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Abstract—It is shown that the maximum entropy of a quantized surface in the classical limit is proportional to
its area. The result is valid for the loop quantum gravitation as well as for a more general class of approaches
to surface quantization. For some special cases, the maximum entropy is calculated in explicit form. © 2002
MAIK “Nauka/Interperiodica”.
Let us consider the relation between the maximum
entropy of a quantized surface and its area. For the sake
of definiteness, we start our analysis with the approach
to surface quantization based on loop quantum gravita-
tion [1–5]. In this case, the surface geometry is deter-
mined by a set of ν punctures on this surface. In the
general case, each puncture is supplied by two integral
or half-integral “angular momenta” ju and jd:

. (1)

ju and jd are associated with the edges directed up and
down relative to the normal to the surface, respectively,
and add up to form the angular momentum jud:

(2)

The area of the surface is given by

(3)

It is appropriate to make the following remark con-
cerning the last formula. It is quite natural that the unit
of area is the square of the Planck length:

(4)

Each radical

has the same order of magnitude as  and . In this
case, however, the area A will be finite in the classical
limit of a large sum of quantum numbers if the power of
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(5)

is equal to the power of " in . This argument, which
was formulated in [6], is also quite natural. It can easily
be verified by considering in quantum mechanics any
expectation value which does not vanish in the classical
limit. On the other hand, since large values of j are gen-
erally admissible, the expression for the surface area
must contain the sum of square roots and not the sum of

j(j + 1) or .

As regards the common numerical factor α in for-
mula (3), it cannot be determined without using some
additional physical considerations. This ambiguity
appears due to the presence of a free parameter (so-
called Immirzi parameter) [7, 8] corresponding to a
family of nonequivalent quantum theories each of
which can be used without resorting to such consider-
ation. We believe that the value of this factor in formula
(3) will be determined from an analysis of the entropy
of a black hole. This idea (which was mentioned earlier
in [9]) was investigated by one of the authors [10] for
somewhat simplified models under the assumption that
the entropy of an eternal black hole has the maximum
value in equilibrium. This assumption stems from the
work by Vaz and Witten [11], who used it in the model
of a quantum black hole emerging during dust collapse.
In this communication, we will confine our analysis to
the calculation of the maximum entropy of the surface
whose area is defined by formula (3) (or its generaliza-
tion).

The entropy S of a surface is defined as the loga-
rithm of the number of states of this surface with a fixed
area A, i.e., with the fixed sum (5). Let νi be the number
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of punctures with a given set of angular momenta ,

, and . The total number of punctures is

We ascribe the statistical weight gi to each puncture i.
Since

this statistical weight is equal (in the absence of addi-
tional constraints) to the number of possible projections

; i.e.,

Then, the entropy is given by

(6)

The structure of expressions (3) and (6) is so different
that, in the general case, the entropy obviously cannot
be proportional to the surface area (see [10] for a more
detailed analysis). It will be shown below, however, that
this is the case for the maximum entropy in the classical
limit.

It is natural to expect from combinatorial consider-
ations that the absolute maximum of entropy is attained

when all the values of quantum numbers  and jud are
present. This guess is also confirmed by calculations for
specific model cases [see [10]). We also assume that the
characteristic numbers of punctures νi in the classical
limit are large. Using Stirling’s formula for factorials,
we can transform expression (6) to

(7)

We have omitted here the terms containing ,
which are close to unity in order of magnitude. The
applicability of this approximation as well as Stirling’s
formula in the given problem will be discussed below.
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We seek the extremum of expression (7) under the con-
dition

(8)

The problem is reduced to the solution of the system of
equations

(9)

or

(10)

Here, µ is a Lagrangian multiplier for the additional
condition (8). Summing expressions (10) over i, we
arrive at the following equation for µ:

(11)

On the other hand, multiplying Eq. (9) by νi, summing
over i, and taking into account condition (8), we obtain
the following result for the maximum entropy for a
given value of N:

(12)

In formula (7), we have omitted the terms

The accuracy of this approximation will be considered
again below.

Thus, it is the maximum entropy of the surface that
is proportional to its area in the classical limit. This pro-
portionality obviously takes place for a classical black
hole. This is a strong argument in favor of the assump-
tion that the entropy of a black hole has the maximum
value.

It should be emphasized that relation (12) is valid
not only for the loop quantum gravitation, but also for
a wide class of approaches to surface quantization. In
actual practice, the following requirements should be
met. The surface must contain regions of different types
so that there exist νi regions of each type i with the gen-
eralized effective quantum number ri and the degener-
acy gi. Then, in the classical limit, the maximum
entropy of the surface is proportional to its area.

From our point of view, the explicit form of the rad-

icals in formula (3) (i.e., the specific choice of , ,

and ) for black holes remains unclear. For this rea-
son, we will confine our analysis to a few examples of

N ν iri

i

∑ const,= =

ri 2 ji
u ji

u 1+( ) 2 ji
d ji

d 1+( ) ji
ud ji

ud 1+( )–+ .=

gi ν i ν i'

i'

∑ 
 
 

ln+ln–ln µri,=

ν i gi µri–( ) ν i'

i'

∑exp= .

gi µri–( )exp
i

∑ 1.=

Smax µN .=

1
2
--- ν iln

i

∑– ,
1
2
--- ν .ln

ji
u ji

d

ji
ud
AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002



THE RELATION BETWEEN THE MAXIMUM ENTROPY 3

 

a reasonable specific choice of radicals in the general
quantization rule (3) for the surface area.

We begin with the case when formula (3) can be
reduced to

(13)

The entropy for this case was determined by us earlier
[10] under the assumption that the sum of quantum
numbers

is specified. We will now solve this problem for a given

(14)

Here, the degeneracy of a puncture with the quantum
number j is gj = 2j + 1, and Eq. (11) can be written in
the form

(15)

The solution to this equation is

(16)

Thus, the maximum entropy in this case is given by

(17)

The mean value of angular momentum is

(18)

In a certain sense, the simplest way to choose the
quantum numbers ji in this model is to set all of them
equal to 1/2. Then, νj = νδj, 1/2 and

(19)

In fact, this value of the entropy for a black hole was
obtained earlier in [12] in the framework of the Chern–
Simons field theory. The characteristic value of ji deter-
mined in [12] is also equal to 1/2.

Let us consider another example. For each puncture,
we obtain

In this case,
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and gj = 1. Then, the equation for z = exp(–µ

 

/2) has the
form

(21)

and its solution is given by

(22)

The maximum entropy and the average angular
momentum obtained in this way are

(23)

(24)

Finally, let us consider the general case when 

 

N 

 

is

defined by formula (5), 

 

g

 

i

 

 = 2  + 1, and all values of

, , and  are allowed. The solution to Eq. (11) in
this case is

 

z

 

 = 0.202, (25)

and the maximum entropy amounts to

(26)

The mean values of quantum numbers in this case are
given by

(27)

It should be emphasized that we always arrive in this
way at the effective condition of quantization with inte-
gral quantum numbers 

 

ν

 

 for the entropy (and area) of a
black hole, which was proposed in the pioneering work
[13] (see also [14, 15]).

Let us now analyze the accuracy of our result for the
maximum entropy. In order to lend more weight and
substance to our arguments, let us consider the second
of the above models with quantity 

 

N

 

 defined by formula
(21) and with the results described by relations (22)–
(24). It can be easily verified, however, that the above
estimates are qualitatively correct both for the first
model described by formulas (14)–(18) and for the
third, most general, case. For 
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cant contributions to 
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 are large, and Stirling’s approx-
imation for 
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 is quite justified.
On the other hand, the number of terms in the sum

over 
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 in expressions of the type (7) is effectively lim-
ited by inequality (28). Thus, the contribution from
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formula (7), as well as from the term (1/2)lnν retained
in expression (7) but rejected in the final expression
(12), amounts to only lnN in order of magnitude. The
leading correction to our result (12) is due to the term

and amount to a value of the order of ln2N. By the way,
it differs from the leading correction in the model con-
sidered in [16, 17], where it is of the order of lnN.

It should be noted in conclusion that attempts to cal-
culate the entropy of the surface in loop quantum grav-
itation were also made in [18, 19]. In these publica-
tions, the distribution of angular momenta j over punc-
tures is disregarded altogether. It is hard to imagine how
the entropy of the surface can be determined without
this information.
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Abstract—The 57Fe NMR spectra of the 57Fe-enriched (95.43%) ceramics of a ferroelectric antiferromagnet
BiFeO3 with a spatially modulated magnetic structure have been studied. It is established that a cycloidal spin
modulation in BiFeO3 causes a spatial modulation of the spin–spin relaxation rate along the magnetic cycloid
period and results in inhomogeneous broadening of the local NMR lineshape. It is also found that the local mag-
netic moments of Fe ions in various parts of the cycloid depend differently on the temperature, which is indic-
ative of a difference in the spin wave excitation. The observed phenomena can be explained in terms of the
Shul–Nakamura indirect nuclear interaction which becomes effective at high concentrations of the magnetoac-
tive nuclei and low temperatures. Similarity of the obtained experimental results to the regularities of NMR in
the Bloch walls is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The ferroelectric antiferromagnet BiFeO3 is a per-
ovskite-like compound which exhibits both magnetic
and electric long-range ordering. The compound pos-
sesses a rhombohedrally distorted bimolecular perov-
skite unit cell (space group R3c) with the parameters (in
hexagonal system) ahex = 5.57874 Å and chex =
13.8688 Å [1]. Below the Néel temperature (TN ≈
670 K), BiFeO3 becomes an antiferromagnet with a
cycloidal spatially spin-modulated structure (SSMS)
established by neutron diffraction [2]. The magnetic
structure of a separate unit cell corresponds to the G-
type aniferromagnetic ordering (each magnetic Fe3+ ion
is surrounded by six Fe3+ ions with spins directed oppo-
site to that of the central ion) and can be described in
terms of a two-sublattice model by introducing the anti-
ferromagnetic vector L = M1 – M2. However, the mag-
netic moments M1, M2, and the vector L are rotated in
the plane of propagation of a modulated wave normal to
the basal plane. The wave vector of this cycloid is per-
pendicular to the threefold axis (c axis) and lies in the
plane of rotation of L. According to the data obtained in
[2], the cycloid period is sufficiently large, λ = 620 ±
20 Å, and is incommensurate with the lattice parameter. 
1063-7761/02/9501- $22.00 © 20101
Dependence of the angle θ between L and the c axis
on the coordinate x in the cycloid propagation direction
is given by the relation [3, 4]

(1)

where sn(x, m) is the elliptic Jacobi function, m is the
parameter, and K(m) is the complete elliptic integral of
the first order.

Indirect evidence of the existence of SSMS in
BiFeO3 was obtained in [5–7] from measurements of
the magnetoelectric effect. Among other results, the
occurrence of a field-induced phase transition from
SSMS to uniform antiferromagnetic state was
observed. The existence of SSMS was recently con-
firmed by the 57Fe NMR data [8, 9] providing some new
information about the specific features of SSMS.

The rotation of magnetic moments (L vector) in
SSMS modifies the NMR lineshape so that the spec-
trum becomes extended over a certain frequency range
δν with two edge peaks of different height and a char-
acteristic dip in between. The frequency range arises
due to an anisotropic contribution to the local magnetic
field Hn on the nuclei which for BiFeO3 amounts to
about 1% of the total magnetic field on the Fe nucleus.
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As shown in [8], anisotropy of the NMR frequencies in
BiFeO3 is described by the expression

(2)

where ν|| and ν⊥  are the frequencies corresponding to
L || c (θ = 0) and L ⊥  c (θ = π/2), respectively.

The profile of the NMR absorption spectrum P(ν)
for SSMS in the δ-function approximation was calcu-
lated in [8]:

(3)

where ν is the running frequency and m is the parameter
of the elliptic Jacobi function in Eq. (1). The experi-
ment shows that for BiFeO3 ν|| > ν⊥ .

It follows from Eq. (3) that for m  0 the spectrum
becomes symmetric with two edge peaks of equal
intensity and a minimum between (a harmonic cyc-
loid). If m  1, the lineshape profile becomes asym-
metric: the intensity of the high-frequency peak at ν||
increases, the low-frequency peak at ν⊥  decreases, and
the minimum of P(ν) between peaks shifts toward the
low-frequency peak (the cycloid becomes more and
more anharmonic). As follows from the experimental
spectra measured in the temperature range from 77 to
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Fig. 1. (1) Experimental 57Fe NMR spectrum for BiFeO3 at
4.2 K and (2) its theoretical imitation by integral (11) with
m = 0.95, α = 10, and β = 1.
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300 K, SSMS is characterized by essentially anhar-
monic cycloid [8, 9].

In our previous studies [8, 9], the possible effect of
nuclear relaxation on the NMR features in BiFeO3 has
been disregarded. Strictly speaking, Eq. (3) correctly
describes the lineshape only if the relaxation processes
are neglected.

We report the results of new NMR measurements in
BiFeO3 in the temperature range from 4.2 K to 77 K,
which revealed new features of the relaxation of 57Fe
nuclei and spin wave excitations in SSMS.

2. SAMPLE PREPARATION
AND EXPERIMENTAL PROCEDURE

The experiments were made on the same BiFeO3
sample that was used in our previous studies [8, 9]. It
was prepared by the standard ceramic technology using
Fe2O3 oxide enriched in the 57Fe isotope up to 95.43%.
The parameters ahex = 5.589 Å and chex = 13.77(1) Å of
a bimolecular rhombohedral unit cell coincide with the
data for BiFeO3 [1].

According to the experimental requirements, three
types of pulsed NMR spectrometers were employed.
One of these was a conventional superheterodyne spec-
trometer of the ISS-1-13 type with continuous record-
ing of the spin echo amplitude as a function of the fre-
quency, manufactured at the Institute of Radioengineer-
ing and Electronics of the Russian Academy of
Sciences; the second was a pulsed coherent spectrome-
ter with a point-by-point registration of the echo signal
[10]; and the third spectrometer, also with a point-by-
point registration, was a standard Bruker SXP-4-100
instrument. The measurements in the temperature range
from 8 to 300 K were made with the use of a cryogenic
closed-cycle helium refrigerator manufactured by CTI
Cryogenics.

The spin–spin relaxation time T2 was determined by
measuring the decay of the echo amplitude A with
increasing delay time τ12 between two exciting pulses
according to the expression

(4)

The spin–lattice relaxation time T1 was measured by
the saturating pulse technique.

3. NUCLEAR RELAXATION 
IN A SPIN-MODULATED STRUCTURE

Figure 1 (curve 1) shows the 57Fe spin-echo spec-
trum of BiFeO3 obtained at 4.2 K by continuously
recording the echo amplitude versus frequency. The
echo signal was excited by pulses of equal duration
τ1 = τ2 = 10 µs. This mode allows one to “cut out” a fre-
quency band of about 0.1 MHz in spectrum. The delay
time between pulses was τ12 = 80 µs. The spectrum
retains the shape inherent in the spectra measured at

A A0 2τ12/T2–( ).exp=
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higher temperatures [9]; however, it becomes more
asymmetric with strong smearing of a low-frequency
peak.

Detailed measurements of the spin–spin relaxation
time T2 by the above echo excitation technique revealed
a strong frequency dependence of T2. The exponential
decay curves of the echo amplitude, measured at the
frequencies ν|| and ν⊥  and approximated by Eq. (4), are
shown in Fig. 2. For the convenience of comparison, the
initial amplitudes A0 are taken equal to unity. The value
of T2 increases from T2⊥  ≈ 400 µs at the frequency ν⊥  =
75.0 MHz to T2|| ≈ 1080 µs at ν|| = 75.58 MHz.

The spectral variation of T2 is retained at higher tem-
peratures. The measurements made on different spec-
trometers give the following values of T2⊥  and T2||: 250–
260 µs and 500–520 µs (at a temperature of 30 K); 150–
200 µs and 400–500 µs (77 K); 60–80 µs and 120–
140 µs (300 K). With an increase in the temperature,
the spin–spin relaxation time, as expected, becomes
shorter, while the T2||/T2⊥  ratio tends to decrease.

The measurements of the spin–lattice relaxation time
T1 revealed its constancy across the spectrum (3–4 ms at
4.2 K and 1.4–1.5 ms at 77 K).

For a theoretical analysis of the experimental NMR
lineshape, one should pass from a simple approxima-
tion using the δ function as a local (intrinsic) lineshape
[8, 9] to a model which takes into account the finite
local linewidth and its variation with frequency along
the cycloid period. These calculations can be made
based on the ideas that were used for description of the
NMR in the Bloch walls [11] possessing a similar 180°
periodicity in the magnetic structure.

In contrast to the Bloch walls, there is no need in
considering the enhancement factor in our case since,
as was established in [8], the enhancement mechanism
in BiFeO3 is ineffective. The general expression for the
NMR absorption lineshape for a periodic structure is
given by

(5)

where I(θ) is the signal intensity in the part of the cyc-
loid where L makes an angle θ with the c axis, and ν(θ)
is the anisotropic contribution to NMR frequency given
by Eq. (2). The function I(θ) for BiFeO3 was calculated
in [8] and has the form

(6)

P ν( ) I θ( ) f ν ν θ( )–[ ] θ ,d

0

π

∫=

I θ( ) m 1– 1– θsin
2

+( )
1/2–

.∝
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We take the Gaussian profile as a local lineshape
function

(7)

which assumes that the local linewidth (more precisely,
a halfwidth) ∆ is a function of the angle θ. The function
∆(θ) is taken in the form

(8)

where ∆|| is the minimum linewidth at the frequency ν||
and δ1 is the additional broadening at the frequency ν⊥ .
This choice of the function (8) will be justified below.
In view of Eqs. (2), (6), and (8), we obtain the following
expression for the integral lineshape:

(9)

The integration is more conveniently performed with
the dimensionless parameters

(10)

From expressions (10), it follows that the value ξ = –1
corresponds to the frequency ν⊥ (θ = π/2), and ξ = 0, to
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Fig. 2. Decay of the echo amplitude with an increase in the
delay time τ12 between pulses measured at the frequencies
(d) ν|| and (m) ν⊥  and approximated by Eq. (4). The initial
amplitudes A0 are taken equal to unity.
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the frequency ν|| (θ = 0), after which integral (9)
reduces to

(11)

Curve 2 in Fig. 1 shows the results of calculation of
the integral in (11) at m = 0.95, α = 10, and β = 1. In
frequency units, the above parameters correspond to the
local linewidths ∆|| = 58 kHz and ∆⊥  = ∆|| + δ1 =
116 kHz. Taking into consideration that the line profile
exhibits inevitable distortion due to a finite delay time
between pulses during the experiment, i.e., that the
spectral distribution of T2 affects the echo amplitude
(see Fig. 1), one may conclude that the theoretical line-
shape quite satisfactorily describes specific features of
the experimental NMR spectrum.

4. TEMPERATURE DEPENDENCE 
OF NMR FREQUENCIES

The temperature dependence of the frequencies ν||,
ν⊥ , and the corresponding local magnetic fields Hn on
the 57Fe nuclei in BiFeO3 is shown in Fig. 3. The
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2
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2
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Table

T, K ν⊥ , MHz ν||, MHz δν, MHz

4.2 75.00 ± 0.01 75.58 ± 0.01 0.58 ± 0.02

30 74.86 ± 0.01 74.54 ± 0.01 0.68 ± 0.02

77 74.60 ± 0.01 75.35 ± 0.01 0.75 ± 0.02

304 67.08 ± 0.01 67.88 ± 0.01 0.80 ± 0.02
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Fig. 3. Temperature dependence of the frequencies (d) ν||
and (m) ν⊥  and the corresponding local magnetic fields Hn

on the 57Fe nuclei.
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numerical values of the frequencies ν|| and ν⊥  and their
difference δν for the low-temperature range from 4.2 to
77 K and at 304 K are given in the table. Data for the
range 77 K < T < 304 K are published in [9]. To within
the experimental error of ν|| and ν⊥ , the frequency dif-
ference δν in this temperature range can considered as
constant. However, as can be seen from Fig. 3 and the
table, the magnitude of δν appreciably increases with
the temperature due to a steeper drop in the ν⊥  fre-
quency (corresponding to a low-frequency edge of the
δν band in the part of a cycloid where L ⊥  c) in com-
parison with the frequency ν|| (corresponding to L || c).
Thus, on heating the sample from 4.2 to 77 K, the rela-
tive drop in ν⊥  (from 75.00 to 74.60 MHz) amounts to
0.53%, while the relative drop in ν|| (from 75.58 to
75.35 MHz) is 0.30%. The temperature-induced varia-
tions of δν in this temperature interval are significantly
greater than the error of frequency measurements.

In principle, the anisotropic contribution of δν to
NMR frequency can vary due to changes in the environ-
ment of Fe ions (the anisotropic contributions to NMR
frequencies were analyzed for orthoferrites [12], for
which the magnitude of δν ≈ 0.5 MHz observed at the
reorientation of spins is close to that given in the table
for BiFeO3). However, according to the structural data
[13, 14], the numerical values of lattice parameters and
interatomic distances in BiFeO3 change in this temper-
ature range only in fourth digit; thus, the structural fac-
tors cannot explain the temperature changes in δν.

Since a change in the 57Fe NMR frequency is pro-
portional to the change in the local magnetic moment of
the Fe ion, the observed difference in the temperature
dependence of the frequencies ν|| and ν⊥  points to the dif-
ferent temperature dependence of magnetic moments in
the parts of a cycloid where L ⊥  c and L || c.

5. DISCUSSION AND CONCLUSION

The experimental data on the NMR lineshape and
the temperature dependence of NMR frequencies in
BiFeO3 strikingly resemble the NMR features observed
in the Bloch walls [15]. These features are as follows:
(1) broadening of the local NMR lineshape and the
acceleration of nuclear relaxation processes toward the
center of a wall in comparison with the nuclei in
domains; (2) decrease in the local magnetization (the
so-called “spin reduction” [15]) in a domain wall due to
the excitation of “intrawall” spin waves (Winter mag-
nons) which is manifested by an increase in the differ-
ence between the NMR frequencies in the domains and
the wall center with increasing temperature.

The features of NMR in BiFeO3 can be treated in a
similar way, assuming the parts of a cycloid with the
angles near θ = π/2 as transition regions (the analog of
walls) between more extended regions with the angles
closer to θ = 0, π, … (the analog of domains). Nonuni-
form rotation of the antiferromagnetic vector L is
AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002
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caused by anharmonicity of the cycloid: the rotation of
L towards the basal plane near θ = π/2 is steeper than in
the regions where vector L is oriented close to the c axis
(see Fig. 2a in [9]).

The analogy with domains and domain walls
becomes more and more justified with decreasing tem-
perature because of an increase in anharmonicity of the
cycloid. This is evidenced by the tendency to an
increase in the parameter m: m ≈ 0.48 at 304 K [9], m ≈
0.8–0.9 at 77 K [8, 9], m ≈ 0.95 at 4.2 K (curve 2 in
Fig. 1).

At a high concentration of the 57Fe isotope (95.43%)
and a low temperature, one can expect the contribution
δ1 to the angular dependence of the NMR linewidth,
resulting from the indirect nuclear spin–spin interaction
(the Shul–Nakamura interaction) due to the excitation
of spin waves similar to the Winter magnons in domain
walls. The aforementioned transition regions near θ =
π/2 can play the role of domain walls. The amplitude of
these excitations is proportional to sin2θ [11], which
justifies use of the function ∆(θ) in the form of Eq. (8).
As to the absence of a noticeable spectral variation of
T1(θ), one would expect the effect of spin–lattice inter-
action on the lineshape to become important only for
temperatures approaching TN.

In addition to the broadening δ1 of the local line at
the frequency ν⊥ , a significant difference is observed
between the temperature dependences of ν|| and ν⊥ ,
which is caused by a decrease in the atomic magnetic
moments of Fe at the center of a transition region due
to the thermal intrawall-type excitations [15].

Thus, one more experimental result points to a deep
analogy between processes observed in the ordinary
domain walls and in SSMS.

The question concerning the nature of the intrawall
excitations in SSMS remains open. In strongly aniso-
tropic uniaxial and spatially modulated antiferromag-
nets like BiFeO3, the mobile walls characterized by
high values of the RF susceptibility and responsible for
the enhancement of NMR absorption are absent. Such
low-energy translation-like wall oscillations determine
the thermodynamics of spins in the walls. However, the
experimental and theoretical estimations of the
enhancement factor show [8] that the enhancement
mechanism in BiFeO3 is ineffective. The spin waves in
SSMS are very specific by themselves (see [16]): their
properties and the properties of antiferromagnetic
domains and walls in a complicated magnetic structure
such as that of BiFeO3 require a special theoretical con-
sideration.

The main result of our study consists in the follow-
ing. The spatial spin-modulated cycloidal structure in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
BiFeO3 results not only in periodicity of the local fields
on 57Fe responsible for a specific NMR lineshape, but
also in a spatial periodicity in the spin–spin relaxation
rate, local linewidth, and local magnetic moment. The
observed dynamic properties of a modulated structure
are the consequence of the Shul–Nakamura interaction
which becomes effective at low temperatures and high
concentrations of the 57Fe isotope.
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Abstract—The static susceptibility and the spectrum of a magnetic-resonance mode of a single-crystal garnet-
ferrite film with a domain structure are experimentally investigated. It is found that, in a magnetic field perpen-
dicular to the film plane, these characteristics have features associated with the reorientation of the domain
structure. The spin-wave spectrum of the film is calculated on the basis of the domain structure model proposed.
It is shown that the experimentally observed features of the spectrum can be accounted for by the reorientation
of magnetizations in the domains. A good agreement is obtained between experimental and theoretical values
of the gap in the spin-wave spectrum at the “starting and end points of reorientation.” © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is known that the activation in the spectra of low-
frequency branches of spin-wave oscillations in
ordered single- and multisublattice magnetic materials
is mainly determined by the crystallographic magnetic
anisotropy. At the points of orientational phase transi-
tions of the second kind (OPT-2), the magnetic anisot-
ropy vanishes. In this case, the activation in the spectra
of low-frequency spin oscillations is attributed to other
(as a rule, weaker) interactions. In a two-sublattice
model of an antiferromagnetic material, an orienta-
tional transition may consist in a smooth turn through
90° of the spin subsystem as a whole. It is this kind of
reorientation that is realized in the subsystem of iron
spins in weak ferromagnetic materials—rare earth
orthoferrites (REOFs). To date, the nature and the
mechanisms of activation in the spectrum of low-fre-
quency branches of quasi-spin waves in these com-
pounds have been sufficiently well studied both near
spontaneous [1] and field-induced [2] orientational
transitions. It turns out that a gap in the spectrum of a
soft quasi-ferromagnetic mode in REOFs represents a
certain measure of dynamic interaction between vari-
ous oscillatory subsystems of the magnetic substance.

The same role that the crystallographic magnetic
anisotropy plays in “thick” three-dimensional samples
1063-7761/02/9501- $22.00 © 20106
can be played, both in statics and dynamics, by the
shape anisotropy in thin magnetic films. This fact fol-
lows from extensive analogies that manifest themselves
when juxtaposing static and dynamic experiments in
three-dimensional samples, on the one hand, and in vir-
tually two-dimensional samples, on the other; the latter
samples are represented by films whose linear dimen-
sions L in the plane are much greater than their thick-
ness d (L @ d). This fact can be verified by comparing
the structure of the orientational transition induced by
an external field H (this transition is called the “end
point of spin reorientation”) in a three-dimensional
sample of a REOF and in a thin film. As is well known,
the orientational transition consists in the following:
under the external field directed strictly along one of the
crystal axes (either a(x) or c(z)), the ferromagnetic M
and antiferromagnetic L vectors rotate until, at a certain
H = Htr, the vector M becomes parallel to the field,
whereas L ⊥  H. This is the end point of reorientation.
For example, when H || a, this point corresponds to the
transition

One usually observes a jump in the magnetic suscepti-
bility at the transition point, while a soft (quasi-ferro-
magnetic) resonance mode has the minimal frequency,

Γ24 Mxz Lxz,( ) Γ2 Mx Lz,( ).
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which corresponds to the energy gap in the spectrum of
low-frequency spin waves. We should stress that even a
small deviation of the field from the appropriate crystal
axis transfers an REOF sample into an angular phase,
and the above transition disappears.

Now, let us consider, for example, a magnetically
ordered film of a garnet-ferrite-type cubic ferromagnet
with a negative first constant of cubic anisotropy: K < 0.
This ferromagnet has eight easy axes of type {111}. Let
a normal n to the film surface coincide with one of these
axes. Then, the remaining six axes make acute angles
with the film plane. It is known experimentally that the
saturation field in such films does not exceed 2000 Oe,
which is less by two orders of magnitude than the first
exchange field HE1 in garnet ferrites. Therefore, one can
abstract away from the multisublattice structure of a
garnet ferrite and consider it as a ferromagnet with
magnetization M for magnetic fields of up to 2000 Oe.
It is known [3] that, depending on the relation between
the squared modulus of the vector of spontaneous mag-
netization M and the constant of induced uniaxial
anisotropy K1 (directed along the normal to the film
plane for the easy axis), different configurations of the
domain structure may be formed in such films. For
example, when K1/2πM2 > 1, the vector of spontaneous
magnetization in individual domains is perpendicular
to the film surface and is directed along easy axis. In
this case, the domain structure itself in a zero magnetic
field represents an array of strongly bent narrow stripes
with width of the order of the film thickness. When
K1/2πM2 < 1 and the film thickness is less than a certain
critical value, d < dcr, the spontaneous magnetic
moment in similar stripe domains lies strictly in the
plane of the film [3]. It is quite obvious that switching
on a field H || [111] in the second case pulls up the mag-
netizations M in the domains from the plane (111) and
turns them toward axis [111] until they become parallel
to H. By analogy with REOFs, this is also the end point
of reorientation. Since this is a full-fledged orienta-
tional transition, a question arises: To what extent can
the theory and the results of [1, 2] be applied to describ-
ing the dynamics of this transition? Do such films
exhibit the static and dynamic phenomena inherent in
OPT-2 in three-dimensional magnetic materials? To
answer these questions, we carried out static and reso-
nance experiments on a doped yttrium iron garnet
(YIG) film and performed appropriate theoretical com-
putations.

2. EXPERIMENT

2.1. Sample, Ground State,
and Reorientation Structure

We used a single-crystal (YLaGd)3(FeGa)5O12 gar-
net-ferrite film grown on a gallium gadolinium garnet
substrate by the liquid-phase epitaxy technique. The
sample was made in the form of a disk 5 mm in diame-
ter. As we have already mentioned, in a zero magnetic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
field, such a film consists of stripe domains, with width
of the order of the film thickness, each of which is mag-
netized up to the saturation, while the film as a whole is
unmagnetized [3]. It should be noted that the aforemen-
tioned composition of the film was chosen to minimize
the growth-induced uniaxial anisotropy in the direction
of the normal n to the film surface [4]. The film thick-
ness was d ≈ 0.1 µm, and the axis [111] was nearly par-
allel to the normal n. This thickness is an order of mag-
nitude less than dcr [3]; hence, we can rightfully assume
that the magnetization vector in this film lies strictly
parallel to the film plane. In this case, we experimen-
tally found that the saturation field in the film plane
does not exceed 10–15 Oe. At the same time, the satu-
ration field along axis [111] is 1300 Oe. Thus, we can
assume that, in a zero external magnetic field, an easy-
plane-type anisotropy is formed in this film.

The inset in Fig. 1 shows three basic states that are
realized in a sample as the field H || [111] || z increases
from 0 to H ≥ 4πM (H ! HE1). Transitions between
these states can be represented as follows. When H = 0,
a stripe domain structure of composite configuration is
formed in the film with the width of domains of order
d, while the spontaneous magnetic moment M in each
domain lies in the film plane. In Fig. 1, this state is rep-
resented by an arbitrary pair of vectors of spontaneous
magnetization M in adjacent domains. When a filed H ||
[111] is switched on, the total magnetization in this
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Fig. 1. Frequency of the resonance circuit of the autodyne
oscillator with a garnet-ferrite film versus magnetic field H
for various angles θ between the direction of H and the
[111] axis: (1) 0°, (2) 0.13°, (3) 0.2°, (4) 0.8°, (5) 1.8°, and
(6) 3.3°. The inset shows equilibrium magnetic states of the
film.
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direction grows predominantly due to the rotation of
magnetization vectors in the domains. This rotation of
magnetization vectors in the domains can be considered
as the reorientation of magnetizations along the direc-
tion of the field. The reorientation starts at zero field
and ends at a field of H = Htr ≈ 4πM. In our case, Htr ≈
1300 Oe. The field H = 0 is the “starting point of reori-
entation,” while the field Htr is the “end point of reori-
entation.” The field Htr makes the sense of a field
induced by the shape anisotropy in such a film (the
demagnetizing field). The presence of two points, the
starting point and the end point of reorientation, makes
the analogy between reorientations in an REOF and in
a garnet-ferrite film even deeper. In a garnet-ferrite
film, these points correspond to the points of spontane-
ous second-order orientational transitions in REOFs [1,
2]. Therefore, just as in REOFs, one should expect the
softening of the low-frequency branch of quasi-spin
waves in garnet-ferrite films at both above-mentioned
points.

Note that, apparently, such a reorientation by no
means requires that the film should be single-crystal. It
is sufficient that it has a texture with the same distin-
guished axis [111] || n. Then, the film is virtually isotro-
pic in the plane (111) in the sense of the distribution of
the vectors M in state I. In state II, these vectors form a
cone, a certain half-open umbrella that is closed for H =
Htr. Finally, to realize the above reorientation, the only
important condition is that there exist three phases: a
multidomain collinear, a multidomain angular, and a
single-domain collinear phase. Even the number of
sublattices in a specific magnetic material is unimpor-
tant, because, in statics, everything is reduced to the
field dependence of the total magnetization, whereas, in
dynamics, a ferromagnetic (acoustic) mode in weak
fields results from the precession of the entire bundle of
magnetizations as a single whole [5].

2.2. Static Properties (Magnetic Susceptibility)

It is known that the static susceptibility experiences
a jump at the point of the magnetic OPT-2. We used an
autodyne oscillator, which is usually applied in nuclear
magnetic resonance experiments, to measure the static
susceptibility of the film. The film was placed flat on a
planar coil of the autodyne oscillator operating at a fre-
quency of ν ~ 5 MHz. In the experiment, we measured
a dc voltage proportional to the difference between the
frequencies of the autodyne oscillator and a reference
oscillator, which was tuned to a frequency of 5 MHz.
This technique allowed us to fix frequency variations of
several hertz [6]. Here, we could set an external mag-
netic field near the orientation H || [111] accurate to
within ±3 angular minutes.

Figure 1 represents a family of functions ν(H) for
various angles θ of deviation of H from the axis [111].
The direction of H corresponding to the maximal vari-
ation in the resonance frequency ν of the autodyne cir-
JOURNAL OF EXPERIMENTAL 
cuit was determined from the symmetry of the graphs
ν(H) for different values of θ. The frequency scale in
Fig. 1 corresponds to the lowest graph. For the other
graphs, one should move the frequency scale upward so
that their initial regions coincide.

One can see that the family of graphs for different θ
includes one that has the deepest minimum. This graph
has the following characteristic features.

1. The frequency minimum is observed at the value
of the external field equal to the saturation field of the
film (about 4πM) in the direction [111].

2. The depth of the minimum strongly depends on
the orientation of the external magnetic field. For exam-
ple, even a 0.1° deviation of H from the optimal direc-
tion corresponding to the deepest minimum results in a
decrease in the depth of the minimum approximately by
an order of magnitude. If the field deviates from the
optimal direction by several degrees, then this mini-
mum vanishes completely.

3. No hysteresis is observed in the position of the
frequency minimum on the axis of fields.

With what can one associate the frequency mini-
mum observed? Since the resonance frequency ν of the
oscillator circuit coil with a sample is proportional to
µ−1/2 (µ is the permeability of the film), the graphs in
Fig. 1 represent the field dependence of the square root
of the inverse permeability (1 + 4πχ)–1/2. Then, the min-
imum on the frequency–field diagrams can be consid-
ered as a natural jump in the susceptibility χ at the point
of the magnetic OPT-2. The above-listed features of the
behavior of this minimum show that here we deal with
the “order–order” phase transition of the second kind.
From this viewpoint, the lowest graph in Fig. 1 corre-
sponds to θ = 0, the most precise orientation of the con-
stant magnetic field with respect to the axis [111]. The
aforementioned OPT-2 takes place only in this case.
When θ ≠ 0, the transition disappears, which is mani-
fested in a sharp decrease in the jump of susceptibility
(or the depth of the minimum in Fig. 1). This provides
an obvious analogy with the properties of orientational
transitions in REOFs [1, 2].

Notice that all graphs in Fig. 1 also exhibit a fre-
quency minimum at very small fields. Apparently, this
is associated with the fact that, as H  0, the suscep-
tibility attains its maximum associated with the second
OPT-2 at the starting point of reorientation. One can see
that the depth of the minimum in this case is virtually
independent of the orientation of the external magnetic
field. Such a behavior of the resonance frequency can
be accounted for by the fact that any orientation of the
external magnetic field (except for θ = π/2) will obvi-
ously pull up the magnetization vectors of the domains
from the plane of the film, i.e., will give rise to the
OPT-2 at the starting point of reorientation.

Everywhere above, we pointed out that the exact
orientation of the field is the direction H || [111] rather
than H || n. This is not accidental. Experiments show
that, when growing epitaxial garnet-ferrite films, the
AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002
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axis [111] does not always exactly coincide with the
normal n to the film. On the other hand, it is known that
it is the two-dimensionality of the film (L @ d) that is
responsible for the origin of the stripe structure; hence,
the description of this structure always involves a geo-
metric factor, the normal n to the surface. At the same
time, an important moment for the realization of the
orientational phase transition at the end point of reori-
entation is the orientation of the field with respect to a
physical factor, a crystallographic axis (in our case, the
axis [111]). Therefore, it is quite possible that, having
found a sufficiently accurate orientation H || [111] from
the symmetry of the graphs in Fig. 1, we certainly do
not satisfy the condition H || n. Growth defects and the
magnetic inhomogeneity of the film should also con-
tribute to this fact; these factors can be manifested in
the nonmonotonicity of the graphs on both sides of the
frequency minimum, which is most clearly exhibited in
the graph for θ = 0. However, it is quite possible that
these inhomogeneities are of physical, rather than tech-
nological, origin. A detailed investigation of these inho-
mogeneities is beyond the scope of this paper. It should
only be noted that a visual observation of the domain
structure in various epitaxial garnet-ferrite films shows
that, as a rule, these films are not perfect. The most per-
fect structures (a stripe structure, an array of cylindrical
magnetic domains, etc.) are observed when there is a
strong growth-induced anisotropy in the direction of n,
which, however, is minimal in the film under investiga-
tion.

Thus, the static properties of a garnet-ferrite film
whose magnetic structure is mainly determined by the
shape anisotropy show that two magnetic orientational
phase transitions of the second kind are realized in this
film. The properties of these transitions, such as a jump
in the susceptibility, a strong field dependence in the
case of the transition at the end point of reorientation,
the absence of hysteresis, and the value of the transition
field, are the features that are characteristic of ordinary
OPT-2 in three-dimensional magnetic materials whose
magnetic structure is determined by the crystallo-
graphic anisotropy.

2.3. Dynamic Properties 
(Quasi-Ferromagnetic Resonance)

It is known that the lowest frequency branch of the
oscillation mode in the spectrum of an ordered mag-
netic material softens at the points of OPT-2. The
dynamics in the neighborhood of various orientational
transitions was analyzed in detail (theoretically and
experimentally) in [1, 2] by an example of REOFs. It
turns out that eight sublattices of REOFs can be
reduced in dynamics to four sublattices, or, if one
restricts the analysis to acoustic modes, even to two:
ferromagnetic and antiferromagnetic ones, which cor-
respond to the oscillations of the vectors M and L,
respectively. A similar situation is possible when study-
ing a multisublattice ferrimagnetic material, a garnet
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
ferrite. Then, the dynamics in the isotropic case can
also be described by the above two vectors. Just as in
the case of REOFs, we are only interested in the quasi-
ferromagnetic mode, associated with the precession of
the vector M in the magnetic field, that should soften at
the transition point (the frequency of the antiferromag-
netic mode of a garnet ferrite lies in the infrared range).
However, as we have already mentioned above, the
cubic anisotropy of a garnet ferrite initially leads to a
situation where several vectors M precess in the field H
when the latter is directed along the easy axis [111] of
the crystal. In this case, the film dynamics near the
point of orientational transition at the starting and end
points of reorientation is associated with the precession
of the total magnetization along the axis [111] at an
appropriate consolidated frequency.

Resonance measurements were carried out on a
reflecting direct-amplification microwave spectrometer
with the range of operating frequencies from 10 to
8000 MHz under the modulation of the magnetic field
at room temperature (295 K). In the experiments, we
recorded the derivative of the absorbed signal with
respect to the magnetic field. A microstrip line to which
a sample in the form of a disk 3 mm in diameter was
pasted served as a measurement cell. The external mag-
netic field was directed along the axis [111] by the
method conventional in the investigation of soft mag-
netic-resonance modes in a magnetic field (see, for
example, [7]) and normally to the magnetic component
of the microwave field h. The experimental frequency–
field dependence of the ferromagnetic resonance shown
in Fig. 2 is obtained from a family of records made for
a large number of fixed frequency points.

The magnetic-field dependence of the resonance
frequencies represented in this figure has pronounced
minima at low fields and at a field of about 1300 Oe,
i.e., exactly at the fields (H = 0 and H = Htr) where the
susceptibility experiences a jump. This fact suggests
that the spectrum observed corresponds to soft quasi-
ferromagnetic modes because they always have the
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Fig. 2. Frequency–field dependence of the ferromagnetic
resonance in a garnet-ferrite film in the field H || [111],
H ⊥  h.
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minimum frequency at the points of OPT-2. Just as in
the REOF experiments, the prefix “quasi” implies that
the magnetic-resonance spectrum near the transition
may be formed not only due to the precession of mag-
netization. As is shown in [1, 2], actually, this spectrum
is always associated with the dynamic interaction
between various oscillatory subsystems of the magnetic
material. This interaction in an REOF results in an
energy gap at the transition point, which represents an
additive sum of contributions of different collective
oscillations. Figure 2 shows that a gap exists in our case
as well, in particular, at the end point of reorientation
ν0 = 200 ± 10 MHz. This absolute value of gap is two
orders of magnitude less than that usually observed in
REOFs. Such a difference can be attributed to the fact
that the spontaneous ferromagnetic moment in REOFs
is so small that the primary role in dynamics is played
by the antiferromagnetic structure of iron spins. In anti-
ferromagnetic materials, the appearance of a gap at the
point of OPT-2 represents an exchange-amplified effect
[8]. In ferrimagnetic materials, the magnitude of M is of
the order of the magnetizations M1 and M2 of the sub-
lattices. Therefore, we actually deal with a ferromag-
netic material where the aforementioned exchange
amplification is absent. Nevertheless, the gap observed
in this case can also be attributed to the dynamic inter-
action between various oscillatory subsystems, which
are associated not only with the precession but also
with the longitudinal oscillations of magnetization.
Indeed, the ratio of the temperature of the induced
OPT-2 realized here to the ferrimagnetic-ordering tem-
perature TN = 560 K of a garnet ferrite is rather large; it
is approximately equal to 0.7. Under these conditions,
the ratio of the longitudinal susceptibility to the trans-
versal one (χ||/χ⊥ ) can reach a value of 0.6 [9]. For
example, in REOFs, the contribution of longitudinal
oscillations of magnetization to the value of the gap for
such value of χ||/χ⊥  is quite significant [2, 9].

Notice that the experimental frequency–field depen-
dence shown in Fig. 2 qualitatively agrees with that cal-
culated in [10] for a spherical sample of a cubic ferro-
magnetic material with K > 0 for H ⊥  h and H || [110]
without taking into account the displacement of domain
walls. In these calculations, the gap in the spectrum is
associated solely with the domain structure, which is
preserved up to the saturation field of the sample.
Despite obvious differences in the conditions and the
geometry of our experiment from the initial conditions
of calculation in [10], we can also speak of a soft mode
in our case at the point of the orientational order–order
transition (the reorientation occurs inside the domains).
However, in contrast to usual transitions, for example,
OPT-2 on REOFs, here the transitions of the type “start
and end of reorientation” occur between inhomoge-
neous ordered (I and II) and between inhomogeneous
(II) and homogeneous (III) ordered phases (Fig. 1),
rather than between homogeneous phases. If we
assume that a similar situation can be realized in our
JOURNAL OF EXPERIMENTAL 
case (i.e., a domain structure can be preserved up to H =
Htr), then, in addition to the contributions of the known
mechanisms, one should take into account the role of
domains in the formation of the gap [1, 2, 9].

3. THEORY

It follows from the experiment that a composite
easy-plane-type stripe domain structure is formed in
the garnet-ferrite film in the absence of a constant exter-
nal magnetic field. This structure may have 180°-,
120°-, and 60°-domain walls, which is associated with
the effect of the projections (lying in the film plane) of
six easy axes of the initial crystal of cubic anisotropy on
the formation of the domain structure. It is virtually
impossible to describe such a structure analytically;
therefore, we simplify the problem of determining the
spectrum of spin oscillations of the film. Suppose that,
when H = 0, only 180°-domain walls exist in the film
that separate alternating stripe domains of equal size
and opposite magnetization. Such a situation may occur
in a film that has a pronounced texture along one of six
easy axes lying in the film plane. The analysis of the
oscillation spectrum of such a domain structure shows
that it consists of two branches; low- and high-fre-
quency ones [10, 11]. If we consider a real domain
structure of a film with regard to all types of domain
walls, we can see that it consists of a large number of
branches; this number is determined by the amount of
different types of domains. Among these branches, only
one branch will have the lowest frequency. It is this
branch that should soften at the starting and end points
of spin reorientation. It is obvious that the difference
between the activations of low-frequency branches in
the simplified 180°-domain structure and in a real
domain structure is expressed by a certain numerical
coefficient that will not influence the understanding of
the physics of the phenomenon, i.e., the understanding
of the behavior of the spin-wave oscillation branches in
the film as a function of the magnetic field.

The energy density of the simplified domain struc-
ture in the film can be represented as follows:
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(1)

Here, K1 > 0 is the uniaxial anisotropy constant in the
film plane, induced, for example, by the sample texture;
K4 is the first constant of cubic anisotropy; h is a micro-
wave magnetic field; Bi are magnetostriction constants;
cij are elasticity moduli; uij is the strain tensor; and Ni

are demagnetization factors. The last two terms in the
equation describe the energy of demagnetizing fields of
the sample and the energy of domain walls [11].

Consider the ground state in which the polar ϑ i and
azimuthal ϕi angles of magnetization M are expressed
by the formulas (axis z is perpendicular to the film
plane and axes x and y lie in the film plane; axis y is per-
pendicular to the plane of domain walls)

(2)

where the angle ϑ0 is determined from the condition
that energy (1) is minimal, which is expressed as

(3)

where

At the starting point of reorientation, when H = 0, we
have ϑ0 = π/2, while, at the end point of reorientation,
we have ϑ0 = 0. The value of the magnetic field at which
the reorientation is completed is given by
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One can see that, in the absence of texture in the film
plane and under suppressed cubic anisotropy, the tran-
sition field is determined by the demagnetizing field,
i.e., by the shape anisotropy: Htr = N3M. When the film
is infinite in the plane, N3 = 4π.

The spectrum of spin oscillations in the simplified
domain structure considered is determined from the
system of Landau–Lifshits equations

(5)

where g is the gyromagnetic ratio. When linearized
near the equilibrium point (2), Eqs. (5) are rewritten as

(6)

where

(7)

The last terms in the expressions for B, C, and D are
attributed to the interaction between the spin and elec-
tromagnetic waves (a dipole–dipole interaction) [1, 2]
(these terms arise from the simultaneous solution of
Eqs. (5) and the Maxwell equations).
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Taking into account (7), one can easily derive from
(6) the spectrum of harmonic oscillations of the simpli-
fied domain structure under consideration:

(8)

The frequency ω1 corresponds to in-phase oscillations
of magnetizations in adjacent domains, while the fre-
quency ω2 corresponds to their out-of-phase oscilla-
tions.

Note that, when deriving expressions (8) for the fre-
quencies of spin waves, we did not take into account the
interaction between these spin waves and the relaxation
oscillations of magnetization in the domains. It is
known that, in contrast to REOFs [1, 2], the consider-
ation of the relaxation oscillations of magnetization in
the case of a ferromagnetic material results in a negligi-
ble contribution to the activation of the frequency of
precession as compared with the contributions of inter-
actions of precession oscillations with other oscillatory
subsystems (elastic and dipolar ones) [12].

4. DISCUSSION OF THE RESULTS
Formula (8) allows one to determine the values of

spin-wave activations at the starting and end points of

ω1 AC, ω2 BD.= =
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reorientation. At the end point of reorientation (4),
which corresponds to the OPT-2 from an inhomoge-
neous domain state with the magnetization in the
domains directed at an angle to the normal to the film
plane to a homogeneous state with the magnetization
perpendicular to the film plane, frequencies (8) can be
rewritten as follows:

(9)

At the starting point of reorientation H = 0, which
corresponds to the transition from the state with the
domain structure such that the domain magnetizations
lie in the film plane to the state with the domain struc-
ture where the domain magnetizations make an angle
with the film plane, frequencies (8) are given by
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To evaluate the activations of spin waves at the start-
ing and end points of reorientation, we use the follow-
ing values of the film parameters, which are character-
istic of garnet ferrites:

g ≈ 2 × 107 1/(s Oe), M ≈ 100 Oe, c44 ≈ 1011 erg/cm3,

B2 = 107 erg/cm3,  ≈ 5 × 103 erg/cm3.

We will neglect the texture in the film plane (K1 ≈ 0).
The demagnetization factors of the plane are estimated
by the formulas for an oblate ellipsoid of rotation [13]:

N1 ≈ N2 ≈ 2 × 10–4, N3 ≈ 1.

At the end point of reorientation, the activations of
spin waves are given by

(11)

whereas, at the starting point of reorientation, they are
given by

(12)
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It follows from (11) and (12) that, at the end point of
reorientation, the experimental value of the spin-wave
frequency (ν0 ≈ 200 MHz; Fig. 2) is in good agreement
with the activations ν1 and ν2 of both branches of mag-
netization oscillations in the domains, whereas, at the
starting point of reorientation, it agrees with the activa-
tion ν2 of out-of-phase oscillations of magnetizations in
the domains. Such a small difference between the acti-
vations of in-phase and out-of-phase oscillations of
magnetizations in the domains at the end point of reori-
entation is associated with the small value of the
demagnetization factors in the film plane.

Thus, the experimentally observed behavior of spin-
wave frequencies in a garnet-ferrite film can be attrib-
uted to the softening of out-of-phase and in-phase oscil-
lations of magnetizations in the domains at the starting
and end points of reorientation of activations.
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Abstract—It is shown that the combination of the structure functions F2 predicted by the CKMT model at low
and moderate values of Q2 and the MRS99 parton distribution functions at high Q2 gives a good description of
the data over the complete measured region of x and Q2. Using these structure functions, the main characteris-
tics of the muon-nuclear inelastic scattering are calculated. Nuclear effects and contributions of the neutral cur-
rent and the γ–Z interference are taken into account. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Muon inelastic scattering off nuclei plays an impor-
tant role in muon propagation through matter. In this
process, the muon can lose a significant part of its
energy and can be scattered at large angles. Therefore,
the muon-nuclear inelastic scattering is of interest in
numerous applications related to the muon transport in
matter, in particular, in calculations of the muon inten-
sity at large depth of matter, the muon-induced hadron
flux underground, the background produced by atmo-
spheric muons in underground neutrino experiments,
etc.

Several models [1–4] have been developed to
describe the muon-nuclear inelastic interaction; how-
ever, uncertainties of this process are much larger than
for purely electromagnetic interactions. The reason is
that the bulk of this process is characterized by a low
squared four-momentum transfer Q2. The smallness of
Q2 does not allow us to use the perturbative QCD
(pQCD) to calculate of the nuclear structure function,
and phenomenological models such as the Regge or
General Vector Dominance Model (GVDM) must be
used. The parametrization of the nucleon structure
functions obtained in these models depends on free
parameters that can be determined from a fit of experi-
mental data and can be applied in the range Q2 ≤ 1–
3 GeV2. This range is often referred to as photoproduc-
tion. But these models fail to describe deep inelastic
scattering (DIS) data at high Q2. The pQCD (NLO
QCD) gives a good description of the structure func-
tions at Q2 ≥ 3 GeV2. A model combining various
aspects of these approaches is therefore needed to
describe the Q2 behavior of nucleon structure functions
over the entire range from photoproduction to DIS.

The widely used approximation [4] of the muon
photonuclear cross section was obtained twenty years

¶This article was submitted by the authors in English.
1063-7761/02/9501- $22.00 © 20011
ago in the GVDM framework. Experimental data for
Q2 ≤ 100 GeV2 and x ≥ 0.01 were used to determine the
parameters. Recently, precise data [5] on structure
functions in wide ranges of Q2 (0.045 ≤ Q2 ≤ 104 GeV2)
and x (10–6 ≤ x ≤ 0.98) have been obtained, and new
nuclear effects (antishadowing and EMC effects) were
observed.

The main goal of this paper is the calculation of the
muon-nuclear inelastic cross section based on the mod-
ern nucleon structure functions and on the present
knowledge of nuclear effects.

The paper is organized as follows. In Section 2, we
give the general relations and definitions used in
describing neutral current charged lepton–nucleon
scattering. The procedure for calculating the nucleon
structure function using the CKMT Regge model [6]
and the MRS99 parton distribution function [7] is
described in Section 3. In Section 4, nuclear effects and
their parametrization are described. The total cross sec-
tion, the muon energy loss, and the angular distribu-
tions of scattered muons are given in Section 5. In the
Conclusions, we summarize the main results of the
paper.

2. NEUTRAL CURRENT CHARGED
LEPTON–NUCLEON SCATTERING

CROSS SECTION
The cross section of the neutral current charged lep-

ton scattering off a nucleon,

(1)

is given by the sum of contributions of the processes
shown in Fig. 1 Here, k(E, k) and k'(E', k') are the initial
and final lepton four-momenta; q = k – k' is the virtual
photon or Z-boson momentum; and p and p' are the ini-
tial nucleon momentum and the total momentum of the
final hadrons X, respectively. This process can be
described by the transferred four-momentum Q2, the

l k( ) N p( ) l k'( ) X p'( ),++
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Bjorken variable x, and the lepton energy loss ν (or
inelasticity y) defined as

(2)

In the laboratory system

(3)

where M and m are the nucleon and lepton masses,
respectively.

The general form of the differential cross section for
the scattering of a charged nonpolarized lepton on a
nonpolarized nucleon, summed over the final lepton
polarizations, can be expressed as

(4)

where

(5)

(6)

(7)

and

(8)
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Fig. 1. Schematic diagrams for the neutral current charged
lepton scattering off a nucleon.
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Here, the term PZ accounts for the Z0 propagator,

(9)

where G/  is the Fermi constant, α = 1/137 is the fine
structure constant, and mZ is Z-boson mass. The lepton
weak coupling constants gV and gA are

(10)

where θW is the Weinberg angle.

The functions  are the electromagnetic
(γ-exchange) and neutral current (Z-exchange) struc-

ture functions, respectively. The functions  corre-
spond to the decomposition over invariant functions of
the tensor (γ–Z interference)

(11)

The upper sign in Eqs. (6) and (7) corresponds to the
lepton scattering (e–, µ–) and the lower sign is for the
antilepton (e+, µ+) scattering.

The term proportional to the function  is due to
the interference between the electromagnetic scattering
amplitude and the axial-vector current weak-interac-
tion amplitude. The amplitudes have opposite C pari-
ties, and the corresponding terms therefore have oppo-
site signs for the lepton and the antilepton scattering. At
low Q2, the γ–Z interference term is much smaller than
the γ-exchange one, but it increases linearly with Q2

(Eq. (9)) and becomes comparable to the γ-exchange
term at Q2 ≈ 103 GeV2.

In terms of the parton distribution in the LO approx-
imation, the structure functions can be written as

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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CROSS SECTION OF THE MUON-NUCLEAR INELASTIC INTERACTION 13
Here, fq and  are parton distribution functions in the
proton; eq, v q, and aq are the charge, vector, and axial-
vector week couplings of quarks. For the up-quarks (u,
c, t), they are given by

(20)

and for the down-quarks (d, s, b), they are

(21)

It can be seen from Eqs. (4) and (9) that the main con-
tribution to the total cross section is due to photopro-
duction (a low-Q2 process); however, at a fixed outgo-
ing muon energy, the large scattering angle corresponds
to high Q2,

(22)

Therefore, the calculation of the muon scattering at
large angles requires knowledge of the behavior of the
nucleon structure functions in the wide range of Q2 ≈
0.01–106 GeV2.

3. LOW- AND HIGH-Q2 APPROXIMATIONS 
OF THE NUCLEON STRUCTURE FUNCTIONS

At high Q2, the QCD predictions for the nucleon
structure functions are obtained by solving the DGLAP
evolution equations at the NLO approximation in the

 or DIS schemes. These equations yield the parton
distribution functions at all values of Q2 provided these
functions are given as a function of x at some input

scale  = 1.2–5 GeV2. The latest global fits per-
formed by several groups (MRS99 [7], GRV98 [8], and
CTEQ5 [9]) give a good description of the experimen-

tal data. At Q2 below , the perturbative QCD fails to
describe data and phenomenological nonperturbative
(GVDM or Regge) models are required. A considerable
number of nonperturbative models have been devel-
oped recently [10–12]. These models predict the cor-
rect limit of F2 at Q2 = 0 and give a good description of
the structure functions at low and medium Q2. Thus,
neither the nonperturbative approaches nor pQCD can
be expected to describe the Q2 behavior of the structure
functions over the entire range from photoproduction to
DIS. A number of models combining QCD and phe-
nomenological approaches have been developed to
describe data in the transition region of Q2 (see review
[13]). In this paper, we use the CKMT model [6] at low

f q

eu c t, ,
2
3
---, v u c t, ,

1
2
---

4
3
--- θWsin

2
, au c t, ,– 1

2
---= = =

ed s b, ,
1
3
---, v d s b, ,– –

1
2
--- 2

3
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2
,+= =

ad s b, ,
1
2
---.–=

θcos EE' Q2/2 m2––( )/ k k' .=

MS

Q0
2

Q0
2
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and moderate Q2 and the MRS99 fit of the parton distri-
bution function [7] at high Q2.

The CKMT model proposes the following parame-

trization of the proton structure function :

(23)

The singlet term

(24)

corresponds to the Pomeron contribution that deter-
mines the small-x behavior of sea quarks and gluons.
The dependence of the effective intercept of the
Pomeron ∆ on Q2 is parameterized as

(25)

The x  1 behavior of FS(x, Q2) is determined by the
function

(26)

The parameterization for the nonsinglet term which
corresponds to the secondary (f, A2) Reggion (valence
quark) contribution, is given by 

(27)

where the behavior as x  0 is determined by the sec-
ondary Reggeon intercept αR. The valence quark distri-
bution can be separated into contributions of the u and
d valence quarks by replacing

(28)

where

(29)

(30)

and Bu and Bd are fixed at Q2 =  by the normalization
conditions for valence quarks in a proton:

(31)
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Fig. 2. The proton structure function  at low Q2 versus x. Solid curves are our calculations using the CKMT model and dashed

curves are the calculations of Bezrukov and Bugaev [4]. Points are experimental results [5, 15].

F2
p

The limit of Q2 = 0 corresponds to the interaction of
real photons. The total cross section for real photons
can be written as

(32)

We see from Eqs. (23), (24), and (28) that F2 ≈ Q2 as
Q2  0 for a fixed ν. Thus, the parametrization

(33)

applies in the CKMT model.

In this way, we find parametrizations of both the 
and γp cross sections with seven free parameters: a, b,
c, d, ∆0, αR, and AS. To determine the parameters, we

have made a joint fit of the  data and the NMC,
E665, SLAG, ZEUS, and H1 data on the proton struc-
ture function F2 in the regions 0.11 ≤ Q2 ≤ 5.5 GeV2 and
10−6 ≤ x ≤ 0.98 [5]. As the initial condition for the val-

σγp
tot ν( )

4π2α
Q2

------------F2 x Q2,( )
Q

2 0=

.=

σγp
tot ν( ) 4π2α Asa

–1 ∆0–
2Mν( )
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+ Bu Bd+( )b
αR–

2Mν( )
αR 1–

]

F2
p

σγp
tot
JOURNAL OF EXPERIMENTAL 
ues of different parameters, we used those obtained in
the previous fit in [6]. A global fit results in the follow-
ing values of the parameters (all dimensional parame-
ters are expressed in GeV2):

a = 0.2513, b = 0.6186, c = 3.0291, d = 1.4817,

∆0 = 0.0988, αR = 0.4056, AS = 0.12.

The values of the parameters Bu = 1.2437 and Bd =
0.1853 were determined from the normalization condi-

tions for valence quarks (at  = 2 GeV2). The quality
of the description of all experimental data is very good
and χ2/d.o.f. = 754.8/600, where only the statistical
errors have been used. Recently, a modified version of

the CKMT model with the new data on  at low Q2

was published [14]. The values of the main parameters
are in a good agreement with those obtained in the
present work.

To calculate  in the entire region of Q2, we there-
fore use the CKMT model at Q2 ≤ 5 GeV2, the MRS99
parton distribution function at Q2 ≥ 6 GeV2, and a linear

Q0
2

F2
p

F2
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Fig. 3. The same as in Fig. 2, but at moderate Q2.
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fit between (CKMT) and (MRS99) in the region

5 ≤ Q2 ≤ 6 GeV2. The result of the fit of  and  is

shown in Figs. 2 and 3 (  versus x for different values

of Q2) and Fig. 4 (  versus Q2 for different values of
x) along with the experimental data [5, 15]. The cross

section  as a function of W2 = M2 + 2Mν – Q2 is
shown in Fig. 5 (the data from [16, 17]).

A good description of experimental data is obtained
for all x and Q2 values. We note that

(a) the recent ZEUS BPT97 data [15] were not
included in our fit, but are in agreement with the CKMT
model prediction at Q2 ≤ 0.1 GeV2;

(b) the rise of  at low x and low Q2 is well
described by the CKMT model with the slope ∆0 =
0.0988, while the experimental value is 0.102 ± 0.070
[15];

(c) the  values found by the ZEUS collaboration
are the result of a phenomenologically motivated
extrapolation.

F2
p F2

p
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p σγp
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p
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In Figs. 2–5, we show the structure function  and

 that were obtained by Bezrukov and Bugaev [4]
and were used for calculating the muon photonuclear
cross section are also shown. At x < 10–3, the structure
functions rise slower than the present data indicate. On
the other hand, in the region x > 0.01 and Q2 > 5 GeV2,
the structure functions are overestimated.

The CKMT parameterization gives separate contri-
butions of valence quarks, sea quarks, and gluons. We
used this peculiarity for parameterizing of the neutron

structure function  that can be extracted from the

deuteron  and the proton  data using the relation

(34)

and the Gottfried sum rule

(35)

F2
p

σγp
tot

F2
n

F2
d F2

p

F2
d 1

2
--- F2

p x( ) F2
n x( )+[ ]=

SG F2
p F2

n–( ) xd
x

-----

0

1

∫=

=  
1
3
--- dV uV–( ) xd

0

1

∫ 2
3
--- d u–( ) x.d

0

1

∫–
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In the case of the SU(2)-symmetric sea, the parton dis-
tribution function of  is equal to that of , and there-
fore, SG = 1/3. But the NMC collaboration [5] gives
SG = 0.235 ± 0.026 at Q2 = 4 GeV2, which is signifi-

cantly below 1/3 and shows that (x) – (x)  0

and (x)/ (x)  1 as x  0. Taking these results

into account, the singlet term of  must be modified.
Because of the isotopical invariance of the strong inter-

action, the nonsinglet term  is

(36)

where xUV(x, Q2) and xDV(x, Q2) are given by Eqs. (29)
and (30). The singlet term

(37)

involves an additional free parameter τ. The value of

this parameter obtained from the fit of the  data [5]
in the region Q2 ≤ 5 GeV2 (with all the other parameters

fixed by the fit of  and ) is τ = 1.8152. The qual-
ity of the data description is good with the value of

χ2/d.o.f. = 611.1/453 for the structure function  data
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Fig. 4. The proton structure function  versus Q2 at fixed

values of x. The solid curves were obtained using the
CKMT + MRS99 model, and the dashed curves are the
results from [4]. Data set is due to experiments [5]. For clar-

ity, the quantity Ci = 13.6–0.6i is added to , where i = 1

(16) for the lowest (highest) x value.
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and χ2/d.o.f. = 452.8/380 for the /  data, where
only statistical errors have been used.

To calculate the structure function  in the entire
region of Q2, we used the approximation in Eqs. (36)
and (37) at Q2 ≤ 5 GeV2, the MRS99 parton distribution
function at Q2 ≥ 6 GeV2, and a linear fit between

(CKMT) and (MRS) in the transition region 5 <

Q2 < 6 GeV2. The structure function  (Fig. 6) and the

ratio /  (Fig. 7) versus Q2 for different values of x
are shown along with experimental data. Figure 8

shows  –  versus x at Q2 = 4 GeV2. The calcula-
tions are in agreement with the NMC data [18].

For the calculation of the cross section of lepton–
nucleon scattering, the behavior of the structure func-
tion 2xF1 must be known in a wide range of Q2 and x.
This function can be expressed using the longitudinal
structure function

(38)

Then,

(39)
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Fig. 5. The total cross section  as a function of W2. The

solid curve is the result of our calculations using the com-
bined CKMT + MRS99 model and the dashed curve is
taken from [4]. Experimental data are taken from [16] at
low energies and from ZEUS and H1 [17] at higher ener-
gies.
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ND THEORETICAL PHYSICS      Vol. 95      No. 1      2002



CROSS SECTION OF THE MUON-NUCLEAR INELASTIC INTERACTION 17
where

(40)

Perturbative QCD describes the available data on
the ratio R(x, Q2) at large values of Q2 reasonably well,
but very little is known about possible extrapolations
towards the region of low Q2. In the limit as Q2  0,
the structure function FL must vanish as Q4 (for fixed ν),
and therefore, R ≈ Q2. At x < 0.01 and Q2 < 0.5 GeV2,
the experimental results are poor. The data show a small
value of R at moderate values of x and a possible
increase in R as x decreases. The data come from exper-
iments carried out with different targets (nuclei and
protons), and differences RA – Rp are consistent with
zero and do not exhibit any significant dependence on x
[19].

Data can be fitted by the parametrization
R(SLAC98) [20]. But this fit must not be used at
Q2 < 0.35 GeV2. In this region, we used the GVDM
asymptotic form of R as Q2  0 given by [21]
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Fig. 6. The deutron structure function  versus Q2 at fixed

values of x. Data set is due to BCDMS, E665, NMC, and
SLAC experiments [5]. For clarity, the quantity Ci = 13.6–

0.6i is added to , where i = 1 (10) for the lowest (highest)

x value.
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where mρ = 0.77 GeV is the ρ-meson mass. At Q2 >

 = 1.4 GeV2, the function R(x, Q2) is therefore cal-
culated as

(41)

Q0
2

R x Q2,( )
R MRS99( ) at x 10 3– ,<

R SLAC98( ) at x 5 10 3– .×≥



=

10–1

F
2n

/F
2p

+
 C

i

Q2, GeV2
100 101 10210–2

14

x = 0.003
NMC

12

10

8

6

0.007

0.015

0.03

0.05
0.08

0.125

0.25

0.35

0.45

0.7

13

11

9

7

Fig. 7. The ratio of the structure functions /  versus

Q2 at fixed values of x, as compared to NMC data [5]. For

clarity, the quantity Ci = 13.6–0.6i is added to / ,

where i = 1 (11) for the lowest (highest) x value.
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In the region 10–3 < x < 5 × 10–3, a linear fit between
R(MRS99, x = 10–3) and R(SLAC98, x = 5 × 10–3) is

used. At Q2 < ,

(42)

where the function C(x) is determined by the normal-

ization condition at 

(43)

and the function  is calculated using Eq. (41).
Figure 9 shows the experimental values of R as a func-
tion of Q2 in four ranges of x along with the result of the
parameterization in Eqs. (41) and (42). In the region of

low Q2 < , R decreases with Q2 at all values of x, but
the dependence on x is not strong (Fig. 10). However,

Q0
2
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the extrapolation of R outside the kinematical range of
data (namely, as Q2  0 and x  0) based on the
presently available data is a rather delicate problem.

