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1. INTRODUCTION

The solutions of field equations for self-gravitating
and self-acting fields play a special role in the physics
of the young Universe in general and, in particular, in
inflation problems. The cosmological models of infla-
tion can be constructed on the basis of solving a self-
consistent system of Einstein’s equation and the equa-
tions for nonlinear (in the simplest version, scalar)
fields. The nonlinearity of the scalar inflanton field is
manifested in its self-action through a nonquadratic
potential assuming various maodifications in the hierar-
chy of inflation models [1]. It should be noted that the
examples of exact solutions of the self-consistent sys-
tem of Einstein’s equations and the equations of a non-
linear scalar field are scarce in view of the complexity
of the nonlinear system. In this respect, the method of
fine tuning of the potential is quite productive in our
opinion. This method, which was widely used in [2],
makesit possible to reconstruct the field dependence of
the potential and to analyze numerically and graphi-
cally the time dependence of the field and the potentia
in some cases.

On the other hand, the application of the nonlinear
scalar field induced through the interaction with other
fields in cosmology appears to us as a quite realistic
approach to describing the generation of nonlinearity in
the classical field theory. Unfortunately, in this case,
one must solve a complex nonlinear system of equa-
tions not only for a scalar field, but aso for the field
inducing the nonlinearity. Exact solutions are difficult
to obtain even for the simplest field configurations. The
situation becomes even more complicated when self-
gravitating fields are considered in cosmological or
astrophysical applications of the solutions. Interesting
solutions can be obtained under the assumption of the
background nature of the cosmological gravitational
field as, for example, wasdonein[3, 4]. However, such
solutions are not directly connected with the problems
of the cosmological scenario if only due to their sto-
chastic nature. Nevertheless, the very concept of

induced nonlinearity is very attractive for realization
precizely in cosmology in general and, probably, in the
cosmology of the young Universe especially. The exact
solutionsfor self-gravitating Yang—-Mills (Y M) fieldsin
cosmology were obtained in a number of earlier publi-
cations (see, for example, [5]). However, the applica-
tion of these solutions for the induction of the scalar
field nonlinearity in cosmology would lead to nonho-
mogeneous configurations of the scalar field and,
accordingly, to nonhomogeneous cosmological mod-
els. At the sametime, the nontrivia topology of theYM
0(3) fields opens new prospectsin the search for exact
solutions of the self-consistent system of the Einstein—
Yang-Mills equations and the equations of a nonlinear
scaar fied [6]. In the present paper, such a system is
solved in the Friedman model and the generalized Wu—
Yang ansatz for the YM fields.

2. EQUATIONS IN THE MODEL
OF GRAVITATING SCALAR
AND GAUGE FIELDS

We will proceed from the Lagrangian of aself-grav-
itating scalar field ¢ whose nonlinearity is induced by
theYM SO(3)-symmetry field [3]:

L= ~ -¢ 0% — aBFa“Bw(cb) @

where Fj} =9,W} —9,W} + e£,,. W W’ isthe tensor of

the YM field W2 and W(¢) is the function describing

the interaction between the scalar field and the YM
field. It should be noted that Rybakov et al. [4] used a
similar Lagrangian for describing the interaction with
an electromagnetic field and for an analysis of static
configurations against the background of the Fried-
man—Robertson—-Walker static model. In the same pub-
lication, a similar Lagrangian is substantiated by the
existence of the decay 11— 2y, while Piccindli et al. [7]
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noted that for W(¢) = ¢, Lagrangian (1) containsthe

compacted Kaluza—K lein theory for A = /3 and the
theory of superstringsfor A = 1. The same type of inter-
action appears in the Brans-Dicke theory.

The equations for YM fields, the scalar field, and
gravitation potentials can be obtained by varying the
Lagrangian in the fields and the space-time metric. As
a result, we obtain the system of self-consistent Ein-
stein equations

GV

w = KoTp, 2

where the energy—momentum tensor of the fields is
given by

—¢m-—awaW)
©)
~8)[530.0" ~ FaF W)
theYM equation
D, (+/-gF*"¥(¢9)) = 0, 4
and the equation for the scalar field

:
vuaq)ug e FF W, =0, (9)

1 oo
Teond
Symbol D, denotes the covariant derivative.

We assume that the space-time interval possesses
spherical symmetry and present it in the form

ds’ = dt®—U(r, t)dr’ = V(r, 1)dQ?, ©
dQ? = d8’+ sin’6dq’.

At the same time, the generalized Wu-Yang ansatz [8]
for theYM fields can be written as

- O. x*x
We = siabXbK(r’tg 1, 55? EB(ért),
er (7)
A = XaW(l",t).
er

Hereand below, i, j, k, ... =1, 2, 3 arethe spatial indi-
ces a b, ...=1,2 3areisotopicindices; and K, S and
W arethefield functions of the above arguments. Intro-
ducing the orthonormal reference frame [8]

n = (sinBcosd, sinBsind, cosb),

| = (cosBcosd, cosBsing, —sinB),

m = (-sind, cosd, 0)
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and going over to spherical coordinates, we can write
ansatz (7) in the form

W, = e {(K-1)m+ 9},

_1 _ )
W;,; = e {-(K-1)I + Sm} sinb,

W, = e 'Wn.

As aresult of simple calculation, we obtain the fol-
lowing components for theYM tensor:

Fop = —Fpp = —e‘1Wn,
Foo = —Fz0 = € (K + WS)m + (S—WK)I),

Fos = —Fg = € (=(K +WS)l + (S—WK)m)sin8,
9
Fipo=-Fy = e_l(K'm +Sl), ©

F,s = —F5, = €'sinf(K° =1+ S)n,

Fiz = —Fg = e_lsine(—K'I +S'm).
Here and below, the following notation is introduced:
( )=d/otand (') =d/ar.

The Einstein equations (2) for the energy—momen-
tum tensor (3) taking into account the ansatz (9) of the
YM fields can be written in the form

G8= KOEH)Z %
1 [W?, 2[(K+ W)+ (S—WK)’]
gne?| U \Y
, 2
L2AK?+8%] | (KP-1+S) w%
UV V2 |:|
D 2 2
6=k
L1 [WP 2K+ W)+ (S-WK)']
gne?| U \
(10)
2 ' 2 2 2
_2[K?+8%  (KP-1+S) w%
UV V2 D
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0¢°, ¢
G; = G3 = Kooy + 5
02 2

2 2 2
' — O
1 . W +(K 12+ Sz) W
gme’| U \% O

(1)— KO[qu) +_

2me’

 K(K+WS) + S(S—WK)LIJ E
v 0
where the expressions for the Einstein tensor components

Gfl in terms of the functions U and V of metric (6) are

known. Using the components of tensor (9), we can
write the equations for the Y M fields (4) in the form

9 vw' D
orh g U
+JU ((S=WK)K = (K + W))W = 0,
DS' WO
O
e (11)

+¢U%('<2++52)S—(K +WHWHW = 0,

(«/_(S WK)W) -

0 OK"

aer

+(S-WK)WHY = 0

([(K WS)W) — qJD

+[gK 1+§)K

while the equation for the scalar field can be written as

ﬂ,t( f"’)‘vfar%’fm

i[v_v_2 L 2L(K+WS)° + (S-WK)]

gne?| U \Y (12)

2 2 2 2
_2[K?+S% (K*-1+S) Y, =0,
uv V&

where W, = dW/d¢.

It should be noted that in the absence of the scalar
field, the solution of the systems of Egs. (10), (11) for a
self-gravitating pure YM field was derived in [8] in
the Tolman metric under the following simplifying
assumptions concerning the field functions: K = S=0,
but W# 0. Thelatter inequality meansthat theY M field
possesses an electric charge which is just responsible
for theinhomogeneity of the cosmological model. If we
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proceed from the same assumptions as in [8], the com-
plete self-consistent system of the Einstein—Yang—
Mills equations and the equation of the nonlinear scalar
fidd (12) cannot be solved. Another approach to the solu-
tion of these equations can be prompted by the results
obtained by Rybakov et al. [4], who obtained the dtatic
solutions of similar field equations against the back-
ground of a static Universe. In the present work, we
propose a new substitution for the YM field functions,
which makesit possibleto analyze the complete system
of Egs. (10)—(12) and to obtain exact solutions for this
system.

3. CLASS OF MODELS
WITH THE FRIEDMAN-ROBERTSON-WALKER
METRIC

For a homogeneous and isotropic Universe, alinear
Friedman—Robertson—-Walker element can be presented
in the form

ds® = dt’—a’(t)(dr’ + &(r)dQ?), (13)
where
sinr, k= +1,
&(r) =<r, k=0,
snhr, k = -1,
and k = 0, £1 is the sign of the curvature of the three-

dimensional hypersurface t = condt. In other words, in
metric (6), we must put U = a2(t) and V = a2(t)&(r). For
the Friedman—Robertson—Walker interval (13), the non-
zero components of the Eingtein tensor are given by [9]

G = S(@+k),
a
Gl = G =G = L(al+2aa+K).
a

If we require that W= 0, K =K(r), S= gr) and that
the scalar field ¢ = ¢(t) is uniform, the system of
Egs. (11), (12) assumes the form

(K°-1+S)S _ 0

S'— Ez ,
K.._(K2_]E_:- SZ)K -0,
(14)
361:
& ¢t
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The first two equations have the same structure, which
reflects the symmetry of the Lagrangian relative to
transformations of functions K and Sof the form

K = P(r)cosa, S = P(r)sina, (15)

where a is an arbitrary constant. Consequently, we
obtain the following equation for function P(r):

P..(r)_(Pz(r)E—% -0 (16)

For k =1, i.e, for the closed and open models of the
Universe, the solutions of Eq. (16) are the functions

k=+1
k =-1

_ _Dcosr
P(r) = &(r) O e,

17)
Using the obtained solutions of theYM equations, we
can reduce the remaining independent Einstein equa-
tions to the following system:

3 . 2 3Kk, 1
2@ +k) = KO% S=W(9),
a 8re"a
. K 1 (18)
.2 L. 0
=(@"+2aa+k) = K= ———=W(0).
az( ) 02 8T[e2a4 (¢)
The equation of the scalar field in this case hasthe form
3at( a’p) + = 0. (19)

It can easily be verified that the system of Egs. (18) and
(19) contains only two independent equations; conse-
guently, in order to solve the system of equations, we
must specify one of the functions a(t), ¢(t), or W(¢).
Defining the interaction function W(¢). It appears as
the most natural, but not necessary, condition and
depends on the specific problem to be solved.

It isworthwhile to note an interesting feature of the
Einstein equations (18), which can be used to write the
effective values of the energy density €(t) and pressure
p(t) intheform

e(t) = %2+3

(L 1
2 gnefat

p(t) =

It follows hence that € — 3p = —d° < 0. The extremely
stringent equation of state e = p is naturally obtained
when W = 0. Thus, the effective pressure is determined
by the inequality /3 < p < e. By an appropriate selec-
tion of theinteraction function W(¢), we can obtain the
required equation of state from the above interval to
solve a specific problem with a cosmological scenario.
In our opinion, it is expedient to apply the model under
investigation in the problems of quintessence in the
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way it was done in [10] on the basis of the possible
magnetization of the Universe.

In order to obtain the exact solutions of system (18),
(19), we can apply the method of fine tuning [11], in
which the evolution of the scale factor a(t) is specified.
Using Eg. (18), we can find

¢2 __b D[ﬁﬁ a_ kg
Ko[DiD a a2D
(20)

Y = 826 a (2a +aa+ 2k).

0

It follows hence that the solution for the real scalar
field ¢ existsonly if

af , 8
uaD+ +a—<0

This inequality indicates, among other things, that an
accelerated expansion of the Universe with & > 0 is
possible only in some cases, and for k= +1 in the given
model, it isabsent altogether. If weinclude anideal lig-
uid and the cosmological constant into the model, rela
tion (21) and the conclusions concerning the possibility
of the accelerated mode differ considerably from those
presented above.

Let us consider asimple example of the solution for
the nonlinear scalar field (20) by using the above
method. Let us suppose that the scale factor a(t) = agt,
and the sign of curvature k = —1. Then the system of
equations (20) leadsto

(21)

_ L [8 L
(b =+ Ko(l a’O)aOtl
W = 16ne ao(ao l)t

The former equations shows that the solution exists if
8, < 1 and hasthe form

b == /651 Gt + .

Eliminating time from the last two equations, we find
the function of the interaction in the form

Y = et (22)

where

2 -

W, = lGKT[e a(z)(a(z)_l)eﬂ)\%’
0

and

Ko @

6 (1-ap)
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Let us consider another example, presuming the
harmonic law of the evolution of the scale factor in the
open (k =-1) model of the Universe:

a(t) = Hg'sin(Hgt).

The substitution of the scale factor into system (20)
makes it possible to integrate the system, which leads
to the following expressions:

12
¢ = iJ;OHot+¢01

2471€”
2

KoHo
Using these expressions, we can obtain the explicit
form of the interaction function:

Y= sin*(Hot).

W = wosjn“[ —:—;(tb—d)o)] (23)

where W, = —24me?/k Hj .

It should be noted that irrespective of the specific
form of the interaction functions W(¢) and, hence, of
the solutions of Egs. (18), the nonzero components of
the tensor for theY M fields, in accordance with formu-
las (9), (15), and (17), have the form

Fon = —F1, = ke 'E(r)(mcosa +Isina),
Fa = —F43 = ke 'E(r)sinB(msina —lcosa), (24)

Fa = —F,y = ke '€%(r)nsiné,

which means that the a YM field has only magnetic
components. It is interesting to note that this circum-
stance has allowed us to obtain homogeneous solutions
for a scalar field. Indeed, formulas (24) readily lead to
theinvariant of theYM field,

FoFY = 3e7a7(t),

which isjust responsible for the dependence of the sec-
ond term in the Eq. (18) for the scalar field, which is
nonlinear in the field, on the time variable only.

4. CONCLUSION

Thus, it is found that the system of the Einstein—
Yang—Mills equations and the equation of a nonlinear
scalar field, which is obtained from Lagrangian (1), has
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solutions with a uniform scalar field interacting with a
YM field of type (24) in the Friedman model of the
Universe, limited only by condition (21). The systemis
reduced to two independent Egs. (18) or (20), which
should be additionally defined either by a specific inter-
action function or by indicating the required rate of the
evolution of the scale factor. It is shown that the latter can
be redized in dl cases, and the smple examples (22) and
(23) illustrate the possibility of determining the explicit
dependence of the interaction function on the scalar
field for certain modes of the expansion of the Uni-
verse.
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Abstract—The rare kaon decay K* — 1"vV is considered in the framework of models based on the
U(3)c U SUEB). O U(D)y (3-3-1) gauge group. In the 3-3-1 model with right-handed neutrinos, the lower
bound of the Z' mass is derived at 3 TeV, and that in the minimal version, a 1.7 TeV. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Kaon is the lightest hadron having a nonzero
strangeness quantum number. Due to the weak interac-
tions, kaon decays into zero-strangeness states contain-
ing pions, photons, and/or leptons. The physics of
kaons has played a major role in the development of
particle physics. The concept of strangeness, with its
implications for the quark model, the discovery of the
P and CP violation, and the GIM mechanism have all
emerged from the study of K mesons. Today, rare kaon
decays remain a field of active investigations (see for
example [1]). Flavor-changing neutra currents (FCNC)
are completely suppressed at the tree level by the GIM
mechanism in the standard model (SM). In the second
or higher order interactions, this suppression is not
complete because of different quark masses[2].

The first experimental evidence for atmospheric
neutrino oscillations (and, consequently, a nonzero
neutrino mass) observed at the SuperKamiokande Col-
laboration calls for an extension of the SM. Among the
possible models, those based on the SU(3) 0 SU(3), O
U(1)y (3-3-1) gauge group [3—6] contain a number of
intriguing features. First, the models predict three fam-
ilies of quarks and leptons if the anomaly-free condi-
tion on U(3), O U(1)y and the QCD asymptotic free-
dom are imposed. Second, the Peccei—Quinn symmetry
naturally occursin these models[7]. Thethird interest-
ing point isthat one generation of quarksistreated dif-
ferently from the other two. This could lead to anatural
explanation for the unbalancingly heavy top quark.
This family nonuniversality also leads to the FCNC by
the Z' currents at the tree leve [8, 9]. Finaly, the 3-3-1
models predict new physics at a scale only dightly
above the SM scale (severa TeVs) [8-11].

T This article was submitted by the authorsin English.

In this work, we consider the implications of the
main two 3-3-1 models for the rare K*¥ — TT'VV
decay; our aim isto obtain a bound on the Z' mass.

2. THE RARE KAON DECAY K* — 'V
IN 3-3-1 MODELS

2.1. The Decay in the 3-3—1 Model
with Right-Handed Neutrinos

We firgt recapitul ate the basic eements of the modd.
The leptons in this model are arranged into triplets, with
the third member being aright-handed neutrino [5, 6],

1
L
f2 =0 a Oge,3-1/3), €0(1,1,-1), (1
L_D eLD(!v_ )! eR(vi_)!()
%(\ﬁ)ag
L

wherea =1, 2, 3isthe family index.

The first two families of quarks are in antitriplets
and the third oneisin atriplet,

| di, [l
Qu = O-u, 00(3,3,0),
1l U
0D O 2
uiRD(Bl 1’ 2/3)! diRD(sl 1’_1/3)7
D..0(3,1,-1/3), i =12,
DU3LD
= Od, O0(3,3,1/3),
Q3L DdSLD ( ) (3)
OT. O

Use 0(3, 1, 2/3), dar0(3,1,-1/3), ToO(3,1,2/3).
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The gauge bosons in this model are the photon (A), Z,
Z', W, Y%, and complex neutral bosons X° and X*©,

J2W = W —iWE, 2Y, = WE—iw
2% =

A, = syWo+c El—t—WW8+ /1—@8% (4)
w = SwWy WDJ@ H 3 “D

—|W

Z., = CyW’ SNE)—t—WWS+ 1 t‘z"’B%
H WY D/\/é H 3 HD
- tw ty
Z, = \Nﬁ+«/_ it

where we use the notation s, = sinf, and t,,, = tan6,,.
The physical states are amixture of Zand Z',

Z, = Zcosp—Z'sing,
Z, = Zsin@+ Z'cosq,
where @ isthe mixing angle.

The interactions between fermions and Z;, Z, are
given by

Ne 9
+ 2y

< { Fy"[ay ())(1-ys) + ar(H(L+ye)1 fZ O
+ fy*[ay (f)(1—ys) + ax(f)(1+s)] fZﬁ} ;

where

ay /(f) = [T(fL R) —SwQ(f)] cose

2 12
e
3,y r(f) (6)
(3-4s)”

:civ[ BN(fL o

(3_43@/)]]2 - Y(f, R)} cos@

2
2Cy

+[T¥(fL Q) —syQ(f)]sing.

Here, T3(f) and Q(f) are, respectively, the third component
of the wesk isospin and the charge of the fermion f. The
mixing angle @ is constrained to be very small [6],
-2.8x10° < ¢ < 1.8 x 10, and can therefore be
neglected.

Because one family of left-handed quarksis treated
differently from the other two, the N charges for left-
handed quarks are also different (see Eq. (3)). There-
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Fig. 1. Feynman diagram for K* — 1t"v¥ in the 3-3-1
models.

fore, the FCNC Z' occurs through a mismatch between
weak and mass eigenstates. We diagonalize the mass
matrices by three biunitary transformations:

Ui = V{U,, Ug = ViU,
D, = VU'D,, Dk = VRDg,

(7)

where U = (u, ¢, t)T and D = (d, s, b)". The usual
Cabibbo—K obayashi—M askawa matrix is given by

Vekm = VLLHVP- (8)

Using unitarity of the VP and VY matrices, we obtain
the flavor-changing neutral interactions [9]

NC _ gCw
ds — = ———
2,/3-4s;,

where i denotes the number of “different” quark fami-
lies, i.e., the SU(3), quark triplet. It was shown in [9]
that i must be equal to 3; i.e., the third family of quarks
must be different from the first two.

We consider the decay

D -3 1
[ViaVoddy's Z,  (9)

K*(p1) — 1 (p2)v(k1)v(k2), (10)

where the symbols in parentheses stand for the
momenta of the particles. The one-loop effective SM
Lagrangian for this process was calculated by Inami
et al. [2]. Due to family nonuniversality in the 3-3-1
models, the decay can be mediated by Z' at the tree
level. The Feynman diagram contributing to the above
decay isdepicted in Fig. 1.

The decay amplitudeis given by

,:IT]W D*
—2V g Ve
,\/ZMZ- Lbd v Lbs
x 0T (p2) |5y, d K (P (kD y*v (K2,

MK —=1TVY) = a1

where my, and M. stand for the W and Z' boson masses,
respectively.
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\ Upper experimental limit |
- ,\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

" Lower experimental limit
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1000 2000 3000

MZ" GeV

4000 5000

Fig. 2. Branching ratio (Br) as afunction of Mz..

For our initial purpose, we present the well-measured
semileptonic decay K*(pl) — mP(p2)e(kL)v(k2). The
tree-level amplitude for this process can be written as

MK —~ 1e'V) = %Vf}s
J2 (12)
x O(p2)[8Ly, U] K (PD) Ve (kDY (k2).
The isospin symmetry relates hadronic matrix ele-
mentsin (11) to (12) to avery good precision [12],
7 (p2)[5LY,du K (p1)D 13
= J200(p2)[5Ly,u K (pD)T

Neglecting differences in the phase space of two con-
sidered decays occurring because m.#mo and m.# 0,

we sum over the three neutrino flavors and obtain

Br'™(K'—» m'vy) _ DT\NDZ|Vfde P’

, (14
Br(K'—~ r’e'v) EIVID V]

where the symbol rhn added to the branching ratio indi-
cates the case under consideration. We now apply the
simple Fritzsch [13] scheme as

12

vﬁ:%EJ, i<j. (15)

Inserting (15) in to (14), we obtain

rhn

(K'— 11'VV)
16
Etl-n—vzvm SBr(K — - 1e'). (19

MzOm
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In Fig. 2, we plot Br'™ as a function of M., using the
data[14]

my = 80.41 GeV, |V, = 0.2196,
my = 7 MeV, m; = 115 MeV, (17)
m, = 43GeV, Br(K'—» me'v)=442x107,

The horizontal lines are the upper (4.9 x 10719) and the
lower (0.3 x 1071°) experimental data[15].

From thisfigure, we see that the lower bound on the
Z' massisintherangefrom 2.3t0 4.35 TeV. Thisbound
is approximately twice as large as that derived from the
mass difference of the kaon mixing system Amy [9]. We
thus arrive at the previous conclusion again: for the Z'
mass to be relatively low, the third family of quarks
must be different from the other two.

2.2. The Decay in the Minimal 3-3-1 Model

This model treats the leptons as SU(3), antitriplets
[4, 10], with the third element being the antilepton (the
name of this version comes from the fact that no new
leptons are introduced):

0 o O
O € O
fl =5 go(L3.0) (18)
0 ..0
d(e) O
Of the nine gauge bosons W2 (a=1, 2, ..., 8) and B of

V(3), and U(1),, four arelight: the photon (A), Z, and
W=, The remaining five correspond to new heavy gauge
bosons Z' and Y* and the doubly charged bileptons X*=.
They are expressed in terms of W2 and B as[10]

J2W5 = W —iW3, ﬁv = W, —iWj,
ﬁX++ _
A, = sNWﬁ+cW(f3tWWﬁ+ 1-3tyB,),

Wﬁ,
(19)
= CWW;i— Su(/3ty W, + J1-3t,B,),

Z, = —J1-3tyW, + ./3ty,B,

Asbefore, the physical statesareamixtureof Zand Z',

Z,

Z, = Zcos@—Z'sing,
Z, = Zsin@+ Z'cose,

and the mixing angle @ is also constrained to be very
small. We can therefore assume ¢ = 0. Applying Eg.
(4.4) in[10], we obtain the interactions among Z' and

neutrinos,
1 1 1
ay(v) = —ap(v) = —=,/1-4s},. (20)
2./3
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One necessary vertex, namely, the FCNC, isgivenin[g],
NC _ gCw

ds — = ——

2,/3(1- 4sw)

Combining Egs. (20) and (21), we obtain the decay
amplitude

[VleVLls]dLy S.Z, (21)

2
min,, , + Fooy |:rnW Dx
MK —~ TTVY) = 3[ Lbd Lbs 22)
x 0T (p2)[8LY,di K™ (pl)EVL(kl)v“vL(kZ)-
From Eq. (22), it is straightforward to obtain
Brmm(KJrH T[+V\7) ZEm\ND2|VLdeLbs| 23)
Br(K' - me'v) 3EM Iy vd?

Asin the previous section, we plot Br™" as a func-
tion of M. in Fig. 2. Asaconsequence, the lower bound
on the Z' mass is in the range from 1.25 to 2.45 TeV.
Thisbound islarger than the one derived from the mass
difference of the kaon mixing system Amy (see Dumm
et al. [8]). For the Z' massto berelatively low, the third
family of quarks must be different from the other two.
It is worth mentioning that the branching ratio is not
sensitive to the value for sin?g,, while the expression
for Amy in the minimal version is very sensitive due to

the factor (1—4s3,) ™.

3. CONCLUSIONS

We have considered the rare kaon decay K* —
T'VV in the 3-3-1 models at the tree level. It was
shown that in the model involving right-handed neutri-
nos, the decay width is by about one order larger than
intheminimal version. Asaresult, we obtained bounds
on the Z' mass in the range from 2.3 to 4.3 TeV in the
model with right-handed neutrinos and from 1.2 to
2.4 TeV in the minimal version. There is a point worth
noting: these mass limits are in agreement with the
recent analysis [16], showing that there are indications
of Z'in electrowesak precision data. We do hope that the
new experimental data from the collaborations at BNL
and Fermilab will bring new indications of the extra
neutral gauge boson Z'—one of the best motivated
extensions of the SM.
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In this work, we considered only the CP conservat-
ing kaon decay K* — 11'VV . Implications for the CP
violating K and B decays are subjects of future studies.

One of the authors (H. N. L.) thanks the APCTP for
financia support and hospitaity extended to him. This
work is supported in part by Vietnam National Research
program on Natural Sciences under grant KT-04.1.2.
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Abstract—An agorithm for solving the Maxwell equations for propagation of light through anisotropic strat-
ified mediais considered. The algorithm usesthe Berreman matrices of order 4 x 4. In contrast to the numerical
methods suggested by Berreman, the new method is exact. The Sylvester theorem for calculating functions of
amatrix and the Laguerre method for determining eigenvalues provide the basis for an algorithm with an effi-
ciency comparableto that of the algorithms based on analytic solutions, which exist only in the case of uniaxial
media. The method suggested in this paper allowsfor the analysis of complex optical systemswhere the effects
of biaxiality, magnetic anisotropy, and optical activity play an important role. © 2001 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

Methods for analyzing the transmission and reflec-
tion in stratified anisotropic media were suggested by
Teitler and Henvis in [1] and by Berreman in [2-4]
amost simultaneously. The methods described in [1]
and [3] are equivalent from the mathematical point of
view, although the approaches are different. Berreman
considers an optical medium with continuously varying
parameters, which makes it possible to write the Max-
well equationsin adifferential matrix form. In contrast
to the well-known approximate method of the Jones
matrices [5], which are of order 2 x 2, Berreman's
method uses 4 x 4 matrices. The increased order is the
cost of the accuracy and generality. The Berreman
matrix defines a linear transformation of the four tan-
gential components of the electric and magnetic fields
at the input of an optical system to the corresponding
components at its output. This makesit possible to cal-
culate simultaneously both the transmission and reflec-
tion of alight wave incident on a planar optical system
at an arbitrary angle with account for interference
effects of multiple reflection.

As soon as the Berreman method was published, it
gained recognition and received widespread use, espe-
cialy in designing liquid crystal optics, where reflec-
tion effects are crucial. Later, analytic expressions for
the Berreman matrices were found for uniaxial optical
media [6-8]. However, no general analytic solutionsin
the biaxial case are available. Thus, the most efficient
methods for determining the Berreman matrices are
approximate ones; such methods are studied in [4].
They are based on the expansion of amatrix inthefinite
Taylor series. Thus, even a homogeneous anisotropic
medium must be divided into very thin sublayers for
which Taylor's series is sufficiently accurate. It seems

that it is the complexity of calculating the Berreman
matrices that causes the development of the alternative
method of Jones matrices [9], athough the latter
method is basically approximate.

In this paper, we suggest an exact and efficient algo-
rithm for determining the Berreman matrices. It is
based on the Sylvester theorem [10], which represents
a function of a matrix as a finite series, and on the
Laguerre method for finding a complex root of a poly-
nomial of an arbitrary degree [11]. The agorithm was
applied to modeling electrooptics of liquid crystals
used in designing liquid crystal displays. The method is
general in the sense that its field of applicability is not
restricted to modeling uniaxial optical mediaonly. Itis
equally effective when the effects of biaxiality, mag-
netic anisotropy, and optical activity of the medium are
taken into account.

2. THEORY AND METHOD

In this section, wereiterate the main results obtained
by Berreman on the basis of transforming the Maxwell
equations for linear media to the matrix form.

L et a plane monochromatic wave be incident in the
plane xzon aplane-parallel plate at an arbitrary anglea
to the normal (see Fig. 1). For brevity, Fig. 1 presents
only the permittivity ellipsoid, although the magnetic
susceptibility and optical activity can be anisotropic as
well. We assume that the optical parameters of the plate
smoothly depend on z, which makes it possible to use
the differential formalism. According to [3], the tan-
gential components of the electric and magnetic fields
of the light wave are written in the matrix form as

0, _iw
Frd CAx, 1
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where
HE B Hay Ay Ay Ay
XzEHyEL A:EAzlAzzAzsAm%
E E, E UAg Agy Agz Agy U
O-H« O 084 D Dz Dy O

E., E,, H,, and H, are the tangential components of the
electric and magnetic fiel ds, respectively. Inthe genera
case, the components of the matrix A are expressed in
terms of the permittivity and permeability tensors and
the optical rotation tensor (see Appendix).

In many important cases, the magnetic anisotropy
and optical activity can be neglected; then, the number
of nonzero components of A is reduced to 10 [4]:

ck,(€,3CO0SQ—€,3SINQ)

Ay = oo (2.1)
I s
A, =1 s Ol (2.2)
k ing -+
A13 — c x(€13S|n(p SZBCOS(p), (23)

WE53
A, = [Bcos2@—-ysin2g] +n, (2.9

Ay = BSin2¢@+ycos2@, (2.5)

2
Aw = —[Beos2o—ysin2g] +n -0, (26)

O O
Ny =1, (2.7
Dy = Ay, (2.8)
Dy = Dy, (2.9)
Dy = Ay, (2.10)
Dy = Dy = Dy = Dy = D = Ay, = 0, (211)
_&n—%&» E1s— €5 _ €13€23
B - - 2 v Y = €p— ’
2 €33 €33
. (2.12)
_EntEp €3t &y
2 2e5;
€y = SaCOSZlIJ + sbsinzlp, (2.13)
€, = (E,—€p)SinYcosycosh, (2.14)
€13 = (€,—¢€,)SinYcosPsing, (2.15)
€ = (€,8 n2L|J + abcosztp)cosze + ecsinze, (2.16)
€y = (sasinztp + EbCOSZL|J —¢g.)sinBcosB, (2.17)
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Fig. 1. Orientation of the principa axes, A, B, and C, of the
permittivity ellipsoid: xy is the surface plane of the optical
medium; Xz is the incidence plane; a is the angle of inci-
dence; 6, @, and Y are Euler’sangles; and €, €, and €. are
the principal values of the permittivity tensor components.

€3 = (€,8n°Y +g,c08°P)SiN’B +g,c08 0. (2.18)

In (2.1)—«2.18), k, is the x component of the wave
vector of theincident wave; wisthe angular frequency;
0, @, and Y are Euler’s angles, which determine the ori-
entation of the permittivity ellipsoid; and €, €,, and €,
are the principal values of the permittivity tensor com-
ponents (see Fig. 1). We assume that the permittivity
components are complex. Thus, the absorption anisot-
ropy is taken into account.

In the case when the parameters of the optica plate of
thickness h are independent of z, the integration of Eq. (1)
yields

x(h) = exp(iwhA/c)x(0) = P(h)x(0), ©)

where P(h) corresponds to the Berreman matrix for the
homogeneous medium.

Thus, in the case of ahomogeneous medium, calcu-
lation of the Berreman matrix is reduced to calculating
the exponent of the matrix A. In the general case, when
the parameters of the optical medium depend on z, the
medium is divided into n layers such that the optical
parameters can be assumed constant within each layer;
then, integration of Eq. (1) isreduced to the multiplica-
tion of the corresponding matrices for each layer:

x(h) = []PM)%O- 4
i=1

Equation (4) isaso valid for complex optical media
consigting of discrete optical elements (polaroids, phase
plates, etc.). From the physical point of view, Eq. (4) is
complete, since the tangential components of the electric
and magnetic fields are continuous. Hence, even in the
case of adratified system of heterogeneous optical media,
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no additional boundary conditions are required. Thus,
even in the most general case, the numerica integrationis
reduced to cal culating the exponent of the matrix A.

The well-known exact algorithm for calculating a
function of amatrix is based on the similarity transfor-
mation

A = S'DS (5)

and on the cal culation of the function of the elements of
the diagonal matrix D. However, this method requires
that the eigenvalues of A, the matrix of eigenvectors S,
and the inverse matrix S* be calculated. Although the
exponent of Eqg. (5) has a clear physica meaning (it
describes the propagation of the four characteristic waves
in the forward and backward directions), this method is
computationaly rather costly. The method is more effi-
cient only for uniaxial media, where analytic expres-
sions for the eigenvalues and eigenvectors are available
[8]. It seemslikely that the complexity and inefficiency
of the algorithms used to compute the matrices for the
similarity transformation caused the development of
approximate methods [3, 4]. For example, one of the
methods suggested by Berreman is based on the repre-
sentation of the exponent in the form of Taylor's series

P(h) = exp(iwhA/c)

iwh _J'B‘)_hﬁAz 6)

=1+ C 20c O

where | istheidentity matrix.

Berreman showed that a converging solution could
be obtained if the second-order term in this expansion
is taken into account. However, since Eq. (6) is an
approximation, its application even for homogeneous
portions of the medium requires that the medium be
divided into layers much thinner than the wavelength.
The procedure becomes inefficient when designing sys-
tems congisting of thick (hundreds of microns) homoge-
neous optica elements such as polaroids or phase plates.
In [4], the numerical integration method was improved
and applied to theanalysis of the opticsof aliquid-crystal-
line “twist cell.” The improved procedure dlowed one to
use large values of h, but the method remained basicaly
gpproximate and the step h was to be chosen with great
caution.

In the present paper, we suggest an exact procedure.
The procedure is based on the Sylvester theorem [10],
which gives aformula for the function of amatrix A of
order n x n provided that al its eigenvalues are different:

. 1D
f(A) = 3 fgEE——, ™
SN

izk

where A, are the eigenvalues of A.
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As applied to the case considered in this paper, for-
mula (7) involves four terms:

P(h) = exp(iwhA/c)

. B [1@a-xhg @
= z%s p(iwhA/c)2k—1
=0 [ M- ?\)D

izk

which isamost equivaent to Eq. (6) in terms of the com-
putationa cost if the eigervalues of A are known. Since
Eq. (8) isan exact representation of the function, the oper-
ation of dividing the homogeneous medium into a set of
sublayers is no longer required. In contrast to the exact
method based on the similarity transformation (5), the
matrix of eigenvectors and its inverse are not calcu-
lated, which improves the efficiency of the method.

Thus, formula (8) reduces the problem to finding an
efficient method for determining the eigenvalues of the
matrix A. Inthe case of auniaxid optical medium (g,=¢,),
analytic expressions for the eigenvalues are available

[6-8]:
A, = +% EE , (9.1)
ck,
A3y = ———[g-:cosesm(p——
€33[] w
(9.2)
ek
[ % €45 — (€. —ESiNBCOS cp)D XEE} E;
0

where € = (g, — €,)sinB, and €4; is determined by
Eq. (2.18) with regard for the uniaxiality (g, = €).

In the general case, the eigenvalues are the roots of
the fourth-degree polynomial

det(A—Al) = 0, (20
or the equivalent vector equation
AA =0, (11)
where
o, 0
0% [
Ug U
2y 344 D ! D
A= (IANAN), A =0a,0 (12)
O “d
az [
o. 0
0%

and a;—a, are the complex coefficients of the polynomid.
If the dlements of A are defined by Egs. (2.1)<2.11), then

No. 4 2001



AN ALGORITHM FOR SOLVING THE OPTICAL PROBLEM 555

the coefficients of the polynomial are given by the expres-
sions

Ay = 2081381505505, + Dy A3 A g5

, , , (13.2)

- A11A34A43 - A13A21A34 - A23A12A34’
& = 2(ApDsDis—DrsDysDs), (13.2)
ay, = A2 — Dy s— Dyl (13.3)
a; = 20, (13.4)
a, = 1. (13.5)

Another important thing is that our method uses the
Laguerre method [11] for determining the roots of
polynomials. The Laguerre method guarantees rapid
convergence to one of the roots of the polynomial given
an arbitrary initial approximation and provides ahighly
accurate result; the accuracy is actually limited only by
the precision of the computer representation of float-
ing-point numbers. It is clear that the Laguerre method
can be used for our purposesif it is supplemented by a
procedure for eliminating previously calculated roots.

For the sake of convenience, we introduce the oper-
ator L, which will be called the Laguerre operator, such
that

AL = L(A); (14)

that is, its application to avector A (the components of
A are the coefficients of the polynomial under consid-
eration, see Eq. (11)) gives the value of a root of the
polynomial, which corresponds to an eigenval ue of the
matrix A. Figure 2 presents a rather detailed flowchart
of the algorithm based on the Laguerre operator.

Having calculated one of the roots, one can easily
eliminate it and obtain a polynomial of alower degree.
The procedure of calculating all el genvaluescan berep-
resented as a sequence of transformations

g d | |
O% O Obo=ai+bA; 7
Ealg Eb1=a2+b2)\lg
Daz Da%b2=a3+b3)\lm

020 0
jug B mea
gag O M=LA) O

O

[Co=bi+CiA, E
Uey = by + o\, %
C, = b;
A, =L(B)
A

(15

o
o

Initialization:
Xx=0
i

Computation:

d k
P(n,x) = a X
kZO

n
P(nx) = § akd™
2,

P ) = S agk(k—1)x?
(n, x) I(Zzak( )X

|

Computation: Yes
P(n,x) = 0?
{ No
Computation:
G(n,x) = P (n. x)

P(n, x)

H(n, x) = Gz(n, X) — -—E'((r':’;))

L(n, x) = A(n—1)(nH(n, x) —G*(n, X))
D;(n, x) = G(n, x) +L(n, x)

D,(n, x) = G(n, x)—L(n, x)

!

Comparison:
if D;>D,, then x2=x-n/D;
if D;<D,, then x2=x-n/D,

l

Compultation of the relative
error E =|(x2 —x)/x2|

x=x2

. L
No,E>d Comparison: E<d=10""?

Yes, E<d
Output;
the eigenvalueis A = x

Fig. 2. Howchart of the algorithm for determining an eigen-
value by the Laguerre method. The input parameters are the
degree of the polynomia nand its coefficients{ag, ay, ..., an} .

do= ¢y +dihs
d,=¢c, E
)\3 = L(C) [
Ay
Ay

o
o o
>

w
o

OoDod
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where
Op O
0% 0 Oc. O
Op, O 0700
B=0O"'0 C=0c0O (16)
Ob, O 0 0
0 °0 0c, O
0bs O

Thus, applying the Laguerre operator threetimesin
accordance with procedure (15) from left to right, we
obtain al eigenvalues of A. Then, we substitute them
into Eq. (8) to obtain the Berreman matrix. Besides the
Laguerre operator, procedure (15) involves only the addi-
tion and multiplication operations, which, combined with
the rapid convergence of the Laguerre method, guarantees
high efficiency comparable with that of the method for
determining eigenvalues based on the analytic expres-
sions (9.1) and (9.2) in the case of uniaxia systems. For
comparison, note that even an optimized analytic proce-
dure (where the repeated calculation of the functions sinx
and others is diminated) is only about 1.5 times quicker
(the computation time of the Berreman matrix is about
100 ps on a Celeron 500-based compuiter).

It must be stressed that formula (8) assumes that all
eigenvalues are different. In some cases, when the
medium or geometry are symmetric (e.g., the medium is
opticaly isotropic or the light isincident at exactly right
angles) some eigenvaues can be multiple. In this case, an
indeterminacy of the type 0/0 occurs, which can be evalu-
ated using the L' Hospital rule. However, thiscan makethe
procedure more complicated and deteriorateits efficiency.
An dternative possibility isto introduce asmall perturba:
tion that cannot affect the computation results. For exam-
ple, in the case of an isotropic medium, the refraction
indices can be made dlightly different, for example, in
the seventh decimal digit. This cannot noticeably affect
the results even when the thickness of elementsis hun-
dreds of microns.? In the case of the normal incidence,
it issufficient to specify avery small deviation from the
normal direction; for example, the deviation of 1076 rad
isunlikely to be detected in an experiment.

3. DETERMINING THE TRANSMISSION
AND REFLECTION

In this section, we obtain formulas for determining
the field in the reflected and transmitted waves.
Although this problem was considered by Berreman,
hisoriginal work contains an error in the corresponding
expressions (formulas (86)—(90) in [3]).

Asin [3], we assume that an anisotropic plate or an
optical system consisting of discrete elements is con-
fined between two nonabsorbing isotropic media with
the refraction indices n; and n,, respectively. A light
wave is incident from the side of the medium with the
index n, at the angle a;, to the normal to the plate sur-

1 We assume that the computations are performed with double pre-
cision.
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face and goes to the second medium at the angle a..
Thefield at theinput of the system is determined by the
superposition of the incident and the reflected waves,
while only the transmitted wave is present at the output:

xr = P+ %xR)- (17
Here, P(h) isthe Berreman matrix, which is determined
by product (4) in the case of a heterogeneous medium or
asystem of optica eements; y,, %1, ad g aethevectors
of the incident, transmitted, and reflected waves, respec-
tively.
In isotropic media, there is a definite relation between
the components of the electric and magnetic fields. Thus,

(18)

X % _|
x

b
|

R

_'

1
o s
< ¥
5 <
<

where

nl * n2
My = , Ty =ncosay, ry = ,
cosa 4 cosa,

sina n (19)
¥ = n,cosa, —r> = =
sna, ~ n,

Multiply both sides of Eq. (17) on the I€eft by the
inverse of the Berreman matrix F = P~ to obtain asystem
of linear equations, whichiseasily solved for theunknown
components of thefield R, R, Ty, and T,

T = 2(r,E,—acE,)

y bc+d ’

T, = 2aE, +bT,, (20.2)

Ry = (Fu+ Fpori) T+ (Fis+ Fury)T,—E,, (20.3)

R, = (Fa + FaoorX )T+ (Fas + Fary)T,—E,, (20.4)
where

(20.1)

- rX
& T FatFal )t Fpl® +Fy
(Fu 12N )+ Fooly 21

* *
(Fig+ Fogry)re+ Foury +Fy

* * !
(Fu+Fprire+Fury +Fy

b= (20.5)

C = (Fa + Fary)ry+ Fpry +Fy,
d = (Fag+ Faury)ry + Fary + Fu,

and Fj; (i,] = 1, 2, 3, 4) are the components of F.
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Light source,

®=0

J L

Polaroid, @, =0

Substrate

Electrode
@ =172
Liquid
crystal
@=0
Electrode

Substrate
Polaroid, @5 = 172

L

Fig. 3. A schemeof theliquid-crysta optica system to bemod-
eed. U isthe source of voltage applied to the liquid crystal.

The transmission and reflection coefficients, T and
R, are determined as the ratio of the energy flux in the
transmitted and the reflected wave, respectively, to the
energy flux in the incident wave. In practice, the sim-
plest case is most commonly encountered when the air
acts as thefirst and the second medium (n, = n, = 1 and
0, =0,=a). Then

_ [T /cosa)* +|T*
|E,/cosal® + |E,|*

(21)

_ [Rdcosa|* +|R’
|E,/cosa|”+|E,|”

We stress that al arithmetic operations are performed
over complex numbers, and the square of the absolute
valueis calculated by an appropriate procedure.

4. APPLICATION OF THE METHOD
FOR THE ANALY SIS OF THE “TWIST-EFFECT”
OPTICS IN A LIQUID CRYSTAL TAKING
INTO ACCOUNT POSSIBLE BIAXIALITY

By way of example, we give an analysis of the
optics of a system depicted in Fig. 3. It includes a light
source and a liquid crystal cell placed between two
crossed polaroids. First, we analyze the static el ectrooptics
assuming that the liquid crysta is uniaxia (n, = n, = ny).
Then, we artificially introduce two types of biaxiality
(n, < ny and n, > n,) and consider how they affect the
electrooptics and angular characteristics of the optical
contrast when the electric field is switched.
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1 F T T T T T T B

0.1k

Transmission

Fig. 4. Dependence of the optical transmission on the volt-
age applied. (a) (1) auniaxial liquid crystal; (2) a positive
biaxiality isintroduced (n, = 1.58 > n, = 1.54); (3) anega-
tive biaxiality is introduced (ny, = 1.50 < ny = 1.54). It is
assumed in the cal culations that the principal axisA (Fig. 1)
isoriented at theangley = 0. Theinitia (U =0) distribution
of moleculesof theliquid crystal: (b) uniaxial liquid crystal;
(c) positive biaxidlity; (d) negative biaxiality. Biaxial mole-
cules of the liquid crystal are depicted by parallelepipeds.
Thelight is polarized in the direction of the axis x and trav-
elsaong the axis z.

Determine the parameters required for the analysis
of the optical elements.

Polaroids. Polaroids are modeled by auniaxial opti-
cal medium (g, = g,) with an anisotropy of the absorp-
tion coefficient (k. > k,). Thus, the principal values of
the complex permittivity are expressed in terms of the
refraction indices n;, n, and the absorption coefficients
k., k, as

i)\kc,aDZ
4t O

€a = (22)

E_]c,a"'

where A isthelight wavelength and the subscriptsa and
c correspond to the principal axesof thedlipsoid A and C,
respectively (see Fig. 1).°

2 Sometimes, a different complex representation of the light wave
is employed and, as a result, the second term in parentheses of
Eq. (22) appears with the minus sign. In that representation, the
signs at al imaginary quantities in this paper should be changed
to opposite.
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0 12.5 25 37.5 50

Fig. 5. Angular characteristics of the contrast ratio (see text) in the case of (a) auniaxial liquid crystal; (b) negative biaxiality; and
(c) positive biaxiality. The contrast ratio is represented by the intensity in the polar frame of reference. Theincident angle of light is
plotted on the radius. The angle plotted on the external circle corresponds to the azimuth angle, which determines the orientation of
the plane of light incidence with respect to the axis x (see Fig. 4b).

Typical 200 um polaroid filmsused in liquid-crystal  sion coefficient of two polaroids arranged such that the
displays can be modeled by the refrectiveindex n,=n. = weak absorption axes are parallel to the polarization of
1.5 and the absorption coefficientsk, = 0.001 pmr* and  the incident light is ~0.6. If the polaroids are crossed,
k.= 0.02 um at the wavelength 550 nm. Thetransmis-  then the transmission coefficient is ~0.01. When the
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Berreman matrices are calculated, it must be taken into
account that the principal axis C liesin the plane of the
polaroid film (6 = 172).

In the scheme shown in Fig. 3, the first polaroid is
oriented such that its weak absorption axisis parallel to
the polarization direction of the light source (¢, = ¢, = 0)
and is perpendicular to the orientation of the liquid
crystal director on the first surface (@; = 72). The sec-
ond polaroid (the analyzer) is skewed with respect to
the first one (@5 = 172).

| sotropic optical glasses. The substrates of aliquid-
crystal cell are modeled by an isotropic medium. All
the principal values of the permittivity ellipsoid are
equal, and the absorption coefficient is assumed to be
zero. For standard glasses, we can set €, = €, = €. =
1.532 = 2.34. In our model, we use 200-um-thick
glasses.

Electrodes. Electrodes are isotropic (g, = €, = &),
but the real part of the refraction index is greater than
for glass, and the absorption coefficient is nonzero. In
this model, we used 0.01-um-thick electrodes with the
real part of the refraction index equal ton = 1.7 and the
absorption coefficient k= 0.1 um.

Distribution of liquid crystal molecules in an
electric field. The characteristics of the model liquid
crystal are assumed to be as follows.

The coefficients of elasticity are K;; = 6.4 pN, Ky, =
3 pN, and K3 = 10 pN.

L ow-frequency permittivity indices are 5= 6.7 and
g =19.7.

The optical refraction indices at the wavelength
550 nmaren, =n; = 1.54, n.=n;=1.72, and the direc-
tion of the director of the liquid crystal molecules cor-
responds to the principal axis C of the permittivity
elipsoid (see Fig. 1).

Theboundary conditions are asfollows:. the angle of
deviation of the liquid crystal director from the normal
is89°, the zenithal binding energy is 0.2 mJ/m? the azi-
muth binding energy is 0.1 mJm?, and the relative azi-
muth orientation of the director on the opposite sur-
facesis 90° (twist cell). At the first boundary, the direc-
tor is oriented perpendicular to the polarizer; on the
second boundary, it is perpendicular to the analyzer.

The thickness of the liquid crystal is 3.1 um.

The distribution of the director inthe electricfield is
calculated by solving the nonlinear differential equa-
tions of the force moment balance obtained as a result
of the minimization of the Frank free energy [12].

Figure 4 shows the calculated dependence of the
transmission of the entire optical system on the voltage
applied to aliquid-crystal cell under the normally inci-
dent monochromatic light with the wavelength A =550 nm.
Curve 1 corresponds to the uniaxial liquid crystal (n, =
n, = 1.54). If a positive biaxiality is introduced (n, =
1.58 > n, = 1.54, Y = 0), then the curve becomes less
steepintherange 1-3V. If anegative biaxiality isintro-
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duced (n, = 1.50 < n, = 1.54, Y = 0), then two additional
extrema occur (curve 3) for voltages greater than 1 V.
Note that such behavior of uniaxial liquid-crystal twist
cells is possible only if the incident light is oblique.
Hence, the shape of the dependence (curve 3) can be
used as a characteristic one for biaxia liquid crystals
under the normal light incidence.

The presence of biaxiality isclearly visiblein angu-
lar dependencies of the optical contrast (see Fig. 5).
The contrast ratio was calculated as
To—-Ty

y = T (23)

where T, corresponds to the transmission in the off
(bright) state, and T, corresponds to the transmission in
the on (dark) state at 4.5V applied to the cell. In the
case of a uniaxial liquid crystal (Fig. 5a) the well-
known asymmetric contrast characteristic of the twist
effect [12] is observed. Biaxiality drastically changes
the angular characteristics. Asis seen from Fig 5b, the
negative biaxiality drastically deteriorates the angular
characteristics, while the positive one (Fig. 5¢) makes
the view angle greater. Thus, the use of biaxia liquid
crystals adds a new degree of freedom that can be used
to improve angular characteristics of LCDs.

5. CONCLUSIONS

A new efficient method for analyzing the optics of
heterogeneous ani sotropic stratified mediais described.
The application of the method to the analysis of an opti-
cal system that includes a liquid-crystal twist cell with
abiaxial liquid crystal is demonstrated.
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APPENDIX

In the most general case, the components of the
matrix A are expressed in terms of the components of
the permittivity tensor

e = |l Li0{xyz, (A1)
the permeability tensor
po= gl Lio{xy2, (A.2)
and the optical rotation tensor
p=leyl, eB=pill LiD{xyz, (A3
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asfollows:
ck,
Ay = pyt B);z'i- ‘(;)‘EfLil + Uy,by,
A, = +B)*+C—kx%a+p b
12 yy yz W 2 yzM21
A —_ * + * +CkX + b
13 — pyy B)yz —(;)_%3 uyz 3

Ay = —Py— sz + C_(|:;<%i4 — My, 0y,
Dy = &t &8+ Pyby,
Dy = Pyy+ €@y + Py,
Dy = €4+ €A+ Py,03,
Doy = —(Pxx T €xz84 T PxDa),
Dz = (Pl ¥ PXA1 + Hyzby),
Dy = ~(Huy + P82 + UseD2),
Agz = —(Ply + P83 + HyD3),

— *
A34 = Hux T PxBq t “xzb41
cky

8y>< + Eyzal + B)yz_ ) %)11

ck,
A42 = pyy + syzaz + B)yz - —Q_)%)Zv

Ay

cky

A43 = eyy + SyzaS + B)yz_ M3
w
ck,

A44 = _pyx - EyzaA - B)yz - —Q_) 4-

Here,
A = (PAPz—ExMa) (Ebz— PP7)
A = [HyPrz—(Pzy + CKJ W)l (€M 2 — P2PZ).
az = [(PZy = CK/ W) Pz — €M) /(€M — PP,
A = (HoxPzz= PoxMad) (Esbzz— PP72)
by = (PrEx—€P2)! (ExzMzz = PP
b, = [(Pzy + CKJ/W)P7, — €My )/ (EHs = PP
bs = [P7Esy — (P2 — CK W)€/ (€M — P2PT).
by = (PZPox— €M) (E2Mze = P2PZ) -

PALTO

Note that all components are, generally, complex num-
bers, and tensors (A.1)—(A.3) are defined such that the
equations of state that relate the induction of the elec-
tric (D) and magnetic (B) fields with their intensities
are asfollows:

D = €E +pH, (A.4)
B = pLE +puH, (A.5)
D =(D,D,,D,)’, B=(B,B,B,),

- VNG
E = (ExE,E)', H = (H,H,Hy)".

Note that, for example, in the presence of optical
activity, the electric induction depends not only on the
intensity of the electric field, but on the intensity of the
magnetic field as well. Equations (A.4) and (A.5) are
implied by the linear dependence between the six compo-
nents of the electromagnetic fild (E;, E,, E, H,, Hy, H)T
and (Dy, Dy, D,, By, B, B,)" determined by a6 x 6 matrix.
The second and the fourth quadrants of this matrix deter-
mine the permittivity and permesability tensors, and the
first and third determine the optical activity tensors. A
method for determining the optical activity tensors for
certain particular cases can be found in [3].
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Abstract—A consistent derivation of the operator form for the solution of the wave equation for a charged par-
ticleinan arbitrary external electromagnetic field is presented. The expressions obtained can be used for solving
any problems in quantum electrodynamics in external fields in the framework of the semiclassical operator
method. The peculiarities of the application of this method are demonstrated for the small-angle el astic scatter-
ing of ahigh-energy photonin an arbitrary localized el ectric field. The problem is solved for the first time with-
out presuming the central symmetry of the external field potential. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is convenient to exactly take into account the
effect of an external field on processesin quantum elec-
trodynamics (QED) in the Furry approximation. In this
approximation, the series of the perturbation theory in
the interaction of quantized fields of charge particles
and photons has precisely the sameform asfor free par-
ticles if we replace the free wave functions (as well as
Green's functions) by the solutions of the correspond-
ing equationsin an external field. Thelimitationson the
application of this approach are due to the fact that the
exact solutions of wave equations are known only in
several special cases and are quite intricate functions,
which hampers subsequent calculations.

These limitations can be removed by using the semi-
classical operator method of the solution of QED prob-
lemsin an externa field, which was formulated for the
first time in [1]. Later, this method was successfully
used for describing the QED processes for many phys-
icaly interesting configurations of the external field
(see, for example, [2] and the literature cited therein).
The starting point of the semiclassical operator method
is the representation of the solution of the wave equa-
tion in the operator form suitable for any external field.
Using thisform, we obtain the expression for the square
of the matrix element characterizing the process in the
form of the average of the product of some operators.
The next step is the appropriate transformation
(regrouping) of the input operators followed by the
evaluation of the average. The first two stages of the
semiclassical operator method are quite universal when
the external field may determine the conditions of
applicability of the expressions obtained, but not their
form. At the averaging stage, the type of the external
field, e.g., the presence of asingularity in the case of a
Coulomb potential, is essential. However, in this case

also we are dealing with only two possible situations,
one of which can be realized in localized potentials
with a considerable inhomogeneity (e.g., in the Cou-
lomb field for small impact parameters), and the other
takes place in all remaining cases, for example, in a
constant external field and even in the Coulomb field
for large impact parameters.

