident,
since otherwise (A = 1) no free single-particle states
would be available for the scattering of quasiparticles.

However, the formation of such a boson–fermion
mixed site state is hindered by the Coulomb correla-
tions in the site. For small polarons, the effective Bohr
radius aeff is on the order of one interatomic distance.

Ψ| 〉 1 β2–( )1/2 Ψ1| 〉 β iφ( ) Ψ2| 〉 ,exp+=

Ô N̂
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Then, assuming the usual value of the high-frequency
dielectric constant eopt = 3 and taking aeff = 5 Å, we may
estimate the typical energy of the on-site interaction
between localized electrons:

A question arises as to what the relationship is
between the on-site correlation energy and the elec-
tron–phonon coupling energy at which a boson–fer-
mion mixed site state may form. The next section of
this paper is devoted to the study of conditions favoring
the formation of such boson–fermion mixed site states
and to the thermodynamics of these states. An analysis
based on the method of Green’s functions will be car-
ried out for a paramagnetic state.

2. MODEL FORMULATION

Supplementing Eq. (1) by a term corresponding to
the electron correlations at the site, we may represent
the Hamiltonian of the single-site polaron model in the
following form:

(12)

where Hph is the phonon Hamiltonian that may include
an anharmonic part as well.

Evidently, a substance may contain a certain ensem-
ble of such like site (or interstitial) states. Neglecting
the hopping between sites, these site states can be con-
sidered as independent of each other and the analysis
can be reduced to a single-site Hamiltonian (12).

We have determined the initial site state occu-
pancy as

The wavefunction Ψi of the unperturbed electron
Hamiltonian for a particle possessing a spin of 1/2 has
two components with the spin projections onto the z
axis σ = ±1/2 [22]. For A = 1/2, the particle may occur
in the site state with a certain spin value σ and the
wavefunction Ψi(σ), while the other site state with spin
projection –σ will be vacant. Since the spin operator
commutates with the Hamiltonian (1), this occupancy
distribution in the two spin subspaces also holds for the
solution to Eq. (1). As will be seen from the results pre-
sented below (see Section 3.1), this solution for the site
state is characterized by the absence of a polaron shift.
For A = 1/2, the initial wavefunction of the particle may
be also prepared in the state with a normalized wave-

function Ψi = (Ψi(σ) + Ψi(–σ))/  [22]. This state is
of considerable importance in multisite models with
hopping between sites intended to describe the state of

U
e2

eoptaeff
--------------- 0.45 eV.≈ ≈

Hsite ε0 n̂↑ n̂↓+( )=

Un̂↑ n̂↓ "Ωξq n̂↑ n̂↓+( )∑+ bq b q–
++( ) Hph,+ +

2A Ψi nσ

σ
∑ Ψi .=

2
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paramagnetic high-Tc materials. For this reason, below
we will study a solution to Eq. (12) for an initial wave-
function in a half-occupied site state (A = 1/2).

Let us introduce the Matsubara Green’s functions
(GFs) [23]:

(13)

, (14)

(15)

where 〈…〉  denotes averaging over the Gibbs ensemble.

Using Eqs. (12)–(15), taking into account only the
diagrams with noncrossing phonon GFs for self-energy
parts (see Section 3.1), and passing to the spectral rep-
resentation in discrete ωn = (2n + 1)πT values, we
obtain the following set of equations (without losing
generality, we take ε0 = 0):

(16)

(17)

(18)

(19)

(20)

where µ is the chemical potential. Then the self-energy
parts have the form 

(21)

(22)

(23)

(24)

gσσ1
τ( ) T τ ãσ τ( )ãσ1 0( )〈 〉 ,–=

f σσ1

+ τ( ) T τ ãσ τ( )ãσ1 0( )〈 〉=

f σσ1
τ( ) T τ ãσ τ( )ãσ1

0( )〈 〉 ,=

gll
1– g↑↑ ωn( ) Ug↑↓ 0+( ) Σ↑↓

s–[ ]g↓↑ ωn( )+

– U f ↑↓ 0+( ) Σ↑↓
a–[ ] f ↓↑

+ ωn( ) 1,=

Ug↓↑ 0+( ) Σ↓↑
s ωn( )–[ ]g↑↑ ωn( ) gll

1– g↓↑ ωn( )+ 0,=

U f ↓↑
+ 0+( ) Σ↓↑

+a ωn( )–[ ]g↑↑ ωn( ) f ll
1– f ↓↑

+ ωn( )–  = 0,

gll iωn UA– Σ↑↑
s ωn( )– µ+( ) 1–

,=

f ll iωn UA Σ↑↑
s ωn( ) µ–+ +( )

1–
,=

Σ↑↑
s ωn( ) T "Ω( )2–=

× ξq
2dq iωn iωn1

–( )g↑↑ ωn1
( ),

n1 q,
∑

Σ↑↑
s ωn( ) T "Ω( )2–=

× ξq
2dq iωn iωn1

+( )g↑↑ ωn1
( ),

n1 q,
∑

Σ↓↑
s ωn( ) T "Ω( )2–=

× ξq
2dq iωn iωn1

–( )g↓↑ ωn1
( ),

n1 q,
∑

Σ↓↑
+a ωn( ) T "Ω( )2–=

× ξq
2dq iωn iωn1

–( ) f ↓↑
+ ωn1

( ),
n1 q,
∑
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(25)

where dq(iωn – i ) is the phonon propagator.

The function g↑↑ (ωn) can be presented in the follow-
ing form [23]:

(26)

where ρ↑↑ (x) is the imaginary part of the retarded dou-

ble-time GF (ω) at a finite temperature

(27)

Note that in the case of a nonmagnetic state,

where ρ(ω) is a real function determining the spectral
density per spin for a fermion quasiparticle at the site,
which is normalized as

Using expression (26), applying the sum rule to ωn [23],
and taking into account the definition of the site state
occupancy A per spin, we obtain

(28)

where n(t) = 1/{exp(t/T ) + 1}. Since the A value is
determined by the initial site state occupancy, relation-
ship (28) is essentially an equation for determining the
chemical potential µ.

The analytical continuation of the self-energy parts
(21) and (22) from a discrete set of points to the entire
upper half-plane ω has the following form:

(29)

(30)

Σ↓↑
a ωn( ) T "Ω( )2–=

× ξq
2dq iωn iωn1

–( )g↑↓ ωn1
( ),

n1 q,
∑

ωn1

g↑↑ ωn( )
ρ↑↑ x( )dx

x iωn–
----------------------,

∞–

∞

∫=

G↑↑
R( )

ρ↑↑ ω( ) 1
π
---ImG↑↑

R( ) ω( )= 0.≤

ρ↑↑ ω( ) ρ↓↓ ω( ) ρ ω( ),–= =

ρ ω( ) ωd

∞–

∞

∫ 1.=

A gσσ τ–( )
τ 0+→
lim dxρ x( )n x µ–( ),

∞–

∞

∫= =

Σ↑↑
s ω( ) "Ω( )2ξ2 ρ x( ) xd

∞–

∞

∫=

× n µ x–( ) N+
ω x– Ω– iγ+
---------------------------------- n x µ–( ) N+

ω x– Ω iγ+ +
-----------------------------------+ ,

Σ↑↑
s

"Ω( )– 2ξ2 ρ x( ) xd

∞–

∞

∫=

× n µ x–( ) N+
ω x Ω 2µ– iγ+ + +
------------------------------------------------ n x µ–( ) N+

ω x Ω 2µ–– iγ+ +
-----------------------------------------------+ .
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Here N = 1/{exp(Ω/T ) – 1} and ξ is a dimensionless
parameter of the electron–phonon coupling given by
the formula

and γ is a positive constant (γ ! Ω) describing the
phonon damping.

For a paramagnetic state g↓↑  = g↑↓  and (ωn) =

(ωn). In the representation of

(31)

the real spectral density function ρsf (x) is determined as
the imaginary part of the retarded double-time GF

(ω) at a finite temperature

(32)

which obeys the condition

By the same token, in the representation of

, (33)

the spectral function ρ+(x) is determined as the imagi-

nary part of the retarded double-time GF (ω) at a
finite temperature

(34)

which obeys the condition

The analytical continuation of the self-energy parts

(ωn) (23) and (ωn) (24) to the entire upper half-
plane ω has the following form:

(35)

ξ2 ξq
2dq

2π( )3
-------------,∫=

Σ↓↑
s

Σ↑↓
s

g↓↑ ωn( )
ρsf x( )dx
x iωn–

---------------------

∞–

∞

∫=

G↓↑
R( )

ρsf ω( ) 1
π
---ImG↓↑

R( ) ω( ),=

ρsf ω( ) ωd

∞–

∞

∫ 0.=

f ↓↑
+ ω( ) ρ+ x( )dx

x iωn–
--------------------

∞–

∞

∫=

F↓↑
+ R( )

ρ+ ω( ) 1
π
---ImF↓↑

+ R( ) ω( ),=

ρ+ ω( ) ωd

∞–

∞

∫ 0.=

Σ↓↑
s Σ↓↑

+a

Σ↓↑
s ω( ) "Ω( )2ξ2 ρsf x( ) xd

∞–

∞

∫–=

× n µ x–( ) N+
ω x– Ω– iγ+
---------------------------------- n x µ–( ) N+

ω x– Ω iγ+ +
-----------------------------------+ ,
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(36)

The system of equations (16)–(18) involves two spin
fluctuation parameters for the paramagnetic state. The first
is λ = g↓↑ (0+) = g↑↓ (0+). Using the representation (31) and
applying the sum rule to ωn [23], we obtain

and eventually

(37)

The second parameter is

Taking into account representation (33), this expression
can be transformed to

(38)

The β value is the weight of the boson state in a mixed
site state.

Now we will write a solution to system (16)–(18)
analytically continued to the entire upper half-plane ω:

(39)

(40)

(41)

where  = ω – AU – (ω) and  = ω + AU +

(ω) – 2µ.
In the case when the initial site states are half-occu-

pied (A = 1/2), a simple analysis of the above solution
shows that the chemical potential is constant (µ = U/2),

Σ↓↑
+a ω( ) "Ω( )2ξ2 ρ+ x( ) xd

∞–

∞

∫–=

× n µ x–( ) N+
ω x– Ω– iγ+
---------------------------------- n x µ–( ) N+

ω x– Ω iγ+ +
-----------------------------------+ .

λ 2T Reg↓↑ ωn( ),
n 0>
∑=

λ dxρsf x( )n µ x–( ) = dxρsf x( )n x µ–( ).

∞–

∞

∫–

∞–

∞

∫=

β f ↓↑
+ τ( )

τ +0→
lim 2T Re f ↓↑

+ ωn( ).
n 0>
∑= =

β dxρ+ x( )n µ x–( ) = dxρ+ x( )n x µ–( ).

∞–

∞

∫–

∞–

∞

∫=

G↑↑
R( ) ω( )

=  
Gll

1–

Gll
2– λU Σ↓↑

s ω( )–[ ]2
– FllGll

1– βU Σ↓↑
+a ω( )–[ ]2

–
-----------------------------------------------------------------------------------------------------------------,

G↓↑
R( ) ω( )

=  
Σ↓↑

s ω( ) λU–

Gll
2– λU Σ↓↑

s ω( )–[ ]2
– FllGll

1– βU Σ↓↑
+a ω( )–[ ]2

–
-----------------------------------------------------------------------------------------------------------------,

F↓↑
+ R( ) ω( )

=  
FllGll

1– βU Σ↓↑
+a ω( )–[ ]

Gll
2– λU Σ↓↑

s ω( )–[ ]2
– FllGll

1– βU Σ↓↑
+a ω( )–[ ]2

–
-----------------------------------------------------------------------------------------------------------------,

Gll
1– Σ↑↑

s Fll
1–

Σ↑↑
s
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670 AGAFONOV, MANYKIN
the spectral density ρ(x) is an even function with
respect to µ,

while the spectral functions ρsf (x) and ρ+(x) are odd,

Thus, we obtained a solution to Eq. (12) describing
the boson–fermion mixed state (39)–(41). This solution
determines the spectral densities ρ (27), ρsf (32), and ρ+

(34). These densities set the self-energy parts (29), (30),
(35), and (36), which, in turn, determine the solution
(39)–(41).

This closed system was solved by means of an iter-
ative procedure. Up to 100 iterations were necessary,
after which a maximum relative variation of the spec-
tral density peaks did not exceed 10–3 and a change in
the λ and β values did not exceed 3 × 10–5 for the two
last iterations.

3. RESULTS AND DISCUSSION

The solution (39)–(41) will be analyzed in four par-
ticular cases. The on-site electron correlations can be
considered within the framework of the Hartree–Fock
approximation with neglect of the spin fluctuations
(λ = 0), and the solution can be studied both in the
space of single-particle electron state for β = 0 (normal
polaron state) and in the space of boson–polaron mixed
states for β ≠ 0. Then we will consider the case with the
spin fluctuations taken into account (λ ≠ 0) and study
this solution both in the space of the single-particle
electron state for β = 0 (spin-fluctuating polaron state)
and in the space of spin-fluctuating boson–polaron
mixed states for β ≠ 0.

In the results presented below for A = 1/2, the energy
variable ω is counted from the ε0 + UA level. In the gen-
eral case, the electron energy of a given state was cal-
culated as

(42)

where

(43)

is a polaron shift for the normal polaron state.

Below we will present the spectral densities for the
above states with various initial site state occupancies.
In the case of half-occupied initial states, we will con-
sider a phase diagram of these states depending on the
temperature.

ρ x µ–( ) ρ µ x–( ),=

ρ+ x µ–( ) ρ+ µ x–( ),–=

ρsf x µ–( ) ρsf µ x–( ).–=

Ẽ Ẽp– U A2 λ2– β2+( ),–=

Ẽp ωρ ω( )n ω µ–( ) ωd

∞–

∞

∫–=
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3.1. The Polaron State at A = 1

When finding solution (39)–(41), we neglected the
diagrams of higher orders (n ≥ 4) with intersecting
phonon GFs for irreducible self-energy parts. There-
fore, the parameters in this solution have to be selected
so as to provide that the diagrams would not lead to any
significant variation of the spectral densities. In this
section, we will calculate the irreducible self-energy
parts of the second and fourth orders at T = 0 for the
normal polaron state (U = 0, β = 0) and present an
expression for the spectral density in this state for the
completely occupied state (A = 1).

The corresponding self-energy parts have the fol-
lowing form:

, (44)

(45)

where

(46)

The total electron GF for A = 1 has the following
spectral representation (δ  +0):

(47)

Substituting expressions (46) and (47) into (44) and
(45), we obtain

(48)

(49)

The spectral density of the polaron state for A = 1
with the self-energy part approximated as Σ(ω) = Σ(2)

(48) is presented by a solid curve in Fig. 1. The chemi-
cal potential is everywhere above the spectral density of
the polaron state. Clearly distinguished in Fig. 1 are
seven peaks in the ρ(ω) structure, which correspond to
multiphonon processes involved in polaron-state for-
mation. Note that these peaks are not equidistant, their
shifts being determined by the real part of (48). For the
low-energy peaks, the distance between the neighbor-
ing peaks gradually decreases, approaching the phonon
energy Ω = 30 meV.

For the spectral density depicted by the solid curve

in Fig. 1, expression (43) yields  = 0. Thus, the

Σ 2( ) ω( ) i "Ω( )2ξ2 dω1

2π
---------D ω ω1–( )G ω1( )

∞–

∞

∫=

Σ 4( ) ω( ) "Ω( )4ξ4 dω1

2π
---------

dω2

2π
---------D ω ω1–( )∫∫–=

× G ω1( )G ω2( )D ω1 ω2–( )G ω ω1– ω2+( ),

D ω( ) 1
ω Ω– iγ+
-------------------------

1
ω Ω iγ–+
-------------------------.–=

G ω( ) ρ x( )dx
ω x– iδ–
-----------------------.

∞–

∞

∫=

Σ 2( ) ω( ) "Ω( )2ξ2 ρ x( )dx
ω x Ω+– iγ–
----------------------------------,

∞–

∞

∫=

Σ 4( ) ω( ) Σ 2( ) ω( )( )2 ρ x( )dx
ω x 2Ω+– 2iγ–
-----------------------------------------.

∞–

∞

∫=

Ẽp
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Fröhlich polaron with A = 1 exhibits no polaron energy
shift, which is a quite natural result from the standpoint
of the quantum-mechanical approach (see section 1). It

should be emphasized that  = 0 at A = 1 for any val-
ues of the model parameters.

The dashed curve in Fig. 1 presents the spectral den-
sity of the polaron state calculated for the self-energy
part in the form Σ(ω) = Σ(2) + Σ(4). A comparison of the
dashed and solid curves in Fig. 1 shows that the two
spectral densities exhibit a qualitatively similar struc-
ture of peaks. The peaks are somewhat shifted in energy
due to the real part of Σ(4) (49). At the same time, an
allowance for the contribution due to the lowest-order
diagram with intersecting phonon GFs leads (for the
model parameters employed) to the appearance of a
negative spectral density within a narrow energy region
(Fig. 1). As the electron–phonon coupling parameter ξ
increases, this region of the nonphysical density of
states grows and new negative-density regions appear
between the peaks where ImΣ(2) is small. This was
accompanied by a significantly deteriorated conver-
gence of the iterative procedure. Nevertheless, for the
spectral density presented by the dashed curve in Fig. 1,

Eq. (43) also yields  = 0.

In the HTSC model [11] based on the concept of
interstitial bipolaron formation, a very important model
parameter is the polaron shift. We have determined for
A = 1 that the average energy of the Fröhlich polaron
state (which is precisely the polaron shift for the energy

scale adopted) is  = 0 to within the fourth-order term
ξ4 with respect to the electron–phonon coupling param-
eter. At the same time, an expression of the second
order Ep = ξ2"Ω (see also Eq. (11) in [11]) for the
polaron shift yields Ep = 1/3 eV in the case of the
Fröhlich polaron in the site with A = 1. We believe that
the latter polaron energy value is incorrect, which is
related to an incorrect representation of the Fock space
for polarons employed in the Lang–Firsov theory.

In the case of an unoccupied site state (A = 0), we
can use representation (47) upon substitution ––iδ 
+iδ, which leads to the substitution Ω – iγ  –Ω + iγ
in expressions (48) and (49). As a result, ρ(ω) for the
polaron state at A = 0 corresponds to the density of states
for the A = 1 mirror reflected relative to the axis ω = 0.

If the initial electron wavefunction at the site is such
that the electron occurs in a state with definite spin pro-
jection (e.g., σ = 1/2) and the second site state (–σ) is
empty, the occupancy distribution in the two spin sub-
spaces will be retained for a solution to Eq. (1) as well
(because the spin operator commutates with Hamilto-
nian (1)). Therefore, ρσσ represents the spectral density
depicted in Fig. 1 and ρ–σ, –σ(ω – µ) = ρσσ(µ – ω). In this
case, the polaron shift is obviously equal to zero.

Ẽp

Ẽp

Ẽp
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3.2. Half-Filled Polaron States
at Finite Temperatures

Figure 2 shows the spectral densities of polaron
states ρ(ω) for A = 1/2 and T = 20 K calculated for two
different sets of model parameters. As seen, both curves
exhibit a central peak at ω = 0 with the spectral density
peaks corresponding to multiphonon processes sym-
metrically arranged on the left and right wings. These
peaks, the number of which increases with the elec-
tron–phonon coupling parameter (Fig. 2), are not equi-
distant, their shift being determined by the real part of
the self-energy component (29). The distance between
the neighboring peaks decreases with increasing peak
number, eventually approaching the phonon energy.

In the case of half-filling (A = 1/2), the chemical
potential occurs at the central peak (µ= 0) and the
decrease in the electron energy related to the polaron

effect (43) is  = 38.84 meV/spin for the solid curve

and  = 58.15 meV/spin for the dashed curve (Fig. 2).
At the same time, a decrease in the electron energy cal-
culated by the formula Ep = "Ωξ2A is 1/6 eV/spin for
the parameters corresponding to the solid curve in Fig. 2
and Ep = 273.8 meV/spin for the parameters corre-
sponding to the solid curve in Fig. 2. These values are

significantly overstated as compared to the  values
indicated above.

3.3. Boson–Polaron Mixed Site State

In the Hartree–Fock approximation (λ = 0), the
polaron sate at A = 1/2 (Fig. 2) corresponds to a solution
of Eq. (12) in the space of single-particle electron

Ẽp

Ẽp

Ẽp
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ω, eV

ρ, eV–1 spin–1
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Fig. 1. The spectral density of polaron states in the case of
the complete initial site occupancy (A = 1) calculated for T = 0
using the self-energy part approximated as Σ(ω) = Σ(2)

(solid curve) and Σ(ω) = Σ(2) + Σ(4) (dashed curve). The
model parameters: ξ = 10/3; Ω = 30 meV; γ = 0.1Ω .
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672 AGAFONOV, MANYKIN
states, that is, in the case when β = 0. Actually, this sit-
uation takes place for the completely occupied site
states. In the case of half-filling (A = 1/2) and a temper-
ature below a certain critical level (T < Tβ), a boson–
polaron mixed state possesses a lower energy as com-
pared to that of the polaron state. The boson–polaron
mixed state is defined by the single-particle density

–0.24
0

ω, eV

ρ, eV–1 spin–1

–0.12 0 0.12 0.24

4

8

12

16

20

Fig. 2. The spectral density of polaron states in the case of
the half-filled initial site states (A = 1/2) for T = 20 K. The solid
curve was calculated using the same model parameters as in
Fig. 1; the dashed curve was calculated for ξ = 3.7; Ω =
40 meV; γ = 0.05Ω. The maximum density of states at ω = 0 is
35.54 eV–1 spin–1 (solid curve) and 45.47 eV–1 spin–1 (dashed
curve).
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ρ(ω) and the spectral density of the intrasite boson state
ρ+(ω). Figure 3 shows the spectral densities of the
boson–polaron mixed states at two temperatures. It was
found that the chemical potential of this system for A =
1/2 is independent of the temperature (µ = 0).

The solid curves in Figs. 3a and 3b correspond to the
mixed state at T = 20 K. A decrease in the electron

energy is –  = 73.2 meV. The boson–polaron state for-
mation leads to splitting of the central peak (see Fig. 2)
into two components spaced by ∆ = 92.2 meV (Fig. 3a).
The chemical potential µ occurs in the middle of the
gap, that is, in the region where the spectral density
ρ(ω) is almost zero. There are four symmetrically
arranged (but not equidistant) peaks on both left and
right sides of µ.

The spectral density of the on-site boson state ρ+(ω)
is an odd function of ω (Fig. 3b). For the half-filled site
state, µ = 0 and, consequently, the β value determined
by formula (38) is finite (β = 0.1606). The dashed
curves in Figs 3a and 3b correspond to this state at T =
120 K (i.e., near Tβ). Here, the decrease in the electron

energy is –  = 65.0 meV and β = 0.0967.

Note that, in the case of completely occupied site
states (A = 1), the chemical potential falls on the right
of the energy region of the spectral density ρ(ω) distri-
bution. Since

this always corresponds to β = 0 and, hence, the system
occurs in the normal polaron state (Fig. 1).

Ẽ

Ẽ

ρ+ ω( ) ωd

∞–

∞

∫ 0,=
–0.24
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Fig. 3. The spectral density of boson–polaron mixed site states calculated for T = 20 K (solid cures) and 120 K (dashed curves)
in the case of half-filling (A = 1/2): (a) single-particle states; (b) boson states. The model parameters: ξ = 3.7; Ω = 40 meV;
γ = 0.05Ω .
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Figure 4 illustrates the temperature-induced transi-
tion from a boson–polaron mixed state to the polaron
state for two sets of parameters. The character of this
transition is determined by a temperature dependence
of the spectral weight of the boson site state β(T ). As is
seen in Fig. 4, there is a certain critical temperature Tβ
at which β = 0, which corresponds to the transition
from a boson–polaron to a polaron state. As T  Tβ,
the energy gap vanishes (∆  0), the two spectral
density peaks in the vicinity of the chemical potential µ
merge together, and the amplitudes of ρ+(ω) peaks tend
to zero (see the dashed cures in Figs. 3a and 3b). For

30
0

T, K

β

60 90 120

0.05

0.10

0.15

Fig. 4. Temperature dependence β(T ) of the spectral weight
of a two-particle site state for A = 1/2. The solid curve was
calculated using the same model parameters as in Fig. 3; the
dashed curve was calculated for ξ = 5.774; Ω = 30 meV; γ =
0.033Ω .
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T ≥ Tβ, the solution corresponds to only a normal
polaron state (Fig. 2).

It was established that the temperature dependence
of β in the vicinity of Tβ is described by the function β =

β0 . For a set of parameters corresponding to
the solid curve in Fig. 4, β0 = 0.4336 and Tβ = 129.85 K.
For the dashed curve in Fig. 4, β0 = 0.2354 and Tβ =
124.63 K. Note that the electron–phonon coupling
parameter for the solid curve is smaller, and the phonon
energy is greater, than the analogous values for the
dashed curve, while the critical temperatures in the two
cases are close.

3.4. Spin-Fluctuating Polaron State

Now let us consider the polaron states with an
allowance for the spin fluctuations in the site with half-
filling (A = 1/2). Assuming β = 0, the spin-fluctuating
polaron state appears at temperatures below a certain
critical level (T < Tλ) and is characterized by the spin
fluctuation parameter λ ≤ 1/2. The spin-fluctuating
polaron state is determined by the single-particle den-
sity of states ρ(ω) and the spectral density of spin fluc-
tuations ρsf (ω). Figure 5 shows the spectral density of
the spin-fluctuating polaron state at two temperatures.
It was found that the chemical potential of this state is
independent of the temperature (µ = 0).

Using Eqs. (39)–(41) with β = 0, it is possible to
show that the presence of spin fluctuations leads to dou-
bling of the spectral features in ρ(ω). As a result, the
central peak of the polaron sate (see Fig. 2) splits into
two peaks separated by the energy gap ∆. The solid
curves in Figs 5a and 5b represent the spin-fluctuating
polaron state at T = 20 K, which corresponds to the spin

1 T /Tβ–
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Fig. 5. The spectral density of spin-fluctuating polaron states calculated at T = 20 K (solid curves) and 87 K (dashed curves) in the
case of the half-occupied initial site states (A = 1/2): (a) single-particle states; (b) spin fluctuations. The model parameters are the same
as in Fig. 3, and U = 0.4 eV.
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674 AGAFONOV, MANYKIN
fluctuation parameter λ = 0.4552 and the gap width ∆ =
16.32 meV, with the chemical potential “occurring” at
the middle of the gap. The dashed curves in Fig. 5a and
5b illustrate the case of T = 87 K, with λ = 0.1585 and
∆ = 10.88 meV.

Note that, with the initial condition A = 1/2, the
function ρ(ω) is even (Fig. 5a), while ρsf (ω) is odd
(Fig. 5b) relative to µ = 0, which results in that the λ is
finite for T < Tλ. For the initial condition A = 1, the
chemical potential falls on the right of the energy
region of the spectral density ρ(ω) distribution. In this
case, we obtain only a trivial solution of Eq. (37), λ = 0,
whereby the system with A = 1 is always in the normal
polaron state (Fig. 1).

As the temperature increases, the spin fluctuations
decay (Fig. 5) and the λ value decreases. Figure 6
shows the temperature dependence of the spin fluctua-
tion parameter λ(T) calculated for a spin-fluctuating
polaron state with A = 1/2 using two sets of parameters.
This dependence determines the transition from the
spin-fluctuating to the normal polaron state observed
with increasing temperature. As seen, there is a certain
critical temperature Tλ at which λ turns zero, which
corresponds to the transition. As T  Tλ, the energy
gap vanishes (∆  0), the two spectral density peaks
ρ(ω) in the vicinity of the chemical potential µ merge
together, and the amplitudes of ρsf (ω) peaks tend to zero
(see the dashed cures in Figs. 5a and 5b). For T ≥ Tβ, there
is a single solution corresponding to a normal polaron
state (Fig. 2).

3.5. Spin-Fluctuating Boson–Polaron Mixed State

The appearance of the energy gap in the single-par-
ticle spectral density ρ(ω) is related both to the forma-
tion of an intrasite boson state (Fig. 3) and to the spin

20
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T, K
40 60 80 100

0.25

0.50

Fig. 6. Temperature dependence λ(T ) of the spectral weight
of a spin-fluctuating polaron state for A = 1/2. The solid
curve was calculated using the same model parameters as in
Fig. 5; the dashed curve was calculated for ξ = 5.774; Ω =
30 meV; γ = 0.033Ω; U = 0.5 eV.
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fluctuations leading to the aforementioned doubling of
the spectral density features (Fig. 5). It was established
that there may exist a temperature interval in which the
parameter λ for the spin-fluctuating polaron state is
finite and the spectral weight β of the boson–polaron
mixed state is nonzero. It was also found that, in the
temperature range where the spin fluctuation parameter
λ is nonzero, the energy of a spin-fluctuating boson–
polaron mixed state is lower than that of the simple
spin-fluctuating polaron state. This is related to a strong
mutual influence of the two factors, λ and β, in the case
of the former state formation. The spin-fluctuating
boson–polaron mixed state is characterized by the den-
sity of single-particle states ρ(ω), the spectral density
of spin fluctuations ρsf (ω), and the spectral density of
the two-particle site state ρ+(ω).

Figure 7 shows the spectral densities for the spin-
fluctuating boson–polaron mixed states at A = 1/2 cal-
culated for T = 20 and 70 K. At T = 20 K, the electronic

energy of the spin-fluctuating polaron state is  =
−110.52 meV, while the spin-fluctuating boson–polaron

mixed state is characterized by  = –141.83 meV. As the
temperature increases, the energy of the former state

grows (to  = –140.4 meV at T = 70 K).

As is seen in Fig. 7a, the spectrum of single-particle
states exhibits an energy gap at µ = 0. This energy gap
decreases from ∆ = 45.34 meV at T = 20 K to 18.13 eV
at T = 70 K. The spectral density of spin fluctuations
depicted in Fig. 7b shows that the spin fluctuation
parameter at T = 20 K is significantly lower for the spin-
fluctuating boson–polaron mixed state (λ = 0.2904)
than for the spin-fluctuating polaron state (λ = 0.4552).
As the temperature grows, the spin fluctuations
decrease. For T = 70 K, the spin fluctuation parameter
for the spin-fluctuating boson–polaron mixed state (λ =
0.2741) is still somewhat lower than that (λ = 0.2881)
for the spin-fluctuating polaron state (Fig. 6). Figure 7c
shows the spectral density of the two-particle site state.
At T = 20 K, the spectral weight of the boson state (β =
0.0526) is lower than the value (β = 0.1606) for the
boson–polaron mixed state (Fig. 3). The β value of the
spin-fluctuating boson– polaron mixed state monotoni-
cally decreases when the temperature increases up to a
certain level (β = 0.01527 at T = 70 K); the boson–polaron
state at this temperature has β = 0.1582 (Fig. 4).

For the model parameters employed, the critical
temperature Tβ for the transition from boson–polaron to
polaron state (Fig. 4) is greater than the Tλ value corre-
sponding to the transition from a spin-fluctuating to
normal polaron state (Fig. 6). This interplay leads to the
unusual phase diagram depicted in Fig. 8. In the spin-
fluctuating boson–polaron mixed state, the mutual
influence of the spin fluctuations and the channel of the
boson site state formation leads to a decrease both in λ
(as compared to the value in the spin-fluctuating
polaron state) and in β (as compared to the value in
boson–polaron mixed state). At a certain temperature,

Ẽ

Ẽ

Ẽ
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Fig. 7. The spectral density of the spin-fluctuating boson–
polaron mixed state at T = 20 K (solid curves) and T = 70 K
(dashed curves): (a) single-particle states; (b) spin fluctua-
tions; (c) two-particle site state. The model parameters are
the same as in Fig. 5.
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the electron correlations completely suppress the boson
formation channel (T ≈ 73 and 77 K for the solid and
dashed curves 1 in Fig. 8, respectively). At this point,
β = 0 and the system features a transition from the spin-
fluctuating boson–polaron mixed state to the spin- fluc-
tuating polaron state. As the temperature grows further,
the spin fluctuations and, accordingly, the λ value
decrease (Fig. 8). Even before λ turns zero, the spin
fluctuations become too weak to suppress the boson
formation channel and β becomes nonzero. Thus, there
is a certain temperature (T ≈ 87 and 83 K for the solid
and dashed curves 1 in Fig. 8, respectively) at which the
system features a transition from the spin-fluctuating
polaron state to the spin-fluctuating boson–polaron
state. The critical temperature at which λ  0 (see the
solid and dashed curves 2 in Fig. 8) for the spin-fluctu-
ating boson–polaron state is somewhat lower than the
value of Tλ for the transition from a spin-fluctuating
polaron to normal polaron state (Fig. 6). At this temper-
ature, we observe a transition from the spin-fluctuating
boson–polaron state to boson–polaron state (Fig. 8).
Above this temperature level, β(T ) keeps increasing to
approach the value for the boson–polaron state (Fig. 4).
Finally, at T  Tβ, the system is characterized by
β  0 and ∆  0 and we observe the transition
from boson–polaron to polaron state.

In concluding, it should be noted that a supercon-
ducting state in multisite polaron models used to
describe the phase diagrams of high-Tc materials
appears provided that extended charged bosons are
formed in the system. The formation of intrasite boson–
polaron mixed states might well be a precursor of such
a superconducting state. Taking into consideration an
ensemble to such site states with an allowance for the
particle hopping between the sites, the single-particle
transitions over an ensemble of the sites would lead to
the appearance of extended fermion states (equivalent to
the insulator–metal transition upon reaching a certain
threshold doping level), while the two-particle transitions
of initially localized charged bosons between the site
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Fig. 8. A phase diagram of the order parameter versus tem-
perature involving (1) β(T ) and (2) λ(T) curves. The model
parameters for the solid and dashed curves are the same as
in Figs. 5 and 6, respectively.
YSICS      Vol. 92      No. 4      2001



676 AGAFONOV, MANYKIN
states may result in the formation of extended charged
boson states [24].

In this approach to the HTSC description, it is pos-
sible to take into account a hybridization between the
initial localized single-particle site states and the band
states in the parent insulator, which leads already in the
second order of the hybridization matrix element to the
particle hopping over the ensemble of sites [25]. This
behavior is related to the following facts. First, in con-
trast to the tunneling (or jumping) mechanism, there is
no exponential smallness related to overlap of the
wavefunctions of small polarons in the neighboring
sites. Second, the data of angle-resolved X-ray photo-
electron spectroscopy indicate that the symmetry of the
wavefunctions of extended single-particle states near
the Fermi surface in doped high-Tc materials is close to
the symmetry of the wavefunctions of the initial
cuprates near the dielectric gap [26]. The hybridization
between the initial localized site states and the band
states in the parent insulator provides for a simple
explanation of the wavefunction symmetry of the
extended charged states in narrow polaron bands.
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Abstract—A spin-polaron approach is proposed for describing the evolution of the Fermi surface (FS) and the
electronic structure of cuprates with various doping levels on the basis of the spin-fermion model. The com-
plexity of the internal structure of a spin polaron is taken into account by introducing the superposition of spin-
polaron states with various radii, while doping is effectively described by frustration in the spin Hamiltonian.
The calculations of the polaron spectrum, the spectral weight of bare charge carriers, and the Fermi surface
demonstrate radical changes in the electronic structure upon an increase of the doping level. The results
obtained make it possible to use a unified approach for describing the experimental data on photoemission such
as the isotropic bottom of the band and the residual Fermi surface of undoped compounds, the large Fermi sur-
face and the extended saddle-type singularity for optimally doped compounds, as well as the pseudogap in the
case of intermediate doping. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problems associated with the topology and evo-
lution of the Fermi surface (FS) in p-doped high-tem-
perature superconductor are being intensely studied at
present. The results of recent experiments on photoe-
mission with angular resolution (ARPES) indicate the
difference between the spectra of optimally doped
cuprates and the spectra of insulator cuprates. The
experimental data obtained for undoped compounds
[1, 2] indicate the isotropic bottom of the band near
point (π/2, π/2) in the momentum space, the large dif-
ference in the energies corresponding to points N =
(π/2, π/2) and X = (π, 0), and the so-called remanent FS
(the surface at which an abrupt decrease in the one-par-
ticle spectral weight takes place) [3]. In optimally
doped cuprates [4–10], a plane zone region, a large FS
with the center at point M = (π, π) and the so-called
shadow FS emerging as a result of antiferromagnetic
spin correlations are observed [11]. The plane zone
region has the shape of a saddle point extended in the
(π/2, 0)–(π, 0) direction. The shadow FS resembles the
main FS, but is displaced by the antiferromagnetic vec-
tor Q = (π, π). Besides, a high-energy pseudogap is
observed for intermediate doping near point X with an
energy of the order of 0.1 to 0.2 eV [2, 12–14]. In the
rigid zone model, the isotropic minimum in the spec-
trum of undoped compounds must be transformed into
small hole pockets near point N upon an increase in the
doping level. However, the experimental data indicate
the absence of such pockets [14], and the FS apparently
has the shape of an arc for the optimal and intermediate
doping levels [15]. Such an obvious contradiction can
1063-7761/01/9204- $21.00 © 20677
be resolved only by analyzing the evolution of the spec-
tral density under doping.

Many publications are devoted to an analysis of the
hole spectrum of a two-dimensional (2D) doped anti-
ferromagnet on the basis of various theoretical models
such as the generalized t–J model, the effective three-
band model, the Kondo-lattice model, and the Hubbard
model. Most of these works are based on exact diago-
nalization of small clusters [16, 17], the application of
the quantum-mechanical Monte Carlo method [18] and
the self-consistent Born approximation (SCBA) [19–22],
the “string” ansatz for the hole wave function [23], or
the diagrammatic methods using the semiphenomeno-
logical spin susceptibility [24]. The analysis is usually
carried out on the basis of either the two-sublattice
(Néel-type) state of the spin subsystem [19, 20, 23, 25]
or proceeding from the spherically symmetric state of
the spin liquid [26, 27]. This leads to qualitatively sim-
ilar results: a hole moves mainly over one of the sublat-
tices; i.e., effective jumps to the second nearest neigh-
bors play the dominating role in the spectrum forma-
tion, and the spectrum has a minimum at point N for a
low doping level.

On the other hand, only a few theoretical works are
devoted to the FS evolution depending on the doping
level and the frustration of the spin subsystem, i.e., the
antiferromagnetic exchange interaction between near-
est neighbors (J1) and the next nearest neighbors (J2).
An analysis of the frustrated generalized t–J model [26]
and the frustrated effective three-band model [27]
reveals a strong frustration dependence of the spin–
polaron spectrum. It should be noted that these investi-
001 MAIK “Nauka/Interperiodica”
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gations [26, 27] were carried out only for a local
polaron (the disadvantages of this approximation will
be considered below), and the calculations made do not
lead to the spectral weight of a bare hole and describe
only certain hypothetical FSs. In a recent work by
Sibata et al. [28], the frustrated t–t '–t ''–J1–J2 model was
investigated in the self-consistent Born approximation,
in which holes were treated as zero-spin fermions and
spins as normal bosons [20]. The SCBA formalism in
[28] corresponds to the two-sublattice approximation,
which imposes the requirement of the spectrum sym-
metry relative to the reduced magnetic Brillouin zone
(which means that points Γ and M are equivalent).
However, such a symmetry of the hole spectrum is not
observed in the ARPES data.