In Figs. 11 and 12, we show the results of calcula-
tions of the differential cross sections of the neutral cur-
rent e±p scattering dσ/dQ2 and dσ/dy at high Q2. The
cross section dσ/dQ2 decreases by six orders of magni-
tude between Q2 = 400 and 4000 GeV2. This decrease
is due to the photon propagator. The cross section dσ/dy
is shown for different Q2 regions. For Q2 > 400 GeV2,
the bulk of the cross section is concentrated at small
values of y. For Q2 > 104 GeV2, the differential cross
section is approximately constant in y. The predictions
using the MRS99 parton distribution function give a
good description of the measured cross sections. The
neutral current scattering at high Q2 is sensitive to the
contribution of Z0. In accordance with Eqs. (4)–(9), the
Z0 contribution reduces the e+p (e–p) cross section at
Q2 > 104 GeV2 by approximately 25% (12%).
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4. NUCLEAR STRUCTURE FUNCTIONS

The structure functions measured for different
nuclei A are found to differ from the structure functions
measured on a deuteron [24, 25]. The modifications are
usually observed as a deviation of the ratio rA/d =

/  from unity, where and  are the structureF2
A F2

d F2
A F2

d
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functions per nucleon measured in a nucleus and deu-
teron, respectively. Neglecting nuclear effects in the

deuteron,  can approximately stand for an isospin

averaged nucleon structure function,  = (  + )/2.
Different nuclear effects are observed in different
regions of x.

F2
d

F2
N F2

p F2
n
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(i) Shadowing at x < 0.1. The ratio rA/d is smaller
than unity. The experimental data cover the region x >
10–4, and rA/d decreases with decreasing x. Shadowing
increases with the nuclear mass A and weakly depends
on Q2.

(ii) Antishadowing at 0.1 < x < 0.2. The NMC data
have established a small (several percent) but statisti-
cally significant excess over unity. Within the accuracy
of the data, no significant Q2 dependence of this effect
has been found.

(iii) The EMC effect at 0.2 < x < 0.8. The measured
ratio rA/d decreases as x rises and has a minimum at x =
0.6. The magnitude of this depletion grows slowly with
the nuclear mass number. The data imply that a strong
Q2 dependence of rA/d is also excluded in this region.

(iv) The Fermi motion. At x > 0.8, the ratio rA/d rises
above unity, but experimental information is rather
scarce.

Investigations of differences between the longitudi-
nal-to-transverse cross section ratio R for different

nuclei showed that  –  is compatible with zero.
This implies that nuclear effects influence both struc-
ture functions, F1 and F2, in a similar way.

At the moment, there is no unique theoretical
description of these effects; it is believed that different
mechanisms are responsible for them in different kine-
matical regions. For example, the EMC effect indicates
that the averaged momentum carried by valence quarks
in nuclei is reduced relative to a free nucleon. It has
been shown [26] that the pattern of the function rA/d(x)
has a universal shape in the range 10–3 < x < 0.96 and
for the mass of the nuclei A ≥ 4. Namely, the ratio

R
Ai R

A j

2

0

dσ/dy, pb
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4
6
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80

Q2 > 10000 GeV2

Q2 > 400 GeV2 e+p
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Q2 > 2500 GeV2

2000

4000

0

Fig. 12. The differential cross section dσ/dy of the neutral cur-
rent proton scattering off electron (positron) as a function of y.
Experimental data are due to ZEUS [22] experiment.
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(x)/ (x) can be well approximated with phenome-
nological functions in different regions of x. At x > 0.3,

(44)

where the A dependence of mb can be approximated as

(45)

for A ≠ 4. The number of nucleons Ns(A) at the nuclear
surface is given by the Woods–Saxon potential,

(46)

with the values of the parameters ρ0 = 0.17 fm–3, a =
0.54 fm, and

(47)

The function aosc(x) is

(48)

where u = 1 – x, c = 1 – x2, x2 = 0.278, λ = 0.5, and µ =
mπ/M (mπ is the pion mass). At 10–3 ≤ x  ≤  0.3, the
function is given by

(49)

with

(50)

where M1 = 0.129, M2 = 0.456, and M3 = 0.553. We
used Eq. (49) to calculate rA/d up to x0 < 10–3.

The value of x0 as a function of A was obtained as
follows. The experimental data [26] show that, in the
region 5 × 10–3 < x < 0.1, the ratio rA/d decreases with x.
Generally, small x correspond to small Q2, and the
approach of the real photon interaction can therefore be
used. Hence, as x  0, rA/d  ηA = σγA/AσγN, where
σγA is the photon-nuclear cross section and σγN is the
photon–nucleon cross section averaged over the proton
and neutron. The expression for the function ηA has
been obtained in [4] using the optical nuclear model,

(51)

where

(52)

F2
A F2

d

rA/d x( ) 1 mb A( )aosc x( ),–=

mb A( ) Mb 1 Ns A( )/A–[ ] and Mb 0.437= =

Ns A( ) 4πρ0
r2 rd

1 r r0 A( )–[ ] /a{ }exp+
--------------------------------------------------------,

r0 A( )

∞

∫=

r0 A( ) 1.12A1/3 0.86A 1/3– .–=

aosc x( ) 1 λx–( ) 1
u
--- 1

c
---– 

  µ 1

u2
----- 1

c2
----– 

 –
 
 
 

,=

rA/d x( ) x
m1 1 m2+( ) 1 m3x–( )=

mi Mi 1 Ns A( )/A–[ ] ,=

η A 0.75G z( ) 0.25,+=

G z( )
3

z2
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2
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and z = 0.00282A1/3σγN(ν). Using Eq. (34) with the val-
ues of parameters obtained in this work, we can write
the averaged photon–nucleon cross section as

(53)

In the range x ! 1, Eq. (49) is reduced to

(54)

From the asymptotic condition

(55)

we then obtain the expression for x0:

(56)

σγN
1
2
--- σγp σγn+( )=

=  112.2 0.609ν0.0988 1.037ν 0.5944–+( ).

rA/d x( ) x
m1 1 m2+( ).=

rA/d x0( ) 0.75G z( ) 0.25,+=

x0
1

1 m2+
--------------- 0.75G z( ) 0.25+( )

1/m1

.=
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At x < x0, we assumed that the function rA/d is constant
and

(57)

The results of approximating the ratio rA/d are presented
in Fig. 13 as functions of x for different nuclear targets
and are in good agreement with experimental data.

Taking the nuclear effects into account, the nuclear
structure functions Fi(x, Q2) and total photon-nuclear
cross section can be written as

(58)

and

(59)

The calculated cross sections σγA(ν) are shown in
Fig. 14 as functions of the real photon energy for nuclei
C, Cu, and Pb.

rA/d x( ) rA/d x0( ).=

Fi
A x Q2,( ) ArA/d x A,( )Fi

N x Q2,( )=

σγA ν( ) AσγN ν( ) 0.75G z( ) 0.25+[ ] .=
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Fig. 14. The total cross section σγA(ν) for C, Cu, and Pb as
a function of the real photon energy. Results of our calcula-
tions (solid curves) and calculations by Bezrukov and
Bugaev [4] (dashed curves) as compared to experimental
data [27].
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5. MUON INELASTIC SCATTERING 
IN THE STANDARD ROCK

We have calculated the main characteristics of the
inelastic muon scattering in the standard rock (A = 22,
Z = 11, and ρ = 2.65 g/cm3). The spectra of the muon
energy loss in a single interaction,

(60)

(where NAv is the Avogadro number), are shown in
Fig. 15 as functions of the inelasticity y for different
muon energies. The energy dependences of the total
cross section,

(61)
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Fig. 15. The spectra of the muon energy losses due to the muon inelastic scattering in the standard rock (A = 22, Z = 11) as a function
of y for fixed muon energies, as compared to calculations by Bezrukov and Bugaev [4] (dashed curve).
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and the muon energy loss

(62)

are shown in Fig. 16. The allowed kinematical region
for the variables ν and Q2 is determined by the equa-
tions

(63)

with cosθ = ±1 and

(64)

The results in [4] are also given in these figures for
comparison. We note that the cross section and the
muon energy losses [4] have been calculated taking
only the shadowing effect into account. The cross sec-
tion of the inelastic muon scattering obtained in the
present work is larger by a factor of 1.2 and the muon
energy loss bn(E) is also larger by about 8% at E =
103 GeV and 30% at E = 106 GeV. As a result, the total
energy loss (the sum of bremsstrahlung, pair produc-
tion, and inelastic muon scattering) increases by about
1% at E = 103 GeV and 4% at E = 106 GeV. These dif-
ferences are mainly due to contributions of small x and
small Q2, where the modern structure functions are
larger than that used by Bezrukov and Bugaev [4].

The probabilities P(≥ θ, ≥ v) of the muon scattering
in a single interaction at angles larger than θ with the
outgoing muon energy E' ≥ vE are shown in Fig. 17 as
a function of θ for different values of v  and primary
muon energies. The results are given for µ– and µ+ scat-
tering. The main features of inelastic muon scattering
are as follows.

(i) At fixed values of θ and E', the probability
decreases very rapidly with the initial muon energy E.
For example, for θ ≥ 2° and E' = 10 GeV, we have P =
6.3 × 10–4 at E = 102 GeV and P = 3.8 × 10–6 at E =
103 GeV.

(ii) At fixed values of θ and E, the probability
increases with decreasing the outgoing muon energy E'.
For θ ≥ 2° and E = 103 GeV, we have P = 7.8 × 10–7 at
E ' ≥ 102 GeV and P = 3.8 × 10–6 at E ' ≥ 10 GeV.

(iii) At fixed values of E and E', the mean values of
x and Q2 (〈x〉  and 〈Q2〉) increase with θ. For the muon
energies E = 102 GeV and E' ≥ 0.1E, the values of 〈x〉
and 〈Q2〉  increase from 〈x〉  = 0.12 (antishadowing
region) and 〈Q2〉 = 0.75 GeV2 at θ = 0.25° up to 〈x〉 =
0.25 (EMC region) and 〈Q2〉  = 34 GeV2 at θ = 6°. For
the energies E = 103 GeV and E' ≥ 0.1E, we have 〈x〉  =
0.09 (EMC region) and 〈Q2〉 = 28 GeV2 at θ = 0.25° and
〈x〉  = 0.46 (antishadowing region) and 〈Q2〉 = 925 GeV2

at θ = 6°. The probability of scattering at large angles is
therefore suppressed by the EMC effect.
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6. CONCLUSIONS

We have studied the inelastic muon scattering off
nuclei.

1. It is shown that the combination of the structure
function F2 predicted by the CKMT model at low and
moderate values of Q2 and the MRS99 parton distribu-
tion functions at high Q2 gives a good description of the
data over the entire measured region from photopro-
duction to DIS. In particular, the CKMT model

describes the rise of  well at low x and Q2 with the
slope ∆0 = 0.0988. Furthermore, the expression for the

neutron structure function  can be obtained in the
framework of this model. The result is in good agree-

ment with the /  and  –  data.

2. The MRS99 parton distribution functions
describe well the differential cross sections dσ/dQ2 and
dσ/dy calculated taking entire not only the electromag-
netic current contribution but also the contributions of
the neutral current and the γ–Z interference into
account. The γ–Z interference contribution is clearly
seen at high Q2 > 103 GeV2.

3. The nuclear effects modify the nucleon structure
functions in the entire measured region of x and Q2. The
modification depends on Q2 very slightly and increases
with A.

4. The obtained structure functions have been used
for calculations of the muon–nucleus scattering cross
section, muon energy losses, and muon angular distri-
butions in inelastic interactions. The nuclear effects and
contributions of the neutral current and γ–Z interfer-
ence were taken into account. As a results, the total
cross section and energy losses increase with muon
energy faster than predicted in [4]. The scattering of
high-energy muons (E > 103 GeV) at large angles is
suppressed by both the EMC effect and the γ–Z inter-
ference.
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Abstract—An analytic theory of generation of a coherent laser (laser possessing a coherent electronic sub-
system) operating on an optimized nanostructure is developed taking into account the electron–electron inter-
action. This interaction must be included since it may lead to a violation of stringent resonance conditions of
coherent lasing of unipolar lasers in view of the fact that the population in such lasers increases with the pump-
ing current. Using the Hartree–Fock approximation, analytic solutions of the Schrödinger equation were
obtained for a strong electromagnetic field with open boundary conditions. The expressions derived for polar-
ization current and electron concentration make it possible to determine the power and frequency of generation
as well as amplification profile and other characteristics. It is shown that optimal lasing is realized even when
electron–electron interactions are taken into account. In this optimal mode with tuning, no population inversion
is required (the populations of working levels are identical). The lasing efficiency is equal to unity; the reso-
nance–tunneling coherent pumping is effective since reflection is zero, and the amplification profile is not
broadening by the field. Multimode generation stability, good spectral characteristics, and high limiting powers
can be expected. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Thirty years ago, Kazarinov and Suris [1] proposed
a new type of a unipolar semiconductor laser (cascade
laser) in which radiative transitions occur between
space-quantization levels (subbands). The main ele-
ment of a cascade laser is a quantum well with two
working resonance levels. The pumping to the upper
level and the removal of electrons from the lower level
are executed through resonance tunneling.

Cascade lasers were created in 1994 [2] and covered
wavelengths from infrared to submillimeter range.

A unique feature of such lasers is the possibility of
coherent pumping, i.e., the transportation of electrons
from the emitter to the working level due to coherent
resonance tunneling. Coherent tunneling takes place if
the time τph of phase degradation exceeds the electron
lifetime τΓ = "/Γ in a nanostructure (Γ is the resonance
level width). Generally speaking, this is possible in
quantum wells, in wires, and, especially, in quantum
dots. In fact, this condition is necessary, for example, to
realize population inversion in a cascade laser [2].

If condition τph > τΓ is satisfied, it is possible in prin-
ciple that an electron supplied to the upper level expe-
riences a radiative transition to the lower level and
leaves it without violating the coherence.

Indeed, it was shown in [3] that lasing may take
place without the participation of dissipative processes.
For the sake of brevity, we will refer to a laser in which
not only the electromagnetic field but also the electron
1063-7761/02/9501- $22.00 © 200114
subsystem is coherent as a coherent laser. It was found
that a coherent laser differs in principle from conven-
tional lasers in that population inversion in it is not nec-
essarily required. Coherent tunneling ensures more
effective pumping since electrons are accumulated in
the well due to quantum interference, and reflection
tends to zero.

A coherent laser possesses a number of other advan-
tages (see below). However, effective lasing takes place
if, according to [3], rather stringent conditions are sat-
isfied. First, the electromagnetic field frequency must
be equal to the energy difference ε2R – ε1R of the reso-
nance levels. Second, the energy of electrons supplied
from the emitter must coincide with the energy of the
upper level, renormalized due to the interaction with a
strong electromagnetic field.

At the same time, the electron–electron interaction
shifting the resonance levels may violate these condi-
tions. The more so that the population of levels in uni-
polar lasers increases with the pumping current, leading
to a strong energy shift. For this reason, it is important
to study the effect of electron–electron interactions on
coherent lasing.

The present work aims at developing a consistent
theory of coherent lasing on a nanostructure optimized
as compared to [3] by taking into account the electron–
electron interaction.

Using the Hartree–Fock approximation, we suc-
ceeded in obtaining analytic solutions to the
Schrödinger equation in a strong electromagnetic field
02 MAIK “Nauka/Interperiodica”
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with open boundary conditions. The equations derived
for polarization currents and electron concentration
make it possible to determine the generation power and
frequency, amplification profile, and other characteris-
tics.

The mechanism corresponding to the optimal mode
with tuning is determined [3], and it is shown that the
lasing efficiency is equal to unity, the populations of the
working levels are identical, and the reflectivity of the
nanostructure is zero. It is proved that the optimal
energy of electrons supplied from the emitter coincides
with the resonance energy of the structure renormalized
due to the interaction of electrons with the electromag-
netic field and with one another.

It is shown that the optimal lasing mode is also pre-
served when the electron–electron interaction is taken
into account. The reason for the stability is that the pop-
ulations of energy levels remain identical upon an
increase in the field so that the shifts of the levels are
equal.

It is found that the profile of the amplification line of
a coherent laser does not experience broadening
induced by the field in contrast to conventional lasers
(“saturation effect”) [4, 5]. It is well known that the
“saturation effect” leads to multimode generation and
to power limitation [4, 5].

2. DESCRIPTION OF THE MODEL: 
BASIC EQUATIONS

Following [3], we consider the following model of a
coherent laser (see figure). The figure shows a 1D quan-
tum well with barriers in the form of a δ function at
points x = –a and x = 0. The parameters of the well are
chosen so that the lower two levels with energies ε2R

and ε1R have a difference approximately equal to the
frequency of the electromagnetic field:

A steady-state flow of electrons with a density propor-
tional to q2 and with energy ε approximately equal to
ε2R is supplied from the left (x < –a). The electromag-
netic field

(1)

is emitted upon a transition of electrons from the upper
level 2 to the lower level 1. The field is polarized per-
pendicularly to the plane of the well, and the wave vec-
tor is directed along the plane (along the z axis). It is
assumed that the field is in an optical cavity of length L.
We confine our analysis to single-mode lasing. The
equations for the amplitude E(t) and phase ϕ(t) of the
field have the form (see [3])

(2)

"ω ε2R ε1R.–=

Ez z t,( ) E t( ) kz ωt ϕ t( )+( )cossin=

∂E
∂t
------ E

2τ0
--------–

2π
κ

------Jc,–=
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(3)

where Jc, s(x) are the polarization currents describing
transitions between energy levels, Jc coinciding in
phase with the field and Js being shifted in phase by π/2.

The wave function Ψ(x, t) of the system satisfies the
Schrödinger equation

(4)

Here, we set 2m*/" = 1, c = 1,

(5)

α2 and α1 being the “intensities” of the emitter and col-
lector barriers, respectively. The cubic term simulates
the local electron–electron interaction in the Hartree–
Fock approximation (see [6]) with parameter g. The last
term in Eq. (4),

(6)

describes the interaction of electrons with the electro-
magnetic field, and Ax(t) is the vector potential in the
Coulomb gauge, which differs from zero in the well. It
should be noted that in Eq. (4), as in [3] (see also [5]),
the term quadratic in A(t) is omitted, which is justified
when

(p is the electron momentum).
Following [3], we seek the steady-state solution to

Eq. (4) in the resonance approximation in the form

(7)

E
∂ϕ
∂t
------ ω Ω–( )E+

2π
κ

------Js,–=

Jc s,
1
a
--- Jc x, x( ) x,d

0

a

∫=

i
∂Ψ
∂t

-------- –
∂2Ψ
∂x2
---------- U x( )Ψ gΨ Ψ 2 V̂ x t,( )Ψ.+ + +=

U x( ) α2δ x a+( ) α1δ x( ),+=

V̂ x t,( ) i2eAx t( )
∂Ψ
∂x
-------- V eiωt e iωt––( )∂Ψ

∂x
--------,= =

V
eE
ω
------,–=

V / p eE/ pω ! 1=

Ψ x t,( ) ψ2 x( )e iεt– ψ1 x( )e i ε ω–( )t– .+=

α2

ε = ε2R + ξ

"ω

α1

q

–a 0 x

ε1R

ε2R

Figure.
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The partial wave functions ψn(x) (n = 1, 2) describe
states with quasi-energies ε and ε – ω and satisfy the
system of equations

(8)

We consider an optimized structure with several bound-
ary conditions slightly differing from those in [3]:

(9)

The boundary conditions describe the electron flux on
the left (x = –∞) and the reflection of electrons and their
departure from level 1 to the region x > 0. In contrast to
[3], the departure of electrons from level 2 to the region
x > 0 and from level 1 to the region x < –a is forbidden.
This modification improves the lasing conditions and
can be realized in practice (see, for example, [2, 7]).

Currents Jc(x) and Js(x) can be expressed in terms of
functions ψn(x):

(10)

3. WAVE FUNCTIONS
FOR A COHERENT LASER

We will solve the system of equations (8), (9) using
the methods developed in [3, 6]. In [3], we succeeded
in finding exact solutions to Eqs. (8), (9) with g = 0
without applying perturbation theory for the field and
derived sample expressions for ψn and currents using
the smallness of parameters V/p and p/α. The inequality
p/α ! 1 indicates that the resonance level widths Γj are
smaller than the resonance energies εnR. It is precisely
in this situation that remarkable properties of quantum
wells are manifested. According to [3], the general
solution to Eqs. (8) and (9) with g = 0 can be sought in
the form

(11)

εψ2 ψ2''+ Vψ1' gψ2 ψ2
2 2 ψ1

2+[ ] ,+=

ε ω–( )ψ1 ψ1''+ Vψ2' gψ1 ψ1
2 2 ψ2

2+[ ] .+–=

ψ2 a–( ) 1
α2

i p2
-------– 

  ψ2' a–( )
i p2

----------------+ 2q̃,=

q̃ q i p2a–( ),exp=

ψ2 0( ) 0, ψ1 a–( ) 0, ε p2
2,= = =

p2
2 ω– p1

2,=

ψ1 0( ) 1
α1

i p1
-------– 

  ψ1' 0( )
i p1

-------------– 0.=

Jc x( ) ie ψ2*ψ1' ψ1*ψ2'+( ) k.k.–[ ] ,–=

Js x( ) e ψ1*ψ2' ψ2*ψ1'–( ) k.k.+[ ] .=

ψn x( ) Anj γ j x( ),exp
j 1=

4

∑=
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where the complex eigenvalues γj satisfy the equation

(12)

Using the smallness of parameter V/p, we can present
the roots of Eq. (12) in the form

(13)

The inclusion of the interaction renders the system
of equations (8), (9) nonlinear. In order to find the solu-
tion, we can use the approach employed in [6] on
account of the following circumstance. It was men-
tioned above that resonance polarization currents are
quite sensitive to the shift of levels due to the electron–
electron interaction. Indeed, the energy shift by the
value equal to the level width Γ, which is smaller than
εnR, changes the currents considerably, although the
electron concentration is relatively low. Consequently,
we can assume that the nonlinear term is small and seek
the solution to Eq. (8) in the form (11), but with coeffi-
cients Anj(x) depending on coordinate x:

(14)

In this case, Anj(x) can be regarded as slowly varying
functions of x, their rate of variation dAnj/dx being of
the same order of smallness as the nonlinear term.
Moreover, it is sufficient to assume that the following
relations hold in expression (14):

Substituting solution (14) into system (8) and aver-
aging over the slowly varying functions exp(±ipnx) (see
[8] for details), we arrive at the following equations for
Anj(x):

(15)

γ4 2γ2 ε V2 ω–
2

----------------+ 
  ε2 εω–+ + 0.=

γ1 2, i p1 1 V2

ω
------– 

 
1/2

,±=

γ3 4, i p2 1 V2

ω
------+ 

 
1/2

.±=

ψn x( ) Anj x( ) γ j x( ).exp
j 1=

4

∑=

γ1 2, i p1, γ3 4,± i p2.±= =

2i p2

dA23 x( )
dx

------------------

=  gA23 x( ) A23
2 2 A24

2 A11
2 A12

2+ +( )+[ ] ,

2i p2

dA24 x( )
dx

------------------–

=  gA24 x( ) A24
2 2 A23

2 A11
2 A12

2+ +( )+[ ] ,

2i p1

dA11 x( )
dx

------------------

=  gA11 x( ) A11
2 2 A23

2 A24
2 A12

2+ +( )+[ ] ,
 AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002



THE THEORY OF COHERENT OPTIMIZED-NANOSTRUCTURE TAKING LASER 117
While deriving Eqs. (15), we have omitted terms of
the order of (V/p)2 and Vg/p. It should be borne in mind
that, according to [3], coefficients A21, A22 and A13, A14

are of the order of smallness of V2/p2 relative to A23, A24
and A11, A12, respectively. Consequently, the inclusion
of the coordinate dependence of A21, A22 and A13, A14
would only result in an excessive accuracy in parameter
Vg/p. Equations (8) also lead to the following relations
for coefficients A1j and A2j:

(16)

Using Eqs. (15), we can easily prove that moduli |Anj|
are independent of the coordinate. Taking this circum-
stance into account, we arrive at the solution of system
(15):

(17)

(18)

(19)

Here, Anj are the constant coefficients that will be deter-
mined from the boundary conditions (9). The corre-
sponding equations for the sought coefficients Anj have
the form

(20)

–2i p1

dA12 x( )
dx

------------------

=  gA12 x( ) A12
2 2 A23

2 A24
2 A11

2+ +( )+[ ] .

Aij ε j A2 j, ε1 2,
iω

V p1
---------, ε3 4,+−

i p2V
ω

-----------.±= = =

A23 x( ) A23 i p2xg3–( ),exp=

A24 x( ) A24 i p2xg4( ),exp=

A11 x( ) A11 i p1xg1–( ),exp=

A12 x( ) A12 i p1xg2( ),exp=

g1
g

2 p1
2

-------- A12
2 n1 2n2+ +( ),=

g2
g

2 p1
2

-------- A11
2 n1 2n2+ +( ),=

g3
g

2 p2
2

-------- A24
2 n2 2n1+ +( ),=

g4
g

2 p2
2

-------- A23
2 n2 2n1+ +( ),=

n1 A11
2 A12

2, n2+ A23
2 A24

2.+= =

A21m1 γ1a–( ) A22m2 γ2a–( )exp+exp

+ A23m3g γ3ga–( ) A24m4g γ4ga–( )exp+exp 2q̃,=

A21 A22 A23 A24+ + + 0,=

A21ε1 γ1ga–( ) A22ε2 γ2ga–( )exp+exp

+ A23ε3 γ3a–( ) A24ε4 γ4a–( )exp+exp 0,=

A21ε1m̃1g A22ε2m̃2g A23ε3m̃3 A24ε4m̃4+ + + 0.=
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Here, the following notation has been introduced:

(21)

In order to find mj and , we must set g = 0 in mjg and

.

Solving system (20), we obtain the following
expression for coefficients to within small terms of the
order of (V/p)2 and Vg/p:

(22)

(23)

(24)

(25)

(26)

If energies ε and ε – ω are close to resonance values,
we can write the determinants in the form

(27)

(28)

(29)

γ1g i p1 1 g1–( ), γ2g i p1 1 g2–( ),–= =

γ3g i p2 1 g3–( ), γ4g i p2 1 g4–( ),–= =

m jg 1
α2 γ jg–

i p2
------------------, m̃ jg– 1

α1 γ jg+
i p1

-------------------.–= =

m̃ j

m̃ jg

A23 A24–
2q̃

∆ g( )
----------ε1ε2∆̃12 g( ),= =

A21

4q̃ p2

p1∆ g( )
----------------

iα1

p1
------- p2a( )cos γ2ga–( )exp–( )=

---+ 2 p2a( ) γ2ga–( )exp–cos ,

A22

4q̃ p2

p1∆ g( )
----------------=

×
iα1

p1
------- p2a( )cos γ1ga–( )exp–( ) γ1ga–( )exp– ,

∆ g( ) ε1ε2∆̃12 g( )∆34 g( )–
16α1α2

p1
2

------------------,+=

∆̃12 g( ) m̃2g γ1ga–( ) m̃1g γ2ga–( ),exp–exp=

∆̃34 g( ) m4g γ4ga–( ) m3g γ3ga–( ).exp–exp=

∆̃12 g( )
α1a

p1
2
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α2a

p2
2

--------- ξ2 iΓ2+( ),–=

∆ g( )
ε1ε2α1α2

p1 p2( )2
----------------------∆̃ g( ),=

∆̃ g( ) λ2 ξ2 iΓ2+( ) ξ1 ν iΓ1+ +( )–[ ] ,=
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4 p1 p2V
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SICS      Vol. 95      No. 1      2002



118 ELESIN
(30)

In turn, in accordance with (19), (22)–(24), the elec-
tron densities n2 and n1 at the upper and lower levels,
respectively, satisfy the following equations:

(31)

(32)

Thus, the self-consistent system of equations (31),
(32) makes it possible to find the wave function for a
fixed field λ and the pumping current Q. The results
coincide with those obtained in [3] for g = 0 and with
the results of [6] for λ = 0.

4. POLARIZATION CURRENTS
OF A COHERENT LASER

Substituting functions ψn into Eqs. (10), we obtain
currents Jc and Js:

(33)

(34)

We will first analyze the frequency and energy
dependences of the polarization current Jc(ξ, ν), which
describe the transitions between energy levels. In addi-
tion, we will determine the coefficients of electron
reflection from the structure. In this section, field λ and
current Q will be regarded as fixed and independent
parameters.

The most interesting results can be obtained in the
case when resonance levels have identical widths Γ1 =
Γ2 = Γ. This is attained with the following choice of the
barrier parameters:

(35)

A generalization to the case of different values of Γj can
be carried out easily (see below).

It is convenient to introduce the quantity K(ξ, ν),

(36)
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2

--------------------------------------, η–
64e2 p1 p2

3ω2a2
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α2 α1
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2 2α1.≈=

K ξ ν,( )
Jc

Eη
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QΓ2
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2

---------------,= =
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having the meaning of the high-frequency nonlinear
response describing the amplification (or absorption) of
the electromagnetic field. On the other hand, the quan-
tity KE2/2ω is proportional to the rate of electron tran-
sition from level 2 to level 1.

We will first analyze the situation with noninteract-
ing electrons (g = 0) in order to determine subsequently
the contribution of the interaction more clearly. In addi-
tion, the analysis for g = 0 is of independent interest
since a structure optimized as compared to that in [3] is
considered and new features of coherent resonance tun-
neling in a strong electromagnetic field are revealed
thereby. It should be recalled that fields with λ > Γ are
regarded here as strong.

First of all, we determine the values ξ0 and ν0 for
which K(ξ, ν) attains its maximum value proceeding
from the equations

(37)

Since the square of the determinant modulus for g =
0 is defined as

(38)

we can write Eqs. (37) in the form

(39)

It can easily be verified that, for any ξ0, the peak of
the gain K(ξ0, ν0) corresponds to ν0 = 0, i.e., to fre-
quency ω coinciding with the resonance value ω21. Set-
ting ν0 = 0 in Eqs. (39), we arrive at the following equa-
tion for the optimal energy tuning ξ0:

(40)

The first solution, ξ0 = 0, corresponds to the maxi-
mum value of K(ξ0, 0) for λ < Γ and to its minimum
value for λ > Γ. The second solution,

(41)

gives the maximum gain for a strong field λ > Γ. In this
case, K(ξ0, 0) assumes the following values for ξ0 = 0

and  = λ2 – Γ2:

(42)

(43)

∂K
∂ξ
-------

ξ ξ 0=

0,
∂K
∂ν
-------

ν ν0=

0.= =

∆̃ 2 λ2 Γ2 ξ2– ξν–+( )2 Γ 2ξ ν+( )2,+=

2ξ0 ν0+( ) ξ0
2 Γ2 λ2– ξ0ν0+ +( ) 0,=

ξ0 ξ0
2 Γ2 λ2 ξ0ν0+–+( ) ν0Γ

2+ 0.=

ξ0 ξ0
2 Γ2 λ2–+( ) 0.=

ξ0
2 λ2 Γ2, λ Γ , ξ0>– λ2 Γ2– ,±= =

ξ0
2

K 0 0,( )
4QΓ2

λ2 Γ2+( )2
------------------------,=

K ξ0 0,( )
Q

λ2
-----, ξ0

2 λ2 Γ2.–= =
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In order to clarify the physical meaning of ξ0, we calcu-
late the coefficient of reflection from the structure,
using Eqs. (11) and (22):

(44)

The substitution of ξ0 from expression (41) nullifies the
reflectivity for any λ ≥ Γ and Q.

It follows hence that the electron energy ε0 = ε2R + ξ0
coincides with the resonance energy of the structure in
which the resonance levels of the well split due to the
action of electromagnetic field [9].

Thus, each electron supplied to level 2 from the
emitter experiences a radiative transition and is
removed from level 1 to the collector; i.e., the efficiency
of the structure is equal to unity. Indeed, if we calculate
the number of transitions from level 2 to level 1 per unit
time,

(45)

it is found to be exactly equal to the number Q of sup-
plied electrons.

Let us now analyze the frequency dependence of the
gain K(ξ, ν) (the so-called amplification profile [4]). In
the general case of arbitrary ξ, the gain K(ξ, ν) is

described by formula (36) with  from Eq. (38).
In the resonance situation, when ξ0 is defined by for-

mula (41), we obtain

(46)

It follows from this expression that the broadening
is determined only by Γ and is independent of λ. Such
a line profile differs fundamentally from that for ordi-
nary lasers. For example, for gas lasers [4] and semi-
conductor lasers, the quantity K(ν) has the form

(47)

It can be seen from this expression that the line width
increases with the field. The broadening is associated
with the “effect of saturation” of the level population
due to interlevel electron transitions in a strong field.
The “saturation effect” leads to burning of a “hole”
in the electron distribution [4, 5], the emergence of
additional modes, and limitation of the generation
power [5].

In the nonresonance case, when ξ0 = 0, we have

(48)

and the broadening (λ4/Γ2 @ λ2) is much stronger than
in coherent lasers.

R
ξ2 Γ2 λ2–+( )2

λ2 Γ2 ξ2–+( )2
4ξ2Γ2+

--------------------------------------------------------.=

JcE
2ω
--------- Q, ω ε2R ε1R 3 p1

2,≈–= =

∆̃

K ξ0 ν,( )
QΓ2

λ2 ν2 4Γ2+[ ]
-------------------------------.=

K ν( )
Q

ν2 Γ2 λ2+ +
-----------------------------.=

K 0 ν,( )
Q

ν2 λ2 Γ2+( )
2
/Γ2+

--------------------------------------------,=
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The reason for the independence of broadening
from the field is that electrons supplied from the emitter
undergo a radiative transition and emerge in the collec-
tor. This phenomenon resembles the “self-transpar-
ency” effect [10]. However, in contrast to this effect,
coherent tunneling controlling the supply and removal
of electrons in a certain phase plays a decisive role here.

Let us find the dependence of K(ξ, 0) on ξ in the
vicinity of ξ0. After calculations, we obtain

(49)

It follows hence that the peak of the gain near ξ0 is very
narrow and has a width independent of the field λ and
equal to Γ.

Let us now take into account the interaction between
electrons. The gain Kg(ξ, ν) is defined by formula (36)

with  such that

(50)

The interaction leads to a level shift and, generally,
to a violation of resonances. This effect becomes signif-
icant for electron concentrations at which the energy
shift starts exceeding the resonance level width.

In this work, we confine our analysis to the most
interesting solution of system (31), (32), for which
Kg(ξ, ν) attains its maximum value. It can be verified
directly that the following solution of system (31), (32),
(36) satisfies this condition:

(51)

(52)

In this case, the energy of supplied electrons is given by
the formula

(53)

It follows from expression (52) that the gain preserves

its form (43) if  is defined by formula (53). The res-

onance form of Kg( , 0) is preserved due to the equal-
ity of populations n1 = n2 (51). Indeed, since the popu-
lations are identical, the energy gap ε2R – ε1R does not
change, and the energy ξ0 (53) of supplied electrons
coincides with the resonance energy.

K ξ 0,( )
QΓ2

4λ2 Γ2 ξ ξ 0–( )2+[ ]
----------------------------------------------------.=

∆̃ g( )
2

∆̃ g( )
2

λ2 Γ2 ξ1ξ2– νξ 2–+( )
2

=

+ Γ2 ξ1 ξ2 ν+ +( )2.

n1 n2 n
Q

4Γa
----------,= = =

ξ1
2 ξ2

2 ξ̃0 g̃–( )
2

λ2 Γ2,–= = =

g̃1 g̃2 g̃
7g
2

------n, ω ω21,= = = =

Kg ξ̃0 0,( )
Q

4λ2
-------- K ξ0 0,( ).≡=

ξ̃0 λ2 Γ2–± 7gQ
8Γa
-----------.+=

ξ̃0

ξ̃0
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However, in contrast to ξ0 defined by formula (43),
a correction associated with the level shift due to the

interaction also appears and K( , 0) becomes an
asymmetric function of ξ (see relation (56) below). It
should be noted that the second solution in (53) gives a
value of ξ0 modulo decreasing with Q, which vanishes
for a certain value of λ0:

(54)

This means that there exists an optimal mode in the
absence of tuning due to the compensation of level
shifts. It can be proved that the reflection coefficient
becomes equal to zero as before if the value of ξ0 is cho-
sen in accordance with relation (53). The shape of the
amplification line profile

(55)

is preserved as well as the form of the dependence of K

on :

(56)

Thus, the optimal self-tuning mode predicted in [3]
is also preserved when the electron–electron interaction
is taken into account.

Concluding the section, we note that the maximum
efficiency of the structure is attained only for Γ1 = Γ2. If
Γ1 ≠ Γ2, we have the following expression instead of
(44) for λ @ Γ:

(57)

The equality Γ1 = Γ2 can be attained with the opti-
mized structure considered by us here under the condi-
tion (35).

5. SINGLE-MODE COHERENT LASING

The amplitude and frequency of steady-state coher-
ent lasing can be determined from the equations

(58)

(59)

which are derived by substituting currents Jc and Js into
Eqs. (2) and (3).
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-----------+ 0.= =
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-------------------------------=
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-------------------------------------------------.=

R
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------------------------.=
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---------------,=

ω Ω– Q̃
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τ0 ∆̃ g( )
2

----------------------------------------,=

Q̃ 4πτ0Qη k,⁄=
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It can easily be seen that the frequency is defined by
the expression

(60)

which is valid for any  and λ.

The stabilization factor S may vary over a wide
range. For example, it we take the typical values for a
cascade laser [2] Γ = 1012 and τ0 = 10–11 s, we obtain
S ≈ 0.1. In this case, we have

(61)

i.e., the frequency is determined by the resonance fre-
quency. Assuming that it can be varied, we consider ω
to be a free parameter. The opposite case of S @ 1 will
be considered below.

We will first study lasing for noninteracting elec-
trons for the same reason as in the previous section.
Using the results obtained in Section 4, where it was
proved that the current Jc attains its maximum value for
ν = 0, we set ω = Ω = ω21 in relations (58) and (60).
Equation (58) implies that the lasing power is

(62)

The threshold current is obtained by setting λ = 0 in
expression (62):

(63)

It was proved in [3] that, for a certain tuning of the
energy ξ0, power Pω attains its maximum value. The
equation for ξ0,

(64)

has two solutions:

(65)

The first solution corresponds to the peak power in

the pumping interval 1 < /Γ2 < 4, where the power

(66)

is a root function of .

The second solution is realized for  > 4Γ2; in this
case, the power is a linear function of the pumping cur-
rent:

(67)

which corresponds to the maximum effectiveness (the
efficiency is equal to unity). The conditions for the
emergence of the second solution taking into account

ω
S ε ε1R g( )–( ) Ω+

1 S+
------------------------------------------, S 1/Γτ 0,= =
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ω Ω, S ! 1;≈
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Q̃th ξ2 Γ2+( )2
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dPω

dξ
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Q̃ 4ξ0
2–

----------------------–
 
 
 

0,= =
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relation (67) and the expression for  can be written in
the form

(68)

These expressions exactly coincide with relations (41)
defining the peak of current Jc and the zero of the reflec-
tion coefficient. Consequently, we may conclude that
the energy ε0 = ε2R + ξ0 of the supplied electrons exactly
coincides with the resonance energy of the structure of
a coherent laser, so that each electron makes a contribu-
tion to lasing. It is for this reason that the power

increases linearly with  (67). If, however, ξ0 = 0, the
energy of electrons begins to differ from the resonance

energy upon an increase in . This leads to an increase in
reflection (see relation (44)) and a decrease in the lasing
efficiency, i.e., to a root dependence (66) of the power.

It should be noted that the lasing power Pω (67) does

not depend on Γ, while  = Γ2 decreases with Γ. Con-
sequently, one can strive, in principle, to reduce the
width Γ. The lower limit is set only by the coherence

condition Γ > . In addition, it should be emphasized
that the maximum efficiency is attained in an optimized
structure with symmetric barriers for Γ1 = Γ2.

It was indicated in [3] that a distinguishing feature
of a coherent laser is the absence of a requirement of
population inversion. We will prove this by calculating
explicitly the difference between populations n1 and n2
defined by formulas (31) and (32). In the absence of
tuning (ξ0 = 0), the difference between populations,

, (69)

changes upon an increase in λ. For λ > Γ, the popula-
tion n1 of the lower level exceeds the population n2 of
the upper level. In the case of optimal tuning ξ0 (41), the
populations are identical:

(70)

It can be seen from this relation that the populations
increase with the pumping current Q, which is typical
of unipolar lasers, both of the semiconductor (e.g., cas-
cade [2]) type and of gas lasers [4]. The increase in the
electron concentration leads to an increase in the electron–
electron interaction, which, generally speaking, may vio-
late the stringent conditions of resonance tuning (41).

For this reason, we must consider the effect of the
electron–electron interaction on coherent lasing pro-
ceeding from the system of equations (58), (59), (31),
and (32). We can easily verify that the optimal lasing is
preserved if the energy of electrons supplied from the
emitter is given by

(71)

ξ0
2

λ Γ , ξ0
2> λ2 Γ2.–=

Q̃

Q̃

Q̃th

τph
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n1 n2–
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Q

4Γa
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while  is defined by formula (53). In this case, the
solution of the system (58), (59), (31), and (32) has the
form

(72)

The reasons for the stability of resonance tuning to
the electron–electron interaction are similar to those
considered in Section 4.

The results of Section 4 concerning the shape of the
coherent lasing line (46), which does not depend on
field induced broadening, are also preserved. We can
expect that the latter circumstance would lead to a
higher stability of the single-mode operation of a coher-
ent laser and to higher limiting powers as compared to
a conventional laser. Finally, we consider the case of
large values of the stabilization factor S @ 1, for which,
in accordance with relations (60), we have

(73)

In this case, there is no resonance tuning mode since

(74)

6. CONCLUSIONS

It has been proved that a coherent laser has certain
advantages such as the absence of the requirement of
population inversion, high effectiveness (efficiency is
equal to unity), low thresholds, the absence of the
amplification profile broadening above the threshold,
and the stability of parameters to the electron–electron
interaction. The properties of the amplification profile
broadening raise hopes of the multimode lasing stabil-
ity, high spectral parameters of the laser field, and high
limiting values of power. The latter is due to the fact
that, according to [5], field induced broadening sets a
limit on lasing power.

The remarkable properties of coherent lasers are due
to the fact that electrons are supplied from the emitter
to the optimal energy interval with optimal phases.

At the same time, effective lasing requires the ful-
fillment of coherent generation conditions (τph > Γ–1)
and a small width of the energy distribution of electrons
supplied from the emitter. The coherence conditions
can be satisfied in principle, especially in quantum dots
(see, for example, [2, 7]). The publication [10] on
superradiation, where coherence was observed in a sys-
tem of eight quantum wells, is also worth mentioning.

As regards the requirement of small width of the
electron energy distribution, it can be satisfied using fil-
ters on the same quantum wells (dots) (see, for exam-
ple, [2, 7]). In addition, it was shown in [3] that many
properties of coherent lasing are also preserved for a
broad source.

Naturally, experimental realization requires mode
detailed calculations for specific structures by taking
into account a number of additional factors.

ξ̃0

λ2 Q̃/4, n1 n2 Q/4Γa, ω ω21.= = = =

ω ε ε1R g( ).–≈

∆̃ g( )
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Abstract—The conductivity, thermopower, and magnetoresistance of carbynes structurally modified by heat-
ing under a high pressure are investigated in the temperature range 1.8–300 K in a magnetic field up to 70 kOe.
It is shown that an increase in the synthesis temperature under pressure leads to a transition from 1D hopping con-
ductivity to 2D and then to 3D hopping conductivity. An analysis of transport data at T ≤ 40 K makes it possible to
determine the localization radius a ~ (56–140) Å of the wave function and to estimate the density of localized states
g(EF) for various dimensions d of space: g(EF) ≈ 5.8 × 107 eV–1 cm–1 (d = 1), g(EF) ≈ 5 × 1014 eV–1 cm–2 (d = 2),
and g(EF) ≈ 1.1 × 1021 eV–1 cm–3 (d = 3). A model for hopping conductivity and structure of carbynes is pro-
posed on the basis of clusterization of sp2 bonds in the carbyne matrix on the nanometer scale. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Various nontraditional materials based on various
allotropic modifications of carbon have been intensely
studied in recent years. In particular, of considerable
interest are carbynes, which are linear polymer chains
of sp bonds [1, 2]. However, in contrast to other allotro-
pic modifications like graphite or diamond, for which
perfect single crystals can be obtained, carbyne sam-
ples are found to be disordered from the beginning,
which is apparently due to the instability of large linear
carbon clusters [2]. It is assumed that linear polymeric
sp fragments in the carbyne structure alternate with sp2

centers, which, first, lead to a kink of linear carbon
chains and, second, create free bonds for adjoining
neighboring chains (in the absence of sp2 centers,
chains are coupled with one another only through Van
der Waals forces) [1, 2]. In such a situation, carbyne
samples acquire a quasi-amorphous structure which is
difficult to determine exactly by using traditional X-ray
diffraction methods.

New possibilities of studying carbynes are associ-
ated with the samples synthesized under a high pressure
[3–5]. Simultaneous effects of high pressure and tem-
perature makes it possible to vary smoothly the fraction
of sp2 bonds in carbynes and to change the magnitude
and type of carbyne conductivity. It was proved by us
1063-7761/02/9501- $22.00 © 20123
earlier [4, 5] that the conductivity of samples synthe-
sized under pressure is of the hopping type at low tem-
peratures. Since the hopping conductivity is sensitive to
the morphology of samples, the study of transport phe-
nomena in carbynes at low temperatures might shed
light on the structure of these materials.

It follows from the results obtained in [5] that the
conductivity of carbynes in the temperature range
1.8 K ≤ T ≤ 40 K follows Mott’s law [6]

(1)

In this case, an increase in the fraction of sp2 bonds in a
sample leads to a decrease in the exponent n of hopping
conductivity from n = 1/2 to n = 1/4 [5]. According to
[5], such a behavior can be attributed to a change in the
effective dimension d of the space,

(2)

and carbyne is consequently a unique model object on
which a transition from 1D (n = 1/2) to 2D (n = 1/3) and
then to 3D hopping conductivity (n = 1/4) can be car-
ried out experimentally. It should be noted that the
existence of 1D hopping conductivity in carbynes is
independently confirmed by the study of dynamic con-
ductivity. It was shown in [5] that the frequency depen-

σ T( ) σ0 T0/T( )n–[ ] .exp=

n
1

1 d+
------------,=
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Fig. 1. Conductivity of carbyne samples synthesized at different temperatures under pressure: (a) total conductivity σ(T) (curve 1);
symbols correspond to experimental results, and the curve is approximation by formula (4); hopping contribution σh(T)

(curve 2), and activation contribution σa(T) (curve 3); (b) conductivity σ(T) in linearizing coordinates  vs. f (T –n) for
hopping conductivity.
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Parameters of conductivity and characteristics of localized states of carbynes

Tsyn, °C n T0, K Ea , meV a, Å g(EF), cm–d eV–1

690 1/2 360 ± 5 35 ± 3 56 ± 4 5.8 × 107

810 1/3 570 ± 10 28 ± 2 75 ± 5 5 × 1014

890 1/4 70 ± 3 21 ± 2 140 ± 10 1.1 × 1021
dence of conductivity σ(ω) ∝  ωS for samples with n =
1/2 acquires a strong temperature dependence of the
exponent s(T), corresponding to theoretical predictions
for the 1D case (index s for 2D and 3D dynamic con-
ductivities is independent of temperature, including the
case when Coulomb correlations are taken into consid-
eration [5]).

However, the values of n > 1/4 can also be explained
by the formation of a Coulomb gap in the density of
localized states. For example, the value n = 1/2 is typi-
cal not only for 1D hopping conductivity, but also in the
case of formation of a Coulomb gap irrespective of the
dimension of space [7]. For this reason, it would be
interesting to verify independently the model [5] which
can be obtained by analyzing the thermopower in the
hopping region. Indeed, the Seebeck coefficient S(T) is
proportional to the derivative of the density of states
g(EF) at the Fermi level [8],

, (3)

and S(T) must vanish in the case of symmetric correla-
tion gap.

Another important problem in the study of hopping
conductivity of carbynes is the determination of the
parameters of localized states, such as the localization
radius a and the density of states (DoS) g(EF), since
such information is not available in the literature on
these materials.

The present study aims at refining the mechanism of
hopping conductivity of carbynes and at verifying the
results obtain in [5], as well as determining the quanti-
tative parameters describing localized states in the car-
byne matrix.

In order to solve this problem, we studied the tem-
perature dependence of conductivity and thermopower
as well as field dependences of the magnetoresistance
for carbyne samples obtained under a pressure of
7.7 kbar and different temperatures of synthesis in the
interval 690°C ≤ Tsyn ≤ 890°C. The experiments were
performed in the temperature range 1.8–300 K in a
magnetic field up to 70 kOe. The scheme of the synthe-
sis of the samples was the same as in [3, 4]; the methods
of studying transport properties are described in [9].
The structure of carbynes was determined by X-ray
analysis [4].

S
dg EF( )

dEF

----------------T1 2n–∝
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2. CONDUCTIVITY AND THERMOPOWER
OF CARBYNES SYNTHESIZED 

UNDER PRESSURE

The temperature dependences of conductivity σ(T)
of carbyne samples obtained at various values of Tsyn
are presented in Fig. 1. It can be seen from the data pre-
sented in Fig. 1a that, in the entire temperature range
1.8 K ≤ T < 300 K under investigation, σ(T) can be
approximated to a high degree of accuracy by the sum
of two contributions, viz., hopping σh and activation σa:

(4)

Here, σh(T) is defined by formula (1) and σa ∝
exp(−Ea/kBT). In the temperature range T ≤ T* ~ 40 K,
the inequality σh @ σa holds, and clearly manifested
linear segments corresponding to variable range hop-
ping conductivity are observed in the logσ vs. f(T –n)
coordinates (Fig. 1b). According to the results obtained
in [5], index n increases upon a decrease in the synthe-
sis temperature from n = 1/4 to n = 1/2 (see table). For
T > T*, the integrated curve σ(T) contains a noticeable
activation component σa, although the ratio σh/σa is
greater than unity up to room temperatures (see Fig. 1).
The value of the activation energy for the samples
under investigation varies from 20 to 35 meV and
decreases upon an increase in the synthesis temperature
(see table).

In order to verify the hypothesis [5] according to
which values of n > 1/4 in carbynes are due to a
decrease in the effective dimension of the system, we
studied the temperature dependences of the ther-
mopower for samples with n = 1/3 and n = 1/2. It was
found that, in the temperature range T ≥ 20 K, the See-
beck coefficient decreases with temperature, the sign
reversal of thermopower taking place at Tinv ~ 50–70 K
(Fig. 2a). Thus, the S(T) curves (Fig. 2), as well as the
σ(T) curves (Fig. 1), indicate the presence of several
contributions to the kinetic coefficients of the samples
under investigation. The relation between S(T) and
σ(T) will be discussed in greater detail in Section 4,
where the model of conductivity of carbynes is
described.

Since the condition σh @ σa holds for T ≤ T* ~ 40 K
(see Fig. 1), the thermopower in this temperature range
must be determined by electron jumps. However, the
value of T* is found to be quite close to the ther-
mopower inversion temperature Tinv, which may lead to
a deviation of the observed dependence S(T) from the

σ T( ) σh T( ) σa T( ).+=
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theoretical dependence (formula (3)). For this reason,
the analysis of the hopping thermopower Sh(T) was car-
ried out for the temperature range T ≤ 20 K, in which
the function S(T) tends to a power asymptotic behavior
(Fig. 3).

It is worth noting that the temperature dependence
S(T) for samples with n > 1/4 in the temperature range
6 K ≤ T ≤ 20 K is in accord with the theoretical depen-
dence: the thermopower is independent of temperature
(S(T) ≈ const) for n = 1/2 (curve 1 in Fig. 3), while, for
n = 1/3, the value of S(T) decreases according to the
power law |S | ∝  T1 – 2n = T1/3 (curve 2 in Fig. 3). In both
cases, the value of thermopower in the hopping conduc-
tivity region remains finite, indicating, in accordance
with formula (3), the asymmetry in the density of
states; consequently, the interpretation of values of n >
1/4 in the model of correlation gap is ruled out.

Thus, the study of temperature dependences of ther-
mopower confirms the conclusions drawn by us earlier
[5], according to which the values of n > 1/4 for carbyne
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Fig. 2. (a) Temperature dependences of thermopower for a
quasi-two-dimensional sample (curve 1) and for a quasi-
one-dimensional sample (curve 2). Symbols correspond to
experiment, and the curves to model computations by for-
mulas (8)–(11). (b) Example of separating contributions for
the thermopower of a sample with n = 1/3 (see text).
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samples are due to jumps in the space with a lowered
dimensionality.

It is interesting to note that for a sample with n = 1/3,
for T ≤ 6 K, the temperature dependence of the hopping
type, |S | ∝  T1/3, is transformed into a stronger depen-
dence |S | ∝  T1.5 (curve 3 in Fig. 3). Since the exponent
1 – 2n in formula (3) for the model of hopping conduc-
tivity does not exceed unity, such a behavior cannot be
explained if we confine our analysis to the hopping-
type conductivity only. We can assume that the stronger
decrease in the Seebeck coefficient for T  0 reflects
the process of gradual opening of the Coulomb gap and
the symmetry in the DoS at the Fermi level caused by
this effect (since the thermopower remains finite down
to T ~ 3K, complete opening of the Coulomb gap does
not take place in the temperature range under investiga-
tion). In this case, we can expect that a 2D sample with
n = 1/3 at low temperatures experiences the transition to
a temperature dependence of conductivity (1) with
exponent n = 1/2. Similar effects of enhancement of
Coulomb correlations at low temperatures may appar-
ently take place for a sample with 1D conductivity also;
however, methodological limitations associated with
the measurement of the thermopower for high-resis-
tance samples did not allow us to obtain the data on
S(T) at T ≤ 6 K (curve 1 in Fig. 3). A verification of the
assumptions made above requires an analysis of trans-
port properties of carbynes at T ≤ 2 K (including
ultralow temperatures), which may form the subject of
an independent study and is beyond the scope of the
present paper.
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Fig. 3. Temperature dependences of thermopower in the
hopping conductivity region for samples with n = 1/2 and
n = 1/3. Asymptotic forms: S(T) = const (1), S(T) ∝  T1/3 (2),
and S(T) ∝  T1.5 (3).
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3. MAGNETORESISTANCE AND PARAMETERS 
OF LOCALIZED STATES OF CARBYNES

In order to determine the localization radius and
density of states at the Fermi level, it is necessary to
measure simultaneously the temperature dependence of
hopping conductivity σh(T) and the field dependence of
the positive contribution to magnetoresistance ρs(H)
due to the compression of the wave function in the mag-
netic field [9]. Indeed, for a space of dimension d,
parameter T0 in formula (1) is defined by the formula
[6–12]

(5)

while ρs(H) in the limit of weak magnetic fields has the
form [7, 10]

(6)

Having determined parameter T0 from σh(T), we can
use formula (6) to calculate the localization radius a
from the derivative ∂ln[ρ(H)/ρ(0)]/∂(H2) and then
determine g(EF) from formula (5). Such a procedure of
Mott spectroscopy of localized states requires the
knowledge of the values of coefficients Ad and td for var-
ious dimensions of space. For d = 3, the values of A3
and t3 are, respectively, 17.6 [8] and 5/2016 [7], while,
in the 2D case (d = 2), we have A2 = 13.8 [7, 10] and t2 =
1/360 [10]. In the 1D case (d = 1), A1 ≈ 1 [11, 12], while
the value of t1 is not known. Considering that, for d = 3
and d = 2, we have t3 ≈ 2.5 × 10–3 ~ t2 ≈ 2.8 × 10–3, we
can assume that parameter td depends on the dimension
of space only slightly. In addition, this parameter

appears in the expression for a in the form a ∝  , and,
hence, the equality t1 = t2 was used for estimating the
localization radius in the 1D case. Apparently, we can
expect that such a procedure for d = 1 gives at least cor-
rect orders of magnitude for quantities g(EF) and a.

The experimental curves of magnetoresistance ρ(H)
at T = 4.2 K, plotted in ln[ρ(H)/ρ(0)] vs. H2 coordi-
nates, are shown in Fig. 4. It can be seen that, in the
entire range of magnetic fields under investigation,
magnetoresistance is positive and the function ρ(H) in
the interval 0 ≤ H ≤ 30 kOe is quadratic in the magnetic
field in complete agreement with the theoretical depen-
dence (6). In the range of strong fields (H > 30 kOe), a
slight downward deviation of the curve ln[ρ(H)/ρ(0)] =
f(H2) from a linear dependence is observed (see Fig. 4).
Such a behavior can be attributed to a transition from
the asymptotic behavior of weak fields to the asymp-
totic behavior of strong fields since, in the latter case,
dependence (6) must go over to ln[ρ(H)/ρ(0)] ∝  H1/3

dependence [7], and the quadratic dependence of mag-
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netoresistance due to compression of the wave function
is suppressed.

It should be noted that for carbyne samples with dif-
ferent dimensions, the curves ρ(H) are not only of the
same type, but the amplitudes of magnetoresistance are
also close in order of magnitude in spite of radical
changes in the effective dimension of the space in
which hopping conductivity takes place. This result is
in accord with the above assumption that the value of td

weakly depends on the dimensionality of space. Thus,
the results presented in Fig. 4 lead to the conclusion that
ρ(H) ≈ ρs(H) for carbyne samples and the slope of the
initial linear segments in the ln[ρ(H)/ρ(0)] vs. H2 coor-
dinates can be used for calculating the localization
radius.

It was found by using the above approach that the
value of a increases with Tsyn from a ≈ 56 Å in the 1D
case to a ≈ 140 Å in the 3D case (see table). The corre-
sponding values of the parameter T0 determined from
the data on σh(T) (see Fig. 1) are given in the table
together the DoS calculated for various values of d by
formula (5).

It is interesting to note that the carbyne sample
under investigation do not exhibit a negative magne-
toresistance in the hopping conductivity region. At the
same time, the existence of a negative magnetoresis-
tance in weak magnetic fields is typical of the variable
range hopping conductivity and was observed repeat-
edly in experiments with systems having various
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Fig. 4. Magnetoresistance of carbynes synthesized at differ-
ent temperatures under pressure at T = 4.2 K.
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dimensionalities [9, 10]. Theoretically, the reason for
the emergence of a negative magnetoresistance may be
associated with the realization of one of two mecha-
nisms: coherent and incoherent [10].

In the coherent case, the probability of a jump
should be determined by taking into account interfer-
ence emerging as a result of scattering from different
chains of centers, connecting the initial and final cen-
ters [10]. The application of a magnetic field leads to
the formation of additional phase shifts between scat-
tered waves, thus “detuning” the interference, increas-
ing the probability of a jump, and, hence, ensuring the
emergence of a negative magnetoresistance [10].

In the case of incoherent mechanism, a decrease in
the overlap integral between the centers, which is asso-
ciated with the compression of the wave function in a
magnetic field, narrows the function g(E) and, hence,
increases g(EF) and reduces parameter T0 [10]. Such a
renormalization of the density of localized states appar-
ently leads to the emergence of a negative contribution
to magnetoresistance.

It follows from a theoretical analysis that a negative
magnetoresistance in the hopping conductivity region
is of fundamental nature and must be observed along
with the positive magnetoresistance described by for-
mula (6). From this point of view, the magnetoresis-
tance of the samples under investigation is anomalous
and the absence of a negative magnetoresistance (see
Fig. 4) must be associated with considerable peculiari-
ties in the hopping conductivity of carbynes.

4. DISCUSSION

In order to explain the origin of hopping conductiv-
ity in carbynes, we must first of all analyze the results
of X-ray structural analysis. The X-ray spectra of the
samples obtained at different temperatures Tsyn were
used to determine the value of the correlation length
Lcor ~ 10–12 Å, which defines the characteristic size of
an ordered carbon chain …=C=C=C=… of the cumu-
lene type [3, 4]. Since the role of the main structural
defects responsible for carbon chain bending in the car-
byne matrix is obviously played by carbon atoms in the
sp2 state [2, 4, 5], the concentration of sp2 centers can

be estimated from the relation  ~  ~ 1021 cm–3.

In addition, it was found that parameter Lcor weakly
depends on the synthesis temperature in the range
690°C ≤ Tsyn ≤ 890°C. At the same time, it follows from
the results of previous studies that an increase in the
value of Tsyn increases the concentration of sp2 centers
and, as a result, leads to the sp  sp2 transition, i.e., a
transition from the quasi-one-dimensional chain structure
of carbon atoms to a disordered graphite-like lattice [3–5].

Thus, at first sight, the value of Lcor should decrease
with increasing concentration of sp2 bonds (and, hence,
with increasing Tsyn), which contradicts the experimen-

N
s p

2 Lcor
2
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tal data. The concept of the sp  sp2 transition can be
associated with the constancy of Lcor by assuming that
new sp2 centers are formed during synthesis under pres-
sure in the vicinity of the existing defects, e.g., as a
result of a lower value of the activation energy for cre-
ating another sp2 center near an existing center as com-
pared to the activation energy of a single sp2 center in
an sp chain. Pairs of adjacent sp2 centers in this case
will lead not only to a kink in individual chains, but also
to the formation of closed ring structures which may
effectively localize electrons (Fig. 5a).

Indeed, in view of the condition a > Lcor (see table),
the volume bounded by the localization radius contains
(4/3)π(a/Lcor)3 ~ 103–104 centers, and the above hypoth-
esis seems to be quite probable.

Another significant feature of localized states in car-
bynes is that these states are not only multicentered but
also multielectron by nature. The carrier concentration
N in carbynes can be estimated by assuming that (i) the
activation energy Ea is the characteristic scale of varia-
tion of the density of localized states, and (ii) in the
cases when d = 1 and d = 2, the corresponding struc-
tures ensuring 1D and 2D conductivity are separated by
a distance not smaller than the localization radius:

(7)

An estimate obtained by using this formula and taking into
account the data from the table gives values (1–2) ×
1019 cm–3. This value is close to the volume-averaged
electron concentration nH which can be determined
from the Hall effect: nH ~ 7 × 1019 cm–3 for a sample
with Tsyn = 890°C. It can be seen that both characteristic
concentrations N and nH are 1–2 orders of magnitude

lower than the concentration  ~  of the sp2 cen-

ters. If we attribute the emergence of carriers in the car-
byne matrix to carbon atoms in the sp2 state, which
have free bonds, such a discrepancy can be explained
by the presence of impurity atoms in considerable con-
centrations, which weaken the free bonds of the sp2

centers. It should be noted that the existing scheme of
the synthesis of the initial carbyne makes the presence
of impurity atoms in this material quite probable [1].

The fulfillment of the inequality (4/3)πa3N @ 1 for
an ordinary doped semiconductor would correspond to
the metal side of the metal–insulator transition, for
which hopping conductivity is not typical. Conse-
quently, the experimental observation of hopping con-
ductivity in carbynes under the condition (4/3)πa3N @ 1
indicates that charge carriers are localized in the quasi-
metallic region with a characteristic size ~a and form a
multielectron state, while jumps take place between
such “metallic” regions (Fig. 5a).

The above model of the carbyne structure, which
follows from an analysis of the transport properties and
structural data, requires a refinement of transition from

N g EF( )ad 3– Ea.∼

N
sp

2 Lcor
3–
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Fig. 5. (a) Model of the carbyne structure; Rij denotes the length of the jump between localized states of radius a. (b) Model of the
effective medium used for describing thermopower. (c) Energy level diagram illustrating mechanisms of conductivity in carbynes;
D0 and D– denote the lower and upper Hubbard bands, respectively.
1D to 3D conductivity as a result of the sp  sp2 tran-
sition [5]. A fundamentally new point is the hypothesis
on a considerable nonuniformity in the distribution of
sp2 centers on the nanometer scale; the regions with an
elevated concentration of carbon atoms in the sp2 state
are apparently responsible for the localization of elec-
tron states. If the concentration of sp2 bonds in the sam-
ple is not high (low synthesis temperatures), an analysis
of the nonuniform distribution of sp2 bonds readily sug-
gests a situation in which quasi-linear chains of carbon
atoms (containing a small number of sp2 centers in the
sp state) connect regions with a more complex topology
characterized by an increased fraction of sp2 centers
(sp2 “beads” threaded on an sp “string”). The conduc-
tivity mechanism in such a system is associated with
jumps between clusters with an elevated concentration
of sp2 centers (Fig. 5a). If the interaction between such
inhomogeneous chains can be disregarded, the conduc-
tivity of the system is of a quasi-one-dimensional type.
Obviously, an increase in the fraction of sp2 bonds upon
an increase in Tsyn leads to the emergence of interaction
between the chains and to an increase in the effective
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
dimensionality of conductivity to 2D and then to 3D.
Thus, in the proposed modification of the model formu-
lated in [5], the change in the effective dimensionality
of conductivity reflects a change in the topology of sp2

regions in the sp carbyne matrix.

This approach can be used to carry out a quantitative
analysis of the temperature dependence of ther-
mopower. It can be seen from Fig. 2a that the S(T)
value decreases almost linearly with temperature down
to T ~ 70 K. Such a “quasimetallic” temperature depen-
dence S(T) is typical of various experimental systems
exhibiting hopping conductivity [14] and can be inter-
preted in the framework of the model of an effective
medium [15] in which a sample with hopping conduc-
tivity is treated as a mixture of a metal and a dielectric
(Fig. 5b). The role of the “metal” is played by the
regions with spatial localization of electrons, while the
“dielectric” is the poorly conducting medium separat-
ing the localization regions. The conductivity of such a
medium is obviously determined by the regions with
the highest resistivity, to which we must ascribe the
temperature dependence of the conductivity of the sam-
ple to match it with the experimental dependence (see
SICS      Vol. 95      No. 1      2002
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Fig. 1). However, in contrast to conductivity, the contri-
bution to thermopower comes not only from “dielec-
tric” but also from “metallic” regions. If X is the volume
fraction of the metal, the thermopower of such a
medium is defined as [13]

(8)

where SM(T) and SD(T) are the thermopowers of the
“metal” and the “dielectric.” For SM(T), we can use the
standard Mott formula [6] modified with allowance for
high-temperature corrections [14]:

(9)

while SD(T) is given by the expression taking into
account the two contributions (hopping and activation)
[8]:

(10)

In this formula, Sh(T) is the hopping contribution and is
described by relation (3), while Sa(T) corresponds to
the activation mechanism of conductivity. Depending
on the nature of activation, Sa(T) may have different
functional forms. For example, in the case of activation
to the mobility threshold or to the conductivity band,
we have

while, in the case of activation to the upper Hubbard
band, the generalized Heickes formula is valid [16],

(11)

where ν is the relative occupancy of the localized state
band. It should be noted that Sa(T) = const in the latter
case.

It is found that the model of thermopower (8)–(10)
enables us to correctly describe the experimental data
on S(T) only in the case when Sa(T) = const (see Fig. 2a).
Taking into account the proposed structure of carbynes
synthesized under pressure (Fig. 5a), we can expect that
X ~ 0.5 in the samples under investigation. Using this
value, we calculated the temperature dependences of
the contributions SM(T), Sh(T), and Sa to the integrated
curve S(T) (an example of separation of contributions
for a quasi-two-dimensional sample with n = 1/3 and
X = 0.5 is shown in Fig. 2b). It turned out that, in all the
samples under investigation, the thermopower of the
“metal” is positive (SM(T) > 0), while the thermopower
of the “dielectric” is negative (see Fig. 2b), which
causes the sign reversal on the dependence S(T) (see
Fig. 2a).

The hole-type conductivity of the “metal” is a natu-
ral consequence of the model considered above (see
Fig. 5a) since sp2 centers and, hence, charge carriers are

S SM T( )X SD T( ) 1 X–( ),+=

SM T( ) aT bT3,+=

SD T( )
Sh T( )σh T( ) Sa T( )σa T( )+

σh T( ) σa T( )+
-----------------------------------------------------------.=

Sa T( )
kB

e
-----

Ea

kBT
---------,∝

Sa T( )
kB

e
----- 2 ν–

ν
------------ 

  ,ln–=
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concentrated in the localization region. In this case,
almost all energy levels in the volume bounded by the
localization radius are filled and conductivity becomes
of the hole type (see Fig. 5c). At the same time, σa and
Sa are of the electron type since these quantities
describe the activation of electrons to the upper (delo-
calized) Hubbard band both from the lower Hubbard
band in the “dielectric” and from the metallic region
(see Fig. 5c).