In Section 2, the operator form of the solution of the
wave equations for a charged particle in an arbitrary
external electromagnetic field is derived consistently
for the first time and the regrouping of the operatorsin
matrix elements is considered. At each stage, the accu-
racy of the approximationsis estimated. The averaging
problem is considered in Section 3 using as an example
the elastic scattering of ahigh-energy photonin alocal-
ized electric field. Until now, the problem has not been
solved using the semiclassical operator method and is
especialy interesting from the viewpoint of this
approach since both alternative schemes of averaging
areredizedinit. We have derived the expression for the
amplitude of this process, which is valid in the entire
range A of momentum transfers, which are small as
compared to the photon energy w. The central symme-
try of the external field potential is not presumed in this
case.

2. OPERATOR FORM OF THE SOLUTION
OF WAVE EQUATIONS AND MATRIX
ELEMENTS

Thewave equation for particleswith zero spinisthe
Klein—Gordon eguation

%—eAO(r)gqu = 9%, * = PP+, (D)
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where
.0

or’

AH being the 4-potential of the external electromagnetic
field and e the particle charge. Here and below, we use
asystem of unitsinwhich # = ¢ = 1. For thetime being,
we assume that the 4-potential A* is independent of
time. If the electric field E = —9A(r)/or is absent, Eq.
(1) hastwo exact operator solutions

p* = exp(Fi¥t)|00 )

corresponding to positive- and negative-frequency
states. State |0Cformally presents the wave function at
instant t = 0. It should be emphasized that this state is
absolutely arbitrary and is chosen in accordance with
the problem to be solved. In the presence of an electric
field, Eq. (1) can be solved by the method of successive
approximations. For this purpose, we present Eq. (1) in
the form Ly = O, where

L = E%+

— = V() [9, V()]

P=p-eA(r), p= APE(AC)’A)’

H -V(r)E

or

_ Qo 0
L = Em‘%‘v(r)m

x E% +9¢ - V(rE-[9€, V().

Here, V(r) denotes the potential energy of the particle:
V(r) = eAy(r). If we now disregard commutator [#, V(r)]
in the expression for L, we obtain as the zeroth approx-
imation the following two solutions of Eq. (1) in the
presence of an electric field:

Wo” = expl[i (3 £ V(r))t]|o0 (3)
The next approximation will be sought in the form
W2 = (1+C)we ().

Equation Ly = 0 gives C® = +V/(2¥) in the first
approximation, where we disregarded terms of the

order of [9¢-, V]. If we nevertheless use Wi (t) in

applications, the characteristic value of the correction
of the order of V/e (€ isthe particle energy) determines
the accuracy of solution (3). The specific estimate of
this accuracy depends on the properties of potential
V(r) aswell ason the nature of the processitself, which
is described using the solution obtained. For example,
in the case of elastic scattering of a photon with energy
w > minthefield of anucleus having charge Zlg| (eis
the electron charge), the energy of virtual particles
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amounts to € ~ w, and |V|/e ~ Za/(pw), wherea = € =
1/137 is the fine-structure constant and p is the impact
parameter. Since in this process the impact parameters
satisfying the condition w/n? = p = 1/(m+ A) are essen-
tial, we obtain |V|/e < Za(m + A)/w; i.e., [V|/e < 1for
small-angle scattering (A < w).

For particles with a spin of 1/2, we must solve the
Dirac equation, which in the external field hasthe form

0
anD = HpWYp, Hp = aP+Pm+V(r). (4)
We will use the standard representation of matrices y:

B =y and a = y?y. The operator solution of Eq. (4) is
obvious,

Wo(t) = exp(=iHpt)Wp(0), ()

but it does not suit usfor several reasons. First, it would
beinteresting to obtain asolution which evolvesintime
with the classical relativistic Hamiltonian to within the
spin terms, as was the case for scalar particles (see
Eq. (3)). Second, it would be desirable to separate the
positive- and negative-frequency states. For a free
motion (A* = 0), this can done by using the Foldy—
Wouthuysen transformation (subscript FW, while sub-
script D denotes the initial (Dirac) representation),
which removes the odd matrices a mixing the upper
and lower two-component spaces of the wave function
from Hamiltonian Hp,.

Asfor scalar particles, wewill first consider the case
of zero electric field; i.e, when Hy = a - P + fm. We

carry out the transformation Yp = U=g,, Where

_ YP O
U= R%L+H+m

H -((aEP) +m)

6
" emr ©
DZHD’

has the same form as under the Foldy—Wouthuysen
transformation for free particlesif we substitute P for p
in the latter transformation. It should be noted that [y -

P, H] = 0since (a - P)2=—(y - P)2. It can also be easily
verified that U is a unitary operator: U* = UL As a
result of this transformation, Eqg. (4) acquires the form

.0
'anFW = HewWews

) (7
= UHpU™ = BH.
The solution of Eq. (7) has the form
Wenlt) = exp(—iBHYWen(0). ®)

Operator 3 H iseven; i.e. it doesnot mix the upper and
lower two-component spinors of the wave functions.
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Let us now choose for Yey(0) the eigenfunctions of
matrix 3:
BUEW(0) = *WE(0),

9
‘*’(@-m“’ﬂom w0 = 108y @
Ox O

where state |0Chas the same meaning as for scalar par-
ticles, and ¢ and X are two-component spinors describ-
ing the polarization of particles at instant t = 0. The
functions

WEat) = exp(HBHDYE0) = exp(FiHL)WEYO)

are obvioudy positive- (+) and negative- (=) frequency
dates, i.e, these are the states of electrons and

positrons, respectively. Finaly, for &’ = U-1p&), ina

magnetic field, we obtain

ey = _yfP a2 B
Vol = R0 ¥ +mHeXp( HOE B
(10)

©) _EH+mDU _yftpP SNEIE
o) =3 o %l v m%@(p(lHt)EX %]OD

Expressions (10) are the exact operator solution of
Eq. (4) for V(r) = 0. In the Hamiltonian

|:| = (« |:p)z_'_ m2)1/2 - (P2+m2—eH [E)UZ
where H(r) is the magnetic field and £ = —\Pa, we can
separate the spinterm if |eH | < €2. Then

eH(r) (X

, P? + m’.
2%

H=% - (12)

In the expansion of Hamiltonian H, we have disre-
garded terms of the order of [#2, eH - X], and the
sequence of operators #~* and eH - X in Eq. (11) is
immaterial for this degree of accuracy. The relative
value of the terms discarded as compared to eH - XFH
amountsto v (ag), where aisthe characteristic size of
the nonuniformity of field H and v isthe particle veloc-
ity. Note that the terms omitted while determining the
correction to solution (3) have exactly the same magni-
tude relative to correction C®) itself if aistreated asthe
size of theinhomogeneity of potential V/(r). Thus, if the
conditions |eH| < €2 and a > v/e are satisfied, we can

replace H in Eqg. (10) by the approximate value (11). If
leH| < me, we can additionally substitute H for %€ in
Eq. (10) everywhere except in the exponent exp(i H t).

Let us now suppose that V(r) # 0. Asaresult of the
Fol dy—Wouthuysen transformation with matrix U from
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Eqg. (6), we obtain the following expression for the

Hamiltonian HY), = UH U

HO = BA +V(r) + %[[R, V)], R
(12)
+REIQ.1Q V11 +1Q VIR,

whereQ = (y - P)/(I:| + m) and operator Risdefined in
Eq. (6) sothat U = R(1 + Q). The only odd operator in
HE), isthe term R[Q, V()]R, which is linear in Q and

generally small as compared to V(r) like the remaining
termsin Eqg. (12) containing commutators. The value of
the odd term in the Hamiltonian can be made even

smaller by carrying out one more transformation: HY), =
HE, +[B, HE), 1. Choosing

B = %BR[Q, V(]RA™

and disregarding the terms quadratic in potential, we
obtain

H®), = BH +V(r) + 2[R V(r)], R
2
(13)

+ZR([Q, [Q, V] +[1Q, V)], ATA™)R

Thetermsquadraticin potential, which have been omit-
ted while deriving this relation, are of the order of
(V(r)/or)?/e3 (in apurely electric field). For example,
in the Coulomb potential V(r) = —Za/r, their magni-
tude in the units of the potential itself is Za/(er)3. For
Za ~ 1, thisapproximation is possible if ep > 1, where
p isthe characterigtic Sze (e.g., impact parameter) of the
problem. The order of magnitude of the term [[R, V(r)],
R inEq. (13) isV(r)(mv/e?r)%. An estimate of the odd
term in Eq.(13) is v2V(r)/(er)?. The term (Y2)RQ, [Q,
V(r)]]R can be written in the form

1 1 -
Flam VO]
(14)

In this expression, the double commutator has the same
order of magnitude as the odd term in Eq. (13). A for-
mal estimate of the value of the term proportional to AV
isV(r)/(er)% Thisterm is small and will henceforth be
omitted. It should be borne in mind, however, that
while calculating the fine structure of the hydrogen

atom with the help of Hamiltonian H%),, we must

retain thisterm since its smallnessin the given problem
is of the order of the sought correction to the energy
levels. Finaly, the term proportional to ([P x E] - X) in
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Eq. (14) correspondsto the spin—orbit interaction and is
of the order of vV(r)/(er). Omitting now all terms in
Eg. (13) which are of the order of \V/(r)/(er)? or smaller

and expanding H asit wasdonein Eq. (11), we obtain
Hamiltonian Hg, in the form which will be used below:

Hew = B

E+P (15)
<+ BV - 51 + B[% n m]EDzE}

Thecondition ep > 1 used whilederiving Eq. (15) indi-
cates (in the case of relativistic motion) that the wave-
length 1/e associated with a particle is much smaller
than the characteristic scales of the problem such asthe
typical impact parameter or the inhomogeneity scale
(cf. the estimate for the applicability of expansion
(11)). Thiscondition essentially coincideswith the gen-
era condition of the applicability of the semiclassica
approximation.

The equation for function Ygy(t) has the form (7)
with the Hamiltonian Hg,, defined in Eq. (15), and its
solution coincides with Eq. (8) if we substitute H, for

B H in it. As before, we choose for Wew(0) the eigen-
functions of operator [3 defined in Eqg. (9). Then the pos-
itive- and negative-frequency states are given by

pEn® = exp(FIHOHWEXO),

® = e [ExPlO~0
H™ = %iV(r)—ﬁe%ﬂimDED

It should be noted that H® differs from H® in the sign
reversal in potential V(r). The resultant Foldy—
Wouthuysen transformation has the form U® = (1 +
B)U. Since B ~ |eE|/e? ~ (er) (the estimate obtained
for apurely electric field) has the same smallness asthe
terms which have aready been discarded while deriv-
ing Eq. (16), we can substitute U for UM,

States Yrp(t), aswell as Pp(t) = UPey(t), are sta
tionary if Yey(0) is an eigenfunction of the Hamilto-
nian: HeyWew(0) = ePpn(0). Among other things, we
have verified that in the Coulomb potential, the func-

tion l|J|(3+) obtained from this equation (after the applica-

tion of transformation U~) coincides with the Furry
solution [3] (see [4, Eq. (39.10)]). The required accu-
racy inthiscaseisensured by retaining in Eg. (16) gen-
eraly small spin terms. Naturally, these terms are
important if we consider the time evolution of spin
states. It will be shown below, however, that theseterms
can be neglected in the calculation of matrix elements
if the spin varies insignificantly during the formation
time of the process, which is usually observed in the
ultrarelativistic case (€ > m). Besides, for € > mand
|eH | < em, we can simplify the transformation matrix

U by expanding R and H . Finally, while describing
radiative processes (the emission of aphoton or the cre-

(16)
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ation of ae*e pair) involving ultrarelativistic particles
with aspin /2, we will use the following operator rep-
resentation for semiclassical wave functions:

Me- 10 y[PQ
|LIJ D_ ,\/é%- %_'_mD
x exp{—i (3¢ + V() 0 ¢ Hoo
god
1 - a7
O 20 U
o= ﬁ%l ¥ +m-

x exp{i (% —V(r)t} 5° Ho
Ox O

Here, |y£lindicates Yy, in the notation used above. In
expressions (17), the representation of the wave func-
tion (coordinate, momentum, or other) has not been
specified as yet. In order to go over to a specific repre-
sentation, we must project [P bnto the corresponding
eigenfunction. For example, in the coordinate represen-
tation, Y(r, t) = 0 |WLlwhere |r (s the eigenfunction of
the coordinate operator.

Until now, we assumed that the 4-potential A* of the
external field is independent of time. Otherwise,
Hamiltonian Hp intheinitial equation (4) isalso afunc-
tion of time, Hp = Hp(t), and instead of Eq. (5), we
obtain the operator solution for Eq. (4) in the form

Wo®) =[BT, +3(-1)T ]

t
X exp D—ldeH o(S) OVo(0), o
Sl

whered(t) = 1fort>0and 9(t) = O for t < 0. Symbol
T, in Eq. (18) indicates that operators must be ordered
intime. Namely, for T,, the operators corresponding to
earlier instants must be on the right of the operators cor-
responding to later instants (for T_, the converse is
true). Carrying out the Foldy—Wouthuysen transforma-
tion Yp = Uy, Where operator U is defined in
Eqg. (6) and may also be afunction of time if the vector
potential A depends on it, we arrive at Eq. (7) with

Hamiltonian HE(t) in the form

HEMD = UHp@U™+ LYy _y2U D

200t ot O (19)

Term UHp(t)U L coincides with Eq. (12), where V(r)
can now be a function of time also: V(r) — V(r, t).
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Correct to the terms of the order of €2, which will be
omitted as before, the second term in Eq. (19) isgiven by

iU+ _,9YD
2DatU UatD

0AT O
) eapx at}DzD B
2H(H +m) 2K

The term in Eq. (20) proportiona to y - A is an odd
operator having the same order of magnitude asthe odd
operator in Eq. (12). Modifying operator B in the addi-
tional transformation H%), = (1 + B)HY), (1 + B)%, we
can simultaneously decrease the magnitude of all odd
terms in Eq. (19) down to values of the order of €2,
which are omitted in the final result. It should be
emphasized that with the adopted accuracy, the role of

the second transformation (transition from H(Fl\)v to
H®),) iseffectively reduced to the removal of odd oper-
atorsfrom H(Fl\f\, , while operator B itself can be omitted

(20)

(y CA).

in the expression Y& = U=L(1 + B) g, (t) in view of
its smallness. Finally, we obtain the operator solution
of the Dirac equation in a time-dependent electromag-
netic field in the semiclassical approximation:

w0 = U BOT, +9()T]

X exp fFi I dsH™(s) Obew(0)-
04 O

Here, operator U is defined in Eq. (6), functions
WEn(0) in Eq. (9), and Hamiltonian H®(t) in Eq. (16),
where the potential energy V(r, t), the vector potential
A(r, t), and hencefields E and H are functions of time.
It should be noted that taking into account the contribu-
tion from the first term in formula (20), H® now con-
tains vector —0Ay/0r — dA/dt instead of E, i.e., the cor-
rect expression for the electric field in the case of a
time-dependent potential.

Using as examples the simplest processes, we will
now write the corresponding matrix elements in the
semiclassical operator method using the operator solu-
tions of wave equations obtained above. We consider
only particles with a spin of 1/2 since the crucia
aspectsin the application of this method for spinor and
scalar particles are the same. In the Furry representa-
tion, amatrix element corresponding to the emission of
aphoton by an electron to within the normalization fac-
tor has the form

Vi = ieJ’d4xE|J(f+)(x) elexp(ik)uVx), (22
where e is the electron charge, k* and e are the 4-vec-
tors of the photon momentum and polarization, and
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ell=\e) . We substitute into Eq. (22) the solution
POX) = PH(r, t) = 0 [P where WM 0is defined by
formula (17), and introduce exp(ikx) into [ | in

exp(ik)w(r, t) = exp(ikx) & [P0
= [ |exp(ikx)p™0

Then the integral over r isreduced to d’r [rM| andis

equal to the unit operator, which expresses the condi-
tion of the completeness of the system of states |r[1As

aresult, we obtain the following expression for V{?d at
the gauge €° = O:

ViE = —i£ [acrie7 0000 ¥ i
2) Ood

y [P
FH+m

(23)

C(t) = exp(iHt)HL+ Ha &)

x exp(ilog - L= exp(-iHoD),

where H, = 7€ + V(r), and the notation |i Cis introduced

in | C and [f Cin [W$” Of or the state |00 Owing to the

fact that the wave functions actually have two compo-
nents, the nonzero contribution to Eq. (23) comes only
from the even component of operator C(t). Moving
additionally operator exp(ikx) in C(t) to theleft, we find
to the relativistic accuracy (nv/e < 1) that

Vil —igjthflexp(ikx)exp(iH;t)

x ¢ (a +ib, () exp(-iHt) i
a, = %+%%Dﬂj,

b, = %[V%L—;—Eg—n, eD}.

Here, o are the Pauli matrices, ' = #(P — P —k),
Hy = %' + V(r), and v = P/#. We have neglected the
noncommultativity of the operators appearing in a, and
b, since its inclusion would lead to corrections of the

order of |eH |/e2, and the terms of such an order of mag-
nitude were omitted even in the solution of the wave
equation. If we now move the operator exp(—iH.t) to

the left to exp(i H4t), the integrand assumes the form
[F|exp(—ik )L ()0 (a(t) +iby(t) To)¢;[iT  (25)
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where
L(t) = exp{i(He+ w)t} exp{—iH.t},

and a/(t) and b,(t) are Heisenberg operators. a(t) =
exp(iHt)aexp(-iHgt). It should be noted that if we
retain the spin termsin H, (16), operators ¢ in Eq. (25)
would aso be transformed into Heisenberg operators.
The expression for the square of the matrix element
would contain the operators o(t;) and o(t,), which are
functions of different times:

Z|Vir$d2 = CfoJ’dtldtz
f o

x ¢ Tar (ty) —iby (t) B(E)] L/ (t)
x L(ty)[a(ty) +ib(ty) Lo(ty)]¢iliC)

The correction emerging in the matrix element when
the time dependence of the spin operators is taken into
account has the relative value

5 DSIdt[H(t) +[E(t) x v()]],

4

(26)

where we can roughly assume that the time dependence
of thefieldsistaken on the classical trgjectory; i.e., we
have, for example H(t) = H(r4(t)). The quantity & has
the meaning of the angle of rotation of the spin vector
over the characteristic time of process formation. In
accordance with the equations of motion, it coincides
with the angle of rotation of the velocity vector during
the same time. For instance (see, for example, [2]), for
photons emitted with frequencies corresponding to the
maximum intensity of magnetic bremsstrahlung in a
uniform magnetic field, this angle is small and & ~
m/e < 1. For aphoton passing by anucleuswith animpact
parameter p, we have d ~ Za/(pe) < 1 for p > 1/e.

The next step in the application of the semiclassical
operator method is the combining of the two compo-
nents constituting operator L, (t) (25) into one compo-
nent. Differentiating L, (t) with respect to time, we
obtain

aL@
T = |Lr(t) B(t), (27)
B(t) = #(P(t) —k) + w—F(P(t)).

It should be noted that the potential energy V(r) appears
in Eq. (27) only implicitly through the time dependence
of the Heisenberg operator P(t). Relations (27) lead to

L(t) = [9OT_+9()T.]expd [osB9 3 @9
0l

The meaning of the combination (“disentanglement”)
of the exponentsin operator L, (t) isthat “large” (high-
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frequency) operators appearing in each exponent can-
cel out in combination B. Indeed,

B(t) = A/(P(t) —k)*+m’ + w— ¥(t)
= J(I(t) — w)° + 2kP(t) — (1) — w)

__kP) _ w[m’ + P3(t)]
Ht) —w 29 (H() —w)’

(29)

where

Py, =P-n(nP), n =k/w.

Expansion (29) is valid if operator (kP)/(#(t) — w)? is
small. In the ultrarelativistic case, its order of magni-
tude ism?/(e — w)?; inthis case, relation (29) isvalid for
€ —w > m. In such estimates, we replace operators by
their characteristic values defined by the state |iClover
which the averaging in Eq. (26) is carried out. For w > €,
there is no compensation in Eq. (29), and in relation (26)
we are dealing with rapidly oscillating functions of
time, whose integration leads to a negligibly small

result. Product L, (t,)L,(t,) in expression (26) can be
transformed using the definition L,(t) = exp{i(H, +
w)t} exp(—iH4t) and solution (28):

L/ (t)L(t) = exp(iHt)exp(iHc1/2)
x exp{—i(Hs+ w)1} exp(iH1/2) exp(—iHct)

= exp(iH )L (T/2)L,(<1/2)exp(—iHt)  (30)

/2
= [8(D)T,+3(-1)T] exp% J’ dsB(s+t)E;
D—T/Z O

wheret=t,—t; and t = (t; + t,)/2.

The method for calculating the average [l|...|i din
expressions of type (26) depends on the value of com-
mutators of the input operators. If all these commuta:
tors can be neglected, we choose for |i Cthe correspond-
ing wave packets and simply replace the operators by
their mean values in state |i L] The packet width in this
case must be much smaller than the mean value of an
operator (e.g., of momentum) and much larger than the
uncertai nty associated with the discarded commutators.
In other words, averaging in this case is reduced to the
replacement of Heisenberg operators by the corre-
sponding classical quantities, i.e., to the transition to
classical trgjectories. Since the argument of the expo-
nentin Eq. (26) (the quantity B(s+t) in Eq. (30)) ispro-
portional to n? + PzD , the contribution comes from
[Pl < m; thiswill be used in subsequent estimates. For

thisreason in particular, we can disregard to the rel ativ-
istic accuracy in the transverse momentum in the

expression for 3¢ = /P”+m’. With this accuracy, we
can single out three types of commutators in Eg. (26):
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(1) the commutators of the componentsof P inthe pre-
exponential factor; (2) the commutators of these com-
ponents with the exponentia (with operator (30)); and
(3) the commutators characterizing the accuracy of the
transition in Eq. (30) from the chronological product to
an ordinary exponential. It is remarkable that the order
of magnitude of the ratio of each of these commutators
to the product of operators themselves (which in fact
characterizes the possibility of discarding the noncom-
mutativity) is the same. In specific estimates, it is con-
venient to use the following expression for P(t), which
isvalid to the relativistic accuracy:

Pu(t) = P(0)

t

(31)
+ eJ’ds[ED(r(S)) +[nxH(r(s)l],
0

where P(0) isthe Schrodinger operator of the momen-
tum transverse to n = k/w. The conditions ensuring the
transition to classical trajectories naturally depend on
theform of the external field. For example, inauniform
magnetic field, the condition Jen x H/m? = |n x H|/H, <
1 must be setisfied, whilein the Coulomb field, we must
have Za < (mp)? or p > 1/m (under the assumption that
Za ~ 1). It should be noted at the very outset that for
higher order processes, the argument of the exponential
may contain, apart from mass, the total momentum
transfer; the estimate of the characteristic value of |P|
may change accordingly. We will return to this problem
in the next section, where the method for calculating
the average [|...]iICwill be formulated for the case
when atransition to classical trajectoriesis ruled out.

Proceeding in the same way as in the derivation of
relations (24), we obtain the following expression for
the matrix element corresponding to the creation of an
e*e” pair by a photon having momentum k* and polar-
ization e (in the same normalization asin Eq. (22)):

VP'(k, 6 = —e f dtv, (K, e t),

(32)
Vie(k, & 1)

= OO RK, & DLk, ) exp(ik )i

Here, ¢; and ¥x; are the two-component spinors from
Eq. (17), states |0Uin Eq. (17) are replaced by |[f Ofor
electrons and by |i Cfor positrons, and operator R(K, €, t)
with the relativistic accuracy has the form

Rk, e t) = exp(iHt)R(K, €)exp(—iHt),

W
Rk ®) = S5 (33)
x [([ex P] [h) +i(e Qem+ n(e [P)))Z%(:w]
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where, as in Eq. (24), H, = # + V(r) and 7€' =
#H(P — P —k). Operator L,(k, t) in Eq. (32) isthe
product of two exponential functions,

Lok, 1) = exp(iHct)exp{i(' —V(r) —w)t},

which (cf. Eq. (28)) can be combined into one:

Lok, t) = [S(®)T, +3()T] exp%J’dsBp(s)E;
04 0

(34)
Bu(S) = exp(iHs)[J + 3" — w] exp(—iH,S)

= H(s) + H'(s) — w.

The compensation of “large” terms in B(t) now takes
place for positive values of operator w — F(t) (w > €).
Accordingly, an approximate expression for B,(t) inthe
compensation region, which is the only region contrib-
uting to Eq. (32), appears as Eq. (29) if we make the
substitution #(t) —w — w—F(t) init:

kP@) _ o[m’+Pi()]
Ww—J(1) 2% (w—-F ()

B.(t) = (35)

While deriving this expression, we assumed that € > m
andw—g>m.

Until now, we assumed that aphotonisreal (k? = 0).
Higher order diagrams may contain vertices corre-
sponding to the interaction with virtual (k? # 0) pho-
tons. Expressions (24) and (32) remain valid in this
case also since we used the condition k? = 0 at a later
stage (in the expansion of operators B(t) and By(t) in
the compensation region). Let us refine this expansion
for k? # 0. Considering that

I = J(P—K)+m = J(F—w)? +2kP + I,
we obtain
kP() K2 _wm’+PiD] K
HM)—w 291 () — w)

2w’
kP -K/2_ @[m +PEH] K
w-HE) 2% (w-FH() 2w

B(t) =

(36)

Bp(t) =

where w = k? and k? = w? — k2. Besides, higher order
diagrams acquire new objects, viz., Green’s functions
for particles and photons. In the Furry representation,
the photon propagator remains free, while Green's
function for particles can be expressed in terms of the
solutions of wave equations. For example, the electron
Green’'sfunction G(x,, X;) can be expressed in terms of

the positive- and negative-frequency solutions qu(i)(x)
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of the Dirac equation in the corresponding external
field:

1606 %) = 9(t:~t) Y W () (%)
‘ (37)
=9(ti—t) Y W0 (x).

In this expression, we can use the operator form of the
solutions of the Dirac equation (17) and then proceed in
the same way as when calculating the matrix elements
for lower order processes.

3. SCATTERING OF A HIGH-ENERGY PHOTON
IN A LOCALIZED ELECTRIC FIELD

We will apply the term localized to an electric field
having a maximum (probably a singularity) at asingle
point and decreasing with increasing distance from this
point. Such fields are, for example, the field of a Cou-
lomb center or the field of an solitary atom. We assume
that the field is independent of time and is arbitrary in
al other respects; in particular, potential V(r) is not
necessarily centrosymmetric. For high energies (w >
m), the transition from the initial (momentum k, and
polarization e;) to the final photon (k, €,) occurs
through avirtual electron—positron pair which interacts
with the externa field. We consider here just this scat-
tering mechanism. It was studied experimentally by
some authors (see [5] and review [6]). This scattering
(which is often referred to as Delbriick scattering) was
studied comprehensively by Cheng and Wu [7-9] for a
Coulomb center. Another representation for the ampli-
tude of this process was obtained in [10] with the help
of the semiclassical electron Green’s function in the
Coulomb field. A generalization of this function to the
case of an arbitrary centrosymmetric field was made by
Lee and Milstein [11] who also considered the Del-
briick scattering by the screened Coulomb potential for
a momentum transfers A = k, — k; much smaller than
the electron mass, virtually under complete screening.

In al the theoretical publications mentioned above,
small-angle scattering was considered, for which A <
w. This condition isrequired for the applicability of the
semiclassical approximation since it ensures a large
angular momentum: | ~ wp ~ WA > 1. The character-
istic sizes of the problem under investigation (for a
Coulomb field) are the Compton wavelength for an
electron, I/m, and the distance (time) over which the
process is formed, ~w/m?. Theimpact parameters of such
an order of magnitude (p ~ 1/A) correspond to A ~ m and
A ~ /. If the potential decreases at a higher rate than
the Coulomb potential, the problem acquires one more
parameter, viz., the range of the potential r. For the
potential of an atom, the conditionrg, > 1/mholdsinall

cases, while the relation between r, and w/n? may be
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arbitrary depending on w. Clearly, the screening may
affect the process starting from w ~ mfr..

The amplitude of the process under investigation
has the form

T(kq, ko) = 2ia d4xd4xTer,xé
(ky, ko) Ilz[(21)1 38)
x exp(—ikyX,) G(Xy, X,)& exp(ikyXz)],

where the function G(x,, X;) isdefined in Eq. (37). Sub-
stituting Eq. (37) into Eq. (38), taking into consider-
ation that (see the discussion in [10]) for w > m, the
contribution to Eq. (38) to within terms of the order of
(«w/m)? comes from the diagram in which the produc-
tion of an e'e pair by the initial photon precedes its
annihilation to the final photon, we obtain, retaining
only thetermsproportional to 9(t,—t,), and the following
expression for T(ky, ky):

T(ky ky) = 2ia’y Id4x1d4x28(t2—t1)
i, f

x P§(x) & exp (=i kg X ) W7 (%))
x P(%) 8 exp(ikpx) Wi (%)

(=) 00

= 2ia Z Idtljdtzﬁ(tz—tl)

i, f _oo

(39)

xVis(Ky, €, tl)ViJrf(kzi e, ty).

The factor Vi; (k, e, t) is defined in Eq. (32) and is the
integrand (in t) in the matrix element corresponding to
the production of an e*e~pair by aphoton. In zero exter-
nal field, photon scattering does not take place and,
hence, we presume the subtraction of the quantity T for
A, = 0in Egs. (38), (39), and subsequent expressions
for the amplitude. This subtraction will be carried out
explicitly below. Carrying out the summation over i (]
and over al spin statesin Eq. (39) and taking advantage
of the possihility of cyclic permutation for the operators

in expression
ZDfl...lfD
f

we transform the integrand in Eq. (39) to

zvif(klf € tl)Vi+f(k2a e 1) = expli(w,—w))t]
if

xTry TRy e, 5Py, ko DR € 510
f
(40)

O . gl ,
D(ky, ky, 1) = eXpE_I(He_wl)EEEXp(Ikl [F)
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 exp{~i(% ~ V(1)) T} exp(-ik, [7)
X e (Hy— )5
U U

where operator R(ky, €, —t/2) is defined in Eq. (33),
and we have made atransition fromt,, ttot = (t; +t,)/2
and 1= t, — t;. The integration with respect to t in
Eq. (39) gives 2rmd(w, — wy). We can now put w; = w, = W
Then operator D(k4, ks, T) in Eq. (40) can be writtenin

the form
T . +) ID
Locks —5gexp (1A D)LY Ko 50
-1/2

H| O )
=T_| expQd I Bp(s, kq) (exp(—A [T)
04 O

D(kl’ k2! T) =

(41)
/2

O, O
X expH I Bo(s k») D},
o 4 O

where we have used the definition of operator Ly(k, t)
and its explicit expression (34) in terms of By(s, k) =
F(s) + #'(s, k) —w. It should be recalled that the vector
potential is now equal to zero (A = 0) and

= Jp*+m’, H(9) = JpX(s) +
H'(s, k) = J(p(s) —k)*+m’.

Defining amplitude M through the relation T(k4, ky) =
Md(w, — w,) and inserting

| =J’d3r|rum|

infront of operator exp(iA - r), which allowsusto carry
out the summation over f, we obtain

M = 4ni0(Id3rexp(—iA r)

/2

X TrIdrm|T_exp %—iIdSBp(s, kz)B
0 O 0

X R+B<2v €2 %%? 1 €, —EE

-1/2

XT_exp% J’ dsB(s, ky) HrD
04 0

(42)

Amplitude M is normalized in the same way asin [5-
11] so that the differential scattering cross section for a
photon is do/dQ = |M/(4m)]. It should be noted that
expression (42) hasthe form

M = J'dgrexp(—iA 1) Q(r, A).
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It will be verified below that for A <€ m, we can disre-
gard the dependence of Q(r, A) on the momentum
transfer A. In this case, expression (42) assumesaform
typical of the potential scattering amplitude obtained in
the first Born approximation. The role of the potential
of interaction of a photon with the external field is
played here by the complex quantity

Uon(r) = =Q(r, 0)/(2w).

Infact, thisinteraction isof thetensor typesince Q(r, 0) is
acontraction: Q(r, 0) = e,;Q;(r, 0)€5; .

Passing to the computation of amplitude M, we
choose the axis of the cylindrical system of coordinates
(zaxis) dong v = (n, + ny)/|ny + ny|; thenr = (p, 2), and
p-v=0andA-r=A-psinceA -v=0. Thecoordinate
and momentum operators in the interior of @ |...|r din
expression (42) appear only in the Heisenberg momen-
tum operators p(t):

p) = p-[as=5 D =pop). (43

where (cf. Eq. (31)) p = p(0) is the Schrodinger
momentum operator p =—d/dr. For the zcomponent of
p(t), we abtain from relation (43) p,(t) = p, + dpLt),
where

3pt) =3V() = V() =V(r +vi).

Since the contribution to expression (42) comes from
large values of p, ~ €, we can substitute p, for p,(t) to
within corrections of the order of &V(t)/e, which we
systematically disregard. The relative value of commu-

tator [p,, py(t)] is of the same order of smallness
(~0V(t)/e). Thus, operator p,(t) coincides within the
accepted accuracy with the free operator and commutes
with all operatorsin expression (42). This allows usto
rewrite this expression filling the interior of (Z]...|z[]
with the complete set of the eigenfunctions of operator
P, i.e., with plane waves. Schematically, in expression
(42) we have

00 00

[ de2lf(p., 0= I%Idzf(q, 2,

where the integration with respect to g must be carried
out from O to w since the compensation in the expo-
nents (cancelling out in B(s, k), see Eq. (35)) occurs
precisely for this values of g. Introducing the notation

= g’ +m’ and going over to x = &/w, we obtain

TJ‘[X(l )]J’dp p(-iA Tp)
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) (<] /2

XJ’dTIdz@)|T_expE1—iJ'dsf2(s)E (44)
0 O 0 O

0
x RIR,T_expC [ s Hpu
—1/2
where

m’ +(ppt xA/2)
20x(1—x)

Asin[10, 11], wewill consider the transitionsfrom one
state to another for photons with a definite helicity. In
this case, al amplitudes can be expressed (see, for
example, [10]) in terms of two independent quantities
M., (without a change in helicity) and M,_ (with a
reversal in helicity). For spiral states, operators R, and
R, in expression (44) have the form

= B hpeit3+ A5

X (A +(2x-1)o [v) —mo [&,;,

R = [B)DEQD 2DD

x (A, +(2x=1)o v) —mo [k,

where A, ,isthehelicity of theinitial and final photons,
respectively. Since we are dealing with a small-angle
problem (A < w), wecanpute -v=e -v=0in
Egs. (45). To the same degree of accuracy, the substitu-
tionse -n; — o -vand o - n, — ¢ - v have been
carried out in R, and R,, respectively.

In the integration over T and zin Eq. (44), the con-
tribution comes from T ~ || ~ w/n?. Theintegral over p
converges (for the difference M(A,) — M(0)) on min(A™,
w/n?, rg), and for A = m, the contribution comes from
p < IYm. For such values of momentum transfer, atran-
sition to classical trgjectories in the calculation of the
average [p|...|pUis ruled out since in this case fulfill-
ment of the condition p > 1/misrequired (see Section 2).
In accordance with the above analysis, we divide the
domain of integration with respect to p in Eq. (44) into
two parts: M = M, + My, such that the integration over
pin M, iscarried out from zero to pg, in My, from p,
to infinity. The value of the parameter p, is determined
by the inequalities 1/m < p, < min(wn?, ry). The
Heisenberg operator r(s) in expression (43) is given by

S

r¢s) =r +Idxv(x),

fi2(9) =

(45)

where v(X) is the velocity operator. The maotion in zis
assumed to be free starting with EQ. (44): z(s) =z + s.
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For the coordinate transverse to v, we have (in the first
approximation)

p(s) = p +svy

S

1 d
—Ejdx(s—x)%V(p + XV + v(z+ X)).
0

Therelative value of theintegral termin thisexpression
is V/e and should be neglected. Thus, we can put r(s) =
r +svg+ (z+ s)v everywhere, which means that arec-
tilinear tragjectory approximation is applicable in our
problem. Then the expression for the transverse
momentum operator reads

z+t

pe(0) = po- | dsa"—pV(p+(s—z)vD+sv), (46)

where the contribution to the integral over s for any p
comes from an interval of the order of the impact
parameter p itself. Theterm (s—2)vin Eq. (46) hasthe
absolute vaue |(s— 2vy ~ |2vg| ~ Ym and can be
neglected in region |1, where p > p, = 1/m. For p < p,,
we can replace the argument of the potential in Eq. (46)
by p—2zvy + sv sinces~ p < |z in this region. We can
now eliminate v in the argument of the potentia by
applying the following operation:

f(p-2v) = o021 (p) el it

After this, operator p(t) inamplitude (44) for any p has
the form

z+t

po(t) = Po— jds(;’—pV(p+sv)spD+6(t). (a7)

It should be noted that |(t)| ~ [V(p)| and the character-
istic values of |pg| are max(m, A), which follows
ardeady from an analysis of the form of functionsf; ,(s)
in Eq. (44). According to this estimate, the value of d(t)
inregion Il (p > pg) issmall (|6(t)] < m) and the corre-
sponding expansion should be carried out. As a result,
the contribution of My, to the total amplitude does not
contain higher order corrections in the externa field.
Moreover, owing to the factor exp(—A - p) and condi-
tion py > 1/m, this contribution is not negligibly small
only for transferred momentaA < m; this circumstance
will be used in the subsequent analysis.

Inregion |, wheres ~ p < |z, the following approx-
imate expression isvalid for o(t) from relation (47):

o(t) = Q[I(-1)3(DF(-t-2-3(H)3(-23(t+ 2],

h 48
Q=28 = favpesy.
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In amplitude M,, asin Eq. (44), the argument of the
function o(t) appearing in f; 5(s) as well asin Ry,
belongsto theinterval |t| < 1/2. For such values of t, the
quantity o(t) vanishes for |z| = 1/2 in accordance with
relations (48), and the entire expression is independent
of the external field. Such contributions vanish when
the amplitude is subtracted in zero field and can be dis-
carded at the very outset. In other words, integration

with respect to zin M, should be carried out between

—1/2 and 1/2. Thus, theintegrand in M, (theintegration
iscarried out over X, p, and T asin Eq. (44)) assumesthe
form

J’dzwexr)?(D pu)m

—1/2
A4
mz*HDD—Q—XEEZE

]HPD

(49)
;(pm) Ri(po+ Q)

Chi(z+ TIZ)[

&P wX(1-x)

x Ry(py — Q)Ry(pp) eXp?[ZpD

1Y)

2
+ dz@)leXp& %pu

expDI(Z TIZ)[ +B) +Q+XADZ}§

wX(1-x)

Uiz . 2
< exp 9%~ 0.1
m’ + (pg £ XA/2)?
D, =
= 1-x

where R; ,(P) denotes the functions defined by formu-
las (45), in which p(Ft/2) are replaced by P. The fac-
torization in relations (49) of the factors which are
functions only of Po and those depending on the opera-
tors py = Q containing the external field is essential for
the subsequent considerations. It should be emphasized
that the existence of T ordering in Eq. (44) plays a key
role for the factorization of the exponential operators
appearing in this expression. For example, taking into
account relations (48), for —t/2 < z< 0, we have

/2
T_exp %—i J’ dsf,(s) %
O O

4 iz

) O
= exp mx(l—x)[m +B)D—x%%2}g (50)
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» expD_i (z+1/2) [

2 é[]z U
wx(1-x) +B)D_Q_XZD}%
The eigenfunctions of operators p; + Q corresponding
toeigenvalue g areexp{i(q - p ¥ X(p))}, wherex(p) is
the eikonal phase defined in Egs. (48). Using these

functions, we can now calculate the average [p|...|pLin
Egs. (49). Inserting

Il = J'dzpllplD]]l)ll

between the free operators and the operators depending
on the field, we reduce the calcul ation of the averageto
determining the matrix elements of the following two

types:

Hp2—p1))} f(Q),

(51)

B2l (o £ Q)lps0= j(gmz

p1))} exp{ Fi[X(p2) —X(po]} £(a).

The c-number expression obtained as a result of aver-
aging can easily be integrated over zand t. This gives

x exp{i(q dp,—

Po

My = 422 [dpexp(-iA )
n 0

1

x [dpy [dxexp{i(2x—1)A (p;}
foof

dCh Q2
+05) (M’ + q3)

exp{ 2i {(9.—q,) [p,)}

(52)

“Ji

{exp[i(X(p+ps) —X(p—p))] -1}
x{m(e, [85) + [A A, + (2x—1)°] (e, () (€5 [1,)} -

In this expression, the required subtraction has aready

been made so that M, (52) vanishes after “switching
off” the external field. It should be noted that if we take
the half-sum of expression (52) and of the expression
obtained from it asaresult of substitutionsx — 1 —X,
01,2 — =012, P1 — —P1, theterm exp[i(x(p + po) —
X(p — po))] — 1 in Eq. (52) istransformed into cogx(p +
p) —X(p — p1)] — 1. It hence becomes obvious that the
Furry theorem holds: the expansion of expression (52)
into a series in perturbation theory contains only the
even power of the potential. The integral with respect
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to g, ,in Eq. (52) can be expressed in terms of the Mac-
donald functions K, and K; using the relations

d2q
I m’+q°
2

d . .
I > g sqexp(-2iq [p) = —2T[|K1(2mp)m9.
m”+q p

exp(-2iq Lp) = 2mK,(2mp),
(53)

We can also evaluate the elementary integral with

respect to X, thus expressing M, for an arbitrary poten-
tial in terms of the 4-fold integral:

Zpo

M = 4ia%1d2pexp(—iA Cp)
0

x [d'pu{ 1= cos[x(p +p) ~X(p — )]}
(e Ebl)(e§ p,)

1

(54)

x EK3(2mpy) (6, B ) +
0

x Ki(zmpl)[ A= } =int

D—t-‘,

O

where t = A - p,. Sometimes, a different integration
sequence in Eq. (52) is more convenient for a compari-
son of our results with those obtained by other authors.
For instance, the form of the scattering amplitude
obtained in [12] for the Coulomb potential for A >
m?/w can be reproduced by presenting factors (n? +

qiz)‘l in Eq. (52) in the form

1
m’ +Q12

= IIdsl 2&xXp{—is; o + Ch 2)}

and then integrating with respect to q; ».

Let usnow present M, as M, =M, —OM,, wherewe
choosefor M, expression (52) or (54), inwhich theinte-
gration over p is extended to infinity, while in oM, this
integration is carried out from p, to infinity. It follows
from relations (53) that the integral with respect to p; in
Eqg. (52) convergesfor p, ~ 1/m. Then and the following
expansion can be used for evaluating oM, as p = py >
p; inthe entire domain:

1-cofx(p + p) ~x(p - po] = 20p, FAET.

Besides, the quantity oM, (aswell as M), see the dis-
cussion following formula (47)) should be taken into
account only for the transferred momenta A < m. In
thiscase, |A - p4| <€ 1, and the quantity exp[i(2x — 1)A -
p4] can be replaced by unity. After this, we first inte-
grate over p, with the result proportional to &(g, — q,)
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and then over the remaining variables except for p.
Finally, for M,, we obtain

M, = 192 p,
18mm
@ (55)
L ox()O
x Idzpexp(—m p) 2(pIK(P)
[ i

where b =75, and b~ = -2e¢ (the symbol (++)
corresponds to ampI |tud% without a change in helicity
and (+-) to those with helicity reversal). It should be
emphasized that the quantity M, no longer depends on
the parameter p,. For high values of transferred
momentum (for A > n?/w in the Coulomb potential),
the entire amplitude is reduced to M.

Going over to the calculation of M, , we recall that
the transferred momentum A in this quantity should be
neglected as compared to mass m, and in the averaging
[p|...]p0) @l the interior operators can be regarded as

commuting. Consequently, in I\7I|| we have

[plf (P

and Eq. (44) leads to

V| = ia __d_zg_mdz i
M wJ’(zn)z.l pexp(—iA [p)

1 o0 o

dx J‘dr I dzexp[)—

N ite U
Ix (1 x)

0 26x(1-x) g 0 (58)

x {m’(e, 0) + A\, + (2x—1)°]
x (e, (g +3(-1/2)))(e3 Mq +8(1/2)))},
where &(t) is defined by Eq. (47) and
® = m*+q°+2(q OB + B[
/2 /2
- % [ dsde, 0= % [ 059

-1/2 -1/2

(57)

We now evaluate the Gaussian integral over g in
Eqg. (56), expand the exponentia in & (|6 < m), and sub-

tract thevalue of M, for zero externd field. Thisgives

00

My = —%Tj'dzpexp(—iA p)
Po (58)

[

1 o
XJ'de’%exp(—iur)J'sz,
0 0 —00
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where i = m?/[20x(1 — X)] and F has the form

x+(1 x)

(++) _
F 2X(1—x)

SE0-55- 1T

0 20

/2
+%‘ | dssEda(S) 18() - BOY (59)

—1/2

= P - ol

While deriving the expression for F**), we integrated
by parts with respect to variable T in the term propor-

tional to m2(e, - €5 ) in Eq. (56). Substituting the Fou-
rier representation of potential

d°QudQ,

S s

x exp(iQ2) exp(iQy (PIV(Qs, Q)
into expression (47) for &(t), we obtain from Eq. (58)

(60)

1 )

My = f? jdzpexp(—m Tp)fax [ dQ
0 —o0

dQlD sz
I(Z )I( exp{i(p dQin+ Qzn))}
1 (61)
xV Qi Q VQZD —Q QlDQZD —SFi'v
(s Q)@ )R

) _ x [ X +(1=Xx) () _ 2
Fi —6i-|:m+5(1—5)i|, Fij =-S¢¢;.

We present product Y% (Q1p Q||)\7 (Qz0, —Qp inEgs. (61)
in the form

[V(Qi0, Q)V(Qae —Q)) = V(Que OV(Qye, 0]
+ \N/(Qma O)Q(sza 0

and, accordingly, My, = M,, + 0M,;,, where M,; is the
integral of the difference in the brackets in the later
expression and &M, is the integral of V(Q4-, 0)V(Qop,
0). Since small values of p make zero contribution to
M, the integration can be extended to the entire range
of variation of p; i.e., py can be replaced by zero. Then
we integrate with respect to p:

1 o
M, = ;Tr:z{dx_!dyjdzq

x [V(a, 1Y) V(A -, —py) — V(g, 0)V(A —q, 0)] B,
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B™ = (qA- q))Im (62)
x [w " x(l—x)s(l—s)},
B+ = (e@)(edg-A))x(1- X)Im

where we have made a transition to variable y = Q/u
The integrals with respect to sin expressions (62) can
be evaluated easily:

g = (AHA—Q)) E(;yz_q»%(xz+(1—x)2)ln(l—y2—i0)

1 2 . 1 gl—y—iOD}D

+x(1-x [1——In 1-y"—i0)+=In———
(1= 1= Sin(1-y*=10) + In 77
(63)

8" = L(em)(eMq-A))x(1-x)
2y

><[1+)%2In(1—y2—i0)]

Using definition (48) of the eikonal phase x(p) and
Egs. (60) and (61), we write dM,, in the form

O e in [y X(@)OX(P)

(64)

1 00
SS

d
x{dx_{dQUW Fij,

where quantities F;; are defined in Egs. (61). The inte-
gration in Eq. (64) can be easily performed with respect
to Q, and then with respect to x and s, and we verify that
oM, = oM,, where oM, is the quantity defined by
Eq. (55). Thus, the total amplitude is given by

M= |\7|| + |\~/|||
—OM; + M, +3M;; = M, + M,

and does not depend on py.

Thus, for any A < w, the photon scattering ampli-
tude with w > mfor an arbitrary localized potential is
given by the sum of expressions (62) and (52) (or (54));
in the latter equation, the integration with respect to p
is carried out over the entire domain. It should be
emphasized that until now, the expression for this
amplitude, which is valid for any A < w without any
additional limitations on the parameters of the problem,
was known only for the Coulomb potential.

:|\/|I
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By way of example, we will now determine the con-
tribution to amplitude M,; in the Moliére potential [13],
for which

3
V(Q) = -4nZa Z
) ) ’ (65)
a, = 01, a, =055 a; =035 b, = BB,

B,=6, B,=12 PB;=03 B, =mz"121

It should be noted that the Fourier transform of the
Coulomb potential can be obtained from relations (65)
by putting b,, = 0 and a, = 1/3 in them. We will hence-
forth assume that the unit vector e; in the circular polar-
ization vector e = (e, + ie,)/ /2 lies in the scattering
plane (e, || A). In this case, the amplitudes M, and M,
with the linear polarization vector lying in the scatter-
ing plane and perpendicular to this plane, which were
used in [8], turn out to be connected with the helicity
amplitudes through the following simple relations:

My = M,,—M,., M, =M, +M,._

Substituting relations (65) into (62) and using the
parametrization

1

(cd)™ = J'dt[ct+d(1—t)]_2,
0

we evaluate the integralswith respect toq andy in rela-
tions (62). Then the contribution of M,, to the total
amplitude takes the form

M = 4'0((20() @ dxfdsfdt S a.a,Bug,
[ofefs 3 ans.
B = [x(l—x)[s2+(1—s)2]—§}
(66)

[Q(t ) + 2In%l f(t)D}

B = $’x(1-x)Q(, 9),

where i = n?/[2wx(1 — X)] as before and the following
notation isintroduced:

f2(t) = th + (1—t)bZ + A%t(1-1),

_AMA-O7 s 1
Qt,9) = (1) [iu+sf(t)_m]

For the Coulomb potential, we obtain M inform (66),
where the sum

(67)

Z akan BMol
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isreplaced by the quantity B, for which we have
BL™Y = [x(l X[+ (1-9)°] - %}

x[g(s, 1) —1-2Ing(s, 1)],

BUY = $Px(1-x)[g(s t) —1], (68)
_ in
g(s t) = [l+—23«/t(1——t)} ,

where A = 2u/A = mA/[wAX(1 —X)]. Note that for A ~m,
the quantity M'® coincides with M to within small

terms of the order of bﬁ /A2, Inturn, for A ~ m, quantity
B issmall (of the order of n/w), which explicitly con-
firms the above conclusion that M,; must be taken into
account only for A < m. Carrying out the substitution
t —» (1+ +/1—t°)/2, integrating by partstheterm pro-

portional to thelogarithmin BS™ with respect tot, and
integrating the terms which do not contain g(s, t) with

respect to x and s, we obtain
1
MC = ‘M"[fdxj’dSIth(S LX)+ Rn}’

F%s 9 = [xA-9[s"+ (1= —ﬂ

2
(_s2-t)
JL=12(iN + st
( - ) (69)
FCst, %) = St°x(1—x)
J1=t2(iA + st)
(++) _ Z glm al _
¢+ _ 1
R, = T

In order to obtain the total amplitude of the photon scat-
tering in the field of a Coulomb center for A < m, we
must sum up (69) with the corresponding asymptotic
form of the contribution of M, (52). Since the expres-

sion obtained by us for M,C coincides with the result

reported in [12], we can directly use formula (17) from
[12]. Finally, we obtain

MC(A< m) = _4|0((ZO() oo{ :

I dedsI dtF(s t, X) + R}
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++ _ 1
R7=5%
(2o im 109 (70)
W ITT .
X[Inmﬁg—————C—ReW(l+|Za)},

R(+_) = 0,

where functions F(s, t, X) are defined in Eq. (69), C =
0.577... isthe Euler constant, and W(y) = dInl (y)/dy is
the logarithmic derivative of the gamma function.
Expression (70) coincides with formula (8.1) from [§]
if we correct the obvious misprints in this formula
(eliminate the erroneous factor 4 in front of the integral
in (8.1) and change the sign of the Coulomb correction
C + ReW(1 +iZa) in the nonintegral term).

Thus, the expression for the amplitude of the small-
angle (A < w) elastic scattering of a high-energy (w >
m) photon that we obtained with the help of the semi-
classical operator method for an arbitrary localized
potential reproduces, among other things, all the avail-
ableresultsin thisfield. The devel oped method of aver-
aging the product of noncommuting operators makes it
possible to apply the semiclassical operator method for
studying various processesin QED in alocalized exter-
nal field.
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Abstract—The linear theory of propagation of a spherical wave layer isused to treat the principles of simulat-
ing turbulent process and the criteria of its similarity. The mechanism of turbulence is given for aflat channel
defined by two walls and for a square tube. We use this channel as an example to demonstrate the effect of thewave
layer properties on vel ocity pulsations, aswell asthe effect of the characteristics of asequence of disturbanceson the
structure of pulsations. The moded is used to describe the structure of a plasma channel developed by aBessel beam
of laser radiation. The Mathematica-4 language is used for smulation. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A turbulent flow is observed when the Reynolds cri-
terion Re exceeds a certain critical value. Formally, this
similarity criterion is derived from the equations of
motion for liquid. Its physical meaning may be readily
clarified using asimple example of laminar flow of vis-
cous liquid along the x axisin aflat channel of height
z=d formed by two parallel walls of which one coin-
cides with the xy plane.

A flux of momentum of liquid in the middle of the

channel hasthe density Q = pU (2) where U, isthe velocity

and p is the dendty of liquid. The friction force develops
amomentum flux in the direction of the z axis and forms
the distribution of velocity U = Ug[1 — (2Zd — 1)3]. The
density q of thisflux is defined by the xz component of
the viscous stress tensor and is equal at the wall to

ou
0z
where n is the coefficient of viscosity. Hence, q =
4nU,/d. We will now take the ratio Q/q to derive, accu-
rate within the numerical factor, the customary expres-
sion for the Reynolds criterion,

Q_ PVl _ e

q n

The momentum transfer is always associated with the
energy transfer; therefore, the quantities Q and g may
be taken to mean the respective energy fluxes, and the
velocity U, may be replaced by its effective value.
These replacements change nothing but the numerical
factor in the final result.

Therefore, the Reynolds criterion characterizes the
fraction of momentum (or energy) flux that is lost by
liquid dueto friction or, to be more precise, its recipro-
cal. However, it appears impossible to recover a con-
crete mechanism from this characteristic. Indeed, under

q=0y =N

’

conditions of steady-state flow, the hydrodynamic
parameters both in the foregoing estimates and in the
solution of hydrodynamic equations are time-indepen-
dent integrated quantities. On the contrary, pulsations
proveto be explicit functions of timeirrespective of the
mode of flow, and, as regards pulsations, the steady
state implies only dynamic equilibrium. At the same
time, there is no doubt that it is the momentum flux q
that sustains pulsations of parameters under conditions
of turbulent flow. Approximately based on this reason-
ing, Lorentz [1] came up with an idea of the need for an
energy-related estimation of the dynamics of pulsations
whose behavior did not necessarily have to be
described by equations pertaining to the flow proper. It
has been demonstrated in [2] that the turbulence may be
interpreted on the basis of linear propagation of distur-
bances, and amechanism of the dynamics of pulsations
of parameters under conditions of turbulent flow was
suggested. In short, this mechanism reduces to the fol-
lowing.

(1) The stagnation of liquid causes a local increase
in density (or pressure) at the flow boundary, which
may be represented in the form of a sequence of weak
disturbances of characteristic scale a that arise sporad-
icaly at the wall and propagate in the flow in all direc-
tions at the velocity of sound c. At adistancer > a, a
disturbance, irrespective of its previous form, takes the
form of a spherical layer of thickness 2a.