As regards the calculation of quasi-particle bands on
the basis of the exact diagonalization of clusters con-
taining from 16 to 20 sites [28–31], it should be noted
that in the case of doping, it is difficult to reconstruct
the FS and to study the effect of small variations in the
doping level in view of a limited number of k points.
For this reason, the lowest energy of the quasiparticle
energy in some of such calculations corresponds to
point X (and not to point M) [31] or the insulator under
investigation does not display the presence of a rema-
nent FS [29]. The limited size of clusters apparently
does not permit the description of spin-polaron states
with a radius exceeding two lattice constants.

In the present paper, we will prove that many
ARPES results obtained in a wide range of doping can
be explained using the spin-polaron approach taking
into account the complex structure of the spin polaron
(the superposition of spin-polaron states with various
radii [32]) and the frustration in the spin subsystem. We
will consider this problem using the effective three-
band (spin-fermion) model [33, 34], which explicitly
takes into account direct oxygen–oxygen jumps in the
CuO2 plane of cuprates.

A distinguishing feature of our analysis is that we
consider a spin polaron as a complex quasiparticle: a
coherent superposition of a local polaron (bare hole
forming a Zang–Reiss singlet around a Cu2+ ion) and a
large-radius antiferromagnetic polaron. The latter is a
local polaron coupled with a spin wave having a quasi-
momentum q close to Q. It turns out that the introduc-
tion of such a basis of spin polaron operators describes
the splitting of the lower band of a local polaron [32]
(among other things, this makes it possible to repro-
duce the abrupt decrease in the intensity of ARPES
peaks during the motion in k from point N to point M).

We will use the projection method for Green’s func-
tions of basis operators, which is a sort of the mean-
field approximation. The correctness of this method can
be verified by comparing the results obtained for T = 0
[35] with the spectral function Ah(k, ω) of a bare hole,
which was obtained using the SCBA for a local spin
polaron [36]. It can be seen that the quasiparticle peak
obtained in the SCBA and its intensity are correctly
JOURNAL OF EXPERIMENTAL 
reproduced by the lower band of the complex polaron
in the projection method approximation. As regards the
upper bands corresponding to excited states, they effec-
tively describe the incoherent component of Ah(k, ω).

Let us consider the approach adopted by us for
describing the spin subsystem. The typical behavior of
the magnetic 2D subsystem corresponds to undoped
CuO2 planes in La2CuO4. Such a system is correctly
described by the Heisenberg antiferromagnetic 2D
model (S = 1/2) with the interaction between nearest
spins in the square lattice. The antiferromagnetic
exchange interaction between the first nearest neigh-
bors (the spins of Cu2+ ions in a certain CuO2 plane) is
very strong (of the order of 0.13 eV ≈ 1500 K for
La2CuO4 [37]) and is much larger than the interplanar
exchange. The interplanar exchange is mainly respon-
sible for the long-range order observed in the insulator
phase of CuO2 planes (the characteristic Néel tempera-
ture for La2CuO4 is TN ≈ 300 K). However, even in the
case of a comparatively low level of the system doping
with holes, the long-range antiferromagnetic order van-
ishes in the entire temperature range. It is usually
assumed that doping leads to the antiferromagnetic
interaction between the second nearest neighbors in the
Cu2+ subsystem in an individual plane, i.e., to frustra-
tion [38]. The cluster calculations indicate that the frus-
tration parameter has a large value (J2/J1 ~ 0.1) even for
undoped La2CuO4 [39].

In the subsequent analysis, we will assume that it is
frustration that modifies the spectrum of a spin polaron;
speaking about the evolution of the spectrum, we will
presume a certain qualitative equivalence between dop-
ing and frustration in the spin subsystem.

It should be noted that doping is not completely
equivalent to frustration. For example, the doped t–J
model and the frustrated J1–J2 model lead to different
results for the dynamic spin–spin structural factor for
the Raman scattering spectrum [40]. Nevertheless, it is
well known that both doping and frustration lead to a
decrease in the magnetic correlation length. Moreover,
the numerical calculations on a finite net indicate the
equivalence of these models as regards the static spin–
spin correlation functions [41]. It will be shown below
that the elementary excitation spectrum in our approach
is determined just by static spin–spin correlation func-
tions.

Our interpretation of the spin subsystem in the
spherically symmetric theory is essential. The motion
of a local polaron is often studied using the two-sublat-
tice approximation for the spin substrate, which may
lead to the spectrum periodicity relative to the magnetic
Brillouin zone [42–44]. However, ARPES experiments
indicate the absence of such a periodicity: the spectrum
turns out to be periodic relative to the entire Brillouin
zone of the CuO2 plane. In the spherically symmetric
approximation, it is the latter symmetry which is pre-
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001
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served in the Green’s functions of spin excitations as
well as in the spectrum of charge carriers.

2. HAMILTONIAN AND COMPUTATIONAL 
METHOD

The main properties Of the motion of a hole in a CuO

 

2

 

plane are described by the following model [33, 34]:

(1)

(2)

(3)

where

(4)

 

J

 

1

 

, 

 

J

 

2

 

 > 0 are the antiferromagnetic interactions
between the first nearest (

 

g

 

 = 

 

±

 

g

 

x

 

, 

 

±

 

g

 

y

 

) and second near-
est neighbors (

 

d

 

 = 

 

±gx, ±gy) on the square lattice. Direct
oxygen–oxygen jumps are described by the term

(5)

where ax, y = gx, y/2. Here and below, recurrent indices
indicate summation; {…, …} and […, …] indicate the
anticommutator and commutator, respectively; gx, y are
the basis vectors of the square lattice of copper (|g | ≡
1); R + a are four vectors corresponding to O lattice

sites near a Cu ion at site R;  is the operator of cre-
ation of a hole at an oxygen site (spin indices are omit-

ted to simplify the notation);  are the Pauli matrices;
and S is the operator of a spin localized at a copper site.
We do not introduce the relative phases of the p and d
orbitals since they can be reconstructed by redefining
the creation and annihilation operators through the
multiplication by the phase factor exp(iQ · R). At the
end of computations, we will reconstruct these phases
through the substitution k  k' = k – Q. The ampli-
tude τ of oxygen hole jumps couples the motion of a
hole with the spin subsystem of copper. Parameters J1
and J2 can be expressed in terms of the frustration
parameter p:

(6)

Ĥ τ̂ Ĵ ĥ,+ +=

τ̂ 4τ pR
+ 1
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1
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a

∑ , S̃R SR
α σ̂α ,≡=

pR pR'
+,{ } δR R',

1
4
--- δR R' g+,

g

∑+ ,=

ĥ h cR ax+
+ cR ay+([

R

∑–=

+ cR ay– cR gx ay+ + cR gx ay–++ + ) H.c.+ ] ,

cR a+
+

σ̂α

J1 1 p–( )J , J2 pJ ,= =

0 p 1, J 0.>≤ ≤

The frustration parameter p can be treated as an ana-
logue of the number of holes x per copper atom. The
estimate based on the one-band Hubbard model for
U/t ~ 5 gives the value of p ~ 0.1 for x = 0.1. It should
be noted that the spin subsystem of the CuO2 plane for
La2 – xSrxCuO4 loses the long-range order for x > 0.02.

The effective spin-fermion Hamiltonian (1) adopted
by us can be obtained as a result of the canonical trans-
formation from the Emery model [45] for Ud @ t @ ε,
ε = εp – εd > 0, where Ud is the Coulomb one-site repul-
sion at copper sites. As regards the choice of the set of
the energy parameters ε, t, and Ud in the Emery model,
they can be obtained either from band calculations or
from cluster calculations. We give below two character-
istic sets: ε = εp – εd = 3.6 eV, t = 1.3 eV, Ud = 10.5 eV
[46] and ε = 2.0 eV, t = 1.0 eV, Ud = 8 eV [47, 48]. Con-
sidering that τ ~ t2/ε and J ~ 4τ(t/ε)2, we choose the val-
ues of the parameters τ ≈ 0.4 eV, J = 0.4τ, and h = 0.4τ.
In the subsequent analysis, we put τ equal to unity. The
copper subsystem is considered in the state of a spin
liquid, which possesses the spherical symmetry in the
spin space. In particular, the spin–spin correlation func-
tions satisfy the relation

Analyzing a spin polaron by the projection method,
we introduce a finite set of basis operators for each cell

R:  (with spin σ), where i is the number of the
operator, i ≤ n. The set includes the creation operator
for a hole (with spin σ) as well as other operators
describing a hole against the background of spin exci-
tations. The specific form of the operators in the set is
dictated by the physical meaning of the problem and
will be explained below. In order to calculate the spec-
tral function for a bare hole, we take into account the

sum of the contributions from two operators,  and

, describing the two possible positions of the oxy-
gen hole in a unit cell.

As usual, we introduce the retarded two-time
Green’s functions Gij(t, k) for the Fourier components
Ak, i of operators AR, i:

(7)

The equation of motion for the Fourier components of
Green’s functions has the form

(8)

Cr SR
α SR r+

α〈 〉 3 SR
x y z,( )SR r+
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α〈 〉 0.= = =
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+
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+ 0( )〈 〉≡

=  iθ t( ) Ak i, t( ) Ak j,
+ 0( ),{ }〈 〉 ,–

Ak j,
1

N
-------- eik R⋅ AR j,

R

∑ , i j, 1 … n., ,= =

ω Ak i, Ak j,
+〈 〉 ω Ki j, Bk i, Ak j,

+〈 〉 ω,+=

Ki j, k( ) Ak i, Ak j,
+,{ }〈 〉 , Bk i, Ak i, H,[ ] .= =
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In the projection method, the new operators Bk, i are
approximated by the projections onto the space {Ak, i}
of the basis operators:

(9)

After substituting the approximate expressions (9) for
operators Bk, i into the equation of motion (8), the sys-

tem of equations for Green’s functions 
becomes closed and can be presented in matrix form:

(10)

where E is the unit matrix.
The quasiparticle spectrum ε(k) is determined by

the poles of the Green’s function G and can be found
from the equation

3. BASIS OPERATORS AND APPROXIMATIONS

For the first three basis operators, we chose the oper-
ators describing the states of a local spin polaron:

(11)

Their superposition defines the Zang–Reiss polaron
and the state of a bare hole. In particular, we have

(12)

The elementary excitation spectrum in the local
polaron approximation was investigated by us earlier
[27]. It was found, in particular, that frustration in the
spin subsystem and oxygen–oxygen jumps can explain
the emergence of a protracted saddle point in the spec-
trum. However, a drawback of the local polaron
approximation is that the elementary excitation spec-
trum depends on the spin–spin correlation functions
which are valid for the short-range order only (even at
zero temperature T = 0). Thus, the local polaron
approximation does not take into account the effect of
the long-range spin order on ε(k).

Bk i, Li l, k( )Ak l, , L k( )
l

∑≈ D k( )K 1– ,=

Dij k( ) Bk i, Akj
+,{ }〈 〉 .=

Ak i, Ak j,
+〈 〉 ω

ωE DK 1––( )G K ,=

det Kε k( ) D– 0.=

AR 1,
1
2
--- cR ax+ cR ax–+( ),=

AR 2,
1
2
--- cR ay+ cR ay–+( ),=

AR 3, S̃R pR.=

ck x,
2

1 ikx( )exp+
------------------------------Ak 1, ,=

ck y,
2

1 iky( )exp+
------------------------------Ak 2, ,=

ck x y( ),
1

N
-------- eik R⋅ cR ax y( )+ .

R

∑=
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Schrieffer [42] pointed out the importance of the
coherence factor associated with the existence of a
long-range order in an analysis of a 2D periodic Kondo
lattice in the framework of the two- sublattice spin sub-
system. The simplest Hamiltonian in this model has the
form

(13)

where the intrasite interaction described by constant I is
an analogue of Hamiltonian  (2) in our model.

Schrieffer [42] used the mean-field approximation
for the Néel state at T = 0 and interpreted spins as clas-
sical vectors:

(14)

In this approximation, the Hamiltonian of the
Kondo interaction (13) is a potential energy with a dou-
bled period. As a result, such an interaction leads to the
hybridization of the states of a bare hole with momenta
k and k + Q. In order to take such a hybridization into
account, we must carry out the standard u–v transfor-
mation from the very outset. In the Néel state, the
amplitude SQ of a spin wave with q = Q (Q wave) has
a macroscopically large value and possesses the prop-
erties similar to those of the amplitude of a Bose parti-
cle with zero momentum in a superfluid Bose gas. For
this reason, this amplitude can be regarded as a c num-
ber. In this case, hybridization corresponds to the pair-
ing of a Q wave with a local electronic state. However,
this does not lead to a new state and only indicates the
mixing of states with momenta k and k + Q.

A distinguishing feature of this research is the anal-
ysis of the one-particle motion over the spin substrate
which is in a spherically symmetric state. On this sub-
strate, the mean value 〈SQ〉  = 0, and the above approxi-
mation is inapplicable. At T = 0 and for zero frustration,
the only quantity which can be regarded as macro-
scopic is 〈SQ · SQ〉 . In this case, the pairing of a local
state with SQ corresponds to a new delocalized spin-
polaron state, viz., the local polaron (11) “dressed” in
the antiferromagnetic spin wave SQ. In the model under
investigation, at T = 0, such states were introduced in
[35] and have the form

(15)

(16)

It was shown in [35] that it is important to take into
account the quantum nature of the spin Q wave since
the transitions between the states of local and delocal-
ized polarons lead to the splitting of lower bands (in the

HK  = tgcR g+
+ cR

R g,
∑ I cR

+ S̃RcR

R

∑ 1
2
---J SR g+

α SR
α ,

R g,
∑+ +

τ̂

SR
α δα zS0eiQ R⋅ , S0 const.= =

Q̃RAR i, , i 1 2 3,, ,=

Q̃R
1

N
--------e iQ R⋅– S̃Q, S̃Q SQ

α σ̂α ,= =

SQ
1

N
-------- e

iQ R1⋅
SR1

.
R1

∑=
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local polaron approximation) and considerably modify
their properties. It was noted in the Introduction that it
is just the results obtained with the help of the complex
spin polaron approximation (in which the set of basis
vectors contains, along with the operators of a local
spin polaron, the polarons dressed in the Q wave also)
that reproduce the SCBA quasiparticle band at T = 0
[36].

In the present work, we consider this model for T,
p ≠ 0. In this case, the spin subsystem loses the long-
range order, and the average value N–1〈SQ · SQ〉  is equal
to zero. For this reason, we must introduce new opera-
tors in order to preserve the results in the complex
polaron approximation at T = 0 and to take into account
the finite spin correlation length ξ. A natural generali-
zation of the set of operators (15) for T, p ≠ 0 is the addi-
tion of the local polaron states Ar, 1, Ar, 2, and Ar, 3
dressed in the set of spin waves with momenta q close
to the antiferromagnetic vector Q (the spin–spin struc-
tural factor for such waves has a sharp peak even for T,
p ≠ 0). Such operators can be written in the form

(17)

(18)

Here, W is the square surrounding point Q and equiva-
lent points (i.e., four squares Ω = κ0 × κ0 at the corners
of the first Brillouin zone; see Fig. 1a below). The
choice of the parameter κ0 is dictated by the spin corre-
lation length ξ, which is primarily determined by the
frustration parameter p.

Let us substantiate the choice of κ0(p) which will be
adopted by us below. For this purpose, we present each
operator in (17), say, AR, 4, in the form

(19)

where

(20)

The absolute value of quantity α(R – R') depends
only on the modulus of difference l = R – R', decreases
upon an increase in l, and describes the degree of pair-

AR 4, Q̃R
Ω( )

AR 1, , AR 5, Q̃R
Ω( )

AR 2, ,= =

AR 6, Q̃R
Ω( )

AR 3, ,=

Q̃R
Ω( )

N 1– eiq r⋅ S̃R r+ ,
r q, W∈
∑=

W q π qx y,–± κ0<,{ } .=

AR 4, α R R'–( )
R'

∑=

× iQ R R'–( )⋅[ ] S̃R'AR 1, ,exp

α l( )
k2d

2π( )2
-------------e ik l⋅– .

κ0–

κ0

∫
κ0–

κ0

∫=
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ing of a local polaron in cell R with the spin in cell R + l.
The dependence  = |α(l)/α(0)| has the form

(21)

The value of l0 satisfying the condition

(22)

can be treated qualitatively as the radius of pairing of a
local polaron with spin correlations since  ~ 1 for
l < l0 and  ! 1 for l @ l0. On the other hand, the
radius of paring of a spin polaron must be of the order
of the correlation length, l0 ~ ξ. This qualitative esti-
mate leads to the choice of the range of Ω = π2/ξ2, κ0 =
π/ξ. Such a choice of Ω gives a correct description of
the system in two limiting cases. Indeed, if ξ tends to
infinity (the spin system possesses a long-range order,
T = 0), the polaron pairing radius also tends to infinity,

κ0 tends to zero, and  (18) is transformed into 
(16). As a result, we obtain a continuous description of
the model from finite temperatures to zero. Clearly, in
the opposite limit of high temperatures, when the spin
correlations between neighboring sites are small, the
system must be described by a local spin polaron. It can
be seen from (22) that if ξ (~l0) tends to unity, the value
of κ0 is close to π. In this case, α(R – R') = δR, R', and
operators AR, i, i = 4, 5, 6, are local spin polarons close
in their properties to AR, i}, i = 1, 2, 3 (for example, AR, 6
(κ0 = π) is a linear combination of AR, 1, AR, 2, and AR, 3).

The spin correlation length will be determined
below from the spectrum of spin waves, which was cal-
culated for the frustrated Heisenberg model in the
spherically symmetric approximation [49]. If the spin
system is close to the Néel phase, quantity ξ can be
determined from the expansion of the spectrum in the
vicinity of the antiferromagnetic vector Q [54] (it will
be denoted by ξQ). Then the criterion κ0 = π/ξQ is used.
The explicit form of the spectrum and ξQ are given in
Appendix A.

The choice of parameter κ0 for small values of ξQ
must be different. The value of ξQ strongly depends on
the frustration parameter p. If p ≥ 0.15, ξQ ≤ 2–3 (κ0 =
π/ξQ ≤ 0.35π), and the actual value of ξ for such p may
differ significantly from ξQ. Indeed, in the presence of
frustration, the spin–spin correlation function CR =

 has the following dependence on R =

nxgx + nygy:

(23)

where m1(R) @ m2(R) for p ! 1 (Néel-type phase) and
m1(R) ! m2(R) for p close to unity (the stripe phase
with a gapless spectrum at points Q1 = (±π, 0), (0, ±π)).

α̃ l( )

α̃ l( ) lxκ0( )sin lyκ0( )sin
lxlyΩ

-------------------------------------------- .=

l0κ0 π=

α̃ l( )
α̃ l( )

Q̃R
Ω( )

Q̃R

SR0
S⋅ R0 R+〈 〉

CR m1 R( ) 1–( )
nx ny+

=

+ m2 R( ) 1–( )
nx 1–( )

ny+[ ] ,
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Frustration parameter p, doping level x, spin correlation length ξQ, and truncation parameter κ0. The values of ε1(π, 0), ε2(π, 0),

and εF are given in the τ units; (k) is the spectral weight of the first and second bands

p κ0 ξQ x (π, 0) (π, 0) (π/2, π/2) ε1(π, 0) ε2(π, 0) εF

0.05 0.08π 12 0.00 0.23 0.02 0.23 –4.06 – –

0.10 0.17π 6 0.02 0.25 0.00 0.26 –4.09 – –4.38

0.13 0.30π 3.4 0.06 0.13 0.11 0.27 –4.21 –4.04 –4.34

0.15 0.35π <3 0.11 0.06 0.18 0.23 –4.38 –4.03 –4.40

0.2 0.35π <2 0.14 0.08 0.16 0.24 –4.35 –4.08 –4.40

0.25 0.35π <1 0.19 0.10 0.13 0.25 –4.28 –4.10 –4.36

nh σ,
1 2,( )

nh σ,
1( ) nh σ,

2( ) nh σ,
1( )
The choice of m1(R) an m2(R) is dictated by the gap in
the spin spectrum at points Q and Q1. For intermediate
values of frustration 0.15 ≤ p ≤ 0.55, these gaps in the
spin spectrum are comparable, and it is meaningless to
determine ξ from the expansion of the spectrum in the
vicinity of points Q or Q1 in this interval of p. On the
other hand, the structure of the local polaron is taken
into account by operators AR, 1, AR, 2, and AR, 3, while
operators AR, 4, AR, 5, and AR, 6 are required for describ-
ing polaron states with a large or intermediate radius
l0 = 2 to 3. This means that we must fix κ0 ≈ 0.35π for
p ≥ 0.15 (κ0 = π/l0, l0 = 2 to 3) and choose κ0 = π/ξQ for
p < 0.15. The value of ξQ calculated in this way, as well
as the relations between parameter κ0 and the value of
frustration p, are given in the table.

In order to determine the excitation spectrum from
operators (11) and (17), we calculate the matrix ele-
ments of matrices D and K. Such calculations are usu-
ally cumbersome since they involve determining com-
plex commutators of operators Ak, i and Bk, i with the
Hamiltonian. As a rule, such commutators cannot be
expressed using only binodal Green’s functions and,
hence, certain approximations are required. The
expressions for the matrix elements are simplified con-
siderably in the one-hole approximation. We will use
this approximation since the problem is considered in
the limit of low doping (x < 0.2). In this case, the matrix
elements can be expressed in terms of the binodal and
multinodal correlators of spin operators (to be more
precise, in terms of binodal, trinodal, tetranodal and
pentanodal correlation functions). Taking the spherical
symmetry into consideration, we can reduce trinodal to
binodal and pentanodal to tetranodal correlators. Tetra-
nodal correlators can be reduced to the form

where we assume that all nodes are different. Such cor-
relators are calculated using the Takahashi approxima-
tion [50]

VR1R2R3R4
SR1

S⋅ R2
( ) SR3

S⋅ R4
( )〈 〉 ,=

VR1R2R3R4
CR12

CR34

1
3
---CR13

CR24

1
3
---CR14

CR23
.+ +=
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As a result, the matrix elements are expressed in terms
of the static spin–spin structural factor Cq (the Fourier
component CR). The explicit form of matrices K and D
is given in Appendix B. The typical components of
these matrices have the form

(24)

Expressions similar to ug and  contain one or
two sums over q ∈  W . Each sum over q is proportional
to the ratio Ω/π2, which is a small parameter in our

approximation: as mentioned above, Ω/π2 = /π2 ≤
0.1 (see the table). This smallness justifies the disregard
of some terms proportional to Ω2.

4. RESULTS AND DISCUSSION

After solving system (10) for the set of operators
AR, i (11) and (17), we can write the resultant Green’s
functions in the form

(25)

Relation (12) shows that residues  and 

define the value of , i.e., the number (spectral
weight) of bare oxygen holes with momentum k and
spin σ in the quasiparticle state |k, σ, l 〉  of the quasipar-
ticle band εl(k):

(26)

ug N 1– eiq g⋅ Cq,
q W∈
∑=

Wg1
J( ) N 2– e

iq2 g⋅
Cq1 q2– Cq2

.
q1 q2 W∈,
∑=

Wg1
J( )

κ0
2

Gij ω k,( )
z i j,( )

l k( )
ω εl k( )–
---------------------, i j,

l 1=

6

∑ 1 … 6., ,= =

z 1 1,( )
l( ) k( ) z 2 2,( )

l( ) k( )

nh σ,
l( ) k( )

nh σ,
l( ) k( )

2
1 kxcos+
-----------------------z 1 1,( )

l( ) k( )=

+
2

1 kycos+
-----------------------z 2 2,( )

l( ) k( ).
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X

Γ X

M(a)

–4.12

–3.85

–4.12

–4.40

–4.26

–4.12

–4.12

–3.85

–3.30

X

Γ X

M(c)

0.026

0.08
0.13

0.21

0.23

0.210.13

0.08

X

Γ X

M(b)

–3.63–4.07
–4.1

–4.21
–4.28

–4.38

–4.07–3.27

Ω

X

Γ X

M(d)

0.08

0.20

0.17

0.22
0.25

0.25

0.22 0.028

Fig. 1. (a, b) The hole spectrum ε1(k) and (c, d) the spectral weight  of a bare hole for the lower band presented by the curves

ε1(k) = const (in the units of τ = 1) and  = const for the values of frustration parameter p = 0.05 (a, c) and p = 0.10 (b, d).

Dark circles in Fig. b are situated on the constant-energy contours corresponding to the FS calculated for the hole doping level x

from the table. The diameters of the circles are proportional to the spectral weight  on the Fermi surface. The results

are presented for the first quadrant of the Brillouin zone. The symmetry points are denoted by Γ = (0, 0), X = {(π, 0), (0, π)}, and M =
(π, π).

nh σ,
1( ) k( )

nh σ,
1( ) k( )

nh σ,
1( ) k( )
It should be recalled that the weight of a bare hole

satisfies the sum rule  = 2, and the maxi-
mum number of holes per unit cell is equal to four in
spite of the presence of six bands. This means that the
Luttinger theorem is violated in this model.

The spin–polaron spectrum is calculated for T =
0.2J. It should be noted that the spectrum displays a
weak temperature dependence up to T ≈ 0.4J. Since we
are interested in a relatively weak doping mode (x ≤
0.2), the results will be presented for two lowest bands
with l = 1, 2. In the case of strong doping, our approxi-
mation may prove to be insufficient since it is based on
the approximation of a single hole and disregards the
correlation interaction between polarons.

Figures 1–3 show the ε1(k) spectrum and the spec-

tral weight  of a bare hole in the lower band with

the help of the level lines ε1(k) = const and  =
const for the frustration parameter values p = 0.05, 0.1,
0.13, 0.15, 0.2, and 0.25.

nh σ,
l( ) k( )

l∑

nh σ,
1( ) k( )

nh σ,
1( ) k( )
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It was mentioned above that in the analysis of the
evolution of the spectrum for various doping levels, we
presume a qualitative agreement between the doping
level x and the frustration parameter p. This depen-
dence is presented in the table. Naturally, this relation
is purely phenomenological and may require certain
scaling. Nevertheless, the main conclusions will remain
in force if we make the realistic assumption that the low
and optimal doping levels correspond to p ≈ 0 to 0.1 and
0.1 to 0.25, respectively. It should be recalled that frus-
tration takes place even for undoped 2D antiferromag-
nets if we consider the actual structure of interactions
in the CuO2 plane [39].

In Fig. 1b, dark circles are situated on the constant-
energy contours corresponding to the FS calculated for
the hole doping x from the table. The diameters of the

circles are proportional to the spectral weight 
on the FS.

Figures 4–6 show the spectra of two lower hole
bands in the electron representation along the symme-
try lines for the chosen values of p and for τ = 0.4 eV.

nh σ,
1( ) k( )
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X
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0.08
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0.16
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X

Γ X

M(b)

–4.40

–4.45–4.45

–4.40
–4.09

–3.36

–4.24
–4.31

Fig. 2. The same as in Fig. 1 for p = 0.13 (a, c) and p = 0.15 (b, d).
Zero energy corresponds to the Fermi level εF . The
regions in the bands with a large spectral weight

 of a bare particle are shown by solid curves,

while the regions with a small value of  < 0.05
are presented by dashed curves.

Let us first consider the case of a dielectric or the
mode with a very low doping level presented in Figs. 1
and 4. It can be seen from Figs. 1a and 1b that the min-
imum of ε1(k) is close to point N and the spectrum is
almost isotropic at the bottom of the band. The spec-
trum along the Γ–M and Γ–X–M directions reproduces
the ARPES results (see, for example, Fig. 4a and Fig. 3
in [2]). The width of the lower hole (upper electron)
band W1 ≈ (3.3–4.4)τ = 0.44 eV also corresponds to the
ARPES results: W1 ≈ 0.2 eV for Bi2Sr2CaCuO6 + 0.5 [2],
W1 ≈ 0.3 eV for Ca2CuO2Cl2 [3], and W1 ≈ 0.35 eV for
La2CuO4 [1]. A certain indeterminacy in these experi-
mental data is due to a decrease in the spectral weight
in the vicinity of point Γ.

The most important result obtained for a very low
doping level is the strong decrease in the spectral
weight of the lower band upon the displacement in k
from point N to point M (see Figs. 1c, 1d). It can be seen
that the k line describing such a strong decrease in
spectral weight is close to that describing the remanent
FS in the ARPES experiments [1, 3]. The spin polaron

nh σ,
1 2,( ) k( )

nh σ,
1 2,( ) k( )
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spectra in Figs. 1a, 1b, and 4 display a symmetry close
to the symmetry of the magnetic Brillouin zone, but the

spectral weight  has the symmetry of the true
Brillouin zone (see Figs. 1c, 1d).

Figures 3b and 6b corresponding to the optimal dop-
ing p = 0.25, x = 0.19 display a large FS with the center
at point (π, π). It has the shape satisfying the Luttinger
theorem, but with filling 1 + x instead of x. The spectral
weight distribution presented in Fig. 3d shows that such
a large FS appears due to the small spectral weight of a
bare hole for the k states of the spin polaron lying under

the FS. The mean value of  is close to 0.17 ! 1.
It should be noted that if only the local polaron approx-
imation is used (e.g., by confining the set of basis oper-
ators to operators (11)), only one effective band 

is formed instead of the two lower bands . The

spectral weight  of bare particles in this band is

close to the sum of spectral weights  + .

As a result,  for k lying under the FS is approx-

imately 1.5 times as large as . Consequently, the
area under the FS in the local polaron approximation
would be much smaller than in Fig. 3b, which would
lead to the loss of qualitative agreement with the exper-
imental pattern.

nh σ,
1( ) k( )

nh σ,
1( ) k( )

ε̃1 k( )

ε1 2, k( )

ñh σ,
1( ) k( )

nh σ,
1( ) k( ) nh σ,

2( ) k( )

nh σ,
1( ) k( )

nh σ,
1( ) k( )
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Fig. 3. The same as in Fig. 1 for p = 0.20 (a, c) and p = 0.25 (b, d).
Let us now compare the two lower bands in the case
of an insulator and for the optimal doping along the N–Γ
line. In the former case (see Fig. 4a), only the upper elec-
tron band is important since the second band has a small
spectral weight. In the optimally doped case (Fig. 6b), the
second band, whose spectral weight is mainly concen-
trated in the region adjoining point Γ, is also important.
In this case, the matching with the ARPES results is
observed (see Fig. 3 in [2]) if we disregard the spectral
regions ε1(k) and ε2(k) (dashed curves in Fig. 6b),
where the spectral weight is small, and present the sec-
ond band in the region close to point Γ as a continuation
of the first band. Such an interpretation is correct if we
take into account the band broadening. In our approxi-
mation, such a broadening must be described by the
additional band splitting, which can be obtained by
extending the set of operators (17) for delocalized
polaron states. In the case of optimal doping (p = 0.25),
the effective band width is W = ε2, max – εF ≈ 0.55 eV;
see Fig. 6b (W ≈ 0.38 eV for a nearly optimal doping of
Bi2Sr2CaCuO6 + δ [2, 51, 52]). A comparison with the
dielectric state shows a certain narrowing of the band
upon a decrease in the doping level, as follows from the
results of the ARPES experiments [2].

An important feature of the spectrum is the presence
of the second band ε2(k) with a large spectral weight in
the N–M region (see Fig. 6b). This branch resembles
the main branch along N–Γ if we displace it by vector
ERIMENTAL AND THEORETICAL PHY
Q in the k space. The band ε2(k) is displaced relative to
the principal lower branch along N–M by an energy of
the order of 0.2 eV. This branch is also present in the
case of intermediate doping (see Fig. 4a). A similar
branch (but without an energy shift) was recently
observed for Bi2212 [10] for an intermediate doping
and was explained as a shadow band, which was dis-
covered for the first time in [9]. The presence of such a
band for optimally doped compounds may be important
for describing plasma oscillations with a frequency of
the order of ωp = 1 eV if we include the corresponding
interband transitions. It should be recalled that such
transitions in the conventional band theory correspond
to too high energy (about 1.2 eV) and, hence, lead only
to a constant contribution to the static permittivity [53].

Our results also reconstruct the presence of a pro-
tracted saddle point elongated in the X–Γ direction and
close to the FS (see Fig. 3b). Such a saddle point is
present in the photoemission data for optimally doped
compounds. The problem of saddle point and its rela-
tion to the theory of superconductivity was considered
by many authors (see, for example, [6]). A certain plane
band in the vicinity of the FS was also observed in a
wide region of the k space near point X. It should be
noted that for such a plane band close to point (2π/3, 0),
our approach leads to a large spectral weight of bare

charge carriers:  ≈ 0.22 (see Fig. 3d).nh σ,
1( ) k( )
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Fig. 4. The spectrum of two lower hole bands in the electron representation along the symmetry lines of the Brillouin zone for the
values of frustration parameter p = 0.05 (a) and p = 0.10 (b). The zero energy corresponds to the Fermi level. The value of τ is

assumed to be equal to 0.4 eV. The band regions with a large spectral weight  are shown by solid curves, while the regions

with a small weight (  < 0.05) are presented by dashed curves.

nh σ,
1 2,( ) k( )
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Fig. 5. The same as in Fig. 4 for p = 0.13 (a) and p = 0.15 (b).
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The case of intermediate doping is presented in
Figs. 2a, 2c, 5a (p = 0.13, x = 0.06) and 2b, 2d, 4a (p =
0.15, x = 0.11). As the doping level increases from x =
0.02 to 0.11 (see Figs. 1d, 2c, and 1c consecutively), the
behavior of the spectral weight changes abruptly: the

remanent FS disappears, the finite filling with 

appears near point M, the curvature of the lines  =
const changes sign in a wide region near the X–X line,
and the spectral weight along the line X–(π, π/2)
decreases as a result. In the region between X and
(π, π/2), the spectral weight is displaced into the second

band and the value of  increases. Since the FS
intersects with the X–M line in the doping interval x =

0.06 to 0.11, the spectral weight  (which is pro-

nh σ,
1( ) k( )

nh σ,
1( ) k( )

nh σ,
2( ) k( )

nh σ,
1( ) k( )
JOURNAL OF EXPERIMENTAL 
portional to the diameter of circles) varies strongly
along the FS.

Such a strong decrease of the spectral weight during
the motion in the k plane along the FS from the central
region near N = (π/2, π/2) to points close to X = (π, 0)
can be interpreted as the opening of a high-energy
pseudogap δ in the vicinity of point (π, 0).

Pseudogap δ is often defined as δ = ε(π, 0) – εF [3].
In our case of intermediate doping (p = 0.15, x = 0.11),

the value of  is small, and the lower hole band
must be weakly manifested at point X in the ARPES
experiments. For this reason, ε2(π, 0) (see the table)
should be regarded as the value that must be taken for
ε2(π, 0) in the expression for gap δ. In this case, the value
of the pseudogap for τ = 0.4 eV is equal to 0.19 eV in

nh σ,
1( ) π 0,( )
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Fig. 6. The same as in Fig. 4 for p = 0.20 (a) and p = 0.25 (b).
complete accord with the ARPES results (0.1 to 0.2 eV
[2, 12–14]). The dependence of the spectral weight

 of the lower hole band on the doping level,
which is presented in the table, is nonmonotonic. First,

the value of  decreases strongly in the inter-
mediate doping mode, and then increases significantly
for the optimal doping. Such a behavior completely
corresponds to the ARPES data indicating a decrease in
the pseudogap width upon an increase in the doping
level from 0.1 to 0.2.

An analysis of the evolution of the spectrum corre-
sponding to the lower band ε1(k) under the intermediate
doping conditions proves that a protracted saddle point
is formed near (2π/3, 0) precisely in this narrow doping
interval. As the doping level increases above x = 0.11,
this region of the plane band is preserved.

For any doping level, the spectral weight of
a particle for values of k close to point N is large and

has approximately the same value of  = 0.22 to
0.25 (see the table). It is precisely in this region of the
k space that the ARPES experiments demonstrate the
presence of a FS with a clearly manifested quasiparticle
peak. Accordingly, the second band in this region of the

k space has low weights  < 0.03 (small incoher-
ent part of the quasiparticle peak) for any doping level.

5. CONCLUSION
We presented the spin-polaron approach to the

description of the evolution of the FS and the electronic
structure of doped compounds. Our approach is based
on the spin-fermion model of the CuO2 plane and takes
doping into account through the introduction of frustra-
tion into the spin Hamiltonian. Strong changes in the
electronic structure are associated with a simple and
natural mechanism: doling leads to frustration in the
spin subsystem and to a change in the spin–spin corre-

nh σ,
1( ) π 0,( )

nh σ,
1( ) π 0,( )

nh σ,
1( ) k( )

nh σ,
1( ) k( )

nh σ,
2( ) k( )
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lation functions, which in turn considerably modifies
the spectrum. In other words, doping changes the state
of the magnetic substrate, which determines to a con-
siderable extent the shape of the spectrum. It should be
recalled that this mechanism does not take into account
the direct interaction between polarons, which is
undoubtedly significant in the case of doping beyond
the optimal level.

Our theory explains the isotropic bottom of the
band, the large energy difference for points N and M,
and the remanent FS [3] for undoped compounds. In
the case of optimal doping, the theory reproduces the
region of the plane band (protracted saddle point)
between (π/2, 0) and (π, 0), the large FS [4–8], and the
features of a shadow FS [9, 10]. In compounds with an
intermediate doping, there exists a region in which con-
siderable changes in the spectrum and in the spectral
weight take place on the FS near X. Such a result can be
interpreted as the emergence of a pseudogap in the
excitation spectrum [12–14].

For a very low doping level, our results reproduce
the FS in the form of small hole pockets and the rema-
nent FS (see, for example, Fig. 1b). The spectral weight
of the regions on the FS close to point M is quite small.
This probably explains why such regions were not
detected in the ARPES experiments. In compounds
with an intermediate doping, we discovered a mode of
the transition to a large FS, but with a very small spec-
tral weight in the vicinity of point X = (π, 0). Accord-
ingly, we interpret the arcs of the FS [15] as the parts of
the FS corresponding to a large spectral weight. It was
found that the regions of the FS with a large spectral
weight in the vicinity of N are very stable relative to
doping in spite of considerable changes in other regions
of the Brillouin zone.