It should be noted that the energy level diagram
shown in Fig. 5c assumes that ν ~ 1 and Sa < 0 in accor-
dance with formula (11). Obviously, the activation
energy Ea (see table) in this model specifies the distance
between the lower and upper Hubbard bands (see
Fig. 5c). Electron jumps between localized states also
correspond to the electron transport, and the inequality
Sh < 0 holds under the additional constraint dg(EF)/dE > 0.
Thus, the model of hopping conductivity and carbyne
structure proposed by us here (see Fig. 5) makes it pos-
sible to interpret experimental data on σ(T) and S(T)
(see Figs. 1 and 2).

The concepts developed by us here provide a quali-
tative explanation of the anomalous absence of negative
magnetoresistance (see Fig. 4). Indeed, the cylindrical
volume connecting the localized states i and j separated

by the length of the jump Rij contains πa2Rij/  ~

πa3(T0/T)n/  centers at which quantum interference
may take place. At T = 4.2 K, the number of such scat-
tering centers lies between 1.6 × 103 and 1.7 × 104 (see
the data from the table) and is too large to ensure the
coherent mechanism since the phases of the waves
emerging as a result of reflections from a large number
of randomly distributed centers are also random. Note
that the number of centers at which interference may
take place in conventional doped semiconductors does
not exceed a few dozen [10]. At the same time, in the
case of carbynes synthesized under pressure, the
incoherent mechanism can also be discarded since it
is realized only in systems with a narrow band of
width ≤1 meV [10], while disordered quasi-amorphous
structures (see Fig. 5) are characterized by broad singu-
larities in the DoS. Consequently, in the model of an
effective medium presented in Fig. 5, we can expect a
considerable suppression of negative magnetoresis-
tance, which is indeed observed in experiments (see
Fig. 4).

5. CONCLUSIONS

Thus, an analysis of conductivity, thermopower, and
magnetoresistance of carbynes taking into account the
results of X-ray structural measurements enabled us to
determine the parameters of localized states and con-
firmed the results obtained by us earlier [5] and indicat-
ing the effect of the conditions of synthesis on the effec-
tive dimension of the space in which hopping takes
place. Our results can be explained in the framework of

Lcor
3

Lcor
3
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the model of carbyne structure, assuming a consider-
able nonuniformity of the distribution of carbon atoms
in the sp2 state on the nanometer scale. This leads to a
multicentered and multielectron form of localization of
electron states, between which hopping takes place.
The advantages of the proposed model include the pos-
sibility of unified quantitative interpretation of the
results on conductivity and thermopower (Figs. 1–3) as
well as of fine kinetic features such as the suppression
of negative magnetoresistance in the hopping region
(Fig. 4). The experimentally observed change in the
effective dimensionality of conductivity reflects the
change in the topology of sp2 regions in the sp matrix of
carbynes.

It should be emphasized that the hypothesis formu-
lated above is mainly based on an analysis of the struc-
ture-sensitive transport characteristics and requires
confirmation by the data on the sample structure.
A detailed analysis of the carbyne structure will be the
subject of future studies.
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Abstract—We present the effective theory for the low-energy dynamics of two-dimensional interacting elec-
trons in the presence of a weak short-range disorder and a weak perpendicular magnetic field, with the filling
factor ν @ 1. We investigate the exchange enhancement of the g factor, the effective mass, and the decay rate
of the simplest spin wave excitations at ν = 2N + 1. We obtain the enhancement of the field-induced gap in the
tunneling density of states and the dependence of the tunneling conductivity on the applied bias. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A two-dimensional electron gas in a perpendicular
magnetic field has attracted much attention from both
theoretical and experimental standpoints. The effects in
a strong magnetic field when only the lowest Landau
level is occupied have been investigated since the dis-
covery of the quantum Hall effect [1]. Several efforts
[2] are made in order to involve larger filling factors ν >
1 in the problem discussed. However, the existence of a
small parameter, the ratio of the Coulomb energy at the
magnetic field length to the cyclotron energy, has been
assumed. In a weak magnetic field, the Coulomb
energy, at the magnetic field length actually exceeds the
cyclotron energy and some attempts [3] have been
undertaken to investigate the case of the large filling
factor ν > 1.

Experimental investigations of the tunneling density
of states for the system under consideration were per-
formed at small (ν < 1) [4] and large (ν > 1) [5] filling
factors. In the case of a weak magnetic field (ν @ 1), the
gap in the tunneling density of states was obtained in
the framework of the hydrodynamical approach [6].
Progress was made by Aleiner and Glazman [7], who
developed the effective theory for low-energy excita-
tions on a partially filled Landau level at large filling
factors ν @ 1.

Recently, after the prediction that the unidirectional
charge-density wave state occurs at half-filled high
Landau levels within the framework of the Hartree–
Fock theory [8] and the experimental discovery of com-
pressible states with anisotropic magnetotransport
properties in high-mobility systems near the half-filling
of the high Landau levels [9], the two-dimensional
electron liquid in a weak magnetic field was intensely
studied [10].

¶This article was submitted by the author in English.
1063-7761/02/9501- $22.00 © 20132
In this paper, we develop the low-energy effective
theory for electrons at the partially filled Landau level
with a large filling factor in the presence of disorder
(Section 2). As an example, the effect of disorder on the
exchange enhancement of the effective g factor and
the simplest spin-wave excitations are discussed in
Section 4. Electron tunneling into the electron liquid
is considered in Section 5. Conclusions are given in
Section 6.

2. DERIVATION OF THE EFFECTIVE ACTION
2.1. Introduction

We consider the system of a two-dimensional elec-
trons with the Coulomb interaction in the presence of
disorder in a perpendicular magnetic field H. The sys-
tem possesses a partially filled high Landau level with
the level index N @ 1 equal to the integer part of half
the filling factor ν, N = [ν/2]. The presence of a random
potential, which is considered to be short-range, results
in a broadening of the Landau levels. We assume that
the elastic collision time satisfies the condition

where ωc = eH/m is the cyclotron frequency with the
electron charge e and the electron mass m. In this case,
the broadening of Landau levels, which is of the order

/τ0, is much less than the distance between them.

The conventional parameter characterizing the cou-
pling strength of the Coulomb interaction is

where vF is the Fermi velocity. We assume that elec-
trons are weakly interacting, i.e., rs < 1. In this case, we
can treat the problem in the random phase approxima-
tion. We also assume that the number N is sufficiently

τ0 @ ωc
1– ,

ωcτ0

rs 2e2/v F,=
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large, and the condition Nrs @ 1 is therefore satisfied.

This means that the cyclotron radius Rc =  is
supposed to be much larger than the Bohr radius aB =
1/me2, 

2.2. The Formalism

The system is described by the grand canonical par-
tition function in the path-integral representation,

(1)

(2)

where the Grassmann variables ψα, σ and  are
defined on the imaginary time interval τ ∈  [0, 1/T] with
the antiperiodic condition ψ(r, 1/T) = –ψ(r, 0). The
symbol T stands for the temperature, µ is the chemical
potential of the system, and σ, σ1 = ±1 are spin indices.
The Hamiltonian

describes the electron with mass m propagating in the
two-dimensional space in the perpendicular magnetic
field

The random potential Vdis(r) is chosen to have the
Gaussian distribution function

(3)

where ρ denotes the thermodynamical density of states.
To average lnZ over disorder, Nr replicated copies of

the system are introduced; we let α = 1, …, Nr be the
replica indices.

The Matsubara representation seems to be more
convenient for the above problem. We therefore use the
Fourier transform from the imaginary time τ to the Mat-
subara frequencies. Because the fermionic fields are
antiperiodic within the interval [0, 1/T], the frequencies
permitted for  and ψ are

ν/mωc

Rc @ aB,

Z $ ψ ψ,[ ] $ Vdis[ ] 3 Vdis r( )[ ]∫∫=

× S ψ ψ Vdis, ,[ ]{ } ,exp

S τd

0

1/T

∫
α 1=

Nr

∑=

× rd ψα σ, r τ,( ) –∂τ µ * Vdis r( )––+( )ψα σ, r τ,( ) ---∫
–

1
2
--- r1ψ

α σ, r τ,( )ψα σ, r τ,( )U0 r r1,( )d∫
---× ψ

α σ1,
r1 τ,( )ψ

α σ1,
r1 τ,( ) ,

ψα σ,

* –i∇ eA–( )2

2m
-----------------------------=

H eab∂aAb.=

3 Vdis r( )[ ] ρτ 0 πρτ0 rVdis
2 r( )d∫–( ),exp=

ψ
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where n is an integer. The Fourier-transformed fields
are defined as

(4)

In what follows, we omit the limits in the frequency and
replica series for brevity.

In the Matsubara representation, action (2) becomes

(5)

The Zeeman term in action (2) is neglected because
the g factor is small. In fact, the condition g ! 1 is usu-
ally satisfied. The Zeeman term can nevertheless, be
included in the effective action after performing inte-
gration over fast degrees of freedom. To simplify the
notation, the spin indices are associated with the replica
ones whenever convenient.

2.3. The Plasmon Field and the Average over Disorder

The Coulomb term entering action (5) is quartic in
the fermionic fields. This quartic term can be elimi-
nated by the Hubbard–Stratonovich transformation,
introducing an extra path integration over bosonic

fields . With the help of the so-called plasmon
field, the Coulomb term can be presented as

(6)

where  stands for the inverse operator to U0. The
matrix notation is used for the combined replica and
frequency indices,

ωn πT 2n 1+( ),=

ψα τ( ) T ψn
αe

iωnτ
,

n ∞–=

∞

∑=

ψα τ( ) T ψn
αe

–iωnτ
.

n ∞–=

∞

∑=

S rd∫=

× ψn
α σ, r( ) iωn µ * Vdis r( )––+( )ψn

α σ, r( )
α n,
∑

–
T
2
--- r1ψm

α σ, r( )ψm n–
α σ, r( )U0 r r1,( )d∫

l m,
∑

---× ψl
α σ1,

r1( )ψl n+
α σ1,

r1( ) .

λn
α r( )

$ λ[ ] T
2
--- rd r1λ† r( )U0

1– r r1,( )λ r1( )d∫∫–exp∫
+ iT rψ† r( )λ̂ r( )ψ r( )d∫ ,

U0
1–
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(7)

The quantities with the hat are defined as

with the matrix

The matrices  represent the diagonals shifted in the
frequency space; they are the generators of the U(1)
gauge transformations in general. The measure of the
path integral over the plasmon field λ is introduced
such that integral (6) equals unity for the vanishing fer-
mionic fields ψ† and ψ.

In order to perform the averaging over disorder in
partition function (1), we must integrate over the ran-
dom potential Vdis(r). This leads to the quartic term

(8)

in the action. This term can be decoupled by the Hub-
bard–Stratonovich transformation. An extra path inte-
gration over the Hermitian matrix field variables

 can be introduced [11, 12],

(9)

where the symbol “tr” denotes the matrix trace over the
Matsubara, replica, and spin spaces. The measure of the
path integral over the matrix field Q is defined in the
same way as for the plasmon field; i.e., integral (9)
equals unity for vanishing fermionic fields ψ† and ψ.

After the above calculations, the partition function
becomes

(10)

(11)

ψ† …( )ψ ψn
α …( )nm

αβψm
β ,

n m,

α β,

∑=

λ†λ λ n–
α λn

α .
n

α

∑=

ẑ zn
α In

α

α n,
∑=

In
α( )kl

βγ δαβδαγδk l– n, .=

In
α

1
4πρτ
------------- r ψn

α r( )ψn
α r( )ψm

β r( )ψm
β r( )

n, m

α , β

∑d∫

Qnm
αβ r( )

$ Q[ ]∫
× rd –πρτ0trQ2 r( ) iψ† r( )Q r( )ψ r( )+[ ] ,∫exp

Z $ ψ ψ λ Q, , ,[ ] S ψ ψ λ Q, , ,[ ]{ } ,exp∫=

S πρτ0 rd trQ2∫–=

–
T
2
--- rd rd 1λ† r( )U0

1– r r1,( )λ r1( )∫∫
+ rψ† r( ) iω µ *̂ iT λ̂ iQ+ +–+( )ψ r( ),d∫
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where ω is the unit matrix in the replica space, while, in
the Matsubara space, it is a matrix containing the fre-
quencies ωn on the diagonal,

2.4. Elimination of the Nth Landau Level

The fermionic fields ψ† and ψ refer to all Landau
levels. In order to integrate over all fermionic degrees
of freedom not belonging to the partially filled Nth Lan-
dau level, we separate the fermionic fields into two
kinds. The first field refers to the Nth Landau level,

(12)

The second one involves the other levels,

(13)

where ϕpk(r) are the eigenfunctions of the Hamiltonian
* and p = 0, 1, …, N, … labels Landau levels with the
energies ep = ωc(p + 1/2). In addition, we introduce two
types of Green’s functions. One is for the Nth Landau
level,

(14)

and the other is for the other levels,

(15)

where the inverse of the Green’s function for the ψpk

and  operators is given by

(16)

with the matrix elements

(17)

The action (11) is bilinear in the fermionic fields ψ†

and ψ, and obviously, also in the fermionic fields Φ†

ω( )nm
αβ ωnδnmδαβ.=

Ψ r( ) ψNkϕNk r( ),
k

∑=

Ψ† r( ) ψNk
† ϕNk r( ).

k

∑=

Φ r( ) ψpkϕ pk r( ),
p N k,≠
∑=

Φ† r( ) ψpk
† ϕ pk r( ),

p N k,≠
∑=

G r r1; Q λ,,( ) ϕNk* r( )GNk Nk', Q λ,( )ϕNk' r1( ),
k k',
∑=

G̃ r r1; Q λ,,( )

=  ϕ pk* r( )Gpk p'k', Q λ,( )ϕ p'k' r1( ),
k k',
∑

p p' N≠,
∑

ψp'k'
†

G 1–( )pk p'k', iω µ ep–+( )δp p'δkk'=

+ iT λ̂ pk p'k', iQpk p'k',+

f pk p'k', rϕ p'k'* r( ) f r( )ϕ pk r( ).d∫=
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and Φ. We can therefore integrate over the fermionic
fields Φ† and Φ; this gives

(18)

Hereafter, the space indices are omitted. It should be
noted that the last term arises in action (18) due to the
interaction between electrons belonging to the partially
filled Nth Landau level and the other electrons.

2.5. Integration over the Q Field

The Q matrix field must be divided into the trans-
verse V and the longitudinal P components as Q =
V−1PV. Here, the longitudinal component P has a block-

diagonal structure in the Matsubara space, i.e.,  ∝
Θ(nm), where Θ(x) is the Heaviside step function. The
transverse component V corresponds to a unitary rota-
tion (see [13, 14] for a review).

The change of variables from Q to P and V is moti-
vated by the saddle-point structure of action (18) in the
absence of the plasmon field λ and at zero temperature,
i.e., as ωn  0. This saddle-point solution can be writ-
ten as

where the matrix Psp obeys the equation

(19)

that coincides with the self-consistent Born approxima-
tion equation [15]. Here, the Green’s function G0 is a
special case of G, namely,

and similarly for .

In the case of small disorder, ωcτ0 @ 1, the solution
to Eq. (19) is given by

(20)

The presence of the plasmon field λ results in a shift
of the saddle-point value (20) of the P field; this shift
can be found by expanding action (18) to the second
order in both λ and δP= P – Psp. We thus obtain

(21)

S – tr G̃ln∫ πρτ0 trQ2∫–=

+ Ψ† iω µ *̂ iT λ̂ iQ+ +–+[ ]Ψ∫
–

T
2
--- λ†U0

1– λ∫∫
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Pnm
αβ

Qsp V 1– PspV ,=

2πρτ0Psp i G0 r r,( ) G̃0 r r,( )+[ ]=

G0 r r1,( ) G r r1; Psp 0,,( ),=

G̃0

Psp( )nm
αβ nsgn

2τ
------------δnmδαβ, τ π ρ

m
----

τ0

ωcτ0

---------------.= =

S S0 S1 δP λ,[ ] S2 Ψ Ψ δP λ,, ,[ ] ,+ +=
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(22)

(23)

(24)

where the bare polarization operator π0 is understood to
be a matrix in accordance with the rule

(25)

and is defined by

(26)

After decomposing the matrix field Q into the block-
diagonal Hermitian matrix field P and the unitary
matrix field V, the measure of the functional integral in
(21) becomes

where [13]

(27)

The terms that are quadratic in δP in the part S1 of
action (21) together with the contribution of measure
(27) determine the propagator of the δP fields,

(28)
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We note that the propagator of the longitudinal fluctua-
tions (28) proves to be analogous to that previously
obtained in the problem of the behavior of a free elec-
tron gas in the perpendicular magnetic field [13].

Using expression (28) for the propagator of the δP
fields, we can integrate action (21) over the longitudinal
fluctuations in the quadratic approximation. This gives

(29)

where S0 given by Eq. (22) describes the electrons at the
partially filled Nth Landau level coupled to the plasmon
and Qsp fields. The term Sλ corresponds to the screening
of the Coulomb interaction due to the influence of elec-
trons from the other Landau levels and is given by

(30)

where the dielectric function is given by

with the polarization operator1

(31)

The third term Sµ in action (29) contains the terms that
affect the chemical and thermodynamic potentials of
the system (see Appendix A).

It is worthwhile to mention that the saddle-point
approximation in which the integration over the Q field
is performed is valid because the condition

is satisfied.

2.6. Integration over the Plasmon Field

As a final step of the procedure, action (29) must be
integrated over the plasmon field λ. The integration can

1 A similar form of the polarization operator but with a different

bare  was first derived by Baranov and Pruisken [16].

S S0 Sλ Sµ,+ +=
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×
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1
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k 0 q,( )
2πρτ0
------------------+

---------------------------.

µτ Nωcτ  @ 1=
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be performed in the quadratic approximation in the λ
fields. The corresponding propagator is determined by
the second term in Eq. (30). After that, we obtain the
effective action for electrons on the partially filled Lan-
dau level,

(32)

which is the main result of the paper.
We have incorporated the Zeeman term into the

effective action. The Fourier transform of the effective
interaction potential

is determined by the static dielectric function ε(q) ≡
ε(0, q). In general, the low-energy properties of the sys-
tem under consideration can be described with the help
of the retarded interaction alone (see action (29)). How-
ever, the description within the framework of the effec-
tive action with the instantaneous interaction seems to
be a rather good approximation in this problem [7].
This is because transitions between the Landau levels

have a characteristic time scale about , while the
typical energy scale in the effective theory is of the
order of the exchange energy ∆ex ! ωc (see Section 4).

The existence of the other Landau levels except the
partially filled Nth Landau level affects both the ther-
modynamic and the chemical potentials. The thermo-
dynamic potential Ω in action (32) can be represented
as

(33)

where

(34)

is the thermodynamic potential of the system of nonin-
teracting electrons for the completely filled Landau lev-
els in the presence of disorder and the quantity ∆Ω is
analogous to the first-order exchange and correlation
corrections equivalent to the sum of ring diagrams con-
tributing to the ground state energy of a clean electron
liquid [17],

(35)
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Ω
T
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2
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α σ, r( )Ueff r r1–( )Ψk
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α σ1,
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gωc

2
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α σ,
r( )Ψn

α σ, r( ),
n

α

∑d∫
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U0 q( )
ε q( )

-------------=

ωc
1–

Ω Ω0 ∆Ω,+=

Ω0 T rd tr G̃0 r r,( )ln∫=

∆Ω T
2
--- rd∫ qd
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------------- ε n q,( ).ln∫

n

∑=
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The chemical potential  in action (32) can be written
as

(36)

where the shift of the chemical potential

(37)

involves corrections similar to the exchange and corre-

lation ones in a clean electron liquid. Here, l = 1/
is the magnetic field length. The quantity Ueff(n, r) is
the Fourier transform of U0(q)/ε(n, q), and

(38)

is the projection operator onto the partially filled Nth
Landau level.

We note that corrections to the thermodynamic and
chemical potentials contain additional terms except
those presented above. They are neglected in the limit
of a weak disorder ωcτ @ 1 (see Appendix A).

The integration over the plasmon field is performed
in the Gaussian approximation. This can be justified if
the fluctuations of the plasmon field are small. The
long- and short-range fluctuations are different physi-
cally. In the case of a large length scale r @ Rc, only the
dipole transitions between the adjacent Landau levels
are induced. The long-range fluctuations are small if the
condition Nrs @ 1 is satisfied [7]. Physically, this con-

dition means that the characteristic length scale /aB

of the long-range fluctuations must be much greater
than the cyclotron radius Rc. The short-range fluctua-
tions correspond to the case of a small length scale r !
Rc. Transitions between distant Landau levels are pos-
sible in this case. The condition rs ! 1 of the smallness
of short-range fluctuations is just the criterion of pertur-
bation theory applicability to Coulomb interaction.

3. EFFECTIVE INTERACTION, 
THE THERMODYNAMIC 

AND CHEMICAL POTENTIALS

The results of the previous section allow us to find
effective action (32) for the electrons on the partially
filled Nth Landau level. The main physical quantity that
affects the dynamics of the electrons is the effective
electron–electron interaction. It is completely deter-
mined by the static dielectric function ε(q). The other
two interesting quantities in effective action (32) are the
thermodynamic and chemical potentials.

µ̃

µ̃ µ δµ,+=

δµ 2πl2T rG̃0
n

0 r,( )PN 0 r,( )Ueff n r,( )d∫
n

∑=

mωc

PN r1 r2,( ) ϕNk
* r2( )ϕNk r1( )

k

∑=

Rc
2
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3.1. The Effective Interaction

The most pronounced effect of electrons on the
completely filled Landau levels is the screening of the
electron–electron interaction on a partially filled Lan-
dau level. This screening is determined by the static
dielectric function ε(q).

In accordance with Eq. (31) for the polarization
operator Π(n, q), the dielectric function can be obtained
for arbitrary values of the disorder parameter ωcτ. How-
ever, the situation of a small Landau level broadening
due to disorder is most interesting from the physical
standpoint. In this case, the expression for the static
dielectric function can be simplified drastically,

(39)

The evaluation of the static dielectric function is pre-
sented in Appendix B. The result can be written as

(40)

where the function η(x) can be found analytically only
in the asymptotic regions of small and large values of x
(see Appendix B),

(41)

Here, (0(x) is the Bessel function of the first kind,
Expression (40) or the static dielectric function is the
main result of the paper.

It is worthwhile to note that the asymptotic expres-
sions (in the qRc ! 1 and qRc @ 1 domains) for the
static dielectric function ε(q) in a clean system (τ–1 = 0)
were obtained earlier by Kukushkin, Meshkov, and
Timofeev [18]. The general expression for the static
dielectric function in a clean system was derived by
Aleiner and Glazman [7].

We mention that the asymptotic expressions for the
static dielectric function in a clean system can be
obtained from a clear physical picture [18, 7]. The
behavior of the static dielectric function in the region
qRc ! 1 can be explained by dipole transitions between
the adjacent Landau levels. The result for the static
dielectric function in the region qRc @ 1 is explained by
the standard Thomas–Fermi screening. But there is no
clear physical picture in the case of a weakly dirty sys-
tem. We have no other opportunity to obtain the dielec-
tric function except the derivation of the effective
action for electrons on the partially filled Landau level.

ε q( ) 1
2πe2

q
-----------T π0

n 0 q,( ), ωcτ  @ 1.
n

∑+=

ε q( ) 1
2

qaB

--------- 1 (0
2
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------------η qRc( )–– 

  ,+=
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π2x
2

12
----------, x ! 1

3.57x( )ln
2
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--------------------------, x @ 1.









=
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It follows from (40) that in the domain qRc ! 1, the
static dielectric function is given by

(42)

This shows that the disorder suppresses the effect of the
screening. We can expect that the screening decreases
as disorder increases. We can estimate the disorder
threshold τ*, i.e., the point of vanishing screening, as
ωcτ* ~ 1/2π.

From Eq. (40), we can obtain the expression for the
static dielectric function in the domain qRc @ 1,

(43)

The disorder also suppresses the screening in the region
of large wave vectors qRc @ 1.

Equations (40) and (41) allow us to obtain the
asymptotic behavior of the effective interaction Ueff(r)
to the coordinate space. The polarization is insignifi-

cant for the very large length scale r @ , and the
effective interaction coincides with the bare Coulomb
interaction

(44)

At the intermediate scale  @ r @ Rc, the polariza-
tion becomes important and the effective interaction is
given by 

(45)

We note that, while disorder increases, the effective
interaction tends to the bare Coulomb interaction. For
the small scale Rc @ r @ aB, the Thomas–Fermi screen-
ing occurs and the effective interaction is given by

(46)

We emphasize that disorder in the system most strongly
affects the electron–electron interaction within the

intermediate length scale  @ r @ Rc. Physically,
this is the case where the dipole transitions between the
adjacent Landau levels are possible.
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3.2. The Thermodynamic and Chemical Potentials

The thermodynamic and chemical potentials in
Eqs. (34)–(37) can be evaluated in the leading orders in
1/N. The detailed calculations are presented in Appen-
dix C.

The thermodynamic potential for the system of non-
interacting electrons in the presence of disorder for the
completely filled Landau levels is given by

(47)

where Lx and Ly are the sizes of the system. The first-
order exchange correction to the thermodynamic poten-
tial is given by

(48)

The presence of disorder changes the dependence of
∆Ω on the magnetic field, i.e., on N. For the dirty sys-
tem, the second term in brackets in Eq. (48) is propor-
tional to 1/N. This is in contrast to the clean system,
where the correction is much smaller and is propor-
tional to 1/N2 [7].

The shift of the chemical potential due to the
exchange correction can be written as

(49)

We note that δµ contains only the exchange correction
and does not involve the correlation correction due to
normal ordering of the Ψ† and Ψ fields (see [7]).

4. SPIN EXCITATIONS

In the previous section, we analyzed the renormal-
ization of the electron–electron interaction on the par-
tially filled Nth Landau level due to the existence of the
other levels. In this section, we investigate the enhance-
ment of the g factor and the simplest spin excitations at
the filling factor ν = 2N + 1.

The electrons on the partially filled Nth Landau
level at the filling factor ν = 2N + 1 possess the maxi-
mum spin in the ground state, because the ground state
does not contain skyrmions at large ν [19]. This ground
state is obviously fully spin-polarized and is described
by the wave function

where Nel is the number of electrons on the partially
filled Nth Landau level and

is the number of states on the Landau level. The sim-
plest excitations are described by the state with the

Ω0

LxLy

πl2
----------- N N 1–( )

2
----------------------ωc µ–

2ωcτ( )ln 1–
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-------------------------------– ,=
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πl2
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πl
----- 2N( )3/2 2

3
---

2 2ln
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2N
-------+ .–=

δµ 2e2

πl
-------- 2N( )1/2 1 Nln

8N
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1
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2N
-------+– .=

Nel NΦ= Sz NΦ/2=,| 〉 ,

NΦ
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2πl2
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energy E↑ with an extra hole and the state with the
energy E↓ with an extra electron. The width of the spin
gap ∆s is related to the energies of the excited states and
to the energy E0 of the ground state [20, 21, 7] as

We can find that the width of the spin gap equals

where the shift of the chemical potential ∆ex due to the
exchange interaction [21, 22] is determined by

(50)

Using expression (38) for the projection operator PN,
we can evaluate the effective g factor. It is defined as
geff = ∆s/ωc and is given by

(51)

where the “hydrodynamic” term is

(52)

The disorder in the system results in the appearance of
a strong dependence of the effective g factor on the
magnitude of the magnetic field as ln2N/N.

We now discuss the neutral excitations, spin waves
[21, 23] at the filling factor ν = 2N + 1. They are
described by the wave function

(53)

Following [21], we must take three contributions
into account. They are the difference of the exchange
self-energy of an electron in the excited Landau level
and the self-energy in the level from which the electron
was removed, the direct Coulomb interaction, and the
exchange energy. We then obtain the equation that
determines the spectrum of the spin wave excitations,

(54)

where LN(x) is the Laguerre polynomial. The dielectric
function ε(q, ω) contains the imaginary part (see
Eq. (B.4)), which is of order 1/ωcτ. It results in the
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decay rate of the spin-wave excitations. Physically, the
spin-wave excitations decay because of the scattering
on impurities. We mention that the decay rate also
appears in the magnetoplasmon spectrum.

The energy of the spin-wave excitations is much less
than ωc: ω(k) ! ωc. We can therefore calculate the real
part ESW(k) and the imaginary part ΓSW(k) of the spin-
wave energy separately. We set ω = 0 on the right-hand
side of Eq. (54). The evaluation of Eq. (54) then leads
to a quadratic dispersion relation for the small wave
vectors kRc ! 1,

(55)

An additional dependence of the effective mass of the
spin-wave excitations on the magnetic field appears
because of the presence of disorder in the system. The
disorder suppresses the effective mass of the spin-wave
excitations. For sufficiently large wave vectors

the energy of the spin wave is given by

(56)

To obtain the decay rate of spin-wave excitations,
we take into account that the imaginary part ε'' of the
dielectric function is small. We then obtain

(57)
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The evaluation of Eq. (57) for small wave vectors
kRc ! 1 yields

(58)

and for large wave vectors kRc @ 1,

(59)

We note that the decay rate ΓSW is of the same order as
the corrections to the real part of the spin-wave energy
ESW due to the presence of disorder.

5. ZERO-BIAS ANOMALY

In this section, we consider the electron tunneling
into a two-dimensional electron liquid with disorder in
a weak magnetic field. We investigate suppression of
the tunneling conductivity near zero bias, the so-called
zero-bias anomaly. The properties of the electron tun-
neling into an electron system are usually described by
a dependence of the tunneling conductivity G(V) on the
bias V. Recently, the effective action approach to the
zero-bias problem was developed by Levitov and Shy-
tov [24]. The effective action describes spreading of the
tunneling electron within the electron system in imagi-
nary time ζ.

Following [24], the action of a spreading charge for
zero bias V = 0 is determined by

(60)

where σ and D are the conductivity and the diffusive
constant of the electron system, respectively. They are
related by the Einstein formula σ = e2ρD.

Using asymptotic expression (42) for the static
dielectric function ε(q), we evaluate action (60) in the
large time limit ζ @ 1 as

(61)
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×
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2 Rc
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2 4N( )2
------------------------------------+ .

S0 ζ( ) 4
ωd

2π
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0

+∞
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× q qd
2π
--------- ωζ( )sin

2

ω Dq2+
----------------------
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ω Dq2 σq2Ueff q( )+ +
----------------------------------------------------,

0

+∞

∫

S0 ζ( )
e2

8π2ση
---------------- 2ζ
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------β4η

 
  ,lnln=
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where we introduce two dimensionless parameters

(62)

with the bare elastic mean free path lel = Rcωcτ0. In
accordance with the inequality aB ! Rc ! lel, the param-
eters β and η are small, β ! 1 and η ! 1.

Taking the work done by the voltage source into
account, we obtain the total action of the spreading
charge

We must then find the optimum time ζ* determined
by the minimum of the action S(ζ). The optimum time
ζ* plays the role of the charge accommodation time in
the problem. It can be written as

(63)

The theory must be self-consistent in the hydrodynam-
ical limit, i.e., for ζ* ≥ τ0. Therefore, the theory is appli-
cable for the bias V ≤ V0.

Assuming the contribution from the barrier to be a
constant at a small bias, we can write the tunneling con-
ductivity as

(64)

After the evaluation, we obtain the dependence of the
tunneling conductivity for a small bias,

(65)

Equation (65) shows that the screening of the elec-
tron–electron interaction results in increasing the sup-
pression of the tunneling conductivity. We note that the
above result is valid for the bias in the range V ≤ V0.

Expression (65) for the tunneling conductivity con-
tains the energy scale eV0 that coincides with the
“hydrodynamic” term Eh in Eq. (52) except for the log-
arithm. A hydrodynamical model for the low-energy
excitations of a clean (τ–1 = 0) electron liquid in a weak
magnetic field was considered by Aleiner, Baranger,
and Glazman [6]. They showed that the tunneling den-
sity of states exhibits the gap 2Eh related to the Fermi
energy. Equation (52) describes the same gap for a

β
aB
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------------, η 1 π
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------------– 
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= =
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eV0 1 π
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  1– 1

πmRc
2
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weak disorder ωcτ @ 1. Apparently, the disorder is
responsible for the fact that the gap is about 0.05ωc in a
wide range of the applied magnetic field [5].

As the magnetic field increases, the factor α
increases and becomes of the order of unity. The zero-
bias anomaly in the tunneling conductivity crosses over
from weak to strong. Expression (65) shows that the
factor α depends on the bias V and the magnetic field.
This results in the shift of the crossover point Vc along
the bias V as the applied magnetic field changes,

(66)

where µ is the chemical potential. The crossover was
observed by Ashoori et al. [5] in the tunneling current
from a normal metal into two-dimensional electrons in
the presence of a magnetic field. In the experiment, the
ohmic conductance was measured as a function of the
temperature T. For low temperatures, the conductance
corresponds to the zero temperature conductance taken
at V = T/e. The two-dimensional electrons were rela-
tively clean, with the elastic collision time τ0 ≈ 4 ×
10−12 s. The chemical potential calculated from the
electron density was µ = 10 mV. Using Eq. (66), the
dependence of the crossover temperature on the mag-
netic field can be written as

(67)

where the temperature is measured in kelvin and the
magnetic field in tesla. Equation (67) demonstrates a
good agreement with the results reported in [5].

6. CONCLUSIONS

We have considered the system of a two-dimen-
sional electron gas in the presence of disorder and Cou-
lomb interaction in a weak perpendicular magnetic
field. The effective low-energy theory describing elec-
trons at the partially filled Nth Landau level was derived
in the case of a weak magnetic field (Nrs @ 1) and a
weak interaction (rs ! 1). The modified electron–elec-
tron interaction for electrons on a partially filled Lan-
dau level involves the screening from the other elec-
trons on the occupied Landau levels. We also presented
the exchange corrections to the thermodynamic and
chemical potentials in the presence of disorder.

The theory proposed here allows us to account for
the effects of disorder in the problems connected with
the behavior of a two-dimensional electron gas in a
weak magnetic field. It can be investigated how disor-
der affects the formation of stripes, bubble phase, tun-
neling density of states, spin excitations, tunneling con-
ductivity, etc.

We discussed the effect of disorder on the exchange
enhancement of the g factor and the simplest spin exci-
tations on the partially filled Landau level. We obtained

Vc V0
4πµ
ωc

2τ0

-----------– 
  ,exp=

Tc 2.9
3.2
H

-------
2

– 
  ,exp=
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an additional dependence of the effective g factor as a
function of the magnetic field, the suppression of the
effective mass and the decay rate of the spin-wave exci-
tations.

We also investigated the electron tunneling into a
two-dimensional electron liquid with a weak disorder
in a weak magnetic field. We obtained the enhancement
of the gap in the tunneling density of states and a non-
linear dependence of the tunneling conductivity on the
applied bias.
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APPENDIX A

In this appendix, we calculate the term Sµ in action
(29). This term appears after performing integration
over the longitudinal fluctuations and is given by

(A.1)

where 〈…〉δP denotes the average with the propagator of
the δP field in Eq. (28). We then obtain

(A.2)

where

(A.3)

(A.4)

(A.5)

Here,

(A.6)

and  is the propagator of longitudinal fluctua-
tions in Eq. (28).
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Integrating over the plasmon field, we obtain from
the Sµ term

(A.7)

where second-order corrections to the thermodynamic
potential are given by

(A.8)

The above corrections are negligible in the parameter
N–1 compared to the correction determined by Eq. (35).
The corrections to the chemical potential are given by

(A.9)

The second and third corrections are negligible in the
parameter N–1 compared to the first term. The shift of
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the chemical potential δµ is therefore mainly deter-
mined by the first correction δµ1.

APPENDIX B

In this appendix, we evaluate the polarization oper-
ator Π(ωn, q). The condition ωcτ @ 1 is assumed to
hold. Then,

(B.1)

The calculation of the polarization operator Π(ωn, q) is
analogous to that given in [7]. The wave vectors q !
Rc/l2 are considered.

Using Eq. (31), we immediately obtain

(B.2)

where

(B.3)

Two parameters ζn = ω/ωc (with ω = 2πTn) and Q = qRc

are introduced here. The transformation of series (B.2)
into the integral form yields the asymptotic form of the
polarization operator in the different regimes. In the
static limit ζn ! 1,

(B.4)

where the function η(x) is defined as
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and its asymptotic form is given in Eq. (41). The func-
tion ξ(x) is defined as

(B.6)

and its asymptotic form is given by

(B.7)

In the hydrodynamic limit qRc ! 1, we obtain

(B.8)

APPENDIX C

In this appendix, we evaluate the corrections to the
thermodynamic and chemical potentials.

C.1. Correction to the Thermodynamic Potential 

Using Eq. (35), we can split the correction to the
thermodynamic potential into the exchange and corre-
lation ones as

(C.1)

(C.2)

(C.3)

The exchange correction gives the leading contribution
[7] and can be written as

(C.4)

where  stands for the Laguerre polynomials. The
above equation goes to Eq. (48) in the case where
N @ 1.
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C.2. Correction to the Chemical Potential 

Using Eq. (37), we can split the correction to the
chemical potential into the exchange and correlation
ones,

(C.5)

(C.6)

(C.7)

The exchange correction gives the leading contribution
[7] and can be written as

(C.8)

For N @ 1, the above equation leads to

(C.9)
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Abstract—Two-dimensional structures obtained by the Hastings–Levitov conformal mapping were studied for
a relatively small number of mappings n. The fractal dimension D of these structures is computed by the recent
Davidovitch–Procaccia technique [6] as a function of n. For small n < n0 (where n0 is the number of particles
at the first layer), D exponentially decreases, which should have supported the conclusion made in [6] about the
possibility of determining the fractal dimension with an arbitrary accuracy using a relatively small number of
mappings n ≈ n0. On the other hand, it turned out that D irregularly deviates from a certain quantity D0 depend-

ing on the initial size of the bump , which contradicts the main assertion of [6]. However, our analysis does
not rule out the possibility of determining the fractal dimension of two-dimensional structures by the original
Hastings–Levitov method. © 2002 MAIK “Nauka/Interperiodica”.

λ0
1. INTRODUCTION

There are many objects in nature that grow due to
diffusion of particles forming a cluster (for example,
crystal growth, formation of frost work, formation of
mineral inclusions in rocks, formation of river net-
works, and similar phenomena, such as dielectric
breakdown).

These phenomena can sometimes be considered as
dynamic critical processes. The most interesting char-
acteristics of such processes are the fractal dimension D
of the generated objects and multifractal properties of
their surface of growth. These properties are actually
the properties of an ensemble of object surfaces, and
their study requires proper techniques of averaging over
the ensemble [1].

An intensive study of growth processes started
about 20 years ago when Witten and Sanders proposed
the DLA (Diffusion Limited Aggregation) model in
their 1981 work [2]. This model produces two-dimen-
sional structures that are qualitatively similar to those
mentioned above (see, e.g., the recent review [3]).

In the DLA model, the process starts with placing a
seed particle at the origin of coordinates, and then the
cluster grows at the expense of particles that diffuse
from infinity (in the model, infinity is replaced by a cir-
cle with radius much greater than the possible size of
the cluster). When a particle touches the cluster, it
1063-7761/02/9501- $22.00 © 20145
sticks to it, and this is how the cluster grows. As a par-
ticle sticks to the cluster or goes to infinity (at a distance
much greater than the radius of the initial circle), the
next particle is released. The resulting cluster appears
to have a fractal structure.

In recent years, considerable progress has been
made in studying DLA-like objects due to the novel
techniques proposed by Hastings and Levitov [4] for
modeling the growth of structures. In this model, clus-
ters are generated using a sequence of mappings of a
unit circle exterior to the exterior of the growing object.
At every step, a conformal mapping is used that maps
the exterior of the unit circle to the exterior of the unit
circle with a bump in the form of a semiellipse. Thus,
each mapping adds a new particle to the cluster. The
parameter of the mapping, λ, which is responsible for
the bump area, is chosen depending on the problem. For
example, in the DLA model, λ is chosen so that the
sizes of all bumps are identical after the sequential
application of all transformations to the unit circle (see
Section 2 for details).

In 1996, Hastings [5] applied the renormalization
group approach to the approximate analytical calcula-
tion of the fractal dimension in the DLA model using
the conformal mapping technique. He obtained the
rational value D = 17/10, which is rather close to the
value D = 1.71, which is usually obtained as a result of
direct numerical simulation.
002 MAIK “Nauka/Interperiodica”
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In the Hastings–Levitov method, the fractal dimen-
sion is determined by the dependence of the first term
in the Laurent series of the cluster generation function
on the number of particles [4]. Later, Davidovitch and
Procaccia proposed a modified method for the numeri-
cal computation of the cluster fractal dimension [6] (see
below for details). They claimed that the fractal dimen-
sion can be determined with a high accuracy at early
stages of the growth, whereas conventional methods
require that huge clusters be analyzed.1 The main pur-
pose of this paper is to verify this very strong claim.

The paper is organized as follows. In Section 2, the
Hastings–Levitov model [4] is described. In Section 3,
the method for determining the fractal dimension pro-
posed in [6] is outlined, and its implementation used in
this paper is presented. Details of computations and the
results are presented in Section 4. We also discuss self-
averaging of the fractal dimension computed by the
Davidovitch–Procaccia method at early stages of the
growth and the variation of the dimension depending on
the number of particles for a certain set of problem
parameters. In Section 5, conclusions are made on the
basis of the simulation results.

2. THE HASTINGS–LEVITOV MODEL

Let u(z) be the probability density of finding a parti-
cle at the point z. It is determined by solving the
Laplace equation

(1)

with the boundary conditions

u = 0 (2)

on the surface of the cluster and

(3)

1 For example, two-dimensional clusters consisting of 108 particles
were analyzed in [7].

∆u 0=

u
1

2π
------ z( )ln=

(a) (b)

φλ n, θn

fλ n, θn

Fn – 1FnFn – 1

zn = Fn –1( fλ n, θn
(z))

θn

θn

Fig. 1. Action of the mappings , , and Fn – 1,

Fn.

φλn θn, f λn θn,
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on the circle of a large radius (|z |  ∞).
Equation (1) describes diffusion without sources.

Condition (2) states that the particle that reaches the
surface sticks to it and is not free anymore (in the DLA
model, this ensures the cluster growth), and condition
(3) tells that particles diffuse equiprobably from every
direction at infinity.

The probability of the DLA cluster growth at a cer-
tain point of its boundary is determined as the probabil-
ity for a particle to touch the element dl of the boundary
containing this point:

(this probability is proportional to the flux at the bound-
ary).

In the general case, the probability of the cluster
growth can be determined as

(4)

with an arbitrary value of α. The value α = 1 corre-
sponds to the DLA model, which is a particular case of
the dielectric breakdown model (DBM) [8]. By defini-
tion, the DBM is a model in which the probability of
growth (i.e., the probability of the dielectric break-
down) is proportional to a certain power α of the field
(of the potential gradient) in the vicinity of the surface.

Problem (1)–(3) can be modeled using the iteration
of conformal mappings of the exterior of the unit circle
to the exterior of the growing cluster [4]. At every step,
the composition of two mappings is used. The function

(5)

maps the exterior of the unit circle to the exterior of the
unit circle with a δ-shaped bump of the size

at the point z = eiθ, which is schematically shown in
Fig. 1a. In the original paper [4], the function φλ(z) was
taken in the form

(6)

Then, the transformation

maps the exterior of the circle to the exterior of the cir-
cle with a bump of a certain shape. The shape of the
bump around the circle point z = eiθ depends on the
parameter a. At a = 2/3, the bump has the same size

(4/3)  in any direction, and it can be considered as an
attached circular particle. At the nth iteration step, the
resulting function Fn – 1(z), which is the superposition
of n – 1 mappings f performed at the preceding steps,

dP z( ) ∇ u dl∝

dP ∇ u αdl∝

φλ θ, z( ) eiθφλ e iθ– z( )=

2 λ O λ3/2( ), λ  ! 1,+

φλ z( )
1 λ+

2z
------------ z 1+( )=

× z 1 z2 1 2z
1 λ–
1 λ+
------------–++ + 

  1.–

f λ θ, z( ) z1 a– φλ θ,
a z( )=

λ
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transforms the circle to a cluster consisting of n – 1 par-
ticles, and the circle with an bump is transformed to a
cluster consisting of n particles (see Fig. 1b).

Thus, a cluster consisting of n particles is obtained
from the unit circle by a sequence of n mappings

where the initial function F0(z) = z. Here, λn is defined
in such a way that the area of the nth bump is propor-
tional to λ0|∇ u |α – 1 upon the transformation Fn – 1. The
probability of growth at the element of the cluster sur-
face is proportional to |∇ u |, where λ0 is the parameter
determining the initial size of the particles. Since the
linear dimensions at the point z change proportionally
to (F '(z))–1 under conformal mappings (the prime
denotes the differentiation), we have

(7)

The proportional dependence of the probability of
growth (4) is taken into account through the corre-
sponding change of the particle size (7): whereas the
area of an object consisting of several bumps is initially
proportional to λndl0, where dl0 is the length element of
the initial nucleus (i.e., the circle), it becomes propor-
tional to

upon the transformation Fn – 1. On the other hand, the
area is proportional to the length element of the result-
ing cluster, dl, and to the probability of growth, which,
in turn, is proportional to a power of the field gradient
at the surface. Therefore, the object area must be

Equating both expressions for the area, we obtain (7).
It was shown in [4] that θn is uniformly distributed

in the interval [0; 2π]. Indeed, using the fact that the
factor |∇ u |α – 1 is accounted for by the size of the new
particle, we have the following expression for the prob-
ability of growth:

The characteristic linear size of the cluster is deter-

mined as the coefficient  of z in the expansion of
Fn(z). Since u satisfies the electrostatic equations with
the zero potential on the cluster surface, we can intro-
duce an effective circle that has the same electrostatic
properties at infinity as the cluster. Initially, the asymp-
totic behavior of the potential is

The function fλ, θ is expanded into the Laurent series

Fn z( ) Fn 1– f λn θn, z( )( ),=

λn

λ0

Fn 1–' z( )
z Fn 1– e

iθn( )=
( )1 α+
-------------------------------------------------------.=

λn Fn 1–'( )2dl0

λ0 ∇ u αdl λ0 Fn 1–' –α 1+
dl0.∝

dP ∇ u dl ∇ u
dl0

∇ u
---------- dl0 dθ.∝∝∝∝

Fn
1( )

u z .ln∝
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and has the asymptotic behavior

This expansion contains no powers greater than unity
since fλ, θ is chosen so as not to affect remote areas by
anything except for scale transformations. The asymp-
totic behavior of the resulting transformation is

where

(8)

Under this transformation, the potential at infinity has
the form

which corresponds to the potential of a circle of the

radius . For this reason, the linear size of the cluster

consisting of n particles is taken to be .

The above reasoning suggests that the DLA and
Hastings–Levitov models are partially equivalent at α =
1. In addition, there are examples of clusters in [4] con-
structed for various α, which are similar (at α = 1) to
DLA clusters. However, no rigorous proof of the equiv-
alence of those two models has yet been found.

3. THE DAVIDOVITCH–PROCACCIA METHOD 
FOR DETERMINING THE FRACTAL DIMENSION

The fractal dimension is one of the fundamental
characteristics of fractal objects. The Hastings–Levitov
model provides a unique possibility of investigating
various structures and determining their fractal dimen-
sion, in particular, for the DLA and DBM models, in a
unified way.

The fractal dimension can be found by analyzing the
asymptotic behavior of the dependence of the cluster

linear size  on the number of particles n at the
fixed parameters λ0, α, and a (see [5]). For large n, the
linear size is fitted by the power function n1/D, whence
the fractal dimension D is found.

The value of the fractal dimension for DLA struc-
tures defies numerical computation with a relative error
less than ~0.01. This is due to the very slow conver-
gence of D with the growth of the number of particles
when standard methods for the computation of the frac-
tal dimension are used (see, for example, papers in [9]).

f λ θ, z( ) 1 λ+( )az akz
k
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∑+=

f ∞ z( ) 1 λ+( )az.=

F∞ z( ) Fn
1( )z,=

Fn
1( ) 1 λ k+( )a.

k 1=

n

∏=

u
z

Fn
1( )-------- 

  ,ln∝

Fn
1( )

Fn
1( )

Fn
1( ) λ0( )
SICS      Vol. 95      No. 1      2002



148 ROSTUNOV, SHCHUR
In [6], the authors claim that they succeeded in find-
ing a procedure for the computation of D that converges
rather rapidly and provides much more accurate results.
More precisely, they claim that the dependence

 can be represented in the form of a universal

function  even for small x ! 1, where

(9)

and  converges to  already at n ≥ n0.
Here,

(10)

gives (for a given λ0) the number of particles that can
cover the nucleus by a single layer. Then, determining
the values of n corresponding to the same value of the
linear size of the cluster F (1) (i.e., to the same x) for var-
ious λ0,

we obtain the fractal dimension

(11)

where n is the number of the iteration step (the number
of particles in the cluster) corresponding to the param-
eter of the particle size λ0, and n' is the number of the
iteration step corresponding to another parameter of the
particle size sλ0 at which the same value of the linear
size of the cluster is reached. Since n and n' can be
rather small, if this method is valid, statistically signif-
icant number of realizations can easily be accumulated
and then highly accurate results can be obtained by
averaging D(n; λ0) over a large number of realizations
with a fixed λ0. The authors of [6] claim that as λ0
decreases, one can expect a rapid convergence of the
value of the fractal dimension even at a small number
of mappings n ≈ n0.

In this paper, we analyze this scheme for the compu-
tation of the fractal dimension.

4. SIMULATION RESULTS
4.1. Simulation Process

The growth of clusters was simulated as follows.
1. The values of the area parameter λ0, the shape

parameter a = 2/3 (which corresponds to a circular par-
ticle), and the power of the potential gradient (α = 1 for
the DLA model and α = 2.5 for the DBM model) were
chosen.

2. The unit circle centered at the origin of the com-
plex plane was used as the nucleus.

3. The function F0(z) = z, which maps the nucleus
circle to itself, was used as the initial mapping function.

Fn
1( ) λ0( )

F
*
1( ) x( )

x λ0n1/D,=

Fn
1( ) λ0( ) F

*
1( ) x( )

n0
3
2
--- π

λ0

---------=

Fn
1( ) λ0( ) Fn'

1( ) sλ0( ),=

D n; λ0( )
2 n n'ln–ln( )

sln
--------------------------------,=
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The initial value of the coefficient of the linear term in

the Laurent expansion of F0(z) was taken as  = 1.
The initial step number was n = 1.

4. At the nth step, a pseudorandom number θn in the
interval [0, 2π] was chosen, which determined the loca-
tion of the new particle corresponding to the point zn =

Fn – 1( ) on the cluster surface (see Fig. 1b).

5. At this point, the derivative  was
computed, which determined the linear dilatation of the
point neighborhood relative to its neighborhood on the
nucleus.

6. The value of the parameter λn, which character-
izes the size of the nth particle, was determined by
Eq. (7).

7. Using λn, the next mapping function Fn(z) =
Fn − 1( ) of the unit circle on the cluster consist-
ing of n particles (see Fig. 1b) and the corresponding

new value of the cluster size  = (1 + λn)a were
determined.

The simulation is reduced to the iteration of steps 4–7
with n increased by one at each step. Thus, we find the

dependence of the linear term coefficient of 
on n. The process described above is referred to as a
realization. Under identical initial parameters selected
in point 1, realizations differ from each other in differ-
ent sets of random numbers θn. Average values and their
variances are computed over an ensemble of realiza-
tions.

4.2. The Behavior of D at Small n < n0

The Davidovitch–Procaccia approach [6] is based
on the claim that the fractal dimension D(n; λ0) rapidly
decreases with the number of the iteration step n and
converges to a certain D0, which remains almost invari-
able for n * n0. In this paper, we first investigated the
behavior of the fractal dimension D(n; λ0) at early
stages (n < n0). The simulation was carried out for α =
1 (the DLA model) with a = 2/3 and λ0 = 10–5 for
9000 various realizations in the interval n ∈  [0; n0/3].

For every basic realization of the cluster growth, an
additional realization with a doubled initial value λ0 =
2 × 10–5 (s = 2 in (11)) was simulated. From this real-
ization, the number of iteration step n' was determined

at which the values of (λ0) and (2λ0) were
identical. The values of D as a function of n in the above
interval were obtained by averaging over those realiza-
tions: for each pair of realizations, D(n; λ0) was calcu-
lated by Eq. (11); then, it was averaged over the realiza-
tions.

Figure 2 shows ln(D(n; λ0) – D0) as a function of the
dimensionless ratio n/n0 for three possible asymptotic

F0
1( )

e
iθn

Fn 1–' z( ) z zn=

f λn θn, z( )

Fn
1( ) Fn 1–

1( )

Fn
1( ) λ0( )

Fn
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values of D(n; λ0) at large n: D0 = 1.75, 1.76, and 1.77.
The closer D0 to the asymptotic value, the closer is
ln(D(n; λ0) – D0) to the linear function. It is seen that,
for D0 = 1.75 and 1.77, the curves deviate from the lin-
ear function up and down, respectively; therefore, the
intermediate value D0 = 1.76 can be taken for the value
of the Davidovitch–Procaccia fractal dimension for
λ0 = 10–5.

4.3. The Distribution of D

In order to average the values of D correctly, one
must know their statistical distribution.

The distribution function for D was computed for
α = 1 and 2.5. In all the realizations, we used λ0 = 10–5.
For every α, ten series of realizations were carried out;
then, the results were averaged over these series, and
the standard deviation was computed.

Using the data of each series, a histogram was con-
structed from 11 700 points obtained in 900 realizations
(13 values of D were taken for each realization at dif-
ferent stages of the cluster growth for certain n in the
interval [n0; 4n0]). The histogram step was δD = 0.05
for α = 1.0 and δD = 0.1 for α = 2.5. The results are
shown in Figs. 3a and 3b. It is seen that the distributions
are close to Gaussian ones.

We denote by  the mean value of all D(n; λ0) for
n > n0 at fixed values of α and λ0.

For α = 1,  = 1.76; and for α = 2.5,  = 1.55. In
both cases, the mean values coincide with the location
of the distribution maximum within the accuracy of
computations, which confirms that the distribution is
symmetric. For α = 1, the maximizer of the distribution
is Dmax = 1.761 ± 0.001, and the mean value is  =
1.762 ± 0.004. For α = 2.5, we have Dmax = 1.538 ±
0.002 and  = 1.538 ± 0.008. Note that, for α = 1 (i.e.,
for the DLA cluster), the value obtained by the Davi-
dovitch–Procaccia method,  = 1.76, differs from the

“classical” value  = 1.71 (see Subsection 4.5 for a
more detailed discussion).

4.4. Self-Averaging of D

In systems with a second order phase transition, the
correlation length in the neighborhood of the critical
point can become very large and can exceed the finite
size of the system when approaching the critical point.
In disordered systems, some quantities can lack the
property of self-averaging. This kind of behavior can be
expected, for example, for the correlation function in
spin lattice models with quenched impurities [10].

D

D D

D

D

D

D
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Fig. 2. Exponential relaxation of D(n; λ0) at small n ≤
0.35n0 and λ0 = 10–5.
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Fig. 3. The distribution of the fractal dimension D for α = 1 (a)
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Self-averaging of χ is determined by the behavior of
its relative fluctuation

5χ
χ2〈 〉 χ〈 〉 2–

χ〈 〉 2
---------------------------=
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Fig. 4. The plots of ln5D(lnλ0) for α = 1 (a) and 2.5 (b).
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Fig. 5. The plots of D(n; λ0) for n & 3n0 for models with

various values of λ0: 4 × 10–5 (1), 10–5 (2), 2.5 × 10–6 (3),

10−6 (4), 10–7 (5), 10–8 (6), and 10–9 (7).
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depending on the characteristic linear size of the sys-
tem, L.

In the thermodynamic limit L  ∞, this quantity
usually decreases inversely proportionally to the sys-
tem volume:

where d is the dimension of the system. If 5χ decreases
slower, i.e.,

then it is said that the averaging of χ for the system
under consideration is weak. If 5χ tends to a nonzero
constant with the increase in the system volume Ld, it is
said that no averaging of χ in the system occurs.

The method used for constructing clusters in the
DLA model is stochastic, although no complete anal-
ogy with quenched impurities in a thermodynamic sys-
tem can be established. Nevertheless, one may expect
that weak self-averaging would occur in the DLA
model.

In our system, the linear size is determined by the
cluster radius F (1). One can vary the size of particles λ0

instead, while leaving F (1) invariable; in other words,
one can determine the power γ in the expression for the
relative fluctuation of D:

(12)

Thus, in the Hastings–Levitov model, the dependence
of the relative fluctuation of the fractal dimension on
the initial size of the bump contains information on the
degree of its self-averaging.

To analyze self-averaging of D, we carried out sev-
eral series of simulations for

(α = 1) and for

(α = 2.5). For every λ0, nine series 100 realizations in
each were obtained. For each realization, 14 points for
certain values of F (1) up to F (1) = 1.1 were taken. The
values of 5D were then averaged over nine series.

The plots for 5D(λ) and their approximations are
presented in Figs. 4a and 4b on a log-log scale. The lin-
ear approximation yields the following values of γ in
(12): γ = 1.268 ± 0.034 for α = 1 and γ = 0.510 ± 0.036
for α = 2.5.

For both models, D is weakly self-averaging. This
follows from the fact that the exponent γ/D in (12) is
less than unity (with regard for the fact that D = 1.71 for
α = 1 and D is considerably greater than unity for α =
2.5). For example, for γ = 1, the exponent γ/D = 0.74.
Therefore, 5D decreases slower than the inverse “clus-
ter volume” 1/n with the increase in n (whereas in sys-

5χ 1/Ld,∝

5χ 1/Lγ, γ d ,<∝

5D λ0
γ/2 n γ/D– .∝ ∝

λ0 0.5; 1.0; 1.5; 2.0; 3.0; 5.0; 8.0( ) 10 5–×=

λ0 0.3; 0.5; 1.0; 1.5; 3.0; 4.0; 5.0( ) 10 5–×=
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tems with full self-averaging, these values decrease
with the same rate).

If we assume that the behavior of fluctuations of the
fractal dimension computed by the conventional
method [4, 7, 13] (i.e., on the basis of the dependence
F (1) ∝  n1/D) is similar to the behavior of fluctuations of
the Davidovitch–Procaccia fractal dimension (11), then
our result also explains the slow convergence of the
fractal dimension with increasing system size.

4.5. The Behavior of D at a Large Number
of Mappings

According to the Davidovitch–Procaccia method
[6], at a large number of mappings n, the values of the
fractal dimension D(n; λ0) are independent of both n
and λ0, which makes it possible to assume the existence

of a unique function . This assumption provides
a basis for the method of determining the fractal dimen-
sion.

To check the validity of this assumption, we numer-
ically determined the fractal dimension D as a function
of n and λ0 at n > n0.

The function D(n; λ0) for various values of λ0 was
investigated for the DLA model (α = 1) at n & 3n0. We
used the technique described in Subsection 4.2. The
plots of D(n; λ0) for various λ0 are shown in Fig. 5.
Everywhere (except of the points where the curves
meet), the errors are much less than the distance
between the curves.

It is seen from Fig. 5 that D(n; λ0) do not converge
to a certain constant as the number of mappings n
increases; moreover, there is a strong dependence of the
fractal dimension D(n; λ0) on λ0 at large n. The table
presents the values of λ0, the corresponding values of
n0, the number of realizations N, and the number nmax of
mappings used in the computations. The last column of
the table contains the fractal dimension  obtained by
averaging D(n; λ0) over the interval n ∈  [1.0 : 2.5]. It is

seen from the table that  varies from 1.77 at λ = 10–5

to 1.70 at λ = 10–8; i.e., they already differ in the second
digit beyond the decimal point.

The behavior of D(n; λ0) at λ0 = 10–9 differs from its
behavior at other λ0. This fact can be explained as fol-
lows. The derivative of the conformal mapping function

in (6) is strongly nonuniform at sizes of order . For
this reason, if a particle grows in the vicinity of an exist-
ing particle, the latter substantially distorts the size and
shape of the former. This problem and possible ways to
overcome it are thoroughly discussed in [13]. With a
large number of particles, this effect can be substantial
since, with decreasing λ0 (and increasing n), the proba-
bility of forming a large number of particles at the same
place increases. This feature casts doubt on the possi-
bility of obtaining accurate results without monitoring

F
*
1( ) x( )

D

D

λ0
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the growth of particles and on the exact correspondence
between the DLA and Hastings–Levitov models (see a
detailed discussion in [13]).

For a small depth of the layer of attached particles

and a small size of particles  compared with the
initial radius, the problem under consideration is close
to the problem of a flat layer growth [12]. Then, as the
size of particles decreases, one can expect the Davi-
dovitch–Procaccia fractal dimension to tend to the
dimension of the flat layer structures, which is approx-
imately equal to 1.66–1.68, (see [12] and references
therein). If we plot the value of  given in the table
versus (–1/lnλ0), then the four of them (for λ0 = 2.5 ×
10–6, 10–6, 10–7, and 10–8) fall onto a line, and the linear
extrapolation yields D = 1.6(1). Certainly, this extrapo-
lation is very approximate; nevertheless, it supports our
assumption that the fractal dimension in the problem of
the growing flat layer can be roughly determined by the
Davidovitch–Procaccia technique.

As further verification of the claims made by Davi-
dovitch and Procaccia, we constructed analogs of the
dependences of the function F (1)(x; λ) – 1 on the

“invariant” variable x = n1/D (such dependences
were obtained in [6]). The coincidence of those curves
for various λ0 would confirm the existence of a univer-

sal function .

These dependences are shown in Figs. 6a and 6b for
various λ0 and two values of the fractal dimension D =
1.70 and 1.75.2 We chose these values of the fractal
dimension, since the value D = 1.70, which is close to
the conventional value of the dimension in the DLA
model, was used in [6] in similar figures, and D = 1.75
yields the densest arrangement of curves corresponding
to various values of λ0.

2 These dependences are similar to those shown in Figs. 3–5 in [6];
the difference is only in the scale used in the figures (we use a
larger scale).

λ0

D

λ0

F
*
1( ) x( )

The values of n0, nmax, N, and  for various λ0

λ0 n0 nmax/n0 N

4 × 10–5 745 2.62 3200 1.769

10–5 1490 1.95 3600 1.765

2.5 × 10–6 2980 1.98 560 1.766

10–6 4712 2.68 210 1.754

10–7 14901 2.10 64 1.724

10–8 47123 2.55 20 1.704

10–9 149018 2.69 7 1.723

D

D
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Fig. 6. F(1)(x; λ0) as a function of x = n1/D at D = 1.70 (a) and D = 1.75 (b) for various values of λ0: 4 × 10–5, 10–5, 2.5 × 10–6,

10−6, 10–7, 10–8, and 10–9. It is seen in the insets made on a larger scale that the curves are close to each other, but do not collapse.
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An analysis of the figures suggests the following
conclusions.

1. Since the curves corresponding to various λ0 are
closer to each other at D = 1.75 than at D = 1.70 (the
latter case was considered in [6]), the existence of a

unique function  at D = 1.75 seems more proba-
ble.

2. On a not very large scale (as the one used in
Figs. 3–5 in [6]), it may seem that all F (1)(x; λ) col-

lapse into a single function  both at D = 1.75
and at D = 1.70.

3. For different values of λ0, the functions F (1)(x; λ)
are close to each other, but they do not collapse. More-
over, their behavior is such that they would not collapse
at any D. (At D = 1.75, there exist both parts of the plot
where the curves collapse and parts where they do not.
For another D, the curves will depart from each other
on the intervals where they collapsed for D = 1.75.)
Therefore, it seems probable that no unique function

 exists.

Thus we can draw the following conclusion: the
approach proposed in [6] does not have enough support
and hardly can be used to obtain highly accurate results.

5. CONCLUSIONS
The simulation described in this paper suggests the

following conclusions.
1. The distribution of D in various realizations of

clusters is near Gaussian. D is weakly averaged, which
can explain a slow convergence in the conventional
computation of the fractal dimension.

2. D(n; λ0) relaxes exponentially to a certain value
(the relaxation occurs at sizes of order n0/2); therefore,
the cluster considered at the size of order n0 can be
assumed to be steady.

3. The analysis of the behavior of D(n; λ0) shows
that the method proposed in [6] cannot yield an arbi-
trarily accurate value of the fractal dimension at λ0  0.

F
*
1( ) x( )

F
*
1( ) x( )

F
*
1( ) x( )
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It appears that, in this case, the dimension tends to the
dimension of the growing flat layer problem. This is a
quite different problem, which requires a special inves-
tigation.
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Abstract—A family of models determined by a smooth canonical 2D-map that depends on two parameters is
studied. Preliminary results of numerical experiments are reported; they are evidence of substantial suppression
of global diffusion in a wide range of perturbation values. This effect is caused by the little-known phenomenon
of the conservation of resonance separatrices and other invariant curves under the conditions of strong local
dynamic chaos. Such a total suppression of diffusion occurs although invariant curves are only conserved for a
countable zero-measure set of parameter values. Simple refined estimates of diffusion rates in smooth systems
without invariant curves were obtained and numerically substantiated. The principal boundary of diffusion sup-
pression in a family of models with invariant curves was described by a semiempirical equation in dimension-
less variables. The results were subjected to a statistical analysis, and an integral distribution for diffusion sup-
pression probability was obtained. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the principal concepts of the modern theory
of nonlinear Hamiltonian systems is the assertion that
splitting of a nonlinear resonance separatrix and the
formation of a chaotic layer in its place in a typical (that
is, nonintegrable) system occurs under an almost arbi-
trary perturbation. It is also believed that precisely sep-
aratrices are destroyed first, because the period of
motion along them is infinite, and the interaction of
nonlinear resonances in their vicinity is always substan-
tial (e.g., see [1–4]). Invariant curves (surfaces) experi-
ence breakup and disappear as perturbation increases.
This as a rule causes overlapping of chaotic layers of all
resonances and the appearance of so-called “global”
chaos.

The conditions of global chaos formation and the
possibility of diffusion over the whole unified chaotic
component in the phase space depend not only on the
value but also on the smoothness of perturbation. The
smoothness can conveniently be characterized by the
rate of decreasing Fourier amplitudes. An analytic per-
turbation decreases exponentially, and a threshold per-
turbation value εtr always exists. Global diffusion only
arises at ε * εtr . If ε < εtr, chaos is localized in compar-
atively narrow chaotic layers (which are formed at arbi-
trary ε > 0 values), and there can be no global diffusion
in a conservative system with the number of degrees of
freedom 1 ≤ 2.

Note that, if 1 > 2, global diffusion can only take
place under special initial conditions (Arnold diffusion,
e.g., see [1]). The rate of this diffusion and the measure
of its region decrease exponentially with respect to the
1/ε parameter as ε  0.
1063-7761/02/9501- $22.00 © 0154
The character of motion changes considerably for a
smooth perturbation of the Hamiltonian whose Fourier
amplitudes decrease as some power β + 1 of their num-
ber n (e.g., see [5] and the references therein). In the
simplest case of a 2D map, to which our analysis will
be restricted, the εtr > 0 threshold of the appearance of
global chaos always exists if β > βcr = 3. This critical
smoothness value was obtained from the simple esti-
mate made in [5] (also see Section 3), but it neverthe-
less requires verification by numerical experiments. So
far as we know, a rigorous proof can only be obtained
for βcr = 5 (see [6], where the suggestion is made that,
in reality, βcr = 4). This uncertainty is of no significance
for our purposes, because, for the model under consid-
eration (Section 2), the inequality β = 2 < βcr is always
satisfied. Interestingly, the situation has long remained
unclear precisely for the β = 2 index.

Even in early numerical experiments on systems
whose smoothness was lower than critical, trajectories
that did not go beyond some limited phase space region
in long-time computations were observed along with
global diffusion [7, 8]. This was, however, nothing
more than a suspicion of diffusion suppression or
weakening. A rigorous result was obtained by Bullett
[9], who proved the existence of global invariant curves
with both irrational and rational rotation numbers for a
symmetrical piecewise linear 2D map [β = 2—see (2.1)
and (2.2) below; also see [10] and Section 2]. Precisely
global invariant curves have a complete phase extent,
which prevents unlimited diffusion over action. In [9],
it was found for the first time that, among invariant
curves with rational rotation numbers, there are also (at
special perturbation parameter values) intact nonlinear
2002 MAIK “Nauka/Interperiodica”
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resonance separatrices. Especially important and unex-
pected was that the system nevertheless remained non-
integrable, but the separatrix not only was conserved
under strong chaos conditions but also prevented global
diffusion.