(2) At a < d (d is the transverse dimension of the
channel) within thislayer, (r —a)/c <t < (r + a)/c, and
the hydrodynamic parameters pulsate in accordance
with the distribution P(r) of density p in the primary
disturbance. For example, pulsations of velocity may
be represented by the expression of the type

U = cPr—ct

2p ct ’
Pulsationsin thelayer decay with the distancer = ct,
but they retain the form and properties of the function
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P of the primary disturbance, which, generally speaking,
may depend on the time t. Then, the linear dimension of
disturbance is defined by the larger of the quantitiesa
or ct.

(3) A caollection of direct and reflected (from the
channel walls) wave layers forms a space-time struc-
ture of pulsations of hydrodynamic parameters, which
is formed on the basis of the linear superposition of
waves.

This approach to the problem of turbulenceisvalid
both for compressible liquid and for media such as a
low-temperature plasma, in which acoustic waves exist.
This approach may also be generaized to the case of
waves of finite amplitude. To start with, however, it is
natural to investigate the model of turbulence and iden-
tify its main regularities in a linear approximation; the
more so that, under these conditions as well, pulsations
of parameters of the medium arise, which are character-
ized by a wide spectrum of spatial and time frequen-
cies, and their amplitude, phase, and direction prove to
be irregular. This irregularity is usualy interpreted as
the stochasticity of pulsations. In reality, the turbulence
is quite a determinate phenomenon. In turbulence, pul-
sations may be expressed in terms of functionsthat are
relatively simple but depend on a number of parame-
ters, for example, on the relative position of initia dis-
turbances. Therefore, a collection of pulsationsis simi-
lar to abstract automations, and its description falsin
the category of cybernetic problems which are usually
solved by imitation simulation methods. These meth-
ods assume the possibility of calculating the actual val-
ues of functions of the process, athough, as in any
cybernetic problem, it is permitted to add individual
stochastic elements as an argument to the description of
the process, along with determinate functions.

Our formulation of the problem callsfor appropriate
means for its solution. The desired capahilities are pos-
sessed by the Mathematica-4 interactive language of
system simul ation adapted for the actual description of
parameters, functions, and correlations of arbitrary sys
tems. In this language, the sequence of operaions
involved in solving the problem is written in the form of
customary formulas, no abbreviations and acronyms are
used, and, asarule, no specia comments are required. In
addition, thelanguage offers additional proceduresfor ser-
vicing computer experiments with easy control of the
graphic representation of dataincluding animation. The
most important fragments of the model will be dis-
cussed further in this paper.

The paper deals with the mechanism of initiation of
velocity pulsations and vortices and the similarity condi-
tionsfor turbulence, aswell asthe principles of construct-
ing the mode of this phenomenon using the examples of
aflat channd defined by two walls and of a square tube.
A study is made into the effect of the characteristics of
individual disturbances and their sequence on the proper-
ties and structure of pulsations of hydrodynamic
parameters. A description is given of amodel of exper-
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imentally observed structure of a plasmachannel devel-
oped by a Bessel beam of laser radiation.

2. THE FACTORS AFFECTING
THE PROPERTIES OF TURBULENCE,
AND THE SIMILARITY CONDITIONS

The momentum (and energy) transfer due to viscos-
ity is redlized by way of propagation of spherical distur-
bance waves. Their superposition defines the properties of
pulsations of hydrodynamic parameters in the channd.
The wave amplitude during propagation decreases pro-
portiondly with afr. The decay is largely due to the
increase in the volume of the sphericd layer, and the dis-
sipation of energy playsno significant part at thisstage. As
it propagates and is reflected from the walls, the layer fills
anincreasingly larger volume of the channdl, thisleading
to areduction of the scale of the spatia structure of pulsa-
tions. And when the structure size becomes comparable
with the molecular free path, the energy of disturbance of
parameters simply passes over to the region of small-scale
pulsations and causes a multiple increase in the impor-
tance of energy dissipation. Thisishow the known postu-
late of Kolmogoroff concerning energy transfer to small-
scal e turbulence finds a natural explanation.

On the flow boundary, the processes of interaction
and the superposition of waves exhibit amore complex
behavior, and we will discusstheir singularitiesin more
detail. It is known that the z component of velocity pul-
sations disappearson thewall, u, = 0, and the pul sations
of density and pressure decrease accordingly. In addi-
tion, one can readily seethat, at thewall, theinteraction
between the incident and reflected waves results in a
double increase in the amplitude of pulsations with a
simultaneous double decrease in their frequency. In the
direction of the z axis, these effects show up in a zone
of thicknessa. Along thewall, this zone has the form of
a ring moving at a velocity of ¢/sin® (8 is the polar
angle). The intensity of the processes occurring in this
ring may be estimated proceeding from the constancy
of the area of itswave front, 2mda, and the zcomponent
of density pulsations is proportional to cos’ .

A third, side wave with a conical wave front takes
part inthe interaction at thewall, in addition to theinci-
dent and reflected spherical waves. The front has the
form of the surface of atruncated right cone. The base
of the cone is provided by the circle at the intersection
of the refracted wave with the wall plane, and the small
circle is formed by aline along which the conical sur-
face isin contact with the reflected wave. The angle ,, a
the cone base is preassigned by the relation siny,, = c/c,,
where ¢, is the velocity of sound in the wall, and the
front moves at an angle of several degrees to the wall.
The wave amplitude is low, of the order of p/p,, (p,, IS
the dengity of the wall), and decays very rapidly (asr—2).
However, as is clear from the configuration of reflec-
tion, this amplitude is formed by the peripheral part of
the incident wave whose central part within the angles
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0 <06, = 12 -, does not participate in the formation
of the amplitude. In the immediate vicinity of the wall,
this givesrise to alocal nonuniformity of scale x,,d.

Another factor affecting the development and prop-
erties of turbulence is associated with the motion of lig-
uid and formation of vortices. In treating this effect, we
will use the notation and conditions of the example
given in the Introduction and the expression for wave
velocity V = dw/dk, where k is the wave vector, and
w(k) isthe dispersion law. For wavesin aliquid at rest,
asimpledispersion relation w = ckisvalid. The motion
of liquid may beincluded by adding to it an appropriate
term, after which it takes the form

w = ck+ U k. D

We will usethe concept of an “acoustic ray” of geomet-
rical acoustics to assess the wave configuration. This
ray isaline, the unit vector s of the tangent to which at
point r coincides with the direction of propagation of
the wave (and pulsations of parameters) at this point.
The change of this direction depends on the ray curva-
ture defined by the equation [3]

g—f = %[rotst], (2

where dl is an element of the path traveled by the ray.
When the liquid is stationary, U = 0, the wave velocity
in accordance with Eq. (1) isV = ck/k, i.e., the rays
from the center of disturbance propagate at the velocity
of sound along straight lines s = r/r, and the pattern
retains complete spherical symmetry. If the liquid
moves, but U is independent of the coordinates, the
vector s is a constant quantity, and we derive for the
wave velocity V = ck/k + U. Then, in amoving coordi-
nate system, the pattern of ray propagationisfully iden-
tical to the previous case, and for a fixed observer the
wave proper is completely carried away by the flow
without changing shape, and it is only the density of the
energy of pulsationsin the wave that depends on theray
direction (Doppler effect).

We will now turn to the case when the velocity of
ligquid in the channel cross section is profiled. We will
assume that the flow is directed along the x axis and the
velocity depends on only one variable, U(2), and
increases with the distance from thewall, so that, at z= 0,
we have U = 0 and dU/dz > 0. One can see in Eq. (2)
that in the U(2) field the ray bends and the curvature
increases with the velocity gradient. One must expect
the maximum curvature at the wall, in the region of the
highest gradient values. However, it is not so much the
curvaturethat is of interest, but thetotal angle of turn of
the ray, which may be estimated using Eq. (2). We
express the components of the vector s in terms of the
direction angles 6 and ¢, introduce the angle x =172 -6,
and use the subscript 0 to indicate the initial orienta-
tions of the rays to derive for the component s, after
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integration of Eq. (2), (U < ©),
2U(z*)
c

sinzx = sinz)(0 - COSX(COS®,,. (©)]

In accordance with this formula, the slope x of the
ray increases for the azimuth angles |¢o| > 172, while
for |§,| < 72 this slope decreases. In other words, inthe
gradient field the ray turnsin a clockwise direction: it
moves away from the wall when moving against the
flow and approaches the wall when moving with the
flow. Then, a fairly small slope ¥, will be found, for
which the ray that emerged from the point z = 0 will
move away fromthewall to adistance z* or lesstoform
a vortex. Therefore, in the U(2) field, the direction of
pulsations varies, and vortices arise, the condition of
existence of which is given by the equality x = 0. In
view of Eqg. (3), this equality gives

2U(z*)
c

S nz)(0 = COSX,COSd,,. 4@
This relation defines the value of z* for the angle X,
with the preassigned profile of velocity U(z). Note that
the main parameter governing the vortex formation is
the Mach number U/c. Asisclear from Egs. (2) and (4),
the gradient and, accordingly, the velocity in the region
of vortex formation must be fairly high. In the case of
the dowly increasing function U(2) over adistancez~ d,
no vortex may form at all, asin the case of U = const.

By way of example, we will treat the power depen-
dence of velocity in a channel on the ratio z/h, where h
isthe half-height, so that z/h < 1. We will represent this
dependence and condition (4) in the form

U(z) = Uorgt™ 2z _ D_E_Mmm (5)
~ cthD ' h  [Rugcosh,

The region of most curvature of the velocity profile
adjoinsthe wall. Because mis usually within the range
of two to 10, the velocity reaches half its maximum
value even at z’h ~ 0.2 to 0.02. Asfollows from formu-
las (5), inthisregion, for m< 10 and Uy/c < 0.2 and for
angles X, < 20° to 30°, the value of z*/h isin the range
from 0.01t00.2; i.e., formulas (5) further enable oneto
estimate the depth a of the zone of initiation of vortices.
The configuration of this zone along the wall has the
shape of aring analogous to that described above, with
the difference that the intensity of the processesin this
case depends also on the azimuthal direction ¢,,.

Substantial velocity gradients imply that gradients
and other hydrodynamic parameters are present in this
zone. Their level is defined by the dynamic equilibrium
between the processes of stagnation and emission of
waves from the stagnation region. The former pro-
cesses lead to an increase in the gradients, and the latter
processes lead to equalization of the parameters.
Against this background, the interaction between sound
waves in the vicinity of the wall and the dependence of
the effects of thisinteraction on the gradient profile, on
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the angle of incidence, and on other factors identified
above are responsible for the emergence of local non-
stationary nonuniformities of parameters along the wall
surface. These nonuniformities derive energy from the
liquid upon its stagnation and serve as the sources of
new disturbances. Their reproduction closes the cycle
of the process of maintaining the dynamic equilibrium of
pulsations. This processis determinate and defined by the
Mach number, channel geometry, and properties of the
liquid. At the same time, similar to the superposition of
waves in the main flow, it is a multiparameter one and
developsin awide frequency band. Therefore, the pattern
of initiation of disturbances appears to be irregular and
resembling a chaotic pattern both in space and in time
(when performing observation at a fixed point). Note
that the formation of wall disturbances begins even dur-
ing the period of build-up of flow, when close-to-spher-
ical waves of starting momentum, which set the liquid
in motion, propagatein theliquid and arereflected from
the walls; i.e, disturbances and nonuniformity of
parameters at the walls arise from the very start.

Therefore, the profile of parameters in the channe
Cross section and the structure of pulsations are related to
one another by momentum transfer, whose mechanismis
realized via sound wave emission. It is natura to expect
that the real value of momentum flux q is of importance,
inwhich the losses due to propagation of disturbances are
included. Of these losses, the absorption of the wave
energy by theliquid has no serious effect on the formation
of pulsations, as was noted above. However, upon reflec-
tion from the wall, the losses may be significant, because
apart of the energy goes away with the refracted and side
waves and is transmitted to the wall in the form of heat.
The other part, possibly a more substantial one, is lost
upon emergence of vortices.

Generally speaking, the reflection coefficient isafunc-
tion of the angle of incidence. However, the momentum
flux g isamong the averaged parameters of flow, and inte-
grally the losses upon each reflection may be estimated by
the constant coefficient o. Then, with nreflections, thered
momentum flux qwill decrease by afactor of (1—a)", and
theflow crisiswill occur at higher values of the Reynolds
number Re,, . On the contrary, thewall roughnessinten-
sifies the flux g, and the turbulence arises at lower val-
uesof Re,, i.e., at alower velocity. Because the param-
eters a and n vary in a wide range, depending on the
concrete conditions [2], the losses upon reflection do
not remain constant, and this factor must be included
when estimating the flow mode.

The explicit time dependence of pulsations calls for
the introduction of an additional criterion for describ-
ing the turbulence. The process of wave propagation is
of importance in the formation of the structure of dis-
turbances and emergence of vortices. Inthis case, asfor
any motion, the scale of displacement A and the corre-
sponding time interval T are important. Such processes
are usually characterized [3] by the dimensionless
Strouhal criterion S= Ut/A. In this case, however, we
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deal with the propagation of sound, and the equality
A/t = cisvalid. Therefore, S= U/c = M, and the Strou-
hal number may be replaced by the Mach number; as
was shown above, it is this latter number on which the
processes of structurization and vortex formation in the
channel depend. Consequently, in analyzing the turbu-
lence, the similarity must be set with the aid of two
dimensionless criteria, those of Reynolds and Mach,

Re _ pU,d - % 6)
(1-a)" v(l-a)" c’

where v is the kinematic viscosity.

The foregoing treatment is based on the linear the-
ory of propagation of wave packets of spherical shape.
A comparison of the processes accompanying their
propagation in anarrow zone on the flow boundary and
in the main part of flow, intheflow core, revealsimpor-
tant differencesin the behavior of interaction and in the
results of superposition. This gives groundsto isolate a
narrow zone of width a at the wall into a special region,
i.e., the boundary layer. Outside of this layer, the vel ocity
gradient is low, and the function U(2) increases dowly.
Then, in a first approximation, this variation may be
ignored, and, in estimating the superposition of wavesin
the flow core, one can use the condition U = const smpli-
fying the problem, where the constant may be zero.

Re* =

3. PROPAGATION AND STRUCTURE
OF DISTURBANCES IN THE CHANNEL

Thestructure of disturbancesin the channel depends
on the shape of the bounding surface. In typical simple
options, one can regard as a channel a space above a
plane (the case of aflat plate), a plane gap formed by
two parallel walls, and theinternal space of atube. The
structure of disturbances developed by spherical waves
emanating from the wall surfaceis obvious, and its deter-
mination is trivia. The Situation is somewhat more com-
plicated in the case of channels in which reflected waves
affect the structure. We will first dwell on a channe
shaped as agap of height d between two parale walls.

Wewill bring the xy plane into coincidence with the
lower wall and direct the z axis toward the upper wall.
It is natural to take the channel height d as the scale
defining the processes in the channel. Then, the posi-
tion of a point in the channel will be expressed in con-
ventional units of length corresponding to dimension-
less coordinates for which the previous designations x,
y, and z are used. For timing the process, we use the
dimensionless unit of time 1 during which a wave
passesadistanced at avelocity c sothat T = ct/d. A dis-
turbance of dimensionless radius a, which emerged at
some moment of time at an arbitrary point on the chan-
nel walls, will be characterized by the parameters p,
and p; ={px. Py, P4 which, for aseries of disturbances,
will represent sequences. The parameter p, may be both
positive and negative, and the parameter p, takes the
values of 0 (on the lower wall) or 1 (on the upper wall).
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Fig. 1. The structure of disturbancesin abounded space: (a) configuration of awave in aflat layer, (b) configuration of eight waves
in alayer, (c) configuration of awave in atube, (d) configuration of eight wavesin atube.

When a wave propagates from the point p, in the
half-space that is not bounded by the upper wall, z> 0,
the position of the wave front in the coordinate system
related to the point p, will be defined by the radius vec-
torr(&, n, {) and|r|=1. Every event of reflection of the
wave front will deform the latter. As a result, the front
will acquire amore complex configuration. For T + p, >
0, its coordinates x, y, and z will be defined by the rela
tions

X = (T+p;)sinBcosd + py,

y = (t+py)sin@sing + p,, (78)

_ n+1 n+p,
zZ= gT + pT)cose—ZIP[——z——}%—l) +p,.
For T + p, < 0, we have

X=Po Y=P, Z=p, (7b)

Here, IP (Integer Part) denotes the operation of separat-
ing out the integer part of the number in square brack-
ets, and n denotes the number of wave reflections from
the wall (positive integer),

n = IP[(t + p,)cosB]. (8
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We will now find the surface of the wave front—
asngpshot of sorts of the configuration of the front
assumed by thefront intime T after initiation. Notethat the
procedure of solving the problem in the Mathematica-4
language simply reproduces the mathematical solution
of the problem both in substance and in regards to the
notation. Firdt, the input data are described (py, py, Py, By,
and the moment of time T is preassigned, for which the
shape of the wave front and the dimensions of the
region being investigated (dx, dy, dz) are calculated.
Further, formulas (7) and (8) are used to find three coordi-
nates of thefront at the preassigned moment of timet, and
then the conditions of graphic construction of the front
surface are determined. (Usualy indicated here are the
ranges of variation of the variables, the angle of observa-
tion, the shadowing of surface areas, the labeling of coor-
dinate axes, and other parameters.)

For definiteness, we will assume that the initial
point is on the lower wall, and its coordinates and the
investigation range have the following values:

T=6, pp=0, p=12, p, =63,
pz=01 dx = 8, dy=8, dz = 1.

The surface is calculated with respect to the angle ¢ in
therange from 0 to 2rtand with respect to 8 in therange
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from Oto /2. Thelimitsfor variables x, y, and z corre-
spond to the selected volume; however, in constructing
a graph, the scale of zis enlarged by a factor of one-
and-a-half for convenience of visual perception.

The configuration of thiswavefrontisgiveninFig. 1la
It has the form of a corrugated surface with a variable
distance between the lines of bend and with a varying
orientation of the normal to the surface of folds. There-
fore, the propagation of only one wave develops a
structure in the channel, the simple regularity of whose
origin is hard to recognize immediately. Figure 1b
shows what the space of a flat layer looks like under
conditions of simultaneous propagation of eight waves
whose initial parameters are varied in the following
ranges:

p, 0[0,3.1], p,0O][0.2, 15.9],
py0[0.1,9.9], p,={0,1}.

For the inner details of the structure to be observed, it
is not the entire channel region being investigated that
is shown in the graph but rather a strip cut out from this
region (rectangular parallelepiped) and having awidth
x O (4.8, 5.0) with the above-identified values of the
limits of the remaining parameters (y = 8 and z = 1).
The combination of waves gives a clear idea of the
mechanism of formation of the structure of distur-
bances as a result of propagation of sound wavesin a
bounded space. Even the pattern of their interaction
enables one to judge the behavior of the structure of
disturbances.

A layer defined by two parallel wallsis most conve-
nient for applying this model. Indeed, in a channd like
this, the disturbance of parametersat the observation point
may be represented as a successive passage of spherica
waves through this point and its virtual images which are
its mirror reflections from the walls. Moreover, the posi-
tion of an imaginary point is defined by only one coordi-
nate which, on every reflection, changes to the double
height of the layer 2d (in dimensionless coordinates, it
changesto 2).

This simple useful rule may be readily extended to
the case of a channel whose boundaries have the form
of atube with flat faces. For such a channel, the calcu-
|ation scheme remains the same; however, because of
the wave reflection from several walls, the number of
imaginary points to be included increases. For exam-
ple, in asquare tube, the number of such points triples
in every cycle of reflections, with the position of the
imaginary point being defined by two, instead of one,
coordinates which vary with the period 2d (here, d is
the side of a square). We will treat this mechanism in
more detail and find the wave configuration at the
moment of time .

The wave configuration is not related to the place of
itsinitiation in the direction of the x-axis of the tube and
dependsonly on the coordinates along they and zaxes. On
the faces pardld to the y-axis (horizontal walls, z= 0 or
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1), we will denote these coordinates as p,, and p,,, and
on the faces parallel to the z-axis (vertical walls, y =
Oor 1), asp, and p,. The values of p,, and p,, vary in
the range from O to 1, while the values of p,, and p,,
may only be discrete, 0 or 1.

We will now determine the number of reflections of
a wave moving from one of the faces. We will distin-
guish between the cases of wave propagation in the
direction from horizontal (z=0 or z= 1) and from ver-
tical (y = 0 or y = 1) faces. Each direction presumes
reflections from the other three faces. In the case of
propagation from the vertical facez=0 (or z= 1), we
will denote the number of reflectionsfrom thewallsy =0,
y=1,z=1(or z=0) as ny, Ny, and n,, respectively.
For the direction of the wave motion from vertical
faces, these designations may be written as ny, n,, and
n,. By analogy with formula (8) for a flat layer, the
number of wave reflections from different faces of the
tube may be given by relations (9) in which, as previ-
oudy, T is the running time (in dimensionless units); the
parameters p,, and p;, alow for the delay or, the other way
around, for the advance of the wave initiation relative to
the moment of timet = 0 for horizontal and vertical faces,
respectively; and 0 isthe polar angle, 6 O [0, 11.

For ahorizonta face,z=0orz=1,
Ny = IP[(T + p)sin(8-1/2) + p,, —1],

Ny, = IP[(T+ py)sin(6-1U2) + p,,], (99)
ny, = IP[(T + p;y)cos(6-T1U2) + p,,];
for avertical face, y=0ory=1,
n, = IP[(t + p.,)cos6 + p,,—1],
n, = IP[(T + p;;)cosB + p,,], (9b)

Ny = IP[(T+ p;)Sin@ + p,].

Asaresult, three coordinates corresponding to three
waves reflected from three different faces of the tube
space will emerge instead of each one of the coordi-
nates y and z used in formulas (7) to describe the posi-
tion of a wave reflected from the opposite end of a flat
channdl. In accordance with the notation adapted for
reflected waves, we will introduce coordinates y0, y1, and
2y instead of y and coordinates 20, z1, and yz instead of z
The relations defining their values are in many ways sm-
ilar to formulas (7); therefore, in order to reduce the com-
putations, we will treat waves in a single cross section
of the tube, assuming that ¢ = 172,

yo = ((T + pry)Sin(e_T[IZ) + pyy
—2IP[n,/2])(-1)™,
yl = ((T + pTy)Sln(e_T[IZ) + pyy

N (20
—2IP[(ny, +1)/2])(-1) ™,
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zy = ((T+p,)sSinB + p,,

—21P[(n,, + 1)/2])(~1)",

z0 = ((t + p,,)cosO + p,,
—21P[n,y/2] )(-1)",

z1 = ((t + p,,)cosb + p,,
. (11)
—2IP[(n,, +1)/2])(-1) 7,

yz = ((T + pry) COS(G_TUZ) + pyz
—2IP[(n,, + 1)/2])(-1)™.

In constructing the configuration of awave, the position
of a point on its front is defined by the coordinates
y0 —vyz,zy—Z1 a 6 < 11/2 and by the coordinates y1 —yz,
zy—-0ab=12.

Figure 1c shows the configuration of awave during
its propagation in a1 x 1 sguare tube. The wave position
isregistered at the moment of time T = 2 after itsinitiation
on the lower wall at the point {p,, py, P} = {2, 0.6, 0}.
One cannot but note that the structure of disturbances
became irregular as a result of only two incomplete
cycles of reflections of only onewave. It is obvious that
the development of turbulence in a tube is markedly
moreintensive, asisseenin Fig. 1d, where this process
is demonstrated using the example of propagation of
eight waves (as for aflat layer in Fig. 1b). Because, in
thiscase, it appearsimpossibleto distinguish the details
of configuration by its image in three-dimensional
space, Fig. 1d shows its trace in the tube cross section
(x = 4) at the moment of time T = 3. The distribution of
initial disturbances on the wall surface and in time is
preassigned by the law of chance.

Both in aflat channdl and in a tube, the state of the
structure of disturbances at late stages appears fully cha-
otic at first glance, and the structure cells that are formed
are characterized by acomplex distribution with respect to
size and shape, so that the entire pattern makes an impres-
sion of turbulence in the channel. Proceeding from these
examples and in view of the fluctuations of parametersin
every single wave layer, one can understand how the
pulsations are formed and what their structure is. The
effect of intermittency, which is usually explained by
the instability of the boundary layer, also finds anatural
interpretation.

Aswas already noted, it is more convenient to analyze
the processes for aflat layer, because this enables one to
demonstrate al of the important singularities of the phe-
nomenon and possibilities offered by the concept without
resorting to cumbersome mathematical expressions in
describing the geometry of a wave reflected from a com-
plex surface, which would cause the paper to expand con-
Sderably. However, in this case as well, before turning to
the analysis of pulsations, one must treat the problem of
the site and sequence of initiation of a series of k distur-
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bances. In fact, we have aready come up against this
problem. At k=1, theinitial parameters of disturbances
were selected simply from considerations of obvious-
ness, while at k = 8 they were preassigned by the law of
random numbers.

The use of thislaw in the problem at hand involves
certain specia features. The sampling of random values
of a parameter presumes a uniform distribution of prob-
ability in the preassigned range. A property that iscom-
mon to any random number generator isthe variation of
the internal state on every reference to it. Therefore,
repeated references will cause the generator to produce
different numbers. The eventual outcome is clear from
expressions (7) and (8). Assume that, as a result of the
first reference, the generator gave a random value of
some parameter, say, p,. If this value varies on subse-
guent requests, the wave coordinates will turn out to be
random, and it will be impossible to describe any suc-
cessive propagation of the wave. However, for other
waves, one must find other random values which must
aso be reproduced during their lifetime. These require-
ments hold for the random values of the parametersp,, py,
and p, aswell.

We will treat this problem using the example of the
Mathematica-4 system. Let the parameter p, vary in
therange of dt = 1, — 1. We will set the generator to the
SeedRandom [s] state, where s is an integer equa to
therunning time of the day (in fractions of a second).
Then, the operation

p, = Table[(t,—1,)Random[], { k}]

will develop in the T,—T, range asequence p,, of k con-

stant numbers selected at random, which will be repro-
duced on every request of thevalue of p,, . Therandom

values of theinitial coordinatesof al kwavesarisingin
therangesdx = x, —x;, dy =y, —y,;, and dz={0, 1} will
be defined in the same manner.

The randomness of place and time of initiation of
disturbancesis but one of the options of distributions of
p; and p, . Disturbances may arise at some set of fixed
points associated, for example, with microprojections
on the wall surface. Given this nature of disturbances,
both a periodic (to be more precise, quasi-periodic) and
arandom behavior of the processintimeispermissible.
Finally, notethat the preassigned channel size and wave
velocity set up conditions under which the reflection of
waves in a certain spectral range becomes preferable.
However, as was demonstrated above, the reflections
bring into action the mechanism of formation of distur-
bances whose position is independent of the singulari-
ties of the wall. In this case, disturbances will arise
amost periodically. Different scenarios are apparently
realized in experiments. And each one of those scenar-
ios must affect, in its own manner, the structure of pul-
sation of parameters and, first of al, their spectra. At
the same time, any regularity of the emergence of dis-
turbances may be represented by appropriate expres-
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sionsfor the parameters p, and p,, asin the case of ran-
dom sequences. Then, the results of comparison of
experimentally obtained and model spectra will help
find this sequence and, along with it, the mechanism of
the process effective in a concrete experiment. We will
return to this problem in what follows; at this stage, we
will investigate pul sations of vel ocity upon propageation
of asingle wave in the channel, and then the structure
of pulsations for a series of waves.

4. PULSATIONS OF VELOCITY
DURING PROPAGATION OF DISTURBANCE

We will determine the time dependence of velocity
at an arbitrary point {x, y, zZz of a channel. It will be
recalled that it is other than zero only inside a layer of
thickness 2a; therefore, pulsations at the point {x, y, z}
will arise only at the moment of arrival to this point of
the leading wave front and will cease when the trailing
wave front leaves this point. However, both the forward
wave and all reflected waves pass through the above-
identified point in the channel. Therefore, the velocity
at that point will pulsate during the entire time of obser-
vation, and al waves must be included in calculating this
velocity. We will judge the properties of these pulsations
by the spectrawhich may be constructed using the Fourier
transform of the time dependence of velocity.

Let the radius vector r (&, n, ¢) of the wave front in
free space, |z| = 0, connect the wave center p,, p,, p, to
the imaginary point corresponding to n reflections. At
this point, pulsations of velocity would be observed on
condition that |r, —T| < &, wherer, isthedistanceto this
point and T is the actual radius of spherical wavein the
free half-space. The velocity profilein thelayer, u(r,—1),
is formed by the distribution P(r) of density in theini-
tial disturbance of radius a, with its shape maintained dur-
ing propagation, while the amplitude decreases both with
time and on every reflection of the wave from the wall.

We will represent the distribution P(r) in the form of
the product of the constant P by some function, for
example, cosine, with the argument (r,, — 1)/a. For the
velocity u at the point of spacer,, we have

go, |r,—-7>a
O (12)

u=1mn =T, —T
EB(l—a)”(”cosD—T”—g”—, Ir,—1| <a.

(P a T

Without loss of generality, the coefficient B = cP/2p
may be taken to be equal to unity. We will express the
components &, n, and ¢ of the radius vector r, in terms
of the observation point coordinates x, y, and z in the
related frame of reference. We will take into account
the fact that two of these components, & and ), are not
affected by the number of reflection, and they remain
constant for any values of n, while the third component,
¢, depends both on n and on the wall on which the wave
arises. In determining this correlation, we will use the
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fact that conjugate or imaginary points correspond to
the observation point at the moments of passage of
reflected waves through this point. We use the above-
identified regularity of their position to find the correla-
tion between the coordinates in two frames of refer-
ence. The observation point { X, y, z} isknown. Because
thisisareal point, one canimmediately write the equal-
itiesg =x, N =y, and { = z. Thefirstimaginary point is
a mirror reflection of the observation site in the wall
planeand, for thispoint, & =x,n =y,and { =2-z. Each
subsequent imaginary point shifts to the distance 8¢ = 2
(dimensionless units). Then, Egs. (7) yield

E =X=px, N = y_pyi

&, = 20 52 (D" + 2= p(-D)"

rh = J&+n°+0,
where n is given by expression (8).

Formulas (12) and (13) enable one to simulate the
distribution and properties of disturbances in a flat
channel. We will treat this ssmulation in more detail,
including the sequence of operations for determining
pulsations of the velocity u and the spectrum of these
pulsations during propagation of a single wave in the
channel. In accordance with the adapted procedure, one
must first indicate the values of parameters that preas-
sign the process conditions, i.e., the input data. For
example, for the size of initial disturbance we use the
value a = 0.1 (afraction of the separation between the
walls), estimate the reflection lossesas a = 0.1, and for
the observation site we select the coordinates{x, y, z} =
{0.3,0.5, 0.7}.

Because the scatter of the beginning and site of ini-
tiation for asingle wave is of no importance, the distri-
butions of theinitial parametersp, and p, and the ranges
of their variation dt = 1, — 1, and dr =r, —r; may be
eliminated from treatment. Instead, we will place the
initial disturbance on the upper wall at the point with
zero values of the remaining parameters. In describing
pulsation, it is further important to preassign the maxi-
mum number n,,, of wave reflections from the walls
and the time T during which the process is analyzed.
We will include 10 reflections. Accordingly, the dura-
tion of observation of the process will be restricted to
T=10. Then, theinitial conditionswill have the form

a=01 a=01 {xyz ={030507},
{pr Px: Py pz} = {O, 0,0, 1}, Nopax = 10, T =10.

First of al, formulas (13) are used to find the coordi-
nates{¢,, N, ¢,} of imaginary pointsin the half-space,
as well as the distances r,, to these points from the
selected observation site { x, y, zZ+ and the numbers n of
wave reflection.

Then, in accordance with formulas (12), velocity pul-
sations u(t, n) are caculated a each passage of the wave

(13)
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Fig. 2. (a) Velocity pulsations and (b) their spectrain alayer during propagation of a single wave: a = 0.1, a = 0.1, n = 10,

{x,y,2} ={0.3,05,0.7}, {pr. Py, Py, pg ={0,0,0, 1}.

layer past the observation point {x, y, z} located inside the
channd. At the same time, these pulsations are added up
toform aunified time dependence of vel ocity at the obser-
vation point in the form of the piecewise smooth func-
tion u(1).

In conclusion, technical (but important) procedures
are performed. Here, the function u(t) isrepresented in
the form of atable and is then used to construct graphs
for velocity pulsations and for the spectrum of these
pulsations. The spectrum (Fourier transform) calcula
tion procedure involves breaking the observation time
T into segments (resol vabl e elements) whose number N
definesthe spectral resolution and the range of frequen-
cies v of the spectrum. It isin the table that the values
of T and N are found. In the case of single wave propa-
gation being treated, at T = 10 it is quite sufficient to
assume that N = 500. Then, the number of intervals N,
the time T (in dimensionless units), and the dimension-
less frequency v (in pulsations per unit time) will be
related as N = 501 and N = 10v + 1. The dependences
of u(t) (to be more precise, of u(N)) and of the ampli-
tudes of the pulsation spectrum A(v) (or A(N)) aregiven
in Fig. 2. We use the example of asingle disturbanceto
find out which parameters and how affect the spectrum
of pulsations in the channel. Obviously, as regards the
initial parameters{p;, p;}, the wave start delay, p;, has
no effect on theform of spectrum, whiletheremoval of the
source away from the observation ste, p,, must deform
the velocity pulsations and their spectrum, which is asso-
ciated with the properties of the function r~* and with the
variation of the angle of reflection. Thevelocity uinthe
wave layer isproportional to 1%; therefore, the observa-
tion time T (or the number of reflections n,,,) governs
the minimum amplitude of pulsations and, conse-
guently, the high-frequency part of the spectrum that
requires a respective number of resolvable elements N.
Generally speaking, the wider the spectral band, the
more accurately the model describes the real process,
however, at some level, the accuracy becomes redun-
dant. In the example being treated, at a=a = 0.1 and
T = 10, the amplitude of pulsations decreases by afac-
tor of almost 300 during the time of observation. For
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our purposes, pulsations of a lower amplitude may be
ignored.

Lessobviousistheimportance of the sizea of initial
disturbance, of the distribution P of parameters in the
source, and of the loss factor a during wave reflection
from the wall. Some preliminary information about the
effect of these factors may be provided by the represen-
tation of function (12) in the integral form of the Fou-
rier transform. Without going into details of the proce-
dure of including function (12) into known expressions,
note that, upon integration, two cofactors of this func-
tion would produce a relation in the form of sine inte-
gral si. In the low-frequency spectral range, it is equal
to 12; however, as the frequency increases, s is
approximated by an expression of the type of cosy/y,
and the frequency v isreplaced in our case by the prod-
uct av. That is, the spectrum in some or other degree
will be modulated, and the frequency band must
increase with decreasing a. According to formulas (12),
corrections into the shape of spectrum are introduced
by the form of the function of velocity distribution P in
the wave layer, as well as by the loss factor a which
governs the jump of velocity pulsations upon wave
reflection from thewall. In order to estimate this effect,
we will use formulas (12) and (13) and the foregoing
list of initial parameters and will successively, one by
one, vary the values of the parameters a, P, and a, with
the other parameters remaining as given in thelist. The
calculation results are given in Fig. 3, where the varia-
tions of the parameter a — {0.2, 0.1} are represented
by spectral and 2, respectively. The distribution P (see
Eq. (12)) was given by the functionsP; =1 —|r,, —T|/a
and P, =1 — (|r, — t)/a)*, as represented by spectra 3
and 4. Spectra 5 and 6 correspond to the loss factors
o — {0.1; 0.5}. The vertical lines at 10v + 1 = 200
indicate the sine curves added to the vel ocity u, with the
amplitude g and frequency v of each one of those sine
curves giving an idea of the characteristics of pulsa-
tions in absolute magnitude.

It follows from graphs 1 and 2 in Fig. 3 that the fre-
guency of the maximum of thefirst harmonic is defined
by the width of spherical wave layer and equal to 1/2a.
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Fig. 3. Spectraof pulsationsat the point {x, y, zZ+ ={0.3, 0.5, 0.7} with varying disturbance parameters. (1,2) a={0.2,0.1}; (3,4) P=
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Note the uniformity of modulation of all spectra. The
estimates reveal that, starting with the second har-
monic, the modulation frequency remains a constant
guantity for the given value of a; with a varying from
0.01t0 0.2, itsratio to the basic frequency and the prod-
uct av,,,, where v, is the frequency of harmonic m, are
virtually invariable. Hence it follows that the entire
spectral band is inversely proportional to the size of
primary disturbance, as is in fact demonstrated by
curves 1 and 2 in Fig. 3. In so doing, the spectral den-
sity decreases, and a comparison of the amplitudes
reveals the extent of this decrease.

The function P likewise affects the spectrum of pul-
sations. It follows from a comparison of curves 2, 3,
and 4 (Fig. 3), where, respectively,

|rn_T|

M=t ppq_l=T
a i

PO COSET,

and
O —TQ
PO1— 1L

that this effect is analogous to the spectrum of the func-
tion P proper and, the closer the distribution P to rect-
angular pulse, the stronger the development of higher-
order harmonics. Therefore, in estimating the effect of
the form of function P on the pulsation spectrum, one
can be guided simply by the properties of the Fourier
transform of this function.

The importance of the loss factor is clear from a
comparison of curves 5 and 6 (Fig. 3), wherethe values
of a are0.1and 0.5. For arelatively low level of losses,
arapid oscillations are observed in spectrum 5 along
the entire spectral curve. As the losses increase, this
oscillation levels off, and spectrum 6 becomes
smoother and follows the averaged amplitudes of spec-
trum 5.

We treated the effect of various factors on the spec-
tral properties of velocity pulsations, when asingle dis-
turbance in the form of a spherical wave layer propa-
gated in a channel formed by two paralel walls. The
width of the wave layer was equal to the diameter of
initial disturbance. The amplitude-frequency character-
istic, or pulsation spectrum, depended on the position
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of the wave initiation point relative to the observation
point rather than on the moment of itsinitiation.

Proceeding from these results, one can expect that a
sequence of waves initiated at one and the same site
will produce the same spectrum irrespective of the
behavior of this sequence. The frequency band of the
spectrum will depend on the number of reflections
taken into account; however, if the number of reflec-
tionsis preassigned, the frequency band will be defined
by thewave layer thickness. The spectrum must contain
harmonics whose half-space and period of arrangement
will be defined by the same wave layer thickness, and
the damping decrement and the number of harmonics
will be defined by the form of the distribution of param-
eters in the initial disturbance. An increase in the loss
factor upon wave reflection from the wall must cause a
decrease in the amplitude of high-frequency modula-
tion of each harmonic of the spectrum and smooth out
the spectral characteristic.

5. STRUCTURE OF PULSATIONS
FOR A SEQUENCE OF DISTURBANCES

Given the properties of pulsations during propaga-
tion of a single wave (or waves issuing from a single
point) in a channel, one can proceed to simulation of
turbulence for an arbitrary sequence of disturbances;
that is, in determining the behavior of velocity pulsa-
tions at the observation point, one must include the con-
tribution made by disturbances originating from different
sites (on the walls) and at different moments of time. Of
real importance are the versions of initia conditionswhen
aseriesof disturbancesarisesat random or fixed pointsp;,
and the moments of time p, may be both random and pei-
odic, as wdl as quasi-periodic. Turbulence experiments
usudly involve recording velocity pulsations at a fixed
point of the channel or taking asnapshot of distribution of
disturbancesin the channel cross section. Therefore, inthe
case of propagation of a series of disturbancesin a chan-
nel, one needs, in addition to a spectrum at a point, which
depends on the frequency of pulsations per unit time, v, to
smulate the structure of pulsations, i.e., their spectrum
over the height z and aong the channel, for example, on
the x axis, with a spatial frequency v expressed in pul-
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Fig. 4. Velocity pulsations and their spectra at the point x =y = 10, z= 0.7, in the interval of T O [30, 60]: (a) p, and p;, random
functions; (b) p,—five fixed points, p,—function with the period of T/20.

sations per unit length. In so doing, the question arises
as to the extent to which the processis steady-state.

Wewill first treat vel ocity pulsationsin timeand, for
definiteness, select the minimum channel volume and
time, which correspond to the dynamic equilibrium of
the state of the structure at the observation point. Previ-
ously, it was assumed that the lifetime of disturbance
T = 10. It is expedient that the region around the obser-
vation point, or the volume being investigated, should
be limited to the size equivalent to this time interval.
For T = 10, the size of thisvolume will be{X; —X,, Y1 — Y5,
z, —z,} ={0-20, 0-20, 0-1} with the center at the point
x =y = 10. From the standpoint of the model being
treated, the determination of the timet of relaxation of
the structure to the steady state is analogousto the prob-
lem of finding the level of water in avessel under con-
ditions of the constant (on the average) delivery of
water and the efflux velocity defined by the height of
this level. Accordingly, the balance between the initia-
tion and decay of waves will be defined by an expres-
sion containing exp(-t/t), and one can put t = 31, for
which the number of waves that are simultaneously
present in the channel will differ from the equilibrium
case by not more than 5%. Then, the observation of the
process must not be started before the moment of time 3t.
The duration of observation 1, — T, depends on the
objective of the problem and technical capabilities. If k
disturbances arise during the entire period T (T > 1) of
development of the process, knt/T reflected waves on
the average will be constantly present in the channel.
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The reciprocal of this quantity points to the resolution
[ of the process in time or space.

The time dependence of velocity pulsations in the
field of action of several waves is found in the same
manner as in the case of severd reflections of asingle
wave. The piecewise smooth function u(X;, X, Y1, Y2, Z1,
Z, T4, T2y Pas Pys P Pu X, ¥4 Z, n) issummed at the obser-
vation point {x, y, zZ} over al k disturbances for the
sequence of moments of time T during the period of
their emergence T, starting with the moment of time't.
In the examplestreated here, the value of k = 100 istaken
for disturbances. The observation point is preassigned by
the coordinates {x, y, zZ = {10, 10, 0.7}, and the period
being invedtigated is given by the interva {t, T} =
(30, 50); i.e., the spectrum is constructed only for the
last 20 units of time.

The methods of preassigning the coordinates for a
series of k disturbances were discussed in part above. In
the Mathematica-4 system, their distribution by the law
of chance is described by the function TRandom([], {k}
with the random number generator set to the s state. For
an ordered arrangement of disturbances, use can be
made of afunction of theform of (T/k)(Range[k] —1/2),
where T/k isthe period, and the operator Range[K] gen-
erates a natural numerical series. An addition to this
function of a random eement varying within a single
period givesaquasi-periodic function which ismade up of
two previous ones: (T/k)(Range[k] — Random([], k). In
the same manner, one can preassign any other law of
distribution of coordinates and time of emergence of
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disturbances. In determining velocity pulsations, the
total time of observation of the process was broken into
N = 2000 intervals, which corresponded to spectral res-
olution 3 = 0.01. Figure 4 givesthe pul sations and spec-
trafor random and fully ordered sequences of p,and p; .
The top graphs gave the dependences of velocity u on
time 1, and the bottom graphs show the spectra A of
velocity pulsations as a function of frequency v
expressed by the number N of intervals 3. The graphsin
Fig. 4acorrespond to arandom distribution of all initial
parameters of disturbances. Figure 4b is an opposite
version, in which the wave sequence is fully ordered,
and disturbances at five uniformly arranged points arise
periodicdly, with a period of 0.05T. Note that the pulsa-
tionsof velocity u(t), aswell asthe spectrum A(v), depend
ontheposition{x,y, Z} of the observation point. Inthefirst
version, they arefurther affected by the redlization of ran-
dom distributions { p;, p, Py, P,} . However, with aran-
dom distribution of disturbances, the general form and
singularities of pulsations are preserved and resemble
the case of single wave. This leads one to extend the
inferences made in analyzing a single redlization to the
entireclassof random distributions. The situation isdiffer-
ent in the case of ordering, asiswell seenin thetop graphs
of Fig. 4b, where the ordering of initiation of disturbances
resultsin aclearly periodic behavior of pulsations. Wewill
take alook at how this tendency shows up in spectra.

The spectrawere investigated in the frequency band
v =50 (pulsations per unit time equal to thetime during
which the wave crosses the channel), which is governed
by the selected resolution 3 in view of the rules of Fou-
rier transformation. The spectrum is a set of harmonics
whose amplitude decreases very rapidly; therefore, Fig.
4 gives only parts of spectra, defined by the frequency
v = 20. The general form of the spectrain Fig. 4 reminds
one of the spectral distribution of pulsations developed by
asinglewave, k= 1. Asinthecase of asinglewave, amax-
imum of the envelope of first harmonic is located at the
frequency 1/2a, and the shape and decay of other harmon-
ics are defined by the properties of initial disturbance,
the distribution of parametersin which is given in this
case by the harmonic function P O cos((r —1)/a). Pro-
ceeding from the similarity of spectraat k=1 and k >
1, one could expect the number k to affect the function
u(t) and the spectral density A(v) more than the form of
spectral distribution of pulsations. However, the partic-
ipation of a series of waves in the process leads to a
redistribution of the spectral density. In particular, the
half-width of the harmonic and its modulation vary.
The only source of all of these changes may only be
provided by the space-time characteristics of distribu-
tion of disturbances in the initial sequence, including
the number of disturbances k.

We will estimate the main parameters of this sequence
for the conditions corresponding to the above-identified
parameters. On the average, two disturbances arise per
unit time, with eight unitsof surface areaof both walls per
each one of those disturbances; i.e., the average fre-
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guency of initiation of disturbancesistwo disturbances
per unit time, and the spatial frequency is 0.125 distur-
bance per unit area, or, in terms of the length r (the dis-
tance to the observation point), 3.5 disturbances per
unit length. The fundamental harmonic hasahalf-width
of dv = 5.5. With arandom distribution of disturbances
in a sequence (Fig. 4a), severa bands incorporating
sharp maxima may be identified in the spectrum. The
first such maximum is located at a frequency v = 2,
which coincides with the average frequency of initia-
tion of disturbances. However, the highest amplitudeis
exhibited by the maximum at a frequency v = 3.5,
which coincides with the average spatial frequency of
distribution of disturbances (3.5). Notethat quantitative
agreement between the time and spatial frequenciesis
possible by virtue of the scales adapted for the dimen-
sionlesstimet and lengthr.

When a partia (spatial) order is introduced into the
sequence of wave initiation, the harmonic half-width nar-
rows down and the contrast between individual maxima
corresponding to different frequencies and their combina-
tions increases appreciably. This effect increases in the
case of fully ordered series of disturbances with respect to
both space and time. The effect of periodicity, at which the
process is characterized, in addition to frequencies in
gpace and, on the average, with respect to time, is further
characterized by the fixed frequency of emergence of a
group of five disturbances (v = 0.4), isdemonstrated by
the spectrum in Fig. 4b. This spectrum consists of only
isolated maxima. Altogether, the fundamental har-
monic includes 23 maxima, and the average (over al
maxima) frequency shift is 0.4, which is equal to the
frequency of emergence of a group of disturbances.
These results may be treated as a corroboration of the
assumptions of the direct dependence of the behavior of
time spectrum modulation on the regularities of theini-
tiation of disturbances. They may prove useful fromthe
standpoint of preliminary estimation of the expected
results in the ssmulation of turbulence, as well as in
approximate analysis of the process.

Spatia spectra of pulsations must correspond to simi-
lar regularities. In turning to these spectra, we will usethe
same conditions as those adapted for analyzing pulsations
in time. The wave contribution to the structure of pulsa-
tionswill beincluded during the assumed lifetimet = 10.
During thistime, the wave passes the distancer = 10 and
isreflected from thewallsno morethan 10 times. In order
to investigate the spatial structure in the steady-state
mode and, at the same time, reduce the number of ver-
sions of the problem, we will set the dimensions of the
working volume in accordance with the relations

{ X1 =X Y1 —Y2 2, —2,} = {0-20,0-20, 0-1}.

We will take the number of disturbances k for this vol-
ume to be k = 100. For the above-identified conditions,
the steady-state mode sets in starting with the moment
of time T =T = 50. The dependence of the velocity pul-
sations on the coordinates in some direction will be
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Fig. 5. The parameters of pulsations in the interval of x O [10, 30] (y = 10, z= 0.7) at the moment of time T = 50: (&) p; and py,
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determined using the procedure of obtaining time spec-
tra of pulsations at the observation point.

According to this procedure, in order to obtain the
spectrum of pulsations in time, the observation point
{x, v, Z isfixed, and, at the moments of time1 O [t, T],
the piecewise smooth function

U(X1, X2 Y1r Y2r Z1s Zp, T1y T, Py Pys P Pro X, Y, Z,1N)

is calculated and then summed for all k disturbances.

On the other hand, in order to obtain the spatial spec-
trum in a preassigned direction, the moment of time T is
fixed, and the piecewise smooth function

U(X1, X2 Y1, Y20 21 Zo, T, Ps Pys Py P 1, D)

is calculated and then summed over al k waves at
pointsr [ [ry, r,] of the segment being investigated in
the preassigned direction. However, some difference
exists between different directions. We will treat the
procedure of obtaining the spectrum in the transverse
and longitudinal directions of the selected channel vol-
ume parallel to the z axis and x axis. The first of these
directions may be defined by the coordinates x and vy,
for example, x =y = 10, which corresponds to the vol-
ume center, with the value of the parameter z varied in
the range z [0, 1] with a step of 0.01. Similarly, aline
parallel to the x axis may be preassigned by the coordi-
natesy and z. However, unlike aline parallel to zwhose
variation limits are automatically preassigned by the
channel walls, no such natural limitation exists for the
X axis.
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period of T/20.

In this case, the choice of boundary conditions must
provide, first, theformation of asteady-state structure and,
second, the previous specific density of perturbations in
the entire region being investigated. Thisrequirement may
be satisfied in anatura manner by increasing the extent of
the region of initiation of disturbances on each side dong
X to a distance corresponding to the wave lifetime. While
increasing the length of the volume being investigated,
one must change the number of initial disturbances
accordingly. Inthe case of T =r = 10, thismatching pro-
ducesk =200 and {x; — X5, Y1 — VY2, 2, — 2} ={0-40, 0-20,
0-1}. The structures of velocity pulsationsin the direc-
tion of the x axiswithy = 10 and z= 0.7 are given in
Fig. 5 for the moment of time T = 50. Here, the variable
parameter passestheinterval x [1[10, 30] with astep of
0.01. The top graphs of Fig. 5 represent the velocity
pulsations for the above-identified (Fig. 4) two types of
sequences of initial disturbances, and the bottom
graphs give their spectra as functions of N = 20v + 1,
wherev isthe spatial frequency along x. The spectraare
limited by the frequency v = 20.

As is demonstrated by the results of comparing
Figs. 4 and 5, the spatial characteristics of pulsationsin
thedirection of the x axisarelargely similar to the prop-
erties of spectra in time. Comments on the spectra of
pulsationsin time (Fig. 4) are largely true of the spatial
spectrain Fig. 5 aswell. In particular, the ordering of the
sequence of primary disturbances causesanincreaseinthe
contrast of spectra lines. The difference is observed only
for the low-frequency (long-wave) region in which the
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dengity of spatial spectra exceeds that of spectrain time.
This difference is quite explicable.

Indeed, the characteristic time of variation of veloc-
ity at the observation point is associated, first of all,
with the thickness 2a of the spherical wave layer, so
that, at a = 0.1, the frequency v = 5. In this case, the
spectral density in other frequency ranges depends on
the length of coherence of a pulsation train formed as a
result of the superposition of primary waves. Obvioudy,
the possibility of the formation of a train whose length
appreciably exceeds2aisless, the greater thislength. This
iswhat is observed in Fig. 4, where the spectral density in
the low-frequency region decreases amost to zero. Onthe
other hand, when a wave crosses a segment in which a
spatia spectrum is investigated, the length of coherence
increases automatically with the radius of the spherical
wave layer in the process of its propagation. In this
case, the density of the low-frequency part of the spec-
trum depends on the number of waves which have the
appropriate parameters and site of initiation. Asis seen
in Fig. 5, the spectrum in this region is by no means
zero.

In thisrespect, the spatial spectrum in the direction of
the z axis is representative. Similarly to the time spec-
trum, this spectrum lacks the low-frequency component;
however, thisis due to the fact that the length of the seg-
ment being investigated is limited. At the same time, in
the region of other frequencies, the spectral distribution
on the z axis amost coincides with the envelope of the
spatial spectrum in the direction of the x axis. The calcu-
lation results demonstrate that the described properties
of spectra show up for all forms of sequences of initia
disturbances. Note further that the density of the low-fre-
guency part of the spectrum depends also on the width
2a of the spherical wave layer. Asthelayer expands, the
spectral density in the low-frequency region increases,
because the length of coherence increases both in the
layer proper and in the train of pulsations during the
superposition of waves. In spatial spectra, this process
accelerates further as aresult of increase in the volume
of coherence.

Theforegoing results indicate that the concept of tur-
bulence based on the superposition of acoustic waves
enables one to calculate the time and space characteris-
tics of the turbulent process if the boundary and initia
conditions are preassigned. Because no additiona
restrictions are introduced into the suggested model, it
may find fairly wide application. For example, it may be
used to describe the structure of disturbances of low-
temperature plasma, where acoustic (ion-sound) waves
exist.

6. COMPARISON OF MODEL CALCULATION
RESULTS WITH EXPERIMENTAL DATA

In order to compare the developed model of turbu-
lence with experimental dataand to provide an example of
its application, we will turn to the results of studies of
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plasmachannel s devel oped by aBessel beam of laser radi-
ation. Because the experimental procedure and results
belong to a new line of investigations, we will provide
some explanations essential from the standpoint of
understanding subsequent description.

Bessel beams [4] are formed by conical focusing
lenses, i.e., axicons, which transform a plane wave
front to aconical one with the angley at the cone base.
Over the axicon focd length, L = Rly (2R is the incident
wave diameter), the wave beam is diffraction-compen-
sated, and the transverse distribution of the field in the
beam is constant and described by the zero-order Bessel
function Jy(kr siny), wherek = 217\ and A istheradiation
wavelength. Zeros of the Bessdl function divide the entire
beam into cylindrical parts. Their radii are defined by
the equalities kr; siny = 2.40, 5.52, 8.65, 11.79. With
the beam intensity exceeding the breakdown threshold,
a plasma channel is formed over the focal segment
length. In the channel, the plasma temperature reaches
50 eV; the electron density, 5 x 10'° cm3; theion sound
velocity (ZKT./m)Y?, 3.5 x 105 cm/s.

Two interference patterns of a channdl are given in
Fig. 6a They were obtained asaresult of joint research by
the Ingtitute of High Temperatures of the Russian Acad-
emy of Sciences (IVTAN) and University of Maryland,
USA, in the facility described in [5] in the laboratory
headed by H.M. Milchberg with the participation of
L.Ya Margolin and the present author. The experiments
were made under the following conditions. An axicon
with a base angle of 30° (y = 18°) transformed heating
radiation(A =1.06 um,E=0.6J,1=100ps, D=1cm)
to a Bessel beam with the diameter of the central part
2r, = 2.6 um and approximately 1.5 cm long. The state
of the plasma channel over a length of 512 um was
assessed by the interference patterns, whose enlarged
image was recorded by a CCD camera in the light of
probing laser radiation (0.53 um, 70 ps). The numerals
at the images of interference patterns indicate the num-
bers of pixels of the CCD camera, each sized 1.6 pm.
The interference patterns in Fig. 6a were obtained for
nitrous oxide at pressures of 200 torr (top frame) and
500 torr (bottom frame) 250 ps after the triggering of
the heating pulse. This medium was selected in view of
the low ionization potential and the low threshold of
optical breakdown, owing to which a stable plasma
channel could be formed. Against the background of
equally inclined interference bands, one can see the
contours of plasma channelswith diameters of 57.3 and
41.0 um, respectively.