Finally, let us consider the following generalization
of the presented approximation, which can in principle
provide a more detailed description of the incoherent
component of the spectral function Ah(k, ω) for a hole.
SICS      Vol. 92      No. 4      2001



688 BARABANOV et al.
We introduce several nonoverlapping regions W1, W2,
W3, …, Wi , … instead of one region W (18) (see also
[32]) and construct the operators of a delocalized
polaron by pairing the states of the local polaron with
spin waves from various regions. Such an extension of
the set of the basis operators must lead to an additional
splitting of lower bands in the projection method and
reproduce Ah(k, ω) in the form of a set of W func-
tions [32]:

This will probably lead to a more satisfactory descrip-
tion of the shadow FS and to a stronger change in the
spectral density on the FS in the case of intermediate
doping; i.e., it might give a better description of the
pseudogap.
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APPENDIX A

In the framework of the spherically symmetric
approximation [49], we present the explicit form of
Green’s functions Gs(k, ω) and the spin wave spectrum
ω(k)for the triply degenerate mode of spin waves:

(A.1)

(A.2)

(A.3)

Ah k ω,( ) Ai k( )δ ω εi k( )–( ).
i

∑≈

Gs k ω,( ) Sk
α S k–

α〈 〉 F k( )

ω2 ω2 k( )–
-------------------------,= =

α x y z,, ,=

F k( ) 2 J1zgCg 1 γg k( )–( )[–=

+ J2zdCd 1 γd k( )–( ) ] ,

ω2 k( )
2
3
--- 1 γg–( )





=

× J1J2Kgd I1
2 zg zg 1–( )Cgα1

3
4
---zg Kgg+ + 

 +

+ 1 γd–( ) J1J2Kgd J2
2 zd zd 1–( )Cdα3

3
4
---zd Kdd+ + 

 +

– 1 γg
2–( )J1

2zg
2Ggα1 1 γd

2–( )J2
2zd

2Cdα3–
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where

zg and zd are the numbers of the first and second nearest
neighbors on the square lattice, αr are vertex correc-
tions, and 

The values of a1, Cg, Cd, C2g, Cgd, and C2d are calculated
self-consistently for each p and T [49].

Equations (A.1)–(A.3) make it possible to express
the spin–spin structural factor C(k):

(A.4)

The correlation length ξQ (relative to the Néel
phase) is defined with the help of the power expansion
of Green’s function (A.1) in q = Q – k at point ω = 0
[54]:

(A.5)

APPENDIX B

We present the explicit form of the matrix elements
of matrices K and D. The following notation is adopted:

Kij , , , ,  are symmetric matrices,

The nonzero matrix elements are given below.

– 1 γg–( )γd J1J2ZgZdCgα1 1 γd–( )γgJ1J2ZgZdCdα3–



,

Kgd α rCr, Kgg

r g d+=

∑ α rCr,
r g1 g2+=

g2 g2≠

∑= =

Kdd α rCr,
r d1 d2+=

d1 d2–≠

∑=

αg α1, αd α3, α r α2 for r d ,>= = =

α1 1–( )/ α2 1–( ) Rα 0.863,= =

α3 1 p–( )α2 pα1,–=

J1 1 p–( )J , J2 pJ ,= =

Kgd 8α1Cg 8α2G f , Kgg+ 4α2C2g 8α3Cd,+= =

Kdd 8α2C2g 4α2C2d.+=

C k( ) A
1 ωk/T( )exp+

ωk/T( )exp 1–
------------------------------------, A

F k( )
2ωk
-----------.= =

G q 0,( )
G Q 0,( )

1 ξQ
2 q2+

---------------------.=

Dij k( ) Ak i, τ̂ Ĵ ĥ+ +( ),[ ] Ak j,
+,{ }〈 〉=

=  τ τ̃ ij J1 J̃ ij
1( )

J2 J̃ ij
2( )

hh̃ij,–+ +

τ̃ ij J̃ ij
1( )

J̃ ij
2( )

h̃ij

γg
1
2
--- kxcos kycos+( ), γd kx ky,coscos= =

γ2g
1
2
--- 2kxcos 2kycos+( ).=
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K Matrix

 Matrix

K11
1
2
--- 1 kxcos+( ),=

K16
1
2
---u 1 kxcos+( ),=

K22
1
2
--- 1 kycos+( ),=

K26
1
2
---u 1 kycos+( ),=

K33
3
4
--- Cgγg,+=

K34
1
2
--- u ug kxcos+( ),=

K35
1
2
--- u ug kycos+( ),=

K36 u γgCg v g v–( ),+–=

K44
1
2
--- u ug kxcos+( ),=

K46 uv
1
2
---w

1
2
--- kx –v gu v g– wg+( ),cos+ +–=

K55
1
2
--- u ug kycos+( ),=

K56 uv
1
2
---w

1
2
--- ky –v gu vug– wg+( ),cos+ +–=

K66
3
4
---u 2uv w– γg ugCg u2 1

3
---ug

2–++ +=

– 4Cg
1
3
---ugv uv g+ 

  2vv gCg+

+ 2v g
2Cg

2 Cgv
2 1

2
3
---Cg+ 

 +
2
3
---γgWg

τ( ).–

t̃

τ11
1
2
--- 1 kxcos+( )2,=

τ12
1
2
--- γg

1
2
---γd,+ +=

τ13
3
2
--- 2Cgγg+ 

  1 kxcos+( ),=

τ14 1 kxcos+( ) u ug kxcos+( ),=

τ15 u 1 kxcos+( ) ug kycos γd+( ),+=
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τ16 1 kxcos+( ) u 1 γg+–( ) 2Cgγg v g v–( )+[ ] ,=

τ22
1
2
--- 1 kycos+( )2,=

τ23 1 kycos+( ) 3
2
--- 2Cgγg+ 

  ,=

τ24 u 1 kycos+( ) ug kx γd+cos( ),+=

τ25 1 kycos+( ) u ug kycos+( ),=

τ26 1 kycos+( ) u –1 γg+( ) 2Cgγg v g v–( )+[ ] ,=

τ33
9
8
--- 4Cgγg– Cg

1
2
---C2gγ2g Cdγd,+ + +–=

τ34
3
4
---u

1
2
---vCg– ug kxcos––=

+ kxcos
2 1

2
---– 

  v 2gCg
1
2
---u2g+ 

  γg ug 2v gCg+(+

– 2v gCg kx 2vCg–cos ) γd
1
2
---ud v dCg+ 

  ,+

τ35
3
4
---u

1
2
---vCg– ug kycos––=

+ kycos
2 1

2
---– 

  v 2gCg
1
2
---u2g+ 

  γg ug 2v gCg+(+

– 2v gCg ky 2vCg–cos ) γd
1
2
---ud v dCg+ 

  ,+

τ36
9
2
---u

1
4
---ug γg 3u 4vCg 3ug 4v gCg–+ +( )+–=

+ γ2g Cgu
1
2
---v 2gC2g

2
3
---v 2gCgC2g–

1
2
---vC2g–+



–
2
3
---vCgC2g

1
3
---ugC2g– 2v gCg

2– u2gCg+ 


+ γd 2Cgu v dCd vCd–
4
3
---CgCd v d v+( )+ +



–
2
3
---ugCd 4v gCg

2– 2udCg+ 
 ,

τ44
3
4
---u v gug– 2uv– w

1
2
---wg

1( )+ +=

+ kx ug 2vug– 2v gu– 2wg+( )cos

+ kxcos
2 1

2
---– 

  1
2
---u2g 2v gug– wg

2( )+ 
  ,
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τ45
1
2
---u 2γg –vug v gu– wg

1
2
---ug+ + 

 +=

– 2uv w γd
1
2
---ud 2ugv g– wg

3( )+ 
  ,+ +

τ46
3
2
---uv

3
2
---u

3
2
---w–

1
2
--- uCg Cgv

2 Cgvv g+ +
+ +=

+ Cgv g
2 8

3
---ugv gCg–

2
3
---uug

8
3
---uvCg–

8
3
---vv gCg

2+ + 


–
1
3
---W1

τ( ) γg –v gu vug– wg 2ugCg 2v 2Cg+ + +
+

+
4
3
---v 2Cg

2 4vv gCg 4v g
2Cg

2 2u2 2
3
---ug

2–+ + +

–
8
3
---ugvCg 8uv gCg–

4
3
---Wg

τ( )– 


+ kx wg
3
2
---ug uv g ugv+ + +– 

  2 kxcos
2

1–( )+cos

× 1
4
---w2g

1
4
---uv 2–

1
4
---vu2g–

1
2
---Cgu2g

1
2
---Cgvv 2g+ +



+ Cg
2v gv 2g

1
3
---Cgu2gv Cguv 2g–

1
6
---ugu2g–

1
2
---Cgvv g+–

+
1
2
---Cgv g

2 1
3
---Cg

2vv g
4
3
---Cgugv g–

1
2
---uug

1
3
---W2

τ( )–+ + 


+ 2γd
1
4
---wd

1
4
---uv d–

1
4
---vud–

1
2
---Cgud

1
2
---Cgvv d+ +



+ Cg
2v gv d

1
3
---Cgudv Cguv d

1
6
---ugud–

1
2
---Cgvv g+––

+
1
2
---Cgv g

2 1
3
---Cg

2vv g
4
3
---Cgugv g–

1
2
---uug

1
3
---W3

τ( )–+ + 
 ,

τ55
3
4
---u v gug– 2uv– w

1
2
---wg

1( )+ +=

+ ky ug 2vu2g– 2v gu– 2wg+( )cos

+ kycos
2 1

2
---– 

  1
2
---u2g 2v gug– wg

2( )+ 
  ,

τ56
3
2
---uv

3
2
---u

3
4
---w–

1
2
--- uCg Cgv

2 Cgvv g+ +
+ +=

+ Cgv g
2 8

3
---ugv gCg–

2
3
---uug

8
3
---uvCg–

8
3
---vv gCg

2+ + 

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–
1
3
---W1

τ( ) γg v gu vug– wg 2ugCg 2v 2Cg+ + +–
+

+
4
3
---v 2Cg

2 4vv gCg 4v g
2Cg

2 2u2 2
3
---ug

2–+ + +

–
8
3
---ugvCg 8uv gCg–

4
3
---Wg

τ( )– 


+ ky –wg
3
2
---ug uv g ugv+ + + 

  2 kycos
2

1–( )+cos

× 1
4
---w2g

1
4
---uv 2g

1
4
---vu2g

1
2
---Cgu2g

1
2
---Cgvv g+ +––



+ Cg
2
v gv 2g

1
3
---Cgu2gv Cguv 2g

1
6
---ugu2g–

1
2
---Cgvv g+––

+
1
2
---Cgv g

2 1
3
---Cg

2vv g
4
3
---Cgugv g–

1
2
---uug

1
3
---W2

τ( )–+ + 


+ 2γd
1
4
---wd

1
4
---uv d–

1
4
---vud–

1
2
---Cgud

1
2
---Cgvv d+ +



+ Cg
2v gv d

1
3
---Cgudv– Cguv d–

1
6
---ugud–

1
2
---Cgvv g+

+
1
2
---Cgv g

2 1
3
---Cg

2vv g
4
3
---Cgugv g–

1
2
---uug

1
3
---W3

τ( )–+ + 
 ,

τ66 9vu
9
8
---u–

9
2
---w

1
4
---wg

1( )– u Cg
2
3
---ug

8
3
---Cgv–+ 

 + +–=

+ v 2Cg v g
2Cg vv g Cg

8
3
---Cg

2+ 
  v g

1
2
---ug

8
3
---Cgug– 

 + + +

–
2
3
---W1

τ( ) γg uv g 6
16
3
------Cg+– 

  v gu 6 16Cg+–( )+
+

– 8vv gCg v 2 4Cg
8
3
---Cg

2+ 
 – 4u2–

4
3
---ug

2 8v g
2Cg

2–+

– 4ugCg 6wg
8
3
---Wg

τ( )+ + 
 γ2g

1
2
---u2gC2g+

+ vv 2g C2g
4
3
---CgC2g+ 

  v 2 1
2
---C2g

4
3
---CgC2g

1
3
---C2g

2+ + 
 +

+ v 2g
2 C2g

2 8
3
---CgC2g+ 

 

+ v –
2
3
---u2gC2g

2
3
---ugC2g 2u2gCg– 2uCg–+ 

 

– v 2g 2uCg
2
3
---ugC2g

2
3
---u2gCg 2uCg+ + + 

  1
2
---u2+
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 Matrix

–
1
6
---M2g

2 14
3
------v g

2Cg
2– vv g 4Cg

2 4
3
---CgC2g– 

 +

+
8
3
---v gv 2g Cg

2 CgC2g–( )

+ v g
2
3
---ugC2g

2
3
---u2gCg 2uCg+ + 

 

+ 2w2gCg
1
3
---wg

2( )C2g
1
3
---W2g

τ( )–– 2γd
1
2
---udGd+

+ vv d Cd
4
3
---CgCd+ 

  v 2 1
2
---Cd

4
3
---CgCd

1
3
---Cd

2+ + 
 +

+ v d
2 Cd

2 8
3
---CgCd+ 

 

+ v –
2
3
---udCd

2
3
---ugCd 2udCg– 2uCg–+ 

 

– v d 2uCd
2
3
---ugCd

2
3
---udCg 2uCg+ + + 

  1
2
---u2 1

6
---ud

2–+

–
14
3
------v g

2Cg
2 vv g 4Cg

2 4
3
---CgCd– 

  8
3
---v gv d Cg

2 CgCd–( )+ +

+ v g
2
3
---ugCd

2
3
---udCg 2uCg+ + 

 

+ 2wdCg
1
3
---wg

3( )Cd–
1
3
---Wd

τ( )– .

J̃
1( )

J33 –4Cg Cgγg,+=

J34 = 2Cg v g v–( ) kxCg
1
2
---v 2v g–

1
2
---v 2g v d+ + 

  ,cos+

J35 = 2Cg v g v–( ) kyCg
1
2
---v 2v g–

1
2
---v 2g v d+ + 

  ,cos+

J36 2Cg v v g–( ) 2ug γg
1
2
---Cg v g v–( )

+ +=

– 2Cg
2v g

1
2
---ug–

2
3
---ugCg–

4
3
---ugCd–

+
4
3
---v dCgCd

2
3
---v 2gCgC2g

2
3
---u2gCg

4
3
---udCd+ + + 

 ,

J44 = 2Gg v g v–( ) Cg kx
1
2
---v 2v g–

1
2
---v 2g v d+ + 

  ,cos+
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J46
4
3
---Cg wg w–( ) 4

3
---Cgu v v g–( ) v g

2 Cg
4
3
---Cg

2+ 
 + +=

+ 2v 2Cg
4
3
---Wg4

J( ) vv gCg –3
4
3
---Cg– 

 + +

+
1
2
--- kx

8
3
---ug

2 2
3
---u2–

2
3
---uu2g

4
3
---uud

8
3
---uv gCg+––

cos

–
8
3
---ugv gCg

2
3
---uv gCg

2
3
---u2gv gCg

4
3
---udv gCg+ + +

–
2
3
---ugvCg

2
3
---ugv 2gCg–

4
3
---ugv dCd– 4v g

2Cg –
1
2
--- 2

3
---Cg– 

 +

+ 4vv gCg v 2Cg– vv 2gCg– 2vv dCg–

+ v gv
1
2
---Cg

2
3
---Cg

2+ 
  v gv 2gCg

1
2
---

2
3
---Cg+ 

 +

+ 2v gv dCg
1
2
---

2
3
---Cg+ 

 

+
2
3
---Cg wg

2( ) wg
1( ) 2wg

3( ) 4Cgwg–+ +( ) 4
3
---Wg3

J( )+ 
 ,

J55 = 2Cg v g v–( ) Cg ky
1
2
---v 2v g–

1
2
---v g v d+ + 

  ,cos+

J56
4
3
---Cg wg w–( ) 4

3
---Cgu v v g–( ) v g

2 Cg
4
3
---Cg

2+ 
 + +=

+ 2v 2Cg
4
3
---Wg4

J( ) vv gCg –3
4
3
---Cg– 

 + +

+
1
2
--- ky

8
3
---ug

2 2
3
---u2–

2
3
---uu2g–

4
3
---uud–

8
3
---uv gCg+cos

–
8
3
---ugv gCg

2
3
---uv gCg

2
3
---u2gv gCg

4
3
---udv gCg+ + +

–
2
3
---ugvCg

2
3
---ugv 2gCg–

4
3
---ugv dCg–

+ 4v g
2Cg –

1
2
--- 2

3
---Cg– 

  4vv gCg v 2Cg– vv 2gCg–+

– 2vv dCg v gv
1
2
---Cg

2
3
---Cg

2+ 
  v gv 2gCg

1
2
---

2
3
---Cg+ 

 + +

+ 2v gv dCg
1
2
---

2
3
---Cg+ 

 

+
2
3
---Cg wg

2( ) wg
1( ) 2wg

3( ) 4Cgwg–+ +( ) 4
3
---Wg3
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J66 F0 γg F1 F2+( ),+=

F0 4uCg–
8
3
---uug– 8Cguv

8
3
---wCg

8
3
---wgCg–+ +=

+ v gug
32
2
------Cg 4– 

  8
3
---v guCg 3v gCg 3vCg–+ +

– 8v 2Cg 6v g
2Cg–

8
3
---v g

2Cg
2– 2vv gCg 8Cg

2vv g–+

+ 2wg
1( ) 8

3
--- W1

τ( ) Wg1
J( )– Wg2

J( )–( ),+

F1
2
3
---u2 ugCg

10
3
------uv gCg– 2ugvCg–

1
2
---ugv+ +=

+
1
2
---uv g v 2Cg

3
4
--- Cg+ 

  v g
2Cg

1
4
---

5
3
---Cg+ 

  2vv gCg+ + +

–
1
2
---wg

2
3
---wg C2g 2Cd+( )– uvCd uv gCg–

2
3
---u2gv gCg–+

+
2
3
---ugvC2g

2
3
---ugvCg–

2
3
---uvC2g ugv gCg+ +

+
2
3
---uv gC2g ugv 2gCg–

2
3
---uv 2gC2g–

2
3
---v 2Cg Cg C2g–( )+

+ v g
2Cg

5
3
---Cg

7
3
---C2g– 

  8
3
---vv gCg

2–

+ vv 2gCg
5
3
---C2g Cg+– 

  4v gv 2gCgC2g+

+ 2 uvCg uv gCg–
2
3
---udv dCg–

2
3
---ugvCd

2
3
---ugvCg–+



+
2
3
---uvCd ugv gCg

2
3
---uv gCd ugv dCg–

2
3
---uv dCd–+ +

+
2
3
---v 2Cg Cg Cd–( ) v g

2Cg
5
3
---Cg

7
3
---Cd– 

  8
3
---vv gCg

2–+

+ vv dCg
5
3
---Cd Cg+– 

  4v gv dCgCd+

+
2
3
---Cg wg 2g,

1( ) 2wgd
1( )

+( ) 2
3
---Wg

τ( ),–

F2 3ugv gCg 3uv gCg
2
3
---uv gC2g

2
3
---u2gv gCg+ + +=

–
2
3
---uv 2gC2g ugv 2gCg– 3uvCg–

2
3
---u2gvCg–

+
4
3
---udv gCg

4
3
---uv dCd– 2ugv dCg–

4
3
---udvCg–
JOURNAL OF EXPERIMENTAL 
 Matrix

+
4
3
---uv gCd

1
2
---uv g

1
2
---uv  + Cg

2 v 2g v 2v d 4v g–+ +( )–+

+ v 2 –
11
3
------Cg

2 1
4
---Cg–

2
3
---C2gCg

4
3
---CgCd+ + 

 

+ v g
2 –

50
3
------Cg

2 7
3
--- CgC2g

14
3
------CgCd–

1
4
---Cg– 

 –


+ vv g
52
3
------Cg

2 1
2
---Cg

2
3
---CgC2g–

4
3
---CgCd–+ 

 

+ v gv 2g
8
3
---Cg

2 4
3
---CgC2g+ 

  vv 2g
5
3
---Cg

2 CgC2g+– 
 +

+ v gv d
8
3
---CgCd

16
3
------Cg

2+ 
 

+ vv d –
10
3
------Cg

2 2CgCd+ 
  1

6
---Wg

J( ).+

J̃
2( )

J33 4Cd,–=

J34 2Cd v d v–( ) kxCd v g v f 2v g–+( ),cos+=

J35 2Cd v d v–( ) kyCd v g v f 2v g–+( ),cos+=

J36 2Cd v v d–( ) 2ud
4
3
---γg Cd Cgv g C fv f+( )(+ +=

– 2CgCdv g Cg ug u f+( ) ug Cg C f+( )–+ ),

J44 2Cd v d v–( ) kx Cd v d v f+( ) 2Cdv g–( ),cos+=

J55 2Cd v d v–( ) ky Cd v d v f+( ) 2Cdv g–( ),cos+=

J64
4
3
---uCd v v d–( ) 4

3
---Cd wd w–( ) 2v 2Cd+ +=

+ v d
2 Cd

4
3
---Cd

2+ 
  4

3
---Wd4

J( ) vv d 3Cd
4
3
---Cd

2+ 
 –+

+ kx
4
3
---Cd uv g ugv d–( ) 4

3
---ugud

4
3
---Cdw2g–+





cos

+ v gv d Cd
4
3
---Cd

2– 
  2Cdv g v v d–( ) 2

3
---u ug u f+( )–+

+
2
3
---Cd v d ug u f+( ) ud v g v f+( )–[ ]

+
2
3
---Cd

2 1
2
---Cd+ 

  v d v g v f–( ) Cdv v g v f+( )–
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+
2
3
---Cd wgd

2( ) wgd
1( )+( ) 4

3
---Wd3

J( )+




,

J65
4
3
---uCd v v d–( ) 4

3
---Cd wd w–( ) 2v 2Cd+ +=

+ v d
2 Cd

4
3
---Cd

2+ 
  4

3
---Wd4

J( ) vv d 3Cd
4
3
---Cd

2+ 
 –+

+ ky
4
3
---Cd uv g ugv d–( ) 4

3
---ugud

4
3
---Cdwg–+





cos

+ v gv d Cd
4
3
---Cd

2– 
  2Cdv g v v d–( ) 2

3
---u ug u f+( )–+

+
2
3
---Cd v d ug u f+( ) ud v g v f+( )–[ ]

+
2
3
---Cd

2 1
2
---Cd+ 

  v d v g v f+( ) Cd v g v f+( )–

+
2
3
---Cd wgd

2( ) wgd
1( )+( ) 4

3
---Wd3

J( )+




,

J66 F0 γg F1 F2+( ),+=

F0 4uCd–
8
3
---uud– 8Cduv

8
3
---wCd

8
3
---wdCd–+ +=

+ v dud
32
3
------Cd 4– 

  8
3
---v duCd 3v dCd 3vCd–+ +

– 8v 2Cd 6v d
2Cd–

8
3
---v d

2Cd
2– 2vv dCd 8Cd

2vv d–+

+ 2wd
1( ) 8

3
--- W1

τ( ) Wd1
J( )– Wd2

J( )–( ),+

F1
4
3
---wg Cg C f+( ) 4

3
---Cg wgd

1( ) w fd
1( )+( )+–=

+ uv 4Cd
4
3
--- Cg C f+( )+ 

  4
3
---ugv Cg C f+( )+

–
8
3
---udvCg 4uv dCd–

4
3
---uv g Cg C f+( )+

–
4
3
---u v gCg v f C f+( ) 4

3
---v dCg ug u f+( )–

4
3
---ugv gCd+

+
8
3
---udv gCg

4
3
---udCg v g v f+( )–

2
3
---ugCd v g v f+( )–

+ v 2 8
3
---CgCd

4
3
---Cg Cg C f+( )– 

  32
3
------vv gCgCd–
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 Matrix

+ 2vCgCd v g v f+( ) 10
3
------vCd v gCg v f C f+( )–

+ v gv d
20
3
------CgCd 2Cd Cg C f+( )–

+
8
3
---v gCg v gCg v f C f+( ) 16

3
------v dCd v gCg v f C f+( )+

–
8
3
---v g

3Cg Cg C f+( )

+ vv d
4
3
---Cg Cg C f+( ) 4

3
---Cd Cg C f+( )– ,

F2 v 2 8
3
---CgCd

4
3
---Cg Cg C f+( )+– 16CgCdvv g+=

– 4Cduv 2vv gCgCd 2vv f CdC f+ +

–
10
3
------vCdCg v g v f+( ) 4

3
---Cg ug u f+( )v 4

3
---Cdugv g+–

+
8
3
---Cgudv g

4
3
--- Cg C f+( )uv g+

– v gv d 20CgCd 2Cd Cg C f+( )+[ ]

–
8
3
---Cg Cg C f+( )v g

2 vv d
8
3
---CgCd

4
3
---Cg Cg C f+( )– 

 +

+ 4Cduv d v dCd 2Cd v g v f+( ) 2 v gCg v f C f+( )–[ ]+

+
4
3
---Cg ug u f+( )v d

2
3
---Cdug v g v f+( )–

–
4
3
---u Cgv g C fv f+( ) 4

3
---Cgud v g v f+( )–

+
10
3
------CgCdv d v g v f+( ) 1

6
---Wd

J( )+

+ 2Cdv d Cgv g C fv f+( ) 8
3
---Cgv g Cgv g C fv f+( )+

– 4CgCdv g 2CgCd v g v f+( ).+

h̃

h12 2 1
2
--- γg

1
2
---γd+ + 

  ,=

h16 2u
1
2
--- γg

1
2
---γd+ + 

  ,=

h26 h16,=

h33 2 3
4
--- 2Cgγg Cdγd+ + 

  ,=
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The following notation has been used:

h34 2
1
2
---u ugγg

1
2
---udγd+ + 

  ,=

h35 h34,=

h36 2 u 2Cgγg v g v–( ) Cdγd v d v–( )+ +–[ ] ,=

h45 h34,=

h46 2 uv γg wg ugv– v gu–( ) 1
2
---w+ +–=

+
1
2
---γd wd uv d– v du–( ) ,

h56 h46,=

h66 = 2
3
4
---u 2uv w– γg 2Cgug 2Cg v

2 2v gv+( )++ +




+
4
3
---Cg

2 v 2 3v g
2+( ) 2u2 2

3
---ug

2– 8Cg
1
3
---ugv uv g+ 

 –+

–
4
3
---γgWg

τ( ) γd Cdud Cd v 2 2vv d+( )++

+
2
3
---Cd

2 v 2 3v d
2+( ) 4Cd

1
3
---udv uv d+ 

 –

+ u2 1
3
---ud

2–
2
3
---γdWd

τ( )–




.

v
1
N
---- 1,

1
N
----  ≡ 1

N
---- ,

k W∈
∑

k
∑

k
∑=

v l
1
N
---- eik l⋅ , l

k
∑ g d 2g f ,, , ,= =

u
1
N
---- Ck,

k
∑=

ul
1
N
---- eik l⋅ Ck, l

k
∑ g d 2g f ,, , ,= =

w
1

N2
------ Ck1 k2– ,

k1 k2,
∑=

wl
1

N2
------ e ik l⋅– Ck1 k2– , l

k1 k2,
∑ g d 2g,, ,= =

wl1l2

m( ) = 
1

N2
------ e

ik1 l1⋅–
e

ik2 l2⋅–
Ck1 k2– , l1 2,

k1 k2,
∑  = g d 2g f ,, , ,
JOURNAL OF EXPERIMENTAL
l = g, d.

m 1: l1 l2 0, m>⋅ 2: l1 l2 0,<⋅= =

m 3: l1 l2 0,=⋅=

wl
m( ) wl1l2

m( ) l1 l2=( ),=

Wl
τ( ) 1

N2
------ i k1 k2–( ) r⋅–[ ]exp

k1 k2 r, ,
∑=

× ik2 l⋅–( )CrCr l– ,exp

l g d 2g,, ,=

W1
τ( ) 1

N2
------ i k1 k2–( ) r⋅–[ ]CrCr g– ,exp

k1 k2 r, ,
∑=

W2
τ( ) 1

N2
------ i k1 k2+( ) g⋅–[ ]exp

k1 k2 r, ,
∑=

× i k1 k2–( ) r⋅–[ ]CrCr g– ,exp

W3
τ( ) = 

1

N2
------ ik1 gx⋅–( ) ik2 gy⋅–( )CrCr g– ,expexp

k1 k2 r, ,
∑

Wl1
J( ) 1

N2
------ ik2 l⋅( )exp Ck1 k2– Ck2

, l
k1 k2,
∑ g d,,= =

Wl2
J( ) 1

N2
------ i k1 k2–( ) l⋅[ ]Ck1 k2– Ck2

,exp
k1 k2,
∑=

l g d,,=

Wl3
J( ) 1

N2
------ ik2 g⋅–( )exp

k1 k2,
∑=

× γl k2( ) γl k1 k2–( )–[ ]Ck1 k2– Ck2
,

l g d,,=

Wl4
J( ) 1

N2
------ γl k2( ) γl k1 k2–( )–[ ]Ck1 k2– Ck2

,
k1 k2,
∑=

l g d,,=

Wl
J( ) 1

N2
------ ik1 r⋅–( )exp

r
∑

l

∑
k1 k2,
∑=

× Cr l+ Cr g– CrCr l g–+–( )

– i k1 k2–( ) r⋅–[ ] ik1 g⋅–( )CrCr l g+ +expexp
r
∑

+ i k1 – k2( ) · r( )–[ ] ik1– · l g–( )[ ]CrCr l g–+expexp
r
∑ ,
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The Effect of High Pressure on the Structure and 
on the Magnetic and Electronic Properties of Nickel Monoxide
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Abstract—A diamond anvil cell is used to investigate the effect of high pressure (up to 37.5 GPa) on the optical
absorption spectra of a single crystal of nickel oxide (NiO). In addition, strain-gage measurements are used to
experimentally investigate the V(P) equation of state at a hydrostatic pressure of up to 8.5 GPa in a high-pres-
sure chamber of the “toroid” type. Measurements are performed at room temperature. Absorption bands are
observed, which correspond to optical d–d transitions of Ni2+ ion in the crystal field of ligands 3A2g  3T2g,
3A2g  1E1g, 3A2g  3T1g(F), and 3A2g  1T2g . The values of energy of these transitions increase linearly
with pressure, and their pressure coefficients are 7.3 ± 0.2, 2.87 ± 0.9, 9.7 ± 0.5, and 8.9 ± 0.3 meV/GPa, respec-
tively. The pressure derivative of the crystal field parameter 10Dq corresponding to the 3A2g  3T2g transition
gives the pressure dependence of the magnitude of exchange integral J in the Anderson hybridization model. It
is found that, in the pressure range from zero to 37.5 GPa, the behavior of the exchange integral J is largely
defined by the hybridization parameter b = (10Dq/3). At the same time, the Coulomb interaction parameter Ueff
is independent of pressure and, therefore, has no effect on the variation of J. The Coulomb interaction Ueff ≈
7.47 ± 0.005 eV is determined. The experimental data on the equation of state are used to derive the J ∝  Vε

correlation, where ε = –2.99 ± 0.15, which is in good agreement with the predictions of Bloch’s theory (ε = –10/3).
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nickel monoxide NiO is an antiferromagnetic insu-
lator with a Néel point of 523 K [1]. Depending on the
mode of preparation, it may have either a purely cubic
structure or a rombohedrically distorted crystal struc-
ture of the NaCl type. The stoichiometric composition
has a distorted lattice, which is attributable to the mag-
netic contribution to the total crystal energy that leads
the cubic structure of NaCl to instability. A pure NaCl
structure is obtained under conditions of a slight devia-
tion in stoichiometry with respect to oxygen, whose
excess somewhat reduces the magnetic contribution to
the system Hamiltonian and stabilizes the cubic NaCl
structure.

In his pioneer study [2], Mott treated NiO as a typi-
cal example of “Mott” insulator with a wide d–d gap U.
However, it is clear today that some intermediate situa-
tion is realized in the case of NiO, when the Mott–Hub-
bard d–d gap U is comparable in magnitude with the p–
d gap of charge transfer ∆ [3–5]. Therefore, it is still
hard to say whether nickel monoxide is in fact a Mott
insulator or an insulator with charge transfer. Under the
effect of high pressure, the insulator–metal transition is
expected to occur in such systems. Nevertheless, no
such transition has been observed in NiO so far. It is
possible that the value of pressure must be very high
(apparently, above 1.5 Mbar), because recent investiga-
1063-7761/01/9204- $21.00 © 20696
tions of x-ray diffraction [6] revealed the absence of
any structural transitions in NiO up to a pressure of
147 GPa.

The foregoing points clearly to the importance of
studying the optical properties of NiO under pressure,
in particular, the optical absorption spectra. Such
experiments produce a wealth of information about the
electronic properties of crystals, in particular, about the
effect of high pressure on theoretical parameters such
as the Mott–Hubbard gap U and the charge transfer gap
∆. This makes for a better understanding of the proper-
ties of the material, which is a typical representative of
strongly correlated electron systems.

We have investigated the optical absorption spectra
of a single crystal of NiO at high pressures of up to
37.5 GPa and used strain-gage measurements to study
the pressure dependence of the unit cell volume, V(P),
under hydrostatic conditions up to 8.5 GPa.

The optical absorption in NiO at normal pressure
was studied in detail by Newman and Chrenko [7].
They have demonstrated that, in the energy range of
0.1–3.5 eV, the absorption spectrum consists of several
absorption bands and a background. The peaks of dif-
ferent absorption bands are identified in accordance
with certain optical d–d transitions of Ni2+ ion in the
crystal field of ligands. The background increases
monotonically with energy up to the edge of optical
001 MAIK “Nauka/Interperiodica”
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absorption, and its behavior may be described by the
expression α = const (E – E0)–4, where E0 is the absorp-
tion edge parameter equal to 4 eV [7]. In interpreting
the optical absorption spectra obtained at high pres-
sures, we will rely on the inferences made in [7].

2. EXPERIMENTAL PROCEDURE

Single crystals of NiO were grown by the Verneuil
method at the Institute of Crystallography of the Rus-
sian Academy of Sciences. The results of x-ray struc-
tural analysis demonstrated that the crystal to be inves-
tigated had an undistorted NaCl structure with the lat-
tice parameter a0 = 4.177 ± 0.003 Å.

The optical absorption spectra of NiO were mea-
sured at room temperature in a high-pressure diamond
anvil cell. A polyethyl siloxane liquid (PES-5) was used
as the pressure-transmitting medium. The diameter of
the working surface of the anvils was approximately
400 µm. The measurements were performed at differ-
ent values of pressure up to the maximum value of
37.5 GPa. A rhenium foil gasket was compressed
between two diamond anvils from an initial thickness
of 200 µm to a working thickness of 50 µm. Then, the
electric-spark technique was used to burn a hole about
200 µm in diameter in the compressed part of the gas-
ket. A single-crystal sample of NiO with characteristic
dimensions of 5 × 40 × 20 µm3, chipped from a large
crystal, was placed into this hole. In so doing, the (100)
crystal plane was normal to the direction of light prop-
agation. The value of pressure was determined using
the standard procedure of measuring the luminescence
line shift for ruby under the effect of pressure. For this
purpose, several pieces of ruby each about 10 µm in
size were placed in the high-pressure cell along with
the NiO sample.

In order to compare experimental results with the-
ory, one needs to know the dependence of the proper-
ties of the material on interion distances and bond
angles rather than on pressure. For this purpose, exper-
iments were performed involving measurements of the
V = f(P) equation of state for NiO crystal under hydro-
static conditions. The measurements were performed
up to 8.5 GPa in a high-pressure chamber of the “tor-
oid” type [8] using an ethanol–methanol alcohol mix-
ture (4:1).

The pressure-related variation of volume was mea-
sured using the strain-gage procedure developed previ-
ously in [9]. A NiO sample of characteristic dimensions
of 4 × 4 × 4 mm3 was chipped from the same crystal as
the sample in the optical absorption experiment. In
addition to calibration against NaCl and Al [9], the
strain gage was calibrated with respect to equations of
state for gold, tungsten, and diamond.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
3. EXPERIMENTAL RESULTS
Figure 1 gives the experimentally obtained depen-

dence of relative variation of the unit cell volume for
NiO on hydrostatic pressure. The experimental data
were approximated by the Birch–Murnaghan equation
of state with free parameters,

(1)

The fitting results were used to find the bulk modu-
lus K = 197 ± 1 GPa and its derivative K ' = 3.4 ± 0.3.
These values agree well with the data of measurements
of x-ray diffraction at high pressure (K = 199 GPa [10]
and K = 187 ± 7 GPa [11]) and with the experimental
data on ultrasound (K = 193.8 GPa [12]).

The optical absorption spectra of NiO, measured at
different pressures at room temperature, are given in
Fig. 2. The high-pressure cell used in the experiments
enabled us to observe the optical d-d transitions
between the electron states of Ni2+ ion from the ground
level 3A2g to excited levels 3T2g, 1Eg, 3T1g(F), 1T2g, and
1A1g. The mathematical treatment of the spectra was
based on the assumption of the presence in a spectrum
of a number of wide absorption bands with a Lorentz-
ian-shaped spectral line and the presence of a back-
ground whose shape is taken in the form const(E – E0)–4

(by analogy with [7]). The contribution made to absorp-
tion by excess oxygen was included in the form of a
wide line of Lorentzian shape in the energy range
2.0–2.5 eV [7]. It turns out that such a nonlinear fitting
procedure provides an excellent description of experi-
mental spectra (see solid lines in Fig. 2). In addition to
the position of absorption peaks, the mathematical
treatment of spectra produced an estimation for the
variation of the absorption edge E0 with increasing
pressure. However, the error of determining E0 proved

P
3
2
--- V

V0
------ 

  7/3– V
V0
------ 

  5/3–

–=

× 1
3
4
--- 4 K'–( ) V

V0
------ 

  2/3–

1––
 
 
 

.

NiO
T = 295 K

0

0.96

P, GPa

V/V0

0.97

0.98

0.99

1.00

1 2 3 4 5 6 7 8 9

Fig. 1. The relative volume of a unit cell of NiO as a function
of hydrostatic pressure. The points indicate the experimental
data: solid dots, results of our strain-gage measurements; hol-
low dots, x-ray diffraction [10]. The line corresponds to Eq. (1).
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to be too high (of the order of 0.5 eV) to make exact
inferences about the pressure behavior of the absorp-
tion edge. Nevertheless, within the experimental accu-
racy (about 0.5 eV), one can safely say that the parameter
E0 is almost invariable in the pressure range 0–37.5 GPa
and approximately equal to 4 eV.