A similar theorem for the same model was later
proved by Ovsyannikov [11], who not only specified a
countable set of parameter values at which the separa-
trix of an integer resonance is conserved but also found
an explicit and very simple expression for the separa-
trix. Although Ovsyannikov proved his theorem inde-
pendently, such a coincidence of the models was not
fortuitous, because solving a linear (even though piece-
wise) map considerably simplifies the problem. Note
that completely solving even a linear map is only pos-
sible if the separatrix is conserved, because otherwise
two branches of a split separatrix form random trajec-
tories. For the same reason, a symmetrical piecewise
linear 2D map cannot be simplified to a purely linear
map of the type of the Arnold map, in which nonlinear
resonance separatrices are always split. The mathemat-
ical works by Bullett and Ovsyannikov are therefore
restricted to studies of only new-type invariant curves
themselves. The first examples of such curves were pre-
dicted in [10].

Precisely the Ovsyannikov theorem prompted us to
thoroughly study the symmetrical piecewise linear 2D
map and its modifications [12–15]. Unfortunately, this
theorem was not published by its author (the complete
formulation of the theorem can be found in Appendix in
[14]). Instead, the theorem was generalized in [16] to
arbitrary map parameter values. The result obtained in
[16] contradicts that of [9] and our numerical experi-
ment data.

10–5 1010–4 10–3 10–2 10–1 1

10–11

D

K

10–7

10–3

1

Fig. 1. Diffusion rate D(K) in model (2.2) with the d = 0
parameter (without invariant curves): dots are the data from
[17], open circles are our data averaged over 250 trajecto-
ries t0 = 4 × 107 iterations long with random initial condi-
tions, solid line is power dependence (4.1), and dashed line
is limiting mode (3.10).
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A certain perturbation parameter value corresponds
to each invariant curve in the symmetrical piecewise
linear 2D map (including invariant curves of the new
type with rational rotation numbers, that is, also integer
and fractional resonance separatrices). The set of all
such values is a Cantor set (see Figs. 2 and 3 in [9]), and
there are intervals of parameter values in which global
diffusion certainly takes place (one of such intervals is
identified in [9]; also see Section 5). As the density of
this set is fairly high, we can expect strong (although
incomplete) suppression of global diffusion at an arbi-
trary perturbation parameter value. Studies in this
direction were performed in the present work.

2. MODEL

The selected model is a two-dimensional map in the
canonical variables of action p and phase x,

(2.1)

Here, K = ε > 0 is the perturbation parameter (not nec-
essarily small), and “force” f(x) has the form of an anti-
symmetric [f(–y) = –f(y), y = x – 1/2] piecewise linear
“saw” with period 1.

We will study the whole family of sawtooth pertur-
bations1 (see Fig. 1 in [15]),

(2.2)

1 A family similar but not identical to that of the model used in [9].

p p K f x( ), x+ x p mod 1.+= =

f x( )

2x
1 d–
------------, for x

1 d–
2

------------,≤

2y
d

------, for y
d
2
---,≤–






=

10–9

D

K

10–6

10–3

10

2 × 10–1 3 × 10–1 5 × 10–1 7 × 10–1 1

Fig. 2. Example of diffusion in a smooth map with invariant
curves of measure zero: model (2.2) with the d = 1/2 param-
eter, 50 trajectories, computation time t0 = 2.5 × 106. The

solid straight line is D2 = 0.8K5 according to (5.1), and the
dashed line is limiting mode (3.10).
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where y = x – 1/2, and 0 ≤ d ≤ 1 is the distance between
saw “teeth” |f(x)| = 1 situated at the points y = y± = ±d/2.
The most thoroughly studied particular case of the sym-
metrical piecewise linear 2D map corresponds to the
bias parameter d = 1/2.

We are interested in global diffusion over momen-
tum, which is suppressed by invariant curves with a
complete extent over phase. We call these invariant
curves global and, in what follows, only consider such
curves unless otherwise stated. Note that these invariant
curves (including unbroken separatrices of integer and
fractional resonances) exist for an arbitrary bias param-
eter value in the interval 0 < d < 1 at special K values
[9, 12–15].

If 0 < d < 1, force (2.2) can be written as the Fourier
series

(2.3)

where

(2.4)

The passage to the d  0 limit in (2.3) and (2.4) for
the discontinuous saw yields

(2.5)

One can see that, in the d = 0 limit, the smoothness
index of the system, β, is smaller by one than within the
interval, and both indices are smaller than the βcr = 3

f x( )
f n

nβ----- 2πnx( ),sin
n 1≥
∑=

f n
2

π2
----- nπ( ) nπd( )sincos

d 1 d–( )
-------------------------------------------, β– 2.= =

f n
2
π
--- nπ( ), βcos– 1.= =

10–9

D

K

10–6

10–3

1

0.300.29 0.31 0.32 0.33 0.34

Fig. 3. Part of fractal diffusion region extended along K with
invariant curves shown in Fig. 2. The computation parame-
ters are the same as in Fig. 2 except that t0 = 4 × 107 for most
of the points. For some points, including the leftmost with
K = 0.294, computation time t0 = 109. The smooth curve at
the right was constructed by (5.5); it approximates the
boundary of the principal diffusion region.
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critical value. The second d  1 limit is not consid-
ered in this work, because motion then becomes regular
(see [15]).

Map (2.1) can be written as a continuous system
with a Hamiltonian that explicitly depends on time and
perturbation in the form of impulses [1–3, 14]:

(2.6)

where

denotes the δ function with period 1. Note that selecting
the δ function in this form also defines the time unit of
the continuous system; this unit equals one iteration of
the initial map.

Each term of the double sum in (2.6) is proportional
to cos[2π(nx – mt)] with integer m and n and determines
“its own” primary nonlinear resonance (details are
given, e.g., in [1]). Supposing that these resonances do
not interact with each other, we can describe any of
them by the Hamiltonian of a “pendulum”

(2.7)

Introducing the resonance momentum value pnm =  =

m/n, we find that, in the new variables  = nx – mt and
 = (p – pnm)/n, each such solitary resonance is a con-

servative system with motion strictly bounded with
respect to momentum. Returning to the old variables,
we determine the frequency of phase oscillations

(2.8)

and the total momentum width of the resonance

(2.9)

In the next section, these equations are used to obtain
very simple and unexpectedly accurate estimates of the
rate of diffusion for a smooth map without invariant
curves.

3. DIFFUSION RATE ESTIMATES

Our estimates are based on the criterion of overlap-
ping of nonlinear resonances (see [1–3, 5]), which can
be written in the simplest form as

3 ~ 1, (3.1)

H x p t, ,( )
p2

2
-----=

+ K
f n

2πnβ 1+
------------------ 2πnx( )δ1 t( ),cos

n 1≥
∑

δ1 t( ) 1 2 2πmt( )cos
m 1≥
∑+=

Hnm x p t, ,( ) p2

2
-----

K f n

2πnβ 1+
------------------ 2π nx mt–( )[ ] .cos+=

ẋnm

x̃
p̃

Ωn
2 2πK f n

nβ 1–
-----------------=

δp( )n 4
K f n

2πnβ 1+
------------------.=
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where

(3.2)

Here, 3 is the approximate sum of widths (2.9) of all
primary resonances in a unit interval with respect to
momentum p. For simplicity, we assume that all Fourier
coefficients are equal, fn = f0.

Note that the sum diverges at β ≤ 3, and this deter-
mines the critical smoothness value specified above,
βcr = 3, in the approximation that we use. Global diffu-
sion then occurs at an arbitrary K value, including
K  0, and, generally, its rate depends on all reso-
nances (2.7) and is described by complex and cumber-
some equations (cf. [17]). As in [5], our simple esti-
mates are based on the following hypothesis, which we
consider physically plausible and which is substanti-
ated by the numerical experiments described below. We
assume that the mean rate of global diffusion at β ≤ 3 is
largely determined by a finite number of resonances up
to some critical harmonic n = nc. These resonances, in
combination with various m values in (2.7), provide
overlapping (3.1). Indeed, stronger resonances (n < nc)
cause faster diffusion, but this diffusion is local because
of incomplete overlapping of resonances. On the other
hand, weaker resonances (n > nc) more than provide
overlapping, but the rate of diffusion for them

(3.3)

rapidly decreases as n increases. Here, the total reso-
nance width (2.9) and the period of the corresponding
phase oscillations 2π/Ωn [see (2.8)] are used as
dynamic diffusion scales.

Replacing the sum in (3.2) by the integral in n @ 1
yields

(3.4)

It follows from (3.2) that the number of the critical har-
monic is

(3.5)

Lastly, (3.3) is used to obtain the rate of diffusion,

(3.6)

3 n δp( )n

n 1≥
∑∼ 4

K f 0

2π
----------6,=

6 n 1 β–( )/2.
n 1≥
∑=

D
δp( )2

t
-------------

δp( )n
2Ωn

2π
--------------------∼=

6
2

3 β–
------------n 3 β–( )/2.≈

nc
π
32
------ 3 β–( )2

K f 0
-------------------

1/ 3 β–( )

.∼

Dβ 3< K( )
4 2π

π2
--------------∼

× 32

π 3 β–( )2
---------------------- 

  3β 1+( )/2 3 β–( )
K f 0( )5/ 3 β–( ).
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Generally, this equation only gives an estimate of
the order of magnitude. We, however, deliberately leave
various numerical coefficients in it in the hope that its
accuracy can be substantially increased through the
introduction of empirical correction factors. This will
be done in the next section in considering a simple and
thoroughly studied example of such diffusion.

Note that all these estimates are only valid at K ! 1.
Indeed, as mentioned, diffusion in the system under
consideration has two dynamic scales,

(3.7)

with respect to momentum (2.9) and

(3.8)

with respect to time [from (2.8)]. Both scales are
bounded because p is periodic and t discrete. This
imposes the limitation on the system parameter

K & 1. (3.9)

The same limitation arises also from the condition
imposed on critical harmonic (3.5), namely, nc * 1. At
K ! 1, the time of the decay of perturbation correla-
tions satisfies the inequality tc @ 1. At K ~ 1, this time
is shortened to tc ~ 1, and at K @ 1, correlations
between closely spaced impulses become negligibly
small. The rate of diffusion is then determined by the
mean square perturbation,

, (3.10)

and ceases to depend on bias parameter d for the whole
family of maps (2.1), (2.2).

4. NUMERICAL EXPERIMENTS
FOR A MODEL WITHOUT INVARIANT CURVES

First, consider the simplest example of a smooth 2D
map, which corresponds to the d = 0 parameter in fam-
ily (2.2). According to [15], invariant curves are absent
in this limiting case, and global diffusion occurs at arbi-
trary positive K > 0. Diffusion in such a model was
thoroughly studied numerically and analytically fairly
long ago [17]. Note that both the diffusion rate and per-
turbation parameter K are normalized differently in
[17] and this work, and the data obtained in [17] and
cited below were therefore recalculated to our model.

Substituting β = 1 and f0 = 2/π [see (2.5)] into (3.6)
yields Dβ = 1(K) = 0.84K2.5. Recalculating the value
numerically obtained in [17] yields

δp( )c 4
K f 0

2πnc
β 1+

------------------ K2/ 3 β–( )
 & 1∼ ∼

tc

2πnc
β 1–

K f 0
----------------- K 1/ 3 β–( )–

 * 1∼ ∼

DK ∞→ K2 f 2 x( ) xd

0

1

∫ K2

3
------= =
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(4.1)

where the correction factor for the diffusion rate CD =
0.68. In what follows, we use the assumption made by
the authors of [17], namely, B1 = 2.5, for comparison
with their theory.

The CD correction to our theoretical estimate is
small, but it heavily depends on the smoothness index
β. By way of example, we set β = 2. Equation (3.6)
gives Dβ = 2(K) = 1199K5 against the numerical calcula-
tion result D2(K) ≈ 0.8K5 [see (5.1) and Fig. 2]. A com-
parison of these values gives a correction factor CD ≈
6.7 × 10–4 (!), which makes this factor physically mean-
ingless.

Physically unreasonable results are obtained
because the principal approximation for constructing
estimates is related to an intermediate result in the for-
mulation of the condition of resonance overlapping,
Eqs. (3.1) and (3.2), rather than directly to diffusion
rate D. In such a form, this condition always overesti-
mates the overlapping effect because it contains maxi-
mum widths of resonance separatrices, whereas, in
reality, separatrices may have mutual phase shifts. This
circumstance can be taken into account by introducing
correction Cs in place of CD,

(4.2)

Cs is essentially different from CD in (4.1) because it is
raised to some power, which depends on β and can be
fairly large,

(4.3)

To obtain CD ≈ 1 for β = 2 (see above), it suffices to set
Cs ≈ 2.84 [see (5.1)]. This is evidence that such a
method for introducing an empirical correction into
order-of-magnitude estimates is very effective.

The Cs correction is much smaller for β = 1, Cs ≈ 1.2,
because the perturbation spectrum at β = 1 contains all
harmonics, whereas only odd harmonics remain at β =
2. As a result, sum (3.2) decreases twofold. This addi-
tional effect is easy to take into account in (4.3) by the
replacement Cs  2Cs. The necessary correction for
β = 2 then decreases from 2.84 to 1.42, which is close
to the Cs ≈ 1.2 value found above for β = 1.

The most important results obtained in studying the
simple model with d = 0 and the approximating straight
line found in [17] [Eq. (4.1)] are shown in Fig. 1. This
straight line is also fairly well described by our simple
theory (4.3) with correction Cs = 1.2. Both equations

D1 K( ) A1K
B1 CDDβ 1= K( ),= =

A1 0.5680 0.0034,±=

B1 2.4940 0.008,±=

3 Cs 1.>=

Dβ 3< K( )
4 2π

π2
--------------≈

× 32

π 3 β–( )2Cs
2

----------------------------- 
  3β 1+( )/2 3 β–( )

K f 0( )5/ 3 β–( ).
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closely agree with the empirical data up to the K ~ 1
value, at which the transition to mode (3.10) occurs.

Numerical data were compared in [17] with a very
complex theory developed by the authors, which was
also based on the concept of overlapping of resonances
(more exactly, of their destroyed separatrices). This
theory did not include adjustment parameters of any
kind, but the accuracy that it provided was in reality not
high (approximately 10%, see Fig. 2 in [17]). The the-
ory actually referred to a qualitatively different model
with an analytic Hamiltonian with a finite number of
harmonics n retained in its Fourier transform. Such a
“cutting off” of the spectrum was accompanied by the
appearance of a threshold for the arising of global dif-
fusion, as is characteristic of analytic systems, which
limited the applicability of this theory to the most inter-
esting region of small parameter K values, K & Kc(n). In
the example given in [17] (see Fig. 2 in [17]), nc = 21
and Kc ~ 0.02 (in our normalization). The mechanism of
this limitation resembles that of restriction (3.5)
imposed on the critical harmonic in our theory, but our
restriction is much weaker. For instance, at nc = 21 and
Cs = 1.2, the minimum value is

(4.4)

which is one order of magnitude smaller than in [17].
We turn to the most interesting part of our study,

when the bias parameter of model (2.2) is d ≠ 0. It has
been proved in [9] that there exists a critical perturba-
tion parameter value KB such that, at K > KB, there is no
global invariant curves in the system. The exact equa-
tion for KB in our normalization takes the form

(4.5)

According to [9–15], generally, there is a countable
set of special K ≤ KB values at which invariant curves
are formed in the system under strong local chaos con-
ditions.

Our main interest is how strongly the existence of
these invariant curves suppresses global diffusion at
arbitrary K values, although the measure of the set of
special K values and the probability of fortuitously fall-
ing into it are zero.

5. DIFFUSION SUPPRESSION 
BY “VIRTUAL” INVARIANT CURVES

First consider the most thoroughly studied example
of family (2.2) with the bias parameter d = 1/2, for
which the results of our numerical experiments are
shown in Figs. 2 and 3.

In the computations, the whole time interval was
divided into four equal portions, and the diffusion rate
was output at the end of each interval. For this reason,
four points generally correspond to each K value in

K Kc nc( )
πCs

4nc

--------- 
 

2

0.002,≈ ≈ ≈

KB d( )
2d2

1 d+
------------, 0 d 1.< <=
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Figs. 2–5. Their arrangement along vertical lines allows
the diffusive case to be distinguished from the nondif-
fusive one. Characteristic of the latter is a decrease in
the rate of diffusion in time, which results in mutual
“dispersal” of these points. The spread of points for dif-
fusion characterizes the accuracy of diffusion rate val-
ues. In the region without invariant curves, this accu-
racy is quite satisfactory (approximately 10%), as for
d = 0. However, in the region with virtual invariant
curves and in its vicinity (at K ~ KB), the error increases
and sometimes reaches 2. Of the same order is a sys-
tematic decrease in the mean diffusion rate caused by
nonergodicity of motion in this region. Nonergodicity
of motion results in the formation of a stable motion
component of a very complex structure (so-called criti-
cal structure, e.g., see [5]). Currently, we have not been
able to substantially increase the accuracy of determin-
ing the rate of diffusion. However, we believe the
attained accuracy to be sufficient for our purposes.

The d = 1/2 value is the only one (except the d = 0
limiting value) when the | fn | = const simplification in
(3.2) is possible. This simplification substantially facil-
itates a theoretical analysis of numerical data. By virtue
of this simplification, Eq. (4.3) with | fn | = 8/π2 is appli-
cable to odd harmonics, and the same equation with
| fn | = 0, to even harmonics at β = 2 with correction Cs =
2.84 [see (2.4) and the preceding section], but only in
the region without invariant curves. In addition, (4.3) is
only valid in a very limited range of perturbation
parameter values (see Fig. 2), namely,

(5.1)

The upper bound is determined by the well-known tran-
sition to the limiting diffusion conditions without cor-
relations (3.10). An essentially new feature of the diffu-
sion picture is the lower bound, clearly related to the
appearance of invariant curves, which suppress diffu-
sion. According to (4.5), invariant curves at d = 1/2 are
completely absent if

(5.2)

It is, however, obvious from Figs. 2 and 3 that strong
diffusion suppression begins much earlier, that is, in the
region of K values where invariant curves are actually
absent! Hence our new term “virtual invariant curve.”
In other words, every real invariant curve, which is
formed at some strictly definite special K = K0 value, in
reality substantially distorts the structure of the phase
plane of the system in some finite neighborhood of K0.

Diffusion in the vicinity of a single invariant curve
in system (2.2) with d = 1/2, in the vicinity of an unde-
stroyed integer resonance separatrix formed at K = K0 =
1/8, was for the first time studied in [13]. The first thing
observed was sharp asymmetry at K > K0 and K < K0.

At K > K0, the separatrix begins to transmit other tra-
jectories, but the mean time (the number of iterations)

D2 K( ) 0.8K5, 0.4 & K  & 0.8.=

K KB
1
2
--- 

 > 1
3
---.=
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Tc of passing the resonance depends on the detuning
K – K0 > 0. The following measurements were pre-
formed to determine this dependence in the interval
1.25 × 10–7 ≤ K – K0 ≤ 1.25 × 10–5, where there was no
other invariant curves. In the region between two neigh-
boring integer resonances (see Fig. 4 in [13]), 100 ran-
dom chaotic trajectories were generated, and time Tc of
the first appearance of each of them in the region either
below the lower or above the higher resonance was
fixed. To facilitate comparison of these data with the
results of the present work, we give the equation for the
diffusion rate

(5.3)

The Fex = D2(K)/Dc(K) ratio, where, according to (5.1),
D2(K) determines the diffusion rate on the assumption
of the complete absence of invariant curves in the sys-
tem, is the quantitative measure of diffusion suppres-
sion. For instance, in the whole K – K0 range that we
studied, this coefficient changed from 40 000 to 200,
which was evidence of substantial diffusion suppres-
sion (also see Figs. 2 and 3).

Note beforehand that (5.3) is in a certain way similar
to Eq. (5.5) for the boundary of the principal diffusion
region; this similarity is discussed below.

At K < K0 and in the region arbitrarily close to the
separatrix, many closely spaced invariant curves were
observed; because of their presence, the problem of
determining the resonance passage time was virtually
unsolvable. The question of diffusion in this region
remains open.

All these fairly simple observations are, we believe,
most important at the same time, because they show
that the zero measure of the set of invariant curves and
even their finite density do not prevent strong diffusion
suppression in the model under consideration.

The next important problem is that of quantitatively
estimating diffusion suppression. Complete diffusion
suppression is likely to be possible only at special K0

values, that is, only for real invariant curves. Generally,
everything depends on their structure in the space of
system parameters (K, d). This structure appears to be
fairly complex and is likely to be fractal. In particular,
it also includes whole regions of finite width without
invariant curves. One of such regions, 0.2295 < K <
0.2500, has been predicted in [9] and is well seen at the
left of Fig. 2. The rate of diffusion rapidly decreases at
the boundaries of this region, as at the principal bound-
ary K = 1/3 (5.2). This causes diffusion suppression

Dc K( )
1
Tc〈 〉

-----------≈ 0.089 K K0–( )1.193,=

K K0> 1
8
---.=
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Parameters of diffusion regions shown in Fig. 3

Kmax Dmax Fex CF ∆K × 100 δK × 100

0.3322 9.9 × 10–7 3.26 × 103 1.99 × 100 0.080 0.051

0.3309 4.0 × 10–6 7.93 × 102 1.30 × 100 0.155 0.130

0.3282 1.0 × 10–8 3.05 × 105 1.20 × 102 0.060 0.003

0.3270 5.0 × 10–8 5.98 × 104 1.85 × 101 0.051 0.007

0.3240 1.1 × 10–5 2.60 × 102 1.65 × 100 0.382 0.274

0.3216 2.0 × 10–6 1.38 × 103 1.15 × 100 0.099 0.090

0.3204 1.0 × 10–7 2.70 × 104 5.58 × 100 0.039 0.012

0.3196 8.0 × 10–7 3.34 × 103 1.73 × 100 0.072 0.050

0.3178 2.0 × 10–6 1.30 × 103 4.01 × 10–1 0.051 0.094

0.3163 1.0 × 10–6 2.53 × 103 1.84 × 100 0.090 0.060

0.3146 4.0 × 10–7 6.16 × 103 1.58 × 100 0.045 0.033

0.3139 8.0 × 10–7 3.05 × 103 7.81 × 10–1 0.045 0.053

0.3130 5.0 × 10–8 4.81 × 104 2.04 × 101 0.063 0.008

0.3043 4.0 × 10–5 5.22 × 101 1.59 × 100 1.090 0.798

0.2978 3.0 × 10–7 6.25 × 103 4.05 × 10–1 0.018 0.033

0.2960 2.5 × 10–6 7.27 × 102 3.22 × 100 0.301 0.138

0.2941 4.3 × 10–7 4.06 × 103 2.00 × 10–1 0.0150 0.044

Note: Kmax and Dmax are the perturbation parameter and the rate of diffusion in the center of the region, respectively; Fex is the experi-
mental diffusion suppression factor in the center of the region; CF = Fex/Fth is the ratio between the experimental and theoretical
suppression factors; Fth is calculated by (5.6); ∆K is the experimental region width; and δK is the region width recalculated by (5.5)
under the additional requirement of providing the CF ≡ 1 equality.
even at the maximum. The width of this region is ∆K ≈
0.02, and the diffusion suppression factor is

(5.4)

Here, Dmax ≈ 4.6 × 10–5 is the maximum measured dif-
fusion rate near the center of the region Kmax ≈ 0.24, and
D2(Kmax) ≈ 6.4 × 10–4 is the diffusion rate expected in
the complete absence of invariant curves in the system,
Eq. (5.1).

A crude estimate of Fex can be made by comparing
the boundary of this region and the DB(K) principal
boundary, which, according to Fig. 2, is satisfactorily
approximated by the equation (to the left of the arrow)

(5.5)

This particular case substantiates the natural suggestion
that the KB critical value from (4.5), which is the bound-
ary value for the principal region without invariant
curves, coincides with KD (or is close to it) at the
DB(KD) = 0 boundary of the principal diffusion region.

In addition, we make the suggestion (which should
also be verified) that the boundaries of all diffusion

Fex

D2 Kmax( )
Dmax

--------------------- 14.≈=

DB K( )
1
2
--- K

1
3
---– 

  3/2

≈

Db K( )
1
2
--- K Kb–( )3/2.≈
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regions exhibit similar behaviors, and Eq. (5.5) to the
right of the arrow is therefore applicable to an arbitrary
region without invariant curves with the Kb left bound-
ary.

Equation (5.5) yields

(5.6)

Here, coefficient 2 characterizes interference of two
region boundaries, which amplifies diffusion suppres-
sion; Kb ≈ 0.23 and Kmax ≈ 0.24 are the left boundary
and the center of the region under consideration, and
Db(Kmax) ≈ 5 × 10–4 is the rate of diffusion in the center
obtained from Eq. (5.5) for the boundary. Lastly,
D2(1/3) ≈ 3.28 × 10–3 is the diffusion rate at the bound-
ary of the principal region calculated by (5.1) on the
assumption of the absence of invariant curves (we
ignore the small Kmax – Kb correction and use K = 1/3).

For the model under consideration, the measured
(5.4) and theoretical (5.6) values very closely agree
with each other, which substantiates the suggestion
made above that diffusion region boundaries are simi-
lar. By analogy with (4.1), we may introduce an empir-
ical correction factor GF = Fex/Fth ≈ 1.1, which is close
to one. Note that approximation (5.5) is only valid for
d = 1/2 (see below), and applying it to narrow diffusion

Fth

2D2 1/3( )
Db Kmax( )
---------------------- 13.≈ ≈
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regions appears to be justified only in the vicinity of the
principal boundary.

We stress once more that dependence (5.3) for dif-
fusion rate Dc(K) close to one invariant curve and
dependence (5.5) for the DB(K) boundary of the princi-
pal region are similar; not only both are power depen-
dences but also their exponents differ insignificantly.
This difference is likely to arise because (5.3) is calcu-
lated at K = 1/8 and (5.5), at K = 1/3.

Several other narrower diffusion regions are also
shown in Fig. 2. They are reproduced in Fig. 3 on an
enlarged scale. The empirical values are connected by a
polygonal line, which helps us to distinguish between
closely spaced narrow regions. In the centers of these
regions without invariant curves, diffusion is also sup-
pressed the stronger, the narrower the region. For
17 regions that we were able to discern, calculations by
(5.4)–(5.6), similar to those made above, were per-
formed. These data are summarized in the table, which
also contains the CF = Fex/Fth empirical correction fac-
tors. Given in the last column are region widths calcu-
lated by (5.5) under the additional requirement to pro-
vide fulfillment of the equality CF ≡ 1. For the widths,
agreement with empirical estimates is much worse,
which appears to be caused by difficulties of determin-
ing the width of a narrow ∆K region based on a limited
number of perturbation parameter K values used in the
calculations (see below).

Diffusion suppression at several bias parameter d
values is shown in Fig. 4. Similarity of D(K) depen-
dences at different d values attracts attention. This sim-
ilarity gives promise that a unified description of diffu-
sion in some dimensionless variables can be con-
structed.

On the assumption that KD ≈ KB (see above), it is
natural to write dimensionless perturbation parameter
K* as

(5.7)

The determination of the second dimensionless vari-
able D* involves serious difficulties because, generally,
| fn | ≠ const (see Section 3) and an explicit expression
for the D(K) function cannot therefore be obtained.
This function can, however, be described approxi-
mately if the argument of the sine function in (2.4) is
small. We then have sin(πnd) ≈ πnd and [see (2.3)]

(5.8)

Clearly, the D(K) dependence at d ! 1 is the same as in
the d = 0 limit.

This approximation [and, therefore, asymptotic
equation (4.1)] is valid at [see (3.5) with β = 1]

(5.9)

K∗ K
KB

------
1 d+

2d2
------------K .= =

f n n f 0, f 0
2
π
---, β≈≈ 1.=

K  * K1
π4d2

16
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32
------KB 3KB.≈≈=
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On the other hand, if the inverse inequality holds
(πncd * 1, d ! 1, β = 2), sin(πnd) in (2.4) can be aver-
aged over n. As the sum in (3.2) satisfies the proportion-
ality relation

we can introduce the new parameter

(5.10)

and set (d ! 1)

(5.11)

The averaging condition can also be written as

(5.12)

We then have

(5.13)

where the A1 value is taken from (4.1), and Kcr is the
intersection point between two asymptotic depen-
dences, (5.13) and (4.1). The position of this point is
not known, and it is not clear how it can be determined,
because, at d ! 1 (as distinguished from the case of d =
1/2 in Fig. 2), there is no diffusion region with β = 2. At
the same time, both K1 and K2 boundaries are fairly
close to KB. For this reason, the abscissa of the intersec-

f n πnd( )sin ,∝

S0 πnd( )sin〈 〉 0.76≈=

f 0
2

π2
-----

S0
2

d
-----, β≈ 2.=

K  & K2
π2d
8S0
-------- 

 
2

2.6d2 1.3KB K1.<≈≈ ≈

D K( ) A2K5, A2

A1

Kcr
2.5

---------,≈≈

10–16

10–5

D

K

10–12

10–4

1

10–4 10–3 10–2 10–1 1

10–8

Fig. 4. General picture of diffusion in model (2.2) at seven
bias parameter d values, d = 0.004, 0.008, 0.02, 0.3, 0.4, 0.5,
and 0.6 (from left to right). The number of trajectories 50–
250, computation time t0 = 2.5 × 106 iterations. The straight
line is the upper bound of diffusion rate (4.1); also see text
and Fig. 5.
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tion point between the two asymptotic dependences can
be assumed to be

(5.14)

In this approximation and taking into account (5.7) and
(5.13), the second dimensionless variable can be
selected in the form

(5.15)

Strictly, variables (5.7) and (5.15) are suitable only if
d ! 1, when simple asymptotic dependences (4.1) and
(5.13) can be used. The general similarity picture, how-
ever, persists to d ~ 1, but not for d  1.

The results of our numerical experiments for d ! 1
are shown in dimensionless variables in Fig. 5 together
with two asymptotic dependences (4.1) and (5.13). The
smooth curve, which can with difficulty be traced in the
dense system of points, corresponds to the purely
empirical universal boundary of the principal diffusion
region found by us,

(5.16)

which is written in the decimal logarithms of dimen-
sionless variables.

Kcr KB.≈

D∗ 1 d+

2d2
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  5/2

D.=

Dl
5
2
---Kl

0.4
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D1 = log(D*/A1)

K1 = logK*
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–2
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6

–0.5 0.5 1.0 1.5 2.0–1.0

Fig. 5. General picture of diffusion in model (2.2) for the
three smallest d parameter values, d = 0.004, 0.008, and
0.02, in dimensionless variables (5.7) and (5.15). The curve
is the empirical approximation of the principal boundary of
diffusion (5.16). The straight lines describe asymptotic
behaviors of diffusion without invariant curves: the solid
line corresponds to (4.1) with β = 1, and the dashed line, to
(5.13) with β = 2 in approximation (5.14).
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This equation contains dimensionless variables
(4.5) and (5.15), in which the suggestion of the equality
of the KB critical number and the KD boundary of the
principal diffusion region is implicit. Preliminary
experiments (see Figs. 3–5) confirm this suggestion to
high accuracy,

The interesting question of exact equality of these two
parameters, however, remains open.

In [9], only one region without invariant curves was
found (see above), and the suggestion was made that
the number of such regions grew infinitely as K  0.
Our results (Fig. 3) show that a set of such regions also
exists in the immediate vicinity of the principal diffu-
sion boundary. An important problem is the statistics of
such regions related to the distribution of diffusion rates
with respect to perturbation parameter K and, accord-
ingly, to its suppression by virtual invariant curves.

We performed a statistical treatment of the experi-
mental diffusion suppression coefficients Fex for N =
134 parameter K values in the interval 0.293 < K <
0.333 of width as small as ∆ ≈ 0.04 (see Fig. 3). An
effective method for obtaining a statistically significant
distribution P(Fex) for such poor statistics is the special
method for constructing an integral distribution with a
“floating” cell width (see [18] and the references
therein). This method is also called “rank-ordering sta-
tistics of extreme events.” This effective procedure was
for the first time suggested in 1949 and used in mathe-
matical linguistics [19]. It turns out that it suffices to
arrange all Fex(n), n = 1, 2, …, N values in decreasing
order, Fex(n + 1) < Fex(n). The sought distribution is
then given by the approximate equality

(5.17)

The distribution obtained in this simple way is shown in
Fig. 6. Its most interesting feature is an exceedingly
slow decrease in the probability of strong diffusion sup-
pression,

(5.18)

Here, the left boundary is related to the very narrow
interval of K values used in the calculations, ∆ ≈ 0.04.
The rapid decrease in probability P(Fex) at Fex > 3 × 105

is explained by the limited time of calculations (t0 = 4 ×
107). Indeed, as regular oscillations ∆p ~ K ≈ 0.3, the
minimum observed diffusion rate is given by

(5.19)
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which closely agrees with the experimental data shown
in Fig. 3. At smaller K values, this minimum decreases
even to D ≈ 10–17 at K ≈ 3 × 10–5, t0 = 4 × 108 (see
Fig. 4). Interestingly, at such a slow decrease in proba-
bility (5.18), both the mean Fex value and its variance
are determined by the Fmax value and diverge approxi-
mately proportionally to t0  ∞ [see (5.19)].

Small deviations of the empirical distribution shown
in Fig. 6 from law (5.18) are likely to be related to non-
uniformities of the Kn values used in the calculations.
This may easily be corrected, but will require consider-
able computation time or a substantial statistical reduc-
tion.

Empirical law (5.18) can, in particular, be used to
analyze enigmatic trajectory “jamming” observed in
old work [7], which still remains unexplained. This
phenomenon is also related to map (2.2) with d = 1/2,
but in a somewhat different normalization, as in [9]. In
the notation that we use, it corresponds to K = 0.29 <
1/3 and, therefore, it fortuitously falls into the region
with invariant curves. At a t0 = 3 × 106 time of compu-
tations, the minimum diffusion coefficient is Dmin ~ 3 ×
10–8, which corresponds to the minimum diffusion sup-
pression factor Fmin ~ 105 with a reasonable probability
P ≈ 36%.

Instead of separate Fex(n) values, we can take the Fm

values [here, the notation is simplified: Fm stands for
Fex(m)] for the centers of all m = 1, 2, …, M (M = 17)
discernible in the K = 0.293–0.333 selected interval of
diffusion regions (see table). The probability is then

1

10–2

n/N

Fex/105

5 × 10–1

2 × 10–1

10–1

10–3 10–1 100 101 102

Fig. 6. The first empirical results on the statistic of the Fex
factor (5.4) of diffusion suppression by virtual invariant
curves according to our numerical experiments shown in
Fig. 3 (d = 1/2). The slanted straight line corresponds to
integral power distribution (5.18). The total number of Fex
values is 134; 100 of them lie within the principal interval
Fex < 3 × 105 (see text).
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proportional to the normalized sum of the widths of
these regions dKm, which are found either empirically
from Fig. 3 (∆K in the table) or by recalculation accord-
ing to (5.5) from the empirical suppression factor
Fm value (δK in the table). The normalization is per-
formed with respect to the total width of the K interval
as dKm  dKm/∆, where ∆ = 0.04. In addition, it
should be taken into account that the normalized sum of
the widths of all M = 17 diffusion regions is S ≈ 0.664
for ∆K and S ≈ 0.468 for δK. In both cases, significant
loss of narrow regions with large F * 104 occurs (see
Fig. 7). We eventually obtain

(5.20)

The result of such a processing of the empirical data
summarized in the table is shown in Fig. 7 together with
the data from Fig. 6, which are plotted by a thick line
corresponding to (5.18). Agreement for such limited
statistics can be considered satisfactory. This especially
refers to the δK data (within the F & 104 limitation
introduced above). Note that outside this region, that is,
at F * 104, where the P(F) probability is almost con-
stant, we simultaneously observe a sharp increase in the
CF empirical correction (see Fig. 7).

Agreement is worse for ∆K, and we observe not
only spread of data but also a systematic although small
deviation. As previously, the empirical distribution
remains a power function (see the lowest slanted

P Fm( ) 1 S– Ki.d
i m=

M

∑+≈

10–2

P(Fex)

Fex/105

10–1

10–3 10–1 100 101

1

10

102

Fig. 7. The same as in Fig. 6 but over the width of 17 dis-
cernible diffusion regions (see table and text). Thick line
corresponds to the data from Fig. 6 (5.18), circles are inte-
gral probabilities (5.21) determined from the experimental
∆K width of diffusion regions, crosses are integral probabil-
ities for the δK width recalculated by (5.5), polygonal line
is the experimental CF correction to (5.6), and dashed hori-
zontal lines are the fractions of “lost” (indiscernible)
regions at large F * 104.
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straight line in Fig. 7) but with a somewhat different
exponent,

(5.21)

where the left boundary is determined by the minimum
F value in the studied K range. The reason for these dis-
crepancies is not known and requires further inquiries.
We suggest that the observed discrepancies are largely
caused by underestimation of the empirical width of the
∆K region, which increases as F grows. This in all prob-
ability occurs as a result of overlapping of neighboring
regions, which also increases with F. The difference
between empirical equations (5.18) and (5.21) amounts
to about 30% in the exponent and 20% in the probabil-
ity [within the range of the applicability of (5.21)],
which is not bad for preliminary results.

Note that diffusion rate fluctuations mentioned
above (not exceeding twofold rate changes) change
probability (5.18) by a factor of 20.15 ≈ 1.11; that is, by
as little as 11%.

6. CONCLUSION

Studies of a family of piecewise linear maps of types
(2.1) and (2.2) have a long history (e.g., see [7, 9, 11–
15, 17] and the references therein). In this work, we use
very simple models to study a comparatively new and
little-known but very complex phenomenon of fractal
diffusion under the action of virtual global invariant
curves and under the conditions of strong local chaos.

However, first, it would be useful to understand why
studies of such simplified constructions as piecewise
linear maps deserve attention. Let us return to work
[17], where a complex analytic function with 21 Fou-
rier harmonics was used to study the properties of such
a map, and a certain similarity between the dynamic
behaviors of this function and the map was observed.
We can therefore use the opposite approach and, for a
complex continuous analytic function, for instance, for
a function with sharp turns, seek a piecewise linear
function close to the analytic function and study the
corresponding map, which is much simpler. This
approach, we believe, offers much promise, but
requires special consideration.

Our studies show that, in the family of models (2.1),
(2.2), there always exists a comparatively wide (princi-
pal) region of “normal” diffusion, as in other smooth
systems without invariant curves. We were able to
obtain fairly simple and fairly accurate diffusion rate
estimates in this region (Sections 3 and 4), which were
of considerable help in analyzing the most important
empirical data on fractal diffusion in the region with
virtual invariant curves (Section 5).

Our studies were performed in the range of bias
parameter values 0 < d < 0.6 [with invariant curves at
K < KB, see (4.5)]. We found that the presence of a set
of invariant curves, although of measure zero, caused

P F( )
2.3

F0.20
----------, 64 F & 104,<≈
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strong diffusion suppression at K < KB, which prompted
us to suggest a new term, namely, “virtual invariant
curve.”

The case of d = 1/2 was studied most thoroughly.
For this case, we were able to obtain quantitative esti-
mates of diffusion suppression. Preliminary treatment
of empirical data allowed us to construct integral distri-
bution (5.18) for the probability of the Fex diffusion
suppression coefficient. The most interesting feature of
this distribution was an exceedingly slow decrease in
the probability of Fex, slow to the extent that the mean
Fex value diverged as the time of computations
increased (see Section 5). We also thoroughly studied a
series of narrow diffusion regions to the left of the prin-
cipal boundary (see table). This also allowed us to sub-
stantiate important result (5.18) by another method [see
(5.21)]. The reason for such unusual statistics of Fex
[and, therefore, of the rate of fractal diffusion Dmax in
(5.4)] is not known and requires further inquiries.

Studies of the D(K) dependences at different d val-
ues revealed obvious similarity of their behavior, which
was an indication that their universal description might
be possible. We were able to give such a description on
the additional assumption that d ! 1 and construct
empirical dependence (5.16) for the boundary of the
principal diffusion region in dimensionless variables.
This simple dependence fairly well described the char-
acteristic sharp transition from the chaotic region with-
out invariant curves with well-known regular diffusion
to an also chaotic region but with a dense system of
invariant curves of a new form with absolutely
unknown very irregular (fractal) diffusion.

On the whole, we consider this new phenomenon
fairly interesting and important; in our view, it deserves
further investigation.
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Abstract—A classical Brownian particle is considered in a periodic potential field with a rapidly oscillating
phase. The concept of effective potential is used for describing a slow averaged motion of a particle. It is shown
that there exists a certain region in which a particle performs a stationary random motion without appreciable
drift. By analogy with the ideal case, this region can be called an effective locking region. The situation
described is valid for stationary fluctuations of the phase of a potential function, provided that they have a suf-
ficiently small but finite correlation time. The study of the problem is reduced to the analysis of a stochastic
system with external noise whose spectral density is zero at zero frequency (“green” noise [1]). The analysis of
the first- and second-approximation equations of the averaging method exhibits the high stability of the locking
phenomenon. This result has been verified by the numerical solution of appropriate stochastic equations. In this
case, a predictor–corrector algorithm was used that allowed one to carry out a numerical simulation to a suffi-
ciently high degree of accuracy. The result of the simulation is in good agreement with the theoretical results.
The effective locking bandwidth calculated analytically by the averaging method actually coincides with the
value obtained by the simulation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of many nonlinear systems that
can be described by ordinary stochastic differential
equations usually involves the Markov approximation.
If external noises are Gaussian white noises, then the
problem is reduced to the Fokker–Planck diffusion
equation (see, for example, [2–6]). From the viewpoint
of statistical physics, this approach is quite justified
since the diffusion coefficients can be determined by
the well-known fluctuation–dissipation theorem [7].
For example, if we consider a Brownian particle, this
theorem provides a relation between the diffusion coef-
ficient and the coefficient of viscous friction, because
diffusion and viscosity are attributed to the same phe-
nomenon, the collision of a Brownian particle with a
large number of particles of the surrounding medium—
a statistical ensemble. Since the number of such parti-
cles is large and the time interval between collisions is
small, the noise affecting the Brownian motion can be
considered as Gaussian white noise with zero correla-
tion time. The study of the phenomena that occur
within physically small but finite time intervals is pri-
marily aimed at determining the intensity of the white
noise. In this approach, the particle trajectory is
described by a Wiener process [2, 3, 8, 9], the concept
that underlies stochastic calculus [10–12].

Suppose, however, that, in addition to weak white
noise associated with the interaction of the particle with
a statistical reservoir, it undergoes external noise that
does not contain a constant component in its spectrum.
For example, this may be a noisy acoustic or electro-
magnetic radiation transmitted through a finite aperture
of an antenna or a lens. Radiation with the wavelength
1063-7761/02/9501- $22.00 © 20166
greater than the size of the aperture will be cut out from
the spectrum of the external noise. Hence, the noise ζ(t)
that actually affects the particle has the spectral density
S(ω) equal to zero at zero frequency, i.e., S(0) = 0. On
the other hand, the diffusion coefficient D in the Fok-
ker–Planck equation is determined as the ratio of the
noise increment variance in a certain sufficiently small
time interval to the length of this interval. However, to
allow for the diffusion approximation, this interval
must be greater than the correlation time of noise
because otherwise one cannot apply the white noise
model. In this case, the diffusion coefficient is deter-
mined in terms of the noise correlation function ψ(t1 –
t2) = 〈ζ (t1)ζ(t2)〉 (everywhere below, we assume that
〈ζ〉  = 0) by the relation [2, 3]

(1)

This formula takes into account that, according to the
Wiener–Khinchin theorem, the functions ψ(τ) and S(ω)
are related through the Fourier transformation [3, 5]. It
follows from (1) that D = 0 if S(0) = 0. A good example
of noise with zero diffusion coefficient is given by
blackbody radiation. The correlation function for this
case is given in [5]. The condition D = 0 implies that,
under the effect of external noise with such spectral
density, the motion of a free (i.e., when potential forces
are neglected) Brownian particle is a stationary process,
rather than a process with uncorrelated increments,
whose variance grows by a diffusion law [5]. This fact
provides sufficient grounds for selecting random sta-
tionary processes with S(0) = 0 into a separate class. By

D ψ τ( ) τd
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∞
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analogy with optics, noise is often characterized by its
“color.” A classical example is white noise, where
S(ω) = const. When S(ω) ≠ const, the term “colored
noise” has recently found wide application [13–15]. A
simple and popular example of colored noise is the
Ornstein–Uhlenbeck process [12, 13, 15]. One often
considers harmonic (or quasi-monochromatic) noise
and broadband colored noise (see, for example, [16,
17]). Stationary noise with S(0) = 0 should also be
regarded as colored noise. However, now its spectral
density decreases at low frequencies, i.e., in the region
of red color. Therefore, we call such noise green noise.
In a number of our works [1, 18–23], as well as in [17,
24], it was shown that green noise causes a qualitative
change in the dynamics of a stochastic system. The
main subject of the present work is the study of trap-
ping a Brownian particle in a periodic potential with a
fluctuating phase. Below, we will show that this prob-
lem leads to green noise.

The main property of green noise is the existence of
considerable negative autocorrelation. Only in this
case, the integral of the correlation function may van-
ish. One should expect that such an aftereffect will
result in an appreciable stabilization of a stochastic sys-
tem. The system actually becomes quasi-stationary, and
a weak diffusion process is only possible due to the
nonlinearity of the system, when the zeroth harmonic
of noise is detected during nonlinear transformations of
the external green noise in the system itself. Accord-
ingly, in [1, 19, 20], this phenomenon was called a non-
linear diffusion.

From the fact that the diffusion coefficient (1) van-
ishes, one cannot draw a general conclusion that the
Markov approximation is inapplicable. In many cases,
we can apply a multidimensional nonstationary Fok-
ker–Planck equation; however, in this case, the number
of variables increases, and the solution of this equation
grows into a separate, quite serious, problem [4]. It was
shown in the above-listed works [1, 18–23] that it is
much easier to investigate the role of green noise by the
Krylov–Bogolyubov averaging method [25]. It is
important that this method allows one to consider the
role of non-Gaussian external noise virtually without
changing the scheme of calculation, which can hardly
be done by generalizing the Fokker–Planck equation.

Note that the averaging method is widely used in the
theory of nonlinear oscillations. As for stochastic oscil-
latory systems, this method is frequently applied to the
investigation of high-Q self-oscillatory devices. In this
case, a narrowband filter (an oscillatory circuit or a res-
onator) actually performs the time averaging of exter-
nal broadband noise. Apparently, this was done for the
first time in [26], where the averaging method was
applied to investigating the fluctuations of a tube oscil-
lator. Since the correlation time of the external noise
and the period of oscillations are small as compared
with the time constant of the filter, one can carry out the
averaging of the main equation over the period and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
obtain equations for slowly varying amplitude and
phase. The fluctuation sources in these equations are
represented by white noise with the spectral density
equal to that of the external noise at the oscillator fre-
quency (see also [2, 3]). Nevertheless, it is noteworthy
that, even in this case, the nonlinearity and the external
noise were assumed to be small (on the order of a small
parameter), so that a trivial (zeroth-order) approxima-
tion has the form of a simple harmonic oscillation. Such
an approach agrees with the Krylov–Bogolyubov the-
ory. In this relation, we note that a fundamental theorem
was proved in [27] on normal deviations from the aver-
aged system, which actually provides mathematical
grounds for the procedure of analytic calculations
described below. The only difference from the scheme
given in [27] lies in the fact that, as the zeroth approxi-
mation, we use a solution to the equation of motion of
a free particle under the action of additive external
noise. In this case, one does not need to assume that the
noise is small. However, if this noise is white, which is
frequently assumed, then the zeroth approximation,
obtained for the zero value of the small parameter, is a
diffusion process, i.e., will initially contain a certain
“slow” motion. At the same time, as we have already
mentioned, a simple harmonic oscillation in oscillation
theory, which can be interpreted, in a sense, as a station-
ary function, usually serves as an approximation
describing a “fast” motion. The characteristic time of
the fast motion is the period of these oscillations. This
contradiction is removed if we consider the effect of
green, rather than white, noise on a free system. Then,
there exist sufficient conditions under which the motion
of a free particle represents a stationary process [1, 23],
and this process can be used as the zeroth approxima-
tion. Obviously, the averaging in this case should be
carried out over time intervals greater than the correla-
tion time of the zeroth approximation thus obtained.

Note also that the linearization of the potential field
at a certain point is a convenient and frequently used
method to obtain a stationary diffusion approximation.
However, such an approach does not allow one to
describe the free motion of a system. An example is
given by an ordinary parabolic potential, when a parti-
cle cannot leave a certain closed region unless we intro-
duce the concept of absorbing walls, which always
looks somewhat artificial. On the other hand, if we
restrict ourselves to the first approximation of the aver-
aging method, which takes into account potential
forces, it suffices to know one- and two-dimensional
probability densities to obtain information on the non-
stationary motion of the system and thus to solve the
problem. The study of every subsequent approximation
requires the calculation of all the preceding approxima-
tions; however, as a rule, the asymptotic series of the
averaging method converge well under an appropriate
choice of the expansion parameter, and the first approx-
imation usually proves to be sufficient. Nevertheless,
we have to point out the basic drawback of the averag-
ing method: it does not give the distribution functions
SICS      Vol. 95      No. 1      2002
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of the variables of the system, but only their moments.
However, this fact is not essential for many applica-
tions.

2. MODEL

Below, we consider a one-dimensional motion of a
Brownian particle in a certain periodic potential V(y)
(Fig. 1) whose phase is perturbed by a stationary field
ξ(t, y) with zero mean 〈ξ〉  = 0, variance σ2, and the char-
acteristic wavelength much greater than the spatial
period l of the unperturbed potential. An example is
given by the effect of an acoustic field on a periodic
structure of a crystal or a semiconductor of sufficiently
small dimension. Choose l as the length scale and
assume that the coordinate y is dimensionless. Repre-
sent the potential function as V(y) = aU(y), where U(y)
is a dimensionless function defining the shape of the
potential and a is a certain amplitude. Then, the equa-
tion of motion of a particle in the laboratory system of
coordinates can be expressed as

(2)

where the dot denotes time differentiation, m is the
mass of the particle, k is the coefficient of viscous fric-
tion, and R = aF/l is a certain constant external force
acting on the particle (Fig. 1). As we have already men-
tioned above, we neglect weak white noise and apply a
long-wavelength approximation:

Assume that the function f(y) is bounded and periodic
with zero constant component. To analyze the motion
of the particle with respect to a fixed potential, we pass

mẏ̇ k ẏ+
α
l
---F

a
l
--- f y ξ+( ),+=

f y ξ+( )
∂U y ξ+( )

∂y
-----------------------–=

=  1 ∂ξ
∂y
------+ 

  ∂U s( )
∂s

--------------
s y ξ+=

– –
∂U s( )

∂s
--------------

s y ξ+=

.≈

V(y)

2a

R

x ξ(t)

0 y

l

Fig. 1. Brownian particle in a periodic potential with a fluc-
tuating phase.
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to the system of coordinates connected with this poten-
tial by the change of variables

(3)

Then, Eq. (2) is reduced to the equation of motion that
we used in [1, 20, 22]:

(4)

where ϑ  = m/k, ε = a/lk, and

(5)

is an external perturbation. The introduction of the
parameter ϑ  seems convenient because the case when
ϑ  = 0 corresponds to the simpler and widely used
model of an overdamped particle. Note that the form of
noise (5) is similar to the noise arising in the phase-
locking system of the second kind when there exists a
random stationary modulation of the phase of the exter-
nal signal [2, 20].

When ε = 0, Eq. (4) has a particular solution that
coincides with ξ(t) and, as we have already noted, rep-
resents a stationary process rather than a process with
uncorrelated increments, as would be the case should
the external noise ζ(t) be white. According to relation
(5), the spectral density S(ω) of the random force ζ(t) in
Eq. (4) is given by

(6)

and vanishes at zero frequency if the spectral density
G(ω) of the process ξ(t) grows no faster than ω2 as
ω  0. In other words, the external noise ζ(t)in this
case is green noise. It should be noted that we do not
consider the effect of the motion of the Brownian parti-
cle on the phase modulation itself of the periodic poten-
tial. Therefore, the green noise (5) is an external action
that is specified a priori and does not depend on the
state of the Brownian particle. For example, if we con-
sider a crystalline lattice in solids, this means that we
neglect the scattering of the Brownian particle by
phonons. This situation is quite analogous to the Möss-
bauer effect. In mechanics, we can consider an example
of a particle moving along a randomly vibrating sinu-
ous-shaped surface of a bed. In this case, we have to
assume that the mass of the bed is much greater than the
mass of the particle and that we can neglect the reaction
force exerted by the particle on the bed.

Henceforth, we use the parameter ε as a parameter
of asymptotic expansion. Therefore, as we noted in the
Introduction, the stationary process ξ(t) represents the
zeroth approximation of this theory. Note that, when
ϑ  ≠ 0 and ω  ∞, the spectral density (6) diverges,
which is due to the noninertial character of the frame of
reference in which Eq. (4) is written [22].

In the present paper, we carry out specific analytic
calculations for the case when the process ξ(t) is the

x y ξ .+=

ϑ ẋ̇ ẋ+ ε F f x( )+[ ] ζ t( ),+=

ζ ϑξ̇̇ ξ̇+=

S ω( ) ω2 ϑω( )2 1+[ ] G ω( )=
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Ornstein–Uhlenbeck process. We represent its spectral
density G and the correlation function Ψ as

(7)

Then, a complete system of initial equations can be
written as

(8)

where N(t) is white Gaussian noise with the correlation
function 〈N(t)N(t + τ)〉  = Dδ(τ). When ϑ  ≠ 0, the pres-
ence of the second-order derivative of the external noise
on the right-hand side of the first equation in (8) sub-
stantially complicates the application of the Fokker–
Planck equation (see [6]). However, the averaging
method allows one to analyze this problem by suffi-
ciently simple means.

3. AVERAGING METHOD

Let us return to Eq. (2) and rewrite it as

(9)

The main idea of the averaging method is the time aver-
aging of the right-hand side of this equation to extract a
“slow” motion. Depending on the type of problem,
there exist a variety of algorithms of the averaging
method (see, for example [25–30]). In our works [1,
18–23], we primarily proceeded from the algorithms
described in [27, 28], where the characteristic averag-
ing time indefinitely increases in the limit. However,
the substance of the method does not experience crucial
changes if one fixes T and decreases the correlation
time of the external noise. In both cases, it is essential
that the ergodicity [3, 5, 27] of the random function
f(y + ξ) is used for fixed y = c = const, |c | < ∞. This
property is the main approximation of the theory,
although it was shown in [27] that, in general, it is suf-
ficient that the function f(c + ξ) satisfies a strong mixing
condition.

Consider an auxiliary differential equation

(10)

which is called, as in [30], a comparison equation.
Here,  is a deterministic (not random) function, and
εq( ) = ε〈 f(  + ξ)〉  is a certain deterministic force that
is assumed to be a smooth function in what follows.
Then, it is convenient to define this force with the use
of the effective, or stochastic, potential

(11)

G ω( )
D
2π
------ 1
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-----------------,=
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D
2γ
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ξ̇ γξ– N t( ),+=

L̂y ϑ
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2

d

d
td

d+ 
  y t( ) ε F f y ξ+( )+[ ] .= =

L̂y ε F q y( )+[ ] ,=

y t( )
y y

Ueff y( ) U y ξ+( )〈 〉=
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by the conventional rule

The possibility of introducing an effective potential is
the essential factor in this theory.

The function  is called the averaged motion of
the system. It is important that, to determine this func-
tion, we applied the statistical averaging of the right-
hand side of Eq. (9) rather than the time averaging. The
accuracy of such a substitution depends on the actual
finite interval of the averaging time. In general, this
interval cannot be greater than the minimal nonzero
time Tmin of all characteristic times of transient pro-
cesses defined by the general solution to Eq. (10). Since
the random process f(c + ξ) is ergodic, for τ0 ! Tmin,
where τ0 is the correlation time of the process ξ(t), the
accuracy of the substitution of the averaging over an
ensemble for the time averaging is of order τ0/Tmin.
Hence, it is this ratio that serves as a measure of the
actual dimensionless small parameter µ ~ τ0/Tmin in this
theory. Often, this condition is denoted as follows. One
introduces a “slow” time t' = µt; then, the parameter µ
becomes a parameter of asymptotic expansions [5, 25].
However, to give a clearer physical interpretation of the
results, we do not introduce two times: “fast” and
“slow” [29]. In the problem considered here, the linear-
ized equation (4) with ζ = 0 and F = 0 near the stable
points entails a characteristic equation of the form
ϑλ 2 + λ ≈ –ε, whence we find that one has to take, as
Tmin, the lesser of the two times

(12)

To avoid a difficult question on the averaging time in
the case of oscillatory relaxation of the system, below
we assume that the inequality 4εϑ  & 1 holds (the case
of aperiodic relaxation).

Consider the difference v(t) = y(t) –  between
the exact solution to Eq. (9) and the averaged solution

 to Eq. (10). This difference satisfies the equation

(13)

The right-hand side of this equation can be represented
as the Taylor series in powers of v ; thus we obtain an
equation for successive approximations. Therefore, it is
convenient to specify the initial condition for v(t) as
v (t0) = 0. Then, we obtain x(t0) = x0 + ξ(t0), where x0 is
a certain prescribed nonrandom variable. Moreover, if
we set  = x0, then the set of such initial conditions
actually implies that, when t < t0, the potential field is
as if switched off, and the motion of a free Brownian
particle in the reference frame connected with the
potential is described by the random process x(t) = x0 +
ξ(t).

q y( )
∂Ueff y( )

∂y
-------------------.–=

y t( )

T1 2, 2ϑ / 1 1 4εϑ–±( ).∝

y t( )

y t( )

L̂v ε f y v ξ+ +( ) f y ξ+( )〈 〉–[ ] .=

y t0( )
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Taking into account (3), we represent the required
function x(t) as

where  =  + 〈v 〉  describes the slow component of
motion, while u = v  – 〈v 〉  together with ξ describes the
fast component. For t ≥ t0, we represent the function
v (t) as the power series

(14)

Then, with regard to the Taylor expansion, Eq. (13) is
rewritten as

Substituting here (14) and collecting the terms of the
same order in ε, we can obtain the equations of further
approximations.

In particular, in the first approximation (m = 1), we
have

(15)

We can see that 〈v 1〉  = 0. Hence, v 1 ≡ u1, and a correc-
tion for the averaged motion is equal to zero. The fast
motion u1(t) is described by the equation

(16)

In an important case when y0 = x0 = const is a stable
point of Eq. (10), one may not consider transient pro-
cesses defined by this equation, and the process f(y0 +
ξ) will be stationary. In this case, Eq. (16) describes the
above-described nonlinear diffusion if t – t0 @ τ0 and
the spectral density S1(ω) of the process on the right-
hand side satisfies the condition S1(0) ≠ 0. By analogy
with relation (1), the coefficient of this diffusion can be
represented as

(17)

where Ψ1(τ) is the correlation function of the random
process f(y0 + ξ). It is important that the diffusion time
1/Λ actually determines a time interval within which
the use of the first-order approximation is most effec-
tive. If the time t – t0 exceeds 1/Λ, then the correction
due to the nonlinear diffusion is of order one, and one
should consider higher order approximations.
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The equations of the second- and third-order
approximations (m = 2, 3) are expressed as

(18)

where the prime denotes a partial derivative with
respect to . Hence, the corrections 〈v 2〉  and 〈v 3〉  for
the slow motion are generally different from zero.
However, a specific calculation of these and higher
order corrections depends on the form of the nonlinear
function f(y) and is usually complicated enough (see
below).

4. HARMONIC POTENTIAL

Below, as an example of application of the theory
presented, we consider the harmonic potential U(x) =
−cosx. In this case, Eq. (4) is rewritten as

Equations of this type are frequently used to describe
synchronization systems in the theory of oscillations
[2], the theory of superconductivity (the Josephson
effect [31]), etc. Indeed, when |F | ≤ 1 and there is no
noise (ζ = 0), a Brownian particle will be fixed at one of
the stable points xn = 2πn + . This phenomenon
is called locking, or synchronization (when dealing, for
example, with the phases of a signal and of an oscillator
in phase-locking systems or with the phases of the wave
functions of Cooper pairs on different sides of the
Josephson junction). The region |F | ≤ 1 is called the
locking (or synchronization) region. If ϑ  = 0, one can
easily find out that the time-average velocity of a parti-
cle outside the locking region is expressed as  =

 [2, 31].

Since 〈ξ〉  = 0, in the first-order approximation of the
theory, the slow motion  of a particle coincides with
the averaged motion  =  + o(ε) in the laboratory
frame of reference and is described by the comparison
equation (10):

(19)

Hereupon, we assume that the noise ξ(t) is an Ornstein–
Uhlenbeck process. Therefore, the effective potential
(11) has the form [3]

where, according to (7),

(20)
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Earlier [1], we called this quantity the effective locking
half-bandwidth of the averaged motion of a Brownian
particle. As we stressed in [1], the dependence of the
effective locking region on the variance of the noise ξ(t)
is determined by the probability distribution density for
this noise. In particular, in [1], we investigated the case
of a uniform density of distribution.

Henceforth, we do not consider the properties of
nonlinear diffusion, which we studied in detail in our
earlier works [1, 20, 21, 23]. We only mention the fol-
lowing fact that is essential from the viewpoint of the
physical picture: irrespective of the intensity (variance)
of noise ξ(t), the diffusion coefficient (17) is bounded
and even begins to decrease as the latter increases. This
is associated with the fact that, as the intensity of noise
ξ(t) increases, the effect of the nonlinearity of the sys-
tem becomes weaker, and the motion of a Brownian
particle tends to a stationary process ξ(t) because one
should get such a stationary motion of a free particle in
the limit. Such a behavior of the diffusion coefficient is
quite contrary to the case of white noise, when a
decrease in the role of the nonlinearity leads to the sit-
uation where the motion of a particle tends to a nonsta-
tionary process with uncorrelated increments.

Let us dwell on the question of what the order is of
the contribution of the second-order approximation to
the slow motion. To simplify the calculations, consider
the case of an overdamped particle (ϑ  = 0). Let  = y0 =
const be a certain stable point of the comparison equa-
tion (10) in which

Then, according to (15) and (18), the equations of the
first- and second-order approximation are given by

(21)

(22)

Using a formula similar to (20) but for the sum or the
difference of two Gaussian quantities c1 + ξ1 and c2 +
ξ2, where c1 and c2 are arbitrary numbers, ξ1 = ξ(t), and
ξ2 = ξ(t + τ), we can obtain the following expression
[3]:

y

q y0( ) y0 ξ+( )sin〈 〉– Ωeff y0.sin–= =

v̇ 1 t( ) f y ξ+( ) f y ξ+( )〈 〉–=

=  – y0 ξ+( )sin y0 ξ+( )sin〈 〉 ,+

v̇ 2
d f y ξ+( )

dy
----------------------v 1 y0 ξ+( )v 1.cos–= =

c1 c2 ξ1 ξ2±+±( )cos〈 〉

=  Re i c1 c2±( ) 1
2
--- ξ1 ξ2±( )2〈 〉–expexp

 
 
 

=  c1 c2±( ) σ2 ξ1ξ2〈 〉±( )–[ ] ,expcos
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whence we obtain

(23)

Here, Ψ(τ) = 〈ξ 1ξ2〉  = 〈ξ (t)ξ(t + τ)〉  is the correlation
function of the process ξ(t). Let us integrate Eq. (21)
from zero to t and substitute the result obtained into
Eq. (22). Carrying out the statistical averaging of the
latter equation and applying formula (23), we obtain
the following equation for the second-order correction
〈v 2〉  for the averaged motion:

In the case of the Ornstein–Uhlenbeck process, the
integral on the right-hand side does not exceed the
number

(24)

where γ0 ≈ 0.577 is the Euler constant and E1(z) is an
integral exponential function [32]. The analysis of the
growth rate of the correction 〈v 2〉  for t @ τ0, where τ0 =
1/γ is the correlation time of the process ξ(t), shows that
this rate is proportional to τ0σ2 for a small variance
(σ2 ! 1), whereas, for a large variance (σ2 @ 1), it
decreases at least as t0exp(–σ2). This growth attains its
maximum at σ2 ≈ 0.82 and has an absolute value of
about 0.15τ0sin(2y0). This result shows that, for τ0 ! 1,
the first-order approximation of the theory provides a
sufficiently accurate description of the particle motion.
This fact is also confirmed by the numerical experiment
described in the next section.

5. NUMERICAL SIMULATION

Apparently, the results we obtained in [1] were first
confirmed in [33], where the author carried out a
numerical experiment on the basis of the Heun scheme.
Later on, in [23], we presented the result of a numerical
experiment based on the predictor–corrector algorithm
[34], which actually confirmed the existence of the
effective locking region of a particle in a periodic
potential with a deterministic phase. In both cases, the
motion of an overdamped Brownian particle (ϑ  = 0)

c1 ξ t( )+[ ]sin c2 ξ t τ–( )+[ ]sin〈 〉

=  
1
2
--- c1 c2–( ) σ2 Ψ τ( )–[ ]–{ }expcos

–
1
2
--- c1 c2+( ) σ2 Ψ τ( )+[ ]–{ } .expcos

v̇ 2〈 〉 1
2
--- σ2–( )exp 2y0( )sin–=

× 1 Ψ τ( )–( )exp–[ ] τd

0

t

∫ 
 
 

.

1 σ2 γτ–( )exp–[ ]exp–{ } τd
0

∞

∫

=  
γ0 2 σ E1 σ2( )+ln+

γ
---------------------------------------------,
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was considered under the action of external green noise
defined as the time derivative of the Ornstein–Uhlen-
beck process.

To verify the theoretical results presented above in
the case of a periodic potential with a fluctuating phase,
we numerically integrated the stochastic system of
equations (8). As in [23], we applied the predictor–cor-
rector algorithm of order O(h3/2), where h is the time
step of integration [34]. Time t in the calculations was
measured in the units of 1/ε. We calculated the time-
averaged velocity of a particle  = (xN – x1)/Nh as
a function of the external force F, where N is the num-
ber of steps. In the theory of synchronization, this func-
tion describes the mean difference between the fre-
quencies of a signal and the voltage-controlled oscilla-
tor of a phase-locked system under the variation of the
initial detuning between them [2]; in the theory of the
Josephson effect, it describes the averaged current–
voltage characteristic of the Josephson junction [31].

When ϑ  = 0, the algorithm has the form

where Yi and Zi are two random normal independent
numbers with the unit variance and g2 = D. The corre-
lation time of noise was equal to τ0 = 1/γ = 0.1; i.e., the
actual small parameter of the system was µ  ~ ετ0 = 0.1.

ẋ〈 〉〈 〉

xi 1+ xi gYih
1/2 F xi γξi–sin–( )h+ +=

– γ xicos+( )gZih
3/2,

ξ i 1+ ξ i gYih
1/2 γξih– γgZih

3/2,–+=

0.5

0 0.5

1

F

1.0

1.5

2.0

1.51.0 2.0

2 3

4

〈〈 x〉〉
.

Ωeff ≈ 0.905

Fig. 2. The result of numerical calculation of the time-aver-
aged velocity of an overdamped particle in the frame of ref-
erence connected with the potential curve as a function of
an external constant force.
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Below, we present the results of numerical calculations
for N = 2 × 107, h = 0.0025, and D = 4. The dots on
curve 1 in Fig. 2 represent the results of a numerical
experiment for the case of green noise. Curve 1 itself
represents a theoretical result given by Eq. (19) with the
effective locking bandwidth defined by (20), i.e.,  = 0

for |F | ≤ Ωeff and  = . We can see that this
theoretical result is in a good agreement with the result
of the numerical experiment. Curve 2 corresponds to
the case of white noise (γ =0) and to the same sequence
of numbers Yi and Zi. The dashed curve 3 represents the
ideal case when there is no noise (Ωeff ≡ 1). Finally, the
dashed curve 4 corresponds to the absence of nonlin-
earity. We can see that the green noise significantly sta-
bilizes the system in the region of |F | & Ωeff.

In the case of ϑ  ≠ 0, the algorithm becomes some-
what complicated:

where z =  and Γ = 1/ϑ . Figure 3 represents the results
of calculations by this algorithm. Curves 1 and 2 virtu-
ally coincide; the parameters for these curves are cho-
sen so that Ωeff has the same value equal to 0.875, while
the small parameter defined by (12) is µ ~ τ0/T1 ≈ 0.2.
In the case of curve 3, the parameters of the numerical

ẋ〈 〉

ẋ〈 〉 F2 Ωeff
2–

xi 1+ xi gYih
1/2 y1 γξi–( )h γgZih

3/2,–+ +=

zi 1+ zi Γ –zi F xisin–+( )h ΓgZih
3/2 xi,cos–+=

ξ i 1+ ξ i gYih
1/2 γξih– γgZih

3/2,–+=

ẋ

0.5

0 0.5

1

Ωeff ≈ 0.875

1.0

1.5

1.51.0

2
3

〈〈 x〉〉
.