The deviation of interference band from its initia
direction, or the band shift, points to the difference of
optical lengths during the beam propagation in undis-
turbed gas and in the plasma channel, which enables one
to use the band shift to assess the structure of disturbances
inthe channd. Asisdemonstrated by the interference pat-
terns, the general form of the band shift in the channel
depends on pressure. At 200 torr, the interference bands
assumethe form of meniscus, with their sequence remain-

No. 4 2001



590 PYATNITSKY
80 ?/g (b)
100 Ty 0.5
i N N AN )
120 1L L\/\/ v\'\l\( N \/"wv\/
-0.5F
140 £ AL TIALAN u'nu\H 11 Lok . . . . .
A 0 10 20 30 40 50
N
A
1.0
80 0.8
0.6
100 0.4
0.2
120 !9‘“'_ ."-.i {1581 1 1 | 1 1
\“ un"' LLERITEREATY LY 0 5 10 15 20 25
100 v+1
O/h (c) o/h (d) o/h (e)
1.0F 1.0 F 1.0F
0.5 A A j 05F /f\ 0.5 (\
I \I\’W \/\// v W \/\] V W W
—0.5 05+ —0.5F
_1‘0_ 1 _10 1 1 1 1 —
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
x/h x/h x/h
A
1.00
0.75
0.50
0.25
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
v+1 vV+1 vV+1

Fig. 6. Simulation of pulsations of parameters in a plasma channel along the x line, ry = 0.5: (a) interference patterns at pressures
of 200 torr (top) and 500 torr (bottom); (b) experiment, band shift and spectrum; (c—€) calculation of pulsations at (c) a = 0.063,

(d) 0.145, (€) 0.227.

ing regular. As the pressure increases, this regularity is
gradually disturbed and, at 500 torr, it almost disap-
pears. With a subsequent minor increase in pressure or
delay, theband traceislost, and it isimpossible to mea-
sure its shift. Therefore, the interference pattern,
recorded at 500 torr with adelay of 250 ps, was used to
compare disturbances in the channel with the predic-
tion data about pulsations.

The sdlected experimental procedure, defined by the
high requirements of space-time resolution, makes it pos-
sible to determine the spatial characterigtics of pulsations
only in the axia direction, aong the x axis. Indeed, the
time characterigticswould cdl for alarge number of inter-
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ference patterns, and a much higher density of interfer-
ence bandsisrequired for aradial distribution that isanal-
ogous to the function u(z). At the same time, 56 bands
comeinto the view of the interferometer in the longitudi-
nal direction, dong thexaxis. All in all, the shift & of inter-
ference bands does not exceed the order of interference h
(distance between the bands). We assume them to be
resolvable elements and obtain the above-mentioned pos-
shility of congtructing the curve of dependence of the
band shift on longitudinal coordinate &(x), analogous to
the distribution of velocity pulsations u(x). The interfer-
ence pattern enables one to find the distribution of
shifts 8(x) along lines parallel to the axis but arranged
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at different distances from the latter (an analog of the
channel height).

Given in Fig. 6b by way of example are the results
of measurements of the band shift on the half-radius
level, r/R = 1/2. The top graph represents the 3(N) cor-
relation, where N istheinterference band number equal
to x/h, and the bottom graph represents the respective
spatial spectrum. Here, the spectral density isexpressed
inrelative units (asaratio to its maximum), and the fre-
quency Vv is expressed in pulsations per single interfer-
ence band, i.e., per distance h between poles. In com-
paring these results with the graphsin Fig. 5, note that
the structure of disturbances in a plasma channel (with
allowance for limited resolution) has features in com-
mon with structures of pulsationsin a flat channel for
ordered or partially ordered sequences of initial distur-
bances. However, amore detailed comparison calls for
refinement of the model. Therefore, we will treat the
process of channel formation in more detail.

The source of energy during channel formation is
obvioudy provided by the field of Bessdl beam. As is
known [4], this field has a structure, Its properties in the
radia direction are associated with the form of the Bessdl
function, and in the longitudinal direction it is shaped up
under the effect of nonlinear processes and formsachan
of maxima divided by distance | = 2\/sin?y [4] (in our
case, | =21 um). We will assumefor the time being that
the breakdown of gas occurs in the volume of such a
maximum, and that this breakdown may be treated as a
microexplosion, with the channel formation being
described proceeding from the problem of a series of
point explosions. At theinitial stage, the wave propaga
tion may be regarded as self-similar. However, we are
interested in late stages, at which the conditions of self-
similarity are disturbed, and the wave approximates an
acoustic wave. A direct calculation of wave propaga-
tion is associated with errors due to inaccurate data
about the process of energy contribution during the
breakdown of gas [6]. In order to verify this assump-
tion, we will use the solution of the problem of point
explosion with counter-pressure [7], in which charac-
teristic scales of length and time appear. In particular,
the length scale is usually provided by the sphere
radius R = (¢/p)Y3, where € isthe energy of microexplo-
sion and p is theinitial gas pressure. We compare two
processes (Fig. 6a), which are registered under identi-
cal conditions at the same time (one extra parameter is
eliminated) and differ by the initial pressure alone, to
find the ratio of their diameters. This ratio is 1.40,
which amost coincides with the value of 1.38 calcu-
lated for the length scale R. Therefore, this assumption
is confirmed. However, the question remains as to the
site and volume of the microexplosion. The problem is
that it is almost impossible to obtain these data experi-
mentally. It turnsout, however, that the problem may be
solved using the suggested model.

Let us formulate the problem. Microsites of break-
down serve the function of primary disturbances. In the
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radial direction, they may arise inside of the main part
of the Bessel beam or within several of itsrings, whose
size on the scale of the channel radius (41.0 um at
500 torr) isa = 0.063, 0.145, 0.227, and so on. In the
direction aong the channel, the number of the rings
must not exceed the number of diffraction maxima,
which is 24 or 25 over alength of 512 um but may be
less. The problem reduces to determining these param-
eters. In order to solve the problem, we will, first of all,
set the parameters of the model in correspondence with
the experimental conditions. Note that the parameters
of the model, adapted in constructing the graphsin Fig. 5,
corresponded to the steady-state mode of the process
and described local pulsations of velocity in aflat chan-
nel with disturbances located on itswalls. In the exper-
iment, the process is characterized by a number of dis-
tinctions.

At the initial stage of the channel expansion, when
the first disturbances only form the radial dimensions
of the cylinder, reflected waves may beignored, and the
state of the structure may be characterized by the
parameter T = 1. Then, by virtue of the symmetry of the
propagation of pulsations, their geometry may be
described by two coordinates, namely, longitudinal
coordinate x and radial coordinate r. Further, the struc-
ture of pulsations in the model should be analyzed in
the same segment as in the experiment: x O [0, 25R],
where R is the channel radius. We express the coordi-
nate x (for convenience of comparison with the mea-
surement results) in terms of the distance h between
interference bands to derive {x;, x,} = {0, 55} for the
extent of this segment. As is known, the shift of inter-
ference bands produces a pattern of distribution of dis-
turbances, which is averaged along the chord of cylin-
drical channel, and the disturbances arise on its axis.
L et the averaging take place on a distance equal to half
the channel radius, i.e., impact parameter r, = R/2.
Then, the path y along the haf of the chord with the
coordinates x = (X, —X;)/2 and z= R/2 varies within zero
torgtand , where ¢ is the azimuth angle. The summa-
tion over the length y of the chord must include all dis-
turbances that arise at the points p, in theregion { x;, X}
at the moments p, of the time of the effect of a heating
pulse of duration T,

The treated properties of Bessel beam and plasma
channel enable oneto find the parameters of the model.
A version of these parameters for describing pul sations
in the plasma channel has the form

a=0063 T=1 k=25 T1,=04,

X, =56, y, =0, Yy, =rqetan(1/3),
ro,=05 m=11, B =1,

Q=1 gq=0 6=0.

In addition to the conditions specified previously, this
list includes the length of the part of the channel being
investigated {X;, X} and the number of disturbances k

X; = -1,
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with due regard for edge effects (T = 1), the resolvable
element (3, the form of function P(r/a), the number m of
elements of summation along the chord, the longitudinal
distribution of disturbances p,, the shift Q of the entire
sequence of disturbances (within the band), the range q
of random deviations of coordinatesin the case of partial
violation of periodicity of sequence p,, thetime distribu-
tion of disturbances p,, and a possible delay of break-
down 6. In the experiment, the pulsations expressed in
terms of the order of interference h are constructed as
functions of the number of the interference band (with
resolution of 3 = 1, single band). Dimensionless quan-
tities on the scale of the channel radius R are used inthe
calculations. The coefficient p was introduced for com-
parison of the model and measured data, and al graphsare
given astheratio of quantities to their maximum values.

Theresults of applying the model toinitial perturba-
tions of sizesa = 0.063, 0.145, and 0.227 (correspond-
ing to the central part of the Bessel function, to itsfirst
and second rings) are given in Figs. 6c—6e. The graphs
in Fig. 6¢c represent the structure of pulsations for
parameters corresponding to the foregoing version.
Here, the size of disturbances is limited to the central
part of the Bessel beam, a = 0.063, the periodic (along
the x axis) arrangement of disturbances and the random
law of their initiation within the duration of the heating
pulse are assumed, 1, = 0.4, and the function P(r/a) = 1
is selected.

The wave front of the Bessel beam travels through
the channel region being investigated in a time of
approximately T = 0.01 (less than 2 ps); therefore, the
delay 6 in this stage was not included. The model
dependencesin Fig. 6d are constructed for the case of
a = 0.145, when the diameter of initial pulsations is
limited by the second zero of the Bessel function. Here,
it was still assumed that the disturbances are arranged
periodically along the x axis and, in time, by the law of
chance in accordance with the previously described
procedure. For the subsequent ring of the Bessel func-
tion, where a = 0.227, the model graphs (with the same
assumptions) are givenin Fig. 6e.

The results of comparison of Figs. 6¢ and 6e (the
central part, a = 0.063, and the second ring, a = 0.227,
of the Bessel function) with the experimental data
(Fig. 6b) point to an inconsistency between the selected
parameters of the mode and the conditions of plasma
channel development. A much better agreement is exhib-
ited by the graphsin Fig. 6d for the first ring, a = 0.145.
The characteristics of the process, which provided for
the best agreement between the predicted and experimen-
tally obtained dependences, were determined by exhaus-
tion of parameters of the model. The number of distur-
bancesk, the distribution p, (including the shift Q of the
entire sequence and the range of scatter g), the duration
T, Of the period of initiation, and the form of the func-
tion P(r/a) were varied fora=0.145 .

The calculation results have demonstrated that the
structure of disturbances in the channels is described
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most accurately for the following values of the param-
etersbeing varied: k=25,1,=0.2,Q=0.17,g=0, and
P(r/a) = 1. According to these data, disturbances arise
within the second ring of the Bessel function with a
radius of 3 um during a period of time limited by the
ranget = 0.2, or approximately 50 ps. The disturbances
are arranged regularly with a period of 21 um, and the
scatter does not exceed several percent.

Therefore, the comparison of the results of model
cal culations with the measurement data reveals that the
model correctly reflects the processes observed in the
experiment and proves the validity of the model. At the
same time, the use of the model made it possible to
determine the singularities of formation of a plasma
channel in the field of Bessal beam, which cannot be
measured experimentally.

7. CONCLUSION

The developed concepts of the nature of turbulence
made it possible to formulate the principles of simulat-
ing turbulent process, which are valid at any stage of
development of this process and for different initial and
boundary conditions. Models have been developed for
a flat channel defined by two walls and for a square
tube; these models describe the distribution of pulsa-
tions of hydrodynamic parameters, as well as space-
time Fourier spectra of these pul sations.

A flat channel has simple boundary conditions.
Indeed, in achannel like this, the disturbance of param-
eters at the observation point may be represented as a
passage of spherical surface through this point and its
mirror images in the channel walls. The shift of such an
imaginary point is defined by only one of its coordi-
nates; on every reflection, this coordinate varies by the
double height of the channel, 2d. This simple rule may
be readily extended to the case of atube with flat faces.
In this case, however, the number of imaginary points
to beincluded increases. For example, in asquare tube,
the number of such points triples in every cycle of
reflections and the position of these points will be
defined by two coordinates with the period 2d (here, d
is a side of square) in each direction. The example of
the steady-state mode of turbulence in aflat channel is
used to demonstrate al important singularities of the
phenomenon and, at the same time, the potentialities of
the suggested concept. The parameters affecting the
structure of pulsations have been determined, aswell as
the associated effects.

Theresults of model calculations are compared with
the data of measurements of the structure of pulsations
of parametersin a plasma channel formed by a Bessel
beam of laser radiation. The results of comparison
reveal that the model reflects correctly the processes
observed in the experiment and prove the efficiency of
the model. The model made it possible both to describe
the mechanism of formation and the structure of distur-
bancesin achannel and to make anumber of inferences
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about the singularities of interaction between a Bessel
beam and matter, which cannot be measured experi-
mentally. For example, the size of the sites of break-
down of gas in the field of Bessel beam and their
arrangement along the channel axiswerefound, aswell
asaperiod of time of initiation that proved to be shorter
than the heating pulse duration. Note that we are deal-
ing with physical phenomena developing over micron
distances and picosecond times, the measurements of
which present certain difficulties.

The results obtained in this study indicate that the
concept of turbulence based on the superposition of
acoustic waves enables oneto cal culate the time and space
characterigtics of theturbulent processif the boundary and
initial conditions are preassigned. Because no additiona
restrictions are introduced into the suggested modd, it
may find fairly wide application.
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Abstract—A new class of strongly nonlinear steadily rotating vortices is found. The Hamiltonian contour
dynamics is proposed as a new approach for their study in some models of geophysical fluid dynamics and
plasma. Using the Euler description as a starting point, we present a systematic procedure to reduce the two-
dimensiona dynamics of constant-vorticity and constant-density patches to the Hamiltonian dynamics of their
contours for various parametrizations of the contour. The special Dirac procedure is used to eliminate the con-
straints arising in the Hamiltonian formulations with the Lagrangian parametrization of the contour. Numerical
estimations illustrating the physical significance of the results and the range of model parameters where these
results can be applicable are presented. Possible generdlizations of the approach based on the application of the
Hamiltonian contour dynamicsto nonplanar and 3D flows are discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The purpose of this paper is the anaytica and
numerical study of a new class of strongly nonlinear
steadily rotating vortices that can exist in two-dimen-
sional flowswith aninternal scale similar to the Rossby
deformation radius in quasigeostrophic models of geo-
physical fluid dynamics [1]. We show that these vorti-
ces can have a nontrivial multipetal structure and must
rotate with comparatively small velocities under the
assumption that their characteristic scales are suffi-
ciently large compared to the interna one.

We also present a new approach based on a Hamil-
tonian version of the contour dynamics. The fact that
equations of the contour dynamics are strongly nonlin-
ear and genuinely nonlocal gave impetus to the
progress and application mainly of numerical methods
for their solution [2]. The analytical versionsinvolving
small parameters used for deriving and solving the
approximate (local) equations of contour dynamics are
only applicablein fluid modelswith an exterior character-
istic scale (e.g., the depth of the unperturbed layer [3]) or
with an interna one (e.g., the Rossby radius [4]).
Because the solution of problems of this type essen-
tially depends on choosing dynamic variables parame-
trizing the boundary, it isdesirable to have asufficiently
flexible formulation of the equations of contour dynam-
ics such that these equations could be easily reformu-
lated from one phase space into ancther. In using
approximate methods, it is important to keep in mind
that all the information on the internal symmetry prop-

TThis paper was submitted by the authorsin English.

ertiesresponsible for the dynamical individuality of the
Hamiltonian system is contained in the Poisson brack-
ets. Thus, in order to prevent the loss of internal sym-
metry properties of the system, we must use the
approximations where one quantity—the Hamiltonian
of the system—is subjected to these approximations
but the original Poisson brackets remain intact. The
need to use asymptotic methods is the principal reason
for refusing traditional formulations, which are not
only incompatible with these requirements but also not
infrequently lead to cumbersome and recurrent calcula
tions.

This paper is organized as follows. In Section 2, we
construct local Poisson brackets for an incompressible
nonuniform fluid. Relying heavily on this result as a
fundamental principle, in Section 3 we derive a hierar-
chy of the reduced Poisson brackets specially adapted
to the Hamiltonian description of model s of the contour
dynamics. The contour parametrization playsadecisive
role. The occurrence of constraintsis the indispensable
feature of those Hamiltonian formulations that use the
Lagrangian coordinates for this purpose. To eliminate
the constraints, Dirac’s procedureis used. In Section 4,
we consider multipetal vortex structures in the Haseg-
awa-Mima model and the axial model of electronic
fluid as examples of models admitting a direct applica-
tion of the obtained results. We focus our attention on
the study of steadily rotating multipetal vortex struc-
tures without contour self-intersections. Some numeri-
cal estimates and concluding remarks are presented in
Section 5.
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MULTIPETAL VORTEX STRUCTURES

2. POISSON BRACKETS
FOR AN INCOMPRESSIBLE NONUNIFORM
EULERIAN FLUID

The equations of motion for a nonuniform incom-
pressible fluid are formulated in terms of the Eulerian
variables: the mass density p, the velocity v, and the
pressure p, as

1 1
oVv;+voov, =—=0p+=f, 21
t KOk o p o (2.1)
0P+ vidp = 0, (2.2)
9,v, = 0, (2.3)

wheref istheresult of exterior forcesthat do not violate
the conservativeness of the fluid. This meansthat equa-
tions of motion (2.1)—(2.3) preserve the total energy H
given by the sum of the kinetic energy T and the poten-
tial U of thefluid,

H=T+U,

W ) (2.4)
T = 350 U= U],

where U isin genera an arbitrary functional of the den-
sity p. For simplicity, we assume that the fluid is
unbounded.

We now find the evolution equation for the momen-
tum density =t = pv. Equations (2.1) and (2.2) imply

0.t + v (0, TG — 0T,

(2.5)
= -0, %)+pv D+—ap+f

Taking the curl of Eq. (2.5) and thereby eliminating the
gradient term involving the pressure, we obtain the
eguation

. 2
dtyi = eI mnam[enkl VY, _\/Eanp + fni|1 (26)
which describes the evolution law for the vorticity of
the momentum density y = 0 x &t under the action of
exterior conservative forces.

We now show that the equations of motion for the
incompressible inhomogeneous fluid reformulated in
terms of the momentum density vorticity are Hamiltonian

withthelocal Poisson brackets{y;, v, } and{p, v }.First,

we compute the Poisson bracket {p, y,}. Because the

model is expected to be Hamiltonian, we have every
reason to write

9,p ={p, H} = j[{pvk} {pp} }dx 2.7)
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Comparing Eg. (2.7) with continuity condition (2.2)
leads us to

f[te vk} VAt p'}g—g}dxkaakp = 0. (29

We next introduce a local term in the integrand using
the &-function and express the velocity components v,
in terms of the functional derivatives dT/dy, as

T 5T Oy
OF Mg
T I Sy, OTt

which can be directly obtained from Eq. (2.4). Upon
integrating by parts and after some algebrain Eqg. (2.8).
We obtain

lkia OT

)

j—[{p Vit —€™8,p0,8(x —x)] dx

oU
+ ,P}=adx' = 0.
Jie p}ép
Thisimplies that
{p.vi} = €M0,pand(x-x), {p,p} = 0. (210)
It remains to compute the Poisson bracket {V;, Vi }.
Using the same reasoning as for the density, we can

write the equation of motion for the vorticity of the
momentum density y as

oy = {vi, H}
= j[{vi,v'k}é—yk+{vi,p'}é—g}dxw{vi.U}.

With the bracket {p, y,} aready computed and

(2.11)

oT _ 12
5 27¢

Eqg. (2.11) can be rewritten as
1 6T 1
0, = I{ Yir Yi} =X
Y\
(2.12)
~d™a,2via e+ (v, U}

Comparing Egs. (2.12) and (2.6), we obtain

J'{v.,vk}

dX elmnam(enklvkyl)

+{y,, U} —€™a,,f, = 0.

If we introduce the local term €™4, (€™ v,y) into the
integral using the &-function and replace the velocity
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components v, in accordance with Eq. (2.9), after the
integration by parts we obtain

j—[{v.,vk}

+{y,, U} —€™a,f, = 0.

This immediately implies that the Poisson bracket for
the vector field y and the relation between the exterior
force and the potential energy are given by

{ynvid = €7e'"e™o,y,0,3,

{y,U} = €™M, f,

ePe"e""9 y,0,8(x —x')]dx

(2.13)

(2.14)

We note that the resulting force f can be found from Eq.
(2.14) up to agradient term. Thisfact is a consequence
of the invariance of the equations of motion (2.1)—(2.3)
under the transformation
p—pte fi —fi-00
where @ is an arbitrary function whose choice has no
influence on the physical implications of the theory.
Thus, it follows from Eqg. (2.14) that no structure other
than

- 9pdY

' 0x;0p
is admissible for the externa forces in the case where
U =U[p].

Collecting Egs. (2.10) and (2.13), wefind the complete
system of Poisson bracketsin the phase space (y, p),

{p,p} =0 (2.15)
{p.vi} = €M0,pd,3, (2.16)
{vivid = €”e""e"Md,y,0,,0. (2.17)

Therefore, the equations of motion for an incompress-
ible nonuniform fluid corresponding to these Poisson
brackets take the form

OH - [
= {y,H} = OxHy,0x 2|+ 2.18
o = {1.Hy = Oxfr,0x 3]+ E0eF 219)
_ _ OH[
2 = {p,H} = -0 x F;00P (2.19)

The results obtained in Egs. (2.15)—2.19) can be
considered as a generdization of the well-known Hamil-
tonian description of an incompressible homogeneous
fluid (see, for example, [5-10]) and are used in what fol-
lows as a fundamental principle in constructing a hier-
archy of reduced Poisson brackets for various models
of contour dynamics.
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3. HAMILTONIAN VERSION
OF THE CONTOUR DYNAMICS

We begin with atwo-dimensional plane flow where
the curl of the momentum is normal to the flow plane
and hence has only the component

y={0,0,y}, y=c¢“om, (3.2)

where gk isthe unit antisymmetric tensor (with €22 =1).
In this case, Poisson brackets (2.15)—<2.17) for an
incompressible inhomogeneous fluid can be reformu-
lated for the dynamical variablesy and p as

{p.p} =0, (32)
{p,y} = £99,pd,3(x—x"), (339
{v,y} = €9,ya,3(x—x). (34)

It is well known that two-dimensional dynamics of
patches of aconstant vorticity and density can be reduced
to the dynamics of their contours, ignoring the description
of the rest of the fluid. However, it isanontrivid fact that
the description of the contour evolution can take various
forms depending on the variables used; this deserves
attention from both practical and theoretical standpoints.

For simplicity, we consider a single domain G*
bounded by a closed fluid contour that separatesit from
the rest of the fluid in an exterior region G~. Denoting
the vorticity and the density inside and outside accord-
ingly as w*, p*, and w-, p~, we use the respective +
and — superscripts for labeling variables in the interna
domain G* and in the exterior region G=. Using this
notation, we can write the momentum and the mass
density as

T=pVve +pVve,
p=p0+p0,

where 8* and 0~ are the mutually complementary sub-
stantive functions

(3.5)

e+=%&ifxDG+ mufxme
O if xOG, ElexDG
such that
°+6 =1, 80 =0. (3.6)

We note that, by definition, a substantive 6-function
characterizing a fluid domain has the dynamical prop-
erty

30+ v,08 = 0,

implying that the corresponding domain moves
together with the fluid.

Inserting r-representation (3.5) in Eq. (3.1) yields
y=pwo +p w6 +p, (3.7)
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where the variable 3 can be expressed as

B=(p'vi-p Vi) d8". (38)
It iseasily seen that 3 has a &-functiona character and
thus describes a vortex sheet whose density is specified
by the jump of the tangential momentum across the
contour.

As the first step, we transform Poisson brackets
(3.2)—(3.4) from the phase space (y, p) into the space of
dynamical variables (3, 6%). In accordance with Egs.
(3.5—3.7), we have

p=p +(p —-p)o, (39

Y=pw+(Pw-—pw)e +p. (3.10)

Depending on the existence of a mass density jump
across the contour, insertion of Egs. (3.9) and (3.10)
into Egs. (3.2)«(3.4) leads to two types of Poisson
brackets.

3.1. Piecewise-Constant Vortex Models
without Mass Density Jumps

We first consider the degenerate case where the
mass density jump is absent, and therefore p* = p~ = p,.
In this case, the vortex sheet density is a constant of
motion and its presence modifies the Hamiltonian of
the model but has no influence on the Poisson bracket
{6*, 6"} that completely determines the contour evolu-
tion. Taking thisinto account, we can set 3 = 0 for sim-
plicity of computing. Inserting Eqg. (3.10) in Eq. (3.4),
we then obtain

{6°,8" = v'e™3,0%9,8(x —x"), (3.12)

wherev = pg(w* — w).

Which of the Hamiltonian versions of contour
dynamics follows from Eg. (3.11) depends on how we
parameterize the substantive 8*-function. The simplest
parameterization can be achieved with the Heaviside
function

01 if n=x,
Ep if n<x,,

where the variable n = n(xy, t) specifies the contour
shape. The corresponding version of the Hamiltonian
description defined by the Poisson bracket {n, n} can
be derived directly from Eq. (3.11) if we use the trivial
relation

6'n-x,) =

d .+
n-= Ixzd—xze (N —Xz)dx,
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that maps the dynamics in the phase space of y into the
phase space of n. After some algebra, we then find

2

' ' d + +i ]
{n,n} = Ixzxzm{ 6,6 }dx,dx,

0

It is noteworthy that the same Poisson bracket charac-
terizes the KdV-type equations. Hamiltonian formula-
tions based on thisversion of Poisson brackets are pref-
erable for the study of multilayer models[3].

A more general parametrization can be realized

when the contour C bounding the domain G* is given
in the parametric form

10 '
= -v l—xlé(xl—xl).

X = X(s 1),

where sis the contour arc length. The vector t = 0X /0s
tangential to the contour satisfies the normalization
condition

t* = 1. (3.12)

We note that the 8*-functions admit an analytical repre-
sentation through the contour integral,

9+—i_25_ds

T 2lz-7
C

(3.13)

wherez=x; +ix,and z = X, +1iX, arecomplex-valued
notations for the vectors X = (X;, X,) and X = (X,, X,),
and i is the imaginary unit. Representation (3.13) can
be obtained as a consequence of the Cauchy formula,
which is well known in the theory of functions of a
complex variable. Using another formula[11],

ol _

a—zE - T[5(X),
the z derivative of the 8*-function can be easily calcu-
lated from Eq. (3.13) as

00" _ i s .
37 - 2IZSES(x—x)ds.
C

With this result, we can find the usual and variational
derivatives of the 6*-function,

06" = [nd(x-R)ck, (3.14)
C
50" _ .
6_$(i = —ni6(X—X), (315)

wheren isthe unit normal vector related to the unit tan-
gent vector t asn, = 4t .

We now find the expression for Poisson bracket (3.11)
in the phase space of the dynamic variables X(s, t) . We
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first expresstheleft-hand side of Eq. (3.11) interms of the
bracket { X, X} ,

56" (x) 36" (x)

(6,87} = I I 5%(9 55(S) —— 2L %, X} dsds.
Using Eq. (3.15), we obtain
{6°,67}
(3.16)

= [[3x=R3( ~X)nnid %, X} dds.
C

On the other hand, using Eqg. (3.14), the right-hand
side of Eq. (3.11) can be presented as

v e 9,0%9,8(x — X

05(5 S)d de. (3.17)

=V J’J’é(x X)O(X' —X")

Comparing Egs. (3.16) and (3.17) yields the integra
equality

B(x —X)3(x' — X))
i

x[vnind %, X} —0.0(s—s)]dsds = 0,
whence it follows that

vnn{ %, X} = 0.5(s—s). (3.18)

Because the bracket is skew-symmetric, the general
solution of Eq. (3.18) for { X, X,} can be written as

v{%, &} = nndS(s—s)

' , (3.19)
—tnia(s, s) + titb(s, s),

+tna(s, s)

where a(s, s) and b(s, s) are some structure functions
and, in addition, b(s, s) must be antisymmetric,

b(s, s) = —b(s, ).

The choice of the structure functionsa(s, s) and b(s, )
cannot be arbitrary but must be matched with con-
straint (3.12), which means that t? is the integral of
motion for contour dynamics models with any Hamil-
tonian. Geometrically, Eq. (3.12) specifies a surfacein
the phase space X(s,t) such that all the trgjectories of
real motions lie on this surface. Similar integrals of
motion are known as Casimir invariants, or annihila-
tors, of Poisson brackets, i.e., {t?, X,) = 0. Thisimme-
diately implies

t04 %, X} = 0. (3.20)
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Inserting Eg. of (3.19) into this condition, we obtain

6

d:a(s, s) = —t, IS

My 5(s—s), (3.21)

ob(s, s) =t a—r;ia(s', 9). (3.22)

Solving Egs. (3.21) and (3.22) for the structure func-
tionsa(s, s) and b(s, s), wefind

as, s) = %[K'O(S’—S)],

bs, S) = %(K'2+K2)0(S'—S),

where
K = ndgt; = —t;0.n,
is the contour curvature and
o(s-9) = %sgn(s—s‘).

Thus, the Poisson bracket in the phase space X(s, t)
isexpressible as
(% = v nindS(s-) —tn 2 [K'o(s )]
(3.23)

Lee(k2+ KZ)O'(S—S')]

+tn 2 5

|a[

Now, the equations of contour dynamics can be written
in the Hamiltonian form as

Ko(s—9)] +

0%'_6_I-_|D

o _ e _
0% = {Xx,H} =v |:nia_s kég(kD

+ tiJ'K'o(s—s')%%%%%js'
C

(3.24)
Niag KIO(S s)tk—ds

+= tJ'(K +Kk%)o(s — s)tk—ds

We emphasize that congraint (3.12) must be used only
after dl the variational derivativesaretaken in Egs. (3.24).

In most fluid dynamics models commonly arising in
applications, the Hamiltonians are constructed such
that

SH _
tgg, = O
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Inthis case, Egs. (3.24) can be presented as
n %t | v 0 6I:|D

Recalling that in these models

oH
5%,

(3.25)

= nv,

where () isthe streamfunction given on the contour, we
obtain from Eq. (3.25) the equations of contour dynam-
icsin the traditional form

no.X = o

0s’

The equations of motion of this type were used in
[4] to derive the egquations of contour dynamics in the
weak-curvature approximation for the Hasegawa—
Mimamodel of plasma.

To eliminate the constraint from the Hamiltonian
formulation of the contour dynamics, weintroduce two
new variables$ and p as

t, = pcosd, t, = psing, (3.26)

where ¢(t, s) isthe inclination angle of the unit tangent
vector t to the axis x;. In terms of the new variables,
constraint (3.12) becomes

p=1

Following [12], we define the total Hamiltonian as
the superposition

Hp = H+\jl;

involving the original Hamiltonian H and alinear com-
bination of the constraints

= J’tids = 0,

with A; being some multipliersthat must be determined.
The constraints of this type are not a prerogative of
closed contours for which the identities

)¢
tds= [=—ds=0
_([ las

are quite evident. The same constraints are also valid
for open contours if we assume that the contours are
closed at infinity. In what follows, for simplicity, we
consider an open contour C running in the x;-direction
from —o to +co. We note that in the weak-curvature
approximation, the descriptions of models with closed
and open contours are locally equivalent. In this situa-
tion, the results obtained for open contours can be
extended to closed ones.

The multipliers A; can be determined from the
regquirement that the equation of motion for the variable
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¢ on the surface of the constraint p = 1 must be defined
by the Poisson bracket {¢, ¢'} as

0 = (6. Ho} = J'{¢ ¢}bds (3.27)

Using the formulas for the variational derivatives

? - p'a S(s—3),
6plv : (3.28)
5% pa O(s—9),
we find that
0.0 ={¢,Hp} = IaA.. &7, %} 6A.kd§d
(3.29)

_ _} a{x,,sxk} 9 B‘ 3Ho BHD%’S

Integration by parts brings Eq. (3.29) to the form

[

aq)Ilk

~ Al

5{ X., i %] 5HD

% %, (%, % 8Ho
0s0s ¢

OHpH™
il
Under the assumption that the perturbation on the con-
tour vanishes at infinity, and therefore, ¢ and its deriv-

atives tend to zero as s — +oo, the last term in Eq.
(3.30) can be written as

(3.30)

a{ XI' Xk} H_\ 6HD 6HD
k 6p' +oo
— 1 3IdH U
=V sss+ +A
¢ Djé—p » 1|j

In accordance with Egs. (3.28), we have

= &' %" ds'ds"
{¢ ¢} J‘af\u lll{XI!Xk}
(3.3)
0% K
- Mg
and it is therefore easy to conclude that Eq. (3.30) can be
rewritten in form (3.27) only if the last term in Eq. (3.30)

can be diminated. Thereisnoway of doing thisexcept by
setting
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Because the theory isindependent of A,, this multiplier
can be chosen arbitrarily without affecting the equation
of motion. For smplicity, we put A, = 0.

The explicit form of the Poisson bracket {$, ¢} can
be found by inserting Poisson bracket (3.23) into Eq.
(3.31) and by using the Frenet formulas

on = K = ¢
By adirect calculation, we obtain

{$,0} = —v‘l[aia(s—sv +20.0:($:5(s-9))

+o(s-$)ifes + 50+ 0. pis + 3057

Thus, we have obtained the Poisson bracket for one more
Hamiltonian version of contour dynamics. The corre-
sponding equation of motion (3.29) can now be written as

_ _ a8 SH,
0 = {0, Hp} = ~v {aﬁ b5y

ot = kn;, —Kt;, (3.32)

2.0

oH
—2ds

+ Do+ %cbi%j o(s-S)0igg? (3.33)

+¢sIG(S S)BPSSS [pHDd }

Daq)
Because the constraint p = 1 can now be imposed

directly on thetotal Hamiltonian Hy before evaluating the
Poisson bracket, Dirac’stotai Hamiltonian is given by

Sl

3.2. Piecewise-Uniform Models with Vorticity
and Density Jumps

When a piecewise-uniform model admits density
jumps, i.e., p* # p, the vortex sheet density

st = (P o —-p 0N, U = vi

is no longer a constant of mation. In this case, the evo-
lution of the contour is therefore defined in the phase
space of two variables 8* and 3, where in accordance
with Egs. (3.8) and (3.14), B isrelated to (L as

= J’ (s, t)d(x —X)ds.
C

I cosd ds} . (3.34)
p=1

X=X

B=(pvi—pviperan

Inserting Egs. (3.9) and (3.10) into Egs. (3.2)«(3.4)
gives the Poisson brackets
{6,8"} =0,
{67, B} = £9,8°0,8(x -x),

(3.35)
(3.36)
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{B. B} =ve“0,0°0,5(x —x)
+ %9, 3(x — X,
wherev = p*w* —pw-
The reformulation of contour dynamics from the
(6%, B) phase space into the (X, 1) phase space is car-

ried out in much the same way as in the previous sub-
section. Following this procedure, we obtain from Egs.

(3.35)«(3.37) that the Poisson brackets { X, %} and
{ %, W} satisfy

(3.37)

nin{ X, %} =0, (3.38)
NOs[ 't X, X} ] —n{ %, u'} = 0.8(s—s), (3.39)
00 [ W utt{ X, X} ] =0 uti{ X, W'} ] (3.40)

—Os[Hti{ 1, X} + {1 p} = voB(s—s).

Finding the Poisson brackets must be matched with
constraint (3.12). As noted above, this constraint means
that the quantity t? is a Casimir invariant and hence
commutes with the variables making up the basis of the
phase space. Therefore, condition (3.20) must be com-
plemented by one more condition

04 %, 0} = O. (3.41)

Solving (3.38)—(3.40) with conditions (3.20) and
(3.41), we obtain

{%, %} =0, (3.42)
{%X, 1} = —nod(s—s) +tid [K'a(s-s)], (343
{m u} =vod(s—s) (3.44)

+00[ (K'H+ Kp)a(s—$)].

To eliminate the constraints, by analogy with the previ-
ous subsection, we introduce two new variables ¢ and
p in accordance with Eqg. (3.26) under the constraint p =

1. The Poisson brackets on the (X;, 1) phase space can

be easily transformed into the (¢, 1) space. In fact, only
thefirst two brackets (3.42) and (3.43), where the dynam-

ical varidbles %; appear, must be reformulated. The

required formulas can be obtained using Eq. (3.28) and
take the form

(0,0 = nn 0%, %}, (3.45)

{¢,u} = n.a FRRISS (3.46)

Inserting the Poisson bracket (3.42) and (3.43) in Egs.
(3.45) and (3.46) and using Frenet formulas (3.32), we
obtain

{0,971 =0,
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{0, 1} = —0:5(s—S) + 00:[ $:0(s—S)],
{11} = vo8(s-s)
+00[(DeH + dsu)O(s—5)].

If we restrict our consideration to open contours
running from —o to +eo in the x;-direction, the corre-
sponding Dirac’s total Hamiltonian Hy can be deter-
mined in the same way as in the previous subsection,
with the same results as in Eq. (3.34). Thus, contour

dynamics corresponding to a given system of the Pois-
son brackets is described by the equations

a OHp

a(l)—{(l) HD} 26“

0 6HD

0°0H)
0 = ,H = - ——
tu {H D} asz 6¢

0 ~OHp |, 0 OHp
+ a_|:¢SI¢SG(S_S) 6ul dsi| + Va_s 6“

[

{ [ @+ dar)o(s—s) 2 as }

Q)lo)

4. N-PETAL STRUCTURES
IN TWO-DIMENSIONAL FLUID MODELS

4.1. Hamiltonian Formulation of the Problem

The simplest models that admit a direct application
of the abtained results are a quasigeostrophic barotro-
pic model, amodel of plasma based on the Hasegawa—
Mima equation, and an axial model of electronic vorti-
ces. These models are known [1, 13] to belong to vor-
ticity-like systems governed by the equation

0w+ (01)0,w—(0,)0;w = O, (4.1)
where the potentia vorticity w and the streamfunction
) are functions of the x; and x, coordinates in the hori-
zontal plane and are related by

o= -2

wherer isan internal scale treated as the Rossby defor-
mation radius and A = 8> + 05 is the two-dimensional
Laplace operator. For the Hasegawa—Mima model, the
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parameter r istreated asthe Larmor ion radiusr, given
by

EmiTecinu2

r, = ) : (4.2

O0Bye™ O

where m istheion mass, T, isthe electron temperature,

eisthe electron charge, cisthe velocity of light, and B,

is the induction of an ambient uniform magnetic field.

The electric potential ® and the electron number den-

sity n, can be expressed in terms of the streamfunction
as

[Bo

B
® = 2y, ne = noexpp W (43)

where n, is the unperturbed plasma density.

In the axial model of electronic fluid with constant
density, the parameter r must be chosen as the skin
layer width rg given by

ljUZ
D41'meZD ’

where m, is the electron mass and n is the constant
plasma density. In this model, the magnetic field B is
related to the streamfunction by

Itiseasy to verify that the vorticity-like model s gov-
erned by equation of motion (4.1) are Hamiltonian,
namely, characterized by the Poisson bracket of the
same type as Eq. (3.4),

{0 w} = 90,00, 3(X —X),
and have the Hamiltonian
_ 1
H = —ZIL]Joodx,

which can be rewritten solely in terms of the potential
vorticity as

u— 1‘ U 1 ]
H = —ZJ’oooo G(x, x")dxdx'.

Green'sfunction G isfound as the solution of the prob-

lem
gs-r—lzgs = 3(x—X)

and has the explicit form

Ox =x|0

G(x,x") = T[KOD —D

where K, denotes the modified Bessel function of zero-
order.
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As dready proved, the reduction of the description of
vorticity-like systems in Eq. (4.1) to contour dynamics
becomes possibleif the entire fluid can be decomposed
into domains such that each of them moves with the
fluid and has a constant potential vorticity. For the
unbounded fluid with asingle vortex patch isembedded
in a background shear flow, the distribution of the
potential vorticity w can be presented as

w=wo+wo, 0°+0 =1,
where w*, 8* and wr, 6~ have the same meaning as before.
The corresponding Hamiltonian is then given by

2
—_V_ ot ! ! W —-w
H = 2J’99 G(x, x)dxdx', v =w -w.

After some manipulations, this can be expressed in
terms of contour-dynamical variables as

H = ULZ)Z [6°6[8(x ~x) - AG] dxax

69+' O

ae dx + J’Gae x'H

_ ()’

(4.4

— (rV)2§-9+dX +J’G(§<, fc)tit;dsds'EL
2 ! O

We note that the first integral

| = J’e+dx = —%{f(inids

has a simple geometric meaning of the vortex patch
areaand isa Casimir invariant (belongsto the annihila-
tor of Poisson bracket (3.23)). Therefore, it does not
affect the equation of motion and can be omitted in defin-
ing the Hamiltonian. Thus, we obtain from Eq. (4.4)

(”’) IKOEX —X 1Gtasas.  @5)

The following analysis is carried out in the weak
curvature approximation where the characteristic cur-
vature radius R of the contour is much larger than the
interna scale (deformation radius) r, which dlows the
introduction of asmall parameter € =r/R. Inthiscase, itis
possibleto develop the local representation for the Hamil-
tonian in Eq. (4.5),

H = J'h[s; p, d]ds, (4.6)
C
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where the Hamiltonian density h is expressible as a
power seriesin the small parameter €,

_ (rv)°
h =T

8
xHmwp+2 n—¢§ 3;3¢s(ps¢s po<s) + O

Inserting Eq. (4.6) in Eq. (3.34) and neglecting the
fourth-order termsin €, wefind Dirac’sHamiltonian for
contour dynamics in vorticity-like systems under con-
sideration,

2
_rv 32,2
= TIB:OS(D + g cl)s%js. 4.7
C
It isinteresting to note that because H ~ O(g?), the main
contribution to Dirac’'s Hamiltonian is given solely by

the constraint functional. In the leading-order approxi-
mation, therefore, Eq. (4.7) becomes

3.2
Hp = % J’ cosdds. (4.8)

In accordance with Eq. (3.33), we now obtain the con-
tour dynamics equation

1
sss T éq)i% (49)

09 = {¢,Hp} =

4.2. Seadily Rotating Localized Vortex Structures

We consider solutions of Eq. (4.9) that manifest
themselves as stationary vortex structures rotating with
aconstant angular velocity wy,. These solutions havethe
form

P(t,9) = (4.10)

where wy, > 0 for the clockwise rotation and wy, < O for
the counterclockwise rotation. Inserting Eg. (4.10) in
Eq. (4.9) and choosing the spatial scale R as

3

B(s—ct) —uyt,

3T (4.11)
we introduce the dimensionless variables
~_s=ct -~ _3¢
ST R KT
and obtain the equation
%Zg = —%K +CK +K + ¢y, (4.12)

where ¢, is an integration constant and ¢, = c(2w,R) ™
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According to the theory of dliptic functions [14],
Eq. (4.12) has two sets of periodic solutions expressed
in terms of dliptic functions,

a-b
1-aF(AsS|m)’

where F isone of the Jacobi eliptic functions (either sn
or dn) and mis the parameter of these functions, with
the vertical line symbolizing the m-dependence. We
note that depending on the type of the Jacobi dliptic
functions, the independent basic parameters a and m
parametrize all the others parameters a, b, A, and con-
sequently, ¢; and c,.

To derive the equations describing the boundary shape
of vortex structures rotating in the horizonta z plane, we
must integrate the equation

0z _ .
5 = exp(id),

= b+

A

(4.13)

(4.14)

where z = (X, +iX%;,)/Ris the dimensionless complex
coordinate of the contour. It can be directly verified that
if K satisfies Eq. (4.12), the solution of Eq. (4.14) is
given by

) = 2[‘3—2 + i%l-%zg}exp(iqs).

4.3. Classification of Solutions

In this subsection, we focus our attention on the
classification of those solutions of Eq. (4.12) that cor-
respond to multipetal vortex structures without self-
intersection of the contour. For this purpose, we per-
form both analytical and numerical investigation of the
problem in Egs. (4.13) and (4.15), restricting our study
to the case where F = sn. As becomes apparent after a
close examination, the solutions of the second type
with F = dn do not contain vortices without contour
self-intersections.

With F = sn, the periodic solution for the contour
curvature (4.13) takes the form

a-b
1—asn(As|m)’

(4.15)

K=h+ (4.16)
If the independent parameters o and m are considered

as basic, al the other parameters a, b, and A can be
expressed as

a(1l+m-2a)

_2—113
[(1-m)’a(m-a*)]™

a =

o’ +m(a’=2)
al(L-m)’a(m-a?

b=2"

]]JS’

\ =y Ala’-m(@a-a®)
[(1-m)a(m—a*)]™”
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The parameters ¢; and ¢, are expressed in terms of a
andbas

—ba__1

172 a+b’

We emphasize that the conditions of the contour conti-
nuity (smoothness) and reality of solutions to EQq.

(4.12) impose the following restrictions on the parame-
tersa and m:

c, = —%(b+ a+ba?).

0O<a<l, m<o? (4.17)

It follows from Eqg. (4.15) that in order to find the
boundary shape we must know the slope angle $(3) in

addition to the variable K . This can be computed by
integrating (4.16) along the contour line,

§@&) = [R(9cs = b§+a)\;bﬂ(a2; am(AE|m)|m)
) (4.18)

—2Im{ In[ecn(A8|m)Ja® —m+idn(A3|m)J1-a’]},

where M(u; 9|m) is the incomplete eliptic integra of
the third kind and the Jacobi amplitude am(ujm) is
defined by

am(ujm)= arcsin(sn(u|m)).

As mentioned above, our study is restricted to vor-
tex structures with a finite area bounded by a closed
contour without self-intersections. It is worth noting
that the elimination of self-intersecting contours corre-
sponding to rather exotic vortex formations from the
consideration is motivated by the weak-curvature
approximation used in deriving Eg. (4.9), but is not at
all dictated by intrinsic reasons of fluid dynamics. In
other words, the exact equations of motion for the two-
dimensional ideal fluid admit the existence of solutions
with such a contour topology.

Obviously, considering such contours requires a
generalization of model assumptionsintheinitial state-
ment of the problem. Because the vortex region
becomes multiply connected when the contour admits
self-intersections, the corresponding piecewise-con-
stant vorticity distribution can be rather specific. If the
topology of the contour self-intersection is known, the
vorticity distribution can be easily reproduced because
the vorticity jJump must remain invariant when going
around the contour in one of the directions (see Fig. 1).
In essence, the question of whether to include solutions
of this type into the framework of our scheme is the
guestion of whether aglobal behavior of solutionsis sen-
sitiveto alocal violation of the weak-curvature approxi-
mation. The answer can be found by comparing numeri-
cal and analytical solutions. If these solutions are insen-
sitive, they have every ground for being included and can
be improved using various numerical procedures similar
to the “ contour surgery” proposedin [2].
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Fig. 1. The geometry of athree-petal vortex region of piece-
wise-constant vorticity Wlth aself-intersecti ng contour. The
vorticity distribution is w" in petals and 2w" in the core, so
the jump in vorticity is the invariant w* in tracing the con-
tour.

—37 1 1 1 1 1 1 1 -

-3 -2 -1 0 1 2 3 4

Fig. 2. Three-petal vortex structure. The point S, = K(m)/A
liesin the petal tip and S_ = 3K(m)/A lies between the pet-

als. sl isthe self-contacting point of the contour.

Because the contour is closed and its curvature is a
periodic function of S, the boundary shape of the vorti-
ces must have an n-petal structure. An example of this
structure is given in Fig. 2. From this figure and the
analysis of Eq. (4.16), it is clear that the contour curva-
ture of the n-petal vortex structure, being an oscillatory
function with the period 4K(m)/A, has extrema at the
points

K(m) ~

5. = (4j -3\,

s = (4j-1)—~~

j =12 ..,n

where K(m) is the complete dliptic integral of the first
kind. At these points, the contour curvature takes the
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extreme values
K. = b+i1 2 _ 2_]ng(0(+2) a(1+20()
1-
[(@-mam-a™ o
K= b+ =P _ o-wsm(a —2) —a(l-2a )
1+a

[(1-m)’a(m-a)]”

The subscript notation ¥ means that f. = f(S;). The

relative position of the turning points S. and S,
depends on the parameters a and m. To establish which
of them is at the tip of the petal and which is in the
trough between the petals, it is necessary to compute
the distances between these points and the symmetry
center (the coordinate origin). For this purpose, we
introduce p and 6 as the polar coordinates,

25 = pe®.
In accordance with Egs. (4.15) and (4.12), the variables
p and 6 are then given by

p° = 4(c% +c,+K), (4.20)

0K /S 0. x
0 = arctanD +¢.
0, — k228 ¢

(4.21)

Expressing ¢; and ¢, in terms of a and m and using Eq.
(4.19), we find from Eq. (4.20) that

[m(1+2a) —a’(a +2)]°

i - 22/3
g a(m-a®)[(1-m)2am-a™]™
o = o [m(1-2a)—a’*(a-2)]°

a(m—a*)[(1-m)%a(m-a*]”

The relative position of the turning points depends on
whether 1 isgreater or less than the ratio

P =y 8a(a’—m)(m—a”)
g
Cp, [m(1+20)—a’(a +2)]°
It is easy to see that the inequality a* < m< a? entails
the inequality p_ = p,,; therefore, in thisinterval of the
parameters, the tops of the petalslie at thepoints s . In

the event that m< a* (and consequently, thereverseine-
quality p_ < p, holds), the tips of the petals lie at the

points s, .

It isamply clear that in the region of the permissible
parameters (4.17), not all solutions (4.16) correspond
to vortex structureswith closed contours. The condition
under which periodic solution (4.16) corresponds to a
closed contour can be formulated as

AB =0_-6, = —-.
n

This condition has a simple geometrical interpretation
shown in Fig. 2. From thisfigure, it is easy to see that

(4.22)
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0 0.1 0.2 0.3 0.4 0.5
a

Fig. 3. Thefamily of n-petal vortex regimesin the planeam.
The characteristic curves assign the dependence my,(a) for
n=-1,-2,...,-9. Thelimit points where the corresponding
vortex structure has the contour with a self-contact are
marked as .

20 is merely the angular distance between neighboring
petals. To evduate its value, it suffices to note that the posi-
tion vector and the tangent one are mutudly orthogond at
theturning points. It thusfollows from Eq. (4.21) that

- 5.+
0. = ¢.+ ZAJ_,,
where the sign function A, is defined as
A, = sgn[m(1+2a) —a’(a £ 2)]. (4.23)
The expresson for ¢. can be easly found from
Eqg. (4.18) as
. _4j-27F1
§. = ="
(4.24)
x [bK(m) + (a—b)M(a’|m)] -,

7

=

[y

(=)

-1 0 1 -2 2
27I T T I7 27I T ]
© d
0 // 0
—2*| f | L] -2 1 1 L]
) 0 2 -2 0 2

Fig. 4. Shapes of boundaries for double-petal vortex struc-
tures: a = 0.050 (&), 0.200 (b), 0.300 (c), 0.353 (d).
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where
M(um _—||B,I;_”m|:|
( | ) 2‘ ]

isthe complete éliptic integral of the third kind.

Equations (4.23) and (4.24) dlow us to rewrite
Eq. (4.22) as

bK(m) + (a—b)M(a?|m) = g)\%—AD

5 (42)

where
A = 3(8-4.) = 3{sgn[m(1-2a) -a*(a ~2)]

—sgn[m(1 + 20) —a’(a +2)]}.

The analysis shows that Eq. (4.25) has solutions in the
form of n-petal structuresin the region

30-—2
1-2a’

where A =0 for n< 2. InFig. 3, thisregion is marked
by a shaded background. The solutions are presented
by the characteristic curves that determine the depen-
dence m,(a) for every n. For a fixed n, the multipetal
structure can therefore be described by a single param-
eter a. The vortex shapes for n = 2, 3 depending on o
are shown in Figs. 4 and 5. For every n-petal regime,
the characteristic curve has alimit point where the cor-
responding vortex structure has a self-contacting con-
tour. Solutions without intersections of contours are on
theleft of the point and those with self-intersectionsare
on theright.

A prerequisite to the formation of a self-contact ina
contour can be formulated on the basis of geometrical

Ry,
END RN

-2 0 2 -2 0
2

ms<a

J]

2*I (C)I | p 2*I (dl) |
o— 0% 7
—of s =

2 o "2 0 2

Fig. 5. Shapes of boundaries for three-petal vortex struc-
tures: a = 0.050 (&), 0.200 (b), 0.300 (c), 0.371 (d).

No. 4 2001



606 GONCHAROV, PAVLOV
Values of parameters characterizing the limiting regimes
n a m K_ K. p- P+
-2 0.352823 —0.245778 —0.456761 1.79081 0 2.12018
-3 0.371469 —0.580662 —0.820287 1.95339 0.193635 3.3365
-4 0.348897 —0.844407 -1.01623 2.03108 0.42446 3.51701
-5 0.323504 —1.0545 —1.15832 2.08942 0.635998 3.65998
-6 0.300157 —1.22456 —1.27263 2.13903 0.83048 3.78634
-10 0.231285 —1.66566 —1.60011 2.29932 1.49709 4.22362
considerations following from Fig. 2. At the tangency  Using the relation
point 80 the angles © and ¢ are related by
- o~ ~ _ni 0O
8(E) = $(). % =S~ AO T
Equation (4.21) now implies the condition
RZ(EE) = 2c,. which follows from Egs. (4.24) and (4.25) with j = 1,

One more condition is obtained by taking into account
that in tracing the contour from the point S, to the tan-

gency point sU, the tangent vector is rotated through
172, and therefore

(T)(éE) _(T>+ = T2,

Fig. 6. Surface plot of the streamfunction field for the limit-
ing three-petal vortex structure.

Y(r)/P(0)
1.6 .

"9=60°
12

0.8

0.4

Fig. 7. Theradia profile of the streamfunction for the limit-
ing three-petal vortex structure given in Fig. 6. The profiles
correspond to the directions 6 = 60°, 48°, 36°.
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we obtain the conditions

(s = g%—A—%
RZ(SE) - 2—2/3

. 20 +m) + a’(1 + m(m—10)) + 2m(m + 1)
[(1-m)’a(m-a’]* '

Together with EqQ. (4.25), these conditions fix dl the
parameters of the limiting regimes presented in the table.
In the quasigeostrophic barotropic modd, the physical
interpretation of Y is the pressure deviation, and in the
plasma mode based on the Hasegawa—Mima equation,
this quantity characterizes the electric potential. To
illustrate the spatial and temporal character of distribu-
tions of Y, we assume for simplicity that the back-
ground vorticity isabsent, i.e., w = 0. Using the results
obtained in Section 4.1, we can then establish the for-
mula

Px) = o' I 8"G(x, X)dX' = w'R°

1 -1
X |m-£|:m—8 K

where

(4.26)

j-dget-2,

‘Ue O 2-4

z=(x,+ixy)/R and € = |r/R|.

Thedistribution Y(x)/(0) associated with the presence
of the three-petal vortex of limiting typeiscalculatedin
accordance with Eq. (4.26) and is shown in Fig. 6. The
radial profiles corresponding to this vortex are pre-
sented in Fig. 7.
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5. CONCLUDING REMARKS

To gain greater insight into the physical significance
of the results and decide in which range of parameters
these results can be applicable, we make some esti-
mates for the Hasegawa—Mima model and for the axial
model of electronic vortices, in parallel. We note that
for these models, the values of the r, and rq parameters
cover a broad range. According to factual evidence
[15], the Larmor ion radius r, measures 10° cm for the
interplanetary gas and 102 cm for the solar corona.
Depending on the type of plasma, the skin layer width
rgvaries between 5 x 10° and 5 x 103 cm.