The table gives the values of energy of d–d transi-
tions in NiO and the pressure derivatives (dE/dP), mea-

1.7

6.7

9.9

14.5

23.8

30.0

37.5 GPa

NiO
T = 295 K

1
E, eV

A
bs

or
pt

io
n

2 3

Fig. 2. Optical absorption spectra of NiO, measured at dif-
ferent pressures at room temperature. The symbols indicate
the experimental points; the solid lines indicate nonlinear
approximation (see text).
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sured by us, compared with the results of other
researchers [7, 13, 14]. Our data at atmospheric pres-
sure are in good agreement with the data of Newman
and Chrenko [7]. We have found that the energies of
transitions increase with pressure (see Fig. 3). The
3A2g  3T1g(F) transition, which is weakly discern-
ible at atmospheric pressure, shows up clearly at high
pressures, while the 3A2g  3T1g(P) transition shifts
toward the absorption edge and becomes inaccessible
for observation. One can see in Fig. 3 that the variations
of the transition energies with pressure are well approx-
imated by linear dependences with pressure slopes of
7.3 ± 0.2, 2.87 ± 0.9, 9.7 ± 0.5, and 8.9 ± 0.3 meV/GPa
for the 3A2g  3T2g, 3A2g  1E1g, 3A2g  3T1g(F),
and 3A2g  1T2g transitions, respectively.

4. DISCUSSION OF THE RESULTS

Our results for the pressure dependence of the crys-
tal field parameter 10Dq, defined by the energy of
3A2g  3T2g transition [7, 15], are in good agreement
with the previous experimental results of Stephens and
Drickamer [13] (shown by solid dots in Fig. 3). The
behavior of the parameter 10Dq at high pressure was
discussed repeatedly, and a fundamental correlation
was demonstrated between the crystal field parameter
and the exchange integral J. According to the Anderson
model [16], NiO is an antiferromagnetic insulator with
spin S = 1. It is assumed that the 180-degree antiferro-
magnetic superexchange with ions in the second coor-
dination sphere J is much stronger than the 90-degree
ferromagnetic exchange with ions of the first coordina-
tion sphere; therefore, the latter may be ignored [17]. In
the model of Ni-O-hybridization, Anderson derived the
expression for the correlation between the exchange
integral and the crystal field parameter [16],

(2)J
10Dq

3
-------------- 

 
2 1
Ueff
--------,=
The parameters of optical absorption spectra in a single crystal of NiO at normal pressure and room temperature, as well as
the pressure coefficients dE/dP for respective electron transitions

Transition

Energy (eV) at normal pressure Pressure coefficients dE/dP (meV/GPa)

Our results 
(exp.)

Ref. [7] Ref. [13] 
(exp.)

Ref. [14] 
(calc.)

Our results 
(exp.)

Ref. [13] 
(exp.)

Ref. [14] 
(calc.)(exp.) (calc.)

3A2  3T2(3F) 1.10 1.13 1.07 1.103 1.103 7.27 ± 0.20 9.8 9.29
3A2  1E(1D) 1.74 1.75 1.68 – – 2.87 ± 0.90 – –
3A2  3T1(3F) 1.86 1.95 1.83 1.735 1.748 9.7 ± 0.5 9.67 10.5
3A2  1T2(1D) 2.70 2.75 2.69 – – 8.9 ± 0.3 – –
3A2  3T1(3P) 2.97 2.95 3.04 2.839 2.806 – 13.2 11.9
3A2  1A1(1G) 3.27 3.25 3.21 – – – – –
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where  = U–1 + ∆–1 is the Coulomb interaction
parameter, ∆ is the energy of electron transfer from the
2p-orbital of a ligand to the eg-orbital of an ion, U is the
purely Coulomb d–d interaction of ion electrons, b =
10Dq/3 is the parameter of eg-hopping in the Hubbard
model for 3d-electrons of Ni ion [16], and 10Dq is the
crystal field parameter in the model of crystal field of
ligands [15].

It has been demonstrated recently [18] that, for a
NiO crystal of cubic structure in which the antiferro-
magnetic exchange predominates in magnetic interac-
tions, the exchange integral J is proportional to the fre-
quency ΩM of two-magnon Raman scattering (J ∝  ΩM),
as well as to the Néel point (J ∝  TN).

In order to correctly analyze Eq. (2), one must esti-
mate the pressure behavior of the Coulomb interaction
parameter Ueff. For this purpose, we corrected the data
of Massey et al. [18] on two-magnon Raman scattering
to fit room temperature and determined the value of J at
ambient pressure as J ≈ 18 eV. The pressure depen-
dence of the Néel point for NiO was found previously:
dTN/dP = 7.33 ± 0.06 K/GPa [19]. We can use our data
on the pressure dependence of the parameter 10Dq to
calculate the correlation Ueff = f(P) from Eq. (2),

(3)

Figure 4 gives the results of calculating the function
Ueff = f(P). One can see in this figure that the parameter
Ueff in the pressure range 0–37.5 GPa is almost inde-
pendent of pressure and equal to 7.47 ± 0.05 eV. This
result agrees with the inferences made by Massey et al.
[18], who estimate Ueff at 7.5 eV. For the correlation of
TN = AJ, our data give A = 2.44. This is close to the
value of 2.37 in [18]. The results of the foregoing anal-
ysis lead one to conclude that the exchange integral J is
proportional to (10Dq)2 (in accordance with Anderson’s
theory [16]) and its pressure dependence is fully defined
by the variation of the hybridization parameter b.

We can further use our experimental data on the
V(P) and J(P) dependences in NiO to verify the predic-
tions of Bloch’s theory [20], who suggested the empir-
ical correlation J ∝  Vε for oxides of transition metals,
where ε = –10/3. Figure 5 gives the exchange integral
as a function of the unit cell volume, J(V), calculated by
our experimental data. The inset at the top right of the
figure gives, on a log scale, the relative values of these
parameters J/J0 = f(V/V0). A linear approximation of
this correlation gives the value of the parameter ε =
(∂lnJ/∂lnV) = –2.99 ± 0.15. The value of ε derived by
us is slightly less than that derived by Bloch (ε =
−10/3); however, within the error, it agrees with the
experimental results for two-magnon Raman scattering
(ε = –3.3 ± 0.2) [18].

Ueff
1–

Ueff P( )
1

1/A( )T N P( )
---------------------------- 10Dq P( )

3
---------------------

2

.=
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3 A2g → 3 T2g
3 A2g → 1 E1g
3 A2g → 3 T1g
3 A2g → 1 T2g
[13]
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T = 295 K
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Fig. 3. The pressure dependences of the energies of
the3A2g  3T2g, 3A2g  3T1g(F), 3A2g  1E1g, and
3A2g  1T2g in the absorption spectrum of NiO at room
temperature. The symbols indicate the experimental points;
the solid lines indicate linear approximation.
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Fig. 4. The pressure dependence of the Coulomb energy
parameter Ueff in the Anderson model, calculated from the
experimentally obtained TN(P) and 10Dq(P) dependences.

Fig. 5. The exchange integral J as a function of the relative
volume of unit cell of NiO at room temperature. The inset
gives the relative values of these parameters (h, experimen-
tal points; solid line, linear approximation) on a log scale for
comparison with Bloch’s theory (dashed line).
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Abstract—Anomalies of the linear magnetostriction caused by the interaction of energy levels of the rare-earth
ion in DyPO4 in a strong magnetic field along the [100] and [110] axes are investigated both experimentally and
theoretically. Smeared jumps and maxima on the magnetostriction curve λ(H) and its derivative dλ(H)/dH
along the three perpendicular axes in the critical fields Hc = 140 and 200 kOe, when the lower energy levels of
the Dy3+ ion converge, are discovered. Under the assumption of the adiabatic character of the magnetization

process in pulsed fields, the quadrupole moments , , and 〈Pxy 〉 are calculated, which give a rather
accurate description of the anisotropy of the linear magnetostriction λ(H) and its dependence on temperature
and magnetic field. It is discovered that a jumplike variation of the quadrupole interaction of α and γ(δ) sym-
metry in DyPO4 under crossover leads, according to the experiment, to the decrease of the critical field by about
20 kOe and a sharper change of the linear magnetostriction λ(H) and its derivative dλ(H)/dH in the vicinity of
the crossover. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Rare-earth paramagnets with a tetragonal zircon
structure RXO4 (X = P, V) are very convenient for the
study of quadrupole ordering effects [1, 2] caused by
quadrupole interactions, for example, Jahn–Teller
structural phase transitions (spontaneous or stimulated
by a magnetic field). These paramagnets are also con-
venient for the study of crystalline field effects, such as
crossing of levels of rare-earth ions in a magnetic field.
An analysis shows that the crossing or, in the more gen-
eral case, convergence of the energy levels of rare-earth
ions in a magnetic field (crossover) occurs for almost
all rare-earth vanadates and phosphates with a zircon
structure in strong and ultrastrong magnetic fields [3].
The crossover effect was discovered and studied in
detail for rare-earth zircons HoVO4 [4, 5] and PrVO4 [6]
with Van Vleck ions, and for YbPO4 [7] with a Kramers
ion when the magnetic field is oriented along the tetrag-
onal axis. As a rule, such a geometry implies a true
(without a gap) crossing of the lower levels, which is
accompanied by sharp jumps on the magnetization
curves at low temperatures. In the case when the mag-
netic field is oriented in the basal plane, the situation is
qualitatively different. Indeed, the symmetry of the
interacting levels is such that the magnetic field perpen-
dicular to the tetragonal axis most often mixes their
wave functions (mixes the states that differ by the pro-
jections ∆Jz = ±1); i.e., it results in a repulsion of the
levels and the occurrence of a gap. This enables one to
assume that there exist qualitatively different depen-
1063-7761/01/9204- $21.00 © 20701
dences of the magnetic characteristics on the magnetic
field and temperature when the levels cross.

The profound change of the electron structure of
rare-earth ions (their spectra and wave functions) under
crossover (in particular, the change of the ground state
of the ion) is accompanied by a jumplike change not
only of the magnetic moment, but also of various qua-
drupole moments. This must lead to anomalies in mag-
netoelastic characteristics (e.g., magnetostriction) that
depend on quadrupole moments. Magnetostriction
anomalies under crossover, which have never been
studied, are of interest both from the experimental and
theoretical points of view. In particular, crossover can
lead to a variation of the contribution of quadrupole
interactions to magnetoelastic effects, which depend
not only on quadrupole constants but also on quadru-
pole moments determined by the electron structure of
the rare-earth ion. This paper focuses on the experimen-
tal and theoretical study of magnetostriction anomalies
under crossover by the example of DyPO4, which has
been under intensive study in relation to its ideal Ising
properties at low temperatures [8, 9].

2. SAMPLES AND MEASURING TECHNIQUE

We measured the magnetostriction of the crystal
DyPO4 under low temperatures. For the field oriented
along the axis of hard magnetization [100], deforma-
tions of the crystal along the three mutually perpendic-
ular axes [100], [010], and [001] were measured. These
001 MAIK “Nauka/Interperiodica”
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deformations make it possible to give a complete
description of the volume, tetragonal, and orthorhom-
bic deformations of the crystal in this geometry. For
H || [110], the crystal deformations were measured

along the [1 0], [110], and [001] axes. In order to mea-
sure the magnetostriction in pulsed magnetic fields up to
300 kOe (the pulse time was 3 ms) at temperatures
ranging from 4.2 to 300 K, the method of a glued quartz
piezoelectric sensor was used [10]. A thin monocrystal
quartz (x cut) plate metallized on both sides was glued
to the sample under study. The plate was 0.1–0.15 mm
thick and had the dimensions of 1 × 2 mm2. Under these
conditions, only the linear magnetostriction along the
y axis can be measured, since the x-cut quartz is not
piezosensitive in the z direction, and the piezosensitiv-
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ity shear modulus gives no contribution when the field
is oriented along the symmetric directions for which no
shear deformations occur.

The signal coming from the quartz sensor caused by
the sample deformation was amplified by a specially
designed electrometric amplifier. To eliminate the det-
rimental effect of the connecting cable capacitance, a
capacitance compensating circuit with a doubly
screened cable (triax) was used. In order to make tem-
perature characteristics more homogeneous, the sample
with the quartz sensor attached to it was placed in a
nonmagnetic ampoule with a dry mix (1 : 1) of kero-
sene and diffusion oil. The absolute value of the mag-
netostriction was calibrated by the known value of the
magnetostriction of electrolytic nickel. During the field
pulse, the signals coming from the piezosensor λ =
∆l/l(t)and the field coil H(t) were digitized and regis-
tered at 0.02 ms intervals (about 500 points). Then, the
smoothed linear magnetostriction function λ(H) and its
derivative dλ(H)/dH were calculated using a computer.

Rare-earth zircon crystals are layered and brittle,
which hinders measurements of their magnetostriction
in pulsed fields. Preliminary study showed that the free
DyPO4 crystal with a sensor attached to it destroys
along the cleavage planes after the first field pulse. To
protect the sample against destruction, it was placed in
a blob of araldite. When the field pulses were not stron-
ger than the critical crossover field (in this case, the
deformation of the crystal does not exceed 5 × 10–4), the
signal coming from the piezosensor was stable and
reproducible, which testified that the sample did not
destroy. For stronger fields, the signal at the start and
the end of the pulse was different, and the maximal
value of the signal decreased during two or three
pulses; then, the situation became stable. In our opin-
ion, this means that the crystal was partially laminated,
and the thickness of the sample coupled to the sensor
reduced to about 0.3–0.5 mm. The stability of the signal
made it possible to investigate the dependence of mag-
netostriction on field and temperature. However, since
elastic constants of quartz are greater than those of the
samples under study, measurements performed on a
thin crystal result in a noticeable reduction of the mag-
netostriction deformation. To estimate the absolute
value of the magnetostriction in fields stronger than the
critical one, we used referencing to the first measure-
ments made in weak fields before the crystal lamina-
tion.

3. EXPERIMENTAL RESULTS

Experimental dependences of the magnetostriction

deformation , , and  along the [100],

[001], and [010] axes and their derivatives d /dH,

d /dH, and d /dH for the monocrystal DyPO4 on
the strength of magnetic field oriented along the [100]
axis are shown in Figs. 1, 2, and 3, respectively. The
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MAGNETOSTRICTION ANOMALIES IN DyPO4 CAUSED BY INTERACTION OF LEVELS 703
behavior of  and  along the [100] and [001]
axes is qualitatively the same. The deformation is small
in the fields less than 100 kOe. Then, it increases jump-
wise near the critical field Hc = 140 kOe and tends to
saturation in the fields stronger than the critical one.
The critical crossover field value Hc can be determined

more accurately by derivatives d /dH and d /dH
(see insets in the figures). The value of the critical field
for the two geometries is the same; in this field, the
magnetostriction reaches a huge value of about 10–3

and has different signs along two perpendicular axes.
As the temperature increases, the dependences

(H), (H) become smeared and the critical field
value slightly increases.

The dependences (H) are more complex: at low
temperatures (T < 15 K), the magnetostriction is posi-
tive in weak fields and changes its sign in the vicinity
of the critical field Hc. At higher temperature, the mag-
netostriction varies monotonically within the range of
the field intensities examined. It will be shown below

that such a behavior of (H) is determined by the
competition of different contributions to the magneto-
striction.

A similar behavior of the magnetostriction is
observed for the field orientation H || [110]. By way of

example, Fig. 4 presents the dependences (H) for
this geometry. It is seen that the behavior of these
curves is basically the same as of those in Fig. 2; the
difference is that the critical field value is increased
from 140 to 200 kOe.

4. THEORETICAL TREATMENT

The complete Hamiltonian for a single 4f ion
includes the Hamiltonian of the crystalline field HCF,
Zeeman’s term HZ, and the bilinear term HB, which
describe the interaction of the magnetic moment with
the external field H and the exchange field HB, as well
as the Hamiltonian of the quadrupole interaction HQT:

(1)

Using the equivalent operator method and the approxi-
mation of the molecular field for the pair bilinear and
quadrupole interactions, we can write these terms in the
form (for details, see, e.g., [11])

(2)

(3)

(4)
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(5)

where n is the bilinear exchange parameter. Here ,
αJ, βJ, and γJ are the Stevens operator and parameters;

 are the parameters of the crystalline field; gJ and µB

are the Landé factor and the Bohr magneton, respec-
tively; and
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Fig. 3. Experimental (solid) and adiabatic calculated
(dashed, Tst = 15 K) curves of the linear magnetostriction

 and its derivative d /dH (the inset) for the DyPO4

crystal measured along the axis [010] when the magnetic
field is oriented along the [100] axis at various temperatures.
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704 KAZEI et al.
are the quadrupole moments. The total quadrupole con-
stants

include terms both from the one-ion magnetoelastic
interaction Bµ and the pair quadrupole interaction Kµ

(  is the background elastic constant in the absence of
interactions). In the Hamiltonian HQT, we dropped the
ε-symmetry terms, which do not contribute to the ori-
entation of the magnetic field in the basal plane and
along the tetragonal axis.

Parameters of the pair interactions for DyPO4 were
determined from the measurements of the first- and
third-order susceptibility and of the parastriction at low
temperatures in relatively weak fields for all symmetry
modes [12]. For DyPO4, bilinear interactions are not
very small, and lead to the antiferromagnetic ordering
of Dy3+ ions at TN ~ 3.4 K [13]. Estimates show that for
the zircon structure the contribution of superexchange
and dipole–dipole interactions to the total constant of
bilinear interactions are comparable in magnitude. The
bilinear interaction constant n = θ/C is reliably deter-
mined for the easy magnetization axis [001]; however,
it is not clear whether or not bilinear interactions are
completely isotropic. In the absence of magnetic field,
the quadrupole interactions Gµ in DyPO4 do not lead to
sizable quadrupole effects, for example, to the sponta-
neous quadrupole ordering; however, their role
increases in the vicinity of the crossover. In subsequent
calculations, we use the values θ= –1.5 K (H || [001]),
Gα = 1.5 mK, Gγ = 4.4 mK, and Gδ = 16.6 mK obtained
in [12].

The eigenvalues and eigenfunctions, which are nec-
essary for the calculation of thermodynamic properties,
were determined by the numerical diagonalization of
the complete Hamiltonian in which the quadrupole
interactions of the α and γ(δ) symmetry (which depend
on the electron configuration) were taken into account
self-consistently. The symmetrized magnetoelastic
deformations εµ (µ = α1, α2, γ, δ) are linearly related to

the quadrupole moments as

(6)

The coefficients Aα1, Aα2, Aγ, and Aδ, which depend on
the ratio of the magnetoelastic coefficients Bµ and the
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elastic constants , were determined by measuring
parastriction in relatively weak fields. In subsequent
calculations, we use the values Aα1 = 17 × 10–6, Aα2 =
−27 × 10–6, Aγ = –66 × 10–6, and Aδ = 281 × 10–6, which
were determined experimentally in [12].

The linear magnetostriction  oriented along
the direction (α1, α2, α3) induced by the magnetic field
oriented along the direction (β1, β2, β3) is related to the
symmetrized deformations as (see [14])

(7)

The orientation (β1, β2, β3) of the magnetic field
appears implicitly in the formulas above by determin-
ing the symmetrized deformations εα1, εα2, εγ (H ||
[100]), or εδ (H || [100]).

5. DISCUSSION OF THE RESULTS

5.1. Crystalline Field and the Zeeman Effect

The crystalline field for DyPO4 is believed to be reli-
ably determined on the basis of numerous experimental
data, including inelastic neutron scattering [15]. We
used the parameters of the crystalline field from the paper

[12] determined on the ground multiplet:  = 202 K,

 = 22 K,  = 1024 K,  = –57 K, and  = 15 K.
The Dy3+ ion spectra calculated with these parameters
in the magnetic field oriented along the [100] and [110]
axes (the Zeeman effect) are presented in Fig. 5. The
general multiplet splitting at H = 0 is ~ 430 K. The fig-
ure shows only the six lower levels, which make the
major contribution to the thermodynamic properties at
low temperatures. In the crystalline phosphate field, the
ground multiplet 6H15/2 of the Dy3+ ion is split in such a
way that the ground state is represented by the “iso-
lated” Kramers doublet with the almost maximal pro-
jection on the z axis (and the minimal projection on the
x axis). The nearest excited doublet is separated by a
gap of about 100 K, and its maximal component of the

g-tensor is oriented along the x axis (  @ ). In the
J–, Jzrepresentation, the wave function of the lower
doublet is ±0.98|15/2〉; for the excited doublet, it is
{±0.57| 〉, ± 0.62|±7/2〉, ± 0.51| 〉}. It is
exactly this specific feature of the spectrum and wave
functions of the Dy3+ ion that determines its Ising prop-
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MAGNETOSTRICTION ANOMALIES IN DyPO4 CAUSED BY INTERACTION OF LEVELS 705
erties and is favorable for the crossing of levels when
the field is oriented in the basal plane.

As would be expected, the ground doublet with the

maximal component  for H || [100] and H || [110]
splits weakly, whereas the first excited doublet splits
much more strongly and differently for the two symmetric
field directions in the basal plane. As a result, in the field
of about 140 and 200 kOe, respectively, the split sub-
levels of excited doublets with large projections of the
magnetic moment 〈M⊥ 〉  approach the ground level with
a small projection 〈M⊥ 〉; this phenomenon results in a
sharp increase of the magnetic moment.

A characteristic feature of the Zeeman effect in this
geometry is the presence of a substantial gap of about
30 K between the interacting levels, which is retained
in the critical field Hc. This is due to the fact that the
field mixes the wave functions of those levels. For the
field oriented along the tetragonal axis, there is usually
no gap between the lower levels under crossover in the
framework of the Hamiltonian used. The gap appears
only at a small deviation of the field from the symmetry
axis; i.e., when the component of the field in the basal
plane becomes nonzero. The presence of a finite gap
under crossover explains the specific features of the
magnetic properties in this case, in particular, their
dependence on temperature and magnetic field. It is
clear that a disorientation of the field both in the basal
plane and its going out of the basal plane is less impor-
tant than for the field oriented along the tetragonal axis.

The comparison of spectra calculated with regard
(solid curves) and without regard (dashed curves) to
quadrupole interactions (Fig. 5) shows that their role
becomes much more important in the fields stronger
than the crossover one and that they cause a sizable
change of the magnetic and magnetoelastic characteris-
tics in the crossover region. In this case, even in the
paramagnetic and quadrupole disordered phases, the
spectrum depends not only on the magnetic field, but
also on temperature, since the field dependences of the

quadrupole moments (H), (H), and
〈Pxy 〉(H) vary with temperature. In the absence of the
field, the dependence of the spectrum on temperature is

caused by the quadrupole moment (T). We stress
that the family of rare-earth zircons is a unique class of
Jahn–Teller magnetics, in which full-symmetric qua-
drupole interactions cause the effects observed.

5.2. Magnetization Curves 
and the Magnetocaloric Effect

In order to interpret magnetic and magnetoelastic
properties in pulsed fields with sufficiently small pulse
duration, one must calculate adiabatic magnetization
processes. In our experiment, the rate of the field increase
was close to the estimate of the upper bound of the adi-
abaticity condition given in [16]; thus, we assume the

gz
gr

O2
0〈 〉 O2

2〈 〉

O2
0〈 〉
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magnetization process of the DyPO4 monocrystal in
our experiment to be adiabatic. The subsequent com-
parison of the calculation results with the experimental
ones confirms this assumption.

When calculating the magnetic characteristics for
every field value in the range from 0 to 400 kOe with
the step ∆H = 2 kOe, the complete Hamiltonian was
numerically diagonalized in order to determine the
spectrum and the wave functions of the Dy3+ ion, and
the “elementary” magnetocaloric effect ∆T was calcu-
lated when the field changed from H to H + ∆H:

(8)

In formula (8), the total heat capacity of the crystal,
CH, includes the lattice heat capacity Clat =
(12π4kBν/5)(T/ TD)3 (the Debye temperature for the
phosphate lattice is TD = 275 K [17] and ν = 6) and the
magnetic heat capacity Cmag calculated for every value
of the field and temperature on the basis of the rare-
earth ion spectrum. These data make it possible to cal-
culate the adiabatic magnetization of DyPO4 and the
sample temperature for given directions of the field.
The isothermal and adiabatic magnetization curves
along the three symmetric directions [001], [100], and
[110] and the corresponding curves of the magnetoca-
loric effect ∆T for the initial temperatures T = 5 and 20
K are shown in Fig. 6. The smeared jumps of magneti-
zation in the field oriented along the axes [100] and
[110] correspond to approaching lower energy levels
shown in Fig. 5.
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Fig. 5. Energy variation of the lower levels of the Dy3+ ion
in DyPO4 in a magnetic field (the Zeeman effect) along the
[110] (above) and [100] (below) axes without regard
(dashed curves) and with regard (solid curves) to the qua-
drupole interactions (Gα = 1.5 mK, Gγ = 4.4 mK, and Gδ =
16.6 mK) at T = 5 K.
SICS      Vol. 92      No. 4      2001



706 KAZEI et al.
For H || [100] in the critical field Hc ~ 140 kOe, the
magnetization of DyPO4 increases in a jump from
about 1µB up to about 10µB, which is close to the satu-
ration value. For H || [110], the critical field Hc ~ 200 kOe
is stronger, the jump is smaller, and the magnetic
moment does not reach the saturation level after the
crossover. This fact gives reason to assume that there
exists another crossover in stronger fields. Indeed, cal-
culations show that for Hc2 ~ 3000 kOe another cross-
ing of the levels occurs, at which the magnetic moment
increases in a jump by about 2µB and reaches the satu-
ration level. At low temperatures, the magnetization
jumps in the isothermal mode vary insignificantly. Due
to a finite magnitude of the spectrum gap, the jump on
the curves M(H) at T = 5 K for both field directions
remains more smeared than, for example, for HoVO4
under similar conditions [18]. In the case of the cross-
over without a gap, the magnetization jump and,
respectively, the differential susceptibility maximum in
the framework of the Hamiltonian used become infi-
nitely sharp while approaching absolute zero.

For H || [001] and H || [100], the adiabatic magneti-
zation curves are flatter than the isothermal ones; this is
due to the heating of the DyPO4 crystal in the field. The
maximal magnetocaloric effect ∆T ~ 25 K is observed
in the field oriented along the easy magnetization axis
[001]. For both orientations of the field in the basal
plane, the variation of the sample temperature is small
in fields weaker than the crossover field (∆T < 5 K),
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Fig. 6. Isothermal (solid curves, T = 5 K), adiabatic (dashed
curves, Tst = 5 K and dot-and-dash curves, Tst = 20 K) mag-
netization curves M(H) (above) and the magnetocaloric
effect ∆T (below; solid curves at Tst = 5 K and dashed ones
at Tst = 20 K) for DyPO4 single crystal in the field oriented
along the [001], [100], and [110] axes calculated with regard
to quadrupole interactions.
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since the magnetization is small. In fields stronger than
Hc, the sample heats noticeably for H || [100] and
remains almost at the initial temperature for H || [110].
Thus, for H || [100], the sample temperature varies
monotonically with the field starting from the initial
temperature Tst = 5 K; however, the rate of the temper-
ature variation is different. For higher starting tempera-
tures, the magnetocaloric effect becomes nonmono-
tonic for both field orientations in the basal plane, and
it is accompanied by cooling of the sample in fields
weaker than Hc (see dashed curves in Fig. 6). This is
related to the complex behavior of (∂M/∂T )H in the
crossover region.

5.3. Magnetostriction

The magnetostriction deformation  for H ||

[100] is described by two quadrupole moments 

and , whose linear combination with the corre-
sponding coefficients Aα1, Aα2, and Aγ determines the
crystal deformation along the three mutually perpen-
dicular axes [100], [010], and [001] (see formulas (6)
and (7)). The variation of the quadrupole moments

 and  in the field H || [100] in the isothermal
mode at T = 5 K is shown in Fig. 7 (solid curves). The

quadrupole moment  for the tetragonal crystal is
nonzero even in the absence of the field; we see from
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MAGNETOSTRICTION ANOMALIES IN DyPO4 CAUSED BY INTERACTION OF LEVELS 707
Fig. 7 that it slightly varies in weak fields, but decreases
jumpwise in the critical field, changes its sign, and
tends to saturation in fields stronger than the critical

one. On the contrary, the quadrupole moment  is
zero in the absence of the field, but increases sharply in
the critical field and reaches a magnitude of ~50 in
fields stronger than Hc; this value is comparable with
that observed under quadrupole ordering in rare-earth
zircons. Since these quadrupole moments have differ-
ent dependences on the field, their linear combinations
can lead to nonmonotonic field dependences of the lin-
ear magnetostriction along certain directions in the
crystal.

The deformation along the tetragonal axis  is
completely described by the quadrupole moment

, and its sign is determined by the relation of the
coefficients Aα1 and Aα2, which have different signs. In

addition, the deformations  and  along the
[100] and [010] axes include a contribution of the qua-

drupole moment , which is the same in magnitude
but has different signs for two axes. Due to relations
between various magnetoelastic and elastic coeffi-
cients, the linear magnetostriction in DyPO4 is highly
anisotropic and is maximal along the [100] axis when
all three terms in (7) have the same sign; it is minimal
along the [010] axis.

For H || [110] (Hc ~ 200 kOe), the quadrupole

moments  and 〈Pxy〉  exhibit a similar behavior.

Moreover, the variation of the moment  is almost
the same, and that of the moment 〈Pxy〉  is by an order of

magnitude less than the variation of  for H || [100].
We note that the quadrupole moment 〈Pxy〉  does not
tend to saturation when H > Hc, in contrast to the

moment . The field dependences of the moments

, , and 〈Pxy〉  become smeared as the temper-
ature increases, and, in the process, the critical field Hc
increases for both orientations of the field. Thus, the
critical field is minimal along the [100] axis and
increases when the field deviates from this axis both in
the basal plane and in the direction of the tetragonal
axis. For the deviation angles ∆ϕ = 5° and ∆θ = 5°, the
increase of Hc is ∆Hc = 7 and 10 kOe, respectively.

Since the approach of the energy levels in DyPO4 is
accompanied by a substantial increase or variation of
the quadrupole moments, calculations must take into
account quadrupole interactions. Accounting for qua-
drupole interactions of the α and γ(δ) symmetry results
in a noticeable decrease of the critical field and makes
the jumps sharper for both orientations of the field (cf.
the solid and dashed curves in Fig. 7). We note that the
dependences calculated with and without taking into
account quadrupole interactions are almost identical in
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weak fields and begin to deviate in the vicinity of the
critical field. This means that the contribution of qua-
drupole interactions is much greater in fields stronger
than the critical one.

The adiabatic curves of linear magnetostriction along
the [100], [010], and [001] axes calculated at H || [100]
and along the [001] axis at H || [110] are presented in
Figs. 1–4 with the purpose of comparing them with the
experimental data. The calculation results are in good
agreement with the field dependences of the linear
magnetostriction along the three mutually perpendicu-
lar directions, including the nonmonotonic behavior in
weak fields and the change of sign for λ(H) at H || [100]
(Fig. 3). Such nonmonotonic dependences of λ(H) are
observed only for a certain relationship of the contribu-

tions of the quadrupole moments 〈 〉  and 〈 〉 , i.e.,
for a certain relationship between the coefficients Aα1,
Aα2, and Aγ. In particular, to describe the experimental
curves λ(H), one must increase the coefficient Aγ by
about 10% compared to that determined by the mea-
surements made in weak fields.

The absolute values of the calculated linear magne-
tostriction are regularly greater than the experimental
ones by a factor of 1.5–2. As has already been discussed
above, this can be explained by the lamination of the
sample along the cleavage planes in pulsed fields. The
small thickness of the sample compared to the sensor
results in the experimental underestimation of the mag-
netostriction magnitude.

5.4. Magnetostriction Susceptibility

Experimental data and theoretical analysis show
that the anomalous behavior of the curves λ(H), as well
as M(H), is very sensitive to quadrupole interactions.
This dependence can be conveniently analyzed on the

differential curves d /dH and d /dH, which are
shown in Fig. 8. It is seen that the field dependences

d /dH and d /dH are similar in the vicinity of the
maximum, but are slightly different when the field is
substantially less or greater than the critical one. We
examine how the behavior of the dependences changes
with temperature by the example of the quadrupole

moment . At temperatures less than 1 K, the field

dependences d /dH in the crossover region coincide;
a small difference is observed only in weak fields. As
the temperature increases, the maxima move to the
region of stronger fields and become broader for both

quadrupole moments  and . The dependences of
the critical field Hc(T) and the width of the maximum
∆W(T) (determined at the half height of the peak

d /dH) on temperature are nonmonotonic (see the
inset), but exhibit extrema at T ~ 3 3 and 5 K, respec-
tively. These dependences are practically identical to
the similar curves determined on the basis of the anom-
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alies of the magnetic moment dM/dH. The extrema of
the curves Hc(T) and ∆W(T) correlate with the non-
monotonic dependence of the initial magnetic suscepti-
bility χa(T) along the [100] axis at low temperatures
[12].

The comparison of the curves for Tst = 5 K calcu-
lated with regard (the solid curve) and without regard
(the dashed curve) to the quadrupole interactions show
that these interactions reduce the critical field and make
it closer to the experimental value. In the process, the

height of the maximum d /dH increases, and its width
decreases almost by a factor of three. When the calculation
is performed without taking into account the quadrupole
interactions, the dependence Hc(T) moves almost in paral-
lel by 20 kOe to the region of greater fields, and the width
of the peak ∆W(T) at low temperatures increases from
25 to 75 kOe. At high temperatures, the effect of quadru-
pole interactions is smaller.

The differential curves also make it possible to com-
pare the experimental data with the calculated ones in
the isothermal and adiabatic modes. Figure 9 shows the
experimental and calculated adiabatic and isothermal

derivatives d /dH and d /dH normalized to their
maximum values at T = 15 K for H || [100] and H || [110].

The calculated adiabatic curve d /dH at Tst = 15 K
describes the experimental curve rather accurately.
A small excess of the critical field Hc over the experi-
mental data can be eliminated by increasing the qua-
drupole constants by about 30%.We stress that all cal-
culations were performed without any adjustable
parameters and were based only on the magnitudes
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determined by measurements in relatively small fields.

For the isothermal curve d /dH, the maximum is
slightly shifted to stronger field values compared to the
adiabatic curve. The main difference of the isothermal

and adiabatic curves d /dH is in their shape. The
isothermal curve is almost symmetric; i.e., the location
of the peak center is the same at any height. In the adi-
abatic mode, the curve is asymmetric and is more
extended for H > Hc; this is due to the heavy heating of
the sample in fields stronger than the critical one. The
comparison shows that the experimental curve is as

asymmetric as the adiabatic curve d /dH. Thus, the
experiment testifies that the magnetization process of
the samples under consideration in pulsed fields of the
indicated duration is close to adiabatic.

For the field orientation H || [110], the curves

d /dH exhibit a similar behavior. Quadrupole inter-
actions also decrease the critical field by about 20 kOe,

and the maximum of the curves d /dH becomes
greater and narrower approximately by a factor of two,
which is in much better agreement with the experiment.
When the calculations are performed with the known
parameters of the quadrupole interactions determined
from independent experiments, the critical field Hc is
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almost the same or is very close to the experimental
value both for H || [100] and H || [110]. We stress that
the values of the constants Gµ were determined on the
basis of the magnetoelastic coefficients Bµ found by
measuring the parastriction and the elastic constants Cµ

averaged over the rare-earth phosphate series. In the
process, only the contribution to Gµ caused by the one-
ion magnetoelastic interaction was taken into account,
since no reliable data on the parameters of the pair qua-
drupole interaction (which usually yields a consider-
ably smaller contribution in zircons) are available. Tak-
ing into account this fact, we should admit that the
agreement with the experimental data is very good.

6. CONCLUSION

In conclusion, we formulate the main results obtained
in this study. The investigation of DyPO4 shows that the
crossover in rare-earth compounds at low temperatures is
accompanied not only by a jump of the magnetic
moment, but also causes anomalies of the linear magne-
tostriction, which are determined by variations of qua-
drupole moments of the rare-earth ion. In our opinion,
investigation of the magnetostriction anomalies under
crossover is rather informative, since it makes it possible
to determine or refine the values of magnetoelastic coef-
ficients in addition to determining the critical field Hc. In
addition, the magnetostriction anomalies, which are
directly related to the variation of the quadrupole
moments, enable one to estimate the role of quadrupole
interactions in the effects under study.

A specific feature of DyPO4 is that there exists a finite
gap of ~30 K between the approaching levels under cross-
over when the field H is oriented in the basal plane. Due to
this fact, the magnetization and magnetostriction curves
remain rather smeared down to very low temperatures.

A considerable advantage of the systems under
study is that they are relatively simple, and there is reli-
able information on the parameters of interactions
available. This enables one to compare theoretical and
experimental data not only qualitatively, but also quan-
titatively. In particular, this comparison shows that
under pulsed fields the magnetization process is close
to the adiabatic one and is accompanied by a consider-
able magnetocaloric effect.

It has been established that the contribution of the
quadrupole interactions of the α and γ(δ) symmetry for
H || [100] and H || [110] greatly increases under cross-
over, which opens up a new method for investigating
these interactions and determining or refining the qua-
drupole interaction constants. In the absence of the
field, the DyPO4 crystal does not belong to the class of
Jahn–Teller compounds; however, for H || [100] in the
vicinity of the crossover, the contribution of the qua-
drupole interactions of the γ symmetry becomes com-
parable in magnitude with that observed for the Jahn–
Teller magnetic DyVO4, which exhibits spontaneous
quadrupole ordering. The magnetic field forms an elec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tronic structure such that the quadrupole effects for the Dy
ion in the phosphate in the vicinity of the crossover field
Hc and in the vanadate at H = 0 become comparable. In
this case, not only the magnetic moment increases jump-
wise in the critical field Hc, but also the quadrupole

moment 〈 〉, which is characteristic of the stimulated
Jahn–Teller transition. It follows from the calculations that
the Zeeman effect for lower levels in the presence of qua-
drupole interactions is of a more complex nature and con-
siderably depends on the constants of the quadrupole
interactions. In this connection, not only is the study of
thermodynamic characteristics of interest, but also the
direct investigation of the Zeeman effect in DyPO4 under
crossover.
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Abstract—Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel
diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons.
Simple expressions for resonance current are derived which enable one to analyze the current–voltage charac-
teristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters
of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical
value proportional to the square of resonance level width. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Resonance tunneling through nanostructures attracts
ever increasing attention in view of its use in microwave-
frequency devices. Resonance tunneling is closely associ-
ated with the effect of quantum interference of electrons
and with the emergence of resonance levels of spatial
quantization.

In a real situation, the need arises to include the
effect of the ever present interaction between electrons
on the processes of quantum interference and reso-
nance tunneling. This is the more important because
one can expect a high sensitivity of resonance tunneling
to electron–electron interaction. This expectation fol-
lows from the fact that the resonance level shift due to
interaction by a value that is small compared with the
electron energy εR but comparable with the resonance
level width Γ ! εR causes a sharp variation of the reso-
nance current.

The simplest nanostructure in which resonance tun-
neling shows up is a two-barrier quantum well, the so-
called resonance-tunnel diode. Its current-voltage char-
acteristic (IVC) exhibits a descending portion with a
negative differential resistance [1]. In addition, as was
first observed by Goldman et al. [2], the IVC of a reso-
nance-tunnel diode sometimes exhibits a hysteresis
(see figure). The voltage dependence of current has
three branches, and transitions between them are per-
formed in jumps.