F

Fig. 3. The result of the numerical calculation of the time-
averaged velocity of a particle with regard to the finiteness
of its mass for the following values of the parameters: (1) τ0 =
0.05, ϑ ≈ 0.17, and D ≈ 10.7; (2) τ0 = 0.1, ϑ = 0.25, and D ≈ 5.34;
and (3) τ0 = 0.1, ϑ  = 0.5, and D ≈ 5.34.
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experiment go beyond the region where the relaxation
is aperiodic (4ϑ  & 1); this fact has an immediate effect
on the behavior of the curve: it is steeper than the first
two curves.

All curves in Figs. 2 and 3 clearly display the effec-
tive locking region; the half-bandwidth of this region
coincides with that obtained analytically. This fact sug-
gests that the numerical simulation of the motion of a
particle in a fluctuating potential fully confirms the the-
ory based on the averaging method and the concept of
the effective potential. Moreover, we can assert that, in
the case of green noise, the concept of the locking, or
synchronization, region in various stochastic systems
virtually preserves its classical value.

6. CONCLUSION

The physical picture of the motion of a Brownian
particle considered above can be explained as follows.
Suppose that a particle is at a stable point x0 of the peri-
odic potential at the initial moment t0. A random sta-
tionary displacement ξ(t) of this potential curve with
respect to the laboratory frame of reference will also
result in a stationary random motion x(t) + ξ(t) of the
particle in the frame of reference of the potential. Due
to the weakness of the nonlinear diffusion, such a
motion of the particle will last for a long period of time.
However, if the point x0 is close to a certain value where
the position of the particle is lower than the nearest
maximum of the potential (barrier) by about Ωeff, then
the probability of overcoming this barrier due to the
fluctuations of the random stationary motion of the par-
ticle becomes significant. Then, the particle will “fall
over” the maximum and, in general, may leave the lock-
ing region. It is at this moment when the property of
negative aftereffect of green noise plays an important
role, because it can change the scenario and play the
opposite role: make the particle return to the locking

–
F

y 
– 

si
n(

y 
+

 ξ
)

A

t0 < t1 < t2

yb(t1) yb(t2) yb(t0) yb

Fig. 4. The process of locking a Brownian particle near the
stable point A under fluctuations of the phase of the poten-
tial. The cross denotes the position of the potential barrier at
different moments of time.
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region even if it has passed the barrier for a moment.
From the standpoint of the problem considered in this
paper, this situation looks as follows. Suppose that, at a
moment t1 > t0, the particle finds itself behind the bar-
rier. However, by inertia, it may not leave the locking
region if the fluctuation of the barrier quickly takes it
back at a moment t2 > t1. This process is illustrated in
Fig. 4, where yb is the coordinate of the barrier in the
laboratory frame of reference. If we assume that the
noise ξ(t) is white, then the increments of the particle
coordinate with respect to the potential curve are inde-
pendent; the displacements of the potential curve are
accumulated according to a diffusion law; and the par-
ticle overcomes the barrier, going beyond the locking
region virtually immediately after its coordinate
reaches this maximum.

In conclusion, note that we investigated the effect of
green noise on stochastic systems through an example
of a Brownian motion in a randomly perturbed poten-
tial field. We obtained good agreement between the the-
ory and a numerical experiment. The results obtained
here and our works cited above are of a sufficiently gen-
eral character and can be applied to the calculation of
many radar and synchronization systems, laser sys-
tems, and systems of solid state physics, as well as the
systems of other fields of science and technology where
an important role is played by green-noise-type random
processes.
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Abstract—The problem of transition of a noisy dynamical system to a periodic oscillatory regime through a
zone of chaos is considered. Using the noisy logistics map as an example, domains of attraction of energetically
equivalent regimes of period three are found for various transition rates and various noise levels. The fine struc-
ture of the domains of attraction under the condition of fast transitions is revealed. It is discovered that the set-
tling time of the stable cycle of period three heavily depends on the initial conditions, i.e., on the structure of
the domains of attraction. The critical transition rate that separates the region of the probabilistic symmetry of
final states from the region of the dynamic behavior of trajectories is estimated. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Dynamical systems that can reside in one of several
energetically equivalent stable states or regimes hold a
particular place among all nonlinear systems. For
example, this class includes systems that undergo bifur-
cations of the spontaneous symmetry breaking [1],
those that admit period-doubling bifurcations [2], and
degenerate parametric systems [3]. Stable oscillations
in such systems differ in the phase shift ∆ϕ = 2π/M,
where M is the degeneracy of multiplicity. Similar
properties are characteristic of polarizationally degen-
erate laser systems [4]. In chemistry, isomer molecules
are analogs of systems with several energetically equiv-
alent states [5, 6].

A specific feature of bifurcation transitions in sys-
tems described above are the probabilistic symmetry of
final states. This is directly related to the effect of noise
acting on the system at the moment of the bifurcation
transition. If there are M equiprobable regimes, the
probability of the occurrence of each of them is 1/M. At
M = 2, each of two stable states occurs with the proba-
bility 1/2.

The experimentally observed equiprobable realiza-
tion of energetically equivalent states contradicts the
following fact known from the theory of dynamical sys-
tems: by the Cauchy theorem, trajectories of the system
are uniquely determined by the initial conditions [7, 8].
1063-7761/02/9501- $22.00 © 20175
This contradiction between equal probability of final
states in noisy bifurcation systems and their nonequiv-
alence in the absence of noise is known as the bifurca-
tion paradox [9]. A solution to this paradox in the par-
ticular case of the period-doubling bifurcation for a
one-dimensional map was obtained in [10, 11]. It was
shown in those papers that, changing the relationship

between the noise level  and the rate of variation, s =
dr/dt, of the bifurcation parameter r, one can trace a
continuous transition from the case of the probabilistic
symmetry, which is characteristic of slow transitions in
noisy systems, to the strong violation of the probabilis-
tic symmetry, which is observed under fast transitions
and in the case of low noise.

It was shown in [10, 11] that the critical noise level

, which divides the plane noise level –transi-
tion rate s into the regions of the probabilistic symmetry
and asymmetry of dynamically predictable final states,
obeys the power law

(1)

where α takes values in the range from one through five
depending on the initial conditions. The results

obtained in [10, 11] for moderate values of  and s
were extended to arbitrary values in [12]. Later, the
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phenomenon of the probabilistic symmetry breaking
was studied experimentally for a specific radiophysical
system [13].

For other physical systems, including chemical
reactions resulting in the emergence of right and left
isomers, the bifurcation paradox has not received a sat-
isfactory explanation yet [5, 6].

In this paper, we consider the conditions of the prob-
abilistic symmetry breaking in a dynamical system that
passes through a zone of chaos and settles itself in a
regime of periodic oscillations. We consider the system
governed by the logistics map, which admits the pas-
sage to an oscillatory regime of period three through a
zone of chaos. The statement of the problem about the
passage of a trajectory through the zone of chaos is pre-
sented in Section 2. In the absence of noise, the basins
of attraction of the final periodic states are found in
Section 3; in the presence of noise, this problem is
solved in Section 4. The interpretation of results in
terms of linear perturbation theory is discussed in Sec-
tion 5, where the boundary between the regions of vio-
lation and validity of the probabilistic symmetry is
approximately found. Due to an exponential rate of
growth of fluctuations in the chaotic regime, this
boundary is shifted to lower values of the noise level

 compared to the power law (1).

2. STATEMENT OF THE PROBLEM

The simplest model of a dynamical system that can
pass through a zone of chaos to periodic closed trajec-
tories is the logistics map

ση
2

r0

0

III

rc1

rc2

r∞

ρ1

rf

ρ2

N

II

I

n x

r

Fig. 1. The linear model of changing the control parameter
rn from the initial value r0 to the final value rf in N iteration
steps. The bifurcation diagram is shown on the right, where
the transparency window in the neighborhood of rf is
clearly seen (interval I corresponds to the cascade of period-
doubling bifurcations, interval II corresponds to the zone of
chaos, and interval III is the domain of stable period oscil-
lations).
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(2)

where ηn is the fluctuation and rn is the controlling
parameter, which depends on the discrete time n. In
contrast to studies [9–13], in which only processes in
the neighborhood of the first period-doubling bifurca-
tion were analyzed (r ≈ rc1 = 3), here we considerably
extend the range of variation of r. More precisely, we
assume that r linearly varies from the initial value r0 =
2.84 (r0 < rc1) up to the final value rf, which falls in the
region ρ1 = 3.829 < rf < ρ2 = 3.845 of periodic oscilla-
tions (transparency window) of period three (Fig. 1).
Starting from the value r0, the system first goes through
a series of period-doubling bifurcations rc1, rc2, …,
which extends up to the critical value r∞ = 3.659; then,
it crosses the zone of chaos; and finally falls into the
periodicity window (ρ1, ρ2). For the numerical simula-
tion, we used r0 = 2.84 and rf = 3.84. After the control
parameter reaches the final value r = rf in N steps, the
system performs a sufficiently large number of steps to
complete the transient process of settling in one of the
three possible stable oscillatory regimes of period
three.

The time of transition from the initial state r = r0 to
the final state r = rf can be characterized both by the
derivative

(3)

and by the number of steps ∆n = N required to go
through the interval ∆r = rf – r0. According to (3), N is
related to s by the equation N = (rf – r0)/s.

Thus, we assume that the system begins its motion
from the initial state x0 in the interval (0, 1); undergoes
a cascade of period-doubling bifurcations; crosses the
zone of chaos; and falls into the domain of attraction of
one of the three periodic regimes of period three, which
correspond to the closed trajectory shown in Fig. 2.

We shall refer to the sequences

(4)

as regimes (states) 1, 2, and 3, respectively. They differ
from each other in the initial “phase,” i.e., in the initial
value X1, X2, or X3 on the closed trajectory.

3. BASINS OF ATTRACTION OF PERIODIC 
REGIMES IN THE ABSENCE OF NOISE

The determination of attraction basins of final

regimes , , and  is reduced to finding the set

of initial values  (i = 1, 2, 3) that ultimately lead to
regimes 1, 2, and 3, respectively. The latter problem

xn 1+ F xn( ) ηn+ rnxn 1 xn–( ) ηn,+= =

s
dr
dn
------ ∆r
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-------≈

r f r0–
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defies analytical solution, and we had to use numerical
simulation. The simulation results in the absence of
noise are presented in Fig. 3, where the probability of
settling in each of the three regimes is plotted against
the initial conditions. The change from r0 to rf takes
20 steps, and then the system is allowed to complete the
transient process, which takes up to 1000 additional
iterations. The computations were carried out using the
step ∆x0 = 10–6.

The probabilities of settling in regimes 1, 2, and 3
are shown in Fig. 3. The calculations showed that there
are wide stable domains on the axis of initial values
from which the system surely goes into one of the
regimes 1, 2, or 3. These wide attraction domains are
intermittent with a series of short intervals of initial val-
ues of length 10–6 or less in which very small variations
of x0 result in the change of the final state. These series
of short intervals will be referred to as riddle basins. To
our knowledge, such a high sensibility to the initial val-
ues within riddle basins has not been discussed in the
literature devoted to dynamic bifurcations. As the num-
ber of steps N increases, i.e., as the rate (s) of changing
the parameter r decreases, the structure of attraction
basins becomes finer.

Eventually, the basins of attraction acquire a much
finer structure than in the case of the period-doubling
bifurcation [10, 11].

The numerical simulation showed that the transient
time, i.e., the settling time of the stable cycle of period
three, depends heavily on the initial values. Figure 3d
shows the dependence of the number of iteration steps,
ntrans, required to complete the transient process on the
initial values. Within wide stable attraction basins, 75–
125 iterations are sufficient. Moreover, the wider the
basin, the less the transient time ntrans. At the boundaries
of basins, ntrans increases up to 225, and in the riddle
basins, it is as high as 325.

4. BASINS OF ATTRACTION 
IN THE PRESENCE OF NOISE

In this section, we take into account the effect of
fluctuations ηn. We assume that the mean value of ηn is
zero, 〈η n〉  = 0; the fluctuations ηm and ηn〉  at different

instances of time are independent, 〈η nηm〉  = δmn,
where δmn is the Kronecker delta; and η is uniformly
distributed on the interval (–γ, +γ):

In this case  and γ are related by the equation  =
γ2/3.

The inclusion of noise has two basic effects. The
first one is the blurring of the boundaries of attraction
basins, and the second effect is the equalizing of the
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probabilities of reaching the final regimes beginning
with a certain critical value Nc. Both these phenomena
were also observed in the period-doubling bifurcation
[9–11]; however, in the case under consideration, this
process is much faster due to the exponential growth of
fluctuations in the domain of developed chaos.

The intensity of noise required to equalize the prob-
abilities heavily depends on the initial values. Within
the basins of attraction, more intensive noise is required
than on their boundaries and in the riddle basins.

These trends are clearly seen in Fig. 4, where the
probabilities of settling in regimes 1, 2, and 3 are plot-
ted against the initial values in the presence of noise. In
Figs. 4a, 4b, and 4c, the noise with the variance ση =
7.0 × 10–4, 2.0 × 10–3, and 1.1 × 10–2 was used, respec-
tively. In the last case, the probabilities P1 = P2 = P3 are
effectively equal in the entire range of initial values;
thus, ση = 1.1 × 10–2 is the critical value for N =
20 steps.

5. INTERPRETATION OF RESULTS
ON THE BASIS OF THE LINEAR 

PERTURBATION THEORY

The specific features of the basins of attraction pre-
sented in Fig. 4 can be illustrated by a simple calcula-
tion based on perturbation theory. Assume that in the
absence of noise the system is described by the unper-
turbed map

(5)xn 1+
0( ) F xn

0( )( ).=

0.2

0 0.2

xn + 1

xn

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

X1 X2 X3

Fig. 2. The closed trajectory of period three corresponding
to the control parameter rf = 3.84, which belongs to the
interval from r = 3.829 to r = 3.845. The closed trajectory
corresponds to three periodic solutions, which differ in the
initial values X1, X2, or X3.
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According to the linear perturbation theory, a small

deviation xn from the unperturbed value , ξn = xn –

, obeys the equation

(6)

where

is dilatation factor at the point . The application of
Eq. (6) N times yields

(7)

At the stage of passing through the cascade of period-dou-
bling bifurcations, all factors ϕk are not greater than unity
in absolute value; then, the mean value 〈|ϕk|〉, which we
will denote by ν, does not exceed unity either:

(8)

In the domain of chaos (i.e., for r > r∞ = 3.659…),
the mean value of the dilatation factor µ ≡ 〈|ϕk |〉, which

xn
0( )

xn
0( )

ξn 1+ ϕnξn ηn, ξ0+ 0,= =

ϕn
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xn xn

0( )=

=
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Fig. 3. Probabilities of settling in regimes 1 (a), 2 (b), and
3 (c), at N = 20, and the number of steps ntrans (d) required
for the periodic regimes to settle as functions of the initial
value x0.
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is exponentially related to the Lyapunov exponent λ,
µ ≡ 〈|ϕk |〉 ~ eλ, is greater than unity. If we retain only the
dominating first term in (7), then we obtain the follow-

ing estimate for the mean squared perturbation  ≡

:

(9)

Here, N is the total number of steps, Ne is the effective
number of step in the zone of chaos, and N – Ne is the
effective number of steps within the cascade of period-

doubling bifurcations. The factor  in (8) is
responsible for the decrease in fluctuations within the
cascade of the period-doubling bifurcations, while the

factor  is responsible for the increase in fluctua-
tions in the domain of chaos.

The effective equalizing process of probabilities of
regimes 1, 2, and 3 begins when the standard deviation
σN + 1 becomes approximately equal to the characteris-
tic interval ∆X ≈ |Xi – Xj | between the sequential values
of x on the closed trajectory of period three:

(10)

This coarse estimate adequately describes the critical
number of steps Nc that leads to equalizing the proba-
bilities of final states at a given level of noise or, con-

versely, the critical value of the noise level  at a
given N.

The quantity Ne can be estimated as the fraction of
the total number of steps N falling within the domain of
the chaotic regime:

Then, it follows from (10) that, at the fixed noise level
ση,

(11)

whereas, at fixed N,

(12)

In the particular case χ = 1/2 (when the system is in the
chaotic state about half the time), these formulas take
the form

(13)
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This estimate is mainly qualitative. The numerical sim-
ulation showed that it agrees with the quantitative
results for N ∈  [20, 30].

Figure 4d presents the plot of (ση)c against x0 for
N = 20 (see formula (12)). ν was calculated by formula
(8) for all initial values x0 and r in the range from r0 =
2.84 to r∞ < 3.659; µ was similarly calculated for r∞ ≥
3.659, taking into account the fact that max∆X = X3 –
X1 = 0.81. It is seen from the plot that the critical values
of the noise heavily depend on the structure of the
attraction domains. The horizontal dashed lines in
Fig. 4d show the levels of noise corresponding to that
used while constructing the plots in Figs. 4a, 4b, and 4c,
respectively. The noise with ση = 7.0 × 10–4 (case a) is
sufficient for equalizing the probabilities in mixed
domains. The noise with ση = 2.0 × 10–3 (case b)
decreases the probability within the attraction domains
down to 50%, and for the noise with (ση)c = 1.1 × 10–2

(case c), the probabilities P1, P2, and P3 differ from 33%
by no more than 5%.

0
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Fig. 4. The gradual equalization of the probabilities of set-

tling in the states  (j),  (m), and  (d) with

increasing noise: (a) ση = 7.0 × 10–4, (b) ση = 2.0 × 10–3,

and (c) (ση)c = 1.1 × 10–2 (for N = 20). Figure (d) shows the
critical value of the noise standard deviation (ση)c calcu-
lated by formula (12) versus the initial value x0. The hori-
zontal dashed lines correspond to the noise used in the plots
(a), (b), and (c), respectively.
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xn
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The plot Nc(ση) is shown in Fig. 5. Every dot in the
plot corresponds to the maximum value of the noise
(ση)c for each N on the entire axis of the initial values;
this corresponds to the dashed line (c) in Fig. 4d. Gen-
erally, N in Fig. 5 are smaller than those corresponding
to the power law (1). This feature is the result of the fact
that the system crosses the zone of chaos. Estimates
show that formulas (11) and (12) satisfactorily agree
with the numerical results for N ∈  [20, 30]; for N < 20,
the calculated noise exceeds the one required for equal-
izing the probabilities; for N > 30, the calculated level
of noise is less than that obtained experimentally.

6. NOISE-DEPENDENT HYSTERESIS

It was shown in [14, 15] that dynamic bifurcations
are accompanied by the hysteresis phenomenon; more
precisely, in the process of bifurcation transitions with
changing parameters, the system delays in the unstable
state and goes to one of the three possible stable states
only after a while. This phenomenon was also observed
in the system under study. It manifested itself in a delay
of each period-doubling bifurcation and finally resulted
in a delay of the onset of the chaotic regime. The greater
the rate of the bifurcation transition, the greater the
delay time at every critical value. As a consequence, the
transparency windows are also shifted to greater values
of the control parameter r if the transition rate s is pos-
itive and, conversely, to smaller values of r if s is nega-
tive. The presence of noise in the system results in the

10
–9

Nc

lnση

20

30

40

50

–8 –7 –6 –5 –4 –3

Fig. 5. The results of numerical calculations (dots) of the
boundary Nc(ση) dividing the plane (N, ση) into domains
corresponding to the probability symmetry regime (N > Nc)
and the regime of the violated probability symmetry (N <
Nc) of periodic oscillations. The dashed line corresponds to
Nc obtained by formula (13).
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hysteresis breakdown. The critical level of noise
(Fig. 5) breaks the hysteresis almost completely and
equalizes the probabilities of the system settling in one
of the three possible states.

One can judge the bifurcation transition rate by the
shift of the transparency window, and the width of the
transparency window yields an estimate of the noise
level in the system. The hysteresis phenomenon can be
used to measure noise in chaotic systems with variable
parameters.

7. CONCLUSIONS

In this paper, using the logistics map as an example,
we investigated the transition of a noisy dynamical sys-
tem through the chaos to the oscillation regime of
period three.

It is shown that, under certain relations between the
external noise and the rate of the control parameter
variation, the dynamic transition through the chaos
domain can be predicted. The existence of attraction
domains of final states determined by the initial condi-
tions and the transition rate is established. It is found
that wide stable attraction domains are intermittent
with a series of short intervals of initial values of length
10–6 or less in which very small variations of the initial
state x0 result in the change of the final state.

Under the influence of noise or at small rates, the
attraction domains are blurred, which leads to the equaliz-
ing of probabilities along the axis of initial values. 

The boundary between the dynamic and stochastic
scenarios of the bifurcation transition on the critical
noise level–transition rate plane is found. It is shown
that this boundary is shifted to greater values of noise
than in the case of period-doubling bifurcations.

Analytical estimates are obtained for the critical

noise level  at which the probabilities of settling
in each of the states become equal for a given number
of steps N or, which is the same, for a given rate of vari-
ation of the control parameter. The analytical estimates
are in agreement with the results of numerical simula-
tion.

The possibility of measuring the level of noise in
nonlinear systems on the basis of the hysteresis phe-
nomenon of transparency windows is indicated.

ση
2( )c
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Abstract—The tagged photon events for the measurement of the e+e–  π+π– total cross section by the radi-
ative return method at DAΦNE is discussed. The effects caused by the not exactly head-on collision of beams
and by the QED radiative corrections are investigated. The essential part consists of the analysis of the event
selection rules that ensure the rejection of the 3-pion hadronic state and take the main properties of the multiple
purpose KLOE detector into account. The study of the non-head-on effect is performed in the Born approxima-
tion by integrating over the tagged photon angles, whereas the radiative corrections are calculated neglecting
this effect. Together with the quasireal electron approach, this allows us to derive analytical formulas for the
correction to the cross section of the initial-state radiative process. Some numerical calculations illustrate our
analytical results. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recent measurement of the muon anomalous
magnetic moment aµ = (g – 2)µ/2 performed in the
Brookhaven E861 experiment with electroweak preci-
sion [1] has boosted the interest in a renewed theoreti-
cal calculation of this quantity [2]. The reported new
world average has shown the discrepancy of 2.6 stan-
dard deviations with respect to the theoretical value
based on the Standard Model calculation [3], and this
may open a window into possible new physics beyond
the Standard Model. On the other hand, the conclusion
about a significant discrepancy between the reported
data and the Standard Model prediction may be some-
what premature.

Theoretical estimations of aµ include several contri-
butions involving the nonperturbative hadronic sector
of the Standard Model: vacuum polarization, light-by-
light scattering, and higher-order electroweak correc-
tions. Hadronic effects in the two-loop electroweak
contribution are small, of the order of the experimental
error, and the associated theoretical uncertainty can be
brought under safe control [4].

The situation with hadronic effects in the light-by-
light scattering radically changed in recent months
(after the E861 data were reported) due to works cited
in [5]. In these works, the authors used the description
of the π0γ*γ* transition formfactor based on a large-NC

expansion and short-distance properties of QCD to cal-
culate the pseudoscalar channel contribution (in the
γ*γ* system). The corresponding result disagrees by
only its overall sign with the latest previous calcula-
tions of two different groups [6, 7]. It is interesting to

¶This article was submitted by the authors in English.
1063-7761/02/9501- $22.00 © 20026
note that the result in [5] forced both these groups to
carefully check their programs, and they recently found
their own (different) sources of the wrong sign for the
pseudoscalar channel [8, 9].

The main ingredient of the theoretical prediction of
aµ, which is responsible for the bulk of the theoretical
error, is the contribution of the hadron vacuum polar-
ization. The problem is that it cannot be computed ana-
lytically because perturbative QCD loses its prediction
power at low and intermediate energies, where, on the
other hand, the corresponding effect is maximum. But
this contribution can be calculated from the data on the
total hadronic cross section σh for the process e+e– 
hadrons using a dispersion relation [10]. Because the
existing data about σh come from different sources and
do not always meet the required accuracy, they are sup-
plemented with a theoretical input. Therefore, different
estimations give different results, which either
strengthen the difference between theoretical and
experimental values of aµ or make it only marginal [11–
14].

The cross section σh also plays an important role in
the evolution of the running electromagnetic coupling
αQED from low to high energies. This means that the
interpretation of measurements at high-energy elec-
tron–positron and electron–proton colliders depends on
the precise knowledge of σh, with one percent accuracy
or even better.

The updated hadronic light-by-light contribution [5,
8, 9] decreases the discrepancy between the theory and
the experiment for aµ up to 1.5 standard deviations, and
the disagreement between the Standard Model and the
reported experimental value becomes not so sharp.
Nevertheless, when the full set of data at the BNL col-
002 MAIK “Nauka/Interperiodica”
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laboration is analyzed, the experimental error bars are
expected to decrease by the additional factor three at
least, and this calls for a new test of the Standard
Model. The high-precision data about σh will play the
key role in this test.

We note that the data recently derived in the direct
scanning of σh by the CMD-2 [15] and BES II [16] col-
laborations were included in a new analysis [17]. This
significantly reduces the error in the hadronic contribu-
tion to the shift of αQED but does not remove the dis-
crepancy in aµ. Therefore, there exists an eminent phys-
ical reason for new measurements to accumulate high-
precision data about σh at the total center-of-mass
frame energies below 1 GeV.

The old idea to use the initial-state radiative events
in the electron–positron annihilation process

(1)

for the scanning of the total hadronic cross section σh

has become quite attractive recently [18–22]. This radi-
ative return approach allows performing the scanning
measurements at the accelerators running at a fixed
energy, and this circumstance is the main advantage
compared to the traditional direct scanning. The reason
is that the most important physical parameters, the
luminosity and the beam energy, remain the same dur-
ing the entire scanning at fixed-energy colliders. They
must therefore be determined only once, which can be
done with a very high accuracy. The drawback is of
course a loss in the event number, and it is obvious that
only high-luminosity accelerators can be competitive
when the radiative return method is used.

It is a general opinion that the high-luminosity
DAΦNE machine operating in the Φ resonance region
with the multiple-purpose KLOE detector is the ideal
collider to scan σh(q2) with the center-of-mass energy

 varying from the threshold up to 1 GeV just by
radiative events. It is now well understood that, in this
energy region, the total hadronic cross section is mainly
fulfilled by the contribution of the ρ resonance. This in
turn implies that the dominant hadronic final state is
that of the charged pion pair π+π–, and the KLOE detec-
tor allows measuring both the photon energy deposited
in calorimeters and the 3-momenta of pions running
through the drift chamber [20, 23].

Such a wide range of experimental possibilities of
the KLOE detector can provide a realization of two
approaches to scanning the π+π– channel contribution
to σh(q2): with tagged photon events [19, 20, 22] and
without photon tagging [22, 24, 25]. The latter method
has some advantages because it allows including the
events with collinear initial-state radiative photons,
which leads to the increase in the cross section by the
energy logarithm enhancement factor [26].

On the other hand, the first data about the traditional
tagged photon scanning of σh(q2) at DAΦNE are

e– p1( ) e+ p2( ) γ k( ) hadrons q( )++

q2
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
reported [26] (we also note that large radiative event
rates were observed by the BaBar Collaboration [27]).
To extract σh(q2) at different squared dipion invariant
masses with one percent accuracy, one must precisely
analyze the initial-state radiative events and take the
final-state radiative events and the initial-state radiative
interference as a background. Moreover, the radiative
corrections must be calculated for all these contribu-
tions [21]. For a realistic experimental event selection,
this task can usually be solved by means of Monte
Carlo event generators. But for some ideal conditions,
analytical calculations may be performed with high
accuracy, and this is a very important test of the
required one percent accuracy produced by the Monte
Carlo generators.

The high-precision analysis of the initial-state radi-
ative events is the main attribute of the radiative return
method. The corresponding radiation corrections were
considered in a number of papers by both the Monte
Carlo generators [19, 22] and analytical calculations
[18, 22, 24]. In the present paper, we derive analytical
formulas for different contributions to the initial-state
radiative cross section including the first-order radia-
tive corrections. We use the same rules for the event
selection as given in [24]. These selection rules are
maximum draw near the experimental ones [20, 23]
except the dipion angular phase space, for which we
use the entire 4π opening angle. This is not the case
with the realistic measurements at DAΦNE because
there exists a so-called blind zone in the KLOE detector
with the opening angle about 15° along the electron and
positron beam directions. Any particle inside this blind
zone cannot be detected either by the KLOE calorime-
ters or by the KLOE drift chamber.

In Section 2, we briefly recall the selection rules
used here and analyze the Born cross section by numer-
ically integrating the sufficiently complicated analyti-
cal formulas given in [24], which take the non-head-on
beam collision into account. In Section 3, the contribu-
tions to radiative corrections due to the virtual and soft
photon emission are obtained by analytically integrat-
ing over the angular phase space of the photon that
deposits its energy in calorimeters. In Section 4, the
effect of an additional hard photon emission inside the
blind zone is investigated and the corresponding contri-
bution to radiative corrections is derived. To perform
the analytical calculation, we use the quasireal electron
approximation [28] for both the differential cross sec-
tion and the underlying kinematics. In Section 5, the
total radiative correction is derived and some numerical
estimates are given. The elimination of the auxiliary
infrared parameter is demonstrated and the dependence
of the radiative corrections to the initial-state radiative
cross section on the squared dipion invariant mass q2

and physical parameters defining the selection rules is
investigated. We briefly summarize our results in the
Conclusion. In the Appendices, we give some formulas
that are useful in our intermediate calculations.
SICS      Vol. 95      No. 1      2002
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2. SELECTION RULES AND THE INITIAL-STATE 
BORN RADIATIVE CROSS SECTION

As mentioned above, the multiple purpose KLOE
detector allows independently measuring the photon
energy with two calorimeters QCAL and EMCAL and
the 3-momenta of the charged pions with the drift
chamber. The selection rules that we consider here can
be formulated as follows: any event is included if only
one hard photon with the energy ω > ωm, ωm = 50 MeV,
hits the calorimeters and if the difference between the
lost energy Ω and the lost 3-momentum modulus |K|
does not exceed a small value ηE, η ! 1, where E is the
beam energy. The lost energy is defined as the differ-
ence between the total initial energy and the sum of the
charged pion energies, and the lost 3-momentum is
defined similarly.

The first rule implies that, in addition to one hard
photon, only soft photons that cannot be recorded by
the KLOE detector can hit the calorimeters. The radia-
tion of the additional hard photon is allowed inside the
blind zone. The second rule ensures the removal of the
3-pion hadronic state arising due to possible Φ 
π+π–π0 and ω  π+π–π0 decays. The neutral pion
quickly decays into two γ quanta; one of these has time
to light in the calorimeters, whereas the other can fly
away into the blind zone. It is easy to see that this rule
does not allow the lost invariant mass to be greater than
2E2η, and the 3-pion state is therefore forbidden if η <
0.035. Thus, the following event selection cuts are
imposed [20]:

(2)

The first inequality in (2) is important in calculating
the contribution caused by the emission of two hard
photons (one inside the calorimeters and the other in the
blind zone) because it only affects the phase space of
two hard photons. At the Born level (with only one pho-
ton inside the calorimeters), we must therefore take the
second restriction in (2) into account by introducing the
trivial Θ function. The differential distribution over the
dipion invariant mass can be written as [24]

(3)

where θ and ϕ(ω) are the polar and azimuthal angles
(energy) of the photon detected by the KLOE calorime-

ters. The approximation used here is valid if E2  @ m2,

Ω K– ηE, ω ωm,>≤
η 0.02, ωm 50 MeV.= =

dσB

dq2
---------

α
2π2
--------σ q2( )

S q2–( )d θdϕcos

4S 2E PΦ θ ϕcossin–( )2
------------------------------------------------------------=
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T1T2
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where 2θ0 is the opening angle of the blind zone and m
is the electron mass. The cross section σ(q2) of the pro-
cess e+e–  π+π– is expressed through the pion elec-
tromagnetic form factor Fπ(q2) as

where mπ is the pion mass. The invariants entering
Eq. (3) are given by

In writing these expressions, we took into account
that, at DAΦNE, the electron and positron beams exer-
cise not exactly a head-on collision at the interaction
point, but there exists a small crossing angle between
them that is equal to |PΦ|/E, where |PΦ| = 12.5 MeV.
Because of a nonzero crossing angle, the energy of the
tagged photon becomes dependent on its angular posi-
tion, which complicates the exact analytical calcula-
tions. Thus, the question arises as to the magnitude of
the corresponding effect. As shown in [24], there exist
three regions,

where

and the form of the initial-state radiative cross section
is different in each region. The analytical expressions
for the distribution over the dipion invariant mass is
simple in the first two regions, but it seems that only a
numerical integration with respect to the photon polar
angle is possible in the third region. We also note that,
in the limiting case as |PΦ|  0, only the first region
can occur with the obvious restriction

The results of our calculations of the Born cross sec-
tion are shown in Figs. 1 and 2. It follows from Fig. 1
that the contribution of the first region (D > 1) domi-
nates in a wide interval of the dipion invariant masses.
Within the approximation
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Fig. 1. The Born cross section  of the initial-state radiative process e+e–  γ + π+π– at different limiting angles

of the blind zone versus variable z. Figure 1a corresponds to the contribution of the region D > 1 defined by Eq. (4). The sum of
contributions of the regions 1 > D > s0 and s0 > D > –1 is shown in Fig. 1b (see [24], Eqs. (19)–(21), for the corresponding analytical
formulas). It depends on the minimum energy of the tagged photon ωm, which we choose as 50 MeV. θ0 = 5° (1), 10° (2), 15° (3).

dσ
dz
------/

α
2π
------σ q

2( )
the corresponding cross section can be written as [24]

(4)

where c0 = cosθ0, s0 = cosθ0, and the Θ function defines
the maximum possible value of q2.

The form of F0 and D in Eq. (4) is valid if all polar
angles between θ0 and π – θ0 are permitted for the
tagged photon. If large-angle photons radiated between
θl and π – θl are not recorded, we must write

(5)

where Fl can be derived from F0 by simply replacing θ0
with θl and

In Section 3, we consider this case with θl = 40° and call
it the modified EMCAL setup.
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To indicate the effect of nonzero PΦ in the first
region, we show in Fig. 2 the ratio

(6)

RΦ
F0 F z c0,( )–
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-----------------------------,=
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Fig. 2. The effect of a non-head-on collision of the electron
and positron beams at DAΦNE is shown for the contribu-
tion of the region D > 1 in terms of the ratio defined by
Eq. (6) at different θ0 = 5° (1), 10° (2), 15° (3). The approx-

imation 4E2(1 – c0) @ |PΦ|2 is used in calculating this ratio.
The quantity RΦ is given percent.
SICS      Vol. 95      No. 1      2002



30 KONCHATNIJ, MERENKOV
For the modified EMCAL setup, the corresponding
ratio is given by

(7)

As can be seen from Fig. 2, this effect does not exceed
five per mille at θ0 = 5° and decreases as the angle θ0
grows.

The contribution of the third region (sinθ0 > D > –1)
is negligible everywhere, and the second region (1 > D >
sinθ0) contributes only inside a very narrow interval of
the order of 2 × 10–3 near the maximum possible dipion
invariant mass squared (see Fig. 1b). We therefore con-
clude that, for restrictions (2) considered here, the
effect of non-head-on collisions on the event selection
at DAΦNE is about several per mille in the most impor-
tant ρ resonance region and is under control where it
cannot be neglected. In this region, the corresponding
cross section can therefore be given by Eq. (4) with
F(z, c0) instead of F0 with the required accuracy.

3. VIRTUAL AND SOFT CORRECTIONS

High-precision theoretical predictions are necessary
in order to reach the accuracy of one percent in the mea-
surement of the pion contribution to the hadronic cross
section at DAΦNE by radiative events. These predic-
tions must at least include the first-order radiative cor-
rections that account for the virtual and real soft photon
contribution in the overall phase space and an addi-
tional contribution due to a hard photon emission inside
the blind zone. In calculating radiative corrections, we
neglect PΦ at the very beginning and set s, t1, and t2
equal to S, T1, and T2 at PΦ = 0, respectively.

To calculate the virtual and soft corrections, we start
from the corresponding expression derived in [24]
(Eq. (30)), perform the trivial azimuthal angle integra-
tion, and write the result in the convenient form

(8)

where

RΦ
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The above expression for ρ contains three soft
parameters ∆, ∆1, and ∆2. The first restricts the soft pho-
ton energy inside the blind zone with the value ∆E. It is
auxiliary and cancels when the contribution caused by
the hard photon emission is added (see Section 5). The
parameters ∆1 and ∆2 are physical. They are defined by
the sensitivity ∆1E of the QCAL calorimeter that sur-
rounds the blind zone and covers polar angles of the
detected photon from θ0 to θ1 = 20° with respect to both
the electron and the positron beam directions (c1 =
cosθ1) and by the sensitivity ∆2E of the EMCAL calo-
rimeter that covers the photon angles between θ1 and
π – θ1. The case of a slightly modified geometry of
EMCAL (with the polar angles from θl = 40° to π – θl

not covered [20]) is considered in Appendix A. The
coefficients Tg and Tik on the right-hand side of Eq. (5)
are calculated as functions of the invariants s, t1, and t2
in [24] (see also [29, 22]).

Our aim is to analytically integrate differential dis-
tribution (8) with respect to the tagged photon polar
angle. The integration of the term containing ρ is trivial
and yields

(9)

To perform the remaining integrations, it is conve-
nient to represent the quantity T as

(10)
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where

The Spence function L1q has a nonzero imaginary part,
but we must take into account only its real part, in our
calculations

We also note that the coefficients Tg and Ti, k contain the

terms involving  and  [22, 24, 29], but these van-
ish in the quantity T.

Integrating the piece of cross section (5) that con-
tains the quantity T with respect to the tagged photon
polar angles, we obtain

(11)

where the function FT (z, cm) is given in Appendix A for
arbitrary values of the limiting angle θm. Here, we con-
sider the case where θm = θ0 and use the approximation
1 – c0 ! 1, which is sufficiently good for θ0 ≤ 10° (pre-
cisely this case is suitable for the blind zone of the
KLOE detector),

(12)

The total virtual and soft correction is the sum of (9)
and (11).
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For the modified form of the EMCAL calorimeter,
the expressions for ρ and F(z, c0) in Eq. (9) and FT(z,
c0) in Eq. (11) must be changed as

(13)

where the expression given in Appendix A must be used
for the function FT(z, cl) at cm = cl.

In calculating the virtual and soft corrections, we
neglected terms of the order ∆i, i = 1, 2 compared to
unity. This accuracy implies the same relation between
the tagged photon energy ω and the squared dipion
invariant mass q2 as in the Born approximation,

(14)

(provided that PΦ = 0), and it suffices to guarantee the
one percent precision.

4. HARD PHOTON EMISSION 
INSIDE THE BLIND ZONE

Selection rules (2) used here permit the radiation of
an additional invisible photon inside the blind zone. For
the events

(15)

one photon with the 4-momentum k2 hits the photon
detector and the other photon (with the 4-momentum
k1) is collinear and escapes it. It is obvious that relation
(14) between the tagged photon energy and the squared
dipion invariant mass is violated in this case.

To calculate the corresponding contribution into
radiative corrections analytically, we start with using
the quasireal electron approximation for both the form
of the cross section and the underlying kinematics.
Physically, this implies that we neglect terms of order

1 – c0 ≈ /2 and m2/E2  compared to unity. We recall

that /2 ≤ 0.02 for the KLOE detector. In accordance
with the quasireal electron approximation, the differen-
tial cross section of process (15) can be written in the
same form as for the inclusive (untagged photon) event
selection [25],

(16)
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where ω2(θ2) is the energy (the polar angle) of the
tagged photon and ω1 is the energy of the invisible col-
linear photon.

The factor (α/2π)P(x, L0)dx describes the radiation
probability of the collinear photon by the initial elec-
tron, the factor 2 accounts for the same contribution
caused by the initial positron collinear radiation, and
the rest is in fact the cross section of process (1) with
the reduced electron 4-momentum (p1  xp1) at PΦ = 0.

Our aim is now to derive the differential distribution
over the squared dipion invariant mass q2, and it is con-
venient to use the relation between q2 and c2 in order to
avoid the integration over c2 on the right-hand side of
Eq. (16). To disentangle the selection rules and obtain
the integration region, it is also useful to introduce the
total photon energy Ω = ω1 + ω2 instead of ω2,

(17)

Taking into account that, in terms of new variables,

(18)

we can rewrite Eq. (16) as

(19)

where

(20)

We note that although the term containing  in the
denominator can be neglected in the case of the inclu-
sive event selection [25], it is now important and even
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contributes to the cancellation of the auxiliary infrared
parameter ∆.

We now find the integration region for the variables
ω1 and Ω determined by restrictions (2) and by the ine-
qualities

(21)

limiting the possible angles for the tagged noncollinear
photon and the energies of the invisible collinear pho-
ton. Here, we do not require 1 – cm to be small, bearing
in mind a further application to the modified EMCAL
setup. The first restriction in (2) defines the maximum
value of Ω; the minimum value of Ω can be obtained
from relation (17) at ω1 = ∆E and c2 = cm,

(22)

The condition c2 > –cm implies that

(23)

Finally, the inequality c2 < cm can be formulated as
follows: if the values of Ω are such that

then

(24)

The consistent combination of the set of inequalities
(21)–(24) for ω1 and Ω defines the integration region. In
general, this region depends on the dipion invariant
mass through z; it is shown in Fig. 3, where we use the
notation

(25)

This region differs from the corresponding region for
the inclusive event selection [25].
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Fig. 3. The integration region for the contribution of the hard photon emission inside the blind zone in the regions z < zc (a), zc <
z < 1 – 2xm (b), and 1 – 2xm < z < 1 – xm (c). We neglect the contribution of the top piece in Fig. 3a, which is justified by numerical
control.
We note that, in the calculation, we controlled our
analytical integration by means of the numerical one.
This allowed us to conclude that, in the case where

the contribution of the top region in Fig. 3a is small, and
we excluded it from consideration. Although the
regions in Figs. 3b and 3c are different, the respective
contributions to cross section (19) have the same ana-
lytical form.

The list of the integrals that are required in both
cases, z < zc and z > zc, is given in Appendix B. Using
these integrals, we write the contribution of the addi-
tional hard photon emission inside the blind zone to the
radiative corrections as

(26)

If the tagged photon is detected in the angular region
π – θ0 > θ > θ0, the coefficients Gi (i = ∆, p, 1, 0) are
given by
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(29)

(30)

where we pass to the limit 1 – c0 ! 1 and take into
account that only the regions in Figs. 3b and 3c contrib-
ute in this limiting case.

To describe the contribution to radiative corrections
caused by the double hard photon emission with the
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tagged photon in the range π – θ0 > θ > π – θl, θl > θ >
θ0, which corresponds to the modified EMCAL setup,
we must evaluate the difference

(31)

We have

(32)

where the expressions for the functions  are given in
Appendix C.

In this case, there also exists an additional region
where the radiation of the hard photon at large angles
can contribute. It covers polar angles from θl up to π –
θl. We take only one piece of the corresponding contri-
bution into account (the one that is proportional to ln∆)
and write it as [24]

(33)

where  is defined by Eq. (5). The remaining
contribution is small because of restriction (2), and we
expect that it is parameterically equal to –α/2πl0 rela-
tive to the Born cross section.

5. THE TOTAL RADIATIVE CORRECTION

The total radiative correction to the cross section of
the initial-state radiation process (1) with the π+π– had-
ronic final sate is defined by the sum of the contribu-
tions caused by the virtual and real soft photon emis-
sion and by the radiation of the hard collinear photon
inside the blind zone of the KLOE detector. In calculat-
ing the radiative correction, we suppose that PΦ = 0,
because the corresponding effect due to the non-head-
on collision of beams cannot be greater than 10–3 at the
radiative correction level. It is easy to see that the aux-
iliary infrared cutoff parameter ∆ vanishes for both
forms of the EMCAL calorimeter. If π – θ0 > θ > θ0, it
enters this sum in the combination

(34)

where the expression inside the curly brackets vanishes
in the limiting case where 1 – c0 ! 1, which was used
in calculating G∆. We can therefore write the analytical
expression for the derived radiative correction as
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(35)

(36)

where dσB/dq2 is defined by Eq. (4) at PΦ = 0,  is ρ
without the terms containing ln∆, and the limit 1 – c0 !
1 must be taken for the functions F(z, c0) and FT(z, c0).

For the modified EMCAL calorimeter, the expres-
sion in the curly brackets in (34) is replaced by

(37)

where the terms in the square brackets correspond to
the contribution of the virtual and soft photon emission
and the remaining terms are caused by the large-angle
(larger than θl) and small-angle (smaller than θ0) hard
photon radiation.

The total radiative correction can then be written as

(38)

(39)

To identify trends in the behavior of the radiative
correction, we study its dependence on the physical
parameters that define event selection rules (2), namely
η and xm, and the dependence on the opening angle of
the blind zone θ0 and the respective sensitiveness ∆1
and ∆2 of the QCAL and EMCAL calorimeters.

The results for δRC given by Eq. (35) are shown in
Figs. 4 and 5. As was expected, the radiative correction
is large and negative because the positive contribution
caused by the real photon radiation cannot compensate
the negative one-loop correction. This effect intensifies
because the first inequality in (2) decreases the phase
space of the additional invisible real photon. The abso-
lute value of the radiative correction depends on z and
changes from 14% near the π+π– pair production
threshold to 25% at the maximum possible squared dip-
ion invariant mass. In the more interesting region of the
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Fig. 4. Trends in the z dependence of the quantity δRC defined by Eq. (35) under the variation of the physical parameters θ0 and xm:
(a) θ0 = 10°, xm = 0.098 (1); θ0 = 5°, xm = 0.098 (2); (b) θ0 = 7.5°, xm = 0.039 (1); θ0 = 7.5°, xm = 0.098 (2). All curves are calculated
at η = 0.02, ∆1 = 0.002, and ∆2 = 0.01.
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is 50 MeV (xm = 0.098) (a) θ0 = 7.5°, η = 0.02, ∆2 = 0.01, ∆1 = 0.002 (1), 0.01 (2); (b) θ0 = 7.5°, η = 0.03, ∆2 = 0.015, ∆1 = 0.002 (1),
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–0.26
ρ resonance (0.5 < z < 0.7), it amounts to about 14–
20%.

The main peculiarities in the behavior of the radia-
tive correction are related to the change of the positive
contribution caused by the radiation of an additional
invisible hard photon. If the limiting angle θ0 decreases,
the absolute value increases because the invisible pho-
ton angular phase space is then compressed. Con-
versely, the decrease in the minimal energy of the
tagged photon leads to an expansion of the energy
phase space of the invisible photon at a fixed value of Ω
(see Fig. 3) and, therefore, to a decrease of the absolute
value. A similar effect occurs as the parameter η grows.
But the total energy Ω of both the tagged and the invis-
ible photons then increases, and the absolute value
decreases as in the previous case.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The change in the parameters ∆1 and ∆2 affects the
energy phase space of an additional real invisible soft
photon inside the KLOE calorimeters. If these parame-
ters are increased, the corresponding phase space
expands and the absolute value decreases.

The total first-order radiative correction  for the
modified EMCAL setup is shown in Fig. 6. Near the
threshold, it is somewhat smaller than δRC in the abso-
lute value, but it grows more rapidly with the increase
in z.

Our calculations are restricted by considering only
the first-order correction to the Born cross section. But
a large absolute value requires evaluating the effects of
higher order QED corrections to clarify the question of
whether our approximation suffices to provide the one

δl
RC
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δl
RC
percent accuracy even in the region of the ρ resonance.
We hope to calculate these effects elsewhere.

6. CONCLUSIONS

The radiative return method with tagged photons
offers a unique opportunity for a measurement of the
total hadronic cross section σ(e+e–  hadrons) over a
wide range of energies. The decrease in the event num-
ber is easily compensated by a high luminosity of the
new electron–positron colliders. Of a particular interest
are the experimental efforts at low and intermediate
energies because they are mandatory for the future of
the electroweak precision physics.

Success of the precision studies of the hadronic
cross section through the measurement of radiative
events relies on the matching level of reliability of the
theoretical expectation. The principal problem is the
analysis of radiative corrections to the initial-state radi-
ative cross section at realistic conditions as regards the
event selection. In the present work, we have developed
the approach proposed in [24] for a high-precision ana-
lytical calculation of the e+e–  π+π– channel contri-
bution to the hadronic cross section. This channel dom-
inates in the range below 1 GeV because of the radia-
tive return on the ρ resonance, and the corresponding
contribution can be measured with a high precision at
the DAΦNE accelerator with the multiple-purpose
KLOE detector [26].

Our calculations include the analysis of the effects
related to a non-head-on collision of beams and the
first-order radiative correction. We have demonstrated
that, at the Born level, the non-head-on effects do not
exceed several per mille. To derive the radiative correc-
tion, we neglected these effects and also applied the
quasireal electron method [28] to describe events with
two hard photons, one tagged by the KLOE calorime-
ters and the other invisible inside the blind zone. This
JOURNAL OF EXPERIMENTAL 
approach has allowed us to analytically disentangle
realistic restrictions related to the event selection rules
and the KLOE detector geometry. The first-order QED
radiative correction obtained in this way is negative and
large in absolute value. We investigated the main trends
in its behavior at the variation of the physical parame-
ters that define experimental restrictions on event selec-
tion; we conclude that the higher order corrections must
be evaluated in order to ensure the one percent accuracy
required for the theoretical predictions.

APPENDIX A

Here, we give the exact result of the analytical angu-
lar integration of the quantity T (see Eq. (8)) with
respect to the tagged photon polar angles at arbitrary
values of the limiting angle θm and the squared dipion
invariant mass,

(A.1)
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Here, we use the standard notation for the Spence func-
tions

If we assume that cm = c0, 1 – c0 ! 1, the result in
Eq. (12) is recovered.

APPENDIX B

In the case where z > zc, the integration region for
the double hard photon emission is shown in Figs. 3b
and 3c and the corresponding differential cross section
is defined by Eq. (19). The list of the necessary integrals
is defined by expansion (20) of the quantity M(z, L0, ω1,
Ω) and is given by
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(B.4)

(B.5)

(B.6)

In calculating these integrals, we neglected terms of

order  and (1 – cm)xm compared to unity; these terms
are of the same order as the parameter η.

In the cases where

we must integrate over the region shown in Fig. 3a. As
mentioned above, the contribution of the top piece of
this region, where

is small (about 1–2%) compared to the bottom one and
can be neglected. This approximation is sufficient to
provide the one percent accuracy of radiative correc-
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tion. We use the notation Ji, similarly to Ii, to label sep-
arate integrals over this region,
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APPENDIX C

In this appendix, we give the analytical form of the

functions  for arbitrary values of the limiting tagged
photon angle θl. The only condition on θl used in
Appendix B is that
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This restricts θl by the values about 45°. With the

exception of , the functions  are different for z >
zc and z < zc. In the first case, we have
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In the case where z < zc, the corresponding functions

 are given by
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Abstract—Self-similar spectra of two-dimensional turbulence are discussed, as well as their correlation with
the conservation laws and with the form of the function characterizing the energy transfer in the wave vector
space. It is demonstrated how the form of this function affects the direction of fluxes of energy and enstrophy
in the k space. The assumptions of the relationship of these fluxes with the time derivative of the correlation
function (which are in fact similar to Kolmogorov’s hypotheses for three-dimensional turbulence) enable one
to derive relations which demonstrate the anomalous behavior of the third moments of two-dimensional turbu-
lence, observed in recent experiments. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Two-dimensional turbulence provides one of few
examples of physical problems whose solution does not
become simpler as the space dimensionality is reduced.
The presence of “redundant” (with respect to the three-
dimensional case) conservation laws enables one to
prove, in two-dimensional hydrodynamics of incom-
pressible fluid, the existence and uniqueness of solu-
tions for both the Euler and the Navier–Stokes equation
[1–3]; however, it gives no way of constructing a solu-
tion fit for describing the turbulence. Therefore, for pro-
viding such a description, similarly to the three-dimen-
sional case, one has to turn to the respective relations of
statistical hydrodynamics, i.e., the Karman–Howarth
equation (and its spectral analog). The latter relations,
however, have one and the same form for two and three
dimensions; accordingly, they differ only by the value
of a single integral parameter contained in them (see
[4]) and have the same number of unknown functions.
The correlations between the components of correla-
tion tensors in the two- and three-dimensional cases are
also similar in this sense; consequently, the two-dimen-
sional problem is not simpler than the three-dimen-
sional one. Moreover, the presence of an additional
quadratic integral of motion makes difficult a direct
application of the known hypotheses of universality
which are valid in three-dimensional statistical hydro-
dynamics; by virtue of this, it turns out that it is not
obvious that various relations similar to those observed
in the three-dimensional case [5, 6] may be found for
the correlation and structure functions.

As to the possibilities of experimental studies into
two-dimensional turbulence, they are also quite lim-
ited, which is due to the need for employing external
1063-7761/02/9501- $22.00 © 20042
stimulation in order to provide for a two-dimensional
structure of turbulent motion. Such stimulation may be
provided by an external uniform magnetic field (the
fluid must be conducting) or by the rotation of a system
as a whole with a constant angular velocity (see the dis-
cussion of these problems in [7]). It proves rather diffi-
cult to obtain the values of appropriate parameters (for
example, magnetic field) that would provide, with ade-
quate accuracy, the two-dimensionality of motion at
high values of the Reynolds number. New possibilities
of experimental observation of two-dimensional turbu-
lence were indicated in [8]: they are associated with the
generation of turbulence in a thin soap film by passing
this film through a two-dimensional comb; in doing so,
the two-dimensionality of motion is ensured by the
smallness of the ratio of the film thickness to the char-
acteristic scales of turbulence. However, even in such
experiments, one still cannot attain high values of the
Reynolds number for technical reasons. Numerous
recent studies are devoted to direct numerical force of
two-dimensional turbulence. In these studies, because
of the limited computer capabilities, no values of the
Reynolds number above 103 could be attained either [9,
10].

In spite of the above-identified difficulties, the basic
qualitative distinctions of two-dimensional turbulent
motion from three-dimensional one have now been
found and the reasons for these distinctions understood.
These distinctions reside primarily in the fact that, in
the case of two-dimensional turbulent motion, the
energy transfer from components with higher wave
numbers to those with lower wave numbers proves to
be possible, i.e., the energy transfer from small-scale to
large-scale motions. This possibility was first suggested
by Onsager [11], who also noted that the final stage of
002 MAIK “Nauka/Interperiodica”
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decay of two-dimensional turbulence may reduce to the
formation of a coherent vortex structure. Note that
Onsager [11] treated the turbulent motion as a motion
of a collection of point vortexes (the appropriate repre-
sentation of the vortex field in the form of a set of dis-
crete components enables one to impart the Hamilto-
nian form to the equations of motion and, after that,
apply the methods of statistical mechanics); the thus
obtained results are also valid for the so-called guiding-
center plasma [12] and for two-dimensional problems
associated with superfluid motion [13]. It was later
demonstrated that these results could be obtained
purely hydrodynamically [4, 14]; in particular, it turned
out that the spectrum of two-dimensional turbulence,
which reduced to the δ function at the final stage of
decay, followed directly from some self-similar solu-
tion of the Karman–Howarth equation (the respective
properties of the correlation functions were addition-
ally discussed in [15]). The formation of a coherent vor-
tex system at the final stage of decay of two-dimen-
sional turbulence was demonstrated both experimen-
tally [8] and by way of direct numerical force [9].

As to the intermediate stages of decay, it is custom-
ary to assume that, along with the Kolmogorov spec-
trum (the energy density in the wave number space k)
E(k) ∝  k–5/3, the spectrum E ∝  k–3 is observed in the
two-dimensional case as well; this latter spectrum is
due to the flux of mean-square vorticity (enstrophy) in
the k space (the most recent detailed review of related
papers is found in [6]). Sometimes, the so-called canon-
ical spectrum is also treated (a and b are constants),

which may be obtained, for example, by representing
turbulent motion as a system of the hydrodynamic type
[16] (for such systems, the Liouville theorem is valid)
with subsequent application of statistical methods.
Note, however, that such systems, generally speaking,
cannot be treated as a combination of noninteracting
subsystems, so that the integrals of motion are not addi-
tive, and therefore it is not quite correct to apply the
methods of statistical physics to this system; in the case
of hydrodynamic turbulence, the use of these methods
often brings about absurd results [17]. Moreover, one
can apparently state with assurance that any force of
turbulence (which reduces naturally to the force of
energy transfer, i.e., of nonlinear terms in the hydrody-
namic equations) in the two-dimensional case is even
less justified than in the three-dimensional case.
Indeed, by virtue of the absence of the smoothing effect
of viscosity under conditions of two-dimensional tur-
bulent motion (see below), the nonlinear effects pre-
dominate during its evolution, and any distortion of the
hydrodynamic equations will eventually have a signifi-
cant effect on the results obtained. By way of example,
we will cite the well-known results of [18], where the
realization of Millionshchikov’s hypothesis results in

E k( )
k

a bk2+
-----------------,∝
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negative values of the energy density in some finite
range of wave numbers. Naturally, one has to eliminate
such physically meaningless results by adding new
empirical constants and functions to the respective
models, which takes these models far beyond the limits
of the input exact hydrodynamic equations. On the
other hand, the experience in studying common (three-
dimensional) turbulence tells us that all of the relevant
results were obtained purely hydrodynamically with
the additional use of the considerations of dimensional-
ity and similarity; of course, this called for a detailed
experimental investigation of turbulent motion. For
these reasons, it appears to be of importance that such
an approach should be realized in the two-dimensional
case as well, although no detailed experimental data
(that would be comparable with those for three-dimen-
sional turbulence) are available so far. In what follows,
we will discuss the question of how the self-similar
spectra of two-dimensional turbulence are related to the
laws of conservation and give our considerations con-
cerning the direction of energy and enstrophy flows in
the k space. Exact relations are written for the third
moments, and the correlation is given between these
relations, and the parameters pertaining to the ranges of
self-similarity. The results are compared with recently
obtained experimental data.

2. SELF-SIMILAR SPECTRA 
OF TWO-DIMENSIONAL TURBULENCE

The description of isotropic turbulence is based on
the Karman–Howarth equation (which is an exact cor-
ollary of the Navier–Stokes equations) or on an equiv-
alent equation for the energy spectrum,

(1)

where E is the energy spectrum,  = 〈v2〉/2
(the fluid density is taken to be equal to unity, and the
angle brackets correspond to statistical averaging), T(k, t)
is the function characterizing the energy flux in the
k space and related to the nonlinear terms in the equa-
tions of motion, and ν is the viscosity. Equation (1) is valid
for the two- and three-dimensional cases, while the differ-
ence between the two and three-dimensional problems in
this formulation consists in that, in addition to the energy
conservation law expressed in the form

(2)

the two-dimensional case is characterized (with zero
viscosity) by the law of conservation of enstrophy
(mean-square vorticity),

(3)

∂E k t,( )
∂t

------------------ T k t,( ) 2νk2E k t,( ),–=

E k t,( ) kd∫

T k t,( ) kd

0

∞

∫ 0,=

k2T k t,( ) kd

0

∞

∫ 0=
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(here we use the universally accepted terminology;
what actually happens is that relations (2) and (3) (in
the two-dimensional case) hold irrespective of the value
of viscosity—at ν = 0, they express the respective laws
of conservation). It is obvious from Eq. (2) that T(k, t)
as a function of k cannot have one and the same sign for
all values of k; in the three-dimensional case, it is
arranged as follows: there is some κ such that T(k, t) ≤
0 at k ≤ κ and T(k) > 0 at k > κ, and it is obvious that

(4)

The latter inequality corresponds to the regular con-
cepts of energy transfer from large- to small-scale com-
ponents, although its proof or a rigorous definition of
the conditions at which it is valid is still unknown and
represents as complex a problem as the integration of
the basic hydrodynamic equations (of course, the rea-
soning on this subject, based on the concepts of stretch-
ing of vortex tubes [19], is not rigorous). It is this form
of T(k) that is supported by all known experimental data
pertaining both to laboratory turbulence (flows in pipes
and channels, decay of turbulence behind the grid, and
so on) and to turbulent motions in the atmosphere and
in the ocean.

Turning to the two-dimensional case, one can
readily see that condition (3) rules out the possibility of
such a form of spectrum. Indeed, if we assume that T(k)
changes sign at some point κ, we have, by virtue of the
theorem of the mean,

(5)

where p < κ and q > κ. Because the set of equations (5)
is inconsistent in the case of nonzero values of the inte-
grals, such a form of spectrum is impossible, and the
function T(k) changes sign more than once. Therefore,
in this case, the simplest choice corresponds to a double
change of sign of the function T(k); this function is
shown diagrammatically in the figure. One can readily
see that conditions (2) and (3) are satisfied also by the

k2T kd

0

∞

∫ 0.>

T kd

0

κ

∫ T kd

κ

∞

∫+ 0,=

p2 T kd

0

κ

∫ q2 T kd

κ

∞

∫+ 0,=

III

T

k

Diagrammatic view of the function T(k).
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function symmetric to that shown in the figure relative
to the axis k, i.e., –T(k). As in the three-dimensional
case, the theoretical choice between T(k) and −T(k)
does not appear possible: it may be realized only when
analyzing the experimental data.

Next, because solutions of two-dimensional hydro-
dynamic equations with ν  0 change to solutions
with ν = 0 [2], the last term in the right-hand side of
Eq. (1) may be omitted for simplicity. One can readily
see that the integrals

(6)

give the variation of the energy and enstrophy, respec-
tively, per unit time in the [0, z] range in the k space. In
regions I and II identified in the figure, these integrals
are independent of z and, therefore, the self-similarity
hypothesis may be used for the respective regions of the
E(k) spectrum (note that the presence of such horizontal
regions, along which T(k) = 0, is the necessary condi-
tion of the Kolmogorov self-similarity [6]). According
to this hypothesis, the E(k) spectrum is defined by the
combination of one of the quantities in Eqs. (6) and the
wave number k, which has the desired dimension; here,
the choice of ε or εω depends on which one of these
quantities is dominant. Unlike the conventional
approach [20], in the case of which arbitrary assump-
tions are made as to the end of the inertial interval at
which one or another parameter is significant, this
choice will be uniquely defined. Of course, one cannot
directly compare the quantities ε and εω which have dif-
ferent dimensionalities. Therefore, we will treat the
dimensionless relation

(7)

where λ is the scale of turbulent motion (defined by the
behavior of correlation functions over short distances),

one can see from the equation of motion (1) with ν = 0
and relations (2) and (3) that this quantity is time-inde-
pendent. It is now obvious from Eq. (7) that, at ϕ ! 1,
the spectrum is mainly affected by the quantity ε and, at
ϕ @ 1, by εω. It follows from the very form of the func-
tion T(k) that it is only

ϕ ! 1 in region I,

ϕ @ 1 in region II

which is possible (owing to the presence of the factor k2

in the integrand for εω).

ε z( ) T k, εω z( )d

0

z

∫ k2T kd

0

z

∫= =

ϕ εω λ2/ ε ,=

λ2

E kd

0

∞

∫

k2E kd

0

∞

∫
------------------;=
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We make up, as usually, dimensionless combina-
tions containing k and, accordingly, ε and εω to obtain

(8)

The fluxes of energy and enstrophy have the same
direction: for the form of T(k) selected by us, they are
both positive in region I (energy and enstrophy are
transferred from large to small scales) and negative in
region II; one can readily see that this pattern corre-
sponds to the concentration of energy of turbulent
motion in the range between regions I and II and to the
growth of the E(k) peak in this range. Of course, the
change of sign of T(k) would bring about the opposite
result; i.e., the energy in the regions left of I and right
of II would increase. By virtue of the fact that the
former one of these regions is limited on the left by the
point k = 0, this may bring about the formation of an
E(k) peak even in the neighborhood of k = 0, so that the
inference about the formation of a narrow peak on the
E(k) curve, generally speaking, does not depend on
whether we take the function T(k) shown in the figure
or a function symmetric to T(k) relative to the axis k.

Note that disregard of viscous damping must in fact
be expressed by the inequalities

which, for the reasons identified above, may be valid in
the two-dimensional case, but are never valid in the
three-dimensional case because of the so-called enstro-
phy catastrophe,

the latter fact makes the energy dissipation the only
quantity defining the self-similarity of the inertial
region of the spectrum of three-dimensional turbulence.

In conclusion of this section, we will point out that
no full experimental proof is available of the existence
of the k–3 and k–5/3 spectra in the two-dimensional case.
Evidence for their possible realization may be found in
[21], where two-dimensional motion initiated by a
magnetic field was investigated. Direct numerical force
of two-dimensional turbulence, based on exact hydro-
dynamic equations, also fails to produce these spectra,
at any rate, simultaneously; the reason for this is appar-
ently the inadequacy of the values of the Reynolds
number at which the calculations may be realized. On
the other hand, these spectra are often realized (simul-
taneously) in various model calculations in which the
respective Reynolds numbers are of the order of 107 and
higher (see the review of relevant studies in [6]). There-
fore, one can state that the presence of the self-similar
spectra discussed above in the case of two-dimensional
turbulence calls for further serious experimental proof.

E k( ) ε 2/3k 5/3– in region I,∝

E k( ) εω
2/3k 3– in region II.∝

2ν k2E k ! ε , 2ν k4E k ! εω ,d∫d∫

ν k2E k 0;≠d

0

∞

∫ν 0→
lim
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3. ANOMALIES OF THIRD MOMENTS 
OF TWO-DIMENSIONAL TURBULENCE

It is known that a further application of the Kolmo-
gorov local structure hypotheses in the three-dimen-
sional case enables one to obtain, in addition to the
spectrum, both qualitative and quantitative characteris-
tics of the second and third moments of the velocity
field [5, 6], which agree quite adequately with experi-
mental data. This possibility is associated with the
existence of a quantity (the mean value of dissipation of
the kinetic energy of turbulent motion) defining the
dynamics of decay as a whole. Formally, it is expressed
by the fact that the difference of the quantities ∂BLL/∂t
and (1/2)∂DLL/∂t appears in the left-hand side of the
equation for the structure function of the velocity field
DLL (in what follows, standard notation is used: the cor-
relation functions

where uL is the velocity component along the straight
line connecting the points x and x + r; and the structure
functions DLL(r) = 2[BLL(0) – BLL(r)] and DLLL(r) =
6BLL, L(r)); according to the Kolmogorov hypothesis,
the quantity (1/2)∂DLL/∂t in the inertial range is zero. To
be more exact, it must be stated [5] that

(9)

In the two-dimensional case, by virtue of the reasons
given above, the value of dissipation cannot define the
dynamics of decay, and the possibility of ignoring the
dissipation (along with viscosity) results in that the
time derivative of DLL still remains in the left-hand side
of the respective equation. Consequently, in this situa-
tion, we can treat right away the equation for BLL, which
has the form [7]

(10)

Each of two regions of the inertial range (correspond-
ing to the k–5/3 and k–3) is characterized by the quantities
ε and εω, respectively; we combine these quantities
with the quantity r to obtain the same dimension as
∂BLL/∂t and change over from Eq. (10) to the following
equations (C1 and C2 are positive dimensionless con-
stants):

(11)

BLL r( ) uL x( )uL x r+( )〈 〉 ,=

BLL L, r( ) uL x( )uL x( )uL x r+( )〈 〉 ,=

1
2
---

∂DLL r t,( )
∂t

-----------------------  ! 
∂BLL 0 t,( )

∂t
----------------------- 2

3
--- ε .=

∂BLL

∂t
------------

r∂
∂ 3

r
---+ 

  BLL L, .=

C1ε r∂
∂ 3

r
---+ 

  BLL L, in region I,=

C2εωr2

r∂
∂ 3

r
---+ 

  BLL L, in region II.=
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We multiply (11) by r3 and integrate in view of the con-
dition BLL, L(0, t) = 0 to derive

(12)

So, the dependence of BLL, L on r (as well as DLLL(r)) in
the region defined by the energy flux reduces to linear,
as in the three-dimensional case. In the range of return
flux of enstrophy, the respective dependence turns out
to be cubic—the result obtained in [22] by a different
method. However, unlike the three-dimensional case, it
follows from Eqs. (12) that the opposite signs of the
third moment correspond to ranges I and II (it will be
recalled that the quantities ε and εω have different
signs, as follows from Eqs. (2) and (3)). In particular,
relations (12) demonstrate that, for the form of T(k)
adopted by us, we have BLL, L < 0 in region I and
BLL, L > 0 in region II. Because lower values of r corre-
spond to higher values of the wave vector, the function
BLL, L must be positive in some range and becomes neg-
ative right of this range; the positive values of BLL, L cor-
respond to the k–3 spectrum, and the negative values, to
the k–5/3 spectrum. This pattern differs markedly from
the behavior of the third moment in the three-dimen-
sional case, where it is negative in the entire inertial
range.