To illustrate the results obtained in more detail, we
consider the Hasegawa—Mima model of plasma with
the parameters T, = 10* K, ny = 10** cm3, B, = 10% G,
and m = 1.67 x 10 g, which are typical for a low-
pressure gas discharge. In accordance with Eq. (4.2),
we find r, = 102 cm. Because the theory of limiting
vortex structures has only two control parameters (the
angular rotation velocity wy, and the vorticity jump v =
W' —w), weput wy=10s?, w=0,and W =10°stin
order to calculate some characteristics of athree-petal drift
vortex. In this case, Eq. (4.11) givesR = 10r, = 10 cm,
and therefore, each petal of the vortex structure has the
radial length p,R= 3.3 x 101 cm. Next, upon numerical
integration with € = r /R = 1071, we obtain from Eq.
(4.26) that Y(0) = 5.07R?w*. Thus, we can estimate the
magnitudes of the electric potential ® and the electron
number density n, at the center of the three-petal drift
vortex. It follows from Eq. (4.3) that ®(0) = 4.4 x 10?V
and n,(0) = 1.5 x 10'® cm3,

We note, in closing, some possible generalizations
of the Hamiltonian versions of 2D contour dynamics.
The technique that we have described can aso be used
for 3D vortex objects, for example, in quasigeostrophic
baroclinic models of geophysical fluid dynamics. The
Hamiltonian versions of 2D contour dynamics can be
successfully applied to the study of nonplanar models
in al the cases where the velocity field is invariant
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along the vorticity field direction. Typical examplesare
flows on the sphere and also flows with the rotational
and helical spatial symmetry of the vortex field.

Thiswork was partly supported by the Russian Foun-
dation for Basic Research (grant no. 00-05-64019-a).
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Abstract—The distribution function Wy(np) of the number n, of particles in the condensate of an ideal Bose
gas confined by atrapisfound. It isshown that at the temperature below the critical temperature T, thisfunction

has a Gaussian shape and depends on the trap potential via two parameters only. The center of this function
shifts to larger values of ng with decreasing temperature and its width tends to zero, which corresponds to the

suppression of fluctuations. In the narrow vicinity of the critical temperature [T — T;| < T/J/N, where N is the
number of particles in the trap, the distribution function changes and at the temperature above the critical one
it takes the usual form Wy(ng) = [1 — exp(p)]exp(ung), where i is the chemical potentia in temperature units.
Inthe limit N — oo, this change occurs at ajump. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

After the first experimental observations of Bose
condensation of atoms in amagnetic parabolic trap [1],
many theoretical papers devoted to the study of this
new state of matter have appeared. However, the funda
mental question of the distribution function Wy(n) of
the number of particlesin the condensate, i.e., the num-
ber n, of particles in the ground state with the energy
E,, has not been discussed in fact so far.

In this paper, the distribution function Wy(n,) of the
number of particlesin the ground state of an ideal Bose
gas confined by a trap is found and its temperature
dependence is investigated. It is shown that below the
critical temperature, the distribution Wy(n,) exhibits
qualitative changes, which are accompanied by the sup-
pression of fluctuations and the change in the gas heat
capacity. When the number N of particles confined by
the trap is large (formally, at N —» o), these changes
occur at ajump, i.e., acquire the character predicted by
Landau for phase transitions in crystals[2].

The distribution Wy(n,) is obtained by summing
Wo(ng) = z

ng+n,+...=N=-ng

and the Gibbs distribution

W(ng, Ny, ...) (D)

1
W(ng, Ny, ...) = éexp(—sono —gn;—...), 2
whereg, = E//T, E, isthe energy of the kth state of apar-
ticleinthetrap, T isthetemperaturein the energy units,
and the total energy of thegasE = Egny + Ejny + ... is
specified by the number n, of particlesin the stateswith

the energy E,. The summation in Eq. (1) is performed
over al positive values of n;, n,, ... (except ny), which

satisfy the condition
n+n,+... = N—n,. (1a)

The statistical sum S (normalization) can be found by
summation of

S= Z W(ny, ny, ...) (3)

Ng+n +..=N

over al positive values of n (including ng), which sat-
isfy the condition

Ng+n,+... = N. (@]

Usually, instead of fulfillment the exact condition
(4), an additional parameter 1 (the chemical potential in
the temperature units) is introduced into the Gibbs dis-
tribution,

W(ng, Ny, ...) = S*

X eXp(M(Ng+ Ny +...) —€oNp — &Ny —....),

©®)

and the statistical sum is found by summation over al
ne = 0. Asaresult, we obtain

S= |:|<1—exp(u—sk))‘1,

(63)
W(n,, Ny, ...) = |_|Wk(nk),
k

Wi(ny) = (1—exp(L—gc))exp((L—g)ny).
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In particular, when the energy is measured relative to
the ground-state energy, the distribution of the number
of particlesin the ground state has the form

Wo(ng) = (1-¢€)e™. (6b)

Expressions (6a) and (6b) directly yield the average
value of the number n, of particlesin the state with the
energy E, (hereafter denoted by atilde)

A= (€7 -1) 7)

After that, the chemical potential p is defined by the
condition

S i = N. 8)
k

Therefore, the distribution (6a) satisfies not the exact
condition (4) but condition (8), which is fulfilled only
for average values.

Meanwhile, the distribution (6a) leads to a contra-
diction. Namely, (6a) yields the well-known relations

0= 2nc +0,, [ANDO= i +n,. )

In the limit T — O, al the particles should be in the
ground state, so that n, = N, and we have from (9)

Mni0= N°+N,

which is meaningless. The authors of paper [3] (see
also references therein) have suggested solving this
problem still using distribution (6) but calculating the
root-mean-square fluctuation of the total number of
excited particles

N, = an.

k#0
Then, the exact condition (4) yields

Ani0= [AN20= [N;O- [N, O. (10)

Because for T — 0, we certainly have [N;O— 0

and [N, 3 —~ 0, and the contradiction related to (9)

is removed. However, the result (10) does not corre-

spond to the value of Dln(z,D obtained directly from (6).

This again emphasizes the fact that the correct distribu-
tion differs from the distribution (6a), which does not
satisfy condition (4).

In this paper, it is shown that the distribution (6a) is
valid at temperatures above the condensation tempera-
ture (critical temperature). The correct treatment of
condition (4) results in the fact that below the conden-
sation temperature (T < T,) the distribution function of
excited particles approximately retains the form (6a),
whereas the distribution function (6b) of the number of
particles in the condensate drastically changes and
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takes a Gaussian shape. In this case, in particular, the
contradictions related to (9) are removed. The statisti-
cal dependence of quantities n, determined by the con-
dition (4) becomes essential at temperatures below the
critical temperature, resulting in a change in the func-
tion Wy(ny) and suppression of fluctuations.

Note that, as it follows from the general consider-
ations and is demonstrated in section 4 using the exact
solution for a gas trapped in a parabolic potential, at a
large number of particles N the distribution function
Wg(n,) changes and the mean value n, vanishes very
rapidly (i.e., in arather narrow region near certain tem-
perature T.) but continuously (inthe case of n, , without
a jump in the derivative as well). Only in the limiting
case of N — oo, thischange at T = T, has the character
of ajump and n, vanishes at this point with a nonzero
derivative. Only in this case, the value T, has an exact
sense and can be defined as the temperature above
which the population of the ground state is equa to
zero. For finite N values, there is no possibility of such
definition and T, isacharacteristic temperaturein anar-
row vicinity of which n, ischanging from very largeto
very small values.

In this paper, the Bose gas confined by atrap, i.e., a
system with a discrete spectrum, was considered. The
condensation of such agasis of the most interest from
the practical point of view because this phenomenon
has been experimentally observed. Generally speaking,
the case of afree Bose gasis aso very interesting. For
some reasons, which will be discussed below, this case
requires a special approach.

2. DEGENERATE BOSE GAS

Condition (1a) can be satisfied automatically by rep-
resenting (1) in the form®

(o)
1
Wy(ng) = éeXp(—sono) z exp(—g,n; —&,n,—...)

(11)
1
X ﬁ_f

where the sign (n) at the sum means that the summa-
tion over ny isexcluded. The integration contour in (11)
is acircle with a center at the point z= 0. Only when
condition (1a) is satisfied, the integrand in (11) has a
simple pole and the integral is equal to 2ri. In other
cases, the integral is zero, which allows one to perform
summation independently (before integrating) over al
values 0 < n, < o intheright-hand side of (11), exclud-
ing, of course, the summation over n,. However, the
convergence of all the sums appearing, including the
statistical sum S should be provided. One can easily

Ny, Ny, ...

Z(—N+n0—1)+nl+n2+

dz,

L A similar method of the sum representation has been used in [4, 5].
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see that this will be satisfied if the radius of the circle
||, which can be conveniently written in the form

2 = ¢,
will be limited by the condition

H € < 1

It is convenient to arrange the values of €, in the order
€, <&, <¢&,... (theground state is aways nondegenerate).
Then, we can set ¢, = 0 (that means €., > 0) and
require the fulfillment of the condition p < 0.

The summation in (11) gives

1 1 —N + 0_1 Z
Wolho) = 25 " %0z,
G2 _ —£y~1
e’ =[1(1-ze™) ", (12)
[l
6@ = -y In(1-2")=y Z L

k%0 kz0p= 1

The function G(2) has no singularitiesinside the cir-
clewiththeradius|z| = é* <1 (u < 0), so that the equal-
ity Wp(ng) = O isautomatically satisfied for n, > N. For
Ny = N, we obtain from Eq. (12)

leo _ 1.

WO(nO = N) = S S’

and for n =N -1, we have

Wo(no = N-1) = [dz G(Z)}

ROLE

k#0
At avery low temperature (in fact, it is necessary that

the value of € should be exponentially small, i.e.,
€, > 1, whichiscertainly satisfied for T — O for asys
tem with the discrete spectrum), the probability Wy(ng =
N—1) is small compared to the prabability Wy(n; = N)
and rapidly decreases with further decreasing n, asone
can easily seefrom Eq. (12). Therefore, we may restrict
ourselves to two quantities

Wo(no=N) = 1-S e e
k#0 (13)

Wo(np=N-1) = § e

whichyield

M= N-Y e mno= Se™,

k#0 k#0

sothat (An;0—~0at T —~ 0.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

ALEKSEEV

It is interesting to compare the distribution (13),
which takes the form

Wo(no) = 0y, n

a T — 0, with the distribution (6b). For T — 0, it
follows from (8) that

" —1 = 1/N
or
p=-1/N,
and the distribution (6b) takes the form
—Ng/N

Wo(no) = N ;
i.e, it has a maximum a n, = 0, monotonically
decreases with increasing n,, and is honzero in a broad
range of values of n,, decreasing only by afactor of eat
the limiting value ny = N.

Similarly to (12), thejoint distribution can be easily
found:

1 -gn 1
S 2

g1 - ze ) dz.

Wo,iz0(No, ) =

xfz_
At T — 0, only three quantities are substantial:

W iz0(No = N, n; = 0) S

(14

N-1+n,

WoizoMo=N-=-1,n=1) = ste®,
Woizo(ng=N-1,n,=0) = st z e
k#0,i
Finally, we obtain that the distribution

Wi o(ny) = Z Wo,i2o(No, M)

of the number of particlesin excited states described by

the expressions

W, o(n=0) = 1-¢e ",
|¢0( i ) . (15)

Wi.oni=1) =€

This result virtually coincides with Eq. (6a).

At higher temperatures, when €, < 1 and the total
number of particlesin excited statesis comparable with
the number of particlesin the ground state, it isimpos-
sible to obtain the result by such a simple method. In
this case, however, one can use the circumstance that
when the number of particles confined by atrapislarge
(this number in rea experiments is between 10° and
109), the condition €; < 1 is satisfied at temperatures
that are much lower than the condensation temperature,
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which alows oneto study virtually completely theinte-
grasin expressions (12) and (14).

3. CONDENSATION OF BOSE GAS IN A TRAP
Having made in Eq. (12) the change of variables
L+ iX

z=¢
we obtain

wum)=§ﬂjamkuN—mw+wax

- (16)
F(x) = —z In(1-—exp[n +ix—¢g.).
k#0
We omitted in Eq. (16) the factor
(2m) e

that is independent of n,, which affects only the nor-
malization defined by therelation (16) itself. Below, we
will follow thisrule.

Then, by expanding the function F(x) in a series at
the point x = 0 retaining the three first terms, we find

F(X) = F(0) +iXA—X°D,
FO = -5 In1-¢"™, A=5n,
2 éﬁ (17)

k#0

le—,~ =~
D = 5% (A+ ),
k#0
where the quantities n, are defined by expression (7)
(recdl that £, = 0). The first term in the expansion enters
into the normdization after the substitution into Eq. (16)
and can be omitted. The values of A and D depend on
the parameter |, which satisfies the condition p < 0,
being arbitrary in other respects. Let us choose this
parameter by requiring the fulfillment of the condition

N =n,+A=n,+Y n. (18)

Condition (18) coincides with (8), and the parameter
acquires the meaning of the chemical potentia, the

quantities n, not being now, however, the average num-
bers of particles. Note that p and n, are related by the
expression

= —In(1+ 1/n,),
which alows us to treat Eq. (18) as the equation for p
or Ny, depending on our choice.

Consider the temperature dependences of quantities
AandD.AtT — 0,weobtaing, .o — o, sothat A=0,
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D =0, ny =N, and p = -1/N with a high accuracy. As
temperature increases, the values of €., decrease,
while the values of Aand D increase, and when T > T,
where T« is a characteristic temperature that depends
on the type of the trap potential and the number N of
confined particles, the situation certainly occurs when
A becomes of the order of N and thevalueof Ny =N—-A
till remainslarge (which meansthat thetemperature T« is

much lower than the critical temperature, T« < T), while

the chemical potentiad equals p = -1/n,; i.e,, it is very
small. It isimportant that in this casethe value of D also
becomes of the order of N, i.e., very large. As the tem-
perature further increases, the values of €, ., decrease
and condition (18) can be satisfied only at large values
of |u|; i.e., the value of n, becomes small (the conden-
sate fraction is absent). In this case, A = N with a high
accuracy and D = N/2.

This means that, beginning from temperatures T > T,
which are much lower than the condensation tempera-
ture, the real part of the function F(x) has a maximum
at x = 0 and rapidly decreases in the vicinity of this
point. Therefore, we may substitute the expansion (17)
into Eq. (16) and perform integration using infinite limits.
Asaresult, we find that the distribution of particlesin the
condensate is described by the expression

(no_ﬁo)z}
4D ’
= —In(1+ 1/n,),

which has a universal shape because it depends on the
trap potential only via parameters n, and D. All the

average values are obtained from this distribution by
differentiating the statistical sum

Wo(ng) = S_leXp[Uno - (19)

. (No=io)’
= _ oo/
S= Zoexp[uno D }
with respect to the explicit parameter .
The digtribution (19) has qualitatively different forms
for large and small values of N, . In a broad temperature

range bel ow the condensation temperature, when the con-
ditions

no>D, N-f,>1 (20)

are satisfied, the distribution function (19) is exponen-
tially small at two itsendsat ny = 0 and ny = N [the sec-
ond inequality is equivalent to the condition D > 1 and
simultaneously provides the validity of Eq. (19)].
Therefore, we may calculate the statistical sum by pass-
ing from summation to integration with infinite limits,
which gives

S = 2. /mMDexp(phy, + u°D), W = —1/h,.  (21)
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Distribution function (19) of the number of particlesin the
condensate of a Bose gas confined by a trap for different

temperatures T/T, = 1.01 (1) and 0.99 (2). The values of N,
are calculated from expression (29), D = (UV2yN(T/TY)® =
6850(T/TC)3. The number of particlesin thetrap N = 10000.

In this case, the distribution is described by a Gaussian
with the width An, = /4D slightly shifted by —D/2f,
with respect to n, due to the factor

png —No/Ng

e = e

Thevalue of n, increaseswith decreasing temperature,
while D decreases, and the distribution (19) narrows

down,
An, = J4D = [2(N-Py),

and its center shiftsto larger values of n,. All the aver-
age values can be easily calculated:

The first and second moments are close to fi, and A,
respectively:

~ 2D
D’]ODZ no%;—’#_zg
No
(22)
-, 20
mhi0= e -22+ 420
O ng nyO

The relative root-mean-square fluctuation
J NS, = VF?D
0

is small in accordance with Eq. (20) and decreases
with decreasing temperature, i.e., with the increasing
number of particles in the condensate. Eventualy, at
very large temperatures, the condition of validity of dis-
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tribution (19) (the second condition in Eq. (20)) is no
longer fulfilled and the distribution takes the form of

Eq. (13). As the temperature increases, the n, vaueis
decreasing, the first condition in (20) fails to be valid,
and the lower boundary n, = 0 of the distribution becomes
moresignificant. Findly, a i, < /D (athough the con-
dition N, > 1 can till be fulfilled, however, one can
assume that the condensate fraction is already absent),

the factor € becomes dominant in expression (19).
By performing summation, we obtain Eq. (6b). The pas-
sage from the Gaussian shape of the digtribution (19) to
the shape (6b) occurs at the values

1<ny</D=.N/2,

which, for large N, corresponds to a narrow vicinity of
the critical point. The qualitative changein the shape of
distribution function (19) in the vicinity of the critical
point is shown in the figure.

Thejoint distribution W, ;  o(no, N;) can be obtained
similarly. By using Eq. (14), making again the change
of variables

1 +iX

Z=¢€

and performing integration, we find
1
Wo,izo(No, Ny) = éeXp[U(no +n;) —gn]

0 (n +ny— r~1o)2

: (23)

(N +ny+ 1—50)2} 0

4D O

—exp(u—si)exp[
[

The distribution of the number of particles in excited
states can be readily obtained from (23):

N
Wi, o) = z Wo,i 2 o(Ng, ;).
ng=0
When the number of particlesin the condensateislarge
and the condition (20) is satisfied, one may replace

summation by integration with infinite limits to obtain
the distribution

Wi o) = (1—e e, (24)

which coincides with (6a) for u = 0. Note that, with
accuracy to the first-order termsin g = —1/n,, the sum
of averages corresponding to (24) is

hO= S A —2D/R,.
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Finally, we obtain from (22)
z h,0d= N.
i

When 1, < ./D (however, the condition R, > 1 can

betill valid), the factor €™ playsthe dominant rolein
summation over n, in (23), as in (19), and we obtain
the distribution (6a).

The average of products can be also obtained from the

distribution (23). In particular, when the conditions (20)
are satisfied, we obtain

Chohy 200 = [heIh,O- h,(f — .

In the conclusion of this section, we emphasize the
following important circumstance. Upon condensation
of the gas, the number n, of particles becomes of the
order of N and the chemical potentia of the order of
1N, i.e, very small. For thisreason, it isimportant that
the value of D would remain finite for L — 0. In the
case of a system with the discrete spectrum, this
requirement is certainly fulfilled because the largest of
the terms ﬁﬁz , in D remains finite for p — 0 (quan-
tities N, cannot produce a singularity because they are
related by expression (18)]. In the case of afree gas (a
system with a continuous spectrum), the situation is
different. Inthiscase, D —» o at p — 0; i.e., the sec-
ond derivative of the function F(x) has a singularity at
the point x = 0, and one can show that the term next to
alinear one in the expansion of F(x) is proportional to
[x[¥2. This, of course, drastically changes the situation
and requires a special treatment.

4. PARABOLIC POTENTIAL

In this case, which is of most practical importance,
we can cal cul ate exactly the quantities n, and D, which

determine the distribution (19). We will denote the
energy levels of particles by introducing the vector
index k = (k, k, k), k =0, 1, ... and represent the
energy of athree-dimensiona oscillator (in tempera-
ture units) in the form

h
8k = -T—(k [h))!

where o = (w,, W, w,) and w, , , arethe frequencies of
aparabolictrap. Then, thesumover al k Z0in Eq. (12)
can be calculated exactly and we have

00

G@ = Y p 2B p).

p=1

M a-e™

i=xY,z

(25)

. p) = { ‘1}—1, B =52
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By making the change of variables
L+ iX

Z=¢€

in EqQ. (12), we obtain again Eq. (16). The function F(x)
now has the form

Fo) = 5 e "B, p),
p=1

and the coefficients Aand D in Eqg. (17) take the form

A=Y ¢®B.p). D=3 peaB ). (26)
p=1 p=1

The relation (18) also retains its meaning because, as
one can see from Egs. (25) and (26), the relation

A = %%ggz:eu = z(eﬁk—u_l)—l = an

k#0 k#0

is naturally fulfilled.

For small B (we will see below that this condition
becomes valid at temperatures that are much lower than
the critical temperature), the main contribution to sums

Aand D comesfrom small values of p, and we can write?

1 - -3 _up _ 1 - —2 _up

— E pe", D=— E p e,
3 3

B p:]_ ZB p:]_

)113.

A =

o
B= T W = (W,

It isconvenient to rewrite these relations by introducing
the critical temperature T.:

A = Nt°ZH3) S p e,
p=1

_ 12,1 - 2 up
D = SNEC(Q) Y pe, (27)
p=1
t=TIT, T.="@haN",

where {(s) is the Riemann zeta function. It is conve-
nient to represent the relation (18), which determines

or Ny, intheform

R/N+EFQ) =1, (W) = 73 S p e (29

p=1

2To simplify the representation, we neglect here the next-order

term B, which gives a correction to the critical temperature
related to afinite number of particlesin the trap and can be easily
taken into account if necessary [6, 7].
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For small 4, we can use in equation (28) the expansion
of the function f(u) with accuracy to the first-order
termsin

f(w) = 1+, vy =4(/{(3) =137

andthevalue n, =-1/u. Asaresult, the quadratic equa-
tion
1 3, — 1 _+3
_NIJ +yt'n = 1-t

is obtained [7], which yields the temperature depen-
dences of the chemical potential and N, :

b= -t -t + sy,
2yt (29)

Ay = g[l—t3+ J(1 =13 + 4yEIN].

For N — o, it followsfrom theserelations that at tem-
peratures below the critical temperature (T < T,), when
t< 1, we have

H=0, n/N=1-t’ T<T, (30)

while at temperatures above the critical temperature,
but with the conditiont—1 < 1 still being valid, wefind
from (29)

u = -1 - yt
v Pt (31)
T>T, t-1<1.

One can see from (29) that for finite values of N, the
dependence (30) is realized provided two equivalent
conditions

np> JN, 1-t°> 1//N (32)

are fulfilled, which coincide in fact with the first of the
conditions (20). Condition (32) becomes invalid in a
narrow vicinity of the critical temperature, and one
should use amore exact relation (29), which allows one
to describe correctly a smooth decrease in n, and an
increase in L with increasing temperature up to the val-
uesT < T, + AT (where AT < T), when i, isstill large
and p is small [7]. The values of n, and p obtained in
thisway should be used in the distribution (19).

Note now that the parameter 3 = w/T can be rewrit-
ten by expressing T in terms of the critical temperature

B = PN

which shows that the condition < 1 provesto be ful-
filled at large N beginning from temperatures that are
much lower than the critical temperature but satisfy, how-
ever, the condition T > T«, where Tx = TNY® < T..

Therefore, expansion (27) can be used only for rather
high temperatures T > T (it should berecalled that this
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expansonisvalidfor B < 1). Because, however, Tx < T,
this expansion is valid beginning from temperatures that
are much lower than the critical temperature, when 1y, as

one can see from (30), is dready very close to N; i.e,
amost al the gasisaready in the condensate. In thiscase,

we can calculate n, and W in the temperature region

T, <T<ST.+AT, T, = TN <T, (33
using (29). Intheregion (33), the condition u < 1lisful-
filled, so that we can set i1 = 0 in the calculation of D.
Asaresult, wefind

_ 1.3
D—2ytN,

and, as one can see from Eq. (33), the conditionD > 1
is satisfied. As temperature further increases, D
increases and approaches its limiting value D = N/2 at
high temperatures. Because of this, beginning from
temperatures that satisfy the condition T > T« but are

still much lower than the critical temperature, we can
use the asymptotic estimate of the integral (16), which
leads to the distribution (19).

It should be emphasized that the region (33) where
guantities (29) can be calculated contains not only tem-
peratures below the critical temperature but also the
vicinity of the critical temperature where the distribu-
tion (19) changes from Gaussian to the form (6b). As
temperature approaches the critical temperature, the
conditions (32) and, correspondingly, (20) are no
longer fulfilled in the region,

|1-t < 1/J/N,

and distribution (19) is not aready Gaussian but still
differsfrom (6b). However, in the region

UJIN<t-1<1,
when expressions (29) are still valid, the condition

N, < /D isalready fulfilled, and the distribution (19)

takes the form (6b). Thus, as temperature increases in
the narrow vicinity of the critical point

|1-t <1/JN,

the distribution (19) qualitatively changes from Gauss-
ian to the form (6b) (see figure). For large values of N,
this change in the shape of the distribution function of
the number of particles in the condensate occurs in a
very narrow vicinity of the critical temperature, i.e.,
amost at ajump.

5. JUMP OF THE HEAT CAPACITY

The change in distribution (19) from a Gaussian
shape, which it has in the region (20), (32), where the
pronounced condensate fraction exigts, to the form (6b),
when the condensate fraction is virtually absent, is
accompanied by an abrupt change in the heat capacity,
which occurs at ajump at N — . In the case of the
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parabolic potential, the jump magnitude can be calcu-
lated exactly.

When N — oo, the average values [h; . [ 1coincide
with n; ., . Let usrepresent g, in the form

& = BRK), Q

Then, we obtain for the energy E of the gas

= w/w.

B K)
E=T) &= T2 ep(Blo B0 - -1

k#0

=Ty z B(e k) exp(—(B(w [K) — ) p)

kz0p=1
9 0e 1
=TBE—6—BE 2e70 [ (-ew-pap)”
p=1 i=xVyz

At avery low temperature T < Awy, this gives

E = ﬁz w, exp(-hw/T);

i.e., the gas energy is exponentially small. At higher
temperatures T > T, using the smallness of the param-

eter 3, wefind

E = 3N z‘l(s) p e
pzl
Asaresult, at T > T«, the heat capacity has the form

dE -1 4P
C—dT—12NtZ (3)Zp

(34)
+3Nt38 %‘1(3) Z p e

When N —» oo, the cheml cal potential W in this
expressioniszeroat T< T.. For T= T, it is determined
by the equality

P = 7R Y pe’ = 1, (35)
p=1

which follows from Eq. (28). Therefore, for T < T, we
obtain for the heat capacity the expression

C = 127 (3)7(4)Nt* = 10.8Nt°.
T, wefind from Eqg. (35)

ol _ -3/ly=-2.19.

ot
Finally, thejump in the heat capacity is
= —9[¢(3)/{(2)]N =—6.57N.

ForT=
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At large negative values of u (large t), the first term
dominates in sum (35), and we obtain

e = Z)t°, t(op/at) = -3.

Asaresult, we obtain at high temperature from Eq. (34)
the value of heat capacity C = 3N, which coincides with
the heat capacity of an ideal gas confined by a trap,
which isdescribed by the classical distribution function

_ Dm D3 0 mw’r’ +mv’g
W(r,v,t) = N exp >T 0
wherem, r, and v are the particle mass, coordinate, and
velocity, respectively. One can see from the exact
expansion of the function f(u) [see formula (A.1)] that
the function (dp/ot) has an infinite negative slope at the
point t = 1. Therefore, the heat capacity has the same
slope after the jump and, as aresult, it rapidly acquires
the asymptotic value C = 3N.

6. CONCLUSIONS

(1) The genera integral representation (12) of the
distribution function Wy(n,) of the number of particles
in the condensate of an ideal Bose gas confined by a
trap (asystem with the discrete spectrum) allows oneto
study the variation of this function over the entire tem-
perature range. At a very low temperature (E,/T < 1),
the distribution function has the form (13); i.e, it is
close to unity at ny = N and rapidly (exponentialy)
decreases at ny < N, taking the form

Wy(ng) = &

at T = 0. Beginning from sufficiently high temperatures
T > T« [the temperature T« depends on the form of the
trap potential and the number N of particles, however,
for large N it is certainly much lower than the critical
temperature (T« << T,)], the distribution function Wy(ng)
takesthe universal form (19): only the parameter n, and
D appearing in this function depend on the trap poten-
tial. In abroad temperature range below the critica tem-
perature, T > Tx, T, — T > TJ./N, distribution (19) is
described by a Gaussian whose width and, hence, root-
mean-square fluctuations tend to zero with decreasing
temperature. Asthe temperature approachesthe critical
temperature, the width of distribution (19) increases,
i.e., fluctuations are enhanced. In anarrow vicinity [T —
T.|< TJ/ /N of the critical temperature, the distribution
function (19) changes completely and takes the form
(6b) at T— T, > TJ./N. In the limit N —» oo, this
change occurs at ajump.

(2) In the case of atrap with a parabolic potential,
the parameters n, and D, which determine the univer-
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sal distribution (19), can be calculated exactly. In the
entire temperature region of the condensate existence,

22
D=2x@ ™V

and n, is calculated from expression (29).

(3) As follows from calculations [7], for typical
experimental parameters of the trap, gas can be treated
asideal up tothevaluesN < 10* Thisvalue of N is suf-
ficiently high, so that the features of the condensation
process considered above can be manifested. However,
unlike the case of a free gas (confined by the vessel
walls only), the gas confined by the trap is certainly no
longer ideal when the number of particlesis sufficiently
large. The study of the influence of the interaction
between gas particles on the features of the change in the
distribution function Wy(ny) during gas condensation is
one of the most important problems of the theory.

APPENDIX
Consider the equality

J’(exz—l) 'dz = ZJ’e P20z

p=11

from which it follows that

—l —px
X 2 ’

—1 _—Xxp _ Xz -1 7 -1
Zpe = xf(e”-1) dz (e°-1) dz
PR I
Thelast integral can be rewritten in the form

1

fie~ 1) -z'+ 2" dz

I(ez ~1)"dz

X

—Inx— I[(ez— 1)~z Ydz
0

Z -1
+([(e"-1) dz
I
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1 o
z -1 —1 z -1
+([[(e"=1) —z7]dz+ [(e"—1) dz.
'([ '!-
A sum of two last integralsis zero, and we find

fW=0@ Y pe™
p=1

2

U

_ Z-l(s) Idxl Idxz Idxg[ —- Xﬂ
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Abstract—It is shown that, under the conditions when the mean free path of electronsin afully ionized plasma
is small compared with the London plasma length, the thermal mechanism of inverse bremsstrahlung absorp-
tion and electronic conductivity has a stabilizing action on filamentation instability of high-power electromag-
netic radiation, in contrast to the known case of comparatively low-intensity radiation. Thisnew nonlinear prop-
erty of aplasmais shown to be determined by a decrease in the effectiveness of plasmaheating in a heating
pumping field with increasing the intensity of radiation if electron oscillations have above-thermal rates.

© 2001 MAIK “ Nauka/Interperiodica” .

1. Thefilamentation of electromagnetic radiation[1, 2]
inafully ionized plasma corresponds to the model of a
strongly collisional plasma when the characteristic fil-
ament size is much larger than the mean free path of
electrons. The physical nature of filamentation instabil-
ity under these conditions corresponds to the thermal
mechanism and is caused by two competing thermal
processes. One of these is heating of plasma electrons
as a result of inverse bremsstrahlung absorption. The
second mechanism is related to the removal of hest,
which was acquired by the plasma through absorption
of radiation, from a filament. In view of this, tempera-
ture perturbation in a filament is directly proportional
to the increase in heat caused by filamentation distur-
bance of the electromagnetic field and inversely pro-
portional to the square of the wave vector of the fila-
ment and electronic heat conductivity characterizing
heat transfer from the filament. Under stationary fila-
mentation conditions, when the pressure of a plasmais
amost constant, temperature increase caused by an
increase of the electromagnetic field of filamentation
perturbation decreases the electron density, which is
similar to the ponderomotive force influence. This
force virtudly fully determines the development of short-
wave perturbations characteristic of collisionless plasma
conditions. Note that both ponderomotive and thermal
mechanisms usualy favor the appearance of filamenta-
tion. The therma filamentation mechanism plays the
determining rolein long-wave perturbationswhenthe size
of afilament islarger than the mean free path of €ectrons.
In contrast, the ponderomotive mechanism prevails in
short-wave filamentation perturbations.

We show in this communication that such a gener-
ally accepted picture of radiation filamentation in a

fully ionized plasmais not observed in acomparatively
strong pumping field. Under strongly collisional condi-
tions, the therma mechanism based on inverse
bremsstrahlung absorption and electronic heat conductiv-
ity not only does not favor radiation filamentation but
plays the role of the stabilizing factor, the possibility of
overcoming which under the action of ponderomotive
radiation determines the filamentation threshold for a
strongly collisiona plasma in a high-power electromag-
netic radiation field. Thisis a new nonlinear effect cor-
responding to the conditions of the action of high-
power radiation on aplasma[3].

2. Consider a plasma in a strong high-frequency
field
1 :
€ = Z[E(r, t)exp{—i(w,t —kor
SLE(r, t)exp{—i (oot —Kor )} 2.1)

+ELr, tyexp{i(wet —kor )} 1.

The transfer in such a plasma will be described by the
equations for momenta from [4]. As the E(r, t) ampli-
tude in Eq. (2.1) dowly varies during high-frequency
pumping field period 217w, we can, according to [4],
write for the electronic component

a—ne+div(neue) =0, (2.2)
ot
[@Ue eaD 4] a(nekBTe)
mne o+ i gy
2.3)
0 62|E|2 ei
Ng 5 R,
or 4m,005
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A ue‘?;r—e + gTedivue
ot or 3
(2.9)

dlvqe - Qei-

2
3 k 3n.kg
Here, e isthe charge of the electron, m, is the mass of
the electron, and kg is the Boltzmann constant.

Note that the last term in the left-hand side of
Eq. (2.3), which isthe Miller force now often called the
ponderomotive force, is to a substantial extent deter-
mined by the magnetic part of the Lorentz force. Con-
sider the action of astrong pumping field on the plasma
when the rate of nonrelativistic electron oscillationsin
the electric field,

e
u E(t) = 2

—Elexp{i (oot —kor)} },

far exceeds the speed of electron thermal motions.
According to [4], the electron-ion friction force in this
limit is given by

—i(wet —k
i(wyo of)} 25)

(R®)k = menovg(uf —uj), (2.6)
ame’e’n A
e (2.7)

1 Ugi(t) Ug (1) 0
x4 —\§ —3 ==
E{u&(t) ! 3< u(t) >D

Accordingly, the heat released in collisions between
electronsand ionsis

Qei = [QglH %Rei(ue— Ui)-

Here, the heat absorbed by electrons as a result of the
inverse bremsstrahlung effect is given by

(2.8)

ane’e’nin A/ 1
0= g <UE(t)>. (29
Angle brackets denote averaging over the period of the
high-frequency pumping field.

Lastly, the density of the electron heat flow is given
by the equation [4]

6Rei 0

Ek’)Te B6R*
5ane%

Gy (2.10)

Qe = XU3—

Here, for the electron heat conductivity, we have

X = CnkgVilee, (2.11)

whereV; = ,/kgT./m, isthethermal speed of electrons.

The C constant equals (75/32) in the Sonin—Laguerre
one-polynomia approximation of the Hilbert—-Chap-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

SILIN

man—Enskog method and (375/128) in the approxima-
tion of two polynomials, and

l.. = mVi/Jme*nA = Vilvg, (2.12)
isthe mean free path of athermal electron between col-
lisions with the other electrons. Note that, in a strong
pumping field, the electron-ion collision frequency
substantially decreases compared with the frequency
given by the usual formula

Vg(Vy) = 4./2me’e’nAI3maVs,

whereas a high-frequency field has no effect on the
electron—electron collision frequency (2.12), because
the difference of the speeds of colliding electrons only
depends on their thermal motion in the dipole approxi-
mation.

The system of equations for the ionic component is
simpler:

at dlv(nu) =0, (2.13)
0, 0keT) _ o
o+ G20 A0 - e g
aTi iaTi 2 . i _
H +U W + éTidIVU = 0. (215)

In both (2.4) and (2.15), a weak (on the order of the
mass ratio between the electron and the ion) effect of
energy transfer from electronsto ionsin their collisions
isignored. In astrong pumping field, this effect is addi-
tionally suppressed [5]. A comparatively weak effect of
ionic hesat transfer isalso ignored in (2.15).

3. Radiation filamentation will be described in terms of
the stationary statement of the problem, which considers
strengthening of filamentation perturbations in space in
the direction of pumping field propagation in a spatialy
uniform plasma. Accordingly, consider ground state per-
turbation

u®=3dur),
n =N+ 8n(r), u'=3u'(r),
Qp0= [Qs[H 3Qx(r).

In addition to Egs. (2.2)«(2.4) and (2.13)—«2.15), we
will take into account the condition of €lectrical neu-
trality

I’.‘e = neO + 6ne(r)’ Te = TeO + 6Te(r)’

Ti=Tio+0T(r),
3.1)

en,+en, =0, edn,+edn = 0. 3.2
We restrict our consideration to the simplest case, when
the electron temperature far exceeds the temperature of
ions. More exactly, we assume that

eTeollelTio > 1. (3.3
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ON AN ANOMALY OF THE THERMAL FILAMENTATION MECHANISM

This is a natural assumption for a plasma heated by
high-frequency radiation. Equations (2.2)—(2.4) and
(2.13)(2.15) combined with the electrical neutrality
conditions then yield

0 oT 2 2. 0
5N, = Ny~ —COEL (3.4)

|:| Teo 4mekBTeOw0D
—XAdT, = [BQ,s0 (3.5

where
ane’e’nin A/ - 1

[Q,x[= L1 e . 3.6
QIB me < UE(t)> ( )

Taking into account electromagnetic field filamentation

perturbation, we can write

iKor

E(r,t) = Ege
0 =5 (3.7)

r

+[8E,(r)e"" + 8E_(r)e " "1e"",

The wave vector is normal to the direction of pumping
field propagation, (kk) = 0. Equation (3.7) allows usto
write

S|E|? = E[EX(r)e™™ + 8E*(r)e*']

+EX[SE*(r)e*" + 3E*(r)e '], 59
o) =
x [[2|E|* — E5exp{ —2i (wot —kor )}
CE exp{ 2 (wot —kor)}
x (Eo[SE*(r)e™ " + 8E*(r)e*"] (3.9)

+ES[OE.(r)€* +3E_(r)e ']
—Eo[3E.(r)e*" + 3E_(r)e ™ Texp{ —2i (wyt —Kor )}

—EX[3E*(r)e ™" + 3E* (r)e™ " exp{ 2i (wyt — ko )})T
In conformity with Egs. (3.5)—(3.9), we have

3T, = BQ,slxk, (3.10)
2 2
5n, = no2Qet _eBEL H (5

O szTeO 4mekBTeo°°(2JD

In writing the equations describing spatial amplifica-
tion of electromagnetic field perturbations, we will take
into account that, according to Egs. (3.8)—(3.11),

dn, = dn,e*" +dn.e’ . (3.12)
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Here, dn_=dnj . According to Eq. (3.12), reduced per-
turbation field equations have the form

2
0 W 0N, _
Rikos-—KEBE. ) = LTO‘)EO, (3.13)

where wy, = 4T’ n/m, is the electronic Langmuir
frequency.

4. To most clearly describe the special features of a
strongly collisiona plasma, which is responsible for
parametric instability of thermal nonlinearity, in ahigh-
power radiation field, consider the smplest case of cir-
cular pumping polarization. A genera treatment of
éliptical polarization is given in Appendix 1, and the
particular case of linear polarization important for prac-
tical applications requires a special consideration, see
Appendix 2.

We assume that
k0 = (01 O’ kO)’ %O = (%Ox’ c6Oya O)
In addition,

E

2
;E/_ (4.1
oy = «—/% cos(wyt — kyZ).
Accordingly, Eq, = iEy/+/2, Ep, = Ey/+/2, and
E . . ikr
3|E|* = =2([-idE,, + OE,, + i3E*, + 3EX ] €
2 ’ )
+[I8E*, + SE*,—iOE_, + 3E_]e™"),
E 2
<6 L > = _MeOIE] 43)
Ug(t) «/é|e| Eo
These equations alow Eq. (3.6) to be rewritten as
2
5Qis = —SV(E)IIEL, (4.4)
4m,wy,
where
8./2ne’e’n, N\ 6./TV3
V(E) = T = ——Va(VD). (45
meVe Ve
Here,
Ve = g Ey/myw,. (4.6)

Ve istheamplitude of therate of electron oscillationsin
the pumping field. In the strong field limit, the condi-
tion

Ve >V, (4.7)
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is satisfied. According to (2.9), the absorbed heat in a
circularly polarized field is given by

2
€Nyl
8 = —25V(E)Es, (48)
me(*)o
which alows (4.4) to be written in the form
©)
[(6Q,0= 4 EQ'ZB De3|E|2. (4.9)
0(Ey)

Using these equations makes it possible to rewrite (3.11)
as

6 2
one - 3ELp, (4.10)
neO 4E0
where
2 2 (0)
po Vel VedVOVE)D_ Ve 2[Qis0
ViE CKVZ O V2 Tk
(4.11)
2 0
_ Vi, _4 0MED

V2 T KXOIN(ED)

Next, Egs. (3.13), which describe spatial changesin
the filamentation perturbation field, will be used to
obtain

i kodiz — K*H~iBE,, + 5E.,)

. d : "

- E‘Z' Kogs ~ kﬂ. SE*, + OE) (4.12)
wZ

_ L . H *

= SLp(LisE,, + OF., IO+ 5E7)

It followsfrom (4.12) that field perturbations change by
the exp(G2) exponential law, where the spatial amplifi-
cation coefficient G (filamentation instability incre-
ment) is given by

1
Gik) = =
4K’
(4.13)
ol s wﬁsvg O _vee(vT)zv(a J
2c°ViO CV: [

Perturbation field amplification characteristic of fila
mentation instability occurs when the right-hand side
of (4.13) ispositive and when a G(k) > 0 solution is pos-
sible. Assuming this condition to be met, we easily find
that the spatial amplification coefficient G(k) reaches a
maximum at

K = K, = V2w JAVAC. (4.14)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

SILIN

Accordingly, the equation
Grac = G (Kna()

_ WLVE ,_lbvVuED (419

64c’KoVi 0 ¢ (VA

determines the maximum amplification coefficient
value.

Whereas the wave vector (4.12) corresponding to a
maximum spatia increment does not depend on dissi-
pation, the increment of spatial filament amplification
itself is determined by dissipation. Consider the contri-
bution of thermal dissipation described by (4.13) and
(4.15). In a weak pumping field, when the condition
inverseto (4.7) is satisfied, heat effects favor filamenta-
tion instability. If, however, condition (4.7) is met, we
have the opposite situation. To makethis clear, consider
the expression in bracesin theright-hand side of (3.11).
The second term there describes the contribution of the
ponderomotive force. According to (4.4), this force as
usual decreases the electron density as the intensity of
radiation S|E|* increases. In a weak field, the thermal
action of radiation on a plasma a so decreases the elec-
tron density. Indeed, at an amost constant pressure, an
increase in the intensity of radiation increases the elec-
tron temperature, and this results in a decrease in the
electron dengity. It follows from (2.9) that, under high-
power heating radiation conditions, an increase in the
intensity of radiation decreases the amount of heat
absorbed by electrons. For this reason, radiation inten-
sity growth causes cooling of electrons. At a constant
pressure, thisresultsin an increase in the electron den-
sity, which is responsible for the negative sign of the
second term in braces in (4.11) and, accordingly, the
negative sign of asimilar termin (4.13). To summarize,
we revealed the reason hindering filamentation in the
thermal mechanism of inverse bremsstrahlung heating.
In the high-power radiation limit, this mechanism can
prevent radiation self-focusing in aplasma. It, however,
unambiguoudly follows from (4.13) and (4.15) that the
influence of such a mechanism hindering filamentation
decreases as the intensity of pumping increases. This
follows from the equation

Ve _%6/n__ ¢
Vil C wfleV)la(Ve)'

which determinesthe intensity threshold of high-power
heating radiation above which filamentation is possi-
ble. Equation (4.16) corresponds to vanishing of the
right-hand side of (4.15). Under these conditions,

(4.16)

Vi 3miv;
Vei(V1)  4./2me’e’nA

is the mean free path of athermal electron between its
collisions with ions.

lei(Vr) = (4.17)
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Clearly, threshold condition (4.16) corresponds to
the strong pumping field condition when

I ee(VT) I ei (VT) =| ee(VT) ;

that is, when the London depth A_ of the high-fre-
guency skin layer of the plasma substantially exceeds
the mean free path of electronswith respect to electron-
electron and electron-ion collisions.

The wave vector (4.14) value at the threshold pump-
ing field intensity given by Eq. (4.16) corresponds to
the size of afilament which appears dightly above the
threshold. The mean free path is then given by

Cee eV
Iee(VT)(kmax)thDD\LD Dei(V‘-ll:)D '

The smallness of thisvalue compared with unity, which
corresponds to the feasibility of applying our strongly
collisional description, is again determined by inequal-
ity (4.18).

5. In the preceding section, we characterized the
peculiar influence of heat effects on the nonlinear elec-
tromagnetic field dependence of the electron density,
which determines parametric instabilities, for circular
polarization. The samewill be donefor the general case
of eliptical polarization in Appendix 1 and for the par-
ticular case of linear polarization (an important case
which requires a specia consideration) in Appendix 2.

L et us analyze the conditions under which our anal-
ysisis applicable. First, consider inequality (4.18). For
the mean free path of electrons to be small compared
with the London length, the inequality

AL=Clw > (4.18)

(4.19)

n, > 3x 10°A°TS, (5.1)
should be satisfied. Here, T, [€V] isthe electron temper-
ature, and n, [cm~9] is the number of electrons in one
cubic centimeter. The condition of a comparatively
high plasma density and a comparatively low tempera-
ture implied by Eq. (5.1) should not conflict with the
condition of plasma quasi-ideality. The corresponding
condition of weakness of interelectronic interactionsis
fulfilled when the Coulomb logarithm is large,

N = In(rp/ry,) = 1, (5.2)

whererp and r,;,, are the maximum and minimum elec-
tron target parametersfor weak momentum transfer [6].
The inequality

kgTe e
= > = " .
o ame’n, KeTe Fmin 3)
can be rewritten as
3x10°TS > n. (5.4)
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Two inequalities (5.1) and (5.4) for the number density of
electrons are satisfied smultaneoudly if A? x 10* > T..

To summarize the preceding, note that our treatment
of the filamentation phenomenon based on an anoma-
lous plasmakineticsfrom [4] hasled usto theoretically
establish a new thermally controlled effect of suppres-
sion of electromagnetic radiation filamentation. In con-
trast to the weak field limit, in which an increase in
radiation intensity increases heating, in a high-power
radiation field, when therate of dectron oscillationsin the
pumping field exceedsitsthermal speed, anincreaseinthe
intensity of radiation causes a decrease in the eectron
temperature. Thiseffect can most smply be demonstrated
by writing the spatial amplification coefficient (incre-
ment) of the filament perturbation field in the form

1
= 2%
2 7.2\ /2 (0) 12
e 0% o ol
0 2c?| v2  XTed(InV?3) |0

(5.5)

This equation unambiguously follows from Egs. (4.4)
and (4.8)—4.11) for circularly polarized radiation fila-
mentation, from Egs.(A.1.14), (A.1.18), (A.1.21), and
(A.1.22) for the general case of dliptica polarization if
therma motion isignored, and, lastly, from Eq. (A.2.13)
for linearly polarized radiation filamentation. In the usua

weak field limit, when [Q{Y0= E2, we have

©
a&,im = Yo>o. (5.6)
a(InVg)
In contrast, in a strong field, when the relation Q{2 =

E," can be used, we obtain

0QF _ 1.0

(5.7)

Equations (5.5)—(5.7) serve to qualitatively distinguish
between strong and weak pumping field conditions.
The corresponding difference arises because of the
dependence of radiation absorbed by a plasma on radi-
ation intensity, which is essential to our consideration.

At the same time, the total decrease in the heating
effect caused by an increase in the intensity of high-
power radiation decreases competition between the
thermal and ponderomotive nonlinearity mechanisms.
This makes filamentation possible after surpassing
threshold (4.16). It followsthat the anomaly of the ther-
mal mechanism suppressing radiation filamentation
can be observed in a fairly wide high-power pumping
field intensity range (V1 < Vg < Vg ) if condition (5.1)
is satisfied; that is, if the mean free path of electronsis
substantially smaller than the London length. The
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region of such intensities in practical applications is
determined by the condition
qr=27x 1012}-\TE <q, < 2%, (58)
u

where g, [W/cm?] is the density of the pumping radia-
tion energy flux, A, is the pumping radiation wave
length in micron units, and
n PP
£ = AN’=x10 . 5.9
IR0 59
For instance, if n, = 10°* cmm® and T, = 30 eV, then € =
16.5. Even if Z ~ 1, this ensures meeting condition (5.8).
Simultaneoudy, conditions (5.1) and (5.4) are also satis-
fied.

To summarize, we established the possibility of
anomalous parametric plasma nonlinearity manifesta-
tions resulting from suppression of filamentation insta-
bility. The phenomenon is explained by a decrease in
the heat absorbed by a plasma as aresult of the inverse

bremsstrahlung effect as the intensity of high-power
pumping field radiation grows.
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APPENDIX 1
Let the pumping field be elliptically polarized, when
ko= (0, 0, kp), €o = (€ox. €0y, 0), and

€, = £.E cos(wt —kor),
0x x=0 ( 0 0) (All)
€oy = —€,Epsin(wyt —Kor),

where €, and g, are the components of the vector of
pumping field transverse polarization satisfying the
conditions € + € = 1 and g, > g, > 0. Taking into
account Egs. (2.1) and (2.4), we obtain E,, = ¢,E, and
Eqy = —i€,Eo. We can therefore write (cf. [8])
2*2EY[2|E|* — Efexp{ —2i (6t —Kor )}

w2 ) -3/2
—Eg “exp{ 2i (ot —Kor)} ] (A.12)

2

= {1—p”cos[2(wet —kor )]}

= AP +2y Ay (p")cos[2m(axt —kqr)],
m=0
where

2
p' = 1-4ele = (ef-€2) . (A.1.3)
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Further, we will need two coefficients of the Fourier
transform of (A.1.2),

O 502 O
AP = 2 EQ-2-0 (A14)
m(1-p°)J1+p? IN1+pT
32, 2 _ 2A/1+p2
Al(P) = ———
mp(1-p’)
(A.15)

0. 0O 2 0 O 2 00O
x (ED |22+ (1-p)K O[22
O 1+p°0 1+p"O

Here, E(2) and K(2) arethe completeelliptical integrals.

Equations (A.1.1)(A.1.5) allow Eq. (3.9) to be
rewritten in the form

1\ _
<5uE(t)> -

x { € ([E,OE* + E}3E.]1AS(pY)

mawy,
2"elES

— AY(pA[EBE, + EXSE*]) (A.16)

+e " ([E,BEX + EFOE] A (P)

— AYH(P?)[E,OE_+ ESBE*])}.

Using these results and Egs. (3.8) and (3.11), we can,
according to (3.12), write

2

BN, = Ney—r5—{ AdE* + afdE.}. (A.L7)
4Am,wy V7
Here,
E)k
ap = EO_V( ) Sneo
xk (A.1.8)
x{EoA5"(P) ~E5 AL’ (P)},
where
8./2me’e’n; A\
V(E) = ———
m.Ve

Equations (3.13) and (A.1.7) give

O kod% ~KBE,

(A.1.9)
2 2
w . €E
= ——*——2 (@ dE* + &} 3E,),
c” 4m. V7
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” (A.1.10)
= —‘i* L= _(otoBE* + ot} BE.).
¢ am’ VT

Hence, the dependence of fidld perturbationsis ~exp(G2),
where the spatia amplification coefficient is given by the
equation

1 + (i)lz-_e ez
2 2 2\ ,2
Cc Am.w,V
e0 *T (A.1.11)
% |:| ao EO _ aoEO |:| _
Dik,G-K 2ik,G+ KL
Because
oEs = oS E,
O v(E)k n 0(A.1.12)
= Eéca— 20 AY%(p?) - p* AT (P )]
and
A4 (p%) - p* AT (Y
sz EL (A.1.13)
m/l + p 1 +p°00

the solution to Eq. (A.1.11) can be written in the form

2 1,2\ 42
G = +iE1—k +°°LekVE
2kog 2c¢°V2

(A.1.14)

X[l— 2V(E)Kgneo KD 2p° }D .
k2 /1+p° N1+p0/0
Clearly, the filament spatial amplification coefficient is

maximum when the wave vector is given by Eq. (4.14).
Then

G2 = VEwLe [boLe 16V(V1)V(E)
max 2
64VTc kODc CVe
(A.1.15)
O 2 0g
x—2ko|-£—gn
ml+p® IN1+pTO

Inthe p? = 0limit, which correspondsto circular pump-
ing polarization, Eq. (4.11) follows from Eq. (A.1.14).
In the oppositelimit of alow circular polarization degree
A, when

AP =1-p'<1 (A.1.16)
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2 Iz

KD
M1+ p? 1+pD

~045In—

(A.1.17)

the role played by a decrease in the electron tempera-
ture as the intensity of radiation grows increases loga-
rithmically, which prevents filamentation. As a result, an
additiona factor equa to Eq. (A.1.17) appears in
Eq. (4.14), which determines the filamentation threshold.

This increase in the filamentation threshold deter-
mined by polarization corresponds with the polarization
dependence of plasma heating by a high-power pumping
radiation established in [4], when the effective frequency
of collisons(4.6), which characterizes absorption of elip-
ticaly polarized pumping field, is given by

8./2me’e ;A
mEVe

2 0 p2 0
X KO >0
m/1+p® N1+pT

Inthe (A.1.16) limit, this equation takes the form

Vei(E) =
(A.1.18)

16€”e/n;o/\
Ve(E) = 200008, (A.1.19)
MeVe A
The last formulaisinapplicable if
A<8(V/Vg), (A.1.20)

when the influence of therma motion on radiation
absorption in a plasma should be taken into account in
describing the effects under consideration [8].

Lastly, let us write the generalization of Egs. (4.4)
and (4.8) that follows from our analysis,

2

en
[BQiel= — ijveﬁ(E)élEﬁ (A.121)
e
e’n
mY0= — Z‘;Zvdf(E) E2. (A.1.22)
eYr0

In particular, it follows from these equations that thefil -
ament spatial amplification coefficient can bewrittenin
form (5.5).

APPENDIX 2

We cannot completely ignore the influence of ther-
mal motion of electrons on the inverse bremsstrahlung
absorption of a strong pumping field in the particular
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case of alinearly polarized pumping field €, = (é,, 0, 0),
where

€, = Eocos(wot —Kor).

Indeed, the rate of electron oscillations then equals
Ue = (Ug, O, 0), where

can vanish at a certain time moment. Equation (A.1.2)
then becomes meaningless at p? = 1.

In view of this, the heat absorbed by a plasmain a
strong pumping field will be written as (cf. [4])

ame’e’n A Fo(U)

u .
me o U
We then have the absorbed heat perturbation

Qg = (A.2.1)

4neen/\ i

5Qis = BUg Hf qdgexp-5a°V:E

(A.2.2)

+1
X J‘xdxexp[iqqu(t)] .
This equation takes into account that Fy(u) is a Max-
well distribution. In (A.2.1),
ie
2m.wy,

Oug =
(A.2.3)

x (QEexp[—i (wet —kor)] —dELexp[i(wet — ko)1),
which corresponds to the field perturbation

_1 —i (ot —
68 = S{ 5Eexp[—i(wot —Kor)] (A.2.4)

+ OELexp[i(wot —kor)]}.