At least two interpretations of the hysteresis effect
exist. According to the first version [2, 3], the hysteresis
arises because of the accumulation of charge or inter-
electron interaction. The second interpretation [4] is
based on the effect of the external circuits on the cur-
rent in a resonance-tunnel diode characterized by a neg-
ative differential conduction. No consensus of opinion
exists at present as regards the mechanism of hysteresis
(see, for example, [5, 6]).
1063-7761/01/9204- $21.00 © 20710
The theory of the effect of charge accumulation and
interelectrode interaction on the IVC of a resonance-
tunnel diode was treated in a number of studies which
were performed using largely numerical methods. The
phenomenological model was first studied by Sheard
and Toombs [3]. Incoherent tunneling was assumed,
and a IVC was found that exhibited hysteresis due to
charge accumulation.

A more rigorous model was treated by Jun Zang and
Birman [6], who used the Keldysh technique within the
approximation of incoherent tunneling to derive expres-
sions for the current and equations for the electron concen-
tration in the quantum well. The Hartree approximation
with local interelectron potential was used. The equation
was solved numerically for the typical parameters of a
quantum well and for two values of width Γ = 2 meV
and Γ = 5 meV. A correlation was observed between the
hysteresis region and the width Γ.

Note that both studies [3, 6] were performed within
the model of incoherent tunneling (which is in fact
semiphenomenological). Indeed, this model assumes

ε

n1(ε)

n2(ε)

n3(ε)

n

n1, ε1

n2, ε2

The electron concentration in a tunnel diode as a function of
electron energy at a higher-than-critical current.
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the existence of resonance level and does not involve
explicit treatment of quantum interference. In addition,
it is the perturbation theory that is in fact used instead
of open boundary conditions for the probability of tun-
nel transitions from contacts to the quantum well (the
so-called tunneling Hamiltonian method).

Therefore, it appears useful to study the effect of
interelectron interaction within the model of coherent
tunneling. In this model, quantum interference and res-
onance levels of spatial quantization arise automati-
cally, and the open boundary conditions provide for a
rigorous formulation of the problem. One can expect
that this approach will help introduce additional argu-
ments to the above-mentioned discussion (see [5, 6]).

It is the objective of this study to construct a consis-
tent model of coherent tunneling of interacting electrons.
The self-consistent Hartree–Fock approximation was
used to find analytical solutions to the Schrödinger equa-
tion with open boundary conditions. Simple expressions
for resonance current have been derived which enable
one to analyze the conditions of the emergence of hys-
teresis and singularities of the latter depending on the
parameters of resonance-tunnel diode.

It has been demonstrated for the first time ever that
hysteresis is realized if the current exceeds some criti-
cal value Jc. Correlations have been found between Jc

and the region of hysteresis and the structure parame-
ters, in particular, the resonance level width.

This paper is organized as follows. Section 2 con-
tains the formulation of the problem and derivation of
the basic equations. Section 3 deals with the solution of
the Schrödinger equation and derivation of the general
expression for current and of the equation for electron
concentration in the quantum well. In Sections 4 and 5,
the dependence of current on the electron energy, the
conditions of the emergence of hysteresis, and singular-
ities of the latter are analyzed.

2. FORMULATION OF THE PROBLEM: 
BASIC EQUATIONS

We will study the following model of coherent tun-
neling of interacting electrons (see [7]). A steady elec-
tron flow proportional to q2, with an energy ε approxi-
mately equal to εR, is delivered from the left to a one-
dimensional quantum well with δ-functional barriers at
points x = 0 and x = a (x = –∞). It is assumed that the
electrons interact with one another inside the quantum
well.

In the Hartree–Fock approximation, the Schrödinger
equation has the form

(1)

(2)

d2ψ
dx2
--------- α δ x( ) δ x a–( )+[ ]ψ U x( )ψ+ +– εψ,=

U x( ) x' ψ x'( ) 2V x x'–( ),d∫=
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where U(x) is the self-consistent potential, V(x) is the
energy of interaction between electrons, and α is the
barrier power. Here and below, " = 2m = 1. The poten-
tial U(x) may describe the effect of charge accumula-
tion as well (see [6]). For simplicity, we will assume
that the interelectron interaction is local (as in [6]),

(3)

Then, Eq. (1) takes the final form

(4)

We use the boundary conditions (see, for example, [7])

(5)

which describe the electron flow from the left, their
reflection, and departure to the region x > a.

The resonance current J(ε) through the quantum
well is found from the ordinary expression

(6)

In the absence of interaction, the resonance current
is given by the known expression (see, for example, [7])

(7)

and a is the size of the quantum well.
Note that formula (7) was derived for the most inter-

esting case of a quantum well with “strong barriers,”
when Γ ! εR . It is in this limit that the resonant proper-
ties of the quantum well are realized most effectively.

3. GENERAL EXPRESSION FOR RESONANCE 
CURRENT OF INTERACTING ELECTRONS

The analytical solution of Eq. (4) with open bound-
ary conditions (5) in the general case presents certain
difficulties. However, the derivation of the solution may
be simplified if one takes into consideration the high
sensitivity (already noted above) of resonance current
to the shift of resonance level due to interelectron inter-
action.

One can expect (as will be confirmed below) that
even a small (compared with εR) energy shift ∆ε ~ Γ
will cause a considerable variation of the current J(ε).
Therefore, the term that is nonlinear in (4) may be
assumed to be small, and, in order to find the solution

V x x'–( ) gδ x x'–( ).=

d2ψ
dx2
--------- εψ gψ ψ 2– α δ x( ) δ x a–( )+[ ]ψ–+ 0.=

ψ 0( ) 1 α
ip
-----– 

  1
ip
-----dψ 0( )

dx
--------------+ q,=

ψ a( ) 1 α
ip
-----– 

  1
ip
-----dψ a( )

dx
--------------– 0, ε p2,= =

J e( ) ie ψ∗ dψ
dx
------- ψdψ∗

dx
----------– .–=

J ε( )
QΓ2

2 ε εR–( )2 Γ2+[ ]
-----------------------------------------,=

Γ 4 p3

α2a
---------, Q q2 p,= =
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of Eq. (4), one can use the methods described, for
example, in [8]. We will seek the solution of Eq. (4) in
the form

(8)

where A(x) and B(x) are slowly varying complex func-
tions of x. In so doing, the rate of variation of the func-
tions A(x) and B(x) is proportional to the smallness of
the nonlinear term.

If one substitutes solution (8) into Eq. (4) and per-
forms averaging over fast-varying functions exp(±ipx)
(for more detail, see [8]), the following equations are
derived for A(x) and B(x):

(9)

One can readily demonstrate that the quantities |A |2 and
|B |2 are independent of the coordinate,

(10)

In view of this fact, we find the solution of the set of
equations (9),

(11)

where A0 and B0 are constants which may be found
from the boundary conditions (5).

After some computations, we derive expressions for
A0, B0, and determinant ∆0,

(12)

(13)

(14)

ψ x( ) A x( )eipx B x( )e ipx– ,+=

dA
dx
-------

gA
2ip
-------- A x( ) 2 2 B x( ) 2+[ ] ,=

dB
dx
-------

gB
2ip
-------- B x( ) 2 2 A x( ) 2+[ ] .–=

xd
d

A 2

xd
d

B 2 0.= =

A x( ) A0
ixg
2 p
-------- A0

2 2 B0
2+( )–

 
 
 

,exp=

B x( ) B0
ixg
2 p
-------- B0

2 2 A0
2+( )

 
 
 

,exp=

A0
q
∆0
----- 2 α

ip
----- gB–– 

  ,=

B0
q
∆0
----- α

ip
----- gA– 

  2ipa ipag̃–( ),exp=

∆0 2 α
ip
----- gA–– 

  2 α
ip
-----– gB– 

 =

– α
ip
----- gA– 

  α
ip
----- gB– 

  2ipa ipag̃–( ),exp
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where

(15)

Generally speaking, the quantities gA, gB, and  them-
selves depend on A0 and B0. Therefore, the set of
Eqs. (12)–(15) is self-consistent.

We substitute solutions (8) and (11) into Eq. (6) to
find the current,

(16)

4. EQUATION FOR THE CONCENTRATION
OF INTERACTING ELECTRONS

As we will see, the quantity that defines the behavior
of current (16) is the resonant denominator ∆0. In the
most interesting case of “strong barriers”, when p/α ! 1,
Γ/εR ! 1, and ε ≈ εR, expression (14) for ∆0 may be rep-
resented as

(17)

In deriving the latter expression, it was further assumed
that the resonance level shift

(18)

was small compared with εR . At the same time, it fol-
lows from (17) that the shift ∆ε, which is commensura-
ble with Γ, causes a strong variation of the resonant
denominator and, consequently, of the current J(ε)
given by Eq. (16). Therefore, our initial assumption that
the nonlinear term in Eq. (4) may be regarded as small
proves to be justified. The smallness of the parameter
∆ε/εR enables one to simplify the expressions for A0, B0,
and J(ε) by omitting the respective small corrections.
As a result, we derive the expression for current

(19)

gA
g

2 p2
-------- A0

2 2 B0
2+( ),=

gB
g

2 p2
-------- B0

2 2 A0
2+( ),=

g̃
3g

2 p2
--------n0, n0 A0

2 B0
2.+= =

g̃

J ε( ) e A0
2 B0

2–[ ]=

× 2 p
gn0

p
--------

ig
2 p
------ A0B0*e2ipx c.c.–( )+ +

 
 
 

.

∆0
2 16

Γ 2
------ ε εR– p2g̃–( )2 Γ2+[ ] ,=

εR
π
a
--- 

 
2

1 4
αa
-------– 12

α2a2
-----------– 

  .≈

∆ε p2g̃
3
2
---gn0= =

J ε( ) eQΓ2

2 ε εR–
3
2
---gn0– 

 
2

Γ2+

------------------------------------------------------------=
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and the self-consistent equation for concentration

(20)

One can readily see from Eqs. (19) and (20) that the
current J(ε) and the concentration n0(ε) are related by

(21)

Therefore, the current is expressed in terms of the
electron concentration n0(ε) in the quantum well, which
is to be found from Eq. (20).

5. ANALYSIS OF THE RESONANCE CURRENT 
OF INTERACTING ELECTRONS

Equation (20) may be conveniently reduced to the
dimensionless form

(22)

(23)

The equation of type (22) is well known in the the-
ory of nonlinear oscillation (see, for example, [8, 9]). In
our case, the equation describes the dependence of the
electron concentration n on the “pumping” current f
and “detuning” current x. Expression (22) is a cubic
equation,

, (24)

relative to n with the determinant

(25)

For small values of f, which correspond to a small level
shift, the concentration n is a symmetric function of x.
As f increases, the curve n(x) is deformed. When the
value of f exceeds some critical value fc , three solutions
of n(x) emerge (see figure), which correspond to one
and the same value of x. Because the solution n2(x)
increasing with x is unstable (see [8]), a hysteresis is
observed. Indeed, as x increases, the concentration at
x > x2 decreases abruptly and is described by the third
solution n3(x). When the increase of x changes to a
decrease, the concentration increases abruptly to n1(x)
when x becomes less than x1.

First of all, we will find fc from the condition of the
confluence of minima of x(n1, n2),

(26)

n0 ε( )
QΓ

2a ε εR–
3
2
---gn0– 

 
2

Γ2+

---------------------------------------------------------------.=

J ε( ) en0 ε( )aΓ .=

n f / 1 x n–( )2+[ ] ,=

n
3gn0

2Γ
-----------, x

ε εR–
Γ

-------------, f
3Qg

4aΓ2
------------.= = =

n3 2xn2– n 1 x2+( ) f–+ 0=

D
x2 2 x2+( )

27
------------------------ 1

27
------ f 2

4
-----

fx
3
----- 1 x2

9
-----+ 

  .–+ +=

dx
dn
------ 3n2 4xn x2 1+ +– 0.= =
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The solution of this equation,

, (27)

gives two values of n at the extrema which merge on the
condition that

(28)

We substitute these quantities into Eq. (22) to find the
critical value

(29)

This result agrees with the requirement of the emer-
gence of three valid solutions of cubic Eq. (24). It is
known to consist in that the determinant D(x) (25)
should be zero. One can readily check that, on substi-
tuting xc and fc into Eq. (25), we derive D(xc , fc) = 0. In
addition, the derivative ∂D/∂x = 0 also goes to zero,
because D reaches a minimum at x = xc .

Therefore, three solutions (i.e., three-valuedness of
n(x)) and, consequently, hysteresis, emerge only when
the condition

(30)

is valid.
Otherwise, no hysteresis is present. This explains

why hystereses are not always observed experimen-
tally.

Another important conclusion is that the critical
value of Qc is proportional to the square of the level
width Γ2. This is associated with the fact that, the less
the value of Γ, the smaller the value of concentration
required for appreciable variation of resonance current.
For example, in the model of [2], where Γ = 0, we have
Qc = 0.

The region of hysteresis, i.e., the values of n2 and n1
(x2 and x1) at extrema (see figure), will be found from
the condition dx/dn = 0. In turn, the function x(n) will
be determined from Eq. (22) written as

(31)

The solution of Eq. (31) has the form

Hence, we take the derivative

to derive 

(32)

n1 2,
2x
3

------ x2

9
----- 1

3
---–±=

xc 3, nc 2/ 3.= =

f c 8/3 3.=

Q Qc, Qc> 4aΓ 2

3g
------------ f c

32aΓ2

9 3g
---------------= =

x2 2xn– n2 1 f /n–+ + 0.=

x n f /n 1– .+=

dx
dn
------ 1 f

2n2 f /n 1–
------------------------------– 0= =

n3 f n4–
f 2

4
-----, n f .≤=
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If we turn to more convenient variables

(33)

we have, instead of (32),

(34)

We will find the solution of Eq. (34) in the limiting
cases of F @ 1 and F ≥ 1. In the former case, we have

(35)

One can see that the region of hysteresis x2 – x1 increases
proportionally with F; in so doing, x2 increases much
faster than x1.

On turning to dimensional quantities, we derive

Therefore, as Γ increases, the value of ε2 rapidly
decreases and that of ε1 slowly increases, so that the
region of hysteresis decreases.

In the second limiting case of F ≥ 1 (i.e., in the
vicinity of the threshold), we have

(36)

(37)

One can see that the region of hysteresis

(38)

slowly decreases with an increase in F.
At the same time, the extreme values of concentra-

tion diverge at a very high rate,

(39)

6. CONCLUSION
According to the foregoing results, the suggested

model of coherent tunneling of interacting electrons
predicts the emergence of singularities of the IVC, in
particular, hysteresis, that are observed experimentally
and agree qualitatively with the results obtained using
the model of incoherent tunneling [3, 6].

n
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3
-------, f
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3 3
----------F, Fc 1,= = =

4N3F 3N4– F2, N
4
3
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 
1/3
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4
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3
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4
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 
1/3
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8F

3 3
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3Qg

4aΓ
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16a
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N2 N1–( ) 1

3 F 1–( )
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At the same time, fundamentally novel results have
been obtained. Firstly, these results include the predic-
tion of the critical value of current through a resonance-
tunnel diode, below which no hysteresis is present. Sec-
ondly, it is demonstrated that the value of critical cur-
rent is defined by the width of resonance level (is pro-
portional to Γ2 according to Eq. (30)). Hence follows
the important inference that a hysteresis is observed if
certain conditions are valid (see (30)). This enables one
to check the validity of the interpretations discussed
above.

Note that, according to the simplified model of [3],
in which it was assumed that Γ = 0, the critical current
is zero, and a hysteresis must always be observed. In
the more rigorous model of incoherent tunneling [6],
the dependence of the hysteresis width on the level
width Γ was indicated; however, no inference was
made as to the existence of critical current. The IVC
was calculated numerically for only two values of Γ.

The analytical solution of the set of Eqs. (11)–(15)
enables one to fully analyze the dependence of the IVC
on the parameters of resonance-tunnel diode and on the
magnitude of current.

ACKNOWLEDGMENTS

I am grateful to Yu.V. Kopaev for useful discussions
of this study.

The study was performed within the framework of
the Program on the Physics of Solid-State Nanostruc-
tures of the Russian Ministry of Science and Technol-
ogy (project no. 99-1140) and of the Integratsiya Rus-
sian Federal Program (project AO 133).

REFERENCES

1. L. Esaki and R. Tsu, Appl. Phys. Lett. 22, 562 (1973).
2. V. J. Goldman, D. C. Tsui, and J. E. Gunningham, Phys.

Rev. Lett. 58, 1256 (1987); 59, 1623 (1987).
3. F. W. Sheard and G. A. Toombs, Appl. Phys. Lett. 52,

1228 (1988).
4. T. Sollner, Phys. Rev. Lett. 59, 1622 (1987).
5. K. L. Jensen and F. A. Buot, Phys. Rev. Lett. 66, 1078

(1991).
6. Jun Zang and J. L. Birman, Phys. Rev. B 46, 5020

(1992).
7. V. F. Elesin, Zh. Éksp. Teor. Fiz. 116, 704 (1999) [JETP

89, 377 (1999)].
8. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic

Methods in the Theory of Nonlinear Oscillations (Fiz-
matgiz, Moscow, 1963; Gordon and Breach, New York,
1962).

9. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 1: Mechanics (Fizmatgiz, Moscow, 1958;
Pergamon, New York, 1988).

Translated by H. Bronstein
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001



  

Journal of Experimental and Theoretical Physics, Vol. 92, No. 4, 2001, pp. 715–743.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 119, No. 4, 2001, pp. 822–852.
Original Russian Text Copyright © 2001 by Inogamov, Oparin, Dem’yanov, Dembitski

 

œ

 

, Khokhlov.

                                                                               

NONLINEAR
PHYSICS

                          
On Stochastic Mixing Caused by the Rayleigh–Taylor Instability
N. A. Inogamova, A. M. Oparinb, *, A. Yu. Dem’yanovc, 

L. N. Dembitskiœc, and V. A. Khokhlova

a Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
b Institute for Computer-Aided Design, Russian Academy of Sciences, Moscow, 123056 Russia

c Moscow Institute of Physics and Technology, Institutskiœ per. 9, Dolgoprudnyœ, Moscow oblast, 141700 Russia
*e-mail: oparin@landau.ac.ru

Received September 5, 2000

Abstract—The mixing of contacting substances is considered. The evolution of the mixing layer over a long
time period from multimode initial perturbations is investigated numerically in the short-scale and wide-range
cases. In the case of a short-scale initiation, the flow is stochastic in the sense that the time of the considered
evolution exceeds the period of correlation. The effect of the amplitude of wide-range perturbations on the
dynamics of mixing is analyzed. The scale-invariant properties of the spectral and statistical parameters of tur-
bulent mixing are investigated for the first time. The universal spectra characterizing the turbulence mixing in
the entire self-similar interval on a unified basis are obtained. The simulation is based on the effective algo-
rithms with high approximating qualities, which have been tested earlier. © 2001 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

Rayleigh–Taylor instability is the term applied to
the hydrostatic equilibrium instability for which the
density in horizontal layers increases with height
(heavy above light) [1–4]. The problem has found wide
applications in astrophysics and the physics of high
energy densities [1–4]. Suffice it to mention the exper-
iments on mixing carried out and planned to be staged
using the available high-power laser systems such as
Iskra-5 (Russia), NIF (USA), LIL and LMJ (France), as
well as devices being constructed. In view of its impor-
tance and complexity, this problem is considered by
many authors (see the reviews in [1–4]). We will briefly
describe here the prevailing ideas to emphasize new
aspects of the present publication. The horizontal den-
sity jump between two pure substances is blurred into a
turbulent transition region by the Rayleigh–Taylor
instability. If the “microscopic scales” λmicr (viscosity,
diffusion, and capillarity) are small, while the external
scales (compressibility and height of the homogeneous
atmosphere, the size of a cuvette or the rated region) are
large, the turbulent mixing becomes self-similar. The
thickness of the mixed zone increases asymptotically
according to the quadratic law:

(1)

where At = (1 – µ)/(1 + µ) is the Atwood number, µ =
ρl/ρh < 1 is the ratio of the densities of light and heavy
liquids, g is the acceleration, h+ and h– are the penetra-

h αAtgt
2
, h h+ h–,+= =

α α + α–, As+
h–

h+
-----

α–

α+
------,= = =
1063-7761/01/9204- $21.00 © 20715
tion depths for the heavy and light liquids, respectively,
and As is the asymmetry coefficient. The heavy and
light liquids are supplied to the mixing zone through its
upper and lower boundaries, respectively. The volume
fraction of the heavy substance averaged over the zone
is equal to 1/As.

2. PREVALENCE OF TRANSVERSE 
STRUCTURES

One of the trends in studying mixing is based on the
theory of the turbulent mixing length and on the one-
dimensional K and K – ε models [5, 6]. The turbulent
transport is approximated by a diffusion flow in the
form of Fick’s law. Phenomenological considerations
are used to derive the expressions for the turbulent mix-
ing length lt and the turbulent velocities wt =

 appearing in the turbulent diffusion
coefficient Dt = ltwt/3, where z, w, and x, y, u, and v are
the vertical and horizontal (perpendicular to accelera-
tion g) coordinates and velocities. In the one-dimen-
sional approach, the instantaneous profile of density ρ
depends only on coordinate z. It resembles the arctan-
gent function with a bell-shaped profile of derivative 
typical of diffusion.

In the molecular-kinetic theory, an important char-
acteristic is the Knudsen number1 whose analogue in
the mixing length theory is the ratio Knt = lt/h+. The
phenomenological coefficients are chosen from a com-
parison with experimental data. Length lt is of the order

1 The ratio of the mean free path to the geometrical scale.

lt∂ ρ/∂zln( )glt

ρz'
001 MAIK “Nauka/Interperiodica”
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of the scale of typical structures in the mixing layer. An
analysis of the experimental results shows that Knt ~ 1,
while the criterion for the applicability of the diffusion
approximation is Kn ! 1. The rate of expansion of the
mixing zone (or layer) is determined by transverse
structures. Indeed, the motion is generated by the
exchange or transposition of the heavy and light liq-
uids. Such transpositions are impossible without the
formation of transverse structures. It turns out that in
order to ensure the required rate of the vertical expan-

(‡)
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Fig. 1. (a, b) Evolution of a 2D flow (after a short-scale ini-
tiation) and the correspondence between (b) the instanta-
neous distribution ρ(x, z, t) and (c) the velocity field: (a, b)
Densities ρh = 1 (black) and ρl = 0.1 (white); the intensity of
grey color (palette of 30 shades) indicates the value of den-
sity, ρl ≤ ρ ≤ ρh. Black segments of various thickness at the
bottom indicate correlators Kw (thin segment) and KH (thick
segment) (see Fig. 4). (c) Tricolored field of the vertical
velocity component w(x, z, t = 6). Grey color corresponds to
regions of rest or relatively slow motion (–ws < w < ws, ws =

0.8 ). White color corresponds to the regions in which
w > ws, while black colors marks the regions with w < –ws.

ḣ+
5%
JOURNAL OF EXPERIMENTAL
sion, the characteristic scale of the structures cannot be
smaller than thickness h+. The present work is devoted
to the study of these important coarse or prevailing
structures. In the self-similarity limit (1), the structures
also become self-similar.

The geometry of the mixing layer is described in
Section 3. The main definitions and the brief informa-
tion on the numerical methods used are given in Sec-
tions 4, 5, and 6. In Sections 7 and 8, transient pro-
cesses are considered. The problems of scale invariance
are considered in Sections 9, 10, and 11. Self-similar
substitutions are described in Sections 14, 15, and 16.
The separation of the random component is discussed
in Sections 17 and 18. Sections 19 to 21 are devoted to
a comparison of theoretical estimates with the results of
calculations. The dynamic estimates connected with
the scales of transverse structures are given in Sections
22 to 24. A comparative analysis of two- and three-
dimensional cases is carried out in Section 25. The
spectra and statistics of random periodic functions sim-
ulating the dependence of fluctuating functions on the
horizontal coordinate are considered in Section 26. The
stimulation of mixing and deceleration by lateral
boundaries are analyzed in Sections 27 and 28.

3. EXCHANGE IN COUNTER JETS. 
CASCADE EVOLUTION

Figures 1 and 2 show the results of typical calcula-
tions. The horizontal structure formed by alternating
columns in which a heavy substance precipitates at the
bottom and a light substance rises is clearly manifested.
In order to compare the distributions of ρ and v{u,  v,  w}
and to emphasize the correlation between ρ and w, the
position of one of the jets of the sinking heavy sub-
stance (x ≈ 1.03, z ≈ 0) is marked in Fig. 1. The horizon-
tal line z = 0 indicates the initial position of the inter-
face. The zero-flow conditions are set at the upper and
lower boundaries of the rated region. The effect of com-

pressibility is insignificant: the Mach number /ch ~
0.1, where ch is the velocity of sound in the heavy sub-
stance. The periodicity conditions are satisfied at the
lateral boundaries.

Figure 1 emphasizes the existence of transverse
variability (the horizontal chains of columns extended

along the vertical). The finite acceleration  of the
mixing zone expansion is ensured by the increase in the

column thickness with time. Let  be the average

thickness of a pair of adjacent columns,2  ~ h+. The

length of the vertical segments  and  in Figs. 1a

and 1b and of white horizontal segment  at the top
of Figs. 1a and b were calculated using formula (1) with

2 The averaging procedure and the straggling relative to the mean
value will be considered below.

ḣ+

ḣ̇+

λ
λ
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5% h–

6%
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α+ = 0.05 and α– = 0.06. Figure 2 presenting the profiles
of the vertical velocity component in various cross sec-
tions supplements Fig. 1c. In the upper part (the zone of
penetration into the heavy substance), the velocities are

0
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⋅
h5%

+

1 2 3 4 5 6
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Fig. 2. Vertical velocity component w(x, z, t = 6) in horizon-
tal cross sections at levels z marked by arrows in Fig. 1c:

(a) upper cut z = 0.7 ; (b) middle cut z = 0, and (c) lower

cut z = .

h+
5%

h–
6%

–
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low. Fast flows are observed in the lower part of the
mixing zone. This is clearly seen in Fig. 1c. Note the
asymmetry of the jets of the heavy and light liquids at
the level z = 0. Ascending jets are narrower and faster,
µ = 1/10. This asymmetry decreases as the values of ρl

and ρh become closer. In calculations with µ = 1/3, dis-
tribution w(x) is almost invariant to the inversion rela-
tive to the vertical direction (w  –w).

The most interesting feature of the evolution is the
increase in the size of structures with time. It is mani-

fested in the increase of the transverse scale  with
time t. In our calculations, we put g = 1 and L⊥  = 2π,
where L⊥  is the transverse size of the computational
“box”. This determines the units of time measurement.
The hierarchy of successive enlargements is called the
inverse cascade [3, 4]. This term is adopted to empha-
size the difference from the Kolmogorov cascade of
fragmentations towards high frequencies.

4. SPECTRA AND CORRELATORS: 
CORRELATION LENGTH

Turbulent mixing is on the average invariant to
translations in the horizontal direction. Consequently, it
would be interesting to construct the spectra of vari-
ables along the spatial coordinate x. The “bumps” on
these spectra indicate the presence of well-developed
transverse structures. Figure 3 shows the Fourier spec-
tra of H, ρ and w at instant t = 6 to which Figs. 1c and

2 correspond. Here, H(x, t) = [ ρ(x, z, t)dz]/(ρh – ρl) is

the mass contained in a vertical column (the integral is
taken from the “bottom,” z = –hdown, to the “top,” z = hup,
of the box). The spectrum wn(z = 0, t = 6) was calcu-
lated from the function w(x, z = 0, t = 6), whose graph
is presented in Fig. 2b:
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Fig. 3. Spectra of H, ρ, and u in the middle plane z = 0 in which the interface was at t = 0: (a) the amplitudes Hn(t = 6) of the Fourier
expansion of the mass H(x, t) of the column characterizing the density fluctuations associated with the columns of heavy (large val-
ues of H) and light (small H) liquids; (b) density spectrum ρ(x, z = 0, t = 6), and (c) vertical velocity spectrum w(x, z = 0, t = 6). The
spectrum formed by vertical segments corresponds to calculations with the number Nx of nodes along the horizontal equal to 400,
while the spectrum of markers corresponds to Nx = 600.
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Fig. 4. Graphs of the vertical velocity correlators Kw(x, z = 0, t = 6) and column mass correlators KH(x, t = 6). The solid curves
correspond to Nx = 400 and the dashed curves to Nx = 600. In order to estimate the correspondence of scales, the correlation lengths
are shown in Figs. 1a and b in the form of horizontal segments.
Figure 4 shows the graphs of correlators (correlation
between columns)

(2)

for z = 0, t = 6. Correlator (2) is an even function, K(x) =
K(–x), with a period L⊥  = 2π. For this reason, it is mean-
ingless to plot its graph on an interval larger than 0 <
x < L⊥ /2. The properties of parity and periodicity of
function K(x) on a “long” segment L⊥  are “imposed” by
the periodic boundary conditions on the lateral bound-
aries of the rated region. Segment L⊥  is referred to as
long here since we are interested in the correlator char-
acteristics over one or two correlation lengths lcorr ,
which will be defined below as long as the correlation
length is small as compared to the rated segment L⊥ . At
a later stage, complete correlation across the rated
region sets in, lcorr ~ L⊥ . In this case, the flow is strongly
“restricted” by lateral boundaries. At a late stage, the
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mixing along the vertical is correlated on a scale of the
order of L⊥ . An interesting example of a late state of
mixing in a box extended along the vertical and con-
taining a zigzag structure is considered in [7].

Functions ρ and w are well correlated along the ver-
tical (correlation along the column). This is clear from
Fig. 1 and from a comparison of Figs. 2a, 2b, and 2c,
which are cuts at various horizontal lines marked by the
arrows in Fig. 1c. At a stage far from the “restricted”
flow, the height of the columns is smaller than the trans-
verse scale L⊥ .

We will define the correlation length (λK) as the dis-
tance between the center x = 0 and the second peak (the
first peak is at the center). This length is associated with
one of the definitions of the average size of a transverse
structure. With such a definition, the average size is
characterized by the total thickness of two adjacent col-
umns along the horizontal (the substance precipitates in
one column and rises in the other column).3 It is impor-
tant to note that in the case of a strictly periodic alter-
nation of columns, this length is equal to the period of
the flow. Thus, the above definition is a natural general-
ization to the randomly periodic case, when the exact
period cannot be defined, but a typical scale exists (the
description of random periodic functions can be found
in [3, 4]). The choice of the scale from the total width
of adjacent columns appears as more justified than its
determination based on the half-width of the first corr-
elator peak with the maximum at the center x = 0. As a
matter of fact, with such a definition the scale has a cor-
rect asymptotic form in the limit of periodic functions.

The lengths λK determined from functions Kw and
KH at instants t = 4 and 6 are presented respectively in the
form of thin and bold horizontal segments at the bottom of

3 We are speaking of coupled columns and of direct and backward
flows. In an incompressible liquid, the backward flow compen-
sates the sinking volume.
 AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001
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Figs. 1a and 1b. This is done to ensure the cross com-
parison of the sizes determined in different ways.

5. VARIATIONS OF THE “BOX” HEIGHT, 
DENSITY RATIO, AND MESH STEP

The Fourier transforms (Fig. 3) and correlators (2)
(Fig. 4) provide information on the statistics of trans-
verse structures. Before going over to the spectral sta-
tistics, we will briefly describe the numerical proce-
dure. In our series of computations, the amplitude and
the horizontal scale of initial noise were varied. Thus,
we investigated the transition from the initial to the
self-similar stage. The calculations were made in the
2D and 3D geometries. The results presented below
were obtained in the 2d case for which rich information
has been accumulated. In our computations, the step
of the computational mesh was varied (the number of
nodes Nx on a segment of the x axis varied from 100 to
600). The box height hbox = hdown +hup was also varied
(the versions with hbox/L⊥  varying from 2 to 14 were
used; the ratio hdown/hup was usually 3:2 or 5:4). The
ratio of densities was varied as follows: the versions
with a large (At ≈ 1, µ = 1/10), intermediate (At < 1, µ =
1/3) and small contrast ρ (At ≈ 0, µ = 1/1.2, Bouss-
inesq’s case) were used. The computations were made
using two numerical codes. In one of these codes, the
Belotserkovskii–Davydov method of large particles [8–
10] was used, while in the other code, use was made of
the quasi-monotonic grid-characteristic scheme with
the second-order approximation [8–10]. The grid-char-
acteristic method was verified by comparing with two-
and three-dimensional analytic solutions of the one-
mode problem [11] and by comparing with two- and
three-dimensional test problems proposed at the
Marseille [12] and previous Workshops on Physics of
Compressible Turbulent Mixing.

6. SHORT-SCALE PERTURBATIONS 
AND INERTIAL GAP

Figures 1–4 illustrate the evolution of mixing from
short-scale initial perturbations after the start. At t = 0,
the surface velocity field of the form

(3)

was specified. At the initial instant, the boundary of the
contact coincides with the horizontal z = 0. The short-
scale modes were characterized by the wave numbers n
(kn = 2π/λn = n for L⊥  = 2π) in the interval ksw1 < n < ksw3
with the edges 30 < n < 120 or 50 < n < 100. The ampli-

tudes  and  appearing in formula (3) were cast by
a random number generator (superscript 0 on the
amplitudes indicates that t = 0). The modulo maximum
value of the average amplitude was at point ksw2 with

v ∇ ϕ , ϕ– ϕn,∑= =

ϕn z an
0 nxcos bn

0 nxsin+( )e n z– /nsgn=

an
0 bn

0
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ksw2 = ksw1 or with ksw2 from the interval between ksw1
and ksw3.

It is important that there is a gap free of initial per-
turbations between mode k1 with n = 1 and with wave-
length λ1, which is equal to the “box” width L⊥ , and the
short-scale range. Its logarithmic width in doublings
was Ndoubl = ln2(ksw1/k1) = 5–6. This width defines the
number of generations of pair “confluences” of col-
umns or the number of scale doublings [3, 4] and,
accordingly, the width of the inertial interval in which
the quadratic dependences (1) are valid. An inverse cas-
cade in this inertial interval follows the scale-invariant
mode.

7. TRANSIENT PROCESSES AT LOW 
AND HIGH FREQUENCIES AT THE EDGES

OF THE SELF-SIMILAR RANGE

The stabilization of the self-similar mode for k ~ ksw

and its termination for k ~ k1 occur gradually. The
departure from the quadratic self-similarity for k ~ k1 is
associated with the “restriction” of the flow by the lat-
eral boundary conditions. The restriction of mixing
leads to depletion of the spectrum and to a decrease in
the number of dynamically significant transverse
modes in the distribution of amplitudes over harmonics
fn(z, t), where fn is the Fourier transform of one of the
functions f(x, z, t) = (ρ, u, w, p) being calculated.

The lateral boundaries of the rated region or experi-
mental cuvette generate a number of dynamic effects.
We will confine our analysis to the case when the upper
and lower boundary conditions are immaterial (the
cuvette is extended along the vertical). In connection
with lateral boundaries, we will speak of the “bottle-
neck,” its early effect on the flow approaching it, and
the passage through the bottleneck. Let us specify the
approach of the bottleneck (we are speaking of the
approach in the space of wave numbers). In the mode
language, the mode with k1 (n = 1) corresponds to the
bottleneck. The instantaneous fields of variables in the
mixing zone can be described by spectra fn in the hori-
zontal wave modes kn. These spectra turn out to be con-

centrated (see Fig. 3). Let  (or ) be the inverse scale
near which the spectrum is localized; i.e., the ampli-
tudes fn which are significant at the given instant are
concentrated (a “bump” in the spectrum). The value of

 decreases with time (inverse cascade). Accordingly,
the spectrum approaches the bottleneck k1.

Owing to transient processes for k ~ ksw and k ~ k1,

the real width of the self-similar interval  = Ndoubl –
(∆Nsw + ∆N1) is smaller than Ndoubl. The quantities
∆Nsw and ∆N1 characterize the losses associated with
short- and large-scale limitations. The increase in the

quantity  required for improving the accuracy of
the analysis can be achieved, first, by the enlargement

kn n

kn

Ndoubl
real

Ndoubl
real
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of computer resources and, second, by analyzing tran-
sient processes on small and large cutoff scales.

8. “FORGETFULNESS” 
OF SHORT-SCALE PHASES

(ESTABLISHMENT OF SELF-SIMILARITY): 
DELAYS DUE TO SCHEMA EFFECTS

Let us consider a transient process for large wave
numbers k ~ ksw. The number of meshes in the grid over
wavelength λsw1/∆ varied from 4 to 15, where λsw =
2π/ksw and ∆ is the mesh spacing. For example, in the
calculations depicted in Fig. 1, we had λsw1/∆ ≈ 8 (400 ×
1000 mesh). The establishment of self-similar mode
after short-scale initiation occurs as a result of a complex
process involving the enhancement of the initial perturba-
tions to the level of nonlinear saturation and then the
enhancement of the combination harmonics forming the
“infrared” wing in the distribution of amplitudes fn.

In the case when the initial amplitudes are linear, the
rough estimation of the duration ttrans of the transient
process gives

(4)

Here  = 0.6  is the limiting velocity
of the ascent of 2D bubbles in the one-mode regime,

which is taken for estimation [11],  = β(λsw/∆)γsw,

γsw =  is the increment of the Rayleigh–Taylor
instability, and β < 1 is the correction factor taking into
account the stabilizing effect of mesh discretization. Its
value depends on the number of nodes per wavelength.
For λ/∆ ~ 1, the instability is strongly stabilized, β ~ 1.
For λsw1/∆ = 3 to 6, the classical increment decreases by
a factor of 1.5–3.

The average initial velocity of short-wave perturba-
tions is defined as

If the initial spectrum contains N modes, we have  ~

, where  = ,  = 
is the root-mean-square amplitude of the initial short-
wave noise, and N = ksw3 – ksw1 for L⊥  = 2π. The signif-

icant factor  connecting the quantities  and 
appears as a result of summation of N random modes.
In the version depicted in Fig. 1, the initial perturbation

 amounts approximately to 2% of the nonlinear

velocity .