The above-described anomaly was indeed observed
in recent experiments [23] with a thin fluid film passed
through a two-dimensional comb. In this case, a spec-
trum close to k–3 corresponds to high positive values of
the third moment. However, no spectral region of k–5/3

was observed in these investigations, which is appar-
ently due both to the inadequacy of the values of the
Reynolds number (of the order of several hundred) and
to the fact that the largest scales of length in the k–3

range were of the order of the external scale of turbu-
lence.

The foregoing results are closely related to the
assumption made as to the pattern of variation of sign
of the function T(k). Indeed, if we used the function
−T(k) which also satisfies the laws of conservation
expressed by Eqs. (2) and (3), we would at any rate
obtain BLL, L < 0 in the range with the k–3 spectrum.
Therefore, we must make sure that the choice made (as
well as the similarity considerations employed) corre-
sponds to the real situation. Because Belmonte et al.
[23] obtained data for the third moment for the smallest
values of r outside of the inertial range, one can com-
pare these data with DLLL (or, which is the same, BLL, L)
related to T(k) in the case of small values of r by some
exact relation. Before going to derivation of this rela-

BLL L,
C1

4
------εr in region I,=

BLL L,
C2

6
------εωr3 in region II.=
JOURNAL OF EXPERIMENTAL 
tion, note that, with the adopted alternation of signs of
the function T(k), the inequality 

is valid by virtue of Eqs. (2) and (3); this inequality will
be required below. In order to prove this inequality,
consider the function

for which we have the following statements from its
definition and relations (2) and (3):

One can readily see that S changes its sign only once,
from negative to positive; therefore, in accordance with
the theorem of the mean, the last integral is positive, so
that the statement being proven follows from the last
one of the foregoing equalities.

Further, in order to derive the sought relation, one
must relate the correlation tensor Blm, n(r) to its Fourier
transform expressed in terms of the only scalar function
F3(k) [6],

We will now use the identity

express the tensor Blm, n in terms of the component BLL, L
(the respective relation for the two-dimensional case is
given in [4]), and perform integration with respect to
the angular variable in view of the identity

to derive, after relatively simple but cumbersome com-
putations,

(13)

(in the two-dimensional case, T(k) = 4πk2F3), where the
prime corresponds to the derivative of the Bessel func-
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tion J0 with respect to its argument. We expand J0 into
a series in powers of kr to derive, from Eq. (13),

which, because of the presence of two (rather than one,
as in three-dimensional hydrodynamics) laws of con-
servation given by Eqs. (2) and (3), results in that the
first nonvanishing expansion term BLL, L (which here is
of the fifth order with respect to r) takes the form

(14)

Because the integral in the right-hand side of Eq. (14)
is negative, the function BLL, L(r) at small values of r
must likewise be negative. The latter fact is indeed
observed experimentally [23]. Therefore, the foregoing
results both agree with the known experimental data
and enable one to use the latter data to find the possible
form of the function T(k) characterizing the most
important property of turbulent motion, that of energy
transfer in the wave number space.

4. CONCLUSION

The foregoing results demonstrate that the notions
of the local structure of the velocity field of two-dimen-
sional turbulent motion, based on the Kolmogorov
hypotheses, fully agree with the presently available
experimental data. However, the direct use of these
hypotheses is accompanied by the need to make a cer-
tain assumption about the alternation of signs of the
function T(k) (in perfect analogy with the three-dimen-
sional case). In view of this, note that the solution of
this problem realized above (this problem is not usually
discussed in the literature) did not at all appear to be
obvious. In particular, in [24], where a detailed numer-
ical force of two-dimensional turbulence was per-
formed, the form of the function T(k), both of the model
function and of that obtained as a result of direct
numerical solution of hydrodynamic equations, was
such that its first extremum was positive. No ranges of
self-similarity of the spectrum were observed (neither
k–5/3 nor k–3), and the return energy flux was naturally
observed in the neighborhood of k = 0. However, as we
made sure above, such a pattern does in no way agree
with the recent experimental data. It remains unclear, in
particular, why it is the numerical integration of hydro-
dynamic equations that brings about such a form of
T(k): Does this happen because of the inaccuracy of cal-
culations or because of the use of a special form of
boundary conditions (periodic) which are not realized
experimentally? Therefore, the question remains open
whether it is possible in the two-dimensional case to
observe corollaries (for example, the negativity of the
third moment) of such a form of the function T(k). The

BLL L,
1
2
--- kr

8
----- kr( )3
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------------– 3 kr( )5
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very statement of such questions pertaining to two-
dimensional turbulence (to which quite definite
answers are available in the three-dimensional case)
indicates that the relevant results, including those
obtained by me, still cannot be regarded as exhaustive.
They may come to be exhaustive in the case of compar-
ison with the data of experiments in which, possibly,
much higher values of the Reynolds number will be
attained than those attained at present.
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Abstract—The results of laboratory measurements of decaying quasi-two-dimensional turbulence in a thin liq-
uid layer are considered. It is shown that the enstrophy-to-energy ratio decreases according to a power law on
a certain decay interval. The exponent in the power law is a function of the Reynolds number. The enstrophy
decay is found to be anomalously slow as predicted in a number of numerical studies. It is shown that the anom-
alous decay in the quasi-two-dimensional flow under investigation is not due to intense vortex formation as in
the numerical decaying turbulence, but due to the limited range of scales on which a flow can be regarded as
two-dimensional. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the energy flux of a 2D turbu-
lent flow induced on small scales in an incompressible
liquid is directed to small wave numbers in the spec-
trum [1]. Steady-state conditions in such a system can
be attained only for additional dissipation at small wave
numbers since, otherwise, the scale of the spectral
energy peak and the energy itself increase. For this rea-
son, a large number of publications are devoted to an
analysis of the decay of 2D turbulent flows whose
energy remains virtually unchanged in the limit of large
Reynolds numbers (although the scale of the energy
peak increases).

In accordance with Batchelor’s prediction [2], the
enstrophy of a decaying 2D turbulent flow decreases
with time in proportion to t–2 (in the limit of large Rey-
nolds numbers), while the typical size of vortices
increases linearly with time. Numerous numerical
experiments [3–9] on decaying 2D turbulence did not
confirm this prediction and indicate a much slower
decay as a rule. This can be due to the fact that the
decay of 2D turbulence is associated with the formation
of vortices [10] in which almost the entire enstrophy of
the flow is concentrated. These vortices are found to be
stable to displacements induced by the background vor-
ticity field, and, hence, filamentation (which is the main
process through which the enstrophy of the flow is
transferred over small distances) is suppressed in this
case. Different scenarios of the decay were proposed in
the literature; our task is to determine which scenario
takes place in actual practice.

The number of experimental studies devoted to an
analysis of decaying 2D turbulence is not large. A series
of experiments were made with thin soap films flowing
down under the action of the gravity force [11–15]. In
these experiments, turbulent perturbations decay down-
1063-7761/02/9501- $22.00 © 20048
stream, which complicates the investigation of decay
regularities. In experiments described in [11, 12, 14,
15], the velocity field fluctuations are measured at a
point, and the 3D spectra are calculated by using the
Taylor hypothesis. In [16, 17], a turbulent flow is
induced by the MHD method in a thin layer of a dilute
electrolyte placed in a magnetic field created by a bipe-
riodic set of magnets. In these experiments, as well as
in the experiments described in [13], the velocity field
is measured simultaneously over the entire cross sec-
tion of the flow with the help of digital processing of
video images of tracer particles placed on the surface of
the liquid. The experimentally observed enstrophy
decay occurs according to an anomalously slow power
law with an exponent of –0.47. In the latter work, it is
concluded that the decay follows the scenario predicted
by Carnevale et al. [4]. According to this scenario based
on the results of numerical experiments, not only the
energy, but also the turbulence extrema are preserved
during the decay due to the vortex formation. If the
number of vortices decreases with time in proportion to
t–ξ, the enstrophy decreases with time, according to [4],
following a power law with an exponent equal to −ξ/2.
It was found that the value of ξ is 0.72.

Turbulence decay is associated with viscosity and,
according to the results of recent studies [8, 9], is sen-
sitive to the dissipation mechanism. For this reason, the
matching of the results obtained in numerical experi-
ments with hyperviscosity [4] and the results obtained
in the laboratory experiments [17] appears unexpected.
It is not only due to the fact that hyperviscosity cannot
be realized in a laboratory experiment. It is more
important that slow horizontal displacements of liquid
in thin layers are controlled by friction at the bottom,
which is much stronger than conventional dissipation
on any scale that can be regarded as two-dimensional.
002 MAIK “Nauka/Interperiodica”
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This research aims at experimental investigation of
the decay mechanisms of 2D turbulence induced by the
MHD method in a thin layer of an electrolyte in a wide
range of the initial Reynolds numbers. We will demon-
strate that, indeed, a power segment exists in the enstro-
phy decay law, but not for all Reynolds numbers. The
exponent in the power law depends on the way in which
the energy decay is compensated. Our conclusion is
that the enstrophy decay is anomalously slow not as a
result of intense vortex formation, as in the turbulence
decay obtained in numerical experiments, but due to a
limited range of scales on which a laboratory flow can
be regarded as two-dimensional. In order to demon-
strate this, we will compare the experimental results
with the results of numerical integration of a quasi-two-
dimensional equation of vorticity transformation taking
into account the bottom friction.

2. EXPERIMENTAL SETUP 
AND EXTERNAL PARAMETERS

2.1. Experimental Setup

The experimental setup consists of a rectangular cell
having a height of 20 mm and a thin (1 mm) bottom,
which is placed in a rectangular biperiodic array
formed by round magnets (of diameter 14 mm) with
alternating polarities. The cell length is 660 mm. Cop-
per electrodes having a thickness of 10 mm each are
arranged along the cell at a distance of 140 mm from
one another. The cell was filled with copper sulfate
solution of density ρ = 1.070 g/cm3. The depth of the
liquid layer h varied from 2 to 6 mm. Current I between
the electrode was varied from 0.1 to 3 A. When the elec-
tric current is passed in the presence of a space-periodic
magnetic field, a vortex lattice with alternating direc-
tions of rotation is formed in the liquid. For I > Icr, this
stationary vortex structure loses its stability and
becomes a flow varying in space and time, which has no
initial spatial periodicity. In a certain time, this flow can
be regarded as a steady-state or “quasi-stationary” flow
in the sense that the average value of energy determined
on different time intervals is independent of the length
of the interval. With increasing supercriticality, this
quasi-stationary flow becomes more and more chaotic.
At a certain initial instant t = t0, the current is switched
off and the flow velocity starts decaying.

The attainment of the “quasi-stationary” stage of the
flow was initially controlled visually and was then con-
firmed or refined after the processing of experimental
results. If necessary, the experiment was repeated with
an increased time interval between the current switch-
ing on and off. The criterion was the existence of a
clearly manifested constant mean value of energy over
a sufficiently long time interval on the curve describing
the time dependence of energy. Naturally, this depen-
dence itself is pulsating.
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2.2. Measuring Technique

The velocity field on the liquid surface was mea-
sured with the help of correlation processing of consec-
utive video images of tracer particles on the liquid sur-
face. We used aluminum powder as a tracer. The work-
ing region of the flow had an area of 187 × 140 mm.
Clusters of aluminum powder particles make it possible
to obtain video images with a good contrast for appro-
priate illumination and a “black” bottom. Video images
were converted into a digital format on a mesh of 720 ×
540 pixels. The first of two consecutive frames was
divided into square elements with a side of 9 pixels. The
mean displacement of each square element upon a tran-
sition to the next frame was determined from the mini-
mum of the difference in the intensities, emerging as a
result of displacements of squares relative to each other.
This allowed us to reconstruct the velocity field on a
regular mesh of 76 × 57 points. The step between the
points corresponds approximately to 2.5 mm, the
approximate number of mesh spacings per magnet
being equal to six. Such a resolution is sufficient for
formation of vortices at the initial stage of the flow, but
leads to certain errors in the calculated values of the
velocity field derivatives (including vorticity and diver-
gence) on scales smaller than the pumping scale. As the
flow decays, the characteristic sizes of the regions with
vorticity of the same polarity increase, and the accuracy
of calculated values of vorticity increases. However, the
fraction of subpixel displacements increases upon a
decrease in the flow velocity field amplitude, which
might become a new source of errors. In order to avoid
this, we increased the interval between the frames cho-
sen for processing. The initial time interval between the
pair of frames being processed was 1/25 s, while the
processing was terminated at a time interval equal to
the time of energy decay by a factor of e (in experi-
ments with the thickest layer, the final interval was
larger than 1 s). This allowed us to extend considerably
the dynamic range of measuring the velocity field and
energy. For example, in most cases, we were able to
trace a decrease in the flow energy by more than three
orders of magnitude.

It was found that the divergence of the 2D velocity
field differs from zero, but its root-mean-square value is
usually smaller than 1/6 of the rms vorticity at the initial
stage of the decay and decreases relative to the rms vor-
ticity in the course of the decay of the flow. The relative
amplitude of divergence was found to be a good indica-
tor of the accuracy of reconstruction of the velocity
field: an increase in the fraction of subpixel displace-
ments primarily affects the growth of this quantity. The
relative error of measurements of the velocity field is
estimated at 5%, while the relative error of measure-
ments of vorticity and divergence is at least twice as
large. The smallness of the divergence leads to the
rough assumption that the 2D flow is incompressible.

The flows induced in thin layers are slow (the
Froude number is small) and quasi-two-dimensional
SICS      Vol. 95      No. 1      2002
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(the velocity field is close to horizontal). The vorticity
field on the free surface of such a flow can be approxi-
mately described by the equation [18, 19]

(1)

where ψ is the stream function on the surface of the
flow, ζ = ∆ψ is the vorticity, [ψ, ζ] is the Jacobian of ψ
and ζ, ν is the kinematic viscosity, and λ is the bottom
friction coefficient. The term containing the bottom
friction coefficient is the result of parametrization of
the effect of the bottom; its introduction can be justified
by the fact the flow must be locally close to a Poiseuille
flow. In this case, the bottom friction coefficient can be
estimated as λ = 2νκ/h2, where κ is the fitting parameter
of the order of unity. This parameter is to be measured
[18, 19]. For a forced flow, its value depends on the
magnetic field distribution over the height. For decay-
ing 2D flows under the conditions when viscosity dom-
inates and the velocity field is two-dimensional (Stokes
flow), the value of coefficient λ must coincide with the
decrement of the first Stokes mode, which gives κ =
π2/8 [16, 17, 20]. In actual practice, weak vertical dis-
placements are always present, and parameter κ has a
larger value.

The flow in a thin layer is characterized by two Rey-
nolds numbers [21] corresponding to two types of dis-
sipation on the right-hand side of Eq. (1). We introduce
the standard Reynolds number Re = UL/ν, where U is
the characteristic velocity and L is the characteristic
size. We assume that U = E1/2 and L = (E/Z)1/2, whence
Re = E/Z1/2ν. Here, E and Z are the energy and the
enstrophy per unit mass. The assumed value of the size
is equal to the wavelength divided by 2π; consequently,
the initial size in our case must exceed the size of a

magnet, divided by π  (or 0.31 cm). Since the maxi-
mum rms velocity attainable in the present experiment
amounts to a few centimeters per second, the maximum
initial Reynolds number Re ≈100. The Reynolds num-
ber determined from the size of the working region
attains values up to 3500, which is larger than in the
experiments described in [16, 17].

The second Reynolds number corresponds to bot-
tom friction and can be defined as Reλ = U/Lλ = Z1/2/λ
[18, 19]. Since dissipation due to bottom friction in
quasi-two-dimensional flows is always larger, it defines
the true supercriticality of the flow. A detailed discus-
sion of the applicability of the Reynolds number to the
bottom friction in various real quasi-two-dimensional
flows for moderate values of supercriticality is pre-
sented in [19]. In [22–24], Eq. (1) was successfully ver-
ified directly in experiments. However, the validity and
peculiarities of application of the bottom friction
approximation for flows with a complex profile of
exciting force [25, 26], time-varying flows [27], and,
the more so, turbulent flows [28, 29] are still to be
investigated.

∂ζ ψ ζ,[ ]+ –λζ ν∆ζ ,+=

2
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Since most theoretical results are formulated in
terms of the standard Reynolds number, we will use this
criterion for describing experimental flows, taking into
account the fact that the inner and outer Reynolds num-
bers are connected through the relation

3. MEASUREMENTS 
OF THE BOTTOM FRICTION COEFFICIENT

Measurements were made at depths h = 2, 3, 4, 5,
and 6 mm for currents I = 100, 200, 300, 400, 500, and
600 mA. At small depths, conventional instrumental
methods for ensuring the horizontality of the cell bot-
tom are insufficiently accurate; for this reason, exact fit-
ting was carried out through an analysis of the flow
parameters at the opposite ends of the cell (for this rea-
son, measurements were not made, in particular, at a
depth of 1 mm). For the depth used, the uniformity of
the velocity field in the entire cell was reliably ensured.
All the flows were supercritical.

The method of determining the value of λ was based
on the balance equation for kinetic energy,

which, in accordance with Eq. (1), can be written in the
form

(2)

for a region with rigid boundaries. In our case, the
boundaries of the working region are open, but the
fluxes through them are very small, which was verified
directly.

It follows hence that the value of λ can be deter-
mined from the logarithmic derivative of energy with
respect to time:

(3)

The second term on the right-hand side of this equation
makes a noticeable contribution only for large depths of
the liquid layer. For depths h = 2, 3, 4, 5, and 6 mm, we
obtain the following mean values of λ: 1.09, 0.49, 0.25,
0.165, and 0.105 s–1, respectively. This gives the value
of the fitting parameter κ ≈ 1.7 ± 0.1 on the average in
all experiments (it should be noted, however, that the
fitting coefficient decreases with the depth). The exper-
imentally determined value noticeably differs from the
theoretical value of κ = π2/8 determined from the dec-
rement of the first Stokes mode (for a strictly horizontal
motion). This discrepancy can apparently be attributed
to the effect of vertical displacements which were dis-
regarded. Although the 3D nature of the flow is still
manifested, the flow structure is such that, for not very

Re
E

Zh2
---------Reλ .∝
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dE
dt
------- –2λE 2νZ–=
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------------
2νZ

E
----------.––=
AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002



DECAYING QUASI-TWO-DIMENSIONAL TURBULENCE IN A THIN LIQUID LAYER 51
high velocities (current Reynolds numbers), Eq. (1)
holds if we assume the experimental value for κ.

Figure 1 shows the time dependences (a) of energy
for three realizations of decay and (b) of individual
components of Eq. (3) for the first of these realizations
(the flow was excited by a current of 1.5 A, the initial
value of the Reynolds number was ≈70, and the liquid
layer depth was h = 5 mm). The time from the begin-
ning of decay is laid along the abscissa axis. The three
realizations shown in Fig. 1a differ insignificantly, and
the measurements corresponding to each realization
lead to close values of the bottom friction coefficient.
The maximum difference does not exceed 4%. This
also applies to measurements made for other values of
the initial Reynolds number. Figure 1b shows that, after
the initial period of adjustment, the flow indeed attains
conditions which are approximately characterized by a
constant value of the bottom friction coefficient. The
deviations in the logarithmic derivative of energy on the
initial segment indicate that the overall dynamics of the
flow includes 3D effects. The adaptation is associated
with a rearrangement of the vertical structure of the
flow. This leads to an enhanced dissipation and to a con-
siderable decrease in the Reynolds number.

4. CHARACTERISTICS 
OF DECAYING TURBULENCE

Most of measurements for large initial Reynolds
numbers were made for a layer of liquid with h = 5 mm.
We will consider below only such cases. The measure-
ments were carried out for the initial current varying
from 0.5 to 3 A with a step of 0.5 A.

The energy of the experimental flow decreases with
time due to the effect of the bottom friction. The
decrease in enstrophy is associated not only with the
effect of bottom friction, but also with the rearrange-
ment of the flow structure. In order to single out the
effects associated with the rearrangement of the flow
structure, we can use the following two approaches.
The first is associated with the analysis of the decrease
in the ratio Z/E. The second is based on the introduction
of an exponentially compressed element of time

or

as well as the compensated fields

Here, t0 is the time corresponding to the onset of decay.
In the new variables, the term responsible for the bot-
tom friction vanishes, and the equation for the vorticity
assumes the form

dτ λ t t0–( )–[ ] dtexp=

τ
1 λ t t0–( )–[ ]exp–

λ
----------------------------------------------,=

ψ' ζ',( ) ψ ζ,( ) λ t t0–( )[ ] .exp=

∂τζ' ψ' ζ,[ ]+ ν'∆ζ'.=
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This equation is characterized by an exponentially
increasing kinematic viscosity ν' = νexp[λ(t – t0)]. In
the new variables, decay occurs during a finite “con-
densed time.” Hansen et al. [17] mentioned that it is the
analysis in these coordinates that leads to matching
with the theory described in [4]. For large times, the
compensated enstrophy and the ratio Z/E asymptoti-
cally follow the same law relative to the conventional
time.

Figure 2 shows the results of processing of experi-
mental data for three values of the initial current (0.5,
1.5, and 3 A). In Fig. 2a, the compensated enstrophy is
presented as a function of compressed time. It can be
seen that, as the initial current increases (the initial
amplitude of the velocity field does not increase lin-
early with current since the flow is under strongly
supercritical conditions), a power segment is formed on
the decay curve. It is completely absent for lower val-
ues of the initial current and always vanishes for a large
time interval. The straight line drawn in the figure has a
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Fig. 1. (a) Energy decay in experiments with Re(0) ≈ 70
(a current of 1.5 A, three realizations) and h = 5 mm and
(b) the contributions to energy decay for a realization (s):
d(lnE)/dt + 2νZ/E (broken line), −2λ (solid straight line),
and −2νZ/E (dotted line). The values on the ordinate axis in
(b) are in inverse seconds.
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Fig. 2. (a) Compensated enstrophy Z' = Zexp(2λt), (b) enstrophy-to-energy ratio, (c) characteristic size l = (E/Z)1/2, and (d) excess
as functions of time in decay realizations with different initial Reynolds numbers. Symbols + corresponds to the realization induced
by a current of 0.5; s, to 1.0; and *, to 3.0 A; the slope of the straight line is −0.75 (a) and –0.4 (b).

0.6

0 1.0

(E/Z)1/2, cm

λτ

0.8

1.0

1.2

1.4

0.4
0.5 0 1.0

3.0

1.5
0.5

2.5

2.0

10

1.0

1

10

10–110–2 1

1

(a) (b)

(c) (d)

Z exp(2λt), s–2 Z/E, cm–2

K
λτ t – t0, s

λτ
slope of –0.75. Thus, we can speak of the presence of a
power segment on the compensated enstrophy vs. com-
pressed time curve only conditionally to a certain
extent. Thus, the conclusion drawn in [17] (the dynamic
range of decay in our experiments is an order of magni-
tude larger) on the coincidence of the decay law with
the predictions of the theory described in [4] is not con-
firmed.

It can be seen from Fig. 2b that the ratio Z/E as a
function of conventional time follows a power law to a
larger extent. However, here also the decay cannot be
characterized by a single exponential for all cases. The
straight line in this figure has a slope of –0.4. Such a
strong difference between the two slopes is due to the
following two factors. First, the segment with a power
behavior of enstrophy begins in the region where the
energy has not attained the asymptotic mode of
decrease (see Fig. 1b). Second, the exponential com-
pression of time in the former case must obviously lead
to an increase in the steepness of the decay curve.
JOURNAL OF EXPERIMENTAL A
The above-mentioned decay law is close to that
obtained in [4], but this does not indicate that our exper-
iments confirm the theory formulated therein. Indeed,
during the decay, the experimental vorticity field does
not follow the scenarios observed in numerical experi-
ments. Figures 3 and 4 show the velocity field and the
vorticity field for the flow excited by a current of 1.5 A
just before switching off the current, 1 s after the
switching off, and after the time interval 1/λ following
the switching off. The loops in Fig. 4 are drawn through
the levels ±ζrms and ±2ζrms. Both figures show that vor-
tex structures increase in size during the decay, but the
decay is not accompanied by the formation of small-
scale structures and vorticity field filamentation. The
vorticity field distribution is smooth, and the regions in
which the vorticity is modulo larger than double the
root-mean-square value are virtually absent. It can be
seen that vorticity of the same polarity is indeed com-
bined into coarse regions, but structures similar to vor-
tices in the numerical 2D turbulence are not formed.
ND THEORETICAL PHYSICS      Vol. 95      No. 1      2002
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The boundaries of the regions become uneven in the
course of decay.

The mean size of the vortex structures defined as l =
(E/Z)1/2 is presented in Fig. 2c. During the total decay
time, this size increases approximately by a factor of
two. By definition, the mean size exhibits a power
behavior in the same cases as the enstrophy-to-energy
ratio. Such a behavior is manifested weakly when com-
pressed time is used. In [17], the characteristic size is
determined from structures in the vorticity field.
Hansen et al. [17] state that this size obeys a power law
compatible with the decay law for enstrophy in the
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Fig. 3. Velocity field in the realization excited by a current
of 1.5 A (a) at the instant of current switching off, (b) 1 s
after switching off, and (c) 1/λ ≈ 6 s after switching off. The
length of the vector is normalized to the maximum length at
a given instant.
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sense of the theory [4]. Since the vorticity field does not
contain clearly outlined vortex structures, any determi-
nation of the size is inaccurate, and such an analysis
will not be carried out here.

Figure 2d shows the behavior of the excess (kurto-
sis) of the vorticity field,

where S is the area of the working region.

K
S ξ4 xd yd∫

ξ2 xd yd∫( )
2

---------------------------,=

50

40

30

20

10

20 40 60

(a)

50

40

30

20

10

(b)

50

40

30

20

10

(c)

20 40 60

20 40 60

0

0

0

Fig. 4. Vorticity distribution corresponding to realizations
of the velocity field presented in Fig. 3. Dark regions corre-
spond to negative vorticity, and light regions, to positive
vorticity. The loops are drawn for levels  ±ζrms and  ±2ζrms.
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In all cases the excess behaves similarly and never
exceeds the Gaussian value of 3 (the same fact also
takes place in experiments [17]). The value of the
excess amounts to several tens in typical numerical
experiments on the 2D turbulence decay, while large
values of excess are due to the presence of well-defined
extrema in the vorticity field, which considerably
exceed the root-mean-square values of vorticity (see,
for example, [3]). Small values of excess in laboratory
experiments indicate a very strong suppression of vor-
ticity dynamics due to dissipative effects and necessi-
tate much larger initial Reynolds numbers for attaining
conditions similar to those in numerical experiments.

Figure 5 shows the time dependences of the Rey-
nolds numbers during the decay. According to the
results obtained by Chasnov [9], the decay of a 2D tur-
bulent flow must be accompanied by an increase in the
current Reynolds number due to rapid decay of enstro-
phy if the initial Reynolds number exceeds the critical

value approximately equal to 15.7/ . This is not
observed in laboratory experiments in view of addi-
tional decay introduced by bottom friction as well as
the decay at the initial stage, which is associated with
3D effects. At the same time, this leads to a decrease in
conventional Reynolds numbers, while the Reynolds
numbers corresponding to bottom friction (solid curves
in Fig. 5) are found to moderate.

Under the experimental conditions, the advection of
the vorticity field has no time to cause the formation of
thin extended vortex structures responsible for the
enstrophy dissipation in the standard decaying turbu-
lence. Accordingly, enstrophy decays anomalously
slowly relative to the theoretical and numerical predic-
tions. It was proved by Chasnov [9] that the Batchelor

2

Fig. 5. Behavior of Reynolds numbers in realizations
induced by a current of 0.5 (*), 1.5 (s), and 3 A (+). Solid
curves correspond to Reλ for these realizations.
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decay law in 2D turbulence with an ordinary (and not
hyper) viscosity must be realized only for the critical
Reynolds number, while the exponent in the decay law
increases to –0.8 as the Reynolds number tends to infin-
ity. If we follow this result formally, we should expect
a steeper decay law for the experimental system under
investigation, which is not observed in actual practice.

Although the velocity fields for the flows under
investigation can be generally assumed to be two-
dimensional (the ratio of divergence to the curl of the
velocity field at the surface does not exceed 1/6 on the
average), 3D effects cannot be neglected in an analysis
of the experimental results. On scales smaller than the
depth of the liquid and for times of variation shorter
than 1/λ, the rearrangement of the flow is of the 3D
type. It was found that additional dissipation introduced
by such a 3D adaptation at the initial stage of the decay
leads to anomalous behavior of the enstrophy decay in
the laboratory experiment. In order to prove this, we
carried out numerical experiments for studying the
decay of the flows which strictly obey Eq. (1) and
whose parameters (the initial spectrum and Reynolds
numbers) correspond to the experimental values.

5. NUMERICAL EXPERIMENTS

Numerical experiments were carried out by using
the pseudospectral method. We integrated Eq. (1) for
vorticity with bottom friction. The size of the integra-
tion region was 2π × 2π; calculations were made on a
mesh with 128 × 128 points. Such a small resolution is
sufficient since the initial Reynolds numbers are com-
paratively small and decrease most of the time during
the evolution of the flow. The initial realization of the
vorticity field was chosen so that the 3D energy spec-
trum of the flow was concentrated in the vicinity of the
mode (k) = (kx, ky) = (N, N), where N = 5, which approx-
imately corresponds to the experimental conditions.
The initial amplitude of the vorticity field was chosen
so that the initial energy was equal to unity. Then, we
calculated the initial enstrophy of the flow. Further, we
chose the kinematic viscosity from the condition that
the Reynolds number Re = E/Z1/2ν is equal to the preset
value. The value of coefficient λ is determined by the
depth of the layer of liquid. In order to preserve similar-
ity with the laboratory experiment, we chose

where α is the ratio of the thickness of the liquid layer
to the diameter of the magnet, which determines the ini-
tial size of the vortex. For the laboratory experiment,
this ratio amounts to 0.33. The role of the initial size of
vortices in the numerical experiment is played by the
quantity π/N. Numerical calculations were made for
several values of the Reynolds number in the interval
from 50 to 500. In each case, integration was carried out

λ 2νκ
h2

----------
2νk

αd( )2
--------------,= =
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over the time 3/λ during which the velocity in the liquid
had decayed considerably.

A considerable difference between the numerical
flow obeying Eq. (1) and its experimental “image” is
that the logarithmic derivative of energy for the former
flow exactly coincides with the combination –2λ –
2νZ/E. This leads to a noticeable discrepancy in the
dynamics at the initial stage of the decay. The numeri-
cal flow decays considerably more slowly, and nonlin-
ear interactions play a considerably more significant
role at this stage. In should be recalled that, in the lab-
oratory flow, the velocity field experiences a 3D adap-
tation due to which the true energy dissipation rate has
a larger absolute value than –2λ – 2νZ/E.

For this reason, a considerably stronger filamenta-
tion of the background vorticity is observed at the ini-
tial stage of the decay in the numerical flow, on the one
hand, and the vorticity is concentrated into vortices in
the vicinity of local extrema, on the other hand. The lat-
ter is manifested in a certain increase in the excess in
the case corresponding to a smaller Reynolds number
and in its significant growth in the case of the largest
Reynolds number (see Fig. 6a). Figure 6b shows Rey-
nolds numbers as functions of time for the correspond-
ing realizations. In the experiment with the initial Rey-
nolds number Re = 50, the excess decay is observed all
the time, as well as in the laboratory experiments. In the
case with Reynolds number Re = 100, a tendency to the
formation of a plateau is observed on the time interval
λt < 0.5. Finally, in the case with the initial Reynolds
number equal to 200, the instantaneous Reynolds num-
ber increases for λt < 0.5. A comparison with Fig. 6a
shows that these time intervals coincide with the inter-
vals on which the excess grows. It is only on these inter-
vals that the behavior of decaying turbulence in a flow
with bottom friction resembles the typical behavior of
the numerical decaying turbulence without bottom fric-
tion. At subsequent stages, the flow dynamics is mainly
determined by the decay, and nonlinear processes play
an insignificant role.

Figure 7 shows the enstrophy-to-energy ratio as a
function of dimensionless time λt. These curves con-
tain power segments, but their slope increases with the
Reynolds number (the slope is approximately equal to
1.0 for Reλ(0) = 200). This change in the slope indicates
that the dissipation of enstrophy is suppressed in the
case of smaller Reynolds numbers. This is due to the
fact that mixing and filamentation of the vorticity field
for such Reynolds numbers have no time to occur yet.
Thus, the initial Reynolds numbers must be larger than
200 for the pattern familiar from numerical experiments
without bottom friction to be observed at a certain initial
segment of the decay. The latter statement applies the
more so to the laboratory experiments in which additional
energy decay is observed at the initial stage.

We also measured the time evolution of the average
number of vortices and their mean size. We apply the
term vortex to the part of the vorticity field in which it
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
exceeds double the rms value in amplitude. In the
course of decay, these characteristics approximately
follow power laws, but exponents are functions of the
Reynolds numbers. For example, the exponent in the
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Fig. 6. (a) Excess for the vorticity field and (b) Reynolds
numbers in realizations of numerical experiments with the
initial Reynolds number equal to 50 (solid curve), 100
(dashed curve), and 200 (dotted curve) as functions of time.
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Fig. 7. Enstrophy-to-energy ratio as a function of the decay
time in the same cases as in Fig. 6. The slope of the solid
line is equal to 1.
SICS      Vol. 95      No. 1      2002



56 DANILOV et al.
decay law for the number of vortices changes from –0.5
to –0.9, but it is hardly expedient to compare these laws
with the predictions of the theory [4] in view of differ-
ent behavior of the excess.

Thus, the decay of the “numerical” turbulence obey-
ing the vorticity equation with bottom friction differs
from the decay of the laboratory turbulence and both
phenomena differ from the pattern predicted in [4] for
the Reynolds numbers under investigation.

6. CONCLUSIONS

Decaying quasi-two-dimensional turbulence in the
laboratory flow exhibits some features predicted theo-
retically for decaying 2D turbulence, such as an
increase in the size of turbulence region and an expo-
nential decay of enstrophy. At the same time, bottom
friction introduces its own peculiarities, and true
dynamics strongly differs from theoretical predictions
in spite of the conclusions drawn in [17]. Besides,
according to the results of our numerical experiments,
decaying turbulence in thin layers differs from the lab-
oratory quasi-two-dimensional flow. This is due to the
fact that Rayleigh friction for a strong supercriticality is
just a convenient parametrization of the bottom effect.
True dynamics in the laboratory flow is associated with
3D movements and 3D adaptation leading to an addi-
tional decay.

Bottom friction is an inseparable component of vir-
tually all quasi-two-dimensional systems in nature and
in the laboratory (it takes place even for soap films due
to air friction [12]). It is proved in [19] that, on all scales
over which the motion can be regarded as two-dimen-
sional, bottom friction prevails over conventional fric-
tion. Over a small scale, 3D flows associated with the
effect of the bottom, cannot be controlled by the con-
ventional kinematic viscosity alone. The effect of fric-
tion against the bottom for such flows is also signifi-
cant. For this reason, experimental quasi-two-dimen-
sional systems not do necessarily follow the theory
disregarding true dissipation. The problem is to con-
struct a theory correctly describing the experimental
results and based on the effect of the main factor reduc-
ing the system to the 2D case rather than to make
attempts to match the behavior of flows mainly deter-
mined by the bottom friction to 2D hydrodynamics
(see, for example, [16, 17, 30]).
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Abstract—The results of twenty-year-long Galactic observations in neutrino radiation are summarized. Except
for the recording of a neutrino signal from the supernova SN 1987A, no Galactic bursts of collapse neutrinos
have been detected. An upper bound on the mean frequency of gravitational collapses in our Galaxy was
obtained, fcollapse (at 90% confidence) < 0.13 yr–1. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In 1933, Wolfgang Pauli introduced a new neutral
particle of low or zero mass to save the law of conser-
vation of energy in nuclear beta decays [1]. This parti-
cle was experimentally observed only twenty-five years
later by Reines and Cowan [2]. The interactions of neu-
trinos and their role in particle physics, astrophysics,
and cosmology have been studied with an increasing
intensity ever since. The discovered particle turned out
to be so amazing that it allowed one not only to study
nuclear processes on Earth and in its atmosphere but
also to look into stellar objects, because it is highly pen-
etrating due to the weakness of its interactions with
matter.

Progress in theoretical and experimental research
has led to the development of many detectors designed
to search for and record terrestrial and extraterrestrial
neutrinos. Since the energy sources in stars are nuclear
reactions, they also emit neutrinos. A new line of
research emerged—neutrino astronomy. However, a
constant flux of low-energy neutrinos is very difficult to
detect, as evidenced by long-term experiments to study
neutrino fluxes from the Sun, the star closest to the
Earth [3–5].

Back in 1934, Baade and Zwicky [6] suggested the
existence of neutron stars and came up with the idea
that these are formed during supernova explosions.
Thirty years later, in 1965, Zel’dovich and Gusseœnov
[7] concluded that a short burst of high-energy neutri-
nos could arise when matter is neutronized in the grav-
itational core collapse of a massive star. In the same
year, Domogatsky and Zatsepin [8] pointed out an
experimental possibility of searching for such neutrino
bursts. In 1966, Colgate and White [9] surmised that
neutrinos could play a crucial role in supernova explo-
sions. Almost concurrently, the discovery of pulsars in
1063-7761/02/9501- $22.00 © 20005
the Crab Nebula [10], which is the supernova remnant
observed by Chinese astronomers in 1054, and in Vela
[11] late in the fall of 1968 provided evidence for the
formation of neutron stars during supernova explo-
sions. Subsequent observations and data analysis con-
firmed this conclusion and gave an insight into the
physical processes that underlie these phenomena [12,
13].

In the succeeding years, both a theory for the final
stages of stellar evolution and experiments to search for
bursts of such collapse neutrinos were intensively
developed. The explosion of the supernova SN 1987A
on February 23, 1987, was a special milestone in the
development of the two lines of research.

The first experiments to search for neutrino bursts
from gravitational stellar core collapses were begun in
1973 by the Pennsylvania–Texas–Turin collaboration.
These were three small water Cherenkov facilities with
target masses of about 20 t each and with particle detec-
tion energy thresholds of 20 MeV: the first was at the
Homestake Mine at a depth of 4400 m [14], the second
was at a mine in Ohayo at a depth of 1800 m [15], and
the third was in the road tunnel under Mont Blanc at a
depth of 4270 m [16]. They did not work long, only a
few years. Although no expected burst of collapse neu-
trinos was detected, they made the first step on the long
way to 1987.

The Baksan underground scintillation telescope
(Northern Caucasus, Russia) [17], the LSD scintillation
facility under Mont Blanc (Italy) [18], the scintillation
detector at the salt mine in the town of Artemovsk
(Ukraine) [18], and the water Cherenkov detectors
Kamiokande II (Japan) [19] and IMB (USA) [20]
belong to the second generation of collapse-neutrino
detectors with target masses of several hundred tons,
which began their operation in 1977–1980. The last two
002 MAIK “Nauka/Interperiodica”
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detectors were specially designed to search for proton
decays, but they proved to be incapable of recording
collapse neutrinos.

Before 1987, the theoretical models for the late evo-
lutionary stages of massive stars were one-dimensional
calculations of spherically symmetric nonmagnetic
nonrotating configurations. The basic neutrino-radia-
tion parameters expected during the gravitational core
collapse of a massive star and the cooling of a newborn
star were formulated: the total neutrino-radiation
energy is (2–5) × 1053 erg, the mean electron-neutrino
energy is 8–12 MeV, the fraction of electron antineutri-
nos in the total radiation is 0.16–0.25, and the burst
duration is 10–20 s [21–24].

The recording of a neutrino signal from a type-II
supernova exploded in the Large Magellanic Cloud, a
neighboring galaxy, by three facilities, Kamiokande II
[25], IMB [26], and the Baksan telescope [27], on Feb-
ruary 23, 1987, first confirmed the basic ideas of the
general theoretical pattern of gravitational collapse
with the formation of a neutron star. At the same time,
however, it raised many questions both for theory and
for experiment.

Observations of the expanding envelope of the
supernova remnant show that the explosion was asym-
metric, with an unusual shape of the remnant, with mat-
ter mixing [28, 29], with an as yet undiscovered pulsar
[30] or with a candidate for a pulsar with unusual prop-
erties [31, 32]. All of this led to rapid progress in the
theoretical modeling of processes inside stars and in
understanding the many processes in core collapse and
in the stellar envelope, as well as to a complication of
the collapse pattern [33–35], particularly when rotation
and strong magnetic fields are included in the calcula-
tions [36]. However, not all of the questions have been
answered as yet. In particular, the stellar-envelope ejec-
tion mechanism and, what is important for experiment-
ers, the complete temporal structure of the neutrino
luminosity are still problems to be solved. In addition,
the general-relativity [37] and weak-magnetism [38]
effects, which have not yet been included in the calcu-
lations and which may lead to a higher neutrino lumi-
nosity, as well as a possible nonzero neutrino mass,
which would cause the neutrino spectra to change [39],
are being discussed.

The development of methods for analyzing experi-
mental data with small statistics and using them to
study the neutrino signals recorded on February 23,
1987, by the three facilities also led us to conclude that
the neutrino radiation has a more complex temporal
structure [40].

An important lesson drawn from the history of
experimental observation of the neutrino signal from
SN 1987A is that the facilities capable of recording col-
lapse neutrinos improved and adjusted their physical
parameters and are combined into a single network,
SNEWS (SuperNova Early Warning System), to form a
coincidence trigger for their signals (when they appear)
JOURNAL OF EXPERIMENTAL 
that will notify observatories of other types of radiation
of the beginning of supernova observations [41].

In addition, it became clear that detectors with an
even larger target mass sensitive to all types of neutrino
are required to reliably and completely record the
expected Galactic neutrino burst. This is how the third-
generation neutrino detectors with a characteristic tar-
get mass of about 1 kt or higher and with low event
detection energy thresholds (about 5 MeV) emerged.
When a Galactic burst of collapse neutrinos occurs, the
most powerful of these detectors will record over
8500 neutrinos of all types (SuperKamiokande, the tar-
get mass is 32 kt of water) [42], about 1000 neutrinos
of all types in the SNO detector with heavy and light
water (the total target mass is 2.4 kt) [43], and over
350 neutrinos of all types in the LVD scintillation
detector [44]. Apart from the long-operating LSD [18]
and MACRO [35] scintillation facilities, which will
also record about 100 or more Galactic neutrinos each,
the Amanda facility in the ice at the South Pole in Ant-
arctica [46] was included in the network of collapse-
neutrino observations in 1997. A number of new detec-
tors are also prepared to be launched or are being
designed [47].

Thus, of particular importance is the so unexpected
phenomenon of a type-II or, possibly, type-Ib/c super-
nova [48] in our Galaxy. At least seven neutrino detec-
tors, one of which is the Baksan underground scintilla-
tion telescope, were prepared for its recording.

2. THE BAKSAN UNDERGROUND 
SCINTILLATION TELESCOPE

The Baksan underground scintillation telescope is
an instrument for a broad range of scientific research,
with one of its experiments being the search for neu-
trino bursts from supernova explosions. The telescope
is located in the Northern Caucasus, at the foot of the
Mount Elbrus, in the tunnel under the Andyrchi Moun-
tain at a depth of 850 m. A general view of the telescope
is schematically shown in Fig. 1, and the facility is
described in detail in [49]. Here, we briefly recall its
basic parameters.

The telescope consists of 3150 standard detectors.
These detectors form a closed configuration with two
internal layers that comprise four vertical planes and
four horizontal planes. Each standard detector is 70 ×
70 × 30 cm3 in size, is filled with an organic CnH2n + 2
(n ≈ 9) scintillator, and is viewed by one photomulti-
plier with a photocathode diameter of 15 cm. The total
target mass is 330 t, and the target mass enclosed in the
three internal (starting from the lower horizontal plane)
layers is 130 t (1200 standard detectors). The charged-
particle detection energy thresholds are 8 and 10 MeV
for the horizontal and vertical planes, respectively. The
energy reference for standard-detector measurements is
the amplitude of the most probable energy release when
cosmic-ray muons pass through it (50 MeV). Accord-
AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002
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ingly, the detector thresholds are given in fractions of
the amplitude of this energy release.

An intense burst of neutrinos of all types is expected
during a type-II supernova explosion. However, the vast
majority of the events recorded with the Baksan tele-
scope will be produced in inverse beta-decay reactions,

The contribution from the remaining types of neutrinos
to the total recorded signal will be minor [49].

Since the telescope is located at a relatively small
depth, a special event-selection method is used to sig-
nificantly reduce the background from the cosmic-ray
muons that cross the facility in our experiment. This
method is based on an enormous energy difference
between the muons and the positrons formed from col-
lapse electron antineutrinos. Passing through the tele-
scope, the muons leave a track from several triggered
detectors, while the positrons formed in a particular
detector will lose all of their energy almost entirely in
this detector. Thus, the main event-selection criterion in
our program, one and only one detector from 3150,
implies the selection of single standard-detector trig-
gerings; i.e., at the program marker, data on the state of
all devices in the facility at the triggering time of one
and only one detector in it is written to the online com-
puter memory and then to storage.

As a result, the neutrino signal from a supernova
explosion on the facility will appear as a series of
events from singly triggered detectors during the neu-
trino burst.

The count rate from single background events, the
statistical clumps of which can imitate the expected sig-
nal, was not constant with time at the beginning of the
experiment on the telescope, because operations were
continuously performed to remove one or another back-
ground source, which caused a continuous reduction in
the total count rate of single events. Figure 2 shows
time variations in the yearly mean count rate of single
detector triggerings summed over the three internal
planes (the lower and the next two planes in Fig. 1) in
which 130 t of scintillator are contained in 1200 detec-
tors. The data from this part of the facility, i.e., the total
number of single triggerings within a given time inter-
val, act as a trigger in the offline analysis of information
from the telescope: when an unusual signal was
detected in this part of the telescope (i.e., when the
number of events was larger than a given number),
information from the entire facility was analyzed
offline.

Figure 2 also indicates the time intervals when the
particle detection energy threshold on the telescope was
reduced. As we see from this figure, the background
after 1985, when the main operations to remove the
strongest noise were finished, was virtually constant
within a certain detection energy threshold. Its subse-
quent modest reduction resulted from the continuous

νe p n e+.+ +
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operations to improve the physical parameters of the
facility.

The time when the explosion of SN 1987A occurred
is shown in the same figure.

If the core of a massive star collapses at the Galactic
center to form a neutron star, then one might expect
over 50 events on the telescope from the interactions of
electron antineutrinos in the 130-t scintillator or over
100 events in the entire telescope. The current informa-
tion is analyzed by the method of a 20-s-long time
interval sliding from event to event with the total
threshold number of events in the signal equal to 5. For
detection of a signal with a given or larger number of
events, 40 rather than 20 s of information with complete
data on each event (coordinates on the telescope, time,
energy amplitude, the number of detector triggerings in
the signal over the current day, and photomultiplier-
pulse duration) is analyzed. A signal would be consid-
ered to be a serious candidate for collapse detection if

Photo-

16.8 m

11
 m

Low-radioactivity concrete

multiplier

Fig. 1. A schematic view of the Baksan underground scin-
tillation telescope.
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Fig. 2. Time variations in the yearly mean count rate of sin-
gle triggerings of 1200 detectors in the three telescope inter-
nal planes (the target mass is 130 t). The particle detection
energy thresholds in different years are shown. The arrow
indicates the explosion of SN 1987A on February 23, 1987.
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nine or more events were observed for 20 s in the tele-
scope target mass of 130 t (internal layers). No such
signal was detected over the entire period of observa-
tions with the telescope.

The telescope was constructed late in 1977. How-
ever, the physical experiments began later, because it
took time for us to figure out how the instrument
behaved. The facility has been operating almost contin-
uously under the program of search for collapse neutri-
nos (the program was called Collapse) since the mid-
1980. One maintenance day per week, when the neces-
sary repair and maintenance operations are performed
on the facility, and the emergency situations of seasonal
power cuts or online computer replacement constitute
an exception. So, the total time of Galactic observation
accounts for 90% of the calendar time.

Thus, information from the telescope was accumu-
lated under the program of search for collapse neutri-
nos, but there was no expected neutrino signal. The his-
tory of detecting the neutrino signal from SN 1987A in
the Baksan data and the related dramatic searches for
the cause of the then unexpected clock error have long
been published [28, 49]. A new clock with a self-con-
tained power supply has been in operation since Febru-
ary 1988, providing a 1-ms accuracy of determining the
absolute time.

3. RESULTS OF THE OBSERVATIONS

When the Baksan experiment to search for collapse
neutrinos began, the frequency of expected signals was
of great importance. Observations of historical super-
novae in our Galaxy, supernovae in other galaxies, stel-
lar statistics, pulsar statistics, and even the thermolumi-
nescence of samples of bottom sediments were used in
the literature to determine the time interval between
events in which supernovae, neutron stars, or black
holes were expected to be formed.

At that time, the most optimistic estimate of this
interval was obtained from an analysis based on obser-
vations of 149 pulsars, which predicted the birth of one
pulsar approximately every six years [50]. Although a
later reanalysis of the pulsar birth rate yielded a differ-
ent estimate of this interval, about 30 years [51], we still
hoped for a positive result at the beginning of our
experiment, especially since the last supernova was
observed on Earth 400 years ago.

Another optimistic result was obtained by analyzing
stellar statistics: when calculating the total star death
rate with the ultimate formation of pulsars, black holes,
supernovae, and any other possibilities, except white
dwarfs, the interval between such events was found to

be  [52]. The estimates for the rate of type-II super-
novae in our Galaxy by other authors give a large
spread in the predictions of its mean value. This appears
to be attributable to a large number of assumptions used
and approximations, for example, about the luminosity
of the Galaxy [53], its morphological type [54], the ini-

9 3–
+2
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tial mass function [55], the fraction of detected pulsars
[56], and many others [57–60].

Subsequently, the relationships between supernova
statistics and galactic evolution were analyzed and it
was concluded that the supernova rates were functions
of cosmic time [61, 62]. In addition, a study of the light
curves for SNe Ib/c showed them to be similar to the
light curves for type-II supernovae [48], led one to con-
clude that the SN Ib/c progenitor was a massive star,
and suggested that neutron stars could also be formed
during their explosions.

Recent estimates of the supernova rate from stellar
statistics show that the following number of such events

may be expected in our Galaxy [63, 64]:  for SNe Ib/c

and  for SNe II in 1000 years. Recently, however,
the same authors improved these Galactic values [65]:

 for SNe II + Ib/c in 100 years or about one
supernova with the formation of a neutron star every
50 years. The latter value is almost equal to this interval
previously estimated to be 10–50 years [66] when the
above possible sources of discrepancies are taken into
account. In general, it is clear that the sought-for rate
estimated from stellar statistics lies within the range
10−2–3 × 10–2 per year or with a mean estimate of the

interval between supernovae equal to  years [67].

In recent years, it has been found from the statistics
of pulsars that they are formed, on average, once every
60–330 years [68], although it is still unclear in what
systems the pulsars of a particular class are born [69,
70].

Thus, recent estimates for the rates of supernova
explosions and pulsar formation lead us to conclude
that this event is rare and that the spread in estimates is
large. Therefore, it becomes all the more necessary to
obtain the result from direct observations of these
events with neutrino detectors.

The Baksan telescope has been observing the Gal-
axy since June 30, 1980. Because of all the operations
performed to increase its sensitivity to the expected
burst of collapse neutrinos, the telescope views the
entire Galaxy [49]. The calendar time of the Collapse
experiment is 19.75 years, while the total live observing
time is 17.6 years. No signal, except SN 1987A in the
Large Magellanic Cloud, that could be reliably inter-
preted as a burst of Galactic electron antineutrinos was
detected with the facility over this period.

An upper bound on the mean frequency of gravita-
tional collapses in the Galaxy can be obtained from the
observing time. If we denote the mean frequency of
collapses by fcollapse and if we assume that, first, their
frequency (as rare events) obeys the Poisson law and,
second, the probability of missing the signal is less
than 10% at 90% confidence, then we derive the fol-
lowing inequality for the total live observing time T =
17.6 years:

2 1–
+1

12 6–
+6

1.5 1.0–
+1.0

47 12–
+12
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whose solution for fcollapse yields a bound on the fre-
quency of collapses in the Galaxy,

fcollapse (90% confidence) < 0.13 yr–1.

Hence, the mean time interval ∆Tcollapse between the
expected Galactic events exceeds

∆Tcollapse(90% confidence) > 7.7 years.

Thus, the first twenty years on the path to detecting
the first neutrino burst in our Galaxy have been tra-
versed, although this may prove to be only a small part
of the required path.
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Abstract—A tactoid phase is obtained, which is an anisotropic mesophase dispersed in an anisotropic solution.
A model is constructed that describes the shape of anisotropic regions, i.e., tactoids. It is demonstrated that the
prolate shape of tactoids is caused by the competition between the elastic energy of the nematic phase and the
surface energy. This model is used to find the ratio of elastic constants K3/K1 from the experimental data. It is
experimentally found that a magnetic field orients and stretches tactoids. An explanation of this phenomenon
is suggested. © 2002 MAIK “Nauka/Interperiodica”.
Thermotropic and lyotropic liquid crystals are well
known at present [1–3]. The former of these crystals are
chemically pure substances consisting of rod-shaped or
disk-shaped molecules. The interaction between such
molecules results in the orientational order of their pre-
ferred axes in the absence of long-range three-dimen-
sional translation order. The lyotropic liquid crystals
are formed when some substances are dissolved in cer-
tain solvents [2–4]. In this case, anisometric structure
elements are provided by aggregates of molecules.
Their size and shape depend on the concentration and
temperature. This brings about a wide variety of liquid-
crystal phases and phase transitions between them. By the
chemical classification, the lyotropic liquid crystals
include a class of inorganic liquid crystals. The latter crys-
tals arise in dispersions of inorganic substances [5, 6].

In recent years, investigations of the molecular
structure of such liquid crystals have been developing
[5–8]. However, the macroscopic properties character-
istic of liquid crystals, such as the elastic constants and
coefficients of viscosity [1], have hardly been investi-
gated. Note two papers [9, 10] which deal with the
problem of elastic constants in the nematic phase of the
lyotropic inorganic liquid crystal of vanadium pentox-
ide (V2O5)–water. Generalova et al. [10] revealed for
the first time the effect of a magnetic field on the nem-
atic phase of this system and the emergence of magne-
tohydrodynamic domains which are typical of other
types of liquid crystals as well [11, 12]. The data on the
Freedericksz transition were used to obtain the value of
splay elastic constant K1 = 4 × 10–7 dyn [10]. In order
of magnitude, it agrees with the analogous data for ther-
motropic and other types of lyotropic liquid crystals.
No fundamental difference between them is observed.

However, a phenomenon absent from liquid crystals
of other types is observed in lyotropic inorganic liquid
crystals. This phenomenon was revealed in the 1920s
1063-7761/02/9501- $22.00 © 20057
by Zocher and consists in that, under conditions of low
concentration (~1% by mass) of inorganic substances,
an isotropic phase is observed containing anisotropic
droplets of prolate shape [5, 6, 13]. Zocher referred to
such a two-phase system preceding the nematic phase
as a tactoid phase, and to the anisotropic droplets as tac-
toids.

The fact of existence of two-phase systems in the
form of dispersion is well known, for example, liquid
crystal droplets in an isotropic matrix [14] and droplets
of liquid-crystal phase coexisting with the isotropic
phase in the process of melting. In these cases, droplets
of different sizes have the shape of a sphere, which is
associated with the minimum of surface energy. On the
other hand, in the tactoid phase, the anisotropic droplets
are of prolate shape.

Until recently, the question of such a shape of tac-
toids remained open. We suggest an explanation of this
phenomenon. Comparison of the theoretical results
with the data of experiments involving the measure-
ment of tactoids of different volumes made it possible
to estimate the ratio of the splay and bend elastic con-
stants of the nematic phase of droplets. In addition, it
was experimentally observed that a magnetic field ori-
ents and stretches tactoids in its direction. An explana-
tion of this phenomenon is suggested.

A typical representative of lyotropic inorganic liq-
uid crystals is provided by sols of vanadium pentoxide
in water. They were prepared by the procedure
described by Biltz [15]. The texture of the tactoid phase
of such sols is given in Fig. 1. Against the dark back-
ground corresponding to the isotropic phase, one can
see anisotropic regions, i.e., tactoids. The basic facts
following from the observation of tactoids may be sum-
marized as follows.

1. We observed the coalescence of tactoids. The
stages of this process are given in Fig. 2. After coales-
002 MAIK “Nauka/Interperiodica”
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cence, the shape of the resultant tactoid remains spin-
dle-shaped. This is indicative of the fact that tactoids
are equilibrium droplets.

2. The tactoid boundaries are circular arcs (Fig. 1).

3. The texture of a tactoid varies during its rotation
between crossed polaroids (Fig. 3). This variation of the
texture indicates that the field of director on the tactoid

50 µm

A

P

Fig. 1. The texture of tactoid phase in a vanadium pentox-
ide–water system with the concentration of V2O5 of 1.1%
by mass. The cell thickness is 200 µm.

Fig. 2. The process of coalescence of tactoids.
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boundaries has a tangential orientation, and defects
such as boojums are located at the tactoid vertexes [14].

Based on these observations, it is assumed that a tac-
toid is a droplet of the nematic phase coexisting with
the isotropic phase. A model of its shape and director
field is given in Fig. 4. The tactoid boundary is the sur-
face of revolution of a circular arc of radius R about the
z axis. This choice of boundary is based on the experi-
mental data (Fig. 1). Observations indicate that, for tac-
toids of different sizes less than the measuring cell
thickness, the boundaries remain circular arcs.

We assume that the field of director n at each point
of a tactoid coincides with the unit vector eη of bispher-
ical coordinates (see Fig. 4) [16]. This choice of the
field of director satisfies the tangential boundary condi-
tions. A strong anchoring between the director and tac-
toid surface is presumed in this case. This assumption
is based on the fact that, in all problems in which the
cohesive energy W is included, the latter energy appears
in the dimensionless form of WV1/3/K, where V is the
tactoid volume and K is one of the elastic constants of
liquid crystal. Therefore, at least for large tactoids, the
condition of strong anchoring must be valid. With the
given choice of the field of director, the twist associated
with the elastic constant K2 is absent. This follows from
the form of tactoid textures (Fig. 3). In the presence of
twist of the field of director in droplets of thermotropic
nematic liquid crystals, the textures have a different
form [14].

So, the shape of a tactoid is defined by two parame-
ters, namely, R and α (Fig. 4). At α = π/2, a tactoid
transforms into a sphere. The tactoid free energy Φ is
made up of the elastic energy Φel of the nematic phase
and the surface energy Φs = σS, where σ is the surface
tension and S is the tactoid surface area. The expression
for free energy Φ may be written directly, proceeding
from the dimensional representation,

(1)

where K1 and K3 are the splay and bend elastic con-

stants, respectively [1, 17], and  and 
are dimensionless functions of the angle α associated
with these strains. The calculation of these functions is
given in Appendix I. Note that, on approaching the
point defects on the tactoid surface, i.e., boojums, the
elastic energy density diverges. However, its integra-
tion over the tactoid volume brings about a finite value.
The expression for the dimensionless function Φs(α) is

Φ K1RΦel
1( ) α( ) K3RΦel

3( ) α( ) σR2Φs α( ),+ +=

Φel
1( ) α( ) Φel

3( ) α( )
A
P

Fig. 3. The variation of the texture of a tactoid during its rotation between crossed polaroids.
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derived in calculating the tactoid surface area and has
the form

(2)

A tactoid of constant volume V takes such values of R
and α at which its total energy Φ is minimal. The func-
tion given by Eq. (1) contains two variables R and α
related by

(3)

where

is introduced.
We express R from Eq. (3) and substitute into Eq. (1)

to derive

(4)

where  = Φ/σV2/3 is the dimensionless energy,

Ψi(α) = /Ψ1/3 (i = 1, 3), the recurring index i here
and in what follows indicates summation, and Ψs(α) =
Φs(α)/Ψ2/3. The first two terms of formula (4) are
related to the elasticity of the nematic phase. They
increase with increasing angle α. The surface energy is
described by the function Ψs(α). It is universal and
decreases with increasing α. As a result of competition
between the elastic and surface terms in formula (4),
the minimum of free energy is attained at α < π/2; i.e.,
a nematic droplet will have a prolate shape. The posi-
tion of the minimum of free energy depends on the
dimensionless parameters Ki/σV1/3 (i = 1, 3). It follows
from formula (4) that an increase in the tactoid volume
causes a decrease in the elastic energy contribution.
Consequently, the shape of large tactoids must
approach spherical. By studying for extremum the free
energy given by Eq. (4), one can derive the formula for
the dependence of the tactoid curvature radius R0 on the
angle α,

(5)

where Ci = Ki/σ denotes the characteristic dimensions

of the problem and fi(α) = – /(Ψ1/3 ) denotes
increasing dimensionless functions of the angle α.
They have the form

Φs α( ) 4π αsin α αcos–( ).=

V R3Ψ α( ) const,= =

Ψ α( ) 2π αsin α αcos– αsin
3

3
-------------– 

 =

Φ̃
Ki

σV1/3
-------------Ψi α( ) Ψs α( ),+=

Φ̃
Φel

i( )

R0 Ci f i α( ),=

Ψi' Ψs'

f 1 α( )
α α 2α2 αcos αsin

2 αcos+–sin

α α α α αcossin+( ) 2 αsin
2

–[ ]cos
------------------------------------------------------------------------------------,=

f 3 α( )
α2 αsin

2
–( ) α 1 2 αcos

2
+( ) 3 α αcossin–[ ]

4 α α α α α αcossin+( ) 2 αsin
2

–[ ]cossin
---------------------------------------------------------------------------------------------------------.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
For α  0, we have f1  4 and f3  10α2. As
α  π/2, f1, 3  ∞. The graphs of these functions
are given in Fig. 5.

By measuring experimentally the correlation R0(α)
for tactoids of different volume and comparing it with
formula (5), one can obtain data on C1 and C3. For this
purpose, we selected a lyotropic inorganic liquid crys-
tal of V2O5–water. Its sols were prepared by the proce-
dure described by Biltz [15]. We observed the tactoid
phase in the range of concentration of V2O5 from 0.3 to
1.2% by mass. The system being investigated was fed
into plane-parallel glass capillaries with a thickness of
the order of 200 µm, which were hermetically sealed
with picein. The thickness of the capillaries was defined
by Teflon spacers and, prior to charging, was measured
by the interference method. Immediately after charg-
ing, the texture of substance in the capillaries was
anisotropic. We observed the separation of the texture
into the isotropic and anisotropic regions. Later on, the
anisotropic regions assumed the form of tactoids. In
doing so, their size distribution was observed.

z

y

x

0

α

R
eϕ

eξ

eη

40° 60° 80° 100°0 20°

α

α

80

60

40

20

f

f1

f3

Fig. 4. A model of tactoid.

Fig. 5. Graphs of the functions f1(α) and f3(α).
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In order to support the fact that the prolate shape of
tactoids is equilibrium, flows were mechanically
excited in the capillaries with the substance being
investigated. The tactoid boundaries were smeared, and
birefringence was induced in the isotropic phase due to
the flows. The texture as a whole became anisotropic. In
the course of time, the same process occurred as that
observed immediately after charging the substance into
the capillary. The anisotropic regions again assumed
the equilibrium shape of tactoids.

In order to let the system to come to equilibrium, all
measurements were performed a day after the sub-
stance was charged into the capillaries. The measure-
ments involved the use of an Axiolab Pol polarizing
microscope by Zeiss. The image was displayed on a
monitor via a videocamera. The tactoid dimensions
were determined with the aid of a Linkam VTO 232

80

60

40

20

0
0.4 0.6 0.8 1.0 1.2

100

120

0.2
α, rad

R0, µm

Fig. 6. The correlation R0(α) at the concentration of V2O5
of 0.33% by mass. The values of C1 = 4.1 ± 0.6 µm and
C3 = 92.1 ± 8.6 µm.

P
A H

Fig. 7. The orientation of tactoids in a magnetic field.
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adapter. Only those tactoids were measured whose
transverse dimensions were less than the cell thickness.

The measurements gave the values of the parame-
ters R0 and α for tactoids of different volumes. Figure 6
shows a typical experimental dependence R0(α). The
method of least squares and the function given by
Eq. (5) were used to calculate the coefficients C1 and
C3. The solid line in Fig. 6 gives the approximating
curve. The C3/C1 ratio is equal to the K3/K1 ratio. For all
of the investigated samples, C1 ~ 1 µm, C3 ~ 10 to
100 µm, and K3/K1 ~ 10 to 100. The obtained values of
K3/K1 are very high compared with those in the case of
thermotropic and organic lyotropic liquid crystals. Usu-
ally, K3/K1 does not exceed three [1, 18]. If we use the
values of K1 = 4 × 10–7 dyn (obtained from the data on
the Freedericksz transition in the nematic phase of the
system being investigated [10]) and C1 ~ 1 µm, we can
estimate the surface tension σ ~ 10–3 erg/cm2 at the tac-
toid boundary. As a result of such low values of surface
tension, macroscopic tactoids are prolate.

It is known that a magnetic field orients tactoids in
its direction [13] (Fig. 7). We have further found that a
magnetic field stretches tactoids. This is most evident in
the case of large tactoids (Fig. 8). In order to explain
this phenomenon, one must include in expression (1)
for the free energy Φ the magnetic term arising as a
result of the effect of magnetic field H on the field of
director n. This term is associated with the anisotropy
of magnetic susceptibility χa. The magnetic energy
density Fm has the form [1, 17]

(6)

At χa > 0, the magnetic field tends to orient the
director in its direction. The integration of expression
(6) over the tactoid volume enables one to calculate the
magnetic energy (see Appendix II). The result may be
written directly, proceeding from the dimensional rep-
resentation. It has the form

(7)

where Φm(α) is a dimensionless function of the angle α
(see Appendix II). We add formula (7) to the right-hand
part of expression (1) and, as previously, eliminate R to
derive

(8)

where Ψm(α) = Φm(α)/Ψ is a decreasing dimensionless
function of the angle α.

It follows from formula (8) that, at low values of V,
the magnetic term may be ignored. In this case, how-
ever, elastic terms are important. Therefore, small tac-
toids are stretched owing to the competition between
the elastic and surface forces. For large tactoids (high

Fm

χa

2
----- n H⋅( )2.–=

χaH2R3Φm α( ),–

Φ̃
Ki

σV1/3
-------------Ψi α( ) Ψs α( )

χaH2V1/3

σ
---------------------Ψm α( ),–+=
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50 µm 50 µm

H = 0 H = 10 kOe

Fig. 8. A magnetic field stretches large tactoids.
values of V), on the contrary, the elastic terms are small,
and the competition arises between the magnetic and
surface terms in expression (8). This brings about the
prolate shape of large tactoids.

For quantitative solution of the problem, one must

study expression (8) of the energy  for an extremum
at constant volume V. This leads to a quadratic equation
relative to the tactoid curvature radius R,

(9)

Φ̃

R2 σ
χaH2
------------

Ψs'

Ψm' Ψ1/3
------------------ R–

Ki

χaH2
------------

Ψi'

Ψm' Ψ2/3
------------------– 0.=
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The solution to this equation has two roots R± which are

(10)

If we use formula (5) for R0(α), i.e., the curvature
radius of equilibrium tactoid in the absence of a mag-
netic field, Eq. (10) may be conveniently written as

(11)

where

R±
σ

2χaH2
---------------

Ψs'

Ψm' Ψ1/3
------------------ 1 1

4KiχaH2

σ2
---------------------

Ψi'Ψm'

Ψs'( )2
--------------+± .=

R±
σ

2χaH2
--------------- 1

f α( )
----------- 1 1 – 

4χaH2

σ
---------------R0 α( ) f α( )± ,=
f α( )
Ψm' Ψ1/3

Ψs'
----------------- αsin

2 α 6 αsin
2

+( )cos 6α2 αcos
3 α α 12 11 αsin

2
–( )sin–+

24 α 2 αsin
2 α α α αcossin+( )–[ ]cos

------------------------------------------------------------------------------------------------------------------------------------------------= =
is an increasing function of the angle α. At α  0,
f  0. At α ! 1, the radical in formula (11) may be
expanded into a series. Then, we have

If α > αc found from the solution to the equation

real solutions of R± disappear. This corresponds to the
situation in which even large droplets are prolate due to
the magnetic field and, for these droplets, α < αc. Both
values of R± in formula (11) correspond to the mini-
mum of free energy given by Eq. (8). For one and the
same value of α, a small tactoid corresponds to R–, and

R– R0 α( ),≈

R+
σ

χaH2
------------ 1

f α( )
-----------.≈

4χaH2

σ
---------------R0 α c( ) f α c( ) 1,=
a larger tactoid corresponds to R+. Graphs of function
(11) for σ = 10–3 erg/cm2, χa = 10–9 [10], C1 = 4 µm,
C3 = 40 µm, and for different values of the magnetic
field H are given in Fig. 9. The two-valuedness of this
function is associated with the fact that small tactoids
are stretched due to elastic forces, and large tactoids,
due to magnetic forces.