Using the expansion in Bessel functions J,(2)

expligxug(®)] = % Jn(qxVe)exp[-in(wot —Kor)]
n=0

and the equality S|E|* = Ey¢(SE + OE*), we obtain from
(A.2.9)

e Ne 2ee n;o/\

0
Wo me E

Q0= 3IEI, (A.2.5)

where

+1

01,2 20
dV J'de'dqexp 19 FPo(@xVe).  (A.2.6)
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Using the equation

Dp

O% 2|:|

and the asymptotic relation for the Bessel function of
an imaginary argument

Idzexp(_yzz )Jo(p2) = f exp

lo(d) = ——=¢",

2Tz

we obtain

2. Ve
= VZEInZVT (A.2.7)
in the strong field limit. It follows that the absorbed
field perturbation averaged over fast oscillations can be
written as

2
1 en
[BQis0= ~3Ver(E) 23/E|%. (A.2.8)
me(*)O
Here,
16e’e’n A, Ve
Vg(E) = ———%"In (A.2.9)

miVeé 2V

isthe nonlinear effective frequency of callisions, which
characterizes pumping field absorption:

[Qfg)D— 5 eff(E) eOEO (A.2.10)

mewo
Equation (A.2.8) can, with logarithmic accuracy, be
writtenin aform similar to Eq. (4.9) obtained for circu-
larly polarized pumping,

[5Q, 0= E‘BQ'ZBD&EF. (A.2.11)
0(Eo)
Lastly, applying (3.11) yields
2 2

Neo  4mPwiV2([ CkAV2
which describes density perturbations. We again see that
heat effects suppress the ponderomotive effect, which
generaly causes radiation filamentation. If (A.2.12) is
written as

5 2 V2 o0 '%00
one . BB Ve, 4 9Rie g (a3
neO 4me(A)0VED\/T k xTeoaIn(Eo) D

we can write Eq. (5.5), because Eq. (A.2.13) issimilar
to the eguation that follows from (4.10) and (4.11).
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Abstract—The mechanisms of heating of the electronic component of large deuterium clusters by a super-
atomic ultra-short laser pulse field are considered. During pulse rise, the so-called “vacuum heating” playsthe
determining role. Electrons escaping from a cluster into the vacuum with alow energy return back in atime
equal to the period of the laser under laser field action. The returning electrons have a higher energy (on the
order of the vibrational energy in the laser radiation field), which causes cluster heating. As the laser field
increases, the electronic temperature largely grows at the expense of decreasing the Coulomb potential energy
of electron repulsion because of a decrease in the number of electrons. The dynamics of above-barrier cluster
ionization at the leading edge of a superatomic laser pulse is calculated. The results are discussed in the light
of recent experiments aimed at creating desktop sources of monoenergetic neutrons formed as a result of the
fusion of deuterium nuclei in acluster plasma. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent experimental studies of photoionization of
atomic and molecular clusters by femtosecond laser
pulses showed that exciting large clusters comprising
thousands atoms makes it possible to obtain super-
heated microplasma with an electron temperature up to
severd keV. Of great interest are deuterium clusters
because of apossbility of creating aplasmawith akinetic
energy of deuterium atoms sufficient for tunnel nuclear
fusion to occur when two such nucle collide[1, 2]. Deu-
terium nucle acquire akinetic energy of severd keV asa
result of a Coulomb explosion of clusters after remov-
ing all electrons from them by alaser field.

Thiswork is concerned with the mechanism of heat-
ing of the electronic component of deuterium clusters
at the leading edge of a superatomic laser pulse, when
the radius of the cluster dlightly grows during very fast
detachment of electrons from parent deuterium mole-
culesin the cluster (so called inner ionization) and fur-
ther escape of these electronsfrom the cluster itself (so-
called outer ionization). We suggest two mechanisms
of this heating. According to the first mechanism, an
electron with alow kinetic energy that escapesfrom the
cluster under laser field action can return back in afrac-
tion of the period of the laser, this time with an energy
on the order of the vibrational energy in the laser radi-
ation field. After the return, this electron collides with
other electrons, and the thermalization of the electronic
component occurs. The temperature of this component

gradually grows as radiation at the leading edge of the
laser pulse becomesincreasingly intense.

The other mechanism of heating of the electronic
component is related to the conversion of the Coulomb
potential energy of electrons that remain within a clus-
ter ion at a given time moment of outer ionization into
their kinetic energy. This mechanism is based on the
model of multiple ionization of alarge Thomas—Fermi
cluster by astrong electromagnetic field; the model was
developed by us in [3]. In this model, electrons of a
large cluster ion occur within a sphere of radiusR <R,
where R is the radius of the ionic component. Within
this sphere, a plasma of electrons and positively
charged ions is neutral, and an electric field is absent.
The concentration of electrons in the cluster ion does
not change during outer ionization, and only radius R
of the electronic component decreases. Such a plasma
approach to the problem requires that the Debye radius
of screening of the Coulomb field of electrons

o = T
D~ \JanN

be smaller than radius R. Here, T is the electron tem-
perature and N is the concentration of electrons. We
will, as arule, use the atomic system of units, in which
the charge and the mass of the electron and the Planck
constant equal one.

We will not discuss the mechanism of hegating of clus-
ter eectronsrelated to the induced inverse bremsstrahlung
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effect. In the presence of alaser field, electrons scattered
on atomicionslargely absorb field energy rather than emit
[4]. This mechanism is known for clusters of heavy ee-
ments (for instance, xenon atoms) [5], where multiply
charged atomic ions are formed, and the inverse
bremsstrahlung effect is substantial. In thiswork, we only
discuss singly charged deuterium ions, for which the
probability of thiseffect islow.

We also do not consider heeting of electronsasaresult
of excitation of the Mie collective dipole resonance (sur-
face plasmon) [5]. The resonance arises when the laser
fidd frequency coincides with the Mie frequency. In the
system under discussion, the laser field frequency is
much lower than the Mie frequency.

Let us turn to the problem of the penetration of a
laser field into a cluster plasma. At a low ionization
degree, alaser field freely penetrates through the whole
cluster ion. Thisfollowsfrom numerical calculations of
xenon atom clusters [6], in which the 5pf and 5s° outer
shellswere largely ionized. At ahigh ionization degree
of heavy element clusters, alaser field penetratesavery
short distance into the cluster because of absorption
caused by the induced inverse bremsstrahlung effect in
elastic scattering of free cluster electrons on multiply
charged atomic cluster ions [7]. For clusters of deute-
rium molecules considered in this work, this effect is
insubstantial, see above. The penetration depth related
to the excitation of plasma oscillations [8] has the form

(D)

C
w/Jé]

Here, wisthelaser radiation frequency, and the permit-
tivity caused by conduction electronsis

2
(V]

£ = 1-—=<0,
w

where wy, is the plasma frequency,

W, = J4TN = 8.4 ¢eV.

A typical laser radiation frequency is much lower, and
thisisthe reason why screening occurs. We will usethe
w = 1.55 eV frequency in our calculations, which cor-
responds to a 800 nm light wave length [1, 2]. The
depth of field penetration then exceeds 300 A; that is, it
is substantially larger than the diameter of deuterium
clusters.

In aclugter, deuterium molecules attract each other by
van der Waalsforcesand form adielectric liquid. The con-
centration of deuterium nuclei in thisliquid (equd to the
concentration of electrons) isN =5.15 x 10?2 c2[9], as
in a macroscopic deuterium liquid at a temperature
below its boiling point; that is, N is of the order of the
concentration of atoms in metals. In agreement with
this concentration value, the mean distance between deu-
terium molecules equals 3.4 A, whereas the distance
between two atoms in the deuterium molecule is much
smaller and only amounts to 0.7 A. We assume that a
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large cluster comprising thousands deuterium molecules
has a spherical shape (although experimentally, thiswas
only proved for large metal atom clusters).

2. INNER IONIZATION

At a certain point during superatomic laser pulse
increase, inner ionization of deuterium moleculesin the
cluster begins. All electrons are detached from parent
nuclei and become collectivized (but still do not escape
from the cluster), intramolecular bonds dissociate, and
naked deuterium nuclei are formed.

Such an ionization is an above-barrier process. It
continues for a short time of one-two femtoseconds
(asimilar pictureis observed in the ionization of xenon
clusters by a superatomic laser pulse, see [6]). Indeed,
suppose that the intensity of the laser at a pulse maxi-
mum is| =5 x 10'® W/cm?. The corresponding maxi-
mum field isF = 1.17 au (we assume linear field polar-
ization). According to the numerical calculations [10],
above-barrier ionization of atomic hydrogen (deute-
rium) in 3 fs (that is, approximately during the period
of the laser that generatesin the visible region at 800 nm)
requires a much weaker field F = 0.08 au. A similar
value, F = 1/16 au, follows from the Bethe rule [11].
The same estimate is valid with hydrogen or deuterium
molecules.

On the other hand, the calculations performed in [12]
show that tunnel ionization can play the determining role
in completeinner ionization at still lower fields because of
a spatial distribution of laser intengity. This is not very
important for describing subsegquent outer ionization.

For a typical Gaussian pulse 35 fs wide [1, 2], the
field strength envelope (in atomic units) depends on
timet (in femtoseconds) as

F(t) = 1.17exp(~t*/780) 2

and field F = 0.08 au correspondsto thet = —45 fstime
point. Here and in outer ionization calculations, time
t = 0 corresponds to a maximum field value.

Intramolecular bonds, naturally, disappear during
1-2 fs a the very beginning of laser pulse rise, and the
spherical deuterium cluster becomes acompletely ionized
dense neutral plasmacomprising free electrons and deute-
rium nuclei. For instance, acluster withR=25A (thisisa
typical experimental value[1, 2]) contains

n = N(41/3)R® = 3370

electrons. The didlectric cluster therefore becomes
metallic!

3. OUTER IONIZATION

Consider outer ionization, when electrons escape
from the surface of the cluster outward. We assumethis
ionization to be also field (cold) and above-barrier; that
is, the laser field is superatomic not only for the inner
but aso for the outer ionization. Thermal ionization
(the vaporization of heated electrons from the surface
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of the cluster) described by the Richardson—-Dushman
equation isinsignificant under these conditions because
of the fast occurrence of the ionization. Competing
with outer above-barrier ionization is tunnel ionization
at a weaker field, which we neglect. Of course, this
neglect can also prove incorrect in the light of the
results obtained in [12] for atomic ionization, and this
problem requires further inquiries.

The Bethe condition [11], which we apply to the
classical above-barrier ionization of eectrons from the
cluster, hasthe smple form

F(t) = f—;. 3)

Here, Z = Z(t) isthe charge of the cluster ion at point t
and E; isthe potential of its further ionization equal to
the Coulomb potential of the corresponding cluster ion,

Z(t
e, = & @
where Risthe radius of the cluster determined by deu-
terium nuclei (we assume that Coulomb repulsion
between deuterium nuclel does not cause a significant
increase in this radius at the leading edge of the laser
pulse, see the corresponding estimates given below).

According to Eg. (3), at timet determined from this
relation, Z(t) electrons escape from the cluster.

The remaining n — Z electrons of the cluster ion occur
within a sphere of a smaler radius R determined by the
condition of eectrical neutrality of this sphere (see Intro-
duction); that is, by the condition

_7 '
w218 ®

The region between R and R' only contains deuterium
nuclei. It follows from Egs. (3) and (4) that the number
of escaped electrons, Z, is related to the laser field
amplitude at a given time moment by the simple equa-
tion

Z(t) = 4R’F(t), t<O. (6)

According to this equation, all 3370 electrons of a deu-
terium cluster with R = 25 A escape outward in field
F=0.38auatt=-295fs[seeEq. (1)]. From acluster
of radius 50 A, 26 960 electrons that this cluster con-
tainsescapeinfild F=0.75au at t =-18.5fs. Similar
estimates can easily be obtained for other maximum
laser pulse intensities.

Of course, thisapproachisvalid at afairly high peak
strength F, when the ionization is above-barrier; that is,
when the condition

|:>l:ﬁl:2

4R 3 S

issatisfied. At afixed peak laser field value, this condi-
tion bounds the deuterium cluster radius R from above.
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4. VACUUM HEATING
OF CLUSTER ELECTRONS

An electron escaping from ther = R surface of the
cluster ion with a certain energy comes under the influ-
ence of the laser radiation field and can be returned by
thisfield in afraction of the period of the laser depend-
ing on the laser field phase ¢. The €electron then
acquires energy on the order of electron vibrationa
energy. Thisisthe so-called “vacuum heating” mecha-
nism suggested by Brunel [13] to describe interaction
of laser radiation with metallic surfaces. The electron
vibrational energy at a given time averaged over the
laser radiation period is

Ry :
40 ®)

The one-dimensional Newton equation for electron
motion in a linearly polarized field along the field
polarization axis has the form

d—z)z( = F(t)cos(wt + ). 9
dt

Up

Integrating Eq. (9) yields the current electron velocity
(timein the laser pulse envelope is treated as a param-
eter)

dx
dt

Here, v istheinitial electron velocity at the moment of
its escape from the cluster ion. The coordinate of the
€l ectron again becomes zero at timet when

- v+%9[sin(wt+¢)-s:n¢]. (10)

X(t) = E%—)[coscl)—cos(u)t+q>)]
N (1)
+[v—%sin¢}t - 0.

It follows that determining the return time requires
solving the transcendental equation

[VLF—sinq)}q)o = cos($ + ¢,) — coso. (12)

Here, the return phase ¢, = wt and the field velocity
Ve = F)/w

are introduced.

A solution to Eqg. (12) is shown in Fig. 1 as the
dependence of ¢, ontheinitial phase ¢ at variousinitial
velocity values, vive=0,0.1,0.2, ..., 1.2, and 1.25. At
v = 0, this solution is known for the corresponding
problem of the theory of tunnel ionization of atoms by
a strong low-frequency field [14]. The figure shows
that, at each velocity value, the return only occursin a
limited interval of initial laser radiation phases ¢. At a
fairly highvelocity v = 1.25v¢ (the central closed curve
with the smallest areain Fig. 1), electrons do not at all
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Fig. 1. Dependence of electron returntimet (viaphase dg = wt)
oninitial laser field ¢ according to transcendental equa-
tion (12) at various escaping el ectron velocities v expressed
in field velocity v = F(t)/w units. Theleft-most curve cor-
respondsto v = 0. Next follow curveswith v/vg = 0.1, 0.2,
0.3, ...,1.1,1.2, and 1.25. The lowest return time at agiven
initial laser field phase ¢ corresponds to the first return, the
next value, to the second return, €etc.

return into the cluster but fly away to infinity at velocity v.
It should, of course, be borne in mind in the calcula-
tions that an electron can escape in both positive and
negative axis x directions.

In this gpproach, an electron is considered a classica
particle, and el ectron wave packet spreading after theion-
ization isignored. From the quantum-mechanical point of
view, thiscorrespondsto the neglect of thetransverse elec-
tron velocity with respect to the laser field polarization
vector compared with its longitudinal velocity. The pres-
ence of atransverse velocity decreases the probability of
the return of the eectron back to the cluster. Compared
with the corresponding problem of electron return in
tunnel ionization of an atom, the favorable factor is the
large size of the cluster. In addition, asin the atomic prob-
lem, of the greatest importance are electrons that escape
with low energies, see below. Transverse velocities are
then fairly small compared with longitudinal velocities.
We will estimate them later on.

The curves shown in Fig. 1 dlow us to caculate the
kinetic energy of the electron at the moment of its return
back to the cluster asafunction of initia phase ¢,

£ = lox@Ocf
kT 20dt O
v oo NG (13
= 2Up[v—F+sn(¢+¢0)—sn¢} .
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EJU,

3.0F 1

25 7

20 T

1.5F 1

1.0f 7

Fig. 2. Dependence of the kinetic energy of an eectron
returning to the cluster (in vibrational energy U, units) on
the initial laser field phase ¢ according to Eq. ElS) at the
same escaping electron velocities as in Fig. 1. Velocities
increase from the left-most curve to the right.

The calculation results are plotted in Fig. 2 for the same
electron velocities as in Fig. 1. Note that, according to
Corkum [14], amaximum kinetic energy v uefor theion-
ization of aomsisE, = 3.17U,. Thisvaueisataned a a
zeroinitial velocity and phase ¢ = 17°.

Assuming this phase to take on random values
allows Eq. (13) to be averaged uniformly with respect
to the phase. The result is shown in Fig. 3, where the
mean energy of returning electronsis plotted as afunc-
tion of the initial electron velocity at which it escapes

[E2U,
1.2

0.8

0.4

0 0.5 1.0
V/Vp

Fig. 3. Dependence of the mean kinetic energy of electrons
returning to the cluster (in vibrational energy U, units) on
their velocity v at the moment of escape from the cluster
expressed in field velocity v = F(t)/w units.
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fromther = R’ cluster surface. Thisenergy accountsfor
a considerable fraction of the vibrational energy, and,
therefore, the Brunel mechanism [13] of so-called vac-
uum heating can in principle cause heating of electrons
remaining inner the cluster ion at the leading edge of a
laser pulse and should be taken into account in the
energy balance for the outer ionization of the cluster.

Clearly, if the escaping electron energy v2/2 is sub-
tracted from the returning electron energy, the result
may be both positive (electron component heating) and
negative (el ectron component cooling). For this reason,
predominant initial velocities v of electrons escaping
during the outer ionization play a very important role.
We can use the results obtained for the tunnel and above-
barrier ionizations of atoms [15]. The digtribution of
escaping electrons with respect to their longitudina
velocities (along the laser field polarization vector) has
the form of a Gaussian curve with amaximum at a zero
velocity,

2.3
gvy
dZ 0 exp—t Hiv. (14)
Here, we introduced the Keldysh parameter [16]
_ wJ2E;,  [8R
= Fo w FO° (15)

We used Egs. (4) and (6) to derive the equation for this
parameter. Strictly, Eq. (14) isvalid for the tunnel ion-
ization. For the above-barrier ionization, the tunnel expo-
nent is replaced by the Airy function (see the correspond-
ing distributionsin [17]). We, however, wish to determine
the characterigtic longitudina velocities rather than the
energy distribution of escaping eectrons per se, and lon-
gitudinal velocities have similar symbolic estimates for
the tunnel and above-barrier ionizations [17]. Accord-
ing to Eq. (14), the typical longitudinal velocity impor-
tant for escaping electrons can be estimated as

v = f_w v.o___ 3
vy Ve [FOIY(BR™

At alaser pulse maximum (t = 0), Eq. (16) yidds v/vg =
0.02, whereas at t = —45fs (F = 0.08 au), we find v/vg =
0.04.

Equation (14) isvalid if the Keldysh parameter y is
smaller than or close to unity. For the cluster and laser
field parameters used above as typical examples, this
parameter value is on the order of one.

As far as the characteristic transverse velocity v,
which determines wave packet spreading, is concerned,
its estimates for the above-barrier and tunnel ioniza-
tions aso coincide, namely [17],

NE0

(2E)™

(16)

vy O <vV. 17
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The conclusion can therefore be drawn that a large
majority of electrons escape from clusters at low veloc-
ities compared with thefield velocity (asin atomsin the
tunnel ionization). According to Fig. 3, the mean
kinetic energy of an electron flying back into the cluster
therefore equals

E = U,/2.

It follows that the laser radiation energy absorbed by
cluster ion electrons per unit timeisgiven by thesimple
equation

de _ Fi(dz

Here, dZ/dt is the number of electrons escaping from
the cluster per unit time. A part of these electrons return
in afraction of thelaser period back into the cluster and
heat electrons that remain there, whereas another part
irreparably fly away to infinity. This process continues
until electrons still remain in the cluster. As mentioned
above, the process terminates before t = 0, when the
laser pulsefield is maximum. The electron wave packet
spreading mentioned above can only slightly decrease
the factor in Eq. (18).

5. ENERGY BALANCE

Energy (18) is spent to heat the electronic compo-
nent and change the potential energy of electrons (no
energy exchange between the el ectronic and ionic com-
ponents occurs during the ultra-short laser pulse).
A part of the energy islost with electrons emitted in the
outer ionization. The energy balance has the form [7]

de 13 Z21dZ
5T R

dt at

a . (19
_d 3(n-2(1)°

= a%l‘z(n —Z(t))T(t) + R %I

This eguation takes into account that cluster ion elec-
tronsare uniformly distributed within asphere of radius
R < R determined by Eg. (5) (see Introduction). The
first termin the right-hand side of Eq. (19) isthe change
in the kinetic energy of electrons that remain in the
cluster ion at a given time moment per unit time. The
second term is the rate of changes in the Coulomb
potential energy of electrons.

The second term in the left-hand side of Eqg. (19) is
the energy of electrons that escape from the cluster ion
per unit time. The 3T/2 value is the mean energy of an
escaping electron inner the cluster ion, and Z/R is the
energy lost by the electron when it flies from the cluster
outward.

The T(t) value is the electron temperature. Of
course, establishing this temperature requires effective
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electron-electron collisions inner the cluster. Such col-
lisions do occur if the free path of electrons is smaller
than R'. Let us estimate the free path by the formulas of
the theory of collisions in a plasma [18]. The electron
temperature present in these formulas will be replaced
by the mean kinetic energy of electrons returning to the
cluster, E, = 3T/2,

3(2Ek/3)3/2
‘ k4J_ NInA’

According to the calculations discussed above, the
kinetic energy of an electron is estimated here as E, =

U2, ve= J2E, isthevelocity of an electron inner the

cluster, thetypical value of the Coulomb logarithm InA
can be set equal to 10, and N is the concentration of
electrons inner the cluster (this concentration does not
change in the outer ionization because electrons are
contracted into a sphere of a smaller radius). At atypi-
cal laser pulsefield F = 0.25 au, Eq. (18) yields| =4 A.
It follows that electrons frequently collide with each
other inner the cluster, which ensures a Maxwell tem-
perature distribution. An exception is the final stage of
outer ionization, when | strongly increases, whereas R
decreases. These considerations justify not only the use
of Eg. (19) as the energy balance equation but also the
electron rescattering mechanism itself.

Substituting Egs. (5) and (18) into Eq. (19) eventu-
ally yields the following equation for determining the
electron temperature:

| = VT = (20)

ar _ 2
(n-2)% = 3R
2 (21)
X[Z+ Z4 2+nu3(n_z)2/3}g_§'
128R*w dt

Here, the number of escaped electrons Z(t) is given
by Eq. (6).

The second term in the right-hand side of Eq. (21)
responsible for the energy that returns to the cluster
during vacuum heating is small compared with the first
term. Indeed, the ratio between thesetermsis

_Z
128R*w?’

Thisratio reaches amaximum when Z = n. For acluster
of radius 25 A, it equals 0.08 < 1.

In view of these considerations, vacuum heating can
be ignored, and heating of electrons that remain inner
the cluster ion can be assumed to be fully determined
by the Coulomb potential energy of electrons.

Ignoring the vacuum heating term, let us rewrite EQ.
(21) intheform
2 13 23
3R[Z+ n(n—-2)7".

(n-2) = 22)
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Fig. 4. Universal dependence of the electron temperature
of acluster ion (iny = 3RT/2n units) on the ion charge (in
X = Z/n units).

The integration of Eq. (22) yields the universal relation
between the electron temperature and the charge of the
cluster ion. Let us introduce the notation

_ 3RT _Z

2n’ n
On the assumption that the temperature is zero in the
absence of outer ionization, we obtain
y = —In(l—x)—x+g[1—(1—x)m‘]. 23)
This dependence is plotted in Fig. 4, where x varies
from O to 1. The time dependence of the electron tem-
perature is determined by Egs. (23) and (6), which
givesthe charge of the cluster ion as afunction of time.
For instance, a x = Z/n = 1/2, Eq. (23) yidlds the
electron temperature
n

Ty = R’

In particular, for acluster of radius 25 A, Ty, = 0.97 keV.

According to Eq. (22), the complete electromag-
netic energy absorbed by one cluster equals its initial
Coulomb energy (if the contribution of vacuum heating
to the total energy is ignored in agreement with the
above estimates):

_3n?
OoE = ER (29)
The mean temperature of escaped electrons under
the conditionswhen al of them escape from the cluster
does not depend on the intensity of laser radiation (of
course, if this radiation is superatomic) and equals

2n
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Note that this mean temperatureis closeto the T, tem-
perature, at which ahalf of all electrons escape from the
cluster. In particular, for a 25 A cluster, the mean elec-
tron temperatureis0.78 keV, and for a50 A cluster, this
temperature equals 3.1 keV. This value is independent
of the peak |aser radiation intensity because, in a stron-
ger laser field, the middle part of the laser pulse “does
not work.”

Consider a cluster of large size, suppose, of radius
80 A (such acluster contains 110000 electrons). Accord-
ing to Eq. (6), laser fidld (1) is only capable of causing
above-barrier ionization of 107000 el ectrons. It follows
that the effectiveness of outer cluster ionization
decreases as the size of the cluster increases (at a given
laser radiation intensity).

6. CONCLUSION

After the escape of all electrons from a deuterium
cluster of radius 25 A in afield with a5 x 10%® W/cm?
peak intensity at time t = —29 fs, a sphere comprising
positively charged deuterium nuclei is formed. The
concentration of nuclei in this sphere is N = 5.15 x
10?2 cm 3. At this moment, a Coulomb explosion
begins, and the whole potential Coulomb energy of this
sphere, n?/2R, convertsinto the kinetic energy of deute-
rium nuclei. The mean kinetic energy of one nucleus
equals

Ey = n/2R = 0.95 keV,
and the maximum energy is
n/R = 1.9 keV.

The cluster begins to expand fairly rapidly, and its
radius increases to three times the initial radiusis sub-
sequent 30 fs; that is, by the time the laser pulse attains
a maximum. Note that the expansion of a cluster of
xenon atoms proceeds simultaneously with outer ion-
ization because of the multiple character of the ioniza-
tion [6].

Asaresult, adeuterium plasmais formed with an
N' = 10 cm mean concentration of electrons and
nuclei [2]. The time of collisions of deuterium nuclei
with each other can be estimated by the formula for
plasma collisions [18]

_ 3/M(2E43)™
4.21N'InA

Here, M is the reduced mass of the deuterium nucleus
inacollision of two nuclei with each other and E; isits
kinetic energy. Substituting the values cited above
gives an estimate of 1-3 nsfor the callision time. This
leads usto conclude that thereis certainly no timefor a
Maxwell distribution to be established in this plasma.
Most likely, the kinetic energy distribution of deute-

(26)
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rium nuclei should be considered uniform from zero to
the 2E, maximum value.

Clearly, in the absence of high-energy deuterons,
the nuclear fusion reaction

d+d=3°He+n

virtually does not occur, because the cross section of the
tunne! reaction isexceedingly small; it equals 1037 cn? at
an E4=2keV deutron energy [19]. For theyield of neu-
trons to be appreciable, deutrons should have energies
exceeding 10 keV.

Itislikely that, in the experiments described in [1, 2],
where neutron yields up to 10* per laser pulse were
observed, there were collective mechanisms of energy
transfer from electrons to deuterium nuclei with the for-
mation of high-energy nuclel. One of such mechanisms
can be related to a process similar to ambipolar diffusion,
when electrons escaping from the cluster drag a part of
deuterium nuclel along with them by Coulomb attraction
forces. Diverseingtahilitiesin adeuterium plasmacan aso
be responsible for the appearance of high-energy deuter-
ons. For instance, in [2], the mean kinetic energy of
deuterons equaled 12 keV'! Lastly, the mechanism sug-
gested by A.D. Sakharov can operate. According to
Sakharov, outer ionization proceeds very rapidly, and
there occurs recoil-induced initial partial contraction of
the ionic sphere resulting from the escape of all elec-
trons. An analysis of these mechanisms requires special
consideration.
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Abstract—The behavior of the spectrum of the soft magnetoresonance mode in samarium orthoferrite was
experimentally and theoretically studied in the region of the I'y < I, orientation phase transition induced
by an external magnetic field. The special features of thisbehavior can be explained by the relative contributions
of interaction between ferrite subsystems and longitudinal susceptibility. It is also shown that the contribution
of longitudinal susceptibility to the gap of the soft magnetoresonance mode in samarium orthoferrite can also
be substantial in low fields; that is, in the vicinity of spontaneous orientation phasetransitions. Thisis explained
by the occurrence of spontaneous orientation phase transitions in samarium orthoferrite at high temperatures,
at which longitudinal susceptibility is comparable in magnitude with transverse susceptibility. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The first corvincing evidence of a contribution of lon-
gitudinal susceptibility to resonance frequencies of
ordered magnets was obtained in [1] for the example of
wesk ferromagnets Y FeO; and DyFeO;, which are rare-
earth metal orthoferrites. The sdlection of these com-
pounds and the method used to detect the corresponding
effect were not fortuitous. By then, the static properties of
rare-earth metal orthoferrites had been studied fairly com-
pletely and reliably established in a large number of
theoretical and experimental works. In particular, mag-
netic phase transitions suitable for purposes of such a
study had been found. The corresponding data consti-
tute a necessary prerequisite for constructing a theory
of the dynamic properties of these magnets and for cor-
rectly interpreting the corresponding dynamic experi-
ments. The detailed data on the crystal and magnetic
structure of rare-earth metal orthoferrites, which are
also used in this work, can be found in monograph [2],
which allows us only briefly to characterize the object
of study. Most rare-earth metal orthoferrites contain
two magnetic subsystems, iron d and rare-earth metal f

subsystems, and crystallize in space group Dj.. At
temperature Ty (600-700 K for various rare-earth metal
orthoferrites), iron spins are ordered to form a weakly

canted antiferromagnetic  (weakly ferromagnetic)
structure F,, G, corresponding to the I , irreducible rep-

resentation of the space group specified above. Here, F,
and G, are the components of the ferromagnetic and
antiferromagnetic vectorsF =M; + M, andG =M; -M,
(M, and M, are the magnetizations of iron sublattices).
The rare-earth metal subsystem isin the paramagnetic
state at Ty. Only in some of the rare-earth metal ortho-
ferrites, this subsystem undergoes magnetic ordering as
a result of f—f exchange interactions as temperature
decreasesto T < 10 K. On the other hand, because of f—d
interactions, there occurs ordering of rare-earth metal
ionsinduced by theiron subsystem, and ferro- and anti-
ferromagnetic vectors of their own can aso be put in
correspondence to these ions. Strictly, the static mag-
netic structure of rare-earth metal orthoferrites is
described by four d and four f sublattices. These eight
subl attices can, however, be reduced to four sublattices
(two d and two f) for describing the dynamics of acous-
tic modes studied in this work. The presence of two
interacting magnetic subsystems in rare-earth metal
orthoferrites is responsible for the occurrence of vari-
ous orientation phase transitions. The general reason
for their appearance is anisotropic and temperature-
dependent f—d interaction. The contribution of rare-
earth metal ions to the thermodynamic potential of the
magnetic subsystem increases as temperature lowers.
Because the magnetic properties of rare-earth meta
ions are exceedingly anisotropic, this results in a spon-
taneous change in the orientation of magnetization of
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iron sublattices with respect to the crystallographic
axes, that is, in an orientation phase transitions. I|n most
rare-earth metal orthoferrites, such transitions largely
occur as smooth rotations of the F and G vectorsin the
ac plane of the crystal. As aresult of temperature low-
ering, a magnet spontaneously transforms from one
symmetrical phase, I ,(F,, G,), to another, I',(F,, G,),
through the I,4(F, ,, G ,) canted phase; that is, the
ry, — r,, — I, “cascade” of phase transitions
occurs. The T; and T, temperatures of the onset and
completion of vector rotations correspond to second-
order orientation phasetransition points and are specific to
each rare-earth metal orthoferrite. When temperature
increases, phase transitions occur in the reverse order. The
My~— Iy and M, ~—— I, transitions can separately
be induced by applied magneticfields, H ||cand H || a,
respectively.

It isshown in the theoretical model developed in[1]
that the occurrence of an “order—order” transition in
external magnetic field H is a necessary condition for
observing the contribution of longitudinal susceptibil-
ity to the dynamics of magnets. According to [1], this
contribution results in the appearance of a gap in the
spectrum of spin waves precisaly at induced orientation
phasetransition points. A visual test suggestedin [1] can
conveniently be used in experiments and allows conclu-
sionsto be drawn both on the presence and magnitude of
the corresponding effect. In a first approximation, the
gap in the spectrum of an experimentally observed soft-
ening magnetoresonance mode is given by

= lmljsz
2y 0 "

wherey isthe gyromagnetic ratio; x,and X are the lon-
gitudinal and transverse susceptibilities, respectively;
and H, is the field of the phase transition. It follows
from this equation that soft mode activation increases
when either temperature T (because X;/x; U T) or
applied magnetic field grows. Simultaneously increas-
ing transition temperature T,, and field H;, induces the
I, —— Iy, orientation phase transition. We selected
this transition to test the validity of the theory sug-
gestedin[1]. For thistransition, external parameters act
in the same direction on the width of the gap. In the
experiments described in [1], the gap was observed at
fairly high values of both temperature, T > 100 K, and
field, H > 60 kOe.

The theory [1] did not take into account the mecha-
nisms that inevitably lead to the appearance of an
energy gap as aresult of dynamic interactions between
various vibrational subsystems of a magnet (ordered
spin, paramagnetic, magnetoelastic, and dipole sub-
systems) and between vibrations of these subsystems
and longitudina magnetization oscillations of rare-
earth metal orthoferrite sublattices|[3, 4]. If interactions
of various subsystems of a magnet are ignored, gap v
in the model [1] should vanishasH, T — 0. Gap v,

Vo
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however, never disappears in experiments. This raises
the question of what roleis played by longitudinal sus-
ceptibility in the formation of aresonance frequency at
ultimately small values of external parameters or, at
least, one of them. Of interest for practical applications
is the case of H — 0, because, along with field-
induced orientation phase transitions, spontaneous ori-
entation phase transitions occur in ordered magnets no
less frequently. For instance, orientation phase transi-
tions of similar structures can be induced in rare-earth
metd orthoferrites by both field and temperatureat H = 0.
At present, various orientation phase transitions were
observed inthe absence of afieldin eight (of 15 known)
rare-earth metal orthoferrites. In essence, our task was
to elucidate the role played by longitudinal susceptibil-
ity in the formation of the dynamics of an ordered mag-
net in the vicinity of spontaneous orientation phase
transitions. In this respect, the present work differed
from work [1] aimed at studying field-induced orienta-
tion phase transitions. It is made clear in the discussion
that follows that precisely samarium orthoferrite
SmFeO; of al rare-earth metal orthoferrites plays the
key role in fulfilling the task specified above.

2. STATEMENT OF THE PROBLEM.
EXPERIMENTAL METHOD
AND MEASURING TECHNIQUE

Whereas reorientation onset and completion tem-
peratures T, and T, are specific to each compound and
substantially different for different rare-earth metal
orthoferrites, their Ty iron ion ordering temperatures
arevirtualy equa (Ty = 600 K for SmFeQ;). This pro-
vides a unique possibility, inherent only in rare-earth
metal orthoferrites, of selecting a sequence of com-
pounds of the same class with orientation phase transi-
tions of the same structure but with spontaneous reori-
entation temperatures that differ by more than an order
of magnitude. For good reason, the effects under dis-
cussion are more correct to analyze for a series of pre-
cisely one-type magnets rather than for substituted or
isomorphous substances. Such a seriesis convenient to
characterize by the dimensionless relative temperature
of spontaneous reorientation T = Tr/ Ty, Where Tg =
(T, +T,)/2[4, 5]. All rare-earth meta orthoferrites can
then be arranged in aseries between two limiting values
of this parameter, T = 0 and T = 1. These T values
correspond to the (also limiting) /Xy = 0 and X;/Xp =1
ratio values, respectively, aa T=0and T = Tj.

If the whole series of rare-earth metal orthoferrites
is considered, at least two questions arise. First,
whether or not in al (if not in al, then in what) rare-
earth metal orthoferrites, the longitudinal susceptibility
inthe H —= 0 limit plays a noticeable role in the for-
mation of the soft mode frequency. Secondly, what role
is played by longitudina susceptibility in the vicinity
of the I y(F,, G,) ~—— Mxu(Fy 2, Gy ,) orientation phase
transition, where the field and the temperature of the
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transition change aong the line of this second-order
orientation phase transition in opposite directions and,
therefore, give opposite contributions to the effects
caused by longitudinal susceptibility.

The contribution of longitudinal susceptibility to the
dynamics will be estimated by the values of the dv,/0H
(H — Q) derivatives and dv /0T (T — Tg) deriva
tives related to the former by the phase diagram. The
measurements performed earlier for several rare-earth
metal orthoferrites RFeO; (R =Yb, Tm, and Er) [6, 7]
covered the range 1 = 0.01-0.15 but gave no indica-
tions that these derivatives differed from zero up to
10 kOe fields. Clearly, this excludes the possibility of
detecting the effects under discussion also in NdFeO,,
whose 1t equals0.17 [8]. All the other rare-earth metal
orthoferrites except SmFeO; (R = Th, Dy, Ho, etc.) in
which spontaneous reorientation occurs have still lower
T parameter values. Samarium orthoferrite isthe only
rare-earth metal orthoferrite in which the I', phase
exists at temperatures above room temperature, and T
amountsto approximately 0.8. The estimate obtained in
[1] from the temperature dependence of the X, /X ratio
shows that thisratio is about 0.7 in SmFeO;; that is, it
iscloseto its maximum limiting value /X = 1. Pre-
vious attempts at reproducing the spectrum of the soft
magnetoresonance mode of SmFeO; by traditional
methods were, however, unsuccessful because of a
number of technical and physical difficulties, the over-
coming of which required additional efforts.

Traditional measuring cells for low-temperature
measurements could not be used in experiments with
SmFeO;, whose spontaneous phase transition tempera-
tures T, and T, exceeded 400 K. This required the
development of wide-band waveguide cells with con-
trolled heating that would allow temperature to be sta-
bilized and scanned in afairly narrow range.

It isknown that the paramagnetic subsystem of rare-
earth metal ferrites (the f subsystem) can cause substan-
tial damping of oscillations of ordered d subsystem
spins. Damping increases as temperature grows. For
this reason, it can result in a substantial broadening of
magnetoresonance lines in SmFeO; and, eventualy,
weakening of the effects under consideration. This
proved to bethe principal difficulty of experimentswith
thismagnet. To overcomeit, special attention was given
to the quality of the sample. We selected a high-quality
crystal about 1 mm? in volume whose shape was diffi-
cult to identify with any geometric figure.

The samplewas glued at its ac planein the center of
a piston that short-circuited a rectangular waveguide
with oscillations of the Hy, type. We selected the “less
favorable” I y(F,, Gy) < Mxu(Fy 2 Gy o) transition for
measurements, which allowed us to answer both ques-
tions raised above in an experiment with a single sam-
ple mounting. The mutual orientation of the F vectors
and the magnetic component of a microwave field h
optimal for the observation of absorption linesisF O h.
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The F vector and ¢ axis were therefore directed along
the narrow waveguide cross section. In addition, the
accuracy of the orientation of the field along the corre-
sponding crystal axes is of fundamental importance in
measurements of this kind. The orientation phase tran-
sition under consideration is induced by field H || c. In
our experiments, the required accuracy of orienting H
along c¢ (within approximately 20 minutes of arc) was
attained by the traditional method based on a high sen-
sitivity of the spectrum of a soft magnetoresonance
mode to deviations of the field from crystal axesin the
ac plane[1].

M easurements were performed on the direct ampli-
fication spectrometer that was used in all our previous
experiments and operated in the reflected power mode.
Special measures were, however, taken to increase its
sensitivity and resolution by more than an order of mag-
nitude. The most important step of modernization wasthe
use of a modulation mode in which magnetic field was
modulated but temperature scanned. The external mag-
netic field remained constant, and its value was set as a
parameter in each particular case. Asaresult, we recorded
the derivative of the absorption line with respect to tem-
perature. Outside the immediate vicinity of orientation
phase trangitions (approximately +3% from T,,), the half-
width of resonance lines aong the temperature axis was
on average not larger than 10 K.

The use of the improved procedure alowed us to
attain virtually the same accuracy of measurements as
in similar experiments on the other rare-earth metal
orthoferrites[1, 6, 7]. Thisinthefirst place refersto the
accuracy of determining energy gap values at transition
points (the error did not exceed +2.5 GHz for gaps
27-50 GHz wide). Our ultimate goal was not only to
determine the width of gaps but to measure its depen-
dence on external field and temperature, and the range
of gap measurements had to ensure that gap variations
be substantially larger than the error of measurements.
It will be shown that this requirement was satisfied
by temperature variations in the range 400490 K and
by using fields up to 12 kOe.

3. EXPERIMENTAL RESULTS

An analysis of thetotality of resonance experiments
inthevicinity of field-induced orientation phase transi-
tions in rare-earth metal orthoferrites and isomorphous
weak ferromagnet Fe;BOg [9, 10] revealed one remark-
able feature of the spectrum of the soft mode important
for the purposes of this work. The experimental points
in the temperature and field dependences of soft mode
resonance frequencieslay very closeto straight lineson
both sides of the orientation phase transition line. This
allowsreliable results to be obtained by linearly extrap-
olating experimental dependences, if necessary. The
H-T phase diagrams of rare-earth metal orthoferrites
exhibited similar behavior; they also had the form of
straight lines, at least, for H —= 0.
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Examples of the recorded derivatives of absorption
lines with respect to temperature obtained in a 6 kOe
field at variousfrequenciesare shownin Fig. 1. Theleft
and right lines in each record refer to absorption in the
I,, and I, phases, respectively. Circles correspond to
the centers (maxima) of absorption lines. Thetotality of
such records obtained at many radiation frequencies
were used to reproduce the temperature-field depen-
dences of soft magnetoresonance modes. As follows
from Fig. 1, the temperatures of the maximaof theright
and | eft absorption lines approach each other asthe fre-
guency decreases. Theoretically, they should coincide
at the frequency which is the energy gap in the spec-
trum of homogeneous spin waves. The temperature of
the maximum of the absorption line for this frequency is
the temperature of the orientation phase transition. How-
ever practicdly, the gap in SmFeO; can only be deter-
mined by extrapolation (see above), because compara-
tively broad resonance lines overlap each other when the
system approaches the orientation phase transition point
(seerecord 3 in Fig. 1), and determining the positions of
the centers of the resonance lines becomes problematic.
This prevents adirect reproduction the magnetoresonance
spectrum in the immediate vicinity of the orientation
phase trangtion, athough in reality, the width of this
“inaccessible” region is comparatively small and does
not exceed +2% of T,.

The temperature-field dependences of soft mode fre-
quencies in the vicinity of the induced I'y(F,, G,) ~—
IMo4(Fx 2 Gy ) orientation phase transition at two exter-
nal field values, 4 and 6 kOe, are shown in Fig. 2. Sim-
ilar dependences were obtained at the other external
field H values (0.1, 2, 8, 10, and 12 kOe). In these
experiments, experimental values lie close to straight
lines. Thisdlows usto reliably perform linear extrapola
tions of the temperature dependences of resonance fre-
quencies on the sides of the I'y(F,, G,) and M x(F », Gy )
phases up to their intersection at the transition point. As
a whole, the spectrum of the soft mode assumes the
shape of a*“frequency wedge” whose cusp indicatesthe
T, induced transition temperature (such a wedge was
observed in al earlier measurements of this kind). In
addition to T, the position of the intersection point
unambiguously determines the absolute energy gap v,
value in the spectrum of spin waves in a given external
field. Processing energy gap values obtained in this way
by the method of least squares shows that the correspond-
ing values are best described by a linear temperature
dependence with the slope dvy/0T = —-0.47 GHz/K.
Figure 2 shows that gap v, increases amost twofold
(approximately by 25 GHz) as temperature lowers from
460t0410K. Thisincreaseisan order of magnitudelarger
than the error of energy gap measurements. Note that the
0v,/0T derivative is negative (Fig. 2).

The H-T phase diagram of SmFeO; in field H || ¢
constructed based on the data given in Fig. 2 is shown
inFig. 3. Thisdiagram correspondsto the field-induced
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Fig. 1. Absorption signal derivatives with respect to temper-
ature in a 6 kOe magnetic field recorded at frequenciesv =
68.22 (1), 56.07 (2), and 47.4 (3) GHz; Aisthe amplitude of
absorption signal derivative in arbitrary units; open circles
are resonance absorption maxima on the temperature axis;
portions of resonance linesthat cannot be observed experimen-
tally because of their interference near the orientation phase
trangition point are shown by dashed linesfor record 3.

v, GHz
70

60

50

40

30

1
440
T,K

| |
410 420 430 450

Fig. 2. Temperature dependences of soft mode frequencies
at points of ' ;4 4 reorientation completion in SmFeO5 in
fieldH || c (fields (@) 4 kOe and (m) 6 kOe) and () temper-
ature dependence of energy gap under the same conditions
in external fields H (kOe): (1) 0.1, (2) 2.0, (3) 4.0, (4) 6.0,
(5) 8.0, (6) 10.0, and (7) 12.0.

M4(F, Gy) = IMxu(Fy » Gx ) orientation phase transi-
tion, and the extrapolation of the line of this transition
to H = 0 gives the temperature of the spontaneous ori-
entation phase transition of the same structure, T, =
(458 = 3) K. Note that the T; and T, values and, to a
lesser extent, Ty in rare-earth metal orthoferrites
depend on the procedure for the preparation of their
single crystals, purity of the starting material, and, ulti-
mately, the quality of samples used in actual measure-
ments. For thisreason, if all temperature parametersare
taken from various sources rather than measured for the
same sample, calculations inevitably include the corre-
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Fig. 4. Field dependence of soft mode gapsat pointsof o4 4
spin reorientation completion in SmFeO3 infield H || c.

sponding errors and give parameter estimates rather
than parameter values. We aso do not claim that our
results are anything more than mere estimates. For this
reason, taking into account that AT =T, — T, isaways
much smaller than Ty, we assumed that T, = T, to
obtain the T = 0.8 estimate for SmFeO; (see above).

The field dependence of the energy gap, also con-
structed based on the data given in Fig. 2, is shown in
Fig. 4. When H —= 0, thisdependenceis characterized
by the dvy/dH = 1.52 GHz/kOe derivative. The data
correspondingto T — T, (Fig. 2) or H — 0 (Fig. 4)
can be used to determine the “sarting” energy gap for
the 4(F,, G,) I 24(Fy » Gy, ,) Spontaneous orientation
phasetrangtion. Thisenergy gap equals(27.7 £ 2.5) GHz,
which is substantially smaller than the value obtained
in our earlier work [3] (about 40 GHz) with the use of
the traditional procedure (by temperature variations in
zero field) characterized by lower sensitivity and reso-
[ution. On the other hand, the gap value may, as men-
tioned above, be noticeably influenced by the quality of
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the initial single crystal used to prepare the sample. In
[11], even a method for indirectly estimating unifor-
mity of rare-earth metal ferrite crystals by gap sensitiv-
ity to external field orientation was suggested; accord-
ing to [11], more magnetically perfect crystals have
narrower gaps.

Attention should be given to at | east three features of
the results obtained in this work. First, as expected, the
energy gap in the spectrum of SmFeO; spin waves sub-
stantialy depends on temperature and magnetic field
even inthe H — O limit; that is, in the vicinity of the
spontaneous orientation phase transition. Samarium
orthoferriteisthe only rare-earth metal orthoferrite that
exhibits this effect. The results of this work in combi-
nation with those reported earlier for the other rare-
earth metal orthoferrites and isomorphous Fe;BO;
actually put astop to discussing possibilities of observ-
ing longitudinal susceptibility contributions to gaps in
the vicinity of spontaneous orientation phase transi-
tions in the other rare-earth metal ferrites. Indeed, on
the spontaneous reorientation temperature scale, there
is no rare-earth metal orthoferrites between NdFeO,
and SmFeO; with suitable T4 values. In afurther study
of the problem for rare-earth metal orthoferrites, the
gap can only be filled by mutual substitution of rare-
earth meta ions with competing anisotropy, for ingtance,
by substituting Tm3* for Smd*.

According to one more important observation made
in this work, the energy gap increases as temperature
lowers (we have aready mentioned that the 0v,/0T deriv-
ativeis negative). At first sight, this contradicts the theory
suggested in [1], according to which temperature (longitu-
dinal susceptibility) and field act in one direction and
increase the energy gap. In redity, the observed gap wid-
ening under the conditions of differently directed external
parameter actions isthe result of competing contributions
of T and H into the gap value. Thefield contribution to v,
is poditive and larger in magnitude, which is responsible
for the resultant gap increase observed experimentally.
Note that the incommensurateness of the temperature
and field contributions to such a dynamic characteristic
as the gap is predetermined by the static parameters of
the magnet reflected by its H-T phase diagram. If the
H-T phase diagram is qualitatively and quantitatively
similar to that shownin Fig. 3, thetemperature and field
contributions will always be incommensurate, and the
effect will gpparently beafield effect evenwhenH — 0.
Note that the point in question is longitudinal suscepti-
bility-induced gap changes rather than the gap value
itself. Observing gap changes, however, requiresfulfill-
ing the conditions at which this effect can in principle
be observed. In our view, thisis only possible if 1 2
0.4-0.5, considering the present-day level of experi-
mental studies.

Lastly, the third point to be mentioned isthat gap v,
beginsto increase in afield starting with itsfairly large
value at H = 0. This means that the results of this work
cannot be correctly described by either the theory sug-
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gested in[1] or thetheory suggested in[3]. A more gen-
eral theoretical model isrequired to simultaneously and
most completely take into account interactions between
various magnet vibrational subsystems and the contri-
butions of both precession and longitudinal magnetiza-
tion oscillations to the dynamics of a magnet. Funda-
mentals of such a theory were developed and summa-
rized in [4]. We will use this theory to interpret the
experimental results obtained in this work.

4. THEORY

Samarium orthoferrite is an orthoferrite with a non-
Kramersrare-earth metal ion (with an odd number of 4f
electrons). The phenomenological free energy density
of such ferrites is given by Egs. (3.1)—3.7) from [3].
Because it follows from experiment that the influence
of longitudinal susceptibility on the spectrum of cou-
pled vibrations is strong in samarium orthoferrite, we
should abandon the approximation of equal and con-
stant magnetizations of the d and f subsystem sublat-
ticesin describing its dynamics (condition (3.5) in [3]).
For this purpose, the equation for free energy F density
should be augmented by the term

1 2 1 a 1 22

2AlG + 4AZG + 2D GF (D)
(see the equation for free energy density of a two-sub-
lattice antiferromagnet [4]).

Consider the equilibrium state corresponding to the
I, phase. The corresponding samarium orthoferrite equi-
librium parameter values arefound by minimizing thefree
energy. The minimization results are asfollows.

Fe=F,=f,=f,=G, =G,

=c=c=cC=uU=0 (i£k), @
Fz = FOa Gx = GOi fZ = fO’
- HH*BGy

Fo = Xo(2MoH —dGy), f, ¥
3

The modulus of the antiferromagnetic vector of the f
subsystem is found from the equation

[AL+ AGg + D'Fo + 2(Byy Uy + BioUy + Bializ,) ] Gy

= NB, f,—dF,,

and the equilibrium components of the deformation
tensor u?i are given by Egs. (3.8a) from [3]. In Eq. (2),
Xo = (A + D'G)) is the transverse susceptibility of
samarium orthoferrite. The other denotations coincide
with those used in [3]. As digtinguished from [3], ground
gtate (2) iswritten here using the condition of smallness of

the isotropic exchange coupling constant (a) between the
d and f subsystems from the outset.
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An anaysis of the matrix of the second derivatives of
free energy density, which should be positive semidefinite,
yields the following stability condition for phase I,

NBXGOHZH
A3 ©)
+2MoHX(2MoHN —dG,) = 0,

KacGg +

wheren = 1-x,/Xoand x; = [A+ (D + D') Gy ] isthe
longitudinal magnetic susceptibility of samarium orthof-
errite. The other denotations coincide with those used in
[3]. The equality signin Eg. (3) determines the orienta-
tion phase transition point from the collinear I, phase
to the canted ", phase.

The dynamic properties of the I', samarium orthofer-
rite phase will be described with the use of the Landau—
Lifshitz, dasticity, and Maxwell equations, see
Egs. (3.13)«3.18) in[3]. Inthe Landau—L ifshitz equation,
relaxation terms (3.14) [3] will be replaced by relaxation
terms of amore genera form, which describe both trans-
verse and longitudina relaxations in the f and d sub-
sysems[12]:

R(x,y, Fy Fy) = =\oFy

~ALOCHY)F +2(x )R} —(Ag=A) @)
x{X(x [Fy) +x(y [F,) +y(x [F,) + y(y [F,)},

where A\, ; | are the relaxation parameters (Ao ;| =
Nio, iy | for the f subsystem and/\, ; | = Ago, ; | for thed
subsystem). For the f subsystem, x, y in Eq. (4) equals
f, ¢ in the Landau—Lifshitz equation for ferromagnetic
vector f, and X, y = ¢, f in the Landau-Lifshitz equation
for antiferromagnetic vector ¢, and F, = dF/dx. For the
d subsystem, f; cin Eqg. (4) should be replaced by F and
G, respectively.

It has been proved in [4] that, if longitudinal relax-
ation is taken into account and the assumption of equal
and constant magnetization moduli of the d and f sublat-
tices is abandoned, the classical LandauLifshitz equa
tions remain applicable to the problem of describing the
dynamic properties of magnets (also see[13, 14]).

After the linearization of the system of coupled
equations near equilibrium (2), we obtain the following
dispersion equation for coupled harmonic wavesin the
I, phase that propagate along the z axis:

(1-n)o” +i[A(1—n)(wy s + Wyy)

+ Ag0e(2-N)]w" = [ (05 + 07)(1-n) + Ajwg

+/\?w1fw2f(l_n) + A Ag(1—N) (05 + Wyp) W
g ,
x(z—n)]ws—ng\f(l—n)(wlf + 0, ¢) (00 — WeWig)
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The other denotations coincide with those used in [3].
For simplicity of deriving the dispersion equation, the
assumption A; = Ag = B, = 0 made in [3] was aug-
mented by the assumption p,, = Hy, = 1y, = Yy = 0.

For a comparison with experiment, we will only
give solutions to dispersion equation (5) corresponding
to elementary excitations of magnetic subsystems
when k — 0. These solutions are

W 5 = S0+ o £ [(@] -0+ 4wocwe] 1 (6)

2.
W3 = _|/\d005[00§ — WeWyip — wﬁ(l— n) — WeWiq
+ 0 (W + Wp) (NWy + Wp)/ W] (7)

X {(1-1)[00] — eworg]} -

Thefirst two branches correspond to precession and the
third one, to relaxation oscillations of magnetic sub-
systems. For simplicity, damping of precession oscilla-
tions was not taken into account in Eq. (6).

5. A COMPARISON OF THEORY
AND EXPERIMENT. DISCUSSION

According to the experimental results, spontaneous
orientation phase transitions occur in samarium orthof-
errite at high temperatures, T > 400 K. Asisknown [3],
the f subsystem parameters and interactions of thed and
f subsystems do not exceed several kelvinsin tempera-
ture units. It follows that, for samarium orthoferrite in
the region of orientation phase transitions, the approxi-
mations

fo<1, A=T (8)

are fairly accurate. Inequality (3) can then be used to
obtain the following equation for field H, at which
induced orientation phase transitions occur [the equal-
ity signin Eq. (3)]:

We (EMowp + U NGB, f

Hy

" BgMonL D e T U
2_12 ©)
_169M0r] KacG‘O _B'ZMOOOD + p‘ZNGOBXDD
W 0w T DE

The anisotropy constant K. tends to zero in the region
of a spontaneous orientation phase transition [2], and,
at low external fields, Eq. (9) can therefore be consider-
ably simplified,

MOKach
2Mwp/we + P,NGB, /T

Assuming that the second term in the denominator of
Eq. (10) is small compared with the first one at high

H, =

(10)
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temperatures (T > 400 K) allows the equation for the
transition field to be further simplified to

MoK ..Gq

H, = — .
” 2M owp/ W

(11)

According to [3], the K. anisotropy constant linearly
dependson temperature in rare-earth metal orthoferritesin
the region of spontaneous trangitions. The induced orien-
tation phase trangition field (11) should then also linearly
depend on temperature. Such a dependence is indeed
observed in experiments (Fig. 3). Unfortunately, because
of the absence of exact experimental values for the quan-
tities present in Egs. (9)—(11), we cannot perform a
more rigorous comparison of theory and experiment.
To further simplify Egs. (6) for precession spin oscilla-
tion frequencies, consider two limiting cases.