For moderate values of number λsw/∆, the effective
value of the initial velocity amplitude decreases:

ttrans γsw
code( ) 1–

wsw
nonl/wsw

0( ).ln≈

wsw
nonl 1 µ–( )g/ksw

γsw
code

Atgksw

wsw
0 2π( ) 1– w x z 0 t 0=,=,( )[ ]2 xd

0

2π

∫ .=

wsw
0

Ncn
0 cn

0 an
0( )2

bn
0( )2

+ an
0( )2

bn
0( )2

N w0 c0

wsw
0

wsw
nonl
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which determines the evolution of instability in accor-
dance with formula (4). This is associated with the 2π
effect and discretization. The distance he along the ver-
tical over which velocity (3) decreases by a factor of e
amounts to λ/2π. Consequently, for λsw/∆ = 3 to 6, we
obtain he = (0.5–1)∆. This means that the surface layer
of a thickness approximately equal to he, in which the
velocity field is concentrated at t = 0, is very thin as
compared to the mesh spacing ∆. Under these condi-
tions, the effect of mesh enlargement is significant. The
action of β and β' factors prolongs the transient process.
Thus, the duration ttrans (4) of the transition is deter-
mined by number λsw/∆. For a fixed value of ksw , the
process duration ttrans on coarse meshes is larger. In the
grid-characteristic method, ttrans ~ 1 (γsw1 = 1/6.4) for
Nx = 400 (the number of nodes along the horizontal)
and ksw1 = 50 (the edge of short-scale range). It should
be noted that for identical parameters, the transition
rate in the method of large particles is higher than in the
grid-characteristic method.

9. SIMILARITY AND “STATIONARITY” 
(OR UNIVERSALITY)

In a transient process, the phase information con-
tained in high-frequency modes is gradually lost. The
process terminates when a self-similar flow is formed,
which is similar, or universal (and “stationary” in this
sense) in the corresponding self-similar variables. The
advantage of self-similarity is exactly this stationarity
or universality and, hence, the relative simplicity of
mixing.

10. SELF-SIMILARITY
OF VERTICAL EXPANSION

In the given case, self-similarity is of the power
(quadratic) type. The stationary (self-similar) total
thickness of the mixing layer is Hss = h/gt2, the sub-
script “ss” indicating the affinity to the self-similar
mode. The stationary velocity and acceleration of the
expansion of the layer as a whole are defined as Vss =

/gt and Gss = /g. The thickness, velocity, and accel-
eration of the upward expansion of the mixed layer of a
heavy liquid are specified by the time-independent con-

stants , , and .

These quantities are determined by two universal
functions of the density ratio µ. We can write

(5)

wsw
0 weff β'wsw

0 ,=

β' β' λ sw/∆( ) 1,<=

ḣ ḣ̇

Hss
+ Vss

+ Gss
+

Hss
+ α+

1 µ–
1 µ+
------------ α+At, Vss

+ Gss
+ 2Hss

+ .= = = =
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The factor 1 – µ in the numerator of relation (5) is
exact. It follows from the Archimedes law, g  (1 –
µ)g. The factor 1 + µ in the denominator is associated
with the inertia of the light liquid in the mixture of light
and heavy liquids. It follows from natural and numeri-
cal experiments that the coefficient α+ in relations (1)
and (5) remains approximately unchanged upon the
variation of ratio µ. The accuracy of modern experi-
ments does not allow us to refine the weak dependence
of α+ on µ.

Since we have chosen two geometrical characteris-
tics h+ and h– (1) for describing the vertical structure,
there also exist two universal functions associated with
the distribution along the vertical. The second is the

function (µ). Usually, the dependence of the asym-
metry coefficient on µ, h–/h+ = As(µ) is investigated

instead ( (µ) = α+AtAs) [3, 4].

11. SELF-SIMILARITY 
OF AN INVERSE CASCADE

A cascade is a sequence of logarithmic links (or
generations) with a hierarchical structure resembling a
geometrical progression. We fix a certain instant tf .

Let  = 2π/  be the characteristic wave number for
horizontal structures at this instant. The time evolution
for t > tf involves the saturation (restriction, termination
of growth, and suppression) of higher harmonics with
k >  and simultaneously the enhancement of subhar-

monics with k <  [3, 4]. This leads to a decrease in .
A link in the cascade is regarded as passed when the
inverse scale  decreases by a factor of q, where q ~ 1
is the common ratio (step) of a geometric progression.
Usually, we are dealing with doubling and assume that
q = 2, which is justified to a certain extent [3, 4]. In view
of the quadratic form of self-similarity (1), the progres-

sion step in time amounts to tn + 1/tn = .
The scale invariance of a cascade indicates the sim-

ilarity of generations. If we compare the instantaneous
fields of variables (ρ1, u1, v1, w1, p1) and (ρ2, u2, …) at
instants t1 and t2, they are on the average identical (to
within the phase) after the similitude transformation:

(6)

Examples of the compression transformations (6) are
presented in Figs. 5–8. Disregarding the phase informa-
tion, we see that the approximate similitude of density
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fields (Figs. 5–7) and velocity fields (Fig. 8) takes
place. A certain residual effect of the mesh is worth not-
ing. Self-similarly scaled spatial sizes of the columns
along the vertical and horizontal are approximately
identical; cf. the upper (t = 4) and lower (t = 6) fields in
Fig. 5. In view of the mesh effect, the fine substructure
in prevailing columns for t = 6 is sharper for t = 6; cf.
the 400 × 1000 mesh (Fig. 5) and the 600 × 1500 mesh
(Fig. 6). Figure 7 corresponds to the density ratio µ = 1/3;
in Figs. 5 and 6, we have µ = 1/10.

The numerical verification of the fulfillment of the
similitude criteria carried out by us here proves that

0

0

1

2

–1

–2

–3
2 4 6x

t = 6

t = 4

(‡)

(b)
z

Fig. 5. Comparison of ρ(x, z, t) fields at instants t = 4 and 6.
Coordinates x and z are scaled in accordance with relations
(6) (cf. Figs. 1a and 1b). The mesh size is 400 × 1000, µ =
1/10; the grid-characteristic method is used. Horizontal seg-
ments indicate the size of 50 mesh spacings.
SICS      Vol. 92      No. 4      2001



722 INOGAMOV et al.
these criteria are approximately satisfied outside the
initial (self-similarity stabilization) and final (effect of
bottleneck, see Section 7) transient stages.

12. SPECTRA EVOLUTION: INITIAL REGION 
AND THE MEASURE OF NONLINEARITY OF 

THE INITIAL PERTURBATION

In the previous section, we considered the evolution
in conventional coordinates (coordinate representation,
coordinate space) not only along the vertical, as in Sec-
tion 10, but along the vertical and horizontal. Let us
now analyze the time evolution in the space of wave
numbers (momentum representation, momentum
space). Figure 9 shows a cinegram illustrating the grad-

2 4 6x

0

1

2

–1

–2

–3

z
t = 6

(b)

t = 4

(‡)

0

Fig. 6. The same as in Fig. 5 for a finer mesh of 600 × 1500.
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ual rearrangement of the spectrum. The spectrum has
the shape of a bump localized near the characteristic

inverse scale  = 2π/ . In the case of small (and,
hence, linear) initial perturbations, the amplitude of the
initial modes are the first to increase. The position of
the bump on the n axis remains unchanged in this case
(the numbers of significant modes do not change) and
only its “height” increases. As the certain value of the
bump height (saturation height) is attained, its further
increase slows down. A further increase in the height is
accompanied by a displacement of the bump to the left
along the n axis.

Let us suppose that saturation takes place for t ≈ tsat.
For t > 0, the bump acquires an infrared, or subhar-

k λ

2 4 6x

0

1

2

–1

–2

–3

z
t = 6

t = 4

0

(b)

(‡)

Fig. 7. The same as in Figs. 5 and 6 for a different density
ratio 1/3; mesh size 200 × 500.
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monic wing on the left side. As long as t ! tsat, its
amplitude is smaller than the amplitude of modes with
k ~ ksw . For t ~ tsat, the amplitudes of the wing and of the
bump itself become equal. This leads to a displacement
of the bump to the left.

In the case of saturated initial amplitudes, the dis-
placement to the left begins at the very outset. This cor-
responds to moderate (average) initial perturbations or
amplitudes which are nonlinear from the very outset.
The magnitude of the saturation amplitude depends on
the shape of the bump and its width along n. Let us find
out why the width of the spectral region in which the
initial perturbation is concentrated affects the nonlinear
saturation amplitude. We consider a rectangular bump.
Such a bump is composed of modes having approxi-
mately identical amplitudes and filling the spectral
region ksw1 < kn < ksw3, where N = ksw3 – ksw1 is the num-
ber of modes in the initial bump. We assume that the
perturbation is concentrated in the spectral region
whose range is not logarithmically wide: ksw3 ~ ksw1
rather than ln(ksw3/ksw1) @ 1. The phases change at ran-
dom from mode to mode.

In the case of a single mode (N = 1), we take the ele-
vating speed of periodic bubbles,

0

H t = 3

0

H t = 4

t = 6H

0

1

–1

0 2 4 6
x

0 2 4 6
x

–1

0

1

2

w

0

w

0

w

Fig. 8. Horizontal profiles of H and w at the middle section
z = 0 at instants t = 3, 4, and 6. Profiles are scaled in accor-
dance with (6).
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(7)

for estimating the saturation amplitude from velocity
(see [11] and the literature cited therein), where F2 is
the Froude number. For the single mode, the elevating
speed (7) coincides in order of magnitude with the
amplitude of the harmonic [3, 4] (for t ~ tsat).

In the case of many modes (N @ 1), the root-mean-
square velocity (over the space)

(8)

differs significantly from the bump-averaged amplitude
 [13, 14, 3, 4]. For the sake of definiteness, the mid-

dle cut z = 0 is taken in (8). In view of the summation
of a large number of harmonics, the velocity  aver-
aged over x is clearly larger than the amplitude-aver-
aged velocity . If the harmonics are phased, we have

 ~ N  due to interference. It is well known [13, 14,
3, 4] that the sum of harmonics with random phases

wsat wb F 1 µ–( )g/ksw,= =

ksw ksw1 ksw3, F 0.6,≈= =

w
1

2π
------ w x z, 0 t,=( )[ ]2

0
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∫ dx=
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n
Fig. 9. Evolution of the vertical velocity spectrum. Ampli-

tudes wn =  are shown. The wave number scale is

the same. Dark arrows mark the characteristic inverse scale,
while light arrows correspond to twice and half as large scales.
The horizontal segments give the saturation amplitude.
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increases in proportion to the square root of the number
of addends:

(9)

Indeed, it is known that

where ψn is the random phase on the segment [0, 2π]
(the problem on random walks or on diffuse spreading).
Accordingly, a rough estimate of the saturation ampli-
tude has the form

This expression follows from formula (9). The value of
 is calculated by averaging in accordance with for-

mula (8), and the quantity wb is defined by formula (7).
Apart from the initial perturbations with small and

moderate amplitudes considered by us, large initial
velocities  are also possible. If the value of  is
much larger than wsat, the effect of gravitation in the ini-
tial region is small. The motion occurs in the mixing
mode associated with the Richtmyer–Meshkov insta-
bility [15–20, 3, 4]. In this mixing mode, the displace-
ment in the wave numbers n is small. The duration of
the initial interval is of the order of 1/ksw . During
this time interval, the rates of the Richtmyer–Meshkov
mixing decrease to values of the order of wsat. After this,
the Rayleigh–Taylor evolution begins.

13. EVOLUTION ON THE WHOLE: BOUNDARIES 
OF THE SELF-SIMILAR REGION

We single out the self-similar region from the evolu-
tion on the whole. The latter includes the initial, self-
similar, and final regions (three regions in all) presented
in Fig. 9. For the chosen values of mesh density (Nx =
200, 400, 600, L⊥  = 2π), wavelength, and perturbation
amplitude (kswl ≈ 50, the perturbation is linear), the for-
mation of the self-similar stage begins at tbegin ≈
2.5/ . A noticeable deceleration of mixing in the

bottleneck (see Section 7) begins at tend ≈ (6 to 7)/ .
The value of tend weakly depends on small-scale char-
acteristics (mesh spacing and the parameters of short-
scale perturbation).

14. SELF-SIMILAR SUBSTITUTIONS 
IN THE COORDINATE REPRESENTATION

We carry out the formal substitution

w̃ Nwn.∼

iψn( )exp
n 1=

N

∑  ~ N ,

wsat wb, wn wb/ N .∼∼

wsat

w0 w0

w0

At

At

x z t, ,( ) x̂ ẑ t, ,( ), f x z t, ,( ) f̂ x̂ ẑ t, ,( ),

f ρ u w p, , ,( ), x̂
x

gt2
-------, ẑ

z

gt2
-------,= ==
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(10)

The sets of variables (x, z, t, f) and ( , , t, ) are
equivalent. Both sets are suitable for describing a flow
of the general (i.e., not necessarily self-similar) type.
The self-similar coordinates  and  together with time

 are required to study the establishment and breakdown
of self-similarity. These processes occur in the initial and
final regions, respectively (see Section 13).

Let us consider the evolution of the mixing zone in
the self-similar variables. From the three regions, the
middle is self-similar (see Section 13). In this region,
there is no motion in the self-similar variables (on the
average, to within fluctuating phases). This is the
essence of “stationarity” (see Sections 9 and 10). In

variables ( , , t, ), the motion (i.e., the dependence
on t, or nonstationarity) is observed on the initial seg-
ment. In the self-similar region, the motion is “frozen.”
For tbegin < t < tend, time t is omitted from the set of argu-
ments ( , , t), and variables f become functions of the
self-similar “coordinates” ( , ) alone. For t > tend, the
motion (nonstationarity) is resumed as we approach the
bottleneck (see Section 7).

In the self-similar region in the physical variables

(x, z, t, f), the coarsening of the structures  ∝  t2 and an
increase in the amplitude of fluctuations of u, w, and p
are observed (the amplitude of fluctuations of ρ
remains unchanged). Substitutions (10) just establish
the fact that the evolution is reduced to the scaling
transformation (scaling). Let us consider, for example,
a random periodic function corresponding to the verti-
cal component of velocity w(x, z, t). The step and
amplitude of this function increase in proportion to t2

and t, respectively. This is illustrated in Fig. 8.

It should be noted that the term random periodic
function [3, 4] (or distribution) is more appropriate than
the term quasiperiodic function for studying the instan-
taneous distributions fluctuating during a displacement
along the horizontal we are dealing with. It correctly
characterizes the emerging structures. The term quasi-
periodic function is applied to a finite sum of periodic
functions [21]. Its Fourier transform and correlator dif-
fer from those of a random periodic function.

15. SELF-SIMILAR SUBSTITUTIONS
IN THE MOMENTUM REPRESENTATION

The coordinate and momentum representations are
connected through the direct and inverse Fourier trans-
formations:

ρ x z t, ,( ) ρhρ̂ x̂ ẑ t, ,( ),=

u x z t, ,( ) gtû x̂ ẑ t, ,( ), w x z t, ,( ) gtŵ x̂ ẑ t, ,( ),= =

p x z t, ,( ) ρhg2t2 p̂ x̂ ẑ t, ,( ).=

x̂ ẑ f̂

x̂ ẑ

t̂

x̂ ẑ f̂

x̂ ẑ
x̂ ẑ

λ
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(11)

(12)

For example, we can write

(13)

In formulas (11) and (12), as well as in the subsequent
analysis, f(x) ≡ f(x, z, t), f(k) ≡ f(k, z, t). In the momen-
tum representation, the equivalent of substitution (10)
in the wave number has the form

(14)

Let us analyze the transformation of the spectral
densities (Fourier transforms) of the required functions
as a result of the self-similar substitution. Here, there is
a delicate aspect associated with the delta-correlation
of the Fourier transform of f(k) and with peculiarities in
the integration of delta-correlated functions. In the case
of smooth functions f(k), the Fourier expansion (13) in
the self-similar mode has the form

where  is defined by relation (14). The spectral func-
tions f(k) in the problem on mixing differ considerably
from smooth functions, and the self-similar relation

w(k) ∝  t3  is not observed. The correct relation

w(k) ∝  t2  will be derived below.

In the problem under investigation, w(x) is a random
periodic function, while w(k) is a delta-correlated (nee-
dle-shaped) function [3, 4]. In order to emphasize the
peculiarities in the integration of such strongly non-
smooth functions, we have introduced the parentheses
and subscript s into formulas (12) and (13). Replacing
the integral by the limit of the sum, we must replace the

linear differential dk by the root differential  [3, 4].
Accordingly, the spectral density f(k) has fractional
dimensions (it contains a half-integer power of the
dimension of length).

This circumstance has an important corollary asso-
ciated with the scaling of self-similar representations of
the required functions. Owing to the root differen-
tial, the spectral densities are transformed under the

f k( ) xd
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self-similar substitution according to the following
rules

where H is the mass of a column (see Section 4). In the
self-similar mode, time is omitted, and hence we obtain

(15)

These relations are significant. Among other things,
relations (15) lead to the nontrivial conclusion that the
maximum spectral amplitude of pressure fluctuations
increases in proportion to t3. These relations make it
possible to analyze the universal spectra describing
mixing in the self-similar mode. The spectra are univer-

sal in the ,  coordinates.
Let us show how relations (15) are derived. By way

of an example, we consider the velocity transformation
at the middle cut, z = 0. In the self-similar mode, we
have w(x, 0, t) = gt ( , 0), (10). The Fourier expan-
sion (13) for the needle-shaped spectral density w(k, 0,
t) can be written as

(16)

In formula (16), we replace x by  and w(x) by 

in accordance with (10) and dk by d  and k by  in
accordance with (14). As a result, expansion (16)
assumes the form

(17)

Theoretically, the self-similar analogue of expansion
(16) must have the form

(18)

Comparing integrals (17) and (18), we find that the self-

similar spectral density ( , 0) in (18) is equal to the
fractional expression in the integrand of (17). This
leads to the velocity transformation appearing in the set
of transformations (15). The remaining expressions in
this set can be derived similarly.

H k t,( ) g3/2= t3Ĥ k̂ t,( ),

ρ k z t, ,( ) ρh gtρ̂ k̂ ẑ t, ,( ),=

w k z t, ,( ) g3/2= t2ŵ k̂ ẑ t, ,( ),

p k z t, ,( ) ρhg5/2t3 p̂ k̂ ẑ t, ,( ),=

Ĥ k̂( ) H k t,( )
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ρh gt
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16. SELF-SIMILAR VARIABLES IN THE BOX

Let us support the formal derivation of the important
relations (15) by a more visual derivation. We consider
mixing in a box. There is a difference between the Fou-
rier integral and the Fourier series. The integral is writ-
ten for unbounded systems with x ∈  (–∞, ∞). We are
interested in the case of a box and the corresponding
series expansion in the box modes {kn = n}. The deriva-
tion of relations (15) was based on the peculiarities of

the integration of delta-correlated functions, ( dk)s =

. The main property of the spectral densities f(k)

and  defined through integral  is that they

depend neither on the form of discretization of the k
axis nor on the constraints L⊥ , L⊥  = ∞ or L⊥  < ∞ (this is
demonstrated in [3, 4]). Consequently, they are suitable
for constructing universal spectra. Let us define an ana-
logue of the spectral densities in a box.

Far from the bottleneck (  ! L⊥ ), mixing in a box
does not differ from mixing in an unbounded system.
The Fourier spectrum in x in the mixing zone −h– < z < h+

has the form of a broad bump (∆k ~ ) located near the

characteristic wave number  (see Sections 4, 7, and 12),

Fig. 3. The bump contains approximately /(kn + 1 – kn) =

L⊥ /  equidistant (kn + 1 – kn = const) box modes. It is
important that at a large distance from the bottleneck,

this number is large (L⊥ /  @ 1). Let us consider a large (l)
and a small (s) box with the lateral size Ll and Ls < Ll,

respectively. As long as  ! Ls, the flows in the boxes
starting from the same instant are statistically equiva-
lent. Consequently, fl(x) = fs(x), where the coordinate
functions fl(x) and fs(x) correspond to different boxes.
At the same time, the amplitudes of the Fourier expan-
sion of functions f(x) in different boxes are different:
(fn)l ≠ (fn)s, (fn)l < (fn)s. This makes these amplitudes
inconvenient. Clearly, this is due to the difference in the
number of modes constituting the bumps in different
boxes since the value of  is the same, and the separa-
tion between levels kn in the large box is smaller. An
analogue of the spectral density (15), which would be
invariant to the box width, can easily be obtained using
the normalization

(19)

The situation with the evolution in time is similar.
Let us consider a box with L⊥  = 2π. We compare the

instants ts and tl > ts, (tl) ! L⊥ . Formulas (10) specify
the time scaling for the self-similar functions f(x) in the
coordinate representation. For instance, w(x, 0, t) ∝  t.
Let us compare the spectral bumps of w(x, 0, t) for ts

∫
kd∫
f̂ k̂( ) kd∫

λ

k

k

k

λ

λ

λ

k

f̃ n
f n

δk
----------, δk kn 1+ kn–

2π
L⊥
------.= = =

λ
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and tl. The number of box modes covered by bump tl is
smaller. This causes an additional increase in amplitude
wn. In order to obtain an invariant quantity, which is the
same in all self-similar generations of coarsening, we
must compensate this increase.

Let us consider quantity wn(x, 0, t)/t. In the self-sim-
ilar mode, it is proportional to acceleration and constant
(see formula (10)). Let us now consider the Fourier
amplitude wn(0, t)/t of the Fourier expansion of this
quantity. We construct the series of amplitudes not as a
function of the harmonic number n, but as a function of
the self-similarity index (number):

(20)

We assume that g = 1 and L⊥  = 2π. Transformation (20)
generalizes transformation (14) to the case of a box. In
the self-similar mode, the position of the amplitude
bump (0, t)/t on the  axis is invariant. Let  be

the position of the peak of the bump and ∆  be its spec-
tral width. In the self-similar regime, these quantities
do not depend on time.

Conversely, amplitudes (0, t)/t increase with
time t. This is due to a decrease in the number of modes
on interval ∆ . The separation between adjacent
modes on the  axis is given by

(21)

It can be seen that this quantity increases with t. Conse-
quently, the number of modes in the bump is of the
order of

(22)

and decreases with increasing t. The sum of Fourier
harmonics wn(0, t)/t constituting the bump gives the
quantity w(x)/t,

(23)

In the self-similar regime, this quantity is on the aver-
age constant in time. It is important that for Nmod @ 1,
the phases of adjacent harmonics /t with numbers n
and n + 1 are not mutually correlated. In order to ensure
the constancy of w(x)/t (23), amplitudes /t must

therefore increase in proportion to 1/ , where
Nmod is defined by formulas (21) and (22). As in the case
(19), this increase can be compensated and the required
invariant quantity can be obtained by introducing the
spectral density

(24)

n̂ nt2.=

wn̂ n̂ n̂max

n̂
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This formula is an analogue of the spectral densities
(19) and (15).

Formula (24) defines the spectral self-similar vari-
ables in the case of a box. Consequently, the spectra in
variables

(25)

are universal for a box. Generalizing the above deriva-
tion carried out for the special case of vertical velocity
at the middle cut z = 0,  = 0 to the general case of

( , ), we obtain the following expressions for

 and :

(26)

We can conditionally state that these expressions are

obtained from formulas (10) by dividing by ,  ∝
1/t2. For example, Hn(t) ∝  t2 / .

17. ON THE POSSIBILITY OF A CONVERGING 
DESCRIPTION OF TURBULENT MIXING

The speed and memory of multiprocessor comput-
ers are rapidly increasing. This will permit in the future
to use denser meshes (to increase Nx and to reduce the
spacing ∆), to reduce the time step (to decrease the
Mach number and compressibility effects at late stages)
and, accordingly, to extend the self-similarity range.
What is the best way to take advantage of growing
resources (what must the future strategy be)? We are
speaking of the fundamental, or theoretical, aspect of
the problem (the convergence of the self-similarity
description) rather than of engineering applications.
The latter always have details requiring additional
resources. We will propose below a procedure for pro-
cessing the results of numerical simulation, which can
be refined or improved (and, hence, converging in this
sense). Successive refining is associated with a gradual
increase in the computer power. The procedure is based
on an analysis of the statistical features of mixing,
which makes it possible to separate the random noise
and to single out the main aspect of mixing. The latter
is associated with the existence of clusters of columns
(bubbles). The description of a cluster and the interac-
tion of columns in its requires refinement.

The primary products of any simulation (including
high-quality modeling) are the sequences of instanta-
neous fields (frames) f(r, ti), t1, t2, …, similar to those
presented in Figs. 1a and 1b, recorded and stored in the
computer memory. Let us find out which way of prod-
uct processing is the most promising for obtaining a
comprehensive description of self-similarity.
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The processing includes three stages. At the initial
stage, we prove the self-similarity of mixing by verify-
ing the conditions of statistical self-similarity of fields
(6), (10) (i.e., self-similarity on the average; see Sec-
tions 5–8). It can be seen that the field recording is

“long” (in the limit, L⊥  @ ) and overloaded with
phase information. The latter includes the recording of
specific amplitudes and the positions of columns on the
x axis.

At the second stage of data processing, we contract

the recording in a broad (L⊥  @ ) box to a recording on
a finite segment. This is achieved by a transition to the
momentum representation and Fourier transforms. The
substitution is possible owing to the invariance to trans-
lations in a direction transverse to acceleration g. The
excessive (phase) information in the spectra is con-
tained in delta-correlated phase fluctuations (Fig. 10).
In the case of such fluctuations, the phase of a harmonic
in the spectrum changes by a large quantity ~π upon an
infinitesimal displacement of the wave number k in the
spectrum [3, 4]. In the case of numerical simulation,
discrete Fourier series are obtained. The excessive
information on the mutual phase arrangement of
clusters formed by columns in the case of the series
is contained in the fluctuations of phase ψn by a large
value ~π from one of neighboring harmonics to another
(see Fig. 10).

The phase information is of no importance. Its ran-
dom nature is due to the attenuation of the correlator
(see Fig. 4) upon a shift over a distance of the order of
several column widths. Phases change by 100% from
one realization to another. This is due to the exponential
divergence of the trajectories of the corresponding
dynamic system, which is responsible for the time cor-
relation of phases over intervals of the order of a coars-
ening step (see Section 11 for the definition of steps q

and ). This explains the difference in Figs. 5 and 6,
which were obtained as a result of computations with
the same initial data and different meshes. It would be
interesting in the future to extract information on the
correlation time from numerical data. The ratio qcorr =
tlost/tobs characterizes the duration of a correlation. Here
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Fig. 10. Phases ψn =  for vertical velocity

w(x, z = 0, t = 4).
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tobs characterizes an arbitrary instant starting from
which the correlation is measured and tlost is the instant
by which the correlation is lost, tlost > tobs. At the self-
similarity stage, ratio qcorr is constant. The introduction
of qcorr is required since the duration of a coarsening
step itself increases with time (in proportion to ∝ t2).

The problem of time correlation is quite complicated.
We fix an arbitrary point xf on the cut z = 0. Let us consider
the dependence of the function W(t) = w(xf , z = 0, t)/t on
argument t. In the self-similarity region, this function is
alternating (Fig. 11). Let ∆t1 be the duration of a time
interval during which the function W(t) does not change
sign (e.g., is positive). The next time interval ∆t2 during
which the function is positive is on the average longer
than ∆t1 by a factor of qt. Segment ∆t3 is still longer, and

on the average we have ∆t3 = ∆t1. This sequence
obviously forms a geometric progression. It would
be interesting to find the step qt of this progression

and to compare it with quantities qcorr and  (see Sec-
tion 11).

The function W(t) is plotted in Fig. 11. The number of
sign reversals gives an order of magnitude of the number
of coarsening generation. We consider W(t) as a function
of ln t. The quantity qcorr is defined by correlator

where the averaging is carried out over lnt'. In order to
calculate this correlator, a long self-similar stage with
many coarsening generations is required (see Sections 6
and 7 and the definitions of number Ndoubl, ∆Nsw, and
∆N1). The duration of this stage is determined by the
computer power.

We considered above the initial and middle stages of
data processing and determined the reasons behind
phase fluctuations. It is important to get rid of the arbi-
trariness associated with these fluctuations since it pre-
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Fig. 11. Sign reversals of large-scale turbulent fluctuations.
The curve describes the quantity w(xf , z = 0, t)/t.
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vails and, hence, masks the physically meaningful
information. This is done at the final stage of process-
ing, which will be described below.

18. SMOOTHING OF FOURIER TRANSFORM 
MODULI AND DETECTION OF CLUSTERS

Let us single out the meaningful information. For
this purpose, we get rid of phase fluctuations, first, by
going over to the modulus of the Fourier transform of

wn =  (rejecting the random phase ψn) and,
second, by smoothing the fluctuations of the modulus.
The typical modulus wn and phase ψn of harmonics are
shown in Figs. 9 and 10. The smoothing of moduli
means the replacement of wn by the value  averaged
over adjacent harmonics. The calculation of the mean
value  is carried out over ∆nintrn neighboring har-
monics. In order suppress the fluctuations associated
with the random mixing of clusters, it is necessary that
∆nintrn @1.

Clearly, high-performance computers capable of
simulating a logarithmically long (Ndoubl = ln2ksw1/k1)
self-similar cascade (see Sections 6 and 7) are required
for obtaining exact mean values. As a matter of fact, the
number of harmonics ∆n in a bump (see Sections 7 and

12) is of the order of L⊥ / . The averaging is exact in the
limit ∆n @ 1 since 1 ! ∆nintrn ! ∆n.

A detailed description of self-similar mixing is con-
tained in the smoothed spectra , , , , and 
of the basic functions. It was mentioned above that
these spectra are obtained as a result of three-stage pro-
cessing of the results of numerical simulation. The
quality of the spectra must be high enough to judge the
shape of a bump in the spectrum. The examples of
smoothed spectra will be given below. These spectra
must be plotted in the self-similar coordinates defined
in Sections 15 and 16.

An example with a middle section z =  = 0 was
considered by us earlier. In order to characterize the
mixing zone, the spectra at several cuts are required,
e.g., for  = ±0.5h+/gt2. By increasing computer
resources, we can cover the mixing zone Ash+ < z < h+

by a denser sequence of self-similar cuts (zcut ∝  t2,
where zcut is the vertical coordinate of the cut plane). An
increase of computer power makes it possible to draw
the spectral bump more exactly. The condensation of
cuts and refining the drawing signifies the convergence
of the advanced procedure of studying the self-simulat-
ing mixing. For the sake of comparison, it is worth not-
ing that the convergence of the theory of the turbulent
mixing length cannot be improved. This phenomeno-
logical theory can satisfactorily describe the vertical
profile. Nevertheless, it always has an error which is
generally of the order of unity.

an
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The smoothed spectra obtained at different heights
of the cut provide much richer information on the
mechanics of mixing as compared to that contained in
coefficient α+ (1), (5). It is important to note that the
smoothed spectra are closely related to correlators (2)
[3, 4] and the clusterization of several adjacent col-
umns. These spectra are the clusterization characteris-
tic, or measure. For example, the length of the left wing
of a self-similar bump determines the number of col-
umns in the cluster. The rate at which the amplitude
decreases as we move to the short-scale side is con-
nected with fractal dimension. The spectrum is termi-
nated at the viscous, diffusion, or mesh scale.

The smoothed self-similar spectra are universal (like
coefficient α+). For this reason, their computation must be
used for the mutual testing of various numerical codes.

19. THEORETICAL SPECTRUM

The main parameters defining a smoothed self-sim-
ilar bump in the spectrum are, first, the position  of

the bump peak on the axis of the wave numbers , sec-

ond, the maximum amplitude , and, third, the
bump half-width ∆ . The spectral self-similar vari-

ables  and  are defined in Sections 15 and 16 by for-
mulas (14), (15), (20), 25), and (26). Let us estimate the

position of the bump on the  axis. The elevation speed
wb for a periodic bubble (i.e., the bubble in a vertical
potential tube [11]) is given by formula (7). In a tube of
constant width λtheor, in the 2D case we have F ≈ 0.6. We
substitute ktheor for ksw in (7) and equate speed wb(ktheor)

to velocity  (see formulas (1) and (5) in Section 10)
[22, 20]. This gives the following theoretical estimate
of the transverse scale:

(27)

Let us estimate the typical bump amplitude (wn)theor

in the vertical velocity spectrum. The value of  gives
the typical velocity (see Fig. 2, in which this velocity is
compared with the velocities in columns). The scale-
invariant velocity or acceleration are proportional to

/t (see Eq. (10) in Section 14). Let us distribute this
self-similar acceleration among the Nmod modes with a
random phase, which constitute the bump. In accor-
dance with (9), we have

(28)

We can write

(29)

where the coefficient αH corresponding to the characteris-
tic horizontal scale is introduced in analogy with coeffi-
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cient α+. Substituting Nmod from (29) into (28), we obtain

(30)

Putting g = 1, α+ = 5%, and αH = α+, we obtain  ≈
10–2At3/2. The estimates similar to (30) can also be

derived for the characteristic spectral amplitudes ,
, and  (26).

It is difficult to estimate the bump width theoretically.
The problem of the bump width is connected with the
problem of column clusters. We will now attempt to esti-
mate this width by comparing the value following from
formula (27) and the result of numerical simulation.

20. UNIVERSAL SPECTRUM: 
PRE-SELF-SIMILAR AND PAST-SELF-SIMILAR 

STAGES

The evolution of the spectra in self-similar variables
 and  is illustrated in Fig. 12. These frames were

obtained from the evolution frames presented in Fig. 9
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Fig. 12. Universal or “stationary” spectrum. The self-similar
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istic inverse scale.
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at the same instants through substitutions (20) and (26).
The intervals between harmonics on the  axis increase
with time (21), and the number Nmod of modes in the
bump increases (22) (transition from a dense to a thin
spectrum). In its evolution, the mixing process passes
through the initial, self-similar, and final stages (see
Section 13). At the initial stage, the spectrum is “con-
densed” in the “long-wave” (relative to self-similar
variables) region (near point  = 0). Since the veloci-
ties at t = 0 are finite, this spectrum differs considerably
from the self-similar spectrum:   ∞ and

  0 for t  0 (quantities  and  are
defined in Section 19). As a result of the transient pro-
cess, the long-wave spectrum is gradually displaced to
the middle region of the wave numbers  and is trans-
formed into a self-similar spectrum.

It is very important to note that a stationary bump is
formed in the spectrum at the self-similar stage (see
Section 9). This is illustrated in Fig. 12. The duration of
the self-similarity stage and, hence, the number of gen-
erations in the inverse cascade can generally be infi-
nitely large. These quantities are determined by the
number Nx of nodes and by the relation Ndoubl =
ln2(ksw1/k1) (see Section 6). In the above calculations,

we observed  = 1.5 to 2.5 doublings (see Section 7).
During this whole time, the spectrum remains station-
ary on the average. This means that the smoothed spec-
trum is also stationary. Individual harmonics in this
case live their own life. A harmonic arrives at the sta-
tionary bump in Fig. 12 from the long-wave region on
the left. During a time of the order of the lifetime of one
generation, the harmonic traverses the bump from left
to right and then is lost in the short-scale region.

The reserve of harmonics in the long-wave region is
exhausted with time. The bump approaches the scale k1
determined by the width of the box (bottleneck, see
Section 7). The number of modes decreases thereby to
Nmod ~ 1 (22). The quadratic self-similarity is termi-
nated, and the final stage begins, in which the mixing
rate is determined by the lateral boundary conditions
(the restriction by lateral boundaries and the retardation
of mixing; see Sections 4, 7, and 13). The bump loses
its stationarity and becomes short-scale (  = t2 

∞), broad ( n ~ t2), and low (   0).

21. COMPARISON OF THEORETICAL 
AND NUMERICAL SPECTRAL AMPLITUDES

At the self-similar stage, the average shape of the
bump in the spectrum is fixed. Amplitude (30) is shown
on the spectra in Fig. 12 by a thin straight line. It can be
seen that the amplitudes and the position of the self-
similar bump are approximately fixed on the time inter-
val 2.5 < t < 6. A comparison of the theoretical and
numerical spectra involves the comparison of ampli-
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tudes and wave numbers. It is significant that the self-
similar amplitude is in good agreement with the theo-
retical estimate (30). Let us go over to wave numbers.

22. MECHANICS
OF THE RAYLEIGH–TAYLOR TURBULENCE

Before we go over to wave numbers and transverse
dimensions, let us analyze the relation between the hor-
izontal and vertical scales. The most important param-
eter of turbulent mixing is coefficient α+. It defines the
displacement, velocity, and acceleration of the upper
boundary of the mixing zone (5) along the vertical. It
should be noted, by the way, that in applications, it

determines the path length Sff(tperf) = /2 traversed
by a foil of thickness hfoil being accelerated by the
instant of perforation tperf [23]. The ratio hfoil/Sf f(tperf) ≈
2α+At gives the relative shell width in the problems on

inertial fusion. The relation hfoil ≈ α+At  leads to
an estimate of tperf. It is expedient to have as large values
of Sf f /hfoil as possible for optimizing compression and
for increasing the energy yield [24].

Coefficient α+ is determined by a complex combina-
tion of random and nonlinear processes. Let the wave-
length λtheor appearing in formula (27) be given by for-
mula (29) (λtheor = αHAtgt2). Here, coefficient αH is
connected with the horizontal scale determining the
rate of penetration of the mixing zone into the heavy
liquid and, hence, the primary (coarse) fragmentation
of this liquid. Substituting expression (29) with the
coefficient αH defined in this way into formula (27), we
obtain

(31)

We will refer to quantity RHV in (31) as the horizontal–
vertical ratio. Putting RHV = 1 and assuming that F =

1/  (2D analysis in the Layzer approximation [2–4,
11]; see also [25–29]), we obtain

(32)

Estimates (31) and (32) explain the reasons behind
the numerical smallness of coefficient α+. This is asso-
ciated with geometrical limitations (“2π effect”, the
ratio of k to λ, see Section 8), the dynamics of separa-
tion of the homogeneous flow of a heavy liquid by a
counterflow of bubbles (coefficient F), and the fabrica-
tion of horizontal scales through nonlinear and random
processes (λ and ratio RHV). An analysis of the density
fields presented in Figs. 1 and 5–7 shows that the posi-
tion of the upper front of the mixing zone is determined
by the current positions of the tops of columns (bub-
bles) intruding into the heavy liquid. In order to “raise”
the bubble tops, say, to α+ = 4% from the too low value
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given by (32), we must increase coefficient F and ratio
RHV . The product F2RHV must be increased approxi-
mately by a factor of three as compared to the value of
F2RHV = 1/3 adopted in (32).

Relation (31) contains the vertical (α+) and the hor-
izontal (RHV., clusterization) measures as well as the
dynamic factor F. The latter is associated with the
recalculation of the horizontal scale into the vertical
one. An analysis of the mechanics of mixing involves
the study of the dynamic (F) and scale (RHV) factors.
The information on coefficient α+ and ratio RHV is
extracted from numerical simulation. An estimate of
factor F follows from the theoretical limitations
imposed on its possible values. We will consider factors
F and RHV separately.