The ratios K3/K1 ~ 10 obtained by us agree with
analogous data for another lyotropic nematic system of
tobacco mosaic virus (TMV)–water. For this system, a
study into magnetohydrodynamic domains produced a
value of K3/K1 = 8.8 [19]. Note that, although the
TMV–water system does not belong to lyotropic inor-
ganic liquid crystals, it exhibits the tactoid phase as
well [20]. In addition, the ratio K3/K1 ~ 10 was mea-
sured in the nematic phase N1 of the lyotropic inorganic
liquid crystal of a tetrapalladium organyl–pentadecane
system [21]. These measurements were based on the
SICS      Vol. 95      No. 1      2002
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investigation of the Freedericksz transition. The high
values of K3/K1 are apparently associated with the high
values of the ratio of length L to diameter D of structure
elements. For example, for TMV, L/D ≈ 17 [19]; at
the same time, for a typical representative of thermo-
tropic liquid crystals such as paraazoxy anisole (PAA),
L/D ≈ 4 [1].

The high values of ratio K3/K1 > 10 obtained by us
may be attributed to the fact that a strong anchoring
between the director and boundary is assumed in the
tactoid model. However, as is demonstrated above, this
condition may be violated in the case of small tactoids.
Therefore, for processing such experimental results, the
model must be refined with due regard for the cohesive
energy.

The suggested explanation of the prolate shape of
tactoids is based on the competition between the elastic
energy of the nematic phase and the surface energy.
This is possible on condition of strong anchoring
between the director and boundary. In this case, the sur-
face tension σ ~ 10–3 erg/cm2 is low. Usually, in the case
of thermotropic liquid crystals, the situation is oppo-
site: σ ~ 10 erg/cm2 and W ~ 10–2 erg/cm2 [22]. There-
fore, no prolate shape of droplets is observed in these
crystals. In order to compare W and σ, one needs addi-
tional experimental data on the value of cohesive
energy in the system being investigated. No such data
are available at present; however, even now one can
expect that W ≥ σ. Apparently, this points to one of the
specific features of lyotropic inorganic liquid crystals.

APPENDIX I

The expression for the elastic energy density Fel of
the nematic phase has the form [1, 17]

(I.1)
Fel = 

K1

2
------ divn( )2 K2

2
------ n curl n⋅( )2 K3

2
------ n curl n×( )2,+ +

123
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Fig. 9. The correlation R0(α) for different values of the
magnetic field intensity: (1) 0, (2) 10, (3) 20 kOe; C1 =

4 µm, C3 = 40 µm, σ = 10–3 erg, χa = 10–9.
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where K1, K2, and K3 are the splay, twist, and bend elas-
tic constants, respectively, and n is the director. The
unit vector n coincides with the unit vector eη in the
bispherical coordinates ξ, η, ϕ. In these coordinates,
n = (0, 1, 0). The bispherical coordinates are related to
the Cartesian coordinates x, y, z by [16]

where a = Rsinα is the transformation parameter
(Fig. 4). The elastic energy Φel of the nematic phase is
obtained by integration of expression (I.1) over the tac-
toid volume. In the bispherical coordinates, it has the
form

(I.2)

We integrate Eq. (I.2) to derive

(I.3)

Comparison of Eq. (I.3) with the first two terms of for-
mula (1) enables one to write

APPENDIX II

Expression (6) for the magnetic energy density Fm

depends on (n · H)2. If H coincides with the tactoid axis

Z (Fig. 4), then (n · H)2 = . For the field of director
n, we can write n = eη/eη, where

i, j, and k are unit vectors of Cartesian coordinates; and

eη is the magnitude of eη. Then, for , we have

(II.1)

In order to calculate the magnetic energy Φm, we inte-
grate expression (6) in view of (II.1) over the tactoid

x
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volume in bispherical coordinates. This integral has the
form

(II.2)

The calculation of (II.2) results in

(II.3)

Comparison of Eq. (II.3) with formula (7) enables one
to write
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Abstract—The basic phase diagram of a system with a repulsive step interaction potential is constructed on the
basis of simple physical arguments by using the properties of a system of hard spheres as the starting point.
Various versions of the behavior of the melting curve are discussed. The possibility of a phase transition in the
liquid phase is indicated. © 2002 MAIK “Nauka/Interperiodica”.
We will refer to a system of particles interacting
through a step potential of the form (Fig. 1b)

(1)

as the system of “collapsing” hard spheres. Systems of
this type are studied in connection with anomalous melt-
ing curves, isomorphic phase transitions, transformations
in colloidal systems, etc. (see, for example, [1–3]).

Let us consider basic properties of a standard system
of hard spheres, i.e., a system with an interaction of the
form (Fig. 1a)

(2)

The system of hard spheres is described by three
parameters: temperature T and two characteristic
lengths σ and l, viz., the hard sphere diameter and the
mean distance between particles, which is equal to
(V/N)1/3 (V is the volume of the system and N is the
number of particles). These quantities make it possible
to obtain two dimensionless combinations: PV0/NkT

and V/V0 (P is the pressure and V0 = Nσ3/ ), which
are obviously connected through the dependence

(3)

Melting takes place in the system for l/σ = const.
Accordingly, relation (3) leads to the equation for the
melting curve

(4)

Φ r( ) ∞, 0 r σ,<≤=

Φ r( ) ε, σ r σ',<≤=

Φ r( ) 0, σ' r,≤=

Φ r( ) ∞, 0 r σ,<≤=

Φ r( ) 0, σ r.≤=

2

PV0/NkT f V /V0( ).=

P
c

σ3
-----T ,=
1063-7761/02/9501- $22.00 © 20064
where c ≈ 12 [4]. It should be emphasized that the
phase-equilibrium curves for systems of hard particles
are always straight lines emerging from the origin.

Let us now analyze a collapsing system. It can be
seen from Fig. 1b that a system of collapsing hard
spheres is characterized by three lengths, l = (V/N)1/3, σ,
and σ' and two energy parameters, viz., ε and T (T is the
temperature).

In the two limiting cases, T * ε, l > σ', and T & ε, the
system apparently behaves as a simple system of hard
spheres of diameter σ' or σ. The low-temperature and
high-temperature branches of the melting curve are
described by expressions of type (4). A transition
between the two branches of the melting curve occurs
at T ≈ ε; in this case, we can expect the emergence of a
more or less strong anomaly on the melting curve up to
a temperature peak (or a triple point associated with a
phase transition in the liquid) depending on the ratio
σ/σ'. The equation for the melting curve of the collaps-
ing system can be written in the form of the superposi-
tion

(5)

or

(6)

where α = f(ε/T), β = ϕ(ε/T), and α + β = 1; by defini-
tion, α  1 and β  0 for ε/T  ∞, while α 
0 and β  1 for ε/T  0. However, the peculiarities
of the transition region are mainly determined by the
behavior of temperature-dependent coefficients α and β
for ε/T ≈ 1 and by the magnitude of the ratio σ'/σ. Fig-
ure 2 shows different scenarios of the behavior of the
melting curve for a collapsing system. It should be

P α cT

σ'3
------ βcT

σ3
------,+=

P
cT

σ'3
------ α βσ'3

σ3
------+ 

  ,=
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emphasized that the features of the melting curve as
well as a number of other specific properties of a col-
lapsing system are determined by exciting the particles
to a state with energy ≥ε and with diameter σ upon an
increase in temperature and pressure in accordance
with the interaction potential (see Fig. 1b). This process
occurring in a condensed system is correlated to a cer-
tain extent, which, in turn, may lead to its localization
in a certain region in the P–V–T space.1

The versions of the behavior of the melting curve
presented in Fig. 2 correspond to various extents of cor-
relation upon a transition of particle to a state with
energy ≥ε. The phase transition in the liquid (line 9 in
Fig. 2) and melting lines 8 correspond to the extreme
correlation case, while a weaker correlation leads to
curves of the type 5, 6, and 7 (see Fig. 2).

It should be noted that the phase state of a substance
is significant for a transition of particles to an excited
state. In particular, the inversion of the density jump,
which necessarily takes place in the case of a melting
curve 5 with a peak (Fig. 2), indicates that a transition
of particles to a state with energy ≥ε in the liquid must
occur earlier (at a lower pressure) than in the crystal phase.

The situation with relatively weak anomalies on the
melting curve of type 6 or 7 (see Fig. 2) takes place for
∆σ/σ < 0.1 (here, ∆σ = σ' – σ) [3]. The peak on the
melting curve 5 (Fig. 2) apparently occurs for
∆σ/σ ≥ 0.1 [1, 2]. The scenario with the first-order
phase transition in the liquid (line 8 in Fig. 2) is hardly
probable for this type of system, although, according to
Franzese et al. [5], this scenario is realized in a collaps-
ing system with attraction. However, generally speak-
ing, the correlation effects must increase with the ratio
∆σ/σ upon a transition of the system to the excited state,
and it cannot be ruled out that a detailed analysis of the liq-
uid phase of the collapsing system for ∆σ/σ ≥ 1.5 might
lead to new results.2

It should be remarked further that the form of the
interaction potential in a collapsing system suggests
that an isostructural phase transition may exists in the
crystal phase, which is indeed observed in computer
experiments3 [2, 3]. Let us derive the expression for the
pressure corresponding to the expected transition at
T = 0.

1 In a rarefied system, i.e., for l * σ' (in the case of infrequent pair
collisions), this process does not cause strong changes and leads
to an evolutionary variation of the effective diameter of particles.
In a condensed system (l ≈ σ'), multiple collisions make possible
the formation of clusters consisting of particles of diameter σ.
The volume effect emerging in this case facilitates the cluster
growth, which may ultimately induce a phase transition in the
system.

2 It should be noted in this connection that all (although scarce)
results of investigations [6, 7] indicate that phase transitions in
liquids are accompanied by considerable changes in the volume
(~50%).

3 Here and in the literature, the term “isostructural phase transi-
tion” is applied to a first-order phase transition which is not
accompanied by a change in the crystal lattice symmetry.
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From the equality of the chemical potentials at a
phase transition, we have

(7)

where V1 = N(σ')3/ , V2 = Nσ3/ , E1 = 0, and E2 =
6Nε. Equation (7) leads to the following expression for
the transition pressure:

(8)

E1 PV1+ E2 PV2,+=

2 2

P
8.48ε

∆V /V1( ) σ'( )3
---------------------------------.=

(a)

(b)

r

r

î(r)

σ

σ'

ε

í

crystal II

crystal I

liquid

1
2

3
4

5

6 7

8

9
10

11

ε

ê

Fig. 1. (a) Potential of hard spheres and (b) step potential.

Fig. 2. Phase diagram of a system of collapsing hard
spheres: curves 1 and 2 are the melting curves correspond-
ing to the equations P = cT/σ'3 and P = cT/σ3; line 3 corre-
sponds to an isostructural phase transition and may termi-
nate at the critical point 4; curves 5–8 describe the versions
of the behavior of the melting curve in the transition region;
curve 9 describes a possible first-order phase transition in
the liquid phase (it can be seen that line 9 and two segments
of the melting line 8 form the triple point 10); 11 is the triple
point emerging as a result of intersection of the line of iso-
structural phase transition with the melting curve; if the iso-
structural transition terminates at the critical point, no triple
point is formed.
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It is interesting to compare the value of this quantity
with a certain average pressure corresponding to the
transition between the two branches of the melting
curve. It was assumed above that this transition occurs
at temperature T ≈ ε. Substituting this estimate into
Eq. (4) and replacing σ by σ', we obtain the following
estimate for the transition pressure:

(9)

For the sake of comparison, we substitute into Eq. (8)
the value of the quantity ∆V/V ≈ 0.20 corresponding to
the isostructural transition in cerium [8]. This gives

(10)

It should be emphasized that the pressure correspond-
ing to the phase transition in the solid phase for reason-
able values of the volume jump considerably exceeds
estimate (9) for the pressure corresponding to the tran-
sition between the two branches of the melting curve.
Although this is in qualitative agreement with our pre-
dictions, such a strong discrepancy between the numer-
ical factors in formulas (9) and (10) probably indicates
that the estimate T ≈ ε is not quite accurate.

Thus, using the properties of the system of hard
spheres, we have proved that the phase diagram of a
collapsing system or a system of particles interacting
through a repulsive step potential possesses or may pos-

P
12

σ'( )3
-----------ε.≈

P
42

σ'( )3
-----------ε.≈
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sess specific features the most remarkable of which is
the anomalous behavior of the melting curve. The melt-
ing point of such a system may pass through a peak
upon a change in pressure. First-order phase transitions
in the liquid and solid phases are also expected features
of the system, although the phase transition in the liquid
may turn out to be unobservable (i.e., may correspond
to a metastable region).
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Abstract—Within the field formulation of the renormalization group (RG) method, an expression for the Fou-
rier transform of the integral kernel of the effective conductivity of a randomly heterogeneous porous medium
is obtained. In the large-scale limit, the result obtained corresponds to the well-known Landau–Lifshits–
Matheron formula. The validity of the technical tricks applied to the calculations performed within the RG
approach is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

To describe a fluid flow through a porous medium,
one usually applies Darcy’s law, which is obtained by
averaging over microscales corresponding to the char-
acteristic sizes of the pores. Darcy’s law establishes a
relation between the seepage velocity v i(r) and the
pressure gradient ∂i p(r) and for an isotropic medium is
expressed as

(1.1)

where κ is the conductivity of the porous medium.

In a randomly heterogeneous medium, the conduc-
tivity is a certain random function of coordinates, κ =
κ(r); henceforth, we assume that the statistics of real-
izations of the field κ(r) are specified. In practice, the
problem of interest is the relation between the seepage
velocity and the pressure gradient, both averaged over
the ensemble of realizations. In the general case, this
relation is nonlocal and is expressed as

(1.2)

and a task of the theory is to calculate the integral ker-
nel K(r, r') on the basis of the known statistics of real-
izations of the random field κ(r).

In a statistically homogeneous system, the kernel
K(r, r') is a function of the difference of coordinates r –
r' and is appreciably different from zero only in a cer-
tain region |r – r' | ≤ l, where l is the correlation length.
If the characteristic scale in which the mean values of
the seepage velocity and pressure gradient vary signifi-
cantly is small as compared with the correlation length
(the large-scale limit), then one can assume that

(1.3)

v i r( ) κ∂ i p r( ),–=

v i r( )〈 〉 r'K r r',( ) ∂i p r'( )〈 〉 ,d∫–=

K r r'–( ) Keffδ r r'–( ), Keff≈ rK r( ).d∫=
1063-7761/02/9501- $22.00 © 20067
In this case, the problem reduces to the calculation of
Keff, the so-called effective conductivity of a randomly
heterogeneous medium.

Consider an infinite medium with a given determin-
istic (regular) density of fluid sources ρ(r). From the
incompressibility condition, we obtain the equation

(1.4)

which, with regard to Darcy’s law (1.1), leads to the fol-
lowing differential equation for pressure:

(1.5)

Thus, to calculate the effective conductivity, one has
to solve first the stochastic differential equation for
pressure (1.5); then, using Darcy’s law, determine the
seepage velocity; and finally, applying the averaging
procedure over the ensemble of conductivity field real-
izations, find the mean values of the seepage velocity
and the pressure gradient. This enables one to calculate
the effective conductivity.

To solve the stochastic differential equation (1.5)
approximately, one usually applies the method of per-
turbation theory. In this case, a solution is constructed
as a series in powers of conductivity fluctuations δκ(r)
= κ(r) – 〈κ (r)〉 . The subsequent term-by-term averaging
of the series for the seepage velocity and the pressure
gradient enables one to get the expression for the effec-
tive conductivity in the form of a series in powers of the
conductivity variance. However, actually, one has to
restrict oneself to low-order approximations of pertur-
bation theory due to the increasing difficulties associ-
ated with the passage to higher order approximations.
Regarding the estimation of the role of higher order
approximations, in [1], an assumption was made that
the low-order approximations of perturbation theory
represent the first terms in the Taylor series expansion
of the exponential function and that the dependence of

∂iv i r( ) ρ r( ),=

∂i κ r( )∂i p r( )[ ] ρ r( ).–=
002 MAIK “Nauka/Interperiodica”
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Keff on the log-conductivity variance σ2 in the space of
dimension d has the form

(1.6)

where KG is the geometric mean of the conductivity.
This formula is exact in the one-dimensional case when
Keff = KH (KH is the harmonic mean of the conductivity,
KH = KGexp(–σ2/2) for a lognormal distribution). In the
two-dimensional case, Matheron obtained the formula
Keff = KG for the lognormal distribution. In the three-
dimensional case, Landau and Lifshits [2], on the basis
of general phenomenological considerations, proposed
the formula Keff = 〈κ 1/3〉3. All these cases for the lognor-
mal distribution agree with hypothesis (1.6), which is
called the Landau–Lifshits–Matheron formula. Calcu-
lations within perturbation theory carried out taking
into account the terms of order σ4 turn out to be in
agreement with the Landau–Lifshits–Matheron for-
mula; however, it was pointed out that, in a number of
cases, this formula proves not to be valid for terms of
order σ6 (see a more detailed survey [3]). At present, the
substantiation (or refutation) of the Landau–Lifshits–
Matheron formula is the subject of numerous investiga-
tions.

2. PERTURBATION THEORY AND 
DIAGRAMMATIC TECHNIQUE

In the conventional method, one first constructs a
perturbation theory series for pressure by solving
Eq. (1.5) and then finds a series for the seepage velocity
with the use of Darcy’s law. In contrast to this approach,
in the present study, we first construct a series for the
velocity of the filtration flow and then apply Darcy’s
law to construct a series for pressure. In this approach,
an expression for the velocity is obtained naturally in
the form of expansion in powers of u(r) = ln[κ(r)/KG]
and 〈u(r)〉  = 0.

Let us represent the velocity field as a superposition
of the potential and solenoidal parts:

(2.1)

In this case, Eq. (1.4) only determines the potential part

(2.2)

where ∆–1 = G(0)(r) is the Green’s function for the
Laplace operator, which is a solution to the equation

(2.3)

To determine the equation for the solenoidal part of

the seepage flow velocity , we calculate ∂j[∂iv j(r) –

Keff KG
d 2–
2d

------------σ2

 
  ,exp=

v i r( ) v i
p r( ) v i

s r( ),+=

∂iv j
p r( ) ∂ jv i

p r( )– 0, ∂iv i
s r( ) 0.= =

v i
p r( ) ∂( )i

1– ρ r( ) ∂i∆
1– ρ r( ),= =

∆G 0( ) r( ) δ r( ).=

v i
s
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∂jv i(r)]. Taking into account relations (2.1) and Darcy’s
law (1.1), we find

Applying again Darcy’s law to eliminate pressure, we
obtain

(2.4)

Passing from differential to integral equations, we
rewrite the equation for the velocity components of the
filtration flow as

(2.5)

This equation can also be represented in the form cor-
responding to the Martin–Siggia–Rose formalism [4]:

(2.6)

where the tensor , called a vertex in what follows,
is defined by the formula

(2.7)

where the parenthesized numbers at the differentiation
operators indicate on what variable the operator acts
and λ0 is a formal parameter of expansion in a perturba-
tion theory series (equal to one).

In the space of Fourier transforms, Eqs. (2.6) and
(2.7) are rewritten as

(2.8)

(2.9)

Note that the vertex  possesses the properties of the
transverse projection operator:

(2.10)

The application of the iteration method enables us to
write the solution to the integral equation in the form of

∂ j ∂iv j r( ) ∂ jv i r( )–[ ] ∂ j∂ jv i
s r( )–=

=  ∂ j ∂iκ r( )∂ j p r( ) ∂ jκ r( )∂i p r( )–[ ] .–

∂ j∂ jv i
s r( ) ∂kuk r( )δij ∂ jui r( )–[ ] v j r( ),–=

ui r( ) ∂iu r( ).=

v i r( ) v i
p r( ) r'G 0( ) r r'–( )d∫–=

× ∂k' uk r'( )δij ∂ j' ui r'( )–[ ] v j r'( ).

v i r( ) v i
p r( ) r1 r2 r3G 0( ) r r1–( )ddd∫–=

× Γ ij
0( ) r1 r2 r3,( )u r2( )v j r3( ),

Γ ij
0( )

Γ ij
0( ) r1 r2 r3,( ) λ0 ∂ 2( ) ∂ 1( )⋅( )δij ∂i

2( )∂ j
1( )–[ ]=

× δ r1 r2–( )δ r1 r3–( ),

ṽ i q( ) ṽ i
p q( ) G̃

0( )
q( )

pd

2π( )d
-------------∫–=

× Γ̃ ij
0( )

q p q p–,( )ũ p( )ṽ j q p–( ),

Γ̃ ij
0( )

q p q p–,( ) λ0 p q⋅( )δij piq j–[ ] .=

Γ ij
0( )

qiΓ̃ ij
0( )

q p q p–,( ) 0,=

Pik q( )Γ̃ kj
0( )

q p q p–,( ) Γ̃ ij
0( )

q p q p–,( ),=

Pij q( ) δij

qiq j

q2
---------, Γ̃ ij

0( )
q p q p–,( ) p j– 0.= =
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,

,

.

〈k–1(r)u(r1)〉 = – 〈k–1〉 

〈k–1(r)u(r1)u(r2)〉 = 〈k–1〉 

〈k–1(r)u(r1)u(r2)u(r3)〉 = – 〈k–1〉 

r r1

r1 r2

r r1 r2 r3

r3r2r1rr3r2r1rr3r1 r2r

Fig. 1. Diagrammatic representations of mixed means of different orders.

r r1 r2
a perturbation theory series in powers of the formal
expansion parameter λ0; this series represents a func-
tional of a random field u(r). The averaging of the func-
tional series leads to the problem of calculating the sta-
tistical moments of the form 〈u(r1)…u(rn)〉 . In the case
of a centered normal distribution, these means are rep-
resented as sums of all possible covariance functions
for the even-order moments and vanish for odd-order
moments (the Wick theorem).

In a statistically homogeneous system, we have the
following relation for the covariance functions:

(2.11)

To abridge the expressions and facilitate the analysis
of high-order approximations, we introduce rules for
assigning certain graphical symbols, called the Feyn-
man diagrams, to analytic expressions. These rules are
formulated as follows.

1. The Green’s function G(0)(r1 – r2) of an unper-
turbed system (propagator) is assigned a thin horizontal
line outgoing from the point r2 and incoming to the
point r1.

2. The function u(r) is assigned an arrow directed
vertically to the point r.

3. The function (r1|r2, r3) (a bare vertex) is
assigned a triangle such that the horizontal arrows cor-
responding to the Green’s functions are incoming to its
right vertex r3 and outgoing from the left vertex r1, and
the vertical arrow corresponding to u(r2) is incoming to
the middle vertex r2.

4. The pair correlation function B(r1 – r2) (correla-
tor) is assigned a line with two arrows directed verti-
cally to the points r1 and r2.

5. The full Green’s function G(r1 – r2) averaged over
the ensemble of realizations (a full propagator) is
assigned a heavy horizontal line directed from the point
r2 to the point r1.

6. The full vertex Γij(r1|r2, r3) averaged over the
ensemble of realizations is assigned a dark triangle with
two incoming and one outgoing arrows.

u r1( )u r2( )〈 〉 B r1 r2–( ).=

Γ ij
0( )
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7. Integration is performed over the coordinates of
all points corresponding to the vertices of the triangles.

When passing to the wavenumber space (the space
of Fourier transforms), the structure of the diagrams
remains unchanged; however, the lines of correlators
and propagators in this case are assigned a wavenum-
ber, and these quantities correspond to the Fourier

transforms  and , while a triangular vertex

is assigned (q|p, q – p); in this case, the algebraic
sum of incoming and outgoing wavenumbers is equal to
zero.

The calculation of the mean gradient of pressure by
the formula

(2.12)

gives rise to mixed means of the form

(2.13)

The calculation of the mixed means is performed in
Appendix. According to (A.7), these means correspond
to the sum of products of all possible covariance func-
tions of the form 〈u(r)u(rk)〉  and 〈u(rk)u(rl)〉 , multiplied
by (–1)n〈κ –1〉 . To the corresponding quantities, we
assign diagrams containing a large light circle (the so-
called scalar vertices [5]) at which an arbitrary number
of lines of correlators can arrive whose other ends are
connected to the triangular vertices. Note that, in con-
trast to [5], there are no lines of correlators connected
only to a scalar vertex in the formalism used. This is
associated with the fact that we did not use the Taylor
series expansion of the exponential function when cal-
culating the statistical moments of the form (2.13). The
diagrams for a few low-order moments of the form
(2.13) calculated according to (A.7) in the Appendix
are shown in Fig. 1.

B̃ q( ) G̃ij
0( )

q( )

Γ̃ 0( )

∂i p r( )〈 〉 κ 1– r( )v i r( )〈 〉–=

=  – κ 1–〈 〉 v i
p r( ) κ 1– r( )v i

s r( )〈 〉–

κ 1– r( )u r1( )…u rn( )〈 〉

=  KG
1– e u r( )– u r1( )…u rn( )〈 〉 .
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3. EQUATION FOR THE EFFECTIVE 
CONDUCTIVITY

The application of the iteration method to solving
Eq. (2.5) yields the following representation for the
solution:

(3.1)

here, the resolvent kernel Rij is a functional of the ran-
dom field u(rn) and is given by

(3.2)

The averaging of Eq. (3.2) over the realizations of the
random field u(r) under the assumption that the system
is statistically homogeneous yields

(3.3)

i.e., the solution can be represented as a convolution of

the potential vector  and the expression contain-
ing the transverse projection operator; such forms iden-
tically vanish. Hence, we obtain

(3.4)

Thus, to determine the integral kernel Kij(r – r'), one
should calculate, using Darcy’s law, the pressure gradi-
ent by the formula

(3.5)

this leads to the relation

(3.6)

In turn, the kernel Rij is a solution to the integral equa-
tion

(3.7)

which follows from (2.6) and (3.1). The iterative solu-
tion of Eq. (3.7) yields a representation for Rij in terms
of power series in λ. The substitution of this series into
(3.6), followed by the term-by-term averaging of the
series obtained, yields an expression for Hij(r – r') in

v i r( ) r'Rij r r' u rn( ),( )v j
p r'( ).d∫=

Rij r r' u rn( ),( ) δijδ r r'–( ) Tij r r' u rn( ),( ),+=

Tij r r' u rn( ),( ) r''Pij r r''–( )T r'' r' u rn( ),( ).d∫=

T r r' u rn( ),( )〈 〉 T r r'–( );=

v i
p r( )

v i r( )〈 〉 v i
p r( ) ∂i∆

1– ρ r( ).= =

∂i p r( )〈 〉 – r' κ 1– r( )Rij r r' u rn( ),( )〈 〉 v j
p r'( );d∫=

Kij
1– r r'–( ) Hij r r'–( ) κ 1– r( )Rij r r',( )〈 〉= =

=  κ 1– r( )〈 〉δ r r'–( ) KG
1– e u r( )– Tij r r' u rn( ),( )〈 〉 .+

Rij r r' u rn( ),( ) δijδ r r'–( ) r1 r2 r3ddd∫–=

× G 0( ) r r1–( )Γ il
0( ) r1 r2 r3,( )u r2( )Rlj r3 r' u rn( ),( ),

n vertices

n n – 1

Fig. 2. Diagrammatic representations of .Hij
n( )
JOURNAL OF EXPERIMENTAL
the form of an infinite series each of whose terms can
be assigned an appropriate Feynman diagram.

We will carry out the further analysis in the space of

Fourier transforms. Denote by  the contribu-
tion, taken with the sign (–1)n, of the diagram contain-
ing n triangular vertices and a scalar vertex with n
incoming lines of correlators whose other ends meet tri-

angular vertices (when determining , we took into
account that, according to (A.7), the odd-order statisti-
cal moments are expressed in terms of pair correlators
taken with the minus sign). The corresponding diagram
is shown in Fig. 2. The form of this diagram clearly
shows that there exists the following recurrence relation

between the functions :

(3.8)

Let us introduce the function

(3.9)

The recurrence relations (3.8) imply the equation

(3.10)

which can be referred to as the Dyson equation for the
tensor function . If we represent  by a large dark
circle, then the Dyson equation is represented by the
diagrammatic relation depicted in Fig. 3a.

The contributions of all the remaining diagrams are
obtained by inserting all possible subdiagrams contain-
ing the lines of correlators that connect only triangular
vertices. A large part of these diagrams determine the
corrections to the Green’s function and to the vertex,
and the consideration of these diagrams is reduced to
the replacement of the bare Green’s functions G(0) and
vertex Γ(0) in (3.10) by their exact (renormalized) val-
ues G and Γ. As a result, the Dyson equation for the ten-
sor Hij can be represented as

(3.11)

The corresponding diagrammatic equation is shown in
Fig. 3b.

Hij
n( ) q( )

Hij
n( )

Hij
n( )

Hij
n( ) q( )

pd

2π( )d
-------------Hil

n 1–( ) q p–( )∫–=

× G 0( ) q p–( )Γ lj
0( ) q p– p– q,( )B p( ).

Hij' q( ) Hij
n( ) q( ).

n 0=

∞

∑=

Hij' q( ) Hij
0( ) q( )

pd

2π( )d
-------------Hil' q p–( )∫–=

× G̃
0( )

q p–( )Γ̃ lj
0( )

q p– p– q,( )B̃ p( ),

Hij
0( ) δij κ 1–〈 〉 ,=

Hij' Hij'

Hij q( ) Hij
0( ) pd

2π( )d
-------------Hil q p–( )∫–=

× G̃ q p–( )Γ̃ lj q p– p– q,( )B̃ p( ).
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Note that, in an isotropic system, the second-rank
tensor is given by

(3.12)

In view of property (2.10), only the term proportional
to the Kronecker δ is preserved in the integrand of
(3.11).

To determine the full Green’s function and a full
vertex, one has to solve a system of equations for these
functions constructed in a certain perturbation theory
approximation. These equations are constructed in a
usual manner, and the renormalization group (RG)
method proves to be very efficient for solving these
equations simultaneously. In the next section, we
present the solution to these equations and Eq. (3.11) by
the RG method.

4. APPLICATION OF THE RENORMALIZATION 
GROUP METHOD

The RG method initially appeared in quantum field
theory as a method for improving a perturbation theory
series by summing a certain infinite subsequence of the
full series of perturbation theory under the requirement
that the series should be invariant under the RG trans-
form [6]. Somewhat later, a new direction and a new
formulation of the RG method appeared that were initi-
ated by Wilson’s works [7, 8], according to which the
RG method represents a method for the asymptotic
analysis of an essentially multimode nonlinear system
by successively reducing the number of modes consid-
ered by averaging over a part of fast modes in the equa-
tion for slow modes (Kadanoff’s procedure [9]). An
analogue of a similar approach can be given by a phe-
nomenological consideration of the effect of motions of
the molecular scale by introducing molecular transfer
terms when passing from the kinetic to a hydrodynamic
description. Another analogue is given by the Krylov–
Bogolyubov method in the theory of nonlinear oscilla-
tions, in which the equation for slowly varying quanti-
ties (amplitudes and phases) is obtained by averaging
over basic-frequency oscillations.

To investigate processes in random media, the RG
method was first applied in [10], where the authors used
the Wilson formulation of the RG method for the fur-
ther improvement of perturbation theory; according to
this formulation, the self-energy operator in the Dyson
equation was not calculated in the low order of pertur-
bation theory; instead, it was a solution to a certain
equation corresponding to the theory of self-consistent
field. This approach was further developed in a series of
works of other authors [11–14]. The variant of the RG
method applied by these authors involves many unjus-
tified assumptions based on the formal borrowing of
certain ideas and technical tricks of the RG method
from the theory of critical phenomena. In particular, the
authors of [12–14] applied the RG method to a system

Hij q( ) δijH q( )
q jq j

q2
---------H1 q( ).+=
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that did not possess the property of RG invariance and,
when carrying out scale transformations, did not take
into account that there is an additional parameter in the
theory that violates the scale invariance; this parameter
has a dimension of length and is related to the correla-
tion length of the conductivity fluctuations. Note that
this situation, associated with the unjustified use of the
RG method, proves to be very widespread. In particu-
lar, a similar situation is encountered in the Yakhot–
Orszag RG theory of turbulence [15]. To justify the ille-
gitimate application of the RG method in the theory of
turbulence, the authors of [15] (see also [16]) formu-
lated the so-called ideology of ε expansion (which has
nothing to do with the method of ε expansion in the the-
ory of critical phenomena [17, 18]). According to this
ideology, there is a certain magical compensation of the
errors arising when one uses the approximation ε 
0 to calculate the universal constants of turbulence and
the errors associated with the neglect of local interac-
tions responsible for a cascade mechanism of energy
transport along the wavenumber spectrum. A detailed
critical analysis of the ideology of ε expansion in the
theory of turbulence is presented in [19, 20]. The main
objections are associated with the incorrect interpreta-
tion of the role of local interactions, which, according
to Wilson, dominate within the RG description, and
with the invalid identification of the diffusion coeffi-

cient (q, Λ)|q = 0 (q/Λ  0), taken in the large-scale
limit q  0 and depending on the cutoff parameter in
the wavenumber space Λ, with the diffusion coefficient

 taken for q = Λ.

In [19, 20], the author of the present paper has dem-
onstrated that the application of the field formulation of
the RG method to the theory of turbulence yields cor-
rect and more general results without using unjustified
hypotheses. We will follow this approach when carry-
ing out the further analysis of our problem.

To determine , we have to solve a system of
integral equations for the full Green’s function
expressed in the form

and the full vertex function

K̃

K̃ q( )

K̃ q( )

G̃ q( ) 1/D̃ q( )q2–=

Γ̃ ij q p q p–,( ) λ̃ q( ) p q⋅( )δij piq j–[ ]=

Hij
(0)

Hij
(0)

a

b

Fig. 3. Diagrammatic equations for the function  (a)

corresponding to Eq. (3.10) and (b) corresponding to
Eq. (3.11).

Hij
0( )
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and solve Eq. (3.11) for the function Hij(q); i.e., we

have to determine , , H(q), and H1(q). We will
not write expressions for the full Green’s function and
the full vertex; we only present the diagrammatic repre-
sentations of these equations (see Fig. 4). Notice that
the left vertex in these equations is a bare vertex,
although, usually, when trying to formulate a system of
equations of improved perturbation theory (the skele-
ton diagrammatic technique), one always inserts full
vertices into the diagrams of low-order approximation
instead of bare vertices. However, an accurate analysis
of the diagrammatic series shows that such an approach
is incorrect because, in this case, part of the diagrams
prove to be taken into account twice. A similar situation
occurs in the theory of turbulence when constructing
the Wyld diagrammatic technique [21]. This fact was
first pointed out by Lee [22], who suggested that one
should replace only one bare vertex (the right one) in
the self-energy operator by a full vertex in order to
avoid a double consideration of the same diagrams.
This rule was confirmed in the theory of turbulence in a
number of works by the present author [23], where the
Dyson diagrammatic equations were obtained beyond
the framework of perturbation theory, using the formu-
lations of the statistical theory of turbulence on the
basis of the characteristic functional. It was also dem-
onstrated that one of the vertices (the left one) in the
equation for the vertex function should not be renor-
malized. As applied to the problem considered, exact
diagrammatic equations for the vertex have the form
shown in Fig. 4, where the dark square with two incom-
ing vertical lines contains only strongly coupled (one-
particle irreducible) diagrams. In the low-order approx-
imation of perturbation theory, these equations corre-
spond to the diagrams shown in Fig. 5. If we neglect
these diagrams, we obtain a closed system of equations
for the self-energy operator and a vertex, in which the

D̃ q( ) λ̃ q( )

∑ ,

Fig. 4. Diagrammatic equations for the self-energy operator
and a vertex.

Fig. 5. Diagrams of the low-order approximation of pertur-
bation theory with two incoming lines of correlators.
JOURNAL OF EXPERIMENTAL
left vertex is not renormalized. Note that, when writing
Eq. (3.11), we did not take into account the diagrams
shown in Fig. 5.

The iterative solution of this system with the use of
the values

as the zero-order approximation reproduces a non-
renormalized perturbation theory series. To construct a
renormalized perturbation theory, we perform a renor-
malization using the replacements

in the zero-approximation terms of the equations for the
Green’s function and a vertex, replacing 〈κ –1〉δij on the
right-hand side of Eq. (3.11) by a certain arbitrary
quantity Hδij + H1qi qj /q2, and adding counterterms
compensating for these replacements in the relevant
equations. In addition, we require that the exact func-

tions , (q|p, q – p), and Hij(q) coincide with the
renormalized functions at the normalization point (q =
µ, p = 0), i.e.,

(4.1)

Then, the iterative solution of the equations yields a
renormalized perturbation theory series for the func-

tions , , H(q), and H1(q). However, it turns
out that one can actually calculate only the first few
terms of this series. To obtain information on the prop-
erties of the full series, one should sum this series (or its
infinite subsequence). The RG method is one of the
methods for solving such a problem.

Assume that a pair correlation function of the con-
ductivity logarithm has the form

where F and  are dimensionless functions of a dimen-
sionless variable and m–1 has a dimension of length and
is related to the correlation length of fluctuations of the
conductivity logarithm; here, if F(0) = 1, then the con-
stant B0 is equal to the variance σ2 of the conductivity
logarithm. Then, using dimensional arguments and
estimating the structure of the terms of perturbation

D̃ q( ) = 1, λ̃ q( ) = λ0 = 1, H q( ) = κ 1–〈 〉 , H1 = 0

G̃
0( )

q( ) 1/q2 G̃
R

q( )– 1/Dq2,–= =

Γ̃ ij
0( )

q p q p–,( ) λ0 p q⋅( )δij piq j–[ ]=

Γ̃ ij
R

q p q p–,( ) λ p q⋅( )δij piq j–[ ]=

G̃ q( ) Γ̃ ij

D̃ µ( ) D, λ̃ µ( ) λ ,= =

H µ( ) H , H1 µ( ) H1.= =

D̃ q( ) λ̃ q( )

B r( ) B0F mr( ), B̃ q( )
B0

m
----- F̃

q
m
---- 

  ,= =

F̃
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theory series, we can represent the required functions

, , H(q), and H1(q) as

(4.2)

The RG invariance of the renormalized perturbation
theory series consists in the requirement that this series
should not depend on the choice of the renormalization
point µ and the set of values of the renormalized param-

eters D, λ, H, and H (1); i.e., the functions , ,
H(q), and H1(q) should not vary under the RG transfor-
mation

µ  µ', D  D', λ  λ', H  H', H1  .

As a rule, real systems are not RG invariant. Wilson
[11] drew attention to the fact that a specific feature of
an RG-invariant system is the presence of a large num-
ber of modes of various scales whose contributions to
the physical characteristics of the system are equally
essential. A similar situation is realized in a system
where the interaction occurs between modes of close
scales, while the interaction between essentially differ-
ent scales occurs through a cascade sequence of inter-
actions between modes of intermediate scales, i.e.,
“interactions are local in the space of scales.” Because
the contributions of the modes of different scales are
approximately equal (there is no distinguished charac-
teristic scale), the sums over modes and the correspond-
ing integrals should contain logarithmic divergences or
logarithmically depend on the cutoff scale in a system
with a finite number of modes. According to Wilson [7],
the presence of logarithmic divergences in the theory is
the characteristic feature of an RG-invariant system.

Since not all theories are “logarithmic,” Wilson and
Fisher [17] proposed the so-called method of ε expan-
sion, according to which the analysis is carried out in a
“logarithmic” theory, and a transition to the “real” the-
ory is performed by analytic continuation, with respect
to a certain parameter, of the results of the logarithmic
theory to the results of the real theory. Most often, the
dimension d of the space serves as a parameter with
respect to which the analytic continuation is performed.
For example, in the theory of critical phenomena, the
logarithmic theory corresponds to dc = 4. In the theory
of turbulence, such a parameter is given by the expo-
nent n = nc + ε of the powerlike correlation function of
effective random forces [24]; here, the logarithmic the-

D̃ q( ) λ̃ q( )

D̃ q( ) D f 1
q2

µ2
----- m2

µ2
------ σ2λ

D2
---------, , 

  ,=

λ̃ q( ) λ f 2
q2

µ2
----- m2

µ2
------ σ2λ

D2
---------, , 

  ,=

H q( ) H f 3
q2

µ2
----- m2

µ2
------ σ2λ

D
---------, , 

  ,=

H1 q( ) H1 f 4
q2

µ2
----- m2

µ2
------ σ2λ

D
---------, , 

  .=

D̃ q( ) λ̃ q( )

H1'
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ory corresponds to nc = 4 – d, while a real theory, when
a cascade mechanism of energy transfer along the
wavenumber spectrum (according to the Kolmogorov
theory of turbulence) is realized, corresponds to n = –d =
nc + ε (ε = −4). The dimensional regularization in the
field theory can be considered as an analogue of the
ε-expansion method. Within the logarithmic theory, the
actual expansion parameter proves to be proportional to
ε; as a result, it becomes possible to apply perturbation
theory even in the case of strong intermode interac-
tions.

The system considered is not RG invariant; i.e., the
theory does not contain logarithmic divergences. If we
wish to separate the interactions that are local in the
wavenumber space and use the RG-invariance proper-
ties, then, acting within the ε-expansion method, we
should choose a certain type of Fourier transform of the

correlation function (q/m). Let us choose this func-
tion so that the integrals over modes contain logarith-
mic divergences and that the Fourier transforms of the
real and chosen correlation functions coincide at the
normalization point. In turbulence theory, such an
approach was used in [25], where the results obtained
by the author proved to be equivalent to the procedure
of continuation in ε.

Simple analysis shows that, to satisfy the above
requirements, one should make the change

(4.3)

where the parameter ε  +0 is introduced for conve-
nience when separating logarithmically diverging
terms.

The requirement of the RG invariance implies that
the following relations should hold under the change of
the normalization point µ  µ':

(4.4)

According to the normalization conditions (4.1),

(4.5)

F̃

F̃
q
m
---- 

  F̃
µ
m
---- 

  µ2

q2
----- 

 
d /2 ε+

,

D f 1
q2

µ2
----- m2

µ2
------ σ2λ

D2
---------, , 

  D' f 1
q2

µ'2
------ m2

µ'2
------ σ2λ'

D'2
----------, , 

  ,=

λ f 2
q2

µ2
----- m2

µ2
------ σ2λ

D2
---------, , 

  λ' f 2
q2

µ'2
------ m2

µ'2
------ σ2λ'

D'2
----------, , 

  ,=

H f 3
q2

µ2
----- m2

µ2
------ σ2λ

D
---------, , 

  H' f 3
q2

µ'2
------ m2

µ'2
------ σ2λ'

D'2
----------, , 

  ,=

H1 f 4
q2

µ2
----- m2

µ2
------ σ2λ

D
---------, , 

  H1' f 4
q2

µ'2
------ m2

µ'2
------ σ2λ'

D'2
----------, , 

  .=

f 1 1 y g, ,( ) f 2 1 y g, ,( ) f 3 1 y h, ,( )= =

=  f 4 1 y h, ,( ) 1,=

g
σ2λ
D2

---------, h
σ2λ
D

---------.= =
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It follows from (4.2) and (4.4) that the functions
f1, 2(x, y, g) satisfy the RG functional equations

(4.6)

while the functions f3, 4(x, y, h) satisfy the equations

(4.7)

Differentiating Eqs. (4.6) and (4.7) with respect to
the parameter α and then setting α = 1, we obtain the
following differential equations for the functions f1, 2(x,
y, g) and f3, 4(x, y, h):

(4.8)

and

(4.9)

To solve the RG differential equations, one must
know the RG functions γi that are determined, accord-
ing to (4.7) and (4.9), by the behavior of the functions fi
near the normalization point. According to the RG
method [6], we determine these functions in the low-
order approximation of the renormalized perturbation
theory. Appropriate calculations yield the following
results for the RG functions γi:

(4.10)

f 1 2, x y g, ,( ) f 1 2, α y g, ,( ) f 1 2,
x
α
--- y

α
--- g̃ α y g, ,( ), , 

  ,=

g̃ x y g, ,( ) g f 2 x y g, ,( )/ f 1
2 x y g, ,( ),=

f 3 4, x y h, ,( ) f 3 4, α y h, ,( ) f 3 4,
x
α
--- y

α
--- h̃ α y g, ,( ), , 

  ,=

h̃ x y g, ,( ) h f 2 x y g, ,( )/ f 1 x y g, ,( ).=

–x
x∂

∂
y

y∂
∂ βg y g,( )

g∂
∂ γ1 2, y g,( )+ +–

 
 
 

× f 1 2, x y g, ,( ) 0,=

βg y g,( ) ∂g̃ x y g, ,( )
∂x

------------------------
x 1=

,=

γ1 2, y g,( ) ∂ f 1 2, x y g, ,( )
∂x

-------------------------------
x 1=

, βg g γ2 2γ1–( )= =

–x
x∂

∂
y

y∂
∂ βh y h,( )

g∂
∂ γ3, 4 y h,( )+ +–

 
 
 

× f 3, 4 x y h, ,( ) 0,=

βh y h,( ) ∂h̃ x y h, ,( )
∂x

------------------------
x 1=

,=

γ3 4, y h,( ) ∂ f 3 4, x y h, ,( )
∂x

-------------------------------
x 1=

, βh h γ2 γ1–( ).= =

γ1 y g,( ) γ2 y g,( ) AdgF̃ y 1/2–( )y d /2– ,= =

γ3 y h,( ) d 1–( )AdhF̃ y 1/2–( )y d /2– ,=

γ4 y h,( ) 0,=
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where

and Sd is the surface area of a d-dimensional sphere of
unit radius.

The solution of the RG equations for the functions
f1(x, y, g) and f2(x, y, g) yields

(4.11)

A solution to Eq. (4.9) for the function f3(x, y, h) is
given by

(4.12)

which yields

(4.13)

The “asymptotic freedom” requirements

lead to h = σ2, which allows one to determine the fol-
lowing relation between H and µ:

(4.14)

Eliminating these parameters, we obtain

(4.15)

where θ(p) is the Heaviside function.
The solution of the equation for H1(q) yields H1(q) =

const = 0.

Ad
1

2d
------

Sd

2π( )d
-------------,=

h̃ q( ) σ2λ̃ q( )

D̃ q( )
---------------- h const βh 0=( ).= = =

f 3 x y h, ,( )
γ3 t h,( ) td

t
---------------------

y

y/x

∫–
 
 
 

exp=

=  d 1–( )Adh F̃ t 1/2–( )t d/2– td

y

y/x

∫–
 
 
 

,exp

H q( )

=  H
2 d 1–( )Adh

md
------------------------------ F̃

p
m
---- 

  pd 1– pd

µ

q

∫ 
 
 

.exp

H ∞( ) κ1〈 〉 , D̃ ∞( ) 1, λ̃ ∞( ) 1= = =

H κ 1–〈 〉=

× d 1–
d

------------
Sdσ2

2πm( )d
------------------ F̃

p
m
---- 

  pd 1– pd

µ

∞

∫–
 
 
 

.exp

H q( ) κ 1–〈 〉=

× d 1–
d

------------
Sdσ2

2πm( )d
------------------ F̃

p
m
---- 

  pd 1– pd

q

∞

∫–
 
 
 

exp

=  κ 1–〈 〉 d 1–
d

------------ pd

2π( )d
------------- B̃ p( )θ p q–( )∫–

 
 
 

exp

=  κ 1–〈 〉 exp –
d 1–

d
------------σ2 d 1–

d
------------ pd

2π( )d
------------- B̃ p( )θ q p–( )∫+

 
 
 

,
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Taking into account the lognormal distribution for-
mula

from (4.15) we obtain

(4.16)

which in the large-scale approximation q  0 repro-
duces the Landau–Lifshits–Matheron formula (1.6).

5. DISCUSSION

The application of the RG method in its quantum-
field formulation allows one not only to obtain the Lan-
dau–Lifshits–Matheron formula, which is valid in the

large-scale limit, but also to determine  in the
entire range of wavenumbers; in this case, the shape of
the correlation function and the scale parameter with
the dimension of length prove to be taken into account.
Note that the Wilson RG approach allows one to deter-
mine only an averaged response of the medium to large-
scale perturbations.

Our result shows that, within the RG approach, the
contributions of the effects of the Green’s function
renormalization and a vertex are not negligible; how-
ever, they compensate for each other, and therefore we
can ignore them; i.e., we can seek a solution to
Eq. (3.10) from the very beginning. We have to empha-
size that the predictions based on the application of the
RG approach should not be considered as exact results
since formula (4.3) was used when deriving them; this
formula is an analogue of the ε-expansion procedure,
which has not been rigorously substantiated. This pro-
cedure is a payment for the right to use the RG-invari-
ance considerations when summing infinite series of
perturbation theory.

To find out to what extent the technical tricks used
within the RG approach are justified, we calculated the
effective permittivity in the second-order approxima-
tion of perturbation theory for the model case

The appropriate calculation yields

κ 1–〈 〉 KG
1– σ2/2( ),exp=

K̃ij q( ) KGδij=( )

× d 2–
2d

------------σ2 d 1–
d

------------ pd

2π( )d
------------- B̃ p( )θ q p–( )∫–

 
 
 

,exp

K̃ij q( )

B r( ) B0 r2/4m–( ).exp=

Keff
1– KG

1– 1
d 1–

d
------------σ2 d 1–

2d
------------σ4 a1 a2 a3+ +[ ]+ +

 
 
 

,=
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(5.1)

where a1 is the contribution of the second iteration
when solving Eq. (3.10) and a2 and a3 take into account
the contributions due to the renormalization of the
Green’s function and a vertex, respectively. It follows
from (5.1) that the above-listed assumptions prove to be
incorrect at least when d = 2, although the final result
obtained corresponds to the Landau–Lifshits–
Matheron formula. However, taking into account that
β(d/2)  1/d as d increases, we obtain

a1  (d – 1)/d, a2  –1/d, a3  1/d,

and the assumptions used prove to be valid in the limit
of large d. Numerical estimates show that, even for d =
3, the error due to the above approximations does not
exceed 15% and, for a hypothetical case of d = 4, it does
not exceed 8%. These estimates give hope that the
application of formula (4.16) to determining the form

of the integral kernel  will not lead to large errors
when constructing a statistical solution to a transfer
problem in a randomly heterogeneous medium.

APPENDIX

CALCULATION OF STATISTICAL MEANS

To determine quantities of the form

, (A.1)

we apply the method of a characteristic functional,
which represents a functional Fourier transform of the
distribution for u(r). By definition,

(A.2)

According to (A.2), we have

(A.3)

for the mean values of the random-field function, and,
for the means of the form (A.1), we obtain

(A.4)

a1 1 β d
2
--- 

  , a2– –1 d 1–( )β d
2
--- 

  ,+= =

a3
d 1–

d
------------ d 2–( )β d

2
--- 

  ,–=

β d
2
--- 

  td/2 1–

1 t+
------------ t,d

0

1

∫=

Kij
1– r( )

u r( )–{ } u r1( )…u rn( )exp〈 〉

Φ η x( )[ ] i xu x( )η x( )d∫{ }exp .=

F u r1( ) u r2( ) … u rn( ), , ,{ }〈 〉

=  F
δ

iδη r1( )
----------------- δ

iδη r2( )
----------------- … δ

iδη rn( )
-----------------, , ,

 
 
 

Φ η x( )[ ]
η x( ) 0=

u r( )–{ } u r1( )…u rn( )exp〈 〉

=  i
δ

δη r( )
-------------

 
 
  δ

iδη r1( )
-----------------… δ

iδη rn( )
-----------------Φ η x( )[ ]exp

η x( ) 0=

.
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The operator exponential function in (A.4) represents
an operator of functional translation, whose action is
defined by the relation

(A.5)

The application of formulas (A.3)–(A.5) allows us to
calculate the means on the basis of the explicit form of
the characteristic functional. In the case of a lognormal
distribution for 〈u(r)〉  = 0, we can determine

(A.6)

Below, we present the results of appropriate calcula-
tions for several low-order moments:

(A.7)
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Anomalies in the Variation of Elastic Properties of Cesium 
during Phase Transformations under a Pressure up to 5 GPa

F. F. Voronov†, O. V. Stal’gorova, and E. L. Gromnitskaya*
Institute of High-Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow oblast, 142190 Russia

*e-mail: grom@ns.hppi.troitsk.ru
Received December 26, 2001

Abstract—The pulsed ultrasonic method is used for studying polycrystalline cesium under a pressure up to
5 GPa. Elastic parameters and compression ratio of cesium are determined and anomalies in the elastic proper-
ties of cesium during phase transitions CsI–CsII–CsIII–CsIV are revealed. It is found that the CsII–CsIII
electron-structure transformation is preceded by anomalous compressibility of the fcc phase of cesium and
by softening of longitudinal and transverse acoustic modes of the cesium phonon spectrum. © 2002 MAIK
“Nauka/Interperiodica”.
 1. INTRODUCTION

The heavy alkali metal cesium is distinguished from
other metals in that it experiences a series of phase
transformations associated with changes in its crystal-
line and electronic structure in the range of pressures p
and temperatures T accessible for investigations. The
behavior of macroscopic parameters of cesium exhibits
a number of anomalies. Under a pressure p ~ 2.3 GPa,
a structural transformation from the bcc (CsI) to the fcc
(CsII) phase takes place; during this transition, the vol-
ume decreases jumpwise (∆V/V0 = 0.7%). However, of
special interest are two close phase transformations in
cesium compressed by 50%: CsII–CsIII (p = 4.21 GPa)
and CsIII–CsIV (p = 4.33 GPa) [1–3]. Until recently,
the CsII–CsIII transformation during which the volume
collapses approximately by 9.1% was interpreted by
many authors as a 6s–5d electron transition inducing an
isomorphic fcc–fcc phase transformation [4, 5]. How-
ever, the possibility of an isostructural phase transfor-
mation in cesium under the above conditions was ques-
tioned in [6, 7]. In addition, it was concluded on the
basis of estimates of the decrease in the atomic radius
in cesium (2% and 10% during transformations
CsII−CsIII and CsIII–CsIV, respectively) [8] that the
6s–5d avalanche transition mainly occurs during the
CsIII–CsIV transformation. For p ~ 4.33 GPa, the CsIII
structure is transformed into the tetragonal CsIV struc-
ture [8] with a decrease in volume by 4.3%.

Anomalies in the variation of physical properties of
cesium are manifested even in the bcc phase. For exam-
ple, according to the results of optical studies, cesium
with the bcc structure exhibited strong absorption in the
pressure range of 1.8 GPa, which is attributed to a
change in the d nature of conduction electrons [9]. In
our studies using ultrasonic technique, anomalies in the
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behavior of elastic parameters of bcc cesium were
detected for pressures p > 1.4 GPa. Starting from this
pressure, the dependence of compressibility of bcc
cesium on the reduced pressure p/Kt deviates towards
higher pressures as compared to other alkali metals
[10].

The fcc phase of cesium is of special interest to
researchers. It was found using neutron diffraction
analysis that CsII possesses an anomalously soft com-
pression isotherm [11], while our early studies using
the ultrasonic method [12] revealed a very small varia-
tion of the velocity v l(p) of longitudinal ultrasonic
waves in fcc cesium (i.e., upon an increase in pressure
from 2.28 to 4.21 GPa). Moreover, after passing the
peak (at p ~ 3.8 GPa), the value of v l(p) decreased as
the CsII–CsIII transition was approached. The melting
curve is known to have a negative slope after passing
through a peak at 3.5 GPa. These anomalies can easily
be explained as a consequence of a continuous variation
of the electron structure of cesium under pressure [8,
13, 14].

It was undoubtedly interesting to continue our ultra-
sonic experiments with cesium [10, 12] under higher
pressures, to determine anomalies in the variation of the
low-frequency part of the phonon spectrum of cesium,
to obtain the dependence of elastic parameters of
cesium on pressure up to 5 GPa, and to find the varia-
tion of these parameters during the phase transforma-
tions CsII–CsIII and CsIII–CsIV.

2. EXPERIMENTAL TECHNIQUE

We studied the pressure dependences of the veloci-
ties of longitudinal, v l(p), and transverse, v t(p), ultra-
sonic waves propagating in cesium under a pressure up
to 5.0 GPa by using an “ultrasonic piezometer” (cylin-
der–piston-type chamber) [10] and a high-pressure
002 MAIK “Nauka/Interperiodica”
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setup of the Toroid type [15]. In our experiments, we
used cesium with 99.9% content of the matrix material.
The samples were prepared under a layer of thoroughly
dehydrated oil as described in [10]. During the mea-
surements of v l(p) and v t(p) in the cylinder–piston
chamber in the initial interval of pressures 0–1.1 GPa,
we succeeded in confining the substance in the chamber
under pressure without encapsulating the samples by
using only thin protecting Teflon films (with a thickness
of the order of 0.02 mm), which was attained by a thor-
ough adjustment of the sizes of chamber parts. The
measurements during the elevation and removal of
pressure in the interval from 0 to 2.5 GPa in the piezom-
eter were made on encapsulated samples. In this case,
the samples cut from an ingot were placed in aluminum
capsules in the form of cylinders with a wall thickness
of approximately 1 mm and with an end face thickness
of approximately 0.6 mm.

In the main series of experiments (i.e., under pres-
sures from 0 to 5.0 GPa), we used a version of the Tor-
oid high-pressure solid-state chamber in the form of a
“lentil with a flat bottom” [16]. Cesium contained in a
cylindrical capsule of diameter 14 mm with a 7-mm
height was placed in a catlinite container. The measure-
ments of v l(p) and v t(p) were made only for increasing
pressure since a decrease in pressure led to leakage of
the capsule due to irreversible deformation of the con-
tainer upon a decrease in the cesium volume to half the
initial value after the attainment of pressure p ~ 5 GPa.
The dependence of the pressure in the chamber in the
load, pc = f(pn), was determined from the phase-transi-
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Fig. 1. Pressure dependences of the velocities of longitudi-
nal, v l, and transverse, v t, ultrasonic waves in cesium.
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tion points in cesium, which were detected according to
jumps on the time dependence of an ultrasonic signal
passing through the sound-duct pistons and through the
sample. The first point corresponding to the emergence of
an acoustic contact, p = (0.005 ± 0.002) GPa, was deter-
mined from the graph quite reliably. The second point
corresponded to the CsI–CsII transition at p = (2.28 ±
0.03) GPa. The value of pressure corresponding to this
transition was thoroughly measured in experiments
made on an ultrasonic piezometer and described in
detail in our earlier publication [10]. For the third (p =
4.21 GPa) and fourth (p = 4.33 GPa) points on the
gauge curve, which correspond to the CsII–CsIII and
CsIII–CsIV transformations, we used the values of
pressure obtained from an analysis of the results pre-
sented in [2, 3, 17] on the basis of the available pressure
scale [18]. The graph of the gauge curve obtained by us
is given in [12]. For pressures higher than 4.21 GPa, we
assumed that the gauge dependence pc = f(pn) is linear
on account of a decrease in the efficiency of the cham-
ber operation after the CsII–CsIII and CsIII–CsIV
phase transformations; in this case, we assumed that the
decrease in dpc/dpn is proportional to the decrease in the
cesium volume as a result of these transformations
(9.1% and 4.3%) [3].

3. RESULTS AND DISCUSSION

The experimental dependences L(p) of the sample
height on pressure obtained by us in the Toroid cham-
ber, as well as the pressure dependences Tt(p) and Tl(p)
of the time of travel of transverse and longitudinal
ultrasonic waves, which were determined by the modi-
fied method of visual superposition of pulses [19], were
reduced to the actual pressure according to the gauge
dependence pc = f(pn) and are matched to the results of
our previous studies [10] at the point p = 2.28 GPa of
the CsI–CsII phase transformation.

The velocities v i(p) of propagation of ultrasonic
waves in cesium were determined from the relations

where i = l or t, and ∆L(p) and ∆Ti(p) are the corrections
to the deformations of the plungers and to the change in
the transit time of an ultrasonic signal through the
sound-duct plungers upon loading, which were deter-
mined in separate experiments.

The velocities v l(p) and v t(p) of propagation of lon-
gitudinal and transverse ultrasonic waves in cesium,
which were obtained by processing the results of
24 experiments in the pressure range 2.28–5.0 GPa, are
presented in Fig. 1. The same figure shows our results
obtained under a pressure up to 2.28 GPa [10]. The
error in determining the velocities of propagation of
ultrasound did not exceed 1%. It should be noted that

v i p( )

L p( ) ∆L p( )+[ ] / L 2.28 GPa( ) ∆L 2.28 GPa( )+[ ]{=

× v i
1– 2.28 GPa( ) Ti 2.28 GPa( ) Ti p( )– ∆Ti p( )–– } ,
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the velocity variations at each of the four phases of
cesium are different. The pressure dependence of
velocities exhibits a behavior typical for simple metals
only under a low pressure (p < 0.4 GPa) and only for the
CsIV phase. For p ~ 0.5–1.0 GPa, the dependences
v l(p) and v t(p) become nonlinear, indicating pretransi-
tion phenomena in bcc cesium. In addition, in the vicin-
ity of the bcc–fcc transition, a strong decrease in the
amplitude of ultrasonic signals is observed, which is
apparently caused by changes in the phonon–phonon
interaction due to anharmonic effects. The bcc–fcc
phase transformation in cesium occurs almost instanta-
neously with a small change in volume (about 0.7%),
which is typical of martensite transformations. When
the fcc phase of cesium is formed, the amplitude of the
ultrasonic signal increases considerably. The bcc–fcc
transition is accompanied by a 5.6% increase in the
velocity v t(p) of transverse waves and a 5.3% decrease
in the velocity v l(p) of longitudinal waves.

The most clearly manifested anomalies in the
behavior of velocities are observed for the fcc phase of
cesium. In the entire range of existence of this phase,
the velocity of shear ultrasonic waves decreases, while
the velocity of longitudinal waves decreases only after
passing through a flat peak at approximately 3.5 GPa.
The variation of v l(p) in this pressure range is very small
and does not exceed 3%. The CsIV phase is characterized
by an increase in both velocities, but it is difficult to obtain
an exact quantitative estimate since the gauge dependence
pc = f(pn) has an indeterminacy for p > 4.33 GPa.

Calculating elastic parameters of cesium from ultra-
sonic data, we obtained the dependence of the volume
of the substance on pressure for all the four phases of
cesium up to 5 GPa. The compression curve for cesium
obtained by us (Fig. 2) is in excellent agreement with
the results obtained by the X-ray, piezometric, neutron
diffraction, and other methods [1, 3, 8, 13, 20–25].

Figures 3 and 4 show the bulk elastic modulus, shear
modulus, and their derivatives as functions of the vari-
ation of the atomic volume of cesium in the pressure
range from 0 to 5.0 GPa, which were calculated from
the velocities of propagation of ultrasound. Since the
bulk modulus is a measure of rigidity of a crystal and
the shear modulus is a measure of shape variation, the
form of variation in these parameters can be used to
draw conclusions on changes occurring upon the defor-
mation of the Cs lattice under pressure.

Prior to the bcc–fcc transition, the derivative ∂Kt /∂V
of the bulk modulus with respect to volume exhibits a
sharp kink and starts decreasing; i.e., as noted above, a
dependence of the properties of cesium on the popula-
tion of the s band starts apparently being manifested.
The shear characteristics also indicate a softening of the
lattice in the vicinity of the bcc–fcc structural phase
transformation; in this case, the value of the derivative
∂G/∂p decreases from 0.76 under atmospheric pressure
to zero prior to the transition. The negative value of the
Grüneisen parameter calculated from the shear modu-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
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lus [10] in the vicinity of the phase transition also indi-
cates the emergence of a soft shear (in all probability,
acoustic TA1) mode in the phonon spectrum of the bcc
phase of cesium.

A transition to a more densely packed fcc structure
upon an increase in the coordination number is accom-
panied by an increase in the shear modulus (about
13%). At the same time, the bulk modulus decreases
(by about 14%) during this transition, which is appar-
ently associated with an increase in the distance
between the nearest neighbors. This feature is visually
demonstrated by the dependence of the isothermal bulk
modulus Kt on the distance between the nearest neigh-
bors in the lattice (Fig. 5), which shows no jump in the
bulk modulus during this transition.

It should be noted that no experiments were made to
our knowledge on the direct measurement of the bulk
modulus of cesium and its derivative with respect to
pressure. Ultrasonic studies make it possible to mea-
sure Kt quite accurately as a function of pressure in the
continuous mode. The experiment shows (see Fig. 3)
that the fcc phase of cesium is compressible to a greater
extent than the bcc phase, and the derivative dKt /dV of
the bulk modulus decreases upon an increase in pres-
sure in the entire range of the existence of the fcc phase.
Since the value of dKt /dV determines the degree of soft-
ness in the equation of state, we can state that, as we
approach the CsII–CsIII phase transformation, the
resistance of cesium to volume deformation decreases,
and an intense transition of electrons from the repulsive
s bands to the attracting d band takes place in the range
of the fcc phase, its intensity increasing as the transfor-
mation is approached. The strongest anomalies in Kt(V)
are observed for compressions V/V0 ~ 0.5, which is in
accord with the results of calculations made in [23, 26],
where it was shown that the bottom of the 5d band
passes through the Fermi level exactly for compres-
sions V/V0 = 0.47–0.48.
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JOURNAL OF EXPERIMENTAL 
Figure 4 shows the experimental dependences of the
shear modulus and its derivative on the atomic volume
of cesium. It should be noted that the function G(p) for
the fcc phase exhibits a weak (virtually, linear) increase
upon a decrease in the volume derivative of the shear
modulus from 0.03 to 0.02 by the instant of the CsII–
CsIII transformation. The calculations of the stability
of the fcc lattice of cesium show that the softening of
the acoustic shear mode TA1 leading to a decrease in the
shear modulus c' = (1/2)(c11 – c12) plays the leading role
in this structural transformation [7, 14, 27]. In addition,
a softening of the TA2 mode and, hence, a decrease in
the modulus c44 cannot be ruled out either [14]. The

shear modulus of a polycrystal (G = ρ ) can be pre-
sented in the Voigt approximation [28] for crystal with
a cubic system in terms of the elastic constants of a sin-
gle crystal, G = (2/5)[(1/2)c11 – c12] + (3/5)c44. An anal-
ysis of our experimental dependences of the velocities
of elastic shear waves and of the shear modulus taking
into account a slight increase in the shear modulus with
pressure indicates a softening of the acoustic mode TA1
in the phonon spectrum of fcc cesium upon an increase
in pressure in the region as the CsII–CsIII transition is
approached; the second transverse mode TA2 associated
with the elastic constant c44 is not softened in this case.
The form of variation of the velocity of longitudinal
waves in cesium and of the bulk modulus also indicates
a softening of the longitudinal acoustic mode prior to
this phase transition.

The Grüneisen parameter γl(p) calculated from our
experimental dependences becomes negative, while
γt(p) assumes a close-to-zero value for V(p)/V(0) ~0.48;
i.e., for pressures p > 4.0 GPa, the longitudinal LA and
transverse TA1 modes become soft, and the crystal lat-
tice loses its stability. A decrease in phonon frequencies
in the vicinity of the volume collapse leads to an
increase in the amplitude of thermal vibrations, which
correlates with a decrease in the melting temperature
and a sharp increase in the resistivity, which were
observed under such pressures in [1, 3].

An analysis of the phase of CsIII is a complicated
problem since the region of existence of this phase is
very narrow; it amounts to 0.14 GPa at T = 461 K, i.e.,
in the vicinity of the triple points CsII–L–CsIII and
CsIII–L–CsIV, and 0.12 GPa at T = 298 K [6]. McWhan
and Stevens [13] assumed that the boundaries of the
CsIII phase contract rapidly from the triple points to the
point T = 288 K, p = 4.3 GPa, and the CsIII phase does
not exist below this point. Indeed, it is shown in [2, 13]
that the determination of the region of existence of the
CsIII phase at T = 273 K is complicated, but this may
be due also to a slow kinetics of the transformation at a
low temperature [2]. In our experiments at room tem-
perature, the region of existence of CsIII was clearly
defined in a number of experiments involving the mea-
surements of the velocities of transverse waves, in
which the parameters being measured could be

v t
2
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detected at 5–8 points for this phase. Individual mea-
surements at temperatures of 291 and 300 K proved that
the region of existence of the CsIII phase, determined
as a function of the load exerted by a press, changes
insignificantly in this temperature range and may disap-
pear at 288 K. Thus, the region of existence of the CsIII
phase in our experiments amounts to 0.12 GPa, which
confirms the results obtained in [2]. The CsII–CsIII
transformation was detected from slight jumps in the
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sample height L(p) and the time of travel of transverse,
Tt(p), and longitudinal, Tl(p), ultrasonic waves. In addi-
tion, the range corresponding to the CsIII phase differs
from the phases of adjacent phases CsII and CsIV in the
variation of the derivatives dTi/dp. The CsIII–CsIV
transformation is manifested more clearly in the jump
and in a change in the slope of the pressure dependence
Tt(p) of the travel time of a transverse ultrasonic wave.
The weak manifestation of this transformation in the
measurements of the velocity of longitudinal waves led
us to the erroneous conclusion that only one transfor-
mation CsII–CsIV takes place at room temperature
[12].