At wy < wx, solutionsto Egs. (6) have the form

2 2
Wy = Wy T WeWyg,

, ) (12)
Wy = Wi —WeWig,
whereas at wy > x, they become
W = w?szwfd,
“ (13)
- -0

d

It follows from Egs. (12) and (13) that the soft modein
samarium orthoferrite can be either a d subsystem (12)
or an f subsystem (13) mode depending on the ratio
between the vibrational frequencies of the f and d sub-
systems. According to [3], rare-earth metal modes are
not resolved experimentally in rare-earth metal orthof-
errites because they are strongly damped (f mode
damping is on the order of magnitude of its frequency).
It is therefore natural to suggest that the mode mea-
sured experimentally for samarium orthoferrite is a d
subsystem mode, that is, the condition wy << w is ful-
filled, and the soft modeintheregion of thel , ~— T,
orientation phase transition is a d subsystem mode. At
the induced ', —— I,, phase transition point [the
equality sign in Eqg. (3)], the soft mode (12) frequency
isthen given by

1/2
Va = [0p(Wres + 00gp) + 005y (1-1)] /21 (14)

As not all samarium orthoferrite parameters were
measured experimentally, let us approximately esti-
mate the we and wy), frequencies from [3, 15]: we = 2 x
10* s and wy), = 8 x 107 s%. The magnetoelastic fre-
guency in rare-earth metal orthoferrites is usually sev-
eral times or even an order of magnitude lower than the
dipole frequency [3]. It followsthat, at the spontaneous
orientation phase transition point (H = 0), the soft mode
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frequency (14) of the d subsystem approximately

equalsvg = ,/wgWwy;, /2= 20 GHz. Thisvalueis close
to thevy = 27.7 GHz experimental value (Fig. 4).

According to Eq. (14), the characteristic tempera-
ture dependence of the soft mode frequency shown in
Fig. 2 can be explained by the temperature depen-
dences of the H, induced orientation phase transition
field and longitudinal susceptibility. We assume that lon-
gitudinal susceptibility weakly depends on temperaturein
the temperature range 400450 K. The linear temperature
dependence of frequency (14) should then be explained by
a similar temperature dependence of trangtion field (11).
It also follows from Eq. (14) that the soft mode frequency
increases with increasing the phase transition field. This
conclusion is also in agreement with the experimental
dependence (Fig. 4).

Consider the behavior of the relaxation branch of
quasi-spin oscillations in the region of an orientation
phase trangtion. At the orientation phase transition point
(g, = 0), the equation for the relaxation branch (7) fre-
guency hasthe form

2 .
W3 = -1\

X [ WgWmes + Wy (Wy + Wp)(Nwy + wp)/we]  (15)

X { (1= 1) [0e(Wres + Wgip) + WH(L—1)]}

It follows from Eq. (15) that the relaxation branch has
activation determined by magnetoelastic and dipole
contributions at the orientation phase transition point.
Unlike the corresponding frequency in [1], frequency
(15) does not vanish at the orientation phase transition
point even in the absence of magnetoelastic coupling.
Relaxation branch activation is then determined by
coupling between magnetic subsystem oscillations and
electromagnetic waves. At the spontaneous orientation
phase transition point at H = O, relaxation branch acti-
vation in the absence of magnetoelastic coupling is
determined by the Dzyal ochinski interaction.

Asthe wy, w,, and w; branches (6), (7) are activation
at the orientation phase transition point, quasi-elastic
modes with k — 0 play the role of soft modes. This
situation was described in detail in [4] for atwo-sublat-
tice antiferromagnet.

6. CONCLUSION

To summarize, we experimentally and theoretically
proved that all characteristics of the spectrum of spin
oscillations observed for samarium orthoferrite in the
region of the I'y(F,, G,) —— Mx(Fy - Gy ) orientation
phase transition induced by an external magnetic field
can be explained by the ratio between the contributions
of orthoferrite subsystem interactions and longitudinal
susceptibility. We for thefirst time showed that the con-
tribution of longitudina susceptibility to the soft magne-
toresonance mode gap in samarium orthoferrite can be
substantia in low fields; that is, in the vicinity of sponta-
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neous orientation phase trangtions. This is explained by
the occurrence of spontaneous orientation phase transi-
tions in samarium orthoferrite at high temperatures, at
which longitudinal susceptibility iscommensurate with
transverse susceptibility.
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Abstract—A study is made to analyze the possibility of using the soft-potential model in optical investigations
of disordered molecular systems with impurities. A procedure is suggested for calculating the temperature
dependence of the homogeneous width of a phononless line in amorphous media with impurities within the
soft-potential model. A calculation is performed of the temperature dependence of the width of a phononless
line (optical dephasing) in an amorphous system of polymethyl methacrylate (PMMA) with an addition of tetra-
tert-butylterrylene (TBT) using the parameters of this system known from the literature. Calculations are per-
formed of the contributionsto the width of aphononlessline dueto theinteraction of an impurity with tunneling
two-level systems, with thermally activated barrier crossings in double-well potentials, and with quasilocal
modes of the matrix. Themodel cal culation results are compared with the experimental data on the photon echo
for TBT/PMMA, measured by us in the temperature range from 0.3 to 20 K. It is found that the soft-potential
model describes qualitatively correctly the temperature behavior of the homogeneous width of a phononless
line. In the temperature range of T < 2 K, where the main contribution to optical dephasing is associated with
tunneling two-level systems, the predicted values of phononless line width agree well with the experimental
data. At higher temperatures, some difference is observed between the prediction and experimental data, which
may be due to the effect of impurity on the formation of quasilocal oscillation of the matrix. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The results of numerous investigations of amor-
phous materials for the last three decades have demon-
strated that, at low temperatures, these materials exhibit
anumber of propertiesthat differ considerably from the
characteristics of analogous materials of ordered struc-
ture. Asearly asin 1971, Zeller and Pohl [1] have found
that, at temperatures below 1 K, amorphous materials
exhibit alinear temperature dependence of heat capac-
ity and a quadratic temperature dependence of thermal
conductivity, as distinct from a cubic dependence for
both characteristics of the same materialsinthe crystal-
line state. L ater, other low-temperature singularities of
amorphous materials were found, distinguishing these
materials from crystals. A number of theoretical mod-
els were suggested for describing the anomalous
behavior of disordered condensed mediaat |ow temper-
atures. The widest acceptance was gained by a model
based on the concept of “tunneling” two-level systems,
suggested by Anderson et al. [2] and, independently, by
Phillips [3]. Within this model, the properties of amor-
phous media at temperatures below several kelvins are
due to the presence in such media (in addition to
phonons) of characteristic low-energy excitations asso-
ciated with transitions (tunneling) of groups of atoms
or molecules between two local minimaformed on the
surface of the potential energy of disordered media. As
distinct from phonons, which are collective excitations,

the excitations in two-level systems are localized. The
density of states of two-level systems as a function of
their energy is amost constant and, at T < 1 K, consid-
erably exceeds the density of phonon states. In spite of
its simplicity, the model of tunneling two-level systems
describes well most of the effects observed in experi-
ments with amorphous materials at temperatures below
severa kelvins (see, for example, the monographs [4-6]
and the references cited there).

Amorphous materials exhibit a number of universal
anomal ous properties which distinguish these materials
from ordered substances at higher temperaturesaswell.
Such propertiesinclude, for example, the additional (to
acoustic phonons and two-level systems) contribution
to the heat capacity at temperatures from several
kelvins to several tens of kelvins[7], the presence of a
plateau in the curve of temperature dependence of ther-
mal conductivity in the region of 10 K [8], a linear
decrease in the sound velocity with increasing temper-
ature in the region above severa kelvins [9], the pres-
ence of the so-called boson peak in the low-frequency
Raman scattering [ 7], and a number of other effects. In
so doing, the modd of two-level systems provesinade-
guate for describing the properties listed above. This
fact, as well as the results of investigations of inelastic
scattering of neutrons in amorphous materials [10, 11],
point to the existence of other low-energy excitationsin
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these materials, in addition to phonons and two-level
systems.

In order to describe the anomalous properties of
amorphous materials in awider temperature range, the
soft-potential model has been suggested and is used
extensively at present (see the paper by Karpov et al.
[12]). According to this model, quasilocal low-energy
excitations of two more types exist in amorphous
media, in addition to phonons and tunneling two-level
systems. By analogy with two-level systems, these
additional excitations are interpreted as motions of
groups of atoms or moleculesin local minimaof poten-
tial surface. These are, firstly, relaxation systems in
which (as distinct from two-level systems) thermally
activated barrier crossings between two wells occur
rather than simply tunnel transitions. Secondly, these
are quasilocal low-frequency harmonic oscillators
which, within the soft-potential model, are realized in
single-well potentials. The density of states of har-
monic oscillators is close to zero at low temperatures
and increases with energy. According to the soft-poten-
tial model, it is the relaxation systems and harmonic
oscillators that are responsible for the anomalous prop-
erties of amorphous materials at temperatures above
several kelvins. The potentials, in which two-level and
relaxation systems and harmonic oscillators are real-
ized, are “soft” in the sense that external stresses trans-
form them readily to one another. The soft-potential
model reproduces the results of the standard model of
tunneling two-level systems at low temperatures and, at
the same time, describes well numerous phenomenain
glasses at higher temperatures (up to tens of degrees
and more) [13-16].

It is known that valuable information about the
dynamics of condensed media may be obtained from
the optical spectra of impurity atoms or molecules
(impurity centers), minor amounts of which are intro-
duced for this purpose into the material being studied.
The dynamic processes in the matrix show up espe-
cialy clearly in homogeneous broadening of phonon-
less lines in the spectra of impurity centers. The inves-
tigation of the temperature dependence of the phonon-
less line width may enable one, for example, to obtain
important information about the mechanisms of optical
dephasing in the system being studied. Such investiga-
tions of amorphous media became possible only as a
result of development of selective spectroscopy tech-
niques; these techniques help eliminate substantial
inhomogeneous broadening of spectra and revea nar-
row phononless lines. Numerous researchers used the
method of burning stable spectral holes [17, 18] and
photon echo [19, 20] to find that, at low temperatures
(below 4-5 K), the measured width of phononless line
in amorphous media was one-two orders of magnitude
greater than that in crystals and exhibited atemperature
dependence differing considerably from that in the case
of crystals [21]. In amorphous media at low tempera-
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tures, this phononless line width usually varies by the
law

roTY, where 1<a <2,

while in the case of crystals at the same temperatures
one must expect a power dependence with a = 7. In
order to interpret these facts in analyzing the spectra of
impurity glasses and polymers, extensive useis made at
present of a theory based on the model of tunneling
two-level systems, which describeswell the behavior of
the line width at temperatures below severa kelvins
(see, for example, the review [22] and the references
cited there). However, thismodel provesinadequate for
describing the line broadening at higher temperatures
(above 4-5 K). Therefore, in order to describe experi-
mental data on line broadening at the above-identified
temperatures, the interaction of an impurity center with
some quasilocal oscillation at a frequency of 10-30 cn?
is usually included in treatment [23, 24]. In so doing,
the very existence and nature of this oscillation are not
clear, as a rule, because this oscillation is not usually
observed in spectra in the explicit form. At the same
time, the soft-potential model naturally includes such
excitations and yields concrete predictions of the den-
sity of their states. However, asfar aswe know, the soft-
potential model was not used until very recently in opti-
cal investigations for describing the temperature broad-
ening of a phononless line (the sole exception is the
study [25]: see below). Therefore, it is of doubtless
interest to check the validity of this model for describ-
ing the processes of optica dephasing in impurity
amorphous materials.

Recently, we have used the photon echo method to
obtain data on temperature broadening of a phononless
line (optical dephasing) in the spectra of impurity
molecular systems in a fairly wide (0.4 to 50 K) tem-
perature range [26, 27]. In this paper, we will treat in
more detail the experimental data on the temperature
behavior of the width of a phononless line in one of
impurity amorphous systems such as polymethyl meth-
acrylate (PMMA) with an addition of tetra-tert-butyl-
terrylene (TBT) and analyze these data using the soft-
potential model. Our main objective will beto ascertain
the possibility of using the soft-potential model to
interpret the experimental data. The above-identified
system has been selected because all of the parameters
required for model calculations are known for this sys-
tem. Because in this study we have analyzed the data
obtained in a relatively wide temperature range, we
have included in the treatment all mechanisms of
dephasing, which, in our opinion, may show up in the
temperature range being investigated. We have treated
the contributions made by tunnel transitions and barrier
crossings in double-well potentials, as well as the con-
tribution made by quasilocal low-frequency harmonic
oscillators in single-well potentials. For comparison
with the experiment, we have calculated the tempera-
ture dependence of the phononless line width, proceed-
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ing only from the parameters of the system being ana-
lyzed known from theliterature (instead of approximat-
ing the experimental data by way of fitting of the
respective parameters, asthiswas done, for example, in
[25]). All of the quantities required for calculations
were borrowed from the literature, where they were
obtained from experimental data using other physical
methods.

Beforeturning to treatment of the calculation results
and their comparison with experimental data, we will
treat briefly the salient points of the soft-potential
model and derive some relations for the homogeneous
width of phononless line within this model.

2. SALIENT POINTS
OF THE SOFT-POTENTIAL MODEL

According to the soft-potential model [12] (see aso
[28] and thereview [29]), additional (to ordinary phonons)
quasilocal low-frequency excitationsin amorphous media
are described by the Hamiltonian of anharmonic oscilla-
tors

~ _ B
H = Mg, +V(X) (1)

with the effective mass M and potential energy in the

form of the fourth-degree polynomial
v = g e+ 005 @

Here, Eyisan energy of the order of the binding energy
of glass-forming atoms (molecules), X is the general-
ized coordinate, and a is the characteristic length of the
order of the interatomic distance. The values of the
dimensionless parametersn and & arerandom, whichis
due to the structure inhomogeneity of the medium. Itis
assumed in the model that the distribution of the above-
identified parameters has the form [30]

thus, [n|, |§] < 1. The function Py(n, &) is usualy
assumed to be aconstant. The characteristic scale of the
dimensionless quantity n defining the height of the bar-
rier between wells in potentia (2) is described by the
small parameter of the model,

n. = (h42ma’Ey) " = 1072,

where mis the average mass of glass-forming atoms.
The scale of energies is defined by the quantity W,
which characterizes the spectrum of levelsin potential

(2an=¢&=0,
W = Eoni = kg T,
where kg is the Boltzmann constant and T is the char-

acteristic temperature which, for different materias, is
in the range from 2 to 10 K.
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Fig. 1. A sketch of energy levelsin asoft double-well poten-
tial given by Eq. (1) for different values of the parametersn
and &, and the types of possible transitions: (a) region of

two-level systems, with n = —4n_ and § = 0.2,/n;
(b) region of relaxation systems, with n = —4n_and & =
3,/n_; (c) region of harmonic oscillators, withn = 4n_and

&= /..

The form of potential (2) is defined by the relative
magnitude of the parameters n and §. It may be both
double-well and single-well. If the asymmetry of adou-
ble-well potential is much less than the distance
between levels in a single well, two lower levels in
potential (2) form atwo-level system (Fig. 1a) with the
distance between the levels [31] of

E = JJ?+A% (4)

where
reweel SR

isthe tunnel splitting and

_ W g dnlg”
J2,/n b
is the asymmetry (difference between the energies of

two minima). The height V of the barrier between the
wellsis defined by the expression

_ wgn f
V = 2000 ()
According to the soft-potential model, the distribution

function of the above-identified two-level systemswith
respect to the parameters E and p has the form [13]

3P 52
%Bﬂ o 1 |
pJy1-p

23 W
n

Prs(E p) = EJE),

(6)

where p = (J/E)

It follows from the foregoing data that the concept
of two-level systemsin the soft-potential model isclose
to that in the standard model of tunneling two-level sys-
tems. For example, the distribution given by Eqg. (6) dif-
fersfrom the respective distribution function adopted in
the standard model (see, for example, [5]) by the loga-
rithmic factor alone.
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In the cases when the asymmetry of a double-well
potential proves to exceed considerably the distance
between levelsin asingle well (Fig. 1b), the main con-
tribution to kinetic phenomena will be made by ther-
mally activated barrier crossings between wells, i.e.,
relaxation systems. The distribution of relaxation sys-
tems with respect to asymmetry (which, in this case,
coincideswith energy, asfollowsfrom Eq. (4)) and bar-
rier heights has the form [32]

Ponc” EIZ
W5/4V314'
The relaxation rate of relaxation systems is defined by
the expression

R(V) = Roexp(-V/kgT), )
where R, is a parameter of the order of 10%? to 10'3 st
[33].

One can readily see that, with positive values of

potential (2) is a single-well one, and only harmonic
oscillators may be excited in this potential. In so doing,
if n > n,, theanharmonicity isfairly low, and the oscil-
lation is amost harmonic, with the distance between

levels of
E = 2W,/n/n,

and the density of statesn(E) O E* [30]. With energies
above

Prs(E, V) = (7)

E, = 2.2W/A",

where A= 0.169(W/kgT,) and T, isthe vitrification tem-
perature, the interaction between harmonic oscillators
acquires considerable importance. In this case, quasilo-
cal excitation can no longer be regarded as indepen-
dent. New delocalized harmonic modes are character-
ized by the density of states n(E) [ E [16]. According
to the soft-potential model, the rearrangement of the
density of states of harmonic oscillators as a result of
their interaction is responsible for the emergence of a
boson peak in spectra of Raman scattering at frequen-
cies w = wy, = Ep/A. In accordance with [34], we will
treat E,, asthe upper limit of the energy of soft modes.

3. BASIC RELATIONS DESCRIBING OPTICAL
DEPHASING IN THE SOFT-POTENTIAL MODEL

In order to perform a quantitative analysis of the
temperature dependence of thetimes of optical dephas-
ing using the soft-potential model, one must have
appropriate expressions for the phononless line width,
derived within this model. Until recently, however, no
theoretical treatment of optical dephasing of electronic
transitions of impurity centers in an amorphous matrix
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were performed within the soft-potential model. As far
as we know, such treatment has been performed
recently only by Garcia and Fernandez [25] (see aso
[35]). They introduced a model Hamiltonian for an
impurity interacting with two-level systems and with
harmonic oscillators, within the soft-potential model.
Garcia and Fernandez derived expressions for the
phononless line width of impurity in an amorphous
matrix in two limiting cases, namely, for the interaction
of impurity with two-level systems and with harmonic
oscillators. In so doing, the expression which described
broadening caused by two-level systemswas derivedin
the so-called slow modulation limit. This approxima-
tion is valid when the time of experiment considerably
exceeds the characteristic times of the processes being
studied in an amorphous medium (for example, in
experiments in the burning of stable spectral holes). In
the case of photon echo used to obtain the experimental
data analyzed below, the characteristic time of experi-
ment is defined by the lifetime T, of excited state and
by the time T, of pure optical dephasing of impurity
molecules; this latter timeis, as arule, in awide range
of times of dynamic processes occurring in an amor-
phous medium. Therefore, in our case, it would be
incorrect to employ the formula derived by Garcia and
Fernandez [25] for the calculation of optical dephasing
caused by two-level systems. In addition, it must be
emphasized that Garcia and Fernandez [25] did not
treat the contributions to broadening due to relaxation
systems. For aqualitative analysis of experimental data
within the soft-potential model, we performed a more
general treatment and derived expressions for the tem-
perature dependence of the times of dephasing caused
both by tunnel transitions in two-level systems and by
barrier crossingsin relaxation systems. Our inferenceis
based on using the formula describing the decay curve
of photon echo in amorphous mediawithin the standard
model of two-level systems and stochastic model of
spectral line width [36]. We assume that the analytical
expression derived in the latter study, which alows
only for the interaction with tunneling two-level sys-
tems, may be further used to describe the broadening
caused by transitions in relaxation systems (with due
regard for the differencein the form of distribution and
in the relaxation rate between the two-level and relax-
ation systems), as was done by us.

According to the above-identified model [36], the
signal intensity of a two-pulse photon echo as a func-
tion of delay T is described by the expression [36]

1(1) = [exp(=T/T,)exp(-P(1))]%, 9
where T, isthe lifetime of excited state and

d(1) = 2%,T—Bp
10
y A sech?] E (10)
EQk T EiZk TD '
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In the latter expression, B is the constant of two-level
system—chromophore interaction, p is the density of
states of two-level systems, R is the rate of transitions
in a double-well potential, and

F(& x) = 2~

) (11)
X [AXTo[E(x=2X)IX[1o(X) + 1, ()],
0

where 4(2) and I,(2) are modified Bessel functions of
the first and second kind. The averaging in expression
(20) indicated by angle brackets is performed by the
parameters of double-well potentials.

Note that the decay curves of signals of photon
echo, calculated by expression (9), generally speaking,
are not exponential; therefore, the resultant decay
curves give an ambiguous value of the time T, of opti-
cal dephasing. We determined the time of optica
dephasing by way of approximating the calculated
decay curves of photon echo signal by the closest expo-
nential dependence with the effective time T,, in the
same manner as this was done by Naumov et al. [37,
because this method is as close as possible to the pro-
cedure usually employed in cal culating the time of opti-
cal dephasing by the experimentally obtained curves of
photon-echo decay.

In the case of a single-phonon mechanism of relax-
ation of a two-level system, the relaxation rate is
defined by the expression [38]

R(E) = CJ’Ecoth(E/2kgT),

where

has the meaning of the constant of two-level system—
phonon interaction, p' isthe density of the medium, and
N, and v, denote the elastic constant and the rate of
propagation of elastic vibrations in the medium for
waves of different polarizations, respectively. We cal-
culated the contribution to optical dephasing due to
interaction between the impurity and two-level systems
as was done by Geva and Skinner [36]; in our case,
however, the averaging over the parameters of two-
level systemswas performed using distribution (6) pre-
dicted by the soft-potential model rather than within the
standard model. One can use the foregoing distribution
and relation (4) to reduce expression (10) to
E,

3 max
o™ S(1) = %"BI dE

Emin
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dp=L=P p_ (E p)sec’LTEO (12
I Rmax(E) ns(E BiaT0
pm”'l
X F%anh@k 0 pRmax(E)'[
Here,

R, (E) = CE’coth(E/2kgT)

is the maximum relaxation rate of two-level systems,
and

p = RIR,w(E) = (J/E).
Asin [36], we assumed
Emin = Jnin=0, Epa = 20kgT,
Prin = (JImn/E)*=0.

We used for analysis experimental data obtained in
a fairly wide temperature range; therefore, we investi-
gated also the possible importance of the contribution
made to dephasing by two-phonon transitions in two-
level systems. The relaxation rate of two-level systems
for two-phonon processesis given by [39]

Rean = CTEL TPEF(E,T),

where

TT(p)ﬁZ

is the constant of two-level system—phonon interaction
for two-phonon transitions and

lmE f, 20
E(ET) = 5,70 0
0E D2 10 -
< rt Tt * 5 o T

In this case, expression (10) takes the form
Emax
3
B J' dE

E,

2ph( ) -

min

1
dp—=t=P
I pR(th)max( E)

Prmin

Pr.s(E, p) sech’ 0E.D

ko 1)

X F%anhEQk TD pR(th)max(E)T
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where

' E
RezmmaE) = CTPEF(E, Thcoth 5=

We used the resultant expression to cal cul ate the contri-
bution made to dephasing by two-phonon processes.

We will dwell in more detail on the derivation of the
expression for line broadening caused by interaction
with relaxation systems, because, to the best of our
knowledge, no calculations were previously performed
of the contribution made to optical dephasing by barrier
crossings in double-well potentials. In view of expres-
sion (8) for the relaxation rate of relaxation systems, as
well as of the fact that, for relaxation systems, the
asymmetry A = E, one can readily see that all parame-
ters, with respect to which the averaging is performed
in (10), are functions of V and E; therefore, the averag-
ing in (10) may be represented as

E V

max max

V)

— RS(
[Q(E, V)= EJ' dE J' dVQ(E V)=, (14)
where
- A 4w E
QEV) = grseor s F e R

In this expression, according to [36], one can assume
that

Enin=0, Ena=20kgT,

and V,,,, is the maximum barrier height which corre-
sponds to the minimum observed relaxation rate of
double-well potentials and is defined by the time of
experiment (see Eq. (8)). In our case, V5 = 10kgT. The
distribution Pgg(E, V) is normalized to the density of
states of relaxation systems.

Asaresult of averaging, expression (10) is reduced
to

E,

(1) = 2—"38 FdEJ’ dv

Emm

V,

max

1
Roexp(—V/kgT)

x Po(E, V) sech’LLE_D

DT (15

« Fllanh L E Voo

kgL o ReePIT T koTLl
We used this expression to calculate the contribution
made to the phononless line width by interaction with
relaxation systems.

In order to calculate the contribution to the phonon-
less line broadening caused by the interaction with har-
monic oscillators which, unlike two-level and relax-
ation systems, are phonon-type excitations, we have
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used the analytical expression derived by Garcia and
Fernandez [25],

512

Pont
3./2mp'W's°

Ey/ksT

/\2
ArT(T) = Vey —(kaT)’
T (16)
X e

J’ dx(e - 1)

where p' isthe density of the medium and V. isthe aver-
age volume of localization of harmonic oscillator. It is
interesting to note that this expression is similar to the
formula derived by McCumber and Sturge [40] and
describing, within the Debye model, the temperature
broadening of phononless line in crystals, which is
caused by acoustic phonons. However, within the latter
model, the energy distribution of phonons has the form

n(E) O E?,

which isdifferent from our case. In addition, it isnot E,
that appears in the upper limit of the integral in the
above-mentioned formula, asin our case, but the Debye
temperature Ty, which is usually much (approximately
by an order of magnitude) higher.

4. RESULTS OF MODEL CALCULATIONS
AND COMPARISON WITH EXPERIMENT

The calculations were performed using expressions
(9), (12), (13), (15), and (16). The required values of
parameters were borrowed from the literature and are
listed in the table. Note that al of these values were
found from experimental data obtained by other physi-
cal methods. In our calculations, we assumed the value
of R, inexpression (8) to be equal to the value of Debye

frequency
_ keTo
wp = —
for PMMA, borrowed from [41].

Figure 2 givesthe results of calculations (performed
within the soft-potential model) of the temperature

dependence of the inverse time of dephasing 1/mtT,

(equal to the homogeneous width of phononless line
less the radiation width 1/2mtT,) for aTBT/PMMA sys-
tem. Given in the same figure are the experimental data
on photon echo obtained by us for this system. These
data were obtained in a wide temperature range, which
could be done thanks to the use of two varieties of the
photon echo method, namely, picosecond two-pulse
echo at low temperatures (T < 4.2 K) and incoherent
photon echo at temperatures T > 4.2 K. A detailed
description of the experimental facility, sample prepa-
ration techniques, and measurement procedureis given
in[26, 27]. The experimental curve has acharacteristic
form with a dow increase in the line width at tempera-
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tures below 2-3 K and its rapid rise a higher tempera-
tures. This behavior of the temperature dependence
points to the presence of at least two different mecha-
nisms of dephasing. Usually, the low-temperature part
of the curve is explained by the contribution made to
dephasing by tunnel transitions in two-level systems,
and the high-temperature part is attributed to dephasing
caused by quasilocal low-frequency modes. One can
see in the figure that a fairly good agreement between
the prediction curve (curve 5) and experimental datais
observed at low temperatures (T < 2 K), while amarked
disagreement is observed at high temperatures.

According to our calculation results, the main con-
tribution to optical dephasing at temperatures T < 1 K
is made by single-phonon transitions in two-level sys-
tems. At higher temperatures, the contribution by rel ax-
ation systems becomes appreciable. The behavior of
the temperature dependence of this latter contribution
to optical dephasing at temperatures T > 1 K is analo-
gous to that of the contribution by two-level systems,
but its value provesto be approximately threetimesless
than the value of the latter. Thus, in the temperature
range investigated by us, it is hard to distinguish
between the contributions made to dephasing by two-
level and relaxation systems because of the amost
identical behavior of their temperature dependence
curves. The calculation results indicate that, at temper-
atures T > 2-3 K, the temperature dependence of the
phononless line width is largely defined by the contri-
bution made by harmonic oscillators. One can further
seein the figure that the contribution to optical dephas-
ing by two-phonon transitions in two-level systemsis
insignificant in the entire temperature range being ana-
lyzed and may be ignored. Indeed, at temperatures T <
1K, this contribution is more than three orders of mag-
nitude | ess than the contribution by single-phonon tran-
sitionsin two-level systemsand, at higher temperatures
(T > 20 K), though exceeding the respective contribu-
tion by single-phonon transitions, the contribution by
two-phonon transitionsis much less significant than the
contribution of harmonic oscillators.

One can seein thefigurethat, at temperatures above
W/ kg (which, in our casg, is 2.5 K), when the contribu-
tion by quasilocal phonons starts to prevail, a marked
disagreement is observed between the model calcula-
tion results (curve 5 in Fig. 2) and experimenta data.
We assume that a possible reason for such disagree-
ment is the inaccurate value of the average volume of
localization V. of harmonic oscillator used in these cal-
culations. According to Duval et al. [45], the average
size of the localization region of harmonic oscillator
depends on its frequency wy,

oV
d= SU—)O—C, (17)
where S is the geometric factor and v is the sound
velocity inside the soft mode localization region. The

size of the localization region of the mode correspond-
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Parameters of PMMA matrix and TBT/PMMA system

Parameters Method of measurement
T, 3.5ns [26] |Method of induced
lattices
P 1180 kg/m®  [42]
N 0.11eVv Investigation of
A 0.15 eV ultrasound propagation
' [42]
v, 1570 m/s
vy 3150 m/s
Ty 256 K [41] | Measurement of
specific heat
E, 13.4cm™ Raman scattering and
Vv 6.2 x 10* A3 [43] inelastic neutron
¢ ' scattering
Wikg 25K Measurement of
5/ [34] | specific heat and ultra-
Pony~  1.27x10%m=3 sound propagation
B* 1.3x10%K1s? [44] | Singlemolecule
spectroscopy

*This quantity is the constant of two-level system—chromophore
interaction. For the lack of data, we used its value as the constant
of relaxation system—chromophore interaction.

ing to the maximum of frequency distribution of har-
monic oscillators in pure PMMA, obtained from the
data on neutron scattering and low-frequency Raman
scattering, is39.5 A [43]. It was this val ue that we used
inestimating V;inour calculations. Inview of this, note
that, aswas demonstrated experimentally in[27],at T >
2-3 K, the properties of impurity may have a consider-
able effect on the temperature behavior of the homoge-
neous line width. For example, two systems including
one and the same matrix (frozen ethanol) but different
chromophores (resorufin and zinc tetraphenyl porphin)
exhibited a considerable difference in the values of
effective frequency of quasilocal oscillation (29 and
12 cmr?, respectively) [27]. Therefore, one can assume
that the introduction of an impurity into the matrix may
cause the parameters of quasilocal oscillation in the
neighborhood of theimpurity moleculeto vary depend-
ing on the properties of this impurity. As a result, the
effective value of the average volume of the localiza-
tion region of harmonic oscillator in a doped system
may be less than that of the respective volume for an
anal ogous system without impurity. For example, asis
shown in Fig. 2, an adequate agreement between the
model curve and the respective experimental curve may
be attained if the average size of the localization region
of harmonic oscillator is taken to be 19 A (curve 6).

Notethat in our analysisweignored the contribution
to dephasing made by acoustic phonons, because the
density of states of such phonons in the temperature
range being analyzed (which lies bel ow the Debyetem-
perature) must be less than the density of states of
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Fig. 2. Theresults of calculations of the temperature dependence of the inversetime of optical dephasing /T, and the experimen-

tal dataon photon echo (circles) for aTBT/PMMA system: (1) contribution by relaxation systems, (2) contribution by single-phonon
transitionsin two-level systems, (3) contribution by two-phonon transitionsin two-level systems, (4) contribution by harmonic oscil-

latorsat V= 6.2 x 10* A3, (5) total calculated temperature dependence at V. = 6.2 x 10* A3, (6) total dependenceat V, = 6.9 x 10° A3,

The inset gives the structure formula of TBT molecule.

quasilocal oscillation. The results of Gladenkova and
Osadko [46] may be regarded asan indirect proof of the
validity of this assumption. They used the results of
theoretical analysis of spectral line broadening for Eu3*
ionin silicate glass to demonstrate that the phonon line
broadening due to interaction with acoustic phonons
showed up only upon approaching the Debye tempera-
ture.

5. CONCLUSION

Calculations performed within the soft-potential
model and a comparison of their results with experi-
mental data obtained for a TBT/PMMA system lead
one to the following conclusions.

1. The soft-potential model describes qualitatively
correctly the temperature behavior of the homogeneous
width of a phononless linein arelatively wide temper-
ature range and may be used to advantage in spectral
investigations.

2. The results of calculations of the contribution
made by relaxation systems to the phononless line
width, performed for the first time ever, have demon-
strated that the temperature dependence of this contri-
bution is analogous to the dependence on the contribution
of tunneling two-level systems (except for the range of
T <0.3-0.4 K). The absolute magnitude of the contribu-
tion made by relaxation systems is approximately 30%
of the contribution made by two-level systems.

3. In the low-temperature region, where the main
contribution to optical dephasing is defined by the
interaction between an impurity and tunneling two-
level systems, the results of calculating the temperature
dependence of the phononless line width (in perform-
ing this calculation, we employed the soft-potential

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

model and the stochastic model of line width, without
using any fitting parameters) are in good agreement
with the experimental data.

4. In the high-temperature region, where the main
contribution to the phononless line width is made by
interaction with harmonic oscillators, the prediction
data proved to be appreciably overstated compared
with the experimental data. The part played by impurity
in the formation of harmonic oscillators is cited as a
possible reason for this overstatement.
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Abstract—A sequential theoretical analysisis performed of tunneling in normal metal/d-type superconductor
structures which contain scattering centersin the interlayer between a normal metal and a superconductor. As
aresult, it is demonstrated that the presence of a scattering center inside an insulator interlayer leads to partial
suppression of previously predicted anomalously high values of conductance in the low-voltage region (zero
bias anomaly (ZBA)). In so doing, the inclusion of the “interference” term in the current operator (interference
of tunneling through a scattering center with direct potential tunneling) resultsin the suppression of ZBA. The
predicted effect is virtually independent both of the position of the scattering center in the interlayer and of the
shape of the resonance curve of scattering (which is Lorentzian in the case of resonance tunneling through the
scattering center). © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The body of currently available experimental data
present convincing proof of the existence of the d-symme-
try of the order parameter in high-temperature supercon-
ductors (HTSC) [1-4]. With this symmetry, it is
assumed that the sign of the order parameter A and,
consequently, of the quasiclassical Green's functions
describing the behavior of quasiparticles depends on
the direction of motion of these quasiparticles in the
ab plane. In particular, when quasiparticles moving aong
the a axis scatter in the direction paralld to the crystdlo-
graphic axis b, the sign reversal must occur. With the
angle a between the normal to the HTSC boundary and
the crystallographic direction a being other than zero,
the scattering of quasiparticles by the structure bound-
aries may be accompanied by just this sign reversal.
This leads automatically to severa effects, namely, the
suppression of the order parameter in the neighborhood
of the boundary [5], the formation of a bound e ectron-
hole state with the energy € = 0 caused by the change of
sign of the order parameter [6, 9] and of Andreev States
with € < |A|[10], and the generation of anisotropic gapless
superconducting state of the s-type in the presence of dif-
fuse scattering of quasiparticles by the boundary [11].

Such unusua behavior of HTSC must result in anum-
ber of singularities on the current-voltage characteristics
of both Josephson junctions and a normal metal/insula-
tor/d-type superconductor (NH-D) structures. In particu-
lar, inthelatter casein amodel with ad-functiond barrier,
therewas theoretically proven the existence of anomalies
of conductance in the low-voltage region caused by the
presence of bound state with € = 0 (zero bias anomaly
(ZBA)) [6-9], as well as of a number of less pro-
nounced singularities caused by Andreev bound states
with energies e < |A|[10, 11].

The ZBA was observed experimentaly in bicrystal
substrate junctions [12]. However, al attempts at
detecting these singularitiesin N-I-D and D—--D struc-
tures of practica importance with an interlayer of metal-
oxide materids of semiconductor-type conductance
(Pr;Ba,Cu;0; praseodymium-barium-copper ceramic,
SITiO; gtrontium-titanium ceramic, and La,Sr, Ti;O; lan-
thanum-strontium-titanium ceramic) have failed. Based
on the experimental data of [13—18] obtained for these
junctions, one can only state with confidence that the
main channel of transport of the normal component of
current in these junctions is the resonance tunneling
through localized states in the interlayer (see aso the
review [19]).

Previous theoretical investigations of the processes
of resonance tunneling in structures with normal elec-
trodes involved studies within a one-dimensional
approximation [20] and studies in view of the three-
dimensional behavior of scattering [21, 22]. In so
doing, it was demonstrated that the process of reso-
nance tunneling proper effectively involved only a part
of the localized states arranged in the middle of a bar-
rier in alayer with athickness of the order of the effec-
tive radius of the localized state. The position of the
energy level of such an “effective’ localized state might
differ from the Fermi energy by avalue of the order of
this level’s half-width [20]. The inclusion of the three-
dimensional behavior of tunneling [21, 22] only modi-
fied the pre-exponential factors in the correlations
between the structure conductance and the barrier
thickness. Thiswas due to the fact that the tunneling of
quasiparticles occurred predominantly in anarrow cone
of angles in the neighborhood of the normal to the
boundaries and did not lead to any qualitative changes.
Theinclusion of the s-type superconductivity in one of

1063-7761/01/9204-0652%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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the electrodes of the structure [23] did not cause quali-
tative changes in the pattern of the process, athough it
resulted in the emergence of a singularity in the aver-
aged differential conductance at eU — 0 (U is the
voltage across the junction). An attempt at treating the
resonant transport in an S-1-Sstructure within the phe-
nomenological 1D-model of resonant coupling
between the electrodes was made in [24, 25].

In this paper, we will demonstrate that one cannot
restrict oneself to a one-dimensional approximation in
the presence of d-pairing in the electrodes. Qualita-
tively, thisis associated with the fact that direct tunnel-
ing in N-1-D structures is likewise a resonant process
which leads to the formation of ZBA, but with a singu-
larity half-width much smaller than that obtained in the
model with o-functional barrier. In so doing, the inter-
ference of two processes occurring in the low-volt-
age region brings a partial suppression of ZBA and a
sharp enhancement of the process of tunneling via
localized states, which proves to involve almost al
localized states, irrespective of their location in the
interlayer.

2. MODEL OF JUNCTION

We will assumethat the tunneling barrier V(r) in the
N-1-D structure being investigated is the sum of poten-
tials

V(I’) = Vrect + Virm! (1)

in which the first term simulates a two-dimensiona
square barrier of height V, and thickness 2d,

Vier(X) = VoB(|X —d) )

(the coordinates are reckoned from the middle of the
barrier), and the second term describes the defect

_ D_B! |r_r0|Sp’
Vimp(r) - Ep, |r _r0| > ) (3)

present at the point ry = (X, Yo). Here, p < Ky is the
radius defect, and 7k, is the Fermi momentum.

Potential (3) violates the spatial inhomogeneity of
the structure; i.e., it brings about the nonconservation
of the quasiparticle momentum component (which is
paralel to the barrier) in the process of the tunneling of
quasiparticles. At 3 > 0, potential (3) describesthe res-
onance tunneling (see Appendix A). The negative val-
ues of 3 correspond to the direct, nonresonance, scatter-
ing. We will further assume that the density of localized
states is low, so that their interference is insignificant,
and the barrier thickness 2d is relatively great,

Kod > 1. 4%

Here, ik, = ./2m(V,—E;) isthe momentum, misthe
electron mass, and E; isthe Fermi energy. The validity
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of condition (4) is essentia for effective localization of
the quasi particle wave function on alocalized state and
agrees with the available experimental data [13-19].

In calculating the transport properties of the N-l-D
structure, we will assume that the current passing
through this structure does not bring about the removal
of the HTSC electrode from the state of thermody-
namic equilibrium. This condition is automatically
valid in N-I-D junctions with a wide potential barrier
of low penetrability, D < 1, even in the presence in the
barrier of localized states spaced from one ancther at dis-
tances that considerably exceed their effective “trans

varsg’ radius |; = d/,./kd. In the absence of localized

states, the corrections to conductance associated with dis-
equilibrium arise only in the second order with respect to
penetrability. The presence of localized states leads to
the formation in the barrier of spatially narrow tunnel-
ing channels with a conductance on the order of quan-
tum conductance and with transverse dimensions of the
order of 1. With the average distance between local-
ized states exceeding |, the interference of the currents
injected via these channels into the HTSC electrode is
insignificant, and the nonequilibrium effects are low by
virtue of the geometric factor. The foregoing leads one
to assume that the voltage U applied to the junction is
fixed and decreases only on the potential barrier of the
structure.

3. CURRENT TRANSPORT
3.1. General Expression for Current

Within the foregoing assumptions, it is natura to
describe the current transport in an N--D structure in
terms of electron-like and holelike excitations[26]. The
general expression for current has the form

| = ﬁ%}ds{sgf(e—eU)
+Hlp(1-f(-e—eU)) +(lg+1,)f(e)}.

Thefirst and second termsin Eq. (5) represent electron
currents generated by electrons and holes of normal
metal, respectively. Their Fermi distribution is shifted
by eU relative to the Fermi distribution f(€) of the super-
conductor. Thethird term in bracesin Eq. (5) isthe eec-
tron current generated by eectron-like and holelike exci-
tations of the superconductor. The structure of the for-
mula for current (5) coincides with the analogous
expression of the BTK theory [26]. Theonly distinctionis
that, in our case, it ismore convenient to calculate the cur-
rent after the scatterer, on the interface with the supercon-
ductor, while in the BTK theory the current was calcu-
lated before the scatterer, on the interface with anormal
metal.

The current components appearing in expression (5),

L= 1P+ 1™ ™ i =¢h,elnhl, (6)

(%)

No. 4 2001



654

pot

_y = gef ke, kol -k koY, (D

|nt _ rJdk Re{ Cpm(k ko)(C (k, ko))D

©)
—CP(k, ko) (CI=(k, ko)),

res 1 ka

res _ k. —

I (2T[)2 y ykg )

x{|C®(k, ko)|” = |CI®(k, ko)|}

are related by the ordinary quantum-mechanical expres-
sion

W) = grfdk,ep(ik,y)
< {exp(ik)C,_ (K, ko) + eXp(-ikX)C, . (K, Ko}

(10)

to the Fourier components of scattered electron wave,

Ci..(k, ko) = 2mCP(k, ko) d(k, —k;)

(11)

+CiZ (k, ko),
which describeits propagation in a“forward” direction
to the superconductor (C;_ (k, k) and in the opposite

direction (C;_(k, Kg)). In formulas (6)—10), k(x) =

JKs—k and k= ,/k;—K; are the wave vector com-

ponents of the initial and scattered (see the next sec-
tion) electron waves, respectively, which are perpendic-
ular to the I-D interface; and L, in Eq. (7) is the barrier
width in the direction perpendicular to the normal to the
interfaces. Expressions (8) and (9) preassign the value
of current in terms of asingle defect. The coefficient of
the delta function in Eq. (11) describes a potentially
scattered wave, i.e., characterizes the process of tunnel-
ing of quasiparticles through a potential barrier con-
taining no localized states. The second termin Eq. (11)
describes a resonantly scattered wave and corresponds
to resonance tunneling. Note that the term “resonance”

for electron wave C® (k, ko) in Eq. (11) and, espe-

cialy, theterms* mterferenc and “resonance” for the
current components (8) and (9) are fairly arbitrary in
our case of a complex structure with a scatterer in the
barrier and Andreev reflection on the S-N interface (see
the discussionsin Section 4).

It follows from formulas (5)—(11) that the problem
of calculating the current through an N-1-D structurein
fact reduces to finding the Fourier components of scat-
tered electron waves C, _, (K, Ko).
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3.2. Recurrent Relations for Fourier Components
of Electron Waves

In order to calculate the Fourier components of a
scattered electron wave C, _ (k, Kg), it is convenient to
use the dynamic model of successive norma and
Andreev reflections on the I-D interface. Thisapproach
was previously used by Belogolovskii et al. [27] in
studying the processes occurring in N--N-I1-S junc-
tions with conservation of the quasi particle momentum
component parallel to the interface plane. Below, we
will generalize this method to the case when such a
conservation law is no longer valid because of scatter-
ing from localized states in the barrier.

We will treat the incidence of a plane electron wave

with the wave vector ko = (ky, k}) and the energy ¢

from normal metal onto the scatterer. The wave trans-
mitted to the superconductor may be represented as
(see Appendix A)

W () = ZirJdkyexp(ikykaxx)Cﬁﬂ(k,ko), (12)

Co. = 2TDo(k,)3(k, — ko) + Co ek, ko), (13)

Core = Lo (K], X0) €XP(ikY0) Gelky, %) (14)
Thefirg termin Eq. (13) describesthe process of potential
scattering by a homogeneous square barrier (2) contain-
ing no localized states. Thetransmission coefficient Dy(k )
in Eq. (13) isdescribed by the well-known expression

Do(ky)
4dik,k, exp(=2idk,)
(K= k) exp(2dK,) — (K, + ik,)*exp(-2dK,)
(15)

K, = KS + k)z,.
The second term in Eq. (13) describes the scattering by
a defect. The scattering potential violates the spatia
homogeneity of the structure. Therefore, in the general
case, the scattering process is accompanied by avaria-
tion of the transverse electron component. In so doing,
the resonance scattering amplitude L. at B > 0in Eqg. (3)

has the form (see Appendix A)
Vo—E
L, = _ 2Tth 0~ f2D (16)
M eg_gg+ill
where
[0 _ r|2D"'|_r2D
2 )
17)

KoKo €Xp[—2Ko(d F X,)]

Ko JKo(d F Xo)

isthewidth of electronlc level onalocalized stateinthe
2D case (see Appendix A). The quantity d° (k), xo) in

M = 4/m(V,— f)
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Eq. (14) isthe amplitude of a single electron wave with
the wave vector k that propagates from anormal metal

d° (K5, xo) =

=20k (K5 +lk)eXp[—K (d—x0)] + (K —Ik)eXIO[K (d—xo)1}

655

under square barrier (2) to a point with the coordinate
Iy, a which the localized state is located,

exp(-ikd),

(Kx_lkx) exp((Zde)

(18)

_(Kx + Ikx) exp(_Zde))

and ée(ky, Xo) isthe Fourier transform of Green’s electron function Gg(r, r) of barrier (2) with the source at

point r,
Gelr,ro) = ,.Jdk expliky(y —Yo)IGe(ky, X, Xg) = idk ,exp(ik,y + ik,X)Ge(k,, Xo), (19)
Gk, X, X)) = 2mexplik,(x — d)J{ (K, + ko) exp[—K,(d + Xo)] + (K —Ikx)eXp[KX(d+x0)]} 20)
h (K, + ik, exp(~2dK,) — (K, — ik,) exp(2dk,)
ée(ky, Xo) = Ge(Ky, X, Xo) €xp(—ik,X) exp(—ik,Yo). (21)

The electron wave described by Fourier expansion (12)
and transmitted through the scatterer will produce,
component by component, Andreev reflections in the
superconductor [28, 29] and generate a hole wave with
the group velocity directed toward the normal metal,

Wh.(r) = ziTJdkyexp[i(kywkxx)]C‘ht(k), (22)

Ch. (Ko k) = ac(ky k,)Co. (Ky k), (23)

where a(k) denotes the coefficients of Andreev reflec-
tion.

The hole wave described by Fourier expansion (22)
isreflected potentially and resonantly from the scatterer
to generate a hole wave propagating in the direction of
superconductor,

- -2£ [k explitky —k)1Ch (k). (24)

wr (1)

Cr. =1 (k)Ch. +Lpdr_(r)Gr(k). (25

Thefirst termin Eq. (25) describes the potential reflec-
tion of the hole wave (propagating on the superconduc-

2ikyexp(idk){ (K + ike) expK,(d + Xo)] + (K

tor side) from sguare potential (2) with the reflection
coefficient
(k) (26)
_ exp(2idk,) (K; + k) [ exp(2dk,) — exp(—2dK,)]
(K + ik, ) 2exp(20K,) — (Ky —ik,) *exp(-2dK,)

The second term in Eq. (25) describes the resonance
reflection from the total potential (1), with the ampli-
tude L, of resonance hole scattering given by

Lo 2n VorEi

Mg +go+il?

L*(~€). 27)

The quantity d, _(r) informula(25) isthe amplitude of
the hole wave (22) that reached the localized state
under potential (2),

dh (o) = > o

x [akydh. Ky, Xo) eX(iK,Yo) Ch. (K),

—ikJexpl—K(d+ x)l}

dn.(ky, Xo) =

(29)

(K, +|k) exp(2dk,) — (K, —|kx) exp(—2dk,)

and Gh(k Xo) isthe Fourier transform of Green's hole

from the superconductor and generate an electron wave

function of homogeneous square barrier (2) with the ~ directed toward the scatterer,

source at the point ry,
éh(ky, Xo) = G (K, X, Xo)exp(ikx—ikyyo). (30)

The hole wave ljJﬁH(r) described by Fourier expansion
(24) will be reflected in the Andreev manner [27, 28]
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Yo (r) = Z—T[[dkyexp(lkyy—ikxx>ciﬁ(k), (31)
Ce. (k) = ay(k, k)Ch_(K), (32)
a-h(kxv ky) = ae(_kx’ ky) (33)
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Initsturn, the electron wave corresponding to Fou-
rier transform (31) will be reflected normally from the
total potential of localized states (1) to generate an el ec-
tron wave directed deep into the superconductor,

Pe () = %Jdkyexp(ikywikxx)ci(k), (39)

C2.(K) = re_(k)Ca. (K) + LGelky, X)dz_(ro). (35)

Informula(35), re. (k) = ry_(k,) isthereflection coef-

ficient of the Fourier component of the electron wave
described by formula (31) from the square barrier (2),

and the quantity dih(ro) is the amplitude of the elec-

tron wave (31) that passed from the superconductor
under potential (2) to the localized state,

i (r9) = 5[k, exP(ik,¥0)de.(ky X CE- (K). (36)

de.(Ky Xo) = diy_(Kys Xo). (37)

Therefore, we started the treatment with electron
wave (12) directed toward the S-N interface and, after
aseries of Andreev and normal reflections, we obtained
once again an electron wave propagating in the same
direction. The process is then repeated for an infinite
number of times. In so doing, for the Fourier components
of electron and hole waves, formulas (23), (25), (32), and
(35) may yield the integral recurrent relations

Cil (k) = agk)C(K),
CaNHK) = . (k) CEN (K) + LyGr(ky, Xo)dan (1 o),
2N+1 2N+1 (38)
(k) = a(k)Cr" (k)
c k) = re_<ky>ciﬂ”(k) + LGe(Ky, %) A2 (1 o),

in which the superscript N indicates the number of
Andreev reflections. Formulas (13) and (14) preassign
theinitial conditions for recurrent relations (38).

3.3. Solutions for Fourier Components
of Electron Waves

The Fourier components of scattered eectron wave
(10) C;.. (k, kp) are expressed in terms of the sums of

partial Fourier components CeNH
relations (38)
Y clh..
N

The expressions for these sums (39) follow from recur-
rent relations (38) (see Appendix B),

Do(ky)
9

described by recurrent

(39)

pot _
Ce. =
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c™ = %{ LoGe(d®, + 50) + 1o a,GnSn},

(40)
a.anry._ Do(k,)

o ;

Co = %{ rh_ael—eée(de_. + ée) + Lhé‘hih},

pot _
cP =

where
Q = 1-re_ry_acy,
¢ _ Gt (l-c)a
° T (1-b)(1-c))—cib,’
c _ b +a,(l-b,)
" {(I-b)(1-c) b,

(41)

rh_a ahC

rJdk Oe. M. BcCe. :
2irJdkydh.-aeCe-.,

TJdk eHrhka ayL. C

d L&
b, = ank—h“%ee,

TJdk deH LhahGh

d aaLG
c, = 2T[dk “*“Q“ iy

The structure of expressions (40) has a clear physi-
cal meaning. The numerators in formulas (40) define
the power of the sources of electrons moving in the
directions towards and away from the superconductor.
In the potential term, these sources are the amplitude of
the electron passage at potential (2) Dy(k,) and the
quantity a.anr,. Do(k), respectively. The coefficient
a.anry,. indicates that the first electron wave propagat-
ing toward the normal metal arises as a result of three
successive reflections, namely, the Andreev reflection
from the superconductor that converts the electron, which
passed with the amplitude Dy(k,), to a hole with the prob-
ability a; thereflection of thelatter holefrom potential (2)
with the probability ry,_; and the subsequent transforma-
tion of this hole to an eectron moving toward normal
metal, asaresult of Andreev reflection of the hole from
the superconductor with the probability aj,.

Two sources of electrons are available in a reso-
nance channel in each direction. Thisis due to the fact
that, as aresult of multiple Andreev and normal reflec-
tions, electron and hole states with self-consistent

amplitudes > and £y, are formed on a defect. There-

(42)
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fore, in a resonance channel, the sources of €lectrons
moving towards the superconductor are equal to the
sum of products of the amplitudes of existence on a

defect of the electron (d® + ) and hole (£h) states
into the probabilities of tunneling from a defect, which

areL Ge andr,_a,L,Gn, respectively. In so doing, the
coefficientr,_a, allowsfor thefact that aforward-mov-

ing electron generated by the amplitude X, of the hole
state is obtained as aresult of Andreev reflection of the
hole from the superconductor and subsequent potential
reflection of the electron from potential (2). The back-
ward-moving electrons appear as a result of Andreev

reflection of holes (athGh 1) and three successive
reflections ry,_a.a, which transform the electron wave

L Ge(d® + ie) (propagating toward the superconduc-
tor) into an electron wave propagating in the opposite
direction.

The denominator Q = 1 —r,_r,_aa, in al expres-
sions (40) isaresult of summation of repeated Andreev
and potential reflections of waves initiated by the
sources described above.

The contributions made to the electron current by
holes from normal metal (C,, . (k, ky)) are calculated

analogously,
Do (k)re. &,

cht = ,
Q
s _ 1 ~ ($h * e
Cha -_ 6{ th'ekahGh(ze + deﬁ) + LeGeZh},
. (43)
CF’Ot = M
Q
r a ~ (< ~ S
CF = JALGE+ a1 ) + Lo, 2l

as well as the contributions made by electron-like
(Cqy.(k, kg)) and holelike (Cy, .. (k, kp)) excitations of
superconductor,

Cpot — reH/\/ 1_|ah|2

S :

ce = {L Gest + 1. a,L,Gn3n},
(44)
cr = J1-laf®
Q 1
CE = ln. alGell + L&),

Cpot - Ifeerheah/\/ 1- |ae|2
Q i)
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c. = g{ LGSN +1,_aL,Gishy,
(45)
Cpot — rhkah/\/:I-_lael2
Q ]
ce. = %“{rhhaeLeéesz' LGN

The quantities S  in formulas (43)—(45) are defined
by relations (41). The difference consists in the expres-
sions for the coefficients of (42). In formulas (43), the
coefficients a,, by, and ¢; are described by formulas (42)
with the e~— h replacement. In formulas (44) and (45),
for the same coefficients b, and ¢;, one must use differ-

ent coefficients g;,
N1 |ah| °d

al = b
(46)
A/ |ah dh aeree
/\/ de_ahrh_
(47)

/J |ae dhk.

Asinformula(40), the numeratorsin expressions (43)—
(45) define the sources of electron waves propagating
towards and away from the superconductor, while the
denominators allow for repeated Andreev and potential
reflections of these waves.