23. COLLIMATION EFFECT AND THE DYNAMIC 
ACTION OF A FAST ASCENDING JET 

OF A LIGHT LIQUID ON A CONTINUOUS 
HEAVY LIQUID

The dynamic resistance to the intrusion of bubbles
into a heavy liquid, which is responsible for the small-
ness of coefficient F, is mainly concentrated in the
vicinity of the bubble top (where the column “pricks”
the heavy liquid). The bubble separates the initial one-
phase (without a light liquid) heavy liquid (initial dis-
persion). The separation of the “approach steam” of the
heavy liquid takes place at the top of the bubble. The
elevating speeds of bubbles in the region of the mixing
zone front determine the velocity of the front itself
(coefficient α+).

It is usually assumed that columns in the turbulent
mixing zone are approximately similar to periodic bub-
bles [20, 22]. In estimates, it is assumed that the light
liquid under the dome of a bubble near its top moves as
a single whole together with the dome. The dynamic

pressure (ram)  of the light liquid is equal to zero.
In this case, the balance of the buoyancy and the ram

 of the heavy liquid leads to formula (7) with the

Archimedean factor  and with F ≈ 0.6 in the 2D
geometry and with F ≈ 1 in the 3D geometry [11].

Let us consider in greater detail the interaction
between the light and heavy liquids in the upper part of
the mixing zone. An analysis of the results of calcula-

tions shows that the pressure  in the turbulent case
is significant for the bubble dynamics and for estimat-
ing α+ if the density ratio µ is not very small, µ > µthr,
µthr = 10–3–10–2 (the range of µ < µthr corresponds to
ultralow values of parameter µ). This means that in an
analysis of bubbles, the inertia of the light liquid must
be taken into account along with the gravitation and
inertia of the heavy liquid.

pram
l

pram
h

1 µ–

pram
l
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The decisive role of pressure  in the formation
of “mushrooms” at the jet wakes is obvious. Under the
action of this pressure, the jet of the heavy liquid decel-
erates, splits (2D) (or assumes the shape of a disk in the
3D case), and turns back. The drag and splitting effect
is closely related to the formation of vortex dipoles
(2D) and rings (3D) and to the problem of collision of
jets [3, 4, 30]. It is typical of any jet (gravitation may be
zero) propagating in a medium.

The analyses of periodic flows prove that the maxi-
mum velocity of a light liquid can be high. For exam-
ple, in some calculations [3, 4, 30], it was an order of
magnitude larger than the elevation speed of a bubble.
High velocities are attained at late stages. For µ = +0,
the light liquid in a bubble ascends with the velocity of
the bubble +wb (the z axis is directed upwards). Only a
small volume of the light liquid near the end of the
heavy jet moves with the velocity –wjof this jet. At late
stages, we have wj @ wb.

We will confine our analysis to moderate and small
values of parameter µ, µthr < µ < µmid, where µmid ≈ 0.3.
In a steady-state bubble, the light liquid ascends with a
velocity wb. In our earlier calculations [30], for µ = 1/10
at relatively late stages, the heavy jet traverses consid-
erable distances in the gravitational field, and the sub-
stance in it is accelerated to high velocities wj. This jet
is decelerated with the formation of a mushroom. The
heavy liquid in the jet is accelerated gradually, while
the deceleration by the dynamic pressure of the light
liquid is quite sudden. With such a drag, the gravita-
tional acceleration is quite small as compared to the
acceleration due to the dynamic pressures exerted by
the light and heavy liquids. Large positive velocities of
the light liquid wcoll @ wb are attained in the vicinity of
the mushroom-shaped formation. This is associated
with the narrowing of the duct for the light liquid into a
bubble. This is essentially the collimation of the light
liquid jet. In a periodic bubble, the segment of the light
jet collimated by the mushroom is far from the bubble

top. In the vicinity of the top, pressure  is small,
and estimate (7) is approximately valid.

A new circumstance following from an analysis of
the turbulent fields of ρ and w is associated with the col-
limation of light jets by long tubes leading a fast jet to
the region of the bubble top (see Figs. 1, 2, 5 to 8). The
formation of narrow ducts for the lifting of the light liq-
uid to a bubble is a common phenomenon which is
important for the dynamics of mixing. Such ducts are
often constricted and form “trapped” bubbles separated
from the main volume of the light liquid. This resem-
bles the bubbling observed during emptying bottles.
Such phenomena are accompanied with noticeable
pressure jumps (“booms”) and are important for the
transformation of a small part of the mixing energy into
the acoustic energy. As a result, the field of acoustic
vibrations is formed around the mixing zone. The prob-
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lem of acoustic generation is interesting and requires
further investigations.

Let us estimate the effect of pressure  on the
dynamics of bubbles under these conditions. Let us
analyze Figs. 1, 2, 5–8. In Figs. 1b and 2b, fast narrow
jets of the light liquid can be clearly seen at x ≈ 0.4, 3,
and 5.3. High-intensity well-collimated jets pass to
large bubbles located at x ≈ 1.36 and 3.6 in Fig. 6b. An
analysis of the graphs similar to those shown in Fig. 2
leads to the conclusion that the lifting velocity wcoll can

attain high values 4  (see, for example, Fig. 2b with
a light jet at x ≈ 0.4).

The acceleration of the light liquid in ducts or chan-
nels to high velocities is due to a considerable differ-
ence ∆pmb = pm – pb between the main volume of the
light liquid and a bubble (pulling or suction of the light
liquid by the bubble). Bubbles ascend to a considerable
height in the heavy liquid. The pressure pb at such a
height is low. The pressure difference ∆pmb is main-
tained since the blocks of the heavy liquid with a large
size along x “rest” on the underlying main volume of
the light liquid. The blocks are conglomerates, or clus-
ters of finer jets. Such clusters can clearly be seen in
Figs. 5 and 6. For example, intense conglomerates are
located at x ≈ 1.6 and 4.6 in Fig. 5b, at x ≈ 0.6, 2.8, and
5.6 in Fig. 6b, and to the right and left of the central
bubble in Fig. 6a. The block structure is also manifested
in Fig. 7b corresponding to the calculations made for a
smaller value of the Atwood number.

Heavy blocks are quite broad. The distances
between large bubbles separated by these blocks are of

the order of (1.5–2) . The heavy substance filling
the major part of the block volume precipitates slowly
(see Fig. 2b). Fast heavy jets are narrow and descend in
the light liquid at large depths under the blocks (see
Figs. 1b, 1c and 2c). The fragments associated with the
previous generations are present near the upper and
lower fronts of the mixing zone. This succession can be
easily revealed from an analysis of a sequence of evo-
lution frames. At the upper front, such fragments are
individual relatively small (as compared to the current
scale) bubbles which have lost their connection with
the main volume of the light substance. At the lower
front, these are strongly extended and tortuous frag-
ments of heavy jets, which were separated from the
main volume at the previous evolution stages. The frag-
ments gain in position but lose in velocity in favor of
new generations and, hence, are gradually absorbed in
the central mixing zone. The “resting” of the blocks on
the underlying volume indicates that the downward
acceleration of the heavy substance in them is much
smaller than the Archimedean value. Indeed, for ratios
µ > µthr that are not very small, the value of 2α–Atg =
2α+AsAtg amounts to 1/10–1/5 of (1 – µ)g. As a result
of the resting, the conglomerate tends to shut off the
access to bubbles. For this reason, the channels become
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quite narrow and are blocked from time to time by
dams of heavy liquid.

Tubes in a bubble are sustained owing to a high

speed of transportation. The ram pressure  is sig-
nificant. Under this pressure, heavy dams blocking the
duct are pulled into a bubble or are pricked. The light
liquid flowing into the bubble “catches” the heavy sub-
stance from the tube walls. This can clearly be seen in
all density fields depicted in Figs. 1 and 5 to 7. As a
result of such a “catching,” a fine mixture of the heavy
and light phases is formed.

Let us now estimate the effect of the inertia of the
light substance on factor F. We consider the problem of
intrusion of a jet into the half-space (the problem of
penetration of a solitary cumulative jet through an
armor jacket) [31, 32]. A generalization to the periodic
case is given in [3, 4, 30]. In these publications, a chain
of heavy jets penetrating into the half-space filled with
a light substance is considered. The density ratio is
insignificant. The solution of the problem can be trans-
formed into the case we are interested in, where light
jets penetrate into a heavy substance. If we disregard
gravitation, the Bernoulli’s integral leads to the equality
of the pressures exerted by the heavy and light liquids

at the point of stagnation (top) of the jet, ρh( )
2
 =

ρl( )
2
, where wc are velocities in the reference frame

associated with the top. Returning to the laboratory ref-
erence frame in which the liquids are at rest outside the
mixing zone, we obtain

(33)

where wb and wcoll are the elevation speeds for the top
of a bubble and for a light jet in the laboratory frame.

In the calculations with parameter µ = 1/10, the typ-
ical value of the density ρmix of the phase mixture
sucked into a bubble through a tube is of the order of

(2 to 3)ρl. Accordingly, we have 1 + 1/  ≈ 3 to 4.
Using the velocities wcoll from the graphs similar to
those presented in Figs. 2b and 8 in formula (33), we
find that the typical values of wcoll are sufficient to

ensure wb ≈  with α+ = 5%.

The values of wb, h+, and α+ associated with com-
plex, distributed, or integrated action of the gravita-
tional load exerted by the heavy substance on the light
one were estimated by us earlier. With such an action,
the heavy substance sags under the broad blocks or
conglomerates which separate coarse bubbles ascend-
ing with the maximum speed. The transverse size of the
bubbles are much smaller than the width of the con-
glomerate. Under the weight of large blocks, fast jets of
the light liquid injected into the bubbles are dispersed.
The momentum of these jets is transferred to the
upward motion of the heavy liquid with velocity (33) in
relatively small neighborhoods of bubble tops. In such
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a complex way, the exchange of the heavy and light
substances is executed, and the center of mass of the
system is lowered in the case of the integrated mecha-
nism.

A simple or local estimate of the gravitational val-
ues of wb, h+, and α+ (disregarding the momentum of
light jets) on the basis of the steady-state periodic solu-
tion is given by formula (7). Substituting into this for-

mula the cluster width  ≈ 2  typical of Figs. 1
and 5–7 and taking µmix ≈ 0.2, we obtain α+ ≈ 3%. For
example, the speed of a bubble located between the
clusters of heavy jets at x ≈ 1.2 in Fig. 6b is wb ≈ 0.45,

(t = 6) ≈ 0.5. The local estimate (7) gives wb ≈ 0.36

for  ≈ 2 . It follows hence that the local gravita-
tional effect is slightly smaller than the integrated
effect. It should be noted that estimate (7) is valid for
steady-state periodic bubbles. Such bubbles have diam-
eters approximately equal to their separation. If these
distances are ≈2h+, the diameters must be approxi-
mately the same. The diameters of the bubbles in Figs. 5
and 6 are noticeably smaller. This means that they have
not reached the steady state and are in the acceleration
mode. The stationary phase can be approached from the
single-mode harmonic perturbation as well as from a
“solitary” bubble. In the former case, the radius of cur-
vature at the bubble top decreases with increasing t
from a large value Rini and asymptotically tends to the
steady-state, or the limiting value Rstat, Rini > Rstat. In the
latter case, on the contrary, the initial radius Rini is
small, Rini < Rstat. The bubble radius increases with
time, tending to Rstat. The initial stages of the bubble
expansion in the second case resemble the expansion of
a bubble in a wedge (2D) or in a cone (3D) [2] or the
expansion of a solitary bubble [33] (a bubble in a verti-
cal strip (2D) or in a constant cross-section tube (3D)
corresponds to the periodic case [11]). Formula (7) in
this case gives an upper estimate of the elevation speed
of a bubble being accelerated.

In order to judge the relative importance of the
local and integrated gravitational mechanisms of dis-
persion of a heavy liquid more precisely, we must ana-
lyze the fields of acceleration a = vt + (v ∇ )v and pres-
sure. If the local action dominates, first, the accelera-
tion al of the light liquid in the upper part of the mixing
zone is positive and small (≈2α+Atg ≈ 0.1(1 – µ)g) and,
second, the pressure in a bubble varies insignificantly
(for moderate values of µ). Otherwise, first, the accel-
eration al at the top of a bubble is negative (the z axis is
directed upwards) and its magnitude is larger than
0.1(1 – µ)g (it is of the order of g) and, second, the pres-
sure in a bubble increases in the upward direction. In
the entire flow, this is the only region where the pres-
sure gradient may reverse its sign. If the elevation of a
bubble is determined by the momentum of light jets (in
this case, formula (33) is valid), the pressure drop along
the boundary of the bubble in the direction from top to

λdyn h+
5%

ḣ+
5%

λdyn h+
5%
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bottom must be faster than the hydrostatic pressure
drop in the heavy liquid in the upward direction.

It should also be noted that positive accelerations of
the heavy liquid are quite small. These accelerations are
associated with the elevation of a bubble. In the peri-
odic case, using the parabolic approximation [11], we
can easily calculate the field of accelerations ah of the
heavy substance from the analytic formulas for the
velocity potential. At the linear stage of the evolution of
a single-mode harmonic perturbation, acceleration ah is
small and decreases monotonically on the bubble axis
in the upward direction from the top. As we go over to
the nonlinear mode, the dependence of ah(∆z, t) on ∆z
becomes nonmonotonic; in this case, coordinate ∆z is
measured from the top, ah(∆z, t) = ah(x = 0, ∆z, t) (2D)
or ah(x = 0, y = 0, ∆z, t) (3D), and the center x = 0 or
x = y = 0 is at the top. The point where acceleration ah

attains its maximum value appears above the top. At the
stationary stage, this maximum lies at a distance
k−1ln2 ≈ 0.1λ above the top, where λ is the period of the
flow. This refers to the 2D geometry as well as to hex-
agonal and square lattices in the 3D geometry, which
are most interesting [11] in connection with the 3D tur-
bulence. The maximum value of ah is (1 – µ)g/12 in the
2D and (1 – µ)g/4 in the 3D case.

24. SPECTRAL WIDTH OF THE BUMP
AND DETERMINATION OF CLUSTER 

“SUPERSTRUCTURE”

The fact that the integrated effect is more important
indicates that the value F ≈ 0.6 given by the local esti-
mate (7) (2D) is slightly lower than the actual value of
F. The above analysis shows that coefficient F is effec-
tively larger than the value given by (7) by 20 to 30%.
Accordingly, the Froude number F2 is actually larger
approximately by a factor of 1.5. According to formula
(31), the product of this number by the horizontal–ver-
tical factor determines coefficient α+. It turns out that in
order to ensure the values of α+ = 4 to 5%, the ratios
RHV = 1.7–2 are required. Let us see whether this is in
accord with the spectral data.

We consider transverse structures in the mixing
zone. The information on these structures is contained
in the spectra in the horizontal coordinate invariant to
displacements. Typical examples of such spectra are
presented in Figs. 9 and 12. Let us analyze these spectra.
The central part of the bump in the self-similar spec-
trum in Fig. 12 corresponds to  = 180 to 250. Figure 12
presents the results of calculations obtained with µ = 1/10.
For larger values of µ, the bump is displaced to the right
in accordance with formula (27). The right (ultraviolet)
wing of the bump is formed by high-frequency harmonics,
while the left (infrared) long-wave wing corresponds to
subharmonics. The value of parameter RHV = 1 is associ-
ated with the self-similar wave number  = 2π/Atα+,

n̂

n̂+
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(α+ = 5%, µ = 1/10) = 150. It follows hence that if
we are guided by the peak of the bump, the central part
of the mixing zone (  ≈ 0) is characterized by rather
small transverse scales, λ⊥  = (0.6–0.8)h+,  = (1.2–

1.5) . This is in accord with the number of spikes of
the functions of x in Figs. 1c, 2, and 8 and with the cor-
relation length in Fig. 4 (cf. the average separation
between the spikes and the length of the horizontal seg-
ments in Figs. 1c and 2).

It is important to note that there is a spread in the
scales of the spectra towards the long-wave region.
Scales  = (1.2–1.5)  cannot ensure the values of
α+ = 4 to 5%. Using the elevation speed of the bubbles
with such a diameter and evaluating the self-similar
velocity of the upper mixing front, we only obtain α+ ≈
1%. The expansion dynamics is determined by the sub-
harmonic wing in the harmonic distribution (see Fig. 12).
Relation (27) leads to

(34)

for µ = 0.1. The subharmonic wing extends to values of
the order of (34) (see Fig. 12). Using the correction of
F from Section 23, we obtain  ≈ 75.

A well-developed structure with nmax ≈ 1.2n+ and
λ⊥  ≈ (0.7–1)h+ can be easily singled out in the central
zone  ≈ 0 in the simulation data. A detailed analysis
reveals a coarser “superstructure” responsible for the
observed rate of expansion of the mixing zone. It corre-
sponds to λdyn ≈ 2h+ and ndyn ≈ n+/2. In the lower part of
the mixing zone, the presence of the large-scale struc-
ture is manifested in the form of the envelope or a long-
wave modulation. This can clearly be seen in Fig. 1c.
Alternating black and white columns (the width of a

pair is ≈(0.5–0.7)  are grouped into clusters com-
prising two or three pairs of columns. Such clusters
form the above-mentioned blocks of heavy jets. The
clusters are separated by large bubbles. They corre-
spond to high-intensity white columns in Fig. 1c at x ≈
0.4 and 3.2. Large bubbles are associated with fast light
jets manifested in the form of large-amplitude positive
spikes in Fig. 2b, which are narrow in the x direction.
Summing up, we can state that the characteristic value

of RHV = /h+, which is estimated from the super-
structure, is of the order of 1.7–2. It should be empha-

sized that the scale of  determines not a simple
variability with this step, but a long-wave modulation
with a smaller period. For this reason, the spectral
bump is broad instead of being concentrated in the
vicinity of the wave number .

25. 3D GEOMETRY
It would be interesting in the future to generalize the

above analysis to the 3D geometry. In this connection,
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we will briefly consider the peculiarities of the 3D case.
Turbulence is uniform relative to displacements in the
transverse x, y plane. For this reason, a theoretical anal-
ysis is based on the solutions periodic in coordinates x
and y [11] and on the spectral models closely related to
these solutions.4 It is important to single out the hori-
zontal–vertical characteristics and the main (or coarse)
cell in the mixing layer.

Formula (7) connecting period λ and the limiting
velocity wb remains valid. Coefficient F assumes a dif-
ferent value. We denote it by F3D. The periods λ = 2π/k
of the lattices are determined in [11]. The solutions
with the symmetry of the quadratic (4m) or hexagonal
(6m) lattices are approximately defined by the pair ki,
i = 1, 2, or triple, i = 1, 2, 3, of wave vectors directed at
90° (4m) or 60° (6m) relative to one another. Each vec-
tor ki is associated with its own plane wave. We will be
interested in the spectra of quantities f(x, y, z, t) in an
arbitrary vertical plane. Such a plane is parallel to the z
axis.5 The characteristic wave number is slightly
smaller (on the average, by 10–20%) than the wave
number associated with the period of the solution due
to the projection of wave vectors onto this plane (the
plane forms an arbitrary angle with vector ki).

6 We will
refer to this effect as the contraction of k and increase
in RHV due to projection.

The self-similar relations (1) and (5) can be

extended to the 3D case. Equating velocities (7) and 
as was done in Section 22, we arrive at formula (31) in

which quantities , F3D, and  appear. It follows
from natural and numerical experiments that three
dimensions weakly affect the rate of initial dispersion

of the heavy substance,  ≈  [35–40].7 On the
other hand, it is very important that the 3D Froude

number  on the 6m and 4m lattices is thrice as large
as in the 2D case [11]. These lattices are most interest-
ing in connection with the problem of 3D turbulence.
According to formula (31), this leads to the important
conclusion that the relative horizontal scale in the 3D

geometry is much smaller (  ≈ 1) than in the 2D
case. A small correction due to projection does not
change this conclusion. Consequently, the main cell in
the 3D case is more elongated along the vertical than in
the 2D case.

4 An interesting spectral model proposed by Wilson et al. [34] is
worth noting.

5 The so-called “laser knife” plane in the rated 3D region in the
form of a parallelepiped [11].

6 For instance, in the case of a quadratic lattice in a plane parallel to
vector ki, the characteristic wave number is equal to k, while the
characteristic wave number in the diagonal plane is smaller by a

factor of , or by 30%.
7 The effect of the flow divergence or convergence on coefficient α

under the compression or dispersion of cylindrical and spherical
envelopes is considered in [41].
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It would be interesting to compare the roles of the
local and integrated gravitational effects and to consider
the collimation in fast narrow jets (see Section 23). The
integrated effect is smaller in the given case probably
due to the elongated shape of the cell. The 3D situation
is topologically much richer than the 2D case [11, 42].
This also refers even to the simple periodic case. An
interesting topological peculiarity of the 3D case is the
formation of flattened jets around spherical bubbles and
the intersection of these flat jets in the form of three-
prong stars [11]. Such intersections are typical of a
dense packing of bubbles. In the periodic case, the bub-
bles are densely packed in blocks or conglomerates (see
Section 23). Large bubbles between the blocks are torn
out and are involved in the accelerated motion. The
effect of neighbors on these bubbles becomes weaker.
For this reason, they expand not only in the vertical
direction, but also along the horizontal. The packing in
the 3D case is denser and more uniform probably due

to the smallness of the horizontal–vertical ratio .
These effects require additional investigations.

It should be noted that the scaling of spectral self-
similar variables in the 3D geometry changes as com-
pared to the 2D case. This is due to the fact that the Fou-
rier series of the physical variables f(x, y, zf , tf) are
expressed not through a single sum over harmonics n
(see Section 4), but through a double sum over indices
n and m of the form

where cnx = cosnx, snx = sinnx (see, for example, [11]).
Accordingly, the spectral bump contains not ~ , but

~  harmonics. At the self-similarity stage, the average
wave number decreases (coarsening) according to a
power law,  ∝  1/t2. Let us consider the velocity scal-
ing. Quantity w(x, y, …)/t is invariant at the self-similar
stage (see Section 14, formula (10)). It is created by the

resultant action of ~  harmonics with a random phase.

Consequently, w(x, y, …)/t ~ (wnm/t)  (cf. Section 16).
Therefore, the invariant spectral amplitudes are given
by

These expressions are analogues of formulas (26) in the
3D case.

RHV
3D

f x y …, ,( ) anmcnxcmy bnmcnxsmy+(∑∑=
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26. SIMPLE AND CLUSTER-TYPE RANDOM 
PERIODIC FUNCTIONS

The numerical simulation on dense meshes involves
expensive and time-consuming computations. A num-
ber of spectral and statistical properties of turbulent
fields can be studied using simple examples of random
periodic functions [3, 4]. In particular, we are speaking
of convergence problems or comparative analysis of
simple and cluster cells. Such functions can be obtained
using various methods. We will consider here the fol-
lowing example. Let us take a sequence of random
points  on the x' axis, such that

(35)

where j = 1, 2, …, 2N + 1 and ξj is a random quantity
distributed uniformly on interval [0, 1], 〈ξ j 〉  = 1/2 (for
each new value of j, the quantity ξj is cast indepen-
dently). We will refer to (35) as a random periodic
chain. Parameter β is the measure of randomness. For
β = 0, we arrive at a periodic chain with step 1 of length
2N. If β @ N, we obtain the distribution of points on the
x' axis, which fills an interval of length ~2β. The sepa-
ration between adjacent pairs of points is varied over a
wide range. The limiting cases β ! 1 and β @ 1 are of
no interest. We consider the values of β ~ 1 since the
turbulent functions f(x) fluctuate with an average step

, deviating from it on each step by a quantity of the

order of ∆λ ~ .
We construct a model function f(x). Let us contract

chain (35) to interval [0, 2π] on the x axis, xj =

( / )2π. We consider triples x2n – 1, x2n, x2n + 1.
Index n = 1, 2, …, N runs through pairs of ascending
and descending columns. We present function f(x) on
subsegment x2n – 1 < x < x2n + 1 in the form

If we are dealing with the vertical velocity w(x), it is
positive between the first pair of points (ascending col-
umn) and negative between the second pair (descend-
ing column). From functions f(x) on subsegments, we
“assemble” function f(x) on the entire interval [0, 2π].
It is a continuous function. We continue this function to
the right and to the left with period 2π beyond interval
[0, 2π]. Figure 13a shows an example of such a func-
tion with β = 0.6 and N = 100. A part of interval [0, L⊥ ]
of width L⊥ /10 is given, in which 10 pairs of columns
(N = 100), L⊥  = 2π must be located on the average.

The correlator K(x) of function f(x) (Fig. 13a) calcu-
lated by formula (2) and spectrum |fn | (the Fourier
expansion of the periodic function) are presented in
Figs. 13b and 1c (cf. Fig. 4 and Figs. 3, 9, 12). The cen-
tral peak of the correlator at x = 0 is an averaged column
(e.g., positive), while the adjacent minimum represents
a negative column paired with the positive one. Finally,
the second maximum (relative to the central peak) rep-

x j'

x j 1+' x j'= 1 β 2ξ j 1–( ), x1'+ + 0,=

λ
λ

x j' x2N 1+'

f x( ) x x2n 1––( ) x x2n–( ) x x2n 1+–( ).=
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Fig. 13. (a) Example of a random periodic function speci-
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resents the next positive column (relative to the first
pair). In Fig. 13b, the correlation length λK defined in
Section 4 is 20% larger than the average pair width

 = L⊥ /N.

Figure 13 presents the realization of (35) defined by
a specific random set of ξj, j = 1, …, 2N + 1. Using the
smoothing procedures proposed in Sections 17 and 18,
which suppress the effect of a random phase, we
present the results of averaging over a large number of
realizations. These results are determined only by
parameter β from (35). The curve in Fig. 14a describing
the averaged correlator 〈K(x)〉  shows that the averaging
suppresses random fluctuations (cf. Fig. 13b). The peri-
odic component associated with step 1 in (35) is grad-
ually “absorbed” by the random component (the term
with factor β). For this reason, the peaks corresponding
to consecutive positive columns decrease monotoni-
cally.8 In the periodic case (a crystal), the correlator is
periodic (see Section 4). Figure 14b shows the averaged
spectrum 〈| fn |〉. The averaging flattens random “spikes”
in the spectrum.

Let us describe the spectrum |fn| presented in Fig. 13c.
The typical size λF determined from the peak value nF

of Fourier’s amplitudes (λF = 2π/nF), as well as the cor-
relation length λK, is slightly larger than the mean value

 (Fig. 14b). The pairs of columns f(x) have no internal

structure on a scale ~  (see Fig. 13a). For this reason,
the short-scale wing of the spectral bump decreases
rapidly for n > N. For n @ N, we have |fn | ~ 1/n2 since
in this case function f∗ (x) is “stitched” with the discon-

tinuity in the derivative at the points of joining of the
subsegments.

The long-wave (left in Figs. 13c and 14b) wing is
important since its width determines the dynamics of
mixing (see Sections 22–24). Stochastic processes
broaden the spectral bump in the left direction. Let us
illustrate this statement. We consider the function f∗ (x)

composed of arcs of parabolas with random heights.
Let us determine f∗ . We divide interval [0, 2π] into N∗
equal subsegments by the periodic sequence of points

 = (j – 1)2π/N∗ , j = 1, …, N∗  + 1. On each subseg-

ment, we have f∗ (x) = (2ξj – 1)(x – )(x – ). Spec-

trum  decreases in the short-scale direction in pro-

portion to n–2. The central part of the spectrum corre-
sponds to harmonics n ≈ N∗ . Let us suppose that N∗  @ 1.

8 This resembles the structural function characterizing the ordering
of neighboring molecules in a liquid.

λ

λ
λ

x*
j

x*
j x*

j 1+

f n*
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ON STOCHASTIC MIXING CAUSED BY THE RAYLEIGH–TAYLOR INSTABILITY 737
We consider the long-wave asymptotic form of n ! N∗ ,
for which

We fix n and divide this integral by the sum over indi-
vidual waves:

over x from (2π/n)(i – 1) to (2π/n)i. The integration
domain of Ii contains N∗ /n parabolic arcs. For this rea-

son, Ii ∝   with a random sign. Let us determine

the sum an = . It has n random terms I. Conse-

quently, an ~ I. Substituting I ∝   into this

expression, we obtain an ∝  . It can be seen that the

dependence on n in spectrum  asymptotically van-
ishes, and the left wing assumes the form of a plateau.
This explains the slow decrease in |fn | in the interval
n ∈  [0, N] in Fig. 13c and the finite values of |fn | for n =
0 and n ~ 1 in Fig. 14b.

The possible asymptotic forms of n ! N are
bounded by two limiting cases. In the first case, we
have

(36)

where 〈…〉x denotes the averaging over x. This is the
plateau. In the second case, we have

(37)

The realization of a certain version depends on the
behavior of the cumulative integral

(38)

For a random periodic function of the general form, we

have |F(x)| ~ . In this case, the long-wave asymp-
totic form has the form of plateau (36). If, however,
|F(x)| ~ 1, the asymptotic form (37) is realized. For
example, for the vertical velocity w, integral (38),
which has the meaning of the volume flux, is bounded
due to the conservation of the volumes of an incom-
pressible liquid during transpositions on finite seg-
ments in x.

It can be seen that the spectral trace of a random
periodic function, which is apparently localized on

scales ~ , extends far to the long-wave region due to
stochastic processes. In order to estimate the dynamic
role of this effect, we must compare the long-wave

an π 1– x f * x( ) nx.cosd

0

2π

∫=

an Ii, Ii

i 1=

n

∑ xd f *∫ nx,cos= =

N*/n

Ii∑
n N*/n

N*
f n*

f n N f λ , f∼ f f〈 〉 x–( )2〈 〉 x,=

f n n∼ f λ .

F x( ) x f( ) 1–
f x '( ) x '.d

0

x

∫=

x

λ
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amplitude with the limiting saturated or majorizing
amplitudes. For example, in the case of velocity, the
spectral amplitude of saturation is given by

(39)

(see Section 12). It is determined by nonlinear and ran-
dom processes. We write the ratio of velocities|wn | ~

(F / )2π/N (37) and (39), where N is the
number of pairs of columns or the number of bubbles

on segment L⊥  = 2π: |wn|/  ~ (n/N)3/2. The results
of numerical simulation carried out by us show that the
perturbations whose amplitudes are of the order of or
smaller than a few percent of the saturation amplitude
are insignificant. This leads to a rough estimate of the
largest significant scales nlw ~ N/5 generated by strag-
gling.

The case of a simple random periodic function was
considered by us earlier. Such a function is character-

ized by a single cell of scale  since the neighboring
cells are of the same order of magnitude (dispersion

∆λ ~ ). The average cell has no substructure (see
Fig. 13a). In the case of turbulent mixing, the cells,
first, are nonequivalent (clusters) and, second, have an
internal substructure. It would be interesting to analyze
the changes in the correlator and in the spectrum asso-
ciated with these circumstances.

Let us consider the example in which a function is
calculated on subinterval [xn – 1, xn + 1] by the formula

(40)

where sequence xj is determined by (35) and index n =
1, …, N labels cells or pairs of columns. The function

f(x) in Fig. 13a is of the order of , where  = 2π/N ! 1
(N = 100 in our examples). Function (40) is of the order

of  ~ . Raising small quantities to a power sig-
nificantly increases their straggling. Most cells turn out
to be “weak” (characterized by small values of f); they
occasionally alternate with “strong” cells in which the
value of f is considerably larger than in weak cells (see
Fig. 15a). Such a behavior resembles Figs. 2a and 2b.

wn
sat  ~ 

F 1 µ–
n

-------------------- 
  ,

n 1 µ– N

wn
sat

λ

λ

f x( ) x x2n 1––( ) x x2n–( ) x x2n 1+–( )[ ]= 2

× x x2n 1–
x2n x2n 1––

3
--------------------------+ 

 –

× x x2n 1– 2
x2n x2n 1––

3
--------------------------+ 

 –

× x x2n

x2n 1+ x2n–
3

--------------------------+ 
 –

× x x2n 2
x2n 1+ x2n–

3
--------------------------+ 

 – ,

λ3 λ

λ10
f 1

10/3
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738 INOGAMOV et al.
It is interesting to note that the cluster structure is
manifested insignificantly in the correlator (Fig. 15b).
The group of first significant spikes in it has a width

approximately equal to , which is much smaller than
the average separation between “strong” cells (cf.
Figs. 15a and 15b). This group is associated with the
internal structure of the cell. Because of the substruc-
ture, the spectrum in Fig. 15c is strongly broadened
towards the short-scale region to the right of the char-

acteristic wave number  = 2π/  = N = 100. Clusters
are manifested in a certain enhancement of the long-
wave wing. Analyzing the partial realization (Fig. 15)
and the averaged data (Fig. 16) on the whole, we con-
clude that the spectrum of function (40) is quite broad
and is formed by the scales differing considerably.

27. SMALLNESS OF α+ AND STIMULATION 
OF MIXING BY LONG-WAVE PERTURBATIONS

In the previous sections, we analyzed mixing under
ideal conditions, when viscosity ν = +0, the surface ten-
sion and diffusion coefficients are σ = +0 and D = +0,

λ

n λ

8

6
4
2

0
–2

0 0.1 0.2 0.3 0.4 0.5 0.6

0.8

0.4
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–0.4
0 0.1 0.2 0.3 0.4 0.5 0.6

x

x

0.15

0.10

0.05

0 100 200 300
n

(‡)

(b)

(c)

Fig. 15. A cluster-type random periodic function. Exam-
ple (40), the set of ξj is the same as in Fig. 13 (β= 0.6). The
number of cells N = 100. The cells differ significantly: 4–5
“weak” cells correspond to a “strong” cell; (b) correlator
K(x), (c) spectrum |fn|.

f /10–16

K

λ
–

|fn | /10–16
JOURNAL OF EXPERIMENTAL 
respectively, and the stabilization scale λmicr = +0.
Under these conditions, the boundary-value problem is
incorrect in the Hadamard sense (see [43, 4] and [44],
Section 8)9, since the increment is unbounded, γ ∝

  ∞ for k  ∞. In this case, turbulent mixing
emerges “at once” (starting from t = +0) and is self-sim-
ilar (see formulas (1), (5)) straightaway. It is natural to
refer to such a mixing as spontaneous since for t > 0,
there is no information concerning the initial perturba-
tion. Each realization is unique.

The question arises: what can be “seen” against the
background of spontaneous mixing? In order to answer
this question, it was assumes implicitly that perturba-
tions are infinitesimal for t = 0. It is important that the
numerical value of the coefficient α+ of spontaneous
mixing is quite small (see Sections 10 and 22) and the
initial integrity of the heavy substance is destroyed rel-
atively slowly. If the breakdown of continuity occurred
with the Archimedean (i.e., limiting) acceleration (in

this case, g ≈ (1 – µ)g, see Section 10), it would be
impossible to change it (i.e., to accelerate still further)
using small finite-amplitude perturbations. It is due to
the smallness of coefficient α+ that a finite (in wave-
lengths and amplitudes) perturbation can manifest
itself against the background of spontaneous mixing.

9 In this publication, the conditions under which a smooth one-
mode solution with period λ can exist are considered. It is
required, first, that ratio λmicr/λ be small (ideal hydrodynamics)
and, second, that noise be suppressed exponentially down to scale
λmicr. The latter condition is satisfied if ratio λmicr/λ is finite.

k

Gss
+

0
–0.4

x

〈K〉
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0

0.4
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0
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0.04
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(b)

Fig. 16. (a) Correlator 〈K(x)〉  and (b) spectrum 〈|fn|〉 aver-

aged over 104 realizations in the cluster case. The division
by three in function (40), which is manifested weakly on the
fluctuating curve in Fig. 15c, is clearly seen on the smoothed
spectrum in Fig. 16b.
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001



ON STOCHASTIC MIXING CAUSED BY THE RAYLEIGH–TAYLOR INSTABILITY 739
Let us consider two cases. In one case, perturbations
are periodic (one wavelength λ), while in the other, per-
turbations have a logarithmically wide range (a set of
strongly differing wavelengths λ, e.g., the mixture of
waves of the millimeter, centimeter, decimeter, etc.
ranges). It should be emphasized that perturbations are
finite. This means that there exists a threshold. Its exist-
ence has a clear meaning since we are speaking of the
competition of a perturbation with spontaneous mixing,
viz., a flow with finite velocities and displacements. The
perturbation can be either noticeable (superthreshold
amplitude) or unnoticeable (subthreshold amplitude)
against the background of the spontaneous flow. The
threshold amplitudes in the case of periodic perturba-
tions were considered in [45, 46]. In the superthreshold
mode, a periodic perturbation is “coated” with short-
scale modes associated with spontaneous turbulence
“emerging” from the short-wave region (see [4], Sec-
tion 18, and [47, 48]). The period λ of a periodic perturba-
tion determines the characteristic time tλ = (Atgk)–1/2. For
t @ tλ, the trace of this perturbation is healed and the
mixing returns to the spontaneous mode. Let us con-
sider the wide-range case.10 A perturbation uniform in
the wave numbers k is most interesting for our analysis.
It does not introduce a preferred scale and, hence, pre-
serves the quadratic self-similarity (1) and (5). It should
be emphasized that this indicates the conservation of
the self-similarity exponent or index. The self-similar

functions ( , ) (10) and  (25), (26) of self-similar

10A theory of stimulation was proposed in [22, 23, 3, 4]. In these
publications, first, the expansion of noise in a dense series of ran-
dom harmonics (41) was proposed, which makes it possible to
define the noise amplitude on a unified basis. (In [3, 4], noise was
determined not only by the amplitude, but also by the choice of a
certain lacunar expansion. It was possible to compare only noises
with different amplitudes but with the same lacunar expansion.)
Second, the results of systematic numerical calculations were
considered, the threshold was determined, and the superthreshold
dynamics was studied.

f̂ x̂ ẑ f̃ n̂
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2 3 4 5 6 7
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5
0
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Fig. 17. Dependence of the evolution of coefficient α+ on
the amplitude ewide of wide-range noise indicated on the
curves in pro mille.
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variables for a considerable amplitude of the perturba-
tion exceeding the threshold vary depending on the
dimensionless parameter determining the excess over
the threshold value. Superthreshold wide-range pertur-
bations cannot be healed.

Let us present uniform wide-range velocity pertur-
bations convenient for numerical simulation. We write
the initial perturbations in the form of an expansion in
harmonics (3). Let us suppose that

(41)

where ξn is the random number generator (35), and ξn

and  are independent. It can be seen that the initial
field (3), (41) is formed by three components. First, it is
the saturation velocity (39), second, the random opera-
tor, and third, the dimensionless parameter ewide. This
field has no preferred scale. It is defined by only one
parameter, viz., amplitude ewide of random wide-range
noise.