The experimental dependences v l(p) and v t(p)
obtained by us for the region of phase transformations
CsII–CsIII–CsIV are presented separately on a magni-
fied scale in Fig. 6. The relative increase in the bulk
modulus and the shear modulus upon the phase trans-
formation CsII–CsIII was 9.4 and 24.5%, respectively,
indicating a higher rigidity of the CsIII structure as
compared to the CsII.

Figure 7 shows the pressure dependences of the
Debye temperature Θ(p) and the Poisson ratio σ(p) of
cesium in the pressure range under investigation. It
should be noted that the value of Θ(3.8 GPa)/Θ(0) = 1.5
is in good agreement with neutron diffraction measure-
ments [13]: Θ(3.8 GPa)/Θ(0) < 1.3 ± 0.2.

The experimental dependences of compression and
Debye temperature for cesium were used for estimating
the melting point (Tm) from the Lindemann criterion. A
satisfactory agreement between the results of experi-
ments and computations is observed for bcc phase of
cesium, especially for low pressures for which the con-
dition Texp /Tm ≈ 1 is satisfied, where Texp is the experi-
mental temperature. The conditions of applicability of
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the Lindemann relation for the fcc phase are violated
except for pressures close to p ≈ 3.8 GPa. 

As regards the CsIV phase, we can give only a qual-
itative characteristic of the behavior of its elastic
parameters in view of an indeterminacy in the gauge
dependence pc = f(pn) for pressures p > 4.33 GPa. The
increase in both velocities and, accordingly, in the elas-
tic moduli Kt(V) and G(V) indicates the rigidity of the
formed phase. It was noted in [11] that the elastic mod-
ulus Kt(p) for CsIV approaches the values typical of
hard metals; i.e., the estimate dKt/dp = 4.2 obtained by
us for p = 4.33 GPa is quite reliable.

4. CONCLUSIONS

Thus, the experimental pulsed ultrasonic studies of
polycrystalline cesium under a pressure up to 5.0 GPa
and during the phase transitions CsI–CsII, CsII–CsIII,
and CsIII–CsIV enabled us to determine the behavior
of elastic parameters of cesium under these conditions
and revealed anomalies associated with phase transfor-
mations. Theoretical computations based on different
models indicate a strong pressure dependence of the
electron structure of cesium and the existence of an ava-
lanche s–d electron transition for compressions V/V0 ~
0.48. Assumptions were made [23, 27] concerning a
decrease in the vibrational frequencies of the lattice
upon a compression of fcc cesium in the vicinity of this
transition. In our experiments, we observed anomalies
in the elastic properties of fcc cesium in the entire range
of the existence of this phase, which reflects an intense
variation of the population of the s band upon a change
in pressure. This process began even in bcc cesium for
V(p)/V0 ~ 0.68. It was found the electron-structure
transformation CsII–CsIII takes place after softening of
both longitudinal and transverse modes in the acoustic
part of the phonon spectrum. The anomalies in the vari-
ation of the bulk modulus of cesium with pressure indi-
cate that the principal avalanche s–d transition appar-
ently takes place at the boundary of the CsII–CsIII
rather than CsIII–CsIV phase transformation, as
assumed in [8]. It would be interesting to study in the
future cesium under pressure at various temperatures to
refine its structure and the regions of existence of the
CsIII phase, the boundaries of the CsII–CsIII–CsIV
phase transitions, and also the main tendencies in the
variation of elastic parameters of cesium upon cooling
and heating.
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Abstract—Infrared absorption bands, shifted to regions of lower energies relative to narrow lines of transitions
of impurities to excited states, are investigated in silicon doped with group III and V impurities in concentra-
tions above 1016 cm–3. It is found that the band structure is peculiar to each of the investigated impurities but
independent of their concentrations, and the absorption coefficients in the bands increase approximately qua-
dratically with concentration. This leads one to infer that the bands are caused by the excitation of charge car-
riers bound on impurity pairs localized within several Bohr radii. © 2002 MAIK “Nauka/Interperiodica”.
Series of narrow lines in absorption spectra of group
III and V impurities in silicon have long been studied
and identified as transitions from the ground state of
single impurities to excited states [1]. However, as the
impurity concentration N increases, it is natural to
expect a manifestation of the contribution to absorption
due to electronic transitions in complexes where the
impurity atoms are spaced at relatively close distances
from one another. Indeed, a broad absorption band with
a maximum at the energy hν = 23 meV was observed in
silicon doped with boron [2]. This band and the long-
wave absorption band in silicon doped with arsenic
were investigated in [3] for various concentrations of
impurities. A similar absorption band was observed in
silicon doped with gallium [4]. An absorption spectrum
was recorded in silicon doped with indium [5], which
reminded one of a regular absorption spectrum for
indium, but was shifted towards the region of lower
energies. This absorption was associated in [5] with the
shallow state of indium impurity, revealed previously in
[6] by the temperature dependences of the hole concen-
tration and by the photoconductivity spectrum. Also
observed in [6] was a superlinear increase in the con-
centration N2 of shallow states with increasing N. In the
opinion of Baron et al. [6], this did not rule out the pos-
sibility of the shallow states being impurity pairs. We
have confirmed this assumption (previously made in
[7]) for the majority of group III and V impurities in sil-
icon.

Figure 1 gives absorption spectra for doped silicon
in the region of energies less than the energies of tran-
sition of group III and V impurities to excited states at
4.2 K. We have previously believed that these broad
absorption bands are caused by transitions to allowed
bands from 1S impurity states populated by back-
ground radiation at room temperature [3]. Indeed, the
1063-7761/02/9501- $22.00 © 20083
band edges in Si[B] and Si[As] correspond well to such
energies [1]. However, the provision of cooled filters
arranged before the samples, which reduce the effect of
background radiation by more than three orders of
magnitude, had almost no effect on the absorption in
long-wave bands. From this, it follows that the bands
cannot be associated with transitions of charge carriers
from the excited states of impurities.

The structure of long-wave bands is peculiar to each
impurity. In the Si[B] spectrum, two flat maxima are
observed, the distance between which is close to the
difference between the energies of the first and second
excited states of the acceptor series P3/2 [1], and in
Si[Al], flat maxima are observed, as in the case of
boron impurity; however, a peak is observed against
their background, which is caused by the aluminum–
oxygen complex [5], which, in our crystals grown by
the method of crucibleless zone crystallization, was
present in low concentration. In the low-energy region,
weak peaks of absorption by residual boron impurity
are observed: in the case of Si[Ga], it is a flat step with
a weakly defined fine structure. In the case of a deep
indium impurity, the long-wave absorption bands are
very weak and may be recorded only at concentrations
N > 1017 cm–3. No samples doped as strongly as that
were available to us; therefore, Fig. 1d shows the spec-
trum recorded in [5] for Si[In] at 8 K. The spectrum is
very similar to regular absorption spectra at low con-
centrations of indium but is shifted to the region of
lower energies by 43 meV, and the absorption lines are
broadened significantly. A wide step is observed in the
Si[As] spectrum, while the Si[Sb] and Si[P] spectra are
poorly defined with a gently sloping long-wave tail and
a maximum or a step between the 2P0 and 2P± absorp-
tion lines.
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In spite of this difference between the long-wave
absorption spectra in doped silicon, they exhibit a num-
ber of features in common with one another. First, the
structure of the spectra does not depend on the impurity
concentration N. Second, the higher the ionization
energy and the stronger the localization of the charge
carriers in the ground state of impurities, the higher the
values of N at which the long-wave absorption may be
recorded. Third, the dependence of the absorption coef-
ficient k in the bands on N has the same form for all
impurities.

Figure 2 gives the dependences of k on concentra-
tion N, which were determined at energies fixed for
each one of the impurities (Sb, P, B, As, Al, Ga). One
can see that the absorption depends approximately qua-
dratically on the impurity concentration. Note that the
errors in determining this dependence were maximal in
the regions with k < 1 cm–1 and at concentrations N >
1017 cm–3. The concentration N was determined by the
specific resistance of the samples at 300 K and by its
dependences on N according to the graphs given in [8]
for each of the impurities investigated by us. These
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Fig. 1. Long-wave absorption spectra for silicon doped with
impurities in concentrations N (cm–3) of (a) B (7.6 × 1016),
(b) Al (1.5 × 1017), (c) Ga (1.6 × 1017), (d) In (4 1017) [5],
(e) As (1.8 × 1017), (f) Sb (2.5 × 1016), (g) P (1.5 × 1016).
The vertical lines indicate the photon energies hν for which
the absorption coefficients k in Fig. 2 were determined.
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dependences become weaker in the range of high val-
ues of N, which results in a lower accuracy in determin-
ing the concentration. Nevertheless, even in these
regions the error did not exceed 20%. Also given in
Fig. 2 is the dependence of the concentration N2 of shal-
low states of indium impurity on its total concentration
N from [6]. One can see that, in this case as well, in
view of the low accuracy of the method employed in
[6], the “cloud” of points in the figure follows ade-
quately the quadratic dependence on N.

The quadratic dependence of the absorption coeffi-
cient k on N indicates that long-wave bands arise during
the excitation of charge carriers bound on pairs of
impurities. We will treat the situation proceeding from
the simplest analog, i.e., a system of two protons and
two electrons. This well-known pattern of electron
terms of a hydrogen molecule is given in Fig. 3 (see, for
example, [9]). Unlike the molecules, the impurities at
crystal lattice sites are fixed at random at distances r.
The energy differences between the dashed and solid
curves in Fig. 3 correspond to a decrease in the energies
of ionization and excitation of pairs to the 2S state com-
pared with the energies for remote hydrogen atoms.
One can see that these regions lie at distances r = (2–
5)a, where a is the Bohr radius of the hydrogen atom.
One can further see that the differences between the
energies of ionization and transitions to the first excited
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Fig. 2. The absorption coefficients k in silicon as functions
of the impurity concentration N (1, Sb; 2, P; 3, B; 4, As;
5, Al; 6, Ga), as well as (7) the N dependences of the con-
centration N2 of pairs for Si[In] borrowed from [6] and
(8) those determined by spectra from [5, 6]. The solid lines
correspond to quadratic dependences.
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state differ significantly. Note that, for other systems
similar to diatomic molecules, intervals of distances r
must also exist in which the energies of ionization and
excitation of pairs are less than those in the case of iso-
lated partners. This is associated with the fact that the
interaction energy in the case of a neutral pair decreases
with increasing distance r faster than in the case of a
singly ionized pair.

A similar situation must be observed in the case of
impurity pairs in crystals, but on different scales of dis-
tances and energies depending on the Bohr radii a of
impurities. For example, the results of calculation for
an acceptor molecule in a cubic crystal have demon-
strated [10] that the interaction energy in such a system
at r @ a decreases as r–5. However, in contrast to regular
diatomic molecules, the absorption spectrum must be a
superposition of the pair contribution under conditions
of random distribution of impurities, and, in this case,
broad bands rather than narrow lines must show up in
the absorption spectra. The structure of these bands
may be different for transitions to different excited
states of each of the impurities. In this case, only those
electronic transitions whose energies are less than those
for analogous transitions in solitary impurity atoms
may be observed in pairs during absorption. Transitions
with high energies will find themselves in regions of
strong absorption by single impurities and may hardly
be observed against this background. So, the existence
of impurity pairs brings about the emergence in doped
silicon of a whole spectrum of local states, both deeper
and shallower than the ground states of impurities. In
compensated silicon, the photoexcitation must lead to
optical recharging of impurity states. The relaxation of
optical recharging at low temperatures is a slow process
whose rate depends on the experimental conditions.
This fact may prove to be important in studying the
kinetics of electronic transitions in doped silicon. As to
the validity of the term “molecules” for impurity pairs,
this term, though incorrect, points to the existence of an
analogy between them. Indeed, pairs represent a certain
group of interacting impurity atoms with a characteris-
tic electronic energy spectrum independent of the
impurity concentration.

The concentration N2 of impurity molecules may be
estimated assuming that the oscillator strengths in pairs
and in solitary impurity atoms for similar transitions
differ insignificantly. First of all, we will use the results
of [5, 6] for an indium impurity in silicon. According to
[6], in the photoconductivity spectrum of Si[In] in the
spectral range in which the impurity response is deter-
mined by pairs, the signal is approximately two orders
of magnitude lower than in the region of photoioniza-
tion of single atoms with the concentration N = 3.1 ×
1017 cm–3. From this, it follows that the pair concentra-
tion N2 = (3–5) × 1015 cm–3. One can use the absorption
spectrum of Si[In], given in [5], to estimate N2 by the
area of one of the bands by comparing it with the area
of the respective band for solitary impurity atoms of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
indium with the known concentration N [1]. For the
sample with N = 4 × 1017 cm–3 in Fig. 1, the thus esti-
mated concentration N2 is 6 × 1015 cm–3. These concen-
trations of impurity pairs of indium are also given in
Fig. 2. One can make a similar estimation for a boron
impurity, for example, for a sample with N = 7.6 ×
1016 cm–3 (Fig. 1). We assumed that a band with a maxi-
mum at hν = 23 meV was due to the transition of a hole in
a pair to the first excited state of the series P3/2 and derived
N2 = 6 × 1015 cm–3. These estimates appear to be reason-
able if we assume that the main contribution to long-
wave absorption is made by impurity pairs which are
spaced two–five Bohr radii from one another and have
no closer neighbors.
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Abstract—The mean-field method is used to calculate the bands, Fermi surfaces, and spin susceptibilities of a
three-band model of the RuO4 plane of Sr2RuO4 rutinate for states with different spin structures. In particular,
the spiral state is studied with the “incommensurate” vector Q = 2π(1/3, 1/3) corresponding to the nesting of
bands with the population n = 4. This state proves to be the lowest with respect to energy among other (para-
magnetic, ferromagnetic, antiferromagnetic, and periodic) solutions. In the spiral state, in addition to the main
α, β, and γ sheets of the Fermi surface, shadow Fermi boundaries along the Γ(0, 0)–M(π, 0) line (previously
observed in the ARPES experiments) are revealed and explained. This may change the interpretation of the data
on dispersionless peaks in photoemission, previously ascribed to surface states. The spin susceptibilities of the
spiral state exhibit peaks in the dependence Imχ(q, ω) at q = Q in accordance with the observed magnetic peak
in neutron scattering. The hypothesis of the presence of spin structures with q = Q in the normal state of
Sr2RuO4 and the methods of checking this hypothesis are discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Single-layer quasi-two-dimensional rutinate attracts
attention as a superconductor (Tc ~ 1 K) with a possible
triplet type of pairing [1–3]. Arguments in favor of trip-
let superconductivity are provided by the behavior of
the Knight shift [4, 5] and by the possible part played in
a superconducting transition by ferromagnetic fluctua-
tions. The latter are assumed by analogy with the ferro-
magnetism of the parent cubic perovskite SrRuO3. The
determination of the type and mechanism of pairing
depends directly on the understanding of the electronic
and magnetic structures of the normal state. The band
structure and the properties of magnetic fluctuations of
Sr2RuO4 were investigated in [6–8]. One of the singu-
larities of rutinates is the dependence of their properties
on the composition of the compound. So, substituted
analogs of Ca2 – xSrxRuO4 are characterized by a very
complex magnetic phase diagram which is controlled
by structural distortions of the lattice and includes
phases of paramagnetic (PM) or ferromagnetic (FM)
metal or antiferromagnetic (AFM) dielectric [9–11].

In contrast to substituted compounds, the lattice of
original Sr2RuO4 remains undistorted. Measurements
of inelastic neutron scattering revealed incommensu-
rate magnetic fluctuations with the quasi-momentum
Q ~ (0.3, 0.3, 1) [in (2π/a, 2π/a, 2π/c) units] [12]. In the
weakly substituted compound Sr2Ru1 – xTixO4, dynamic
fluctuations with the same values of Q are replaced by
a static incommensurate order with the same values of
Q [13]. The position of peaks of magnetic susceptibility
Imχ(q, ω) in Sr2RuO4 is related to the structure of
1063-7761/02/9501- $22.00 © 20087
valence bands [6, 7]. Namely, for quasi-one-dimen-
sional bands dxz and dyz, the Fermi surface is character-
ized by nesting with the quasi-momentum Q = (0.3, 0.3,
qz), i.e., by the presence of parallel segments of the
Fermi surface which are matched during the shift k 
k + Q. At the same time, high values of homogeneous
static susceptibility and heat capacity [14, 15], as well
as the high ratio U/t of on-site repulsion to the widths
of bands of suitable models [7, 8], point to strong elec-
tric correlations in these compounds.

Different approaches exist to the description of the
magnetic and electronic properties of correlated sys-
tems under conditions of nesting. In one of these
approaches, the starting point is the Lindhard zero mag-
netic susceptibility χ0(q, ω). Nesting at some q = Q,
leads to a maximum in the dependence χ''(q, ω) at
ω  0 and q  Q. The nesting vectors of zero elec-
tron bands Q = (π, π) in cuprates or Q = (2π/3, 2π/3) in
Sr2RuO4 indeed correspond to the observed peaks of
low-frequency absorption χ''(q, ω) in these compounds.
However, the absolute values of integral intensity, cal-
culated using χ0, differ by an order of magnitude from
the values observed in strongly correlated compounds
such as cuprates and rutinates. The contradiction is
removed by renormalization of susceptibility of the
type χ(q, ω) = χ0/[1 – J(q)χ0] or χ(q, ω) = χ0/[1 – Uχ0]
by way of exchange or on-site interaction in the t–J
model or Hubbard model [16, 17]. The renormalization
enables one to describe a high density of low-frequency
excitations and a high susceptibility only in the case of
smallness of denominators in χ, i.e., in a situation close
to that of instability of a correlated system relative to
002 MAIK “Nauka/Interperiodica”
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the emergence of a spin structure with a given value of
q. In that case, however, the procedure of renormaliza-
tion on the basis of zero spectrum may itself become
inconsistent.

Another way of describing the electronic structure
under conditions of nesting is to use the mean-field
method which initially involves a concrete spin struc-
ture which removes the instability caused by nesting.
This approach may reveal the real mechanism of renor-
malization of bands of a strongly correlated system.
Such an approach corresponds to the treatment of anti-
ferromagnetic or spiral spin structures as a zero approx-
imation [18–20]. In this case, the spin order following
from uniform solutions by the mean-field method
should be more likely treated as local. The presence of
the spin moment dn = 〈Sn〉  localized at the site n causes
a reduction of the on-site energy. A certain alignment of
local spins under conditions of nesting, while removing
the degeneracy, produces an additional gain in energy.

The main features of the Fermi surface of Sr2RuO4,
obtained both from observations of magnetic quantum
oscillations [21, 22] and from photoemission measure-
ments (ARPES) [23–26], are largely reproduced by the
three-band model suggested in [6–8] and by the results
of calculation of the band structure in the LDA approx-
imation [27, 28]. However, in addition to the main
Fermi surfaces, the data of ARPES point to a clearly
defined structure of shadow Fermi boundaries which
are due to the umklapp processes. In particular, the
sharp dispersionless peak, observed in the ARPES
experiments [26] and corresponding to the shadow
Fermi boundary along the lines Γ(0, 0)–M(π, π),
remains an enigma. In [26], it is attributed to the surface
states arising in the distorted lattice of the surface layer.
The shadow Fermi surfaces may point to the presence
of periodic spin structures or lattice distortions.

It is our objective to study the manifestation of spin
structures, in particular, with an incommensurate order,
in the shape of a Fermi surface, in the structure of
shadow Fermi surfaces, and in the magnetic suscepti-
bility of the three-band model of Sr2RuO4. The calcula-
tions are performed in the mean-field approximation. In
particular, the question is raised as to the possible bulk
origin of the dispersionless peak along the lines Γ–M of
the momentum space. The hypothesis of the spiral spin
order with incommensurate momentum Q = 2π(1/3,
1/3) is discussed. Here, we continue using the habitual
but inaccurate term “incommensurate,” although it
would be more correct to refer to this structure with the
period which is a multiple of the lattice period as “frac-
tional quasi-momentum.” Such a comparison may
prove useful in revealing magnetic structures which, in
the dynamic or static modes, may be present in the
ground state of Sr2RuO4 rutinate.
JOURNAL OF EXPERIMENTAL 
2. THREE-BAND MODEL OF RuO4 PLANE

In an approximate ionic model of RuO4 =
Ru4+(d4)(O2–)4, four electrons take up three lower
d orbitals dxy, dxz, and dyz in the t2g-symmetry field pro-
duced by oxygen ions [1, 2]. These orbits, involving
pπ orbits of oxygen, generate three valence bands with
the total population of four electrons per lattice site. In
the previously suggested models of strong coupling [6–
8], the lattice site states and the corresponding creation

operators  (ν = 1, 2, 3) belong to Wannier combi-
nations d–pπ of the respective α, β, and γ bands with the
symmetry of xz, yz, and xy of d orbits, respectively. The
Hamiltonian of the model has the form [8]

(1)

Here, nνσn, nνn = nν↑n + nν↓n, and Sνn denote the popula-
tion and spin operators of the respective α, β, and
γ orbits (ν = 1, 2, 3). If the interband hopping interac-
tion is disregarded, the energies of zero bands are

(2)

The following values (in eV) found in [8] were used for

the quantities  and the hopping integrals between the
neighboring and next neighboring centers:

(3)

for the α(β) and γ bands (ν = 1(2), 3). The values of
{U, U1 = U – 2J, J} = {1.2 eV, 0.8 eV, 0.2 eV} were
taken for the interaction parameters. These parameters
are defined by the intra-atomic Coulomb and exchange
integrals related by the relation following from the
Racah rules [8]. The operator of interband interaction
Tαβ in Eq. (1) (diagonal jumps with the change of the
type of orbit) has the form

(4)

It is only such interaction that is allowed by the symmetry
for an undistorted lattice (in a distorted lattice with alter-
nating rotations of octahedrons, as in Sr2RuO4, the hop-
ping between neighbors also make a contribution to inter-
band interaction). The parameter tαβ is expected to be
small, of the order of 0.01 eV.
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Consider the scheme of derivation of mean-field
equations for states with a certain order of local spins
〈Sn〉 . If the spin–orbit interaction is ignored, the “spin”
coordinate system defining the spin quantization axis is
not related to the lattice coordinate system with the
z axis along the c axis of crystal. However, for simplic-
ity of description, we assume these coordinate systems
to coincide, with the possibility of recovering the dif-
ference between them in the final result. With this res-
ervation, we will select the following orientation of
average spins:

(5)

For the spiral (SP), FM, and AFM states being treated,
the vector Q is

(6)

respectively. Given this choice of quantization axes, the
form of the mean-field equations is the same for all
three states, differing only by the helicity vector.

In the mean-field approximation, the wave function
ΦQ is determined by the population of electron eigen-

states  of linearized Hamiltonian Hlin,

(7)

The set of basis operators  is defined as

(8)

The subscript ν = 1, 2, 3 corresponds to the α, β, and
γ bands, and i = 1, 2 corresponds to spin projections.

The average energy for the ΦQ state per lattice site is

(9)

Here, U2 = 2U – 5J. The energy given by Eq. (9) is a
function of one-electron averages (average density,
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local spin, and kinetic energy per lattice site) which, in
the basis given by Eq. (8), have the form

(10)

The linearized Hamiltonian of the mean field is

(11)

Here, , , and  are operators corresponding to the
averages given by Eqs. (10), and the expressions for the
matrices hiν, jν' follow from Eqs. (10) and (11). The

proper operators  in Eq. (7) are determined by diag-
onalization of h(k),

(12)

The quantities in Eqs. (10), in turn, are found by substi-
tution of the expressions

(13)

into (10). Here, f is the Fermi function, and Eλk denotes
the eigenenergies of Hamiltonian hk. The chemical

potential µ is found from the condition 2  = 4.
Note that, with tαβ = 0, i.e., in the absence of hopping
between the α and β orbits, the matrix Siνλ is factor-

ized so that each one-electron state , λ =  + 2(ν – 1),

 = 1, 2, belongs to a certain band ν. In this manner,
we derive a self-consistent solution of mean field for
each one of the types of spin order given in Eqs. (5)
and (6).

In addition to the states given by Eqs. (5) and (6), we
sought the mean-field states with charge and spin den-
sity waves that would have a period equal to three lat-
tice constants in both the x and the y directions and a
symmetry C4v (see Fig. 8 below). Such structures, as
well as the spiral state with Q = 2π(1/3, 1/3), remove
the degeneracy of levels which is due to nesting with
the population n = 4/3 for each band. Centers of four
sorts (l = 1, …, 4) are characterized by the densities and
values of local spins rνl and dνl of each one of the ν
orbits (for the γ band, the lattice sites of the second and
third sorts are equivalent). The local spin vectors were

rν
1

2N
------- aiνk

† aiνk〈 〉 ,
k

∑
i 1 2,=

∑=

dν
1

2N
------- aiνk

† a3 i– ν k, ,〈 〉 ,
k

∑
i 1 2,=

∑=

T
1
N
---- eνk a1νk

† a1νk〈 〉 eν k Q+, a2 νk( )
† a2νk〈 〉+[ ] .

k

∑=

Ĥ lin T̂
∂H
∂rν
------- r̂ν

∂H
∂dν
--------d̂ν+ + ĥk,

k

∑= =

ĥk hiν jν', aiνk
† a jν'k.=

r̂ν d̂ν T̂

bλk
†

hiν jν', k( )S jν'λ Siνλ Eλ k( ).=

aiνk
† a jν'k〈 〉 Siνλ k( )S jν'λ* k( ) f Eλk µ–( )

λ
∑=

rνν∑

bλk
† λ̃

λ̃
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assumed to be collinear,  = dν(l)ez, and the search
for a self-consistent solution by the mean-field method
was performed for a block-ferromagnetic (BFM) or
block-antiferromagnetic (BAFM) structure,

with ζ = +1 or ζ = −1, respectively. The mean-field
equations for these structures are discussed in Appen-
dix I. A self-consistent solution could be found only for
a BAFM structure with ζ = −1. It contains 18 sites in a unit
cell and consists of almost ferromagnetic 3 × 3 blocks
with opposite orientations of spins of neighboring
blocks.

The investigation of main and shadow Fermi sur-
faces of each one of the bands involved the calculation
of the intensity A(k, ω)|ω = 0 with which these Fermi sur-
faces show up in photoemission. The required spectral
functions are

(14)

where Z is the partition function and |n〉 and |m〉  are the
states of the entire system. In the mean-field approxi-
mation, with due regard for the definition of the basis
given by Eq. (8), we derive

(15)

(16)

Here, Eλ(k) denotes one-electron energies, and Siνλ is
the matrix of coefficients in the expression for the
proper operators in Eq. (7) in the basis given by Eq. (8).

Sn
ν〈 〉

S nx 3m+ ny 3m'+,( )〈 〉 ζ m m'+ S nx ny,( )〈 〉 ,=

A kω( )
1
Z
--- m cσk n〈 〉 2

σ m n, ,
∑=

× e
βEn–

δ ω En– Em µ–+( ),

A kω( ) Aσ kω( ),
σ
∑=

A↑ kω( ) S1νλ k ω,( ) 2δ̃ Eλ k( ) µ– ω–( ),
ν , λ
∑=

A↓ kω( ) S2νλ k Q– ω,( ) 2

ν , λ
∑=

× δ̃ Eλ k Q–( ) µ– ω–( ).

Table 1.  The average energies, the ratios of band popula-
tions, and the local moments for different structures, namely,
for spiral, block-antiferromagnetic, ferromagnetic, antiferro-
magnetic, and paramagnetic structures. The states are listed
in the order of increasing energies

SP BAFM FM AFM PM

, eV 2.708 2.7104 2.7469 2.7552 2.7570

2rα/rγ 1.935 1.4–3.2 2.15 2.137 2.04

dα(=dβ) 0.234 0.17–0.34 0.254 0.078 0

dγ 0.160 0.11–0.20 0.181 0.093 0

H

JOURNAL OF EXPERIMENTAL 
The calculation of A(k, ω) involved the replacement of
the δ function by the smeared function of one of two
forms,

,

with the width ∆ω ~ γ.
The two-dimensional image of the function A(kx, ky,

ω = 0) on the kx, ky plane gives a view of all sheets of
the Fermi surface of three bands and of the intensity of
the respective peaks in photoemission. A similar two-
dimensional map

presents the dispersion of bands upon variation of k
along the parametrically preassigned contour k(s) =
{kx(s), ky(s)} on the phase plane.

3. FERMI SURFACES AND BAND DISPERSION

Table 1 gives the values of average energy (per lat-
tice site), the ratios of densities, and the values of local
spins on the α, β, and γ orbits for the spiral state given
by Eqs. (5) and (6), and for the BAFM, FM, AFM, and
PM states of a model with the parameters given in
Eq. (3) and tαβ = 0–0.03. The states are arranged in
order of increasing energies.

The spiral and periodic (BAFM) states turn out to be
lower with respect to energy. Both these states have a
period corresponding to the nesting of bands at n = 4.
The total spin moments 〈St〉  =  ~ 0.6 for three
lower states are close to one another. 

Despite a small difference in energies, the states
have entirely different structures of the Fermi surfaces.
The Fermi surfaces of different structures, i.e., images
of the functions A(kx, ky, ω = 0), are given in Figs. 1–3.
For the PM state, the well-known ([6–8]) pattern of the
Fermi surface is observed (Fig. 1): quasi-one-dimen-
sional sheets at kx(y) = ±2π/3 correspond to the α and
β bands, and the electron-type Fermi surface corre-
sponds to the γ band. With tαβ ≠ 0, the Fermi surfaces
for the α and β bands are split at the point of their inter-
section, which results in the emergence of two Fermi
surfaces of the electron type and one of the hole type.
Their parameters (the areas covered by them) are in
good agreement with the characteristics determined
from the measurements of magnetic quantum oscilla-
tions of the de Haas–van Alphen effect [21, 22]. A sim-
ilar pattern of Fermi surface was obtained as a result of
photoemission measurements (ARPES) for samples
under conditions of cyclic variation of temperature in
the range from 10 to 200 K [26]. It is assumed that such
a procedure prevents the formation of surface and bulk
superstructures of RuO4 planes. The deviation of the

δ e( ) δ̃ e( )
1

4γ
------ e/2γ( )cosh

2–
,=

δ e( ) δ̃ e( )
1
π
--- γ

e
2 γ2+

----------------=

Ã s ω,( ) A kx s( ) ky s( ) ω, ,( )=

dνν∑
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Γ Γ

Y M Y Y M Y

Fig. 1. The Fermi surfaces of the PM state for a model with parameters given in Eq. (3) and tαβ = 0 (on the left). On the right, the

same, but with the changed tαβ = 0.03 and  = 0.6 eV.t0
γ

Γ Γ

Y M Y Y M Y

Fig. 2. The Fermi surfaces for the FM and AFM states with parameters given in Eq. (3) and tαβ = 0.01 eV.
model parameters from the standard parameters given
in Eq. (3) causes a variation of the Fermi surface. For
example, an increase in tαβ draws apart the Fermi sur-
faces of the α and β bands in the region of their quasi-

intersection, and a change of the difference  – 
causes a variation of the relative arrangement of the
sheets of the α(β) and γ bands (see Fig. 1).

Figure 2 gives the Fermi surfaces for the FM and
AFM states. In both cases, they differ strongly from the

t0
γ t0

α β( )
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Fermi surfaces of the PM state. A double set of Fermi
surfaces for bands with spins σ = ↑  or ↓  is observed;
distinction is made between bands with minimal and
maximal population. Here, the Fermi surfaces are
related to ferromagnetic states in an undistorted lattice,
although the latter states, observed in the substituted
compound Ca2 – xSrxRuO4 [9, 10], correspond to a lat-
tice with alternating rotations of RuO4 octahedrons. For
the AFM states, the Fermi surface of the γ band has a
characteristic form of pockets familiar from the form of
SICS      Vol. 95      No. 1      2002
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Γ Γ

Y M Y Y M Y

Fig. 3. The Fermi surfaces of a system in the spiral state with Q = 2π(1/3, 1/3). On the right, the image of the total spectral function
(15) of three bands, and on the left, the image of the spectral function A↑(k, ω = 0) for one of the polarizations (σ = ↑ ).
hole pockets in cuprate models. The difference consists
in that the shadow part of the pocket is now facing the
center Γ(0, 0) of the Brillouin zone rather than the point
Y(π, π), because the band population nγ > 1. Because of
magnetic doubling of a unit cell in the AFM state,
shadow Fermi surfaces arise for the α and β bands in
addition to main sheets; these shadow surfaces are the
reflection of the main Fermi surfaces relative to the kx ±
ky= ±π lines. Note that such reflected shadow Fermi
surfaces are indeed observed in the ARPES spectra of
Sr2RuO4 [26]. However, their origin may be associated
both with the bulk spin AFM structure and with the lat-
tice rearrangement of the surface layer with the cell

1

0

–1

–2

–3

–0.5 0 0.51/3–1/3
k/2π

E
(k

) 
– 

µ

Fig. 4. The band energies (solid curves) for a one-dimen-
sional system with the population n = 2/3 in the spiral state
with Q = 2π/3. The vertical lines indicate the position of the
Fermi boundaries corresponding to one of the polarizations,
i.e., the image of the spectral function A↑(k, ω = 0). The
dashed curves indicate the zeroth bands ek – µ and ek + Q – µ,
and the dashed vertical lines correspond to zeroth Fermi
boundaries.
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doubling to the size of  or with surface antifer-
romagnetism. For example, Damascelli et al. [26]
assumed the lattice distortion and the ferromagnetism
of the surface layers in order to interpret the presence of
dispersionless bands (see the discussion below).

Figure 3 gives the Fermi surfaces of the spiral state
with Q = (2π/3, 2π/3). Note three singularities of a
Fermi surface of the spiral state, namely: (1) the emer-
gence of shadow Fermi surfaces along the lines kx = 0
or ky = 0 just at the locations of the observed dispersion-
less peaks in photoemission, (2) different images of the
spectral function given by Eqs. (16) pertaining to differ-
ent spin polarizations and contributing to the total
intensity of photoemission, and (3) residual shadow
Fermi surfaces of the γ band in the direction perpendic-
ular to the helicity vector. They retain the form of elec-
tron pockets similar to those of the AFM state but
shifted by ±Q/2 for A↑ (↓ )(q, ω = 0). In the representation
of the function A↑(kx, ky, ω = 0), we are dealing with the
spin polarization on the z' axis perpendicular to the
plane of spin rotation of the spiral state. The possible
orientation of z' relative to the lattice axis z remains
unknown.

The first two features may be interpreted using a
simple example of the spiral state of a one-dimensional
one-band system with the occupancy n = 2/3 (see
Fig. 4). In the spiral state with Q = 2π/3, the band ener-
gies Eλ(k), λ = 1, 2, are asymmetric relative to k = 0

(with the basis { , }). The image of the spec-
tral function A↑(k, ω) will indicate the main (with a high
peak in ImA↑) Fermi boundary at k ≈ –2π/3 and the
shadow (with a low peak in ImA↑) boundary at k ≈ 0.

2 2×

c↑ k
† c↓ k Q+( )

†
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1
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Fig. 5. The band dispersion obtained as the image of the total spectral function A(k, ω) for k = (kx(s), ky(s)) varying along two con-
tours Γ(0, 0)–M(0, ζπ)–Y(π, ζπ) with ζ = 1 (at the top) and ζ = −1 (at the bottom). The thin curves indicate zero band energies
(ek − µ) at dν = 0.
The previous boundary at k ≈ 2π/3 disappears due to
band splitting. For the opposite polarization, an
inverted pattern is observed: A↓(k, ω) = A↑(–k, ω).

The shadow Fermi surfaces along the Γ–M lines are
worthy of more detailed discussion (see Fig. 3). Their
arrangement coincides with the position of dispersion-
less peaks observed in the ARPES experiments and
referred to by Damascelli et al. [26] as “sharp Fermi
surface” (SS). Previously [26], the origin of these peaks
was associated with surface electron states. It was
assumed that these states arose during the unit cell

restructuring to the size of  in the surface lay-
ers of RuO4 with rotations of oxygen octahedrons char-
acteristic of ferromagnetic spin structures [9–11, 28].
One of the arguments in favor of this interpretation was
the disappearance of SS peaks and of the respective
Fermi surface under the action of cyclic temperature
treatment of the material with a fast variation of T in the
range from 10 to 200 K. It is assumed that such treat-
ment causes the destruction of surface structures. The
results of our calculation of the Fermi surface of the
spiral state with Q = 2π(1/3, 1/3) enable us to advance
the hypothesis of the bulk origin of the SS peaks
observed in the ARPES experiments along the Γ–M
lines. We compare these peaks with the shadow Fermi
boundaries arising along the lines kx = 0 or ky = 0 in the
spiral state. In other words, these shadow Fermi bound-
aries may be interpreted as the main Fermi boundaries
kx(y) = ±2π/3 of the α and β bands, shifted by the vector
Q = 2π(1/3, 1/3) equal to the period of the spin structure
in the system. In addition, the segment of the line Γ–M
in the vicinity of the point M (|k | > 2π/3) touches the
boundary of the electron pocket of the γ band, which

2 2×
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causes an increase in the intensity of the total spectral
density in this region. Therefore, we are dealing with
umklapp processes for periodic structures with the
period Q in the momentum space. To this, we must add
the assumption that a cyclic variation of temperature
causes the destruction of an equilibrium spiral (or peri-
odic) structure with the period Q (as it was assumed to
destroy the surface structure, according to the previous
interpretation [26]). Conceivably, this process intro-
duces so large a number of defects into the structure as
to broaden this shadow Fermi boundary and make it
unobservable.

One of the ways of testing this hypothesis could be
provided by the search for the above discussed polar-
ization asymmetry in the intensity of photoemission.
The spin-polarization photoemission employed to iden-
tify the Fermi surface of ferromagnetic states may be
useful for testing the spiral structure as well. However,
we cannot predict the orientation of the “spin system of
coordinates” of the spiral state (should this state be real-
ized) if we fail to include the spin-orbit interaction in
the treatment. The question also remains of the degree
to which the spin structures may be regarded as static.
It is also necessary to more thoroughly interpret other
shadow Fermi boundaries observed in the photoemis-
sion of Sr2RuO4 which was not subjected to the proce-
dure of cyclic variation of temperature. Yet another
interesting theoretical question arises of whether the
helicity of state may be reflected in the phase shifts of
magnetic quantum oscillations and, as a result, be
observed during measurements of such effects.

Figure 5 gives the dispersion of bands for the spiral
state, obtained as the image of the total spectral density
SICS      Vol. 95      No. 1      2002
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A(s, ω) of all three bands (see Eq. (15)) upon variation
of k = (kx(s), ky(s)) along the contours Γ(0, 0) –
M(ζπ, 0) – Y(ζπ, π), ζ = 1, –1. For segments of the Y–Γ
contour, which are parallel and perpendicular to the
vector Q, the difference of the main (nonshadow)
branches of band energies is small. Along the entire
contour, the main branches almost repeat the band ener-
gies (ek – µ) of linearized Hamiltonian (11) at dν = 0,
which are shown by the curves in Fig. 5.

The properties of solutions by the mean-field
method with a periodic spin BAFM structure are
described in Appendix II. We shall only note that, for
this structure, Fermi surfaces exist for the γ band alone.
For the α and β bands, the modulation of spins and
electron densities brings about the emergence of a gap
along all previous Fermi boundaries of zeroth α and
β bands. This contradicts the observations of magnetic
quantum oscillations [21], which reveal the Fermi sur-
face of all three bands in a system. Neither does the
intricate shape of the Fermi surface of the γ band corre-
spond to the Fermi surface observed in photoemission
[23–26]. For the spiral state, similar gaps are observed
along separate regions of zeroth Fermi boundaries. This
shows up as the disappearance of some regions of the
main Fermi surfaces in the photoemission of electrons
with one or another (certain) spin polarization (see
Fig. 3).

4. SPIN SUSCEPTIBILITY
IN THE SPIRAL STATE

Another method is known for studying spin struc-
tures with the aid of inelastic neutron scattering (INS).
This method involves measurements of the dynamic
spin susceptibility of a system. Recent INS measure-
ments in Sr2RuO4 [12] revealed a magnetic peak for the
incommensurate quasi-momentum Q ~ (0.3, 0.3, 1) [in
(2π/a, 2π/a, 2π/c) units] at T < 200 K. Similar peaks
were obtained in the case of susceptibility calculated
for unperturbed bands and renormalized in accordance
with the random phase approximation (RPA) [16, 17].
The matching of the absolute integral intensity of mag-
netic absorption with the quantity being observed
requires parameters indicating that the system is close
to instability [12]. Therefore, the results of calculation
involving zeroth bands may be inadequate. In view of
this, we performed an RPA calculation of χ(qω) using
spiral states as a zeroth approximation. The spiral states
with Q = 2π(1/3, 1/3) represent the simplest of the pos-
sible structures removing the system instability due to
nesting. Our treatment is similar to the calculations of
χ(q, ω) for antiferromagnetic (or spiral) states [18–20]
in which the Hubbard band splitting is included even in
the zeroth approximation. Unlike the one-band models
in [18–20], Sr2RuO4 is described by a three-band
model, and the deviation of the helicity vector Q =
2π(1/3, 1/3) from QAFM = (π, π) is significant.
JOURNAL OF EXPERIMENTAL 
We are interested in fluctuations of the q harmonics
of both the total spin Sq and spins of different orbits,

(17)

Different Cartesian components χij(q, ω) (i, j = x, y, z or
1, 2, 3) of the spin susceptibility tensor for the total spin
or its orbital components are defined according to [30,
31] as

(18)

(19)

where

Orbit-dependent components χνν(q, ω  0) with dif-
ferent polarization for each one of the orbits (ν = α, β,
γ) can be measured individually as well. For example,
Imai et al. [32] extract them from the results of NMR
measurements on 17O oxygen atoms taking different
positions in RuO4 octahedrons. The total susceptibility

given by Eq. (18) is χ = . For simplicity, we per-

form the calculation for a model of zero interband cou-
pling tαβ = 0 in Eq. (4). We use the simplest method of
deriving χ(qω) from equations of motion [31]. This
method is equivalent to the summation of ladder dia-
grams. For applying this method to spiral states, we will
express the q components of spin and density in terms
of band operators (7) of the spiral state of the mean
field,

(20)

Here, σ0 and σl denote a unit matrix and Pauli matrices;
the subscripts i and j are introduced instead of the
±1/2 spin projections. In the basis of band operators (7),
we have

(21)

Sν q, eiqnSνn, Sq

n

∑ Sν q, .
ν
∑= =

χ ij qω( ) i tei ω iη+( )t Siq qt( ); S jq
†〈 〉〈 〉 ,d

0

∞

∫–=

χ ij
νν' qω( ) i tei ω iη+( )t Siq

ν t( ); S jq
ν'( )†〈 〉〈 〉 ,d

0

∞

∫–=

A t( ); B〈 〉〈 〉
A t( ) B,[ ] , t 0>

0, t 0.<



=

χνν'

ν ν',
∑

ρq
ν S1q

ν S2q
ν S3q

ν, , ,{ } l σl( )ijrij
ν q( ),

i j,
∑=

l 0 1 2 3, rij
ν q( ), , , 1

N
---- ciν k q+,

† c jνk.
k

∑= =

rij
ν q( ) σl( )ijSiνλ* k q+( )S jνλ ' k( )bλ k q+,

† bλ'k.
k i j, ,
∑=
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We will introduce the following notation for new oper-
ators dependent on space harmonics:

(22)

We will characterize the thus defined operators by the
common parameter q because of their common repre-

sentation in terms of the band operators  of the spi-
ral state,

(23)

(24)

where l = 0, 1, 2, 3. It follows from the representation

of the Hamiltonian by Eq. (1) in the basis { } that, in
the case of the spiral state, only the operator correlators
X(q) with the same values of q are nonzero,

(25)

We calculate the correlators given by Eq. (25) in the
RPA approximation using the method described by
Izuyama et al. [31] (see also [18–20]). This method is
fully equivalent to the summation of ladder diagrams.
We proceed from the equations of motion for the oper-
ator given by Eq. (24),

(26)

In calculating the commutator [θ, H], we linearize the
four-fermion contribution in the latter. We integrate
Eq. (26) with respect to t with eiωt and with respect to k
with the same weight functions as in Eq. (23) to derive
the following algebraic equations for Gνl, ν'l '(q, ω):

(27)

Xν l q( )

=  

1
2
--- σl( )iirii

ν q( ), l
i

∑ 0 3,,=

1
2
--- σl( )12r12

ν q Q–( ) σl( )21r21
ν q Q+( )+[ ] , l 1 2.,=









bλk
†

Xν l q( )
1

2N
------- σl( )ijSiνλ k q+( )

i, j , λ , λ'

∑
k

∑=

× S jνλ ' k( )θλλ ' k q,( ),

θλλ ' k q,( ) bλ k q+,
† bλ'k,=

bλk
†

Xν l qω( ); Xν'l'
† q'( )〈 〉〈 〉 δ qq'Gν l ν'l', q ω,( ).=

i
td

d θλλ ' k q t, ,( ); Xν'l'
† q( )〈 〉〈 〉

=  θλλ ' k q t, ,( ) H,[ ] ; Xν'l'
† q( )〈 〉〈 〉 δ t( ) θ X†,[ ]〈 〉 .+

δll'δνν' Zll'
ν Uζ l'δνν' K l'( ) 1 δνν'–( )+[ ]–{ } Gν'l' ν''l'',

=  δνν''
1
2
---Zll''

ν ,

ζ l 1 1 1 1, , ,–{ } l, l l' l'', , 0 1 2 3,, , ,= =

K l( ) U2 J J J, , ,{ } l, U2– 2U 5J ,–= =
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(28)

(29)

Here, Eλ and fλ denote the band energies and Fermi
functions of the spiral state. Compact expressions for
functions (29) are given in Appendix II. In the absence

of interactions (U = U1 = J = 0), the functions 

are nothing but Lindhard zero susceptibilities  for
each one of the bands. As the case should be for a sys-
tem of noninteracting bands (tαβ = 0), the susceptibility

 is diagonal over the band index, unlike that used in
[17]. It is important that the susceptibility-testing inter-
action with the magnetic field or with neutrons is the
sum of contributions from each band and contains no
terms that are not diagonal with respect to ν. The diag-

onalizability of the functions  =  with respect to
ν is retained when the interactions of U, U1, and J are
included in the mean-field approximation.

We compute (q'ω) from Eqs. (28) and (29) and
solve the set of algebraic equations (27) to find the cor-
relators Gνl, ν'l '(q'ω) for each one of three values of the
argument q' = q – Q, q, and q + Q. We recall definitions
(20), (22), and (25) to derive expressions, for the sought
spin susceptibilities given by Eq. (18). These expres-
sions are similar to the results of [20] for a one-band
model,

(30)

(31)

Here, the omitted subscripts ν in Gl, l '|q' ≡ Gνl, ν'l '(q'ω)
are implied. It is demonstrated in Appendix II that, with
ω  0 and q'  0, the functions Gνl, ν'l '(q'ω) have a
pole corresponding to the singularities in susceptibility
at q = 0, ±Q. Note further that, even with nonmixed
zones (tαβ = 0), the elements χνν' nondiagonal with
respect to ν are nonzero because of the exchange inter-
action of spins in the Hamiltonian given by Eq. (1).

Figure 6 gives the real and imaginary parts of total
susceptibility  = (χxx + χyy + χzz)/3 for q varying
along the contour Γ–Y(π, π)–M(0, π)–Γ–Y2(π, –π). The
calculation was performed for a model with the param-
eters given in Eq. (3) for tαβ = 0 and finite parameter of
broadening η = 0.02 eV in Eq. (28). In addition to the

Zll'
ν qω( )

1
2
---

f λ k q+, f λ'k–
Eλ k q+, Eλ'k– ω iη+ +
----------------------------------------------------

k , λ , λ'
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l' k( )( )∗ ,

Fλλ '
l k( ) Siνλ k q+( ) σl( )ijS jνλ ' k( ).

i, j
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χ0
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ν

χzz G3 3, qω( ),=
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1
4
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+ G11 G22 i G12 G21–( )+ +[ ] q Q– } .

χ qω( )
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Fig. 6. The real and imaginary parts of total spin suscepti-
bility χ(q, ω) averaged over polarizations (solid curve) and
its individual components, namely, χzz (dashed curves) and
χxx (dotted curve), for q varying along the contour Γ–Y1–
M–Γ–Y2 (see the inset). The frequency and parameter of
broadening are ω = η = 0.02 eV.

Im
χ(

q,
 ω

)
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expected absorption peaks in χ''(qω) at q = Q = 2π(1/3,
1/3), an almost symmetric peak is observed at q =
2π(1/3, –1/3). Both peaks correspond to the observed
incommensurate peaks in inelastic neutron scattering
[12]. Figure 7 details the contributions to χ''(q, ω) from
different bands and different polarizations. Note that

the integrated intensity  = d2q/4π2 is of

the order of 1 eV–1 which is comparable in order of
magnitude with the similar value of about 2 eV–1 in
cuprates [33]. Attempts at calculating the static uniform
susceptibility (ω  0, q  0) and comparing the
results with those observed in the case of NMR on 17O
meet with the difficulty that the order of calculated quan-
tities χ'(q, ω = 0) varies abruptly at small values of q and
ω. Under these conditions, the effect of spin fluctuations
on the NMR characteristics must depend considerably on
the nonuniformities and processes of scattering.

5. CONCLUSIONS

The results of calculation of the states of a three-
band model with different magnetic structure by the
mean-field method have shown the spiral state with the
vector Q = 2π(1/3, 1/3) corresponding to the nesting of

χ̃ ω( ) χ'' qω( )∫
(a) (c)

(b) (d)

q = 2π(h, h)
20

10

0

Im
χαα

(q
, ω

)
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0

Im
χγγ

(q
, ω

)

0.25 0.30 0.35 0.25 0.30 0.35
h h

Fig. 7. The contributions (diagonal over ν) to the mean susceptibility from individual bands ν = α and ν = γ (a, b) for the frequencies
ω = 0.02 eV (solid curves) and 0.06 eV (dashed curve) and η = 0.02 eV for Q = 2π(h, h) in the vicinity of resonance q ~ Q. The

plots (c) and (d) give the same for  (dashed curve) and  (solid curve) for ω = 0.02 eV.χzz
νν χxx

νν
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Γ

Y M Y
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Fig. 8. On the left, atoms of four sorts, l = 1, 2, 3, 4, in a 3 × 3 block of a periodic block-antiferromagnetic structure. Local spins
are collinear and of opposite signs for the centers of the neighboring blocks, ζ = –1 in Eq. (33). On the right, a Fermi surface struc-
ture obtained as the image of the spectral function A(k, ω = 0) (see the text).
the α and β bands to be lower in energy among the stud-
ied structures (ferromagnetic, antiferromagnetic, spiral,
periodic). The AFM structures in photoemission spec-
tra must exhibit characteristic Fermi boundaries around
electron pockets for the γ band and shadow Fermi
boundaries of the α and β bands, which are the reflec-
tion of the main Fermi surfaces relative to the lines kx ±
ky = ±π. Such Fermi surfaces were indeed observed in
Sr2RuO4 [26]. However, their origin may be associated
both with the bulk magnetic doubling of a unit cell of
the AFM structure and with the magnetic or lattice rear-
rangement of the cell of surface layers.

For the spiral state with the vector Q = 2π(1/3, 1/3),
the main sheets of the Fermi surface for the α, β, and
γ bands show up in photoemission with the intensity
depending on the spin polarization. The search for such
polarization asymmetry of photoemission spectra could
serve as a test for the presence of spiral spin structures
in Sr2RuO4. Shadow Fermi boundaries of the α and β
bands along the Γ(0, 0)–M(π, 0) (or (0, ±π)) lines were
revealed. They coincide with the main Fermi bound-
aries shifted by the vector Q. The position of sharp
SS peaks along the Γ–M lines, observed in photoemis-
sion (ARPES) experiments, coincides with the position
of the shadow Fermi surfaces of the α and β bands and
with a segment of the boundary of the electron pocket
of the γ band, formed by the spiral spin structure. This
suggests that the SS features are due to the umklapp
processes in spiral (or periodic) structures rather than to
the surface states, as interpreted previously [26]. In this
case, the disappearance of SS features as well as other
shadow Fermi boundaries upon a cyclic variation of
temperature [26] may be attributed to the destruction of
spiral (instead of surface) structures. The results of cal-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
culations of spin susceptibility by the RPA method, in
which the spiral spin structure is taken into account
even in the zeroth approximation, conform the presence
of peaks in χ''(q, ω) at Q = 2π(1/3, 1/3) in accordance
with the magnetic peak observed in inelastic neutron
scattering [9]. The arguments advanced above are
indicative of the possible presence of spiral spin struc-
tures in Sr2RuO4 at low temperatures. This hypothesis
poses new questions, for example, that of the effect of
the spiral structure on the symmetry and properties of
the superconducting order in rutinate or on the phase of
magnetic quantum oscillations.
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APPENDIX I

MEAN-FIELD EQUATIONS
FOR A PERIODIC STRUCTURE

We will characterize the structure by the basis vec-
tors R1(2) of the Bravais cell and by the respective vec-
tors of reciprocal lattice Q1(2),

(32)
R1 2( ) 3a 3a±,( ),=

Q1 2( ) 2π/6 2π/6±,( ).=
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The electron densities and local spins at the sites n = i +
(3Lx, 3Ly) serve as the order parameters of this struc-
ture,

(33)

These parameters depend on the position of the site i =
(i1, i2) within a 3 × 3 lattice block. The signs of equiva-
lent spins of neighboring units are equal (ζ = +1) or
opposite (ζ = –1) for block-ferromagnetic or block-
antiferromagnetic periodic structures. With the symme-
try of C4v , we have lattice sites of four sorts, l = 1, …, 4,
according to Fig. 8.

Previously, in searching for paramagnetic solutions,

the quasi-momentum k in the complete basis { }
varied in the Brillouin zone G of the initial lattice
(|kx(y)| < π). The Brillouin zone κ ∈  G18 of the new struc-
ture is confined within the |κx ± κy | ≤ 2π/3 boundaries,
and the complete set of operators is conveniently redes-
ignated as

(34)

Here, κ is the quasi-momentum reduced to the new
Brillouin zone, and m = (m1, m2) is a pair of integers
entering expressions for the shift [k(m) – κ] in terms of
reciprocal lattice vectors. We have 18 independent pairs
of integers (m1, m2). They may be selected in different
ways.

The mean energy of state is

(35)

The expression for  in terms of densities
and local spins is given by the same formula (9) as
before. The only difference is that the quantities rnν and
dnν now depend on the site position in the cell according
to Eqs. (33).

1
2
--- nnν〈 〉 riν, Sznν〈 〉 ζ

Lx Ly+
diν.= =

cνσk
†

aνσmκ
†{ } cνσk m( )

†{ } ,=

m m1 m2,( ), k m( ) κ Q1m1 Q2m2.+ += =

H HU rnν dnν,( )
n

∑ T .+=

HU rnν dnν,( )

Table 2.  The values of populations and local spins for atoms
of four sorts in a 3 × 3 block of a periodic block-antiferro-
magnetic structure with a unit cell consisting of two blocks

l 1 2(3) 3(2) 4

rn, α(β) 0.808 0.596 0.784 0.608

rn, γ 0.499 0.650 0.650 0.725

dn, α(β) 0.170 0.338 0.198 0.331

dn, γ 0.118 0.202 0.202 0.164
JOURNAL OF EXPERIMENTAL 
The linearized Hamiltonian obtained using
Eqs. (34) and (35) has the form

(36)

(37)

Here, U2 = 2U – 5J; k(m) was defined in Eqs. (34)
above; the vector κ is the reduced quasi-momentum
(κ ∈  G18); m = (m1, m2) and m' = ( , ); and rν(κ, m)
and dν(κ, m) are the Fourier harmonics of densities and
spins, respectively,

(38)

The diagonalization of hκ defines the eigenenergies Eκλ,
λ = 1, 2, …, 18, and the one-electron proper operators

and, in turn, enables one to calculate the mean values of
rnν and dnν and their harmonics given by Eqs. (38) in
terms of the matrix of the coefficients Sνσmλ(κ) and
Fermi functions f(Eκλ – µ) as this was done above for
ferromagnetic, antiferromagnetic, and spiral structures.
The Fermi boundaries for a self-consistent solution
with such a structure were visualized, as before, using
the image of the spectral function at ω = 0,

(39)

A self-consistent solution could be found only for the
BAFM structure (ζ = –1) in Eqs. (33). The respective
densities and spins at sites of four sorts (l = 1, …, 4) in
a 3 × 3 block (see Fig. 8) are given in Table 2. Of all
states treated by us, this BAFM structure is the closest
to the lower spiral state (see Table 1).

Also given in Fig. 8 is the Fermi surface image cor-
responding to the given structure. It is remarkable that
it is only the γ band that makes a contribution to the
spectral function A(k, ω = 0). For the α and β bands, the
mean field with the given periodicity leads to the emer-
gence of a gap along all previous Fermi boundaries of
zero α and β bands of the paramagnetic state.

H lin hκ ,
κ
∑=

hκ  = eν k m( )( )δmm' Vνσ m m'–( )+[ ] aσνmκ
† aσνm'κ ,

ν σ m m', , ,
∑

Vνσ m( ) = Urν m( ) U2rν' m( )
σ
σ
------Jdν' m( )+

 
 
 

.
ν' ν≠
∑+

m1' m2'

rν m( )
1
N
---- e

i Q1m1 Q2m2+( )n 1
2
---nnν ,

n

∑=

dν m( )
1
N
---- e

i Q1m1 Q2m2+( )n
Sznν〈 〉 .

n

∑=

bλκ
† aνσmκ

† Sνσmλ κ( )=

A k ω 0=,( ) Sνσmλ κ( ) 2δ̃ Eλ κ( ) µ–( ).
σνκm

∑=
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APPENDIX II

SINGULARITIES OF χ(qω) AT ω  0
We will demonstrate that χ(q, ω) exhibits singulari-

ties at ω  0 and q  ±Q. In view of relation (31),
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
we must prove that the functions Gij(q, ω), i, j = 1, 2,
have a singularity at ω  0 and q  0, i.e., that the
determinant of the set of algebraic equations (27) goes
to zero at q = 0 and ω = 0,
(40)

A δll'δνν' Zll'
ν 0 0,( ) Uζ l'δνν' K l'( ) 1 δνν'–( )+[ ]– q 0= ω, 0= 0.= =
For this, we will find explicit expressions for the matrix

 at q = 0 and ω  0. Before doing so, note
that, at tαβ = 0, a certain band ν corresponds to each pair

of one-electron states  (λ = 1, …, 6) of linearized
Hamiltonian hk, so that the subscript λ may be repre-

sented in the form λ =  + 2(ν – 1), λ = 1, 2 and ν = 1,
2, 3. Accordingly, the matrix of the coefficients in
Eq. (12) is factorized into three independent second-

order matrices . The functions

(41)

are factorized in just the same way, where λ =  + 2(ν –
1) and is similar to λ'. As a result, for the second-order

matrices , we derive the expressions

(42)

Here, σl denotes the Pauli matrices, and the quantities

 are defined by the equations

(43)

(44)

All quantities in Eqs. (42) depend implicitly on the vec-
tor Q of helicity of the ground state. At q = 0, we have
s– = 0, c– = 1, s+ = sin2ϕk, and c+ = cos2ϕk. According

to Eqs. (28), the quantities (q = 0, ω) at q = 0 are

Zll'
ν qω( )

bλk
†

λ̃

S
iν λ̃ ν,
ν

Fλλ '
l F̃λ̃ λ'˜

lν
, λ̃ λ'˜, 1 2,= =

λ̃

F̃λ̃ λ'˜
lν

F̃λ̃ λ'˜
0ν σ0c–

ν iσ2s–
ν–[ ] λ̃λ'˜ ,=

F̃λ̃ λ'˜
1ν

–σ1c+
ν σ3s+

ν–[ ] λ̃λ'˜ ,=

F̃λ̃ λ'˜
2ν

–σ2c–
ν iσ0s–

ν+[ ] λ̃λ'˜ ,=

F̃λ̃ λ'˜
3ν σ1s+

ν σ3c+
ν+[ ] λ̃λ'˜ ,=

c±
ν ϕk q+

ν ϕk
ν±( ), s±

νcos ϕk q+
ν ϕk

ν±( ).sin= =

ϕk
ν

2ϕk
νcos

Dk
ν

gk
ν------, 2ϕk

νsin–
δek

ν

gk
ν--------,–= =

Dk
ν 1

2
--- ∂H

∂dν
--------, δek

ν 1
2
--- ek

ν
ek Q+

ν–( ),= =

gk
ν Dk

ν( )2 δek
ν( )2

+ .=

Zll'
ν

determined only by contributions with λ ≠ λ'. However,
for such contributions at q = 0, one can prove that

(45)

for any function Φ(k) exhibiting the symmetry Φ(k) =
Φ(–k – Q). This follows from expressions (42) and (43),
from the values of s± and c± at q = 0, and from the parity
of the functions cos2ϕk (even) and sin2ϕk (odd) in
Eqs. (43) with respect to the operation k  –(q + Q).
It is easy to check that δek = –δe–k – Q. As a result, with
q = 0 and ω = 0, we have

(46)

where fik denotes the Fermi functions for the levels E1k

and E2k, and gk = (E1k – E2k)/2 > 0 is defined by expres-
sion (44).

Therefore, at q = 0 and ω = 0, determinant (40) of
the twelfth-order matrix A being factorized contains as
a factor the determinant of the third-order matrix corre-
sponding to the subscripts l = l ' = 2 in Eq. (40). As a
result, we have

(47)

We will now make sure that the determinant in the
right-hand side of Eq. (47) is zero. For this purpose, we
will write the equations satisfied by the values of spin
density dν of a self-consistent solution by the mean-
field method with the spin structure. We will take into
account the fact that, in the absence of direct interband
coupling (tαβ = 0), the matrix of the coefficients Siν, λ in
the definition of eigen-operators (7) is factorized into
three submatrices and expressed in terms of the quanti-

ties  defined in Eqs. (43) and (44). As a result, the
equations for dν will be written as

(48)

F12
ν l F12

ν l'( )∗ Φ k( ) δll'∼
k

∑

Zll'
ν 0 0,( ) δll'Zll 0 0,( ),=

Z22
ν 1

2
---

f 1k
ν f 2k

ν–

gk
ν---------------------,

k

∑=

A q 0 ω, 0= =

∼ δ νν' Z22
ν 0 0,( ) Uδνν'  + J 1 δνν'–( )[ ]– .

ϕk
ν

dν Z22
ν 0 0,( ) Uδνν' J 1 δνν'–( )+[ ] dν'

ν'

∑=
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or

(49)

where  is defined by formula (46). From the
fact that the values of dν in the solution by the mean-
field method are nonzero follows the equality to zero of
the respective determinant in the set of equations (49),
which coincides with the determinant in the right-hand
side of Eq. (47). So, det||A ||q = 0, ω = 0 = 0, and the func-
tion G22(qω) exhibits a singularity at q = 0 and ω = 0.
In view of relation (31) of the susceptibilities χxx(yy)(qω)
with G22(q ± Q, ω), we obtain proof of the fact that
χxx(yy)(qω) exhibits a singularity at q = ±Q and ω = 0.

REFERENCES
1. Y. Maeno, T. M. Rice, and M. Sigrist, Phys. Today 54, 42

(2001).
2. Y. Maeno, H. Hashimoto, K. Yoshita, et al., Nature 372,

532 (1994).
3. T. M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7,

L643 (1995).
4. K. Ishida, H. Mukuda, Y. Kitaoka, et al., Nature 396, 658

(1998).
5. M. Mukuda, K. Ishida, Y. Kitaoka, et al., J. Phys. Soc.

Jpn. 67, 3945 (1998).
6. I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 79, 733

(1997).
7. I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 82, 4324

(1999).
8. A. Liebsch and A. Lichtenstein, Phys. Rev. Lett. 84,

1591 (2000).
9. M. Braden, G. Andre, S. Nakatsyji, and Y. Maeno, Phys.

Rev. B 58, 847 (1998).
10. O. Friedt, M. Braden, G. Andre, et al., Phys. Rev. B 63,

174432 (2001).
11. R. S. Perry, L. M. Galvin, S. A. Grigera, et al., Phys. Rev.

Lett. 86, 2661 (2001).
12. Y. Sidis, M. Braden, P. Bourges, et al., Phys. Rev. Lett.

83, 3320 (1999).
13. M. Braden, O. Friedt, Y. Sidis, et al., cond-mat/0107579.

δνν' Z22
ν 0 0,( ) Uδνν' J 1 δνν'–( )+[ ]–{ } dν' 0,=

Z22
ν 0 0,( )
JOURNAL OF EXPERIMENTAL 
14. J. J. Neumeier, M. F. Hundley, M. G. Smith, et al., Phys.
Rev. B 50, 17910 (1994).

15. S. Nishizaki, Y. Maeno, Z. Mao, et al., J. Phys. Soc. Jpn.
69, 572 (2000).

16. I. Mazin and D. J. Singh, Phys. Rev. Lett. 82, 4324
(1999).

17. I. Eremin, D. Manske, C. Joas, and K. M. Bennemann,
cond-mat/0102074.

18. J. R. Schrieffer, X. G. Wen, and F. C. Zhang, Phys. Rev.
B 39, 11663 (1989).

19. A. V. Chubukov and K. A. Mussaelian, Phys. Rev. B 51,
12605 (1995).

20. A. A. Ovchinnikov and M. Ya. Ovchinnikova, Zh. Éksp.
Teor. Fiz. 116, 1058 (1999) [JETP 89, 564 (1999)].

21. A. P. Mackenzie, S. R. Julian, A. J. Diver, et al., Phys.
Rev. Lett. 76, 3786 (1996).

22. P. G. Grigoriev, M. V. Kartsovnik, W. Biberacher, et al.,
cond-mat/0108352.

23. A. Puchkov, Z. X. Shen, T. Kimura, and Y. Tokura, Phys.
Rev. B 58, R13322 (1998).

24. D. H. Lu, M. Schmidt, T. R. Cummins, et al., Phys. Rev.
Lett. 76, 4845 (1996).

25. T. Yokoya, A. Chanani, T. Takahashi, et al., Phys. Rev. B
54, 13311 (1996).

26. A. Damascelli, D. H. Lu, K. M. Shen, et al., Phys. Rev.
Lett. 85, 5194 (2000).

27. P. K. de Boer and R. A. de Groot, Phys. Rev. B 59, 9894
(1999).

28. T. Oguchi, Phys. Rev. B 51, 1385 (1995).
29. R. Matzdorf, Z. Fang, Ismail, et al., Science 289 (5480),

746 (2000).
30. Yu. A. Izyumov, I. M. Katsnel’son, and Yu. N. Skryabin,

Magnetism of Collective Electrons (Nauka, Moscow,
1994).

31. Y. Izuyama, D.-J. Kim, and R. Kubo, J. Phys. Soc. Jpn.
18, 1025 (1963).

32. T. Imai, A. W. Hunt, K. R. Thurber, and F. C. Chou, Phys.
Rev. Lett. 81, 3006 (1998).

33. P. Bourges, H. Casalta, A. S. Ivanov, and D. Petitgrand,
Phys. Rev. Lett. 79, 4906 (1997).

Translated by H. Bronstein
AND THEORETICAL PHYSICS      Vol. 95      No. 1      2002


	1_1.pdf
	101_1.pdf
	106_1.pdf
	11_1.pdf
	114_1.pdf
	123_1.pdf
	132_1.pdf
	145_1.pdf
	154_1.pdf
	166_1.pdf
	175_1.pdf
	26_1.pdf
	42_1.pdf
	48_1.pdf
	5_1.pdf
	57_1.pdf
	64_1.pdf
	67_1.pdf
	77_1.pdf
	83_1.pdf
	87_1.pdf