In numerical calculations, the Andreev coefficients
8 n(Kx K)) in the foregoing expressions were calculated
self-consistently in accordance with the procedure
described in [10, 11]. The calculations were performed
for arbitrary angles a between the normal to the inter-
face and the crystallographic direction a of the d-type
superconductor. Note that it is only for the orientation
angle a = 0 that the results coincide with the values
obtained in a non-self-consistent manner,

£ —sgn(e) /e’ — |aK)*

A(K) '
—iIAK)? - €
A(K) ’
A(K) = Aycos[2(6-a)],

e4),

ad(ky ky) = (48)

e<|4,

and used previoudly [7, 8] in analyzing resonant trans-
port in weak couplings on the basis of d-type supercon-
ductors.
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Fig. 1. A diagram illustrating the process of tunneling in a
two-dimensional N-1-D junction without defects. The bro-
kenlineinregion | indicatesthe angular dependence of pen-
etrability of a &-functional barrier, and the solid line indi-
cates the angular dependence of penetrability of a thick
sguare barrier.

4. ZBA UNDER CONDITIONS
OF RESONANCE TUNNELING

In the low-voltage region, the amplitudes of the
Andreev reflection coefficients a;, , tend to *i (see
Eq. (48)) irrespective of the behavior of spatial varia-
tion of the order parameter in the neighborhood of the
boundary. If, in so doing, asaresult of an event of being
scattered by this boundary, a quasiparticle enters the
region with the same sign of the order parameter, then
(8a)e=o = —1. This is observed, for example, in the
case of superconductor with pairing of the stype (NH-S
junction) or in the particular case of a = 0 in NH-D
structures. However, if a # 0, this change of sign may
occur and lead to the relation

(aeah)a =0 = 1

Inthiscase, Egs. (40) and (43)«45) immediately produce
anomaloudly high values of the coefficients C, . and, con-
sequently, anomalies in the conductance as well.

(49)

On substituting the expressions for Fourier compo-
nents C; _ (k, ko) (40)—(43) into those for current (5)
and (7) and using Eq. (41), one can derive thefollowing

G/Gy
4 T T T

3 L -

2 -

1rl

0 0.5

1.5

L0
eU/N,

2.0

DEVYATOV et al.

expression for the potential component of conductance
ael —0:

2€’ ko

GO = =52

L, I dbcosb.

ZBA

By integration over ZBA is meant the integration with
respect to the region of anglesin the direction of which
the condition of electron-hole resonance (49) is valid,
which leads to the formation of a bound state with the
energy E,, = 0 in the superconductor.

Relation (50) is a well-known expression for ZBA
obtained previously [7] (though with some inaccura-
cies: the cosine under the integral was not included) for
potential scattering in the model of the d-potential bar-
rier. It is interesting to note that in the model being
treated of a“thick” barrier with penetrability, described
by formula (15), the value of ZBA isthe same asin the
case of the model of the &-potentia barrier, in spite of
the fact that the penetrability modulus of athick square
barrier has a much sharper maximum in the region of
small angles of incidence 6 = 0 (see Fig. 1) than the &-
potential barrier. This result comes naturaly: ZBAs
arise as a result of resonance between the Fermi ener-
gies of anorma metal and of abound e ectron-hole state
with Ey, = 0 on the I-D interface. The width of the elec-
tron-hole state with E,, = 0 isdefined by the probability
of electron (hole) escape from the I-Sregion as aresult
of tunneling back to the normal metal. Therefore, even
though the first transmission of the electron wave func-
tion in the direction satisfying condition (49) may be
very unlikely for athick square barrier, thislow proba-
bility is compensated by the formation of a narrower
electron-hole resonance. The width of the ZBA peak

with respect to voltage is of the order of |D(8,5,)| A0

(see Figs. 2 and 3).

Figures 2aand 3agive the conductance of the poten-
tial channel of an N-1-D junction as a function of volt-
age for orientation angles o = 174 and o = 178, respec-
tively, with the parameters k,d = 2 and Ky/k, = 0.1, calcu-

(50)

G/Gy
i (b)
105 ; -
104 ? 3
103 . . -
0% 10 1079 1073
eU/AO

Fig. 2. (8) The conductance of an N-1-D junction with athick square barrier without defects with the orientation angle a = 174 and

parameters Kqd = 2 and K/Kg

= 0.1, calculated using non-self-consistent Andreev coefficients (48). The conductance is normalized

to that of an analogous N—-I-N junction. (b) The low-voltage conductance on alogarithmic scale.
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Fig. 3. (8) The conductance of an N-I-D junction with athick square barrier without defects with the orientation angle a = 1/8 and

parameters kqd = 2 and Kg/kg

to that of an analogous N-I-N junction. (b) The low-voltage conductance on alogarithmic scale.

= 0.1, calculated using non-self-consistent Andreev coefficients (48). The conductance is normalized

G/Gy G/Gy, 107
4 T T T 8 T
(@) (b)

3 6 -
2 4t -
1 ot -
0 0.5 1.0 1.5 20 0 0.5 1.0

eU/AO eU/A(), 10_5

Fig. 4. (a) The conductance of an N-I-D junction with ad-functional barrier with normal conductance equal to that of athick square
barrier with the parameterskod = 2 and K/ky = 0.1. The orientation angle o = 17/4. The cal cul ations were performed using non-self-
consistent Andreev coefficients (48). The conductance is normalized to that of an analogous N-—N junction. (b) The low-voltage

conductance.

lated using non-salf-consistent Andreev coefficients (48).
These dependences are normalized to the conductance of
an analogous N-I-N junction. Shown separately in
Figs. 2b and 3b are low-voltage regions. One can see
that, in both cases, the normalized conductance exhibits a
singularity at eU — 0. In so doing, thewidth of thissin-
gularity at a = 178 is approximately 10 orders of magni-
tudelessthan at a = 174. Thisisattributed to the extremely
low penetrability of athick square barrier for directions of
8,54 % 0. For the orientation angle a = 178, thisregion is
such that 8,5, O [-51732, —1v8] O [1Y8, 51732], while for
the orientation angle a = 178 condition (49) isvalid for
any values of 8, including 6 = 0.

For comparison, Figs. 4a and 5a give the normalized
conductance of an NH-D junction as a function of volt-
age, calculated in the modd of a &functional scatterer
using non-self-consistent Andreev coefficients (48) (see
[7]). The coefficient at the d function corresponds to the
conductance of the junction asin the case of the square
barrier in Figs. 2 and 3. Figures 4b and 5b give the same
dependences in the low-voltage region. One can see

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

that the width of the peak of conductance for the orienta-
tionanglea = 178 islessthan for the orientation anglea =
174, however, both quantities are of the same order of
magnitude. This is attributed to the fact that the angular
dependence of penetrability in the model of d-functional
scatterer isless sharp than in the case of along square bar-
rier (seeFig. 1).

Figure 6 gives the normalized conductance of an
N-I-D junction with a square barrier as a function of
voltage, calculated using self-consistent Andreev coef-
ficients[10, 11] for the case of mirror interface. A com-
parison of Fig. 6 with Figs. 2 and 3 revealsaqualitative
agreement in the behavior of the dependences.

In the case of isotropic scattering of quasiparticles by
locdized dates, directions will aways be available, the
tunneling along which will cause a quasiparticleto get to
the region of existence of eectron-hole resonance (49)
(Fig. 7). Theinteraction with adefect in the process of tun-
neling causes an effective “ scanning” of theinterface by a
scattered wave, which inevitably leads to the formation of
resonance trgjectories. It is qualitatively clear that the fact
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Fig. 5. (8) The conductance of an N--D junction with ad-functional barrier with normal conductance equal to that of athick square
barrier with the parameterskod = 2 and K/ky = 0.1. The orientation angle o = 1¢8. The cal cul ations were performed using non-self-
consistent Andreev coefficients (48). The conductance is normalized to that of an analogous N-I-N junction. (b) The low-voltage

conductance.

of formation of such a channel is associated neither with
the position of the energy level of localized state nor with
its spatia arrangement. The fact of isotropic rescattering

by any defect in the process of scattering will suffice.

G/Gy

40|

30

20

10

2

1

R

O =

0 0.5

1.0

eU/AO

1.5

2.0

Fig. 6. The conductance of an N-1-D junction with athick
square barrier without defects with the parameters kod = 2
and Kg/ky = 0.1, calculated using self-consistent Andreev
coefficients. The conductance is normalized to that of an
analogous N-1-N junction. Curve 1 corresponds to the ori-
entation angle a = 174, and curve 2 corresponds to the ori-
entation angle a = 1v8.

a n
A(B)
D A _
/ LSW
N Lo

Fig. 7. A diagram illustrating the process of tunneling in a
two-dimensional N--D junction with a defect in the
I-layer.
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Given the validity of the easy-to-satisfy condition
for the coordinate of localized state x, and ZBA angles,

gt kiexp[zK (d+x)] > 1
Z-I!A 4k, " ° ’ (51)

Ko(d + Xo) > 1,

the amplitudes of the electron (d°. + 5.) and hole (3h)

states on a localized state are defined mainly by waves
rescattered backward, away from the superconductor.
When condition (51) is valid and after the substitution of
expressions for Fourier components C; _ (K, Kg) (40)«43)
into formulas for current (5), (8), and (9), one can derive
the following relations for the interference and resonance
components of conductance at e — 0, which describe
the electron wave scattering from a defect:

R, = 2Tth

2
&

Gy'(0) =—4-—

= -8R, (52)

2

Gy(0) = 0. (53)

In analyzing the processes of resonance tunneling,
the interference component (52) of current (8) was not
included, asarule, because of the sharper (compared with
the resonance channel) dependence on the barrier thick-
ness. In N-I-D contacts, this contribution to current
proves to be significant and the most nontrividl. It reflects
the process of destruction of resonancein apotential chan-
nel due to the interaction with the defect. Indeed, in
addition to the validity of condition (49), the conserva-
tion of the transverse component of quasiparticle
momentum in the process of reflection of the quasipar-
ticle from a spatially homogeneous barrier is required
for the formation of a bound electron-hole state with
Ey = 0 on the I-D interface. However, the presence of
a scattering center on the trajectory inevitably leads to
the quasiparticle rescattering in other directions, which
resultsin the breaking of electron-hole resonance. This
effect must not depend considerably either on the posi-
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tion of the energy level of localized state or on its spa-
tial arrangement on a preferred tragjectory. What this
effect leads to is the reduction of the conductance by

eight quanta Ry per each defect. Note, however, that

within the given mode this cannot bring about the change
of sign of the overdl differentia conductance with
increasing concentration of localized states, becauseit will
be preceded by the condition of independence of tunnel-
ing via separate scattering centers being violated.

Notethat, in the absence of Andreev reflection (inan
N-LS-N structure), the interference contribution to cur-
rent depends considerably on the shape of the reso-
nance curve and goes to zero both at eU = gz and upon
averaging with respect to €i.

The paradoxical, at first glance, result for resonance
channel (53) is associated with the fact that, in accor-
dance with Egs. (40), the power of the sources of elec-
trons moving toward one another is defined by the
amplitudes of probabilities of the existence on a defect

of both electron (d° + %) and hole (51) states. In so

doing, it turns out that the “number” of “forward”-prop-
agating (i.e., towards the superconductor) electrons
generated by the electron states exceeds, by afactor of
(rn_aean) ™, the number of “backward”-moving elec-
trons. For electrons generated by the hole state, the sit-
uation on the localized state is quite the contrary: the
number of electrons moving forward proves to be r,
times less than the number of electrons moving back-
ward. In view of Eq. (49), aswell as of the fact that the
resonance contribution to current is defined, according
to formula (9), by the difference of squares of modules

2 2
|CI®(k, ko)|” and |C/®(k, ko)| ", one can readily find
that the contributions to resonance current (9) by the
electron and hole states on alocalized stateat eU — 0
fully compensate each other and lead to the results
given by Eq. (53).

Therefore, the result given by Egs. (52) and (53)
provesto befairly genera and independent of the shape of
the resonance curve. Moreover, it is conserved also during
the change of sign in defect potentia (3) from negative
(resonance) to positive (nonresonance scattering). Conse-
quently, the effect of ZBA suppression occursin the case
of both resonance and direct scattering by adefect; what is
important is only the nonconservation of the transverse
component of scattered wave momentum upon interac-
tion with defect. In addition, it is not only a part of the
localized states with the energy in the vicinity of the
Fermi energy (differing from the latter by a value of
severa half-widths of the resonancelinel” or less) and
with the coordinate in the vicinity of the middle of the
barrier (spaced from the middle at a distance of several

radii of localized state K- or less), which defined the

resonance current in the case of structures with normal
or superconducting electrodes with pairing of the s
type[20-23], that make the contribution to the suppres-
sion of the conductance anomaly (50) in the potential
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channel; this contribution is also dueto ailmost all of the
defects inside the barrier with coordinates satisfying
condition (51).

5. RESONANCE TUNNELING
WITH THE ORIENTATION ANGLE a =0

Because, in the case of orientation angle a = 0, the
effects associated with the emergence of ZBA are
absent, a d-type superconductor may be treated as an
ordinary anisotropic s-type superconductor. Therefore,
it issufficient to treat the scattering of electron and hole
wave functions, defined by relations (40)—(47), only in
the narrow cone of angles,

p=0 1
ko /Kod

Therefore, for thick and relatively low barriers which
satisfy condition (54), resonance scattering becomes
one-dimensional. Integrals (42) are taken in an explicit
form and, after the substitution of the obtained Fourier
components C; _ (k, k) into the expressions for current
(5)~9), wearrive at formula (3) in [23] for the conduc-
tance of a structure at low voltages eU < Aj with the
reflection and transmission coefficients

<1

(54)

2D 2D
-T
(e—gq) +iE 10

o 2 O
(e-gg)+ir® (9
e = 1-IrE)l",
which allow for the 2D behavior of scattering in the
interlayer in expressionsfor ', (17).

re) =

6. CONCLUSION

The results of sequential theoretical analysis of res-
onance tunneling in two-dimensional N--D structures
with defectsin theinterlayer have demonstrated that, in
the presence of d-pairing in electrodes, one cannot
restrict oneself to a one-dimensional approximation.
Qualitatively, thisis associated with the fact that, in the
case of N-1-D structures, direct tunneling in the ZBA
region is also resonance tunneling to the bound elec-
tron-hole state, which leads to the formation of ZBA. In
so doing, the interference of two processes occurringin
the low-voltage region brings about both a partial sup-
pression of ZBA and a sharp enhancement of the pro-
cess of tunneling via localized states, which proves to
involve almost all localized states, irrespective of their
position in the interlayer. This result is fairly general and
independent of the shape of the resonance curve and
describes both resonance (at 3 > 0) and direct scattering by
the potential of defect (3). It is only with the orientation
angle a = 0 that the problem reducesto aone-dimensiona
one, and we derive the relation for conductance, which is
in forma agreement with the analogous expression
derived for the 1D case.
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APPENDIX A

Two-Dimensional
One-Electron Resonance Scattering

Wewill treat the el ectron wave scattering by 2D-poten-
tial (1). For this purpose, we will write the solution of
Schrodinger’s equation for potential (1) intheform

W(r) = Yo(r)
+J’(d2r‘)GO(s, Fr)Vimp(r' =r
where Yy(r) and Gy, r, r') denote the eectron wave

function and Green's function of two-dimensiona square
potential (2), respectively, which satisfy the equations

[€ —Ho(r)]We(r) = 0,
[e—Ho(N)]Gole, r, 1) = o(r —r7),

ﬁ 0°
HO = 2m +Vrect(x)

Al
A W(r), A

(A.2)

The defect radius p has atomic dimensions, i.e, p < k3,
while the wave function (r) is, on an atomic scale, a
slow-varying function of the variable r. This enables
one to remove the wave function in Eq. (A.1) from the
integrand and represent this expression as

W(r) = Wo(r)
+ qJ(rO)Idzr'Go(s, [ ) Vin(r' =To).

We assumein Eq. (A.3) that r =r,to readily derive, for
the local value of Y(r ),

(A.3)

Po(ro)
1 —J’dzr'Go(E, o r')Vimp(rl - I’0) .

Wewill further substitute expression (A.4) into (A.3) in
view of the fact that Green's function Gy(g, r, rg)
appearing in Eq. (A.3) on ascale p, on which variations
of the defect potential Vi,,(r —ro) occur, isaso aslow-
varying function of the variable r and derive the final
expression for an electron wave scattered by alocalized
state (see our formulas (13)—(17)),

P(r) = Yo(r) + LeWo(ro) Go(e, 1, 1),

|'d2r'V,mp(r ro)
1 J'dzr'Go(S, r,r )Vmp(r )

Y(ro) = (A.4)

(A.5)

(A.6)
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Thefirst termin formula (A.5) describes potential scat-
tering by potential (1), and the second term describes
resonance scattering by alocalized state.

In order to calculate the electron amplitude of reso-
nance scattering L., one must know the expression for
Green's eectron function in the barrier,

Gr, 1) = zi = [k, @xplik,(y ~y)] Culky, X, X),

Ge(kya X, XO)\x, x| <d = GV + Gl-

m A.7
Gv=—5 A0

X

exp(—Ky/x —x]),

2mK +|k
Kﬁlk

where G, is Green's electron function of rectangular
barrier (2) of infinite thicknessd — o, and G, denotes
the corrections to this function due to finiteness of the
barrier,

i = K=K, K = 2m(E, +e)n,

Ky? = 2m(Vo—E; —€)/%°.

We substitute Green's functions (A.7) into (A.6) in view
of the form of local potentia Vio(r —r) (3) to derive the
following expression for the electron amplitude of reso-
nance scattering L

1 = exp( —2K§ d)cosh[KX(x+x)]

2 2
Ky = /Ko + K,

_ T -
Min(KA/KE) + I +id"
( 0) A8)
e _A2m(Vo—Ei—£) _ 1 #’ D
Kres = ex
fi p me

where 1K is the resonance value of momentum defin-
ing the value of resonance energy €y, N = 2exp(0.5)/y,
y=1.78isEuler'sconstant, and J' and J' have the form

! h ,\/1_'[ e2
J 2mV (Ko —Ko ) P(Xo),
2A/;[ .
J" = MV, (Kokg) @(Xo), (A.9)

IEEXIO[ ~2Kq(d —Xo)] exp[—21<8(d+xo)]%

2] JKS(d—x,) JeSd+x) O

We expand the logarithm in formula (A.8) in the vicin-
ity of the resonance value of itsargument (K = Kg) to
derive formulas (16) and (17) in which

o, = —2(Vo—E;)J,

®(Xo) =

€r = &t 0, (A.10)
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where &¢ is the shift of the resonance energy, which is
caused by the finite width of the barrier.

The amplitude of resonance scattering for holes L,
iscalculated analogously. In so doing, one must change
the sign of energy (¢ — —€) and take into account that
Green's hole functions are related to el ectron functions

by therelation Gy(k,, X, X) = G5 (K;, X, X)¢ _. .

APPENDIX B
Solution of Recurrent Equations

In order to caculae the dectric current through a
structure, one must know the Fourier components of scat-
tered dectron wave G _ (k, kg), which are sums of the

respective partial Fourier components CeNH satisfying
integral recurrent relations (38) withinitial conditions (13)

and (14). In order to find them in an explicit form, we will
use the formulas

CMN™ = a(k)ayk)r,. (k)C2"

N N (B.1)
+ ay(K) LnGn(Ky, Xo)dar (r o),
CMN"2=r,_(k)ry. (k)agk)ak)C2"
+ LeGelky, X2 (r o) (B.2)

+ o (K,)an(K) LyGn(Ky, Xo)di~ (1 ).,

which follow from recurrent relations (38). We sum
recurrent formula (B.2) with respect to the parameter

q="re._(K)rn_(k)ac(k)ay(k), |q| < 1 to derive the fol-
lowing expression for C,_:

1. 0 ~ 2
Ceﬂ = _{ Ceﬂ + LeGe(k y X )Ze
Q o (B.3)
+ e (Ky)an(K) LyGh(Ky, Xo)h},
inwhich

Yo = 3 ), = Y dil(ro).

Anaogously, formulas (B.1) and (38) yield the expres-
sionsfor C,_, G, = ZCﬁN”

(B.4)

C,. = é{ ay(K)an(K)ry. (k,) C2..

+ ag(K)an(K)r . (K)) LeGe(ky, Xo) 3 (B.5)
+ 2,(K) Ly Gn(Ky» Xo) 2},
Ch_(k) = a(k)Cq_(K). (B.6)
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It follows from formulas (28), (36), and (B.4) that Se

and 5, are the sums of respective electron and hole
partial Fourier components, integrated with respect to
k, with the weight factors d, ,_(k)); therefore, in order to
find these sums, it is sufficient to multiply formula (B.5)
by d._(k) and (B.6) by d,_(k)), integrate the resultant
expressions with respect to k, and solve the resultant set
of two linear equationsrelativeto 3. and Sy. Asaresult,
we derive formula (40) for the Fourier components of

scattered electron wave with coefficients defined by
relations (41) and (42).
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1. INTRODUCTION

A fundamental problem of solid state physics is to
determine conditions under which the el ectron—phonon
interaction may qualitatively change the eigenstates of
charge carriersin a dielectric [1-4]. At present, a con-
siderable attention of researchersis drawn to the study
of small polarons, which is partly related to the rapid
development of computational methods for the study of
polarons at |arge val ues of the el ectron—phonon interac-
tion parameters [5-8]. On the other hand, theinterest in
these invegtigations is due to the possibility of construct-
ing a high-temperature superconductivity (HTSC) theory
and providing a description for the unusual properties
of manganites [9-14].

Since polarons belong to multiparticle systems,
there exist alarge number of representationsthat can be
unitarily inequivalent to each other. This situation
poses a problem of correctly selecting a representation
for the Fock space [15]. In the quantum field theory
(QFT), the Fock space is constructed by means of a
cyclic action of the production operators of physica
particles (i.e., of the particles observed in a physical
experiment) upon their vacuum states. Here, an impor-
tant observable quantity is the quantum system energy
equal to the sum of the energiesof all physical particles
in a given state. The operator commutation relation-
ships by themselves cannot unambiguously determine
the correct representation because it is necessary to
specify the vacuum state as well.

The key role in the study of polaron and bipolaron
bands in multisite polaron models [10, 11, 16-21]

belongsto the single-site Hamiltonian. For the Fréhlich
polaron, this Hamiltonian has the following form:

Hye = zeon0+ EnthQEq(bq+biq)
’ s (1)

+5 7Q b, + 12%
q

where g is the seeding electron ground state energy in
the site; n, isthe occupancy operator of the state with a
spin projection o = +(1/2)(t, 1); b, is the destruction
operator for the phonon with the wavevector g and the
energy Q (for simplicity, we consider dispersionless
phonons); and &, is the matrix element of the electron—
phonon coupling. In solving Eqg. (1), we must take into
account the initial site state occupancy:

<wi >

where n, = a;a, and |¥ Ois the initial state for an
unperturbed electron Hamiltonian determined by the
first term in the right-hand part of Eq. (1).

Note that, neglecting the hopping between sitesin a
multipolaron system, an electron—phonon Hamiltonian
used in constructing the HTSC theory [10, 11] aso
reduces to Eq. (1). Using, in addition, the approxima-
tion of the spin-nondegenerate single eectron state in the
site, the polaron model [16] reducesto Eq. (1) aswell.

An approach that is widely used in studying multi-
site polaron models is based on the canonical Lang—
Firsov transformation for the electron—phonon Frohlich

wi> = 2A,

1063-7761/01/9204-0665%$21.00 © 2001 MAIK “Nauka/Interperiodica’



666

Hamiltonian [16]. This transformation ensures diago-
nalization of the single-site Hamiltonian (1). Then, the
transformed Hamiltonian for a multipolaron model is
studied within the framework of the perturbation theory
with a parameter (assumed to be small) A = z/E,
wheret isthe modulus of the hopping integral between
nearest sites, zisthe number of these sites, and E, isthe
polaron shift of the occupied ground electron state in
the site according to the Lang—Firsov theory. Thisis a
basic approach used in the superconductivity theory
using the concept of interstitial bipolarons.

In this section, we will demonstrate that there exist
unitarily inequivalent representations for the Frohlich
site polaron. Using these representations leads to far-
reaching consequences that provide for the possibility
of making a correct choice of the Fock space in the
problem under consideration.

A canonical Lang—Firsov transformation for Hamil-
tonian (1) is[16]

Hate = eXp(S)Hgie8XP(=S), )

where
S= Za;aazzq(bq_biq) (3)
o q

Using Egs. (2)/\(3) and the well-known commuta-
tion relationships for the operators in (1), we readily
arrive at the electron operator transformed to

2 Sy Eb-bd @
a; = a5exp -
D% q\™q —q 0
and at the phonon operator transformed to
by = by + Y ajaug,. €)

The transformed Hamiltonian acquires the form

Hste = Z (g0— Ep)a:,ao —-2E,n.n,
o

(6)
+3 40 theb, + %g
q
where ng = 0 or 1 and the polaron shift is
E, = ) £hQ. (7
q

The polaron shift E, is a very important parameter in
the theory of bipolaron superconductivity [11], where
this value is considered as a measure of the electron—
phonon coupling in high-T, materials and asareference
guantity in the analysis of al other interaction parameters
(for example, the on-site electron correlation energy).
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The eigenstates of Hate (6) are
[Y0=[n;, n O{ Ny} LI

Accordingly, using this expression and Eg. (3), we
obtain for the eigenstates of Hg (1)

|WD: |nm niEexp(_(nT + nl))z Eq(bq _btq)l{ Nq} 4
q

which implies that the electron vacuum state in the
Lang—Firsov theory,

loti=10,, 0,0 ©)

contains only two single-particle electron states corre-
sponding to the electron vacuum state of the unper-

turbed electron Hamiltonian Hg,, = S &5, IN

fact, this choice of the vacuum state with two single-
particle electron states for the electron subsystem is
inherent in the transformation (2)/\(3), where the oper-
ators a, are considered as the operators of the destruc-
tion of the physical particles. In other words, the vac-
uum state (8) of the Fock state for Hamiltonian (1) in
the Lang—Firsov theory is determined only by the elec-
tron vacuum state of the unperturbed el ectron Hamilto-

nian Hgte , while the eigenvectors of this space are con-

structed by applying operators a; upon the vacuum
state (8).

A completely rigorous approach to the single-site
polaron problem under consideration isto apply meth-
ods of the quantum field theory (QFT). In this case, the
Frohlich polaron correspondsto a sol ution of the many-
particle problem in the space of single-particle fermion
states. If the Fock space is expanded to two-particle site
states, then a solution can emerge that corresponds to
the formation of a boson—fermion mixed state on the
Site.

It should be noted that using the two aforemen-
tioned approaches in the model (1) leads to signifi-
cantly different results. An analysis of these results pro-
vides for the possibility of making a correct choice of
the Fock space in the polaron problem under consider-
ation. We will carry out such an analysis for model (1)
intwo cases of afully occupied site state. Lang and Fir-
sov [16] considered the sites with a single spin-nonde-
generate electron level. In this case, transformation
(2)\(3) leads to the following value of the electron
energy for the fully occupied site state (i.e., for theini-
tial condition W;|a*a|W [ 1):

EeI = &- Ep' (9)

For the spin-degenerate ground state, the electron
energy is[11]

EeI = (8O_Ep)(nT + ni)_ZEpnan (10)
For theinitial condition A= 1 (fully occupied level), the
polaron energy shift (decrease) is 2E, per spin.
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Now we will analyze the polaronic level shift in the
same cases using the perturbation theory. The system
occurs initialy in the fully occupied ground state and
features no excited electron states. According to Eqg. (1),
the first diagonal correction to the electron energy is
evidently zero. In the second order of the perturbation
theory, the energy variation is also zero because no
vacant excited states are available. As can be readily
seen, the energy correctionsin all orders of the pertur-
bation theory for the fully occupied ground level are
zero. Aswill be shown below using the QFT approach,
the average electron energy in the fully occupied site
state corresponds to €, per spin without any polaron
shift.

Polarons belong to the class of Fermi particles (fer-
mions). A polaron state can be presented as a superpo-
sition of single-particle fermion states. These spin-
degenerate states form a kind of the energy ladder
related to multiphonon processes. It isintuitively clear
that we may select from the two spin subspaces a mani-
fold of pairs of the single-particle states, such that a
change in the electron energy upon scattering (during
which the pairs exchange with asingle phonon) in each
of the two spin pairs will be small as compared to the
phonon energy. Then the effective electron interaction
will be attractive and a boson state can appear in the
site. In this case, the site state can be represented in the
following form:

Wo= (1-)" W, Bexp(i9)|W,0  (11)

where [ is the spectral weight of the boson state. For
B # 0, vacuum state (9) should be extended to take into
account the vacuum state of bosons.

When (3 = 0, the wavefunction (11) isinvariant rela-

tive to the gauge transformation O = exp(iN @) (N is
the particle number operator and ¢ is an arbitrary
phase) and the site state represents a normal polaron
state. For 3 # 0, wavefunction (11) is not invariant rel-
ative to the above gauge transformation and the site
state represents a superposition of the states with differ-
ent N =1, 2. However, the state (11) corresponding to
this spontaneoudly violated symmetry is a solution to
Eq. (1), which is invariant with respect to the gauge
transformation. Therefore, the initial invariance must
be retained in a certain manner in solution (11). This
conservation is reflected by taking into account the ini-
tial site state occupancy, which allows the chemica
potential in the state (11) to be determined.

Note that the formation of a boson—fermion mixed
state (11) can only take place provided that the initia
site occupancy is incomplete (A < 1). This is evident,
since otherwise (A = 1) no free single-particle states
would be available for the scattering of quasiparticles.

However, the formation of such a boson—fermion
mixed site state is hindered by the Coulomb correla-
tions in the site. For small polarons, the effective Bohr
radius ay is on the order of one interatomic distance.
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Then, assuming the usual value of the high-frequency
dielectric constant €, = 3and taking ag; = 5 A, wemay
estimate the typical energy of the on-site interaction
between localized electrons:

2
e

U= =045 eV.

€ opt aeff

A question arises as to what the relationship is
between the on-site correlation energy and the elec-
tron—phonon coupling energy at which a boson-fer-
mion mixed site state may form. The next section of
this paper is devoted to the study of conditions favoring
the formation of such boson—fermion mixed site states
and to the thermodynamics of these states. An analysis
based on the method of Green's functions will be car-
ried out for a paramagnetic state.

2. MODEL FORMULATION

Supplementing Eq. (1) by a term corresponding to
the electron correlations at the site, we may represent
the Hamiltonian of the single-site polaron model in the
following form:

Hsite = so(ﬁr + ﬁl)
+URA, + 5 AQE (R, +A,)(by + b’y) + Hpn,

where H,, is the phonon Hamiltonian that may include
an anharmonic part as well.

Evidently, a substance may contain a certain ensem-
ble of such like site (or interstitial) states. Neglecting
the hopping between sites, these site states can be con-
sidered as independent of each other and the analysis
can be reduced to a single-site Hamiltonian (12).

We have determined the initial site state occu-

pancy as
Z Ny LI—'i>.

The wavefunction W, of the unperturbed electron
Hamiltonian for a particle possessing a spin of 1/2 has
two components with the spin projections onto the z
axiso = x1/2 [22]. For A = 1/2, the particle may occur
in the site state with a certain spin value o and the
wavefunction W, (o), while the other site state with spin
projection —o will be vacant. Since the spin operator
commutates with the Hamiltonian (1), this occupancy
distribution in the two spin subspaces also holdsfor the
solution to Eqg. (1). Aswill be seen from the results pre-
sented below (see Section 3.1), this solution for the site
state is characterized by the absence of a polaron shift.
For A= 1/2, theinitial wavefunction of the particle may
be aso prepared in the state with a normalized wave-

function W, = (¥.(0) + W.(-0))/ /2 [22]. This state is
of considerable importance in multisite models with
hopping between sites intended to describe the state of

(12)

2A =<wi
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paramagnetic high-T, materials. For this reason, below
we will study a solution to Eg. (12) for an initial wave-
function in a half-occupied site state (A = 1/2).

Let us introduce the Matsubara Green's functions
(GFs) [23]:

Oo0,(T) = —[T:85(1)ac,(0)] (13)
fog. (1) = T,30(1)a0,(0)0] (14)
foo(T) = TeEg(1)3,,(0)0 (15)

where [.. [denotes averaging over the Gibbs ensemble.

Using Egs. (12)—(15), taking into account only the
diagrams with noncrossing phonon GFsfor self-energy
parts (see Section 3.1), and passing to the spectral rep-
resentation in discrete wy, = (2n + 1)1l values, we
obtain the following set of equations (without losing
generality, we take g, = 0):

gn 9;; (W) +[Ug,, (00 -251g,, (w,)
—[Uf, (0 =231, (w) = 1,

[Ug,, (0" —=5, (0,)]g;, (w,) + 19, (w,) = 0,(17)

[U fTT (0+) _ija(wn)]gn ((*)n) - fﬁlfTT ((*)n) = 0, (18)

(16)

g = (i, —UA-Z5 (@) + 1), (19)

fy = (10, + UA+Z5, () —p) (20)

where 1 isthe chemical potential. Then the self-energy
parts have the form

35 (w,) = -T(hQ)?

2
X zzédq(iwn_iwnl)gm (wnl)v ( 1)
n.q
= (@) = -T(1Q)°
22
X Z Esdq(iwn + iwnl)gn (wnl)! ( )
n,q
22 (@) = ~T(hQ)?
23
x 3 Eady(ion—i0,)g., (), )
n,q
£ (wn) = T(hQ)?
(24)

X z Esdq(iwn_iwnl) f:rx (wnl)a

N, q
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2% (@) = -T(hQ)
xS €qdq(ion —iw,)g;, (@), )

N, q
where d,(i w, —iw, ) isthe phonon propagator.

Thefunction g,, (w,) can be presented in the follow-
ing form [23]:

P (X)dx

X—iw, ’ (26)

g (w,) =

—00

where p,, (X) isthe imaginary part of the retarded dou-
ble-time GF GET) (w) at afinite temperature

(27)

P

P, (w) = %ImG(TR)(oo) <0.

Note that in the case of a nonmagnetic state,
pm(w) = pu(w) = —p((.O),

where p(w) is areal function determining the spectral
density per spin for a fermion quasiparticle at the site,
whichisnormalized as

00

Ip(w)dw = 1.

Using expression (26), applying the sum rule to w, [23],
and teking into account the definition of the site dtate
occupancy A per spin, we obtain

A = lim gge(-T) = Idxp(x)n(x—u), (28)

1.0

where n(t) = 1{exp(t/T) + 1}. Since the A value is
determined by the initial site state occupancy, relation-
ship (28) is essentially an equation for determining the
chemical potentia L.

The anaytica continuation of the self-energy parts
(21) and (22) from a discrete set of points to the entire
upper half-plane w has the following form:

55 (w) = (hQ)%E” [P(xax
= (29)

><[n(p—x)+N + n(x—u)+N}
W—X-Q+iy w-x+Q+iy/’

5 = ~(hQ)%E? [ P(ax
= (30)

x[ n(p—x) +N n(x—p) +N }
W+HX+Q-2u+iy W+x—-Q-2u+iy]
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Here N = 1{exp(Q/T) — 1} and & is a dimensionless
parameter of the electron—phonon coupling given by
the formula

£qdg

J’(2)

and y is a positive constant (y < Q) describing the
phonon damping.

For a paramagnetic state g,, = g,, and =3, (w,) =
>3 (wy). In the representation of
_ (X)X
9, () = =it (31)

—0o0

thereal spectral density function p4 (X) isdetermined as
the imaginary part of the retarded double-time GF

G®(w) at afinite temperature

pu(@) = TImGP(w), (32)
which obeys the condition
J'psf((o)dw =0.
By the same token, in the representation of
+ x)dx
(o) = Ix() (33)

the spectral function p*(x) is determined as the imagi-

nary part of the retarded double-time GF F+(R) (w) ata
finite temperature

+ 1 +
p'(w) = ]—_[ImFH(R)(w), (34)
which obeys the condition

00

J’p+(w)doo = 0.

The analytical continuation of the self-energy parts
75, (w,) (23) and Z ;7 (wy,) (24) to the entire upper half-
plane w has the following form:

21 (@) = ~(hQ)E [ pu(x)dx
- (35)

[n(u X)+N . n(x— u)+N}
W—X— Q+|y wWw—X+Q+iy
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ST (w) = ~(hQ)%E? jp*(x)dx
(36)

><[n(|1—x)+N + n(x—p)+N]
W—X—-Q+iy w-Xx+Q+iy

The system of equations (16)—(18) involvestwo spin
fluctuation parametersfor the paramagnetic Sate. Thefirst
isA=g,,(0") =g, (0%). Using the representation (31) and
applying the sum rule to w, [23], we obtain

A = 2T Reg,, (@),

n>0
and eventually

00 00

A= [dxpg()n(u=x) = = [ dXpy (X)n(x - k). (37)

The second parameter is

B = lim f!,(1) = 2T S Ref . (w,).
n>0

Taking into account representation (33), thisexpression
can be transformed to

B = J'pr+(X)n(u—X) =—J'pr+(X)n(X—IJ)- (38)

The 3 value is the weight of the boson state in a mixed
Site state.

Now we will write a solution to system (16)—(18)
analytically continued to the entire upper half-plane

GP(w)
_ Gy (39)
G2 —[AU -3%, (0)]° - F, Gl [BU — =2 (w)]”

G®(w)
Z“(oo) —AU (40)
T G -AU-T (@) —F G BU - (@)

Fii ()
Fi G [BU -2 (w)] (42)
G2 —[AU =55, (0)]° = F Gl [BU - =12 (w)]”

where G = w—AU - 25, (w) and F;;' = w + AU +

ETT ((*)) - 2“-

In the case when the initial site states are half-occu-
pied (A = 1/2), asimple analysis of the above solution
shows that the chemical potentia is constant (U= U/2),
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the spectral density p(x) is an even function with
respect to y,

pP(x—H) = p(H—Xx),
while the spectral functions p4 (X) and p*(x) are odd,

P (x—H) = -p"(u-x),
psf(x - lJ-) = _psf(p- - X) .

Thus, we obtained a solution to Eq. (12) describing
the boson—fermion mixed state (39)41). This solution
determines the spectral densities p (27), py (32), and p*
(34). These densities set the self-energy parts (29), (30),
(35), and (36), which, in turn, determine the solution
(39)+41).

This closed system was solved by means of an iter-
ative procedure. Up to 100 iterations were necessary,
after which a maximum relative variation of the spec-
tral density peaks did not exceed 102 and a change in
the A and 3 values did not exceed 3 x 10 for the two
last iterations.

3. RESULTS AND DISCUSSION

The solution (39)—(41) will be analyzed in four par-
ticular cases. The on-site electron correlations can be
considered within the framework of the Hartree—Fock
approximation with neglect of the spin fluctuations
(A = 0), and the solution can be studied both in the
space of single-particle electron state for f = 0 (normal
polaron state) and in the space of boson—polaron mixed
statesfor 3 # 0. Then wewill consider the case with the
spin fluctuations taken into account (A # 0) and study
this solution both in the space of the single-particle
electron state for B = 0 (spin-fluctuating polaron state)
and in the space of spin-fluctuating boson—polaron
mixed states for 3 # 0.

Intheresults presented below for A=1/2, the energy
variable wiscounted fromtheg, + UAlevel. Inthe gen-
eral case, the electron energy of a given state was cal-
culated as

E = —E,—U(A?-A?+p?), (42)

where

[

Ep = — [op(@)n(w-p)de 43)

isapolaron shift for the normal polaron state.

Below we will present the spectral densities for the
above states with various initial site state occupancies.
In the case of half-occupied initial states, we will con-
sider a phase diagram of these states depending on the
temperature.
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3.1. The Polaron Sateat A= 1

When finding solution (39)—41), we neglected the
diagrams of higher orders (n = 4) with intersecting
phonon GFs for irreducible self-energy parts. There-
fore, the parameters in this solution have to be selected
so asto provide that the diagrams would not lead to any
significant variation of the spectral densities. In this
section, we will calculate the irreducible self-energy
parts of the second and fourth orders at T = O for the
normal polaron state (U = 0, 3 = 0) and present an
expression for the spectral density in this state for the
completely occupied state (A = 1).

The corresponding self-energy parts have the fol-
lowing form:

59 (w) = i(hQ)% Id‘*’lo(w—wl)eml), (a4)
4 d(Dl d(L)Z _
Z(0) = Q) [P0 o
x G(0;) G(w,)D(wy _wz)G(w_ W, + W),
where
D(w) = —= L (46)

Ww—Q+iy w+Q-iy’
The tota electron GF for A = 1 has the following
spectral representation (6 —» +0):

Substituting expressions (46) and (47) into (44) and
(45), we obtain

(47)

20(w) = (1)’ Iw—g%—-—gxy, “8)
9 (w) = (Z2(w)’ Iu) Sy @

The spectral density of the polaron state for A= 1
with the self-energy part approximated as (w) = =@
(48) is presented by asolid curve in Fig. 1. The chemi-
cal potential iseverywhere abovethe spectral density of
the polaron state. Clearly distinguished in Fig. 1 are
seven peaks in the p(w) structure, which correspond to
multiphonon processes involved in polaron-state for-
mation. Note that these peaks are not equidistant, their
shifts being determined by the real part of (48). For the
low-energy peaks, the distance between the neighbor-
ing peaks gradually decreases, approaching the phonon
energy Q = 30 meV.

For the spectral density depicted by the solid curve
in Fig. 1, expression (43) yields E, = 0. Thus, the
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Frohlich polaron with A = 1 exhibits no polaron energy
shift, which isaquite natural result from the standpoint
of the quantum-mechanical approach (see section 1). It

should be emphasized that E, = 0at A= 1 for any val-
ues of the model parameters.

Thedashed curvein Fig. 1 presentsthe spectral den-
sity of the polaron state calculated for the self-energy
part in the form Z(w) = =@ + @, A comparison of the
dashed and solid curves in Fig. 1 shows that the two
spectral densities exhibit a qualitatively similar struc-
ture of peaks. The peaks are somewhat shifted in energy
due to the real part of =™ (49). At the same time, an
allowance for the contribution due to the lowest-order
diagram with intersecting phonon GFs leads (for the
model parameters employed) to the appearance of a
negative spectral density within anarrow energy region
(Fig. 1). As the electron—phonon coupling parameter &
increases, this region of the nonphysical density of
states grows and new negative-density regions appear
between the peaks where ImZ@ is small. This was
accompanied by a significantly deteriorated conver-
gence of the iterative procedure. Nevertheless, for the
spectral density presented by the dashed curve in Fig. 1,

Eq. (43) alsoyields E, = 0.

In the HTSC model [11] based on the concept of
interstitial bipolaron formation, avery important model
parameter is the polaron shift. We have determined for
A = 1 that the average energy of the Frohlich polaron
state (whichis precisely the polaron shift for the energy

scale adopted) is E, = 0to within the fourth-order term

&* with respect to the el ectron—phonon coupling param-
eter. At the same time, an expression of the second
order E, = §%Q (see aso Eq. (11) in [11]) for the
polaron shift yields E, = 1/3 eV in the case of the
Frohlich polaron in the site with A = 1. We believe that
the latter polaron energy value is incorrect, which is
related to an incorrect representation of the Fock space
for polarons employed in the Lang—Firsov theory.

In the case of an unoccupied site state (A = 0), we
can use representation (47) upon substitution —id —
+i 9, which leadsto the substitution Q —iy — —-Q +iy
in expressions (48) and (49). As a result, p(w) for the
polaron state at A = 0 corresponds to the density of states
for the A= 1 mirror reflected rdative to the axisw= 0.

If theinitial electron wavefunction at the siteis such
that the electron occursin a state with definite spin pro-
jection (e.g., 0 = 1/2) and the second site state (—0) is
empty, the occupancy distribution in the two spin sub-
spaces will be retained for a solution to Eq. (1) as well
(because the spin operator commutates with Hamilto-
nian (1)). Therefore, py, represents the spectral density
depictedinFig. 1 and p_, _(W—H) = Pge(H —w). Inthis
case, the polaron shift is obviously equal to zero.
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Fig. 1. The spectral density of polaron states in the case of
the completeinitial site occupancy (A= 1) caculatedfor T=0

using the self-energy part approximated as >(w) = 5@
(solid curve) and Z(w) = 5@ + 5@ (dashed curve). The
model parameters. & = 10/3; Q =30 meV; y=0.1Q.

3.2. Half-Filled Polaron States
at Finite Temperatures

Figure 2 shows the spectral densities of polaron
states p(w) for A=1/2and T =20 K calculated for two
different setsof model parameters. As seen, both curves
exhibit acentral peak at w = 0 with the spectral density
peaks corresponding to multiphonon processes sym-
metrically arranged on the left and right wings. These
peaks, the number of which increases with the elec-
tron—phonon coupling parameter (Fig. 2), are not equi-
distant, their shift being determined by the real part of
the self-energy component (29). The distance between
the neighboring peaks decreases with increasing peak
number, eventually approaching the phonon energy.

In the case of half-filling (A = 1/2), the chemical
potential occurs at the central peak (u= 0) and the
decrease in the electron energy related to the polaron
effect (43) is E, = 38.84 meV/spin for the solid curve

and E, =58.15 meV/spin for the dashed curve (Fig. 2).
At the same time, a decrease in the electron energy cal-
culated by the formula E, = AQ&?A is 1/6 eV/spin for
the parameters corresponding to the solid curve in Fig. 2
and E, = 273.8 meV/spin for the parameters corre-
sponding to the solid curve in Fig. 2. These values are

significantly overstated as compared to the E, values
indicated above.

3.3. Boson—Polaron Mixed Ste State
In the Hartree—Fock approximation (A = 0), the
polaron sate at A= 1/2 (Fig. 2) correspondsto asolution
of Eg. (12) in the space of single-particle electron
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Fig. 2. The spectral density of polaron states in the case of
thehalf-filled initial site states (A= 1/2) for T=20K. The solid
curve was calculated using the same model parameters asin
Fig. 1; the dashed curve was calculated for & = 3.7, Q =
40 meV; y=0.05Q. The maximum density of statesat w=0is

35.54 eV spin ! (solid curve) and 45.47 eV spin! (dashed
curve).

states, that is, in the case when 3 = 0. Actually, this sit-
uation takes place for the completely occupied site
states. In the case of half-filling (A = 1/2) and atemper-
ature below a certain critica level (T < Tg), a boson—
polaron mixed state possesses a lower energy as com-
pared to that of the polaron state. The boson—polaron
mixed state is defined by the single-particle density

P, eVl spin’1
25 T T T T T

(a)
20+ 4

15+ -

10

0.24

0 1
-024 -0.12 0
w, eV

0.12
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p(w) and the spectral density of theintrasite boson state
p*(w). Figure 3 shows the spectral densities of the
boson—polaron mixed states at two temperatures. It was
found that the chemical potential of this system for A=
1/2 isindependent of the temperature (U = 0).

Thesolid curvesin Figs. 3aand 3b correspond to the
mixed state at T = 20 K. A decrease in the electron

energy is—E = 73.2 meV. The boson—polaron state for-
mation leads to splitting of the central peak (see Fig. 2)
into two components spaced by A =92.2 meV (Fig. 3a).
The chemical potential p occurs in the middle of the
gap, that is, in the region where the spectral density
p(w) is amost zero. There are four symmetrically
arranged (but not equidistant) peaks on both left and
right sides of p.

The spectral density of the on-site boson state p*(w)
isan odd function of w (Fig. 3b). For the half-filled site
state, 1 = 0 and, consequently, the 3 value determined
by formula (38) is finite (3 = 0.1606). The dashed
curvesin Figs 3aand 3b correspond to thisstateat T =
120K (i.e., near Tp). Here, the decrease in the electron

energy is—E = 65.0 meV and 3 = 0.0967.

Note that, in the case of completely occupied site
states (A = 1), the chemical potentia falls on the right
of the energy region of the spectral density p(w) distri-
bution. Since

00

J’p+(w)dm =0,

thisalways correspondsto 3 = 0 and, hence, the system
occurs in the normal polaron state (Fig. 1).

p*, eVl spin~!

20+

10

-10

=201

-024 -0.12 O
w, eV

0.12 0.24

Fig. 3. The spectral density of boson—polaron mixed site states calculated for T =20 K (solid cures) and 120 K (dashed curves)
in the case of half-filling (A = 1/2): (a) single-particle states; (b) boson states. The model parameters: & = 3.7; Q = 40 meV;

y = 0.05Q.
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Fig. 4. Temperature dependence 3(T) of the spectral weight
of atwo-particle site state for A = 1/2. The solid curve was
calculated using the same model parametersasin Fig. 3; the
dashed curve was calculated for £ =5.774; Q =30 meV; y=
0.033Q.

Figure 4 illustrates the temperature-induced transi-
tion from a boson—polaron mixed state to the polaron
state for two sets of parameters. The character of this
transition is determined by a temperature dependence
of the spectral weight of the boson site state (T ). Asis
seen in Fig. 4, there is a certain critical temperature T
at which 3 = 0, which corresponds to the transition
from a boson—polaron to a polaron state. As T — T,
the energy gap vanishes (A — 0), the two spectral
density peaksin thevicinity of the chemical potential
merge together, and the amplitudes of p*(w) peakstend
to zero (see the dashed curesin Figs. 3aand 3b). For

P, evV-! Spin‘1
24 T T T
(a)

16 .

8 - -

0 Lad

-0.30 -0.15 0 0.15 0.30

w, eV
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T = T, the solution corresponds to only a normal
polaron state (Fig. 2).

It was established that the temperature dependence
of Binthevicinity of Tg isdescribed by thefunction 3 =

Bon/1—T/Tg. For aset of parameters corresponding to

the solid curve in Fig. 4, B, = 0.4336 and Ty = 129.85 K.
For the dashed curve in Fig. 4, B, = 0.2354 and T =
124.63 K. Note that the electron—phonon coupling
parameter for the solid curve is smaller, and the phonon
energy is greater, than the analogous values for the
dashed curve, while the critical temperaturesin the two
cases are close.

3.4. Spin-Fluctuating Polaron State

Now let us consider the polaron states with an
allowance for the spin fluctuations in the site with half-
filling (A = 1/2). Assuming 3 = 0, the spin-fluctuating
polaron state appears at temperatures below a certain
critical level (T < T,) and is characterized by the spin
fluctuation parameter A < 1/2. The spin-fluctuating
polaron state is determined by the single-particle den-
sity of states p(w) and the spectral density of spin fluc-
tuations pg (). Figure 5 shows the spectral density of
the spin-fluctuating polaron state at two temperatures.
It was found that the chemical potential of this state is
independent of the temperature (L = 0).

Using Egs. (39)—<41) with B = 0, it is possible to
show that the presence of spin fluctuations|eadsto dou-
bling of the spectral features in p(w). As a result, the
central peak of the polaron sate (see Fig. 2) splits into
two peaks separated by the energy gap A. The solid
curves in Figs 5a and 5b represent the spin-fluctuating
polaron stateat T = 20 K, which correspondsto the spin

Pss eVl spin‘l
24 T

161

24
~0.30

1
-0.15 0
w, eV

0.15 0.30

Fig. 5. The spectral density of spin-fluctuating polaron states calculated at T = 20 K (solid curves) and 87 K (dashed curves) in the
case of the half-occupied initial site states (A = 1/2): (a) single-particle states; (b) spin fluctuations. Themodel parametersarethesame

asinFig. 3,andU =04¢V.
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Fig. 6. Temperature dependence A(T) of the spectral weight
of a spin-fluctuating polaron state for A = 1/2. The solid
curve was calculated using the same model parametersasin
Fig. 5; the dashed curve was calculated for § = 5.774; Q =
30 meV; y=0.033Q; U =0.5¢eV.

fluctuation parameter A = 0.4552 and the gap width A =
16.32 meV, with the chemical potential “occurring” at
the middle of the gap. The dashed curvesin Fig. 5aand
5billustrate the case of T = 87 K, with A = 0.1585 and
A =10.88 meV.

Note that, with the initial condition A = 1/2, the
function p(w) is even (Fig. 5a), while p4(w) is odd
(Fig. 5b) relativeto L = 0, which resultsin that the A is
finite for T < T,. For the initial condition A = 1, the
chemical potential falls on the right of the energy
region of the spectral density p(w) distribution. In this
case, we obtain only atrivia solution of Eq. (37), A =0,
whereby the system with A = 1 isaways in the normal
polaron state (Fig. 1).

As the temperature increases, the spin fluctuations
decay (Fig. 5) and the A value decreases. Figure 6
shows the temperature dependence of the spin fluctua-
tion parameter A(T) calculated for a spin-fluctuating
polaron state with A = 1/2 using two sets of parameters.
This dependence determines the transition from the
spin-fluctuating to the normal polaron state observed
with increasing temperature. As seen, thereis a certain
critical temperature T, at which A turns zero, which
corresponds to the transition. As T — T,, the energy
gap vanishes (A — 0), the two spectral density peaks
p(w) in the vicinity of the chemical potential 1 merge
together, and the amplitudes of py (w) peaks tend to zero
(seethe dashed curesin Figs. 5aand 5b). For T = Tg, there
is asingle solution corresponding to a normal polaron
state (Fig. 2).

3.5. Spin-Fluctuating Boson—Polaron Mixed Sate

The appearance of the energy gap in the single-par-
ticle spectral density p(w) is related both to the forma-
tion of an intrasite boson state (Fig. 3) and to the spin
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fluctuations leading to the aforementioned doubling of
the spectral density features (Fig. 5). It was established
that there may exist atemperature interval in which the
parameter A for the spin-fluctuating polaron state is
finite and the spectral weight B of the boson—polaron
mixed state is nonzero. It was also found that, in the
temperature range where the spin fluctuation parameter
A is nonzero, the energy of a spin-fluctuating boson—
polaron mixed state is lower than that of the simple
spin-fluctuating polaron state. Thisisrelated to astrong
mutual influence of the two factors, A and 3, in the case
of the former state formation. The spin-fluctuating
boson—polaron mixed state is characterized by the den-
sity of single-particle states p(w), the spectral density
of spin fluctuations pg (w), and the spectral density of
the two-particle site state p*(w).

Figure 7 shows the spectral densities for the spin-
fluctuating boson—polaron mixed states at A = 1/2 cal-
culated for T=20and 70 K. At T= 20 K, the electronic

energy of the spin-fluctuating polaron state is E =
-110.52 meV, while the spin-fluctuating boson—polaron

mixed stateis characterized by E =—-141.83 meV. Asthe
temperature increases, the energy of the former state

grows (to E =-140.4 meV at T = 70 K).

Asisseenin Fig. 7a, the spectrum of single-particle
states exhibits an energy gap at 1 = 0. This energy gap
decreasesfromA =45.34meV at T=20K to 18.13 eV
at T =70 K. The spectral density of spin fluctuations
depicted in Fig. 7b shows that the spin fluctuation
parameter at T = 20 K issignificantly lower for the spin-
fluctuating boson—polaron mixed state (A = 0.2904)
than for the spin-fluctuating polaron state (A = 0.4552).
As the temperature grows, the spin fluctuations
decrease. For T = 70 K, the spin fluctuation parameter
for the spin-fluctuating boson—polaron mixed state (A =
0.2741) is still somewhat lower than that (A = 0.2881)
for the spin-fluctuating polaron state (Fig. 6). Figure 7c
shows the spectral density of the two-particle site state.
At T = 20K, the spectral weight of the boson state ([ =
0.0526) is lower than the value (B = 0.1606) for the
boson—polaron mixed state (Fig. 3). The B value of the
spin-fluctuating boson— polaron mixed state monotoni-
cally decreases when the temperature increases up to a
certainleve (3 =0.01527 at T = 70 K); the boson—polaron
date at thistemperature has 3 = 0.1582 (Fig. 4).

For the model parameters employed, the critical
temperature Tg for the transition from boson—polaron to
polaron state (Fig. 4) is greater than the T, value corre-
sponding to the transition from a spin-fluctuating to
normal polaron state (Fig. 6). Thisinterplay leadsto the
unusual phase diagram depicted in Fig. 8. In the spin-
fluctu