Figures 17–19 summarize the main results of calcu-
lations of numerous versions, made using the method
of large particles (see Section 5), Nx = 200 to 400, µ =
1/10. The initial perturbation was presented in the form
of the sum of short-range (see Section 6) and wide-
range (41) perturbations. Coefficient α+ was deter-
mined in accordance with the rule α+ = [h+(ti + 1) –

h+(ti)]/At(  – ) over segments ti + 1 – ti  = 0.5 to 2.
The results of calculations indicate the existence of a
threshold (ewide)thr of approximately 10 pro mille. This
is a small amplitude amounting approximately to one
percent of the saturation velocity (39) for which the

an
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--------------------= 2ξn 1–( )ewide,
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Fig. 18. Dependence of the evolution of the asymmetry
coefficient As on the amplitude ewide of wide-range noise
indicated on the curves in pro mille.
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nonlinearity becomes significant. Consequently, near-
threshold perturbations are linear. The smallness of the
threshold is associated with the smallness of coeffi-
cient α+.

For amplitudes smaller than the threshold values,
mixing occurs in the spontaneous mode and the effect
of noise can be disregarded. For superthreshold ampli-
tudes, the flow is rearranged. The spectral bump is dis-
placed towards longer wavelengths. This reflects the
enhancement of subharmonics. Ratio RHV increases.
The enhancement of the long-wave wing is associated
with the intensification of mixing which is manifested in
an increase in coefficient α+. In a spontaneous process, the
origin of subharmonics is associated with the central
bump in the spectrum, while in the case of stimulations, a
fraction of subharmonics is “extracted” from wide-range
noises which are present from the very outset.

The threshold amplitude is significant. The thresh-
old value is noticeable. If we consider ideal conditions
(λmicr = +0, …), the expensive decrease in the noise
amplitude due to technological improvements (such as
polishing) below the threshold amplitude is not expedi-
ent (limiting cleansing).

28. EFFECT OF LATERAL BOUNDARY 
CONDITIONS AND CHANGE 

OF SELF-SIMILAR ASYMPTOTIC FORM

We have studied spontaneous and stimulated mix-
ing. The case when exchange processes occur under
free conditions (in the sense that external geometrical

boundaries are far away,  ! L⊥ , hup, hdown; see Section 5)

has been considered. Scale  increases with time (see
Figs. 1a and 1b) in accordance with formula (29) with
coefficient αH and, hence, approaches the external

λ
λ

Fig. 19. Dependence of coefficients α+(t = 5) ( ) and As(t = 5)
( ) on the amplitude ewide in pro mille. For weak noise,
the flow does not differ from a spontaneous flow. The
effect of noise becomes significant for (ewide)thr ≈ 10–2.
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scales. The horizontal (hup, hdown, top, and bottom) and
the lateral (L⊥ ) boundaries slow down the exchange.
The effect of horizontal boundaries was considered in
[5, 40].11 For the “box” geometry chosen in our calcu-
lations (see Section 5), lateral boundaries are the first to
appear (restriction of the flow by a “bottleneck”, see
Sections 4, 7, and 20).

Figure 20 illustrates the behavior of coefficient α+ in
the spontaneous case. This case also includes the
curves with a low noise in Fig. 17, ewide = 0, 1, 5 pro
mille. Noticeable fluctuations and the decrease in α+ for
t ≈ 7 (calculations are made with µ = 1/10) are probably
associated with the beginning of the decelerating effect
of the bottleneck, although the values of h+(t = 7)/L⊥  =
1/5 to 1/3 appear as still quite small. In order to estimate
the effect of lateral boundaries, we must take the ratio
λdyn/L⊥ , where λdyn is the most developed scale in the
amplitude spectrum. In the 2D case, the ratio RHV =
λdyn/h+ is quite large (see Sections 23 and 24) and,

11The mixing of a layer having the initial thickness h0 at the upper
or lower boundary was considered. In small time intervals, the

condition t ! ttrans =  is satisfied,  ≈ h± ∝  t2,

where the plus or minus sign is used depending on the boundary
at which the layer is located. For t ~ ttrans, the rate of expansion of

the layer tends to the asymptotic value  ~  ≈

, where h(t) is the running thickness of the

layer, ρin and ρout are the densities of the layer (initial density)
and of the medium in which it is located. In connection with what
has been said above, we can mention a close self-similar solution
of the problem on nonstationary convection near the boundary of
a medium with neutral buoyancy [49] (the solution is sought in
the turbulent diffusion approximation). This solution is important
for geophysics (temperature wave generated when the mechanism
of cooling at the sea surface is “engaged”).

h0/g/ At α± λ

ḣ gh∆ρ/ρout

gh ρinh0/h( )/ρout

Nx = 200
Nx = 400
Nx = 600
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t
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0
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8

Fig. 20. Coefficient α+ in the absence of stimulation. The
noticeable decrease in the value of α+ for t ≈ 7 is apparently
associated with an early effect of the lateral boundary con-
ditions. The net-characteristic method, µ = 1/10, Nx is the
number of nodes along the horizontal.
AND THEORETICAL PHYSICS      Vol. 92      No. 4      2001
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hence, the effect of the lateral boundaries is manifested
at an early stage.

In boxes strongly elongated along the vertical (see
Section 5 and [7]), the change in the self-similar mode

follows the transient process at ttrans = / .
Let us consider the asymptotic form h = h+ + h– @ L⊥
using the methods of the theory of the turbulent mixing
length [5, 6]. We write the following expression for the
turbulent velocity:

(42)

where lturb is the size of the largest vortices determining
the turbulent transfer, the combination in the parenthe-
ses plays the role of the local Atwood number, and  is
the density averaged over the horizontal. In the asymp-
totic form under investigation, lturb in (42) is determined
by the transverse dimension of the box or the 2D, 3D
tube:

(43)

For this reason, the turbulent diffusion coefficient
assumes the form

Accordingly, the diffusion equation can be written in
the form

(44)

In the problem on the breakdown of the initial den-
sity jump, there are no parameters with dimensions [l]
or [t]. Consequently, the solution of Eq. (44) must be
self-similar:

(45)

Substituting relations (45) into Eq. (44), we obtain

(46)

This equation becomes an ordinary second-order dif-

ferential equation if factor /t5δ/2 – 1 is constant. In
the case of free turbulence considered in this way in [5],
we have lturb ∝  h ∝  t2, whence δ = 2 (see Sections 10,
11, 14). In the case under investigation of a long tube,
scale lturb (43) is fixed. Consequently, the law of expan-
sion of the mixed zone in such 2D, 3D tubes is deter-
mined by a power dependence of the form

(47)

where C ~ 1 is a dimensionless constant.

L⊥ /g Atα+

wturb glturb lturb
∂ ρln
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------------ 
 = ,
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3
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2 ∂
∂z
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ρ1/2
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------ 

 
3/2

.=

ρ z t,( ) ρ ξ( ), ξ const z/tδ.= =

ξρξ'– const5/2g1/2

3δ
--------------------------=

lturb
2

t5δ/2 1–
--------------- d
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ρξ'( )3/2

ρ1/2
--------------- .

lturb
2

h L⊥= t/ttrans( )2/5 C α+Atg( )1/5L⊥
4/5t2/5,=
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The vertical self-similar profile of the average den-
sity can be found by integrating Eq. (46). It can be seen
that this equation is the same for free and restricted tur-
bulence. An analysis of this equation is given in [5].
The profile has the shape of a smoothed step.12 Thus,
the quadratic dependence (1), (5) for t ~ ttrans is replaced
by law (47) with attenuating acceleration. We can for-
mally write

where  is the value in the free case. This gives

Coefficient α+(t) is a decreasing function. This is a
manifestation of the drag associated with lateral bound-
aries.

29. CONCLUSION

We have investigated the Rayleigh–Taylor turbu-
lence. The rate of vertical expansion of the mixing layer
is determined by the transverse structure of the layer.
The layer is formed by a horizontal row of basic cells
or clusters undergoing continuous changes. The time
evolution is manifested in the enhancement of long-
wave fluctuations leading to the generation of large-
scale fluctuations relative to current mass flows. Above
and under the main row, fragments of the previous gen-
erations of the cascade are moving. We analyzed the
substructure of a basic cell. In the 2D case, the cell is
formed by several pairs of ascending and descending
columns (cluster) rather than by a single pair.

We have analyzed the factors affecting the value of
coefficient α+. The initial long-wave noise increases α+
by stimulating the mixing. The lateral boundaries of the
rated region produce the opposite effect. They restrict
the horizontal size of clusters, hamper the mixing, and
reduce the value of α+. We proposed the important for-
mula (41) describing wide-range noise. The threshold
amplitude of noise affecting the value of α+ is deter-
mined. The problem of the asymptotic form of the flow
over large time intervals is solved for extended rated
regions. The onset of the rearrangement of the flow
with a free asymptotic form, h ∝  t2, to a restricted form,
h ∝  t2/5, reduces coefficient α+.

The information on the structures is contained in the
spectrum. It is important to process numerical data
appropriately, first, to obtain the universal (self-similar)
spectra and, second, to separate the random component
associates with stochastic phases from the systematic
component. These problems were solved by us here.

12 It should be noted that for µ = +0 (mixing with a “vacuum”), we
have h+ ∝  t, h– ∝  t2. In this special case, law (47) is inapplicable.

h+ t( ) α+ t( )Atgt2 C1 α+
freeAtg( )1/5

L⊥
4/5t2/5,= =

α+
free

α+ t( ) C1 α+
free( )1/5

L⊥ /Atg( )4/5t 1.6–=

=  C2α+
free t/ttrans( ) 1.6– .
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First, we proposed a self-similar reduction of the spectral
amplitudes (26) to the dimensionless form, which takes
into account the randomness of the phases of adjacent har-
monics. Second, we determined the smoothing procedure
for spectral data in order to single out the systematic
component. The effectiveness of this procedure is dem-
onstrated on the model of random periodic functions.
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Abstract—The paper describes the results of a recent numerical study on the canonical mapping with a saw-
tooth force. The dynamic effects of the formation of invariant resonance structures of various orders, whose
presence prevents the development of global chaos and restricts momentum diffusion in the phase space, are
discussed. The dynamic situation near an integer resonance separatrix in the neighborhood of the critical state is
studied, and the conditions responsible for the stability of this separatrix in the critical state are determined. Along
with the mapping, the related continuous Hamiltonian system is considered. For this system, the separatrix map-
ping and the Mel’nikov–Arnold integral are introduced, whose analysis facilitates understanding the reasons
responsible for the unusual dynamics. This dynamics is shown to be preserved under substantial saw shape
changes. Relevant new problems and open questions are formulated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to the modern theory of nonlinear Hamil-
tonian systems, the arising of dynamic chaos is related
to the destruction of resonance separatrices and the for-
mation of chaotic layers in their place [1–3]. The sepa-
ratrix of a solitary nonlinear resonance is known to be
two spatially coinciding branches corresponding to for-
ward and backward motions along the time axis. Both
branches are continuous trajectories with an infinite
period of motion, which issue out of the unstable equilib-
rium point (saddle) and then asymptotically approach it.
In the presence of other nonlinear resonances in the sys-
tem, they split and, starting as previously from the saddle
toward each other, never return to the saddle point again.
Free ends of split separatrix branches form an infinite
number of loops of an infinitely increasing length, which
fill the narrow region near the unperturbed separatrix
and produce a chaotic layer [1–3]. The overlapping of
the chaotic layers of all system resonances is exactly
the arising of global chaos.

The assertion that resonance separatrix splitting and
the formation of a chaotic layer in its place in a typical
(that is, nonintegrable) Hamiltonian system occurs
under almost every perturbation can be considered cen-
tral to modern views on the problem. It is also believed
that the destruction of separatrices occurs, first of all,
because they have zero frequencies and the interaction
of nonlinear resonances in their vicinity is always sub-
stantial [1–3]. In this “usual” dynamics, the transition
form a chaotic layer to a chaotic sea caused by an
increase in the perturbation parameter has been studied
rather in detail and is explained by the destruction of
invariant curves with irrational rotation numbers and
the formation of so-called Cantor tori [4].
1063-7761/01/9204- $21.00 © 20744
The conditions of global chaos formation are differ-
ent for dynamic systems with analytic and smooth
phase dependences of perturbation. The principal ques-
tion is that of the degree of smoothness (the number l of
continuous derivatives of force) at which global chaos
arises starting with a certain threshold rather than an
arbitrarily small system parameter value. Moser and
Russman [5] showed that such a threshold always
exists if l > 3. A proof of the reverse assertion that, at
l ≤ 3, there is no threshold and no restrictions on
momentum diffusion in the phase space is lacking.

Recently, Ovsyannikov [6] has proved that, for a
quite definite countable set of critical system parameter
K values, there exist undestroyed integer resonance
separatrices in a two-dimensional canonical mapping
of the form

(1)

with periodic f(x + 1) = f(x) and antisymmetric f(–x) =
– f(x) sawtooth forces (degree of smoothness l = 0)

(2)

This important result is still unpublished; for the
reader’s convenience, communication [6] is cited here
in appendix form.

The Ovsyannikov theorem prompted us to under-
take thorough numerical and theoretical studies of sys-
tem (1), (2) and its modifications [7, 8]. We found that
not only integer but also fractional resonances of arbi-
trary orders have critical numbers of their own at which
their separatrices also do not split. A brief review of our
numerical results is given in Section 2. Unfortunately,
the important and interesting work by Bullet [9], in

p p Kf x( ), x+ x p mod 1( )+= =

f x( )
4x at x 0.25,≤
4 0.5 x–( ) for 0.5 x– 0.25,≤
4 x 1–( ) for x 1– 0.25.≤

=
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which the same model was studied, was not known to
the authors of [6–8]. For this reason, Section 2 also
includes the most important and strictly proven results
from [9]. The differences between the approach devel-
oped by Bullet and that used in our works are dis-
cussed.

Section 3 considers the dynamic situation in the
vicinity of an integer resonance separatrix near critical
conditions. Certain circumstances ensuring the surpris-
ing stability of this separatrix in the critical state are
specified.

In addition to mappings (1), (2), we consider a
related continuous system with the Hamiltonian

(3)

where V(x) = (x)dx is the sawtooth potential, e ! 1,

and the perturbation contains two symmetrical harmon-
ics. The study of this system performed in Section 4
facilitates understanding some details of the behavior
of mapping (1), (2).

In Section 5, a general asymmetric saw, whose par-
ticular case is symmetrical saw (2), is considered. We
show that the unusual dynamics is preserved in the whole
range of possible skewness parameter variations and only
disappears at limit points (where the two-tooth saw trans-
forms into one-tooth). In the Conclusion, we summarize
the results and discuss open questions.

2. CRITICAL NUMBERS AND CRITICAL STATES
OF SYSTEM (1), (2)

A periodic orbit and the corresponding resonance
are usually denoted by the rotation number ν = P/Q,
where Q is the number of mapping iterations to P orbit
periods [2]. Resonances with Q = 1 are called integer,
and the other resonances, fractional. Unperturbed reso-
nance separatrices have ν = 0, and they are precisely the
objects of our study.

One of the important features of the dynamics under
consideration is the presence, for resonance Q of an
arbitrary order, of a presumably countable set of “criti-
cal” parameter KQ, m (m = 1, 2, …) values of its own. At
these values, the resonance separatrix not only does not
split (in spite of the presence of strong local chaos, see
Fig. 1) but it is even an impermeable barrier to the other
trajectories. It extends through the whole phase and iso-
lates the interior of its resonance (a region with a finite
phase volume) from the remaining part of the phase
space. This invariant manifold is known as an invariant
resonance structure [7]. Like the presence of invariant
curves, the presence of such structures completely for-

H x p t, ,( ) H0 x p,( ) eU x t,( ),+=

h0 p2/2= ω0
2V x( ),+

U x t,( ) 2πx τ– τ0–( )cos 2πx τ τ0+ +( ),cos+=

τ Ωt,=

f∫–
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bids global chaos and imposes restrictions on momen-
tum diffusion.

Critical conditions were found by the technique
developed by us earlier and based on measuring sepa-
ratrix intersection angles αQ at the central homoclinic
point (the details and results of such measurements for
the standard mapping are described in [10]).

The numerical αQ(K) dependences obtained for all
system (1), (2) resonances studied in this work are
alternating and oscillating [7], which qualitatively dis-
tinguishes them from a similar dependence for the stan-
dard mapping, which has been studied fairly thor-
oughly (this dependence is alternating and strictly
monotonic [10]). This difference is related to substan-
tially different dynamic behaviors of these two sys-
tems.

The KQ, m (m = 1, 2, …) critical numbers of a reso-
nance of order Q satisfy the condition αQ(KQ, m) = 0 and
can be of two types: at odd m, the angle smoothly
changes while passing zero, and, at even m, it passes
zero in a jump.

An analysis shows that even critical numbers of sys-
tem (1), (2) integer resonances exactly coincide with
the elements of the countable set from the Ovsyannikov
theorem and are determined by solutions to transcen-
dent equation (1.4) at integer coefficient k values (see
Appendix). We found that odd critical numbers not
included in the Ovsyannikov theorem were also deter-
mined by solutions to the same equation, however, with
half-integral coefficient values. For an arbitrary integer
resonance critical number we therefore have

(4)K1 m, βm/2( ), msin
2

1 2…,,= =

0.003

0 0.005x

dp

1.1

–0.1
0 1x

p

Fig. 1. The system parameter equals the second critical
number K = K1, 2 = 1/8. A strongly enlarged (on the momen-
tum scale) small “gap” region between a chaotic trajectory
with the initial coordinates x = 0, p = 0.37 and the lower inte-
ger resonance separatrix (see text). Here, dp = p – ps, where
p(x) is the trajectory momentum and ps(x) is the momentum
on the separatrix. In the inset: the region occupied by this
trajectory. The number of mapping iterations 109.
ICS      Vol. 92      No. 4      2001
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Critical numbers of fractional resonances in the “gap”

Q 13 15 17 19 21 23

K1,2 – KQ 6.71 × 10–8 4.19 × 10–9 2.62 × 10–10 1.63 × 10–11 1.02 × 10–12 6.39 × 10–14
where βm is the smallest positive root of the equation

(5)

These equations, in particular, yield exact values of the
first two critical numbers, K1, 1 = 1/3 and K1, 2 = 1/8.

Mapping (1), (2) has also been studied in detail in
[9], where the existence of invariant curves with ratio-
nal and irrational rotation numbers in a wide range of
parameter K variations is rigorously proved. The con-
servation of separatrices and the formation of invariant
resonance structures of various orders is not specially
discussed in [9], but there is a reference to the invariant
properties of integer resonance separatrices with ν = 0
for the first critical numbers K1, 1 = 1/3 and K1, 2 = 1/8.
It appears that precisely in [9], the fact of the “unusual”
dynamic behavior of system (1), (2) has been estab-
lished for the first time.

The existence of a countable set of parameter K val-
ues at which resonance separatrices remain intact in
spite of the perturbing action of many other resonances
has important dynamic consequences.

The region occupied by one chaotic trajectory at the
system parameter value equal to the first even critical
number K = K1, 2 = 1/8 is shown in the inset in Fig. 1.
The upper and lower boundaries of this region are very
close (see Section 3) to the integer resonance separa-
trices calculated by the exact Ovsyannikov equations
[Eqs. (1.5)]. Here, everything is at variance with
“usual” dynamics concepts.

Infinitely many “nontypical” Hamiltonian systems
with all resonance separatrices unsplit are known to
exist. These are so-called completely integrable sys-
tems with no chaos in their dynamic behavior [2, 3].
The striking feature of the situation shown in Fig. 1 is
the coexistence of undestroyed separatrices of two
neighboring integer resonances and the region of utter
chaos, in which all the other invariant resonance struc-
tures and invariant curves with very stable irrational
rotation numbers are destroyed and the chaotic layers
of all fractional resonances overlap each other.

One of the most important questions is that of the
dynamic situation near such an intact separatrix. In the
next section, we give a partial answer to it.

The situation with the first odd critical number K =
K1, 1 = 1/3 is even more intriguing. For all fractional reso-
nances determined by us numerically (accurate to 25 dec-
imal places), we obtained KQ, 1 = K1, 1 = 1/3. It follows that,
at K = 1/3, resonances of all orders are invariant resonance
structures, and chaotic trajectories never intersect the

2 mβ
2

-------sin
β
2
---.cos=
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separatrix of “their own” resonance within which they
originate.

3. DYNAMICS NEAR AN INTEGER
RESONANCE SEPARATRIX AT K ≈ K1, 2

In this section, we discuss one of the main problems,
that of the dynamic situation near an integer resonance
separatrix when the system approaches the critical
state, in the critical sate (Fig. 1), and at the exit from it
(see Fig. 1).

At a small positive deviation of system parameter K
from the K1, 2 = 1/8 critical value, the separatrix begins
to transmit other trajectories, but the mean time (the
number of iterations) TC of resonance passage depends
on the detuning ∆K = K – K1, 2 > 0. An empirical equa-
tion for the mean integer resonance passage time was
obtained in [7]. This equation has the form

(6)

Clearly, the passage time infinitely increases as the sys-
tem approaches the critical state.

In the critical state (Fig. 1), a chaotic trajectory, as
mentioned, fairly closely approaches separatrices. To
quantitatively estimate this closeness, we determined
the smallest (in momentum) distance between this tra-
jectory and integer resonance separatrices calculated
by the exact Ovsyannikov formulas. It was found that
there is a gap between the trajectory and the lower sep-
aratrix (we call it main) with a minimum width dpmin ≈
3 × 10–6. A strongly enlarged small part of the gap is
shown in Fig. 1. As follows from this figure, in the
immediate vicinity of the separatrix, there is a region
filled by fractional resonances 1/Q of comparatively
high orders, which are arranged in layers. The larger the
Q value, the closer its region to the separatrix (the low-
est resonance discernible in the figure is 1/23). As each
such resonance has full extension over the phase, get-
ting into the lower layer requires traversing the upper.
For some of the gap resonances, critical numbers clos-
est to K1, 2 = 1/8 were found; these values are listed in
the table. The Q resonance rotation number 1/Q and criti-
cal number KQ tend to the main separatrix rotation number
(zero) and critical number K1, 2 = 1/8 as the order of the
resonance increases. For arbitrary Q, KQ < K1, 2.

A chaotic trajectory that tends to approximate the
main separatrix should traverse these resonances, and
traversing each resonance takes a certain time. Direct
measurements of the time of trajectory penetration

TC〈 〉 135
K1 2,

K K1 2,–
-------------------- 

 
1.193

1 0.09±( ),=

K K1 2, .>
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from the chaotic sea to the chaotic region within a high-
order fractional resonance are technically impossible.
For this reason, we measured another value, the mean
time of escape from a resonance of the chaotic trajec-
tory started within it, TE [7]:

(7)

According to this formula, gap resonance critical num-
bers approach the K1, 2 = 1/8 value from below as Q
increases. As a consequence, intrinsic separatrices of
these resonances become increasingly less “transpar-
ent,” and the time of escape of a chaotic trajectory from
them grows infinitely. Of course, there can be no global
chaos in the critical state of an integer resonance.

The situation that arises when the system gets out of
the critical state (that is, when K deviates from K1, 2
toward lower values) has been found to be much more
complex.

Global chaos certainly exists at K1, 2 = 0.125 > K >
K1, 3 = 0.06191… and far from critical numbers. For
instance, in the 0.1090 ≤ K ≤ 0.1094 interval, global
diffusion is observed whose rate sharply decreases
toward interval end points (the initial conditions x = 0,
p = 0.37; the number of iterations 109). However, if the
parameter value smoothly decreases starting with K =
K1, 2 = 0.125, then, as follows from the table, gap reso-
nances successively (one after another) reach their crit-
ical states and prevent the trajectory from approaching
the main separatrix at a distance smaller than some
dpmin. For instance, at K = 0.12499999581… (critical
number for Q = 15), the minimum distance between the
trajectory and the separatrix is dpmin ≈ 4.6 × 10–5, and at
K = 0.12499993294… (critical number for Q = 13),
dpmin ≈ 1.8 × 10–4; the number of mapping iterations
was 1011 for both trajectories.

These results can be summarized in a somewhat pic-
torial manner. It is as though high-order resonances bar
the passage to the main separatrix and resist the
approach of chaotic trajectories to it. In the supercriti-
cal state, K > K1, 2, a trajectory can traverse the whole
resonance, and the closer K to K1, 2, the longer the time
this takes. At K = K1, 2, a trajectory can approximate the
main separatrix arbitrarily closely but never reaches it.
At the exit from the critical state, the system succes-
sively passes the critical states of gap resonances as K
smoothly decreases, and the development of global
chaos is possible in principle only within intervals
between neighboring critical numbers.

4. SEPARATRIX MAPPING
AND THE MEL’NIKOV–ARNOLD INTEGRAL 

FOR CONTINUOUS SYSTEM (3)

The empirical results described above require an
explanation. First and foremost, we would like to under-
stand the nature of the mechanism responsible for the
oscillating and alternating behavior of the main α1(K)

TE〈 〉 80e0.705Q 1 0.07±( ).=
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dependence obtained in Section 2. It is a matter of general
experience that mappings are more convenient to study by
numerical methods, whereas continuous systems more
easily lend themselves to analytic treatment [2]. For
this reason, we will deal with Hamiltonian (3) in this
section and then apply the results to mapping (1), (2).

The separatrix (xs(ψ), ψ = 2ω0t) of an unperturbed
(e = 0) system (3) can be written in the form

(8)

where a = eπ/4/4.
The Hamiltonian value on the separatrix is H0, s =

/4, and the period of motion close to the separatrix
is calculated by the formula

(9)

Here and throughout, w = H0/H0, s – 1 is the relative
deviation from the separatrix in energy. Note that equa-
tion (9) is comparatively accurate, and the values calcu-
lated by (9) deviate from those found numerically by
less than 5% in the interval –0.47 ≤ w ≤ 1.06.

The separatrix mapping for system (3) is written in
the form [1]

(10)

Here, λ = Ω/(2ω0) is the adiabatic parameter (2ω0 is the
frequency of oscillations near the stable equilibrium
point x = 0.5, p = 0). Amplitude W in (10) can be found
numerically (we then write W = WE) or theoretically
(W = WT); the corresponding dependences will now be
compared.

The theoretical WT amplitude value is given by the
formula

(11)

where the sign coinciding with the sign of ∆H0 and WMA

is the Mel’nikov–Arnold integral.
Following the technique described in [1], we will

seek changes in unperturbed H0 energy during a half-
period of vibrations or a period of rotations,

xs ψ( )

aeψ at ∞ ψ π/4,–< <–
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------- ψsin+ 
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Here, {…} is the Poisson bracket. Assuming that the
system moves fairly closely to the separatrix and calcu-
lating the latter relation at x = xs, p = ps =  =
2ω0dxs/dψ, we obtain

Note in passing that the ps factor in the integrand
removes the well-known problem of special normaliza-
tion of this integral to suppress its oscillating part,
because this factor tends to zero at both integration lim-
its (see Section 4.4 in review [1] for details).

The Mel’nikov–Arnold integral can eventually be
written as

(12)

The first term in (12) describes the contribution of the
“elliptical” separatrix portion (0.25 ≤ xs ≤ 0.75), and the
second term is the contribution of the remaining sepa-
ratrix part. Both terms are oscillating and alternating,
and their oscillations are almost in antiphase to each
other. The resulting WMA(λ) function is also alternating

ẋs

∆H0 4πe τ0sin–=

×
ps ψ( )
2ω0

-------------- 2πxs ψ( )[ ] λψ( )sinsin ψ.d

∞–

∞

∫

WMA λ( )
max∆H0

4πe
---------------------=

=  
1

2
------- π

2
------- ψsin 

  ψ λψ( )sincossin ψd

0

π/4

∫

+ 2a e ψ– 2πae ψ–( ) λψ( )sinsin ψ.d

π/4

∞

∫
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λ
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* T,
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10 15 20 25

0
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Fig. 2. Solid line: normalized theoretical amplitude  of

separatrix mapping (10); solid circles: normalized 

amplitude obtained by numerically constructing this map-
ping over system motion periods.

WT
*

WE
*
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and oscillating (see Fig. 2). Interestingly, (12) admits a
very simple asymptotic (λ @ 1) representation

(13)

The root-mean-square error of calculations by (13) is
about 4% in the 10 ≤ λ ≤ 150 interval and about 1.3%
at 50 ≤ λ ≤ 150.

Theoretical WT amplitudes calculated by (11) and
(12) should be compared with numerically calculated
WE values, which were determined as follows (see [11]
for details). The central intersection point between the
main resonance branches of system (3) lay on the x =
0.5 line, and its ordinate ph was very accurately deter-
mined precisely along this line. The initial conditions
for orbits were randomly selected on the same line in a
narrow neighborhood of ph, assuredly within the cha-
otic layer. The trajectory made the prescribed number
of periods of motion, N (the period of motion, T, is the
time interval between successive moments of passing
the stable phase x = 0.5). For each T, the stable energy
was calculated by the formula

(14)

Separatrix mapping (10) (δwk , τk = Ωtk(mod2π), k = 1,
2, …, N − 1) can be constructed and its amplitude WE

found by determining energy changes δw =  – w for
a pair of neighboring periods and assigning to time
moment tk common to these periods.

Theoretical WT values calculated by (12) and
numerical WE amplitudes of separatrix mapping (10)
are compared in Fig. 2. For convenience, not WT and WE

themselves but their normalized values

(15)

are compared [exponent λ in the correcting factor is
from adjustment equation (13)]. Because of the excel-
lent coincidence of the two curves, we can confidently
use formula (12) for the Mel’nikov–Arnold integral
and assume that W = WT in (10).

The value most important for practical applications
is the half-width of the chaotic layer (wmax) rather than
the separatrix mapping amplitude (W). For all ampli-
tude values shown by solid circles in Fig. 2, we iterated
the separatrix mapping to find wmax. We found that the
relation between the size of the layer (wmax) and the
amplitude (W) suggested by Chirikov (Eq. (6.8) in [1]),

(16)

was fairly accurate in our case, even in the neighbor-
hoods of zero W amplitudes. For instance, at λ > 10, we
have 0.94 ≤ wmax/λ|W | ≤ 1.3.

WMA λ( ) 1.17λ 3.034– π
4
---λ 

  .cos–≈

w 2 π
2
--- 2ω0T– 

  .exp=

w

WT* AWT , WE* AWE, A
ω0

2λ3.034

16πe
------------------= = =

wmax λ W ,≈
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The results obtained for continuous system (3) can
be extended to mapping (1), (2). The λ1, m (m = 1, 2, …)
values at which WMA(λ1, m) = 0 will be called critical
(the first index shows that the values refer to the princi-
pal resonance). Clearly, the transition of continuous
system (3) with parameter λ to mapping (1), (2) with
parameter K and vice versa should be performed with
the use of the relation

(17)

This equality allows the critical λ1, m values of system
(3) to be recalculated to the critical mapping parameter
values. Let the values found in this way be denoted by
K*; that is,

(18)

These values should be compared with K1, m calculated
by (4), (5). The ratio between K and K* is well
described by the formula

In the asymptotic limit (m @ 1), sets K1, m and 
coincide, which justifies extending the results obtained
in this section to mapping (1), (2).

The goal formulated in the beginning of this section
can be considered partially achieved. Namely, the
Mel’nikov–Arnold integral is responsible for the
behavior of the WT separatrix mapping amplitude, which
periodically passes zero, and for the absence of separatrix
splittings at these points. Our discussion also explains why
energy changes along the elliptical and hyperbolic separa-
trix regions have different signs.

5. MODEL GENERALIZATION

The dynamics described above is, in our view, far
from trivial. The natural questions arise: is not func-
tion (2), which is responsible for this dynamics, some-
thing unique, and will not all the unusual dynamic effects
disappear when the construction is slightly “stirred?” To
answer these, we will use this short section to consider an
asymmetric saw. The model will be constructed by the
introduction of skewness parameter s into (2):

(19)

The s parameter can vary in the interval –0.25 ≤ s ≤
0.25; at s = 0, we return to symmetrical model (2).

K ω0
2 π/λ( )2.= =

K1 m,*
π

λ1 m,
---------- 

  2

, m 1 2 …, ,= =

K1 m,

K1 m,*
----------- 1 0.676m 0.875– , m+≈ 1 2 …, ,=

K1 m,*

f x s,( )

4x
1 4s+
-------------- at 0 x 0.25 s,+≤ ≤

2 4x–
1 4s–
--------------- at 0.25 s+ x 0.75 s,–≤ ≤

4 x 1–( )
1 4s+

------------------- at 0.75 s– x 1.≤ ≤

=
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At the end points of this interval, the two-tooth saw
degenerates into a one-tooth saw, but the dynamic
behaviors of the system at these limit points are quali-
tatively different. If s = –0.25, motion along the separa-
trix is simple harmonic oscillations, which we will not
consider. In the other limit (s = 0.25), separatrices split at
arbitrary K values, and chaos becomes global. The corre-
sponding dynamics has been intensely studied, and there
is nothing unusual in it (e.g., see [12]). The main goal of
this section is to understand the most important details of
this transition. Let us use the equivalence of the continu-
ous and discrete descriptions established above and trace
the evolution of the Mel’nikov–Arnold integral accom-
panying parameter s variations.

At s ≠ 0, the elliptical and hyperbolic saw period
parts become unequal, and motion in these parts is
described by different frequencies (ω1 and ω2, respec-
tively):

(20)

Here, time t can conveniently be used as an indepen-
dent variable. The duration of motion along the separa-
trix from the stable equilibrium point (x = 0.5) to the
break point (x = 0.75 – s), Tsm, is given by the formula

(21)

Separatrix xs(t) of unperturbed system (3) should be
written as

(22)

where as = (1 + 4s) /4.
The Mel’nikov–Arnol’d integral then takes the form

(23)

Using this formula, we were able to study the whole
interval of parameter s variations. The following picture
emerged. Everywhere within this interval, the Mel’nikov–
Arnold integral remained alternating and oscillating, and,
therefore, there remained a set of critical numbers and the

ω1 ω0/ 1 4s– , ω2 ω0/2 1 4s+ .= =

Tsm
1

2ω1
--------- 1 4s–

2
--------------arcsin .=

xs t s,( )

=   

ase
2ω2t

 at ∞– t Tsm,–< <

1
2
--- 1 1 4s–

2
-------------- 2ω1tsin+ 

   at Tsm– t Tsm,–< <

1 ase
2ω2t–

 at Tsm t ∞,< <–

e
2ω2Tsm

WMA λ s,( ) 2ω1
1 4s–

2
--------------=

× π 1 4s–
2

-------------- 2ω1tsin 
  2ω1t( ) Ωt( )sincossin td

0

Tsm

∫

+ 4ω2as e
2ω2t–

2πase
2ω2t–

( ) Ωt( )sinsin t.d

Tsm

∞

∫
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corresponding invariant resonance structures. The half-
period of oscillations Λ0 (the distance along λ between
neighboring zeros of the integral), however, infinitely
increased as s  0.25. At s = 0.25, the first zero of the
Mel’nikov–Arnold integral went into infinity and the
“usual” dynamics was restored [12].

This conclusion fully agrees with the results of [9],
where an asymmetric saw model similar to (1), (19)
was considered, and the existence of invariant curves
with various rotation numbers was proved for it. Con-
sidered among others was the integer resonance separa-
trix with ν = 0.

6. CONCLUSION

In our view, mapping (1), (2) and continuous system
(3) with an unusual dynamics deserve further study. Sev-
eral of the most important problems should be mentioned.

In [9] and this work, the following very complex
dynamic picture of mapping (1), (2) has been revealed.
Each resonance of the countable set of system reso-
nances has its own (presumably countable) set of criti-
cal parameter K values, at which the resonance
becomes an invariant structure (with rotation number ν
= 0) impermeable to other trajectories. This set should
be augmented by all those K values (they can also be
called critical numbers) for which the existence of
invariant curves with rational and irrational ν > 0 was
proved in [9]. Of obvious interest would be a study of
global diffusion for system (1), (2) at K ≤ 1/3. Such a
study would, we believe, allow us to gain insight into
how the set of all critical numbers is organized and
what in essence it is.

In Section 3, we described the dynamics of the
approach to and exit from the critical state for an integer
resonance. Whether or not this scenario is typical and
whether or not it is valid for fractional resonances is an
open question.

A simple theory explaining the nature of alternating
α1(K) dependences and separatrix stability for an inte-
ger resonance was suggested in [8]. A similar analysis
of fractional resonances would be useful.

Possibly, answers to these and other questions
would allow us to essentially refine some modern theo-
retical concepts concerning nonlinear Hamiltonian sys-
tems.
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APPENDIX

Ovsyannikov Theorem
on Sawtooth Mapping Separatrices [6]

Consider the equation for the x(t) function defined
on the entire real line 5(–∞ < t < +∞):

(A.1)

where h > 0 is a fixed constant and f (x) is an odd 4-peri-
odic function defined for 0 ≤ x ≤ 2 by the formula

(A.2)

Solution x(t) of (A.1) with function (A.2) is called a
separatrix if x(t) is monotonic and continuous on the
entire real line 5, x(0) = 0, and x(t)  2 as t  +∞
and x(t)  –2 as t  –∞.

Theorem. There exists a sequence {hk}, k = 1, 2, …,
such that hk  0 as k  ∞, and for each h = hk, there
exists the separatrix x = xk(t) as a solution to (A.1) with
function (A.2). As k  ∞, the sequence {xk(t)} con-
verges uniformly on 5 to a solution that is the separa-
trix for the limiting equation x''(t) = f(x),

(A.3)

Construction. Put hk = 2sin(αk/2), where αk is the
smallest positive root of the equation

(A.4)

For nhk ≤ t ≤ (n + 1)hk, the separatrix is then given by
the equations

(A.5)

with the coefficients

Note that, because the period and position of force
(A.2) are different from those in the main text [Eq. (2)],
the transition from the Ovsyannikov parameter h in
(A.1) to the K parameter of mapping (1) and vice versa
requires the use of the relation

x t h+( ) x t h–( ) 2x t( )–+ h2 f x t( )( ),=

f x( )
x, 0– x 1,≤ ≤

x 2, 1– x 2.≤ ≤



=

x t( )
2 t, 0sin t π/4,≤ ≤

2 eπ/4 t– , π/4– t ∞.≤ ≤



=

2 kα( )sin α /2( ).cos=

xk t( ) Xn n 1 t
hk

----–+ 
  Xn 1+

t
hk

---- n– 
  ,+=

n 0 1 2…, ,=

Xn

nα ksin
kα ksin

-----------------, n k,≤=

Xn 2
hk

2 4+ hk–
2

-----------------------------
 
 
 

2 n k–( )

, n– k.≥=

K h2/4.=
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ERRATA
Erratum: “Coulomb Effects in Spatially 
Separated Electron and Hole Layers
in Coupled Quantum Wells”
[JETP 92 (2), 260 (2001)]

L. V. Butov, A. Imamoglu, K. L. Campman, and A. C. Gossard

1. The correct reference numbering in Fig. 4 is [13, 15] instead of [14, 16]; [18] instead of [19]; and [14–
16] instead of [15–17];

2. Page 264, right column, 5th line from top: 1.5 meV instead of 13 meV;
3. Fig. 6, left inset: 20 W/cm2 instead of 200 W/cm2;
4. Fig. 6, right inset: ×50 should be added for the lower spectrum.
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